[io-layer] Extract socket (#4241)
[mono.git] / mono / metadata / threadpool-worker-default.c
1 /*
2  * threadpool-worker.c: native threadpool worker
3  *
4  * Author:
5  *      Ludovic Henry (ludovic.henry@xamarin.com)
6  *
7  * Licensed under the MIT license. See LICENSE file in the project root for full license information.
8  */
9
10 #include <stdlib.h>
11 #define _USE_MATH_DEFINES // needed by MSVC to define math constants
12 #include <math.h>
13 #include <config.h>
14 #include <glib.h>
15
16 #include <mono/metadata/class-internals.h>
17 #include <mono/metadata/exception.h>
18 #include <mono/metadata/gc-internals.h>
19 #include <mono/metadata/object.h>
20 #include <mono/metadata/object-internals.h>
21 #include <mono/metadata/threadpool.h>
22 #include <mono/metadata/threadpool-worker.h>
23 #include <mono/metadata/threadpool-io.h>
24 #include <mono/metadata/w32event.h>
25 #include <mono/utils/atomic.h>
26 #include <mono/utils/mono-compiler.h>
27 #include <mono/utils/mono-complex.h>
28 #include <mono/utils/mono-lazy-init.h>
29 #include <mono/utils/mono-logger.h>
30 #include <mono/utils/mono-logger-internals.h>
31 #include <mono/utils/mono-proclib.h>
32 #include <mono/utils/mono-threads.h>
33 #include <mono/utils/mono-time.h>
34 #include <mono/utils/mono-rand.h>
35 #include <mono/utils/refcount.h>
36 #include <mono/io-layer/io-layer.h>
37
38 #define CPU_USAGE_LOW 80
39 #define CPU_USAGE_HIGH 95
40
41 #define MONITOR_INTERVAL 500 // ms
42 #define MONITOR_MINIMAL_LIFETIME 60 * 1000 // ms
43
44 #define WORKER_CREATION_MAX_PER_SEC 10
45
46 /* The exponent to apply to the gain. 1.0 means to use linear gain,
47  * higher values will enhance large moves and damp small ones.
48  * default: 2.0 */
49 #define HILL_CLIMBING_GAIN_EXPONENT 2.0
50
51 /* The 'cost' of a thread. 0 means drive for increased throughput regardless
52  * of thread count, higher values bias more against higher thread counts.
53  * default: 0.15 */
54 #define HILL_CLIMBING_BIAS 0.15
55
56 #define HILL_CLIMBING_WAVE_PERIOD 4
57 #define HILL_CLIMBING_MAX_WAVE_MAGNITUDE 20
58 #define HILL_CLIMBING_WAVE_MAGNITUDE_MULTIPLIER 1.0
59 #define HILL_CLIMBING_WAVE_HISTORY_SIZE 8
60 #define HILL_CLIMBING_TARGET_SIGNAL_TO_NOISE_RATIO 3.0
61 #define HILL_CLIMBING_MAX_CHANGE_PER_SECOND 4
62 #define HILL_CLIMBING_MAX_CHANGE_PER_SAMPLE 20
63 #define HILL_CLIMBING_SAMPLE_INTERVAL_LOW 10
64 #define HILL_CLIMBING_SAMPLE_INTERVAL_HIGH 200
65 #define HILL_CLIMBING_ERROR_SMOOTHING_FACTOR 0.01
66 #define HILL_CLIMBING_MAX_SAMPLE_ERROR_PERCENT 0.15
67
68 typedef enum {
69         TRANSITION_WARMUP,
70         TRANSITION_INITIALIZING,
71         TRANSITION_RANDOM_MOVE,
72         TRANSITION_CLIMBING_MOVE,
73         TRANSITION_CHANGE_POINT,
74         TRANSITION_STABILIZING,
75         TRANSITION_STARVATION,
76         TRANSITION_THREAD_TIMED_OUT,
77         TRANSITION_UNDEFINED,
78 } ThreadPoolHeuristicStateTransition;
79
80 typedef struct {
81         gint32 wave_period;
82         gint32 samples_to_measure;
83         gdouble target_throughput_ratio;
84         gdouble target_signal_to_noise_ratio;
85         gdouble max_change_per_second;
86         gdouble max_change_per_sample;
87         gint32 max_thread_wave_magnitude;
88         gint32 sample_interval_low;
89         gdouble thread_magnitude_multiplier;
90         gint32 sample_interval_high;
91         gdouble throughput_error_smoothing_factor;
92         gdouble gain_exponent;
93         gdouble max_sample_error;
94
95         gdouble current_control_setting;
96         gint64 total_samples;
97         gint16 last_thread_count;
98         gdouble elapsed_since_last_change;
99         gdouble completions_since_last_change;
100
101         gdouble average_throughput_noise;
102
103         gdouble *samples;
104         gdouble *thread_counts;
105
106         guint32 current_sample_interval;
107         gpointer random_interval_generator;
108
109         gint32 accumulated_completion_count;
110         gdouble accumulated_sample_duration;
111 } ThreadPoolHillClimbing;
112
113 typedef struct {
114         MonoThreadPoolWorkerCallback callback;
115         gpointer data;
116 } ThreadPoolWorkItem;
117
118 typedef union {
119         struct {
120                 gint16 max_working; /* determined by heuristic */
121                 gint16 starting; /* starting, but not yet in worker_thread */
122                 gint16 working; /* executing worker_thread */
123                 gint16 parked; /* parked */
124         } _;
125         gint64 as_gint64;
126 } ThreadPoolWorkerCounter;
127
128 typedef MonoInternalThread ThreadPoolWorkerThread;
129
130 struct MonoThreadPoolWorker {
131         MonoRefCount ref;
132
133         ThreadPoolWorkerCounter counters;
134
135         GPtrArray *threads; // ThreadPoolWorkerThread* []
136         MonoCoopMutex threads_lock; /* protect access to working_threads and parked_threads */
137         gint32 parked_threads_count;
138         MonoCoopCond parked_threads_cond;
139         MonoCoopCond threads_exit_cond;
140
141         ThreadPoolWorkItem *work_items; // ThreadPoolWorkItem []
142         gint32 work_items_count;
143         gint32 work_items_size;
144         MonoCoopMutex work_items_lock;
145
146         guint32 worker_creation_current_second;
147         guint32 worker_creation_current_count;
148         MonoCoopMutex worker_creation_lock;
149
150         gint32 heuristic_completions;
151         gint64 heuristic_sample_start;
152         gint64 heuristic_last_dequeue; // ms
153         gint64 heuristic_last_adjustment; // ms
154         gint64 heuristic_adjustment_interval; // ms
155         ThreadPoolHillClimbing heuristic_hill_climbing;
156         MonoCoopMutex heuristic_lock;
157
158         gint32 limit_worker_min;
159         gint32 limit_worker_max;
160
161         MonoCpuUsageState *cpu_usage_state;
162         gint32 cpu_usage;
163
164         /* suspended by the debugger */
165         gboolean suspended;
166
167         gint32 monitor_status;
168 };
169
170 enum {
171         MONITOR_STATUS_REQUESTED,
172         MONITOR_STATUS_WAITING_FOR_REQUEST,
173         MONITOR_STATUS_NOT_RUNNING,
174 };
175
176 #define COUNTER_CHECK(counter) \
177         do { \
178                 g_assert (counter._.max_working > 0); \
179                 g_assert (counter._.starting >= 0); \
180                 g_assert (counter._.working >= 0); \
181         } while (0)
182
183 #define COUNTER_ATOMIC(worker,var,block) \
184         do { \
185                 ThreadPoolWorkerCounter __old; \
186                 do { \
187                         g_assert (worker); \
188                         __old = COUNTER_READ (worker); \
