Add attribute((noreturn)) to romcc
[coreboot.git] / util / romcc / romcc.c
1 #undef VERSION_MAJOR
2 #undef VERSION_MINOR
3 #undef RELEASE_DATE
4 #undef VERSION
5 #define VERSION_MAJOR "0"
6 #define VERSION_MINOR "72"
7 #define RELEASE_DATE "10 February 2010"
8 #define VERSION VERSION_MAJOR "." VERSION_MINOR
9
10 #include <stdarg.h>
11 #include <errno.h>
12 #include <stdint.h>
13 #include <stdlib.h>
14 #include <stdio.h>
15 #include <sys/types.h>
16 #include <sys/stat.h>
17 #include <fcntl.h>
18 #include <unistd.h>
19 #include <stdio.h>
20 #include <string.h>
21 #include <limits.h>
22 #include <locale.h>
23 #include <time.h>
24
25 #define MAX_CWD_SIZE 4096
26 #define MAX_ALLOCATION_PASSES 100
27
28 /* NOTE: Before you even start thinking to touch anything 
29  * in this code, set DEBUG_ROMCC_WARNINGS to 1 to get an
30  * insight on the original author's thoughts. We introduced 
31  * this switch as romcc was about the only thing producing
32  * massive warnings in our code..
33  */
34 #define DEBUG_ROMCC_WARNINGS 0
35
36 #define DEBUG_CONSISTENCY 1
37 #define DEBUG_SDP_BLOCKS 0
38 #define DEBUG_TRIPLE_COLOR 0
39
40 #define DEBUG_DISPLAY_USES 1
41 #define DEBUG_DISPLAY_TYPES 1
42 #define DEBUG_REPLACE_CLOSURE_TYPE_HIRES 0
43 #define DEBUG_DECOMPOSE_PRINT_TUPLES 0
44 #define DEBUG_DECOMPOSE_HIRES  0
45 #define DEBUG_INITIALIZER 0
46 #define DEBUG_UPDATE_CLOSURE_TYPE 0
47 #define DEBUG_LOCAL_TRIPLE 0
48 #define DEBUG_BASIC_BLOCKS_VERBOSE 0
49 #define DEBUG_CPS_RENAME_VARIABLES_HIRES 0
50 #define DEBUG_SIMPLIFY_HIRES 0
51 #define DEBUG_SHRINKING 0
52 #define DEBUG_COALESCE_HITCHES 0
53 #define DEBUG_CODE_ELIMINATION 0
54
55 #define DEBUG_EXPLICIT_CLOSURES 0
56
57 #if DEBUG_ROMCC_WARNINGS
58 #warning "FIXME give clear error messages about unused variables"
59 #warning "FIXME properly handle multi dimensional arrays"
60 #warning "FIXME handle multiple register sizes"
61 #endif
62
63 /*  Control flow graph of a loop without goto.
64  * 
65  *        AAA
66  *   +---/
67  *  /
68  * / +--->CCC
69  * | |    / \
70  * | |  DDD EEE    break;
71  * | |    \    \
72  * | |    FFF   \
73  *  \|    / \    \
74  *   |\ GGG HHH   |   continue;
75  *   | \  \   |   |
76  *   |  \ III |  /
77  *   |   \ | /  / 
78  *   |    vvv  /  
79  *   +----BBB /   
80  *         | /
81  *         vv
82  *        JJJ
83  *
84  * 
85  *             AAA
86  *     +-----+  |  +----+
87  *     |      \ | /     |
88  *     |       BBB  +-+ |
89  *     |       / \ /  | |
90  *     |     CCC JJJ / /
91  *     |     / \    / / 
92  *     |   DDD EEE / /  
93  *     |    |   +-/ /
94  *     |   FFF     /    
95  *     |   / \    /     
96  *     | GGG HHH /      
97  *     |  |   +-/
98  *     | III
99  *     +--+ 
100  *
101  * 
102  * DFlocal(X) = { Y <- Succ(X) | idom(Y) != X }
103  * DFup(Z)    = { Y <- DF(Z) | idom(Y) != X }
104  *
105  *
106  * [] == DFlocal(X) U DF(X)
107  * () == DFup(X)
108  *
109  * Dominator graph of the same nodes.
110  *
111  *           AAA     AAA: [ ] ()
112  *          /   \
113  *        BBB    JJJ BBB: [ JJJ ] ( JJJ )  JJJ: [ ] ()
114  *         |
115  *        CCC        CCC: [ ] ( BBB, JJJ )
116  *        / \
117  *     DDD   EEE     DDD: [ ] ( BBB ) EEE: [ JJJ ] ()
118  *      |
119  *     FFF           FFF: [ ] ( BBB )
120  *     / \         
121  *  GGG   HHH        GGG: [ ] ( BBB ) HHH: [ BBB ] ()
122  *   |
123  *  III              III: [ BBB ] ()
124  *
125  *
126  * BBB and JJJ are definitely the dominance frontier.
127  * Where do I place phi functions and how do I make that decision.
128  *   
129  */
130
131 struct filelist {
132         const char *filename;
133         struct filelist *next;
134 };
135
136 struct filelist *include_filelist = NULL;
137
138 static void die(char *fmt, ...)
139 {
140         va_list args;
141
142         va_start(args, fmt);
143         vfprintf(stderr, fmt, args);
144         va_end(args);
145         fflush(stdout);
146         fflush(stderr);
147         exit(1);
148 }
149
150 static void *xmalloc(size_t size, const char *name)
151 {
152         void *buf;
153         buf = malloc(size);
154         if (!buf) {
155                 die("Cannot malloc %ld bytes to hold %s: %s\n",
156                         size + 0UL, name, strerror(errno));
157         }
158         return buf;
159 }
160
161 static void *xcmalloc(size_t size, const char *name)
162 {
163         void *buf;
164         buf = xmalloc(size, name);
165         memset(buf, 0, size);
166         return buf;
167 }
168
169 static void *xrealloc(void *ptr, size_t size, const char *name)
170 {
171         void *buf;
172         buf = realloc(ptr, size);
173         if (!buf) {
174                 die("Cannot realloc %ld bytes to hold %s: %s\n",
175                         size + 0UL, name, strerror(errno));
176         }
177         return buf;
178 }
179
180 static void xfree(const void *ptr)
181 {
182         free((void *)ptr);
183 }
184
185 static char *xstrdup(const char *str)
186 {
187         char *new;
188         int len;
189         len = strlen(str);
190         new = xmalloc(len + 1, "xstrdup string");
191         memcpy(new, str, len);
192         new[len] = '\0';
193         return new;
194 }
195
196 static void xchdir(const char *path)
197 {
198         if (chdir(path) != 0) {
199                 die("chdir to `%s' failed: %s\n",
200                         path, strerror(errno));
201         }
202 }
203
204 static int exists(const char *dirname, const char *filename)
205 {
206         char cwd[MAX_CWD_SIZE];
207         int does_exist;
208
209         if (getcwd(cwd, sizeof(cwd)) == 0) {
210                 die("cwd buffer to small");
211         }
212
213         does_exist = 1;
214         if (chdir(dirname) != 0) {
215                 does_exist = 0;
216         }
217         if (does_exist && (access(filename, O_RDONLY) < 0)) {
218                 if ((errno != EACCES) && (errno != EROFS)) {
219                         does_exist = 0;
220                 }
221         }
222         xchdir(cwd);
223         return does_exist;
224 }
225
226
227 static char *slurp_file(const char *dirname, const char *filename, off_t *r_size)
228 {
229         char cwd[MAX_CWD_SIZE];
230         char *buf;
231         off_t size, progress;
232         ssize_t result;
233         FILE* file;
234         
235         if (!filename) {
236                 *r_size = 0;
237                 return 0;
238         }
239         if (getcwd(cwd, sizeof(cwd)) == 0) {
240                 die("cwd buffer to small");
241         }
242         xchdir(dirname);
243         file = fopen(filename, "rb");
244         xchdir(cwd);
245         if (file == NULL) {
246                 die("Cannot open '%s' : %s\n",
247                         filename, strerror(errno));
248         }
249         fseek(file, 0, SEEK_END);
250         size = ftell(file);
251         fseek(file, 0, SEEK_SET);
252         *r_size = size +1;
253         buf = xmalloc(size +2, filename);
254         buf[size] = '\n'; /* Make certain the file is newline terminated */
255         buf[size+1] = '\0'; /* Null terminate the file for good measure */
