- Update the romcc version.
[coreboot.git] / util / romcc / romcc.c
1 #include <stdarg.h>
2 #include <errno.h>
3 #include <stdint.h>
4 #include <stdlib.h>
5 #include <stdio.h>
6 #include <sys/types.h>
7 #include <sys/stat.h>
8 #include <fcntl.h>
9 #include <unistd.h>
10 #include <stdio.h>
11 #include <string.h>
12 #include <limits.h>
13
14 #define DEBUG_ERROR_MESSAGES 0
15 #define DEBUG_COLOR_GRAPH 0
16 #define DEBUG_SCC 0
17 #define DEBUG_CONSISTENCY 1
18
19 #warning "FIXME boundary cases with small types in larger registers"
20 #warning "FIXME give clear error messages about unused variables"
21
22 /*  Control flow graph of a loop without goto.
23  * 
24  *        AAA
25  *   +---/
26  *  /
27  * / +--->CCC
28  * | |    / \
29  * | |  DDD EEE    break;
30  * | |    \    \
31  * | |    FFF   \
32  *  \|    / \    \
33  *   |\ GGG HHH   |   continue;
34  *   | \  \   |   |
35  *   |  \ III |  /
36  *   |   \ | /  / 
37  *   |    vvv  /  
38  *   +----BBB /   
39  *         | /
40  *         vv
41  *        JJJ
42  *
43  * 
44  *             AAA
45  *     +-----+  |  +----+
46  *     |      \ | /     |
47  *     |       BBB  +-+ |
48  *     |       / \ /  | |
49  *     |     CCC JJJ / /
50  *     |     / \    / / 
51  *     |   DDD EEE / /  
52  *     |    |   +-/ /
53  *     |   FFF     /    
54  *     |   / \    /     
55  *     | GGG HHH /      
56  *     |  |   +-/
57  *     | III
58  *     +--+ 
59  *
60  * 
61  * DFlocal(X) = { Y <- Succ(X) | idom(Y) != X }
62  * DFup(Z)    = { Y <- DF(Z) | idom(Y) != X }
63  *
64  *
65  * [] == DFlocal(X) U DF(X)
66  * () == DFup(X)
67  *
68  * Dominator graph of the same nodes.
69  *
70  *           AAA     AAA: [ ] ()
71  *          /   \
72  *        BBB    JJJ BBB: [ JJJ ] ( JJJ )  JJJ: [ ] ()
73  *         |
74  *        CCC        CCC: [ ] ( BBB, JJJ )
75  *        / \
76  *     DDD   EEE     DDD: [ ] ( BBB ) EEE: [ JJJ ] ()
77  *      |
78  *     FFF           FFF: [ ] ( BBB )
79  *     / \         
80  *  GGG   HHH        GGG: [ ] ( BBB ) HHH: [ BBB ] ()
81  *   |
82  *  III              III: [ BBB ] ()
83  *
84  *
85  * BBB and JJJ are definitely the dominance frontier.
86  * Where do I place phi functions and how do I make that decision.
87  *   
88  */
89 static void die(char *fmt, ...)
90 {
91         va_list args;
92
93         va_start(args, fmt);
94         vfprintf(stderr, fmt, args);
95         va_end(args);
96         fflush(stdout);
97         fflush(stderr);
98         exit(1);
99 }
100
101 #define MALLOC_STRONG_DEBUG
102 static void *xmalloc(size_t size, const char *name)
103 {
104         void *buf;
105         buf = malloc(size);
106         if (!buf) {
107                 die("Cannot malloc %ld bytes to hold %s: %s\n",
108                         size + 0UL, name, strerror(errno));
109         }
110         return buf;
111 }
112
113 static void *xcmalloc(size_t size, const char *name)
114 {
115         void *buf;
116         buf = xmalloc(size, name);
117         memset(buf, 0, size);
118         return buf;
119 }
120
121 static void xfree(const void *ptr)
122 {
123         free((void *)ptr);
124 }
125
126 static char *xstrdup(const char *str)
127 {
128         char *new;
129         int len;
130         len = strlen(str);
131         new = xmalloc(len + 1, "xstrdup string");
132         memcpy(new, str, len);
133         new[len] = '\0';
134         return new;
135 }
136
137 static void xchdir(const char *path)
138 {
139         if (chdir(path) != 0) {
140                 die("chdir to %s failed: %s\n",
141                         path, strerror(errno));
142         }
143 }
144
145 static int exists(const char *dirname, const char *filename)
146 {
147         int does_exist = 1;
148         xchdir(dirname);
149         if (access(filename, O_RDONLY) < 0) {
150                 if ((errno != EACCES) && (errno != EROFS)) {
151                         does_exist = 0;
152                 }
153         }
154         return does_exist;
155 }
156
157
158 static char *slurp_file(const char *dirname, const char *filename, off_t *r_size)
159 {
160         int fd;
161         char *buf;
162         off_t size, progress;
163         ssize_t result;
164         struct stat stats;
165         
166         if (!filename) {
167                 *r_size = 0;
168                 return 0;
169         }
170         xchdir(dirname);
171         fd = open(filename, O_RDONLY);
172         if (fd < 0) {
173                 die("Cannot open '%s' : %s\n",
174                         filename, strerror(errno));
175         }
176         result = fstat(fd, &stats);
177         if (result < 0) {
178                 die("Cannot stat: %s: %s\n",
179                         filename, strerror(errno));
180         }
181         size = stats.st_size;
182         *r_size = size +1;
183         buf = xmalloc(size +2, filename);
184         buf[size] = '\n'; /* Make certain the file is newline terminated */
185         buf[size+1] = '\0'; /* Null terminate the file for good measure */
186         progress = 0;
187         while(progress < size) {
188                 result = read(fd, buf + progress, size - progress);
189                 if (result < 0) {
190                         if ((errno == EINTR) || (errno == EAGAIN))
191                                 continue;
192                         die("read on %s of %ld bytes failed: %s\n",
193                                 filename, (size - progress)+ 0UL, strerror(errno));
194                 }
195                 progress += result;
196         }
197         result = close(fd);
198         if (result < 0) {
199                 die("Close of %s failed: %s\n",
200                         filename, strerror(errno));
201         }
202         return buf;
203 }
204
205 /* Long on the destination platform */
206 typedef unsigned long ulong_t;
207 typedef long long_t;
208
209 struct file_state {
210         struct file_state *prev;
211         const char *basename;
212         char *dirname;
213         char *buf;
214         off_t size;
215         char *pos;
216         int line;
217         char *line_start;
218         int report_line;
219         const char *report_name;
220         const char *report_dir;
221 };
222 struct hash_entry;
223 struct token {
224         int tok;
225         struct hash_entry *ident;
226         int str_len;
227         union {
228                 ulong_t integer;
229                 const char *str;
230         } val;
231 };
232
233 /* I have two classes of types:
234  * Operational types.
235  * Logical types.  (The type the C standard says the operation is of)
236  *
237  * The operational types are:
238  * chars
239  * shorts
240  * ints
241  * longs
242  *
243  * floats
244  * doubles
245  * long doubles
246  *
247  * pointer
248  */
249
250
251 /* Machine model.
252  * No memory is useable by the compiler.
253  * There is no floating point support.
254  * All operations take place in general purpose registers.
255  * There is one type of general purpose register.
256  * Unsigned longs are stored in that general purpose register.
257  */
258
259 /* Operations on general purpose registers.
260  */
261
262 #define OP_SMUL       0
263 #define OP_UMUL       1
264 #define OP_SDIV       2
265 #define OP_UDIV       3
266 #define OP_SMOD       4
267 #define OP_UMOD       5
268 #define OP_ADD        6
269 #define OP_SUB        7
270 #define OP_SL         8
271 #define OP_USR        9
272 #define OP_SSR       10 
273 #define OP_AND       11 
274 #define OP_XOR       12
275 #define OP_OR        13
276 #define OP_POS       14 /* Dummy positive operator don't use it */
277 #define OP_NEG       15
278 #define OP_INVERT    16
279                      
280 #define OP_EQ        20
281 #define OP_NOTEQ     21
282 #define OP_SLESS     22
283 #define OP_ULESS     23
284 #define OP_SMORE     24
285 #define OP_UMORE     25
286 #define OP_SLESSEQ   26
287 #define OP_ULESSEQ   27
288 #define OP_SMOREEQ   28
289 #define OP_UMOREEQ   29
290                      
291 #define OP_LFALSE    30  /* Test if the expression is logically false */
292 #define OP_LTRUE     31  /* Test if the expression is logcially true */
293
294 #define OP_LOAD      32
295 #define OP_STORE     33
296
297 #define OP_NOOP      34
298
299 #define OP_MIN_CONST 50
300 #define OP_MAX_CONST 59
301 #define IS_CONST_OP(X) (((X) >= OP_MIN_CONST) && ((X) <= OP_MAX_CONST))
302 #define OP_INTCONST  50
303 #define OP_BLOBCONST 51
304 /* For OP_BLOBCONST ->type holds the layout and size
305  * information.  u.blob holds a pointer to the raw binary
306  * data for the constant initializer.
307  */
308 #define OP_ADDRCONST 52
309 /* For OP_ADDRCONST ->type holds the type.
310  * MISC(0) holds the reference to the static variable.
311  * ->u.cval holds an offset from that value.
312  */
313
314 #define OP_WRITE     60 
315 /* OP_WRITE moves one pseudo register to another.
316  * LHS(0) holds the destination pseudo register, which must be an OP_DECL.
317  * RHS(0) holds the psuedo to move.
318  */
319
320 #define OP_READ      61
321 /* OP_READ reads the value of a variable and makes
322  * it available for the pseudo operation.
323  * Useful for things like def-use chains.
324  * RHS(0) holds points to the triple to read from.
325  */
326 #define OP_COPY      62
327 /* OP_COPY makes a copy of the psedo register or constant in RHS(0).
328  */
329 #define OP_PIECE     63
330 /* OP_PIECE returns one piece of a instruction that returns a structure.
331  * MISC(0) is the instruction
332  * u.cval is the LHS piece of the instruction to return.
333  */
334 #define OP_ASM       64
335 /* OP_ASM holds a sequence of assembly instructions, the result
336  * of a C asm directive.
337  * RHS(x) holds input value x to the assembly sequence.
338  * LHS(x) holds the output value x from the assembly sequence.
339  * u.blob holds the string of assembly instructions.
340  */
341
342 #define OP_DEREF     65
343 /* OP_DEREF generates an lvalue from a pointer.
344  * RHS(0) holds the pointer value.
345  * OP_DEREF serves as a place holder to indicate all necessary
346  * checks have been done to indicate a value is an lvalue.
347  */
348 #define OP_DOT       66
349 /* OP_DOT references a submember of a structure lvalue.
350  * RHS(0) holds the lvalue.
351  * ->u.field holds the name of the field we want.
352  *
353  * Not seen outside of expressions.
354  */
355 #define OP_VAL       67
356 /* OP_VAL returns the value of a subexpression of the current expression.
357  * Useful for operators that have side effects.
358  * RHS(0) holds the expression.
359  * MISC(0) holds the subexpression of RHS(0) that is the
360  * value of the expression.
361  *
362  * Not seen outside of expressions.
363  */
364 #define OP_LAND      68
365 /* OP_LAND performs a C logical and between RHS(0) and RHS(1).
366  * Not seen outside of expressions.
367  */
368 #define OP_LOR       69
369 /* OP_LOR performs a C logical or between RHS(0) and RHS(1).
370  * Not seen outside of expressions.
371  */
372 #define OP_COND      70
373 /* OP_CODE performas a C ? : operation. 
374  * RHS(0) holds the test.
375  * RHS(1) holds the expression to evaluate if the test returns true.
376  * RHS(2) holds the expression to evaluate if the test returns false.
377  * Not seen outside of expressions.
378  */
379 #define OP_COMMA     71
380 /* OP_COMMA performacs a C comma operation.
381  * That is RHS(0) is evaluated, then RHS(1)
382  * and the value of RHS(1) is returned.
383  * Not seen outside of expressions.
384  */
385
386 #define OP_CALL      72
387 /* OP_CALL performs a procedure call. 
388  * MISC(0) holds a pointer to the OP_LIST of a function
389  * RHS(x) holds argument x of a function
390  * 
391  * Currently not seen outside of expressions.
392  */
393 #define OP_VAL_VEC   74
394 /* OP_VAL_VEC is an array of triples that are either variable
395  * or values for a structure or an array.
396  * RHS(x) holds element x of the vector.
397  * triple->type->elements holds the size of the vector.
398  */
399
400 /* statements */
401 #define OP_LIST      80
402 /* OP_LIST Holds a list of statements, and a result value.
403  * RHS(0) holds the list of statements.
404  * MISC(0) holds the value of the statements.
405  */
406
407 #define OP_BRANCH    81 /* branch */
408 /* For branch instructions
409  * TARG(0) holds the branch target.
410  * RHS(0) if present holds the branch condition.
411  * ->next holds where to branch to if the branch is not taken.
412  * The branch target can only be a decl...
413  */
414
415 #define OP_LABEL     83
416 /* OP_LABEL is a triple that establishes an target for branches.
417  * ->use is the list of all branches that use this label.
418  */
419
420 #define OP_ADECL     84 
421 /* OP_DECL is a triple that establishes an lvalue for assignments.
422  * ->use is a list of statements that use the variable.
423  */
424
425 #define OP_SDECL     85
426 /* OP_SDECL is a triple that establishes a variable of static
427  * storage duration.
428  * ->use is a list of statements that use the variable.
429  * MISC(0) holds the initializer expression.
430  */
431
432
433 #define OP_PHI       86
434 /* OP_PHI is a triple used in SSA form code.  
435  * It is used when multiple code paths merge and a variable needs
436  * a single assignment from any of those code paths.
437  * The operation is a cross between OP_DECL and OP_WRITE, which
438  * is what OP_PHI is geneared from.
439  * 
440  * RHS(x) points to the value from code path x
441  * The number of RHS entries is the number of control paths into the block
442  * in which OP_PHI resides.  The elements of the array point to point
443  * to the variables OP_PHI is derived from.
444  *
445  * MISC(0) holds a pointer to the orginal OP_DECL node.
446  */
447
448 /* Architecture specific instructions */
449 #define OP_CMP         100
450 #define OP_TEST        101
451 #define OP_SET_EQ      102
452 #define OP_SET_NOTEQ   103
453 #define OP_SET_SLESS   104
454 #define OP_SET_ULESS   105
455 #define OP_SET_SMORE   106
456 #define OP_SET_UMORE   107
457 #define OP_SET_SLESSEQ 108
458 #define OP_SET_ULESSEQ 109
459 #define OP_SET_SMOREEQ 110
460 #define OP_SET_UMOREEQ 111
461
462 #define OP_JMP         112
463 #define OP_JMP_EQ      113
464 #define OP_JMP_NOTEQ   114
465 #define OP_JMP_SLESS   115
466 #define OP_JMP_ULESS   116
467 #define OP_JMP_SMORE   117
468 #define OP_JMP_UMORE   118
469 #define OP_JMP_SLESSEQ 119
470 #define OP_JMP_ULESSEQ 120
471 #define OP_JMP_SMOREEQ 121
472 #define OP_JMP_UMOREEQ 122
473
474 /* Builtin operators that it is just simpler to use the compiler for */
475 #define OP_INB         130
476 #define OP_INW         131
477 #define OP_INL         132
478 #define OP_OUTB        133
479 #define OP_OUTW        134
480 #define OP_OUTL        135
481 #define OP_BSF         136
482 #define OP_BSR         137
483 #define OP_RDMSR       138
484 #define OP_WRMSR       139
485 #define OP_HLT         140
486
487 struct op_info {
488         const char *name;
489         unsigned flags;
490 #define PURE   1
491 #define IMPURE 2
492 #define PURE_BITS(FLAGS) ((FLAGS) & 0x3)
493 #define DEF    4
494 #define BLOCK  8 /* Triple stores the current block */
495         unsigned char lhs, rhs, misc, targ;
496 };
497
498 #define OP(LHS, RHS, MISC, TARG, FLAGS, NAME) { \
499         .name = (NAME), \
500         .flags = (FLAGS), \
501         .lhs = (LHS), \
502         .rhs = (RHS), \
503         .misc = (MISC), \
504         .targ = (TARG), \
505          }
506 static const struct op_info table_ops[] = {
507 [OP_SMUL       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smul"),
508 [OP_UMUL       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umul"),
509 [OP_SDIV       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sdiv"),
510 [OP_UDIV       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "udiv"),
511 [OP_SMOD       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smod"),
512 [OP_UMOD       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umod"),
513 [OP_ADD        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "add"),
514 [OP_SUB        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sub"),
515 [OP_SL         ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sl"),
516 [OP_USR        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "usr"),
517 [OP_SSR        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "ssr"),
518 [OP_AND        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "and"),
519 [OP_XOR        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "xor"),
520 [OP_OR         ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "or"),
521 [OP_POS        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "pos"),
522 [OP_NEG        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "neg"),
523 [OP_INVERT     ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "invert"),
524
525 [OP_EQ         ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "eq"),
526 [OP_NOTEQ      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "noteq"),
527 [OP_SLESS      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sless"),
528 [OP_ULESS      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "uless"),
529 [OP_SMORE      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smore"),
530 [OP_UMORE      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umore"),
531 [OP_SLESSEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "slesseq"),
532 [OP_ULESSEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "ulesseq"),
533 [OP_SMOREEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smoreeq"),
534 [OP_UMOREEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umoreeq"),
535 [OP_LFALSE     ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "lfalse"),
536 [OP_LTRUE      ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "ltrue"),
537
538 [OP_LOAD       ] = OP( 0,  1, 0, 0, IMPURE | DEF | BLOCK, "load"),
539 [OP_STORE      ] = OP( 1,  1, 0, 0, IMPURE | BLOCK , "store"),
540
541 [OP_NOOP       ] = OP( 0,  0, 0, 0, PURE | BLOCK, "noop"),
542
543 [OP_INTCONST   ] = OP( 0,  0, 0, 0, PURE | DEF, "intconst"),
544 [OP_BLOBCONST  ] = OP( 0,  0, 0, 0, PURE, "blobconst"),
545 [OP_ADDRCONST  ] = OP( 0,  0, 1, 0, PURE | DEF, "addrconst"),
546
547 [OP_WRITE      ] = OP( 1,  1, 0, 0, PURE | BLOCK, "write"),
548 [OP_READ       ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "read"),
549 [OP_COPY       ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "copy"),
550 [OP_PIECE      ] = OP( 0,  0, 1, 0, PURE | DEF, "piece"),
551 [OP_ASM        ] = OP(-1, -1, 0, 0, IMPURE, "asm"),
552 [OP_DEREF      ] = OP( 0,  1, 0, 0, 0 | DEF | BLOCK, "deref"), 
553 [OP_DOT        ] = OP( 0,  1, 0, 0, 0 | DEF | BLOCK, "dot"),
554
555 [OP_VAL        ] = OP( 0,  1, 1, 0, 0 | DEF | BLOCK, "val"),
556 [OP_LAND       ] = OP( 0,  2, 0, 0, 0 | DEF | BLOCK, "land"),
557 [OP_LOR        ] = OP( 0,  2, 0, 0, 0 | DEF | BLOCK, "lor"),
558 [OP_COND       ] = OP( 0,  3, 0, 0, 0 | DEF | BLOCK, "cond"),
559 [OP_COMMA      ] = OP( 0,  2, 0, 0, 0 | DEF | BLOCK, "comma"),
560 /* Call is special most it can stand in for anything so it depends on context */
561 [OP_CALL       ] = OP(-1, -1, 1, 0, 0 | BLOCK, "call"),
562 /* The sizes of OP_CALL and OP_VAL_VEC depend upon context */
563 [OP_VAL_VEC    ] = OP( 0, -1, 0, 0, 0 | BLOCK, "valvec"),
564
565 [OP_LIST       ] = OP( 0,  1, 1, 0, 0 | DEF, "list"),
566 /* The number of targets for OP_BRANCH depends on context */
567 [OP_BRANCH     ] = OP( 0, -1, 0, 1, PURE | BLOCK, "branch"),
568 [OP_LABEL      ] = OP( 0,  0, 0, 0, PURE | BLOCK, "label"),
569 [OP_ADECL      ] = OP( 0,  0, 0, 0, PURE | BLOCK, "adecl"),
570 [OP_SDECL      ] = OP( 0,  0, 1, 0, PURE | BLOCK, "sdecl"),
571 /* The number of RHS elements of OP_PHI depend upon context */
572 [OP_PHI        ] = OP( 0, -1, 1, 0, PURE | DEF | BLOCK, "phi"),
573
574 [OP_CMP        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK, "cmp"),
575 [OP_TEST       ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "test"),
576 [OP_SET_EQ     ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_eq"),
577 [OP_SET_NOTEQ  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_noteq"),
578 [OP_SET_SLESS  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_sless"),
579 [OP_SET_ULESS  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_uless"),
580 [OP_SET_SMORE  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_smore"),
581 [OP_SET_UMORE  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_umore"),
582 [OP_SET_SLESSEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_slesseq"),
583 [OP_SET_ULESSEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_ulesseq"),
584 [OP_SET_SMOREEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_smoreq"),
585 [OP_SET_UMOREEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_umoreq"),
586 [OP_JMP        ] = OP( 0,  0, 0, 1, PURE | BLOCK, "jmp"),
587 [OP_JMP_EQ     ] = OP( 0,  1, 0, 1, PURE | BLOCK, "jmp_eq"),
588 [OP_JMP_NOTEQ  ] = OP( 0,  1, 0, 1, PURE | BLOCK, "jmp_noteq"),
589 [OP_JMP_SLESS  ] = OP( 0,  1, 0, 1, PURE | BLOCK, "jmp_sless"),
590 [OP_JMP_ULESS  ] = OP( 0,  1, 0, 1, PURE | BLOCK, "jmp_uless"),
591 [OP_JMP_SMORE  ] = OP( 0,  1, 0, 1, PURE | BLOCK, "jmp_smore"),
592 [OP_JMP_UMORE  ] = OP( 0,  1, 0, 1, PURE | BLOCK, "jmp_umore"),
593 [OP_JMP_SLESSEQ] = OP( 0,  1, 0, 1, PURE | BLOCK, "jmp_slesseq"),
594 [OP_JMP_ULESSEQ] = OP( 0,  1, 0, 1, PURE | BLOCK, "jmp_ulesseq"),
595 [OP_JMP_SMOREEQ] = OP( 0,  1, 0, 1, PURE | BLOCK, "jmp_smoreq"),
596 [OP_JMP_UMOREEQ] = OP( 0,  1, 0, 1, PURE | BLOCK, "jmp_umoreq"),
597
598 [OP_INB        ] = OP( 0,  1, 0, 0, IMPURE | DEF | BLOCK, "__inb"),
599 [OP_INW        ] = OP( 0,  1, 0, 0, IMPURE | DEF | BLOCK, "__inw"),
600 [OP_INL        ] = OP( 0,  1, 0, 0, IMPURE | DEF | BLOCK, "__inl"),
601 [OP_OUTB       ] = OP( 0,  2, 0, 0, IMPURE| BLOCK, "__outb"),
602 [OP_OUTW       ] = OP( 0,  2, 0, 0, IMPURE| BLOCK, "__outw"),
603 [OP_OUTL       ] = OP( 0,  2, 0, 0, IMPURE| BLOCK, "__outl"),
604 [OP_BSF        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "__bsf"),
605 [OP_BSR        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "__bsr"),
606 [OP_RDMSR      ] = OP( 2,  1, 0, 0, IMPURE | BLOCK, "__rdmsr"),
607 [OP_WRMSR      ] = OP( 0,  3, 0, 0, IMPURE | BLOCK, "__wrmsr"),
608 [OP_HLT        ] = OP( 0,  0, 0, 0, IMPURE | BLOCK, "__hlt"),
609 };
610 #undef OP
611 #define OP_MAX      (sizeof(table_ops)/sizeof(table_ops[0]))
612
613 static const char *tops(int index) 
614 {
615         static const char unknown[] = "unknown op";
616         if (index < 0) {
617                 return unknown;
618         }
619         if (index > OP_MAX) {
620                 return unknown;
621         }
622         return table_ops[index].name;
623 }
624
625 struct asm_info;
626 struct triple;
627 struct block;
628 struct triple_set {
629         struct triple_set *next;
630         struct triple *member;
631 };
632
633 #define MAX_LHS  15
634 #define MAX_RHS  15
635 #define MAX_MISC 15
636 #define MAX_TARG 15
637
638 struct occurance {
639         int count;
640         const char *filename;
641         const char *function;
642         int line;
643         int col;
644         struct occurance *parent;
645 };
646 struct triple {
647         struct triple *next, *prev;
648         struct triple_set *use;
649         struct type *type;
650         unsigned char op;
651         unsigned char template_id;
652         unsigned short sizes;
653 #define TRIPLE_LHS(SIZES)  (((SIZES) >>  0) & 0x0f)
654 #define TRIPLE_RHS(SIZES)  (((SIZES) >>  4) & 0x0f)
655 #define TRIPLE_MISC(SIZES) (((SIZES) >>  8) & 0x0f)
656 #define TRIPLE_TARG(SIZES) (((SIZES) >> 12) & 0x0f)
657 #define TRIPLE_SIZE(SIZES) \
658         ((((SIZES) >> 0) & 0x0f) + \
659         (((SIZES) >>  4) & 0x0f) + \
660         (((SIZES) >>  8) & 0x0f) + \
661         (((SIZES) >> 12) & 0x0f))
662 #define TRIPLE_SIZES(LHS, RHS, MISC, TARG) \
663         ((((LHS) & 0x0f) <<  0) | \
664         (((RHS) & 0x0f)  <<  4) | \
665         (((MISC) & 0x0f) <<  8) | \
666         (((TARG) & 0x0f) << 12))
667 #define TRIPLE_LHS_OFF(SIZES)  (0)
668 #define TRIPLE_RHS_OFF(SIZES)  (TRIPLE_LHS_OFF(SIZES) + TRIPLE_LHS(SIZES))
669 #define TRIPLE_MISC_OFF(SIZES) (TRIPLE_RHS_OFF(SIZES) + TRIPLE_RHS(SIZES))
670 #define TRIPLE_TARG_OFF(SIZES) (TRIPLE_MISC_OFF(SIZES) + TRIPLE_MISC(SIZES))
671 #define LHS(PTR,INDEX) ((PTR)->param[TRIPLE_LHS_OFF((PTR)->sizes) + (INDEX)])
672 #define RHS(PTR,INDEX) ((PTR)->param[TRIPLE_RHS_OFF((PTR)->sizes) + (INDEX)])
673 #define TARG(PTR,INDEX) ((PTR)->param[TRIPLE_TARG_OFF((PTR)->sizes) + (INDEX)])
674 #define MISC(PTR,INDEX) ((PTR)->param[TRIPLE_MISC_OFF((PTR)->sizes) + (INDEX)])
675         unsigned id; /* A scratch value and finally the register */
676 #define TRIPLE_FLAG_FLATTENED   (1 << 31)
677 #define TRIPLE_FLAG_PRE_SPLIT   (1 << 30)
678 #define TRIPLE_FLAG_POST_SPLIT  (1 << 29)
679         struct occurance *occurance;
680         union {
681                 ulong_t cval;
682                 struct block  *block;
683                 void *blob;
684                 struct hash_entry *field;
685                 struct asm_info *ainfo;
686         } u;
687         struct triple *param[2];
688 };
689
690 struct reg_info {
691         unsigned reg;
692         unsigned regcm;
693 };
694 struct ins_template {
695         struct reg_info lhs[MAX_LHS + 1], rhs[MAX_RHS + 1];
696 };
697
698 struct asm_info {
699         struct ins_template tmpl;
700         char *str;
701 };
702
703 struct block_set {
704         struct block_set *next;
705         struct block *member;
706 };
707 struct block {
708         struct block *work_next;
709         struct block *left, *right;
710         struct triple *first, *last;
711         int users;
712         struct block_set *use;
713         struct block_set *idominates;
714         struct block_set *domfrontier;
715         struct block *idom;
716         struct block_set *ipdominates;
717         struct block_set *ipdomfrontier;
718         struct block *ipdom;
719         int vertex;
720         
721 };
722
723 struct symbol {
724         struct symbol *next;
725         struct hash_entry *ident;
726         struct triple *def;
727         struct type *type;
728         int scope_depth;
729 };
730
731 struct macro {
732         struct hash_entry *ident;
733         char *buf;
734         int buf_len;
735 };
736
737 struct hash_entry {
738         struct hash_entry *next;
739         const char *name;
740         int name_len;
741         int tok;
742         struct macro *sym_define;
743         struct symbol *sym_label;
744         struct symbol *sym_struct;
745         struct symbol *sym_ident;
746 };
747
748 #define HASH_TABLE_SIZE 2048
749
750 struct compile_state {
751         const char *label_prefix;
752         const char *ofilename;
753         FILE *output;
754         struct triple *vars;
755         struct file_state *file;
756         struct occurance *last_occurance;
757         const char *function;
758         struct token token[4];
759         struct hash_entry *hash_table[HASH_TABLE_SIZE];
760         struct hash_entry *i_continue;
761         struct hash_entry *i_break;
762         int scope_depth;
763         int if_depth, if_value;
764         int macro_line;
765         struct file_state *macro_file;
766         struct triple *main_function;
767         struct block *first_block, *last_block;
768         int last_vertex;
769         int cpu;
770         int debug;
771         int optimize;
772 };
773
774 /* visibility global/local */
775 /* static/auto duration */
776 /* typedef, register, inline */
777 #define STOR_SHIFT         0
778 #define STOR_MASK     0x000f
779 /* Visibility */
780 #define STOR_GLOBAL   0x0001
781 /* Duration */
782 #define STOR_PERM     0x0002
783 /* Storage specifiers */
784 #define STOR_AUTO     0x0000
785 #define STOR_STATIC   0x0002
786 #define STOR_EXTERN   0x0003
787 #define STOR_REGISTER 0x0004
788 #define STOR_TYPEDEF  0x0008
789 #define STOR_INLINE   0x000c
790
791 #define QUAL_SHIFT         4
792 #define QUAL_MASK     0x0070
793 #define QUAL_NONE     0x0000
794 #define QUAL_CONST    0x0010
795 #define QUAL_VOLATILE 0x0020
796 #define QUAL_RESTRICT 0x0040
797
798 #define TYPE_SHIFT         8
799 #define TYPE_MASK     0x1f00
800 #define TYPE_INTEGER(TYPE)    (((TYPE) >= TYPE_CHAR) && ((TYPE) <= TYPE_ULLONG))
801 #define TYPE_ARITHMETIC(TYPE) (((TYPE) >= TYPE_CHAR) && ((TYPE) <= TYPE_LDOUBLE))
802 #define TYPE_UNSIGNED(TYPE)   ((TYPE) & 0x0100)
803 #define TYPE_SIGNED(TYPE)     (!TYPE_UNSIGNED(TYPE))
804 #define TYPE_MKUNSIGNED(TYPE) ((TYPE) | 0x0100)
805 #define TYPE_RANK(TYPE)       ((TYPE) & ~0x0100)
806 #define TYPE_PTR(TYPE)        (((TYPE) & TYPE_MASK) == TYPE_POINTER)
807 #define TYPE_DEFAULT  0x0000
808 #define TYPE_VOID     0x0100
809 #define TYPE_CHAR     0x0200
810 #define TYPE_UCHAR    0x0300
811 #define TYPE_SHORT    0x0400
812 #define TYPE_USHORT   0x0500
813 #define TYPE_INT      0x0600
814 #define TYPE_UINT     0x0700
815 #define TYPE_LONG     0x0800
816 #define TYPE_ULONG    0x0900
817 #define TYPE_LLONG    0x0a00 /* long long */
818 #define TYPE_ULLONG   0x0b00
819 #define TYPE_FLOAT    0x0c00
820 #define TYPE_DOUBLE   0x0d00
821 #define TYPE_LDOUBLE  0x0e00 /* long double */
822 #define TYPE_STRUCT   0x1000
823 #define TYPE_ENUM     0x1100
824 #define TYPE_POINTER  0x1200 
825 /* For TYPE_POINTER:
826  * type->left holds the type pointed to.
827  */
828 #define TYPE_FUNCTION 0x1300 
829 /* For TYPE_FUNCTION:
830  * type->left holds the return type.
831  * type->right holds the...
832  */
833 #define TYPE_PRODUCT  0x1400
834 /* TYPE_PRODUCT is a basic building block when defining structures
835  * type->left holds the type that appears first in memory.
836  * type->right holds the type that appears next in memory.
837  */
838 #define TYPE_OVERLAP  0x1500
839 /* TYPE_OVERLAP is a basic building block when defining unions
840  * type->left and type->right holds to types that overlap
841  * each other in memory.
842  */
843 #define TYPE_ARRAY    0x1600
844 /* TYPE_ARRAY is a basic building block when definitng arrays.
845  * type->left holds the type we are an array of.
846  * type-> holds the number of elements.
847  */
848
849 #define ELEMENT_COUNT_UNSPECIFIED (~0UL)
850
851 struct type {
852         unsigned int type;
853         struct type *left, *right;
854         ulong_t elements;
855         struct hash_entry *field_ident;
856         struct hash_entry *type_ident;
857 };
858
859 #define MAX_REGISTERS      75
860 #define MAX_REG_EQUIVS     16
861 #if 1
862 #define REGISTER_BITS      16
863 #else
864 #define REGISTER_BITS      28
865 #endif
866 #define MAX_VIRT_REGISTERS (1<<REGISTER_BITS)
867 #define TEMPLATE_BITS      6
868 #define MAX_TEMPLATES      (1<<TEMPLATE_BITS)
869 #define MAX_REGC           12
870 #define REG_UNSET          0
871 #define REG_UNNEEDED       1
872 #define REG_VIRT0          (MAX_REGISTERS + 0)
873 #define REG_VIRT1          (MAX_REGISTERS + 1)
874 #define REG_VIRT2          (MAX_REGISTERS + 2)
875 #define REG_VIRT3          (MAX_REGISTERS + 3)
876 #define REG_VIRT4          (MAX_REGISTERS + 4)
877 #define REG_VIRT5          (MAX_REGISTERS + 5)
878 #define REG_VIRT6          (MAX_REGISTERS + 5)
879 #define REG_VIRT7          (MAX_REGISTERS + 5)
880 #define REG_VIRT8          (MAX_REGISTERS + 5)
881 #define REG_VIRT9          (MAX_REGISTERS + 5)
882
883 /* Provision for 8 register classes */
884 #if 1
885 #define REG_SHIFT  0
886 #define REGC_SHIFT REGISTER_BITS
887 #define REGC_MASK (((1 << MAX_REGC) - 1) << REGISTER_BITS)
888 #define REG_MASK (MAX_VIRT_REGISTERS -1)
889 #define ID_REG(ID)              ((ID) & REG_MASK)
890 #define SET_REG(ID, REG)        ((ID) = (((ID) & ~REG_MASK) | ((REG) & REG_MASK)))
891 #define ID_REGCM(ID)            (((ID) & REGC_MASK) >> REGC_SHIFT)
892 #define SET_REGCM(ID, REGCM)    ((ID) = (((ID) & ~REGC_MASK) | (((REGCM) << REGC_SHIFT) & REGC_MASK)))
893 #define SET_INFO(ID, INFO)      ((ID) = (((ID) & ~(REG_MASK | REGC_MASK)) | \
894                 (((INFO).reg) & REG_MASK) | ((((INFO).regcm) << REGC_SHIFT) & REGC_MASK)))
895 #else
896 #define REG_MASK (MAX_VIRT_REGISTERS -1)
897 #define ID_REG(ID)              ((ID) & REG_MASK)
898 #define SET_REG(ID, REG)        ((ID) = (((ID) & ~REG_MASK) | ((REG) & REG_MASK)))
899 #endif
900
901 static unsigned arch_reg_regcm(struct compile_state *state, int reg);
902 static unsigned arch_regcm_normalize(struct compile_state *state, unsigned regcm);
903 static void arch_reg_equivs(
904         struct compile_state *state, unsigned *equiv, int reg);
905 static int arch_select_free_register(
906         struct compile_state *state, char *used, int classes);
907 static unsigned arch_regc_size(struct compile_state *state, int class);
908 static int arch_regcm_intersect(unsigned regcm1, unsigned regcm2);
909 static unsigned arch_type_to_regcm(struct compile_state *state, struct type *type);
910 static const char *arch_reg_str(int reg);
911 static struct reg_info arch_reg_constraint(
912         struct compile_state *state, struct type *type, const char *constraint);
913 static struct reg_info arch_reg_clobber(
914         struct compile_state *state, const char *clobber);
915 static struct reg_info arch_reg_lhs(struct compile_state *state, 
916         struct triple *ins, int index);
917 static struct reg_info arch_reg_rhs(struct compile_state *state, 
918         struct triple *ins, int index);
919 static struct triple *transform_to_arch_instruction(
920         struct compile_state *state, struct triple *ins);
921
922
923
924 #define DEBUG_ABORT_ON_ERROR    0x0001
925 #define DEBUG_INTERMEDIATE_CODE 0x0002
926 #define DEBUG_CONTROL_FLOW      0x0004
927 #define DEBUG_BASIC_BLOCKS      0x0008
928 #define DEBUG_FDOMINATORS       0x0010
929 #define DEBUG_RDOMINATORS       0x0020
930 #define DEBUG_TRIPLES           0x0040
931 #define DEBUG_INTERFERENCE      0x0080
932 #define DEBUG_ARCH_CODE         0x0100
933 #define DEBUG_CODE_ELIMINATION  0x0200
934 #define DEBUG_INSERTED_COPIES   0x0400
935
936 #define GLOBAL_SCOPE_DEPTH 1
937
938 static void compile_file(struct compile_state *old_state, const char *filename, int local);
939
940 static void do_cleanup(struct compile_state *state)
941 {
942         if (state->output) {
943                 fclose(state->output);
944                 unlink(state->ofilename);
945         }
946 }
947
948 static int get_col(struct file_state *file)
949 {
950         int col;
951         char *ptr, *end;
952         ptr = file->line_start;
953         end = file->pos;
954         for(col = 0; ptr < end; ptr++) {
955                 if (*ptr != '\t') {
956                         col++;
957                 } 
958                 else {
959                         col = (col & ~7) + 8;
960                 }
961         }
962         return col;
963 }
964
965 static void loc(FILE *fp, struct compile_state *state, struct triple *triple)
966 {
967         int col;
968         if (triple) {
969                 fprintf(fp, "%s:%d.%d: ", 
970                         triple->occurance->filename, 
971                         triple->occurance->line, 
972                         triple->occurance->col);
973                 return;
974         }
975         if (!state->file) {
976                 return;
977         }
978         col = get_col(state->file);
979         fprintf(fp, "%s:%d.%d: ", 
980                 state->file->report_name, state->file->report_line, col);
981 }
982
983 static void __internal_error(struct compile_state *state, struct triple *ptr, 
984         char *fmt, ...)
985 {
986         va_list args;
987         va_start(args, fmt);
988         loc(stderr, state, ptr);
989         if (ptr) {
990                 fprintf(stderr, "%p %s ", ptr, tops(ptr->op));
991         }
992         fprintf(stderr, "Internal compiler error: ");
993         vfprintf(stderr, fmt, args);
994         fprintf(stderr, "\n");
995         va_end(args);
996         do_cleanup(state);
997         abort();
998 }
999
1000
1001 static void __internal_warning(struct compile_state *state, struct triple *ptr, 
1002         char *fmt, ...)
1003 {
1004         va_list args;
1005         va_start(args, fmt);
1006         loc(stderr, state, ptr);
1007         fprintf(stderr, "Internal compiler warning: ");
1008         vfprintf(stderr, fmt, args);
1009         fprintf(stderr, "\n");
1010         va_end(args);
1011 }
1012
1013
1014
1015 static void __error(struct compile_state *state, struct triple *ptr, 
1016         char *fmt, ...)
1017 {
1018         va_list args;
1019         va_start(args, fmt);
1020         loc(stderr, state, ptr);
1021         vfprintf(stderr, fmt, args);
1022         va_end(args);
1023         fprintf(stderr, "\n");
1024         do_cleanup(state);
1025         if (state->debug & DEBUG_ABORT_ON_ERROR) {
1026                 abort();
1027         }
1028         exit(1);
1029 }
1030
1031 static void __warning(struct compile_state *state, struct triple *ptr, 
1032         char *fmt, ...)
1033 {
1034         va_list args;
1035         va_start(args, fmt);
1036         loc(stderr, state, ptr);
1037         fprintf(stderr, "warning: "); 
1038         vfprintf(stderr, fmt, args);
1039         fprintf(stderr, "\n");
1040         va_end(args);
1041 }
1042
1043 #if DEBUG_ERROR_MESSAGES 
1044 #  define internal_error fprintf(stderr,  "@ %s.%s:%d \t", __FILE__, __func__, __LINE__),__internal_error
1045 #  define internal_warning fprintf(stderr,  "@ %s.%s:%d \t", __FILE__, __func__, __LINE__),__internal_warning
1046 #  define error fprintf(stderr, "@ %s.%s:%d \t", __FILE__, __func__, __LINE__),__error
1047 #  define warning fprintf(stderr, "@ %s.%s:%d \t", __FILE__, __func__, __LINE__),__warning
1048 #else
1049 #  define internal_error __internal_error
1050 #  define internal_warning __internal_warning
1051 #  define error __error
1052 #  define warning __warning
1053 #endif
1054 #define FINISHME() warning(state, 0, "FINISHME @ %s.%s:%d", __FILE__, __func__, __LINE__)
1055
1056 static void valid_op(struct compile_state *state, int op)
1057 {
1058         char *fmt = "invalid op: %d";
1059         if (op >= OP_MAX) {
1060                 internal_error(state, 0, fmt, op);
1061         }
1062         if (op < 0) {
1063                 internal_error(state, 0, fmt, op);
1064         }
1065 }
1066
1067 static void valid_ins(struct compile_state *state, struct triple *ptr)
1068 {
1069         valid_op(state, ptr->op);
1070 }
1071
1072 static void process_trigraphs(struct compile_state *state)
1073 {
1074         char *src, *dest, *end;
1075         struct file_state *file;
1076         file = state->file;
1077         src = dest = file->buf;
1078         end = file->buf + file->size;
1079         while((end - src) >= 3) {
1080                 if ((src[0] == '?') && (src[1] == '?')) {
1081                         int c = -1;
1082                         switch(src[2]) {
1083                         case '=': c = '#'; break;
1084                         case '/': c = '\\'; break;
1085                         case '\'': c = '^'; break;
1086                         case '(': c = '['; break;
1087                         case ')': c = ']'; break;
1088                         case '!': c = '!'; break;
1089                         case '<': c = '{'; break;
1090                         case '>': c = '}'; break;
1091                         case '-': c = '~'; break;
1092                         }
1093                         if (c != -1) {
1094                                 *dest++ = c;
1095                                 src += 3;
1096                         }
1097                         else {
1098                                 *dest++ = *src++;
1099                         }
1100                 }
1101                 else {
1102                         *dest++ = *src++;
1103                 }
1104         }
1105         while(src != end) {
1106                 *dest++ = *src++;
1107         }
1108         file->size = dest - file->buf;
1109 }
1110
1111 static void splice_lines(struct compile_state *state)
1112 {
1113         char *src, *dest, *end;
1114         struct file_state *file;
1115         file = state->file;
1116         src = dest = file->buf;
1117         end = file->buf + file->size;
1118         while((end - src) >= 2) {
1119                 if ((src[0] == '\\') && (src[1] == '\n')) {
1120                         src += 2;
1121                 }
1122                 else {
1123                         *dest++ = *src++;
1124                 }
1125         }
1126         while(src != end) {
1127                 *dest++ = *src++;
1128         }
1129         file->size = dest - file->buf;
1130 }
1131
1132 static struct type void_type;
1133 static void use_triple(struct triple *used, struct triple *user)
1134 {
1135         struct triple_set **ptr, *new;
1136         if (!used)
1137                 return;
1138         if (!user)
1139                 return;
1140         ptr = &used->use;
1141         while(*ptr) {
1142                 if ((*ptr)->member == user) {
1143                         return;
1144                 }
1145                 ptr = &(*ptr)->next;
1146         }
1147         /* Append new to the head of the list, 
1148          * copy_func and rename_block_variables
1149          * depends on this.
1150          */
1151         new = xcmalloc(sizeof(*new), "triple_set");
1152         new->member = user;
1153         new->next   = used->use;
1154         used->use   = new;
1155 }
1156
1157 static void unuse_triple(struct triple *used, struct triple *unuser)
1158 {
1159         struct triple_set *use, **ptr;
1160         if (!used) {
1161                 return;
1162         }
1163         ptr = &used->use;
1164         while(*ptr) {
1165                 use = *ptr;
1166                 if (use->member == unuser) {
1167                         *ptr = use->next;
1168                         xfree(use);
1169                 }
1170                 else {
1171                         ptr = &use->next;
1172                 }
1173         }
1174 }
1175
1176 static void push_triple(struct triple *used, struct triple *user)
1177 {
1178         struct triple_set *new;
1179         if (!used)
1180                 return;
1181         if (!user)
1182                 return;
1183         /* Append new to the head of the list,
1184          * it's the only sensible behavoir for a stack.
1185          */
1186         new = xcmalloc(sizeof(*new), "triple_set");
1187         new->member = user;
1188         new->next   = used->use;
1189         used->use   = new;
1190 }
1191
1192 static void pop_triple(struct triple *used, struct triple *unuser)
1193 {
1194         struct triple_set *use, **ptr;
1195         ptr = &used->use;
1196         while(*ptr) {
1197                 use = *ptr;
1198                 if (use->member == unuser) {
1199                         *ptr = use->next;
1200                         xfree(use);
1201                         /* Only free one occurance from the stack */
1202                         return;
1203                 }
1204                 else {
1205                         ptr = &use->next;
1206                 }
1207         }
1208 }
1209
1210 static void put_occurance(struct occurance *occurance)
1211 {
1212         occurance->count -= 1;
1213         if (occurance->count <= 0) {
1214                 if (occurance->parent) {
1215                         put_occurance(occurance->parent);
1216                 }
1217                 xfree(occurance);
1218         }
1219 }
1220
1221 static void get_occurance(struct occurance *occurance)
1222 {
1223         occurance->count += 1;
1224 }
1225
1226
1227 static struct occurance *new_occurance(struct compile_state *state)
1228 {
1229         struct occurance *result, *last;
1230         const char *filename;
1231         const char *function;
1232         int line, col;
1233
1234         function = "";
1235         filename = 0;
1236         line = 0;
1237         col  = 0;
1238         if (state->file) {
1239                 filename = state->file->report_name;
1240                 line     = state->file->report_line;
1241                 col      = get_col(state->file);
1242         }
1243         if (state->function) {
1244                 function = state->function;
1245         }
1246         last = state->last_occurance;
1247         if (last &&
1248                 (last->col == col) &&
1249                 (last->line == line) &&
1250                 (last->function == function) &&
1251                 (strcmp(last->filename, filename) == 0)) {
1252                 get_occurance(last);
1253                 return last;
1254         }
1255         if (last) {
1256                 state->last_occurance = 0;
1257                 put_occurance(last);
1258         }
1259         result = xmalloc(sizeof(*result), "occurance");
1260         result->count    = 2;
1261         result->filename = filename;
1262         result->function = function;
1263         result->line     = line;
1264         result->col      = col;
1265         result->parent   = 0;
1266         state->last_occurance = result;
1267         return result;
1268 }
1269
1270 static struct occurance *inline_occurance(struct compile_state *state,
1271         struct occurance *new, struct occurance *orig)
1272 {
1273         struct occurance *result, *last;
1274         last = state->last_occurance;
1275         if (last &&
1276                 (last->parent   == orig) &&
1277                 (last->col      == new->col) &&
1278                 (last->line     == new->line) &&
1279                 (last->function == new->function) &&
1280                 (last->filename == new->filename)) {
1281                 get_occurance(last);
1282                 return last;
1283         }
1284         if (last) {
1285                 state->last_occurance = 0;
1286                 put_occurance(last);
1287         }
1288         get_occurance(orig);
1289         result = xmalloc(sizeof(*result), "occurance");
1290         result->count    = 2;
1291         result->filename = new->filename;
1292         result->function = new->function;
1293         result->line     = new->line;
1294         result->col      = new->col;
1295         result->parent   = orig;
1296         state->last_occurance = result;
1297         return result;
1298 }
1299         
1300
1301 static struct occurance dummy_occurance = {
1302         .count    = 2,
1303         .filename = __FILE__,
1304         .function = "",
1305         .line     = __LINE__,
1306         .col      = 0,
1307         .parent   = 0,
1308 };
1309
1310 /* The zero triple is used as a place holder when we are removing pointers
1311  * from a triple.  Having allows certain sanity checks to pass even
1312  * when the original triple that was pointed to is gone.
1313  */
1314 static struct triple zero_triple = {
1315         .next      = &zero_triple,
1316         .prev      = &zero_triple,
1317         .use       = 0,
1318         .op        = OP_INTCONST,
1319         .sizes     = TRIPLE_SIZES(0, 0, 0, 0),
1320         .id        = -1, /* An invalid id */
1321         .u = { .cval   = 0, },
1322         .occurance = &dummy_occurance,
1323         .param { [0] = 0, [1] = 0, },
1324 };
1325
1326
1327 static unsigned short triple_sizes(struct compile_state *state,
1328         int op, struct type *type, int lhs_wanted, int rhs_wanted)
1329 {
1330         int lhs, rhs, misc, targ;
1331         valid_op(state, op);
1332         lhs = table_ops[op].lhs;
1333         rhs = table_ops[op].rhs;
1334         misc = table_ops[op].misc;
1335         targ = table_ops[op].targ;
1336         
1337         
1338         if (op == OP_CALL) {
1339                 struct type *param;
1340                 rhs = 0;
1341                 param = type->right;
1342                 while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
1343                         rhs++;
1344                         param = param->right;
1345                 }
1346                 if ((param->type & TYPE_MASK) != TYPE_VOID) {
1347                         rhs++;
1348                 }
1349                 lhs = 0;
1350                 if ((type->left->type & TYPE_MASK) == TYPE_STRUCT) {
1351                         lhs = type->left->elements;
1352                 }
1353         }
1354         else if (op == OP_VAL_VEC) {
1355                 rhs = type->elements;
1356         }
1357         else if ((op == OP_BRANCH) || (op == OP_PHI)) {
1358                 rhs = rhs_wanted;
1359         }
1360         else if (op == OP_ASM) {
1361                 rhs = rhs_wanted;
1362                 lhs = lhs_wanted;
1363         }
1364         if ((rhs < 0) || (rhs > MAX_RHS)) {
1365                 internal_error(state, 0, "bad rhs");
1366         }
1367         if ((lhs < 0) || (lhs > MAX_LHS)) {
1368                 internal_error(state, 0, "bad lhs");
1369         }
1370         if ((misc < 0) || (misc > MAX_MISC)) {
1371                 internal_error(state, 0, "bad misc");
1372         }
1373         if ((targ < 0) || (targ > MAX_TARG)) {
1374                 internal_error(state, 0, "bad targs");
1375         }
1376         return TRIPLE_SIZES(lhs, rhs, misc, targ);
1377 }
1378
1379 static struct triple *alloc_triple(struct compile_state *state, 
1380         int op, struct type *type, int lhs, int rhs,
1381         struct occurance *occurance)
1382 {
1383         size_t size, sizes, extra_count, min_count;
1384         struct triple *ret;
1385         sizes = triple_sizes(state, op, type, lhs, rhs);
1386
1387         min_count = sizeof(ret->param)/sizeof(ret->param[0]);
1388         extra_count = TRIPLE_SIZE(sizes);
1389         extra_count = (extra_count < min_count)? 0 : extra_count - min_count;
1390
1391         size = sizeof(*ret) + sizeof(ret->param[0]) * extra_count;
1392         ret = xcmalloc(size, "tripple");
1393         ret->op        = op;
1394         ret->sizes     = sizes;
1395         ret->type      = type;
1396         ret->next      = ret;
1397         ret->prev      = ret;
1398         ret->occurance = occurance;
1399         return ret;
1400 }
1401
1402 struct triple *dup_triple(struct compile_state *state, struct triple *src)
1403 {
1404         struct triple *dup;
1405         int src_lhs, src_rhs, src_size;
1406         src_lhs = TRIPLE_LHS(src->sizes);
1407         src_rhs = TRIPLE_RHS(src->sizes);
1408         src_size = TRIPLE_SIZE(src->sizes);
1409         get_occurance(src->occurance);
1410         dup = alloc_triple(state, src->op, src->type, src_lhs, src_rhs,
1411                 src->occurance);
1412         memcpy(dup, src, sizeof(*src));
1413         memcpy(dup->param, src->param, src_size * sizeof(src->param[0]));
1414         return dup;
1415 }
1416
1417 static struct triple *new_triple(struct compile_state *state, 
1418         int op, struct type *type, int lhs, int rhs)
1419 {
1420         struct triple *ret;
1421         struct occurance *occurance;
1422         occurance = new_occurance(state);
1423         ret = alloc_triple(state, op, type, lhs, rhs, occurance);
1424         return ret;
1425 }
1426
1427 static struct triple *build_triple(struct compile_state *state, 
1428         int op, struct type *type, struct triple *left, struct triple *right,
1429         struct occurance *occurance)
1430 {
1431         struct triple *ret;
1432         size_t count;
1433         ret = alloc_triple(state, op, type, -1, -1, occurance);
1434         count = TRIPLE_SIZE(ret->sizes);
1435         if (count > 0) {
1436                 ret->param[0] = left;
1437         }
1438         if (count > 1) {
1439                 ret->param[1] = right;
1440         }
1441         return ret;
1442 }
1443
1444 static struct triple *triple(struct compile_state *state, 
1445         int op, struct type *type, struct triple *left, struct triple *right)
1446 {
1447         struct triple *ret;
1448         size_t count;
1449         ret = new_triple(state, op, type, -1, -1);
1450         count = TRIPLE_SIZE(ret->sizes);
1451         if (count >= 1) {
1452                 ret->param[0] = left;
1453         }
1454         if (count >= 2) {
1455                 ret->param[1] = right;
1456         }
1457         return ret;
1458 }
1459
1460 static struct triple *branch(struct compile_state *state, 
1461         struct triple *targ, struct triple *test)
1462 {
1463         struct triple *ret;
1464         ret = new_triple(state, OP_BRANCH, &void_type, -1, test?1:0);
1465         if (test) {
1466                 RHS(ret, 0) = test;
1467         }
1468         TARG(ret, 0) = targ;
1469         /* record the branch target was used */
1470         if (!targ || (targ->op != OP_LABEL)) {
1471                 internal_error(state, 0, "branch not to label");
1472                 use_triple(targ, ret);
1473         }
1474         return ret;
1475 }
1476
1477
1478 static void insert_triple(struct compile_state *state,
1479         struct triple *first, struct triple *ptr)
1480 {
1481         if (ptr) {
1482                 if ((ptr->id & TRIPLE_FLAG_FLATTENED) || (ptr->next != ptr)) {
1483                         internal_error(state, ptr, "expression already used");
1484                 }
1485                 ptr->next       = first;
1486                 ptr->prev       = first->prev;
1487                 ptr->prev->next = ptr;
1488                 ptr->next->prev = ptr;
1489                 if ((ptr->prev->op == OP_BRANCH) && 
1490                         TRIPLE_RHS(ptr->prev->sizes)) {
1491                         unuse_triple(first, ptr->prev);
1492                         use_triple(ptr, ptr->prev);
1493                 }
1494         }
1495 }
1496
1497 static int triple_stores_block(struct compile_state *state, struct triple *ins)
1498 {
1499         /* This function is used to determine if u.block 
1500          * is utilized to store the current block number.
1501          */
1502         int stores_block;
1503         valid_ins(state, ins);
1504         stores_block = (table_ops[ins->op].flags & BLOCK) == BLOCK;
1505         return stores_block;
1506 }
1507
1508 static struct block *block_of_triple(struct compile_state *state, 
1509         struct triple *ins)
1510 {
1511         struct triple *first;
1512         first = RHS(state->main_function, 0);
1513         while(ins != first && !triple_stores_block(state, ins)) {
1514                 if (ins == ins->prev) {
1515                         internal_error(state, 0, "ins == ins->prev?");
1516                 }
1517                 ins = ins->prev;
1518         }
1519         if (!triple_stores_block(state, ins)) {
1520                 internal_error(state, ins, "Cannot find block");
1521         }
1522         return ins->u.block;
1523 }
1524
1525 static struct triple *pre_triple(struct compile_state *state,
1526         struct triple *base,
1527         int op, struct type *type, struct triple *left, struct triple *right)
1528 {
1529         struct block *block;
1530         struct triple *ret;
1531         /* If I am an OP_PIECE jump to the real instruction */
1532         if (base->op == OP_PIECE) {
1533                 base = MISC(base, 0);
1534         }
1535         block = block_of_triple(state, base);
1536         get_occurance(base->occurance);
1537         ret = build_triple(state, op, type, left, right, base->occurance);
1538         if (triple_stores_block(state, ret)) {
1539                 ret->u.block = block;
1540         }
1541         insert_triple(state, base, ret);
1542         if (block->first == base) {
1543                 block->first = ret;
1544         }
1545         return ret;
1546 }
1547
1548 static struct triple *post_triple(struct compile_state *state,
1549         struct triple *base,
1550         int op, struct type *type, struct triple *left, struct triple *right)
1551 {
1552         struct block *block;
1553         struct triple *ret;
1554         int zlhs;
1555         /* If I am an OP_PIECE jump to the real instruction */
1556         if (base->op == OP_PIECE) {
1557                 base = MISC(base, 0);
1558         }
1559         /* If I have a left hand side skip over it */
1560         zlhs = TRIPLE_LHS(base->sizes);
1561         if (zlhs && (base->op != OP_WRITE) && (base->op != OP_STORE)) {
1562                 base = LHS(base, zlhs - 1);
1563         }
1564
1565         block = block_of_triple(state, base);
1566         get_occurance(base->occurance);
1567         ret = build_triple(state, op, type, left, right, base->occurance);
1568         if (triple_stores_block(state, ret)) {
1569                 ret->u.block = block;
1570         }
1571         insert_triple(state, base->next, ret);
1572         if (block->last == base) {
1573                 block->last = ret;
1574         }
1575         return ret;
1576 }
1577
1578 static struct triple *label(struct compile_state *state)
1579 {
1580         /* Labels don't get a type */
1581         struct triple *result;
1582         result = triple(state, OP_LABEL, &void_type, 0, 0);
1583         return result;
1584 }
1585
1586 static void display_triple(FILE *fp, struct triple *ins)
1587 {
1588         struct occurance *ptr;
1589         const char *reg;
1590         char pre, post;
1591         pre = post = ' ';
1592         if (ins->id & TRIPLE_FLAG_PRE_SPLIT) {
1593                 pre = '^';
1594         }
1595         if (ins->id & TRIPLE_FLAG_POST_SPLIT) {
1596                 post = 'v';
1597         }
1598         reg = arch_reg_str(ID_REG(ins->id));
1599         if (ins->op == OP_INTCONST) {
1600                 fprintf(fp, "(%p) %c%c %-7s %-2d %-10s <0x%08lx>         ",
1601                         ins, pre, post, reg, ins->template_id, tops(ins->op), 
1602                         ins->u.cval);
1603         }
1604         else if (ins->op == OP_ADDRCONST) {
1605                 fprintf(fp, "(%p) %c%c %-7s %-2d %-10s %-10p <0x%08lx>",
1606                         ins, pre, post, reg, ins->template_id, tops(ins->op), 
1607                         MISC(ins, 0), ins->u.cval);
1608         }
1609         else {
1610                 int i, count;
1611                 fprintf(fp, "(%p) %c%c %-7s %-2d %-10s", 
1612                         ins, pre, post, reg, ins->template_id, tops(ins->op));
1613                 count = TRIPLE_SIZE(ins->sizes);
1614                 for(i = 0; i < count; i++) {
1615                         fprintf(fp, " %-10p", ins->param[i]);
1616                 }
1617                 for(; i < 2; i++) {
1618                         fprintf(fp, "           ");
1619                 }
1620         }
1621         fprintf(fp, " @");
1622         for(ptr = ins->occurance; ptr; ptr = ptr->parent) {
1623                 fprintf(fp, " %s,%s:%d.%d",
1624                         ptr->function, 
1625                         ptr->filename,
1626                         ptr->line, 
1627                         ptr->col);
1628         }
1629         fprintf(fp, "\n");
1630         fflush(fp);
1631 }
1632
1633 static int triple_is_pure(struct compile_state *state, struct triple *ins)
1634 {
1635         /* Does the triple have no side effects.
1636          * I.e. Rexecuting the triple with the same arguments 
1637          * gives the same value.
1638          */
1639         unsigned pure;
1640         valid_ins(state, ins);
1641         pure = PURE_BITS(table_ops[ins->op].flags);
1642         if ((pure != PURE) && (pure != IMPURE)) {
1643                 internal_error(state, 0, "Purity of %s not known\n",
1644                         tops(ins->op));
1645         }
1646         return pure == PURE;
1647 }
1648
1649 static int triple_is_branch(struct compile_state *state, struct triple *ins)
1650 {
1651         /* This function is used to determine which triples need
1652          * a register.
1653          */
1654         int is_branch;
1655         valid_ins(state, ins);
1656         is_branch = (table_ops[ins->op].targ != 0);
1657         return is_branch;
1658 }
1659
1660 static int triple_is_def(struct compile_state *state, struct triple *ins)
1661 {
1662         /* This function is used to determine which triples need
1663          * a register.
1664          */
1665         int is_def;
1666         valid_ins(state, ins);
1667         is_def = (table_ops[ins->op].flags & DEF) == DEF;
1668         return is_def;
1669 }
1670
1671 static struct triple **triple_iter(struct compile_state *state,
1672         size_t count, struct triple **vector,
1673         struct triple *ins, struct triple **last)
1674 {
1675         struct triple **ret;
1676         ret = 0;
1677         if (count) {
1678                 if (!last) {
1679                         ret = vector;
1680                 }
1681                 else if ((last >= vector) && (last < (vector + count - 1))) {
1682                         ret = last + 1;
1683                 }
1684         }
1685         return ret;
1686         
1687 }
1688
1689 static struct triple **triple_lhs(struct compile_state *state,
1690         struct triple *ins, struct triple **last)
1691 {
1692         return triple_iter(state, TRIPLE_LHS(ins->sizes), &LHS(ins,0), 
1693                 ins, last);
1694 }
1695
1696 static struct triple **triple_rhs(struct compile_state *state,
1697         struct triple *ins, struct triple **last)
1698 {
1699         return triple_iter(state, TRIPLE_RHS(ins->sizes), &RHS(ins,0), 
1700                 ins, last);
1701 }
1702
1703 static struct triple **triple_misc(struct compile_state *state,
1704         struct triple *ins, struct triple **last)
1705 {
1706         return triple_iter(state, TRIPLE_MISC(ins->sizes), &MISC(ins,0), 
1707                 ins, last);
1708 }
1709
1710 static struct triple **triple_targ(struct compile_state *state,
1711         struct triple *ins, struct triple **last)
1712 {
1713         size_t count;
1714         struct triple **ret, **vector;
1715         ret = 0;
1716         count = TRIPLE_TARG(ins->sizes);
1717         vector = &TARG(ins, 0);
1718         if (count) {
1719                 if (!last) {
1720                         ret = vector;
1721                 }
1722                 else if ((last >= vector) && (last < (vector + count - 1))) {
1723                         ret = last + 1;
1724                 }
1725                 else if ((last == (vector + count - 1)) && 
1726                         TRIPLE_RHS(ins->sizes)) {
1727                         ret = &ins->next;
1728                 }
1729         }
1730         return ret;
1731 }
1732
1733
1734 static void verify_use(struct compile_state *state,
1735         struct triple *user, struct triple *used)
1736 {
1737         int size, i;
1738         size = TRIPLE_SIZE(user->sizes);
1739         for(i = 0; i < size; i++) {
1740                 if (user->param[i] == used) {
1741                         break;
1742                 }
1743         }
1744         if (triple_is_branch(state, user)) {
1745                 if (user->next == used) {
1746                         i = -1;
1747                 }
1748         }
1749         if (i == size) {
1750                 internal_error(state, user, "%s(%p) does not use %s(%p)",
1751                         tops(user->op), user, tops(used->op), used);
1752         }
1753 }
1754
1755 static int find_rhs_use(struct compile_state *state, 
1756         struct triple *user, struct triple *used)
1757 {
1758         struct triple **param;
1759         int size, i;
1760         verify_use(state, user, used);
1761         size = TRIPLE_RHS(user->sizes);
1762         param = &RHS(user, 0);
1763         for(i = 0; i < size; i++) {
1764                 if (param[i] == used) {
1765                         return i;
1766                 }
1767         }
1768         return -1;
1769 }
1770
1771 static void free_triple(struct compile_state *state, struct triple *ptr)
1772 {
1773         size_t size;
1774         size = sizeof(*ptr) - sizeof(ptr->param) +
1775                 (sizeof(ptr->param[0])*TRIPLE_SIZE(ptr->sizes));
1776         ptr->prev->next = ptr->next;
1777         ptr->next->prev = ptr->prev;
1778         if (ptr->use) {
1779                 internal_error(state, ptr, "ptr->use != 0");
1780         }
1781         put_occurance(ptr->occurance);
1782         memset(ptr, -1, size);
1783         xfree(ptr);
1784 }
1785
1786 static void release_triple(struct compile_state *state, struct triple *ptr)
1787 {
1788         struct triple_set *set, *next;
1789         struct triple **expr;
1790         /* Remove ptr from use chains where it is the user */
1791         expr = triple_rhs(state, ptr, 0);
1792         for(; expr; expr = triple_rhs(state, ptr, expr)) {
1793                 if (*expr) {
1794                         unuse_triple(*expr, ptr);
1795                 }
1796         }
1797         expr = triple_lhs(state, ptr, 0);
1798         for(; expr; expr = triple_lhs(state, ptr, expr)) {
1799                 if (*expr) {
1800                         unuse_triple(*expr, ptr);
1801                 }
1802         }
1803         expr = triple_misc(state, ptr, 0);
1804         for(; expr; expr = triple_misc(state, ptr, expr)) {
1805                 if (*expr) {
1806                         unuse_triple(*expr, ptr);
1807                 }
1808         }
1809         expr = triple_targ(state, ptr, 0);
1810         for(; expr; expr = triple_targ(state, ptr, expr)) {
1811                 if (*expr) {
1812                         unuse_triple(*expr, ptr);
1813                 }
1814         }
1815         /* Reomve ptr from use chains where it is used */
1816         for(set = ptr->use; set; set = next) {
1817                 next = set->next;
1818                 expr = triple_rhs(state, set->member, 0);
1819                 for(; expr; expr = triple_rhs(state, set->member, expr)) {
1820                         if (*expr == ptr) {
1821                                 *expr = &zero_triple;
1822                         }
1823                 }
1824                 expr = triple_lhs(state, set->member, 0);
1825                 for(; expr; expr = triple_lhs(state, set->member, expr)) {
1826                         if (*expr == ptr) {
1827                                 *expr = &zero_triple;
1828                         }
1829                 }
1830                 expr = triple_misc(state, set->member, 0);
1831                 for(; expr; expr = triple_misc(state, set->member, expr)) {
1832                         if (*expr == ptr) {
1833                                 *expr = &zero_triple;
1834                         }
1835                 }
1836                 expr = triple_targ(state, set->member, 0);
1837                 for(; expr; expr = triple_targ(state, set->member, expr)) {
1838                         if (*expr == ptr) {
1839                                 *expr = &zero_triple;
1840                         }
1841                 }
1842                 unuse_triple(ptr, set->member);
1843         }
1844         free_triple(state, ptr);
1845 }
1846
1847 static void print_triple(struct compile_state *state, struct triple *ptr);
1848
1849 #define TOK_UNKNOWN     0
1850 #define TOK_SPACE       1
1851 #define TOK_SEMI        2
1852 #define TOK_LBRACE      3
1853 #define TOK_RBRACE      4
1854 #define TOK_COMMA       5
1855 #define TOK_EQ          6
1856 #define TOK_COLON       7
1857 #define TOK_LBRACKET    8
1858 #define TOK_RBRACKET    9
1859 #define TOK_LPAREN      10
1860 #define TOK_RPAREN      11
1861 #define TOK_STAR        12
1862 #define TOK_DOTS        13
1863 #define TOK_MORE        14
1864 #define TOK_LESS        15
1865 #define TOK_TIMESEQ     16
1866 #define TOK_DIVEQ       17
1867 #define TOK_MODEQ       18
1868 #define TOK_PLUSEQ      19
1869 #define TOK_MINUSEQ     20
1870 #define TOK_SLEQ        21
1871 #define TOK_SREQ        22
1872 #define TOK_ANDEQ       23
1873 #define TOK_XOREQ       24
1874 #define TOK_OREQ        25
1875 #define TOK_EQEQ        26
1876 #define TOK_NOTEQ       27
1877 #define TOK_QUEST       28
1878 #define TOK_LOGOR       29
1879 #define TOK_LOGAND      30
1880 #define TOK_OR          31
1881 #define TOK_AND         32
1882 #define TOK_XOR         33
1883 #define TOK_LESSEQ      34
1884 #define TOK_MOREEQ      35
1885 #define TOK_SL          36
1886 #define TOK_SR          37
1887 #define TOK_PLUS        38
1888 #define TOK_MINUS       39
1889 #define TOK_DIV         40
1890 #define TOK_MOD         41
1891 #define TOK_PLUSPLUS    42
1892 #define TOK_MINUSMINUS  43
1893 #define TOK_BANG        44
1894 #define TOK_ARROW       45
1895 #define TOK_DOT         46
1896 #define TOK_TILDE       47
1897 #define TOK_LIT_STRING  48
1898 #define TOK_LIT_CHAR    49
1899 #define TOK_LIT_INT     50
1900 #define TOK_LIT_FLOAT   51
1901 #define TOK_MACRO       52
1902 #define TOK_CONCATENATE 53
1903
1904 #define TOK_IDENT       54
1905 #define TOK_STRUCT_NAME 55
1906 #define TOK_ENUM_CONST  56
1907 #define TOK_TYPE_NAME   57
1908
1909 #define TOK_AUTO        58
1910 #define TOK_BREAK       59
1911 #define TOK_CASE        60
1912 #define TOK_CHAR        61
1913 #define TOK_CONST       62
1914 #define TOK_CONTINUE    63
1915 #define TOK_DEFAULT     64
1916 #define TOK_DO          65
1917 #define TOK_DOUBLE      66
1918 #define TOK_ELSE        67
1919 #define TOK_ENUM        68
1920 #define TOK_EXTERN      69
1921 #define TOK_FLOAT       70
1922 #define TOK_FOR         71
1923 #define TOK_GOTO        72
1924 #define TOK_IF          73
1925 #define TOK_INLINE      74
1926 #define TOK_INT         75
1927 #define TOK_LONG        76
1928 #define TOK_REGISTER    77
1929 #define TOK_RESTRICT    78
1930 #define TOK_RETURN      79
1931 #define TOK_SHORT       80
1932 #define TOK_SIGNED      81
1933 #define TOK_SIZEOF      82
1934 #define TOK_STATIC      83
1935 #define TOK_STRUCT      84
1936 #define TOK_SWITCH      85
1937 #define TOK_TYPEDEF     86
1938 #define TOK_UNION       87
1939 #define TOK_UNSIGNED    88
1940 #define TOK_VOID        89
1941 #define TOK_VOLATILE    90
1942 #define TOK_WHILE       91
1943 #define TOK_ASM         92
1944 #define TOK_ATTRIBUTE   93
1945 #define TOK_ALIGNOF     94
1946 #define TOK_FIRST_KEYWORD TOK_AUTO
1947 #define TOK_LAST_KEYWORD  TOK_ALIGNOF
1948
1949 #define TOK_DEFINE      100
1950 #define TOK_UNDEF       101
1951 #define TOK_INCLUDE     102
1952 #define TOK_LINE        103
1953 #define TOK_ERROR       104
1954 #define TOK_WARNING     105
1955 #define TOK_PRAGMA      106
1956 #define TOK_IFDEF       107
1957 #define TOK_IFNDEF      108
1958 #define TOK_ELIF        109
1959 #define TOK_ENDIF       110
1960
1961 #define TOK_FIRST_MACRO TOK_DEFINE
1962 #define TOK_LAST_MACRO  TOK_ENDIF
1963          
1964 #define TOK_EOF         111
1965
1966 static const char *tokens[] = {
1967 [TOK_UNKNOWN     ] = "unknown",
1968 [TOK_SPACE       ] = ":space:",
1969 [TOK_SEMI        ] = ";",
1970 [TOK_LBRACE      ] = "{",
1971 [TOK_RBRACE      ] = "}",
1972 [TOK_COMMA       ] = ",",
1973 [TOK_EQ          ] = "=",
1974 [TOK_COLON       ] = ":",
1975 [TOK_LBRACKET    ] = "[",
1976 [TOK_RBRACKET    ] = "]",
1977 [TOK_LPAREN      ] = "(",
1978 [TOK_RPAREN      ] = ")",
1979 [TOK_STAR        ] = "*",
1980 [TOK_DOTS        ] = "...",
1981 [TOK_MORE        ] = ">",
1982 [TOK_LESS        ] = "<",
1983 [TOK_TIMESEQ     ] = "*=",
1984 [TOK_DIVEQ       ] = "/=",
1985 [TOK_MODEQ       ] = "%=",
1986 [TOK_PLUSEQ      ] = "+=",
1987 [TOK_MINUSEQ     ] = "-=",
1988 [TOK_SLEQ        ] = "<<=",
1989 [TOK_SREQ        ] = ">>=",
1990 [TOK_ANDEQ       ] = "&=",
1991 [TOK_XOREQ       ] = "^=",
1992 [TOK_OREQ        ] = "|=",
1993 [TOK_EQEQ        ] = "==",
1994 [TOK_NOTEQ       ] = "!=",
1995 [TOK_QUEST       ] = "?",
1996 [TOK_LOGOR       ] = "||",
1997 [TOK_LOGAND      ] = "&&",
1998 [TOK_OR          ] = "|",
1999 [TOK_AND         ] = "&",
2000 [TOK_XOR         ] = "^",
2001 [TOK_LESSEQ      ] = "<=",
2002 [TOK_MOREEQ      ] = ">=",
2003 [TOK_SL          ] = "<<",
2004 [TOK_SR          ] = ">>",
2005 [TOK_PLUS        ] = "+",
2006 [TOK_MINUS       ] = "-",
2007 [TOK_DIV         ] = "/",
2008 [TOK_MOD         ] = "%",
2009 [TOK_PLUSPLUS    ] = "++",
2010 [TOK_MINUSMINUS  ] = "--",
2011 [TOK_BANG        ] = "!",
2012 [TOK_ARROW       ] = "->",
2013 [TOK_DOT         ] = ".",
2014 [TOK_TILDE       ] = "~",
2015 [TOK_LIT_STRING  ] = ":string:",
2016 [TOK_IDENT       ] = ":ident:",
2017 [TOK_TYPE_NAME   ] = ":typename:",
2018 [TOK_LIT_CHAR    ] = ":char:",
2019 [TOK_LIT_INT     ] = ":integer:",
2020 [TOK_LIT_FLOAT   ] = ":float:",
2021 [TOK_MACRO       ] = "#",
2022 [TOK_CONCATENATE ] = "##",
2023
2024 [TOK_AUTO        ] = "auto",
2025 [TOK_BREAK       ] = "break",
2026 [TOK_CASE        ] = "case",
2027 [TOK_CHAR        ] = "char",
2028 [TOK_CONST       ] = "const",
2029 [TOK_CONTINUE    ] = "continue",
2030 [TOK_DEFAULT     ] = "default",
2031 [TOK_DO          ] = "do",
2032 [TOK_DOUBLE      ] = "double",
2033 [TOK_ELSE        ] = "else",
2034 [TOK_ENUM        ] = "enum",
2035 [TOK_EXTERN      ] = "extern",
2036 [TOK_FLOAT       ] = "float",
2037 [TOK_FOR         ] = "for",
2038 [TOK_GOTO        ] = "goto",
2039 [TOK_IF          ] = "if",
2040 [TOK_INLINE      ] = "inline",
2041 [TOK_INT         ] = "int",
2042 [TOK_LONG        ] = "long",
2043 [TOK_REGISTER    ] = "register",
2044 [TOK_RESTRICT    ] = "restrict",
2045 [TOK_RETURN      ] = "return",
2046 [TOK_SHORT       ] = "short",
2047 [TOK_SIGNED      ] = "signed",
2048 [TOK_SIZEOF      ] = "sizeof",
2049 [TOK_STATIC      ] = "static",
2050 [TOK_STRUCT      ] = "struct",
2051 [TOK_SWITCH      ] = "switch",
2052 [TOK_TYPEDEF     ] = "typedef",
2053 [TOK_UNION       ] = "union",
2054 [TOK_UNSIGNED    ] = "unsigned",
2055 [TOK_VOID        ] = "void",
2056 [TOK_VOLATILE    ] = "volatile",
2057 [TOK_WHILE       ] = "while",
2058 [TOK_ASM         ] = "asm",
2059 [TOK_ATTRIBUTE   ] = "__attribute__",
2060 [TOK_ALIGNOF     ] = "__alignof__",
2061
2062 [TOK_DEFINE      ] = "define",
2063 [TOK_UNDEF       ] = "undef",
2064 [TOK_INCLUDE     ] = "include",
2065 [TOK_LINE        ] = "line",
2066 [TOK_ERROR       ] = "error",
2067 [TOK_WARNING     ] = "warning",
2068 [TOK_PRAGMA      ] = "pragma",
2069 [TOK_IFDEF       ] = "ifdef",
2070 [TOK_IFNDEF      ] = "ifndef",
2071 [TOK_ELIF        ] = "elif",
2072 [TOK_ENDIF       ] = "endif",
2073
2074 [TOK_EOF         ] = "EOF",
2075 };
2076
2077 static unsigned int hash(const char *str, int str_len)
2078 {
2079         unsigned int hash;
2080         const char *end;
2081         end = str + str_len;
2082         hash = 0;
2083         for(; str < end; str++) {
2084                 hash = (hash *263) + *str;
2085         }
2086         hash = hash & (HASH_TABLE_SIZE -1);
2087         return hash;
2088 }
2089
2090 static struct hash_entry *lookup(
2091         struct compile_state *state, const char *name, int name_len)
2092 {
2093         struct hash_entry *entry;
2094         unsigned int index;
2095         index = hash(name, name_len);
2096         entry = state->hash_table[index];
2097         while(entry && 
2098                 ((entry->name_len != name_len) ||
2099                         (memcmp(entry->name, name, name_len) != 0))) {
2100                 entry = entry->next;
2101         }
2102         if (!entry) {
2103                 char *new_name;
2104                 /* Get a private copy of the name */
2105                 new_name = xmalloc(name_len + 1, "hash_name");
2106                 memcpy(new_name, name, name_len);
2107                 new_name[name_len] = '\0';
2108
2109                 /* Create a new hash entry */
2110                 entry = xcmalloc(sizeof(*entry), "hash_entry");
2111                 entry->next = state->hash_table[index];
2112                 entry->name = new_name;
2113                 entry->name_len = name_len;
2114
2115                 /* Place the new entry in the hash table */
2116                 state->hash_table[index] = entry;
2117         }
2118         return entry;
2119 }
2120
2121 static void ident_to_keyword(struct compile_state *state, struct token *tk)
2122 {
2123         struct hash_entry *entry;
2124         entry = tk->ident;
2125         if (entry && ((entry->tok == TOK_TYPE_NAME) ||
2126                 (entry->tok == TOK_ENUM_CONST) ||
2127                 ((entry->tok >= TOK_FIRST_KEYWORD) && 
2128                         (entry->tok <= TOK_LAST_KEYWORD)))) {
2129                 tk->tok = entry->tok;
2130         }
2131 }
2132
2133 static void ident_to_macro(struct compile_state *state, struct token *tk)
2134 {
2135         struct hash_entry *entry;
2136         entry = tk->ident;
2137         if (entry && 
2138                 (entry->tok >= TOK_FIRST_MACRO) &&
2139                 (entry->tok <= TOK_LAST_MACRO)) {
2140                 tk->tok = entry->tok;
2141         }
2142 }
2143
2144 static void hash_keyword(
2145         struct compile_state *state, const char *keyword, int tok)
2146 {
2147         struct hash_entry *entry;
2148         entry = lookup(state, keyword, strlen(keyword));
2149         if (entry && entry->tok != TOK_UNKNOWN) {
2150                 die("keyword %s already hashed", keyword);
2151         }
2152         entry->tok  = tok;
2153 }
2154
2155 static void symbol(
2156         struct compile_state *state, struct hash_entry *ident,
2157         struct symbol **chain, struct triple *def, struct type *type)
2158 {
2159         struct symbol *sym;
2160         if (*chain && ((*chain)->scope_depth == state->scope_depth)) {
2161                 error(state, 0, "%s already defined", ident->name);
2162         }
2163         sym = xcmalloc(sizeof(*sym), "symbol");
2164         sym->ident = ident;
2165         sym->def   = def;
2166         sym->type  = type;
2167         sym->scope_depth = state->scope_depth;
2168         sym->next = *chain;
2169         *chain    = sym;
2170 }
2171
2172 static void start_scope(struct compile_state *state)
2173 {
2174         state->scope_depth++;
2175 }
2176
2177 static void end_scope_syms(struct symbol **chain, int depth)
2178 {
2179         struct symbol *sym, *next;
2180         sym = *chain;
2181         while(sym && (sym->scope_depth == depth)) {
2182                 next = sym->next;
2183                 xfree(sym);
2184                 sym = next;
2185         }
2186         *chain = sym;
2187 }
2188
2189 static void end_scope(struct compile_state *state)
2190 {
2191         int i;
2192         int depth;
2193         /* Walk through the hash table and remove all symbols
2194          * in the current scope. 