189                         (var) = __old; \
190                         { block; } \
191                         COUNTER_CHECK (var); \
192                 } while (InterlockedCompareExchange64 (&worker->counters.as_gint64, (var).as_gint64, __old.as_gint64) != __old.as_gint64); \
193         } while (0)
194
195 static inline ThreadPoolWorkerCounter
196 COUNTER_READ (MonoThreadPoolWorker *worker)
197 {
198         ThreadPoolWorkerCounter counter;
199         counter.as_gint64 = InterlockedRead64 (&worker->counters.as_gint64);
200         return counter;
201 }
202
203 static gpointer
204 rand_create (void)
205 {
206         mono_rand_open ();
207         return mono_rand_init (NULL, 0);
208 }
209
210 static guint32
211 rand_next (gpointer *handle, guint32 min, guint32 max)
212 {
213         MonoError error;
214         guint32 val;
215         mono_rand_try_get_uint32 (handle, &val, min, max, &error);
216         // FIXME handle error
217         mono_error_assert_ok (&error);
218         return val;
219 }
220
221 static void
222 destroy (gpointer data)
223 {
224         MonoThreadPoolWorker *worker;
225
226         worker = (MonoThreadPoolWorker*) data;
227         g_assert (worker);
228
229         // FIXME destroy everything
230
231         g_free (worker);
232 }
233
234 void
235 mono_threadpool_worker_init (MonoThreadPoolWorker **worker)
236 {
237         MonoThreadPoolWorker *wk;
238         ThreadPoolHillClimbing *hc;
239         const char *threads_per_cpu_env;
240         gint threads_per_cpu;
241         gint threads_count;
242
243         g_assert (worker);
244
245         wk = *worker = g_new0 (MonoThreadPoolWorker, 1);
246
247         mono_refcount_init (wk, destroy);
248
249         wk->threads = g_ptr_array_new ();
250         mono_coop_mutex_init (&wk->threads_lock);
251         wk->parked_threads_count = 0;
252         mono_coop_cond_init (&wk->parked_threads_cond);
253         mono_coop_cond_init (&wk->threads_exit_cond);
254
255         /* wk->work_items_size is inited to 0 */
256         mono_coop_mutex_init (&wk->work_items_lock);
257
258         wk->worker_creation_current_second = -1;
259         mono_coop_mutex_init (&wk->worker_creation_lock);
260
261         wk->heuristic_adjustment_interval = 10;
262         mono_coop_mutex_init (&wk->heuristic_lock);
263
264         mono_rand_open ();
265
266         hc = &wk->heuristic_hill_climbing;
267
268         hc->wave_period = HILL_CLIMBING_WAVE_PERIOD;
269         hc->max_thread_wave_magnitude = HILL_CLIMBING_MAX_WAVE_MAGNITUDE;
270         hc->thread_magnitude_multiplier = (gdouble) HILL_CLIMBING_WAVE_MAGNITUDE_MULTIPLIER;
271         hc->samples_to_measure = hc->wave_period * HILL_CLIMBING_WAVE_HISTORY_SIZE;
272         hc->target_throughput_ratio = (gdouble) HILL_CLIMBING_BIAS;
273         hc->target_signal_to_noise_ratio = (gdouble) HILL_CLIMBING_TARGET_SIGNAL_TO_NOISE_RATIO;
274         hc->max_change_per_second = (gdouble) HILL_CLIMBING_MAX_CHANGE_PER_SECOND;
275         hc->max_change_per_sample = (gdouble) HILL_CLIMBING_MAX_CHANGE_PER_SAMPLE;
276         hc->sample_interval_low = HILL_CLIMBING_SAMPLE_INTERVAL_LOW;
277         hc->sample_interval_high = HILL_CLIMBING_SAMPLE_INTERVAL_HIGH;
278         hc->throughput_error_smoothing_factor = (gdouble) HILL_CLIMBING_ERROR_SMOOTHING_FACTOR;
279         hc->gain_exponent = (gdouble) HILL_CLIMBING_GAIN_EXPONENT;
280         hc->max_sample_error = (gdouble) HILL_CLIMBING_MAX_SAMPLE_ERROR_PERCENT;
281         hc->current_control_setting = 0;
282         hc->total_samples = 0;
283         hc->last_thread_count = 0;
284         hc->average_throughput_noise = 0;
285         hc->elapsed_since_last_change = 0;
286         hc->accumulated_completion_count = 0;
287         hc->accumulated_sample_duration = 0;
288         hc->samples = g_new0 (gdouble, hc->samples_to_measure);
289         hc->thread_counts = g_new0 (gdouble, hc->samples_to_measure);
290         hc->random_interval_generator = rand_create ();
291         hc->current_sample_interval = rand_next (&hc->random_interval_generator, hc->sample_interval_low, hc->sample_interval_high);
292
293         if (!(threads_per_cpu_env = g_getenv ("MONO_THREADS_PER_CPU")))
294                 threads_per_cpu = 1;
295         else
296                 threads_per_cpu = CLAMP (atoi (threads_per_cpu_env), 1, 50);
297
298         threads_count = mono_cpu_count () * threads_per_cpu;
299
300         wk->limit_worker_min = threads_count;
301
302 #if defined (PLATFORM_ANDROID) || defined (HOST_IOS)
303         wk->limit_worker_max = CLAMP (threads_count * 100, MIN (threads_count, 200), MAX (threads_count, 200));
304 #else
305         wk->limit_worker_max = threads_count * 100;
306 #endif
307
308         wk->counters._.max_working = wk->limit_worker_min;
309
310         wk->cpu_usage_state = g_new0 (MonoCpuUsageState, 1);
311
312         wk->suspended = FALSE;
313
314         wk->monitor_status = MONITOR_STATUS_NOT_RUNNING;
315 }
316
317 void
318 mono_threadpool_worker_cleanup (MonoThreadPoolWorker *worker)
319 {
320         MonoInternalThread *current;
321
322         /* we make the assumption along the code that we are
323          * cleaning up only if the runtime is shutting down */
324         g_assert (mono_runtime_is_shutting_down ());
325
326         current = mono_thread_internal_current ();
327
328         while (worker->monitor_status != MONITOR_STATUS_NOT_RUNNING)
329                 mono_thread_info_sleep (1, NULL);
330
331         mono_coop_mutex_lock (&worker->threads_lock);
332
333         /* unpark all worker->parked_threads */
334         mono_coop_cond_broadcast (&worker->parked_threads_cond);
335
336         for (;;) {
337                 ThreadPoolWorkerCounter counter;
338
339                 counter = COUNTER_READ (worker);
340                 if (counter._.starting + counter._.working + counter._.parked == 0)
341                         break;
342
343                 if (counter._.starting + counter._.working + counter._.parked == 1) {
344                         if (worker->threads->len == 1 && g_ptr_array_index (worker->threads, 0) == current) {
345                                 /* We are waiting on ourselves */
346                                 break;
347                         }
348                 }
349
350                 mono_coop_cond_wait (&worker->threads_exit_cond, &worker->threads_lock);
351         }
352
353         mono_coop_mutex_unlock (&worker->threads_lock);
354
355         mono_refcount_dec (worker);
356 }
357
358 static void
359 work_item_lock (MonoThreadPoolWorker *worker)
360 {
361         mono_coop_mutex_lock (&worker->work_items_lock);