256         progress = 0;
257         while(progress < size) {
258                 result = fread(buf + progress, 1, size - progress, file);
259                 if (result < 0) {
260                         if ((errno == EINTR) || (errno == EAGAIN))
261                                 continue;
262                         die("read on %s of %ld bytes failed: %s\n",
263                                 filename, (size - progress)+ 0UL, strerror(errno));
264                 }
265                 progress += result;
266         }
267         fclose(file);
268         return buf;
269 }
270
271 /* Types on the destination platform */
272 #if DEBUG_ROMCC_WARNINGS
273 #warning "FIXME this assumes 32bit x86 is the destination"
274 #endif
275 typedef int8_t   schar_t;
276 typedef uint8_t  uchar_t;
277 typedef int8_t   char_t;
278 typedef int16_t  short_t;
279 typedef uint16_t ushort_t;
280 typedef int32_t  int_t;
281 typedef uint32_t uint_t;
282 typedef int32_t  long_t;
283 #define ulong_t uint32_t
284
285 #define SCHAR_T_MIN (-128)
286 #define SCHAR_T_MAX 127
287 #define UCHAR_T_MAX 255
288 #define CHAR_T_MIN  SCHAR_T_MIN
289 #define CHAR_T_MAX  SCHAR_T_MAX
290 #define SHRT_T_MIN  (-32768)
291 #define SHRT_T_MAX  32767
292 #define USHRT_T_MAX 65535
293 #define INT_T_MIN   (-LONG_T_MAX - 1)
294 #define INT_T_MAX   2147483647
295 #define UINT_T_MAX  4294967295U
296 #define LONG_T_MIN  (-LONG_T_MAX - 1)
297 #define LONG_T_MAX  2147483647
298 #define ULONG_T_MAX 4294967295U
299
300 #define SIZEOF_I8    8
301 #define SIZEOF_I16   16
302 #define SIZEOF_I32   32
303 #define SIZEOF_I64   64
304
305 #define SIZEOF_CHAR    8
306 #define SIZEOF_SHORT   16
307 #define SIZEOF_INT     32
308 #define SIZEOF_LONG    (sizeof(long_t)*SIZEOF_CHAR)
309
310
311 #define ALIGNOF_CHAR    8
312 #define ALIGNOF_SHORT   16
313 #define ALIGNOF_INT     32
314 #define ALIGNOF_LONG    (sizeof(long_t)*SIZEOF_CHAR)
315
316 #define REG_SIZEOF_REG     32
317 #define REG_SIZEOF_CHAR    REG_SIZEOF_REG
318 #define REG_SIZEOF_SHORT   REG_SIZEOF_REG
319 #define REG_SIZEOF_INT     REG_SIZEOF_REG
320 #define REG_SIZEOF_LONG    REG_SIZEOF_REG
321
322 #define REG_ALIGNOF_REG     REG_SIZEOF_REG
323 #define REG_ALIGNOF_CHAR    REG_SIZEOF_REG
324 #define REG_ALIGNOF_SHORT   REG_SIZEOF_REG
325 #define REG_ALIGNOF_INT     REG_SIZEOF_REG
326 #define REG_ALIGNOF_LONG    REG_SIZEOF_REG
327
328 /* Additional definitions for clarity.
329  * I currently assume a long is the largest native
330  * machine word and that a pointer fits into it.
331  */
332 #define SIZEOF_WORD     SIZEOF_LONG
333 #define SIZEOF_POINTER  SIZEOF_LONG
334 #define ALIGNOF_WORD    ALIGNOF_LONG
335 #define ALIGNOF_POINTER ALIGNOF_LONG
336 #define REG_SIZEOF_POINTER  REG_SIZEOF_LONG
337 #define REG_ALIGNOF_POINTER REG_ALIGNOF_LONG
338
339 struct file_state {
340         struct file_state *prev;
341         const char *basename;
342         char *dirname;
343         const char *buf;
344         off_t size;
345         const char *pos;
346         int line;
347         const char *line_start;
348         int report_line;
349         const char *report_name;
350         const char *report_dir;
351         int macro      : 1;
352         int trigraphs  : 1;
353         int join_lines : 1;
354 };
355 struct hash_entry;
356 struct token {
357         int tok;
358         struct hash_entry *ident;
359         const char *pos;
360         int str_len;
361         union {
362                 ulong_t integer;
363                 const char *str;
364                 int notmacro;
365         } val;
366 };
367
368 /* I have two classes of types:
369  * Operational types.
370  * Logical types.  (The type the C standard says the operation is of)
371  *
372  * The operational types are:
373  * chars
374  * shorts
375  * ints
376  * longs
377  *
378  * floats
379  * doubles
380  * long doubles
381  *
382  * pointer
383  */
384
385
386 /* Machine model.
387  * No memory is useable by the compiler.
388  * There is no floating point support.
389  * All operations take place in general purpose registers.
390  * There is one type of general purpose register.
391  * Unsigned longs are stored in that general purpose register.
392  */
393
394 /* Operations on general purpose registers.
395  */
396
397 #define OP_SDIVT      0
398 #define OP_UDIVT      1
399 #define OP_SMUL       2
400 #define OP_UMUL       3
401 #define OP_SDIV       4
402 #define OP_UDIV       5
403 #define OP_SMOD       6
404 #define OP_UMOD       7
405 #define OP_ADD        8
406 #define OP_SUB        9
407 #define OP_SL        10
408 #define OP_USR       11
409 #define OP_SSR       12 
410 #define OP_AND       13 
411 #define OP_XOR       14
412 #define OP_OR        15
413 #define OP_POS       16 /* Dummy positive operator don't use it */
414 #define OP_NEG       17
415 #define OP_INVERT    18
416                      
417 #define OP_EQ        20
418 #define OP_NOTEQ     21
419 #define OP_SLESS     22
420 #define OP_ULESS     23
421 #define OP_SMORE     24
422 #define OP_UMORE     25
423 #define OP_SLESSEQ   26
424 #define OP_ULESSEQ   27
425 #define OP_SMOREEQ   28
426 #define OP_UMOREEQ   29
427                      
428 #define OP_LFALSE    30  /* Test if the expression is logically false */
429 #define OP_LTRUE     31  /* Test if the expression is logcially true */
430
431 #define OP_LOAD      32
432 #define OP_STORE     33
433 /* For OP_STORE ->type holds the type
434  * RHS(0) holds the destination address
435  * RHS(1) holds the value to store.
436  */
437
438 #define OP_UEXTRACT  34
439 /* OP_UEXTRACT extracts an unsigned bitfield from a pseudo register
440  * RHS(0) holds the psuedo register to extract from
441  * ->type holds the size of the bitfield.
442  * ->u.bitfield.size holds the size of the bitfield.
443  * ->u.bitfield.offset holds the offset to extract from
444  */
445 #define OP_SEXTRACT  35
446 /* OP_SEXTRACT extracts a signed bitfield from a pseudo register
447  * RHS(0) holds the psuedo register to extract from
448  * ->type holds the size of the bitfield.
449  * ->u.bitfield.size holds the size of the bitfield.
450  * ->u.bitfield.offset holds the offset to extract from
451  */
452 #define OP_DEPOSIT   36
453 /* OP_DEPOSIT replaces a bitfield with a new value.
454  * RHS(0) holds the value to replace a bitifield in.
455  * RHS(1) holds the replacement value
456  * ->u.bitfield.size holds the size of the bitfield.
457  * ->u.bitfield.offset holds the deposit into
458  */
459
460 #define OP_NOOP      37
461
462 #define OP_MIN_CONST 50
463 #define OP_MAX_CONST 58
464 #define IS_CONST_OP(X) (((X) >= OP_MIN_CONST) && ((X) <= OP_MAX_CONST))
465 #define OP_INTCONST  50
466 /* For OP_INTCONST ->type holds the type.
467  * ->u.cval holds the constant value.
468  */
469 #define OP_BLOBCONST 51
470 /* For OP_BLOBCONST ->type holds the layout and size
471  * information.  u.blob holds a pointer to the raw binary
472  * data for the constant initializer.
473  */
474 #define OP_ADDRCONST 52
475 /* For OP_ADDRCONST ->type holds the type.
476  * MISC(0) holds the reference to the static variable.
477  * ->u.cval holds an offset from that value.