2195          */
2196         depth = state->scope_depth;
2197         for(i = 0; i < HASH_TABLE_SIZE; i++) {
2198                 struct hash_entry *entry;
2199                 entry = state->hash_table[i];
2200                 while(entry) {
2201                         end_scope_syms(&entry->sym_label,  depth);
2202                         end_scope_syms(&entry->sym_struct, depth);
2203                         end_scope_syms(&entry->sym_ident,  depth);
2204                         entry = entry->next;
2205                 }
2206         }
2207         state->scope_depth = depth - 1;
2208 }
2209
2210 static void register_keywords(struct compile_state *state)
2211 {
2212         hash_keyword(state, "auto",          TOK_AUTO);
2213         hash_keyword(state, "break",         TOK_BREAK);
2214         hash_keyword(state, "case",          TOK_CASE);
2215         hash_keyword(state, "char",          TOK_CHAR);
2216         hash_keyword(state, "const",         TOK_CONST);
2217         hash_keyword(state, "continue",      TOK_CONTINUE);
2218         hash_keyword(state, "default",       TOK_DEFAULT);
2219         hash_keyword(state, "do",            TOK_DO);
2220         hash_keyword(state, "double",        TOK_DOUBLE);
2221         hash_keyword(state, "else",          TOK_ELSE);
2222         hash_keyword(state, "enum",          TOK_ENUM);
2223         hash_keyword(state, "extern",        TOK_EXTERN);
2224         hash_keyword(state, "float",         TOK_FLOAT);
2225         hash_keyword(state, "for",           TOK_FOR);
2226         hash_keyword(state, "goto",          TOK_GOTO);
2227         hash_keyword(state, "if",            TOK_IF);
2228         hash_keyword(state, "inline",        TOK_INLINE);
2229         hash_keyword(state, "int",           TOK_INT);
2230         hash_keyword(state, "long",          TOK_LONG);
2231         hash_keyword(state, "register",      TOK_REGISTER);
2232         hash_keyword(state, "restrict",      TOK_RESTRICT);
2233         hash_keyword(state, "return",        TOK_RETURN);
2234         hash_keyword(state, "short",         TOK_SHORT);
2235         hash_keyword(state, "signed",        TOK_SIGNED);
2236         hash_keyword(state, "sizeof",        TOK_SIZEOF);
2237         hash_keyword(state, "static",        TOK_STATIC);
2238         hash_keyword(state, "struct",        TOK_STRUCT);
2239         hash_keyword(state, "switch",        TOK_SWITCH);
2240         hash_keyword(state, "typedef",       TOK_TYPEDEF);
2241         hash_keyword(state, "union",         TOK_UNION);
2242         hash_keyword(state, "unsigned",      TOK_UNSIGNED);
2243         hash_keyword(state, "void",          TOK_VOID);
2244         hash_keyword(state, "volatile",      TOK_VOLATILE);
2245         hash_keyword(state, "__volatile__",  TOK_VOLATILE);
2246         hash_keyword(state, "while",         TOK_WHILE);
2247         hash_keyword(state, "asm",           TOK_ASM);
2248         hash_keyword(state, "__asm__",       TOK_ASM);
2249         hash_keyword(state, "__attribute__", TOK_ATTRIBUTE);
2250         hash_keyword(state, "__alignof__",   TOK_ALIGNOF);
2251 }
2252
2253 static void register_macro_keywords(struct compile_state *state)
2254 {
2255         hash_keyword(state, "define",        TOK_DEFINE);
2256         hash_keyword(state, "undef",         TOK_UNDEF);
2257         hash_keyword(state, "include",       TOK_INCLUDE);
2258         hash_keyword(state, "line",          TOK_LINE);
2259         hash_keyword(state, "error",         TOK_ERROR);
2260         hash_keyword(state, "warning",       TOK_WARNING);
2261         hash_keyword(state, "pragma",        TOK_PRAGMA);
2262         hash_keyword(state, "ifdef",         TOK_IFDEF);
2263         hash_keyword(state, "ifndef",        TOK_IFNDEF);
2264         hash_keyword(state, "elif",          TOK_ELIF);
2265         hash_keyword(state, "endif",         TOK_ENDIF);
2266 }
2267
2268 static int spacep(int c)
2269 {
2270         int ret = 0;
2271         switch(c) {
2272         case ' ':
2273         case '\t':
2274         case '\f':
2275         case '\v':
2276         case '\r':
2277         case '\n':
2278                 ret = 1;
2279                 break;
2280         }
2281         return ret;
2282 }
2283
2284 static int digitp(int c)
2285 {
2286         int ret = 0;
2287         switch(c) {
2288         case '0': case '1': case '2': case '3': case '4': 
2289         case '5': case '6': case '7': case '8': case '9':
2290                 ret = 1;
2291                 break;
2292         }
2293         return ret;
2294 }
2295 static int digval(int c)
2296 {
2297         int val = -1;
2298         if ((c >= '0') && (c <= '9')) {
2299                 val = c - '0';
2300         }
2301         return val;
2302 }
2303
2304 static int hexdigitp(int c)
2305 {
2306         int ret = 0;
2307         switch(c) {
2308         case '0': case '1': case '2': case '3': case '4': 
2309         case '5': case '6': case '7': case '8': case '9':
2310         case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
2311         case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
2312                 ret = 1;
2313                 break;
2314         }
2315         return ret;
2316 }
2317 static int hexdigval(int c) 
2318 {
2319         int val = -1;
2320         if ((c >= '0') && (c <= '9')) {
2321                 val = c - '0';
2322         }
2323         else if ((c >= 'A') && (c <= 'F')) {
2324                 val = 10 + (c - 'A');
2325         }
2326         else if ((c >= 'a') && (c <= 'f')) {
2327                 val = 10 + (c - 'a');
2328         }
2329         return val;
2330 }
2331
2332 static int octdigitp(int c)
2333 {
2334         int ret = 0;
2335         switch(c) {
2336         case '0': case '1': case '2': case '3': 
2337         case '4': case '5': case '6': case '7':
2338                 ret = 1;
2339                 break;
2340         }
2341         return ret;
2342 }
2343 static int octdigval(int c)
2344 {
2345         int val = -1;
2346         if ((c >= '0') && (c <= '7')) {
2347                 val = c - '0';
2348         }
2349         return val;
2350 }
2351
2352 static int letterp(int c)
2353 {
2354         int ret = 0;
2355         switch(c) {
2356         case 'a': case 'b': case 'c': case 'd': case 'e':
2357         case 'f': case 'g': case 'h': case 'i': case 'j':
2358         case 'k': case 'l': case 'm': case 'n': case 'o':
2359         case 'p': case 'q': case 'r': case 's': case 't':
2360         case 'u': case 'v': case 'w': case 'x': case 'y':
2361         case 'z':
2362         case 'A': case 'B': case 'C': case 'D': case 'E':
2363         case 'F': case 'G': case 'H': case 'I': case 'J':
2364         case 'K': case 'L': case 'M': case 'N': case 'O':
2365         case 'P': case 'Q': case 'R': case 'S': case 'T':
2366         case 'U': case 'V': case 'W': case 'X': case 'Y':
2367         case 'Z':
2368         case '_':
2369                 ret = 1;
2370                 break;
2371         }
2372         return ret;
2373 }
2374
2375 static int char_value(struct compile_state *state,
2376         const signed char **strp, const signed char *end)
2377 {
2378         const signed char *str;
2379         int c;
2380         str = *strp;
2381         c = *str++;
2382         if ((c == '\\') && (str < end)) {
2383                 switch(*str) {
2384                 case 'n':  c = '\n'; str++; break;
2385                 case 't':  c = '\t'; str++; break;
2386                 case 'v':  c = '\v'; str++; break;
2387                 case 'b':  c = '\b'; str++; break;
2388                 case 'r':  c = '\r'; str++; break;
2389                 case 'f':  c = '\f'; str++; break;
2390                 case 'a':  c = '\a'; str++; break;
2391                 case '\\': c = '\\'; str++; break;
2392                 case '?':  c = '?';  str++; break;
2393                 case '\'': c = '\''; str++; break;
2394                 case '"':  c = '"';  break;
2395                 case 'x': 
2396                         c = 0;
2397                         str++;
2398                         while((str < end) && hexdigitp(*str)) {
2399                                 c <<= 4;
2400                                 c += hexdigval(*str);
2401                                 str++;
2402                         }
2403                         break;
2404                 case '0': case '1': case '2': case '3': 
2405                 case '4': case '5': case '6': case '7':
2406                         c = 0;
2407                         while((str < end) && octdigitp(*str)) {
2408                                 c <<= 3;
2409                                 c += octdigval(*str);
2410                                 str++;
2411                         }
2412                         break;
2413                 default:
2414                         error(state, 0, "Invalid character constant");
2415                         break;
2416                 }
2417         }
2418         *strp = str;
2419         return c;
2420 }
2421
2422 static char *after_digits(char *ptr, char *end)
2423 {
2424         while((ptr < end) && digitp(*ptr)) {
2425                 ptr++;
2426         }
2427         return ptr;
2428 }
2429
2430 static char *after_octdigits(char *ptr, char *end)
2431 {
2432         while((ptr < end) && octdigitp(*ptr)) {
2433                 ptr++;
2434         }
2435         return ptr;
2436 }
2437
2438 static char *after_hexdigits(char *ptr, char *end)
2439 {
2440         while((ptr < end) && hexdigitp(*ptr)) {
2441                 ptr++;
2442         }
2443         return ptr;
2444 }
2445
2446 static void save_string(struct compile_state *state, 
2447         struct token *tk, char *start, char *end, const char *id)
2448 {
2449         char *str;
2450         int str_len;
2451         /* Create a private copy of the string */
2452         str_len = end - start + 1;
2453         str = xmalloc(str_len + 1, id);
2454         memcpy(str, start, str_len);
2455         str[str_len] = '\0';
2456
2457         /* Store the copy in the token */
2458         tk->val.str = str;
2459         tk->str_len = str_len;
2460 }
2461 static void next_token(struct compile_state *state, int index)
2462 {
2463         struct file_state *file;
2464         struct token *tk;
2465         char *token;
2466         int c, c1, c2, c3;
2467         char *tokp, *end;
2468         int tok;
2469 next_token:
2470         file = state->file;
2471         tk = &state->token[index];
2472         tk->str_len = 0;
2473         tk->ident = 0;
2474         token = tokp = file->pos;
2475         end = file->buf + file->size;
2476         tok = TOK_UNKNOWN;
2477         c = -1;
2478         if (tokp < end) {
2479                 c = *tokp;
2480         }
2481         c1 = -1;
2482         if ((tokp + 1) < end) {
2483                 c1 = tokp[1];
2484         }
2485         c2 = -1;
2486         if ((tokp + 2) < end) {
2487                 c2 = tokp[2];
2488         }
2489         c3 = -1;
2490         if ((tokp + 3) < end) {
2491                 c3 = tokp[3];
2492         }
2493         if (tokp >= end) {
2494                 tok = TOK_EOF;
2495                 tokp = end;
2496         }
2497         /* Whitespace */
2498         else if (spacep(c)) {
2499                 tok = TOK_SPACE;
2500                 while ((tokp < end) && spacep(c)) {
2501                         if (c == '\n') {
2502                                 file->line++;
2503                                 file->report_line++;
2504                                 file->line_start = tokp + 1;
2505                         }
2506                         c = *(++tokp);
2507                 }
2508                 if (!spacep(c)) {
2509                         tokp--;
2510                 }
2511         }
2512         /* EOL Comments */
2513         else if ((c == '/') && (c1 == '/')) {
2514                 tok = TOK_SPACE;
2515                 for(tokp += 2; tokp < end; tokp++) {
2516                         c = *tokp;
2517                         if (c == '\n') {
2518                                 file->line++;
2519                                 file->report_line++;
2520                                 file->line_start = tokp +1;
2521                                 break;
2522                         }
2523                 }
2524         }
2525         /* Comments */
2526         else if ((c == '/') && (c1 == '*')) {
2527                 int line;
2528                 char *line_start;
2529                 line = file->line;
2530                 line_start = file->line_start;
2531                 for(tokp += 2; (end - tokp) >= 2; tokp++) {
2532                         c = *tokp;
2533                         if (c == '\n') {
2534                                 line++;
2535                                 line_start = tokp +1;
2536                         }
2537                         else if ((c == '*') && (tokp[1] == '/')) {
2538                                 tok = TOK_SPACE;
2539                                 tokp += 1;
2540                                 break;
2541                         }
2542                 }
2543                 if (tok == TOK_UNKNOWN) {
2544                         error(state, 0, "unterminated comment");
2545                 }
2546                 file->report_line += line - file->line;
2547                 file->line = line;
2548                 file->line_start = line_start;
2549         }
2550         /* string constants */
2551         else if ((c == '"') ||
2552                 ((c == 'L') && (c1 == '"'))) {
2553                 int line;
2554                 char *line_start;
2555                 int wchar;
2556                 line = file->line;
2557                 line_start = file->line_start;
2558                 wchar = 0;
2559                 if (c == 'L') {
2560                         wchar = 1;
2561                         tokp++;
2562                 }
2563                 for(tokp += 1; tokp < end; tokp++) {
2564                         c = *tokp;
2565                         if (c == '\n') {
2566                                 line++;
2567                                 line_start = tokp + 1;
2568                         }
2569                         else if ((c == '\\') && (tokp +1 < end)) {
2570                                 tokp++;
2571                         }
2572                         else if (c == '"') {
2573                                 tok = TOK_LIT_STRING;
2574                                 break;
2575                         }
2576                 }
2577                 if (tok == TOK_UNKNOWN) {
2578                         error(state, 0, "unterminated string constant");
2579                 }
2580                 if (line != file->line) {
2581                         warning(state, 0, "multiline string constant");
2582                 }
2583                 file->report_line += line - file->line;
2584                 file->line = line;
2585                 file->line_start = line_start;
2586
2587                 /* Save the string value */
2588                 save_string(state, tk, token, tokp, "literal string");
2589         }
2590         /* character constants */
2591         else if ((c == '\'') ||
2592                 ((c == 'L') && (c1 == '\''))) {
2593                 int line;
2594                 char *line_start;
2595                 int wchar;
2596                 line = file->line;
2597                 line_start = file->line_start;
2598                 wchar = 0;
2599                 if (c == 'L') {
2600                         wchar = 1;
2601                         tokp++;
2602                 }
2603                 for(tokp += 1; tokp < end; tokp++) {
2604                         c = *tokp;
2605                         if (c == '\n') {
2606                                 line++;
2607                                 line_start = tokp + 1;
2608                         }
2609                         else if ((c == '\\') && (tokp +1 < end)) {
2610                                 tokp++;
2611                         }
2612                         else if (c == '\'') {
2613                                 tok = TOK_LIT_CHAR;
2614                                 break;
2615                         }
2616                 }
2617                 if (tok == TOK_UNKNOWN) {
2618                         error(state, 0, "unterminated character constant");
2619                 }
2620                 if (line != file->line) {
2621                         warning(state, 0, "multiline character constant");
2622                 }
2623                 file->report_line += line - file->line;
2624                 file->line = line;
2625                 file->line_start = line_start;
2626
2627                 /* Save the character value */
2628                 save_string(state, tk, token, tokp, "literal character");
2629         }
2630         /* integer and floating constants 
2631          * Integer Constants
2632          * {digits}
2633          * 0[Xx]{hexdigits}
2634          * 0{octdigit}+
2635          * 
2636          * Floating constants
2637          * {digits}.{digits}[Ee][+-]?{digits}
2638          * {digits}.{digits}
2639          * {digits}[Ee][+-]?{digits}
2640          * .{digits}[Ee][+-]?{digits}
2641          * .{digits}
2642          */
2643         
2644         else if (digitp(c) || ((c == '.') && (digitp(c1)))) {
2645                 char *next, *new;
2646                 int is_float;
2647                 is_float = 0;
2648                 if (c != '.') {
2649                         next = after_digits(tokp, end);
2650                 }
2651                 else {
2652                         next = tokp;
2653                 }
2654                 if (next[0] == '.') {
2655                         new = after_digits(next, end);
2656                         is_float = (new != next);
2657                         next = new;
2658                 }
2659                 if ((next[0] == 'e') || (next[0] == 'E')) {
2660                         if (((next + 1) < end) && 
2661                                 ((next[1] == '+') || (next[1] == '-'))) {
2662                                 next++;
2663                         }
2664                         new = after_digits(next, end);
2665                         is_float = (new != next);
2666                         next = new;
2667                 }
2668                 if (is_float) {
2669                         tok = TOK_LIT_FLOAT;
2670                         if ((next < end) && (
2671                                 (next[0] == 'f') ||
2672                                 (next[0] == 'F') ||
2673                                 (next[0] == 'l') ||
2674                                 (next[0] == 'L'))
2675                                 ) {
2676                                 next++;
2677                         }
2678                 }
2679                 if (!is_float && digitp(c)) {
2680                         tok = TOK_LIT_INT;
2681                         if ((c == '0') && ((c1 == 'x') || (c1 == 'X'))) {
2682                                 next = after_hexdigits(tokp + 2, end);
2683                         }
2684                         else if (c == '0') {
2685                                 next = after_octdigits(tokp, end);
2686                         }
2687                         else {
2688                                 next = after_digits(tokp, end);
2689                         }
2690                         /* crazy integer suffixes */
2691                         if ((next < end) && 
2692                                 ((next[0] == 'u') || (next[0] == 'U'))) { 
2693                                 next++;
2694                                 if ((next < end) &&
2695                                         ((next[0] == 'l') || (next[0] == 'L'))) {
2696                                         next++;
2697                                 }
2698                         }
2699                         else if ((next < end) &&
2700                                 ((next[0] == 'l') || (next[0] == 'L'))) {
2701                                 next++;
2702                                 if ((next < end) && 
2703                                         ((next[0] == 'u') || (next[0] == 'U'))) { 
2704                                         next++;
2705                                 }
2706                         }
2707                 }
2708                 tokp = next - 1;
2709
2710                 /* Save the integer/floating point value */
2711                 save_string(state, tk, token, tokp, "literal number");
2712         }
2713         /* identifiers */
2714         else if (letterp(c)) {
2715                 tok = TOK_IDENT;
2716                 for(tokp += 1; tokp < end; tokp++) {
2717                         c = *tokp;
2718                         if (!letterp(c) && !digitp(c)) {
2719                                 break;
2720                         }
2721                 }
2722                 tokp -= 1;
2723                 tk->ident = lookup(state, token, tokp +1 - token);
2724         }
2725         /* C99 alternate macro characters */
2726         else if ((c == '%') && (c1 == ':') && (c2 == '%') && (c3 == ':')) { 
2727                 tokp += 3; 
2728                 tok = TOK_CONCATENATE; 
2729         }
2730         else if ((c == '.') && (c1 == '.') && (c2 == '.')) { tokp += 2; tok = TOK_DOTS; }
2731         else if ((c == '<') && (c1 == '<') && (c2 == '=')) { tokp += 2; tok = TOK_SLEQ; }
2732         else if ((c == '>') && (c1 == '>') && (c2 == '=')) { tokp += 2; tok = TOK_SREQ; }
2733         else if ((c == '*') && (c1 == '=')) { tokp += 1; tok = TOK_TIMESEQ; }
2734         else if ((c == '/') && (c1 == '=')) { tokp += 1; tok = TOK_DIVEQ; }
2735         else if ((c == '%') && (c1 == '=')) { tokp += 1; tok = TOK_MODEQ; }
2736         else if ((c == '+') && (c1 == '=')) { tokp += 1; tok = TOK_PLUSEQ; }
2737         else if ((c == '-') && (c1 == '=')) { tokp += 1; tok = TOK_MINUSEQ; }
2738         else if ((c == '&') && (c1 == '=')) { tokp += 1; tok = TOK_ANDEQ; }
2739         else if ((c == '^') && (c1 == '=')) { tokp += 1; tok = TOK_XOREQ; }
2740         else if ((c == '|') && (c1 == '=')) { tokp += 1; tok = TOK_OREQ; }
2741         else if ((c == '=') && (c1 == '=')) { tokp += 1; tok = TOK_EQEQ; }
2742         else if ((c == '!') && (c1 == '=')) { tokp += 1; tok = TOK_NOTEQ; }
2743         else if ((c == '|') && (c1 == '|')) { tokp += 1; tok = TOK_LOGOR; }
2744         else if ((c == '&') && (c1 == '&')) { tokp += 1; tok = TOK_LOGAND; }
2745         else if ((c == '<') && (c1 == '=')) { tokp += 1; tok = TOK_LESSEQ; }
2746         else if ((c == '>') && (c1 == '=')) { tokp += 1; tok = TOK_MOREEQ; }
2747         else if ((c == '<') && (c1 == '<')) { tokp += 1; tok = TOK_SL; }
2748         else if ((c == '>') && (c1 == '>')) { tokp += 1; tok = TOK_SR; }
2749         else if ((c == '+') && (c1 == '+')) { tokp += 1; tok = TOK_PLUSPLUS; }
2750         else if ((c == '-') && (c1 == '-')) { tokp += 1; tok = TOK_MINUSMINUS; }
2751         else if ((c == '-') && (c1 == '>')) { tokp += 1; tok = TOK_ARROW; }
2752         else if ((c == '<') && (c1 == ':')) { tokp += 1; tok = TOK_LBRACKET; }
2753         else if ((c == ':') && (c1 == '>')) { tokp += 1; tok = TOK_RBRACKET; }
2754         else if ((c == '<') && (c1 == '%')) { tokp += 1; tok = TOK_LBRACE; }
2755         else if ((c == '%') && (c1 == '>')) { tokp += 1; tok = TOK_RBRACE; }
2756         else if ((c == '%') && (c1 == ':')) { tokp += 1; tok = TOK_MACRO; }
2757         else if ((c == '#') && (c1 == '#')) { tokp += 1; tok = TOK_CONCATENATE; }
2758         else if (c == ';') { tok = TOK_SEMI; }
2759         else if (c == '{') { tok = TOK_LBRACE; }
2760         else if (c == '}') { tok = TOK_RBRACE; }
2761         else if (c == ',') { tok = TOK_COMMA; }
2762         else if (c == '=') { tok = TOK_EQ; }
2763         else if (c == ':') { tok = TOK_COLON; }
2764         else if (c == '[') { tok = TOK_LBRACKET; }
2765         else if (c == ']') { tok = TOK_RBRACKET; }
2766         else if (c == '(') { tok = TOK_LPAREN; }
2767         else if (c == ')') { tok = TOK_RPAREN; }
2768         else if (c == '*') { tok = TOK_STAR; }
2769         else if (c == '>') { tok = TOK_MORE; }
2770         else if (c == '<') { tok = TOK_LESS; }
2771         else if (c == '?') { tok = TOK_QUEST; }
2772         else if (c == '|') { tok = TOK_OR; }
2773         else if (c == '&') { tok = TOK_AND; }
2774         else if (c == '^') { tok = TOK_XOR; }
2775         else if (c == '+') { tok = TOK_PLUS; }
2776         else if (c == '-') { tok = TOK_MINUS; }
2777         else if (c == '/') { tok = TOK_DIV; }
2778         else if (c == '%') { tok = TOK_MOD; }
2779         else if (c == '!') { tok = TOK_BANG; }
2780         else if (c == '.') { tok = TOK_DOT; }
2781         else if (c == '~') { tok = TOK_TILDE; }
2782         else if (c == '#') { tok = TOK_MACRO; }
2783         if (tok == TOK_MACRO) {
2784                 /* Only match preprocessor directives at the start of a line */
2785                 char *ptr;
2786                 for(ptr = file->line_start; spacep(*ptr); ptr++)
2787                         ;
2788                 if (ptr != tokp) {
2789                         tok = TOK_UNKNOWN;
2790                 }
2791         }
2792         if (tok == TOK_UNKNOWN) {
2793                 error(state, 0, "unknown token");
2794         }
2795
2796         file->pos = tokp + 1;
2797         tk->tok = tok;
2798         if (tok == TOK_IDENT) {
2799                 ident_to_keyword(state, tk);
2800         }
2801         /* Don't return space tokens. */
2802         if (tok == TOK_SPACE) {
2803                 goto next_token;
2804         }
2805 }
2806
2807 static void compile_macro(struct compile_state *state, struct token *tk)
2808 {
2809         struct file_state *file;
2810         struct hash_entry *ident;
2811         ident = tk->ident;
2812         file = xmalloc(sizeof(*file), "file_state");
2813         file->basename = xstrdup(tk->ident->name);
2814         file->dirname = xstrdup("");
2815         file->size = ident->sym_define->buf_len;
2816         file->buf = xmalloc(file->size +2,  file->basename);
2817         memcpy(file->buf, ident->sym_define->buf, file->size);
2818         file->buf[file->size] = '\n';
2819         file->buf[file->size + 1] = '\0';
2820         file->pos = file->buf;
2821         file->line_start = file->pos;
2822         file->line = 1;
2823         file->report_line = 1;
2824         file->report_name = file->basename;
2825         file->report_dir  = file->dirname;
2826         file->prev = state->file;
2827         state->file = file;
2828 }
2829
2830
2831 static int mpeek(struct compile_state *state, int index)
2832 {
2833         struct token *tk;
2834         int rescan;
2835         tk = &state->token[index + 1];
2836         if (tk->tok == -1) {
2837                 next_token(state, index + 1);
2838         }
2839         do {
2840                 rescan = 0;
2841                 if ((tk->tok == TOK_EOF) && 
2842                         (state->file != state->macro_file) &&
2843                         (state->file->prev)) {
2844                         struct file_state *file = state->file;
2845                         state->file = file->prev;
2846                         /* file->basename is used keep it */
2847                         if (file->report_dir != file->dirname) {
2848                                 xfree(file->report_dir);
2849                         }
2850                         xfree(file->dirname);
2851                         xfree(file->buf);
2852                         xfree(file);
2853                         next_token(state, index + 1);
2854                         rescan = 1;
2855                 }
2856                 else if (tk->ident && tk->ident->sym_define) {
2857                         compile_macro(state, tk);
2858                         next_token(state, index + 1);
2859                         rescan = 1;
2860                 }
2861         } while(rescan);
2862         /* Don't show the token on the next line */
2863         if (state->macro_line < state->macro_file->line) {
2864                 return TOK_EOF;
2865         }
2866         return state->token[index +1].tok;
2867 }
2868
2869 static void meat(struct compile_state *state, int index, int tok)
2870 {
2871         int next_tok;
2872         int i;
2873         next_tok = mpeek(state, index);
2874         if (next_tok != tok) {
2875                 const char *name1, *name2;
2876                 name1 = tokens[next_tok];
2877                 name2 = "";
2878                 if (next_tok == TOK_IDENT) {
2879                         name2 = state->token[index + 1].ident->name;
2880                 }
2881                 error(state, 0, "found %s %s expected %s", 
2882                         name1, name2, tokens[tok]);
2883         }
2884         /* Free the old token value */
2885         if (state->token[index].str_len) {
2886                 memset((void *)(state->token[index].val.str), -1, 
2887                         state->token[index].str_len);
2888                 xfree(state->token[index].val.str);
2889         }
2890         for(i = index; i < sizeof(state->token)/sizeof(state->token[0]) - 1; i++) {
2891                 state->token[i] = state->token[i + 1];
2892         }
2893         memset(&state->token[i], 0, sizeof(state->token[i]));
2894         state->token[i].tok = -1;
2895 }
2896
2897 static long_t mcexpr(struct compile_state *state, int index);
2898
2899 static long_t mprimary_expr(struct compile_state *state, int index)
2900 {
2901         long_t val;
2902         int tok;
2903         tok = mpeek(state, index);
2904         while(state->token[index + 1].ident && 
2905                 state->token[index + 1].ident->sym_define) {
2906                 meat(state, index, tok);
2907                 compile_macro(state, &state->token[index]);
2908                 tok = mpeek(state, index);
2909         }
2910         switch(tok) {
2911         case TOK_LPAREN:
2912                 meat(state, index, TOK_LPAREN);
2913                 val = mcexpr(state, index);
2914                 meat(state, index, TOK_RPAREN);
2915                 break;
2916         case TOK_LIT_INT:
2917         {
2918                 char *end;
2919                 meat(state, index, TOK_LIT_INT);
2920                 errno = 0;
2921                 val = strtol(state->token[index].val.str, &end, 0);
2922                 if (((val == LONG_MIN) || (val == LONG_MAX)) &&
2923                         (errno == ERANGE)) {
2924                         error(state, 0, "Integer constant to large");
2925                 }
2926                 break;
2927         }
2928         default:
2929                 meat(state, index, TOK_LIT_INT);
2930                 val = 0;
2931         }
2932         return val;
2933 }
2934 static long_t munary_expr(struct compile_state *state, int index)
2935 {
2936         long_t val;
2937         switch(mpeek(state, index)) {
2938         case TOK_PLUS:
2939                 meat(state, index, TOK_PLUS);
2940                 val = munary_expr(state, index);
2941                 val = + val;
2942                 break;
2943         case TOK_MINUS:
2944                 meat(state, index, TOK_MINUS);
2945                 val = munary_expr(state, index);
2946                 val = - val;
2947                 break;
2948         case TOK_TILDE:
2949                 meat(state, index, TOK_BANG);
2950                 val = munary_expr(state, index);
2951                 val = ~ val;
2952                 break;
2953         case TOK_BANG:
2954                 meat(state, index, TOK_BANG);
2955                 val = munary_expr(state, index);
2956                 val = ! val;
2957                 break;
2958         default:
2959                 val = mprimary_expr(state, index);
2960                 break;
2961         }
2962         return val;
2963         
2964 }
2965 static long_t mmul_expr(struct compile_state *state, int index)
2966 {
2967         long_t val;
2968         int done;
2969         val = munary_expr(state, index);
2970         do {
2971                 long_t right;
2972                 done = 0;
2973                 switch(mpeek(state, index)) {
2974                 case TOK_STAR:
2975                         meat(state, index, TOK_STAR);
2976                         right = munary_expr(state, index);
2977                         val = val * right;
2978                         break;
2979                 case TOK_DIV:
2980                         meat(state, index, TOK_DIV);
2981                         right = munary_expr(state, index);
2982                         val = val / right;
2983                         break;
2984                 case TOK_MOD:
2985                         meat(state, index, TOK_MOD);
2986                         right = munary_expr(state, index);
2987                         val = val % right;
2988                         break;
2989                 default:
2990                         done = 1;
2991                         break;
2992                 }
2993         } while(!done);
2994
2995         return val;
2996 }
2997
2998 static long_t madd_expr(struct compile_state *state, int index)
2999 {
3000         long_t val;
3001         int done;
3002         val = mmul_expr(state, index);
3003         do {
3004                 long_t right;
3005                 done = 0;
3006                 switch(mpeek(state, index)) {
3007                 case TOK_PLUS:
3008                         meat(state, index, TOK_PLUS);
3009                         right = mmul_expr(state, index);
3010                         val = val + right;
3011                         break;
3012                 case TOK_MINUS:
3013                         meat(state, index, TOK_MINUS);
3014                         right = mmul_expr(state, index);
3015                         val = val - right;
3016                         break;
3017                 default:
3018                         done = 1;
3019                         break;
3020                 }
3021         } while(!done);
3022
3023         return val;
3024 }
3025
3026 static long_t mshift_expr(struct compile_state *state, int index)
3027 {
3028         long_t val;
3029         int done;
3030         val = madd_expr(state, index);
3031         do {
3032                 long_t right;
3033                 done = 0;
3034                 switch(mpeek(state, index)) {
3035                 case TOK_SL:
3036                         meat(state, index, TOK_SL);
3037                         right = madd_expr(state, index);
3038                         val = val << right;
3039                         break;
3040                 case TOK_SR:
3041                         meat(state, index, TOK_SR);
3042                         right = madd_expr(state, index);
3043                         val = val >> right;
3044                         break;
3045                 default:
3046                         done = 1;
3047                         break;
3048                 }
3049         } while(!done);
3050
3051         return val;
3052 }
3053
3054 static long_t mrel_expr(struct compile_state *state, int index)
3055 {
3056         long_t val;
3057         int done;
3058         val = mshift_expr(state, index);
3059         do {
3060                 long_t right;
3061                 done = 0;
3062                 switch(mpeek(state, index)) {
3063                 case TOK_LESS:
3064                         meat(state, index, TOK_LESS);
3065                         right = mshift_expr(state, index);
3066                         val = val < right;
3067                         break;
3068                 case TOK_MORE:
3069                         meat(state, index, TOK_MORE);
3070                         right = mshift_expr(state, index);
3071                         val = val > right;
3072                         break;
3073                 case TOK_LESSEQ:
3074                         meat(state, index, TOK_LESSEQ);
3075                         right = mshift_expr(state, index);
3076                         val = val <= right;
3077                         break;
3078                 case TOK_MOREEQ:
3079                         meat(state, index, TOK_MOREEQ);
3080                         right = mshift_expr(state, index);
3081                         val = val >= right;
3082                         break;
3083                 default:
3084                         done = 1;
3085                         break;
3086                 }
3087         } while(!done);
3088         return val;
3089 }
3090
3091 static long_t meq_expr(struct compile_state *state, int index)
3092 {
3093         long_t val;
3094         int done;
3095         val = mrel_expr(state, index);
3096         do {
3097                 long_t right;
3098                 done = 0;
3099                 switch(mpeek(state, index)) {
3100                 case TOK_EQEQ:
3101                         meat(state, index, TOK_EQEQ);
3102                         right = mrel_expr(state, index);
3103                         val = val == right;
3104                         break;
3105                 case TOK_NOTEQ:
3106                         meat(state, index, TOK_NOTEQ);
3107                         right = mrel_expr(state, index);
3108                         val = val != right;
3109                         break;
3110                 default:
3111                         done = 1;
3112                         break;
3113                 }
3114         } while(!done);
3115         return val;
3116 }
3117
3118 static long_t mand_expr(struct compile_state *state, int index)
3119 {
3120         long_t val;
3121         val = meq_expr(state, index);
3122         if (mpeek(state, index) == TOK_AND) {
3123                 long_t right;
3124                 meat(state, index, TOK_AND);
3125                 right = meq_expr(state, index);
3126                 val = val & right;
3127         }
3128         return val;
3129 }
3130
3131 static long_t mxor_expr(struct compile_state *state, int index)
3132 {
3133         long_t val;
3134         val = mand_expr(state, index);
3135         if (mpeek(state, index) == TOK_XOR) {
3136                 long_t right;
3137                 meat(state, index, TOK_XOR);
3138                 right = mand_expr(state, index);
3139                 val = val ^ right;
3140         }
3141         return val;
3142 }
3143
3144 static long_t mor_expr(struct compile_state *state, int index)
3145 {
3146         long_t val;
3147         val = mxor_expr(state, index);
3148         if (mpeek(state, index) == TOK_OR) {
3149                 long_t right;
3150                 meat(state, index, TOK_OR);
3151                 right = mxor_expr(state, index);
3152                 val = val | right;
3153         }
3154         return val;
3155 }
3156
3157 static long_t mland_expr(struct compile_state *state, int index)
3158 {
3159         long_t val;
3160         val = mor_expr(state, index);
3161         if (mpeek(state, index) == TOK_LOGAND) {
3162                 long_t right;
3163                 meat(state, index, TOK_LOGAND);
3164                 right = mor_expr(state, index);
3165                 val = val && right;
3166         }
3167         return val;
3168 }
3169 static long_t mlor_expr(struct compile_state *state, int index)
3170 {
3171         long_t val;
3172         val = mland_expr(state, index);
3173         if (mpeek(state, index) == TOK_LOGOR) {
3174                 long_t right;
3175                 meat(state, index, TOK_LOGOR);
3176                 right = mland_expr(state, index);
3177                 val = val || right;
3178         }
3179         return val;
3180 }
3181
3182 static long_t mcexpr(struct compile_state *state, int index)
3183 {
3184         return mlor_expr(state, index);
3185 }
3186 static void preprocess(struct compile_state *state, int index)
3187 {
3188         /* Doing much more with the preprocessor would require
3189          * a parser and a major restructuring.
3190          * Postpone that for later.
3191          */
3192         struct file_state *file;
3193         struct token *tk;
3194         int line;
3195         int tok;
3196         
3197         file = state->file;
3198         tk = &state->token[index];
3199         state->macro_line = line = file->line;
3200         state->macro_file = file;
3201
3202         next_token(state, index);
3203         ident_to_macro(state, tk);
3204         if (tk->tok == TOK_IDENT) {
3205                 error(state, 0, "undefined preprocessing directive `%s'",
3206                         tk->ident->name);
3207         }
3208         switch(tk->tok) {
3209         case TOK_LIT_INT:
3210         {
3211                 int override_line;
3212                 override_line = strtoul(tk->val.str, 0, 10);
3213                 next_token(state, index);
3214                 /* I have a cpp line marker parse it */
3215                 if (tk->tok == TOK_LIT_STRING) {
3216                         const char *token, *base;
3217                         char *name, *dir;
3218                         int name_len, dir_len;
3219                         name = xmalloc(tk->str_len, "report_name");
3220                         token = tk->val.str + 1;
3221                         base = strrchr(token, '/');
3222                         name_len = tk->str_len -2;
3223                         if (base != 0) {
3224                                 dir_len = base - token;
3225                                 base++;
3226                                 name_len -= base - token;
3227                         } else {
3228                                 dir_len = 0;
3229                                 base = token;
3230                         }
3231                         memcpy(name, base, name_len);
3232                         name[name_len] = '\0';
3233                         dir = xmalloc(dir_len + 1, "report_dir");
3234                         memcpy(dir, token, dir_len);
3235                         dir[dir_len] = '\0';
3236                         file->report_line = override_line - 1;
3237                         file->report_name = name;
3238                         file->report_dir = dir;
3239                 }
3240         }
3241                 break;
3242         case TOK_LINE:
3243                 meat(state, index, TOK_LINE);
3244                 meat(state, index, TOK_LIT_INT);
3245                 file->report_line = strtoul(tk->val.str, 0, 10) -1;
3246                 if (mpeek(state, index) == TOK_LIT_STRING) {
3247                         const char *token, *base;
3248                         char *name, *dir;
3249                         int name_len, dir_len;
3250                         meat(state, index, TOK_LIT_STRING);
3251                         name = xmalloc(tk->str_len, "report_name");
3252                         token = tk->val.str + 1;
3253                         name_len = tk->str_len - 2;
3254                         if (base != 0) {
3255                                 dir_len = base - token;
3256                                 base++;
3257                                 name_len -= base - token;
3258                         } else {
3259                                 dir_len = 0;
3260                                 base = token;
3261                         }
3262                         memcpy(name, base, name_len);
3263                         name[name_len] = '\0';
3264                         dir = xmalloc(dir_len + 1, "report_dir");
3265                         memcpy(dir, token, dir_len);
3266                         dir[dir_len] = '\0';
3267                         file->report_name = name;
3268                         file->report_dir = dir;
3269                 }
3270                 break;
3271         case TOK_UNDEF:
3272         case TOK_PRAGMA:
3273                 if (state->if_value < 0) {
3274                         break;
3275                 }
3276                 warning(state, 0, "Ignoring preprocessor directive: %s", 
3277                         tk->ident->name);
3278                 break;
3279         case TOK_ELIF:
3280                 error(state, 0, "#elif not supported");
3281 #warning "FIXME multiple #elif and #else in an #if do not work properly"
3282                 if (state->if_depth == 0) {
3283                         error(state, 0, "#elif without #if");
3284                 }
3285                 /* If the #if was taken the #elif just disables the following code */
3286                 if (state->if_value >= 0) {
3287                         state->if_value = - state->if_value;
3288                 }
3289                 /* If the previous #if was not taken see if the #elif enables the 
3290                  * trailing code.
3291                  */
3292                 else if ((state->if_value < 0) && 
3293                         (state->if_depth == - state->if_value))
3294                 {
3295                         if (mcexpr(state, index) != 0) {
3296                                 state->if_value = state->if_depth;
3297                         }
3298                         else {
3299                                 state->if_value = - state->if_depth;
3300                         }
3301                 }
3302                 break;
3303         case TOK_IF:
3304                 state->if_depth++;
3305                 if (state->if_value < 0) {
3306                         break;
3307                 }
3308                 if (mcexpr(state, index) != 0) {
3309                         state->if_value = state->if_depth;
3310                 }
3311                 else {
3312                         state->if_value = - state->if_depth;
3313                 }
3314                 break;
3315         case TOK_IFNDEF:
3316                 state->if_depth++;
3317                 if (state->if_value < 0) {
3318                         break;
3319                 }
3320                 next_token(state, index);
3321                 if ((line != file->line) || (tk->tok != TOK_IDENT)) {
3322                         error(state, 0, "Invalid macro name");
3323                 }
3324                 if (tk->ident->sym_define == 0) {
3325                         state->if_value = state->if_depth;
3326                 } 
3327                 else {
3328                         state->if_value = - state->if_depth;
3329                 }
3330                 break;
3331         case TOK_IFDEF:
3332                 state->if_depth++;
3333                 if (state->if_value < 0) {
3334                         break;
3335                 }
3336                 next_token(state, index);
3337                 if ((line != file->line) || (tk->tok != TOK_IDENT)) {
3338                         error(state, 0, "Invalid macro name");
3339                 }
3340                 if (tk->ident->sym_define != 0) {
3341                         state->if_value = state->if_depth;
3342                 }
3343                 else {
3344                         state->if_value = - state->if_depth;
3345                 }
3346                 break;
3347         case TOK_ELSE:
3348                 if (state->if_depth == 0) {
3349                         error(state, 0, "#else without #if");
3350                 }
3351                 if ((state->if_value >= 0) ||
3352                         ((state->if_value < 0) && 
3353                                 (state->if_depth == -state->if_value)))
3354                 {
3355                         state->if_value = - state->if_value;
3356                 }
3357                 break;
3358         case TOK_ENDIF:
3359                 if (state->if_depth == 0) {
3360                         error(state, 0, "#endif without #if");
3361                 }
3362                 if ((state->if_value >= 0) ||
3363                         ((state->if_value < 0) &&
3364                                 (state->if_depth == -state->if_value))) 
3365                 {
3366                         state->if_value = state->if_depth - 1;
3367                 }
3368                 state->if_depth--;
3369                 break;
3370         case TOK_DEFINE:
3371         {
3372                 struct hash_entry *ident;
3373                 struct macro *macro;
3374                 char *ptr;
3375                 
3376                 if (state->if_value < 0) /* quit early when #if'd out */
3377                         break;
3378
3379                 meat(state, index, TOK_IDENT);
3380                 ident = tk->ident;
3381                 
3382
3383                 if (*file->pos == '(') {
3384 #warning "FIXME macros with arguments not supported"
3385                         error(state, 0, "Macros with arguments not supported");
3386                 }
3387
3388                 /* Find the end of the line to get an estimate of
3389                  * the macro's length.
3390                  */
3391                 for(ptr = file->pos; *ptr != '\n'; ptr++)  
3392                         ;
3393
3394                 if (ident->sym_define != 0) {
3395                         error(state, 0, "macro %s already defined\n", ident->name);
3396                 }
3397                 macro = xmalloc(sizeof(*macro), "macro");
3398                 macro->ident = ident;
3399                 macro->buf_len = ptr - file->pos +1;
3400                 macro->buf = xmalloc(macro->buf_len +2, "macro buf");
3401
3402                 memcpy(macro->buf, file->pos, macro->buf_len);
3403                 macro->buf[macro->buf_len] = '\n';
3404                 macro->buf[macro->buf_len +1] = '\0';
3405
3406                 ident->sym_define = macro;
3407                 break;
3408         }
3409         case TOK_ERROR:
3410         {
3411                 char *end;
3412                 int len;
3413                 /* Find the end of the line */
3414                 for(end = file->pos; *end != '\n'; end++)
3415                         ;
3416                 len = (end - file->pos);
3417                 if (state->if_value >= 0) {
3418                         error(state, 0, "%*.*s", len, len, file->pos);
3419                 }
3420                 file->pos = end;
3421                 break;
3422         }
3423         case TOK_WARNING:
3424         {
3425                 char *end;
3426                 int len;
3427                 /* Find the end of the line */
3428                 for(end = file->pos; *end != '\n'; end++)
3429                         ;
3430                 len = (end - file->pos);
3431                 if (state->if_value >= 0) {
3432                         warning(state, 0, "%*.*s", len, len, file->pos);
3433                 }
3434                 file->pos = end;
3435                 break;
3436         }
3437         case TOK_INCLUDE:
3438         {
3439                 char *name;
3440                 char *ptr;
3441                 int local;
3442                 local = 0;
3443                 name = 0;
3444                 next_token(state, index);
3445                 if (tk->tok == TOK_LIT_STRING) {
3446                         const char *token;
3447                         int name_len;
3448                         name = xmalloc(tk->str_len, "include");
3449                         token = tk->val.str +1;
3450                         name_len = tk->str_len -2;
3451                         if (*token == '"') {
3452                                 token++;
3453                                 name_len--;
3454                         }
3455                         memcpy(name, token, name_len);
3456                         name[name_len] = '\0';
3457                         local = 1;
3458                 }
3459                 else if (tk->tok == TOK_LESS) {
3460                         char *start, *end;
3461                         start = file->pos;
3462                         for(end = start; *end != '\n'; end++) {
3463                                 if (*end == '>') {
3464                                         break;
3465                                 }
3466                         }
3467                         if (*end == '\n') {
3468                                 error(state, 0, "Unterminated included directive");
3469                         }
3470                         name = xmalloc(end - start + 1, "include");
3471                         memcpy(name, start, end - start);
3472                         name[end - start] = '\0';
3473                         file->pos = end +1;
3474                         local = 0;
3475                 }
3476                 else {
3477                         error(state, 0, "Invalid include directive");
3478                 }
3479                 /* Error if there are any characters after the include */
3480                 for(ptr = file->pos; *ptr != '\n'; ptr++) {
3481                         switch(*ptr) {
3482                         case ' ':
3483                         case '\t':
3484                         case '\v':
3485                                 break;
3486                         default:
3487                                 error(state, 0, "garbage after include directive");
3488                         }
3489                 }
3490                 if (state->if_value >= 0) {
3491                         compile_file(state, name, local);
3492                 }
3493                 xfree(name);
3494                 next_token(state, index);
3495                 return;
3496         }
3497         default:
3498                 /* Ignore # without a following ident */
3499                 if (tk->tok == TOK_IDENT) {
3500                         error(state, 0, "Invalid preprocessor directive: %s", 
3501                                 tk->ident->name);
3502                 }
3503                 break;
3504         }
3505         /* Consume the rest of the macro line */
3506         do {
3507                 tok = mpeek(state, index);
3508                 meat(state, index, tok);
3509         } while(tok != TOK_EOF);
3510         return;
3511 }
3512
3513 static void token(struct compile_state *state, int index)
3514 {
3515         struct file_state *file;
3516         struct token *tk;
3517         int rescan;
3518
3519         tk = &state->token[index];
3520         next_token(state, index);
3521         do {
3522                 rescan = 0;
3523                 file = state->file;
3524                 if (tk->tok == TOK_EOF && file->prev) {
3525                         state->file = file->prev;
3526                         /* file->basename is used keep it */
3527                         xfree(file->dirname);
3528                         xfree(file->buf);
3529                         xfree(file);
3530                         next_token(state, index);
3531                         rescan = 1;
3532                 }
3533                 else if (tk->tok == TOK_MACRO) {
3534                         preprocess(state, index);
3535                         rescan = 1;
3536                 }
3537                 else if (tk->ident && tk->ident->sym_define) {
3538                         compile_macro(state, tk);
3539                         next_token(state, index);
3540                         rescan = 1;
3541                 }
3542                 else if (state->if_value < 0) {
3543                         next_token(state, index);
3544                         rescan = 1;
3545                 }
3546         } while(rescan);
3547 }
3548
3549 static int peek(struct compile_state *state)
3550 {
3551         if (state->token[1].tok == -1) {
3552                 token(state, 1);
3553         }
3554         return state->token[1].tok;
3555 }
3556
3557 static int peek2(struct compile_state *state)
3558 {
3559         if (state->token[1].tok == -1) {
3560                 token(state, 1);
3561         }
3562         if (state->token[2].tok == -1) {
3563                 token(state, 2);
3564         }
3565         return state->token[2].tok;
3566 }
3567
3568 static void eat(struct compile_state *state, int tok)
3569 {
3570         int next_tok;
3571         int i;
3572         next_tok = peek(state);
3573         if (next_tok != tok) {
3574                 const char *name1, *name2;
3575                 name1 = tokens[next_tok];
3576                 name2 = "";
3577                 if (next_tok == TOK_IDENT) {
3578                         name2 = state->token[1].ident->name;
3579                 }
3580                 error(state, 0, "\tfound %s %s expected %s",
3581                         name1, name2 ,tokens[tok]);
3582         }
3583         /* Free the old token value */
3584         if (state->token[0].str_len) {
3585                 xfree((void *)(state->token[0].val.str));
3586         }
3587         for(i = 0; i < sizeof(state->token)/sizeof(state->token[0]) - 1; i++) {
3588                 state->token[i] = state->token[i + 1];
3589         }
3590         memset(&state->token[i], 0, sizeof(state->token[i]));
3591         state->token[i].tok = -1;
3592 }
3593
3594 #warning "FIXME do not hardcode the include paths"
3595 static char *include_paths[] = {
3596         "/home/eric/projects/linuxbios/checkin/solo/freebios2/src/include",
3597         "/home/eric/projects/linuxbios/checkin/solo/freebios2/src/arch/i386/include",
3598         "/home/eric/projects/linuxbios/checkin/solo/freebios2/src",
3599         0
3600 };
3601
3602 static void compile_file(struct compile_state *state, const char *filename, int local)
3603 {
3604         char cwd[4096];
3605         const char *subdir, *base;
3606         int subdir_len;
3607         struct file_state *file;
3608         char *basename;
3609         file = xmalloc(sizeof(*file), "file_state");
3610
3611         base = strrchr(filename, '/');
3612         subdir = filename;
3613         if (base != 0) {
3614                 subdir_len = base - filename;
3615                 base++;
3616         }
3617         else {
3618                 base = filename;
3619                 subdir_len = 0;
3620         }
3621         basename = xmalloc(strlen(base) +1, "basename");
3622         strcpy(basename, base);
3623         file->basename = basename;
3624
3625         if (getcwd(cwd, sizeof(cwd)) == 0) {
3626                 die("cwd buffer to small");
3627         }
3628         
3629         if (subdir[0] == '/') {
3630                 file->dirname = xmalloc(subdir_len + 1, "dirname");
3631                 memcpy(file->dirname, subdir, subdir_len);
3632                 file->dirname[subdir_len] = '\0';
3633         }
3634         else {
3635                 char *dir;
3636                 int dirlen;
3637                 char **path;
3638                 /* Find the appropriate directory... */
3639                 dir = 0;
3640                 if (!state->file && exists(cwd, filename)) {
3641                         dir = cwd;
3642                 }
3643                 if (local && state->file && exists(state->file->dirname, filename)) {
3644                         dir = state->file->dirname;
3645                 }
3646                 for(path = include_paths; !dir && *path; path++) {
3647                         if (exists(*path, filename)) {
3648                                 dir = *path;
3649                         }
3650                 }
3651                 if (!dir) {
3652                         error(state, 0, "Cannot find `%s'\n", filename);
3653                 }
3654                 dirlen = strlen(dir);
3655                 file->dirname = xmalloc(dirlen + 1 + subdir_len + 1, "dirname");
3656                 memcpy(file->dirname, dir, dirlen);
3657                 file->dirname[dirlen] = '/';
3658                 memcpy(file->dirname + dirlen + 1, subdir, subdir_len);
3659                 file->dirname[dirlen + 1 + subdir_len] = '\0';
3660         }
3661         file->buf = slurp_file(file->dirname, file->basename, &file->size);
3662         xchdir(cwd);
3663
3664         file->pos = file->buf;
3665         file->line_start = file->pos;
3666         file->line = 1;
3667
3668         file->report_line = 1;
3669         file->report_name = file->basename;
3670         file->report_dir  = file->dirname;
3671
3672         file->prev = state->file;
3673         state->file = file;
3674         
3675         process_trigraphs(state);
3676         splice_lines(state);
3677 }
3678
3679 /* Type helper functions */
3680
3681 static struct type *new_type(
3682         unsigned int type, struct type *left, struct type *right)
3683 {
3684         struct type *result;
3685         result = xmalloc(sizeof(*result), "type");
3686         result->type = type;
3687         result->left = left;
3688         result->right = right;
3689         result->field_ident = 0;
3690         result->type_ident = 0;
3691         return result;
3692 }
3693
3694 static struct type *clone_type(unsigned int specifiers, struct type *old)
3695 {
3696         struct type *result;
3697         result = xmalloc(sizeof(*result), "type");
3698         memcpy(result, old, sizeof(*result));
3699         result->type &= TYPE_MASK;
3700         result->type |= specifiers;
3701         return result;
3702 }
3703
3704 #define SIZEOF_SHORT 2
3705 #define SIZEOF_INT   4
3706 #define SIZEOF_LONG  (sizeof(long_t))
3707
3708 #define ALIGNOF_SHORT 2
3709 #define ALIGNOF_INT   4
3710 #define ALIGNOF_LONG  (sizeof(long_t))
3711
3712 #define MASK_UCHAR(X)    ((X) & ((ulong_t)0xff))
3713 #define MASK_USHORT(X)   ((X) & (((ulong_t)1 << (SIZEOF_SHORT*8)) - 1))
3714 static inline ulong_t mask_uint(ulong_t x)
3715 {
3716         if (SIZEOF_INT < SIZEOF_LONG) {
3717                 ulong_t mask = (((ulong_t)1) << ((ulong_t)(SIZEOF_INT*8))) -1;
3718                 x &= mask;
3719         }
3720         return x;
3721 }
3722 #define MASK_UINT(X)      (mask_uint(X))
3723 #define MASK_ULONG(X)    (X)
3724
3725 static struct type void_type   = { .type  = TYPE_VOID };
3726 static struct type char_type   = { .type  = TYPE_CHAR };
3727 static struct type uchar_type  = { .type  = TYPE_UCHAR };
3728 static struct type short_type  = { .type  = TYPE_SHORT };
3729 static struct type ushort_type = { .type  = TYPE_USHORT };
3730 static struct type int_type    = { .type  = TYPE_INT };
3731 static struct type uint_type   = { .type  = TYPE_UINT };
3732 static struct type long_type   = { .type  = TYPE_LONG };
3733 static struct type ulong_type  = { .type  = TYPE_ULONG };
3734
3735 static struct triple *variable(struct compile_state *state, struct type *type)
3736 {
3737         struct triple *result;
3738         if ((type->type & STOR_MASK) != STOR_PERM) {
3739                 if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
3740                         result = triple(state, OP_ADECL, type, 0, 0);
3741                 } else {
3742                         struct type *field;
3743                         struct triple **vector;
3744                         ulong_t index;
3745                         result = new_triple(state, OP_VAL_VEC, type, -1, -1);
3746                         vector = &result->param[0];
3747
3748                         field = type->left;
3749                         index = 0;
3750                         while((field->type & TYPE_MASK) == TYPE_PRODUCT) {
3751                                 vector[index] = variable(state, field->left);
3752                                 field = field->right;
3753                                 index++;
3754                         }
3755                         vector[index] = variable(state, field);
3756                 }
3757         }
3758         else {
3759                 result = triple(state, OP_SDECL, type, 0, 0);
3760         }
3761         return result;
3762 }
3763
3764 static void stor_of(FILE *fp, struct type *type)
3765 {
3766         switch(type->type & STOR_MASK) {
3767         case STOR_AUTO:
3768                 fprintf(fp, "auto ");
3769                 break;
3770         case STOR_STATIC:
3771                 fprintf(fp, "static ");
3772                 break;
3773         case STOR_EXTERN:
3774                 fprintf(fp, "extern ");
3775                 break;
3776         case STOR_REGISTER:
3777                 fprintf(fp, "register ");
3778                 break;
3779         case STOR_TYPEDEF:
3780                 fprintf(fp, "typedef ");
3781                 break;
3782         case STOR_INLINE:
3783                 fprintf(fp, "inline ");
3784                 break;
3785         }
3786 }
3787 static void qual_of(FILE *fp, struct type *type)
3788 {
3789         if (type->type & QUAL_CONST) {
3790                 fprintf(fp, " const");
3791         }
3792         if (type->type & QUAL_VOLATILE) {
3793                 fprintf(fp, " volatile");
3794         }
3795         if (type->type & QUAL_RESTRICT) {
3796                 fprintf(fp, " restrict");
3797         }
3798 }
3799
3800 static void name_of(FILE *fp, struct type *type)
3801 {
3802         stor_of(fp, type);
3803         switch(type->type & TYPE_MASK) {
3804         case TYPE_VOID:
3805                 fprintf(fp, "void");
3806                 qual_of(fp, type);
3807                 break;
3808         case TYPE_CHAR:
3809                 fprintf(fp, "signed char");
3810                 qual_of(fp, type);
3811                 break;
3812         case TYPE_UCHAR:
3813                 fprintf(fp, "unsigned char");
3814                 qual_of(fp, type);
3815                 break;
3816         case TYPE_SHORT:
3817                 fprintf(fp, "signed short");
3818                 qual_of(fp, type);
3819                 break;
3820         case TYPE_USHORT:
3821                 fprintf(fp, "unsigned short");
3822                 qual_of(fp, type);
3823                 break;
3824         case TYPE_INT:
3825                 fprintf(fp, "signed int");
3826                 qual_of(fp, type);
3827                 break;
3828         case TYPE_UINT:
3829                 fprintf(fp, "unsigned int");
3830                 qual_of(fp, type);
3831                 break;
3832         case TYPE_LONG:
3833                 fprintf(fp, "signed long");
3834                 qual_of(fp, type);
3835                 break;
3836         case TYPE_ULONG:
3837                 fprintf(fp, "unsigned long");
3838                 qual_of(fp, type);
3839                 break;
3840         case TYPE_POINTER:
3841                 name_of(fp, type->left);
3842                 fprintf(fp, " * ");
3843                 qual_of(fp, type);
3844                 break;
3845         case TYPE_PRODUCT:
3846         case TYPE_OVERLAP:
3847                 name_of(fp, type->left);
3848                 fprintf(fp, ", ");
3849                 name_of(fp, type->right);
3850                 break;
3851         case TYPE_ENUM:
3852                 fprintf(fp, "enum %s", type->type_ident->name);
3853                 qual_of(fp, type);
3854                 break;
3855         case TYPE_STRUCT:
3856                 fprintf(fp, "struct %s", type->type_ident->name);
3857                 qual_of(fp, type);
3858                 break;
3859         case TYPE_FUNCTION:
3860         {
3861                 name_of(fp, type->left);
3862                 fprintf(fp, " (*)(");
3863                 name_of(fp, type->right);
3864                 fprintf(fp, ")");
3865                 break;
3866         }
3867         case TYPE_ARRAY:
3868                 name_of(fp, type->left);
3869                 fprintf(fp, " [%ld]", type->elements);
3870                 break;
3871         default:
3872                 fprintf(fp, "????: %x", type->type & TYPE_MASK);
3873                 break;
3874         }
3875 }
3876
3877 static size_t align_of(struct compile_state *state, struct type *type)
3878 {
3879         size_t align;
3880         align = 0;
3881         switch(type->type & TYPE_MASK) {
3882         case TYPE_VOID:
3883                 align = 1;
3884                 break;
3885         case TYPE_CHAR:
3886         case TYPE_UCHAR:
3887                 align = 1;
3888                 break;
3889         case TYPE_SHORT:
3890         case TYPE_USHORT:
3891                 align = ALIGNOF_SHORT;
3892                 break;
3893         case TYPE_INT:
3894         case TYPE_UINT:
3895         case TYPE_ENUM:
3896                 align = ALIGNOF_INT;
3897                 break;
3898         case TYPE_LONG:
3899         case TYPE_ULONG:
3900         case TYPE_POINTER:
3901                 align = ALIGNOF_LONG;
3902                 break;
3903         case TYPE_PRODUCT:
3904         case TYPE_OVERLAP:
3905         {
3906                 size_t left_align, right_align;
3907                 left_align  = align_of(state, type->left);
3908                 right_align = align_of(state, type->right);
3909                 align = (left_align >= right_align) ? left_align : right_align;
3910                 break;
3911         }
3912         case TYPE_ARRAY:
3913                 align = align_of(state, type->left);
3914                 break;
3915         case TYPE_STRUCT:
3916                 align = align_of(state, type->left);
3917                 break;
3918         default:
3919                 error(state, 0, "alignof not yet defined for type\n");
3920                 break;
3921         }
3922         return align;
3923 }
3924
3925 static size_t size_of(struct compile_state *state, struct type *type)
3926 {
3927         size_t size;
3928         size = 0;
3929         switch(type->type & TYPE_MASK) {
3930         case TYPE_VOID:
3931                 size = 0;
3932                 break;
3933         case TYPE_CHAR:
3934         case TYPE_UCHAR:
3935                 size = 1;
3936                 break;
3937         case TYPE_SHORT:
3938         case TYPE_USHORT:
3939                 size = SIZEOF_SHORT;
3940                 break;
3941         case TYPE_INT:
3942         case TYPE_UINT:
3943         case TYPE_ENUM:
3944                 size = SIZEOF_INT;
3945                 break;
3946         case TYPE_LONG:
3947         case TYPE_ULONG:
3948         case TYPE_POINTER:
3949                 size = SIZEOF_LONG;
3950                 break;
3951         case TYPE_PRODUCT:
3952         {
3953                 size_t align, pad;
3954                 size = size_of(state, type->left);
3955                 while((type->right->type & TYPE_MASK) == TYPE_PRODUCT) {
3956                         type = type->right;
3957                         align = align_of(state, type->left);
3958                         pad = align - (size % align);
3959                         size = size + pad + size_of(state, type->left);
3960                 }
3961                 align = align_of(state, type->right);
3962                 pad = align - (size % align);
3963                 size = size + pad + sizeof(type->right);
3964                 break;
3965         }
3966         case TYPE_OVERLAP:
3967         {
3968                 size_t size_left, size_right;
3969                 size_left = size_of(state, type->left);
3970                 size_right = size_of(state, type->right);
3971                 size = (size_left >= size_right)? size_left : size_right;
3972                 break;
3973         }
3974         case TYPE_ARRAY:
3975                 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
3976                         internal_error(state, 0, "Invalid array type");
3977                 } else {
3978                         size = size_of(state, type->left) * type->elements;
3979                 }
3980                 break;
3981         case TYPE_STRUCT:
3982                 size = size_of(state, type->left);
3983                 break;
3984         default:
3985                 error(state, 0, "sizeof not yet defined for type\n");
3986                 break;
3987         }
3988         return size;
3989 }
3990
3991 static size_t field_offset(struct compile_state *state, 
3992         struct type *type, struct hash_entry *field)
3993 {
3994         size_t size, align, pad;
3995         if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
3996                 internal_error(state, 0, "field_offset only works on structures");
3997         }
3998         size = 0;
3999         type = type->left;
4000         while((type->type & TYPE_MASK) == TYPE_PRODUCT) {
4001                 if (type->left->field_ident == field) {
4002                         type = type->left;
4003                 }
4004                 size += size_of(state, type->left);
4005                 type = type->right;
4006                 align = align_of(state, type->left);
4007                 pad = align - (size % align);
4008                 size += pad;
4009         }
4010         if (type->field_ident != field) {
4011                 internal_error(state, 0, "field_offset: member %s not present",
4012                         field->name);
4013         }
4014         return size;
4015 }
4016
4017 static struct type *field_type(struct compile_state *state, 
4018         struct type *type, struct hash_entry *field)
4019 {
4020         if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
4021                 internal_error(state, 0, "field_type only works on structures");
4022         }
4023         type = type->left;
4024         while((type->type & TYPE_MASK) == TYPE_PRODUCT) {
4025                 if (type->left->field_ident == field) {
4026                         type = type->left;
4027                         break;
4028                 }
4029                 type = type->right;
4030         }
4031         if (type->field_ident != field) {
4032                 internal_error(state, 0, "field_type: member %s not present", 
4033                         field->name);
4034         }
4035         return type;
4036 }
4037
4038 static struct triple *struct_field(struct compile_state *state,
4039         struct triple *decl, struct hash_entry *field)
4040 {
4041         struct triple **vector;
4042         struct type *type;
4043         ulong_t index;
4044         type = decl->type;
4045         if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
4046                 return decl;
4047         }
4048         if (decl->op != OP_VAL_VEC) {
4049                 internal_error(state, 0, "Invalid struct variable");
4050         }
4051         if (!field) {
4052                 internal_error(state, 0, "Missing structure field");
4053         }
4054         type = type->left;
4055         vector = &RHS(decl, 0);
4056         index = 0;
4057         while((type->type & TYPE_MASK) == TYPE_PRODUCT) {
4058                 if (type->left->field_ident == field) {
4059                         type = type->left;
4060                         break;
4061                 }
4062                 index += 1;
4063                 type = type->right;
4064         }
4065         if (type->field_ident != field) {
4066                 internal_error(state, 0, "field %s not found?", field->name);
4067         }
4068         return vector[index];
4069 }
4070
4071 static void arrays_complete(struct compile_state *state, struct type *type)
4072 {
4073         if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
4074                 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
4075                         error(state, 0, "array size not specified");
4076                 }
4077                 arrays_complete(state, type->left);
4078         }
4079 }
4080
4081 static unsigned int do_integral_promotion(unsigned int type)
4082 {
4083         type &= TYPE_MASK;
4084         if (TYPE_INTEGER(type) && 
4085                 TYPE_RANK(type) < TYPE_RANK(TYPE_INT)) {
4086                 type = TYPE_INT;
4087         }
4088         return type;
4089 }
4090
4091 static unsigned int do_arithmetic_conversion(
4092         unsigned int left, unsigned int right)
4093 {
4094         left &= TYPE_MASK;
4095         right &= TYPE_MASK;
4096         if ((left == TYPE_LDOUBLE) || (right == TYPE_LDOUBLE)) {
4097                 return TYPE_LDOUBLE;
4098         }
4099         else if ((left == TYPE_DOUBLE) || (right == TYPE_DOUBLE)) {
4100                 return TYPE_DOUBLE;
4101         }
4102         else if ((left == TYPE_FLOAT) || (right == TYPE_FLOAT)) {
4103                 return TYPE_FLOAT;
4104         }
4105         left = do_integral_promotion(left);
4106         right = do_integral_promotion(right);
4107         /* If both operands have the same size done */
4108         if (left == right) {
4109                 return left;
4110         }
4111         /* If both operands have the same signedness pick the larger */
4112         else if (!!TYPE_UNSIGNED(left) == !!TYPE_UNSIGNED(right)) {
4113                 return (TYPE_RANK(left) >= TYPE_RANK(right)) ? left : right;
4114         }
4115         /* If the signed type can hold everything use it */
4116         else if (TYPE_SIGNED(left) && (TYPE_RANK(left) > TYPE_RANK(right))) {
4117                 return left;
4118         }
4119         else if (TYPE_SIGNED(right) && (TYPE_RANK(right) > TYPE_RANK(left))) {
4120                 return right;
4121         }
4122         /* Convert to the unsigned type with the same rank as the signed type */
4123         else if (TYPE_SIGNED(left)) {
4124                 return TYPE_MKUNSIGNED(left);
4125         }
4126         else {
4127                 return TYPE_MKUNSIGNED(right);
4128         }
4129 }
4130
4131 /* see if two types are the same except for qualifiers */
4132 static int equiv_types(struct type *left, struct type *right)
4133 {
4134         unsigned int type;
4135         /* Error if the basic types do not match */
4136         if ((left->type & TYPE_MASK) != (right->type & TYPE_MASK)) {
4137                 return 0;
4138         }
4139         type = left->type & TYPE_MASK;
4140         /* if the basic types match and it is an arithmetic type we are done */
4141         if (TYPE_ARITHMETIC(type)) {
4142                 return 1;
4143         }
4144         /* If it is a pointer type recurse and keep testing */
4145         if (type == TYPE_POINTER) {
4146                 return equiv_types(left->left, right->left);
4147         }
4148         else if (type == TYPE_ARRAY) {
4149                 return (left->elements == right->elements) &&
4150                         equiv_types(left->left, right->left);
4151         }
4152         /* test for struct/union equality */
4153         else if (type == TYPE_STRUCT) {
4154                 return left->type_ident == right->type_ident;
4155         }
4156         /* Test for equivalent functions */
4157         else if (type == TYPE_FUNCTION) {
4158                 return equiv_types(left->left, right->left) &&
4159                         equiv_types(left->right, right->right);
4160         }
4161         /* We only see TYPE_PRODUCT as part of function equivalence matching */
4162         else if (type == TYPE_PRODUCT) {
4163                 return equiv_types(left->left, right->left) &&
4164                         equiv_types(left->right, right->right);
4165         }
4166         /* We should see TYPE_OVERLAP */
4167         else {
4168                 return 0;
4169         }
4170 }
4171
4172 static int equiv_ptrs(struct type *left, struct type *right)
4173 {
4174         if (((left->type & TYPE_MASK) != TYPE_POINTER) ||
4175                 ((right->type & TYPE_MASK) != TYPE_POINTER)) {
4176                 return 0;
4177         }
4178         return equiv_types(left->left, right->left);
4179 }
4180
4181 static struct type *compatible_types(struct type *left, struct type *right)
4182 {
4183         struct type *result;
4184         unsigned int type, qual_type;
4185         /* Error if the basic types do not match */
4186         if ((left->type & TYPE_MASK) != (right->type & TYPE_MASK)) {
4187                 return 0;
4188         }
4189         type = left->type & TYPE_MASK;
4190         qual_type = (left->type & ~STOR_MASK) | (right->type & ~STOR_MASK);
4191         result = 0;
4192         /* if the basic types match and it is an arithmetic type we are done */
4193         if (TYPE_ARITHMETIC(type)) {
4194                 result = new_type(qual_type, 0, 0);
4195         }
4196         /* If it is a pointer type recurse and keep testing */
4197         else if (type == TYPE_POINTER) {
4198                 result = compatible_types(left->left, right->left);
4199                 if (result) {
4200                         result = new_type(qual_type, result, 0);
4201                 }
4202         }
4203         /* test for struct/union equality */
4204         else if (type == TYPE_STRUCT) {
4205                 if (left->type_ident == right->type_ident) {
4206                         result = left;
4207                 }
4208         }
4209         /* Test for equivalent functions */
4210         else if (type == TYPE_FUNCTION) {
4211                 struct type *lf, *rf;
4212                 lf = compatible_types(left->left, right->left);
4213                 rf = compatible_types(left->right, right->right);
4214                 if (lf && rf) {
4215                         result = new_type(qual_type, lf, rf);
4216                 }
4217         }
4218         /* We only see TYPE_PRODUCT as part of function equivalence matching */
4219         else if (type == TYPE_PRODUCT) {
4220                 struct type *lf, *rf;
4221                 lf = compatible_types(left->left, right->left);
4222                 rf = compatible_types(left->right, right->right);
4223                 if (lf && rf) {
4224                         result = new_type(qual_type, lf, rf);
4225                 }
4226         }
4227         else {
4228                 /* Nothing else is compatible */
4229         }
4230         return result;
4231 }
4232
4233 static struct type *compatible_ptrs(struct type *left, struct type *right)
4234 {
4235         struct type *result;
4236         if (((left->type & TYPE_MASK) != TYPE_POINTER) ||
4237                 ((right->type & TYPE_MASK) != TYPE_POINTER)) {
4238                 return 0;
4239         }
4240         result = compatible_types(left->left, right->left);
4241         if (result) {
4242                 unsigned int qual_type;
4243                 qual_type = (left->type & ~STOR_MASK) | (right->type & ~STOR_MASK);
4244                 result = new_type(qual_type, result, 0);
4245         }
4246         return result;
4247         
4248 }
4249 static struct triple *integral_promotion(
4250         struct compile_state *state, struct triple *def)
4251 {
4252         struct type *type;
4253         type = def->type;
4254         /* As all operations are carried out in registers
4255          * the values are converted on load I just convert
4256          * logical type of the operand.