362 }
363
364 static void
365 work_item_unlock (MonoThreadPoolWorker *worker)
366 {
367         mono_coop_mutex_unlock (&worker->work_items_lock);
368 }
369
370 static void
371 work_item_push (MonoThreadPoolWorker *worker, MonoThreadPoolWorkerCallback callback, gpointer data)
372 {
373         ThreadPoolWorkItem work_item;
374
375         g_assert (worker);
376         g_assert (callback);
377
378         work_item.callback = callback;
379         work_item.data = data;
380
381         work_item_lock (worker);
382
383         g_assert (worker->work_items_count <= worker->work_items_size);
384
385         if (G_UNLIKELY (worker->work_items_count == worker->work_items_size)) {
386                 worker->work_items_size += 64;
387                 worker->work_items = g_renew (ThreadPoolWorkItem, worker->work_items, worker->work_items_size);
388         }
389
390         g_assert (worker->work_items);
391
392         worker->work_items [worker->work_items_count ++] = work_item;
393
394         // printf ("[push] worker->work_items = %p, worker->work_items_count = %d, worker->work_items_size = %d\n",
395         //      worker->work_items, worker->work_items_count, worker->work_items_size);
396
397         work_item_unlock (worker);
398 }
399
400 static gboolean
401 work_item_try_pop (MonoThreadPoolWorker *worker, ThreadPoolWorkItem *work_item)
402 {
403         g_assert (worker);
404         g_assert (work_item);
405
406         work_item_lock (worker);
407
408         // printf ("[pop]  worker->work_items = %p, worker->work_items_count = %d, worker->work_items_size = %d\n",
409         //      worker->work_items, worker->work_items_count, worker->work_items_size);
410
411         if (worker->work_items_count == 0) {
412                 work_item_unlock (worker);
413                 return FALSE;
414         }
415
416         *work_item = worker->work_items [-- worker->work_items_count];
417
418         if (G_UNLIKELY (worker->work_items_count >= 64 * 3 && worker->work_items_count < worker->work_items_size / 2)) {
419                 worker->work_items_size -= 64;
420                 worker->work_items = g_renew (ThreadPoolWorkItem, worker->work_items, worker->work_items_size);
421         }
422
423         work_item_unlock (worker);
424
425         return TRUE;
426 }
427
428 static gint32
429 work_item_count (MonoThreadPoolWorker *worker)
430 {
431         gint32 count;
432
433         work_item_lock (worker);
434         count = worker->work_items_count;
435         work_item_unlock (worker);
436
437         return count;
438 }
439
440 static void worker_request (MonoThreadPoolWorker *worker);
441
442 void
443 mono_threadpool_worker_enqueue (MonoThreadPoolWorker *worker, MonoThreadPoolWorkerCallback callback, gpointer data)
444 {
445         work_item_push (worker, callback, data);
446
447         worker_request (worker);
448 }
449
450 static void
451 worker_wait_interrupt (gpointer data)
452 {
453         MonoThreadPoolWorker *worker;
454
455         worker = (MonoThreadPoolWorker*) data;
456         g_assert (worker);
457
458         mono_coop_mutex_lock (&worker->threads_lock);
459         mono_coop_cond_signal (&worker->parked_threads_cond);
460         mono_coop_mutex_unlock (&worker->threads_lock);
461
462         mono_refcount_dec (worker);
463 }
464
465 /* return TRUE if timeout, FALSE otherwise (worker unpark or interrupt) */
466 static gboolean
467 worker_park (MonoThreadPoolWorker *worker)
468 {
469         gboolean timeout = FALSE;
470
471         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] worker parking", mono_native_thread_id_get ());
472
473         mono_coop_mutex_lock (&worker->threads_lock);
474
475         if (!mono_runtime_is_shutting_down ()) {
476                 static gpointer rand_handle = NULL;
477                 MonoInternalThread *thread;
478                 gboolean interrupted = FALSE;
479                 ThreadPoolWorkerCounter counter;
480
481                 if (!rand_handle)
482                         rand_handle = rand_create ();
483                 g_assert (rand_handle);
484
485                 thread = mono_thread_internal_current ();
486                 g_assert (thread);
487
488                 COUNTER_ATOMIC (worker, counter, {
489                         counter._.working --;
490                         counter._.parked ++;
491                 });
492
493                 worker->parked_threads_count += 1;
494
495                 mono_thread_info_install_interrupt (worker_wait_interrupt, mono_refcount_inc (worker), &interrupted);
496                 if (interrupted) {
497                         mono_refcount_dec (worker);
498                         goto done;
499                 }
500
501                 if (mono_coop_cond_timedwait (&worker->parked_threads_cond, &worker->threads_lock, rand_next (&rand_handle, 5 * 1000, 60 * 1000)) != 0)
502                         timeout = TRUE;
503
504                 mono_thread_info_uninstall_interrupt (&interrupted);
505                 if (!interrupted)
506                         mono_refcount_dec (worker);
507
508 done:
509                 worker->parked_threads_count -= 1;
510
511                 COUNTER_ATOMIC (worker, counter, {
512                         counter._.working ++;
513                         counter._.parked --;
514                 });
515         }
516
517         mono_coop_mutex_unlock (&worker->threads_lock);
518
519         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] worker unparking, timeout? %s", mono_native_thread_id_get (), timeout ? "yes" : "no");
520
521         return timeout;
522 }
523
524 static gboolean
525 worker_try_unpark (MonoThreadPoolWorker *worker)
526 {
527         gboolean res = FALSE;
528
529         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] try unpark worker", mono_native_thread_id_get ());
530
531         mono_coop_mutex_lock (&worker->threads_lock);
532         if (worker->parked_threads_count > 0) {
533                 mono_coop_cond_signal (&worker->parked_threads_cond);
534                 res = TRUE;
535         }
536         mono_coop_mutex_unlock (&worker->threads_lock);
537
538         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] try unpark worker, success? %s", mono_native_thread_id_get (), res ? "yes" : "no");
539
540         return res;
541 }
542
543 static gsize WINAPI
544 worker_thread (gpointer data)
545 {
546         MonoThreadPoolWorker *worker;
547         MonoError error;
548         MonoInternalThread *thread;
549         ThreadPoolWorkerCounter counter;
550
551         mono_trace (G_LOG_LEVEL_INFO, MONO_TRACE_THREADPOOL, "[%p] worker starting", mono_native_thread_id_get ());