478  */
479 #define OP_UNKNOWNVAL 59
480 /* For OP_UNKNOWNAL ->type holds the type.
481  * For some reason we don't know what value this type has.
482  * This allows for variables that have don't have values
483  * assigned yet, or variables whose value we simply do not know.
484  */
485
486 #define OP_WRITE     60 
487 /* OP_WRITE moves one pseudo register to another.
488  * MISC(0) holds the destination pseudo register, which must be an OP_DECL.
489  * RHS(0) holds the psuedo to move.
490  */
491
492 #define OP_READ      61
493 /* OP_READ reads the value of a variable and makes
494  * it available for the pseudo operation.
495  * Useful for things like def-use chains.
496  * RHS(0) holds points to the triple to read from.
497  */
498 #define OP_COPY      62
499 /* OP_COPY makes a copy of the pseudo register or constant in RHS(0).
500  */
501 #define OP_CONVERT   63
502 /* OP_CONVERT makes a copy of the pseudo register or constant in RHS(0).
503  * And then the type is converted appropriately.
504  */
505 #define OP_PIECE     64
506 /* OP_PIECE returns one piece of a instruction that returns a structure.
507  * MISC(0) is the instruction
508  * u.cval is the LHS piece of the instruction to return.
509  */
510 #define OP_ASM       65
511 /* OP_ASM holds a sequence of assembly instructions, the result
512  * of a C asm directive.
513  * RHS(x) holds input value x to the assembly sequence.
514  * LHS(x) holds the output value x from the assembly sequence.
515  * u.blob holds the string of assembly instructions.
516  */
517
518 #define OP_DEREF     66
519 /* OP_DEREF generates an lvalue from a pointer.
520  * RHS(0) holds the pointer value.
521  * OP_DEREF serves as a place holder to indicate all necessary
522  * checks have been done to indicate a value is an lvalue.
523  */
524 #define OP_DOT       67
525 /* OP_DOT references a submember of a structure lvalue.
526  * MISC(0) holds the lvalue.
527  * ->u.field holds the name of the field we want.
528  *
529  * Not seen after structures are flattened.
530  */
531 #define OP_INDEX     68
532 /* OP_INDEX references a submember of a tuple or array lvalue.
533  * MISC(0) holds the lvalue.
534  * ->u.cval holds the index into the lvalue.
535  *
536  * Not seen after structures are flattened.
537  */
538 #define OP_VAL       69
539 /* OP_VAL returns the value of a subexpression of the current expression.
540  * Useful for operators that have side effects.
541  * RHS(0) holds the expression.
542  * MISC(0) holds the subexpression of RHS(0) that is the
543  * value of the expression.
544  *
545  * Not seen outside of expressions.
546  */
547
548 #define OP_TUPLE     70
549 /* OP_TUPLE is an array of triples that are either variable
550  * or values for a structure or an array.  It is used as
551  * a place holder when flattening compound types.
552  * The value represented by an OP_TUPLE is held in N registers.
553  * LHS(0..N-1) refer to those registers.
554  * ->use is a list of statements that use the value.
555  * 
556  * Although OP_TUPLE always has register sized pieces they are not
557  * used until structures are flattened/decomposed into their register
558  * components. 
559  * ???? registers ????
560  */
561
562 #define OP_BITREF    71
563 /* OP_BITREF describes a bitfield as an lvalue.
564  * RHS(0) holds the register value.
565  * ->type holds the type of the bitfield.
566  * ->u.bitfield.size holds the size of the bitfield.
567  * ->u.bitfield.offset holds the offset of the bitfield in the register
568  */
569
570
571 #define OP_FCALL     72
572 /* OP_FCALL performs a procedure call. 
573  * MISC(0) holds a pointer to the OP_LIST of a function
574  * RHS(x) holds argument x of a function
575  * 
576  * Currently not seen outside of expressions.
577  */
578 #define OP_PROG      73
579 /* OP_PROG is an expression that holds a list of statements, or
580  * expressions.  The final expression is the value of the expression.
581  * RHS(0) holds the start of the list.
582  */
583
584 /* statements */
585 #define OP_LIST      80
586 /* OP_LIST Holds a list of statements that compose a function, and a result value.
587  * RHS(0) holds the list of statements.
588  * A list of all functions is maintained.
589  */
590
591 #define OP_BRANCH    81 /* an unconditional branch */
592 /* For branch instructions
593  * TARG(0) holds the branch target.
594  * ->next holds where to branch to if the branch is not taken.
595  * The branch target can only be a label
596  */
597
598 #define OP_CBRANCH   82 /* a conditional branch */
599 /* For conditional branch instructions
600  * RHS(0) holds the branch condition.
601  * TARG(0) holds the branch target.
602  * ->next holds where to branch to if the branch is not taken.
603  * The branch target can only be a label
604  */
605
606 #define OP_CALL      83 /* an uncontional branch that will return */
607 /* For call instructions
608  * MISC(0) holds the OP_RET that returns from the branch
609  * TARG(0) holds the branch target.
610  * ->next holds where to branch to if the branch is not taken.
611  * The branch target can only be a label
612  */
613
614 #define OP_RET       84 /* an uncontinonal branch through a variable back to an OP_CALL */
615 /* For call instructions
616  * RHS(0) holds the variable with the return address
617  * The branch target can only be a label
618  */
619
620 #define OP_LABEL     86
621 /* OP_LABEL is a triple that establishes an target for branches.
622  * ->use is the list of all branches that use this label.
623  */
624
625 #define OP_ADECL     87 
626 /* OP_ADECL is a triple that establishes an lvalue for assignments.
627  * A variable takes N registers to contain.
628  * LHS(0..N-1) refer to an OP_PIECE triple that represents
629  * the Xth register that the variable is stored in.
630  * ->use is a list of statements that use the variable.
631  * 
632  * Although OP_ADECL always has register sized pieces they are not
633  * used until structures are flattened/decomposed into their register
634  * components. 
635  */
636
637 #define OP_SDECL     88
638 /* OP_SDECL is a triple that establishes a variable of static
639  * storage duration.
640  * ->use is a list of statements that use the variable.
641  * MISC(0) holds the initializer expression.
642  */
643
644
645 #define OP_PHI       89
646 /* OP_PHI is a triple used in SSA form code.  
647  * It is used when multiple code paths merge and a variable needs
648  * a single assignment from any of those code paths.
649  * The operation is a cross between OP_DECL and OP_WRITE, which
650  * is what OP_PHI is generated from.
651  * 
652  * RHS(x) points to the value from code path x
653  * The number of RHS entries is the number of control paths into the block
654  * in which OP_PHI resides.  The elements of the array point to point
655  * to the variables OP_PHI is derived from.
656  *
657  * MISC(0) holds a pointer to the orginal OP_DECL node.
658  */
659
660 #if 0
661 /* continuation helpers
662  */
663 #define OP_CPS_BRANCH    90 /* an unconditional branch */
664 /* OP_CPS_BRANCH calls a continuation 
665  * RHS(x) holds argument x of the function
666  * TARG(0) holds OP_CPS_START target
667  */
668 #define OP_CPS_CBRANCH   91  /* a conditional branch */
669 /* OP_CPS_CBRANCH conditionally calls one of two continuations 
670  * RHS(0) holds the branch condition
671  * RHS(x + 1) holds argument x of the function
672  * TARG(0) holds the OP_CPS_START to jump to when true
673  * ->next holds the OP_CPS_START to jump to when false
674  */
675 #define OP_CPS_CALL      92  /* an uncontional branch that will return */
676 /* For OP_CPS_CALL instructions
677  * RHS(x) holds argument x of the function
678  * MISC(0) holds the OP_CPS_RET that returns from the branch
679  * TARG(0) holds the branch target.
680  * ->next holds where the OP_CPS_RET will return to.
681  */
682 #define OP_CPS_RET       93
683 /* OP_CPS_RET conditionally calls one of two continuations 
684  * RHS(0) holds the variable with the return function address
685  * RHS(x + 1) holds argument x of the function
686  * The branch target may be any OP_CPS_START
687  */
688 #define OP_CPS_END       94
689 /* OP_CPS_END is the triple at the end of the program.
690  * For most practical purposes it is a branch.
691  */
692 #define OP_CPS_START     95
693 /* OP_CPS_START is a triple at the start of a continuation
694  * The arguments variables takes N registers to contain.
695  * LHS(0..N-1) refer to an OP_PIECE triple that represents
696  * the Xth register that the arguments are stored in.