4257          */
4258         if (TYPE_INTEGER(type->type)) {
4259                 unsigned int int_type;
4260                 int_type = type->type & ~TYPE_MASK;
4261                 int_type |= do_integral_promotion(type->type);
4262                 if (int_type != type->type) {
4263                         def->type = new_type(int_type, 0, 0);
4264                 }
4265         }
4266         return def;
4267 }
4268
4269
4270 static void arithmetic(struct compile_state *state, struct triple *def)
4271 {
4272         if (!TYPE_ARITHMETIC(def->type->type)) {
4273                 error(state, 0, "arithmetic type expexted");
4274         }
4275 }
4276
4277 static void ptr_arithmetic(struct compile_state *state, struct triple *def)
4278 {
4279         if (!TYPE_PTR(def->type->type) && !TYPE_ARITHMETIC(def->type->type)) {
4280                 error(state, def, "pointer or arithmetic type expected");
4281         }
4282 }
4283
4284 static int is_integral(struct triple *ins)
4285 {
4286         return TYPE_INTEGER(ins->type->type);
4287 }
4288
4289 static void integral(struct compile_state *state, struct triple *def)
4290 {
4291         if (!is_integral(def)) {
4292                 error(state, 0, "integral type expected");
4293         }
4294 }
4295
4296
4297 static void bool(struct compile_state *state, struct triple *def)
4298 {
4299         if (!TYPE_ARITHMETIC(def->type->type) &&
4300                 ((def->type->type & TYPE_MASK) != TYPE_POINTER)) {
4301                 error(state, 0, "arithmetic or pointer type expected");
4302         }
4303 }
4304
4305 static int is_signed(struct type *type)
4306 {
4307         return !!TYPE_SIGNED(type->type);
4308 }
4309
4310 /* Is this value located in a register otherwise it must be in memory */
4311 static int is_in_reg(struct compile_state *state, struct triple *def)
4312 {
4313         int in_reg;
4314         if (def->op == OP_ADECL) {
4315                 in_reg = 1;
4316         }
4317         else if ((def->op == OP_SDECL) || (def->op == OP_DEREF)) {
4318                 in_reg = 0;
4319         }
4320         else if (def->op == OP_VAL_VEC) {
4321                 in_reg = is_in_reg(state, RHS(def, 0));
4322         }
4323         else if (def->op == OP_DOT) {
4324                 in_reg = is_in_reg(state, RHS(def, 0));
4325         }
4326         else {
4327                 internal_error(state, 0, "unknown expr storage location");
4328                 in_reg = -1;
4329         }
4330         return in_reg;
4331 }
4332
4333 /* Is this a stable variable location otherwise it must be a temporary */
4334 static int is_stable(struct compile_state *state, struct triple *def)
4335 {
4336         int ret;
4337         ret = 0;
4338         if (!def) {
4339                 return 0;
4340         }
4341         if ((def->op == OP_ADECL) || 
4342                 (def->op == OP_SDECL) || 
4343                 (def->op == OP_DEREF) ||
4344                 (def->op == OP_BLOBCONST)) {
4345                 ret = 1;
4346         }
4347         else if (def->op == OP_DOT) {
4348                 ret = is_stable(state, RHS(def, 0));
4349         }
4350         else if (def->op == OP_VAL_VEC) {
4351                 struct triple **vector;
4352                 ulong_t i;
4353                 ret = 1;
4354                 vector = &RHS(def, 0);
4355                 for(i = 0; i < def->type->elements; i++) {
4356                         if (!is_stable(state, vector[i])) {
4357                                 ret = 0;
4358                                 break;
4359                         }
4360                 }
4361         }
4362         return ret;
4363 }
4364
4365 static int is_lvalue(struct compile_state *state, struct triple *def)
4366 {
4367         int ret;
4368         ret = 1;
4369         if (!def) {
4370                 return 0;
4371         }
4372         if (!is_stable(state, def)) {
4373                 return 0;
4374         }
4375         if (def->type->type & QUAL_CONST) {
4376                 ret = 0;
4377         }
4378         else if (def->op == OP_DOT) {
4379                 ret = is_lvalue(state, RHS(def, 0));
4380         }
4381         return ret;
4382 }
4383
4384 static void lvalue(struct compile_state *state, struct triple *def)
4385 {
4386         if (!def) {
4387                 internal_error(state, def, "nothing where lvalue expected?");
4388         }
4389         if (!is_lvalue(state, def)) { 
4390                 error(state, def, "lvalue expected");
4391         }
4392 }
4393
4394 static int is_pointer(struct triple *def)
4395 {
4396         return (def->type->type & TYPE_MASK) == TYPE_POINTER;
4397 }
4398
4399 static void pointer(struct compile_state *state, struct triple *def)
4400 {
4401         if (!is_pointer(def)) {
4402                 error(state, def, "pointer expected");
4403         }
4404 }
4405
4406 static struct triple *int_const(
4407         struct compile_state *state, struct type *type, ulong_t value)
4408 {
4409         struct triple *result;
4410         switch(type->type & TYPE_MASK) {
4411         case TYPE_CHAR:
4412         case TYPE_INT:   case TYPE_UINT:
4413         case TYPE_LONG:  case TYPE_ULONG:
4414                 break;
4415         default:
4416                 internal_error(state, 0, "constant for unkown type");
4417         }
4418         result = triple(state, OP_INTCONST, type, 0, 0);
4419         result->u.cval = value;
4420         return result;
4421 }
4422
4423
4424 static struct triple *do_mk_addr_expr(struct compile_state *state, 
4425         struct triple *expr, struct type *type, ulong_t offset)
4426 {
4427         struct triple *result;
4428         lvalue(state, expr);
4429
4430         result = 0;
4431         if (expr->op == OP_ADECL) {
4432                 error(state, expr, "address of auto variables not supported");
4433         }
4434         else if (expr->op == OP_SDECL) {
4435                 result = triple(state, OP_ADDRCONST, type, 0, 0);
4436                 MISC(result, 0) = expr;
4437                 result->u.cval = offset;
4438         }
4439         else if (expr->op == OP_DEREF) {
4440                 result = triple(state, OP_ADD, type,
4441                         RHS(expr, 0),
4442                         int_const(state, &ulong_type, offset));
4443         }
4444         return result;
4445 }
4446
4447 static struct triple *mk_addr_expr(
4448         struct compile_state *state, struct triple *expr, ulong_t offset)
4449 {
4450         struct type *type;
4451         
4452         type = new_type(
4453                 TYPE_POINTER | (expr->type->type & QUAL_MASK),
4454                 expr->type, 0);
4455
4456         return do_mk_addr_expr(state, expr, type, offset);
4457 }
4458
4459 static struct triple *mk_deref_expr(
4460         struct compile_state *state, struct triple *expr)
4461 {
4462         struct type *base_type;
4463         pointer(state, expr);
4464         base_type = expr->type->left;
4465         if (!TYPE_PTR(base_type->type) && !TYPE_ARITHMETIC(base_type->type)) {
4466                 error(state, 0, 
4467                         "Only pointer and arithmetic values can be dereferenced");
4468         }
4469         return triple(state, OP_DEREF, base_type, expr, 0);
4470 }
4471
4472 static struct triple *deref_field(
4473         struct compile_state *state, struct triple *expr, struct hash_entry *field)
4474 {
4475         struct triple *result;
4476         struct type *type, *member;
4477         if (!field) {
4478                 internal_error(state, 0, "No field passed to deref_field");
4479         }
4480         result = 0;
4481         type = expr->type;
4482         if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
4483                 error(state, 0, "request for member %s in something not a struct or union",
4484                         field->name);
4485         }
4486         member = type->left;
4487         while((member->type & TYPE_MASK) == TYPE_PRODUCT) {
4488                 if (member->left->field_ident == field) {
4489                         member = member->left;
4490                         break;
4491                 }
4492                 member = member->right;
4493         }
4494         if (member->field_ident != field) {
4495                 error(state, 0, "%s is not a member", field->name);
4496         }
4497         if ((type->type & STOR_MASK) == STOR_PERM) {
4498                 /* Do the pointer arithmetic to get a deref the field */
4499                 ulong_t offset;
4500                 offset = field_offset(state, type, field);
4501                 result = do_mk_addr_expr(state, expr, member, offset);
4502                 result = mk_deref_expr(state, result);
4503         }
4504         else {
4505                 /* Find the variable for the field I want. */
4506                 result = triple(state, OP_DOT, 
4507                         field_type(state, type, field), expr, 0);
4508                 result->u.field = field;
4509         }
4510         return result;
4511 }
4512
4513 static struct triple *read_expr(struct compile_state *state, struct triple *def)
4514 {
4515         int op;
4516         if  (!def) {
4517                 return 0;
4518         }
4519         if (!is_stable(state, def)) {
4520                 return def;
4521         }
4522         /* Tranform an array to a pointer to the first element */
4523 #warning "CHECK_ME is this the right place to transform arrays to pointers?"
4524         if ((def->type->type & TYPE_MASK) == TYPE_ARRAY) {
4525                 struct type *type;
4526                 struct triple *result;
4527                 type = new_type(
4528                         TYPE_POINTER | (def->type->type & QUAL_MASK),
4529                         def->type->left, 0);
4530                 result = triple(state, OP_ADDRCONST, type, 0, 0);
4531                 MISC(result, 0) = def;
4532                 return result;
4533         }
4534         if (is_in_reg(state, def)) {
4535                 op = OP_READ;
4536         } else {
4537                 op = OP_LOAD;
4538         }
4539         return triple(state, op, def->type, def, 0);
4540 }
4541
4542 static void write_compatible(struct compile_state *state,
4543         struct type *dest, struct type *rval)
4544 {
4545         int compatible = 0;
4546         /* Both operands have arithmetic type */
4547         if (TYPE_ARITHMETIC(dest->type) && TYPE_ARITHMETIC(rval->type)) {
4548                 compatible = 1;
4549         }
4550         /* One operand is a pointer and the other is a pointer to void */
4551         else if (((dest->type & TYPE_MASK) == TYPE_POINTER) &&
4552                 ((rval->type & TYPE_MASK) == TYPE_POINTER) &&
4553                 (((dest->left->type & TYPE_MASK) == TYPE_VOID) ||
4554                         ((rval->left->type & TYPE_MASK) == TYPE_VOID))) {
4555                 compatible = 1;
4556         }
4557         /* If both types are the same without qualifiers we are good */
4558         else if (equiv_ptrs(dest, rval)) {
4559                 compatible = 1;
4560         }
4561         /* test for struct/union equality  */
4562         else if (((dest->type & TYPE_MASK) == TYPE_STRUCT) &&
4563                 ((rval->type & TYPE_MASK) == TYPE_STRUCT) &&
4564                 (dest->type_ident == rval->type_ident)) {
4565                 compatible = 1;
4566         }
4567         if (!compatible) {
4568                 error(state, 0, "Incompatible types in assignment");
4569         }
4570 }
4571
4572 static struct triple *write_expr(
4573         struct compile_state *state, struct triple *dest, struct triple *rval)
4574 {
4575         struct triple *def;
4576         int op;
4577
4578         def = 0;
4579         if (!rval) {
4580                 internal_error(state, 0, "missing rval");
4581         }
4582
4583         if (rval->op == OP_LIST) {
4584                 internal_error(state, 0, "expression of type OP_LIST?");
4585         }
4586         if (!is_lvalue(state, dest)) {
4587                 internal_error(state, 0, "writing to a non lvalue?");
4588         }
4589
4590         write_compatible(state, dest->type, rval->type);
4591
4592         /* Now figure out which assignment operator to use */
4593         op = -1;
4594         if (is_in_reg(state, dest)) {
4595                 op = OP_WRITE;
4596         } else {
4597                 op = OP_STORE;
4598         }
4599         def = triple(state, op, dest->type, dest, rval);
4600         return def;
4601 }
4602
4603 static struct triple *init_expr(
4604         struct compile_state *state, struct triple *dest, struct triple *rval)
4605 {
4606         struct triple *def;
4607
4608         def = 0;
4609         if (!rval) {
4610                 internal_error(state, 0, "missing rval");
4611         }
4612         if ((dest->type->type & STOR_MASK) != STOR_PERM) {
4613                 rval = read_expr(state, rval);
4614                 def = write_expr(state, dest, rval);
4615         }
4616         else {
4617                 /* Fill in the array size if necessary */
4618                 if (((dest->type->type & TYPE_MASK) == TYPE_ARRAY) &&
4619                         ((rval->type->type & TYPE_MASK) == TYPE_ARRAY)) {
4620                         if (dest->type->elements == ELEMENT_COUNT_UNSPECIFIED) {
4621                                 dest->type->elements = rval->type->elements;
4622                         }
4623                 }
4624                 if (!equiv_types(dest->type, rval->type)) {
4625                         error(state, 0, "Incompatible types in inializer");
4626                 }
4627                 MISC(dest, 0) = rval;
4628                 insert_triple(state, dest, rval);
4629                 rval->id |= TRIPLE_FLAG_FLATTENED;
4630                 use_triple(MISC(dest, 0), dest);
4631         }
4632         return def;
4633 }
4634
4635 struct type *arithmetic_result(
4636         struct compile_state *state, struct triple *left, struct triple *right)
4637 {
4638         struct type *type;
4639         /* Sanity checks to ensure I am working with arithmetic types */
4640         arithmetic(state, left);
4641         arithmetic(state, right);
4642         type = new_type(
4643                 do_arithmetic_conversion(
4644                         left->type->type, 
4645                         right->type->type), 0, 0);
4646         return type;
4647 }
4648
4649 struct type *ptr_arithmetic_result(
4650         struct compile_state *state, struct triple *left, struct triple *right)
4651 {
4652         struct type *type;
4653         /* Sanity checks to ensure I am working with the proper types */
4654         ptr_arithmetic(state, left);
4655         arithmetic(state, right);
4656         if (TYPE_ARITHMETIC(left->type->type) && 
4657                 TYPE_ARITHMETIC(right->type->type)) {
4658                 type = arithmetic_result(state, left, right);
4659         }
4660         else if (TYPE_PTR(left->type->type)) {
4661                 type = left->type;
4662         }
4663         else {
4664                 internal_error(state, 0, "huh?");
4665                 type = 0;
4666         }
4667         return type;
4668 }
4669
4670
4671 /* boolean helper function */
4672
4673 static struct triple *ltrue_expr(struct compile_state *state, 
4674         struct triple *expr)
4675 {
4676         switch(expr->op) {
4677         case OP_LTRUE:   case OP_LFALSE:  case OP_EQ:      case OP_NOTEQ:
4678         case OP_SLESS:   case OP_ULESS:   case OP_SMORE:   case OP_UMORE:
4679         case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
4680                 /* If the expression is already boolean do nothing */
4681                 break;
4682         default:
4683                 expr = triple(state, OP_LTRUE, &int_type, expr, 0);
4684                 break;
4685         }
4686         return expr;
4687 }
4688
4689 static struct triple *lfalse_expr(struct compile_state *state, 
4690         struct triple *expr)
4691 {
4692         return triple(state, OP_LFALSE, &int_type, expr, 0);
4693 }
4694
4695 static struct triple *cond_expr(
4696         struct compile_state *state, 
4697         struct triple *test, struct triple *left, struct triple *right)
4698 {
4699         struct triple *def;
4700         struct type *result_type;
4701         unsigned int left_type, right_type;
4702         bool(state, test);
4703         left_type = left->type->type;
4704         right_type = right->type->type;
4705         result_type = 0;
4706         /* Both operands have arithmetic type */
4707         if (TYPE_ARITHMETIC(left_type) && TYPE_ARITHMETIC(right_type)) {
4708                 result_type = arithmetic_result(state, left, right);
4709         }
4710         /* Both operands have void type */
4711         else if (((left_type & TYPE_MASK) == TYPE_VOID) &&
4712                 ((right_type & TYPE_MASK) == TYPE_VOID)) {
4713                 result_type = &void_type;
4714         }
4715         /* pointers to the same type... */
4716         else if ((result_type = compatible_ptrs(left->type, right->type))) {
4717                 ;
4718         }
4719         /* Both operands are pointers and left is a pointer to void */
4720         else if (((left_type & TYPE_MASK) == TYPE_POINTER) &&
4721                 ((right_type & TYPE_MASK) == TYPE_POINTER) &&
4722                 ((left->type->left->type & TYPE_MASK) == TYPE_VOID)) {
4723                 result_type = right->type;
4724         }
4725         /* Both operands are pointers and right is a pointer to void */
4726         else if (((left_type & TYPE_MASK) == TYPE_POINTER) &&
4727                 ((right_type & TYPE_MASK) == TYPE_POINTER) &&
4728                 ((right->type->left->type & TYPE_MASK) == TYPE_VOID)) {
4729                 result_type = left->type;
4730         }
4731         if (!result_type) {
4732                 error(state, 0, "Incompatible types in conditional expression");
4733         }
4734         /* Cleanup and invert the test */
4735         test = lfalse_expr(state, read_expr(state, test));
4736         def = new_triple(state, OP_COND, result_type, 0, 3);
4737         def->param[0] = test;
4738         def->param[1] = left;
4739         def->param[2] = right;
4740         return def;
4741 }
4742
4743
4744 static int expr_depth(struct compile_state *state, struct triple *ins)
4745 {
4746         int count;
4747         count = 0;
4748         if (!ins || (ins->id & TRIPLE_FLAG_FLATTENED)) {
4749                 count = 0;
4750         }
4751         else if (ins->op == OP_DEREF) {
4752                 count = expr_depth(state, RHS(ins, 0)) - 1;
4753         }
4754         else if (ins->op == OP_VAL) {
4755                 count = expr_depth(state, RHS(ins, 0)) - 1;
4756         }
4757         else if (ins->op == OP_COMMA) {
4758                 int ldepth, rdepth;
4759                 ldepth = expr_depth(state, RHS(ins, 0));
4760                 rdepth = expr_depth(state, RHS(ins, 1));
4761                 count = (ldepth >= rdepth)? ldepth : rdepth;
4762         }
4763         else if (ins->op == OP_CALL) {
4764                 /* Don't figure the depth of a call just guess it is huge */
4765                 count = 1000;
4766         }
4767         else {
4768                 struct triple **expr;
4769                 expr = triple_rhs(state, ins, 0);
4770                 for(;expr; expr = triple_rhs(state, ins, expr)) {
4771                         if (*expr) {
4772                                 int depth;
4773                                 depth = expr_depth(state, *expr);
4774                                 if (depth > count) {
4775                                         count = depth;
4776                                 }
4777                         }
4778                 }
4779         }
4780         return count + 1;
4781 }
4782
4783 static struct triple *flatten(
4784         struct compile_state *state, struct triple *first, struct triple *ptr);
4785
4786 static struct triple *flatten_generic(
4787         struct compile_state *state, struct triple *first, struct triple *ptr)
4788 {
4789         struct rhs_vector {
4790                 int depth;
4791                 struct triple **ins;
4792         } vector[MAX_RHS];
4793         int i, rhs, lhs;
4794         /* Only operations with just a rhs should come here */
4795         rhs = TRIPLE_RHS(ptr->sizes);
4796         lhs = TRIPLE_LHS(ptr->sizes);
4797         if (TRIPLE_SIZE(ptr->sizes) != lhs + rhs) {
4798                 internal_error(state, ptr, "unexpected args for: %d %s",
4799                         ptr->op, tops(ptr->op));
4800         }
4801         /* Find the depth of the rhs elements */
4802         for(i = 0; i < rhs; i++) {
4803                 vector[i].ins = &RHS(ptr, i);
4804                 vector[i].depth = expr_depth(state, *vector[i].ins);
4805         }
4806         /* Selection sort the rhs */
4807         for(i = 0; i < rhs; i++) {
4808                 int j, max = i;
4809                 for(j = i + 1; j < rhs; j++ ) {
4810                         if (vector[j].depth > vector[max].depth) {
4811                                 max = j;
4812                         }
4813                 }
4814                 if (max != i) {
4815                         struct rhs_vector tmp;
4816                         tmp = vector[i];
4817                         vector[i] = vector[max];
4818                         vector[max] = tmp;
4819                 }
4820         }
4821         /* Now flatten the rhs elements */
4822         for(i = 0; i < rhs; i++) {
4823                 *vector[i].ins = flatten(state, first, *vector[i].ins);
4824                 use_triple(*vector[i].ins, ptr);
4825         }
4826         
4827         /* Now flatten the lhs elements */
4828         for(i = 0; i < lhs; i++) {
4829                 struct triple **ins = &LHS(ptr, i);
4830                 *ins = flatten(state, first, *ins);
4831                 use_triple(*ins, ptr);
4832         }
4833         return ptr;
4834 }
4835
4836 static struct triple *flatten_land(
4837         struct compile_state *state, struct triple *first, struct triple *ptr)
4838 {
4839         struct triple *left, *right;
4840         struct triple *val, *test, *jmp, *label1, *end;
4841
4842         /* Find the triples */
4843         left = RHS(ptr, 0);
4844         right = RHS(ptr, 1);
4845
4846         /* Generate the needed triples */
4847         end = label(state);
4848
4849         /* Thread the triples together */
4850         val          = flatten(state, first, variable(state, ptr->type));
4851         left         = flatten(state, first, write_expr(state, val, left));
4852         test         = flatten(state, first, 
4853                 lfalse_expr(state, read_expr(state, val)));
4854         jmp          = flatten(state, first, branch(state, end, test));
4855         label1       = flatten(state, first, label(state));
4856         right        = flatten(state, first, write_expr(state, val, right));
4857         TARG(jmp, 0) = flatten(state, first, end); 
4858         
4859         /* Now give the caller something to chew on */
4860         return read_expr(state, val);
4861 }
4862
4863 static struct triple *flatten_lor(
4864         struct compile_state *state, struct triple *first, struct triple *ptr)
4865 {
4866         struct triple *left, *right;
4867         struct triple *val, *jmp, *label1, *end;
4868
4869         /* Find the triples */
4870         left = RHS(ptr, 0);
4871         right = RHS(ptr, 1);
4872
4873         /* Generate the needed triples */
4874         end = label(state);
4875
4876         /* Thread the triples together */
4877         val          = flatten(state, first, variable(state, ptr->type));
4878         left         = flatten(state, first, write_expr(state, val, left));
4879         jmp          = flatten(state, first, branch(state, end, left));
4880         label1       = flatten(state, first, label(state));
4881         right        = flatten(state, first, write_expr(state, val, right));
4882         TARG(jmp, 0) = flatten(state, first, end);
4883        
4884         
4885         /* Now give the caller something to chew on */
4886         return read_expr(state, val);
4887 }
4888
4889 static struct triple *flatten_cond(
4890         struct compile_state *state, struct triple *first, struct triple *ptr)
4891 {
4892         struct triple *test, *left, *right;
4893         struct triple *val, *mv1, *jmp1, *label1, *mv2, *middle, *jmp2, *end;
4894
4895         /* Find the triples */
4896         test = RHS(ptr, 0);
4897         left = RHS(ptr, 1);
4898         right = RHS(ptr, 2);
4899
4900         /* Generate the needed triples */
4901         end = label(state);
4902         middle = label(state);
4903
4904         /* Thread the triples together */
4905         val           = flatten(state, first, variable(state, ptr->type));
4906         test          = flatten(state, first, test);
4907         jmp1          = flatten(state, first, branch(state, middle, test));
4908         label1        = flatten(state, first, label(state));
4909         left          = flatten(state, first, left);
4910         mv1           = flatten(state, first, write_expr(state, val, left));
4911         jmp2          = flatten(state, first, branch(state, end, 0));
4912         TARG(jmp1, 0) = flatten(state, first, middle);
4913         right         = flatten(state, first, right);
4914         mv2           = flatten(state, first, write_expr(state, val, right));
4915         TARG(jmp2, 0) = flatten(state, first, end);
4916         
4917         /* Now give the caller something to chew on */
4918         return read_expr(state, val);
4919 }
4920
4921 struct triple *copy_func(struct compile_state *state, struct triple *ofunc, 
4922         struct occurance *base_occurance)
4923 {
4924         struct triple *nfunc;
4925         struct triple *nfirst, *ofirst;
4926         struct triple *new, *old;
4927
4928 #if 0
4929         fprintf(stdout, "\n");
4930         loc(stdout, state, 0);
4931         fprintf(stdout, "\n__________ copy_func _________\n");
4932         print_triple(state, ofunc);
4933         fprintf(stdout, "__________ copy_func _________ done\n\n");
4934 #endif
4935
4936         /* Make a new copy of the old function */
4937         nfunc = triple(state, OP_LIST, ofunc->type, 0, 0);
4938         nfirst = 0;
4939         ofirst = old = RHS(ofunc, 0);
4940         do {
4941                 struct triple *new;
4942                 struct occurance *occurance;
4943                 int old_lhs, old_rhs;
4944                 old_lhs = TRIPLE_LHS(old->sizes);
4945                 old_rhs = TRIPLE_RHS(old->sizes);
4946                 occurance = inline_occurance(state, base_occurance, old->occurance);
4947                 new = alloc_triple(state, old->op, old->type, old_lhs, old_rhs,
4948                         occurance);
4949                 if (!triple_stores_block(state, new)) {
4950                         memcpy(&new->u, &old->u, sizeof(new->u));
4951                 }
4952                 if (!nfirst) {
4953                         RHS(nfunc, 0) = nfirst = new;
4954                 }
4955                 else {
4956                         insert_triple(state, nfirst, new);
4957                 }
4958                 new->id |= TRIPLE_FLAG_FLATTENED;
4959                 
4960                 /* During the copy remember new as user of old */
4961                 use_triple(old, new);
4962
4963                 /* Populate the return type if present */
4964                 if (old == MISC(ofunc, 0)) {
4965                         MISC(nfunc, 0) = new;
4966                 }
4967                 old = old->next;
4968         } while(old != ofirst);
4969
4970         /* Make a second pass to fix up any unresolved references */
4971         old = ofirst;
4972         new = nfirst;
4973         do {
4974                 struct triple **oexpr, **nexpr;
4975                 int count, i;
4976                 /* Lookup where the copy is, to join pointers */
4977                 count = TRIPLE_SIZE(old->sizes);
4978                 for(i = 0; i < count; i++) {
4979                         oexpr = &old->param[i];
4980                         nexpr = &new->param[i];
4981                         if (!*nexpr && *oexpr && (*oexpr)->use) {
4982                                 *nexpr = (*oexpr)->use->member;
4983                                 if (*nexpr == old) {
4984                                         internal_error(state, 0, "new == old?");
4985                                 }
4986                                 use_triple(*nexpr, new);
4987                         }
4988                         if (!*nexpr && *oexpr) {
4989                                 internal_error(state, 0, "Could not copy %d\n", i);
4990                         }
4991                 }
4992                 old = old->next;
4993                 new = new->next;
4994         } while((old != ofirst) && (new != nfirst));
4995         
4996         /* Make a third pass to cleanup the extra useses */
4997         old = ofirst;
4998         new = nfirst;
4999         do {
5000                 unuse_triple(old, new);
5001                 old = old->next;
5002                 new = new->next;
5003         } while ((old != ofirst) && (new != nfirst));
5004         return nfunc;
5005 }
5006
5007 static struct triple *flatten_call(
5008         struct compile_state *state, struct triple *first, struct triple *ptr)
5009 {
5010         /* Inline the function call */
5011         struct type *ptype;
5012         struct triple *ofunc, *nfunc, *nfirst, *param, *result;
5013         struct triple *end, *nend;
5014         int pvals, i;
5015
5016         /* Find the triples */
5017         ofunc = MISC(ptr, 0);
5018         if (ofunc->op != OP_LIST) {
5019                 internal_error(state, 0, "improper function");
5020         }
5021         nfunc = copy_func(state, ofunc, ptr->occurance);
5022         nfirst = RHS(nfunc, 0)->next;
5023         /* Prepend the parameter reading into the new function list */
5024         ptype = nfunc->type->right;
5025         param = RHS(nfunc, 0)->next;
5026         pvals = TRIPLE_RHS(ptr->sizes);
5027         for(i = 0; i < pvals; i++) {
5028                 struct type *atype;
5029                 struct triple *arg;
5030                 atype = ptype;
5031                 if ((ptype->type & TYPE_MASK) == TYPE_PRODUCT) {
5032                         atype = ptype->left;
5033                 }
5034                 while((param->type->type & TYPE_MASK) != (atype->type & TYPE_MASK)) {
5035                         param = param->next;
5036                 }
5037                 arg = RHS(ptr, i);
5038                 flatten(state, nfirst, write_expr(state, param, arg));
5039                 ptype = ptype->right;
5040                 param = param->next;
5041         }
5042         result = 0;
5043         if ((nfunc->type->left->type & TYPE_MASK) != TYPE_VOID) {
5044                 result = read_expr(state, MISC(nfunc,0));
5045         }
5046 #if 0
5047         fprintf(stdout, "\n");
5048         loc(stdout, state, 0);
5049         fprintf(stdout, "\n__________ flatten_call _________\n");
5050         print_triple(state, nfunc);
5051         fprintf(stdout, "__________ flatten_call _________ done\n\n");
5052 #endif
5053
5054         /* Get rid of the extra triples */
5055         nfirst = RHS(nfunc, 0)->next;
5056         free_triple(state, RHS(nfunc, 0));
5057         RHS(nfunc, 0) = 0;
5058         free_triple(state, nfunc);
5059
5060         /* Append the new function list onto the return list */
5061         end = first->prev;
5062         nend = nfirst->prev;
5063         end->next    = nfirst;
5064         nfirst->prev = end;
5065         nend->next   = first;
5066         first->prev  = nend;
5067
5068         return result;
5069 }
5070
5071 static struct triple *flatten(
5072         struct compile_state *state, struct triple *first, struct triple *ptr)
5073 {
5074         struct triple *orig_ptr;
5075         if (!ptr)
5076                 return 0;
5077         do {
5078                 orig_ptr = ptr;
5079                 /* Only flatten triples once */
5080                 if (ptr->id & TRIPLE_FLAG_FLATTENED) {
5081                         return ptr;
5082                 }
5083                 switch(ptr->op) {
5084                 case OP_WRITE:
5085                 case OP_STORE:
5086                         RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
5087                         LHS(ptr, 0) = flatten(state, first, LHS(ptr, 0));
5088                         use_triple(LHS(ptr, 0), ptr);
5089                         use_triple(RHS(ptr, 0), ptr);
5090                         break;
5091                 case OP_COMMA:
5092                         RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
5093                         ptr = RHS(ptr, 1);
5094                         break;
5095                 case OP_VAL:
5096                         RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
5097                         return MISC(ptr, 0);
5098                         break;
5099                 case OP_LAND:
5100                         ptr = flatten_land(state, first, ptr);
5101                         break;
5102                 case OP_LOR:
5103                         ptr = flatten_lor(state, first, ptr);
5104                         break;
5105                 case OP_COND:
5106                         ptr = flatten_cond(state, first, ptr);
5107                         break;
5108                 case OP_CALL:
5109                         ptr = flatten_call(state, first, ptr);
5110                         break;
5111                 case OP_READ:
5112                 case OP_LOAD:
5113                         RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
5114                         use_triple(RHS(ptr, 0), ptr);
5115                         break;
5116                 case OP_BRANCH:
5117                         use_triple(TARG(ptr, 0), ptr);
5118                         if (TRIPLE_RHS(ptr->sizes)) {
5119                                 use_triple(RHS(ptr, 0), ptr);
5120                                 if (ptr->next != ptr) {
5121                                         use_triple(ptr->next, ptr);
5122                                 }
5123                         }
5124                         break;
5125                 case OP_BLOBCONST:
5126                         insert_triple(state, first, ptr);
5127                         ptr->id |= TRIPLE_FLAG_FLATTENED;
5128                         ptr = triple(state, OP_SDECL, ptr->type, ptr, 0);
5129                         use_triple(MISC(ptr, 0), ptr);
5130                         break;
5131                 case OP_DEREF:
5132                         /* Since OP_DEREF is just a marker delete it when I flatten it */
5133                         ptr = RHS(ptr, 0);
5134                         RHS(orig_ptr, 0) = 0;
5135                         free_triple(state, orig_ptr);
5136                         break;
5137                 case OP_DOT:
5138                 {
5139                         struct triple *base;
5140                         base = RHS(ptr, 0);
5141                         base = flatten(state, first, base);
5142                         if (base->op == OP_VAL_VEC) {
5143                                 ptr = struct_field(state, base, ptr->u.field);
5144                         }
5145                         break;
5146                 }
5147                 case OP_PIECE:
5148                         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
5149                         use_triple(MISC(ptr, 0), ptr);
5150                         use_triple(ptr, MISC(ptr, 0));
5151                         break;
5152                 case OP_ADDRCONST:
5153                 case OP_SDECL:
5154                         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
5155                         use_triple(MISC(ptr, 0), ptr);
5156                         break;
5157                 case OP_ADECL:
5158                         break;
5159                 default:
5160                         /* Flatten the easy cases we don't override */
5161                         ptr = flatten_generic(state, first, ptr);
5162                         break;
5163                 }
5164         } while(ptr && (ptr != orig_ptr));
5165         if (ptr) {
5166                 insert_triple(state, first, ptr);
5167                 ptr->id |= TRIPLE_FLAG_FLATTENED;
5168         }
5169         return ptr;
5170 }
5171
5172 static void release_expr(struct compile_state *state, struct triple *expr)
5173 {
5174         struct triple *head;
5175         head = label(state);
5176         flatten(state, head, expr);
5177         while(head->next != head) {
5178                 release_triple(state, head->next);
5179         }
5180         free_triple(state, head);
5181 }
5182
5183 static int replace_rhs_use(struct compile_state *state,
5184         struct triple *orig, struct triple *new, struct triple *use)
5185 {
5186         struct triple **expr;
5187         int found;
5188         found = 0;
5189         expr = triple_rhs(state, use, 0);
5190         for(;expr; expr = triple_rhs(state, use, expr)) {
5191                 if (*expr == orig) {
5192                         *expr = new;
5193                         found = 1;
5194                 }
5195         }
5196         if (found) {
5197                 unuse_triple(orig, use);
5198                 use_triple(new, use);
5199         }
5200         return found;
5201 }
5202
5203 static int replace_lhs_use(struct compile_state *state,
5204         struct triple *orig, struct triple *new, struct triple *use)
5205 {
5206         struct triple **expr;
5207         int found;
5208         found = 0;
5209         expr = triple_lhs(state, use, 0);
5210         for(;expr; expr = triple_lhs(state, use, expr)) {
5211                 if (*expr == orig) {
5212                         *expr = new;
5213                         found = 1;
5214                 }
5215         }
5216         if (found) {
5217                 unuse_triple(orig, use);
5218                 use_triple(new, use);
5219         }
5220         return found;
5221 }
5222
5223 static void propogate_use(struct compile_state *state,
5224         struct triple *orig, struct triple *new)
5225 {
5226         struct triple_set *user, *next;
5227         for(user = orig->use; user; user = next) {
5228                 struct triple *use;
5229                 int found;
5230                 next = user->next;
5231                 use = user->member;
5232                 found = 0;
5233                 found |= replace_rhs_use(state, orig, new, use);
5234                 found |= replace_lhs_use(state, orig, new, use);
5235                 if (!found) {
5236                         internal_error(state, use, "use without use");
5237                 }
5238         }
5239         if (orig->use) {
5240                 internal_error(state, orig, "used after propogate_use");
5241         }
5242 }
5243
5244 /*
5245  * Code generators
5246  * ===========================
5247  */
5248
5249 static struct triple *mk_add_expr(
5250         struct compile_state *state, struct triple *left, struct triple *right)
5251 {
5252         struct type *result_type;
5253         /* Put pointer operands on the left */
5254         if (is_pointer(right)) {
5255                 struct triple *tmp;
5256                 tmp = left;
5257                 left = right;
5258                 right = tmp;
5259         }
5260         left  = read_expr(state, left);
5261         right = read_expr(state, right);
5262         result_type = ptr_arithmetic_result(state, left, right);
5263         if (is_pointer(left)) {
5264                 right = triple(state, 
5265                         is_signed(right->type)? OP_SMUL : OP_UMUL, 
5266                         &ulong_type, 
5267                         right, 
5268                         int_const(state, &ulong_type, 
5269                                 size_of(state, left->type->left)));
5270         }
5271         return triple(state, OP_ADD, result_type, left, right);
5272 }
5273
5274 static struct triple *mk_sub_expr(
5275         struct compile_state *state, struct triple *left, struct triple *right)
5276 {
5277         struct type *result_type;
5278         result_type = ptr_arithmetic_result(state, left, right);
5279         left  = read_expr(state, left);
5280         right = read_expr(state, right);
5281         if (is_pointer(left)) {
5282                 right = triple(state, 
5283                         is_signed(right->type)? OP_SMUL : OP_UMUL, 
5284                         &ulong_type, 
5285                         right, 
5286                         int_const(state, &ulong_type, 
5287                                 size_of(state, left->type->left)));
5288         }
5289         return triple(state, OP_SUB, result_type, left, right);
5290 }
5291
5292 static struct triple *mk_pre_inc_expr(
5293         struct compile_state *state, struct triple *def)
5294 {
5295         struct triple *val;
5296         lvalue(state, def);
5297         val = mk_add_expr(state, def, int_const(state, &int_type, 1));
5298         return triple(state, OP_VAL, def->type,
5299                 write_expr(state, def, val),
5300                 val);
5301 }
5302
5303 static struct triple *mk_pre_dec_expr(
5304         struct compile_state *state, struct triple *def)
5305 {
5306         struct triple *val;
5307         lvalue(state, def);
5308         val = mk_sub_expr(state, def, int_const(state, &int_type, 1));
5309         return triple(state, OP_VAL, def->type,
5310                 write_expr(state, def, val),
5311                 val);
5312 }
5313
5314 static struct triple *mk_post_inc_expr(
5315         struct compile_state *state, struct triple *def)
5316 {
5317         struct triple *val;
5318         lvalue(state, def);
5319         val = read_expr(state, def);
5320         return triple(state, OP_VAL, def->type,
5321                 write_expr(state, def,
5322                         mk_add_expr(state, val, int_const(state, &int_type, 1)))
5323                 , val);
5324 }
5325
5326 static struct triple *mk_post_dec_expr(
5327         struct compile_state *state, struct triple *def)
5328 {
5329         struct triple *val;
5330         lvalue(state, def);
5331         val = read_expr(state, def);
5332         return triple(state, OP_VAL, def->type, 
5333                 write_expr(state, def,
5334                         mk_sub_expr(state, val, int_const(state, &int_type, 1)))
5335                 , val);
5336 }
5337
5338 static struct triple *mk_subscript_expr(
5339         struct compile_state *state, struct triple *left, struct triple *right)
5340 {
5341         left  = read_expr(state, left);
5342         right = read_expr(state, right);
5343         if (!is_pointer(left) && !is_pointer(right)) {
5344                 error(state, left, "subscripted value is not a pointer");
5345         }
5346         return mk_deref_expr(state, mk_add_expr(state, left, right));
5347 }
5348
5349 /*
5350  * Compile time evaluation
5351  * ===========================
5352  */
5353 static int is_const(struct triple *ins)
5354 {
5355         return IS_CONST_OP(ins->op);
5356 }
5357
5358 static int constants_equal(struct compile_state *state, 
5359         struct triple *left, struct triple *right)
5360 {
5361         int equal;
5362         if (!is_const(left) || !is_const(right)) {
5363                 equal = 0;
5364         }
5365         else if (left->op != right->op) {
5366                 equal = 0;
5367         }
5368         else if (!equiv_types(left->type, right->type)) {
5369                 equal = 0;
5370         }
5371         else {
5372                 equal = 0;
5373                 switch(left->op) {
5374                 case OP_INTCONST:
5375                         if (left->u.cval == right->u.cval) {
5376                                 equal = 1;
5377                         }
5378                         break;
5379                 case OP_BLOBCONST:
5380                 {
5381                         size_t lsize, rsize;
5382                         lsize = size_of(state, left->type);
5383                         rsize = size_of(state, right->type);
5384                         if (lsize != rsize) {
5385                                 break;
5386                         }
5387                         if (memcmp(left->u.blob, right->u.blob, lsize) == 0) {
5388                                 equal = 1;
5389                         }
5390                         break;
5391                 }
5392                 case OP_ADDRCONST:
5393                         if ((MISC(left, 0) == MISC(right, 0)) &&
5394                                 (left->u.cval == right->u.cval)) {
5395                                 equal = 1;
5396                         }
5397                         break;
5398                 default:
5399                         internal_error(state, left, "uknown constant type");
5400                         break;
5401                 }
5402         }
5403         return equal;
5404 }
5405
5406 static int is_zero(struct triple *ins)
5407 {
5408         return is_const(ins) && (ins->u.cval == 0);
5409 }
5410
5411 static int is_one(struct triple *ins)
5412 {
5413         return is_const(ins) && (ins->u.cval == 1);
5414 }
5415
5416 static long_t bsr(ulong_t value)
5417 {
5418         int i;
5419         for(i = (sizeof(ulong_t)*8) -1; i >= 0; i--) {
5420                 ulong_t mask;
5421                 mask = 1;
5422                 mask <<= i;
5423                 if (value & mask) {
5424                         return i;
5425                 }
5426         }
5427         return -1;
5428 }
5429
5430 static long_t bsf(ulong_t value)
5431 {
5432         int i;
5433         for(i = 0; i < (sizeof(ulong_t)*8); i++) {
5434                 ulong_t mask;
5435                 mask = 1;
5436                 mask <<= 1;
5437                 if (value & mask) {
5438                         return i;
5439                 }
5440         }
5441         return -1;
5442 }
5443
5444 static long_t log2(ulong_t value)
5445 {
5446         return bsr(value);
5447 }
5448
5449 static long_t tlog2(struct triple *ins)
5450 {
5451         return log2(ins->u.cval);
5452 }
5453
5454 static int is_pow2(struct triple *ins)
5455 {
5456         ulong_t value, mask;
5457         long_t log;
5458         if (!is_const(ins)) {
5459                 return 0;
5460         }
5461         value = ins->u.cval;
5462         log = log2(value);
5463         if (log == -1) {
5464                 return 0;
5465         }
5466         mask = 1;
5467         mask <<= log;
5468         return  ((value & mask) == value);
5469 }
5470
5471 static ulong_t read_const(struct compile_state *state,
5472         struct triple *ins, struct triple **expr)
5473 {
5474         struct triple *rhs;
5475         rhs = *expr;
5476         switch(rhs->type->type &TYPE_MASK) {
5477         case TYPE_CHAR:   
5478         case TYPE_SHORT:
5479         case TYPE_INT:
5480         case TYPE_LONG:
5481         case TYPE_UCHAR:   
5482         case TYPE_USHORT:  
5483         case TYPE_UINT:
5484         case TYPE_ULONG:
5485         case TYPE_POINTER:
5486                 break;
5487         default:
5488                 internal_error(state, rhs, "bad type to read_const\n");
5489                 break;
5490         }
5491         return rhs->u.cval;
5492 }
5493
5494 static long_t read_sconst(struct triple *ins, struct triple **expr)
5495 {
5496         struct triple *rhs;
5497         rhs = *expr;
5498         return (long_t)(rhs->u.cval);
5499 }
5500
5501 static void unuse_rhs(struct compile_state *state, struct triple *ins)
5502 {
5503         struct triple **expr;
5504         expr = triple_rhs(state, ins, 0);
5505         for(;expr;expr = triple_rhs(state, ins, expr)) {
5506                 if (*expr) {
5507                         unuse_triple(*expr, ins);
5508                         *expr = 0;
5509                 }
5510         }
5511 }
5512
5513 static void unuse_lhs(struct compile_state *state, struct triple *ins)
5514 {
5515         struct triple **expr;
5516         expr = triple_lhs(state, ins, 0);
5517         for(;expr;expr = triple_lhs(state, ins, expr)) {
5518                 unuse_triple(*expr, ins);
5519                 *expr = 0;
5520         }
5521 }
5522
5523 static void check_lhs(struct compile_state *state, struct triple *ins)
5524 {
5525         struct triple **expr;
5526         expr = triple_lhs(state, ins, 0);
5527         for(;expr;expr = triple_lhs(state, ins, expr)) {
5528                 internal_error(state, ins, "unexpected lhs");
5529         }
5530         
5531 }
5532 static void check_targ(struct compile_state *state, struct triple *ins)
5533 {
5534         struct triple **expr;
5535         expr = triple_targ(state, ins, 0);
5536         for(;expr;expr = triple_targ(state, ins, expr)) {
5537                 internal_error(state, ins, "unexpected targ");
5538         }
5539 }
5540
5541 static void wipe_ins(struct compile_state *state, struct triple *ins)
5542 {
5543         /* Becareful which instructions you replace the wiped
5544          * instruction with, as there are not enough slots
5545          * in all instructions to hold all others.
5546          */
5547         check_targ(state, ins);
5548         unuse_rhs(state, ins);
5549         unuse_lhs(state, ins);
5550 }
5551
5552 static void mkcopy(struct compile_state *state, 
5553         struct triple *ins, struct triple *rhs)
5554 {
5555         wipe_ins(state, ins);
5556         ins->op = OP_COPY;
5557         ins->sizes = TRIPLE_SIZES(0, 1, 0, 0);
5558         RHS(ins, 0) = rhs;
5559         use_triple(RHS(ins, 0), ins);
5560 }
5561
5562 static void mkconst(struct compile_state *state, 
5563         struct triple *ins, ulong_t value)
5564 {
5565         if (!is_integral(ins) && !is_pointer(ins)) {
5566                 internal_error(state, ins, "unknown type to make constant\n");
5567         }
5568         wipe_ins(state, ins);
5569         ins->op = OP_INTCONST;
5570         ins->sizes = TRIPLE_SIZES(0, 0, 0, 0);
5571         ins->u.cval = value;
5572 }
5573
5574 static void mkaddr_const(struct compile_state *state,
5575         struct triple *ins, struct triple *sdecl, ulong_t value)
5576 {
5577         wipe_ins(state, ins);
5578         ins->op = OP_ADDRCONST;
5579         ins->sizes = TRIPLE_SIZES(0, 0, 1, 0);
5580         MISC(ins, 0) = sdecl;
5581         ins->u.cval = value;
5582         use_triple(sdecl, ins);
5583 }
5584
5585 /* Transform multicomponent variables into simple register variables */
5586 static void flatten_structures(struct compile_state *state)
5587 {
5588         struct triple *ins, *first;
5589         first = RHS(state->main_function, 0);
5590         ins = first;
5591         /* Pass one expand structure values into valvecs.
5592          */
5593         ins = first;
5594         do {
5595                 struct triple *next;
5596                 next = ins->next;
5597                 if ((ins->type->type & TYPE_MASK) == TYPE_STRUCT) {
5598                         if (ins->op == OP_VAL_VEC) {
5599                                 /* Do nothing */
5600                         }
5601                         else if ((ins->op == OP_LOAD) || (ins->op == OP_READ)) {
5602                                 struct triple *def, **vector;
5603                                 struct type *tptr;
5604                                 int op;
5605                                 ulong_t i;
5606
5607                                 op = ins->op;
5608                                 def = RHS(ins, 0);
5609                                 get_occurance(ins->occurance);
5610                                 next = alloc_triple(state, OP_VAL_VEC, ins->type, -1, -1,
5611                                         ins->occurance);
5612
5613                                 vector = &RHS(next, 0);
5614                                 tptr = next->type->left;
5615                                 for(i = 0; i < next->type->elements; i++) {
5616                                         struct triple *sfield;
5617                                         struct type *mtype;
5618                                         mtype = tptr;
5619                                         if ((mtype->type & TYPE_MASK) == TYPE_PRODUCT) {
5620                                                 mtype = mtype->left;
5621                                         }
5622                                         sfield = deref_field(state, def, mtype->field_ident);
5623                                         
5624                                         vector[i] = triple(
5625                                                 state, op, mtype, sfield, 0);
5626                                         put_occurance(vector[i]->occurance);
5627                                         get_occurance(next->occurance);
5628                                         vector[i]->occurance = next->occurance;
5629                                         tptr = tptr->right;
5630                                 }
5631                                 propogate_use(state, ins, next);
5632                                 flatten(state, ins, next);
5633                                 free_triple(state, ins);
5634                         }
5635                         else if ((ins->op == OP_STORE) || (ins->op == OP_WRITE)) {
5636                                 struct triple *src, *dst, **vector;
5637                                 struct type *tptr;
5638                                 int op;
5639                                 ulong_t i;
5640
5641                                 op = ins->op;
5642                                 src = RHS(ins, 0);
5643                                 dst = LHS(ins, 0);
5644                                 get_occurance(ins->occurance);
5645                                 next = alloc_triple(state, OP_VAL_VEC, ins->type, -1, -1,
5646                                         ins->occurance);
5647                                 
5648                                 vector = &RHS(next, 0);
5649                                 tptr = next->type->left;
5650                                 for(i = 0; i < ins->type->elements; i++) {
5651                                         struct triple *dfield, *sfield;
5652                                         struct type *mtype;
5653                                         mtype = tptr;
5654                                         if ((mtype->type & TYPE_MASK) == TYPE_PRODUCT) {
5655                                                 mtype = mtype->left;
5656                                         }
5657                                         sfield = deref_field(state, src, mtype->field_ident);
5658                                         dfield = deref_field(state, dst, mtype->field_ident);
5659                                         vector[i] = triple(
5660                                                 state, op, mtype, dfield, sfield);
5661                                         put_occurance(vector[i]->occurance);
5662                                         get_occurance(next->occurance);
5663                                         vector[i]->occurance = next->occurance;
5664                                         tptr = tptr->right;
5665                                 }
5666                                 propogate_use(state, ins, next);
5667                                 flatten(state, ins, next);
5668                                 free_triple(state, ins);
5669                         }
5670                 }
5671                 ins = next;
5672         } while(ins != first);
5673         /* Pass two flatten the valvecs.
5674          */
5675         ins = first;
5676         do {
5677                 struct triple *next;
5678                 next = ins->next;
5679                 if (ins->op == OP_VAL_VEC) {
5680                         release_triple(state, ins);
5681                 } 
5682                 ins = next;
5683         } while(ins != first);
5684         /* Pass three verify the state and set ->id to 0.
5685          */
5686         ins = first;
5687         do {
5688                 ins->id &= ~TRIPLE_FLAG_FLATTENED;
5689                 if ((ins->type->type & TYPE_MASK) == TYPE_STRUCT) {
5690                         internal_error(state, 0, "STRUCT_TYPE remains?");
5691                 }
5692                 if (ins->op == OP_DOT) {
5693                         internal_error(state, 0, "OP_DOT remains?");
5694                 }
5695                 if (ins->op == OP_VAL_VEC) {
5696                         internal_error(state, 0, "OP_VAL_VEC remains?");
5697                 }
5698                 ins = ins->next;
5699         } while(ins != first);
5700 }
5701
5702 /* For those operations that cannot be simplified */
5703 static void simplify_noop(struct compile_state *state, struct triple *ins)
5704 {
5705         return;
5706 }
5707
5708 static void simplify_smul(struct compile_state *state, struct triple *ins)
5709 {
5710         if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
5711                 struct triple *tmp;
5712                 tmp = RHS(ins, 0);
5713                 RHS(ins, 0) = RHS(ins, 1);
5714                 RHS(ins, 1) = tmp;
5715         }
5716         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
5717                 long_t left, right;
5718                 left  = read_sconst(ins, &RHS(ins, 0));
5719                 right = read_sconst(ins, &RHS(ins, 1));
5720                 mkconst(state, ins, left * right);
5721         }
5722         else if (is_zero(RHS(ins, 1))) {
5723                 mkconst(state, ins, 0);
5724         }
5725         else if (is_one(RHS(ins, 1))) {
5726                 mkcopy(state, ins, RHS(ins, 0));
5727         }
5728         else if (is_pow2(RHS(ins, 1))) {
5729                 struct triple *val;
5730                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
5731                 ins->op = OP_SL;
5732                 insert_triple(state, ins, val);
5733                 unuse_triple(RHS(ins, 1), ins);
5734                 use_triple(val, ins);
5735                 RHS(ins, 1) = val;
5736         }
5737 }
5738
5739 static void simplify_umul(struct compile_state *state, struct triple *ins)
5740 {
5741         if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
5742                 struct triple *tmp;
5743                 tmp = RHS(ins, 0);
5744                 RHS(ins, 0) = RHS(ins, 1);
5745                 RHS(ins, 1) = tmp;
5746         }
5747         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
5748                 ulong_t left, right;
5749                 left  = read_const(state, ins, &RHS(ins, 0));
5750                 right = read_const(state, ins, &RHS(ins, 1));
5751                 mkconst(state, ins, left * right);
5752         }
5753         else if (is_zero(RHS(ins, 1))) {
5754                 mkconst(state, ins, 0);
5755         }
5756         else if (is_one(RHS(ins, 1))) {
5757                 mkcopy(state, ins, RHS(ins, 0));
5758         }
5759         else if (is_pow2(RHS(ins, 1))) {
5760                 struct triple *val;
5761                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
5762                 ins->op = OP_SL;
5763                 insert_triple(state, ins, val);
5764                 unuse_triple(RHS(ins, 1), ins);
5765                 use_triple(val, ins);
5766                 RHS(ins, 1) = val;
5767         }
5768 }
5769
5770 static void simplify_sdiv(struct compile_state *state, struct triple *ins)
5771 {
5772         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
5773                 long_t left, right;
5774                 left  = read_sconst(ins, &RHS(ins, 0));
5775                 right = read_sconst(ins, &RHS(ins, 1));
5776                 mkconst(state, ins, left / right);
5777         }
5778         else if (is_zero(RHS(ins, 0))) {
5779                 mkconst(state, ins, 0);
5780         }
5781         else if (is_zero(RHS(ins, 1))) {
5782                 error(state, ins, "division by zero");
5783         }
5784         else if (is_one(RHS(ins, 1))) {
5785                 mkcopy(state, ins, RHS(ins, 0));
5786         }
5787         else if (is_pow2(RHS(ins, 1))) {
5788                 struct triple *val;
5789                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
5790                 ins->op = OP_SSR;
5791                 insert_triple(state, ins, val);
5792                 unuse_triple(RHS(ins, 1), ins);
5793                 use_triple(val, ins);
5794                 RHS(ins, 1) = val;
5795         }
5796 }
5797
5798 static void simplify_udiv(struct compile_state *state, struct triple *ins)
5799 {
5800         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
5801                 ulong_t left, right;
5802                 left  = read_const(state, ins, &RHS(ins, 0));
5803                 right = read_const(state, ins, &RHS(ins, 1));
5804                 mkconst(state, ins, left / right);
5805         }
5806         else if (is_zero(RHS(ins, 0))) {
5807                 mkconst(state, ins, 0);
5808         }
5809         else if (is_zero(RHS(ins, 1))) {
5810                 error(state, ins, "division by zero");
5811         }
5812         else if (is_one(RHS(ins, 1))) {
5813                 mkcopy(state, ins, RHS(ins, 0));
5814         }
5815         else if (is_pow2(RHS(ins, 1))) {
5816                 struct triple *val;
5817                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
5818                 ins->op = OP_USR;
5819                 insert_triple(state, ins, val);
5820                 unuse_triple(RHS(ins, 1), ins);
5821                 use_triple(val, ins);
5822                 RHS(ins, 1) = val;
5823         }
5824 }
5825
5826 static void simplify_smod(struct compile_state *state, struct triple *ins)
5827 {
5828         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
5829                 long_t left, right;
5830                 left  = read_const(state, ins, &RHS(ins, 0));
5831                 right = read_const(state, ins, &RHS(ins, 1));
5832                 mkconst(state, ins, left % right);
5833         }
5834         else if (is_zero(RHS(ins, 0))) {
5835                 mkconst(state, ins, 0);
5836         }
5837         else if (is_zero(RHS(ins, 1))) {
5838                 error(state, ins, "division by zero");
5839         }
5840         else if (is_one(RHS(ins, 1))) {
5841                 mkconst(state, ins, 0);
5842         }
5843         else if (is_pow2(RHS(ins, 1))) {
5844                 struct triple *val;
5845                 val = int_const(state, ins->type, RHS(ins, 1)->u.cval - 1);
5846                 ins->op = OP_AND;
5847                 insert_triple(state, ins, val);
5848                 unuse_triple(RHS(ins, 1), ins);
5849                 use_triple(val, ins);
5850                 RHS(ins, 1) = val;
5851         }
5852 }
5853 static void simplify_umod(struct compile_state *state, struct triple *ins)
5854 {
5855         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
5856                 ulong_t left, right;
5857                 left  = read_const(state, ins, &RHS(ins, 0));
5858                 right = read_const(state, ins, &RHS(ins, 1));
5859                 mkconst(state, ins, left % right);
5860         }
5861         else if (is_zero(RHS(ins, 0))) {
5862                 mkconst(state, ins, 0);
5863         }
5864         else if (is_zero(RHS(ins, 1))) {
5865                 error(state, ins, "division by zero");
5866         }
5867         else if (is_one(RHS(ins, 1))) {
5868                 mkconst(state, ins, 0);
5869         }
5870         else if (is_pow2(RHS(ins, 1))) {
5871                 struct triple *val;
5872                 val = int_const(state, ins->type, RHS(ins, 1)->u.cval - 1);
5873                 ins->op = OP_AND;
5874                 insert_triple(state, ins, val);
5875                 unuse_triple(RHS(ins, 1), ins);
5876                 use_triple(val, ins);
5877                 RHS(ins, 1) = val;
5878         }
5879 }
5880
5881 static void simplify_add(struct compile_state *state, struct triple *ins)
5882 {
5883         /* start with the pointer on the left */
5884         if (is_pointer(RHS(ins, 1))) {
5885                 struct triple *tmp;
5886                 tmp = RHS(ins, 0);
5887                 RHS(ins, 0) = RHS(ins, 1);
5888                 RHS(ins, 1) = tmp;
5889         }
5890         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
5891                 if (!is_pointer(RHS(ins, 0))) {
5892                         ulong_t left, right;
5893                         left  = read_const(state, ins, &RHS(ins, 0));
5894                         right = read_const(state, ins, &RHS(ins, 1));
5895                         mkconst(state, ins, left + right);
5896                 }
5897                 else /* op == OP_ADDRCONST */ {
5898                         struct triple *sdecl;
5899                         ulong_t left, right;
5900                         sdecl = MISC(RHS(ins, 0), 0);
5901                         left  = RHS(ins, 0)->u.cval;
5902                         right = RHS(ins, 1)->u.cval;
5903                         mkaddr_const(state, ins, sdecl, left + right);
5904                 }
5905         }
5906         else if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
5907                 struct triple *tmp;
5908                 tmp = RHS(ins, 1);
5909                 RHS(ins, 1) = RHS(ins, 0);
5910                 RHS(ins, 0) = tmp;
5911         }
5912 }
5913
5914 static void simplify_sub(struct compile_state *state, struct triple *ins)
5915 {
5916         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
5917                 if (!is_pointer(RHS(ins, 0))) {
5918                         ulong_t left, right;
5919                         left  = read_const(state, ins, &RHS(ins, 0));
5920                         right = read_const(state, ins, &RHS(ins, 1));
5921                         mkconst(state, ins, left - right);
5922                 }
5923                 else /* op == OP_ADDRCONST */ {
5924                         struct triple *sdecl;
5925                         ulong_t left, right;
5926                         sdecl = MISC(RHS(ins, 0), 0);
5927                         left  = RHS(ins, 0)->u.cval;
5928                         right = RHS(ins, 1)->u.cval;
5929                         mkaddr_const(state, ins, sdecl, left - right);
5930                 }
5931         }
5932 }
5933
5934 static void simplify_sl(struct compile_state *state, struct triple *ins)
5935 {
5936         if (is_const(RHS(ins, 1))) {
5937                 ulong_t right;
5938                 right = read_const(state, ins, &RHS(ins, 1));
5939                 if (right >= (size_of(state, ins->type)*8)) {
5940                         warning(state, ins, "left shift count >= width of type");
5941                 }
5942         }
5943         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
5944                 ulong_t left, right;
5945                 left  = read_const(state, ins, &RHS(ins, 0));
5946                 right = read_const(state, ins, &RHS(ins, 1));
5947                 mkconst(state, ins,  left << right);
5948         }
5949 }
5950
5951 static void simplify_usr(struct compile_state *state, struct triple *ins)
5952 {
5953         if (is_const(RHS(ins, 1))) {
5954                 ulong_t right;
5955                 right = read_const(state, ins, &RHS(ins, 1));
5956                 if (right >= (size_of(state, ins->type)*8)) {
5957                         warning(state, ins, "right shift count >= width of type");
5958                 }
5959         }
5960         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
5961                 ulong_t left, right;
5962                 left  = read_const(state, ins, &RHS(ins, 0));
5963                 right = read_const(state, ins, &RHS(ins, 1));
5964                 mkconst(state, ins, left >> right);
5965         }
5966 }
5967
5968 static void simplify_ssr(struct compile_state *state, struct triple *ins)
5969 {
5970         if (is_const(RHS(ins, 1))) {
5971                 ulong_t right;
5972                 right = read_const(state, ins, &RHS(ins, 1));
5973                 if (right >= (size_of(state, ins->type)*8)) {
5974                         warning(state, ins, "right shift count >= width of type");
5975                 }
5976         }
5977         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
5978                 long_t left, right;
5979                 left  = read_sconst(ins, &RHS(ins, 0));
5980                 right = read_sconst(ins, &RHS(ins, 1));
5981                 mkconst(state, ins, left >> right);
5982         }
5983 }
5984
5985 static void simplify_and(struct compile_state *state, struct triple *ins)
5986 {
5987         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
5988                 ulong_t left, right;
5989                 left  = read_const(state, ins, &RHS(ins, 0));
5990                 right = read_const(state, ins, &RHS(ins, 1));
5991                 mkconst(state, ins, left & right);
5992         }
5993 }
5994
5995 static void simplify_or(struct compile_state *state, struct triple *ins)
5996 {
5997         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
5998                 ulong_t left, right;
5999                 left  = read_const(state, ins, &RHS(ins, 0));
6000                 right = read_const(state, ins, &RHS(ins, 1));
6001                 mkconst(state, ins, left | right);
6002         }
6003 }
6004
6005 static void simplify_xor(struct compile_state *state, struct triple *ins)
6006 {
6007         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6008                 ulong_t left, right;
6009                 left  = read_const(state, ins, &RHS(ins, 0));
6010                 right = read_const(state, ins, &RHS(ins, 1));
6011                 mkconst(state, ins, left ^ right);
6012         }
6013 }
6014
6015 static void simplify_pos(struct compile_state *state, struct triple *ins)
6016 {
6017         if (is_const(RHS(ins, 0))) {
6018                 mkconst(state, ins, RHS(ins, 0)->u.cval);
6019         }
6020         else {
6021                 mkcopy(state, ins, RHS(ins, 0));
6022         }
6023 }
6024
6025 static void simplify_neg(struct compile_state *state, struct triple *ins)
6026 {
6027         if (is_const(RHS(ins, 0))) {
6028                 ulong_t left;
6029                 left = read_const(state, ins, &RHS(ins, 0));
6030                 mkconst(state, ins, -left);
6031         }
6032         else if (RHS(ins, 0)->op == OP_NEG) {
6033                 mkcopy(state, ins, RHS(RHS(ins, 0), 0));
6034         }
6035 }
6036
6037 static void simplify_invert(struct compile_state *state, struct triple *ins)
6038 {
6039         if (is_const(RHS(ins, 0))) {
6040                 ulong_t left;
6041                 left = read_const(state, ins, &RHS(ins, 0));
6042                 mkconst(state, ins, ~left);
6043         }
6044 }
6045
6046 static void simplify_eq(struct compile_state *state, struct triple *ins)
6047 {
6048         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6049                 ulong_t left, right;
6050                 left  = read_const(state, ins, &RHS(ins, 0));
6051                 right = read_const(state, ins, &RHS(ins, 1));
6052                 mkconst(state, ins, left == right);
6053         }
6054         else if (RHS(ins, 0) == RHS(ins, 1)) {
6055                 mkconst(state, ins, 1);
6056         }
6057 }
6058
6059 static void simplify_noteq(struct compile_state *state, struct triple *ins)
6060 {
6061         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6062                 ulong_t left, right;
6063                 left  = read_const(state, ins, &RHS(ins, 0));
6064                 right = read_const(state, ins, &RHS(ins, 1));
6065                 mkconst(state, ins, left != right);
6066         }
6067         else if (RHS(ins, 0) == RHS(ins, 1)) {
6068                 mkconst(state, ins, 0);
6069         }
6070 }
6071
6072 static void simplify_sless(struct compile_state *state, struct triple *ins)
6073 {
6074         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6075                 long_t left, right;
6076                 left  = read_sconst(ins, &RHS(ins, 0));
6077                 right = read_sconst(ins, &RHS(ins, 1));
6078                 mkconst(state, ins, left < right);
6079         }
6080         else if (RHS(ins, 0) == RHS(ins, 1)) {
6081                 mkconst(state, ins, 0);
6082         }
6083 }
6084
6085 static void simplify_uless(struct compile_state *state, struct triple *ins)
6086 {
6087         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6088                 ulong_t left, right;
6089                 left  = read_const(state, ins, &RHS(ins, 0));
6090                 right = read_const(state, ins, &RHS(ins, 1));
6091                 mkconst(state, ins, left < right);
6092         }
6093         else if (is_zero(RHS(ins, 0))) {
6094                 mkconst(state, ins, 1);
6095         }
6096         else if (RHS(ins, 0) == RHS(ins, 1)) {
6097                 mkconst(state, ins, 0);
6098         }
6099 }
6100
6101 static void simplify_smore(struct compile_state *state, struct triple *ins)
6102 {
6103         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6104                 long_t left, right;
6105                 left  = read_sconst(ins, &RHS(ins, 0));
6106                 right = read_sconst(ins, &RHS(ins, 1));
6107                 mkconst(state, ins, left > right);
6108         }
6109         else if (RHS(ins, 0) == RHS(ins, 1)) {
6110                 mkconst(state, ins, 0);
6111         }
6112 }
6113
6114 static void simplify_umore(struct compile_state *state, struct triple *ins)
6115 {
6116         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6117                 ulong_t left, right;
6118                 left  = read_const(state, ins, &RHS(ins, 0));
6119                 right = read_const(state, ins, &RHS(ins, 1));
6120                 mkconst(state, ins, left > right);
6121         }
6122         else if (is_zero(RHS(ins, 1))) {
6123                 mkconst(state, ins, 1);
6124         }
6125         else if (RHS(ins, 0) == RHS(ins, 1)) {
6126                 mkconst(state, ins, 0);
6127         }
6128 }
6129
6130
6131 static void simplify_slesseq(struct compile_state *state, struct triple *ins)
6132 {
6133         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6134                 long_t left, right;
6135                 left  = read_sconst(ins, &RHS(ins, 0));
6136                 right = read_sconst(ins, &RHS(ins, 1));
6137                 mkconst(state, ins, left <= right);
6138         }
6139         else if (RHS(ins, 0) == RHS(ins, 1)) {
6140                 mkconst(state, ins, 1);
6141         }
6142 }
6143
6144 static void simplify_ulesseq(struct compile_state *state, struct triple *ins)
6145 {
6146         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6147                 ulong_t left, right;
6148                 left  = read_const(state, ins, &RHS(ins, 0));
6149                 right = read_const(state, ins, &RHS(ins, 1));
6150                 mkconst(state, ins, left <= right);
6151         }
6152         else if (is_zero(RHS(ins, 0))) {
6153                 mkconst(state, ins, 1);
6154         }
6155         else if (RHS(ins, 0) == RHS(ins, 1)) {
6156                 mkconst(state, ins, 1);
6157         }
6158 }
6159
6160 static void simplify_smoreeq(struct compile_state *state, struct triple *ins)
6161 {
6162         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 0))) {
6163                 long_t left, right;
6164                 left  = read_sconst(ins, &RHS(ins, 0));
6165                 right = read_sconst(ins, &RHS(ins, 1));
6166                 mkconst(state, ins, left >= right);
6167         }
6168         else if (RHS(ins, 0) == RHS(ins, 1)) {
6169                 mkconst(state, ins, 1);
6170         }
6171 }
6172
6173 static void simplify_umoreeq(struct compile_state *state, struct triple *ins)
6174 {
6175         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6176                 ulong_t left, right;
6177                 left  = read_const(state, ins, &RHS(ins, 0));
6178                 right = read_const(state, ins, &RHS(ins, 1));
6179                 mkconst(state, ins, left >= right);
6180         }
6181         else if (is_zero(RHS(ins, 1))) {
6182                 mkconst(state, ins, 1);
6183         }
6184         else if (RHS(ins, 0) == RHS(ins, 1)) {
6185                 mkconst(state, ins, 1);
6186         }
6187 }
6188
6189 static void simplify_lfalse(struct compile_state *state, struct triple *ins)
6190 {
6191         if (is_const(RHS(ins, 0))) {
6192                 ulong_t left;
6193                 left = read_const(state, ins, &RHS(ins, 0));
6194                 mkconst(state, ins, left == 0);
6195         }
6196         /* Otherwise if I am the only user... */
6197         else if ((RHS(ins, 0)->use->member == ins) && (RHS(ins, 0)->use->next == 0)) {
6198                 int need_copy = 1;
6199                 /* Invert a boolean operation */
6200                 switch(RHS(ins, 0)->op) {
6201                 case OP_LTRUE:   RHS(ins, 0)->op = OP_LFALSE;  break;
6202                 case OP_LFALSE:  RHS(ins, 0)->op = OP_LTRUE;   break;
6203                 case OP_EQ:      RHS(ins, 0)->op = OP_NOTEQ;   break;
6204                 case OP_NOTEQ:   RHS(ins, 0)->op = OP_EQ;      break;
6205                 case OP_SLESS:   RHS(ins, 0)->op = OP_SMOREEQ; break;
6206                 case OP_ULESS:   RHS(ins, 0)->op = OP_UMOREEQ; break;
6207                 case OP_SMORE:   RHS(ins, 0)->op = OP_SLESSEQ; break;
6208                 case OP_UMORE:   RHS(ins, 0)->op = OP_ULESSEQ; break;
6209                 case OP_SLESSEQ: RHS(ins, 0)->op = OP_SMORE;   break;
6210                 case OP_ULESSEQ: RHS(ins, 0)->op = OP_UMORE;   break;
6211                 case OP_SMOREEQ: RHS(ins, 0)->op = OP_SLESS;   break;
6212                 case OP_UMOREEQ: RHS(ins, 0)->op = OP_ULESS;   break;
6213                 default:
6214                         need_copy = 0;
6215                         break;
6216                 }
6217                 if (need_copy) {
6218                         mkcopy(state, ins, RHS(ins, 0));
6219                 }
6220         }
6221 }
6222
6223 static void simplify_ltrue (struct compile_state *state, struct triple *ins)
6224 {
6225         if (is_const(RHS(ins, 0))) {
6226                 ulong_t left;
6227                 left = read_const(state, ins, &RHS(ins, 0));
6228                 mkconst(state, ins, left != 0);
6229         }
6230         else switch(RHS(ins, 0)->op) {
6231         case OP_LTRUE:   case OP_LFALSE:  case OP_EQ:      case OP_NOTEQ:
6232         case OP_SLESS:   case OP_ULESS:   case OP_SMORE:   case OP_UMORE:
6233         case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
6234                 mkcopy(state, ins, RHS(ins, 0));
6235         }
6236
6237 }
6238
6239 static void simplify_copy(struct compile_state *state, struct triple *ins)
6240 {
6241         if (is_const(RHS(ins, 0))) {
6242                 switch(RHS(ins, 0)->op) {
6243                 case OP_INTCONST:
6244                 {
6245                         ulong_t left;
6246                         left = read_const(state, ins, &RHS(ins, 0));
6247                         mkconst(state, ins, left);
6248                         break;
6249                 }
6250                 case OP_ADDRCONST:
6251                 {
6252                         struct triple *sdecl;
6253                         ulong_t offset;
6254                         sdecl  = MISC(RHS(ins, 0), 0);
6255                         offset = RHS(ins, 0)->u.cval;
6256                         mkaddr_const(state, ins, sdecl, offset);
6257                         break;
6258                 }
6259                 default:
6260                         internal_error(state, ins, "uknown constant");
6261                         break;
6262                 }
6263         }
6264 }
6265
6266 static void simplify_branch(struct compile_state *state, struct triple *ins)
6267 {
6268         struct block *block;
6269         if (ins->op != OP_BRANCH) {
6270                 internal_error(state, ins, "not branch");
6271         }
6272         if (ins->use != 0) {
6273                 internal_error(state, ins, "branch use");
6274         }
6275 #warning "FIXME implement simplify branch."
6276         /* The challenge here with simplify branch is that I need to 
6277          * make modifications to the control flow graph as well
6278          * as to the branch instruction itself.