552
553         worker = (MonoThreadPoolWorker*) data;
554         g_assert (worker);
555
556         COUNTER_ATOMIC (worker, counter, {
557                 counter._.starting --;
558                 counter._.working ++;
559         });
560
561         thread = mono_thread_internal_current ();
562         g_assert (thread);
563
564         mono_coop_mutex_lock (&worker->threads_lock);
565         g_ptr_array_add (worker->threads, thread);
566         mono_coop_mutex_unlock (&worker->threads_lock);
567
568         mono_thread_set_name_internal (thread, mono_string_new (mono_get_root_domain (), "Threadpool worker"), FALSE, &error);
569         mono_error_assert_ok (&error);
570
571         while (!mono_runtime_is_shutting_down ()) {
572                 ThreadPoolWorkItem work_item;
573
574                 if (mono_thread_interruption_checkpoint ())
575                         continue;
576
577                 if (!work_item_try_pop (worker, &work_item)) {
578                         gboolean timeout;
579
580                         timeout = worker_park (worker);
581                         if (timeout)
582                                 break;
583
584                         continue;
585                 }
586
587                 mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] worker executing %p (%p)",
588                         mono_native_thread_id_get (), work_item.callback, work_item.data);
589
590                 work_item.callback (work_item.data);
591         }
592
593         mono_coop_mutex_lock (&worker->threads_lock);
594
595         COUNTER_ATOMIC (worker, counter, {
596                 counter._.working --;
597         });
598
599         g_ptr_array_remove (worker->threads, thread);
600
601         mono_coop_cond_signal (&worker->threads_exit_cond);
602
603         mono_coop_mutex_unlock (&worker->threads_lock);
604
605         mono_trace (G_LOG_LEVEL_INFO, MONO_TRACE_THREADPOOL, "[%p] worker finishing", mono_native_thread_id_get ());
606
607         mono_refcount_dec (worker);
608
609         return 0;
610 }
611
612 static gboolean
613 worker_try_create (MonoThreadPoolWorker *worker)
614 {
615         MonoError error;
616         MonoInternalThread *thread;
617         gint64 current_ticks;
618         gint32 now;
619         ThreadPoolWorkerCounter counter;
620
621         if (mono_runtime_is_shutting_down ())
622                 return FALSE;
623
624         mono_coop_mutex_lock (&worker->worker_creation_lock);
625
626         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] try create worker", mono_native_thread_id_get ());
627
628         current_ticks = mono_100ns_ticks ();
629         if (0 == current_ticks) {
630                 g_warning ("failed to get 100ns ticks");
631         } else {
632                 now = current_ticks / (10 * 1000 * 1000);
633                 if (worker->worker_creation_current_second != now) {
634                         worker->worker_creation_current_second = now;
635                         worker->worker_creation_current_count = 0;
636                 } else {
637                         g_assert (worker->worker_creation_current_count <= WORKER_CREATION_MAX_PER_SEC);
638                         if (worker->worker_creation_current_count == WORKER_CREATION_MAX_PER_SEC) {
639                                 mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] try create worker, failed: maximum number of worker created per second reached, current count = %d",
640                                         mono_native_thread_id_get (), worker->worker_creation_current_count);
641                                 mono_coop_mutex_unlock (&worker->worker_creation_lock);
642                                 return FALSE;
643                         }
644                 }
645         }
646
647         COUNTER_ATOMIC (worker, counter, {
648                 if (counter._.working >= counter._.max_working) {
649                         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] try create worker, failed: maximum number of working threads reached",
650                                 mono_native_thread_id_get ());
651                         mono_coop_mutex_unlock (&worker->worker_creation_lock);
652                         return FALSE;
653                 }
654                 counter._.starting ++;
655         });
656
657         thread = mono_thread_create_internal (mono_get_root_domain (), worker_thread, mono_refcount_inc (worker), TRUE, 0, &error);
658         if (!thread) {
659                 mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] try create worker, failed: could not create thread due to %s", mono_native_thread_id_get (), mono_error_get_message (&error));
660                 mono_error_cleanup (&error);
661
662                 COUNTER_ATOMIC (worker, counter, {
663                         counter._.starting --;
664                 });
665
666                 mono_coop_mutex_unlock (&worker->worker_creation_lock);
667
668                 mono_refcount_dec (worker);
669
670                 return FALSE;
671         }
672
673         worker->worker_creation_current_count += 1;
674
675         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] try create worker, created %p, now = %d count = %d",
676                 mono_native_thread_id_get (), (gpointer) thread->tid, now, worker->worker_creation_current_count);
677
678         mono_coop_mutex_unlock (&worker->worker_creation_lock);
679         return TRUE;
680 }
681
682 static void monitor_ensure_running (MonoThreadPoolWorker *worker);
683
684 static void
685 worker_request (MonoThreadPoolWorker *worker)
686 {
687         g_assert (worker);
688
689         if (worker->suspended)
690                 return;
691
692         monitor_ensure_running (worker);
693
694         if (worker_try_unpark (worker)) {
695                 mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] request worker, unparked", mono_native_thread_id_get ());
696                 return;
697         }
698
699         if (worker_try_create (worker)) {
700                 mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] request worker, created", mono_native_thread_id_get ());
701                 return;
702         }
703
704         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] request worker, failed", mono_native_thread_id_get ());
705 }
706
707 static gboolean
708 monitor_should_keep_running (MonoThreadPoolWorker *worker)
709 {
710         static gint64 last_should_keep_running = -1;
711
712         g_assert (worker->monitor_status == MONITOR_STATUS_WAITING_FOR_REQUEST || worker->monitor_status == MONITOR_STATUS_REQUESTED);