697  */
698 #endif
699
700 /* Architecture specific instructions */
701 #define OP_CMP         100
702 #define OP_TEST        101
703 #define OP_SET_EQ      102
704 #define OP_SET_NOTEQ   103
705 #define OP_SET_SLESS   104
706 #define OP_SET_ULESS   105
707 #define OP_SET_SMORE   106
708 #define OP_SET_UMORE   107
709 #define OP_SET_SLESSEQ 108
710 #define OP_SET_ULESSEQ 109
711 #define OP_SET_SMOREEQ 110
712 #define OP_SET_UMOREEQ 111
713
714 #define OP_JMP         112
715 #define OP_JMP_EQ      113
716 #define OP_JMP_NOTEQ   114
717 #define OP_JMP_SLESS   115
718 #define OP_JMP_ULESS   116
719 #define OP_JMP_SMORE   117
720 #define OP_JMP_UMORE   118
721 #define OP_JMP_SLESSEQ 119
722 #define OP_JMP_ULESSEQ 120
723 #define OP_JMP_SMOREEQ 121
724 #define OP_JMP_UMOREEQ 122
725
726 /* Builtin operators that it is just simpler to use the compiler for */
727 #define OP_INB         130
728 #define OP_INW         131
729 #define OP_INL         132
730 #define OP_OUTB        133
731 #define OP_OUTW        134
732 #define OP_OUTL        135
733 #define OP_BSF         136
734 #define OP_BSR         137
735 #define OP_RDMSR       138
736 #define OP_WRMSR       139
737 #define OP_HLT         140
738
739 struct op_info {
740         const char *name;
741         unsigned flags;
742 #define PURE       0x001 /* Triple has no side effects */
743 #define IMPURE     0x002 /* Triple has side effects */
744 #define PURE_BITS(FLAGS) ((FLAGS) & 0x3)
745 #define DEF        0x004 /* Triple is a variable definition */
746 #define BLOCK      0x008 /* Triple stores the current block */
747 #define STRUCTURAL 0x010 /* Triple does not generate a machine instruction */
748 #define BRANCH_BITS(FLAGS) ((FLAGS) & 0xe0 )
749 #define UBRANCH    0x020 /* Triple is an unconditional branch instruction */
750 #define CBRANCH    0x040 /* Triple is a conditional branch instruction */
751 #define RETBRANCH  0x060 /* Triple is a return instruction */
752 #define CALLBRANCH 0x080 /* Triple is a call instruction */
753 #define ENDBRANCH  0x0a0 /* Triple is an end instruction */
754 #define PART       0x100 /* Triple is really part of another triple */
755 #define BITFIELD   0x200 /* Triple manipulates a bitfield */
756         signed char lhs, rhs, misc, targ;
757 };
758
759 #define OP(LHS, RHS, MISC, TARG, FLAGS, NAME) { \
760         .name = (NAME), \
761         .flags = (FLAGS), \
762         .lhs = (LHS), \
763         .rhs = (RHS), \
764         .misc = (MISC), \
765         .targ = (TARG), \
766          }
767 static const struct op_info table_ops[] = {
768 [OP_SDIVT      ] = OP( 2,  2, 0, 0, PURE | BLOCK , "sdivt"),
769 [OP_UDIVT      ] = OP( 2,  2, 0, 0, PURE | BLOCK , "udivt"),
770 [OP_SMUL       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smul"),
771 [OP_UMUL       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umul"),
772 [OP_SDIV       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sdiv"),
773 [OP_UDIV       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "udiv"),
774 [OP_SMOD       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smod"),
775 [OP_UMOD       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umod"),
776 [OP_ADD        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "add"),
777 [OP_SUB        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sub"),
778 [OP_SL         ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sl"),
779 [OP_USR        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "usr"),
780 [OP_SSR        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "ssr"),
781 [OP_AND        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "and"),
782 [OP_XOR        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "xor"),
783 [OP_OR         ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "or"),
784 [OP_POS        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "pos"),
785 [OP_NEG        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "neg"),
786 [OP_INVERT     ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "invert"),
787
788 [OP_EQ         ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "eq"),
789 [OP_NOTEQ      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "noteq"),
790 [OP_SLESS      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sless"),
791 [OP_ULESS      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "uless"),
792 [OP_SMORE      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smore"),
793 [OP_UMORE      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umore"),
794 [OP_SLESSEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "slesseq"),
795 [OP_ULESSEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "ulesseq"),
796 [OP_SMOREEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smoreeq"),
797 [OP_UMOREEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umoreeq"),
798 [OP_LFALSE     ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "lfalse"),
799 [OP_LTRUE      ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "ltrue"),
800
801 [OP_LOAD       ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "load"),
802 [OP_STORE      ] = OP( 0,  2, 0, 0, PURE | BLOCK , "store"),
803
804 [OP_UEXTRACT   ] = OP( 0,  1, 0, 0, PURE | DEF | BITFIELD, "uextract"),
805 [OP_SEXTRACT   ] = OP( 0,  1, 0, 0, PURE | DEF | BITFIELD, "sextract"),
806 [OP_DEPOSIT    ] = OP( 0,  2, 0, 0, PURE | DEF | BITFIELD, "deposit"),
807
808 [OP_NOOP       ] = OP( 0,  0, 0, 0, PURE | BLOCK | STRUCTURAL, "noop"),
809
810 [OP_INTCONST   ] = OP( 0,  0, 0, 0, PURE | DEF, "intconst"),
811 [OP_BLOBCONST  ] = OP( 0,  0, 0, 0, PURE , "blobconst"),
812 [OP_ADDRCONST  ] = OP( 0,  0, 1, 0, PURE | DEF, "addrconst"),
813 [OP_UNKNOWNVAL ] = OP( 0,  0, 0, 0, PURE | DEF, "unknown"),
814
815 #if DEBUG_ROMCC_WARNINGS
816 #warning "FIXME is it correct for OP_WRITE to be a def?  I currently use it as one..."