6279          */
6280         block = ins->u.block;
6281         
6282         if (TRIPLE_RHS(ins->sizes) && is_const(RHS(ins, 0))) {
6283                 struct triple *targ;
6284                 ulong_t value;
6285                 value = read_const(state, ins, &RHS(ins, 0));
6286                 unuse_triple(RHS(ins, 0), ins);
6287                 targ = TARG(ins, 0);
6288                 ins->sizes = TRIPLE_SIZES(0, 0, 0, 1);
6289                 if (value) {
6290                         unuse_triple(ins->next, ins);
6291                         TARG(ins, 0) = targ;
6292                 }
6293                 else {
6294                         unuse_triple(targ, ins);
6295                         TARG(ins, 0) = ins->next;
6296                 }
6297 #warning "FIXME handle the case of making a branch unconditional"
6298         }
6299         if (TARG(ins, 0) == ins->next) {
6300                 unuse_triple(ins->next, ins);
6301                 if (TRIPLE_RHS(ins->sizes)) {
6302                         unuse_triple(RHS(ins, 0), ins);
6303                         unuse_triple(ins->next, ins);
6304                 }
6305                 ins->sizes = TRIPLE_SIZES(0, 0, 0, 0);
6306                 ins->op = OP_NOOP;
6307                 if (ins->use) {
6308                         internal_error(state, ins, "noop use != 0");
6309                 }
6310 #warning "FIXME handle the case of killing a branch"
6311         }
6312 }
6313
6314 static void simplify_phi(struct compile_state *state, struct triple *ins)
6315 {
6316         struct triple **expr;
6317         ulong_t value;
6318         expr = triple_rhs(state, ins, 0);
6319         if (!*expr || !is_const(*expr)) {
6320                 return;
6321         }
6322         value = read_const(state, ins, expr);
6323         for(;expr;expr = triple_rhs(state, ins, expr)) {
6324                 if (!*expr || !is_const(*expr)) {
6325                         return;
6326                 }
6327                 if (value != read_const(state, ins, expr)) {
6328                         return;
6329                 }
6330         }
6331         mkconst(state, ins, value);
6332 }
6333
6334
6335 static void simplify_bsf(struct compile_state *state, struct triple *ins)
6336 {
6337         if (is_const(RHS(ins, 0))) {
6338                 ulong_t left;
6339                 left = read_const(state, ins, &RHS(ins, 0));
6340                 mkconst(state, ins, bsf(left));
6341         }
6342 }
6343
6344 static void simplify_bsr(struct compile_state *state, struct triple *ins)
6345 {
6346         if (is_const(RHS(ins, 0))) {
6347                 ulong_t left;
6348                 left = read_const(state, ins, &RHS(ins, 0));
6349                 mkconst(state, ins, bsr(left));
6350         }
6351 }
6352
6353
6354 typedef void (*simplify_t)(struct compile_state *state, struct triple *ins);
6355 static const simplify_t table_simplify[] = {
6356 #if 0
6357 #define simplify_smul     simplify_noop
6358 #define simplify_umul     simplify_noop
6359 #define simplify_sdiv     simplify_noop
6360 #define simplify_udiv     simplify_noop
6361 #define simplify_smod     simplify_noop
6362 #define simplify_umod     simplify_noop
6363 #endif
6364 #if 0
6365 #define simplify_add      simplify_noop
6366 #define simplify_sub      simplify_noop
6367 #endif
6368 #if 0
6369 #define simplify_sl       simplify_noop
6370 #define simplify_usr      simplify_noop
6371 #define simplify_ssr      simplify_noop
6372 #endif
6373 #if 0
6374 #define simplify_and      simplify_noop
6375 #define simplify_xor      simplify_noop
6376 #define simplify_or       simplify_noop
6377 #endif
6378 #if 0
6379 #define simplify_pos      simplify_noop
6380 #define simplify_neg      simplify_noop
6381 #define simplify_invert   simplify_noop
6382 #endif
6383
6384 #if 0
6385 #define simplify_eq       simplify_noop
6386 #define simplify_noteq    simplify_noop
6387 #endif
6388 #if 0
6389 #define simplify_sless    simplify_noop
6390 #define simplify_uless    simplify_noop
6391 #define simplify_smore    simplify_noop
6392 #define simplify_umore    simplify_noop
6393 #endif
6394 #if 0
6395 #define simplify_slesseq  simplify_noop
6396 #define simplify_ulesseq  simplify_noop
6397 #define simplify_smoreeq  simplify_noop
6398 #define simplify_umoreeq  simplify_noop
6399 #endif
6400 #if 0
6401 #define simplify_lfalse   simplify_noop
6402 #endif
6403 #if 0
6404 #define simplify_ltrue    simplify_noop
6405 #endif
6406
6407 #if 0
6408 #define simplify_copy     simplify_noop
6409 #endif
6410
6411 #if 0
6412 #define simplify_branch   simplify_noop
6413 #endif
6414
6415 #if 0
6416 #define simplify_phi      simplify_noop
6417 #endif
6418
6419 #if 0
6420 #define simplify_bsf      simplify_noop
6421 #define simplify_bsr      simplify_noop
6422 #endif
6423
6424 [OP_SMUL       ] = simplify_smul,
6425 [OP_UMUL       ] = simplify_umul,
6426 [OP_SDIV       ] = simplify_sdiv,
6427 [OP_UDIV       ] = simplify_udiv,
6428 [OP_SMOD       ] = simplify_smod,
6429 [OP_UMOD       ] = simplify_umod,
6430 [OP_ADD        ] = simplify_add,
6431 [OP_SUB        ] = simplify_sub,
6432 [OP_SL         ] = simplify_sl,
6433 [OP_USR        ] = simplify_usr,
6434 [OP_SSR        ] = simplify_ssr,
6435 [OP_AND        ] = simplify_and,
6436 [OP_XOR        ] = simplify_xor,
6437 [OP_OR         ] = simplify_or,
6438 [OP_POS        ] = simplify_pos,
6439 [OP_NEG        ] = simplify_neg,
6440 [OP_INVERT     ] = simplify_invert,
6441
6442 [OP_EQ         ] = simplify_eq,
6443 [OP_NOTEQ      ] = simplify_noteq,
6444 [OP_SLESS      ] = simplify_sless,
6445 [OP_ULESS      ] = simplify_uless,
6446 [OP_SMORE      ] = simplify_smore,
6447 [OP_UMORE      ] = simplify_umore,
6448 [OP_SLESSEQ    ] = simplify_slesseq,
6449 [OP_ULESSEQ    ] = simplify_ulesseq,
6450 [OP_SMOREEQ    ] = simplify_smoreeq,
6451 [OP_UMOREEQ    ] = simplify_umoreeq,
6452 [OP_LFALSE     ] = simplify_lfalse,
6453 [OP_LTRUE      ] = simplify_ltrue,
6454
6455 [OP_LOAD       ] = simplify_noop,
6456 [OP_STORE      ] = simplify_noop,
6457
6458 [OP_NOOP       ] = simplify_noop,
6459
6460 [OP_INTCONST   ] = simplify_noop,
6461 [OP_BLOBCONST  ] = simplify_noop,
6462 [OP_ADDRCONST  ] = simplify_noop,
6463
6464 [OP_WRITE      ] = simplify_noop,
6465 [OP_READ       ] = simplify_noop,
6466 [OP_COPY       ] = simplify_copy,
6467 [OP_PIECE      ] = simplify_noop,
6468 [OP_ASM        ] = simplify_noop,
6469
6470 [OP_DOT        ] = simplify_noop,
6471 [OP_VAL_VEC    ] = simplify_noop,
6472
6473 [OP_LIST       ] = simplify_noop,
6474 [OP_BRANCH     ] = simplify_branch,
6475 [OP_LABEL      ] = simplify_noop,
6476 [OP_ADECL      ] = simplify_noop,
6477 [OP_SDECL      ] = simplify_noop,
6478 [OP_PHI        ] = simplify_phi,
6479
6480 [OP_INB        ] = simplify_noop,
6481 [OP_INW        ] = simplify_noop,
6482 [OP_INL        ] = simplify_noop,
6483 [OP_OUTB       ] = simplify_noop,
6484 [OP_OUTW       ] = simplify_noop,
6485 [OP_OUTL       ] = simplify_noop,
6486 [OP_BSF        ] = simplify_bsf,
6487 [OP_BSR        ] = simplify_bsr,
6488 [OP_RDMSR      ] = simplify_noop,
6489 [OP_WRMSR      ] = simplify_noop,                    
6490 [OP_HLT        ] = simplify_noop,
6491 };
6492
6493 static void simplify(struct compile_state *state, struct triple *ins)
6494 {
6495         int op;
6496         simplify_t do_simplify;
6497         do {
6498                 op = ins->op;
6499                 do_simplify = 0;
6500                 if ((op < 0) || (op > sizeof(table_simplify)/sizeof(table_simplify[0]))) {
6501                         do_simplify = 0;
6502                 }
6503                 else {
6504                         do_simplify = table_simplify[op];
6505                 }
6506                 if (!do_simplify) {
6507                         internal_error(state, ins, "cannot simplify op: %d %s\n",
6508                                 op, tops(op));
6509                         return;
6510                 }
6511                 do_simplify(state, ins);
6512         } while(ins->op != op);
6513 }
6514
6515 static void simplify_all(struct compile_state *state)
6516 {
6517         struct triple *ins, *first;
6518         first = RHS(state->main_function, 0);
6519         ins = first;
6520         do {
6521                 simplify(state, ins);
6522                 ins = ins->next;
6523         } while(ins != first);
6524 }
6525
6526 /*
6527  * Builtins....
6528  * ============================
6529  */
6530
6531 static void register_builtin_function(struct compile_state *state,
6532         const char *name, int op, struct type *rtype, ...)
6533 {
6534         struct type *ftype, *atype, *param, **next;
6535         struct triple *def, *arg, *result, *work, *last, *first;
6536         struct hash_entry *ident;
6537         struct file_state file;
6538         int parameters;
6539         int name_len;
6540         va_list args;
6541         int i;
6542
6543         /* Dummy file state to get debug handling right */
6544         memset(&file, 0, sizeof(file));
6545         file.basename = "<built-in>";
6546         file.line = 1;
6547         file.report_line = 1;
6548         file.report_name = file.basename;
6549         file.prev = state->file;
6550         state->file = &file;
6551         state->function = name;
6552
6553         /* Find the Parameter count */
6554         valid_op(state, op);
6555         parameters = table_ops[op].rhs;
6556         if (parameters < 0 ) {
6557                 internal_error(state, 0, "Invalid builtin parameter count");
6558         }
6559
6560         /* Find the function type */
6561         ftype = new_type(TYPE_FUNCTION, rtype, 0);
6562         next = &ftype->right;
6563         va_start(args, rtype);
6564         for(i = 0; i < parameters; i++) {
6565                 atype = va_arg(args, struct type *);
6566                 if (!*next) {
6567                         *next = atype;
6568                 } else {
6569                         *next = new_type(TYPE_PRODUCT, *next, atype);
6570                         next = &((*next)->right);
6571                 }
6572         }
6573         if (!*next) {
6574                 *next = &void_type;
6575         }
6576         va_end(args);
6577
6578         /* Generate the needed triples */
6579         def = triple(state, OP_LIST, ftype, 0, 0);
6580         first = label(state);
6581         RHS(def, 0) = first;
6582
6583         /* Now string them together */
6584         param = ftype->right;
6585         for(i = 0; i < parameters; i++) {
6586                 if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
6587                         atype = param->left;
6588                 } else {
6589                         atype = param;
6590                 }
6591                 arg = flatten(state, first, variable(state, atype));
6592                 param = param->right;
6593         }
6594         result = 0;
6595         if ((rtype->type & TYPE_MASK) != TYPE_VOID) {
6596                 result = flatten(state, first, variable(state, rtype));
6597         }
6598         MISC(def, 0) = result;
6599         work = new_triple(state, op, rtype, -1, parameters);
6600         for(i = 0, arg = first->next; i < parameters; i++, arg = arg->next) {
6601                 RHS(work, i) = read_expr(state, arg);
6602         }
6603         if (result && ((rtype->type & TYPE_MASK) == TYPE_STRUCT)) {
6604                 struct triple *val;
6605                 /* Populate the LHS with the target registers */
6606                 work = flatten(state, first, work);
6607                 work->type = &void_type;
6608                 param = rtype->left;
6609                 if (rtype->elements != TRIPLE_LHS(work->sizes)) {
6610                         internal_error(state, 0, "Invalid result type");
6611                 }
6612                 val = new_triple(state, OP_VAL_VEC, rtype, -1, -1);
6613                 for(i = 0; i < rtype->elements; i++) {
6614                         struct triple *piece;
6615                         atype = param;
6616                         if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
6617                                 atype = param->left;
6618                         }
6619                         if (!TYPE_ARITHMETIC(atype->type) &&
6620                                 !TYPE_PTR(atype->type)) {
6621                                 internal_error(state, 0, "Invalid lhs type");
6622                         }
6623                         piece = triple(state, OP_PIECE, atype, work, 0);
6624                         piece->u.cval = i;
6625                         LHS(work, i) = piece;
6626                         RHS(val, i) = piece;
6627                 }
6628                 work = val;
6629         }
6630         if (result) {
6631                 work = write_expr(state, result, work);
6632         }
6633         work = flatten(state, first, work);
6634         last = flatten(state, first, label(state));
6635         name_len = strlen(name);
6636         ident = lookup(state, name, name_len);
6637         symbol(state, ident, &ident->sym_ident, def, ftype);
6638         
6639         state->file = file.prev;
6640         state->function = 0;
6641 #if 0
6642         fprintf(stdout, "\n");
6643         loc(stdout, state, 0);
6644         fprintf(stdout, "\n__________ builtin_function _________\n");
6645         print_triple(state, def);
6646         fprintf(stdout, "__________ builtin_function _________ done\n\n");
6647 #endif
6648 }
6649
6650 static struct type *partial_struct(struct compile_state *state,
6651         const char *field_name, struct type *type, struct type *rest)
6652 {
6653         struct hash_entry *field_ident;
6654         struct type *result;
6655         int field_name_len;
6656
6657         field_name_len = strlen(field_name);
6658         field_ident = lookup(state, field_name, field_name_len);
6659
6660         result = clone_type(0, type);
6661         result->field_ident = field_ident;
6662
6663         if (rest) {
6664                 result = new_type(TYPE_PRODUCT, result, rest);
6665         }
6666         return result;
6667 }
6668
6669 static struct type *register_builtin_type(struct compile_state *state,
6670         const char *name, struct type *type)
6671 {
6672         struct hash_entry *ident;
6673         int name_len;
6674
6675         name_len = strlen(name);
6676         ident = lookup(state, name, name_len);
6677         
6678         if ((type->type & TYPE_MASK) == TYPE_PRODUCT) {
6679                 ulong_t elements = 0;
6680                 struct type *field;
6681                 type = new_type(TYPE_STRUCT, type, 0);
6682                 field = type->left;
6683                 while((field->type & TYPE_MASK) == TYPE_PRODUCT) {
6684                         elements++;
6685                         field = field->right;
6686                 }
6687                 elements++;
6688                 symbol(state, ident, &ident->sym_struct, 0, type);
6689                 type->type_ident = ident;
6690                 type->elements = elements;
6691         }
6692         symbol(state, ident, &ident->sym_ident, 0, type);
6693         ident->tok = TOK_TYPE_NAME;
6694         return type;
6695 }
6696
6697
6698 static void register_builtins(struct compile_state *state)
6699 {
6700         struct type *msr_type;
6701
6702         register_builtin_function(state, "__builtin_inb", OP_INB, &uchar_type, 
6703                 &ushort_type);
6704         register_builtin_function(state, "__builtin_inw", OP_INW, &ushort_type,
6705                 &ushort_type);
6706         register_builtin_function(state, "__builtin_inl", OP_INL, &uint_type,   
6707                 &ushort_type);
6708
6709         register_builtin_function(state, "__builtin_outb", OP_OUTB, &void_type, 
6710                 &uchar_type, &ushort_type);
6711         register_builtin_function(state, "__builtin_outw", OP_OUTW, &void_type, 
6712                 &ushort_type, &ushort_type);
6713         register_builtin_function(state, "__builtin_outl", OP_OUTL, &void_type, 
6714                 &uint_type, &ushort_type);
6715         
6716         register_builtin_function(state, "__builtin_bsf", OP_BSF, &int_type, 
6717                 &int_type);
6718         register_builtin_function(state, "__builtin_bsr", OP_BSR, &int_type, 
6719                 &int_type);
6720
6721         msr_type = register_builtin_type(state, "__builtin_msr_t",
6722                 partial_struct(state, "lo", &ulong_type,
6723                 partial_struct(state, "hi", &ulong_type, 0)));
6724
6725         register_builtin_function(state, "__builtin_rdmsr", OP_RDMSR, msr_type,
6726                 &ulong_type);
6727         register_builtin_function(state, "__builtin_wrmsr", OP_WRMSR, &void_type,
6728                 &ulong_type, &ulong_type, &ulong_type);
6729         
6730         register_builtin_function(state, "__builtin_hlt", OP_HLT, &void_type, 
6731                 &void_type);
6732 }
6733
6734 static struct type *declarator(
6735         struct compile_state *state, struct type *type, 
6736         struct hash_entry **ident, int need_ident);
6737 static void decl(struct compile_state *state, struct triple *first);
6738 static struct type *specifier_qualifier_list(struct compile_state *state);
6739 static int isdecl_specifier(int tok);
6740 static struct type *decl_specifiers(struct compile_state *state);
6741 static int istype(int tok);
6742 static struct triple *expr(struct compile_state *state);
6743 static struct triple *assignment_expr(struct compile_state *state);
6744 static struct type *type_name(struct compile_state *state);
6745 static void statement(struct compile_state *state, struct triple *fist);
6746
6747 static struct triple *call_expr(
6748         struct compile_state *state, struct triple *func)
6749 {
6750         struct triple *def;
6751         struct type *param, *type;
6752         ulong_t pvals, index;
6753
6754         if ((func->type->type & TYPE_MASK) != TYPE_FUNCTION) {
6755                 error(state, 0, "Called object is not a function");
6756         }
6757         if (func->op != OP_LIST) {
6758                 internal_error(state, 0, "improper function");
6759         }
6760         eat(state, TOK_LPAREN);
6761         /* Find the return type without any specifiers */
6762         type = clone_type(0, func->type->left);
6763         def = new_triple(state, OP_CALL, func->type, -1, -1);
6764         def->type = type;
6765
6766         pvals = TRIPLE_RHS(def->sizes);
6767         MISC(def, 0) = func;
6768
6769         param = func->type->right;
6770         for(index = 0; index < pvals; index++) {
6771                 struct triple *val;
6772                 struct type *arg_type;
6773                 val = read_expr(state, assignment_expr(state));
6774                 arg_type = param;
6775                 if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
6776                         arg_type = param->left;
6777                 }
6778                 write_compatible(state, arg_type, val->type);
6779                 RHS(def, index) = val;
6780                 if (index != (pvals - 1)) {
6781                         eat(state, TOK_COMMA);
6782                         param = param->right;
6783                 }
6784         }
6785         eat(state, TOK_RPAREN);
6786         return def;
6787 }
6788
6789
6790 static struct triple *character_constant(struct compile_state *state)
6791 {
6792         struct triple *def;
6793         struct token *tk;
6794         const signed char *str, *end;
6795         int c;
6796         int str_len;
6797         eat(state, TOK_LIT_CHAR);
6798         tk = &state->token[0];
6799         str = tk->val.str + 1;
6800         str_len = tk->str_len - 2;
6801         if (str_len <= 0) {
6802                 error(state, 0, "empty character constant");
6803         }
6804         end = str + str_len;
6805         c = char_value(state, &str, end);
6806         if (str != end) {
6807                 error(state, 0, "multibyte character constant not supported");
6808         }
6809         def = int_const(state, &char_type, (ulong_t)((long_t)c));
6810         return def;
6811 }
6812
6813 static struct triple *string_constant(struct compile_state *state)
6814 {
6815         struct triple *def;
6816         struct token *tk;
6817         struct type *type;
6818         const signed char *str, *end;
6819         signed char *buf, *ptr;
6820         int str_len;
6821
6822         buf = 0;
6823         type = new_type(TYPE_ARRAY, &char_type, 0);
6824         type->elements = 0;
6825         /* The while loop handles string concatenation */
6826         do {
6827                 eat(state, TOK_LIT_STRING);
6828                 tk = &state->token[0];
6829                 str = tk->val.str + 1;
6830                 str_len = tk->str_len - 2;
6831                 if (str_len < 0) {
6832                         error(state, 0, "negative string constant length");
6833                 }
6834                 end = str + str_len;
6835                 ptr = buf;
6836                 buf = xmalloc(type->elements + str_len + 1, "string_constant");
6837                 memcpy(buf, ptr, type->elements);
6838                 ptr = buf + type->elements;
6839                 do {
6840                         *ptr++ = char_value(state, &str, end);
6841                 } while(str < end);
6842                 type->elements = ptr - buf;
6843         } while(peek(state) == TOK_LIT_STRING);
6844         *ptr = '\0';
6845         type->elements += 1;
6846         def = triple(state, OP_BLOBCONST, type, 0, 0);
6847         def->u.blob = buf;
6848         return def;
6849 }
6850
6851
6852 static struct triple *integer_constant(struct compile_state *state)
6853 {
6854         struct triple *def;
6855         unsigned long val;
6856         struct token *tk;
6857         char *end;
6858         int u, l, decimal;
6859         struct type *type;
6860
6861         eat(state, TOK_LIT_INT);
6862         tk = &state->token[0];
6863         errno = 0;
6864         decimal = (tk->val.str[0] != '0');
6865         val = strtoul(tk->val.str, &end, 0);
6866         if ((val == ULONG_MAX) && (errno == ERANGE)) {
6867                 error(state, 0, "Integer constant to large");
6868         }
6869         u = l = 0;
6870         if ((*end == 'u') || (*end == 'U')) {
6871                 u = 1;
6872                         end++;
6873         }
6874         if ((*end == 'l') || (*end == 'L')) {
6875                 l = 1;
6876                 end++;
6877         }
6878         if ((*end == 'u') || (*end == 'U')) {
6879                 u = 1;
6880                 end++;
6881         }
6882         if (*end) {
6883                 error(state, 0, "Junk at end of integer constant");
6884         }
6885         if (u && l)  {
6886                 type = &ulong_type;
6887         }
6888         else if (l) {
6889                 type = &long_type;
6890                 if (!decimal && (val > LONG_MAX)) {
6891                         type = &ulong_type;
6892                 }
6893         }
6894         else if (u) {
6895                 type = &uint_type;
6896                 if (val > UINT_MAX) {
6897                         type = &ulong_type;
6898                 }
6899         }
6900         else {
6901                 type = &int_type;
6902                 if (!decimal && (val > INT_MAX) && (val <= UINT_MAX)) {
6903                         type = &uint_type;
6904                 }
6905                 else if (!decimal && (val > LONG_MAX)) {
6906                         type = &ulong_type;
6907                 }
6908                 else if (val > INT_MAX) {
6909                         type = &long_type;
6910                 }
6911         }
6912         def = int_const(state, type, val);
6913         return def;
6914 }
6915
6916 static struct triple *primary_expr(struct compile_state *state)
6917 {
6918         struct triple *def;
6919         int tok;
6920         tok = peek(state);
6921         switch(tok) {
6922         case TOK_IDENT:
6923         {
6924                 struct hash_entry *ident;
6925                 /* Here ident is either:
6926                  * a varable name
6927                  * a function name
6928                  * an enumeration constant.
6929                  */
6930                 eat(state, TOK_IDENT);
6931                 ident = state->token[0].ident;
6932                 if (!ident->sym_ident) {
6933                         error(state, 0, "%s undeclared", ident->name);
6934                 }
6935                 def = ident->sym_ident->def;
6936                 break;
6937         }
6938         case TOK_ENUM_CONST:
6939                 /* Here ident is an enumeration constant */
6940                 eat(state, TOK_ENUM_CONST);
6941                 def = 0;
6942                 FINISHME();
6943                 break;
6944         case TOK_LPAREN:
6945                 eat(state, TOK_LPAREN);
6946                 def = expr(state);
6947                 eat(state, TOK_RPAREN);
6948                 break;
6949         case TOK_LIT_INT:
6950                 def = integer_constant(state);
6951                 break;
6952         case TOK_LIT_FLOAT:
6953                 eat(state, TOK_LIT_FLOAT);
6954                 error(state, 0, "Floating point constants not supported");
6955                 def = 0;
6956                 FINISHME();
6957                 break;
6958         case TOK_LIT_CHAR:
6959                 def = character_constant(state);
6960                 break;
6961         case TOK_LIT_STRING:
6962                 def = string_constant(state);
6963                 break;
6964         default:
6965                 def = 0;
6966                 error(state, 0, "Unexpected token: %s\n", tokens[tok]);
6967         }
6968         return def;
6969 }
6970
6971 static struct triple *postfix_expr(struct compile_state *state)
6972 {
6973         struct triple *def;
6974         int postfix;
6975         def = primary_expr(state);
6976         do {
6977                 struct triple *left;
6978                 int tok;
6979                 postfix = 1;
6980                 left = def;
6981                 switch((tok = peek(state))) {
6982                 case TOK_LBRACKET:
6983                         eat(state, TOK_LBRACKET);
6984                         def = mk_subscript_expr(state, left, expr(state));
6985                         eat(state, TOK_RBRACKET);
6986                         break;
6987                 case TOK_LPAREN:
6988                         def = call_expr(state, def);
6989                         break;
6990                 case TOK_DOT:
6991                 {
6992                         struct hash_entry *field;
6993                         eat(state, TOK_DOT);
6994                         eat(state, TOK_IDENT);
6995                         field = state->token[0].ident;
6996                         def = deref_field(state, def, field);
6997                         break;
6998                 }
6999                 case TOK_ARROW:
7000                 {
7001                         struct hash_entry *field;
7002                         eat(state, TOK_ARROW);
7003                         eat(state, TOK_IDENT);
7004                         field = state->token[0].ident;
7005                         def = mk_deref_expr(state, read_expr(state, def));
7006                         def = deref_field(state, def, field);
7007                         break;
7008                 }
7009                 case TOK_PLUSPLUS:
7010                         eat(state, TOK_PLUSPLUS);
7011                         def = mk_post_inc_expr(state, left);
7012                         break;
7013                 case TOK_MINUSMINUS:
7014                         eat(state, TOK_MINUSMINUS);
7015                         def = mk_post_dec_expr(state, left);
7016                         break;
7017                 default:
7018                         postfix = 0;
7019                         break;
7020                 }
7021         } while(postfix);
7022         return def;
7023 }
7024
7025 static struct triple *cast_expr(struct compile_state *state);
7026
7027 static struct triple *unary_expr(struct compile_state *state)
7028 {
7029         struct triple *def, *right;
7030         int tok;
7031         switch((tok = peek(state))) {
7032         case TOK_PLUSPLUS:
7033                 eat(state, TOK_PLUSPLUS);
7034                 def = mk_pre_inc_expr(state, unary_expr(state));
7035                 break;
7036         case TOK_MINUSMINUS:
7037                 eat(state, TOK_MINUSMINUS);
7038                 def = mk_pre_dec_expr(state, unary_expr(state));
7039                 break;
7040         case TOK_AND:
7041                 eat(state, TOK_AND);
7042                 def = mk_addr_expr(state, cast_expr(state), 0);
7043                 break;
7044         case TOK_STAR:
7045                 eat(state, TOK_STAR);
7046                 def = mk_deref_expr(state, read_expr(state, cast_expr(state)));
7047                 break;
7048         case TOK_PLUS:
7049                 eat(state, TOK_PLUS);
7050                 right = read_expr(state, cast_expr(state));
7051                 arithmetic(state, right);
7052                 def = integral_promotion(state, right);
7053                 break;
7054         case TOK_MINUS:
7055                 eat(state, TOK_MINUS);
7056                 right = read_expr(state, cast_expr(state));
7057                 arithmetic(state, right);
7058                 def = integral_promotion(state, right);
7059                 def = triple(state, OP_NEG, def->type, def, 0);
7060                 break;
7061         case TOK_TILDE:
7062                 eat(state, TOK_TILDE);
7063                 right = read_expr(state, cast_expr(state));
7064                 integral(state, right);
7065                 def = integral_promotion(state, right);
7066                 def = triple(state, OP_INVERT, def->type, def, 0);
7067                 break;
7068         case TOK_BANG:
7069                 eat(state, TOK_BANG);
7070                 right = read_expr(state, cast_expr(state));
7071                 bool(state, right);
7072                 def = lfalse_expr(state, right);
7073                 break;
7074         case TOK_SIZEOF:
7075         {
7076                 struct type *type;
7077                 int tok1, tok2;
7078                 eat(state, TOK_SIZEOF);
7079                 tok1 = peek(state);
7080                 tok2 = peek2(state);
7081                 if ((tok1 == TOK_LPAREN) && istype(tok2)) {
7082                         eat(state, TOK_LPAREN);
7083                         type = type_name(state);
7084                         eat(state, TOK_RPAREN);
7085                 }
7086                 else {
7087                         struct triple *expr;
7088                         expr = unary_expr(state);
7089                         type = expr->type;
7090                         release_expr(state, expr);
7091                 }
7092                 def = int_const(state, &ulong_type, size_of(state, type));
7093                 break;
7094         }
7095         case TOK_ALIGNOF:
7096         {
7097                 struct type *type;
7098                 int tok1, tok2;
7099                 eat(state, TOK_ALIGNOF);
7100                 tok1 = peek(state);
7101                 tok2 = peek2(state);
7102                 if ((tok1 == TOK_LPAREN) && istype(tok2)) {
7103                         eat(state, TOK_LPAREN);
7104                         type = type_name(state);
7105                         eat(state, TOK_RPAREN);
7106                 }
7107                 else {
7108                         struct triple *expr;
7109                         expr = unary_expr(state);
7110                         type = expr->type;
7111                         release_expr(state, expr);
7112                 }
7113                 def = int_const(state, &ulong_type, align_of(state, type));
7114                 break;
7115         }
7116         default:
7117                 def = postfix_expr(state);
7118                 break;
7119         }
7120         return def;
7121 }
7122
7123 static struct triple *cast_expr(struct compile_state *state)
7124 {
7125         struct triple *def;
7126         int tok1, tok2;
7127         tok1 = peek(state);
7128         tok2 = peek2(state);
7129         if ((tok1 == TOK_LPAREN) && istype(tok2)) {
7130                 struct type *type;
7131                 eat(state, TOK_LPAREN);
7132                 type = type_name(state);
7133                 eat(state, TOK_RPAREN);
7134                 def = read_expr(state, cast_expr(state));
7135                 def = triple(state, OP_COPY, type, def, 0);
7136         }
7137         else {
7138                 def = unary_expr(state);
7139         }
7140         return def;
7141 }
7142
7143 static struct triple *mult_expr(struct compile_state *state)
7144 {
7145         struct triple *def;
7146         int done;
7147         def = cast_expr(state);
7148         do {
7149                 struct triple *left, *right;
7150                 struct type *result_type;
7151                 int tok, op, sign;
7152                 done = 0;
7153                 switch(tok = (peek(state))) {
7154                 case TOK_STAR:
7155                 case TOK_DIV:
7156                 case TOK_MOD:
7157                         left = read_expr(state, def);
7158                         arithmetic(state, left);
7159
7160                         eat(state, tok);
7161
7162                         right = read_expr(state, cast_expr(state));
7163                         arithmetic(state, right);
7164
7165                         result_type = arithmetic_result(state, left, right);
7166                         sign = is_signed(result_type);
7167                         op = -1;
7168                         switch(tok) {
7169                         case TOK_STAR: op = sign? OP_SMUL : OP_UMUL; break;
7170                         case TOK_DIV:  op = sign? OP_SDIV : OP_UDIV; break;
7171                         case TOK_MOD:  op = sign? OP_SMOD : OP_UMOD; break;
7172                         }
7173                         def = triple(state, op, result_type, left, right);
7174                         break;
7175                 default:
7176                         done = 1;
7177                         break;
7178                 }
7179         } while(!done);
7180         return def;
7181 }
7182
7183 static struct triple *add_expr(struct compile_state *state)
7184 {
7185         struct triple *def;
7186         int done;
7187         def = mult_expr(state);
7188         do {
7189                 done = 0;
7190                 switch( peek(state)) {
7191                 case TOK_PLUS:
7192                         eat(state, TOK_PLUS);
7193                         def = mk_add_expr(state, def, mult_expr(state));
7194                         break;
7195                 case TOK_MINUS:
7196                         eat(state, TOK_MINUS);
7197                         def = mk_sub_expr(state, def, mult_expr(state));
7198                         break;
7199                 default:
7200                         done = 1;
7201                         break;
7202                 }
7203         } while(!done);
7204         return def;
7205 }
7206
7207 static struct triple *shift_expr(struct compile_state *state)
7208 {
7209         struct triple *def;
7210         int done;
7211         def = add_expr(state);
7212         do {
7213                 struct triple *left, *right;
7214                 int tok, op;
7215                 done = 0;
7216                 switch((tok = peek(state))) {
7217                 case TOK_SL:
7218                 case TOK_SR:
7219                         left = read_expr(state, def);
7220                         integral(state, left);
7221                         left = integral_promotion(state, left);
7222
7223                         eat(state, tok);
7224
7225                         right = read_expr(state, add_expr(state));
7226                         integral(state, right);
7227                         right = integral_promotion(state, right);
7228                         
7229                         op = (tok == TOK_SL)? OP_SL : 
7230                                 is_signed(left->type)? OP_SSR: OP_USR;
7231
7232                         def = triple(state, op, left->type, left, right);
7233                         break;
7234                 default:
7235                         done = 1;
7236                         break;
7237                 }
7238         } while(!done);
7239         return def;
7240 }
7241
7242 static struct triple *relational_expr(struct compile_state *state)
7243 {
7244 #warning "Extend relational exprs to work on more than arithmetic types"
7245         struct triple *def;
7246         int done;
7247         def = shift_expr(state);
7248         do {
7249                 struct triple *left, *right;
7250                 struct type *arg_type;
7251                 int tok, op, sign;
7252                 done = 0;
7253                 switch((tok = peek(state))) {
7254                 case TOK_LESS:
7255                 case TOK_MORE:
7256                 case TOK_LESSEQ:
7257                 case TOK_MOREEQ:
7258                         left = read_expr(state, def);
7259                         arithmetic(state, left);
7260
7261                         eat(state, tok);
7262
7263                         right = read_expr(state, shift_expr(state));
7264                         arithmetic(state, right);
7265
7266                         arg_type = arithmetic_result(state, left, right);
7267                         sign = is_signed(arg_type);
7268                         op = -1;
7269                         switch(tok) {
7270                         case TOK_LESS:   op = sign? OP_SLESS : OP_ULESS; break;
7271                         case TOK_MORE:   op = sign? OP_SMORE : OP_UMORE; break;
7272                         case TOK_LESSEQ: op = sign? OP_SLESSEQ : OP_ULESSEQ; break;
7273                         case TOK_MOREEQ: op = sign? OP_SMOREEQ : OP_UMOREEQ; break;
7274                         }
7275                         def = triple(state, op, &int_type, left, right);
7276                         break;
7277                 default:
7278                         done = 1;
7279                         break;
7280                 }
7281         } while(!done);
7282         return def;
7283 }
7284
7285 static struct triple *equality_expr(struct compile_state *state)
7286 {
7287 #warning "Extend equality exprs to work on more than arithmetic types"
7288         struct triple *def;
7289         int done;
7290         def = relational_expr(state);
7291         do {
7292                 struct triple *left, *right;
7293                 int tok, op;
7294                 done = 0;
7295                 switch((tok = peek(state))) {
7296                 case TOK_EQEQ:
7297                 case TOK_NOTEQ:
7298                         left = read_expr(state, def);
7299                         arithmetic(state, left);
7300                         eat(state, tok);
7301                         right = read_expr(state, relational_expr(state));
7302                         arithmetic(state, right);
7303                         op = (tok == TOK_EQEQ) ? OP_EQ: OP_NOTEQ;
7304                         def = triple(state, op, &int_type, left, right);
7305                         break;
7306                 default:
7307                         done = 1;
7308                         break;
7309                 }
7310         } while(!done);
7311         return def;
7312 }
7313
7314 static struct triple *and_expr(struct compile_state *state)
7315 {
7316         struct triple *def;
7317         def = equality_expr(state);
7318         while(peek(state) == TOK_AND) {
7319                 struct triple *left, *right;
7320                 struct type *result_type;
7321                 left = read_expr(state, def);
7322                 integral(state, left);
7323                 eat(state, TOK_AND);
7324                 right = read_expr(state, equality_expr(state));
7325                 integral(state, right);
7326                 result_type = arithmetic_result(state, left, right);
7327                 def = triple(state, OP_AND, result_type, left, right);
7328         }
7329         return def;
7330 }
7331
7332 static struct triple *xor_expr(struct compile_state *state)
7333 {
7334         struct triple *def;
7335         def = and_expr(state);
7336         while(peek(state) == TOK_XOR) {
7337                 struct triple *left, *right;
7338                 struct type *result_type;
7339                 left = read_expr(state, def);
7340                 integral(state, left);
7341                 eat(state, TOK_XOR);
7342                 right = read_expr(state, and_expr(state));
7343                 integral(state, right);
7344                 result_type = arithmetic_result(state, left, right);
7345                 def = triple(state, OP_XOR, result_type, left, right);
7346         }
7347         return def;
7348 }
7349
7350 static struct triple *or_expr(struct compile_state *state)
7351 {
7352         struct triple *def;
7353         def = xor_expr(state);
7354         while(peek(state) == TOK_OR) {
7355                 struct triple *left, *right;
7356                 struct type *result_type;
7357                 left = read_expr(state, def);
7358                 integral(state, left);
7359                 eat(state, TOK_OR);
7360                 right = read_expr(state, xor_expr(state));
7361                 integral(state, right);
7362                 result_type = arithmetic_result(state, left, right);
7363                 def = triple(state, OP_OR, result_type, left, right);
7364         }
7365         return def;
7366 }
7367
7368 static struct triple *land_expr(struct compile_state *state)
7369 {
7370         struct triple *def;
7371         def = or_expr(state);
7372         while(peek(state) == TOK_LOGAND) {
7373                 struct triple *left, *right;
7374                 left = read_expr(state, def);
7375                 bool(state, left);
7376                 eat(state, TOK_LOGAND);
7377                 right = read_expr(state, or_expr(state));
7378                 bool(state, right);
7379
7380                 def = triple(state, OP_LAND, &int_type,
7381                         ltrue_expr(state, left),
7382                         ltrue_expr(state, right));
7383         }
7384         return def;
7385 }
7386
7387 static struct triple *lor_expr(struct compile_state *state)
7388 {
7389         struct triple *def;
7390         def = land_expr(state);
7391         while(peek(state) == TOK_LOGOR) {
7392                 struct triple *left, *right;
7393                 left = read_expr(state, def);
7394                 bool(state, left);
7395                 eat(state, TOK_LOGOR);
7396                 right = read_expr(state, land_expr(state));
7397                 bool(state, right);
7398                 
7399                 def = triple(state, OP_LOR, &int_type,
7400                         ltrue_expr(state, left),
7401                         ltrue_expr(state, right));
7402         }
7403         return def;
7404 }
7405
7406 static struct triple *conditional_expr(struct compile_state *state)
7407 {
7408         struct triple *def;
7409         def = lor_expr(state);
7410         if (peek(state) == TOK_QUEST) {
7411                 struct triple *test, *left, *right;
7412                 bool(state, def);
7413                 test = ltrue_expr(state, read_expr(state, def));
7414                 eat(state, TOK_QUEST);
7415                 left = read_expr(state, expr(state));
7416                 eat(state, TOK_COLON);
7417                 right = read_expr(state, conditional_expr(state));
7418
7419                 def = cond_expr(state, test, left, right);
7420         }
7421         return def;
7422 }
7423
7424 static struct triple *eval_const_expr(
7425         struct compile_state *state, struct triple *expr)
7426 {
7427         struct triple *def;
7428         struct triple *head, *ptr;
7429         head = label(state); /* dummy initial triple */
7430         flatten(state, head, expr);
7431         for(ptr = head->next; ptr != head; ptr = ptr->next) {
7432                 simplify(state, ptr);
7433         }
7434         /* Remove the constant value the tail of the list */
7435         def = head->prev;
7436         def->prev->next = def->next;
7437         def->next->prev = def->prev;
7438         def->next = def->prev = def;
7439         if (!is_const(def)) {
7440                 internal_error(state, 0, "Not a constant expression");
7441         }
7442         /* Free the intermediate expressions */
7443         while(head->next != head) {
7444                 release_triple(state, head->next);
7445         }
7446         free_triple(state, head);
7447         return def;
7448 }
7449
7450 static struct triple *constant_expr(struct compile_state *state)
7451 {
7452         return eval_const_expr(state, conditional_expr(state));
7453 }
7454
7455 static struct triple *assignment_expr(struct compile_state *state)
7456 {
7457         struct triple *def, *left, *right;
7458         int tok, op, sign;
7459         /* The C grammer in K&R shows assignment expressions
7460          * only taking unary expressions as input on their
7461          * left hand side.  But specifies the precedence of
7462          * assignemnt as the lowest operator except for comma.
7463          *
7464          * Allowing conditional expressions on the left hand side
7465          * of an assignement results in a grammar that accepts
7466          * a larger set of statements than standard C.   As long
7467          * as the subset of the grammar that is standard C behaves
7468          * correctly this should cause no problems.
7469          * 
7470          * For the extra token strings accepted by the grammar
7471          * none of them should produce a valid lvalue, so they
7472          * should not produce functioning programs.
7473          *
7474          * GCC has this bug as well, so surprises should be minimal.
7475          */
7476         def = conditional_expr(state);
7477         left = def;
7478         switch((tok = peek(state))) {
7479         case TOK_EQ:
7480                 lvalue(state, left);
7481                 eat(state, TOK_EQ);
7482                 def = write_expr(state, left, 
7483                         read_expr(state, assignment_expr(state)));
7484                 break;
7485         case TOK_TIMESEQ:
7486         case TOK_DIVEQ:
7487         case TOK_MODEQ:
7488                 lvalue(state, left);
7489                 arithmetic(state, left);
7490                 eat(state, tok);
7491                 right = read_expr(state, assignment_expr(state));
7492                 arithmetic(state, right);
7493
7494                 sign = is_signed(left->type);
7495                 op = -1;
7496                 switch(tok) {
7497                 case TOK_TIMESEQ: op = sign? OP_SMUL : OP_UMUL; break;
7498                 case TOK_DIVEQ:   op = sign? OP_SDIV : OP_UDIV; break;
7499                 case TOK_MODEQ:   op = sign? OP_SMOD : OP_UMOD; break;
7500                 }
7501                 def = write_expr(state, left,
7502                         triple(state, op, left->type, 
7503                                 read_expr(state, left), right));
7504                 break;
7505         case TOK_PLUSEQ:
7506                 lvalue(state, left);
7507                 eat(state, TOK_PLUSEQ);
7508                 def = write_expr(state, left,
7509                         mk_add_expr(state, left, assignment_expr(state)));
7510                 break;
7511         case TOK_MINUSEQ:
7512                 lvalue(state, left);
7513                 eat(state, TOK_MINUSEQ);
7514                 def = write_expr(state, left,
7515                         mk_sub_expr(state, left, assignment_expr(state)));
7516                 break;
7517         case TOK_SLEQ:
7518         case TOK_SREQ:
7519         case TOK_ANDEQ:
7520         case TOK_XOREQ:
7521         case TOK_OREQ:
7522                 lvalue(state, left);
7523                 integral(state, left);
7524                 eat(state, tok);
7525                 right = read_expr(state, assignment_expr(state));
7526                 integral(state, right);
7527                 right = integral_promotion(state, right);
7528                 sign = is_signed(left->type);
7529                 op = -1;
7530                 switch(tok) {
7531                 case TOK_SLEQ:  op = OP_SL; break;
7532                 case TOK_SREQ:  op = sign? OP_SSR: OP_USR; break;
7533                 case TOK_ANDEQ: op = OP_AND; break;
7534                 case TOK_XOREQ: op = OP_XOR; break;
7535                 case TOK_OREQ:  op = OP_OR; break;
7536                 }
7537                 def = write_expr(state, left,
7538                         triple(state, op, left->type, 
7539                                 read_expr(state, left), right));
7540                 break;
7541         }
7542         return def;
7543 }
7544
7545 static struct triple *expr(struct compile_state *state)
7546 {
7547         struct triple *def;
7548         def = assignment_expr(state);
7549         while(peek(state) == TOK_COMMA) {
7550                 struct triple *left, *right;
7551                 left = def;
7552                 eat(state, TOK_COMMA);
7553                 right = assignment_expr(state);
7554                 def = triple(state, OP_COMMA, right->type, left, right);
7555         }
7556         return def;
7557 }
7558
7559 static void expr_statement(struct compile_state *state, struct triple *first)
7560 {
7561         if (peek(state) != TOK_SEMI) {
7562                 flatten(state, first, expr(state));
7563         }
7564         eat(state, TOK_SEMI);
7565 }
7566
7567 static void if_statement(struct compile_state *state, struct triple *first)
7568 {
7569         struct triple *test, *jmp1, *jmp2, *middle, *end;
7570
7571         jmp1 = jmp2 = middle = 0;
7572         eat(state, TOK_IF);
7573         eat(state, TOK_LPAREN);
7574         test = expr(state);
7575         bool(state, test);
7576         /* Cleanup and invert the test */
7577         test = lfalse_expr(state, read_expr(state, test));
7578         eat(state, TOK_RPAREN);
7579         /* Generate the needed pieces */
7580         middle = label(state);
7581         jmp1 = branch(state, middle, test);
7582         /* Thread the pieces together */
7583         flatten(state, first, test);
7584         flatten(state, first, jmp1);
7585         flatten(state, first, label(state));
7586         statement(state, first);
7587         if (peek(state) == TOK_ELSE) {
7588                 eat(state, TOK_ELSE);
7589                 /* Generate the rest of the pieces */
7590                 end = label(state);
7591                 jmp2 = branch(state, end, 0);
7592                 /* Thread them together */
7593                 flatten(state, first, jmp2);
7594                 flatten(state, first, middle);
7595                 statement(state, first);
7596                 flatten(state, first, end);
7597         }
7598         else {
7599                 flatten(state, first, middle);
7600         }
7601 }
7602
7603 static void for_statement(struct compile_state *state, struct triple *first)
7604 {
7605         struct triple *head, *test, *tail, *jmp1, *jmp2, *end;
7606         struct triple *label1, *label2, *label3;
7607         struct hash_entry *ident;
7608
7609         eat(state, TOK_FOR);
7610         eat(state, TOK_LPAREN);
7611         head = test = tail = jmp1 = jmp2 = 0;
7612         if (peek(state) != TOK_SEMI) {
7613                 head = expr(state);
7614         } 
7615         eat(state, TOK_SEMI);
7616         if (peek(state) != TOK_SEMI) {
7617                 test = expr(state);
7618                 bool(state, test);
7619                 test = ltrue_expr(state, read_expr(state, test));
7620         }
7621         eat(state, TOK_SEMI);
7622         if (peek(state) != TOK_RPAREN) {
7623                 tail = expr(state);
7624         }
7625         eat(state, TOK_RPAREN);
7626         /* Generate the needed pieces */
7627         label1 = label(state);
7628         label2 = label(state);
7629         label3 = label(state);
7630         if (test) {
7631                 jmp1 = branch(state, label3, 0);
7632                 jmp2 = branch(state, label1, test);
7633         }
7634         else {
7635                 jmp2 = branch(state, label1, 0);
7636         }
7637         end = label(state);
7638         /* Remember where break and continue go */
7639         start_scope(state);
7640         ident = state->i_break;
7641         symbol(state, ident, &ident->sym_ident, end, end->type);
7642         ident = state->i_continue;
7643         symbol(state, ident, &ident->sym_ident, label2, label2->type);
7644         /* Now include the body */
7645         flatten(state, first, head);
7646         flatten(state, first, jmp1);
7647         flatten(state, first, label1);
7648         statement(state, first);
7649         flatten(state, first, label2);
7650         flatten(state, first, tail);
7651         flatten(state, first, label3);
7652         flatten(state, first, test);
7653         flatten(state, first, jmp2);
7654         flatten(state, first, end);
7655         /* Cleanup the break/continue scope */
7656         end_scope(state);
7657 }
7658
7659 static void while_statement(struct compile_state *state, struct triple *first)
7660 {
7661         struct triple *label1, *test, *label2, *jmp1, *jmp2, *end;
7662         struct hash_entry *ident;
7663         eat(state, TOK_WHILE);
7664         eat(state, TOK_LPAREN);
7665         test = expr(state);
7666         bool(state, test);
7667         test = ltrue_expr(state, read_expr(state, test));
7668         eat(state, TOK_RPAREN);
7669         /* Generate the needed pieces */
7670         label1 = label(state);
7671         label2 = label(state);
7672         jmp1 = branch(state, label2, 0);
7673         jmp2 = branch(state, label1, test);
7674         end = label(state);
7675         /* Remember where break and continue go */
7676         start_scope(state);
7677         ident = state->i_break;
7678         symbol(state, ident, &ident->sym_ident, end, end->type);
7679         ident = state->i_continue;
7680         symbol(state, ident, &ident->sym_ident, label2, label2->type);
7681         /* Thread them together */
7682         flatten(state, first, jmp1);
7683         flatten(state, first, label1);
7684         statement(state, first);
7685         flatten(state, first, label2);
7686         flatten(state, first, test);
7687         flatten(state, first, jmp2);
7688         flatten(state, first, end);
7689         /* Cleanup the break/continue scope */
7690         end_scope(state);
7691 }
7692
7693 static void do_statement(struct compile_state *state, struct triple *first)
7694 {
7695         struct triple *label1, *label2, *test, *end;
7696         struct hash_entry *ident;
7697         eat(state, TOK_DO);
7698         /* Generate the needed pieces */
7699         label1 = label(state);
7700         label2 = label(state);
7701         end = label(state);
7702         /* Remember where break and continue go */
7703         start_scope(state);
7704         ident = state->i_break;
7705         symbol(state, ident, &ident->sym_ident, end, end->type);
7706         ident = state->i_continue;
7707         symbol(state, ident, &ident->sym_ident, label2, label2->type);
7708         /* Now include the body */
7709         flatten(state, first, label1);
7710         statement(state, first);
7711         /* Cleanup the break/continue scope */
7712         end_scope(state);
7713         /* Eat the rest of the loop */
7714         eat(state, TOK_WHILE);
7715         eat(state, TOK_LPAREN);
7716         test = read_expr(state, expr(state));
7717         bool(state, test);
7718         eat(state, TOK_RPAREN);
7719         eat(state, TOK_SEMI);
7720         /* Thread the pieces together */
7721         test = ltrue_expr(state, test);
7722         flatten(state, first, label2);
7723         flatten(state, first, test);
7724         flatten(state, first, branch(state, label1, test));
7725         flatten(state, first, end);
7726 }
7727
7728
7729 static void return_statement(struct compile_state *state, struct triple *first)
7730 {
7731         struct triple *jmp, *mv, *dest, *var, *val;
7732         int last;
7733         eat(state, TOK_RETURN);
7734
7735 #warning "FIXME implement a more general excess branch elimination"
7736         val = 0;
7737         /* If we have a return value do some more work */
7738         if (peek(state) != TOK_SEMI) {
7739                 val = read_expr(state, expr(state));
7740         }
7741         eat(state, TOK_SEMI);
7742
7743         /* See if this last statement in a function */
7744         last = ((peek(state) == TOK_RBRACE) && 
7745                 (state->scope_depth == GLOBAL_SCOPE_DEPTH +2));
7746
7747         /* Find the return variable */
7748         var = MISC(state->main_function, 0);
7749         /* Find the return destination */
7750         dest = RHS(state->main_function, 0)->prev;
7751         mv = jmp = 0;
7752         /* If needed generate a jump instruction */
7753         if (!last) {
7754                 jmp = branch(state, dest, 0);
7755         }
7756         /* If needed generate an assignment instruction */
7757         if (val) {
7758                 mv = write_expr(state, var, val);
7759         }
7760         /* Now put the code together */
7761         if (mv) {
7762                 flatten(state, first, mv);
7763                 flatten(state, first, jmp);
7764         }
7765         else if (jmp) {
7766                 flatten(state, first, jmp);
7767         }
7768 }
7769
7770 static void break_statement(struct compile_state *state, struct triple *first)
7771 {
7772         struct triple *dest;
7773         eat(state, TOK_BREAK);
7774         eat(state, TOK_SEMI);
7775         if (!state->i_break->sym_ident) {
7776                 error(state, 0, "break statement not within loop or switch");
7777         }
7778         dest = state->i_break->sym_ident->def;
7779         flatten(state, first, branch(state, dest, 0));
7780 }
7781
7782 static void continue_statement(struct compile_state *state, struct triple *first)
7783 {
7784         struct triple *dest;
7785         eat(state, TOK_CONTINUE);
7786         eat(state, TOK_SEMI);
7787         if (!state->i_continue->sym_ident) {
7788                 error(state, 0, "continue statement outside of a loop");
7789         }
7790         dest = state->i_continue->sym_ident->def;
7791         flatten(state, first, branch(state, dest, 0));
7792 }
7793
7794 static void goto_statement(struct compile_state *state, struct triple *first)
7795 {
7796         FINISHME();
7797         eat(state, TOK_GOTO);
7798         eat(state, TOK_IDENT);
7799         eat(state, TOK_SEMI);
7800         error(state, 0, "goto is not implemeted");
7801         FINISHME();
7802 }
7803
7804 static void labeled_statement(struct compile_state *state, struct triple *first)
7805 {
7806         FINISHME();
7807         eat(state, TOK_IDENT);
7808         eat(state, TOK_COLON);
7809         statement(state, first);
7810         error(state, 0, "labeled statements are not implemented");
7811         FINISHME();
7812 }
7813
7814 static void switch_statement(struct compile_state *state, struct triple *first)
7815 {
7816         FINISHME();
7817         eat(state, TOK_SWITCH);
7818         eat(state, TOK_LPAREN);
7819         expr(state);
7820         eat(state, TOK_RPAREN);
7821         statement(state, first);
7822         error(state, 0, "switch statements are not implemented");
7823         FINISHME();
7824 }
7825
7826 static void case_statement(struct compile_state *state, struct triple *first)
7827 {
7828         FINISHME();
7829         eat(state, TOK_CASE);
7830         constant_expr(state);
7831         eat(state, TOK_COLON);
7832         statement(state, first);
7833         error(state, 0, "case statements are not implemented");
7834         FINISHME();
7835 }
7836
7837 static void default_statement(struct compile_state *state, struct triple *first)
7838 {
7839         FINISHME();
7840         eat(state, TOK_DEFAULT);
7841         eat(state, TOK_COLON);
7842         statement(state, first);
7843         error(state, 0, "default statements are not implemented");
7844         FINISHME();
7845 }
7846
7847 static void asm_statement(struct compile_state *state, struct triple *first)
7848 {
7849         struct asm_info *info;
7850         struct {
7851                 struct triple *constraint;
7852                 struct triple *expr;
7853         } out_param[MAX_LHS], in_param[MAX_RHS], clob_param[MAX_LHS];
7854         struct triple *def, *asm_str;
7855         int out, in, clobbers, more, colons, i;
7856
7857         eat(state, TOK_ASM);
7858         /* For now ignore the qualifiers */
7859         switch(peek(state)) {
7860         case TOK_CONST:
7861                 eat(state, TOK_CONST);
7862                 break;
7863         case TOK_VOLATILE:
7864                 eat(state, TOK_VOLATILE);
7865                 break;
7866         }
7867         eat(state, TOK_LPAREN);
7868         asm_str = string_constant(state);
7869
7870         colons = 0;
7871         out = in = clobbers = 0;
7872         /* Outputs */
7873         if ((colons == 0) && (peek(state) == TOK_COLON)) {
7874                 eat(state, TOK_COLON);
7875                 colons++;
7876                 more = (peek(state) == TOK_LIT_STRING);
7877                 while(more) {
7878                         struct triple *var;
7879                         struct triple *constraint;
7880                         char *str;
7881                         more = 0;
7882                         if (out > MAX_LHS) {
7883                                 error(state, 0, "Maximum output count exceeded.");
7884                         }
7885                         constraint = string_constant(state);
7886                         str = constraint->u.blob;
7887                         if (str[0] != '=') {
7888                                 error(state, 0, "Output constraint does not start with =");
7889                         }
7890                         constraint->u.blob = str + 1;
7891                         eat(state, TOK_LPAREN);
7892                         var = conditional_expr(state);
7893                         eat(state, TOK_RPAREN);
7894
7895                         lvalue(state, var);
7896                         out_param[out].constraint = constraint;
7897                         out_param[out].expr       = var;
7898                         if (peek(state) == TOK_COMMA) {
7899                                 eat(state, TOK_COMMA);
7900                                 more = 1;
7901                         }
7902                         out++;
7903                 }
7904         }
7905         /* Inputs */
7906         if ((colons == 1) && (peek(state) == TOK_COLON)) {
7907                 eat(state, TOK_COLON);
7908                 colons++;
7909                 more = (peek(state) == TOK_LIT_STRING);
7910                 while(more) {
7911                         struct triple *val;
7912                         struct triple *constraint;
7913                         char *str;
7914                         more = 0;
7915                         if (in > MAX_RHS) {
7916                                 error(state, 0, "Maximum input count exceeded.");
7917                         }
7918                         constraint = string_constant(state);
7919                         str = constraint->u.blob;
7920                         if (digitp(str[0] && str[1] == '\0')) {
7921                                 int val;
7922                                 val = digval(str[0]);
7923                                 if ((val < 0) || (val >= out)) {
7924                                         error(state, 0, "Invalid input constraint %d", val);
7925                                 }
7926                         }
7927                         eat(state, TOK_LPAREN);
7928                         val = conditional_expr(state);
7929                         eat(state, TOK_RPAREN);
7930
7931                         in_param[in].constraint = constraint;
7932                         in_param[in].expr       = val;
7933                         if (peek(state) == TOK_COMMA) {
7934                                 eat(state, TOK_COMMA);
7935                                 more = 1;
7936                         }
7937                         in++;
7938                 }
7939         }
7940
7941         /* Clobber */
7942         if ((colons == 2) && (peek(state) == TOK_COLON)) {
7943                 eat(state, TOK_COLON);
7944                 colons++;
7945                 more = (peek(state) == TOK_LIT_STRING);
7946                 while(more) {
7947                         struct triple *clobber;
7948                         more = 0;
7949                         if ((clobbers + out) > MAX_LHS) {
7950                                 error(state, 0, "Maximum clobber limit exceeded.");
7951                         }
7952                         clobber = string_constant(state);
7953                         eat(state, TOK_RPAREN);
7954
7955                         clob_param[clobbers].constraint = clobber;
7956                         if (peek(state) == TOK_COMMA) {
7957                                 eat(state, TOK_COMMA);
7958                                 more = 1;
7959                         }
7960                         clobbers++;
7961                 }
7962         }
7963         eat(state, TOK_RPAREN);
7964         eat(state, TOK_SEMI);
7965
7966
7967         info = xcmalloc(sizeof(*info), "asm_info");
7968         info->str = asm_str->u.blob;
7969         free_triple(state, asm_str);
7970
7971         def = new_triple(state, OP_ASM, &void_type, clobbers + out, in);
7972         def->u.ainfo = info;
7973
7974         /* Find the register constraints */
7975         for(i = 0; i < out; i++) {
7976                 struct triple *constraint;
7977                 constraint = out_param[i].constraint;
7978                 info->tmpl.lhs[i] = arch_reg_constraint(state, 
7979                         out_param[i].expr->type, constraint->u.blob);
7980                 free_triple(state, constraint);
7981         }
7982         for(; i - out < clobbers; i++) {
7983                 struct triple *constraint;
7984                 constraint = clob_param[i - out].constraint;
7985                 info->tmpl.lhs[i] = arch_reg_clobber(state, constraint->u.blob);
7986                 free_triple(state, constraint);
7987         }
7988         for(i = 0; i < in; i++) {
7989                 struct triple *constraint;
7990                 const char *str;
7991                 constraint = in_param[i].constraint;
7992                 str = constraint->u.blob;
7993                 if (digitp(str[0]) && str[1] == '\0') {
7994                         struct reg_info cinfo;
7995                         int val;
7996                         val = digval(str[0]);
7997                         cinfo.reg = info->tmpl.lhs[val].reg;
7998                         cinfo.regcm = arch_type_to_regcm(state, in_param[i].expr->type);
7999                         cinfo.regcm &= info->tmpl.lhs[val].regcm;
8000                         if (cinfo.reg == REG_UNSET) {
8001                                 cinfo.reg = REG_VIRT0 + val;
8002                         }
8003                         if (cinfo.regcm == 0) {
8004                                 error(state, 0, "No registers for %d", val);
8005                         }
8006                         info->tmpl.lhs[val] = cinfo;
8007                         info->tmpl.rhs[i]   = cinfo;
8008                                 
8009                 } else {
8010                         info->tmpl.rhs[i] = arch_reg_constraint(state, 
8011                                 in_param[i].expr->type, str);
8012                 }
8013                 free_triple(state, constraint);
8014         }
8015
8016         /* Now build the helper expressions */
8017         for(i = 0; i < in; i++) {
8018                 RHS(def, i) = read_expr(state,in_param[i].expr);
8019         }
8020         flatten(state, first, def);
8021         for(i = 0; i < out; i++) {
8022                 struct triple *piece;
8023                 piece = triple(state, OP_PIECE, out_param[i].expr->type, def, 0);
8024                 piece->u.cval = i;
8025                 LHS(def, i) = piece;
8026                 flatten(state, first,
8027                         write_expr(state, out_param[i].expr, piece));
8028         }
8029         for(; i - out < clobbers; i++) {
8030                 struct triple *piece;
8031                 piece = triple(state, OP_PIECE, &void_type, def, 0);
8032                 piece->u.cval = i;
8033                 LHS(def, i) = piece;
8034                 flatten(state, first, piece);
8035         }
8036 }
8037
8038
8039 static int isdecl(int tok)
8040 {
8041         switch(tok) {
8042         case TOK_AUTO:
8043         case TOK_REGISTER:
8044         case TOK_STATIC:
8045         case TOK_EXTERN:
8046         case TOK_TYPEDEF:
8047         case TOK_CONST:
8048         case TOK_RESTRICT:
8049         case TOK_VOLATILE:
8050         case TOK_VOID:
8051         case TOK_CHAR:
8052         case TOK_SHORT:
8053         case TOK_INT:
8054         case TOK_LONG:
8055         case TOK_FLOAT:
8056         case TOK_DOUBLE:
8057         case TOK_SIGNED:
8058         case TOK_UNSIGNED:
8059         case TOK_STRUCT:
8060         case TOK_UNION:
8061         case TOK_ENUM:
8062         case TOK_TYPE_NAME: /* typedef name */
8063                 return 1;
8064         default:
8065                 return 0;
8066         }
8067 }
8068
8069 static void compound_statement(struct compile_state *state, struct triple *first)
8070 {
8071         eat(state, TOK_LBRACE);
8072         start_scope(state);
8073
8074         /* statement-list opt */
8075         while (peek(state) != TOK_RBRACE) {
8076                 statement(state, first);
8077         }
8078         end_scope(state);
8079         eat(state, TOK_RBRACE);
8080 }
8081
8082 static void statement(struct compile_state *state, struct triple *first)
8083 {
8084         int tok;
8085         tok = peek(state);
8086         if (tok == TOK_LBRACE) {
8087                 compound_statement(state, first);
8088         }
8089         else if (tok == TOK_IF) {
8090                 if_statement(state, first); 
8091         }
8092         else if (tok == TOK_FOR) {
8093                 for_statement(state, first);
8094         }
8095         else if (tok == TOK_WHILE) {
8096                 while_statement(state, first);
8097         }
8098         else if (tok == TOK_DO) {
8099                 do_statement(state, first);
8100         }
8101         else if (tok == TOK_RETURN) {
8102                 return_statement(state, first);
8103         }
8104         else if (tok == TOK_BREAK) {
8105                 break_statement(state, first);
8106         }
8107         else if (tok == TOK_CONTINUE) {
8108                 continue_statement(state, first);
8109         }
8110         else if (tok == TOK_GOTO) {
8111                 goto_statement(state, first);
8112         }
8113         else if (tok == TOK_SWITCH) {
8114                 switch_statement(state, first);
8115         }
8116         else if (tok == TOK_ASM) {
8117                 asm_statement(state, first);
8118         }
8119         else if ((tok == TOK_IDENT) && (peek2(state) == TOK_COLON)) {
8120                 labeled_statement(state, first); 
8121         }
8122         else if (tok == TOK_CASE) {
8123                 case_statement(state, first);
8124         }
8125         else if (tok == TOK_DEFAULT) {
8126                 default_statement(state, first);
8127         }
8128         else if (isdecl(tok)) {
8129                 /* This handles C99 intermixing of statements and decls */
8130                 decl(state, first);
8131         }
8132         else {
8133                 expr_statement(state, first);
8134         }
8135 }
8136
8137 static struct type *param_decl(struct compile_state *state)
8138 {
8139         struct type *type;
8140         struct hash_entry *ident;
8141         /* Cheat so the declarator will know we are not global */
8142         start_scope(state); 
8143         ident = 0;
8144         type = decl_specifiers(state);
8145         type = declarator(state, type, &ident, 0);
8146         type->field_ident = ident;
8147         end_scope(state);
8148         return type;
8149 }
8150
8151 static struct type *param_type_list(struct compile_state *state, struct type *type)
8152 {
8153         struct type *ftype, **next;
8154         ftype = new_type(TYPE_FUNCTION, type, param_decl(state));
8155         next = &ftype->right;
8156         while(peek(state) == TOK_COMMA) {
8157                 eat(state, TOK_COMMA);
8158                 if (peek(state) == TOK_DOTS) {
8159                         eat(state, TOK_DOTS);
8160                         error(state, 0, "variadic functions not supported");
8161                 }
8162                 else {
8163                         *next = new_type(TYPE_PRODUCT, *next, param_decl(state));
8164                         next = &((*next)->right);
8165                 }
8166         }
8167         return ftype;
8168 }
8169
8170
8171 static struct type *type_name(struct compile_state *state)
8172 {
8173         struct type *type;
8174         type = specifier_qualifier_list(state);
8175         /* abstract-declarator (may consume no tokens) */
8176         type = declarator(state, type, 0, 0);
8177         return type;
8178 }
8179
8180 static struct type *direct_declarator(
8181         struct compile_state *state, struct type *type, 
8182         struct hash_entry **ident, int need_ident)
8183 {
8184         struct type *outer;
8185         int op;
8186         outer = 0;
8187         arrays_complete(state, type);
8188         switch(peek(state)) {
8189         case TOK_IDENT:
8190                 eat(state, TOK_IDENT);
8191                 if (!ident) {
8192                         error(state, 0, "Unexpected identifier found");
8193                 }
8194                 /* The name of what we are declaring */
8195                 *ident = state->token[0].ident;
8196                 break;
8197         case TOK_LPAREN:
8198                 eat(state, TOK_LPAREN);
8199                 outer = declarator(state, type, ident, need_ident);
8200                 eat(state, TOK_RPAREN);
8201                 break;
8202         default:
8203                 if (need_ident) {
8204                         error(state, 0, "Identifier expected");
8205                 }
8206                 break;
8207         }
8208         do {
8209                 op = 1;
8210                 arrays_complete(state, type);
8211                 switch(peek(state)) {
8212                 case TOK_LPAREN:
8213                         eat(state, TOK_LPAREN);
8214                         type = param_type_list(state, type);
8215                         eat(state, TOK_RPAREN);
8216                         break;
8217                 case TOK_LBRACKET:
8218                 {
8219                         unsigned int qualifiers;
8220                         struct triple *value;
8221                         value = 0;
8222                         eat(state, TOK_LBRACKET);
8223                         if (peek(state) != TOK_RBRACKET) {
8224                                 value = constant_expr(state);
8225                                 integral(state, value);
8226                         }
8227                         eat(state, TOK_RBRACKET);
8228
8229                         qualifiers = type->type & (QUAL_MASK | STOR_MASK);
8230                         type = new_type(TYPE_ARRAY | qualifiers, type, 0);
8231                         if (value) {
8232                                 type->elements = value->u.cval;
8233                                 free_triple(state, value);
8234                         } else {
8235                                 type->elements = ELEMENT_COUNT_UNSPECIFIED;
8236                                 op = 0;
8237                         }
8238                 }
8239                         break;
8240                 default:
8241                         op = 0;
8242                         break;
8243                 }
8244         } while(op);
8245         if (outer) {
8246                 struct type *inner;
8247                 arrays_complete(state, type);
8248                 FINISHME();
8249                 for(inner = outer; inner->left; inner = inner->left)
8250                         ;
8251                 inner->left = type;
8252                 type = outer;
8253         }
8254         return type;
8255 }
8256
8257 static struct type *declarator(
8258         struct compile_state *state, struct type *type, 
8259         struct hash_entry **ident, int need_ident)
8260 {
8261         while(peek(state) == TOK_STAR) {
8262                 eat(state, TOK_STAR);
8263                 type = new_type(TYPE_POINTER | (type->type & STOR_MASK), type, 0);
8264         }
8265         type = direct_declarator(state, type, ident, need_ident);
8266         return type;
8267 }
8268
8269
8270 static struct type *typedef_name(
8271         struct compile_state *state, unsigned int specifiers)
8272 {
8273         struct hash_entry *ident;
8274         struct type *type;
8275         eat(state, TOK_TYPE_NAME);
8276         ident = state->token[0].ident;
8277         type = ident->sym_ident->type;
8278         specifiers |= type->type & QUAL_MASK;
8279         if ((specifiers & (STOR_MASK | QUAL_MASK)) != 
8280                 (type->type & (STOR_MASK | QUAL_MASK))) {
8281                 type = clone_type(specifiers, type);
8282         }
8283         return type;
8284 }
8285
8286 static struct type *enum_specifier(
8287         struct compile_state *state, unsigned int specifiers)
8288 {
8289         int tok;
8290         struct type *type;
8291         type = 0;
8292         FINISHME();
8293         eat(state, TOK_ENUM);
8294         tok = peek(state);
8295         if (tok == TOK_IDENT) {
8296                 eat(state, TOK_IDENT);
8297         }
8298         if ((tok != TOK_IDENT) || (peek(state) == TOK_LBRACE)) {
8299                 eat(state, TOK_LBRACE);
8300                 do {
8301                         eat(state, TOK_IDENT);
8302                         if (peek(state) == TOK_EQ) {
8303                                 eat(state, TOK_EQ);
8304                                 constant_expr(state);
8305                         }
8306                         if (peek(state) == TOK_COMMA) {
8307                                 eat(state, TOK_COMMA);
8308                         }
8309                 } while(peek(state) != TOK_RBRACE);
8310                 eat(state, TOK_RBRACE);
8311         }
8312         FINISHME();
8313         return type;
8314 }
8315
8316 #if 0
8317 static struct type *struct_declarator(
8318         struct compile_state *state, struct type *type, struct hash_entry **ident)
8319 {
8320         int tok;
8321 #warning "struct_declarator is complicated because of bitfields, kill them?"
8322         tok = peek(state);
8323         if (tok != TOK_COLON) {
8324                 type = declarator(state, type, ident, 1);
8325         }
8326         if ((tok == TOK_COLON) || (peek(state) == TOK_COLON)) {
8327                 eat(state, TOK_COLON);
8328                 constant_expr(state);
8329         }
8330         FINISHME();
8331         return type;
8332 }
8333 #endif
8334
8335 static struct type *struct_or_union_specifier(
8336         struct compile_state *state, unsigned int specifiers)
8337 {
8338         struct type *struct_type;
8339         struct hash_entry *ident;
8340         unsigned int type_join;
8341         int tok;
8342         struct_type = 0;
8343         ident = 0;
8344         switch(peek(state)) {
8345         case TOK_STRUCT:
8346                 eat(state, TOK_STRUCT);
8347                 type_join = TYPE_PRODUCT;
8348                 break;
8349         case TOK_UNION:
8350                 eat(state, TOK_UNION);
8351                 type_join = TYPE_OVERLAP;
8352                 error(state, 0, "unions not yet supported\n");
8353                 break;
8354         default:
8355                 eat(state, TOK_STRUCT);
8356                 type_join = TYPE_PRODUCT;
8357                 break;
8358         }
8359         tok = peek(state);
8360         if ((tok == TOK_IDENT) || (tok == TOK_TYPE_NAME)) {
8361                 eat(state, tok);
8362                 ident = state->token[0].ident;
8363         }
8364         if (!ident || (peek(state) == TOK_LBRACE)) {
8365                 ulong_t elements;
8366                 elements = 0;
8367                 eat(state, TOK_LBRACE);
8368                 do {
8369                         struct type *base_type;
8370                         struct type **next;
8371                         int done;
8372                         base_type = specifier_qualifier_list(state);
8373                         next = &struct_type;
8374                         do {
8375                                 struct type *type;
8376                                 struct hash_entry *fident;
8377                                 done = 1;
8378                                 type = declarator(state, base_type, &fident, 1);
8379                                 elements++;
8380                                 if (peek(state) == TOK_COMMA) {
8381                                         done = 0;
8382                                         eat(state, TOK_COMMA);
8383                                 }
8384                                 type = clone_type(0, type);
8385                                 type->field_ident = fident;
8386                                 if (*next) {
8387                                         *next = new_type(type_join, *next, type);
8388                                         next = &((*next)->right);
8389                                 } else {
8390                                         *next = type;
8391                                 }
8392                         } while(!done);
8393                         eat(state, TOK_SEMI);
8394                 } while(peek(state) != TOK_RBRACE);
8395                 eat(state, TOK_RBRACE);
8396                 struct_type = new_type(TYPE_STRUCT, struct_type, 0);
8397                 struct_type->type_ident = ident;
8398                 struct_type->elements = elements;
8399                 symbol(state, ident, &ident->sym_struct, 0, struct_type);
8400         }
8401         if (ident && ident->sym_struct) {
8402                 struct_type = ident->sym_struct->type;
8403         }
8404         else if (ident && !ident->sym_struct) {
8405                 error(state, 0, "struct %s undeclared", ident->name);
8406         }
8407         return struct_type;
8408 }
8409
8410 static unsigned int storage_class_specifier_opt(struct compile_state *state)
8411 {
8412         unsigned int specifiers;
8413         switch(peek(state)) {
8414         case TOK_AUTO:
8415                 eat(state, TOK_AUTO);
8416                 specifiers = STOR_AUTO;
8417                 break;
8418         case TOK_REGISTER:
8419                 eat(state, TOK_REGISTER);
8420                 specifiers = STOR_REGISTER;
8421                 break;
8422         case TOK_STATIC:
8423                 eat(state, TOK_STATIC);
8424                 specifiers = STOR_STATIC;
8425                 break;
8426         case TOK_EXTERN:
8427                 eat(state, TOK_EXTERN);
8428                 specifiers = STOR_EXTERN;
8429                 break;
8430         case TOK_TYPEDEF:
8431                 eat(state, TOK_TYPEDEF);
8432                 specifiers = STOR_TYPEDEF;
8433                 break;
8434         default:
8435                 if (state->scope_depth <= GLOBAL_SCOPE_DEPTH) {
8436                         specifiers = STOR_STATIC;
8437                 }
8438                 else {
8439                         specifiers = STOR_AUTO;
8440                 }
8441         }
8442         return specifiers;
8443 }
8444
8445 static unsigned int function_specifier_opt(struct compile_state *state)
8446 {
8447         /* Ignore the inline keyword */
8448         unsigned int specifiers;
8449         specifiers = 0;
8450         switch(peek(state)) {
8451         case TOK_INLINE:
8452                 eat(state, TOK_INLINE);
8453                 specifiers = STOR_INLINE;
8454         }
8455         return specifiers;
8456 }
8457
8458 static unsigned int type_qualifiers(struct compile_state *state)
8459 {
8460         unsigned int specifiers;
8461         int done;
8462         done = 0;
8463         specifiers = QUAL_NONE;
8464         do {
8465                 switch(peek(state)) {
8466                 case TOK_CONST:
8467                         eat(state, TOK_CONST);
8468                         specifiers = QUAL_CONST;
8469                         break;
8470                 case TOK_VOLATILE:
8471                         eat(state, TOK_VOLATILE);
8472                         specifiers = QUAL_VOLATILE;
8473                         break;
8474                 case TOK_RESTRICT:
8475                         eat(state, TOK_RESTRICT);
8476                         specifiers = QUAL_RESTRICT;
8477                         break;
8478                 default:
8479                         done = 1;
8480                         break;
8481                 }
8482         } while(!done);
8483         return specifiers;
8484 }
8485
8486 static struct type *type_specifier(
8487         struct compile_state *state, unsigned int spec)
8488 {
8489         struct type *type;
8490         type = 0;
8491         switch(peek(state)) {
8492         case TOK_VOID:
8493                 eat(state, TOK_VOID);
8494                 type = new_type(TYPE_VOID | spec, 0, 0);
8495                 break;
8496         case TOK_CHAR:
8497                 eat(state, TOK_CHAR);
8498                 type = new_type(TYPE_CHAR | spec, 0, 0);
8499                 break;
8500         case TOK_SHORT:
8501                 eat(state, TOK_SHORT);
8502                 if (peek(state) == TOK_INT) {
8503                         eat(state, TOK_INT);
8504                 }
8505                 type = new_type(TYPE_SHORT | spec, 0, 0);
8506                 break;
8507         case TOK_INT:
8508                 eat(state, TOK_INT);
8509                 type = new_type(TYPE_INT | spec, 0, 0);
8510                 break;
8511         case TOK_LONG:
8512                 eat(state, TOK_LONG);
8513                 switch(peek(state)) {
8514                 case TOK_LONG:
8515                         eat(state, TOK_LONG);
8516                         error(state, 0, "long long not supported");
8517                         break;
8518                 case TOK_DOUBLE:
8519                         eat(state, TOK_DOUBLE);
8520                         error(state, 0, "long double not supported");
8521                         break;
8522                 case TOK_INT:
8523                         eat(state, TOK_INT);
8524                         type = new_type(TYPE_LONG | spec, 0, 0);
8525                         break;
8526                 default:
8527                         type = new_type(TYPE_LONG | spec, 0, 0);
8528                         break;
8529                 }
8530                 break;
8531         case TOK_FLOAT:
8532                 eat(state, TOK_FLOAT);
8533                 error(state, 0, "type float not supported");
8534                 break;
8535         case TOK_DOUBLE:
8536                 eat(state, TOK_DOUBLE);
8537                 error(state, 0, "type double not supported");
8538                 break;
8539         case TOK_SIGNED:
8540                 eat(state, TOK_SIGNED);
8541                 switch(peek(state)) {
8542                 case TOK_LONG:
8543                         eat(state, TOK_LONG);
8544                         switch(peek(state)) {
8545                         case TOK_LONG:
8546                                 eat(state, TOK_LONG);
8547                                 error(state, 0, "type long long not supported");
8548                                 break;
8549                         case TOK_INT:
8550                                 eat(state, TOK_INT);
8551                                 type = new_type(TYPE_LONG | spec, 0, 0);
8552                                 break;
8553                         default:
8554                                 type = new_type(TYPE_LONG | spec, 0, 0);
8555                                 break;
8556                         }
8557                         break;
8558                 case TOK_INT:
8559                         eat(state, TOK_INT);
8560                         type = new_type(TYPE_INT | spec, 0, 0);
8561                         break;
8562                 case TOK_SHORT:
8563                         eat(state, TOK_SHORT);
8564                         type = new_type(TYPE_SHORT | spec, 0, 0);
8565                         break;
8566                 case TOK_CHAR:
8567                         eat(state, TOK_CHAR);
8568                         type = new_type(TYPE_CHAR | spec, 0, 0);
8569                         break;
8570                 default:
8571                         type = new_type(TYPE_INT | spec, 0, 0);
8572                         break;
8573                 }
8574                 break;
8575         case TOK_UNSIGNED:
8576                 eat(state, TOK_UNSIGNED);
8577                 switch(peek(state)) {
8578                 case TOK_LONG:
8579                         eat(state, TOK_LONG);
8580                         switch(peek(state)) {
8581                         case TOK_LONG:
8582                                 eat(state, TOK_LONG);
8583                                 error(state, 0, "unsigned long long not supported");
8584                                 break;
8585                         case TOK_INT:
8586                                 eat(state, TOK_INT);
8587                                 type = new_type(TYPE_ULONG | spec, 0, 0);
8588                                 break;
8589                         default:
8590                                 type = new_type(TYPE_ULONG | spec, 0, 0);
8591                                 break;
8592                         }
8593                         break;
8594                 case TOK_INT:
8595                         eat(state, TOK_INT);
8596                         type = new_type(TYPE_UINT | spec, 0, 0);
8597                         break;
8598                 case TOK_SHORT:
8599                         eat(state, TOK_SHORT);
8600                         type = new_type(TYPE_USHORT | spec, 0, 0);
8601                         break;
8602                 case TOK_CHAR:
8603                         eat(state, TOK_CHAR);
8604                         type = new_type(TYPE_UCHAR | spec, 0, 0);
8605                         break;
8606                 default:
8607                         type = new_type(TYPE_UINT | spec, 0, 0);
8608                         break;
8609                 }
8610                 break;
8611                 /* struct or union specifier */
8612         case TOK_STRUCT:
8613         case TOK_UNION:
8614                 type = struct_or_union_specifier(state, spec);
8615                 break;
8616                 /* enum-spefifier */
8617         case TOK_ENUM:
8618                 type = enum_specifier(state, spec);
8619                 break;
8620                 /* typedef name */
8621         case TOK_TYPE_NAME:
8622                 type = typedef_name(state, spec);
8623                 break;
8624         default:
8625                 error(state, 0, "bad type specifier %s", 
8626                         tokens[peek(state)]);
8627                 break;
8628         }
8629         return type;
8630 }
8631
8632 static int istype(int tok)
8633 {
8634         switch(tok) {
8635         case TOK_CONST:
8636         case TOK_RESTRICT:
8637         case TOK_VOLATILE:
8638         case TOK_VOID:
8639         case TOK_CHAR:
8640         case TOK_SHORT:
8641         case TOK_INT:
8642         case TOK_LONG:
8643         case TOK_FLOAT:
8644         case TOK_DOUBLE:
8645         case TOK_SIGNED:
8646         case TOK_UNSIGNED:
8647         case TOK_STRUCT:
8648         case TOK_UNION:
8649         case TOK_ENUM:
8650         case TOK_TYPE_NAME:
8651                 return 1;
8652         default:
8653                 return 0;
8654         }
8655 }
8656
8657
8658 static struct type *specifier_qualifier_list(struct compile_state *state)
8659 {
8660         struct type *type;
8661         unsigned int specifiers = 0;
8662
8663         /* type qualifiers */
8664         specifiers |= type_qualifiers(state);
8665
8666         /* type specifier */
8667         type = type_specifier(state, specifiers);
8668
8669         return type;
8670 }
8671
8672 static int isdecl_specifier(int tok)
8673 {
8674         switch(tok) {
8675                 /* storage class specifier */
8676         case TOK_AUTO:
8677         case TOK_REGISTER:
8678         case TOK_STATIC:
8679         case TOK_EXTERN:
8680         case TOK_TYPEDEF:
8681                 /* type qualifier */
8682         case TOK_CONST:
8683         case TOK_RESTRICT:
8684         case TOK_VOLATILE:
8685                 /* type specifiers */
8686         case TOK_VOID:
8687         case TOK_CHAR:
8688         case TOK_SHORT:
8689         case TOK_INT:
8690         case TOK_LONG:
8691         case TOK_FLOAT:
8692         case TOK_DOUBLE:
8693         case TOK_SIGNED:
8694         case TOK_UNSIGNED:
8695                 /* struct or union specifier */
8696         case TOK_STRUCT:
8697         case TOK_UNION:
8698                 /* enum-spefifier */
8699         case TOK_ENUM:
8700                 /* typedef name */
8701         case TOK_TYPE_NAME:
8702                 /* function specifiers */
8703         case TOK_INLINE:
8704                 return 1;
8705         default:
8706                 return 0;
8707         }
8708 }
8709
8710 static struct type *decl_specifiers(struct compile_state *state)
8711 {
8712         struct type *type;
8713         unsigned int specifiers;
8714         /* I am overly restrictive in the arragement of specifiers supported.