713
714         if (InterlockedExchange (&worker->monitor_status, MONITOR_STATUS_WAITING_FOR_REQUEST) == MONITOR_STATUS_WAITING_FOR_REQUEST) {
715                 gboolean should_keep_running = TRUE, force_should_keep_running = FALSE;
716
717                 if (mono_runtime_is_shutting_down ()) {
718                         should_keep_running = FALSE;
719                 } else {
720                         if (work_item_count (worker) == 0)
721                                 should_keep_running = FALSE;
722
723                         if (!should_keep_running) {
724                                 if (last_should_keep_running == -1 || mono_100ns_ticks () - last_should_keep_running < MONITOR_MINIMAL_LIFETIME * 1000 * 10) {
725                                         should_keep_running = force_should_keep_running = TRUE;
726                                 }
727                         }
728                 }
729
730                 if (should_keep_running) {
731                         if (last_should_keep_running == -1 || !force_should_keep_running)
732                                 last_should_keep_running = mono_100ns_ticks ();
733                 } else {
734                         last_should_keep_running = -1;
735                         if (InterlockedCompareExchange (&worker->monitor_status, MONITOR_STATUS_NOT_RUNNING, MONITOR_STATUS_WAITING_FOR_REQUEST) == MONITOR_STATUS_WAITING_FOR_REQUEST)
736                                 return FALSE;
737                 }
738         }
739
740         g_assert (worker->monitor_status == MONITOR_STATUS_WAITING_FOR_REQUEST || worker->monitor_status == MONITOR_STATUS_REQUESTED);
741
742         return TRUE;
743 }
744
745 static gboolean
746 monitor_sufficient_delay_since_last_dequeue (MonoThreadPoolWorker *worker)
747 {
748         gint64 threshold;
749
750         g_assert (worker);
751
752         if (worker->cpu_usage < CPU_USAGE_LOW) {
753                 threshold = MONITOR_INTERVAL;
754         } else {
755                 ThreadPoolWorkerCounter counter;
756                 counter = COUNTER_READ (worker);
757                 threshold = counter._.max_working * MONITOR_INTERVAL * 2;
758         }
759
760         return mono_msec_ticks () >= worker->heuristic_last_dequeue + threshold;
761 }
762
763 static void hill_climbing_force_change (MonoThreadPoolWorker *worker, gint16 new_thread_count, ThreadPoolHeuristicStateTransition transition);
764
765 static gsize WINAPI
766 monitor_thread (gpointer data)
767 {
768         MonoThreadPoolWorker *worker;
769         MonoInternalThread *internal;
770         guint i;
771
772         worker = (MonoThreadPoolWorker*) data;
773         g_assert (worker);
774
775         internal = mono_thread_internal_current ();
776         g_assert (internal);
777
778         mono_cpu_usage (worker->cpu_usage_state);
779
780         // printf ("monitor_thread: start\n");
781
782         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] monitor thread, started", mono_native_thread_id_get ());
783
784         do {
785                 ThreadPoolWorkerCounter counter;
786                 gboolean limit_worker_max_reached;
787                 gint32 interval_left = MONITOR_INTERVAL;
788                 gint32 awake = 0; /* number of spurious awakes we tolerate before doing a round of rebalancing */
789
790                 g_assert (worker->monitor_status != MONITOR_STATUS_NOT_RUNNING);
791
792                 // counter = COUNTER_READ (worker);
793                 // printf ("monitor_thread: starting = %d working = %d parked = %d max_working = %d\n",
794                 //      counter._.starting, counter._.working, counter._.parked, counter._.max_working);
795
796                 do {
797                         gint64 ts;
798                         gboolean alerted = FALSE;
799
800                         if (mono_runtime_is_shutting_down ())
801                                 break;
802
803                         ts = mono_msec_ticks ();
804                         if (mono_thread_info_sleep (interval_left, &alerted) == 0)
805                                 break;
806                         interval_left -= mono_msec_ticks () - ts;
807
808                         g_assert (!(internal->state & ThreadState_StopRequested));
809                         mono_thread_interruption_checkpoint ();
810                 } while (interval_left > 0 && ++awake < 10);
811
812                 if (mono_runtime_is_shutting_down ())
813                         continue;
814
815                 if (worker->suspended)
816                         continue;
817
818                 if (work_item_count (worker) == 0)
819                         continue;
820
821                 worker->cpu_usage = mono_cpu_usage (worker->cpu_usage_state);
822
823                 if (!monitor_sufficient_delay_since_last_dequeue (worker))
824                         continue;
825
826                 limit_worker_max_reached = FALSE;
827
828                 COUNTER_ATOMIC (worker, counter, {
829                         if (counter._.max_working >= worker->limit_worker_max) {
830                                 limit_worker_max_reached = TRUE;
831                                 break;
832                         }
833                         counter._.max_working ++;
834                 });
835
836                 if (limit_worker_max_reached)
837                         continue;
838
839                 hill_climbing_force_change (worker, counter._.max_working, TRANSITION_STARVATION);
840
841                 for (i = 0; i < 5; ++i) {
842                         if (mono_runtime_is_shutting_down ())
843                                 break;
844
845                         if (worker_try_unpark (worker)) {
846                                 mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] monitor thread, unparked", mono_native_thread_id_get ());
847                                 break;
848                         }
849
850                         if (worker_try_create (worker)) {
851                                 mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] monitor thread, created", mono_native_thread_id_get ());
852                                 break;
853                         }
854                 }
855         } while (monitor_should_keep_running (worker));
856
857         // printf ("monitor_thread: stop\n");
858
859         mono_trace (G_LOG_LEVEL_DEBUG, MONO_TRACE_THREADPOOL, "[%p] monitor thread, finished", mono_native_thread_id_get ());
860
861         return 0;
862 }
863
864 static void
865 monitor_ensure_running (MonoThreadPoolWorker *worker)