817 #endif
818 [OP_WRITE      ] = OP( 0,  1, 1, 0, PURE | DEF | BLOCK, "write"),
819 [OP_READ       ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "read"),
820 [OP_COPY       ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "copy"),
821 [OP_CONVERT    ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "convert"),
822 [OP_PIECE      ] = OP( 0,  0, 1, 0, PURE | DEF | STRUCTURAL | PART, "piece"),
823 [OP_ASM        ] = OP(-1, -1, 0, 0, PURE, "asm"),
824 [OP_DEREF      ] = OP( 0,  1, 0, 0, 0 | DEF | BLOCK, "deref"), 
825 [OP_DOT        ] = OP( 0,  0, 1, 0, PURE | DEF | PART, "dot"),
826 [OP_INDEX      ] = OP( 0,  0, 1, 0, PURE | DEF | PART, "index"),
827
828 [OP_VAL        ] = OP( 0,  1, 1, 0, 0 | DEF | BLOCK, "val"),
829 [OP_TUPLE      ] = OP(-1,  0, 0, 0, 0 | PURE | BLOCK | STRUCTURAL, "tuple"),
830 [OP_BITREF     ] = OP( 0,  1, 0, 0, 0 | DEF | PURE | STRUCTURAL | BITFIELD, "bitref"),
831 /* Call is special most it can stand in for anything so it depends on context */
832 [OP_FCALL      ] = OP( 0, -1, 1, 0, 0 | BLOCK | CALLBRANCH, "fcall"),
833 [OP_PROG       ] = OP( 0,  1, 0, 0, 0 | IMPURE | BLOCK | STRUCTURAL, "prog"),
834 /* The sizes of OP_FCALL depends upon context */
835
836 [OP_LIST       ] = OP( 0,  1, 1, 0, 0 | DEF | STRUCTURAL, "list"),
837 [OP_BRANCH     ] = OP( 0,  0, 0, 1, PURE | BLOCK | UBRANCH, "branch"),
838 [OP_CBRANCH    ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "cbranch"),
839 [OP_CALL       ] = OP( 0,  0, 1, 1, PURE | BLOCK | CALLBRANCH, "call"),
840 [OP_RET        ] = OP( 0,  1, 0, 0, PURE | BLOCK | RETBRANCH, "ret"),
841 [OP_LABEL      ] = OP( 0,  0, 0, 0, PURE | BLOCK | STRUCTURAL, "label"),
842 [OP_ADECL      ] = OP( 0,  0, 0, 0, PURE | BLOCK | STRUCTURAL, "adecl"),
843 [OP_SDECL      ] = OP( 0,  0, 1, 0, PURE | BLOCK | STRUCTURAL, "sdecl"),
844 /* The number of RHS elements of OP_PHI depend upon context */
845 [OP_PHI        ] = OP( 0, -1, 1, 0, PURE | DEF | BLOCK, "phi"),
846
847 #if 0
848 [OP_CPS_BRANCH ] = OP( 0, -1, 0, 1, PURE | BLOCK | UBRANCH,     "cps_branch"),
849 [OP_CPS_CBRANCH] = OP( 0, -1, 0, 1, PURE | BLOCK | CBRANCH,     "cps_cbranch"),
850 [OP_CPS_CALL   ] = OP( 0, -1, 1, 1, PURE | BLOCK | CALLBRANCH,  "cps_call"),
851 [OP_CPS_RET    ] = OP( 0, -1, 0, 0, PURE | BLOCK | RETBRANCH,   "cps_ret"),
852 [OP_CPS_END    ] = OP( 0, -1, 0, 0, IMPURE | BLOCK | ENDBRANCH, "cps_end"),
853 [OP_CPS_START  ] = OP( -1, 0, 0, 0, PURE | BLOCK | STRUCTURAL,  "cps_start"),
854 #endif
855
856 [OP_CMP        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK, "cmp"),
857 [OP_TEST       ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "test"),
858 [OP_SET_EQ     ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_eq"),
859 [OP_SET_NOTEQ  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_noteq"),
860 [OP_SET_SLESS  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_sless"),
861 [OP_SET_ULESS  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_uless"),
862 [OP_SET_SMORE  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_smore"),
863 [OP_SET_UMORE  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_umore"),
864 [OP_SET_SLESSEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_slesseq"),
865 [OP_SET_ULESSEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_ulesseq"),
866 [OP_SET_SMOREEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_smoreq"),
867 [OP_SET_UMOREEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_umoreq"),
868 [OP_JMP        ] = OP( 0,  0, 0, 1, PURE | BLOCK | UBRANCH, "jmp"),
869 [OP_JMP_EQ     ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_eq"),
870 [OP_JMP_NOTEQ  ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_noteq"),
871 [OP_JMP_SLESS  ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_sless"),
872 [OP_JMP_ULESS  ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_uless"),
873 [OP_JMP_SMORE  ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_smore"),
874 [OP_JMP_UMORE  ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_umore"),
875 [OP_JMP_SLESSEQ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_slesseq"),
876 [OP_JMP_ULESSEQ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_ulesseq"),
877 [OP_JMP_SMOREEQ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_smoreq"),
878 [OP_JMP_UMOREEQ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_umoreq"),
879
880 [OP_INB        ] = OP( 0,  1, 0, 0, IMPURE | DEF | BLOCK, "__inb"),
881 [OP_INW        ] = OP( 0,  1, 0, 0, IMPURE | DEF | BLOCK, "__inw"),
882 [OP_INL        ] = OP( 0,  1, 0, 0, IMPURE | DEF | BLOCK, "__inl"),
883 [OP_OUTB       ] = OP( 0,  2, 0, 0, IMPURE| BLOCK, "__outb"),
884 [OP_OUTW       ] = OP( 0,  2, 0, 0, IMPURE| BLOCK, "__outw"),
885 [OP_OUTL       ] = OP( 0,  2, 0, 0, IMPURE| BLOCK, "__outl"),
886 [OP_BSF        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "__bsf"),
887 [OP_BSR        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "__bsr"),
888 [OP_RDMSR      ] = OP( 2,  1, 0, 0, IMPURE | BLOCK, "__rdmsr"),
889 [OP_WRMSR      ] = OP( 0,  3, 0, 0, IMPURE | BLOCK, "__wrmsr"),
890 [OP_HLT        ] = OP( 0,  0, 0, 0, IMPURE | BLOCK, "__hlt"),
891 };
892 #undef OP
893 #define OP_MAX      (sizeof(table_ops)/sizeof(table_ops[0]))
894
895 static const char *tops(int index) 
896 {
897         static const char unknown[] = "unknown op";
898         if (index < 0) {
899                 return unknown;
900         }
901         if (index > OP_MAX) {
902                 return unknown;
903         }
904         return table_ops[index].name;
905 }
906
907 struct asm_info;
908 struct triple;
909 struct block;
910 struct triple_set {
911         struct triple_set *next;
912         struct triple *member;
913 };
914
915 #define MAX_LHS  63
916 #define MAX_RHS  127
917 #define MAX_MISC 3
918 #define MAX_TARG 1
919
920 struct occurance {
921         int count;
922         const char *filename;
923         const char *function;
924         int line;
925         int col;
926         struct occurance *parent;
927 };
928 struct bitfield {
929         ulong_t size : 8;
930         ulong_t offset : 24;
931 };
932 struct triple {
933         struct triple *next, *prev;
934         struct triple_set *use;
935         struct type *type;
936         unsigned int op : 8;
937         unsigned int template_id : 7;
938         unsigned int lhs  : 6;
939         unsigned int rhs  : 7;
940         unsigned int misc : 2;
941         unsigned int targ : 1;
942 #define TRIPLE_SIZE(TRIPLE) \
943         ((TRIPLE)->lhs + (TRIPLE)->rhs + (TRIPLE)->misc + (TRIPLE)->targ)
944 #define TRIPLE_LHS_OFF(PTR)  (0)
945 #define TRIPLE_RHS_OFF(PTR)  (TRIPLE_LHS_OFF(PTR) + (PTR)->lhs)
946 #define TRIPLE_MISC_OFF(PTR) (TRIPLE_RHS_OFF(PTR) + (PTR)->rhs)
947 #define TRIPLE_TARG_OFF(PTR) (TRIPLE_MISC_OFF(PTR) + (PTR)->misc)
948 #define LHS(PTR,INDEX) ((PTR)->param[TRIPLE_LHS_OFF(PTR) + (INDEX)])
949 #define RHS(PTR,INDEX) ((PTR)->param[TRIPLE_RHS_OFF(PTR) + (INDEX)])
950 #define TARG(PTR,INDEX) ((PTR)->param[TRIPLE_TARG_OFF(PTR) + (INDEX)])
951 #define MISC(PTR,INDEX) ((PTR)->param[TRIPLE_MISC_OFF(PTR) + (INDEX)])
952         unsigned id; /* A scratch value and finally the register */
953 #define TRIPLE_FLAG_FLATTENED   (1 << 31)
954 #define TRIPLE_FLAG_PRE_SPLIT   (1 << 30)
955 #define TRIPLE_FLAG_POST_SPLIT  (1 << 29)
956 #define TRIPLE_FLAG_VOLATILE    (1 << 28)
957 #define TRIPLE_FLAG_INLINE      (1 << 27) /* ???? */
958 #define TRIPLE_FLAG_LOCAL       (1 << 26)
959
960 #define TRIPLE_FLAG_COPY TRIPLE_FLAG_VOLATILE
961         struct occurance *occurance;
962         union {
963                 ulong_t cval;
964                 struct bitfield bitfield;
965                 struct block  *block;
966                 void *blob;
967                 struct hash_entry *field;
968                 struct asm_info *ainfo;
969                 struct triple *func;
970                 struct symbol *symbol;
971         } u;
972         struct triple *param[2];
973 };
974
975 struct reg_info {
976         unsigned reg;
977         unsigned regcm;
978 };
979 struct ins_template {
980         struct reg_info lhs[MAX_LHS + 1], rhs[MAX_RHS + 1];
981 };
982