8715          * C is overly flexible in this department it makes interpreting
8716          * the parse tree difficult.
8717          */
8718         specifiers = 0;
8719
8720         /* storage class specifier */
8721         specifiers |= storage_class_specifier_opt(state);
8722
8723         /* function-specifier */
8724         specifiers |= function_specifier_opt(state);
8725
8726         /* type qualifier */
8727         specifiers |= type_qualifiers(state);
8728
8729         /* type specifier */
8730         type = type_specifier(state, specifiers);
8731         return type;
8732 }
8733
8734 static unsigned designator(struct compile_state *state)
8735 {
8736         int tok;
8737         unsigned index;
8738         index = -1U;
8739         do {
8740                 switch(peek(state)) {
8741                 case TOK_LBRACKET:
8742                 {
8743                         struct triple *value;
8744                         eat(state, TOK_LBRACKET);
8745                         value = constant_expr(state);
8746                         eat(state, TOK_RBRACKET);
8747                         index = value->u.cval;
8748                         break;
8749                 }
8750                 case TOK_DOT:
8751                         eat(state, TOK_DOT);
8752                         eat(state, TOK_IDENT);
8753                         error(state, 0, "Struct Designators not currently supported");
8754                         break;
8755                 default:
8756                         error(state, 0, "Invalid designator");
8757                 }
8758                 tok = peek(state);
8759         } while((tok == TOK_LBRACKET) || (tok == TOK_DOT));
8760         eat(state, TOK_EQ);
8761         return index;
8762 }
8763
8764 static struct triple *initializer(
8765         struct compile_state *state, struct type *type)
8766 {
8767         struct triple *result;
8768         if (peek(state) != TOK_LBRACE) {
8769                 result = assignment_expr(state);
8770         }
8771         else {
8772                 int comma;
8773                 unsigned index, max_index;
8774                 void *buf;
8775                 max_index = index = 0;
8776                 if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
8777                         max_index = type->elements;
8778                         if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
8779                                 type->elements = 0;
8780                         }
8781                 } else {
8782                         error(state, 0, "Struct initializers not currently supported");
8783                 }
8784                 buf = xcmalloc(size_of(state, type), "initializer");
8785                 eat(state, TOK_LBRACE);
8786                 do {
8787                         struct triple *value;
8788                         struct type *value_type;
8789                         size_t value_size;
8790                         int tok;
8791                         comma = 0;
8792                         tok = peek(state);
8793                         if ((tok == TOK_LBRACKET) || (tok == TOK_DOT)) {
8794                                 index = designator(state);
8795                         }
8796                         if ((max_index != ELEMENT_COUNT_UNSPECIFIED) &&
8797                                 (index > max_index)) {
8798                                 error(state, 0, "element beyond bounds");
8799                         }
8800                         value_type = 0;
8801                         if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
8802                                 value_type = type->left;
8803                         }
8804                         value = eval_const_expr(state, initializer(state, value_type));
8805                         value_size = size_of(state, value_type);
8806                         if (((type->type & TYPE_MASK) == TYPE_ARRAY) &&
8807                                 (max_index == ELEMENT_COUNT_UNSPECIFIED) &&
8808                                 (type->elements <= index)) {
8809                                 void *old_buf;
8810                                 size_t old_size;
8811                                 old_buf = buf;
8812                                 old_size = size_of(state, type);
8813                                 type->elements = index + 1;
8814                                 buf = xmalloc(size_of(state, type), "initializer");
8815                                 memcpy(buf, old_buf, old_size);
8816                                 xfree(old_buf);
8817                         }
8818                         if (value->op == OP_BLOBCONST) {
8819                                 memcpy((char *)buf + index * value_size, value->u.blob, value_size);
8820                         }
8821                         else if ((value->op == OP_INTCONST) && (value_size == 1)) {
8822                                 *(((uint8_t *)buf) + index) = value->u.cval & 0xff;
8823                         }
8824                         else if ((value->op == OP_INTCONST) && (value_size == 2)) {
8825                                 *(((uint16_t *)buf) + index) = value->u.cval & 0xffff;
8826                         }
8827                         else if ((value->op == OP_INTCONST) && (value_size == 4)) {
8828                                 *(((uint32_t *)buf) + index) = value->u.cval & 0xffffffff;
8829                         }
8830                         else {
8831                                 fprintf(stderr, "%d %d\n",
8832                                         value->op, value_size);
8833                                 internal_error(state, 0, "unhandled constant initializer");
8834                         }
8835                         if (peek(state) == TOK_COMMA) {
8836                                 eat(state, TOK_COMMA);
8837                                 comma = 1;
8838                         }
8839                         index += 1;
8840                 } while(comma && (peek(state) != TOK_RBRACE));
8841                 eat(state, TOK_RBRACE);
8842                 result = triple(state, OP_BLOBCONST, type, 0, 0);
8843                 result->u.blob = buf;
8844         }
8845         return result;
8846 }
8847
8848 static struct triple *function_definition(
8849         struct compile_state *state, struct type *type)
8850 {
8851         struct triple *def, *tmp, *first, *end;
8852         struct hash_entry *ident;
8853         struct type *param;
8854         int i;
8855         if ((type->type &TYPE_MASK) != TYPE_FUNCTION) {
8856                 error(state, 0, "Invalid function header");
8857         }
8858
8859         /* Verify the function type */
8860         if (((type->right->type & TYPE_MASK) != TYPE_VOID)  &&
8861                 ((type->right->type & TYPE_MASK) != TYPE_PRODUCT) &&
8862                 (type->right->field_ident == 0)) {
8863                 error(state, 0, "Invalid function parameters");
8864         }
8865         param = type->right;
8866         i = 0;
8867         while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
8868                 i++;
8869                 if (!param->left->field_ident) {
8870                         error(state, 0, "No identifier for parameter %d\n", i);
8871                 }
8872                 param = param->right;
8873         }
8874         i++;
8875         if (((param->type & TYPE_MASK) != TYPE_VOID) && !param->field_ident) {
8876                 error(state, 0, "No identifier for paramter %d\n", i);
8877         }
8878         
8879         /* Get a list of statements for this function. */
8880         def = triple(state, OP_LIST, type, 0, 0);
8881
8882         /* Start a new scope for the passed parameters */
8883         start_scope(state);
8884
8885         /* Put a label at the very start of a function */
8886         first = label(state);
8887         RHS(def, 0) = first;
8888
8889         /* Put a label at the very end of a function */
8890         end = label(state);
8891         flatten(state, first, end);
8892
8893         /* Walk through the parameters and create symbol table entries
8894          * for them.
8895          */
8896         param = type->right;
8897         while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
8898                 ident = param->left->field_ident;
8899                 tmp = variable(state, param->left);
8900                 symbol(state, ident, &ident->sym_ident, tmp, tmp->type);
8901                 flatten(state, end, tmp);
8902                 param = param->right;
8903         }
8904         if ((param->type & TYPE_MASK) != TYPE_VOID) {
8905                 /* And don't forget the last parameter */
8906                 ident = param->field_ident;
8907                 tmp = variable(state, param);
8908                 symbol(state, ident, &ident->sym_ident, tmp, tmp->type);
8909                 flatten(state, end, tmp);
8910         }
8911         /* Add a variable for the return value */
8912         MISC(def, 0) = 0;
8913         if ((type->left->type & TYPE_MASK) != TYPE_VOID) {
8914                 /* Remove all type qualifiers from the return type */
8915                 tmp = variable(state, clone_type(0, type->left));
8916                 flatten(state, end, tmp);
8917                 /* Remember where the return value is */
8918                 MISC(def, 0) = tmp;
8919         }
8920
8921         /* Remember which function I am compiling.
8922          * Also assume the last defined function is the main function.
8923          */
8924         state->main_function = def;
8925
8926         /* Now get the actual function definition */
8927         compound_statement(state, end);
8928
8929         /* Remove the parameter scope */
8930         end_scope(state);
8931 #if 0
8932         fprintf(stdout, "\n");
8933         loc(stdout, state, 0);
8934         fprintf(stdout, "\n__________ function_definition _________\n");
8935         print_triple(state, def);
8936         fprintf(stdout, "__________ function_definition _________ done\n\n");
8937 #endif
8938
8939         return def;
8940 }
8941
8942 static struct triple *do_decl(struct compile_state *state, 
8943         struct type *type, struct hash_entry *ident)
8944 {
8945         struct triple *def;
8946         def = 0;
8947         /* Clean up the storage types used */
8948         switch (type->type & STOR_MASK) {
8949         case STOR_AUTO:
8950         case STOR_STATIC:
8951                 /* These are the good types I am aiming for */
8952                 break;
8953         case STOR_REGISTER:
8954                 type->type &= ~STOR_MASK;
8955                 type->type |= STOR_AUTO;
8956                 break;
8957         case STOR_EXTERN:
8958                 type->type &= ~STOR_MASK;
8959                 type->type |= STOR_STATIC;
8960                 break;
8961         case STOR_TYPEDEF:
8962                 if (!ident) {
8963                         error(state, 0, "typedef without name");
8964                 }
8965                 symbol(state, ident, &ident->sym_ident, 0, type);
8966                 ident->tok = TOK_TYPE_NAME;
8967                 return 0;
8968                 break;
8969         default:
8970                 internal_error(state, 0, "Undefined storage class");
8971         }
8972         if (((type->type & STOR_MASK) == STOR_STATIC) &&
8973                 ((type->type & QUAL_CONST) == 0)) {
8974                 error(state, 0, "non const static variables not supported");
8975         }
8976         if (ident) {
8977                 def = variable(state, type);
8978                 symbol(state, ident, &ident->sym_ident, def, type);
8979         }
8980         return def;
8981 }
8982
8983 static void decl(struct compile_state *state, struct triple *first)
8984 {
8985         struct type *base_type, *type;
8986         struct hash_entry *ident;
8987         struct triple *def;
8988         int global;
8989         global = (state->scope_depth <= GLOBAL_SCOPE_DEPTH);
8990         base_type = decl_specifiers(state);
8991         ident = 0;
8992         type = declarator(state, base_type, &ident, 0);
8993         if (global && ident && (peek(state) == TOK_LBRACE)) {
8994                 /* function */
8995                 state->function = ident->name;
8996                 def = function_definition(state, type);
8997                 symbol(state, ident, &ident->sym_ident, def, type);
8998                 state->function = 0;
8999         }
9000         else {
9001                 int done;
9002                 flatten(state, first, do_decl(state, type, ident));
9003                 /* type or variable definition */
9004                 do {
9005                         done = 1;
9006                         if (peek(state) == TOK_EQ) {
9007                                 if (!ident) {
9008                                         error(state, 0, "cannot assign to a type");
9009                                 }
9010                                 eat(state, TOK_EQ);
9011                                 flatten(state, first,
9012                                         init_expr(state, 
9013                                                 ident->sym_ident->def, 
9014                                                 initializer(state, type)));
9015                         }
9016                         arrays_complete(state, type);
9017                         if (peek(state) == TOK_COMMA) {
9018                                 eat(state, TOK_COMMA);
9019                                 ident = 0;
9020                                 type = declarator(state, base_type, &ident, 0);
9021                                 flatten(state, first, do_decl(state, type, ident));
9022                                 done = 0;
9023                         }
9024                 } while(!done);
9025                 eat(state, TOK_SEMI);
9026         }
9027 }
9028
9029 static void decls(struct compile_state *state)
9030 {
9031         struct triple *list;
9032         int tok;
9033         list = label(state);
9034         while(1) {
9035                 tok = peek(state);
9036                 if (tok == TOK_EOF) {
9037                         return;
9038                 }
9039                 if (tok == TOK_SPACE) {
9040                         eat(state, TOK_SPACE);
9041                 }
9042                 decl(state, list);
9043                 if (list->next != list) {
9044                         error(state, 0, "global variables not supported");
9045                 }
9046         }
9047 }
9048
9049 /*
9050  * Data structurs for optimation.
9051  */
9052
9053 static void do_use_block(
9054         struct block *used, struct block_set **head, struct block *user, 
9055         int front)
9056 {
9057         struct block_set **ptr, *new;
9058         if (!used)
9059                 return;
9060         if (!user)
9061                 return;
9062         ptr = head;
9063         while(*ptr) {
9064                 if ((*ptr)->member == user) {
9065                         return;
9066                 }
9067                 ptr = &(*ptr)->next;
9068         }
9069         new = xcmalloc(sizeof(*new), "block_set");
9070         new->member = user;
9071         if (front) {
9072                 new->next = *head;
9073                 *head = new;
9074         }
9075         else {
9076                 new->next = 0;
9077                 *ptr = new;
9078         }
9079 }
9080 static void do_unuse_block(
9081         struct block *used, struct block_set **head, struct block *unuser)
9082 {
9083         struct block_set *use, **ptr;
9084         ptr = head;
9085         while(*ptr) {
9086                 use = *ptr;
9087                 if (use->member == unuser) {
9088                         *ptr = use->next;
9089                         memset(use, -1, sizeof(*use));
9090                         xfree(use);
9091                 }
9092                 else {
9093                         ptr = &use->next;
9094                 }
9095         }
9096 }
9097
9098 static void use_block(struct block *used, struct block *user)
9099 {
9100         /* Append new to the head of the list, print_block
9101          * depends on this.
9102          */
9103         do_use_block(used, &used->use, user, 1); 
9104         used->users++;
9105 }
9106 static void unuse_block(struct block *used, struct block *unuser)
9107 {
9108         do_unuse_block(used, &used->use, unuser); 
9109         used->users--;
9110 }
9111
9112 static void idom_block(struct block *idom, struct block *user)
9113 {
9114         do_use_block(idom, &idom->idominates, user, 0);
9115 }
9116
9117 static void unidom_block(struct block *idom, struct block *unuser)
9118 {
9119         do_unuse_block(idom, &idom->idominates, unuser);
9120 }
9121
9122 static void domf_block(struct block *block, struct block *domf)
9123 {
9124         do_use_block(block, &block->domfrontier, domf, 0);
9125 }
9126
9127 static void undomf_block(struct block *block, struct block *undomf)
9128 {
9129         do_unuse_block(block, &block->domfrontier, undomf);
9130 }
9131
9132 static void ipdom_block(struct block *ipdom, struct block *user)
9133 {
9134         do_use_block(ipdom, &ipdom->ipdominates, user, 0);
9135 }
9136
9137 static void unipdom_block(struct block *ipdom, struct block *unuser)
9138 {
9139         do_unuse_block(ipdom, &ipdom->ipdominates, unuser);
9140 }
9141
9142 static void ipdomf_block(struct block *block, struct block *ipdomf)
9143 {
9144         do_use_block(block, &block->ipdomfrontier, ipdomf, 0);
9145 }
9146
9147 static void unipdomf_block(struct block *block, struct block *unipdomf)
9148 {
9149         do_unuse_block(block, &block->ipdomfrontier, unipdomf);
9150 }
9151
9152
9153
9154 static int do_walk_triple(struct compile_state *state,
9155         struct triple *ptr, int depth,
9156         int (*cb)(struct compile_state *state, struct triple *ptr, int depth)) 
9157 {
9158         int result;
9159         result = cb(state, ptr, depth);
9160         if ((result == 0) && (ptr->op == OP_LIST)) {
9161                 struct triple *list;
9162                 list = ptr;
9163                 ptr = RHS(list, 0);
9164                 do {
9165                         result = do_walk_triple(state, ptr, depth + 1, cb);
9166                         if (ptr->next->prev != ptr) {
9167                                 internal_error(state, ptr->next, "bad prev");
9168                         }
9169                         ptr = ptr->next;
9170                         
9171                 } while((result == 0) && (ptr != RHS(list, 0)));
9172         }
9173         return result;
9174 }
9175
9176 static int walk_triple(
9177         struct compile_state *state, 
9178         struct triple *ptr, 
9179         int (*cb)(struct compile_state *state, struct triple *ptr, int depth))
9180 {
9181         return do_walk_triple(state, ptr, 0, cb);
9182 }
9183
9184 static void do_print_prefix(int depth)
9185 {
9186         int i;
9187         for(i = 0; i < depth; i++) {
9188                 printf("  ");
9189         }
9190 }
9191
9192 #define PRINT_LIST 1
9193 static int do_print_triple(struct compile_state *state, struct triple *ins, int depth)
9194 {
9195         int op;
9196         op = ins->op;
9197         if (op == OP_LIST) {
9198 #if !PRINT_LIST
9199                 return 0;
9200 #endif
9201         }
9202         if ((op == OP_LABEL) && (ins->use)) {
9203                 printf("\n%p:\n", ins);
9204         }
9205         do_print_prefix(depth);
9206         display_triple(stdout, ins);
9207
9208         if ((ins->op == OP_BRANCH) && ins->use) {
9209                 internal_error(state, ins, "branch used?");
9210         }
9211 #if 0
9212         {
9213                 struct triple_set *user;
9214                 for(user = ins->use; user; user = user->next) {
9215                         printf("use: %p\n", user->member);
9216                 }
9217         }
9218 #endif
9219         if (triple_is_branch(state, ins)) {
9220                 printf("\n");
9221         }
9222         return 0;
9223 }
9224
9225 static void print_triple(struct compile_state *state, struct triple *ins)
9226 {
9227         walk_triple(state, ins, do_print_triple);
9228 }
9229
9230 static void print_triples(struct compile_state *state)
9231 {
9232         print_triple(state, state->main_function);
9233 }
9234
9235 struct cf_block {
9236         struct block *block;
9237 };
9238 static void find_cf_blocks(struct cf_block *cf, struct block *block)
9239 {
9240         if (!block || (cf[block->vertex].block == block)) {
9241                 return;
9242         }
9243         cf[block->vertex].block = block;
9244         find_cf_blocks(cf, block->left);
9245         find_cf_blocks(cf, block->right);
9246 }
9247
9248 static void print_control_flow(struct compile_state *state)
9249 {
9250         struct cf_block *cf;
9251         int i;
9252         printf("\ncontrol flow\n");
9253         cf = xcmalloc(sizeof(*cf) * (state->last_vertex + 1), "cf_block");
9254         find_cf_blocks(cf, state->first_block);
9255
9256         for(i = 1; i <= state->last_vertex; i++) {
9257                 struct block *block;
9258                 block = cf[i].block;
9259                 if (!block)
9260                         continue;
9261                 printf("(%p) %d:", block, block->vertex);
9262                 if (block->left) {
9263                         printf(" %d", block->left->vertex);
9264                 }
9265                 if (block->right && (block->right != block->left)) {
9266                         printf(" %d", block->right->vertex);
9267                 }
9268                 printf("\n");
9269         }
9270
9271         xfree(cf);
9272 }
9273
9274
9275 static struct block *basic_block(struct compile_state *state,
9276         struct triple *first)
9277 {
9278         struct block *block;
9279         struct triple *ptr;
9280         int op;
9281         if (first->op != OP_LABEL) {
9282                 internal_error(state, 0, "block does not start with a label");
9283         }
9284         /* See if this basic block has already been setup */
9285         if (first->u.block != 0) {
9286                 return first->u.block;
9287         }
9288         /* Allocate another basic block structure */
9289         state->last_vertex += 1;
9290         block = xcmalloc(sizeof(*block), "block");
9291         block->first = block->last = first;
9292         block->vertex = state->last_vertex;
9293         ptr = first;
9294         do {
9295                 if ((ptr != first) && (ptr->op == OP_LABEL) && ptr->use) {
9296                         break;
9297                 }
9298                 block->last = ptr;
9299                 /* If ptr->u is not used remember where the baic block is */
9300                 if (triple_stores_block(state, ptr)) {
9301                         ptr->u.block = block;
9302                 }
9303                 if (ptr->op == OP_BRANCH) {
9304                         break;
9305                 }
9306                 ptr = ptr->next;
9307         } while (ptr != RHS(state->main_function, 0));
9308         if (ptr == RHS(state->main_function, 0))
9309                 return block;
9310         op = ptr->op;
9311         if (op == OP_LABEL) {
9312                 block->left = basic_block(state, ptr);
9313                 block->right = 0;
9314                 use_block(block->left, block);
9315         }
9316         else if (op == OP_BRANCH) {
9317                 block->left = 0;
9318                 /* Trace the branch target */
9319                 block->right = basic_block(state, TARG(ptr, 0));
9320                 use_block(block->right, block);
9321                 /* If there is a test trace the branch as well */
9322                 if (TRIPLE_RHS(ptr->sizes)) {
9323                         block->left = basic_block(state, ptr->next);
9324                         use_block(block->left, block);
9325                 }
9326         }
9327         else {
9328                 internal_error(state, 0, "Bad basic block split");
9329         }
9330         return block;
9331 }
9332
9333
9334 static void walk_blocks(struct compile_state *state,
9335         void (*cb)(struct compile_state *state, struct block *block, void *arg),
9336         void *arg)
9337 {
9338         struct triple *ptr, *first;
9339         struct block *last_block;
9340         last_block = 0;
9341         first = RHS(state->main_function, 0);
9342         ptr = first;
9343         do {
9344                 struct block *block;
9345                 if (ptr->op == OP_LABEL) {
9346                         block = ptr->u.block;
9347                         if (block && (block != last_block)) {
9348                                 cb(state, block, arg);
9349                         }
9350                         last_block = block;
9351                 }
9352                 ptr = ptr->next;
9353         } while(ptr != first);
9354 }
9355
9356 static void print_block(
9357         struct compile_state *state, struct block *block, void *arg)
9358 {
9359         struct triple *ptr;
9360         FILE *fp = arg;
9361
9362         fprintf(fp, "\nblock: %p (%d), %p<-%p %p<-%p\n", 
9363                 block, 
9364                 block->vertex,
9365                 block->left, 
9366                 block->left && block->left->use?block->left->use->member : 0,
9367                 block->right, 
9368                 block->right && block->right->use?block->right->use->member : 0);
9369         if (block->first->op == OP_LABEL) {
9370                 fprintf(fp, "%p:\n", block->first);
9371         }
9372         for(ptr = block->first; ; ptr = ptr->next) {
9373                 struct triple_set *user;
9374                 int op = ptr->op;
9375                 
9376                 if (triple_stores_block(state, ptr)) {
9377                         if (ptr->u.block != block) {
9378                                 internal_error(state, ptr, 
9379                                         "Wrong block pointer: %p\n",
9380                                         ptr->u.block);
9381                         }
9382                 }
9383                 if (op == OP_ADECL) {
9384                         for(user = ptr->use; user; user = user->next) {
9385                                 if (!user->member->u.block) {
9386                                         internal_error(state, user->member, 
9387                                                 "Use %p not in a block?\n",
9388                                                 user->member);
9389                                 }
9390                         }
9391                 }
9392                 display_triple(fp, ptr);
9393
9394 #if 0
9395                 for(user = ptr->use; user; user = user->next) {
9396                         fprintf(fp, "use: %p\n", user->member);
9397                 }
9398 #endif
9399
9400                 /* Sanity checks... */
9401                 valid_ins(state, ptr);
9402                 for(user = ptr->use; user; user = user->next) {
9403                         struct triple *use;
9404                         use = user->member;
9405                         valid_ins(state, use);
9406                         if (triple_stores_block(state, user->member) &&
9407                                 !user->member->u.block) {
9408                                 internal_error(state, user->member,
9409                                         "Use %p not in a block?",
9410                                         user->member);
9411                         }
9412                 }
9413
9414                 if (ptr == block->last)
9415                         break;
9416         }
9417         fprintf(fp,"\n");
9418 }
9419
9420
9421 static void print_blocks(struct compile_state *state, FILE *fp)
9422 {
9423         fprintf(fp, "--------------- blocks ---------------\n");
9424         walk_blocks(state, print_block, fp);
9425 }
9426
9427 static void prune_nonblock_triples(struct compile_state *state)
9428 {
9429         struct block *block;
9430         struct triple *first, *ins, *next;
9431         /* Delete the triples not in a basic block */
9432         first = RHS(state->main_function, 0);
9433         block = 0;
9434         ins = first;
9435         do {
9436                 next = ins->next;
9437                 if (ins->op == OP_LABEL) {
9438                         block = ins->u.block;
9439                 }
9440                 if (!block) {
9441                         release_triple(state, ins);
9442                 }
9443                 ins = next;
9444         } while(ins != first);
9445 }
9446
9447 static void setup_basic_blocks(struct compile_state *state)
9448 {
9449         if (!triple_stores_block(state, RHS(state->main_function, 0)) ||
9450                 !triple_stores_block(state, RHS(state->main_function,0)->prev)) {
9451                 internal_error(state, 0, "ins will not store block?");
9452         }
9453         /* Find the basic blocks */
9454         state->last_vertex = 0;
9455         state->first_block = basic_block(state, RHS(state->main_function,0));
9456         /* Delete the triples not in a basic block */
9457         prune_nonblock_triples(state);
9458         /* Find the last basic block */
9459         state->last_block = RHS(state->main_function, 0)->prev->u.block;
9460         if (!state->last_block) {
9461                 internal_error(state, 0, "end not used?");
9462         }
9463         /* Insert an extra unused edge from start to the end 
9464          * This helps with reverse control flow calculations.
9465          */
9466         use_block(state->first_block, state->last_block);
9467         /* If we are debugging print what I have just done */
9468         if (state->debug & DEBUG_BASIC_BLOCKS) {
9469                 print_blocks(state, stdout);
9470                 print_control_flow(state);
9471         }
9472 }
9473
9474 static void free_basic_block(struct compile_state *state, struct block *block)
9475 {
9476         struct block_set *entry, *next;
9477         struct block *child;
9478         if (!block) {
9479                 return;
9480         }
9481         if (block->vertex == -1) {
9482                 return;
9483         }
9484         block->vertex = -1;
9485         if (block->left) {
9486                 unuse_block(block->left, block);
9487         }
9488         if (block->right) {
9489                 unuse_block(block->right, block);
9490         }
9491         if (block->idom) {
9492                 unidom_block(block->idom, block);
9493         }
9494         block->idom = 0;
9495         if (block->ipdom) {
9496                 unipdom_block(block->ipdom, block);
9497         }
9498         block->ipdom = 0;
9499         for(entry = block->use; entry; entry = next) {
9500                 next = entry->next;
9501                 child = entry->member;
9502                 unuse_block(block, child);
9503                 if (child->left == block) {
9504                         child->left = 0;
9505                 }
9506                 if (child->right == block) {
9507                         child->right = 0;
9508                 }
9509         }
9510         for(entry = block->idominates; entry; entry = next) {
9511                 next = entry->next;
9512                 child = entry->member;
9513                 unidom_block(block, child);
9514                 child->idom = 0;
9515         }
9516         for(entry = block->domfrontier; entry; entry = next) {
9517                 next = entry->next;
9518                 child = entry->member;
9519                 undomf_block(block, child);
9520         }
9521         for(entry = block->ipdominates; entry; entry = next) {
9522                 next = entry->next;
9523                 child = entry->member;
9524                 unipdom_block(block, child);
9525                 child->ipdom = 0;
9526         }
9527         for(entry = block->ipdomfrontier; entry; entry = next) {
9528                 next = entry->next;
9529                 child = entry->member;
9530                 unipdomf_block(block, child);
9531         }
9532         if (block->users != 0) {
9533                 internal_error(state, 0, "block still has users");
9534         }
9535         free_basic_block(state, block->left);
9536         block->left = 0;
9537         free_basic_block(state, block->right);
9538         block->right = 0;
9539         memset(block, -1, sizeof(*block));
9540         xfree(block);
9541 }
9542
9543 static void free_basic_blocks(struct compile_state *state)
9544 {
9545         struct triple *first, *ins;
9546         free_basic_block(state, state->first_block);
9547         state->last_vertex = 0;
9548         state->first_block = state->last_block = 0;
9549         first = RHS(state->main_function, 0);
9550         ins = first;
9551         do {
9552                 if (triple_stores_block(state, ins)) {
9553                         ins->u.block = 0;
9554                 }
9555                 ins = ins->next;
9556         } while(ins != first);
9557         
9558 }
9559
9560 struct sdom_block {
9561         struct block *block;
9562         struct sdom_block *sdominates;
9563         struct sdom_block *sdom_next;
9564         struct sdom_block *sdom;
9565         struct sdom_block *label;
9566         struct sdom_block *parent;
9567         struct sdom_block *ancestor;
9568         int vertex;
9569 };
9570
9571
9572 static void unsdom_block(struct sdom_block *block)
9573 {
9574         struct sdom_block **ptr;
9575         if (!block->sdom_next) {
9576                 return;
9577         }
9578         ptr = &block->sdom->sdominates;
9579         while(*ptr) {
9580                 if ((*ptr) == block) {
9581                         *ptr = block->sdom_next;
9582                         return;
9583                 }
9584                 ptr = &(*ptr)->sdom_next;
9585         }
9586 }
9587
9588 static void sdom_block(struct sdom_block *sdom, struct sdom_block *block)
9589 {
9590         unsdom_block(block);
9591         block->sdom = sdom;
9592         block->sdom_next = sdom->sdominates;
9593         sdom->sdominates = block;
9594 }
9595
9596
9597
9598 static int initialize_sdblock(struct sdom_block *sd,
9599         struct block *parent, struct block *block, int vertex)
9600 {
9601         if (!block || (sd[block->vertex].block == block)) {
9602                 return vertex;
9603         }
9604         vertex += 1;
9605         /* Renumber the blocks in a convinient fashion */
9606         block->vertex = vertex;
9607         sd[vertex].block    = block;
9608         sd[vertex].sdom     = &sd[vertex];
9609         sd[vertex].label    = &sd[vertex];
9610         sd[vertex].parent   = parent? &sd[parent->vertex] : 0;
9611         sd[vertex].ancestor = 0;
9612         sd[vertex].vertex   = vertex;
9613         vertex = initialize_sdblock(sd, block, block->left, vertex);
9614         vertex = initialize_sdblock(sd, block, block->right, vertex);
9615         return vertex;
9616 }
9617
9618 static int initialize_sdpblock(struct sdom_block *sd,
9619         struct block *parent, struct block *block, int vertex)
9620 {
9621         struct block_set *user;
9622         if (!block || (sd[block->vertex].block == block)) {
9623                 return vertex;
9624         }
9625         vertex += 1;
9626         /* Renumber the blocks in a convinient fashion */
9627         block->vertex = vertex;
9628         sd[vertex].block    = block;
9629         sd[vertex].sdom     = &sd[vertex];
9630         sd[vertex].label    = &sd[vertex];
9631         sd[vertex].parent   = parent? &sd[parent->vertex] : 0;
9632         sd[vertex].ancestor = 0;
9633         sd[vertex].vertex   = vertex;
9634         for(user = block->use; user; user = user->next) {
9635                 vertex = initialize_sdpblock(sd, block, user->member, vertex);
9636         }
9637         return vertex;
9638 }
9639
9640 static void compress_ancestors(struct sdom_block *v)
9641 {
9642         /* This procedure assumes ancestor(v) != 0 */
9643         /* if (ancestor(ancestor(v)) != 0) {
9644          *      compress(ancestor(ancestor(v)));
9645          *      if (semi(label(ancestor(v))) < semi(label(v))) {
9646          *              label(v) = label(ancestor(v));
9647          *      }
9648          *      ancestor(v) = ancestor(ancestor(v));
9649          * }
9650          */
9651         if (!v->ancestor) {
9652                 return;
9653         }
9654         if (v->ancestor->ancestor) {
9655                 compress_ancestors(v->ancestor->ancestor);
9656                 if (v->ancestor->label->sdom->vertex < v->label->sdom->vertex) {
9657                         v->label = v->ancestor->label;
9658                 }
9659                 v->ancestor = v->ancestor->ancestor;
9660         }
9661 }
9662
9663 static void compute_sdom(struct compile_state *state, struct sdom_block *sd)
9664 {
9665         int i;
9666         /* // step 2 
9667          *  for each v <= pred(w) {
9668          *      u = EVAL(v);
9669          *      if (semi[u] < semi[w] { 
9670          *              semi[w] = semi[u]; 
9671          *      } 
9672          * }
9673          * add w to bucket(vertex(semi[w]));
9674          * LINK(parent(w), w);
9675          *
9676          * // step 3
9677          * for each v <= bucket(parent(w)) {
9678          *      delete v from bucket(parent(w));
9679          *      u = EVAL(v);
9680          *      dom(v) = (semi[u] < semi[v]) ? u : parent(w);
9681          * }
9682          */
9683         for(i = state->last_vertex; i >= 2; i--) {
9684                 struct sdom_block *v, *parent, *next;
9685                 struct block_set *user;
9686                 struct block *block;
9687                 block = sd[i].block;
9688                 parent = sd[i].parent;
9689                 /* Step 2 */
9690                 for(user = block->use; user; user = user->next) {
9691                         struct sdom_block *v, *u;
9692                         v = &sd[user->member->vertex];
9693                         u = !(v->ancestor)? v : (compress_ancestors(v), v->label);
9694                         if (u->sdom->vertex < sd[i].sdom->vertex) {
9695                                 sd[i].sdom = u->sdom;
9696                         }
9697                 }
9698                 sdom_block(sd[i].sdom, &sd[i]);
9699                 sd[i].ancestor = parent;
9700                 /* Step 3 */
9701                 for(v = parent->sdominates; v; v = next) {
9702                         struct sdom_block *u;
9703                         next = v->sdom_next;
9704                         unsdom_block(v);
9705                         u = (!v->ancestor) ? v : (compress_ancestors(v), v->label);
9706                         v->block->idom = (u->sdom->vertex < v->sdom->vertex)? 
9707                                 u->block : parent->block;
9708                 }
9709         }
9710 }
9711
9712 static void compute_spdom(struct compile_state *state, struct sdom_block *sd)
9713 {
9714         int i;
9715         /* // step 2 
9716          *  for each v <= pred(w) {
9717          *      u = EVAL(v);
9718          *      if (semi[u] < semi[w] { 
9719          *              semi[w] = semi[u]; 
9720          *      } 
9721          * }
9722          * add w to bucket(vertex(semi[w]));
9723          * LINK(parent(w), w);
9724          *
9725          * // step 3
9726          * for each v <= bucket(parent(w)) {
9727          *      delete v from bucket(parent(w));
9728          *      u = EVAL(v);
9729          *      dom(v) = (semi[u] < semi[v]) ? u : parent(w);
9730          * }
9731          */
9732         for(i = state->last_vertex; i >= 2; i--) {
9733                 struct sdom_block *u, *v, *parent, *next;
9734                 struct block *block;
9735                 block = sd[i].block;
9736                 parent = sd[i].parent;
9737                 /* Step 2 */
9738                 if (block->left) {
9739                         v = &sd[block->left->vertex];
9740                         u = !(v->ancestor)? v : (compress_ancestors(v), v->label);
9741                         if (u->sdom->vertex < sd[i].sdom->vertex) {
9742                                 sd[i].sdom = u->sdom;
9743                         }
9744                 }
9745                 if (block->right && (block->right != block->left)) {
9746                         v = &sd[block->right->vertex];
9747                         u = !(v->ancestor)? v : (compress_ancestors(v), v->label);
9748                         if (u->sdom->vertex < sd[i].sdom->vertex) {
9749                                 sd[i].sdom = u->sdom;
9750                         }
9751                 }
9752                 sdom_block(sd[i].sdom, &sd[i]);
9753                 sd[i].ancestor = parent;
9754                 /* Step 3 */
9755                 for(v = parent->sdominates; v; v = next) {
9756                         struct sdom_block *u;
9757                         next = v->sdom_next;
9758                         unsdom_block(v);
9759                         u = (!v->ancestor) ? v : (compress_ancestors(v), v->label);
9760                         v->block->ipdom = (u->sdom->vertex < v->sdom->vertex)? 
9761                                 u->block : parent->block;
9762                 }
9763         }
9764 }
9765
9766 static void compute_idom(struct compile_state *state, struct sdom_block *sd)
9767 {
9768         int i;
9769         for(i = 2; i <= state->last_vertex; i++) {
9770                 struct block *block;
9771                 block = sd[i].block;
9772                 if (block->idom->vertex != sd[i].sdom->vertex) {
9773                         block->idom = block->idom->idom;
9774                 }
9775                 idom_block(block->idom, block);
9776         }
9777         sd[1].block->idom = 0;
9778 }
9779
9780 static void compute_ipdom(struct compile_state *state, struct sdom_block *sd)
9781 {
9782         int i;
9783         for(i = 2; i <= state->last_vertex; i++) {
9784                 struct block *block;
9785                 block = sd[i].block;
9786                 if (block->ipdom->vertex != sd[i].sdom->vertex) {
9787                         block->ipdom = block->ipdom->ipdom;
9788                 }
9789                 ipdom_block(block->ipdom, block);
9790         }
9791         sd[1].block->ipdom = 0;
9792 }
9793
9794         /* Theorem 1:
9795          *   Every vertex of a flowgraph G = (V, E, r) except r has
9796          *   a unique immediate dominator.  
9797          *   The edges {(idom(w), w) |w <= V - {r}} form a directed tree
9798          *   rooted at r, called the dominator tree of G, such that 
9799          *   v dominates w if and only if v is a proper ancestor of w in
9800          *   the dominator tree.
9801          */
9802         /* Lemma 1:  
9803          *   If v and w are vertices of G such that v <= w,
9804          *   than any path from v to w must contain a common ancestor
9805          *   of v and w in T.
9806          */
9807         /* Lemma 2:  For any vertex w != r, idom(w) -> w */
9808         /* Lemma 3:  For any vertex w != r, sdom(w) -> w */
9809         /* Lemma 4:  For any vertex w != r, idom(w) -> sdom(w) */
9810         /* Theorem 2:
9811          *   Let w != r.  Suppose every u for which sdom(w) -> u -> w satisfies
9812          *   sdom(u) >= sdom(w).  Then idom(w) = sdom(w).
9813          */
9814         /* Theorem 3:
9815          *   Let w != r and let u be a vertex for which sdom(u) is 
9816          *   minimum amoung vertices u satisfying sdom(w) -> u -> w.
9817          *   Then sdom(u) <= sdom(w) and idom(u) = idom(w).
9818          */
9819         /* Lemma 5:  Let vertices v,w satisfy v -> w.
9820          *           Then v -> idom(w) or idom(w) -> idom(v)
9821          */
9822
9823 static void find_immediate_dominators(struct compile_state *state)
9824 {
9825         struct sdom_block *sd;
9826         /* w->sdom = min{v| there is a path v = v0,v1,...,vk = w such that:
9827          *           vi > w for (1 <= i <= k - 1}
9828          */
9829         /* Theorem 4:
9830          *   For any vertex w != r.
9831          *   sdom(w) = min(
9832          *                 {v|(v,w) <= E  and v < w } U 
9833          *                 {sdom(u) | u > w and there is an edge (v, w) such that u -> v})
9834          */
9835         /* Corollary 1:
9836          *   Let w != r and let u be a vertex for which sdom(u) is 
9837          *   minimum amoung vertices u satisfying sdom(w) -> u -> w.
9838          *   Then:
9839          *                   { sdom(w) if sdom(w) = sdom(u),
9840          *        idom(w) = {
9841          *                   { idom(u) otherwise
9842          */
9843         /* The algorithm consists of the following 4 steps.
9844          * Step 1.  Carry out a depth-first search of the problem graph.  
9845          *    Number the vertices from 1 to N as they are reached during
9846          *    the search.  Initialize the variables used in succeeding steps.
9847          * Step 2.  Compute the semidominators of all vertices by applying
9848          *    theorem 4.   Carry out the computation vertex by vertex in
9849          *    decreasing order by number.
9850          * Step 3.  Implicitly define the immediate dominator of each vertex
9851          *    by applying Corollary 1.
9852          * Step 4.  Explicitly define the immediate dominator of each vertex,
9853          *    carrying out the computation vertex by vertex in increasing order
9854          *    by number.
9855          */
9856         /* Step 1 initialize the basic block information */
9857         sd = xcmalloc(sizeof(*sd) * (state->last_vertex + 1), "sdom_state");
9858         initialize_sdblock(sd, 0, state->first_block, 0);
9859 #if 0
9860         sd[1].size  = 0;
9861         sd[1].label = 0;
9862         sd[1].sdom  = 0;
9863 #endif
9864         /* Step 2 compute the semidominators */
9865         /* Step 3 implicitly define the immediate dominator of each vertex */
9866         compute_sdom(state, sd);
9867         /* Step 4 explicitly define the immediate dominator of each vertex */
9868         compute_idom(state, sd);
9869         xfree(sd);
9870 }
9871
9872 static void find_post_dominators(struct compile_state *state)
9873 {
9874         struct sdom_block *sd;
9875         /* Step 1 initialize the basic block information */
9876         sd = xcmalloc(sizeof(*sd) * (state->last_vertex + 1), "sdom_state");
9877
9878         initialize_sdpblock(sd, 0, state->last_block, 0);
9879
9880         /* Step 2 compute the semidominators */
9881         /* Step 3 implicitly define the immediate dominator of each vertex */
9882         compute_spdom(state, sd);
9883         /* Step 4 explicitly define the immediate dominator of each vertex */
9884         compute_ipdom(state, sd);
9885         xfree(sd);
9886 }
9887
9888
9889
9890 static void find_block_domf(struct compile_state *state, struct block *block)
9891 {
9892         struct block *child;
9893         struct block_set *user;
9894         if (block->domfrontier != 0) {
9895                 internal_error(state, block->first, "domfrontier present?");
9896         }
9897         for(user = block->idominates; user; user = user->next) {
9898                 child = user->member;
9899                 if (child->idom != block) {
9900                         internal_error(state, block->first, "bad idom");
9901                 }
9902                 find_block_domf(state, child);
9903         }
9904         if (block->left && block->left->idom != block) {
9905                 domf_block(block, block->left);
9906         }
9907         if (block->right && block->right->idom != block) {
9908                 domf_block(block, block->right);
9909         }
9910         for(user = block->idominates; user; user = user->next) {
9911                 struct block_set *frontier;
9912                 child = user->member;
9913                 for(frontier = child->domfrontier; frontier; frontier = frontier->next) {
9914                         if (frontier->member->idom != block) {
9915                                 domf_block(block, frontier->member);
9916                         }
9917                 }
9918         }
9919 }
9920
9921 static void find_block_ipdomf(struct compile_state *state, struct block *block)
9922 {
9923         struct block *child;
9924         struct block_set *user;
9925         if (block->ipdomfrontier != 0) {
9926                 internal_error(state, block->first, "ipdomfrontier present?");
9927         }
9928         for(user = block->ipdominates; user; user = user->next) {
9929                 child = user->member;
9930                 if (child->ipdom != block) {
9931                         internal_error(state, block->first, "bad ipdom");
9932                 }
9933                 find_block_ipdomf(state, child);
9934         }
9935         if (block->left && block->left->ipdom != block) {
9936                 ipdomf_block(block, block->left);
9937         }
9938         if (block->right && block->right->ipdom != block) {
9939                 ipdomf_block(block, block->right);
9940         }
9941         for(user = block->idominates; user; user = user->next) {
9942                 struct block_set *frontier;
9943                 child = user->member;
9944                 for(frontier = child->ipdomfrontier; frontier; frontier = frontier->next) {
9945                         if (frontier->member->ipdom != block) {
9946                                 ipdomf_block(block, frontier->member);
9947                         }
9948                 }
9949         }
9950 }
9951
9952 static void print_dominated(
9953         struct compile_state *state, struct block *block, void *arg)
9954 {
9955         struct block_set *user;
9956         FILE *fp = arg;
9957
9958         fprintf(fp, "%d:", block->vertex);
9959         for(user = block->idominates; user; user = user->next) {
9960                 fprintf(fp, " %d", user->member->vertex);
9961                 if (user->member->idom != block) {
9962                         internal_error(state, user->member->first, "bad idom");
9963                 }
9964         }
9965         fprintf(fp,"\n");
9966 }
9967
9968 static void print_dominators(struct compile_state *state, FILE *fp)
9969 {
9970         fprintf(fp, "\ndominates\n");
9971         walk_blocks(state, print_dominated, fp);
9972 }
9973
9974
9975 static int print_frontiers(
9976         struct compile_state *state, struct block *block, int vertex)
9977 {
9978         struct block_set *user;
9979
9980         if (!block || (block->vertex != vertex + 1)) {
9981                 return vertex;
9982         }
9983         vertex += 1;
9984
9985         printf("%d:", block->vertex);
9986         for(user = block->domfrontier; user; user = user->next) {
9987                 printf(" %d", user->member->vertex);
9988         }
9989         printf("\n");
9990
9991         vertex = print_frontiers(state, block->left, vertex);
9992         vertex = print_frontiers(state, block->right, vertex);
9993         return vertex;
9994 }
9995 static void print_dominance_frontiers(struct compile_state *state)
9996 {
9997         printf("\ndominance frontiers\n");
9998         print_frontiers(state, state->first_block, 0);
9999         
10000 }
10001
10002 static void analyze_idominators(struct compile_state *state)
10003 {
10004         /* Find the immediate dominators */
10005         find_immediate_dominators(state);
10006         /* Find the dominance frontiers */
10007         find_block_domf(state, state->first_block);
10008         /* If debuging print the print what I have just found */
10009         if (state->debug & DEBUG_FDOMINATORS) {
10010                 print_dominators(state, stdout);
10011                 print_dominance_frontiers(state);
10012                 print_control_flow(state);
10013         }
10014 }
10015
10016
10017
10018 static void print_ipdominated(
10019         struct compile_state *state, struct block *block, void *arg)
10020 {
10021         struct block_set *user;
10022         FILE *fp = arg;
10023
10024         fprintf(fp, "%d:", block->vertex);
10025         for(user = block->ipdominates; user; user = user->next) {
10026                 fprintf(fp, " %d", user->member->vertex);
10027                 if (user->member->ipdom != block) {
10028                         internal_error(state, user->member->first, "bad ipdom");
10029                 }
10030         }
10031         fprintf(fp, "\n");
10032 }
10033
10034 static void print_ipdominators(struct compile_state *state, FILE *fp)
10035 {
10036         fprintf(fp, "\nipdominates\n");
10037         walk_blocks(state, print_ipdominated, fp);
10038 }
10039
10040 static int print_pfrontiers(
10041         struct compile_state *state, struct block *block, int vertex)
10042 {
10043         struct block_set *user;
10044
10045         if (!block || (block->vertex != vertex + 1)) {
10046                 return vertex;
10047         }
10048         vertex += 1;
10049
10050         printf("%d:", block->vertex);
10051         for(user = block->ipdomfrontier; user; user = user->next) {
10052                 printf(" %d", user->member->vertex);
10053         }
10054         printf("\n");
10055         for(user = block->use; user; user = user->next) {
10056                 vertex = print_pfrontiers(state, user->member, vertex);
10057         }
10058         return vertex;
10059 }
10060 static void print_ipdominance_frontiers(struct compile_state *state)
10061 {
10062         printf("\nipdominance frontiers\n");
10063         print_pfrontiers(state, state->last_block, 0);
10064         
10065 }
10066
10067 static void analyze_ipdominators(struct compile_state *state)
10068 {
10069         /* Find the post dominators */
10070         find_post_dominators(state);
10071         /* Find the control dependencies (post dominance frontiers) */
10072         find_block_ipdomf(state, state->last_block);
10073         /* If debuging print the print what I have just found */
10074         if (state->debug & DEBUG_RDOMINATORS) {
10075                 print_ipdominators(state, stdout);
10076                 print_ipdominance_frontiers(state);
10077                 print_control_flow(state);
10078         }
10079 }
10080
10081 static int bdominates(struct compile_state *state,
10082         struct block *dom, struct block *sub)
10083 {
10084         while(sub && (sub != dom)) {
10085                 sub = sub->idom;
10086         }
10087         return sub == dom;
10088 }
10089
10090 static int tdominates(struct compile_state *state,
10091         struct triple *dom, struct triple *sub)
10092 {
10093         struct block *bdom, *bsub;
10094         int result;
10095         bdom = block_of_triple(state, dom);
10096         bsub = block_of_triple(state, sub);
10097         if (bdom != bsub) {
10098                 result = bdominates(state, bdom, bsub);
10099         } 
10100         else {
10101                 struct triple *ins;
10102                 ins = sub;
10103                 while((ins != bsub->first) && (ins != dom)) {
10104                         ins = ins->prev;
10105                 }
10106                 result = (ins == dom);
10107         }
10108         return result;
10109 }
10110
10111 static void insert_phi_operations(struct compile_state *state)
10112 {
10113         size_t size;
10114         struct triple *first;
10115         int *has_already, *work;
10116         struct block *work_list, **work_list_tail;
10117         int iter;
10118         struct triple *var;
10119
10120         size = sizeof(int) * (state->last_vertex + 1);
10121         has_already = xcmalloc(size, "has_already");
10122         work =        xcmalloc(size, "work");
10123         iter = 0;
10124
10125         first = RHS(state->main_function, 0);
10126         for(var = first->next; var != first ; var = var->next) {
10127                 struct block *block;
10128                 struct triple_set *user;
10129                 if ((var->op != OP_ADECL) || !var->use) {
10130                         continue;
10131                 }
10132                 iter += 1;
10133                 work_list = 0;
10134                 work_list_tail = &work_list;
10135                 for(user = var->use; user; user = user->next) {
10136                         if (user->member->op == OP_READ) {
10137                                 continue;
10138                         }
10139                         if (user->member->op != OP_WRITE) {
10140                                 internal_error(state, user->member, 
10141                                         "bad variable access");
10142                         }
10143                         block = user->member->u.block;
10144                         if (!block) {
10145                                 warning(state, user->member, "dead code");
10146                         }
10147                         if (work[block->vertex] >= iter) {
10148                                 continue;
10149                         }
10150                         work[block->vertex] = iter;
10151                         *work_list_tail = block;
10152                         block->work_next = 0;
10153                         work_list_tail = &block->work_next;
10154                 }
10155                 for(block = work_list; block; block = block->work_next) {
10156                         struct block_set *df;
10157                         for(df = block->domfrontier; df; df = df->next) {
10158                                 struct triple *phi;
10159                                 struct block *front;
10160                                 int in_edges;
10161                                 front = df->member;
10162
10163                                 if (has_already[front->vertex] >= iter) {
10164                                         continue;
10165                                 }
10166                                 /* Count how many edges flow into this block */
10167                                 in_edges = front->users;
10168                                 /* Insert a phi function for this variable */
10169                                 get_occurance(front->first->occurance);
10170                                 phi = alloc_triple(
10171                                         state, OP_PHI, var->type, -1, in_edges, 
10172                                         front->first->occurance);
10173                                 phi->u.block = front;
10174                                 MISC(phi, 0) = var;
10175                                 use_triple(var, phi);
10176                                 /* Insert the phi functions immediately after the label */
10177                                 insert_triple(state, front->first->next, phi);
10178                                 if (front->first == front->last) {
10179                                         front->last = front->first->next;
10180                                 }
10181                                 has_already[front->vertex] = iter;
10182
10183                                 /* If necessary plan to visit the basic block */
10184                                 if (work[front->vertex] >= iter) {
10185                                         continue;
10186                                 }
10187                                 work[front->vertex] = iter;
10188                                 *work_list_tail = front;
10189                                 front->work_next = 0;
10190                                 work_list_tail = &front->work_next;
10191                         }
10192                 }
10193         }
10194         xfree(has_already);
10195         xfree(work);
10196 }
10197
10198 /*
10199  * C(V)
10200  * S(V)
10201  */
10202 static void fixup_block_phi_variables(
10203         struct compile_state *state, struct block *parent, struct block *block)
10204 {
10205         struct block_set *set;
10206         struct triple *ptr;
10207         int edge;
10208         if (!parent || !block)
10209                 return;
10210         /* Find the edge I am coming in on */
10211         edge = 0;
10212         for(set = block->use; set; set = set->next, edge++) {
10213                 if (set->member == parent) {
10214                         break;
10215                 }
10216         }
10217         if (!set) {
10218                 internal_error(state, 0, "phi input is not on a control predecessor");
10219         }
10220         for(ptr = block->first; ; ptr = ptr->next) {
10221                 if (ptr->op == OP_PHI) {
10222                         struct triple *var, *val, **slot;
10223                         var = MISC(ptr, 0);
10224                         if (!var) {
10225                                 internal_error(state, ptr, "no var???");
10226                         }
10227                         /* Find the current value of the variable */
10228                         val = var->use->member;
10229                         if ((val->op == OP_WRITE) || (val->op == OP_READ)) {
10230                                 internal_error(state, val, "bad value in phi");
10231                         }
10232                         if (edge >= TRIPLE_RHS(ptr->sizes)) {
10233                                 internal_error(state, ptr, "edges > phi rhs");
10234                         }
10235                         slot = &RHS(ptr, edge);
10236                         if ((*slot != 0) && (*slot != val)) {
10237                                 internal_error(state, ptr, "phi already bound on this edge");
10238                         }
10239                         *slot = val;
10240                         use_triple(val, ptr);
10241                 }
10242                 if (ptr == block->last) {
10243                         break;
10244                 }
10245         }
10246 }
10247
10248
10249 static void rename_block_variables(
10250         struct compile_state *state, struct block *block)
10251 {
10252         struct block_set *user;
10253         struct triple *ptr, *next, *last;
10254         int done;
10255         if (!block)
10256                 return;
10257         last = block->first;
10258         done = 0;
10259         for(ptr = block->first; !done; ptr = next) {
10260                 next = ptr->next;
10261                 if (ptr == block->last) {
10262                         done = 1;
10263                 }
10264                 /* RHS(A) */
10265                 if (ptr->op == OP_READ) {
10266                         struct triple *var, *val;
10267                         var = RHS(ptr, 0);
10268                         unuse_triple(var, ptr);
10269                         if (!var->use) {
10270                                 error(state, ptr, "variable used without being set");
10271                         }
10272                         /* Find the current value of the variable */
10273                         val = var->use->member;
10274                         if ((val->op == OP_WRITE) || (val->op == OP_READ)) {
10275                                 internal_error(state, val, "bad value in read");
10276                         }
10277                         propogate_use(state, ptr, val);
10278                         release_triple(state, ptr);
10279                         continue;
10280                 }
10281                 /* LHS(A) */
10282                 if (ptr->op == OP_WRITE) {
10283                         struct triple *var, *val;
10284                         var = LHS(ptr, 0);
10285                         val = RHS(ptr, 0);
10286                         if ((val->op == OP_WRITE) || (val->op == OP_READ)) {
10287                                 internal_error(state, val, "bad value in write");
10288                         }
10289                         propogate_use(state, ptr, val);
10290                         unuse_triple(var, ptr);
10291                         /* Push OP_WRITE ptr->right onto a stack of variable uses */
10292                         push_triple(var, val);
10293                 }
10294                 if (ptr->op == OP_PHI) {
10295                         struct triple *var;
10296                         var = MISC(ptr, 0);
10297                         /* Push OP_PHI onto a stack of variable uses */
10298                         push_triple(var, ptr);
10299                 }
10300                 last = ptr;
10301         }
10302         block->last = last;
10303
10304         /* Fixup PHI functions in the cf successors */
10305         fixup_block_phi_variables(state, block, block->left);
10306         fixup_block_phi_variables(state, block, block->right);
10307         /* rename variables in the dominated nodes */
10308         for(user = block->idominates; user; user = user->next) {
10309                 rename_block_variables(state, user->member);
10310         }
10311         /* pop the renamed variable stack */
10312         last = block->first;
10313         done = 0;
10314         for(ptr = block->first; !done ; ptr = next) {
10315                 next = ptr->next;
10316                 if (ptr == block->last) {
10317                         done = 1;
10318                 }
10319                 if (ptr->op == OP_WRITE) {
10320                         struct triple *var;
10321                         var = LHS(ptr, 0);
10322                         /* Pop OP_WRITE ptr->right from the stack of variable uses */
10323                         pop_triple(var, RHS(ptr, 0));
10324                         release_triple(state, ptr);
10325                         continue;
10326                 }
10327                 if (ptr->op == OP_PHI) {
10328                         struct triple *var;
10329                         var = MISC(ptr, 0);
10330                         /* Pop OP_WRITE ptr->right from the stack of variable uses */
10331                         pop_triple(var, ptr);
10332                 }
10333                 last = ptr;
10334         }
10335         block->last = last;
10336 }
10337
10338 static void prune_block_variables(struct compile_state *state,
10339         struct block *block)
10340 {
10341         struct block_set *user;
10342         struct triple *next, *last, *ptr;
10343         int done;
10344         last = block->first;
10345         done = 0;
10346         for(ptr = block->first; !done; ptr = next) {
10347                 next = ptr->next;
10348                 if (ptr == block->last) {
10349                         done = 1;
10350                 }
10351                 if (ptr->op == OP_ADECL) {
10352                         struct triple_set *user, *next;
10353                         for(user = ptr->use; user; user = next) {
10354                                 struct triple *use;
10355                                 next = user->next;
10356                                 use = user->member;
10357                                 if (use->op != OP_PHI) {
10358                                         internal_error(state, use, "decl still used");
10359                                 }
10360                                 if (MISC(use, 0) != ptr) {
10361                                         internal_error(state, use, "bad phi use of decl");
10362                                 }
10363                                 unuse_triple(ptr, use);
10364                                 MISC(use, 0) = 0;
10365                         }
10366                         release_triple(state, ptr);
10367                         continue;
10368                 }
10369                 last = ptr;
10370         }
10371         block->last = last;
10372         for(user = block->idominates; user; user = user->next) {
10373                 prune_block_variables(state, user->member);
10374         }
10375 }
10376
10377 static void transform_to_ssa_form(struct compile_state *state)
10378 {
10379         insert_phi_operations(state);
10380 #if 0
10381         printf("@%s:%d\n", __FILE__, __LINE__);
10382         print_blocks(state, stdout);
10383 #endif
10384         rename_block_variables(state, state->first_block);
10385         prune_block_variables(state, state->first_block);
10386 }
10387
10388
10389 static void clear_vertex(
10390         struct compile_state *state, struct block *block, void *arg)
10391 {
10392         block->vertex = 0;
10393 }
10394
10395 static void mark_live_block(
10396         struct compile_state *state, struct block *block, int *next_vertex)
10397 {
10398         /* See if this is a block that has not been marked */
10399         if (block->vertex != 0) {
10400                 return;
10401         }
10402         block->vertex = *next_vertex;
10403         *next_vertex += 1;
10404         if (triple_is_branch(state, block->last)) {
10405                 struct triple **targ;
10406                 targ = triple_targ(state, block->last, 0);
10407                 for(; targ; targ = triple_targ(state, block->last, targ)) {
10408                         if (!*targ) {
10409                                 continue;
10410                         }
10411                         if (!triple_stores_block(state, *targ)) {
10412                                 internal_error(state, 0, "bad targ");
10413                         }
10414                         mark_live_block(state, (*targ)->u.block, next_vertex);
10415                 }
10416         }
10417         else if (block->last->next != RHS(state->main_function, 0)) {
10418                 struct triple *ins;
10419                 ins = block->last->next;
10420                 if (!triple_stores_block(state, ins)) {
10421                         internal_error(state, 0, "bad block start");
10422                 }
10423                 mark_live_block(state, ins->u.block, next_vertex);
10424         }
10425 }
10426
10427 static void transform_from_ssa_form(struct compile_state *state)
10428 {
10429         /* To get out of ssa form we insert moves on the incoming
10430          * edges to blocks containting phi functions.
10431          */
10432         struct triple *first;
10433         struct triple *phi, *next;
10434         int next_vertex;
10435
10436         /* Walk the control flow to see which blocks remain alive */
10437         walk_blocks(state, clear_vertex, 0);
10438         next_vertex = 1;
10439         mark_live_block(state, state->first_block, &next_vertex);
10440
10441         /* Walk all of the operations to find the phi functions */
10442         first = RHS(state->main_function, 0);
10443         for(phi = first->next; phi != first ; phi = next) {
10444                 struct block_set *set;
10445                 struct block *block;
10446                 struct triple **slot;
10447                 struct triple *var, *read;
10448                 struct triple_set *use, *use_next;
10449                 int edge, used;
10450                 next = phi->next;
10451                 if (phi->op != OP_PHI) {
10452                         continue;
10453                 }
10454                 block = phi->u.block;
10455                 slot  = &RHS(phi, 0);
10456
10457                 /* Forget uses from code in dead blocks */
10458                 for(use = phi->use; use; use = use_next) {
10459                         struct block *ublock;
10460                         struct triple **expr;
10461                         use_next = use->next;
10462                         ublock = block_of_triple(state, use->member);
10463                         if ((use->member == phi) || (ublock->vertex != 0)) {
10464                                 continue;
10465                         }
10466                         expr = triple_rhs(state, use->member, 0);
10467                         for(; expr; expr = triple_rhs(state, use->member, expr)) {
10468                                 if (*expr == phi) {
10469                                         *expr = 0;
10470                                 }
10471                         }
10472                         unuse_triple(phi, use->member);
10473                 }
10474
10475                 /* A variable to replace the phi function */
10476                 var = post_triple(state, phi, OP_ADECL, phi->type, 0,0);
10477                 /* A read of the single value that is set into the variable */
10478                 read = post_triple(state, var, OP_READ, phi->type, var, 0);
10479                 use_triple(var, read);
10480
10481                 /* Replaces uses of the phi with variable reads */
10482                 propogate_use(state, phi, read);
10483
10484                 /* Walk all of the incoming edges/blocks and insert moves.
10485                  */
10486                 for(edge = 0, set = block->use; set; set = set->next, edge++) {
10487                         struct block *eblock;
10488                         struct triple *move;
10489                         struct triple *val;
10490                         eblock = set->member;
10491                         val = slot[edge];
10492                         slot[edge] = 0;
10493                         unuse_triple(val, phi);
10494
10495                         if (!val || (val == &zero_triple) ||
10496                                 (block->vertex == 0) || (eblock->vertex == 0) ||
10497                                 (val == phi) || (val == read)) {
10498                                 continue;
10499                         }
10500                         
10501                         move = post_triple(state, 
10502                                 val, OP_WRITE, phi->type, var, val);
10503                         use_triple(val, move);
10504                         use_triple(var, move);
10505                 }               
10506                 /* See if there are any writers of var */
10507                 used = 0;
10508                 for(use = var->use; use; use = use->next) {
10509                         struct triple **expr;
10510                         expr = triple_lhs(state, use->member, 0);
10511                         for(; expr; expr = triple_lhs(state, use->member, expr)) {
10512                                 if (*expr == var) {
10513                                         used = 1;
10514                                 }
10515                         }
10516                 }
10517                 /* If var is not used free it */
10518                 if (!used) {
10519                         unuse_triple(var, read);
10520                         free_triple(state, read);
10521                         free_triple(state, var);
10522                 }
10523
10524                 /* Release the phi function */
10525                 release_triple(state, phi);
10526         }
10527         
10528 }
10529
10530
10531 /* 
10532  * Register conflict resolution
10533  * =========================================================
10534  */
10535
10536 static struct reg_info find_def_color(
10537         struct compile_state *state, struct triple *def)
10538 {
10539         struct triple_set *set;
10540         struct reg_info info;
10541         info.reg = REG_UNSET;
10542         info.regcm = 0;
10543         if (!triple_is_def(state, def)) {
10544                 return info;
10545         }
10546         info = arch_reg_lhs(state, def, 0);
10547         if (info.reg >= MAX_REGISTERS) {
10548                 info.reg = REG_UNSET;
10549         }
10550         for(set = def->use; set; set = set->next) {
10551                 struct reg_info tinfo;
10552                 int i;
10553                 i = find_rhs_use(state, set->member, def);
10554                 if (i < 0) {
10555                         continue;
10556                 }
10557                 tinfo = arch_reg_rhs(state, set->member, i);
10558                 if (tinfo.reg >= MAX_REGISTERS) {
10559                         tinfo.reg = REG_UNSET;
10560                 }
10561                 if ((tinfo.reg != REG_UNSET) && 
10562                         (info.reg != REG_UNSET) &&
10563                         (tinfo.reg != info.reg)) {
10564                         internal_error(state, def, "register conflict");
10565                 }
10566                 if ((info.regcm & tinfo.regcm) == 0) {
10567                         internal_error(state, def, "regcm conflict %x & %x == 0",
10568                                 info.regcm, tinfo.regcm);
10569                 }
10570                 if (info.reg == REG_UNSET) {
10571                         info.reg = tinfo.reg;
10572                 }
10573                 info.regcm &= tinfo.regcm;
10574         }
10575         if (info.reg >= MAX_REGISTERS) {
10576                 internal_error(state, def, "register out of range");
10577         }
10578         return info;
10579 }
10580
10581 static struct reg_info find_lhs_pre_color(
10582         struct compile_state *state, struct triple *ins, int index)
10583 {
10584         struct reg_info info;
10585         int zlhs, zrhs, i;
10586         zrhs = TRIPLE_RHS(ins->sizes);
10587         zlhs = TRIPLE_LHS(ins->sizes);
10588         if (!zlhs && triple_is_def(state, ins)) {
10589                 zlhs = 1;
10590         }
10591         if (index >= zlhs) {
10592                 internal_error(state, ins, "Bad lhs %d", index);
10593         }
10594         info = arch_reg_lhs(state, ins, index);
10595         for(i = 0; i < zrhs; i++) {
10596                 struct reg_info rinfo;
10597                 rinfo = arch_reg_rhs(state, ins, i);
10598                 if ((info.reg == rinfo.reg) &&
10599                         (rinfo.reg >= MAX_REGISTERS)) {
10600                         struct reg_info tinfo;
10601                         tinfo = find_lhs_pre_color(state, RHS(ins, index), 0);
10602                         info.reg = tinfo.reg;
10603                         info.regcm &= tinfo.regcm;
10604                         break;
10605                 }
10606         }
10607         if (info.reg >= MAX_REGISTERS) {
10608                 info.reg = REG_UNSET;
10609         }
10610         return info;
10611 }
10612
10613 static struct reg_info find_rhs_post_color(
10614         struct compile_state *state, struct triple *ins, int index);
10615
10616 static struct reg_info find_lhs_post_color(
10617         struct compile_state *state, struct triple *ins, int index)
10618 {
10619         struct triple_set *set;
10620         struct reg_info info;
10621         struct triple *lhs;
10622 #if 0
10623         fprintf(stderr, "find_lhs_post_color(%p, %d)\n",
10624                 ins, index);
10625 #endif
10626         if ((index == 0) && triple_is_def(state, ins)) {
10627                 lhs = ins;
10628         }
10629         else if (index < TRIPLE_LHS(ins->sizes)) {
10630                 lhs = LHS(ins, index);
10631         }
10632         else {
10633                 internal_error(state, ins, "Bad lhs %d", index);
10634                 lhs = 0;
10635         }
10636         info = arch_reg_lhs(state, ins, index);
10637         if (info.reg >= MAX_REGISTERS) {
10638                 info.reg = REG_UNSET;
10639         }
10640         for(set = lhs->use; set; set = set->next) {
10641                 struct reg_info rinfo;
10642                 struct triple *user;
10643                 int zrhs, i;
10644                 user = set->member;
10645                 zrhs = TRIPLE_RHS(user->sizes);
10646                 for(i = 0; i < zrhs; i++) {
10647                         if (RHS(user, i) != lhs) {
10648                                 continue;
10649                         }
10650                         rinfo = find_rhs_post_color(state, user, i);
10651                         if ((info.reg != REG_UNSET) &&
10652                                 (rinfo.reg != REG_UNSET) &&
10653                                 (info.reg != rinfo.reg)) {
10654                                 internal_error(state, ins, "register conflict");
10655                         }
10656                         if ((info.regcm & rinfo.regcm) == 0) {
10657                                 internal_error(state, ins, "regcm conflict %x & %x == 0",
10658                                         info.regcm, rinfo.regcm);
10659                         }
10660                         if (info.reg == REG_UNSET) {
10661                                 info.reg = rinfo.reg;
10662                         }
10663                         info.regcm &= rinfo.regcm;
10664                 }
10665         }
10666 #if 0
10667         fprintf(stderr, "find_lhs_post_color(%p, %d) -> ( %d, %x)\n",
10668                 ins, index, info.reg, info.regcm);
10669 #endif
10670         return info;
10671 }
10672
10673 static struct reg_info find_rhs_post_color(
10674         struct compile_state *state, struct triple *ins, int index)
10675 {
10676         struct reg_info info, rinfo;
10677         int zlhs, i;
10678 #if 0
10679         fprintf(stderr, "find_rhs_post_color(%p, %d)\n",
10680                 ins, index);
10681 #endif
10682         rinfo = arch_reg_rhs(state, ins, index);
10683         zlhs = TRIPLE_LHS(ins->sizes);
10684         if (!zlhs && triple_is_def(state, ins)) {
10685                 zlhs = 1;
10686         }
10687         info = rinfo;
10688         if (info.reg >= MAX_REGISTERS) {
10689                 info.reg = REG_UNSET;
10690         }
10691         for(i = 0; i < zlhs; i++) {
10692                 struct reg_info linfo;
10693                 linfo = arch_reg_lhs(state, ins, i);
10694                 if ((linfo.reg == rinfo.reg) &&
10695                         (linfo.reg >= MAX_REGISTERS)) {
10696                         struct reg_info tinfo;
10697                         tinfo = find_lhs_post_color(state, ins, i);
10698                         if (tinfo.reg >= MAX_REGISTERS) {
10699                                 tinfo.reg = REG_UNSET;
10700                         }
10701                         info.regcm &= linfo.reg;
10702                         info.regcm &= tinfo.regcm;
10703                         if (info.reg != REG_UNSET) {
10704                                 internal_error(state, ins, "register conflict");
10705                         }
10706                         if (info.regcm == 0) {
10707                                 internal_error(state, ins, "regcm conflict");
10708                         }
10709                         info.reg = tinfo.reg;
10710                 }
10711         }
10712 #if 0
10713         fprintf(stderr, "find_rhs_post_color(%p, %d) -> ( %d, %x)\n",
10714                 ins, index, info.reg, info.regcm);
10715 #endif
10716         return info;
10717 }
10718
10719 static struct reg_info find_lhs_color(
10720         struct compile_state *state, struct triple *ins, int index)
10721 {
10722         struct reg_info pre, post, info;
10723 #if 0
10724         fprintf(stderr, "find_lhs_color(%p, %d)\n",
10725                 ins, index);
10726 #endif
10727         pre = find_lhs_pre_color(state, ins, index);
10728         post = find_lhs_post_color(state, ins, index);
10729         if ((pre.reg != post.reg) &&
10730                 (pre.reg != REG_UNSET) &&
10731                 (post.reg != REG_UNSET)) {
10732                 internal_error(state, ins, "register conflict");
10733         }
10734         info.regcm = pre.regcm & post.regcm;
10735         info.reg = pre.reg;
10736         if (info.reg == REG_UNSET) {
10737                 info.reg = post.reg;
10738         }
10739 #if 0
10740         fprintf(stderr, "find_lhs_color(%p, %d) -> ( %d, %x)\n",
10741                 ins, index, info.reg, info.regcm);
10742 #endif
10743         return info;
10744 }
10745
10746 static struct triple *post_copy(struct compile_state *state, struct triple *ins)
10747 {
10748         struct triple_set *entry, *next;
10749         struct triple *out;
10750         struct reg_info info, rinfo;
10751
10752         info = arch_reg_lhs(state, ins, 0);
10753         out = post_triple(state, ins, OP_COPY, ins->type, ins, 0);
10754         use_triple(RHS(out, 0), out);
10755         /* Get the users of ins to use out instead */
10756         for(entry = ins->use; entry; entry = next) {
10757                 int i;
10758                 next = entry->next;
10759                 if (entry->member == out) {
10760                         continue;
10761                 }
10762                 i = find_rhs_use(state, entry->member, ins);
10763                 if (i < 0) {
10764                         continue;
10765                 }
10766                 rinfo = arch_reg_rhs(state, entry->member, i);
10767                 if ((info.reg == REG_UNNEEDED) && (rinfo.reg == REG_UNNEEDED)) {
10768                         continue;
10769                 }
10770                 replace_rhs_use(state, ins, out, entry->member);
10771         }
10772         transform_to_arch_instruction(state, out);
10773         return out;
10774 }
10775
10776 static struct triple *pre_copy(
10777         struct compile_state *state, struct triple *ins, int index)
10778 {
10779         /* Carefully insert enough operations so that I can
10780          * enter any operation with a GPR32.
10781          */
10782         struct triple *in;
10783         struct triple **expr;
10784         expr = &RHS(ins, index);
10785         in = pre_triple(state, ins, OP_COPY, (*expr)->type, *expr, 0);
10786         unuse_triple(*expr, ins);
10787         *expr = in;
10788         use_triple(RHS(in, 0), in);
10789         use_triple(in, ins);
10790         transform_to_arch_instruction(state, in);
10791         return in;
10792 }
10793
10794
10795 static void insert_copies_to_phi(struct compile_state *state)
10796 {
10797         /* To get out of ssa form we insert moves on the incoming
10798          * edges to blocks containting phi functions.
10799          */
10800         struct triple *first;
10801         struct triple *phi;
10802
10803         /* Walk all of the operations to find the phi functions */
10804         first = RHS(state->main_function, 0);
10805         for(phi = first->next; phi != first ; phi = phi->next) {
10806                 struct block_set *set;
10807                 struct block *block;
10808                 struct triple **slot;
10809                 int edge;
10810                 if (phi->op != OP_PHI) {
10811                         continue;
10812                 }
10813                 phi->id |= TRIPLE_FLAG_POST_SPLIT;
10814                 block = phi->u.block;
10815                 slot  = &RHS(phi, 0);
10816                 /* Walk all of the incoming edges/blocks and insert moves.