866 {
867         MonoError error;
868         for (;;) {
869                 switch (worker->monitor_status) {
870                 case MONITOR_STATUS_REQUESTED:
871                         // printf ("monitor_thread: requested\n");
872                         return;
873                 case MONITOR_STATUS_WAITING_FOR_REQUEST:
874                         // printf ("monitor_thread: waiting for request\n");
875                         InterlockedCompareExchange (&worker->monitor_status, MONITOR_STATUS_REQUESTED, MONITOR_STATUS_WAITING_FOR_REQUEST);
876                         break;
877                 case MONITOR_STATUS_NOT_RUNNING:
878                         // printf ("monitor_thread: not running\n");
879                         if (mono_runtime_is_shutting_down ())
880                                 return;
881                         if (InterlockedCompareExchange (&worker->monitor_status, MONITOR_STATUS_REQUESTED, MONITOR_STATUS_NOT_RUNNING) == MONITOR_STATUS_NOT_RUNNING) {
882                                 // printf ("monitor_thread: creating\n");
883                                 if (!mono_thread_create_internal (mono_get_root_domain (), monitor_thread, worker, TRUE, SMALL_STACK, &error)) {
884                                         // printf ("monitor_thread: creating failed\n");
885                                         worker->monitor_status = MONITOR_STATUS_NOT_RUNNING;
886                                         mono_error_cleanup (&error);
887                                 }
888                                 return;
889                         }
890                         break;
891                 default: g_assert_not_reached ();
892                 }
893         }
894 }
895
896 static void
897 hill_climbing_change_thread_count (MonoThreadPoolWorker *worker, gint16 new_thread_count, ThreadPoolHeuristicStateTransition transition)
898 {
899         ThreadPoolHillClimbing *hc;
900
901         g_assert (worker);
902
903         hc = &worker->heuristic_hill_climbing;
904
905         mono_trace (G_LOG_LEVEL_INFO, MONO_TRACE_THREADPOOL, "[%p] hill climbing, change max number of threads %d", mono_native_thread_id_get (), new_thread_count);
906
907         hc->last_thread_count = new_thread_count;
908         hc->current_sample_interval = rand_next (&hc->random_interval_generator, hc->sample_interval_low, hc->sample_interval_high);
909         hc->elapsed_since_last_change = 0;
910         hc->completions_since_last_change = 0;
911 }
912
913 static void
914 hill_climbing_force_change (MonoThreadPoolWorker *worker, gint16 new_thread_count, ThreadPoolHeuristicStateTransition transition)
915 {
916         ThreadPoolHillClimbing *hc;
917
918         g_assert (worker);
919
920         hc = &worker->heuristic_hill_climbing;
921
922         if (new_thread_count != hc->last_thread_count) {
923                 hc->current_control_setting += new_thread_count - hc->last_thread_count;
924                 hill_climbing_change_thread_count (worker, new_thread_count, transition);
925         }
926 }
927
928 static double_complex
929 hill_climbing_get_wave_component (MonoThreadPoolWorker *worker, gdouble *samples, guint sample_count, gdouble period)
930 {
931         ThreadPoolHillClimbing *hc;
932         gdouble w, cosine, sine, coeff, q0, q1, q2;
933         guint i;
934
935         g_assert (worker);
936         g_assert (sample_count >= period);
937         g_assert (period >= 2);
938
939         hc = &worker->heuristic_hill_climbing;
940
941         w = 2.0 * M_PI / period;
942         cosine = cos (w);
943         sine = sin (w);
944         coeff = 2.0 * cosine;
945         q0 = q1 = q2 = 0;
946
947         for (i = 0; i < sample_count; ++i) {
948                 q0 = coeff * q1 - q2 + samples [(hc->total_samples - sample_count + i) % hc->samples_to_measure];
949                 q2 = q1;
950                 q1 = q0;
951         }
952
953         return mono_double_complex_scalar_div (mono_double_complex_make (q1 - q2 * cosine, (q2 * sine)), ((gdouble)sample_count));
954 }
955
956 static gint16
957 hill_climbing_update (MonoThreadPoolWorker *worker, gint16 current_thread_count, guint32 sample_duration, gint32 completions, gint64 *adjustment_interval)
958 {
959         ThreadPoolHillClimbing *hc;
960         ThreadPoolHeuristicStateTransition transition;
961         gdouble throughput;
962         gdouble throughput_error_estimate;
963         gdouble confidence;
964         gdouble move;
965         gdouble gain;
966         gint sample_index;
967         gint sample_count;
968         gint new_thread_wave_magnitude;
969         gint new_thread_count;
970         double_complex thread_wave_component;
971         double_complex throughput_wave_component;
972         double_complex ratio;
973
974         g_assert (worker);
975         g_assert (adjustment_interval);
976
977         hc = &worker->heuristic_hill_climbing;
978
979         /* If someone changed the thread count without telling us, update our records accordingly. */
980         if (current_thread_count != hc->last_thread_count)
981                 hill_climbing_force_change (worker, current_thread_count, TRANSITION_INITIALIZING);
982
983         /* Update the cumulative stats for this thread count */
984         hc->elapsed_since_last_change += sample_duration;
985         hc->completions_since_last_change += completions;
986
987         /* Add in any data we've already collected about this sample */
988         sample_duration += hc->accumulated_sample_duration;
989         completions += hc->accumulated_completion_count;
990
991         /* We need to make sure we're collecting reasonably accurate data. Since we're just counting the end
992          * of each work item, we are goinng to be missing some data about what really happened during the
993          * sample interval. The count produced by each thread includes an initial work item that may have
994          * started well before the start of the interval, and each thread may have been running some new
995          * work item for some time before the end of the interval, which did not yet get counted. So
996          * our count is going to be off by +/- threadCount workitems.
997          *
998          * The exception is that the thread that reported to us last time definitely wasn't running any work
999          * at that time, and the thread that's reporting now definitely isn't running a work item now. So
1000          * we really only need to consider threadCount-1 threads.
1001          *
1002          * Thus the percent error in our count is +/- (threadCount-1)/numCompletions.