983 struct asm_info {
984         struct ins_template tmpl;
985         char *str;
986 };
987
988 struct block_set {
989         struct block_set *next;
990         struct block *member;
991 };
992 struct block {
993         struct block *work_next;
994         struct triple *first, *last;
995         int edge_count;
996         struct block_set *edges;
997         int users;
998         struct block_set *use;
999         struct block_set *idominates;
1000         struct block_set *domfrontier;
1001         struct block *idom;
1002         struct block_set *ipdominates;
1003         struct block_set *ipdomfrontier;
1004         struct block *ipdom;
1005         int vertex;
1006         
1007 };
1008
1009 struct symbol {
1010         struct symbol *next;
1011         struct hash_entry *ident;
1012         struct triple *def;
1013         struct type *type;
1014         int scope_depth;
1015 };
1016
1017 struct macro_arg {
1018         struct macro_arg *next;
1019         struct hash_entry *ident;
1020 };
1021 struct macro {
1022         struct hash_entry *ident;
1023         const char *buf;
1024         int buf_len;
1025         struct macro_arg *args;
1026         int argc;
1027 };
1028
1029 struct hash_entry {
1030         struct hash_entry *next;
1031         const char *name;
1032         int name_len;
1033         int tok;
1034         struct macro *sym_define;
1035         struct symbol *sym_label;
1036         struct symbol *sym_tag;
1037         struct symbol *sym_ident;
1038 };
1039
1040 #define HASH_TABLE_SIZE 2048
1041
1042 struct compiler_state {
1043         const char *label_prefix;
1044         const char *ofilename;
1045         unsigned long flags;
1046         unsigned long debug;
1047         unsigned long max_allocation_passes;
1048
1049         size_t include_path_count;
1050         const char **include_paths;
1051
1052         size_t define_count;
1053         const char **defines;
1054
1055         size_t undef_count;
1056         const char **undefs;
1057 };
1058 struct arch_state {
1059         unsigned long features;
1060 };
1061 struct basic_blocks {
1062         struct triple *func;
1063         struct triple *first;
1064         struct block *first_block, *last_block;
1065         int last_vertex;
1066 };
1067 #define MAX_PP_IF_DEPTH 63
1068 struct compile_state {
1069         struct compiler_state *compiler;
1070         struct arch_state *arch;
1071         FILE *output;
1072         FILE *errout;
1073         FILE *dbgout;
1074         struct file_state *file;
1075         struct occurance *last_occurance;
1076         const char *function;
1077         int    token_base;
1078         struct token token[6];
1079         struct hash_entry *hash_table[HASH_TABLE_SIZE];
1080         struct hash_entry *i_switch;
1081         struct hash_entry *i_case;
1082         struct hash_entry *i_continue;
1083         struct hash_entry *i_break;
1084         struct hash_entry *i_default;
1085         struct hash_entry *i_return;
1086         struct hash_entry *i_noreturn;
1087         /* Additional hash entries for predefined macros */
1088         struct hash_entry *i_defined;
1089         struct hash_entry *i___VA_ARGS__;
1090         struct hash_entry *i___FILE__;
1091         struct hash_entry *i___LINE__;
1092         /* Additional hash entries for predefined identifiers */
1093         struct hash_entry *i___func__;
1094         /* Additional hash entries for attributes */
1095         struct hash_entry *i_noinline;
1096         struct hash_entry *i_always_inline;
1097         int scope_depth;
1098         unsigned char if_bytes[(MAX_PP_IF_DEPTH + CHAR_BIT -1)/CHAR_BIT];
1099         int if_depth;
1100         int eat_depth, eat_targ;
1101         struct file_state *macro_file;
1102         struct triple *functions;
1103         struct triple *main_function;
1104         struct triple *first;
1105         struct triple *global_pool;
1106         struct basic_blocks bb;
1107         int functions_joined;
1108 };
1109
1110 /* visibility global/local */
1111 /* static/auto duration */
1112 /* typedef, register, inline */
1113 #define STOR_SHIFT         0
1114 #define STOR_MASK     0x001f
1115 /* Visibility */
1116 #define STOR_GLOBAL   0x0001
1117 /* Duration */
1118 #define STOR_PERM     0x0002
1119 /* Definition locality */
1120 #define STOR_NONLOCAL 0x0004  /* The definition is not in this translation unit */
1121 /* Storage specifiers */
1122 #define STOR_AUTO     0x0000
1123 #define STOR_STATIC   0x0002
1124 #define STOR_LOCAL    0x0003
1125 #define STOR_EXTERN   0x0007
1126 #define STOR_INLINE   0x0008
1127 #define STOR_REGISTER 0x0010
1128 #define STOR_TYPEDEF  0x0018
1129
1130 #define QUAL_SHIFT         5
1131 #define QUAL_MASK     0x00e0
1132 #define QUAL_NONE     0x0000
1133 #define QUAL_CONST    0x0020
1134 #define QUAL_VOLATILE 0x0040
1135 #define QUAL_RESTRICT 0x0080
1136
1137 #define TYPE_SHIFT         8
1138 #define TYPE_MASK     0x1f00
1139 #define TYPE_INTEGER(TYPE)    ((((TYPE) >= TYPE_CHAR) && ((TYPE) <= TYPE_ULLONG)) || ((TYPE) == TYPE_ENUM) || ((TYPE) == TYPE_BITFIELD))
1140 #define TYPE_ARITHMETIC(TYPE) ((((TYPE) >= TYPE_CHAR) && ((TYPE) <= TYPE_LDOUBLE)) || ((TYPE) == TYPE_ENUM) || ((TYPE) == TYPE_BITFIELD))
1141 #define TYPE_UNSIGNED(TYPE)   ((TYPE) & 0x0100)
1142 #define TYPE_SIGNED(TYPE)     (!TYPE_UNSIGNED(TYPE))
1143 #define TYPE_MKUNSIGNED(TYPE) (((TYPE) & ~0xF000) | 0x0100)
1144 #define TYPE_RANK(TYPE)       ((TYPE) & ~0xF1FF)
1145 #define TYPE_PTR(TYPE)        (((TYPE) & TYPE_MASK) == TYPE_POINTER)
1146 #define TYPE_DEFAULT  0x0000
1147 #define TYPE_VOID     0x0100
1148 #define TYPE_CHAR     0x0200
1149 #define TYPE_UCHAR    0x0300
1150 #define TYPE_SHORT    0x0400
1151 #define TYPE_USHORT   0x0500
1152 #define TYPE_INT      0x0600
1153 #define TYPE_UINT     0x0700
1154 #define TYPE_LONG     0x0800
1155 #define TYPE_ULONG    0x0900
1156 #define TYPE_LLONG    0x0a00 /* long long */
1157 #define TYPE_ULLONG   0x0b00
1158 #define TYPE_FLOAT    0x0c00
1159 #define TYPE_DOUBLE   0x0d00
1160 #define TYPE_LDOUBLE  0x0e00 /* long double */
1161
1162 /* Note: TYPE_ENUM is chosen very carefully so TYPE_RANK works */
1163 #define TYPE_ENUM     0x1600
1164 #define TYPE_LIST     0x1700
1165 /* TYPE_LIST is a basic building block when defining enumerations
1166  * type->field_ident holds the name of this enumeration entry.
1167  * type->right holds the entry in the list.
1168  */
1169
1170 #define TYPE_STRUCT   0x1000
1171 /* For TYPE_STRUCT
1172  * type->left holds the link list of TYPE_PRODUCT entries that
1173  * make up the structure.
1174  * type->elements hold the length of the linked list
1175  */
1176 #define TYPE_UNION    0x1100
1177 /* For TYPE_UNION
1178  * type->left holds the link list of TYPE_OVERLAP entries that
1179  * make up the union.
1180  * type->elements hold the length of the linked list
1181  */
1182 #define TYPE_POINTER  0x1200 
1183 /* For TYPE_POINTER:
1184  * type->left holds the type pointed to.
1185  */
1186 #define TYPE_FUNCTION 0x1300 
1187 /* For TYPE_FUNCTION:
1188  * type->left holds the return type.
1189  * type->right holds the type of the arguments
1190  * type->elements holds the count of the arguments
1191  */
1192 #define TYPE_PRODUCT  0x1400
1193 /* TYPE_PRODUCT is a basic building block when defining structures
1194  * type->left holds the type that appears first in memory.
1195  * type->right holds the type that appears next in memory.
1196  */
1197 #define TYPE_OVERLAP  0x1500
1198 /* TYPE_OVERLAP is a basic building block when defining unions
1199  * type->left and type->right holds to types that overlap
1200  * each other in memory.
1201  */
1202 #define TYPE_ARRAY    0x1800
1203 /* TYPE_ARRAY is a basic building block when definitng arrays.
1204  * type->left holds the type we are an array of.
1205  * type->elements holds the number of elements.
1206  */
1207 #define TYPE_TUPLE    0x1900
1208 /* TYPE_TUPLE is a basic building block when defining 
1209  * positionally reference type conglomerations. (i.e. closures)
1210  * In essence it is a wrapper for TYPE_PRODUCT, like TYPE_STRUCT
1211  * except it has no field names.