10817                  */
10818                 for(edge = 0, set = block->use; set; set = set->next, edge++) {
10819                         struct block *eblock;
10820                         struct triple *move;
10821                         struct triple *val;
10822                         struct triple *ptr;
10823                         eblock = set->member;
10824                         val = slot[edge];
10825
10826                         if (val == phi) {
10827                                 continue;
10828                         }
10829
10830                         get_occurance(val->occurance);
10831                         move = build_triple(state, OP_COPY, phi->type, val, 0,
10832                                 val->occurance);
10833                         move->u.block = eblock;
10834                         move->id |= TRIPLE_FLAG_PRE_SPLIT;
10835                         use_triple(val, move);
10836                         
10837                         slot[edge] = move;
10838                         unuse_triple(val, phi);
10839                         use_triple(move, phi);
10840
10841                         /* Walk through the block backwards to find
10842                          * an appropriate location for the OP_COPY.
10843                          */
10844                         for(ptr = eblock->last; ptr != eblock->first; ptr = ptr->prev) {
10845                                 struct triple **expr;
10846                                 if ((ptr == phi) || (ptr == val)) {
10847                                         goto out;
10848                                 }
10849                                 expr = triple_rhs(state, ptr, 0);
10850                                 for(;expr; expr = triple_rhs(state, ptr, expr)) {
10851                                         if ((*expr) == phi) {
10852                                                 goto out;
10853                                         }
10854                                 }
10855                         }
10856                 out:
10857                         if (triple_is_branch(state, ptr)) {
10858                                 internal_error(state, ptr,
10859                                         "Could not insert write to phi");
10860                         }
10861                         insert_triple(state, ptr->next, move);
10862                         if (eblock->last == ptr) {
10863                                 eblock->last = move;
10864                         }
10865                         transform_to_arch_instruction(state, move);
10866                 }
10867         }
10868 }
10869
10870 struct triple_reg_set {
10871         struct triple_reg_set *next;
10872         struct triple *member;
10873         struct triple *new;
10874 };
10875
10876 struct reg_block {
10877         struct block *block;
10878         struct triple_reg_set *in;
10879         struct triple_reg_set *out;
10880         int vertex;
10881 };
10882
10883 static int do_triple_set(struct triple_reg_set **head, 
10884         struct triple *member, struct triple *new_member)
10885 {
10886         struct triple_reg_set **ptr, *new;
10887         if (!member)
10888                 return 0;
10889         ptr = head;
10890         while(*ptr) {
10891                 if ((*ptr)->member == member) {
10892                         return 0;
10893                 }
10894                 ptr = &(*ptr)->next;
10895         }
10896         new = xcmalloc(sizeof(*new), "triple_set");
10897         new->member = member;
10898         new->new    = new_member;
10899         new->next   = *head;
10900         *head       = new;
10901         return 1;
10902 }
10903
10904 static void do_triple_unset(struct triple_reg_set **head, struct triple *member)
10905 {
10906         struct triple_reg_set *entry, **ptr;
10907         ptr = head;
10908         while(*ptr) {
10909                 entry = *ptr;
10910                 if (entry->member == member) {
10911                         *ptr = entry->next;
10912                         xfree(entry);
10913                         return;
10914                 }
10915                 else {
10916                         ptr = &entry->next;
10917                 }
10918         }
10919 }
10920
10921 static int in_triple(struct reg_block *rb, struct triple *in)
10922 {
10923         return do_triple_set(&rb->in, in, 0);
10924 }
10925 static void unin_triple(struct reg_block *rb, struct triple *unin)
10926 {
10927         do_triple_unset(&rb->in, unin);
10928 }
10929
10930 static int out_triple(struct reg_block *rb, struct triple *out)
10931 {
10932         return do_triple_set(&rb->out, out, 0);
10933 }
10934 static void unout_triple(struct reg_block *rb, struct triple *unout)
10935 {
10936         do_triple_unset(&rb->out, unout);
10937 }
10938
10939 static int initialize_regblock(struct reg_block *blocks,
10940         struct block *block, int vertex)
10941 {
10942         struct block_set *user;
10943         if (!block || (blocks[block->vertex].block == block)) {
10944                 return vertex;
10945         }
10946         vertex += 1;
10947         /* Renumber the blocks in a convinient fashion */
10948         block->vertex = vertex;
10949         blocks[vertex].block    = block;
10950         blocks[vertex].vertex   = vertex;
10951         for(user = block->use; user; user = user->next) {
10952                 vertex = initialize_regblock(blocks, user->member, vertex);
10953         }
10954         return vertex;
10955 }
10956
10957 static int phi_in(struct compile_state *state, struct reg_block *blocks,
10958         struct reg_block *rb, struct block *suc)
10959 {
10960         /* Read the conditional input set of a successor block
10961          * (i.e. the input to the phi nodes) and place it in the
10962          * current blocks output set.
10963          */
10964         struct block_set *set;
10965         struct triple *ptr;
10966         int edge;
10967         int done, change;
10968         change = 0;
10969         /* Find the edge I am coming in on */
10970         for(edge = 0, set = suc->use; set; set = set->next, edge++) {
10971                 if (set->member == rb->block) {
10972                         break;
10973                 }
10974         }
10975         if (!set) {
10976                 internal_error(state, 0, "Not coming on a control edge?");
10977         }
10978         for(done = 0, ptr = suc->first; !done; ptr = ptr->next) {
10979                 struct triple **slot, *expr, *ptr2;
10980                 int out_change, done2;
10981                 done = (ptr == suc->last);
10982                 if (ptr->op != OP_PHI) {
10983                         continue;
10984                 }
10985                 slot = &RHS(ptr, 0);
10986                 expr = slot[edge];
10987                 out_change = out_triple(rb, expr);
10988                 if (!out_change) {
10989                         continue;
10990                 }
10991                 /* If we don't define the variable also plast it
10992                  * in the current blocks input set.
10993                  */
10994                 ptr2 = rb->block->first;
10995                 for(done2 = 0; !done2; ptr2 = ptr2->next) {
10996                         if (ptr2 == expr) {
10997                                 break;
10998                         }
10999                         done2 = (ptr2 == rb->block->last);
11000                 }
11001                 if (!done2) {
11002                         continue;
11003                 }
11004                 change |= in_triple(rb, expr);
11005         }
11006         return change;
11007 }
11008
11009 static int reg_in(struct compile_state *state, struct reg_block *blocks,
11010         struct reg_block *rb, struct block *suc)
11011 {
11012         struct triple_reg_set *in_set;
11013         int change;
11014         change = 0;
11015         /* Read the input set of a successor block
11016          * and place it in the current blocks output set.
11017          */
11018         in_set = blocks[suc->vertex].in;
11019         for(; in_set; in_set = in_set->next) {
11020                 int out_change, done;
11021                 struct triple *first, *last, *ptr;
11022                 out_change = out_triple(rb, in_set->member);
11023                 if (!out_change) {
11024                         continue;
11025                 }
11026                 /* If we don't define the variable also place it
11027                  * in the current blocks input set.
11028                  */
11029                 first = rb->block->first;
11030                 last = rb->block->last;
11031                 done = 0;
11032                 for(ptr = first; !done; ptr = ptr->next) {
11033                         if (ptr == in_set->member) {
11034                                 break;
11035                         }
11036                         done = (ptr == last);
11037                 }
11038                 if (!done) {
11039                         continue;
11040                 }
11041                 change |= in_triple(rb, in_set->member);
11042         }
11043         change |= phi_in(state, blocks, rb, suc);
11044         return change;
11045 }
11046
11047
11048 static int use_in(struct compile_state *state, struct reg_block *rb)
11049 {
11050         /* Find the variables we use but don't define and add
11051          * it to the current blocks input set.
11052          */
11053 #warning "FIXME is this O(N^2) algorithm bad?"
11054         struct block *block;
11055         struct triple *ptr;
11056         int done;
11057         int change;
11058         block = rb->block;
11059         change = 0;
11060         for(done = 0, ptr = block->last; !done; ptr = ptr->prev) {
11061                 struct triple **expr;
11062                 done = (ptr == block->first);
11063                 /* The variable a phi function uses depends on the
11064                  * control flow, and is handled in phi_in, not
11065                  * here.
11066                  */
11067                 if (ptr->op == OP_PHI) {
11068                         continue;
11069                 }
11070                 expr = triple_rhs(state, ptr, 0);
11071                 for(;expr; expr = triple_rhs(state, ptr, expr)) {
11072                         struct triple *rhs, *test;
11073                         int tdone;
11074                         rhs = *expr;
11075                         if (!rhs) {
11076                                 continue;
11077                         }
11078                         /* See if rhs is defined in this block */
11079                         for(tdone = 0, test = ptr; !tdone; test = test->prev) {
11080                                 tdone = (test == block->first);
11081                                 if (test == rhs) {
11082                                         rhs = 0;
11083                                         break;
11084                                 }
11085                         }
11086                         /* If I still have a valid rhs add it to in */
11087                         change |= in_triple(rb, rhs);
11088                 }
11089         }
11090         return change;
11091 }
11092
11093 static struct reg_block *compute_variable_lifetimes(
11094         struct compile_state *state)
11095 {
11096         struct reg_block *blocks;
11097         int change;
11098         blocks = xcmalloc(
11099                 sizeof(*blocks)*(state->last_vertex + 1), "reg_block");
11100         initialize_regblock(blocks, state->last_block, 0);
11101         do {
11102                 int i;
11103                 change = 0;
11104                 for(i = 1; i <= state->last_vertex; i++) {
11105                         struct reg_block *rb;
11106                         rb = &blocks[i];
11107                         /* Add the left successor's input set to in */
11108                         if (rb->block->left) {
11109                                 change |= reg_in(state, blocks, rb, rb->block->left);
11110                         }
11111                         /* Add the right successor's input set to in */
11112                         if ((rb->block->right) && 
11113                                 (rb->block->right != rb->block->left)) {
11114                                 change |= reg_in(state, blocks, rb, rb->block->right);
11115                         }
11116                         /* Add use to in... */
11117                         change |= use_in(state, rb);
11118                 }
11119         } while(change);
11120         return blocks;
11121 }
11122
11123 static void free_variable_lifetimes(
11124         struct compile_state *state, struct reg_block *blocks)
11125 {
11126         int i;
11127         /* free in_set && out_set on each block */
11128         for(i = 1; i <= state->last_vertex; i++) {
11129                 struct triple_reg_set *entry, *next;
11130                 struct reg_block *rb;
11131                 rb = &blocks[i];
11132                 for(entry = rb->in; entry ; entry = next) {
11133                         next = entry->next;
11134                         do_triple_unset(&rb->in, entry->member);
11135                 }
11136                 for(entry = rb->out; entry; entry = next) {
11137                         next = entry->next;
11138                         do_triple_unset(&rb->out, entry->member);
11139                 }
11140         }
11141         xfree(blocks);
11142
11143 }
11144
11145 typedef void (*wvl_cb_t)(
11146         struct compile_state *state, 
11147         struct reg_block *blocks, struct triple_reg_set *live, 
11148         struct reg_block *rb, struct triple *ins, void *arg);
11149
11150 static void walk_variable_lifetimes(struct compile_state *state,
11151         struct reg_block *blocks, wvl_cb_t cb, void *arg)
11152 {
11153         int i;
11154         
11155         for(i = 1; i <= state->last_vertex; i++) {
11156                 struct triple_reg_set *live;
11157                 struct triple_reg_set *entry, *next;
11158                 struct triple *ptr, *prev;
11159                 struct reg_block *rb;
11160                 struct block *block;
11161                 int done;
11162
11163                 /* Get the blocks */
11164                 rb = &blocks[i];
11165                 block = rb->block;
11166
11167                 /* Copy out into live */
11168                 live = 0;
11169                 for(entry = rb->out; entry; entry = next) {
11170                         next = entry->next;
11171                         do_triple_set(&live, entry->member, entry->new);
11172                 }
11173                 /* Walk through the basic block calculating live */
11174                 for(done = 0, ptr = block->last; !done; ptr = prev) {
11175                         struct triple **expr;
11176
11177                         prev = ptr->prev;
11178                         done = (ptr == block->first);
11179
11180                         /* Ensure the current definition is in live */
11181                         if (triple_is_def(state, ptr)) {
11182                                 do_triple_set(&live, ptr, 0);
11183                         }
11184
11185                         /* Inform the callback function of what is
11186                          * going on.
11187                          */
11188                          cb(state, blocks, live, rb, ptr, arg);
11189                         
11190                         /* Remove the current definition from live */
11191                         do_triple_unset(&live, ptr);
11192
11193                         /* Add the current uses to live.
11194                          *
11195                          * It is safe to skip phi functions because they do
11196                          * not have any block local uses, and the block
11197                          * output sets already properly account for what
11198                          * control flow depedent uses phi functions do have.
11199                          */
11200                         if (ptr->op == OP_PHI) {
11201                                 continue;
11202                         }
11203                         expr = triple_rhs(state, ptr, 0);
11204                         for(;expr; expr = triple_rhs(state, ptr, expr)) {
11205                                 /* If the triple is not a definition skip it. */
11206                                 if (!*expr || !triple_is_def(state, *expr)) {
11207                                         continue;
11208                                 }
11209                                 do_triple_set(&live, *expr, 0);
11210                         }
11211                 }
11212                 /* Free live */
11213                 for(entry = live; entry; entry = next) {
11214                         next = entry->next;
11215                         do_triple_unset(&live, entry->member);
11216                 }
11217         }
11218 }
11219
11220 static int count_triples(struct compile_state *state)
11221 {
11222         struct triple *first, *ins;
11223         int triples = 0;
11224         first = RHS(state->main_function, 0);
11225         ins = first;
11226         do {
11227                 triples++;
11228                 ins = ins->next;
11229         } while (ins != first);
11230         return triples;
11231 }
11232 struct dead_triple {
11233         struct triple *triple;
11234         struct dead_triple *work_next;
11235         struct block *block;
11236         int color;
11237         int flags;
11238 #define TRIPLE_FLAG_ALIVE 1
11239 };
11240
11241
11242 static void awaken(
11243         struct compile_state *state,
11244         struct dead_triple *dtriple, struct triple **expr,
11245         struct dead_triple ***work_list_tail)
11246 {
11247         struct triple *triple;
11248         struct dead_triple *dt;
11249         if (!expr) {
11250                 return;
11251         }
11252         triple = *expr;
11253         if (!triple) {
11254                 return;
11255         }
11256         if (triple->id <= 0)  {
11257                 internal_error(state, triple, "bad triple id: %d",
11258                         triple->id);
11259         }
11260         if (triple->op == OP_NOOP) {
11261                 internal_warning(state, triple, "awakening noop?");
11262                 return;
11263         }
11264         dt = &dtriple[triple->id];
11265         if (!(dt->flags & TRIPLE_FLAG_ALIVE)) {
11266                 dt->flags |= TRIPLE_FLAG_ALIVE;
11267                 if (!dt->work_next) {
11268                         **work_list_tail = dt;
11269                         *work_list_tail = &dt->work_next;
11270                 }
11271         }
11272 }
11273
11274 static void eliminate_inefectual_code(struct compile_state *state)
11275 {
11276         struct block *block;
11277         struct dead_triple *dtriple, *work_list, **work_list_tail, *dt;
11278         int triples, i;
11279         struct triple *first, *ins;
11280
11281         /* Setup the work list */
11282         work_list = 0;
11283         work_list_tail = &work_list;
11284
11285         first = RHS(state->main_function, 0);
11286
11287         /* Count how many triples I have */
11288         triples = count_triples(state);
11289
11290         /* Now put then in an array and mark all of the triples dead */
11291         dtriple = xcmalloc(sizeof(*dtriple) * (triples + 1), "dtriples");
11292         
11293         ins = first;
11294         i = 1;
11295         block = 0;
11296         do {
11297                 if (ins->op == OP_LABEL) {
11298                         block = ins->u.block;
11299                 }
11300                 dtriple[i].triple = ins;
11301                 dtriple[i].block  = block;
11302                 dtriple[i].flags  = 0;
11303                 dtriple[i].color  = ins->id;
11304                 ins->id = i;
11305                 /* See if it is an operation we always keep */
11306 #warning "FIXME handle the case of killing a branch instruction"
11307                 if (!triple_is_pure(state, ins) || triple_is_branch(state, ins)) {
11308                         awaken(state, dtriple, &ins, &work_list_tail);
11309                 }
11310                 i++;
11311                 ins = ins->next;
11312         } while(ins != first);
11313         while(work_list) {
11314                 struct dead_triple *dt;
11315                 struct block_set *user;
11316                 struct triple **expr;
11317                 dt = work_list;
11318                 work_list = dt->work_next;
11319                 if (!work_list) {
11320                         work_list_tail = &work_list;
11321                 }
11322                 /* Wake up the data depencencies of this triple */
11323                 expr = 0;
11324                 do {
11325                         expr = triple_rhs(state, dt->triple, expr);
11326                         awaken(state, dtriple, expr, &work_list_tail);
11327                 } while(expr);
11328                 do {
11329                         expr = triple_lhs(state, dt->triple, expr);
11330                         awaken(state, dtriple, expr, &work_list_tail);
11331                 } while(expr);
11332                 do {
11333                         expr = triple_misc(state, dt->triple, expr);
11334                         awaken(state, dtriple, expr, &work_list_tail);
11335                 } while(expr);
11336                 /* Wake up the forward control dependencies */
11337                 do {
11338                         expr = triple_targ(state, dt->triple, expr);
11339                         awaken(state, dtriple, expr, &work_list_tail);
11340                 } while(expr);
11341                 /* Wake up the reverse control dependencies of this triple */
11342                 for(user = dt->block->ipdomfrontier; user; user = user->next) {
11343                         awaken(state, dtriple, &user->member->last, &work_list_tail);
11344                 }
11345         }
11346         for(dt = &dtriple[1]; dt <= &dtriple[triples]; dt++) {
11347                 if ((dt->triple->op == OP_NOOP) && 
11348                         (dt->flags & TRIPLE_FLAG_ALIVE)) {
11349                         internal_error(state, dt->triple, "noop effective?");
11350                 }
11351                 dt->triple->id = dt->color;     /* Restore the color */
11352                 if (!(dt->flags & TRIPLE_FLAG_ALIVE)) {
11353 #warning "FIXME handle the case of killing a basic block"
11354                         if (dt->block->first == dt->triple) {
11355                                 continue;
11356                         }
11357                         if (dt->block->last == dt->triple) {
11358                                 dt->block->last = dt->triple->prev;
11359                         }
11360                         release_triple(state, dt->triple);
11361                 }
11362         }
11363         xfree(dtriple);
11364 }
11365
11366
11367 static void insert_mandatory_copies(struct compile_state *state)
11368 {
11369         struct triple *ins, *first;
11370
11371         /* The object is with a minimum of inserted copies,
11372          * to resolve in fundamental register conflicts between
11373          * register value producers and consumers.
11374          * Theoretically we may be greater than minimal when we
11375          * are inserting copies before instructions but that
11376          * case should be rare.
11377          */
11378         first = RHS(state->main_function, 0);
11379         ins = first;
11380         do {
11381                 struct triple_set *entry, *next;
11382                 struct triple *tmp;
11383                 struct reg_info info;
11384                 unsigned reg, regcm;
11385                 int do_post_copy, do_pre_copy;
11386                 tmp = 0;
11387                 if (!triple_is_def(state, ins)) {
11388                         goto next;
11389                 }
11390                 /* Find the architecture specific color information */
11391                 info = arch_reg_lhs(state, ins, 0);
11392                 if (info.reg >= MAX_REGISTERS) {
11393                         info.reg = REG_UNSET;
11394                 }
11395                 
11396                 reg = REG_UNSET;
11397                 regcm = arch_type_to_regcm(state, ins->type);
11398                 do_post_copy = do_pre_copy = 0;
11399
11400                 /* Walk through the uses of ins and check for conflicts */
11401                 for(entry = ins->use; entry; entry = next) {
11402                         struct reg_info rinfo;
11403                         int i;
11404                         next = entry->next;
11405                         i = find_rhs_use(state, entry->member, ins);
11406                         if (i < 0) {
11407                                 continue;
11408                         }
11409                         
11410                         /* Find the users color requirements */
11411                         rinfo = arch_reg_rhs(state, entry->member, i);
11412                         if (rinfo.reg >= MAX_REGISTERS) {
11413                                 rinfo.reg = REG_UNSET;
11414                         }
11415                         
11416                         /* See if I need a pre_copy */
11417                         if (rinfo.reg != REG_UNSET) {
11418                                 if ((reg != REG_UNSET) && (reg != rinfo.reg)) {
11419                                         do_pre_copy = 1;
11420                                 }
11421                                 reg = rinfo.reg;
11422                         }
11423                         regcm &= rinfo.regcm;
11424                         regcm = arch_regcm_normalize(state, regcm);
11425                         if (regcm == 0) {
11426                                 do_pre_copy = 1;
11427                         }
11428                 }
11429                 do_post_copy =
11430                         !do_pre_copy &&
11431                         (((info.reg != REG_UNSET) && 
11432                                 (reg != REG_UNSET) &&
11433                                 (info.reg != reg)) ||
11434                         ((info.regcm & regcm) == 0));
11435
11436                 reg = info.reg;
11437                 regcm = info.regcm;
11438                 /* Walk through the uses of insert and do a pre_copy or see if a post_copy is warranted */
11439                 for(entry = ins->use; entry; entry = next) {
11440                         struct reg_info rinfo;
11441                         int i;
11442                         next = entry->next;
11443                         i = find_rhs_use(state, entry->member, ins);
11444                         if (i < 0) {
11445                                 continue;
11446                         }
11447                         
11448                         /* Find the users color requirements */
11449                         rinfo = arch_reg_rhs(state, entry->member, i);
11450                         if (rinfo.reg >= MAX_REGISTERS) {
11451                                 rinfo.reg = REG_UNSET;
11452                         }
11453
11454                         /* Now see if it is time to do the pre_copy */
11455                         if (rinfo.reg != REG_UNSET) {
11456                                 if (((reg != REG_UNSET) && (reg != rinfo.reg)) ||
11457                                         ((regcm & rinfo.regcm) == 0) ||
11458                                         /* Don't let a mandatory coalesce sneak
11459                                          * into a operation that is marked to prevent
11460                                          * coalescing.
11461                                          */
11462                                         ((reg != REG_UNNEEDED) &&
11463                                         ((ins->id & TRIPLE_FLAG_POST_SPLIT) ||
11464                                         (entry->member->id & TRIPLE_FLAG_PRE_SPLIT)))
11465                                         ) {
11466                                         if (do_pre_copy) {
11467                                                 struct triple *user;
11468                                                 user = entry->member;
11469                                                 if (RHS(user, i) != ins) {
11470                                                         internal_error(state, user, "bad rhs");
11471                                                 }
11472                                                 tmp = pre_copy(state, user, i);
11473                                                 tmp->id |= TRIPLE_FLAG_PRE_SPLIT;
11474                                                 continue;
11475                                         } else {
11476                                                 do_post_copy = 1;
11477                                         }
11478                                 }
11479                                 reg = rinfo.reg;
11480                         }
11481                         if ((regcm & rinfo.regcm) == 0) {
11482                                 if (do_pre_copy) {
11483                                         struct triple *user;
11484                                         user = entry->member;
11485                                         if (RHS(user, i) != ins) {
11486                                                 internal_error(state, user, "bad rhs");
11487                                         }
11488                                         tmp = pre_copy(state, user, i);
11489                                         tmp->id |= TRIPLE_FLAG_PRE_SPLIT;
11490                                         continue;
11491                                 } else {
11492                                         do_post_copy = 1;
11493                                 }
11494                         }
11495                         regcm &= rinfo.regcm;
11496                         
11497                 }
11498                 if (do_post_copy) {
11499                         struct reg_info pre, post;
11500                         tmp = post_copy(state, ins);
11501                         tmp->id |= TRIPLE_FLAG_PRE_SPLIT;
11502                         pre = arch_reg_lhs(state, ins, 0);
11503                         post = arch_reg_lhs(state, tmp, 0);
11504                         if ((pre.reg == post.reg) && (pre.regcm == post.regcm)) {
11505                                 internal_error(state, tmp, "useless copy");
11506                         }
11507                 }
11508         next:
11509                 ins = ins->next;
11510         } while(ins != first);
11511 }
11512
11513
11514 struct live_range_edge;
11515 struct live_range_def;
11516 struct live_range {
11517         struct live_range_edge *edges;
11518         struct live_range_def *defs;
11519 /* Note. The list pointed to by defs is kept in order.
11520  * That is baring splits in the flow control
11521  * defs dominates defs->next wich dominates defs->next->next
11522  * etc.
11523  */
11524         unsigned color;
11525         unsigned classes;
11526         unsigned degree;
11527         unsigned length;
11528         struct live_range *group_next, **group_prev;
11529 };
11530
11531 struct live_range_edge {
11532         struct live_range_edge *next;
11533         struct live_range *node;
11534 };
11535
11536 struct live_range_def {
11537         struct live_range_def *next;
11538         struct live_range_def *prev;
11539         struct live_range *lr;
11540         struct triple *def;
11541         unsigned orig_id;
11542 };
11543
11544 #define LRE_HASH_SIZE 2048
11545 struct lre_hash {
11546         struct lre_hash *next;
11547         struct live_range *left;
11548         struct live_range *right;
11549 };
11550
11551
11552 struct reg_state {
11553         struct lre_hash *hash[LRE_HASH_SIZE];
11554         struct reg_block *blocks;
11555         struct live_range_def *lrd;
11556         struct live_range *lr;
11557         struct live_range *low, **low_tail;
11558         struct live_range *high, **high_tail;
11559         unsigned defs;
11560         unsigned ranges;
11561         int passes, max_passes;
11562 #define MAX_ALLOCATION_PASSES 100
11563 };
11564
11565
11566 static unsigned regc_max_size(struct compile_state *state, int classes)
11567 {
11568         unsigned max_size;
11569         int i;
11570         max_size = 0;
11571         for(i = 0; i < MAX_REGC; i++) {
11572                 if (classes & (1 << i)) {
11573                         unsigned size;
11574                         size = arch_regc_size(state, i);
11575                         if (size > max_size) {
11576                                 max_size = size;
11577                         }
11578                 }
11579         }
11580         return max_size;
11581 }
11582
11583 static int reg_is_reg(struct compile_state *state, int reg1, int reg2)
11584 {
11585         unsigned equivs[MAX_REG_EQUIVS];
11586         int i;
11587         if ((reg1 < 0) || (reg1 >= MAX_REGISTERS)) {
11588                 internal_error(state, 0, "invalid register");
11589         }
11590         if ((reg2 < 0) || (reg2 >= MAX_REGISTERS)) {
11591                 internal_error(state, 0, "invalid register");
11592         }
11593         arch_reg_equivs(state, equivs, reg1);
11594         for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
11595                 if (equivs[i] == reg2) {
11596                         return 1;
11597                 }
11598         }
11599         return 0;
11600 }
11601
11602 static void reg_fill_used(struct compile_state *state, char *used, int reg)
11603 {
11604         unsigned equivs[MAX_REG_EQUIVS];
11605         int i;
11606         if (reg == REG_UNNEEDED) {
11607                 return;
11608         }
11609         arch_reg_equivs(state, equivs, reg);
11610         for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
11611                 used[equivs[i]] = 1;
11612         }
11613         return;
11614 }
11615
11616 static void reg_inc_used(struct compile_state *state, char *used, int reg)
11617 {
11618         unsigned equivs[MAX_REG_EQUIVS];
11619         int i;
11620         if (reg == REG_UNNEEDED) {
11621                 return;
11622         }
11623         arch_reg_equivs(state, equivs, reg);
11624         for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
11625                 used[equivs[i]] += 1;
11626         }
11627         return;
11628 }
11629
11630 static unsigned int hash_live_edge(
11631         struct live_range *left, struct live_range *right)
11632 {
11633         unsigned int hash, val;
11634         unsigned long lval, rval;
11635         lval = ((unsigned long)left)/sizeof(struct live_range);
11636         rval = ((unsigned long)right)/sizeof(struct live_range);
11637         hash = 0;
11638         while(lval) {
11639                 val = lval & 0xff;
11640                 lval >>= 8;
11641                 hash = (hash *263) + val;
11642         }
11643         while(rval) {
11644                 val = rval & 0xff;
11645                 rval >>= 8;
11646                 hash = (hash *263) + val;
11647         }
11648         hash = hash & (LRE_HASH_SIZE - 1);
11649         return hash;
11650 }
11651
11652 static struct lre_hash **lre_probe(struct reg_state *rstate,
11653         struct live_range *left, struct live_range *right)
11654 {
11655         struct lre_hash **ptr;
11656         unsigned int index;
11657         /* Ensure left <= right */
11658         if (left > right) {
11659                 struct live_range *tmp;
11660                 tmp = left;
11661                 left = right;
11662                 right = tmp;
11663         }
11664         index = hash_live_edge(left, right);
11665         
11666         ptr = &rstate->hash[index];
11667         while(*ptr) {
11668                 if (((*ptr)->left == left) && ((*ptr)->right == right)) {
11669                         break;
11670                 }
11671                 ptr = &(*ptr)->next;
11672         }
11673         return ptr;
11674 }
11675
11676 static int interfere(struct reg_state *rstate,
11677         struct live_range *left, struct live_range *right)
11678 {
11679         struct lre_hash **ptr;
11680         ptr = lre_probe(rstate, left, right);
11681         return ptr && *ptr;
11682 }
11683
11684 static void add_live_edge(struct reg_state *rstate, 
11685         struct live_range *left, struct live_range *right)
11686 {
11687         /* FIXME the memory allocation overhead is noticeable here... */
11688         struct lre_hash **ptr, *new_hash;
11689         struct live_range_edge *edge;
11690
11691         if (left == right) {
11692                 return;
11693         }
11694         if ((left == &rstate->lr[0]) || (right == &rstate->lr[0])) {
11695                 return;
11696         }
11697         /* Ensure left <= right */
11698         if (left > right) {
11699                 struct live_range *tmp;
11700                 tmp = left;
11701                 left = right;
11702                 right = tmp;
11703         }
11704         ptr = lre_probe(rstate, left, right);
11705         if (*ptr) {
11706                 return;
11707         }
11708 #if 0
11709         fprintf(stderr, "new_live_edge(%p, %p)\n",
11710                 left, right);
11711 #endif
11712         new_hash = xmalloc(sizeof(*new_hash), "lre_hash");
11713         new_hash->next  = *ptr;
11714         new_hash->left  = left;
11715         new_hash->right = right;
11716         *ptr = new_hash;
11717
11718         edge = xmalloc(sizeof(*edge), "live_range_edge");
11719         edge->next   = left->edges;
11720         edge->node   = right;
11721         left->edges  = edge;
11722         left->degree += 1;
11723         
11724         edge = xmalloc(sizeof(*edge), "live_range_edge");
11725         edge->next    = right->edges;
11726         edge->node    = left;
11727         right->edges  = edge;
11728         right->degree += 1;
11729 }
11730
11731 static void remove_live_edge(struct reg_state *rstate,
11732         struct live_range *left, struct live_range *right)
11733 {
11734         struct live_range_edge *edge, **ptr;
11735         struct lre_hash **hptr, *entry;
11736         hptr = lre_probe(rstate, left, right);
11737         if (!hptr || !*hptr) {
11738                 return;
11739         }
11740         entry = *hptr;
11741         *hptr = entry->next;
11742         xfree(entry);
11743
11744         for(ptr = &left->edges; *ptr; ptr = &(*ptr)->next) {
11745                 edge = *ptr;
11746                 if (edge->node == right) {
11747                         *ptr = edge->next;
11748                         memset(edge, 0, sizeof(*edge));
11749                         xfree(edge);
11750                         right->degree--;
11751                         break;
11752                 }
11753         }
11754         for(ptr = &right->edges; *ptr; ptr = &(*ptr)->next) {
11755                 edge = *ptr;
11756                 if (edge->node == left) {
11757                         *ptr = edge->next;
11758                         memset(edge, 0, sizeof(*edge));
11759                         xfree(edge);
11760                         left->degree--;
11761                         break;
11762                 }
11763         }
11764 }
11765
11766 static void remove_live_edges(struct reg_state *rstate, struct live_range *range)
11767 {
11768         struct live_range_edge *edge, *next;
11769         for(edge = range->edges; edge; edge = next) {
11770                 next = edge->next;
11771                 remove_live_edge(rstate, range, edge->node);
11772         }
11773 }
11774
11775
11776 /* Interference graph...
11777  * 
11778  * new(n) --- Return a graph with n nodes but no edges.
11779  * add(g,x,y) --- Return a graph including g with an between x and y
11780  * interfere(g, x, y) --- Return true if there exists an edge between the nodes
11781  *                x and y in the graph g
11782  * degree(g, x) --- Return the degree of the node x in the graph g
11783  * neighbors(g, x, f) --- Apply function f to each neighbor of node x in the graph g
11784  *
11785  * Implement with a hash table && a set of adjcency vectors.
11786  * The hash table supports constant time implementations of add and interfere.
11787  * The adjacency vectors support an efficient implementation of neighbors.
11788  */
11789
11790 /* 
11791  *     +---------------------------------------------------+
11792  *     |         +--------------+                          |
11793  *     v         v              |                          |
11794  * renumber -> build graph -> colalesce -> spill_costs -> simplify -> select 
11795  *
11796  * -- In simplify implment optimistic coloring... (No backtracking)
11797  * -- Implement Rematerialization it is the only form of spilling we can perform
11798  *    Essentially this means dropping a constant from a register because
11799  *    we can regenerate it later.
11800  *
11801  * --- Very conservative colalescing (don't colalesce just mark the opportunities)
11802  *     coalesce at phi points...
11803  * --- Bias coloring if at all possible do the coalesing a compile time.
11804  *
11805  *
11806  */
11807
11808 static void different_colored(
11809         struct compile_state *state, struct reg_state *rstate, 
11810         struct triple *parent, struct triple *ins)
11811 {
11812         struct live_range *lr;
11813         struct triple **expr;
11814         lr = rstate->lrd[ins->id].lr;
11815         expr = triple_rhs(state, ins, 0);
11816         for(;expr; expr = triple_rhs(state, ins, expr)) {
11817                 struct live_range *lr2;
11818                 if (!*expr || (*expr == parent) || (*expr == ins)) {
11819                         continue;
11820                 }
11821                 lr2 = rstate->lrd[(*expr)->id].lr;
11822                 if (lr->color == lr2->color) {
11823                         internal_error(state, ins, "live range too big");
11824                 }
11825         }
11826 }
11827
11828
11829 static struct live_range *coalesce_ranges(
11830         struct compile_state *state, struct reg_state *rstate,
11831         struct live_range *lr1, struct live_range *lr2)
11832 {
11833         struct live_range_def *head, *mid1, *mid2, *end, *lrd;
11834         unsigned color;
11835         unsigned classes;
11836         if (lr1 == lr2) {
11837                 return lr1;
11838         }
11839         if (!lr1->defs || !lr2->defs) {
11840                 internal_error(state, 0,
11841                         "cannot coalese dead live ranges");
11842         }
11843         if ((lr1->color == REG_UNNEEDED) ||
11844                 (lr2->color == REG_UNNEEDED)) {
11845                 internal_error(state, 0, 
11846                         "cannot coalesce live ranges without a possible color");
11847         }
11848         if ((lr1->color != lr2->color) &&
11849                 (lr1->color != REG_UNSET) &&
11850                 (lr2->color != REG_UNSET)) {
11851                 internal_error(state, lr1->defs->def, 
11852                         "cannot coalesce live ranges of different colors");
11853         }
11854         color = lr1->color;
11855         if (color == REG_UNSET) {
11856                 color = lr2->color;
11857         }
11858         classes = lr1->classes & lr2->classes;
11859         if (!classes) {
11860                 internal_error(state, lr1->defs->def,
11861                         "cannot coalesce live ranges with dissimilar register classes");
11862         }
11863         /* If there is a clear dominate live range put it in lr1,
11864          * For purposes of this test phi functions are
11865          * considered dominated by the definitions that feed into
11866          * them. 
11867          */
11868         if ((lr1->defs->prev->def->op == OP_PHI) ||
11869                 ((lr2->defs->prev->def->op != OP_PHI) &&
11870                 tdominates(state, lr2->defs->def, lr1->defs->def))) {
11871                 struct live_range *tmp;
11872                 tmp = lr1;
11873                 lr1 = lr2;
11874                 lr2 = tmp;
11875         }
11876 #if 0
11877         if (lr1->defs->orig_id  & TRIPLE_FLAG_POST_SPLIT) {
11878                 fprintf(stderr, "lr1 post\n");
11879         }
11880         if (lr1->defs->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
11881                 fprintf(stderr, "lr1 pre\n");
11882         }
11883         if (lr2->defs->orig_id  & TRIPLE_FLAG_POST_SPLIT) {
11884                 fprintf(stderr, "lr2 post\n");
11885         }
11886         if (lr2->defs->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
11887                 fprintf(stderr, "lr2 pre\n");
11888         }
11889 #endif
11890 #if 1
11891         fprintf(stderr, "coalesce color1(%p): %3d color2(%p) %3d\n",
11892                 lr1->defs->def,
11893                 lr1->color,
11894                 lr2->defs->def,
11895                 lr2->color);
11896 #endif
11897         
11898         lr1->classes = classes;
11899         /* Append lr2 onto lr1 */
11900 #warning "FIXME should this be a merge instead of a splice?"
11901         head = lr1->defs;
11902         mid1 = lr1->defs->prev;
11903         mid2 = lr2->defs;
11904         end  = lr2->defs->prev;
11905         
11906         head->prev = end;
11907         end->next  = head;
11908
11909         mid1->next = mid2;
11910         mid2->prev = mid1;
11911
11912         /* Fixup the live range in the added live range defs */
11913         lrd = head;
11914         do {
11915                 lrd->lr = lr1;
11916                 lrd = lrd->next;
11917         } while(lrd != head);
11918
11919         /* Mark lr2 as free. */
11920         lr2->defs = 0;
11921         lr2->color = REG_UNNEEDED;
11922         lr2->classes = 0;
11923
11924         if (!lr1->defs) {
11925                 internal_error(state, 0, "lr1->defs == 0 ?");
11926         }
11927
11928         lr1->color   = color;
11929         lr1->classes = classes;
11930
11931         return lr1;
11932 }
11933
11934 static struct live_range_def *live_range_head(
11935         struct compile_state *state, struct live_range *lr,
11936         struct live_range_def *last)
11937 {
11938         struct live_range_def *result;
11939         result = 0;
11940         if (last == 0) {
11941                 result = lr->defs;
11942         }
11943         else if (!tdominates(state, lr->defs->def, last->next->def)) {
11944                 result = last->next;
11945         }
11946         return result;
11947 }
11948
11949 static struct live_range_def *live_range_end(
11950         struct compile_state *state, struct live_range *lr,
11951         struct live_range_def *last)
11952 {
11953         struct live_range_def *result;
11954         result = 0;
11955         if (last == 0) {
11956                 result = lr->defs->prev;
11957         }
11958         else if (!tdominates(state, last->prev->def, lr->defs->prev->def)) {
11959                 result = last->prev;
11960         }
11961         return result;
11962 }
11963
11964
11965 static void initialize_live_ranges(
11966         struct compile_state *state, struct reg_state *rstate)
11967 {
11968         struct triple *ins, *first;
11969         size_t count, size;
11970         int i, j;
11971
11972         first = RHS(state->main_function, 0);
11973         /* First count how many instructions I have.
11974          */
11975         count = count_triples(state);
11976         /* Potentially I need one live range definitions for each
11977          * instruction, plus an extra for the split routines.
11978          */
11979         rstate->defs = count + 1;
11980         /* Potentially I need one live range for each instruction
11981          * plus an extra for the dummy live range.
11982          */
11983         rstate->ranges = count + 1;
11984         size = sizeof(rstate->lrd[0]) * rstate->defs;
11985         rstate->lrd = xcmalloc(size, "live_range_def");
11986         size = sizeof(rstate->lr[0]) * rstate->ranges;
11987         rstate->lr  = xcmalloc(size, "live_range");
11988
11989         /* Setup the dummy live range */
11990         rstate->lr[0].classes = 0;
11991         rstate->lr[0].color = REG_UNSET;
11992         rstate->lr[0].defs = 0;
11993         i = j = 0;
11994         ins = first;
11995         do {
11996                 /* If the triple is a variable give it a live range */
11997                 if (triple_is_def(state, ins)) {
11998                         struct reg_info info;
11999                         /* Find the architecture specific color information */
12000                         info = find_def_color(state, ins);
12001
12002                         i++;
12003                         rstate->lr[i].defs    = &rstate->lrd[j];
12004                         rstate->lr[i].color   = info.reg;
12005                         rstate->lr[i].classes = info.regcm;
12006                         rstate->lr[i].degree  = 0;
12007                         rstate->lrd[j].lr = &rstate->lr[i];
12008                 } 
12009                 /* Otherwise give the triple the dummy live range. */
12010                 else {
12011                         rstate->lrd[j].lr = &rstate->lr[0];
12012                 }
12013
12014                 /* Initalize the live_range_def */
12015                 rstate->lrd[j].next    = &rstate->lrd[j];
12016                 rstate->lrd[j].prev    = &rstate->lrd[j];
12017                 rstate->lrd[j].def     = ins;
12018                 rstate->lrd[j].orig_id = ins->id;
12019                 ins->id = j;
12020
12021                 j++;
12022                 ins = ins->next;
12023         } while(ins != first);
12024         rstate->ranges = i;
12025         rstate->defs -= 1;
12026
12027         /* Make a second pass to handle achitecture specific register
12028          * constraints.
12029          */
12030         ins = first;
12031         do {
12032                 int zlhs, zrhs, i, j;
12033                 if (ins->id > rstate->defs) {
12034                         internal_error(state, ins, "bad id");
12035                 }
12036                 
12037                 /* Walk through the template of ins and coalesce live ranges */
12038                 zlhs = TRIPLE_LHS(ins->sizes);
12039                 if ((zlhs == 0) && triple_is_def(state, ins)) {
12040                         zlhs = 1;
12041                 }
12042                 zrhs = TRIPLE_RHS(ins->sizes);
12043                 
12044                 for(i = 0; i < zlhs; i++) {
12045                         struct reg_info linfo;
12046                         struct live_range_def *lhs;
12047                         linfo = arch_reg_lhs(state, ins, i);
12048                         if (linfo.reg < MAX_REGISTERS) {
12049                                 continue;
12050                         }
12051                         if (triple_is_def(state, ins)) {
12052                                 lhs = &rstate->lrd[ins->id];
12053                         } else {
12054                                 lhs = &rstate->lrd[LHS(ins, i)->id];
12055                         }
12056                         for(j = 0; j < zrhs; j++) {
12057                                 struct reg_info rinfo;
12058                                 struct live_range_def *rhs;
12059                                 rinfo = arch_reg_rhs(state, ins, j);
12060                                 if (rinfo.reg < MAX_REGISTERS) {
12061                                         continue;
12062                                 }
12063                                 rhs = &rstate->lrd[RHS(ins, i)->id];
12064                                 if (rinfo.reg == linfo.reg) {
12065                                         coalesce_ranges(state, rstate, 
12066                                                 lhs->lr, rhs->lr);
12067                                 }
12068                         }
12069                 }
12070                 ins = ins->next;
12071         } while(ins != first);
12072 }
12073
12074 static void graph_ins(
12075         struct compile_state *state, 
12076         struct reg_block *blocks, struct triple_reg_set *live, 
12077         struct reg_block *rb, struct triple *ins, void *arg)
12078 {
12079         struct reg_state *rstate = arg;
12080         struct live_range *def;
12081         struct triple_reg_set *entry;
12082
12083         /* If the triple is not a definition
12084          * we do not have a definition to add to
12085          * the interference graph.
12086          */
12087         if (!triple_is_def(state, ins)) {
12088                 return;
12089         }
12090         def = rstate->lrd[ins->id].lr;
12091         
12092         /* Create an edge between ins and everything that is
12093          * alive, unless the live_range cannot share
12094          * a physical register with ins.
12095          */
12096         for(entry = live; entry; entry = entry->next) {
12097                 struct live_range *lr;
12098                 if ((entry->member->id < 0) || (entry->member->id > rstate->defs)) {
12099                         internal_error(state, 0, "bad entry?");
12100                 }
12101                 lr = rstate->lrd[entry->member->id].lr;
12102                 if (def == lr) {
12103                         continue;
12104                 }
12105                 if (!arch_regcm_intersect(def->classes, lr->classes)) {
12106                         continue;
12107                 }
12108                 add_live_edge(rstate, def, lr);
12109         }
12110         return;
12111 }
12112
12113 static struct live_range *get_verify_live_range(
12114         struct compile_state *state, struct reg_state *rstate, struct triple *ins)
12115 {
12116         struct live_range *lr;
12117         struct live_range_def *lrd;
12118         int ins_found;
12119         if ((ins->id < 0) || (ins->id > rstate->defs)) {
12120                 internal_error(state, ins, "bad ins?");
12121         }
12122         lr = rstate->lrd[ins->id].lr;
12123         ins_found = 0;
12124         lrd = lr->defs;
12125         do {
12126                 if (lrd->def == ins) {
12127                         ins_found = 1;
12128                 }
12129                 lrd = lrd->next;
12130         } while(lrd != lr->defs);
12131         if (!ins_found) {
12132                 internal_error(state, ins, "ins not in live range");
12133         }
12134         return lr;
12135 }
12136
12137 static void verify_graph_ins(
12138         struct compile_state *state, 
12139         struct reg_block *blocks, struct triple_reg_set *live, 
12140         struct reg_block *rb, struct triple *ins, void *arg)
12141 {
12142         struct reg_state *rstate = arg;
12143         struct triple_reg_set *entry1, *entry2;
12144
12145
12146         /* Compare live against edges and make certain the code is working */
12147         for(entry1 = live; entry1; entry1 = entry1->next) {
12148                 struct live_range *lr1;
12149                 lr1 = get_verify_live_range(state, rstate, entry1->member);
12150                 for(entry2 = live; entry2; entry2 = entry2->next) {
12151                         struct live_range *lr2;
12152                         struct live_range_edge *edge2;
12153                         int lr1_found;
12154                         int lr2_degree;
12155                         if (entry2 == entry1) {
12156                                 continue;
12157                         }
12158                         lr2 = get_verify_live_range(state, rstate, entry2->member);
12159                         if (lr1 == lr2) {
12160                                 internal_error(state, entry2->member, 
12161                                         "live range with 2 values simultaneously alive");
12162                         }
12163                         if (!arch_regcm_intersect(lr1->classes, lr2->classes)) {
12164                                 continue;
12165                         }
12166                         if (!interfere(rstate, lr1, lr2)) {
12167                                 internal_error(state, entry2->member, 
12168                                         "edges don't interfere?");
12169                         }
12170                                 
12171                         lr1_found = 0;
12172                         lr2_degree = 0;
12173                         for(edge2 = lr2->edges; edge2; edge2 = edge2->next) {
12174                                 lr2_degree++;
12175                                 if (edge2->node == lr1) {
12176                                         lr1_found = 1;
12177                                 }
12178                         }
12179                         if (lr2_degree != lr2->degree) {
12180                                 internal_error(state, entry2->member,
12181                                         "computed degree: %d does not match reported degree: %d\n",
12182                                         lr2_degree, lr2->degree);
12183                         }
12184                         if (!lr1_found) {
12185                                 internal_error(state, entry2->member, "missing edge");
12186                         }
12187                 }
12188         }
12189         return;
12190 }
12191
12192
12193 static void print_interference_ins(
12194         struct compile_state *state, 
12195         struct reg_block *blocks, struct triple_reg_set *live, 
12196         struct reg_block *rb, struct triple *ins, void *arg)
12197 {
12198         struct reg_state *rstate = arg;
12199         struct live_range *lr;
12200         unsigned id;
12201
12202         lr = rstate->lrd[ins->id].lr;
12203         id = ins->id;
12204         ins->id = rstate->lrd[id].orig_id;
12205         SET_REG(ins->id, lr->color);
12206         display_triple(stdout, ins);
12207         ins->id = id;
12208
12209         if (lr->defs) {
12210                 struct live_range_def *lrd;
12211                 printf("       range:");
12212                 lrd = lr->defs;
12213                 do {
12214                         printf(" %-10p", lrd->def);
12215                         lrd = lrd->next;
12216                 } while(lrd != lr->defs);
12217                 printf("\n");
12218         }
12219         if (live) {
12220                 struct triple_reg_set *entry;
12221                 printf("        live:");
12222                 for(entry = live; entry; entry = entry->next) {
12223                         printf(" %-10p", entry->member);
12224                 }
12225                 printf("\n");
12226         }
12227         if (lr->edges) {
12228                 struct live_range_edge *entry;
12229                 printf("       edges:");
12230                 for(entry = lr->edges; entry; entry = entry->next) {
12231                         struct live_range_def *lrd;
12232                         lrd = entry->node->defs;
12233                         do {
12234                                 printf(" %-10p", lrd->def);
12235                                 lrd = lrd->next;
12236                         } while(lrd != entry->node->defs);
12237                         printf("|");
12238                 }
12239                 printf("\n");
12240         }
12241         if (triple_is_branch(state, ins)) {
12242                 printf("\n");
12243         }
12244         return;
12245 }
12246
12247 static int coalesce_live_ranges(
12248         struct compile_state *state, struct reg_state *rstate)
12249 {
12250         /* At the point where a value is moved from one
12251          * register to another that value requires two
12252          * registers, thus increasing register pressure.
12253          * Live range coaleescing reduces the register
12254          * pressure by keeping a value in one register
12255          * longer.
12256          *
12257          * In the case of a phi function all paths leading
12258          * into it must be allocated to the same register
12259          * otherwise the phi function may not be removed.
12260          *
12261          * Forcing a value to stay in a single register
12262          * for an extended period of time does have
12263          * limitations when applied to non homogenous
12264          * register pool.  
12265          *
12266          * The two cases I have identified are:
12267          * 1) Two forced register assignments may
12268          *    collide.
12269          * 2) Registers may go unused because they
12270          *    are only good for storing the value
12271          *    and not manipulating it.
12272          *
12273          * Because of this I need to split live ranges,
12274          * even outside of the context of coalesced live
12275          * ranges.  The need to split live ranges does
12276          * impose some constraints on live range coalescing.
12277          *
12278          * - Live ranges may not be coalesced across phi
12279          *   functions.  This creates a 2 headed live
12280          *   range that cannot be sanely split.
12281          *
12282          * - phi functions (coalesced in initialize_live_ranges) 
12283          *   are handled as pre split live ranges so we will
12284          *   never attempt to split them.
12285          */
12286         int coalesced;
12287         int i;
12288
12289         coalesced = 0;
12290         for(i = 0; i <= rstate->ranges; i++) {
12291                 struct live_range *lr1;
12292                 struct live_range_def *lrd1;
12293                 lr1 = &rstate->lr[i];
12294                 if (!lr1->defs) {
12295                         continue;
12296                 }
12297                 lrd1 = live_range_end(state, lr1, 0);
12298                 for(; lrd1; lrd1 = live_range_end(state, lr1, lrd1)) {
12299                         struct triple_set *set;
12300                         if (lrd1->def->op != OP_COPY) {
12301                                 continue;
12302                         }
12303                         /* Skip copies that are the result of a live range split. */
12304                         if (lrd1->orig_id & TRIPLE_FLAG_POST_SPLIT) {
12305                                 continue;
12306                         }
12307                         for(set = lrd1->def->use; set; set = set->next) {
12308                                 struct live_range_def *lrd2;
12309                                 struct live_range *lr2, *res;
12310
12311                                 lrd2 = &rstate->lrd[set->member->id];
12312
12313                                 /* Don't coalesce with instructions
12314                                  * that are the result of a live range
12315                                  * split.
12316                                  */
12317                                 if (lrd2->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
12318                                         continue;
12319                                 }
12320                                 lr2 = rstate->lrd[set->member->id].lr;
12321                                 if (lr1 == lr2) {
12322                                         continue;
12323                                 }
12324                                 if ((lr1->color != lr2->color) &&
12325                                         (lr1->color != REG_UNSET) &&
12326                                         (lr2->color != REG_UNSET)) {
12327                                         continue;
12328                                 }
12329                                 if ((lr1->classes & lr2->classes) == 0) {
12330                                         continue;
12331                                 }
12332                                 
12333                                 if (interfere(rstate, lr1, lr2)) {
12334                                         continue;
12335                                 }
12336
12337                                 res = coalesce_ranges(state, rstate, lr1, lr2);
12338                                 coalesced += 1;
12339                                 if (res != lr1) {
12340                                         goto next;
12341                                 }
12342                         }
12343                 }
12344         next:
12345                 ;
12346         }
12347         return coalesced;
12348 }
12349
12350
12351 static void fix_coalesce_conflicts(struct compile_state *state,
12352         struct reg_block *blocks, struct triple_reg_set *live,
12353         struct reg_block *rb, struct triple *ins, void *arg)
12354 {
12355         int zlhs, zrhs, i, j;
12356
12357         /* See if we have a mandatory coalesce operation between
12358          * a lhs and a rhs value.  If so and the rhs value is also
12359          * alive then this triple needs to be pre copied.  Otherwise
12360          * we would have two definitions in the same live range simultaneously
12361          * alive.
12362          */
12363         zlhs = TRIPLE_LHS(ins->sizes);
12364         if ((zlhs == 0) && triple_is_def(state, ins)) {
12365                 zlhs = 1;
12366         }
12367         zrhs = TRIPLE_RHS(ins->sizes);
12368         for(i = 0; i < zlhs; i++) {
12369                 struct reg_info linfo;
12370                 linfo = arch_reg_lhs(state, ins, i);
12371                 if (linfo.reg < MAX_REGISTERS) {
12372                         continue;
12373                 }
12374                 for(j = 0; j < zrhs; j++) {
12375                         struct reg_info rinfo;
12376                         struct triple *rhs;
12377                         struct triple_reg_set *set;
12378                         int found;
12379                         found = 0;
12380                         rinfo = arch_reg_rhs(state, ins, j);
12381                         if (rinfo.reg != linfo.reg) {
12382                                 continue;
12383                         }
12384                         rhs = RHS(ins, j);
12385                         for(set = live; set && !found; set = set->next) {
12386                                 if (set->member == rhs) {
12387                                         found = 1;
12388                                 }
12389                         }
12390                         if (found) {
12391                                 struct triple *copy;
12392                                 copy = pre_copy(state, ins, j);
12393                                 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
12394                         }
12395                 }
12396         }
12397         return;
12398 }
12399
12400 static void replace_set_use(struct compile_state *state,
12401         struct triple_reg_set *head, struct triple *orig, struct triple *new)
12402 {
12403         struct triple_reg_set *set;
12404         for(set = head; set; set = set->next) {
12405                 if (set->member == orig) {
12406                         set->member = new;
12407                 }
12408         }
12409 }
12410
12411 static void replace_block_use(struct compile_state *state, 
12412         struct reg_block *blocks, struct triple *orig, struct triple *new)
12413 {
12414         int i;
12415 #warning "WISHLIST visit just those blocks that need it *"
12416         for(i = 1; i <= state->last_vertex; i++) {
12417                 struct reg_block *rb;
12418                 rb = &blocks[i];
12419                 replace_set_use(state, rb->in, orig, new);
12420                 replace_set_use(state, rb->out, orig, new);
12421         }
12422 }
12423
12424 static void color_instructions(struct compile_state *state)
12425 {
12426         struct triple *ins, *first;
12427         first = RHS(state->main_function, 0);
12428         ins = first;
12429         do {
12430                 if (triple_is_def(state, ins)) {
12431                         struct reg_info info;
12432                         info = find_lhs_color(state, ins, 0);
12433                         if (info.reg >= MAX_REGISTERS) {
12434                                 info.reg = REG_UNSET;
12435                         }
12436                         SET_INFO(ins->id, info);
12437                 }
12438                 ins = ins->next;
12439         } while(ins != first);
12440 }
12441
12442 static struct reg_info read_lhs_color(
12443         struct compile_state *state, struct triple *ins, int index)
12444 {
12445         struct reg_info info;
12446         if ((index == 0) && triple_is_def(state, ins)) {
12447                 info.reg   = ID_REG(ins->id);
12448                 info.regcm = ID_REGCM(ins->id);
12449         }
12450         else if (index < TRIPLE_LHS(ins->sizes)) {
12451                 info = read_lhs_color(state, LHS(ins, index), 0);
12452         }
12453         else {
12454                 internal_error(state, ins, "Bad lhs %d", index);
12455                 info.reg = REG_UNSET;
12456                 info.regcm = 0;
12457         }
12458         return info;
12459 }
12460
12461 static struct triple *resolve_tangle(
12462         struct compile_state *state, struct triple *tangle)
12463 {
12464         struct reg_info info, uinfo;
12465         struct triple_set *set, *next;
12466         struct triple *copy;
12467
12468 #warning "WISHLIST recalculate all affected instructions colors"
12469         info = find_lhs_color(state, tangle, 0);
12470         for(set = tangle->use; set; set = next) {
12471                 struct triple *user;
12472                 int i, zrhs;
12473                 next = set->next;
12474                 user = set->member;
12475                 zrhs = TRIPLE_RHS(user->sizes);
12476                 for(i = 0; i < zrhs; i++) {
12477                         if (RHS(user, i) != tangle) {
12478                                 continue;
12479                         }
12480                         uinfo = find_rhs_post_color(state, user, i);
12481                         if (uinfo.reg == info.reg) {
12482                                 copy = pre_copy(state, user, i);
12483                                 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
12484                                 SET_INFO(copy->id, uinfo);
12485                         }
12486                 }
12487         }
12488         copy = 0;
12489         uinfo = find_lhs_pre_color(state, tangle, 0);
12490         if (uinfo.reg == info.reg) {
12491                 struct reg_info linfo;
12492                 copy = post_copy(state, tangle);
12493                 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
12494                 linfo = find_lhs_color(state, copy, 0);
12495                 SET_INFO(copy->id, linfo);
12496         }
12497         info = find_lhs_color(state, tangle, 0);
12498         SET_INFO(tangle->id, info);
12499         
12500         return copy;
12501 }
12502
12503
12504 static void fix_tangles(struct compile_state *state,
12505         struct reg_block *blocks, struct triple_reg_set *live,
12506         struct reg_block *rb, struct triple *ins, void *arg)
12507 {
12508         struct triple *tangle;
12509         do {
12510                 char used[MAX_REGISTERS];
12511                 struct triple_reg_set *set;
12512                 tangle = 0;
12513
12514                 /* Find out which registers have multiple uses at this point */
12515                 memset(used, 0, sizeof(used));
12516                 for(set = live; set; set = set->next) {
12517                         struct reg_info info;
12518                         info = read_lhs_color(state, set->member, 0);
12519                         if (info.reg == REG_UNSET) {
12520                                 continue;
12521                         }
12522                         reg_inc_used(state, used, info.reg);
12523                 }
12524                 
12525                 /* Now find the least dominated definition of a register in
12526                  * conflict I have seen so far.
12527                  */
12528                 for(set = live; set; set = set->next) {
12529                         struct reg_info info;
12530                         info = read_lhs_color(state, set->member, 0);
12531                         if (used[info.reg] < 2) {
12532                                 continue;
12533                         }
12534                         if (!tangle || tdominates(state, set->member, tangle)) {
12535                                 tangle = set->member;
12536                         }
12537                 }
12538                 /* If I have found a tangle resolve it */
12539                 if (tangle) {
12540                         struct triple *post_copy;
12541                         post_copy = resolve_tangle(state, tangle);
12542                         if (post_copy) {
12543                                 replace_block_use(state, blocks, tangle, post_copy);
12544                         }
12545                         if (post_copy && (tangle != ins)) {
12546                                 replace_set_use(state, live, tangle, post_copy);
12547                         }
12548                 }
12549         } while(tangle);
12550         return;
12551 }
12552
12553 static void correct_tangles(
12554         struct compile_state *state, struct reg_block *blocks)
12555 {
12556         color_instructions(state);
12557         walk_variable_lifetimes(state, blocks, fix_tangles, 0);
12558 }
12559
12560 struct least_conflict {
12561         struct reg_state *rstate;
12562         struct live_range *ref_range;
12563         struct triple *ins;
12564         struct triple_reg_set *live;
12565         size_t count;
12566         int constraints;
12567 };
12568 static void least_conflict(struct compile_state *state,
12569         struct reg_block *blocks, struct triple_reg_set *live,
12570         struct reg_block *rb, struct triple *ins, void *arg)
12571 {
12572         struct least_conflict *conflict = arg;
12573         struct live_range_edge *edge;
12574         struct triple_reg_set *set;
12575         size_t count;
12576         int constraints;
12577
12578 #warning "FIXME handle instructions with left hand sides..."
12579         /* Only instructions that introduce a new definition
12580          * can be the conflict instruction.
12581          */
12582         if (!triple_is_def(state, ins)) {
12583                 return;
12584         }
12585
12586         /* See if live ranges at this instruction are a
12587          * strict subset of the live ranges that are in conflict.
12588          */
12589         count = 0;
12590         for(set = live; set; set = set->next) {
12591                 struct live_range *lr;
12592                 lr = conflict->rstate->lrd[set->member->id].lr;
12593                 /* Ignore it if there cannot be an edge between these two nodes */
12594                 if (!arch_regcm_intersect(conflict->ref_range->classes, lr->classes)) {
12595                         continue;
12596                 }
12597                 for(edge = conflict->ref_range->edges; edge; edge = edge->next) {
12598                         if (edge->node == lr) {
12599                                 break;
12600                         }
12601                 }
12602                 if (!edge && (lr != conflict->ref_range)) {
12603                         return;
12604                 }
12605                 count++;
12606         }
12607         if (count <= 1) {
12608                 return;
12609         }
12610
12611 #if 0
12612         /* See if there is an uncolored member in this subset. 
12613          */
12614          for(set = live; set; set = set->next) {
12615                 struct live_range *lr;
12616                 lr = conflict->rstate->lrd[set->member->id].lr;
12617                 if (lr->color == REG_UNSET) {
12618                         break;
12619                 }
12620         }
12621         if (!set && (conflict->ref_range != REG_UNSET)) {
12622                 return;
12623         }
12624 #endif
12625
12626         /* See if any of the live registers are constrained,
12627          * if not it won't be productive to pick this as
12628          * a conflict instruction.
12629          */
12630         constraints = 0;
12631         for(set = live; set; set = set->next) {
12632                 struct triple_set *uset;
12633                 struct reg_info info;
12634                 unsigned classes;
12635                 unsigned cur_size, size;
12636                 /* Skip this instruction */
12637                 if (set->member == ins) {
12638                         continue;
12639                 }
12640                 /* Find how many registers this value can potentially 
12641                  * be assigned to.
12642                  */
12643                 classes = arch_type_to_regcm(state, set->member->type);
12644                 size = regc_max_size(state, classes);
12645                 
12646                 /* Find how many registers we allow this value to
12647                  * be assigned to.
12648                  */
12649                 info = arch_reg_lhs(state, set->member, 0);
12650                 
12651                 /* If the value does not live in a register it
12652                  * isn't constrained.
12653                  */
12654                 if (info.reg == REG_UNNEEDED) {
12655                         continue;
12656                 }
12657                 
12658                 if ((info.reg == REG_UNSET) || (info.reg >= MAX_REGISTERS)) {
12659                         cur_size = regc_max_size(state, info.regcm);
12660                 } else {
12661                         cur_size = 1;
12662                 }
12663
12664                 /* If there is no difference between potential and
12665                  * actual register count there is not a constraint
12666                  */
12667                 if (cur_size >= size) {
12668                         continue;
12669                 }
12670                 
12671                 /* If this live_range feeds into conflict->inds
12672                  * it isn't a constraint we can relieve.
12673                  */
12674                 for(uset = set->member->use; uset; uset = uset->next) {
12675                         if (uset->member == ins) {
12676                                 break;
12677                         }
12678                 }
12679                 if (uset) {
12680                         continue;
12681                 }
12682                 constraints = 1;
12683                 break;
12684         }
12685         /* Don't drop canidates with constraints */
12686         if (conflict->constraints && !constraints) {
12687                 return;
12688         }
12689
12690
12691 #if 0
12692         fprintf(stderr, "conflict ins? %p %s count: %d constraints: %d\n",
12693                 ins, tops(ins->op), count, constraints);
12694 #endif
12695         /* Find the instruction with the largest possible subset of
12696          * conflict ranges and that dominates any other instruction
12697          * with an equal sized set of conflicting ranges.
12698          */
12699         if ((count > conflict->count) ||
12700                 ((count == conflict->count) &&
12701                         tdominates(state, ins, conflict->ins))) {
12702                 struct triple_reg_set *next;
12703                 /* Remember the canidate instruction */
12704                 conflict->ins = ins;
12705                 conflict->count = count;
12706                 conflict->constraints = constraints;
12707                 /* Free the old collection of live registers */
12708                 for(set = conflict->live; set; set = next) {
12709                         next = set->next;
12710                         do_triple_unset(&conflict->live, set->member);
12711                 }
12712                 conflict->live = 0;
12713                 /* Rember the registers that are alive but do not feed
12714                  * into or out of conflict->ins.
12715                  */
12716                 for(set = live; set; set = set->next) {
12717                         struct triple **expr;
12718                         if (set->member == ins) {
12719                                 goto next;
12720                         }
12721                         expr = triple_rhs(state, ins, 0);
12722                         for(;expr; expr = triple_rhs(state, ins, expr)) {
12723                                 if (*expr == set->member) {
12724                                         goto next;
12725                                 }
12726                         }
12727                         expr = triple_lhs(state, ins, 0);
12728                         for(; expr; expr = triple_lhs(state, ins, expr)) {
12729                                 if (*expr == set->member) {
12730                                         goto next;
12731                                 }
12732                         }
12733                         do_triple_set(&conflict->live, set->member, set->new);
12734                 next:
12735                         ;
12736                 }
12737         }
12738         return;
12739 }
12740
12741 static void find_range_conflict(struct compile_state *state,
12742         struct reg_state *rstate, char *used, struct live_range *ref_range,
12743         struct least_conflict *conflict)
12744 {
12745
12746         /* there are 3 kinds ways conflicts can occure.
12747          * 1) the life time of 2 values simply overlap.
12748          * 2) the 2 values feed into the same instruction.
12749          * 3) the 2 values feed into a phi function.
12750          */
12751
12752         /* find the instruction where the problematic conflict comes
12753          * into existance.  that the instruction where all of
12754          * the values are alive, and among such instructions it is
12755          * the least dominated one.
12756          *
12757          * a value is alive an an instruction if either;
12758          * 1) the value defintion dominates the instruction and there
12759          *    is a use at or after that instrction
12760          * 2) the value definition feeds into a phi function in the
12761          *    same block as the instruction.  and the phi function
12762          *    is at or after the instruction.
12763          */
12764         memset(conflict, 0, sizeof(*conflict));
12765         conflict->rstate      = rstate;
12766         conflict->ref_range   = ref_range;
12767         conflict->ins         = 0;
12768         conflict->live        = 0;
12769         conflict->count       = 0;
12770         conflict->constraints = 0;
12771         walk_variable_lifetimes(state, rstate->blocks, least_conflict, conflict);
12772
12773         if (!conflict->ins) {
12774                 internal_error(state, ref_range->defs->def, "No conflict ins?");
12775         }
12776         if (!conflict->live) {
12777                 internal_error(state, ref_range->defs->def, "No conflict live?");
12778         }
12779 #if 0
12780         fprintf(stderr, "conflict ins: %p %s count: %d constraints: %d\n", 
12781                 conflict->ins, tops(conflict->ins->op),
12782                 conflict->count, conflict->constraints);
12783 #endif
12784         return;
12785 }
12786
12787 static struct triple *split_constrained_range(struct compile_state *state, 
12788         struct reg_state *rstate, char *used, struct least_conflict *conflict)
12789 {
12790         unsigned constrained_size;
12791         struct triple *new, *constrained;
12792         struct triple_reg_set *cset;
12793         /* Find a range that is having problems because it is
12794          * artificially constrained.
12795          */
12796         constrained_size = ~0;
12797         constrained = 0;
12798         new = 0;
12799         for(cset = conflict->live; cset; cset = cset->next) {
12800                 struct triple_set *set;
12801                 struct reg_info info;
12802                 unsigned classes;
12803                 unsigned cur_size, size;
12804                 /* Skip the live range that starts with conflict->ins */
12805                 if (cset->member == conflict->ins) {
12806                         continue;
12807                 }
12808                 /* Find how many registers this value can potentially
12809                  * be assigned to.
12810                  */
12811                 classes = arch_type_to_regcm(state, cset->member->type);
12812                 size = regc_max_size(state, classes);
12813
12814                 /* Find how many registers we allow this value to
12815                  * be assigned to.
12816                  */
12817                 info = arch_reg_lhs(state, cset->member, 0);
12818
12819                 /* If the register doesn't need a register 
12820                  * splitting it can't help.
12821                  */
12822                 if (info.reg == REG_UNNEEDED) {
12823                         continue;
12824                 }
12825 #warning "FIXME do I need a call to arch_reg_rhs around here somewhere?"
12826                 if ((info.reg == REG_UNSET) || (info.reg >= MAX_REGISTERS)) {
12827                         cur_size = regc_max_size(state, info.regcm);
12828                 } else {
12829                         cur_size = 1;
12830                 }
12831                 /* If this live_range feeds into conflict->ins
12832                  * splitting it is unlikely to help.
12833                  */
12834                 for(set = cset->member->use; set; set = set->next) {
12835                         if (set->member == conflict->ins) {
12836                                 goto next;
12837                         }
12838                 }
12839
12840                 /* If there is no difference between potential and
12841                  * actual register count there is nothing to do.
12842                  */
12843                 if (cur_size >= size) {
12844                         continue;
12845                 }
12846                 /* Of the constrained registers deal with the
12847                  * most constrained one first.
12848                  */
12849                 if (!constrained ||
12850                         (size < constrained_size)) {
12851                         constrained = cset->member;
12852                         constrained_size = size;
12853                 }
12854         next:
12855                 ;
12856         }
12857         if (constrained) {
12858                 new = post_copy(state, constrained);
12859                 new->id |= TRIPLE_FLAG_POST_SPLIT;
12860         }
12861         return new;
12862 }
12863
12864 static int split_ranges(
12865         struct compile_state *state, struct reg_state *rstate, 
12866         char *used, struct live_range *range)
12867 {
12868         struct triple *new;
12869
12870 #if 0
12871         fprintf(stderr, "split_ranges %d %s %p\n", 
12872                 rstate->passes, tops(range->defs->def->op), range->defs->def);
12873 #endif
12874         if ((range->color == REG_UNNEEDED) ||
12875                 (rstate->passes >= rstate->max_passes)) {
12876                 return 0;
12877         }
12878         new = 0;
12879         /* If I can't allocate a register something needs to be split */
12880         if (arch_select_free_register(state, used, range->classes) == REG_UNSET) {
12881                 struct least_conflict conflict;
12882
12883 #if 0
12884         fprintf(stderr, "find_range_conflict\n");
12885 #endif
12886                 /* Find where in the set of registers the conflict
12887                  * actually occurs.
12888                  */
12889                 find_range_conflict(state, rstate, used, range, &conflict);
12890
12891                 /* If a range has been artifically constrained split it */
12892                 new = split_constrained_range(state, rstate, used, &conflict);
12893                 
12894                 if (!new) {
12895                 /* Ideally I would split the live range that will not be used
12896                  * for the longest period of time in hopes that this will 
12897                  * (a) allow me to spill a register or
12898                  * (b) allow me to place a value in another register.
12899                  *
12900                  * So far I don't have a test case for this, the resolving
12901                  * of mandatory constraints has solved all of my
12902                  * know issues.  So I have choosen not to write any
12903                  * code until I cat get a better feel for cases where
12904                  * it would be useful to have.
12905                  *
12906                  */
12907 #warning "WISHLIST implement live range splitting..."
12908 #if 0
12909                         print_blocks(state, stderr);
12910                         print_dominators(state, stderr);
12911
12912 #endif
12913                         return 0;
12914                 }
12915         }
12916         if (new) {
12917                 rstate->lrd[rstate->defs].orig_id = new->id;
12918                 new->id = rstate->defs;
12919                 rstate->defs++;
12920 #if 0
12921                 fprintf(stderr, "new: %p old: %s %p\n", 
12922                         new, tops(RHS(new, 0)->op), RHS(new, 0));
12923 #endif
12924 #if 0
12925                 print_blocks(state, stderr);
12926                 print_dominators(state, stderr);
12927
12928 #endif
12929                 return 1;
12930         }
12931         return 0;
12932 }
12933
12934 #if DEBUG_COLOR_GRAPH > 1
12935 #define cgdebug_printf(...) fprintf(stdout, __VA_ARGS__)
12936 #define cgdebug_flush() fflush(stdout)
12937 #elif DEBUG_COLOR_GRAPH == 1
12938 #define cgdebug_printf(...) fprintf(stderr, __VA_ARGS__)
12939 #define cgdebug_flush() fflush(stderr)
12940 #else
12941 #define cgdebug_printf(...)
12942 #define cgdebug_flush()
12943 #endif
12944
12945         
12946 static int select_free_color(struct compile_state *state, 
12947         struct reg_state *rstate, struct live_range *range)
12948 {
12949         struct triple_set *entry;
12950         struct live_range_def *lrd;
12951         struct live_range_def *phi;
12952         struct live_range_edge *edge;
12953         char used[MAX_REGISTERS];
12954         struct triple **expr;
12955
12956         /* Instead of doing just the trivial color select here I try
12957          * a few extra things because a good color selection will help reduce
12958          * copies.
12959          */
12960
12961         /* Find the registers currently in use */
12962         memset(used, 0, sizeof(used));
12963         for(edge = range->edges; edge; edge = edge->next) {
12964                 if (edge->node->color == REG_UNSET) {
12965                         continue;
12966                 }
12967                 reg_fill_used(state, used, edge->node->color);
12968         }
12969 #if DEBUG_COLOR_GRAPH > 1
12970         {
12971                 int i;
12972                 i = 0;
12973                 for(edge = range->edges; edge; edge = edge->next) {
12974                         i++;
12975                 }
12976                 cgdebug_printf("\n%s edges: %d @%s:%d.%d\n", 
12977                         tops(range->def->op), i, 
12978                         range->def->filename, range->def->line, range->def->col);
12979                 for(i = 0; i < MAX_REGISTERS; i++) {
12980                         if (used[i]) {
12981                                 cgdebug_printf("used: %s\n",
12982                                         arch_reg_str(i));
12983                         }
12984                 }
12985         }       
12986 #endif
12987
12988 #warning "FIXME detect conflicts caused by the source and destination being the same register"
12989
12990         /* If a color is already assigned see if it will work */
12991         if (range->color != REG_UNSET) {
12992                 struct live_range_def *lrd;
12993                 if (!used[range->color]) {
12994                         return 1;
12995                 }
12996                 for(edge = range->edges; edge; edge = edge->next) {
12997                         if (edge->node->color != range->color) {
12998                                 continue;
12999                         }
13000                         warning(state, edge->node->defs->def, "edge: ");
13001                         lrd = edge->node->defs;
13002                         do {
13003                                 warning(state, lrd->def, " %p %s",
13004                                         lrd->def, tops(lrd->def->op));
13005                                 lrd = lrd->next;
13006                         } while(lrd != edge->node->defs);
13007                 }
13008                 lrd = range->defs;
13009                 warning(state, range->defs->def, "def: ");
13010                 do {
13011                         warning(state, lrd->def, " %p %s",
13012                                 lrd->def, tops(lrd->def->op));
13013                         lrd = lrd->next;
13014                 } while(lrd != range->defs);
13015                 internal_error(state, range->defs->def,
13016                         "live range with already used color %s",
13017                         arch_reg_str(range->color));
13018         }
13019
13020         /* If I feed into an expression reuse it's color.
13021          * This should help remove copies in the case of 2 register instructions
13022          * and phi functions.
13023          */
13024         phi = 0;
13025         lrd = live_range_end(state, range, 0);
13026         for(; (range->color == REG_UNSET) && lrd ; lrd = live_range_end(state, range, lrd)) {
13027                 entry = lrd->def->use;
13028                 for(;(range->color == REG_UNSET) && entry; entry = entry->next) {
13029                         struct live_range_def *insd;
13030                         insd = &rstate->lrd[entry->member->id];
13031                         if (insd->lr->defs == 0) {
13032                                 continue;
13033                         }
13034                         if (!phi && (insd->def->op == OP_PHI) &&
13035                                 !interfere(rstate, range, insd->lr)) {
13036                                 phi = insd;
13037                         }
13038                         if ((insd->lr->color == REG_UNSET) ||
13039                                 ((insd->lr->classes & range->classes) == 0) ||
13040                                 (used[insd->lr->color])) {
13041                                 continue;
13042                         }
13043                         if (interfere(rstate, range, insd->lr)) {
13044                                 continue;
13045                         }
13046                         range->color = insd->lr->color;
13047                 }
13048         }
13049         /* If I feed into a phi function reuse it's color or the color
13050          * of something else that feeds into the phi function.