1003          *
1004          * We cannot rely on the frequency-domain analysis we'll be doing later to filter out this error, because
1005          * of the way it accumulates over time. If this sample is off by, say, 33% in the negative direction,
1006          * then the next one likely will be too. The one after that will include the sum of the completions
1007          * we missed in the previous samples, and so will be 33% positive. So every three samples we'll have
1008          * two "low" samples and one "high" sample. This will appear as periodic variation right in the frequency
1009          * range we're targeting, which will not be filtered by the frequency-domain translation. */
1010         if (hc->total_samples > 0 && ((current_thread_count - 1.0) / completions) >= hc->max_sample_error) {
1011                 /* Not accurate enough yet. Let's accumulate the data so
1012                  * far, and tell the MonoThreadPoolWorker to collect a little more. */
1013                 hc->accumulated_sample_duration = sample_duration;
1014                 hc->accumulated_completion_count = completions;
1015                 *adjustment_interval = 10;
1016                 return current_thread_count;
1017         }
1018
1019         /* We've got enouugh data for our sample; reset our accumulators for next time. */
1020         hc->accumulated_sample_duration = 0;
1021         hc->accumulated_completion_count = 0;
1022
1023         /* Add the current thread count and throughput sample to our history. */
1024         throughput = ((gdouble) completions) / sample_duration;
1025
1026         sample_index = hc->total_samples % hc->samples_to_measure;
1027         hc->samples [sample_index] = throughput;
1028         hc->thread_counts [sample_index] = current_thread_count;
1029         hc->total_samples ++;
1030
1031         /* Set up defaults for our metrics. */
1032         thread_wave_component = mono_double_complex_make(0, 0);
1033         throughput_wave_component = mono_double_complex_make(0, 0);
1034         throughput_error_estimate = 0;
1035         ratio = mono_double_complex_make(0, 0);
1036         confidence = 0;
1037
1038         transition = TRANSITION_WARMUP;
1039
1040         /* How many samples will we use? It must be at least the three wave periods we're looking for, and it must also
1041          * be a whole multiple of the primary wave's period; otherwise the frequency we're looking for will fall between
1042          * two frequency bands in the Fourier analysis, and we won't be able to measure it accurately. */
1043         sample_count = ((gint) MIN (hc->total_samples - 1, hc->samples_to_measure) / hc->wave_period) * hc->wave_period;
1044
1045         if (sample_count > hc->wave_period) {
1046                 guint i;
1047                 gdouble average_throughput;
1048                 gdouble average_thread_count;
1049                 gdouble sample_sum = 0;
1050                 gdouble thread_sum = 0;
1051
1052                 /* Average the throughput and thread count samples, so we can scale the wave magnitudes later. */
1053                 for (i = 0; i < sample_count; ++i) {
1054                         guint j = (hc->total_samples - sample_count + i) % hc->samples_to_measure;
1055                         sample_sum += hc->samples [j];
1056                         thread_sum += hc->thread_counts [j];
1057                 }
1058
1059                 average_throughput = sample_sum / sample_count;
1060                 average_thread_count = thread_sum / sample_count;
1061
1062                 if (average_throughput > 0 && average_thread_count > 0) {
1063                         gdouble noise_for_confidence, adjacent_period_1, adjacent_period_2;
1064
1065                         /* Calculate the periods of the adjacent frequency bands we'll be using to
1066                          * measure noise levels. We want the two adjacent Fourier frequency bands. */
1067                         adjacent_period_1 = sample_count / (((gdouble) sample_count) / ((gdouble) hc->wave_period) + 1);
1068                         adjacent_period_2 = sample_count / (((gdouble) sample_count) / ((gdouble) hc->wave_period) - 1);
1069
1070                         /* Get the the three different frequency components of the throughput (scaled by average
1071                          * throughput). Our "error" estimate (the amount of noise that might be present in the
1072                          * frequency band we're really interested in) is the average of the adjacent bands. */
1073                         throughput_wave_component = mono_double_complex_scalar_div (hill_climbing_get_wave_component (worker, hc->samples, sample_count, hc->wave_period), average_throughput);
1074                         throughput_error_estimate = cabs (mono_double_complex_scalar_div (hill_climbing_get_wave_component (worker, hc->samples, sample_count, adjacent_period_1), average_throughput));
1075
1076                         if (adjacent_period_2 <= sample_count) {
1077                                 throughput_error_estimate = MAX (throughput_error_estimate, cabs (mono_double_complex_scalar_div (hill_climbing_get_wave_component (
1078                                         worker, hc->samples, sample_count, adjacent_period_2), average_throughput)));
1079                         }
1080
1081                         /* Do the same for the thread counts, so we have something to compare to. We don't
1082                          * measure thread count noise, because there is none; these are exact measurements. */
1083                         thread_wave_component = mono_double_complex_scalar_div (hill_climbing_get_wave_component (worker, hc->thread_counts, sample_count, hc->wave_period), average_thread_count);
1084
1085                         /* Update our moving average of the throughput noise. We'll use this
1086                          * later as feedback to determine the new size of the thread wave. */
1087                         if (hc->average_throughput_noise == 0) {
1088                                 hc->average_throughput_noise = throughput_error_estimate;
1089                         } else {
1090                                 hc->average_throughput_noise = (hc->throughput_error_smoothing_factor * throughput_error_estimate)
1091                                         + ((1.0 + hc->throughput_error_smoothing_factor) * hc->average_throughput_noise);
1092                         }
1093
1094                         if (cabs (thread_wave_component) > 0) {
1095                                 /* Adjust the throughput wave so it's centered around the target wave,
1096                                  * and then calculate the adjusted throughput/thread ratio. */
1097                                 ratio = mono_double_complex_div (mono_double_complex_sub (throughput_wave_component, mono_double_complex_scalar_mul(thread_wave_component, hc->target_throughput_ratio)), thread_wave_component);
1098                                 transition = TRANSITION_CLIMBING_MOVE;
1099                         } else {
1100                                 ratio = mono_double_complex_make (0, 0);
1101                                 transition = TRANSITION_STABILIZING;
1102                         }
1103
1104                         noise_for_confidence = MAX (hc->average_throughput_noise, throughput_error_estimate);
1105                         if (noise_for_confidence > 0) {
1106                                 confidence = cabs (thread_wave_component) / noise_for_confidence / hc->target_signal_to_noise_ratio;
1107                         } else {
1108                                 /* there is no noise! */
1109                                 confidence = 1.0;
1110                         }
1111                 }
1112         }
1113
1114         /* We use just the real part of the complex ratio we just calculated. If the throughput signal
1115          * is exactly in phase with the thread signal, this will be the same as taking the magnitude of
1116          * the complex move and moving that far up. If they're 180 degrees out of phase, we'll move
1117          * backward (because this indicates that our changes are having the opposite of the intended effect).