1212  * type->left holds the liked list of TYPE_PRODUCT entries that
1213  * make up the closure type.
1214  * type->elements hold the number of elements in the closure.
1215  */
1216 #define TYPE_JOIN     0x1a00
1217 /* TYPE_JOIN is a basic building block when defining 
1218  * positionally reference type conglomerations. (i.e. closures)
1219  * In essence it is a wrapper for TYPE_OVERLAP, like TYPE_UNION
1220  * except it has no field names.
1221  * type->left holds the liked list of TYPE_OVERLAP entries that
1222  * make up the closure type.
1223  * type->elements hold the number of elements in the closure.
1224  */
1225 #define TYPE_BITFIELD 0x1b00
1226 /* TYPE_BITFIED is the type of a bitfield.
1227  * type->left holds the type basic type TYPE_BITFIELD is derived from.
1228  * type->elements holds the number of bits in the bitfield.
1229  */
1230 #define TYPE_UNKNOWN  0x1c00
1231 /* TYPE_UNKNOWN is the type of an unknown value.
1232  * Used on unknown consts and other places where I don't know the type.
1233  */
1234
1235 #define ATTRIB_SHIFT                 16
1236 #define ATTRIB_MASK          0xffff0000
1237 #define ATTRIB_NOINLINE      0x00010000
1238 #define ATTRIB_ALWAYS_INLINE 0x00020000
1239
1240 #define ELEMENT_COUNT_UNSPECIFIED ULONG_T_MAX
1241
1242 struct type {
1243         unsigned int type;
1244         struct type *left, *right;
1245         ulong_t elements;
1246         struct hash_entry *field_ident;
1247         struct hash_entry *type_ident;
1248 };
1249
1250 #define TEMPLATE_BITS      7
1251 #define MAX_TEMPLATES      (1<<TEMPLATE_BITS)
1252 #define MAX_REG_EQUIVS     16
1253 #define MAX_REGC           14
1254 #define MAX_REGISTERS      75
1255 #define REGISTER_BITS      7
1256 #define MAX_VIRT_REGISTERS (1<<REGISTER_BITS)
1257 #define REG_ERROR          0
1258 #define REG_UNSET          1
1259 #define REG_UNNEEDED       2
1260 #define REG_VIRT0          (MAX_REGISTERS + 0)
1261 #define REG_VIRT1          (MAX_REGISTERS + 1)
1262 #define REG_VIRT2          (MAX_REGISTERS + 2)
1263 #define REG_VIRT3          (MAX_REGISTERS + 3)
1264 #define REG_VIRT4          (MAX_REGISTERS + 4)
1265 #define REG_VIRT5          (MAX_REGISTERS + 5)
1266 #define REG_VIRT6          (MAX_REGISTERS + 6)
1267 #define REG_VIRT7          (MAX_REGISTERS + 7)
1268 #define REG_VIRT8          (MAX_REGISTERS + 8)
1269 #define REG_VIRT9          (MAX_REGISTERS + 9)
1270
1271 #if (MAX_REGISTERS + 9) > MAX_VIRT_REGISTERS
1272 #error "MAX_VIRT_REGISTERS to small"
1273 #endif
1274 #if (MAX_REGC + REGISTER_BITS) >= 26
1275 #error "Too many id bits used"
1276 #endif
1277
1278 /* Provision for 8 register classes */
1279 #define REG_SHIFT  0
1280 #define REGC_SHIFT REGISTER_BITS
1281 #define REGC_MASK (((1 << MAX_REGC) - 1) << REGISTER_BITS)
1282 #define REG_MASK (MAX_VIRT_REGISTERS -1)
1283 #define ID_REG(ID)              ((ID) & REG_MASK)
1284 #define SET_REG(ID, REG)        ((ID) = (((ID) & ~REG_MASK) | ((REG) & REG_MASK)))
1285 #define ID_REGCM(ID)            (((ID) & REGC_MASK) >> REGC_SHIFT)
1286 #define SET_REGCM(ID, REGCM)    ((ID) = (((ID) & ~REGC_MASK) | (((REGCM) << REGC_SHIFT) & REGC_MASK)))
1287 #define SET_INFO(ID, INFO)      ((ID) = (((ID) & ~(REG_MASK | REGC_MASK)) | \
1288                 (((INFO).reg) & REG_MASK) | ((((INFO).regcm) << REGC_SHIFT) & REGC_MASK)))
1289
1290 #define ARCH_INPUT_REGS 4
1291 #define ARCH_OUTPUT_REGS 4
1292
1293 static const struct reg_info arch_input_regs[ARCH_INPUT_REGS];
1294 static const struct reg_info arch_output_regs[ARCH_OUTPUT_REGS];
1295 static unsigned arch_reg_regcm(struct compile_state *state, int reg);
1296 static unsigned arch_regcm_normalize(struct compile_state *state, unsigned regcm);
1297 static unsigned arch_regcm_reg_normalize(struct compile_state *state, unsigned regcm);
1298 static void arch_reg_equivs(
1299         struct compile_state *state, unsigned *equiv, int reg);
1300 static int arch_select_free_register(
1301         struct compile_state *state, char *used, int classes);
1302 static unsigned arch_regc_size(struct compile_state *state, int class);
1303 static int arch_regcm_intersect(unsigned regcm1, unsigned regcm2);
1304 static unsigned arch_type_to_regcm(struct compile_state *state, struct type *type);
1305 static const char *arch_reg_str(int reg);
1306 static struct reg_info arch_reg_constraint(
1307         struct compile_state *state, struct type *type, const char *constraint);
1308 static struct reg_info arch_reg_clobber(
1309         struct compile_state *state, const char *clobber);
1310 static struct reg_info arch_reg_lhs(struct compile_state *state, 
1311         struct triple *ins, int index);
1312 static struct reg_info arch_reg_rhs(struct compile_state *state, 
1313         struct triple *ins, int index);
1314 static int arch_reg_size(int reg);
1315 static struct triple *transform_to_arch_instruction(
1316         struct compile_state *state, struct triple *ins);
1317 static struct triple *flatten(
1318         struct compile_state *state, struct triple *first, struct triple *ptr);
1319 static void print_dominators(struct compile_state *state,
1320         FILE *fp, struct basic_blocks *bb);
1321 static void print_dominance_frontiers(struct compile_state *state,
1322         FILE *fp, struct basic_blocks *bb);
1323
1324
1325
1326 #define DEBUG_ABORT_ON_ERROR    0x00000001
1327 #define DEBUG_BASIC_BLOCKS      0x00000002
1328 #define DEBUG_FDOMINATORS       0x00000004
1329 #define DEBUG_RDOMINATORS       0x00000008
1330 #define DEBUG_TRIPLES           0x00000010
1331 #define DEBUG_INTERFERENCE      0x00000020
1332 #define DEBUG_SCC_TRANSFORM     0x00000040
1333 #define DEBUG_SCC_TRANSFORM2    0x00000080
1334 #define DEBUG_REBUILD_SSA_FORM  0x00000100
1335 #define DEBUG_INLINE            0x00000200
1336 #define DEBUG_RANGE_CONFLICTS   0x00000400
1337 #define DEBUG_RANGE_CONFLICTS2  0x00000800
1338 #define DEBUG_COLOR_GRAPH       0x00001000
1339 #define DEBUG_COLOR_GRAPH2      0x00002000
1340 #define DEBUG_COALESCING        0x00004000
1341 #define DEBUG_COALESCING2       0x00008000
1342 #define DEBUG_VERIFICATION      0x00010000
1343 #define DEBUG_CALLS             0x00020000
1344 #define DEBUG_CALLS2            0x00040000
1345 #define DEBUG_TOKENS            0x80000000
1346
1347 #define DEBUG_DEFAULT ( \
1348         DEBUG_ABORT_ON_ERROR | \
1349         DEBUG_BASIC_BLOCKS | \
1350         DEBUG_FDOMINATORS | \
1351         DEBUG_RDOMINATORS | \
1352         DEBUG_TRIPLES | \
1353         0 )
1354
1355 #define DEBUG_ALL ( \
1356         DEBUG_ABORT_ON_ERROR   | \
1357         DEBUG_BASIC_BLOCKS     | \
1358         DEBUG_FDOMINATORS      | \
1359         DEBUG_RDOMINATORS      | \
1360         DEBUG_TRIPLES          | \
1361         DEBUG_INTERFERENCE     | \
1362         DEBUG_SCC_TRANSFORM    | \
1363         DEBUG_SCC_TRANSFORM2   | \
1364         DEBUG_REBUILD_SSA_FORM | \
1365         DEBUG_INLINE           | \
1366         DEBUG_RANGE_CONFLICTS  | \
1367         DEBUG_RANGE_CONFLICTS2 | \
1368         DEBUG_COLOR_GRAPH      | \
1369         DEBUG_COLOR_GRAPH2     | \
1370         DEBUG_COALESCING       | \
1371         DEBUG_COALESCING2      | \
1372         DEBUG_VERIFICATION     | \
1373         DEBUG_CALLS            | \