13051          */
13052         if (phi) {
13053                 if (phi->lr->color != REG_UNSET) {
13054                         if (used[phi->lr->color]) {
13055                                 range->color = phi->lr->color;
13056                         }
13057                 }
13058                 else {
13059                         expr = triple_rhs(state, phi->def, 0);
13060                         for(; expr; expr = triple_rhs(state, phi->def, expr)) {
13061                                 struct live_range *lr;
13062                                 if (!*expr) {
13063                                         continue;
13064                                 }
13065                                 lr = rstate->lrd[(*expr)->id].lr;
13066                                 if ((lr->color == REG_UNSET) || 
13067                                         ((lr->classes & range->classes) == 0) ||
13068                                         (used[lr->color])) {
13069                                         continue;
13070                                 }
13071                                 if (interfere(rstate, range, lr)) {
13072                                         continue;
13073                                 }
13074                                 range->color = lr->color;
13075                         }
13076                 }
13077         }
13078         /* If I don't interfere with a rhs node reuse it's color */
13079         lrd = live_range_head(state, range, 0);
13080         for(; (range->color == REG_UNSET) && lrd ; lrd = live_range_head(state, range, lrd)) {
13081                 expr = triple_rhs(state, lrd->def, 0);
13082                 for(; expr; expr = triple_rhs(state, lrd->def, expr)) {
13083                         struct live_range *lr;
13084                         if (!*expr) {
13085                                 continue;
13086                         }
13087                         lr = rstate->lrd[(*expr)->id].lr;
13088                         if ((lr->color == -1) || 
13089                                 ((lr->classes & range->classes) == 0) ||
13090                                 (used[lr->color])) {
13091                                 continue;
13092                         }
13093                         if (interfere(rstate, range, lr)) {
13094                                 continue;
13095                         }
13096                         range->color = lr->color;
13097                         break;
13098                 }
13099         }
13100         /* If I have not opportunitically picked a useful color
13101          * pick the first color that is free.
13102          */
13103         if (range->color == REG_UNSET) {
13104                 range->color = 
13105                         arch_select_free_register(state, used, range->classes);
13106         }
13107         if (range->color == REG_UNSET) {
13108                 struct live_range_def *lrd;
13109                 int i;
13110                 if (split_ranges(state, rstate, used, range)) {
13111                         return 0;
13112                 }
13113                 for(edge = range->edges; edge; edge = edge->next) {
13114                         warning(state, edge->node->defs->def, "edge reg %s",
13115                                 arch_reg_str(edge->node->color));
13116                         lrd = edge->node->defs;
13117                         do {
13118                                 warning(state, lrd->def, " %s",
13119                                         tops(lrd->def->op));
13120                                 lrd = lrd->next;
13121                         } while(lrd != edge->node->defs);
13122                 }
13123                 warning(state, range->defs->def, "range: ");
13124                 lrd = range->defs;
13125                 do {
13126                         warning(state, lrd->def, " %s",
13127                                 tops(lrd->def->op));
13128                         lrd = lrd->next;
13129                 } while(lrd != range->defs);
13130                         
13131                 warning(state, range->defs->def, "classes: %x",
13132                         range->classes);
13133                 for(i = 0; i < MAX_REGISTERS; i++) {
13134                         if (used[i]) {
13135                                 warning(state, range->defs->def, "used: %s",
13136                                         arch_reg_str(i));
13137                         }
13138                 }
13139 #if DEBUG_COLOR_GRAPH < 2
13140                 error(state, range->defs->def, "too few registers");
13141 #else
13142                 internal_error(state, range->defs->def, "too few registers");
13143 #endif
13144         }
13145         range->classes = arch_reg_regcm(state, range->color);
13146         if (range->color == -1) {
13147                 internal_error(state, range->defs->def, "select_free_color did not?");
13148         }
13149         return 1;
13150 }
13151
13152 static int color_graph(struct compile_state *state, struct reg_state *rstate)
13153 {
13154         int colored;
13155         struct live_range_edge *edge;
13156         struct live_range *range;
13157         if (rstate->low) {
13158                 cgdebug_printf("Lo: ");
13159                 range = rstate->low;
13160                 if (*range->group_prev != range) {
13161                         internal_error(state, 0, "lo: *prev != range?");
13162                 }
13163                 *range->group_prev = range->group_next;
13164                 if (range->group_next) {
13165                         range->group_next->group_prev = range->group_prev;
13166                 }
13167                 if (&range->group_next == rstate->low_tail) {
13168                         rstate->low_tail = range->group_prev;
13169                 }
13170                 if (rstate->low == range) {
13171                         internal_error(state, 0, "low: next != prev?");
13172                 }
13173         }
13174         else if (rstate->high) {
13175                 cgdebug_printf("Hi: ");
13176                 range = rstate->high;
13177                 if (*range->group_prev != range) {
13178                         internal_error(state, 0, "hi: *prev != range?");
13179                 }
13180                 *range->group_prev = range->group_next;
13181                 if (range->group_next) {
13182                         range->group_next->group_prev = range->group_prev;
13183                 }
13184                 if (&range->group_next == rstate->high_tail) {
13185                         rstate->high_tail = range->group_prev;
13186                 }
13187                 if (rstate->high == range) {
13188                         internal_error(state, 0, "high: next != prev?");
13189                 }
13190         }
13191         else {
13192                 return 1;
13193         }
13194         cgdebug_printf(" %d\n", range - rstate->lr);
13195         range->group_prev = 0;
13196         for(edge = range->edges; edge; edge = edge->next) {
13197                 struct live_range *node;
13198                 node = edge->node;
13199                 /* Move nodes from the high to the low list */
13200                 if (node->group_prev && (node->color == REG_UNSET) &&
13201                         (node->degree == regc_max_size(state, node->classes))) {
13202                         if (*node->group_prev != node) {
13203                                 internal_error(state, 0, "move: *prev != node?");
13204                         }
13205                         *node->group_prev = node->group_next;
13206                         if (node->group_next) {
13207                                 node->group_next->group_prev = node->group_prev;
13208                         }
13209                         if (&node->group_next == rstate->high_tail) {
13210                                 rstate->high_tail = node->group_prev;
13211                         }
13212                         cgdebug_printf("Moving...%d to low\n", node - rstate->lr);
13213                         node->group_prev  = rstate->low_tail;
13214                         node->group_next  = 0;
13215                         *rstate->low_tail = node;
13216                         rstate->low_tail  = &node->group_next;
13217                         if (*node->group_prev != node) {
13218                                 internal_error(state, 0, "move2: *prev != node?");
13219                         }
13220                 }
13221                 node->degree -= 1;
13222         }
13223         colored = color_graph(state, rstate);
13224         if (colored) {
13225                 cgdebug_printf("Coloring %d @%s:%d.%d:", 
13226                         range - rstate->lr,
13227                         range->def->filename, range->def->line, range->def->col);
13228                 cgdebug_flush();
13229                 colored = select_free_color(state, rstate, range);
13230                 cgdebug_printf(" %s\n", arch_reg_str(range->color));
13231         }
13232         return colored;
13233 }
13234
13235 static void verify_colors(struct compile_state *state, struct reg_state *rstate)
13236 {
13237         struct live_range *lr;
13238         struct live_range_edge *edge;
13239         struct triple *ins, *first;
13240         char used[MAX_REGISTERS];
13241         first = RHS(state->main_function, 0);
13242         ins = first;
13243         do {
13244                 if (triple_is_def(state, ins)) {
13245                         if ((ins->id < 0) || (ins->id > rstate->defs)) {
13246                                 internal_error(state, ins, 
13247                                         "triple without a live range def");
13248                         }
13249                         lr = rstate->lrd[ins->id].lr;
13250                         if (lr->color == REG_UNSET) {
13251                                 internal_error(state, ins,
13252                                         "triple without a color");
13253                         }
13254                         /* Find the registers used by the edges */
13255                         memset(used, 0, sizeof(used));
13256                         for(edge = lr->edges; edge; edge = edge->next) {
13257                                 if (edge->node->color == REG_UNSET) {
13258                                         internal_error(state, 0,
13259                                                 "live range without a color");
13260                         }
13261                                 reg_fill_used(state, used, edge->node->color);
13262                         }
13263                         if (used[lr->color]) {
13264                                 internal_error(state, ins,
13265                                         "triple with already used color");
13266                         }
13267                 }
13268                 ins = ins->next;
13269         } while(ins != first);
13270 }
13271
13272 static void color_triples(struct compile_state *state, struct reg_state *rstate)
13273 {
13274         struct live_range *lr;
13275         struct triple *first, *ins;
13276         first = RHS(state->main_function, 0);
13277         ins = first;
13278         do {
13279                 if ((ins->id < 0) || (ins->id > rstate->defs)) {
13280                         internal_error(state, ins, 
13281                                 "triple without a live range");
13282                 }
13283                 lr = rstate->lrd[ins->id].lr;
13284                 SET_REG(ins->id, lr->color);
13285                 ins = ins->next;
13286         } while (ins != first);
13287 }
13288
13289 static void print_interference_block(
13290         struct compile_state *state, struct block *block, void *arg)
13291
13292 {
13293         struct reg_state *rstate = arg;
13294         struct reg_block *rb;
13295         struct triple *ptr;
13296         int phi_present;
13297         int done;
13298         rb = &rstate->blocks[block->vertex];
13299
13300         printf("\nblock: %p (%d), %p<-%p %p<-%p\n", 
13301                 block, 
13302                 block->vertex,
13303                 block->left, 
13304                 block->left && block->left->use?block->left->use->member : 0,
13305                 block->right, 
13306                 block->right && block->right->use?block->right->use->member : 0);
13307         if (rb->in) {
13308                 struct triple_reg_set *in_set;
13309                 printf("        in:");
13310                 for(in_set = rb->in; in_set; in_set = in_set->next) {
13311                         printf(" %-10p", in_set->member);
13312                 }
13313                 printf("\n");
13314         }
13315         phi_present = 0;
13316         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
13317                 done = (ptr == block->last);
13318                 if (ptr->op == OP_PHI) {
13319                         phi_present = 1;
13320                         break;
13321                 }
13322         }
13323         if (phi_present) {
13324                 int edge;
13325                 for(edge = 0; edge < block->users; edge++) {
13326                         printf("     in(%d):", edge);
13327                         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
13328                                 struct triple **slot;
13329                                 done = (ptr == block->last);
13330                                 if (ptr->op != OP_PHI) {
13331                                         continue;
13332                                 }
13333                                 slot = &RHS(ptr, 0);
13334                                 printf(" %-10p", slot[edge]);
13335                         }
13336                         printf("\n");
13337                 }
13338         }
13339         if (block->first->op == OP_LABEL) {
13340                 printf("%p:\n", block->first);
13341         }
13342         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
13343                 struct triple_set *user;
13344                 struct live_range *lr;
13345                 unsigned id;
13346                 int op;
13347                 op = ptr->op;
13348                 done = (ptr == block->last);
13349                 lr = rstate->lrd[ptr->id].lr;
13350                 
13351                 if (triple_stores_block(state, ptr)) {
13352                         if (ptr->u.block != block) {
13353                                 internal_error(state, ptr, 
13354                                         "Wrong block pointer: %p",
13355                                         ptr->u.block);
13356                         }
13357                 }
13358                 if (op == OP_ADECL) {
13359                         for(user = ptr->use; user; user = user->next) {
13360                                 if (!user->member->u.block) {
13361                                         internal_error(state, user->member, 
13362                                                 "Use %p not in a block?",
13363                                                 user->member);
13364                                 }
13365                                 
13366                         }
13367                 }
13368                 id = ptr->id;
13369                 ptr->id = rstate->lrd[id].orig_id;
13370                 SET_REG(ptr->id, lr->color);
13371                 display_triple(stdout, ptr);
13372                 ptr->id = id;
13373
13374                 if (triple_is_def(state, ptr) && (lr->defs == 0)) {
13375                         internal_error(state, ptr, "lr has no defs!");
13376                 }
13377
13378                 if (lr->defs) {
13379                         struct live_range_def *lrd;
13380                         printf("       range:");
13381                         lrd = lr->defs;
13382                         do {
13383                                 printf(" %-10p", lrd->def);
13384                                 lrd = lrd->next;
13385                         } while(lrd != lr->defs);
13386                         printf("\n");
13387                 }
13388                 if (lr->edges > 0) {
13389                         struct live_range_edge *edge;
13390                         printf("       edges:");
13391                         for(edge = lr->edges; edge; edge = edge->next) {
13392                                 struct live_range_def *lrd;
13393                                 lrd = edge->node->defs;
13394                                 do {
13395                                         printf(" %-10p", lrd->def);
13396                                         lrd = lrd->next;
13397                                 } while(lrd != edge->node->defs);
13398                                 printf("|");
13399                         }
13400                         printf("\n");
13401                 }
13402                 /* Do a bunch of sanity checks */
13403                 valid_ins(state, ptr);
13404                 if ((ptr->id < 0) || (ptr->id > rstate->defs)) {
13405                         internal_error(state, ptr, "Invalid triple id: %d",
13406                                 ptr->id);
13407                 }
13408                 for(user = ptr->use; user; user = user->next) {
13409                         struct triple *use;
13410                         struct live_range *ulr;
13411                         use = user->member;
13412                         valid_ins(state, use);
13413                         if ((use->id < 0) || (use->id > rstate->defs)) {
13414                                 internal_error(state, use, "Invalid triple id: %d",
13415                                         use->id);
13416                         }
13417                         ulr = rstate->lrd[user->member->id].lr;
13418                         if (triple_stores_block(state, user->member) &&
13419                                 !user->member->u.block) {
13420                                 internal_error(state, user->member,
13421                                         "Use %p not in a block?",
13422                                         user->member);
13423                         }
13424                 }
13425         }
13426         if (rb->out) {
13427                 struct triple_reg_set *out_set;
13428                 printf("       out:");
13429                 for(out_set = rb->out; out_set; out_set = out_set->next) {
13430                         printf(" %-10p", out_set->member);
13431                 }
13432                 printf("\n");
13433         }
13434         printf("\n");
13435 }
13436
13437 static struct live_range *merge_sort_lr(
13438         struct live_range *first, struct live_range *last)
13439 {
13440         struct live_range *mid, *join, **join_tail, *pick;
13441         size_t size;
13442         size = (last - first) + 1;
13443         if (size >= 2) {
13444                 mid = first + size/2;
13445                 first = merge_sort_lr(first, mid -1);
13446                 mid   = merge_sort_lr(mid, last);
13447                 
13448                 join = 0;
13449                 join_tail = &join;
13450                 /* merge the two lists */
13451                 while(first && mid) {
13452                         if ((first->degree < mid->degree) ||
13453                                 ((first->degree == mid->degree) &&
13454                                         (first->length < mid->length))) {
13455                                 pick = first;
13456                                 first = first->group_next;
13457                                 if (first) {
13458                                         first->group_prev = 0;
13459                                 }
13460                         }
13461                         else {
13462                                 pick = mid;
13463                                 mid = mid->group_next;
13464                                 if (mid) {
13465                                         mid->group_prev = 0;
13466                                 }
13467                         }
13468                         pick->group_next = 0;
13469                         pick->group_prev = join_tail;
13470                         *join_tail = pick;
13471                         join_tail = &pick->group_next;
13472                 }
13473                 /* Splice the remaining list */
13474                 pick = (first)? first : mid;
13475                 *join_tail = pick;
13476                 if (pick) { 
13477                         pick->group_prev = join_tail;
13478                 }
13479         }
13480         else {
13481                 if (!first->defs) {
13482                         first = 0;
13483                 }
13484                 join = first;
13485         }
13486         return join;
13487 }
13488
13489 static void ids_from_rstate(struct compile_state *state, 
13490         struct reg_state *rstate)
13491 {
13492         struct triple *ins, *first;
13493         if (!rstate->defs) {
13494                 return;
13495         }
13496         /* Display the graph if desired */
13497         if (state->debug & DEBUG_INTERFERENCE) {
13498                 print_blocks(state, stdout);
13499                 print_control_flow(state);
13500         }
13501         first = RHS(state->main_function, 0);
13502         ins = first;
13503         do {
13504                 if (ins->id) {
13505                         struct live_range_def *lrd;
13506                         lrd = &rstate->lrd[ins->id];
13507                         ins->id = lrd->orig_id;
13508                 }
13509                 ins = ins->next;
13510         } while(ins != first);
13511 }
13512
13513 static void cleanup_live_edges(struct reg_state *rstate)
13514 {
13515         int i;
13516         /* Free the edges on each node */
13517         for(i = 1; i <= rstate->ranges; i++) {
13518                 remove_live_edges(rstate, &rstate->lr[i]);
13519         }
13520 }
13521
13522 static void cleanup_rstate(struct compile_state *state, struct reg_state *rstate)
13523 {
13524         cleanup_live_edges(rstate);
13525         xfree(rstate->lrd);
13526         xfree(rstate->lr);
13527
13528         /* Free the variable lifetime information */
13529         if (rstate->blocks) {
13530                 free_variable_lifetimes(state, rstate->blocks);
13531         }
13532         rstate->defs = 0;
13533         rstate->ranges = 0;
13534         rstate->lrd = 0;
13535         rstate->lr = 0;
13536         rstate->blocks = 0;
13537 }
13538
13539 static void allocate_registers(struct compile_state *state)
13540 {
13541         struct reg_state rstate;
13542         int colored;
13543
13544         /* Clear out the reg_state */
13545         memset(&rstate, 0, sizeof(rstate));
13546         rstate.max_passes = MAX_ALLOCATION_PASSES;
13547
13548         do {
13549                 struct live_range **point, **next;
13550                 int coalesced;
13551
13552                 /* Restore ids */
13553                 ids_from_rstate(state, &rstate);
13554
13555                 /* Cleanup the temporary data structures */
13556                 cleanup_rstate(state, &rstate);
13557
13558                 /* Compute the variable lifetimes */
13559                 rstate.blocks = compute_variable_lifetimes(state);
13560
13561                 /* Fix invalid mandatory live range coalesce conflicts */
13562                 walk_variable_lifetimes(
13563                         state, rstate.blocks, fix_coalesce_conflicts, 0);
13564
13565                 /* Fix two simultaneous uses of the same register */
13566                 correct_tangles(state, rstate.blocks);
13567
13568                 if (state->debug & DEBUG_INSERTED_COPIES) {
13569                         printf("After resolve_tangles\n");
13570                         print_blocks(state, stdout);
13571                         print_control_flow(state);
13572                 }
13573
13574                 
13575                 /* Allocate and initialize the live ranges */
13576                 initialize_live_ranges(state, &rstate);
13577                 
13578                 do {
13579                         /* Forget previous live range edge calculations */
13580                         cleanup_live_edges(&rstate);
13581
13582 #if 0
13583                         fprintf(stderr, "coalescing\n");
13584 #endif                  
13585                         /* Compute the interference graph */
13586                         walk_variable_lifetimes(
13587                                 state, rstate.blocks, graph_ins, &rstate);
13588                 
13589                         /* Display the interference graph if desired */
13590                         if (state->debug & DEBUG_INTERFERENCE) {
13591                                 printf("\nlive variables by block\n");
13592                                 walk_blocks(state, print_interference_block, &rstate);
13593                                 printf("\nlive variables by instruction\n");
13594                                 walk_variable_lifetimes(
13595                                         state, rstate.blocks, 
13596                                         print_interference_ins, &rstate);
13597                         }
13598 #if DEBUG_CONSISTENCY
13599                         /* Verify the interference graph */
13600                         walk_variable_lifetimes(
13601                                 state, rstate.blocks, verify_graph_ins, &rstate);
13602 #endif
13603                         
13604                         coalesced = coalesce_live_ranges(state, &rstate);
13605                 } while(coalesced);
13606                         
13607                 /* Build the groups low and high.  But with the nodes
13608                  * first sorted by degree order.
13609                  */
13610                 rstate.low_tail  = &rstate.low;
13611                 rstate.high_tail = &rstate.high;
13612                 rstate.high = merge_sort_lr(&rstate.lr[1], &rstate.lr[rstate.ranges]);
13613                 if (rstate.high) {
13614                         rstate.high->group_prev = &rstate.high;
13615                 }
13616                 for(point = &rstate.high; *point; point = &(*point)->group_next)
13617                         ;
13618                 rstate.high_tail = point;
13619                 /* Walk through the high list and move everything that needs
13620                  * to be onto low.
13621                  */
13622                 for(point = &rstate.high; *point; point = next) {
13623                         struct live_range *range;
13624                         next = &(*point)->group_next;
13625                         range = *point;
13626                         
13627                         /* If it has a low degree or it already has a color
13628                          * place the node in low.
13629                          */
13630                         if ((range->degree < regc_max_size(state, range->classes)) ||
13631                                 (range->color != REG_UNSET)) {
13632                                 cgdebug_printf("Lo: %5d degree %5d%s\n", 
13633                                         range - rstate.lr, range->degree,
13634                                         (range->color != REG_UNSET) ? " (colored)": "");
13635                                 *range->group_prev = range->group_next;
13636                                 if (range->group_next) {
13637                                         range->group_next->group_prev = range->group_prev;
13638                                 }
13639                                 if (&range->group_next == rstate.high_tail) {
13640                                         rstate.high_tail = range->group_prev;
13641                                 }
13642                                 range->group_prev  = rstate.low_tail;
13643                                 range->group_next  = 0;
13644                                 *rstate.low_tail   = range;
13645                                 rstate.low_tail    = &range->group_next;
13646                                 next = point;
13647                         }
13648                         else {
13649                                 cgdebug_printf("hi: %5d degree %5d%s\n", 
13650                                         range - rstate.lr, range->degree,
13651                                         (range->color != REG_UNSET) ? " (colored)": "");
13652                         }
13653                 }
13654                 /* Color the live_ranges */
13655                 colored = color_graph(state, &rstate);
13656                 rstate.passes++;
13657         } while (!colored);
13658
13659         /* Verify the graph was properly colored */
13660         verify_colors(state, &rstate);
13661
13662         /* Move the colors from the graph to the triples */
13663         color_triples(state, &rstate);
13664
13665         /* Cleanup the temporary data structures */
13666         cleanup_rstate(state, &rstate);
13667 }
13668
13669 /* Sparce Conditional Constant Propogation
13670  * =========================================
13671  */
13672 struct ssa_edge;
13673 struct flow_block;
13674 struct lattice_node {
13675         unsigned old_id;
13676         struct triple *def;
13677         struct ssa_edge *out;
13678         struct flow_block *fblock;
13679         struct triple *val;
13680         /* lattice high   val && !is_const(val) 
13681          * lattice const  is_const(val)
13682          * lattice low    val == 0
13683          */
13684 };
13685 struct ssa_edge {
13686         struct lattice_node *src;
13687         struct lattice_node *dst;
13688         struct ssa_edge *work_next;
13689         struct ssa_edge *work_prev;
13690         struct ssa_edge *out_next;
13691 };
13692 struct flow_edge {
13693         struct flow_block *src;
13694         struct flow_block *dst;
13695         struct flow_edge *work_next;
13696         struct flow_edge *work_prev;
13697         struct flow_edge *in_next;
13698         struct flow_edge *out_next;
13699         int executable;
13700 };
13701 struct flow_block {
13702         struct block *block;
13703         struct flow_edge *in;
13704         struct flow_edge *out;
13705         struct flow_edge left, right;
13706 };
13707
13708 struct scc_state {
13709         int ins_count;
13710         struct lattice_node *lattice;
13711         struct ssa_edge     *ssa_edges;
13712         struct flow_block   *flow_blocks;
13713         struct flow_edge    *flow_work_list;
13714         struct ssa_edge     *ssa_work_list;
13715 };
13716
13717
13718 static void scc_add_fedge(struct compile_state *state, struct scc_state *scc, 
13719         struct flow_edge *fedge)
13720 {
13721         if (!scc->flow_work_list) {
13722                 scc->flow_work_list = fedge;
13723                 fedge->work_next = fedge->work_prev = fedge;
13724         }
13725         else {
13726                 struct flow_edge *ftail;
13727                 ftail = scc->flow_work_list->work_prev;
13728                 fedge->work_next = ftail->work_next;
13729                 fedge->work_prev = ftail;
13730                 fedge->work_next->work_prev = fedge;
13731                 fedge->work_prev->work_next = fedge;
13732         }
13733 }
13734
13735 static struct flow_edge *scc_next_fedge(
13736         struct compile_state *state, struct scc_state *scc)
13737 {
13738         struct flow_edge *fedge;
13739         fedge = scc->flow_work_list;
13740         if (fedge) {
13741                 fedge->work_next->work_prev = fedge->work_prev;
13742                 fedge->work_prev->work_next = fedge->work_next;
13743                 if (fedge->work_next != fedge) {
13744                         scc->flow_work_list = fedge->work_next;
13745                 } else {
13746                         scc->flow_work_list = 0;
13747                 }
13748         }
13749         return fedge;
13750 }
13751
13752 static void scc_add_sedge(struct compile_state *state, struct scc_state *scc,
13753         struct ssa_edge *sedge)
13754 {
13755         if (!scc->ssa_work_list) {
13756                 scc->ssa_work_list = sedge;
13757                 sedge->work_next = sedge->work_prev = sedge;
13758         }
13759         else {
13760                 struct ssa_edge *stail;
13761                 stail = scc->ssa_work_list->work_prev;
13762                 sedge->work_next = stail->work_next;
13763                 sedge->work_prev = stail;
13764                 sedge->work_next->work_prev = sedge;
13765                 sedge->work_prev->work_next = sedge;
13766         }
13767 }
13768
13769 static struct ssa_edge *scc_next_sedge(
13770         struct compile_state *state, struct scc_state *scc)
13771 {
13772         struct ssa_edge *sedge;
13773         sedge = scc->ssa_work_list;
13774         if (sedge) {
13775                 sedge->work_next->work_prev = sedge->work_prev;
13776                 sedge->work_prev->work_next = sedge->work_next;
13777                 if (sedge->work_next != sedge) {
13778                         scc->ssa_work_list = sedge->work_next;
13779                 } else {
13780                         scc->ssa_work_list = 0;
13781                 }
13782         }
13783         return sedge;
13784 }
13785
13786 static void initialize_scc_state(
13787         struct compile_state *state, struct scc_state *scc)
13788 {
13789         int ins_count, ssa_edge_count;
13790         int ins_index, ssa_edge_index, fblock_index;
13791         struct triple *first, *ins;
13792         struct block *block;
13793         struct flow_block *fblock;
13794
13795         memset(scc, 0, sizeof(*scc));
13796
13797         /* Inialize pass zero find out how much memory we need */
13798         first = RHS(state->main_function, 0);
13799         ins = first;
13800         ins_count = ssa_edge_count = 0;
13801         do {
13802                 struct triple_set *edge;
13803                 ins_count += 1;
13804                 for(edge = ins->use; edge; edge = edge->next) {
13805                         ssa_edge_count++;
13806                 }
13807                 ins = ins->next;
13808         } while(ins != first);
13809 #if DEBUG_SCC
13810         fprintf(stderr, "ins_count: %d ssa_edge_count: %d vertex_count: %d\n",
13811                 ins_count, ssa_edge_count, state->last_vertex);
13812 #endif
13813         scc->ins_count   = ins_count;
13814         scc->lattice     = 
13815                 xcmalloc(sizeof(*scc->lattice)*(ins_count + 1), "lattice");
13816         scc->ssa_edges   = 
13817                 xcmalloc(sizeof(*scc->ssa_edges)*(ssa_edge_count + 1), "ssa_edges");
13818         scc->flow_blocks = 
13819                 xcmalloc(sizeof(*scc->flow_blocks)*(state->last_vertex + 1), 
13820                         "flow_blocks");
13821
13822         /* Initialize pass one collect up the nodes */
13823         fblock = 0;
13824         block = 0;
13825         ins_index = ssa_edge_index = fblock_index = 0;
13826         ins = first;
13827         do {
13828                 if ((ins->op == OP_LABEL) && (block != ins->u.block)) {
13829                         block = ins->u.block;
13830                         if (!block) {
13831                                 internal_error(state, ins, "label without block");
13832                         }
13833                         fblock_index += 1;
13834                         block->vertex = fblock_index;
13835                         fblock = &scc->flow_blocks[fblock_index];
13836                         fblock->block = block;
13837                 }
13838                 {
13839                         struct lattice_node *lnode;
13840                         ins_index += 1;
13841                         lnode = &scc->lattice[ins_index];
13842                         lnode->def = ins;
13843                         lnode->out = 0;
13844                         lnode->fblock = fblock;
13845                         lnode->val = ins; /* LATTICE HIGH */
13846                         lnode->old_id = ins->id;
13847                         ins->id = ins_index;
13848                 }
13849                 ins = ins->next;
13850         } while(ins != first);
13851         /* Initialize pass two collect up the edges */
13852         block = 0;
13853         fblock = 0;
13854         ins = first;
13855         do {
13856                 if ((ins->op == OP_LABEL) && (block != ins->u.block)) {
13857                         struct flow_edge *fedge, **ftail;
13858                         struct block_set *bedge;
13859                         block = ins->u.block;
13860                         fblock = &scc->flow_blocks[block->vertex];
13861                         fblock->in = 0;
13862                         fblock->out = 0;
13863                         ftail = &fblock->out;
13864                         if (block->left) {
13865                                 fblock->left.dst = &scc->flow_blocks[block->left->vertex];
13866                                 if (fblock->left.dst->block != block->left) {
13867                                         internal_error(state, 0, "block mismatch");
13868                                 }
13869                                 fblock->left.out_next = 0;
13870                                 *ftail = &fblock->left;
13871                                 ftail = &fblock->left.out_next;
13872                         }
13873                         if (block->right) {
13874                                 fblock->right.dst = &scc->flow_blocks[block->right->vertex];
13875                                 if (fblock->right.dst->block != block->right) {
13876                                         internal_error(state, 0, "block mismatch");
13877                                 }
13878                                 fblock->right.out_next = 0;
13879                                 *ftail = &fblock->right;
13880                                 ftail = &fblock->right.out_next;
13881                         }
13882                         for(fedge = fblock->out; fedge; fedge = fedge->out_next) {
13883                                 fedge->src = fblock;
13884                                 fedge->work_next = fedge->work_prev = fedge;
13885                                 fedge->executable = 0;
13886                         }
13887                         ftail = &fblock->in;
13888                         for(bedge = block->use; bedge; bedge = bedge->next) {
13889                                 struct block *src_block;
13890                                 struct flow_block *sfblock;
13891                                 struct flow_edge *sfedge;
13892                                 src_block = bedge->member;
13893                                 sfblock = &scc->flow_blocks[src_block->vertex];
13894                                 sfedge = 0;
13895                                 if (src_block->left == block) {
13896                                         sfedge = &sfblock->left;
13897                                 } else {
13898                                         sfedge = &sfblock->right;
13899                                 }
13900                                 *ftail = sfedge;
13901                                 ftail = &sfedge->in_next;
13902                                 sfedge->in_next = 0;
13903                         }
13904                 }
13905                 {
13906                         struct triple_set *edge;
13907                         struct ssa_edge **stail;
13908                         struct lattice_node *lnode;
13909                         lnode = &scc->lattice[ins->id];
13910                         lnode->out = 0;
13911                         stail = &lnode->out;
13912                         for(edge = ins->use; edge; edge = edge->next) {
13913                                 struct ssa_edge *sedge;
13914                                 ssa_edge_index += 1;
13915                                 sedge = &scc->ssa_edges[ssa_edge_index];
13916                                 *stail = sedge;
13917                                 stail = &sedge->out_next;
13918                                 sedge->src = lnode;
13919                                 sedge->dst = &scc->lattice[edge->member->id];
13920                                 sedge->work_next = sedge->work_prev = sedge;
13921                                 sedge->out_next = 0;
13922                         }
13923                 }
13924                 ins = ins->next;
13925         } while(ins != first);
13926         /* Setup a dummy block 0 as a node above the start node */
13927         {
13928                 struct flow_block *fblock, *dst;
13929                 struct flow_edge *fedge;
13930                 fblock = &scc->flow_blocks[0];
13931                 fblock->block = 0;
13932                 fblock->in = 0;
13933                 fblock->out = &fblock->left;
13934                 dst = &scc->flow_blocks[state->first_block->vertex];
13935                 fedge = &fblock->left;
13936                 fedge->src        = fblock;
13937                 fedge->dst        = dst;
13938                 fedge->work_next  = fedge;
13939                 fedge->work_prev  = fedge;
13940                 fedge->in_next    = fedge->dst->in;
13941                 fedge->out_next   = 0;
13942                 fedge->executable = 0;
13943                 fedge->dst->in = fedge;
13944                 
13945                 /* Initialize the work lists */
13946                 scc->flow_work_list = 0;
13947                 scc->ssa_work_list  = 0;
13948                 scc_add_fedge(state, scc, fedge);
13949         }
13950 #if DEBUG_SCC
13951         fprintf(stderr, "ins_index: %d ssa_edge_index: %d fblock_index: %d\n",
13952                 ins_index, ssa_edge_index, fblock_index);
13953 #endif
13954 }
13955
13956         
13957 static void free_scc_state(
13958         struct compile_state *state, struct scc_state *scc)
13959 {
13960         xfree(scc->flow_blocks);
13961         xfree(scc->ssa_edges);
13962         xfree(scc->lattice);
13963         
13964 }
13965
13966 static struct lattice_node *triple_to_lattice(
13967         struct compile_state *state, struct scc_state *scc, struct triple *ins)
13968 {
13969         if (ins->id <= 0) {
13970                 internal_error(state, ins, "bad id");
13971         }
13972         return &scc->lattice[ins->id];
13973 }
13974
13975 static struct triple *preserve_lval(
13976         struct compile_state *state, struct lattice_node *lnode)
13977 {
13978         struct triple *old;
13979         /* Preserve the original value */
13980         if (lnode->val) {
13981                 old = dup_triple(state, lnode->val);
13982                 if (lnode->val != lnode->def) {
13983                         xfree(lnode->val);
13984                 }
13985                 lnode->val = 0;
13986         } else {
13987                 old = 0;
13988         }
13989         return old;
13990 }
13991
13992 static int lval_changed(struct compile_state *state, 
13993         struct triple *old, struct lattice_node *lnode)
13994 {
13995         int changed;
13996         /* See if the lattice value has changed */
13997         changed = 1;
13998         if (!old && !lnode->val) {
13999                 changed = 0;
14000         }
14001         if (changed && lnode->val && !is_const(lnode->val)) {
14002                 changed = 0;
14003         }
14004         if (changed &&
14005                 lnode->val && old &&
14006                 (memcmp(lnode->val->param, old->param,
14007                         TRIPLE_SIZE(lnode->val->sizes) * sizeof(lnode->val->param[0])) == 0) &&
14008                 (memcmp(&lnode->val->u, &old->u, sizeof(old->u)) == 0)) {
14009                 changed = 0;
14010         }
14011         if (old) {
14012                 xfree(old);
14013         }
14014         return changed;
14015
14016 }
14017
14018 static void scc_visit_phi(struct compile_state *state, struct scc_state *scc, 
14019         struct lattice_node *lnode)
14020 {
14021         struct lattice_node *tmp;
14022         struct triple **slot, *old;
14023         struct flow_edge *fedge;
14024         int index;
14025         if (lnode->def->op != OP_PHI) {
14026                 internal_error(state, lnode->def, "not phi");
14027         }
14028         /* Store the original value */
14029         old = preserve_lval(state, lnode);
14030
14031         /* default to lattice high */
14032         lnode->val = lnode->def;
14033         slot = &RHS(lnode->def, 0);
14034         index = 0;
14035         for(fedge = lnode->fblock->in; fedge; index++, fedge = fedge->in_next) {
14036                 if (!fedge->executable) {
14037                         continue;
14038                 }
14039                 if (!slot[index]) {
14040                         internal_error(state, lnode->def, "no phi value");
14041                 }
14042                 tmp = triple_to_lattice(state, scc, slot[index]);
14043                 /* meet(X, lattice low) = lattice low */
14044                 if (!tmp->val) {
14045                         lnode->val = 0;
14046                 }
14047                 /* meet(X, lattice high) = X */
14048                 else if (!tmp->val) {
14049                         lnode->val = lnode->val;
14050                 }
14051                 /* meet(lattice high, X) = X */
14052                 else if (!is_const(lnode->val)) {
14053                         lnode->val = dup_triple(state, tmp->val);
14054                         lnode->val->type = lnode->def->type;
14055                 }
14056                 /* meet(const, const) = const or lattice low */
14057                 else if (!constants_equal(state, lnode->val, tmp->val)) {
14058                         lnode->val = 0;
14059                 }
14060                 if (!lnode->val) {
14061                         break;
14062                 }
14063         }
14064 #if DEBUG_SCC
14065         fprintf(stderr, "phi: %d -> %s\n",
14066                 lnode->def->id,
14067                 (!lnode->val)? "lo": is_const(lnode->val)? "const": "hi");
14068 #endif
14069         /* If the lattice value has changed update the work lists. */
14070         if (lval_changed(state, old, lnode)) {
14071                 struct ssa_edge *sedge;
14072                 for(sedge = lnode->out; sedge; sedge = sedge->out_next) {
14073                         scc_add_sedge(state, scc, sedge);
14074                 }
14075         }
14076 }
14077
14078 static int compute_lnode_val(struct compile_state *state, struct scc_state *scc,
14079         struct lattice_node *lnode)
14080 {
14081         int changed;
14082         struct triple *old, *scratch;
14083         struct triple **dexpr, **vexpr;
14084         int count, i;
14085         
14086         /* Store the original value */
14087         old = preserve_lval(state, lnode);
14088
14089         /* Reinitialize the value */
14090         lnode->val = scratch = dup_triple(state, lnode->def);
14091         scratch->id = lnode->old_id;
14092         scratch->next     = scratch;
14093         scratch->prev     = scratch;
14094         scratch->use      = 0;
14095
14096         count = TRIPLE_SIZE(scratch->sizes);
14097         for(i = 0; i < count; i++) {
14098                 dexpr = &lnode->def->param[i];
14099                 vexpr = &scratch->param[i];
14100                 *vexpr = *dexpr;
14101                 if (((i < TRIPLE_MISC_OFF(scratch->sizes)) ||
14102                         (i >= TRIPLE_TARG_OFF(scratch->sizes))) &&
14103                         *dexpr) {
14104                         struct lattice_node *tmp;
14105                         tmp = triple_to_lattice(state, scc, *dexpr);
14106                         *vexpr = (tmp->val)? tmp->val : tmp->def;
14107                 }
14108         }
14109         if (scratch->op == OP_BRANCH) {
14110                 scratch->next = lnode->def->next;
14111         }
14112         /* Recompute the value */
14113 #warning "FIXME see if simplify does anything bad"
14114         /* So far it looks like only the strength reduction
14115          * optimization are things I need to worry about.
14116          */
14117         simplify(state, scratch);
14118         /* Cleanup my value */
14119         if (scratch->use) {
14120                 internal_error(state, lnode->def, "scratch used?");
14121         }
14122         if ((scratch->prev != scratch) ||
14123                 ((scratch->next != scratch) &&
14124                         ((lnode->def->op != OP_BRANCH) ||
14125                                 (scratch->next != lnode->def->next)))) {
14126                 internal_error(state, lnode->def, "scratch in list?");
14127         }
14128         /* undo any uses... */
14129         count = TRIPLE_SIZE(scratch->sizes);
14130         for(i = 0; i < count; i++) {
14131                 vexpr = &scratch->param[i];
14132                 if (*vexpr) {
14133                         unuse_triple(*vexpr, scratch);
14134                 }
14135         }
14136         if (!is_const(scratch)) {
14137                 for(i = 0; i < count; i++) {
14138                         dexpr = &lnode->def->param[i];
14139                         if (((i < TRIPLE_MISC_OFF(scratch->sizes)) ||
14140                                 (i >= TRIPLE_TARG_OFF(scratch->sizes))) &&
14141                                 *dexpr) {
14142                                 struct lattice_node *tmp;
14143                                 tmp = triple_to_lattice(state, scc, *dexpr);
14144                                 if (!tmp->val) {
14145                                         lnode->val = 0;
14146                                 }
14147                         }
14148                 }
14149         }
14150         if (lnode->val && 
14151                 (lnode->val->op == lnode->def->op) &&
14152                 (memcmp(lnode->val->param, lnode->def->param, 
14153                         count * sizeof(lnode->val->param[0])) == 0) &&
14154                 (memcmp(&lnode->val->u, &lnode->def->u, sizeof(lnode->def->u)) == 0)) {
14155                 lnode->val = lnode->def;
14156         }
14157         /* Find the cases that are always lattice lo */
14158         if (lnode->val && 
14159                 triple_is_def(state, lnode->val) &&
14160                 !triple_is_pure(state, lnode->val)) {
14161                 lnode->val = 0;
14162         }
14163         if (lnode->val && 
14164                 (lnode->val->op == OP_SDECL) && 
14165                 (lnode->val != lnode->def)) {
14166                 internal_error(state, lnode->def, "bad sdecl");
14167         }
14168         /* See if the lattice value has changed */
14169         changed = lval_changed(state, old, lnode);
14170         if (lnode->val != scratch) {
14171                 xfree(scratch);
14172         }
14173         return changed;
14174 }
14175
14176 static void scc_visit_branch(struct compile_state *state, struct scc_state *scc,
14177         struct lattice_node *lnode)
14178 {
14179         struct lattice_node *cond;
14180 #if DEBUG_SCC
14181         {
14182                 struct flow_edge *fedge;
14183                 fprintf(stderr, "branch: %d (",
14184                         lnode->def->id);
14185                 
14186                 for(fedge = lnode->fblock->out; fedge; fedge = fedge->out_next) {
14187                         fprintf(stderr, " %d", fedge->dst->block->vertex);
14188                 }
14189                 fprintf(stderr, " )");
14190                 if (TRIPLE_RHS(lnode->def->sizes) > 0) {
14191                         fprintf(stderr, " <- %d",
14192                                 RHS(lnode->def, 0)->id);
14193                 }
14194                 fprintf(stderr, "\n");
14195         }
14196 #endif
14197         if (lnode->def->op != OP_BRANCH) {
14198                 internal_error(state, lnode->def, "not branch");
14199         }
14200         /* This only applies to conditional branches */
14201         if (TRIPLE_RHS(lnode->def->sizes) == 0) {
14202                 return;
14203         }
14204         cond = triple_to_lattice(state, scc, RHS(lnode->def,0));
14205         if (cond->val && !is_const(cond->val)) {
14206 #warning "FIXME do I need to do something here?"
14207                 warning(state, cond->def, "condition not constant?");
14208                 return;
14209         }
14210         if (cond->val == 0) {
14211                 scc_add_fedge(state, scc, cond->fblock->out);
14212                 scc_add_fedge(state, scc, cond->fblock->out->out_next);
14213         }
14214         else if (cond->val->u.cval) {
14215                 scc_add_fedge(state, scc, cond->fblock->out->out_next);
14216                 
14217         } else {
14218                 scc_add_fedge(state, scc, cond->fblock->out);
14219         }
14220
14221 }
14222
14223 static void scc_visit_expr(struct compile_state *state, struct scc_state *scc,
14224         struct lattice_node *lnode)
14225 {
14226         int changed;
14227
14228         changed = compute_lnode_val(state, scc, lnode);
14229 #if DEBUG_SCC
14230         {
14231                 struct triple **expr;
14232                 fprintf(stderr, "expr: %3d %10s (",
14233                         lnode->def->id, tops(lnode->def->op));
14234                 expr = triple_rhs(state, lnode->def, 0);
14235                 for(;expr;expr = triple_rhs(state, lnode->def, expr)) {
14236                         if (*expr) {
14237                                 fprintf(stderr, " %d", (*expr)->id);
14238                         }
14239                 }
14240                 fprintf(stderr, " ) -> %s\n",
14241                         (!lnode->val)? "lo": is_const(lnode->val)? "const": "hi");
14242         }
14243 #endif
14244         if (lnode->def->op == OP_BRANCH) {
14245                 scc_visit_branch(state, scc, lnode);
14246
14247         }
14248         else if (changed) {
14249                 struct ssa_edge *sedge;
14250                 for(sedge = lnode->out; sedge; sedge = sedge->out_next) {
14251                         scc_add_sedge(state, scc, sedge);
14252                 }
14253         }
14254 }
14255
14256 static void scc_writeback_values(
14257         struct compile_state *state, struct scc_state *scc)
14258 {
14259         struct triple *first, *ins;
14260         first = RHS(state->main_function, 0);
14261         ins = first;
14262         do {
14263                 struct lattice_node *lnode;
14264                 lnode = triple_to_lattice(state, scc, ins);
14265                 /* Restore id */
14266                 ins->id = lnode->old_id;
14267 #if DEBUG_SCC
14268                 if (lnode->val && !is_const(lnode->val)) {
14269                         warning(state, lnode->def, 
14270                                 "lattice node still high?");
14271                 }
14272 #endif
14273                 if (lnode->val && (lnode->val != ins)) {
14274                         /* See if it something I know how to write back */
14275                         switch(lnode->val->op) {
14276                         case OP_INTCONST:
14277                                 mkconst(state, ins, lnode->val->u.cval);
14278                                 break;
14279                         case OP_ADDRCONST:
14280                                 mkaddr_const(state, ins, 
14281                                         MISC(lnode->val, 0), lnode->val->u.cval);
14282                                 break;
14283                         default:
14284                                 /* By default don't copy the changes,
14285                                  * recompute them in place instead.
14286                                  */
14287                                 simplify(state, ins);
14288                                 break;
14289                         }
14290                         if (is_const(lnode->val) &&
14291                                 !constants_equal(state, lnode->val, ins)) {
14292                                 internal_error(state, 0, "constants not equal");
14293                         }
14294                         /* Free the lattice nodes */
14295                         xfree(lnode->val);
14296                         lnode->val = 0;
14297                 }
14298                 ins = ins->next;
14299         } while(ins != first);
14300 }
14301
14302 static void scc_transform(struct compile_state *state)
14303 {
14304         struct scc_state scc;
14305
14306         initialize_scc_state(state, &scc);
14307
14308         while(scc.flow_work_list || scc.ssa_work_list) {
14309                 struct flow_edge *fedge;
14310                 struct ssa_edge *sedge;
14311                 struct flow_edge *fptr;
14312                 while((fedge = scc_next_fedge(state, &scc))) {
14313                         struct block *block;
14314                         struct triple *ptr;
14315                         struct flow_block *fblock;
14316                         int time;
14317                         int done;
14318                         if (fedge->executable) {
14319                                 continue;
14320                         }
14321                         if (!fedge->dst) {
14322                                 internal_error(state, 0, "fedge without dst");
14323                         }
14324                         if (!fedge->src) {
14325                                 internal_error(state, 0, "fedge without src");
14326                         }
14327                         fedge->executable = 1;
14328                         fblock = fedge->dst;
14329                         block = fblock->block;
14330                         time = 0;
14331                         for(fptr = fblock->in; fptr; fptr = fptr->in_next) {
14332                                 if (fptr->executable) {
14333                                         time++;
14334                                 }
14335                         }
14336 #if DEBUG_SCC
14337                         fprintf(stderr, "vertex: %d time: %d\n", 
14338                                 block->vertex, time);
14339                         
14340 #endif
14341                         done = 0;
14342                         for(ptr = block->first; !done; ptr = ptr->next) {
14343                                 struct lattice_node *lnode;
14344                                 done = (ptr == block->last);
14345                                 lnode = &scc.lattice[ptr->id];
14346                                 if (ptr->op == OP_PHI) {
14347                                         scc_visit_phi(state, &scc, lnode);
14348                                 }
14349                                 else if (time == 1) {
14350                                         scc_visit_expr(state, &scc, lnode);
14351                                 }
14352                         }
14353                         if (fblock->out && !fblock->out->out_next) {
14354                                 scc_add_fedge(state, &scc, fblock->out);
14355                         }
14356                 }
14357                 while((sedge = scc_next_sedge(state, &scc))) {
14358                         struct lattice_node *lnode;
14359                         struct flow_block *fblock;
14360                         lnode = sedge->dst;
14361                         fblock = lnode->fblock;
14362 #if DEBUG_SCC
14363                         fprintf(stderr, "sedge: %5d (%5d -> %5d)\n",
14364                                 sedge - scc.ssa_edges,
14365                                 sedge->src->def->id,
14366                                 sedge->dst->def->id);
14367 #endif
14368                         if (lnode->def->op == OP_PHI) {
14369                                 scc_visit_phi(state, &scc, lnode);
14370                         }
14371                         else {
14372                                 for(fptr = fblock->in; fptr; fptr = fptr->in_next) {
14373                                         if (fptr->executable) {
14374                                                 break;
14375                                         }
14376                                 }
14377                                 if (fptr) {
14378                                         scc_visit_expr(state, &scc, lnode);
14379                                 }
14380                         }
14381                 }
14382         }
14383         
14384         scc_writeback_values(state, &scc);
14385         free_scc_state(state, &scc);
14386 }
14387
14388
14389 static void transform_to_arch_instructions(struct compile_state *state)
14390 {
14391         struct triple *ins, *first;
14392         first = RHS(state->main_function, 0);
14393         ins = first;
14394         do {
14395                 ins = transform_to_arch_instruction(state, ins);
14396         } while(ins != first);
14397 }
14398
14399 #if DEBUG_CONSISTENCY
14400 static void verify_uses(struct compile_state *state)
14401 {
14402         struct triple *first, *ins;
14403         struct triple_set *set;
14404         first = RHS(state->main_function, 0);
14405         ins = first;
14406         do {
14407                 struct triple **expr;
14408                 expr = triple_rhs(state, ins, 0);
14409                 for(; expr; expr = triple_rhs(state, ins, expr)) {
14410                         struct triple *rhs;
14411                         rhs = *expr;
14412                         for(set = rhs?rhs->use:0; set; set = set->next) {
14413                                 if (set->member == ins) {
14414                                         break;
14415                                 }
14416                         }
14417                         if (!set) {
14418                                 internal_error(state, ins, "rhs not used");
14419                         }
14420                 }
14421                 expr = triple_lhs(state, ins, 0);
14422                 for(; expr; expr = triple_lhs(state, ins, expr)) {
14423                         struct triple *lhs;
14424                         lhs = *expr;
14425                         for(set =  lhs?lhs->use:0; set; set = set->next) {
14426                                 if (set->member == ins) {
14427                                         break;
14428                                 }
14429                         }
14430                         if (!set) {
14431                                 internal_error(state, ins, "lhs not used");
14432                         }
14433                 }
14434                 ins = ins->next;
14435         } while(ins != first);
14436         
14437 }
14438 static void verify_blocks(struct compile_state *state)
14439 {
14440         struct triple *ins;
14441         struct block *block;
14442         block = state->first_block;
14443         if (!block) {
14444                 return;
14445         }
14446         do {
14447                 for(ins = block->first; ins != block->last->next; ins = ins->next) {
14448                         if (!triple_stores_block(state, ins)) {
14449                                 continue;
14450                         }
14451                         if (ins->u.block != block) {
14452                                 internal_error(state, ins, "inconsitent block specified");
14453                         }
14454                 }
14455                 if (!triple_stores_block(state, block->last->next)) {
14456                         internal_error(state, block->last->next, 
14457                                 "cannot find next block");
14458                 }
14459                 block = block->last->next->u.block;
14460                 if (!block) {
14461                         internal_error(state, block->last->next,
14462                                 "bad next block");
14463                 }
14464         } while(block != state->first_block);
14465 }
14466
14467 static void verify_domination(struct compile_state *state)
14468 {
14469         struct triple *first, *ins;
14470         struct triple_set *set;
14471         if (!state->first_block) {
14472                 return;
14473         }
14474         
14475         first = RHS(state->main_function, 0);
14476         ins = first;
14477         do {
14478                 for(set = ins->use; set; set = set->next) {
14479                         struct triple **expr;
14480                         if (set->member->op == OP_PHI) {
14481                                 continue;
14482                         }
14483                         /* See if the use is on the righ hand side */
14484                         expr = triple_rhs(state, set->member, 0);
14485                         for(; expr ; expr = triple_rhs(state, set->member, expr)) {
14486                                 if (*expr == ins) {
14487                                         break;
14488                                 }
14489                         }
14490                         if (expr &&
14491                                 !tdominates(state, ins, set->member)) {
14492                                 internal_error(state, set->member, 
14493                                         "non dominated rhs use?");
14494                         }
14495                 }
14496                 ins = ins->next;
14497         } while(ins != first);
14498 }
14499
14500 static void verify_piece(struct compile_state *state)
14501 {
14502         struct triple *first, *ins;
14503         first = RHS(state->main_function, 0);
14504         ins = first;
14505         do {
14506                 struct triple *ptr;
14507                 int lhs, i;
14508                 lhs = TRIPLE_LHS(ins->sizes);
14509                 if ((ins->op == OP_WRITE) || (ins->op == OP_STORE)) {
14510                         lhs = 0;
14511                 }
14512                 for(ptr = ins->next, i = 0; i < lhs; i++, ptr = ptr->next) {
14513                         if (ptr != LHS(ins, i)) {
14514                                 internal_error(state, ins, "malformed lhs on %s",
14515                                         tops(ins->op));
14516                         }
14517                         if (ptr->op != OP_PIECE) {
14518                                 internal_error(state, ins, "bad lhs op %s at %d on %s",
14519                                         tops(ptr->op), i, tops(ins->op));
14520                         }
14521                         if (ptr->u.cval != i) {
14522                                 internal_error(state, ins, "bad u.cval of %d %d expected",
14523                                         ptr->u.cval, i);
14524                         }
14525                 }
14526                 ins = ins->next;
14527         } while(ins != first);
14528 }
14529 static void verify_ins_colors(struct compile_state *state)
14530 {
14531         struct triple *first, *ins;
14532         
14533         first = RHS(state->main_function, 0);
14534         ins = first;
14535         do {
14536                 ins = ins->next;
14537         } while(ins != first);
14538 }
14539 static void verify_consistency(struct compile_state *state)
14540 {
14541         verify_uses(state);
14542         verify_blocks(state);
14543         verify_domination(state);
14544         verify_piece(state);
14545         verify_ins_colors(state);
14546 }
14547 #else 
14548 #define verify_consistency(state) do {} while(0)
14549 #endif /* DEBUG_USES */
14550
14551 static void optimize(struct compile_state *state)
14552 {
14553         if (state->debug & DEBUG_TRIPLES) {
14554                 print_triples(state);
14555         }
14556         /* Replace structures with simpler data types */
14557         flatten_structures(state);
14558         if (state->debug & DEBUG_TRIPLES) {
14559                 print_triples(state);
14560         }
14561         verify_consistency(state);
14562         /* Analize the intermediate code */
14563         setup_basic_blocks(state);
14564         analyze_idominators(state);
14565         analyze_ipdominators(state);
14566         /* Transform the code to ssa form */
14567         transform_to_ssa_form(state);
14568         verify_consistency(state);
14569         if (state->debug & DEBUG_CODE_ELIMINATION) {
14570                 fprintf(stdout, "After transform_to_ssa_form\n");
14571                 print_blocks(state, stdout);
14572         }
14573         /* Do strength reduction and simple constant optimizations */
14574         if (state->optimize >= 1) {
14575                 simplify_all(state);
14576         }
14577         verify_consistency(state);
14578         /* Propogate constants throughout the code */
14579         if (state->optimize >= 2) {
14580 #warning "FIXME fix scc_transform"
14581                 scc_transform(state);
14582                 transform_from_ssa_form(state);
14583                 free_basic_blocks(state);
14584                 setup_basic_blocks(state);
14585                 analyze_idominators(state);
14586                 analyze_ipdominators(state);
14587                 transform_to_ssa_form(state);
14588         }
14589         verify_consistency(state);
14590 #warning "WISHLIST implement single use constants (least possible register pressure)"
14591 #warning "WISHLIST implement induction variable elimination"
14592         /* Select architecture instructions and an initial partial
14593          * coloring based on architecture constraints.
14594          */
14595         transform_to_arch_instructions(state);
14596         verify_consistency(state);
14597         if (state->debug & DEBUG_ARCH_CODE) {
14598                 printf("After transform_to_arch_instructions\n");
14599                 print_blocks(state, stdout);
14600                 print_control_flow(state);
14601         }
14602         eliminate_inefectual_code(state);
14603         verify_consistency(state);
14604         if (state->debug & DEBUG_CODE_ELIMINATION) {
14605                 printf("After eliminate_inefectual_code\n");
14606                 print_blocks(state, stdout);
14607                 print_control_flow(state);
14608         }
14609         verify_consistency(state);
14610         /* Color all of the variables to see if they will fit in registers */
14611         insert_copies_to_phi(state);
14612         if (state->debug & DEBUG_INSERTED_COPIES) {
14613                 printf("After insert_copies_to_phi\n");
14614                 print_blocks(state, stdout);
14615                 print_control_flow(state);
14616         }
14617         verify_consistency(state);
14618         insert_mandatory_copies(state);
14619         if (state->debug & DEBUG_INSERTED_COPIES) {
14620                 printf("After insert_mandatory_copies\n");
14621                 print_blocks(state, stdout);
14622                 print_control_flow(state);
14623         }
14624         verify_consistency(state);
14625         allocate_registers(state);
14626         verify_consistency(state);
14627         if (state->debug & DEBUG_INTERMEDIATE_CODE) {
14628                 print_blocks(state, stdout);
14629         }
14630         if (state->debug & DEBUG_CONTROL_FLOW) {
14631                 print_control_flow(state);
14632         }
14633         /* Remove the optimization information.
14634          * This is more to check for memory consistency than to free memory.
14635          */
14636         free_basic_blocks(state);
14637 }
14638
14639 static void print_op_asm(struct compile_state *state,
14640         struct triple *ins, FILE *fp)
14641 {
14642         struct asm_info *info;
14643         const char *ptr;
14644         unsigned lhs, rhs, i;
14645         info = ins->u.ainfo;
14646         lhs = TRIPLE_LHS(ins->sizes);
14647         rhs = TRIPLE_RHS(ins->sizes);
14648         /* Don't count the clobbers in lhs */
14649         for(i = 0; i < lhs; i++) {
14650                 if (LHS(ins, i)->type == &void_type) {
14651                         break;
14652                 }
14653         }
14654         lhs = i;
14655         fprintf(fp, "#ASM\n");
14656         fputc('\t', fp);
14657         for(ptr = info->str; *ptr; ptr++) {
14658                 char *next;
14659                 unsigned long param;
14660                 struct triple *piece;
14661                 if (*ptr != '%') {
14662                         fputc(*ptr, fp);
14663                         continue;
14664                 }
14665                 ptr++;
14666                 if (*ptr == '%') {
14667                         fputc('%', fp);
14668                         continue;
14669                 }
14670                 param = strtoul(ptr, &next, 10);
14671                 if (ptr == next) {
14672                         error(state, ins, "Invalid asm template");
14673                 }
14674                 if (param >= (lhs + rhs)) {
14675                         error(state, ins, "Invalid param %%%u in asm template",
14676                                 param);
14677                 }
14678                 piece = (param < lhs)? LHS(ins, param) : RHS(ins, param - lhs);
14679                 fprintf(fp, "%s", 
14680                         arch_reg_str(ID_REG(piece->id)));
14681                 ptr = next -1;
14682         }
14683         fprintf(fp, "\n#NOT ASM\n");
14684 }
14685
14686
14687 /* Only use the low x86 byte registers.  This allows me
14688  * allocate the entire register when a byte register is used.
14689  */
14690 #define X86_4_8BIT_GPRS 1
14691
14692 /* Recognized x86 cpu variants */
14693 #define BAD_CPU      0
14694 #define CPU_I386     1
14695 #define CPU_P3       2
14696 #define CPU_P4       3
14697 #define CPU_K7       4
14698 #define CPU_K8       5
14699
14700 #define CPU_DEFAULT  CPU_I386
14701
14702 /* The x86 register classes */
14703 #define REGC_FLAGS    0
14704 #define REGC_GPR8     1
14705 #define REGC_GPR16    2
14706 #define REGC_GPR32    3
14707 #define REGC_GPR64    4
14708 #define REGC_MMX      5
14709 #define REGC_XMM      6
14710 #define REGC_GPR32_8  7
14711 #define REGC_GPR16_8  8
14712 #define REGC_IMM32    9
14713 #define REGC_IMM16   10
14714 #define REGC_IMM8    11
14715 #define LAST_REGC  REGC_IMM8
14716 #if LAST_REGC >= MAX_REGC
14717 #error "MAX_REGC is to low"
14718 #endif
14719
14720 /* Register class masks */
14721 #define REGCM_FLAGS   (1 << REGC_FLAGS)
14722 #define REGCM_GPR8    (1 << REGC_GPR8)
14723 #define REGCM_GPR16   (1 << REGC_GPR16)
14724 #define REGCM_GPR32   (1 << REGC_GPR32)
14725 #define REGCM_GPR64   (1 << REGC_GPR64)
14726 #define REGCM_MMX     (1 << REGC_MMX)
14727 #define REGCM_XMM     (1 << REGC_XMM)
14728 #define REGCM_GPR32_8 (1 << REGC_GPR32_8)
14729 #define REGCM_GPR16_8 (1 << REGC_GPR16_8)
14730 #define REGCM_IMM32   (1 << REGC_IMM32)
14731 #define REGCM_IMM16   (1 << REGC_IMM16)
14732 #define REGCM_IMM8    (1 << REGC_IMM8)
14733 #define REGCM_ALL     ((1 << (LAST_REGC + 1)) - 1)
14734
14735 /* The x86 registers */
14736 #define REG_EFLAGS  2
14737 #define REGC_FLAGS_FIRST REG_EFLAGS
14738 #define REGC_FLAGS_LAST  REG_EFLAGS
14739 #define REG_AL      3
14740 #define REG_BL      4
14741 #define REG_CL      5
14742 #define REG_DL      6
14743 #define REG_AH      7
14744 #define REG_BH      8
14745 #define REG_CH      9
14746 #define REG_DH      10
14747 #define REGC_GPR8_FIRST  REG_AL
14748 #if X86_4_8BIT_GPRS
14749 #define REGC_GPR8_LAST   REG_DL
14750 #else 
14751 #define REGC_GPR8_LAST   REG_DH
14752 #endif
14753 #define REG_AX     11
14754 #define REG_BX     12
14755 #define REG_CX     13
14756 #define REG_DX     14
14757 #define REG_SI     15
14758 #define REG_DI     16
14759 #define REG_BP     17
14760 #define REG_SP     18
14761 #define REGC_GPR16_FIRST REG_AX
14762 #define REGC_GPR16_LAST  REG_SP
14763 #define REG_EAX    19
14764 #define REG_EBX    20
14765 #define REG_ECX    21
14766 #define REG_EDX    22
14767 #define REG_ESI    23
14768 #define REG_EDI    24
14769 #define REG_EBP    25
14770 #define REG_ESP    26
14771 #define REGC_GPR32_FIRST REG_EAX
14772 #define REGC_GPR32_LAST  REG_ESP
14773 #define REG_EDXEAX 27
14774 #define REGC_GPR64_FIRST REG_EDXEAX
14775 #define REGC_GPR64_LAST  REG_EDXEAX
14776 #define REG_MMX0   28
14777 #define REG_MMX1   29
14778 #define REG_MMX2   30
14779 #define REG_MMX3   31
14780 #define REG_MMX4   32
14781 #define REG_MMX5   33
14782 #define REG_MMX6   34
14783 #define REG_MMX7   35
14784 #define REGC_MMX_FIRST REG_MMX0
14785 #define REGC_MMX_LAST  REG_MMX7
14786 #define REG_XMM0   36
14787 #define REG_XMM1   37
14788 #define REG_XMM2   38
14789 #define REG_XMM3   39
14790 #define REG_XMM4   40
14791 #define REG_XMM5   41
14792 #define REG_XMM6   42
14793 #define REG_XMM7   43
14794 #define REGC_XMM_FIRST REG_XMM0
14795 #define REGC_XMM_LAST  REG_XMM7
14796 #warning "WISHLIST figure out how to use pinsrw and pextrw to better use extended regs"
14797 #define LAST_REG   REG_XMM7
14798
14799 #define REGC_GPR32_8_FIRST REG_EAX
14800 #define REGC_GPR32_8_LAST  REG_EDX
14801 #define REGC_GPR16_8_FIRST REG_AX
14802 #define REGC_GPR16_8_LAST  REG_DX
14803
14804 #define REGC_IMM8_FIRST    -1
14805 #define REGC_IMM8_LAST     -1
14806 #define REGC_IMM16_FIRST   -2
14807 #define REGC_IMM16_LAST    -1
14808 #define REGC_IMM32_FIRST   -4
14809 #define REGC_IMM32_LAST    -1
14810
14811 #if LAST_REG >= MAX_REGISTERS
14812 #error "MAX_REGISTERS to low"
14813 #endif
14814
14815
14816 static unsigned regc_size[LAST_REGC +1] = {
14817         [REGC_FLAGS]   = REGC_FLAGS_LAST   - REGC_FLAGS_FIRST + 1,
14818         [REGC_GPR8]    = REGC_GPR8_LAST    - REGC_GPR8_FIRST + 1,
14819         [REGC_GPR16]   = REGC_GPR16_LAST   - REGC_GPR16_FIRST + 1,
14820         [REGC_GPR32]   = REGC_GPR32_LAST   - REGC_GPR32_FIRST + 1,
14821         [REGC_GPR64]   = REGC_GPR64_LAST   - REGC_GPR64_FIRST + 1,
14822         [REGC_MMX]     = REGC_MMX_LAST     - REGC_MMX_FIRST + 1,
14823         [REGC_XMM]     = REGC_XMM_LAST     - REGC_XMM_FIRST + 1,
14824         [REGC_GPR32_8] = REGC_GPR32_8_LAST - REGC_GPR32_8_FIRST + 1,
14825         [REGC_GPR16_8] = REGC_GPR16_8_LAST - REGC_GPR16_8_FIRST + 1,
14826         [REGC_IMM32]   = 0,
14827         [REGC_IMM16]   = 0,
14828         [REGC_IMM8]    = 0,
14829 };
14830
14831 static const struct {
14832         int first, last;
14833 } regcm_bound[LAST_REGC + 1] = {
14834         [REGC_FLAGS]   = { REGC_FLAGS_FIRST,   REGC_FLAGS_LAST },
14835         [REGC_GPR8]    = { REGC_GPR8_FIRST,    REGC_GPR8_LAST },
14836         [REGC_GPR16]   = { REGC_GPR16_FIRST,   REGC_GPR16_LAST },
14837         [REGC_GPR32]   = { REGC_GPR32_FIRST,   REGC_GPR32_LAST },
14838         [REGC_GPR64]   = { REGC_GPR64_FIRST,   REGC_GPR64_LAST },
14839         [REGC_MMX]     = { REGC_MMX_FIRST,     REGC_MMX_LAST },
14840         [REGC_XMM]     = { REGC_XMM_FIRST,     REGC_XMM_LAST },
14841         [REGC_GPR32_8] = { REGC_GPR32_8_FIRST, REGC_GPR32_8_LAST },
14842         [REGC_GPR16_8] = { REGC_GPR16_8_FIRST, REGC_GPR16_8_LAST },
14843         [REGC_IMM32]   = { REGC_IMM32_FIRST,   REGC_IMM32_LAST },
14844         [REGC_IMM16]   = { REGC_IMM16_FIRST,   REGC_IMM16_LAST },
14845         [REGC_IMM8]    = { REGC_IMM8_FIRST,    REGC_IMM8_LAST },
14846 };
14847
14848 static int arch_encode_cpu(const char *cpu)
14849 {
14850         struct cpu {
14851                 const char *name;
14852                 int cpu;
14853         } cpus[] = {
14854                 { "i386", CPU_I386 },
14855                 { "p3",   CPU_P3 },
14856                 { "p4",   CPU_P4 },
14857                 { "k7",   CPU_K7 },
14858                 { "k8",   CPU_K8 },
14859                 {  0,     BAD_CPU }
14860         };
14861         struct cpu *ptr;
14862         for(ptr = cpus; ptr->name; ptr++) {
14863                 if (strcmp(ptr->name, cpu) == 0) {
14864                         break;
14865                 }
14866         }
14867         return ptr->cpu;
14868 }
14869
14870 static unsigned arch_regc_size(struct compile_state *state, int class)
14871 {
14872         if ((class < 0) || (class > LAST_REGC)) {
14873                 return 0;
14874         }
14875         return regc_size[class];
14876 }
14877 static int arch_regcm_intersect(unsigned regcm1, unsigned regcm2)
14878 {
14879         /* See if two register classes may have overlapping registers */
14880         unsigned gpr_mask = REGCM_GPR8 | REGCM_GPR16_8 | REGCM_GPR16 |
14881                 REGCM_GPR32_8 | REGCM_GPR32 | REGCM_GPR64;
14882
14883         /* Special case for the immediates */
14884         if ((regcm1 & (REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) &&
14885                 ((regcm1 & ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) == 0) &&
14886                 (regcm2 & (REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) &&
14887                 ((regcm2 & ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) == 0)) { 
14888                 return 0;
14889         }
14890         return (regcm1 & regcm2) ||
14891                 ((regcm1 & gpr_mask) && (regcm2 & gpr_mask));
14892 }
14893
14894 static void arch_reg_equivs(
14895         struct compile_state *state, unsigned *equiv, int reg)
14896 {
14897         if ((reg < 0) || (reg > LAST_REG)) {
14898                 internal_error(state, 0, "invalid register");
14899         }
14900         *equiv++ = reg;
14901         switch(reg) {
14902         case REG_AL:
14903 #if X86_4_8BIT_GPRS
14904                 *equiv++ = REG_AH;
14905 #endif
14906                 *equiv++ = REG_AX;
14907                 *equiv++ = REG_EAX;
14908                 *equiv++ = REG_EDXEAX;
14909                 break;
14910         case REG_AH:
14911 #if X86_4_8BIT_GPRS
14912                 *equiv++ = REG_AL;
14913 #endif
14914                 *equiv++ = REG_AX;
14915                 *equiv++ = REG_EAX;
14916                 *equiv++ = REG_EDXEAX;
14917                 break;
14918         case REG_BL:  
14919 #if X86_4_8BIT_GPRS
14920                 *equiv++ = REG_BH;
14921 #endif
14922                 *equiv++ = REG_BX;
14923                 *equiv++ = REG_EBX;
14924                 break;
14925
14926         case REG_BH:
14927 #if X86_4_8BIT_GPRS
14928                 *equiv++ = REG_BL;
14929 #endif
14930                 *equiv++ = REG_BX;
14931                 *equiv++ = REG_EBX;
14932                 break;
14933         case REG_CL:
14934 #if X86_4_8BIT_GPRS
14935                 *equiv++ = REG_CH;
14936 #endif
14937                 *equiv++ = REG_CX;
14938                 *equiv++ = REG_ECX;
14939                 break;
14940
14941         case REG_CH:
14942 #if X86_4_8BIT_GPRS
14943                 *equiv++ = REG_CL;
14944 #endif
14945                 *equiv++ = REG_CX;
14946                 *equiv++ = REG_ECX;
14947                 break;
14948         case REG_DL:
14949 #if X86_4_8BIT_GPRS
14950                 *equiv++ = REG_DH;
14951 #endif
14952                 *equiv++ = REG_DX;
14953                 *equiv++ = REG_EDX;
14954                 *equiv++ = REG_EDXEAX;
14955                 break;
14956         case REG_DH:
14957 #if X86_4_8BIT_GPRS
14958                 *equiv++ = REG_DL;
14959 #endif
14960                 *equiv++ = REG_DX;
14961                 *equiv++ = REG_EDX;
14962                 *equiv++ = REG_EDXEAX;
14963                 break;
14964         case REG_AX:
14965                 *equiv++ = REG_AL;
14966                 *equiv++ = REG_AH;
14967                 *equiv++ = REG_EAX;
14968                 *equiv++ = REG_EDXEAX;
14969                 break;
14970         case REG_BX:
14971                 *equiv++ = REG_BL;
14972                 *equiv++ = REG_BH;
14973                 *equiv++ = REG_EBX;
14974                 break;
14975         case REG_CX:  
14976                 *equiv++ = REG_CL;
14977                 *equiv++ = REG_CH;
14978                 *equiv++ = REG_ECX;
14979                 break;
14980         case REG_DX:  
14981                 *equiv++ = REG_DL;
14982                 *equiv++ = REG_DH;
14983                 *equiv++ = REG_EDX;
14984                 *equiv++ = REG_EDXEAX;
14985                 break;
14986         case REG_SI:  
14987                 *equiv++ = REG_ESI;
14988                 break;
14989         case REG_DI:
14990                 *equiv++ = REG_EDI;
14991                 break;
14992         case REG_BP:
14993                 *equiv++ = REG_EBP;
14994                 break;
14995         case REG_SP:
14996                 *equiv++ = REG_ESP;
14997                 break;
14998         case REG_EAX:
14999                 *equiv++ = REG_AL;
15000                 *equiv++ = REG_AH;
15001                 *equiv++ = REG_AX;
15002                 *equiv++ = REG_EDXEAX;
15003                 break;
15004         case REG_EBX:
15005                 *equiv++ = REG_BL;
15006                 *equiv++ = REG_BH;
15007                 *equiv++ = REG_BX;
15008                 break;
15009         case REG_ECX:
15010                 *equiv++ = REG_CL;
15011                 *equiv++ = REG_CH;
15012                 *equiv++ = REG_CX;
15013                 break;
15014         case REG_EDX:
15015                 *equiv++ = REG_DL;
15016                 *equiv++ = REG_DH;
15017                 *equiv++ = REG_DX;
15018                 *equiv++ = REG_EDXEAX;
15019                 break;
15020         case REG_ESI: 
15021                 *equiv++ = REG_SI;
15022                 break;
15023         case REG_EDI: 
15024                 *equiv++ = REG_DI;
15025                 break;
15026         case REG_EBP: 
15027                 *equiv++ = REG_BP;
15028                 break;
15029         case REG_ESP: 
15030                 *equiv++ = REG_SP;
15031                 break;
15032         case REG_EDXEAX: 
15033                 *equiv++ = REG_AL;
15034                 *equiv++ = REG_AH;
15035                 *equiv++ = REG_DL;
15036                 *equiv++ = REG_DH;
15037                 *equiv++ = REG_AX;
15038                 *equiv++ = REG_DX;
15039                 *equiv++ = REG_EAX;
15040                 *equiv++ = REG_EDX;
15041                 break;
15042         }
15043         *equiv++ = REG_UNSET; 
15044 }
15045
15046 static unsigned arch_avail_mask(struct compile_state *state)
15047 {
15048         unsigned avail_mask;
15049         avail_mask = REGCM_GPR8 | REGCM_GPR16_8 | REGCM_GPR16 | 
15050                 REGCM_GPR32 | REGCM_GPR32_8 | REGCM_GPR64 |
15051                 REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8 | REGCM_FLAGS;
15052         switch(state->cpu) {
15053         case CPU_P3:
15054         case CPU_K7:
15055                 avail_mask |= REGCM_MMX;
15056                 break;
15057         case CPU_P4:
15058         case CPU_K8:
15059                 avail_mask |= REGCM_MMX | REGCM_XMM;
15060                 break;
15061         }
15062 #if 0
15063         /* Don't enable 8 bit values until I can force both operands
15064          * to be 8bits simultaneously.