1118          * If they're 90 degrees out of phase, we won't move at all, because we can't tell wether we're
1119          * having a negative or positive effect on throughput. */
1120         move = creal (ratio);
1121         move = CLAMP (move, -1.0, 1.0);
1122
1123         /* Apply our confidence multiplier. */
1124         move *= CLAMP (confidence, -1.0, 1.0);
1125
1126         /* Now apply non-linear gain, such that values around zero are attenuated, while higher values
1127          * are enhanced. This allows us to move quickly if we're far away from the target, but more slowly
1128         * if we're getting close, giving us rapid ramp-up without wild oscillations around the target. */
1129         gain = hc->max_change_per_second * sample_duration;
1130         move = pow (fabs (move), hc->gain_exponent) * (move >= 0.0 ? 1 : -1) * gain;
1131         move = MIN (move, hc->max_change_per_sample);
1132
1133         /* If the result was positive, and CPU is > 95%, refuse the move. */
1134         if (move > 0.0 && worker->cpu_usage > CPU_USAGE_HIGH)
1135                 move = 0.0;
1136
1137         /* Apply the move to our control setting. */
1138         hc->current_control_setting += move;
1139
1140         /* Calculate the new thread wave magnitude, which is based on the moving average we've been keeping of the
1141          * throughput error.  This average starts at zero, so we'll start with a nice safe little wave at first. */
1142         new_thread_wave_magnitude = (gint)(0.5 + (hc->current_control_setting * hc->average_throughput_noise
1143                 * hc->target_signal_to_noise_ratio * hc->thread_magnitude_multiplier * 2.0));
1144         new_thread_wave_magnitude = CLAMP (new_thread_wave_magnitude, 1, hc->max_thread_wave_magnitude);
1145
1146         /* Make sure our control setting is within the MonoThreadPoolWorker's limits. */
1147         hc->current_control_setting = CLAMP (hc->current_control_setting, worker->limit_worker_min, worker->limit_worker_max - new_thread_wave_magnitude);
1148
1149         /* Calculate the new thread count (control setting + square wave). */
1150         new_thread_count = (gint)(hc->current_control_setting + new_thread_wave_magnitude * ((hc->total_samples / (hc->wave_period / 2)) % 2));
1151
1152         /* Make sure the new thread count doesn't exceed the MonoThreadPoolWorker's limits. */
1153         new_thread_count = CLAMP (new_thread_count, worker->limit_worker_min, worker->limit_worker_max);
1154
1155         if (new_thread_count != current_thread_count)
1156                 hill_climbing_change_thread_count (worker, new_thread_count, transition);
1157
1158         if (creal (ratio) < 0.0 && new_thread_count == worker->limit_worker_min)
1159                 *adjustment_interval = (gint)(0.5 + hc->current_sample_interval * (10.0 * MAX (-1.0 * creal (ratio), 1.0)));
1160         else
1161                 *adjustment_interval = hc->current_sample_interval;
1162
1163         return new_thread_count;
1164 }
1165
1166 static gboolean
1167 heuristic_should_adjust (MonoThreadPoolWorker *worker)
1168 {
1169         if (worker->heuristic_last_dequeue > worker->heuristic_last_adjustment + worker->heuristic_adjustment_interval) {
1170                 ThreadPoolWorkerCounter counter;
1171                 counter = COUNTER_READ (worker);
1172                 if (counter._.working <= counter._.max_working)
1173                         return TRUE;
1174         }
1175
1176         return FALSE;
1177 }
1178
1179 static void
1180 heuristic_adjust (MonoThreadPoolWorker *worker)
1181 {
1182         if (mono_coop_mutex_trylock (&worker->heuristic_lock) == 0) {
1183                 gint32 completions = InterlockedExchange (&worker->heuristic_completions, 0);
1184                 gint64 sample_end = mono_msec_ticks ();
1185                 gint64 sample_duration = sample_end - worker->heuristic_sample_start;
1186
1187                 if (sample_duration >= worker->heuristic_adjustment_interval / 2) {
1188                         ThreadPoolWorkerCounter counter;
1189                         gint16 new_thread_count;
1190
1191                         counter = COUNTER_READ (worker);
1192                         new_thread_count = hill_climbing_update (worker, counter._.max_working, sample_duration, completions, &worker->heuristic_adjustment_interval);
1193
1194                         COUNTER_ATOMIC (worker, counter, {
1195                                 counter._.max_working = new_thread_count;
1196                         });
1197
1198                         if (new_thread_count > counter._.max_working)
1199                                 worker_request (worker);
1200
1201                         worker->heuristic_sample_start = sample_end;
1202                         worker->heuristic_last_adjustment = mono_msec_ticks ();
1203                 }
1204
1205                 mono_coop_mutex_unlock (&worker->heuristic_lock);
1206         }
1207 }
1208
1209 static void
1210 heuristic_notify_work_completed (MonoThreadPoolWorker *worker)
1211 {
1212         g_assert (worker);
1213
1214         InterlockedIncrement (&worker->heuristic_completions);
1215         worker->heuristic_last_dequeue = mono_msec_ticks ();
1216
1217         if (heuristic_should_adjust (worker))
1218                 heuristic_adjust (worker);
1219 }
1220
1221 gboolean
1222 mono_threadpool_worker_notify_completed (MonoThreadPoolWorker *worker)
1223 {
1224         ThreadPoolWorkerCounter counter;
1225
1226         heuristic_notify_work_completed (worker);
1227
1228         counter = COUNTER_READ (worker);
1229         return counter._.working <= counter._.max_working;
1230 }
1231
1232 gint32
1233 mono_threadpool_worker_get_min (MonoThreadPoolWorker *worker)
1234 {
1235         return worker->limit_worker_min;
1236 }
1237
1238 gboolean
1239 mono_threadpool_worker_set_min (MonoThreadPoolWorker *worker, gint32 value)
1240 {
1241         if (value <= 0 || value > worker->limit_worker_max)
1242                 return FALSE;
1243
1244         worker->limit_worker_min = value;
1245         return TRUE;
1246 }
1247
1248 gint32
1249 mono_threadpool_worker_get_max (MonoThreadPoolWorker *worker)
1250 {
1251         return worker->limit_worker_max;
1252 }
1253
1254 gboolean
1255 mono_threadpool_worker_set_max (MonoThreadPoolWorker *worker, gint32 value)
1256 {
1257         gint32 cpu_count = mono_cpu_count ();
1258
1259         if (value < worker->limit_worker_min || value < cpu_count)
1260                 return FALSE;
1261
1262         worker->limit_worker_max = value;
1263         return TRUE;
1264 }
1265
1266 void
1267 mono_threadpool_worker_set_suspended (MonoThreadPoolWorker *worker, gboolean suspended)
1268 {
1269         worker->suspended = suspended;
1270         if (!suspended)
1271                 worker_request (worker);
1272 }