15065          */
15066         avail_mask &= ~(REGCM_GPR8 | REGCM_GPR16_8 | REGCM_GPR16);
15067 #endif
15068         return avail_mask;
15069 }
15070
15071 static unsigned arch_regcm_normalize(struct compile_state *state, unsigned regcm)
15072 {
15073         unsigned mask, result;
15074         int class, class2;
15075         result = regcm;
15076         result &= arch_avail_mask(state);
15077
15078         for(class = 0, mask = 1; mask; mask <<= 1, class++) {
15079                 if ((result & mask) == 0) {
15080                         continue;
15081                 }
15082                 if (class > LAST_REGC) {
15083                         result &= ~mask;
15084                 }
15085                 for(class2 = 0; class2 <= LAST_REGC; class2++) {
15086                         if ((regcm_bound[class2].first >= regcm_bound[class].first) &&
15087                                 (regcm_bound[class2].last <= regcm_bound[class].last)) {
15088                                 result |= (1 << class2);
15089                         }
15090                 }
15091         }
15092         return result;
15093 }
15094
15095 static unsigned arch_reg_regcm(struct compile_state *state, int reg)
15096 {
15097         unsigned mask;
15098         int class;
15099         mask = 0;
15100         for(class = 0; class <= LAST_REGC; class++) {
15101                 if ((reg >= regcm_bound[class].first) &&
15102                         (reg <= regcm_bound[class].last)) {
15103                         mask |= (1 << class);
15104                 }
15105         }
15106         if (!mask) {
15107                 internal_error(state, 0, "reg %d not in any class", reg);
15108         }
15109         return mask;
15110 }
15111
15112 static struct reg_info arch_reg_constraint(
15113         struct compile_state *state, struct type *type, const char *constraint)
15114 {
15115         static const struct {
15116                 char class;
15117                 unsigned int mask;
15118                 unsigned int reg;
15119         } constraints[] = {
15120                 { 'r', REGCM_GPR32, REG_UNSET },
15121                 { 'g', REGCM_GPR32, REG_UNSET },
15122                 { 'p', REGCM_GPR32, REG_UNSET },
15123                 { 'q', REGCM_GPR8,  REG_UNSET },
15124                 { 'Q', REGCM_GPR32_8, REG_UNSET },
15125                 { 'x', REGCM_XMM,   REG_UNSET },
15126                 { 'y', REGCM_MMX,   REG_UNSET },
15127                 { 'a', REGCM_GPR32, REG_EAX },
15128                 { 'b', REGCM_GPR32, REG_EBX },
15129                 { 'c', REGCM_GPR32, REG_ECX },
15130                 { 'd', REGCM_GPR32, REG_EDX },
15131                 { 'D', REGCM_GPR32, REG_EDI },
15132                 { 'S', REGCM_GPR32, REG_ESI },
15133                 { '\0', 0, REG_UNSET },
15134         };
15135         unsigned int regcm;
15136         unsigned int mask, reg;
15137         struct reg_info result;
15138         const char *ptr;
15139         regcm = arch_type_to_regcm(state, type);
15140         reg = REG_UNSET;
15141         mask = 0;
15142         for(ptr = constraint; *ptr; ptr++) {
15143                 int i;
15144                 if (*ptr ==  ' ') {
15145                         continue;
15146                 }
15147                 for(i = 0; constraints[i].class != '\0'; i++) {
15148                         if (constraints[i].class == *ptr) {
15149                                 break;
15150                         }
15151                 }
15152                 if (constraints[i].class == '\0') {
15153                         error(state, 0, "invalid register constraint ``%c''", *ptr);
15154                         break;
15155                 }
15156                 if ((constraints[i].mask & regcm) == 0) {
15157                         error(state, 0, "invalid register class %c specified",
15158                                 *ptr);
15159                 }
15160                 mask |= constraints[i].mask;
15161                 if (constraints[i].reg != REG_UNSET) {
15162                         if ((reg != REG_UNSET) && (reg != constraints[i].reg)) {
15163                                 error(state, 0, "Only one register may be specified");
15164                         }
15165                         reg = constraints[i].reg;
15166                 }
15167         }
15168         result.reg = reg;
15169         result.regcm = mask;
15170         return result;
15171 }
15172
15173 static struct reg_info arch_reg_clobber(
15174         struct compile_state *state, const char *clobber)
15175 {
15176         struct reg_info result;
15177         if (strcmp(clobber, "memory") == 0) {
15178                 result.reg = REG_UNSET;
15179                 result.regcm = 0;
15180         }
15181         else if (strcmp(clobber, "%eax") == 0) {
15182                 result.reg = REG_EAX;
15183                 result.regcm = REGCM_GPR32;
15184         }
15185         else if (strcmp(clobber, "%ebx") == 0) {
15186                 result.reg = REG_EBX;
15187                 result.regcm = REGCM_GPR32;
15188         }
15189         else if (strcmp(clobber, "%ecx") == 0) {
15190                 result.reg = REG_ECX;
15191                 result.regcm = REGCM_GPR32;
15192         }
15193         else if (strcmp(clobber, "%edx") == 0) {
15194                 result.reg = REG_EDX;
15195                 result.regcm = REGCM_GPR32;
15196         }
15197         else if (strcmp(clobber, "%esi") == 0) {
15198                 result.reg = REG_ESI;
15199                 result.regcm = REGCM_GPR32;
15200         }
15201         else if (strcmp(clobber, "%edi") == 0) {
15202                 result.reg = REG_EDI;
15203                 result.regcm = REGCM_GPR32;
15204         }
15205         else if (strcmp(clobber, "%ebp") == 0) {
15206                 result.reg = REG_EBP;
15207                 result.regcm = REGCM_GPR32;
15208         }
15209         else if (strcmp(clobber, "%esp") == 0) {
15210                 result.reg = REG_ESP;
15211                 result.regcm = REGCM_GPR32;
15212         }
15213         else if (strcmp(clobber, "cc") == 0) {
15214                 result.reg = REG_EFLAGS;
15215                 result.regcm = REGCM_FLAGS;
15216         }
15217         else if ((strncmp(clobber, "xmm", 3) == 0)  &&
15218                 octdigitp(clobber[3]) && (clobber[4] == '\0')) {
15219                 result.reg = REG_XMM0 + octdigval(clobber[3]);
15220                 result.regcm = REGCM_XMM;
15221         }
15222         else if ((strncmp(clobber, "mmx", 3) == 0) &&
15223                 octdigitp(clobber[3]) && (clobber[4] == '\0')) {
15224                 result.reg = REG_MMX0 + octdigval(clobber[3]);
15225                 result.regcm = REGCM_MMX;
15226         }
15227         else {
15228                 error(state, 0, "Invalid register clobber");
15229                 result.reg = REG_UNSET;
15230                 result.regcm = 0;
15231         }
15232         return result;
15233 }
15234
15235 static int do_select_reg(struct compile_state *state, 
15236         char *used, int reg, unsigned classes)
15237 {
15238         unsigned mask;
15239         if (used[reg]) {
15240                 return REG_UNSET;
15241         }
15242         mask = arch_reg_regcm(state, reg);
15243         return (classes & mask) ? reg : REG_UNSET;
15244 }
15245
15246 static int arch_select_free_register(
15247         struct compile_state *state, char *used, int classes)
15248 {
15249         /* Preference: flags, 8bit gprs, 32bit gprs, other 32bit reg
15250          * other types of registers.
15251          */
15252         int i, reg;
15253         reg = REG_UNSET;
15254         for(i = REGC_FLAGS_FIRST; (reg == REG_UNSET) && (i <= REGC_FLAGS_LAST); i++) {
15255                 reg = do_select_reg(state, used, i, classes);
15256         }
15257         for(i = REGC_GPR32_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR32_LAST); i++) {
15258                 reg = do_select_reg(state, used, i, classes);
15259         }
15260         for(i = REGC_MMX_FIRST; (reg == REG_UNSET) && (i <= REGC_MMX_LAST); i++) {
15261                 reg = do_select_reg(state, used, i, classes);
15262         }
15263         for(i = REGC_XMM_FIRST; (reg == REG_UNSET) && (i <= REGC_XMM_LAST); i++) {
15264                 reg = do_select_reg(state, used, i, classes);
15265         }
15266         for(i = REGC_GPR16_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR16_LAST); i++) {
15267                 reg = do_select_reg(state, used, i, classes);
15268         }
15269         for(i = REGC_GPR8_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR8_LAST); i++) {
15270                 reg = do_select_reg(state, used, i, classes);
15271         }
15272         for(i = REGC_GPR64_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR64_LAST); i++) {
15273                 reg = do_select_reg(state, used, i, classes);
15274         }
15275         return reg;
15276 }
15277
15278
15279 static unsigned arch_type_to_regcm(struct compile_state *state, struct type *type) 
15280 {
15281 #warning "FIXME force types smaller (if legal) before I get here"
15282         unsigned avail_mask;
15283         unsigned mask;
15284         mask = 0;
15285         avail_mask = arch_avail_mask(state);
15286         switch(type->type & TYPE_MASK) {
15287         case TYPE_ARRAY:
15288         case TYPE_VOID: 
15289                 mask = 0; 
15290                 break;
15291         case TYPE_CHAR:
15292         case TYPE_UCHAR:
15293                 mask = REGCM_GPR8 | 
15294                         REGCM_GPR16 | REGCM_GPR16_8 | 
15295                         REGCM_GPR32 | REGCM_GPR32_8 |
15296                         REGCM_GPR64 |
15297                         REGCM_MMX | REGCM_XMM |
15298                         REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8;
15299                 break;
15300         case TYPE_SHORT:
15301         case TYPE_USHORT:
15302                 mask =  REGCM_GPR16 | REGCM_GPR16_8 |
15303                         REGCM_GPR32 | REGCM_GPR32_8 |
15304                         REGCM_GPR64 |
15305                         REGCM_MMX | REGCM_XMM |
15306                         REGCM_IMM32 | REGCM_IMM16;
15307                 break;
15308         case TYPE_INT:
15309         case TYPE_UINT:
15310         case TYPE_LONG:
15311         case TYPE_ULONG:
15312         case TYPE_POINTER:
15313                 mask =  REGCM_GPR32 | REGCM_GPR32_8 |
15314                         REGCM_GPR64 | REGCM_MMX | REGCM_XMM |
15315                         REGCM_IMM32;
15316                 break;
15317         default:
15318                 internal_error(state, 0, "no register class for type");
15319                 break;
15320         }
15321         mask &= avail_mask;
15322         return mask;
15323 }
15324
15325 static int is_imm32(struct triple *imm)
15326 {
15327         return ((imm->op == OP_INTCONST) && (imm->u.cval <= 0xffffffffUL)) ||
15328                 (imm->op == OP_ADDRCONST);
15329         
15330 }
15331 static int is_imm16(struct triple *imm)
15332 {
15333         return ((imm->op == OP_INTCONST) && (imm->u.cval <= 0xffff));
15334 }
15335 static int is_imm8(struct triple *imm)
15336 {
15337         return ((imm->op == OP_INTCONST) && (imm->u.cval <= 0xff));
15338 }
15339
15340 static int get_imm32(struct triple *ins, struct triple **expr)
15341 {
15342         struct triple *imm;
15343         imm = *expr;
15344         while(imm->op == OP_COPY) {
15345                 imm = RHS(imm, 0);
15346         }
15347         if (!is_imm32(imm)) {
15348                 return 0;
15349         }
15350         unuse_triple(*expr, ins);
15351         use_triple(imm, ins);
15352         *expr = imm;
15353         return 1;
15354 }
15355
15356 static int get_imm8(struct triple *ins, struct triple **expr)
15357 {
15358         struct triple *imm;
15359         imm = *expr;
15360         while(imm->op == OP_COPY) {
15361                 imm = RHS(imm, 0);
15362         }
15363         if (!is_imm8(imm)) {
15364                 return 0;
15365         }
15366         unuse_triple(*expr, ins);
15367         use_triple(imm, ins);
15368         *expr = imm;
15369         return 1;
15370 }
15371
15372 #define TEMPLATE_NOP         0
15373 #define TEMPLATE_INTCONST8   1
15374 #define TEMPLATE_INTCONST32  2
15375 #define TEMPLATE_COPY_REG    3
15376 #define TEMPLATE_COPY_IMM32  4
15377 #define TEMPLATE_COPY_IMM16  5
15378 #define TEMPLATE_COPY_IMM8   6
15379 #define TEMPLATE_PHI         7
15380 #define TEMPLATE_STORE8      8
15381 #define TEMPLATE_STORE16     9
15382 #define TEMPLATE_STORE32    10
15383 #define TEMPLATE_LOAD8      11
15384 #define TEMPLATE_LOAD16     12
15385 #define TEMPLATE_LOAD32     13
15386 #define TEMPLATE_BINARY_REG 14
15387 #define TEMPLATE_BINARY_IMM 15
15388 #define TEMPLATE_SL_CL      16
15389 #define TEMPLATE_SL_IMM     17
15390 #define TEMPLATE_UNARY      18
15391 #define TEMPLATE_CMP_REG    19
15392 #define TEMPLATE_CMP_IMM    20
15393 #define TEMPLATE_TEST       21
15394 #define TEMPLATE_SET        22
15395 #define TEMPLATE_JMP        23
15396 #define TEMPLATE_INB_DX     24
15397 #define TEMPLATE_INB_IMM    25
15398 #define TEMPLATE_INW_DX     26
15399 #define TEMPLATE_INW_IMM    27
15400 #define TEMPLATE_INL_DX     28
15401 #define TEMPLATE_INL_IMM    29
15402 #define TEMPLATE_OUTB_DX    30
15403 #define TEMPLATE_OUTB_IMM   31
15404 #define TEMPLATE_OUTW_DX    32
15405 #define TEMPLATE_OUTW_IMM   33
15406 #define TEMPLATE_OUTL_DX    34
15407 #define TEMPLATE_OUTL_IMM   35
15408 #define TEMPLATE_BSF        36
15409 #define TEMPLATE_RDMSR      37
15410 #define TEMPLATE_WRMSR      38
15411 #define LAST_TEMPLATE       TEMPLATE_WRMSR
15412 #if LAST_TEMPLATE >= MAX_TEMPLATES
15413 #error "MAX_TEMPLATES to low"
15414 #endif
15415
15416 #define COPY_REGCM (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8 | REGCM_MMX | REGCM_XMM)
15417 #define COPY32_REGCM (REGCM_GPR32 | REGCM_MMX | REGCM_XMM)
15418
15419 static struct ins_template templates[] = {
15420         [TEMPLATE_NOP]      = {},
15421         [TEMPLATE_INTCONST8] = { 
15422                 .lhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
15423         },
15424         [TEMPLATE_INTCONST32] = { 
15425                 .lhs = { [0] = { REG_UNNEEDED, REGCM_IMM32 } },
15426         },
15427         [TEMPLATE_COPY_REG] = {
15428                 .lhs = { [0] = { REG_UNSET, COPY_REGCM } },
15429                 .rhs = { [0] = { REG_UNSET, COPY_REGCM }  },
15430         },
15431         [TEMPLATE_COPY_IMM32] = {
15432                 .lhs = { [0] = { REG_UNSET, COPY32_REGCM } },
15433                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM32 } },
15434         },
15435         [TEMPLATE_COPY_IMM16] = {
15436                 .lhs = { [0] = { REG_UNSET, COPY32_REGCM | REGCM_GPR16 } },
15437                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM16 } },
15438         },
15439         [TEMPLATE_COPY_IMM8] = {
15440                 .lhs = { [0] = { REG_UNSET, COPY_REGCM } },
15441                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
15442         },
15443         [TEMPLATE_PHI] = { 
15444                 .lhs = { [0] = { REG_VIRT0, COPY_REGCM } },
15445                 .rhs = { 
15446                         [ 0] = { REG_VIRT0, COPY_REGCM },
15447                         [ 1] = { REG_VIRT0, COPY_REGCM },
15448                         [ 2] = { REG_VIRT0, COPY_REGCM },
15449                         [ 3] = { REG_VIRT0, COPY_REGCM },
15450                         [ 4] = { REG_VIRT0, COPY_REGCM },
15451                         [ 5] = { REG_VIRT0, COPY_REGCM },
15452                         [ 6] = { REG_VIRT0, COPY_REGCM },
15453                         [ 7] = { REG_VIRT0, COPY_REGCM },
15454                         [ 8] = { REG_VIRT0, COPY_REGCM },
15455                         [ 9] = { REG_VIRT0, COPY_REGCM },
15456                         [10] = { REG_VIRT0, COPY_REGCM },
15457                         [11] = { REG_VIRT0, COPY_REGCM },
15458                         [12] = { REG_VIRT0, COPY_REGCM },
15459                         [13] = { REG_VIRT0, COPY_REGCM },
15460                         [14] = { REG_VIRT0, COPY_REGCM },
15461                         [15] = { REG_VIRT0, COPY_REGCM },
15462                 }, },
15463         [TEMPLATE_STORE8] = {
15464                 .lhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
15465                 .rhs = { [0] = { REG_UNSET, REGCM_GPR8 } },
15466         },
15467         [TEMPLATE_STORE16] = {
15468                 .lhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
15469                 .rhs = { [0] = { REG_UNSET, REGCM_GPR16 } },
15470         },
15471         [TEMPLATE_STORE32] = {
15472                 .lhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
15473                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
15474         },
15475         [TEMPLATE_LOAD8] = {
15476                 .lhs = { [0] = { REG_UNSET, REGCM_GPR8 } },
15477                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
15478         },
15479         [TEMPLATE_LOAD16] = {
15480                 .lhs = { [0] = { REG_UNSET, REGCM_GPR16 } },
15481                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
15482         },
15483         [TEMPLATE_LOAD32] = {
15484                 .lhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
15485                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
15486         },
15487         [TEMPLATE_BINARY_REG] = {
15488                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
15489                 .rhs = { 
15490                         [0] = { REG_VIRT0, REGCM_GPR32 },
15491                         [1] = { REG_UNSET, REGCM_GPR32 },
15492                 },
15493         },
15494         [TEMPLATE_BINARY_IMM] = {
15495                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
15496                 .rhs = { 
15497                         [0] = { REG_VIRT0,    REGCM_GPR32 },
15498                         [1] = { REG_UNNEEDED, REGCM_IMM32 },
15499                 },
15500         },
15501         [TEMPLATE_SL_CL] = {
15502                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
15503                 .rhs = { 
15504                         [0] = { REG_VIRT0, REGCM_GPR32 },
15505                         [1] = { REG_CL, REGCM_GPR8 },
15506                 },
15507         },
15508         [TEMPLATE_SL_IMM] = {
15509                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
15510                 .rhs = { 
15511                         [0] = { REG_VIRT0,    REGCM_GPR32 },
15512                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
15513                 },
15514         },
15515         [TEMPLATE_UNARY] = {
15516                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
15517                 .rhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
15518         },
15519         [TEMPLATE_CMP_REG] = {
15520                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
15521                 .rhs = {
15522                         [0] = { REG_UNSET, REGCM_GPR32 },
15523                         [1] = { REG_UNSET, REGCM_GPR32 },
15524                 },
15525         },
15526         [TEMPLATE_CMP_IMM] = {
15527                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
15528                 .rhs = {
15529                         [0] = { REG_UNSET, REGCM_GPR32 },
15530                         [1] = { REG_UNNEEDED, REGCM_IMM32 },
15531                 },
15532         },
15533         [TEMPLATE_TEST] = {
15534                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
15535                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
15536         },
15537         [TEMPLATE_SET] = {
15538                 .lhs = { [0] = { REG_UNSET, REGCM_GPR8 } },
15539                 .rhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
15540         },
15541         [TEMPLATE_JMP] = {
15542                 .rhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
15543         },
15544         [TEMPLATE_INB_DX] = {
15545                 .lhs = { [0] = { REG_AL,  REGCM_GPR8 } },  
15546                 .rhs = { [0] = { REG_DX, REGCM_GPR16 } },
15547         },
15548         [TEMPLATE_INB_IMM] = {
15549                 .lhs = { [0] = { REG_AL,  REGCM_GPR8 } },  
15550                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
15551         },
15552         [TEMPLATE_INW_DX]  = { 
15553                 .lhs = { [0] = { REG_AX,  REGCM_GPR16 } }, 
15554                 .rhs = { [0] = { REG_DX, REGCM_GPR16 } },
15555         },
15556         [TEMPLATE_INW_IMM] = { 
15557                 .lhs = { [0] = { REG_AX,  REGCM_GPR16 } }, 
15558                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
15559         },
15560         [TEMPLATE_INL_DX]  = {
15561                 .lhs = { [0] = { REG_EAX, REGCM_GPR32 } },
15562                 .rhs = { [0] = { REG_DX, REGCM_GPR16 } },
15563         },
15564         [TEMPLATE_INL_IMM] = {
15565                 .lhs = { [0] = { REG_EAX, REGCM_GPR32 } },
15566                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
15567         },
15568         [TEMPLATE_OUTB_DX] = { 
15569                 .rhs = {
15570                         [0] = { REG_AL,  REGCM_GPR8 },
15571                         [1] = { REG_DX, REGCM_GPR16 },
15572                 },
15573         },
15574         [TEMPLATE_OUTB_IMM] = { 
15575                 .rhs = {
15576                         [0] = { REG_AL,  REGCM_GPR8 },  
15577                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
15578                 },
15579         },
15580         [TEMPLATE_OUTW_DX] = { 
15581                 .rhs = {
15582                         [0] = { REG_AX,  REGCM_GPR16 },
15583                         [1] = { REG_DX, REGCM_GPR16 },
15584                 },
15585         },
15586         [TEMPLATE_OUTW_IMM] = {
15587                 .rhs = {
15588                         [0] = { REG_AX,  REGCM_GPR16 }, 
15589                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
15590                 },
15591         },
15592         [TEMPLATE_OUTL_DX] = { 
15593                 .rhs = {
15594                         [0] = { REG_EAX, REGCM_GPR32 },
15595                         [1] = { REG_DX, REGCM_GPR16 },
15596                 },
15597         },
15598         [TEMPLATE_OUTL_IMM] = { 
15599                 .rhs = {
15600                         [0] = { REG_EAX, REGCM_GPR32 }, 
15601                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
15602                 },
15603         },
15604         [TEMPLATE_BSF] = {
15605                 .lhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
15606                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
15607         },
15608         [TEMPLATE_RDMSR] = {
15609                 .lhs = { 
15610                         [0] = { REG_EAX, REGCM_GPR32 },
15611                         [1] = { REG_EDX, REGCM_GPR32 },
15612                 },
15613                 .rhs = { [0] = { REG_ECX, REGCM_GPR32 } },
15614         },
15615         [TEMPLATE_WRMSR] = {
15616                 .rhs = {
15617                         [0] = { REG_ECX, REGCM_GPR32 },
15618                         [1] = { REG_EAX, REGCM_GPR32 },
15619                         [2] = { REG_EDX, REGCM_GPR32 },
15620                 },
15621         },
15622 };
15623
15624 static void fixup_branches(struct compile_state *state,
15625         struct triple *cmp, struct triple *use, int jmp_op)
15626 {
15627         struct triple_set *entry, *next;
15628         for(entry = use->use; entry; entry = next) {
15629                 next = entry->next;
15630                 if (entry->member->op == OP_COPY) {
15631                         fixup_branches(state, cmp, entry->member, jmp_op);
15632                 }
15633                 else if (entry->member->op == OP_BRANCH) {
15634                         struct triple *branch, *test;
15635                         struct triple *left, *right;
15636                         left = right = 0;
15637                         left = RHS(cmp, 0);
15638                         if (TRIPLE_RHS(cmp->sizes) > 1) {
15639                                 right = RHS(cmp, 1);
15640                         }
15641                         branch = entry->member;
15642                         test = pre_triple(state, branch,
15643                                 cmp->op, cmp->type, left, right);
15644                         test->template_id = TEMPLATE_TEST; 
15645                         if (cmp->op == OP_CMP) {
15646                                 test->template_id = TEMPLATE_CMP_REG;
15647                                 if (get_imm32(test, &RHS(test, 1))) {
15648                                         test->template_id = TEMPLATE_CMP_IMM;
15649                                 }
15650                         }
15651                         use_triple(RHS(test, 0), test);
15652                         use_triple(RHS(test, 1), test);
15653                         unuse_triple(RHS(branch, 0), branch);
15654                         RHS(branch, 0) = test;
15655                         branch->op = jmp_op;
15656                         branch->template_id = TEMPLATE_JMP;
15657                         use_triple(RHS(branch, 0), branch);
15658                 }
15659         }
15660 }
15661
15662 static void bool_cmp(struct compile_state *state, 
15663         struct triple *ins, int cmp_op, int jmp_op, int set_op)
15664 {
15665         struct triple_set *entry, *next;
15666         struct triple *set;
15667
15668         /* Put a barrier up before the cmp which preceeds the
15669          * copy instruction.  If a set actually occurs this gives
15670          * us a chance to move variables in registers out of the way.
15671          */
15672
15673         /* Modify the comparison operator */
15674         ins->op = cmp_op;
15675         ins->template_id = TEMPLATE_TEST;
15676         if (cmp_op == OP_CMP) {
15677                 ins->template_id = TEMPLATE_CMP_REG;
15678                 if (get_imm32(ins, &RHS(ins, 1))) {
15679                         ins->template_id =  TEMPLATE_CMP_IMM;
15680                 }
15681         }
15682         /* Generate the instruction sequence that will transform the
15683          * result of the comparison into a logical value.
15684          */
15685         set = post_triple(state, ins, set_op, ins->type, ins, 0);
15686         use_triple(ins, set);
15687         set->template_id = TEMPLATE_SET;
15688
15689         for(entry = ins->use; entry; entry = next) {
15690                 next = entry->next;
15691                 if (entry->member == set) {
15692                         continue;
15693                 }
15694                 replace_rhs_use(state, ins, set, entry->member);
15695         }
15696         fixup_branches(state, ins, set, jmp_op);
15697 }
15698
15699 static struct triple *after_lhs(struct compile_state *state, struct triple *ins)
15700 {
15701         struct triple *next;
15702         int lhs, i;
15703         lhs = TRIPLE_LHS(ins->sizes);
15704         for(next = ins->next, i = 0; i < lhs; i++, next = next->next) {
15705                 if (next != LHS(ins, i)) {
15706                         internal_error(state, ins, "malformed lhs on %s",
15707                                 tops(ins->op));
15708                 }
15709                 if (next->op != OP_PIECE) {
15710                         internal_error(state, ins, "bad lhs op %s at %d on %s",
15711                                 tops(next->op), i, tops(ins->op));
15712                 }
15713                 if (next->u.cval != i) {
15714                         internal_error(state, ins, "bad u.cval of %d %d expected",
15715                                 next->u.cval, i);
15716                 }
15717         }
15718         return next;
15719 }
15720
15721 struct reg_info arch_reg_lhs(struct compile_state *state, struct triple *ins, int index)
15722 {
15723         struct ins_template *template;
15724         struct reg_info result;
15725         int zlhs;
15726         if (ins->op == OP_PIECE) {
15727                 index = ins->u.cval;
15728                 ins = MISC(ins, 0);
15729         }
15730         zlhs = TRIPLE_LHS(ins->sizes);
15731         if (triple_is_def(state, ins)) {
15732                 zlhs = 1;
15733         }
15734         if (index >= zlhs) {
15735                 internal_error(state, ins, "index %d out of range for %s\n",
15736                         index, tops(ins->op));
15737         }
15738         switch(ins->op) {
15739         case OP_ASM:
15740                 template = &ins->u.ainfo->tmpl;
15741                 break;
15742         default:
15743                 if (ins->template_id > LAST_TEMPLATE) {
15744                         internal_error(state, ins, "bad template number %d", 
15745                                 ins->template_id);
15746                 }
15747                 template = &templates[ins->template_id];
15748                 break;
15749         }
15750         result = template->lhs[index];
15751         result.regcm = arch_regcm_normalize(state, result.regcm);
15752         if (result.reg != REG_UNNEEDED) {
15753                 result.regcm &= ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8);
15754         }
15755         if (result.regcm == 0) {
15756                 internal_error(state, ins, "lhs %d regcm == 0", index);
15757         }
15758         return result;
15759 }
15760
15761 struct reg_info arch_reg_rhs(struct compile_state *state, struct triple *ins, int index)
15762 {
15763         struct reg_info result;
15764         struct ins_template *template;
15765         if ((index > TRIPLE_RHS(ins->sizes)) ||
15766                 (ins->op == OP_PIECE)) {
15767                 internal_error(state, ins, "index %d out of range for %s\n",
15768                         index, tops(ins->op));
15769         }
15770         switch(ins->op) {
15771         case OP_ASM:
15772                 template = &ins->u.ainfo->tmpl;
15773                 break;
15774         default:
15775                 if (ins->template_id > LAST_TEMPLATE) {
15776                         internal_error(state, ins, "bad template number %d", 
15777                                 ins->template_id);
15778                 }
15779                 template = &templates[ins->template_id];
15780                 break;
15781         }
15782         result = template->rhs[index];
15783         result.regcm = arch_regcm_normalize(state, result.regcm);
15784         if (result.regcm == 0) {
15785                 internal_error(state, ins, "rhs %d regcm == 0", index);
15786         }
15787         return result;
15788 }
15789
15790 static struct triple *transform_to_arch_instruction(
15791         struct compile_state *state, struct triple *ins)
15792 {
15793         /* Transform from generic 3 address instructions
15794          * to archtecture specific instructions.
15795          * And apply architecture specific constrains to instructions.
15796          * Copies are inserted to preserve the register flexibility
15797          * of 3 address instructions.
15798          */
15799         struct triple *next;
15800         next = ins->next;
15801         switch(ins->op) {
15802         case OP_INTCONST:
15803                 ins->template_id = TEMPLATE_INTCONST32;
15804                 if (ins->u.cval < 256) {
15805                         ins->template_id = TEMPLATE_INTCONST8;
15806                 }
15807                 break;
15808         case OP_ADDRCONST:
15809                 ins->template_id = TEMPLATE_INTCONST32;
15810                 break;
15811         case OP_NOOP:
15812         case OP_SDECL:
15813         case OP_BLOBCONST:
15814         case OP_LABEL:
15815                 ins->template_id = TEMPLATE_NOP;
15816                 break;
15817         case OP_COPY:
15818                 ins->template_id = TEMPLATE_COPY_REG;
15819                 if (is_imm8(RHS(ins, 0))) {
15820                         ins->template_id = TEMPLATE_COPY_IMM8;
15821                 }
15822                 else if (is_imm16(RHS(ins, 0))) {
15823                         ins->template_id = TEMPLATE_COPY_IMM16;
15824                 }
15825                 else if (is_imm32(RHS(ins, 0))) {
15826                         ins->template_id = TEMPLATE_COPY_IMM32;
15827                 }
15828                 else if (is_const(RHS(ins, 0))) {
15829                         internal_error(state, ins, "bad constant passed to copy");
15830                 }
15831                 break;
15832         case OP_PHI:
15833                 ins->template_id = TEMPLATE_PHI;
15834                 break;
15835         case OP_STORE:
15836                 switch(ins->type->type & TYPE_MASK) {
15837                 case TYPE_CHAR:    case TYPE_UCHAR:
15838                         ins->template_id = TEMPLATE_STORE8;
15839                         break;
15840                 case TYPE_SHORT:   case TYPE_USHORT:
15841                         ins->template_id = TEMPLATE_STORE16;
15842                         break;
15843                 case TYPE_INT:     case TYPE_UINT:
15844                 case TYPE_LONG:    case TYPE_ULONG:
15845                 case TYPE_POINTER:
15846                         ins->template_id = TEMPLATE_STORE32;
15847                         break;
15848                 default:
15849                         internal_error(state, ins, "unknown type in store");
15850                         break;
15851                 }
15852                 break;
15853         case OP_LOAD:
15854                 switch(ins->type->type & TYPE_MASK) {
15855                 case TYPE_CHAR:   case TYPE_UCHAR:
15856                         ins->template_id = TEMPLATE_LOAD8;
15857                         break;
15858                 case TYPE_SHORT:
15859                 case TYPE_USHORT:
15860                         ins->template_id = TEMPLATE_LOAD16;
15861                         break;
15862                 case TYPE_INT:
15863                 case TYPE_UINT:
15864                 case TYPE_LONG:
15865                 case TYPE_ULONG:
15866                 case TYPE_POINTER:
15867                         ins->template_id = TEMPLATE_LOAD32;
15868                         break;
15869                 default:
15870                         internal_error(state, ins, "unknown type in load");
15871                         break;
15872                 }
15873                 break;
15874         case OP_ADD:
15875         case OP_SUB:
15876         case OP_AND:
15877         case OP_XOR:
15878         case OP_OR:
15879         case OP_SMUL:
15880                 ins->template_id = TEMPLATE_BINARY_REG;
15881                 if (get_imm32(ins, &RHS(ins, 1))) {
15882                         ins->template_id = TEMPLATE_BINARY_IMM;
15883                 }
15884                 break;
15885         case OP_SL:
15886         case OP_SSR:
15887         case OP_USR:
15888                 ins->template_id = TEMPLATE_SL_CL;
15889                 if (get_imm8(ins, &RHS(ins, 1))) {
15890                         ins->template_id = TEMPLATE_SL_IMM;
15891                 }
15892                 break;
15893         case OP_INVERT:
15894         case OP_NEG:
15895                 ins->template_id = TEMPLATE_UNARY;
15896                 break;
15897         case OP_EQ: 
15898                 bool_cmp(state, ins, OP_CMP, OP_JMP_EQ, OP_SET_EQ); 
15899                 break;
15900         case OP_NOTEQ:
15901                 bool_cmp(state, ins, OP_CMP, OP_JMP_NOTEQ, OP_SET_NOTEQ);
15902                 break;
15903         case OP_SLESS:
15904                 bool_cmp(state, ins, OP_CMP, OP_JMP_SLESS, OP_SET_SLESS);
15905                 break;
15906         case OP_ULESS:
15907                 bool_cmp(state, ins, OP_CMP, OP_JMP_ULESS, OP_SET_ULESS);
15908                 break;
15909         case OP_SMORE:
15910                 bool_cmp(state, ins, OP_CMP, OP_JMP_SMORE, OP_SET_SMORE);
15911                 break;
15912         case OP_UMORE:
15913                 bool_cmp(state, ins, OP_CMP, OP_JMP_UMORE, OP_SET_UMORE);
15914                 break;
15915         case OP_SLESSEQ:
15916                 bool_cmp(state, ins, OP_CMP, OP_JMP_SLESSEQ, OP_SET_SLESSEQ);
15917                 break;
15918         case OP_ULESSEQ:
15919                 bool_cmp(state, ins, OP_CMP, OP_JMP_ULESSEQ, OP_SET_ULESSEQ);
15920                 break;
15921         case OP_SMOREEQ:
15922                 bool_cmp(state, ins, OP_CMP, OP_JMP_SMOREEQ, OP_SET_SMOREEQ);
15923                 break;
15924         case OP_UMOREEQ:
15925                 bool_cmp(state, ins, OP_CMP, OP_JMP_UMOREEQ, OP_SET_UMOREEQ);
15926                 break;
15927         case OP_LTRUE:
15928                 bool_cmp(state, ins, OP_TEST, OP_JMP_NOTEQ, OP_SET_NOTEQ);
15929                 break;
15930         case OP_LFALSE:
15931                 bool_cmp(state, ins, OP_TEST, OP_JMP_EQ, OP_SET_EQ);
15932                 break;
15933         case OP_BRANCH:
15934                 if (TRIPLE_RHS(ins->sizes) > 0) {
15935                         internal_error(state, ins, "bad branch test");
15936                 }
15937                 ins->op = OP_JMP;
15938                 ins->template_id = TEMPLATE_NOP;
15939                 break;
15940         case OP_INB:
15941         case OP_INW:
15942         case OP_INL:
15943                 switch(ins->op) {
15944                 case OP_INB: ins->template_id = TEMPLATE_INB_DX; break;
15945                 case OP_INW: ins->template_id = TEMPLATE_INW_DX; break;
15946                 case OP_INL: ins->template_id = TEMPLATE_INL_DX; break;
15947                 }
15948                 if (get_imm8(ins, &RHS(ins, 0))) {
15949                         ins->template_id += 1;
15950                 }
15951                 break;
15952         case OP_OUTB:
15953         case OP_OUTW:
15954         case OP_OUTL:
15955                 switch(ins->op) {
15956                 case OP_OUTB: ins->template_id = TEMPLATE_OUTB_DX; break;
15957                 case OP_OUTW: ins->template_id = TEMPLATE_OUTW_DX; break;
15958                 case OP_OUTL: ins->template_id = TEMPLATE_OUTL_DX; break;
15959                 }
15960                 if (get_imm8(ins, &RHS(ins, 1))) {
15961                         ins->template_id += 1;
15962                 }
15963                 break;
15964         case OP_BSF:
15965         case OP_BSR:
15966                 ins->template_id = TEMPLATE_BSF;
15967                 break;
15968         case OP_RDMSR:
15969                 ins->template_id = TEMPLATE_RDMSR;
15970                 next = after_lhs(state, ins);
15971                 break;
15972         case OP_WRMSR:
15973                 ins->template_id = TEMPLATE_WRMSR;
15974                 break;
15975         case OP_HLT:
15976                 ins->template_id = TEMPLATE_NOP;
15977                 break;
15978         case OP_ASM:
15979                 ins->template_id = TEMPLATE_NOP;
15980                 next = after_lhs(state, ins);
15981                 break;
15982                 /* Already transformed instructions */
15983         case OP_TEST:
15984                 ins->template_id = TEMPLATE_TEST;
15985                 break;
15986         case OP_CMP:
15987                 ins->template_id = TEMPLATE_CMP_REG;
15988                 if (get_imm32(ins, &RHS(ins, 1))) {
15989                         ins->template_id = TEMPLATE_CMP_IMM;
15990                 }
15991                 break;
15992         case OP_JMP_EQ:      case OP_JMP_NOTEQ:
15993         case OP_JMP_SLESS:   case OP_JMP_ULESS:
15994         case OP_JMP_SMORE:   case OP_JMP_UMORE:
15995         case OP_JMP_SLESSEQ: case OP_JMP_ULESSEQ:
15996         case OP_JMP_SMOREEQ: case OP_JMP_UMOREEQ:
15997                 ins->template_id = TEMPLATE_JMP;
15998                 break;
15999         case OP_SET_EQ:      case OP_SET_NOTEQ:
16000         case OP_SET_SLESS:   case OP_SET_ULESS:
16001         case OP_SET_SMORE:   case OP_SET_UMORE:
16002         case OP_SET_SLESSEQ: case OP_SET_ULESSEQ:
16003         case OP_SET_SMOREEQ: case OP_SET_UMOREEQ:
16004                 ins->template_id = TEMPLATE_SET;
16005                 break;
16006                 /* Unhandled instructions */
16007         case OP_PIECE:
16008         default:
16009                 internal_error(state, ins, "unhandled ins: %d %s\n",
16010                         ins->op, tops(ins->op));
16011                 break;
16012         }
16013         return next;
16014 }
16015
16016 static void generate_local_labels(struct compile_state *state)
16017 {
16018         struct triple *first, *label;
16019         int label_counter;
16020         label_counter = 0;
16021         first = RHS(state->main_function, 0);
16022         label = first;
16023         do {
16024                 if ((label->op == OP_LABEL) || 
16025                         (label->op == OP_SDECL)) {
16026                         if (label->use) {
16027                                 label->u.cval = ++label_counter;
16028                         } else {
16029                                 label->u.cval = 0;
16030                         }
16031                         
16032                 }
16033                 label = label->next;
16034         } while(label != first);
16035 }
16036
16037 static int check_reg(struct compile_state *state, 
16038         struct triple *triple, int classes)
16039 {
16040         unsigned mask;
16041         int reg;
16042         reg = ID_REG(triple->id);
16043         if (reg == REG_UNSET) {
16044                 internal_error(state, triple, "register not set");
16045         }
16046         mask = arch_reg_regcm(state, reg);
16047         if (!(classes & mask)) {
16048                 internal_error(state, triple, "reg %d in wrong class",
16049                         reg);
16050         }
16051         return reg;
16052 }
16053
16054 static const char *arch_reg_str(int reg)
16055 {
16056         static const char *regs[] = {
16057                 "%unset",
16058                 "%unneeded",
16059                 "%eflags",
16060                 "%al", "%bl", "%cl", "%dl", "%ah", "%bh", "%ch", "%dh",
16061                 "%ax", "%bx", "%cx", "%dx", "%si", "%di", "%bp", "%sp",
16062                 "%eax", "%ebx", "%ecx", "%edx", "%esi", "%edi", "%ebp", "%esp",
16063                 "%edx:%eax",
16064                 "%mm0", "%mm1", "%mm2", "%mm3", "%mm4", "%mm5", "%mm6", "%mm7",
16065                 "%xmm0", "%xmm1", "%xmm2", "%xmm3", 
16066                 "%xmm4", "%xmm5", "%xmm6", "%xmm7",
16067         };
16068         if (!((reg >= REG_EFLAGS) && (reg <= REG_XMM7))) {
16069                 reg = 0;
16070         }
16071         return regs[reg];
16072 }
16073
16074
16075 static const char *reg(struct compile_state *state, struct triple *triple,
16076         int classes)
16077 {
16078         int reg;
16079         reg = check_reg(state, triple, classes);
16080         return arch_reg_str(reg);
16081 }
16082
16083 const char *type_suffix(struct compile_state *state, struct type *type)
16084 {
16085         const char *suffix;
16086         switch(size_of(state, type)) {
16087         case 1: suffix = "b"; break;
16088         case 2: suffix = "w"; break;
16089         case 4: suffix = "l"; break;
16090         default:
16091                 internal_error(state, 0, "unknown suffix");
16092                 suffix = 0;
16093                 break;
16094         }
16095         return suffix;
16096 }
16097
16098 static void print_const_val(
16099         struct compile_state *state, struct triple *ins, FILE *fp)
16100 {
16101         switch(ins->op) {
16102         case OP_INTCONST:
16103                 fprintf(fp, " $%ld ", 
16104                         (long_t)(ins->u.cval));
16105                 break;
16106         case OP_ADDRCONST:
16107                 fprintf(fp, " $L%s%lu+%lu ",
16108                         state->label_prefix, 
16109                         MISC(ins, 0)->u.cval,
16110                         ins->u.cval);
16111                 break;
16112         default:
16113                 internal_error(state, ins, "unknown constant type");
16114                 break;
16115         }
16116 }
16117
16118 static void print_binary_op(struct compile_state *state,
16119         const char *op, struct triple *ins, FILE *fp) 
16120 {
16121         unsigned mask;
16122         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8;
16123         if (RHS(ins, 0)->id != ins->id) {
16124                 internal_error(state, ins, "invalid register assignment");
16125         }
16126         if (is_const(RHS(ins, 1))) {
16127                 fprintf(fp, "\t%s ", op);
16128                 print_const_val(state, RHS(ins, 1), fp);
16129                 fprintf(fp, ", %s\n",
16130                         reg(state, RHS(ins, 0), mask));
16131         }
16132         else {
16133                 unsigned lmask, rmask;
16134                 int lreg, rreg;
16135                 lreg = check_reg(state, RHS(ins, 0), mask);
16136                 rreg = check_reg(state, RHS(ins, 1), mask);
16137                 lmask = arch_reg_regcm(state, lreg);
16138                 rmask = arch_reg_regcm(state, rreg);
16139                 mask = lmask & rmask;
16140                 fprintf(fp, "\t%s %s, %s\n",
16141                         op,
16142                         reg(state, RHS(ins, 1), mask),
16143                         reg(state, RHS(ins, 0), mask));
16144         }
16145 }
16146 static void print_unary_op(struct compile_state *state, 
16147         const char *op, struct triple *ins, FILE *fp)
16148 {
16149         unsigned mask;
16150         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8;
16151         fprintf(fp, "\t%s %s\n",
16152                 op,
16153                 reg(state, RHS(ins, 0), mask));
16154 }
16155
16156 static void print_op_shift(struct compile_state *state,
16157         const char *op, struct triple *ins, FILE *fp)
16158 {
16159         unsigned mask;
16160         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8;
16161         if (RHS(ins, 0)->id != ins->id) {
16162                 internal_error(state, ins, "invalid register assignment");
16163         }
16164         if (is_const(RHS(ins, 1))) {
16165                 fprintf(fp, "\t%s ", op);
16166                 print_const_val(state, RHS(ins, 1), fp);
16167                 fprintf(fp, ", %s\n",
16168                         reg(state, RHS(ins, 0), mask));
16169         }
16170         else {
16171                 fprintf(fp, "\t%s %s, %s\n",
16172                         op,
16173                         reg(state, RHS(ins, 1), REGCM_GPR8),
16174                         reg(state, RHS(ins, 0), mask));
16175         }
16176 }
16177
16178 static void print_op_in(struct compile_state *state, struct triple *ins, FILE *fp)
16179 {
16180         const char *op;
16181         int mask;
16182         int dreg;
16183         mask = 0;
16184         switch(ins->op) {
16185         case OP_INB: op = "inb", mask = REGCM_GPR8; break;
16186         case OP_INW: op = "inw", mask = REGCM_GPR16; break;
16187         case OP_INL: op = "inl", mask = REGCM_GPR32; break;
16188         default:
16189                 internal_error(state, ins, "not an in operation");
16190                 op = 0;
16191                 break;
16192         }
16193         dreg = check_reg(state, ins, mask);
16194         if (!reg_is_reg(state, dreg, REG_EAX)) {
16195                 internal_error(state, ins, "dst != %%eax");
16196         }
16197         if (is_const(RHS(ins, 0))) {
16198                 fprintf(fp, "\t%s ", op);
16199                 print_const_val(state, RHS(ins, 0), fp);
16200                 fprintf(fp, ", %s\n",
16201                         reg(state, ins, mask));
16202         }
16203         else {
16204                 int addr_reg;
16205                 addr_reg = check_reg(state, RHS(ins, 0), REGCM_GPR16);
16206                 if (!reg_is_reg(state, addr_reg, REG_DX)) {
16207                         internal_error(state, ins, "src != %%dx");
16208                 }
16209                 fprintf(fp, "\t%s %s, %s\n",
16210                         op, 
16211                         reg(state, RHS(ins, 0), REGCM_GPR16),
16212                         reg(state, ins, mask));
16213         }
16214 }
16215
16216 static void print_op_out(struct compile_state *state, struct triple *ins, FILE *fp)
16217 {
16218         const char *op;
16219         int mask;
16220         int lreg;
16221         mask = 0;
16222         switch(ins->op) {
16223         case OP_OUTB: op = "outb", mask = REGCM_GPR8; break;
16224         case OP_OUTW: op = "outw", mask = REGCM_GPR16; break;
16225         case OP_OUTL: op = "outl", mask = REGCM_GPR32; break;
16226         default:
16227                 internal_error(state, ins, "not an out operation");
16228                 op = 0;
16229                 break;
16230         }
16231         lreg = check_reg(state, RHS(ins, 0), mask);
16232         if (!reg_is_reg(state, lreg, REG_EAX)) {
16233                 internal_error(state, ins, "src != %%eax");
16234         }
16235         if (is_const(RHS(ins, 1))) {
16236                 fprintf(fp, "\t%s %s,", 
16237                         op, reg(state, RHS(ins, 0), mask));
16238                 print_const_val(state, RHS(ins, 1), fp);
16239                 fprintf(fp, "\n");
16240         }
16241         else {
16242                 int addr_reg;
16243                 addr_reg = check_reg(state, RHS(ins, 1), REGCM_GPR16);
16244                 if (!reg_is_reg(state, addr_reg, REG_DX)) {
16245                         internal_error(state, ins, "dst != %%dx");
16246                 }
16247                 fprintf(fp, "\t%s %s, %s\n",
16248                         op, 
16249                         reg(state, RHS(ins, 0), mask),
16250                         reg(state, RHS(ins, 1), REGCM_GPR16));
16251         }
16252 }
16253
16254 static void print_op_move(struct compile_state *state,
16255         struct triple *ins, FILE *fp)
16256 {
16257         /* op_move is complex because there are many types
16258          * of registers we can move between.
16259          * Because OP_COPY will be introduced in arbitrary locations
16260          * OP_COPY must not affect flags.
16261          */
16262         int omit_copy = 1; /* Is it o.k. to omit a noop copy? */
16263         struct triple *dst, *src;
16264         if (ins->op == OP_COPY) {
16265                 src = RHS(ins, 0);
16266                 dst = ins;
16267         }
16268         else if (ins->op == OP_WRITE) {
16269                 dst = LHS(ins, 0);
16270                 src = RHS(ins, 0);
16271         }
16272         else {
16273                 internal_error(state, ins, "unknown move operation");
16274                 src = dst = 0;
16275         }
16276         if (!is_const(src)) {
16277                 int src_reg, dst_reg;
16278                 int src_regcm, dst_regcm;
16279                 src_reg = ID_REG(src->id);
16280                 dst_reg   = ID_REG(dst->id);
16281                 src_regcm = arch_reg_regcm(state, src_reg);
16282                 dst_regcm   = arch_reg_regcm(state, dst_reg);
16283                 /* If the class is the same just move the register */
16284                 if (src_regcm & dst_regcm & 
16285                         (REGCM_GPR8 | REGCM_GPR16 | REGCM_GPR32)) {
16286                         if ((src_reg != dst_reg) || !omit_copy) {
16287                                 fprintf(fp, "\tmov %s, %s\n",
16288                                         reg(state, src, src_regcm),
16289                                         reg(state, dst, dst_regcm));
16290                         }
16291                 }
16292                 /* Move 32bit to 16bit */
16293                 else if ((src_regcm & REGCM_GPR32) &&
16294                         (dst_regcm & REGCM_GPR16)) {
16295                         src_reg = (src_reg - REGC_GPR32_FIRST) + REGC_GPR16_FIRST;
16296                         if ((src_reg != dst_reg) || !omit_copy) {
16297                                 fprintf(fp, "\tmovw %s, %s\n",
16298                                         arch_reg_str(src_reg), 
16299                                         arch_reg_str(dst_reg));
16300                         }
16301                 }
16302                 /* Move 32bit to 8bit */
16303                 else if ((src_regcm & REGCM_GPR32_8) &&
16304                         (dst_regcm & REGCM_GPR8))
16305                 {
16306                         src_reg = (src_reg - REGC_GPR32_8_FIRST) + REGC_GPR8_FIRST;
16307                         if ((src_reg != dst_reg) || !omit_copy) {
16308                                 fprintf(fp, "\tmovb %s, %s\n",
16309                                         arch_reg_str(src_reg),
16310                                         arch_reg_str(dst_reg));
16311                         }
16312                 }
16313                 /* Move 16bit to 8bit */
16314                 else if ((src_regcm & REGCM_GPR16_8) &&
16315                         (dst_regcm & REGCM_GPR8))
16316                 {
16317                         src_reg = (src_reg - REGC_GPR16_8_FIRST) + REGC_GPR8_FIRST;
16318                         if ((src_reg != dst_reg) || !omit_copy) {
16319                                 fprintf(fp, "\tmovb %s, %s\n",
16320                                         arch_reg_str(src_reg),
16321                                         arch_reg_str(dst_reg));
16322                         }
16323                 }
16324                 /* Move 8/16bit to 16/32bit */
16325                 else if ((src_regcm & (REGCM_GPR8 | REGCM_GPR16)) && 
16326                         (dst_regcm & (REGCM_GPR16 | REGCM_GPR32))) {
16327                         const char *op;
16328                         op = is_signed(src->type)? "movsx": "movzx";
16329                         fprintf(fp, "\t%s %s, %s\n",
16330                                 op,
16331                                 reg(state, src, src_regcm),
16332                                 reg(state, dst, dst_regcm));
16333                 }
16334                 /* Move between sse registers */
16335                 else if ((src_regcm & dst_regcm & REGCM_XMM)) {
16336                         if ((src_reg != dst_reg) || !omit_copy) {
16337                                 fprintf(fp, "\tmovdqa %s, %s\n",
16338                                         reg(state, src, src_regcm),
16339                                         reg(state, dst, dst_regcm));
16340                         }
16341                 }
16342                 /* Move between mmx registers or mmx & sse  registers */
16343                 else if ((src_regcm & (REGCM_MMX | REGCM_XMM)) &&
16344                         (dst_regcm & (REGCM_MMX | REGCM_XMM))) {
16345                         if ((src_reg != dst_reg) || !omit_copy) {
16346                                 fprintf(fp, "\tmovq %s, %s\n",
16347                                         reg(state, src, src_regcm),
16348                                         reg(state, dst, dst_regcm));
16349                         }
16350                 }
16351                 /* Move between 32bit gprs & mmx/sse registers */
16352                 else if ((src_regcm & (REGCM_GPR32 | REGCM_MMX | REGCM_XMM)) &&
16353                         (dst_regcm & (REGCM_GPR32 | REGCM_MMX | REGCM_XMM))) {
16354                         fprintf(fp, "\tmovd %s, %s\n",
16355                                 reg(state, src, src_regcm),
16356                                 reg(state, dst, dst_regcm));
16357                 }
16358 #if X86_4_8BIT_GPRS
16359                 /* Move from 8bit gprs to  mmx/sse registers */
16360                 else if ((src_regcm & REGCM_GPR8) && (src_reg <= REG_DL) &&
16361                         (dst_regcm & (REGCM_MMX | REGCM_XMM))) {
16362                         const char *op;
16363                         int mid_reg;
16364                         op = is_signed(src->type)? "movsx":"movzx";
16365                         mid_reg = (src_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
16366                         fprintf(fp, "\t%s %s, %s\n\tmovd %s, %s\n",
16367                                 op,
16368                                 reg(state, src, src_regcm),
16369                                 arch_reg_str(mid_reg),
16370                                 arch_reg_str(mid_reg),
16371                                 reg(state, dst, dst_regcm));
16372                 }
16373                 /* Move from mmx/sse registers and 8bit gprs */
16374                 else if ((src_regcm & (REGCM_MMX | REGCM_XMM)) &&
16375                         (dst_regcm & REGCM_GPR8) && (dst_reg <= REG_DL)) {
16376                         int mid_reg;
16377                         mid_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
16378                         fprintf(fp, "\tmovd %s, %s\n",
16379                                 reg(state, src, src_regcm),
16380                                 arch_reg_str(mid_reg));
16381                 }
16382                 /* Move from 32bit gprs to 16bit gprs */
16383                 else if ((src_regcm & REGCM_GPR32) &&
16384                         (dst_regcm & REGCM_GPR16)) {
16385                         dst_reg = (dst_reg - REGC_GPR16_FIRST) + REGC_GPR32_FIRST;
16386                         if ((src_reg != dst_reg) || !omit_copy) {
16387                                 fprintf(fp, "\tmov %s, %s\n",
16388                                         arch_reg_str(src_reg),
16389                                         arch_reg_str(dst_reg));
16390                         }
16391                 }
16392                 /* Move from 32bit gprs to 8bit gprs */
16393                 else if ((src_regcm & REGCM_GPR32) &&
16394                         (dst_regcm & REGCM_GPR8)) {
16395                         dst_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
16396                         if ((src_reg != dst_reg) || !omit_copy) {
16397                                 fprintf(fp, "\tmov %s, %s\n",
16398                                         arch_reg_str(src_reg),
16399                                         arch_reg_str(dst_reg));
16400                         }
16401                 }
16402                 /* Move from 16bit gprs to 8bit gprs */
16403                 else if ((src_regcm & REGCM_GPR16) &&
16404                         (dst_regcm & REGCM_GPR8)) {
16405                         dst_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR16_FIRST;
16406                         if ((src_reg != dst_reg) || !omit_copy) {
16407                                 fprintf(fp, "\tmov %s, %s\n",
16408                                         arch_reg_str(src_reg),
16409                                         arch_reg_str(dst_reg));
16410                         }
16411                 }
16412 #endif /* X86_4_8BIT_GPRS */
16413                 else {
16414                         internal_error(state, ins, "unknown copy type");
16415                 }
16416         }
16417         else {
16418                 fprintf(fp, "\tmov ");
16419                 print_const_val(state, src, fp);
16420                 fprintf(fp, ", %s\n",
16421                         reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8));
16422         }
16423 }
16424
16425 static void print_op_load(struct compile_state *state,
16426         struct triple *ins, FILE *fp)
16427 {
16428         struct triple *dst, *src;
16429         dst = ins;
16430         src = RHS(ins, 0);
16431         if (is_const(src) || is_const(dst)) {
16432                 internal_error(state, ins, "unknown load operation");
16433         }
16434         fprintf(fp, "\tmov (%s), %s\n",
16435                 reg(state, src, REGCM_GPR32),
16436                 reg(state, dst, REGCM_GPR8 | REGCM_GPR16 | REGCM_GPR32));
16437 }
16438
16439
16440 static void print_op_store(struct compile_state *state,
16441         struct triple *ins, FILE *fp)
16442 {
16443         struct triple *dst, *src;
16444         dst = LHS(ins, 0);
16445         src = RHS(ins, 0);
16446         if (is_const(src) && (src->op == OP_INTCONST)) {
16447                 long_t value;
16448                 value = (long_t)(src->u.cval);
16449                 fprintf(fp, "\tmov%s $%ld, (%s)\n",
16450                         type_suffix(state, src->type),
16451                         value,
16452                         reg(state, dst, REGCM_GPR32));
16453         }
16454         else if (is_const(dst) && (dst->op == OP_INTCONST)) {
16455                 fprintf(fp, "\tmov%s %s, 0x%08lx\n",
16456                         type_suffix(state, src->type),
16457                         reg(state, src, REGCM_GPR8 | REGCM_GPR16 | REGCM_GPR32),
16458                         dst->u.cval);
16459         }
16460         else {
16461                 if (is_const(src) || is_const(dst)) {
16462                         internal_error(state, ins, "unknown store operation");
16463                 }
16464                 fprintf(fp, "\tmov%s %s, (%s)\n",
16465                         type_suffix(state, src->type),
16466                         reg(state, src, REGCM_GPR8 | REGCM_GPR16 | REGCM_GPR32),
16467                         reg(state, dst, REGCM_GPR32));
16468         }
16469         
16470         
16471 }
16472
16473 static void print_op_smul(struct compile_state *state,
16474         struct triple *ins, FILE *fp)
16475 {
16476         if (!is_const(RHS(ins, 1))) {
16477                 fprintf(fp, "\timul %s, %s\n",
16478                         reg(state, RHS(ins, 1), REGCM_GPR32),
16479                         reg(state, RHS(ins, 0), REGCM_GPR32));
16480         }
16481         else {
16482                 fprintf(fp, "\timul ");
16483                 print_const_val(state, RHS(ins, 1), fp);
16484                 fprintf(fp, ", %s\n", reg(state, RHS(ins, 0), REGCM_GPR32));
16485         }
16486 }
16487
16488 static void print_op_cmp(struct compile_state *state,
16489         struct triple *ins, FILE *fp)
16490 {
16491         unsigned mask;
16492         int dreg;
16493         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8;
16494         dreg = check_reg(state, ins, REGCM_FLAGS);
16495         if (!reg_is_reg(state, dreg, REG_EFLAGS)) {
16496                 internal_error(state, ins, "bad dest register for cmp");
16497         }
16498         if (is_const(RHS(ins, 1))) {
16499                 fprintf(fp, "\tcmp ");
16500                 print_const_val(state, RHS(ins, 1), fp);
16501                 fprintf(fp, ", %s\n", reg(state, RHS(ins, 0), mask));
16502         }
16503         else {
16504                 unsigned lmask, rmask;
16505                 int lreg, rreg;
16506                 lreg = check_reg(state, RHS(ins, 0), mask);
16507                 rreg = check_reg(state, RHS(ins, 1), mask);
16508                 lmask = arch_reg_regcm(state, lreg);
16509                 rmask = arch_reg_regcm(state, rreg);
16510                 mask = lmask & rmask;
16511                 fprintf(fp, "\tcmp %s, %s\n",
16512                         reg(state, RHS(ins, 1), mask),
16513                         reg(state, RHS(ins, 0), mask));
16514         }
16515 }
16516
16517 static void print_op_test(struct compile_state *state,
16518         struct triple *ins, FILE *fp)
16519 {
16520         unsigned mask;
16521         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8;
16522         fprintf(fp, "\ttest %s, %s\n",
16523                 reg(state, RHS(ins, 0), mask),
16524                 reg(state, RHS(ins, 0), mask));
16525 }
16526
16527 static void print_op_branch(struct compile_state *state,
16528         struct triple *branch, FILE *fp)
16529 {
16530         const char *bop = "j";
16531         if (branch->op == OP_JMP) {
16532                 if (TRIPLE_RHS(branch->sizes) != 0) {
16533                         internal_error(state, branch, "jmp with condition?");
16534                 }
16535                 bop = "jmp";
16536         }
16537         else {
16538                 struct triple *ptr;
16539                 if (TRIPLE_RHS(branch->sizes) != 1) {
16540                         internal_error(state, branch, "jmpcc without condition?");
16541                 }
16542                 check_reg(state, RHS(branch, 0), REGCM_FLAGS);
16543                 if ((RHS(branch, 0)->op != OP_CMP) &&
16544                         (RHS(branch, 0)->op != OP_TEST)) {
16545                         internal_error(state, branch, "bad branch test");
16546                 }
16547 #warning "FIXME I have observed instructions between the test and branch instructions"
16548                 ptr = RHS(branch, 0);
16549                 for(ptr = RHS(branch, 0)->next; ptr != branch; ptr = ptr->next) {
16550                         if (ptr->op != OP_COPY) {
16551                                 internal_error(state, branch, "branch does not follow test");
16552                         }
16553                 }
16554                 switch(branch->op) {
16555                 case OP_JMP_EQ:       bop = "jz";  break;
16556                 case OP_JMP_NOTEQ:    bop = "jnz"; break;
16557                 case OP_JMP_SLESS:    bop = "jl";  break;
16558                 case OP_JMP_ULESS:    bop = "jb";  break;
16559                 case OP_JMP_SMORE:    bop = "jg";  break;
16560                 case OP_JMP_UMORE:    bop = "ja";  break;
16561                 case OP_JMP_SLESSEQ:  bop = "jle"; break;
16562                 case OP_JMP_ULESSEQ:  bop = "jbe"; break;
16563                 case OP_JMP_SMOREEQ:  bop = "jge"; break;
16564                 case OP_JMP_UMOREEQ:  bop = "jae"; break;
16565                 default:
16566                         internal_error(state, branch, "Invalid branch op");
16567                         break;
16568                 }
16569                 
16570         }
16571         fprintf(fp, "\t%s L%s%lu\n",
16572                 bop, 
16573                 state->label_prefix,
16574                 TARG(branch, 0)->u.cval);
16575 }
16576
16577 static void print_op_set(struct compile_state *state,
16578         struct triple *set, FILE *fp)
16579 {
16580         const char *sop = "set";
16581         if (TRIPLE_RHS(set->sizes) != 1) {
16582                 internal_error(state, set, "setcc without condition?");
16583         }
16584         check_reg(state, RHS(set, 0), REGCM_FLAGS);
16585         if ((RHS(set, 0)->op != OP_CMP) &&
16586                 (RHS(set, 0)->op != OP_TEST)) {
16587                 internal_error(state, set, "bad set test");
16588         }
16589         if (RHS(set, 0)->next != set) {
16590                 internal_error(state, set, "set does not follow test");
16591         }
16592         switch(set->op) {
16593         case OP_SET_EQ:       sop = "setz";  break;
16594         case OP_SET_NOTEQ:    sop = "setnz"; break;
16595         case OP_SET_SLESS:    sop = "setl";  break;
16596         case OP_SET_ULESS:    sop = "setb";  break;
16597         case OP_SET_SMORE:    sop = "setg";  break;
16598         case OP_SET_UMORE:    sop = "seta";  break;
16599         case OP_SET_SLESSEQ:  sop = "setle"; break;
16600         case OP_SET_ULESSEQ:  sop = "setbe"; break;
16601         case OP_SET_SMOREEQ:  sop = "setge"; break;
16602         case OP_SET_UMOREEQ:  sop = "setae"; break;
16603         default:
16604                 internal_error(state, set, "Invalid set op");
16605                 break;
16606         }
16607         fprintf(fp, "\t%s %s\n",
16608                 sop, reg(state, set, REGCM_GPR8));
16609 }
16610
16611 static void print_op_bit_scan(struct compile_state *state, 
16612         struct triple *ins, FILE *fp) 
16613 {
16614         const char *op;
16615         switch(ins->op) {
16616         case OP_BSF: op = "bsf"; break;
16617         case OP_BSR: op = "bsr"; break;
16618         default: 
16619                 internal_error(state, ins, "unknown bit scan");
16620                 op = 0;
16621                 break;
16622         }
16623         fprintf(fp, 
16624                 "\t%s %s, %s\n"
16625                 "\tjnz 1f\n"
16626                 "\tmovl $-1, %s\n"
16627                 "1:\n",
16628                 op,
16629                 reg(state, RHS(ins, 0), REGCM_GPR32),
16630                 reg(state, ins, REGCM_GPR32),
16631                 reg(state, ins, REGCM_GPR32));
16632 }
16633
16634 static void print_const(struct compile_state *state,
16635         struct triple *ins, FILE *fp)
16636 {
16637         switch(ins->op) {
16638         case OP_INTCONST:
16639                 switch(ins->type->type & TYPE_MASK) {
16640                 case TYPE_CHAR:
16641                 case TYPE_UCHAR:
16642                         fprintf(fp, ".byte 0x%02lx\n", ins->u.cval);
16643                         break;
16644                 case TYPE_SHORT:
16645                 case TYPE_USHORT:
16646                         fprintf(fp, ".short 0x%04lx\n", ins->u.cval);
16647                         break;
16648                 case TYPE_INT:
16649                 case TYPE_UINT:
16650                 case TYPE_LONG:
16651                 case TYPE_ULONG:
16652                         fprintf(fp, ".int %lu\n", ins->u.cval);
16653                         break;
16654                 default:
16655                         internal_error(state, ins, "Unknown constant type");
16656                 }
16657                 break;
16658         case OP_BLOBCONST:
16659         {
16660                 unsigned char *blob;
16661                 size_t size, i;
16662                 size = size_of(state, ins->type);
16663                 blob = ins->u.blob;
16664                 for(i = 0; i < size; i++) {
16665                         fprintf(fp, ".byte 0x%02x\n",
16666                                 blob[i]);
16667                 }
16668                 break;
16669         }
16670         default:
16671                 internal_error(state, ins, "Unknown constant type");
16672                 break;
16673         }
16674 }
16675
16676 #define TEXT_SECTION ".rom.text"
16677 #define DATA_SECTION ".rom.data"
16678
16679 static void print_sdecl(struct compile_state *state,
16680         struct triple *ins, FILE *fp)
16681 {
16682         fprintf(fp, ".section \"" DATA_SECTION "\"\n");
16683         fprintf(fp, ".balign %d\n", align_of(state, ins->type));
16684         fprintf(fp, "L%s%lu:\n", state->label_prefix, ins->u.cval);
16685         print_const(state, MISC(ins, 0), fp);
16686         fprintf(fp, ".section \"" TEXT_SECTION "\"\n");
16687                 
16688 }
16689
16690 static void print_instruction(struct compile_state *state,
16691         struct triple *ins, FILE *fp)
16692 {
16693         /* Assumption: after I have exted the register allocator
16694          * everything is in a valid register. 
16695          */
16696         switch(ins->op) {
16697         case OP_ASM:
16698                 print_op_asm(state, ins, fp);
16699                 break;
16700         case OP_ADD:    print_binary_op(state, "add", ins, fp); break;
16701         case OP_SUB:    print_binary_op(state, "sub", ins, fp); break;
16702         case OP_AND:    print_binary_op(state, "and", ins, fp); break;
16703         case OP_XOR:    print_binary_op(state, "xor", ins, fp); break;
16704         case OP_OR:     print_binary_op(state, "or",  ins, fp); break;
16705         case OP_SL:     print_op_shift(state, "shl", ins, fp); break;
16706         case OP_USR:    print_op_shift(state, "shr", ins, fp); break;
16707         case OP_SSR:    print_op_shift(state, "sar", ins, fp); break;
16708         case OP_POS:    break;
16709         case OP_NEG:    print_unary_op(state, "neg", ins, fp); break;
16710         case OP_INVERT: print_unary_op(state, "not", ins, fp); break;
16711         case OP_INTCONST:
16712         case OP_ADDRCONST:
16713         case OP_BLOBCONST:
16714                 /* Don't generate anything here for constants */
16715         case OP_PHI:
16716                 /* Don't generate anything for variable declarations. */
16717                 break;
16718         case OP_SDECL:
16719                 print_sdecl(state, ins, fp);
16720                 break;
16721         case OP_WRITE: 
16722         case OP_COPY:   
16723                 print_op_move(state, ins, fp);
16724                 break;
16725         case OP_LOAD:
16726                 print_op_load(state, ins, fp);
16727                 break;
16728         case OP_STORE:
16729                 print_op_store(state, ins, fp);
16730                 break;
16731         case OP_SMUL:
16732                 print_op_smul(state, ins, fp);
16733                 break;
16734         case OP_CMP:    print_op_cmp(state, ins, fp); break;
16735         case OP_TEST:   print_op_test(state, ins, fp); break;
16736         case OP_JMP:
16737         case OP_JMP_EQ:      case OP_JMP_NOTEQ:
16738         case OP_JMP_SLESS:   case OP_JMP_ULESS:
16739         case OP_JMP_SMORE:   case OP_JMP_UMORE:
16740         case OP_JMP_SLESSEQ: case OP_JMP_ULESSEQ:
16741         case OP_JMP_SMOREEQ: case OP_JMP_UMOREEQ:
16742                 print_op_branch(state, ins, fp);
16743                 break;
16744         case OP_SET_EQ:      case OP_SET_NOTEQ:
16745         case OP_SET_SLESS:   case OP_SET_ULESS:
16746         case OP_SET_SMORE:   case OP_SET_UMORE:
16747         case OP_SET_SLESSEQ: case OP_SET_ULESSEQ:
16748         case OP_SET_SMOREEQ: case OP_SET_UMOREEQ:
16749                 print_op_set(state, ins, fp);
16750                 break;
16751         case OP_INB:  case OP_INW:  case OP_INL:
16752                 print_op_in(state, ins, fp); 
16753                 break;
16754         case OP_OUTB: case OP_OUTW: case OP_OUTL:
16755                 print_op_out(state, ins, fp); 
16756                 break;
16757         case OP_BSF:
16758         case OP_BSR:
16759                 print_op_bit_scan(state, ins, fp);
16760                 break;
16761         case OP_RDMSR:
16762                 after_lhs(state, ins);
16763                 fprintf(fp, "\trdmsr\n");
16764                 break;
16765         case OP_WRMSR:
16766                 fprintf(fp, "\twrmsr\n");
16767                 break;
16768         case OP_HLT:
16769                 fprintf(fp, "\thlt\n");
16770                 break;
16771         case OP_LABEL:
16772                 if (!ins->use) {
16773                         return;
16774                 }
16775                 fprintf(fp, "L%s%lu:\n", state->label_prefix, ins->u.cval);
16776                 break;
16777                 /* Ignore OP_PIECE */
16778         case OP_PIECE:
16779                 break;
16780                 /* Operations I am not yet certain how to handle */
16781         case OP_UMUL:
16782         case OP_SDIV: case OP_UDIV:
16783         case OP_SMOD: case OP_UMOD:
16784                 /* Operations that should never get here */
16785         case OP_LTRUE:   case OP_LFALSE:  case OP_EQ:      case OP_NOTEQ:
16786         case OP_SLESS:   case OP_ULESS:   case OP_SMORE:   case OP_UMORE:
16787         case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
16788         default:
16789                 internal_error(state, ins, "unknown op: %d %s",
16790                         ins->op, tops(ins->op));
16791                 break;
16792         }
16793 }
16794
16795 static void print_instructions(struct compile_state *state)
16796 {
16797         struct triple *first, *ins;
16798         int print_location;
16799         struct occurance *last_occurance;
16800         FILE *fp;
16801         print_location = 1;
16802         last_occurance = 0;
16803         fp = state->output;
16804         fprintf(fp, ".section \"" TEXT_SECTION "\"\n");
16805         first = RHS(state->main_function, 0);
16806         ins = first;
16807         do {
16808                 if (print_location && 
16809                         last_occurance != ins->occurance) {
16810                         if (!ins->occurance->parent) {
16811                                 fprintf(fp, "\t/* %s,%s:%d.%d */\n",
16812                                         ins->occurance->function,
16813                                         ins->occurance->filename,
16814                                         ins->occurance->line,
16815                                         ins->occurance->col);
16816                         }
16817                         else {
16818                                 struct occurance *ptr;
16819                                 fprintf(fp, "\t/*\n");
16820                                 for(ptr = ins->occurance; ptr; ptr = ptr->parent) {
16821                                         fprintf(fp, "\t * %s,%s:%d.%d\n",
16822                                                 ptr->function,
16823                                                 ptr->filename,
16824                                                 ptr->line,
16825                                                 ptr->col);
16826                                 }
16827                                 fprintf(fp, "\t */\n");
16828                                 
16829                         }
16830                         if (last_occurance) {
16831                                 put_occurance(last_occurance);
16832                         }
16833                         get_occurance(ins->occurance);
16834                         last_occurance = ins->occurance;
16835                 }
16836
16837                 print_instruction(state, ins, fp);
16838                 ins = ins->next;
16839         } while(ins != first);
16840         
16841 }
16842 static void generate_code(struct compile_state *state)
16843 {
16844         generate_local_labels(state);
16845         print_instructions(state);
16846         
16847 }
16848
16849 static void print_tokens(struct compile_state *state)
16850 {
16851         struct token *tk;
16852         tk = &state->token[0];
16853         do {
16854 #if 1
16855                 token(state, 0);
16856 #else
16857                 next_token(state, 0);
16858 #endif
16859                 loc(stdout, state, 0);
16860                 printf("%s <- `%s'\n",
16861                         tokens[tk->tok],
16862                         tk->ident ? tk->ident->name :
16863                         tk->str_len ? tk->val.str : "");
16864                 
16865         } while(tk->tok != TOK_EOF);
16866 }
16867
16868 static void compile(const char *filename, const char *ofilename, 
16869         int cpu, int debug, int opt, const char *label_prefix)
16870 {
16871         int i;
16872         struct compile_state state;
16873         memset(&state, 0, sizeof(state));
16874         state.file = 0;
16875         for(i = 0; i < sizeof(state.token)/sizeof(state.token[0]); i++) {
16876                 memset(&state.token[i], 0, sizeof(state.token[i]));
16877                 state.token[i].tok = -1;
16878         }
16879         /* Remember the debug settings */
16880         state.cpu      = cpu;
16881         state.debug    = debug;
16882         state.optimize = opt;
16883         /* Remember the output filename */
16884         state.ofilename = ofilename;
16885         state.output    = fopen(state.ofilename, "w");
16886         if (!state.output) {
16887                 error(&state, 0, "Cannot open output file %s\n",
16888                         ofilename);
16889         }
16890         /* Remember the label prefix */
16891         state.label_prefix = label_prefix;
16892         /* Prep the preprocessor */
16893         state.if_depth = 0;
16894         state.if_value = 0;
16895         /* register the C keywords */
16896         register_keywords(&state);
16897         /* register the keywords the macro preprocessor knows */
16898         register_macro_keywords(&state);
16899         /* Memorize where some special keywords are. */
16900         state.i_continue = lookup(&state, "continue", 8);
16901         state.i_break    = lookup(&state, "break", 5);
16902         /* Enter the globl definition scope */
16903         start_scope(&state);
16904         register_builtins(&state);
16905         compile_file(&state, filename, 1);
16906 #if 0
16907         print_tokens(&state);
16908 #endif  
16909         decls(&state);
16910         /* Exit the global definition scope */
16911         end_scope(&state);
16912
16913         /* Now that basic compilation has happened 
16914          * optimize the intermediate code 
16915          */
16916         optimize(&state);
16917
16918         generate_code(&state);
16919         if (state.debug) {
16920                 fprintf(stderr, "done\n");
16921         }
16922 }
16923
16924 static void version(void)
16925 {
16926         printf("romcc " VERSION " released " RELEASE_DATE "\n");
16927 }
16928
16929 static void usage(void)
16930 {
16931         version();
16932         printf(
16933                 "Usage: romcc <source>.c\n"
16934                 "Compile a C source file without using ram\n"
16935         );
16936 }
16937
16938 static void arg_error(char *fmt, ...)
16939 {
16940         va_list args;
16941         va_start(args, fmt);
16942         vfprintf(stderr, fmt, args);
16943         va_end(args);
16944         usage();
16945         exit(1);
16946 }
16947
16948 int main(int argc, char **argv)
16949 {
16950         const char *filename;
16951         const char *ofilename;
16952         const char *label_prefix;
16953         int cpu;
16954         int last_argc;
16955         int debug;
16956         int optimize;
16957         cpu = CPU_DEFAULT;
16958         label_prefix = "";
16959         ofilename = "auto.inc";
16960         optimize = 0;
16961         debug = 0;
16962         last_argc = -1;
16963         while((argc > 1) && (argc != last_argc)) {
16964                 last_argc = argc;
16965                 if (strncmp(argv[1], "--debug=", 8) == 0) {
16966                         debug = atoi(argv[1] + 8);
16967                         argv++;
16968                         argc--;
16969                 }
16970                 else if (strncmp(argv[1], "--label-prefix=", 15) == 0) {
16971                         label_prefix= argv[1] + 15;
16972                         argv++;
16973                         argc--;
16974                 }
16975                 else if ((strcmp(argv[1],"-O") == 0) ||
16976                         (strcmp(argv[1], "-O1") == 0)) {
16977                         optimize = 1;
16978                         argv++;
16979                         argc--;
16980                 }
16981                 else if (strcmp(argv[1],"-O2") == 0) {
16982                         optimize = 2;
16983                         argv++;
16984                         argc--;
16985                 }
16986                 else if ((strcmp(argv[1], "-o") == 0) && (argc > 2)) {
16987                         ofilename = argv[2];
16988                         argv += 2;
16989                         argc -= 2;
16990                 }
16991                 else if (strncmp(argv[1], "-mcpu=", 6) == 0) {
16992                         cpu = arch_encode_cpu(argv[1] + 6);
16993                         if (cpu == BAD_CPU) {
16994                                 arg_error("Invalid cpu specified: %s\n",
16995                                         argv[1] + 6);
16996                         }
16997                         argv++;
16998                         argc--;
16999                 }
17000         }
17001         if (argc != 2) {
17002                 arg_error("Wrong argument count %d\n", argc);
17003         }
17004         filename = argv[1];
17005         compile(filename, ofilename, cpu, debug, optimize, label_prefix);
17006
17007         return 0;
17008 }