1374         DEBUG_CALLS2           | \
1375         DEBUG_TOKENS           | \
1376         0 )
1377
1378 #define COMPILER_INLINE_MASK               0x00000007
1379 #define COMPILER_INLINE_ALWAYS             0x00000000
1380 #define COMPILER_INLINE_NEVER              0x00000001
1381 #define COMPILER_INLINE_DEFAULTON          0x00000002
1382 #define COMPILER_INLINE_DEFAULTOFF         0x00000003
1383 #define COMPILER_INLINE_NOPENALTY          0x00000004
1384 #define COMPILER_ELIMINATE_INEFECTUAL_CODE 0x00000008
1385 #define COMPILER_SIMPLIFY                  0x00000010
1386 #define COMPILER_SCC_TRANSFORM             0x00000020
1387 #define COMPILER_SIMPLIFY_OP               0x00000040
1388 #define COMPILER_SIMPLIFY_PHI              0x00000080
1389 #define COMPILER_SIMPLIFY_LABEL            0x00000100
1390 #define COMPILER_SIMPLIFY_BRANCH           0x00000200
1391 #define COMPILER_SIMPLIFY_COPY             0x00000400
1392 #define COMPILER_SIMPLIFY_ARITH            0x00000800
1393 #define COMPILER_SIMPLIFY_SHIFT            0x00001000
1394 #define COMPILER_SIMPLIFY_BITWISE          0x00002000
1395 #define COMPILER_SIMPLIFY_LOGICAL          0x00004000
1396 #define COMPILER_SIMPLIFY_BITFIELD         0x00008000
1397
1398 #define COMPILER_TRIGRAPHS                 0x40000000
1399 #define COMPILER_PP_ONLY                   0x80000000
1400
1401 #define COMPILER_DEFAULT_FLAGS ( \
1402         COMPILER_TRIGRAPHS | \
1403         COMPILER_ELIMINATE_INEFECTUAL_CODE | \
1404         COMPILER_INLINE_DEFAULTON | \
1405         COMPILER_SIMPLIFY_OP | \
1406         COMPILER_SIMPLIFY_PHI | \
1407         COMPILER_SIMPLIFY_LABEL | \
1408         COMPILER_SIMPLIFY_BRANCH | \
1409         COMPILER_SIMPLIFY_COPY | \
1410         COMPILER_SIMPLIFY_ARITH | \
1411         COMPILER_SIMPLIFY_SHIFT | \
1412         COMPILER_SIMPLIFY_BITWISE | \
1413         COMPILER_SIMPLIFY_LOGICAL | \
1414         COMPILER_SIMPLIFY_BITFIELD | \
1415         0 )
1416
1417 #define GLOBAL_SCOPE_DEPTH   1
1418 #define FUNCTION_SCOPE_DEPTH (GLOBAL_SCOPE_DEPTH + 1)
1419
1420 static void compile_file(struct compile_state *old_state, const char *filename, int local);
1421
1422
1423
1424 static void init_compiler_state(struct compiler_state *compiler)
1425 {
1426         memset(compiler, 0, sizeof(*compiler));
1427         compiler->label_prefix = "";
1428         compiler->ofilename = "auto.inc";
1429         compiler->flags = COMPILER_DEFAULT_FLAGS;
1430         compiler->debug = 0;
1431         compiler->max_allocation_passes = MAX_ALLOCATION_PASSES;
1432         compiler->include_path_count = 1;
1433         compiler->include_paths      = xcmalloc(sizeof(char *), "include_paths");
1434         compiler->define_count       = 1;
1435         compiler->defines            = xcmalloc(sizeof(char *), "defines");
1436         compiler->undef_count        = 1;
1437         compiler->undefs             = xcmalloc(sizeof(char *), "undefs");
1438 }
1439
1440 struct compiler_flag {
1441         const char *name;
1442         unsigned long flag;
1443 };
1444
1445 struct compiler_arg {
1446         const char *name;
1447         unsigned long mask;
1448         struct compiler_flag flags[16];
1449 };
1450
1451 static int set_flag(
1452         const struct compiler_flag *ptr, unsigned long *flags,
1453         int act, const char *flag)
1454 {
1455         int result = -1;
1456         for(; ptr->name; ptr++) {
1457                 if (strcmp(ptr->name, flag) == 0) {
1458                         break;
1459                 }
1460         }
1461         if (ptr->name) {
1462                 result = 0;
1463                 *flags &= ~(ptr->flag);
1464                 if (act) {
1465                         *flags |= ptr->flag;
1466                 }
1467         }
1468         return result;
1469 }
1470
1471 static int set_arg(
1472         const struct compiler_arg *ptr, unsigned long *flags, const char *arg)
1473 {
1474         const char *val;
1475         int result = -1;
1476         int len;
1477         val = strchr(arg, '=');
1478         if (val) {
1479                 len = val - arg;
1480                 val++;
1481                 for(; ptr->name; ptr++) {
1482                         if (strncmp(ptr->name, arg, len) == 0) {
1483                                 break;
1484                         }
1485                 }
1486                 if (ptr->name) {
1487                         *flags &= ~ptr->mask;
1488                         result = set_flag(&ptr->flags[0], flags, 1, val);
1489                 }
1490         }
1491         return result;
1492 }
1493         
1494
1495 static void flag_usage(FILE *fp, const struct compiler_flag *ptr, 
1496         const char *prefix, const char *invert_prefix)
1497 {
1498         for(;ptr->name; ptr++) {
1499                 fprintf(fp, "%s%s\n", prefix, ptr->name);
1500                 if (invert_prefix) {
1501                         fprintf(fp, "%s%s\n", invert_prefix, ptr->name);
1502                 }
1503         }
1504 }
1505
1506 static void arg_usage(FILE *fp, const struct compiler_arg *ptr,
1507         const char *prefix)
1508 {
1509         for(;ptr->name; ptr++) {
1510                 const struct compiler_flag *flag;
1511                 for(flag = &ptr->flags[0]; flag->name; flag++) {
1512                         fprintf(fp, "%s%s=%s\n", 
1513                                 prefix, ptr->name, flag->name);
1514                 }
1515         }
1516 }
1517
1518 static int append_string(size_t *max, const char ***vec, const char *str,
1519         const char *name)
1520 {
1521         size_t count;
1522         count = ++(*max);
1523         *vec = xrealloc(*vec, sizeof(char *)*count, "name");
1524         (*vec)[count -1] = 0;
1525         (*vec)[count -2] = str; 
1526         return 0;
1527 }
1528
1529 static void arg_error(char *fmt, ...);
1530 static const char *identifier(const char *str, const char *end);
1531
1532 static int append_include_path(struct compiler_state *compiler, const char *str)
1533 {
1534         int result;
1535         if (!exists(str, ".")) {
1536                 arg_error("Nonexistent include path: `%s'\n",
1537                         str);
1538         }
1539         result = append_string(&compiler->include_path_count,
1540                 &compiler->include_paths, str, "include_paths");
1541         return result;
1542 }
1543
1544 static int append_define(struct compiler_state *compiler, const char *str)
1545 {
1546         const char *end, *rest;
1547         int result;
1548
1549         end = strchr(str, '=');
1550         if (!end) {
1551                 end = str + strlen(str);
1552         }
1553         rest = identifier(str, end);
1554         if (rest != end) {
1555                 int len = end - str - 1;
1556                 arg_error("Invalid name cannot define macro: `%*.*s'\n", 
1557                         len, len, str);
1558         }
1559         result = append_string(&compiler->define_count,
1560                 &compiler->defines, str, "defines");
1561         return result;
1562 }
1563
1564 static int append_undef(struct compiler_state *compiler, const char *str)
1565 {
1566         const char *end, *rest;
1567         int result;
1568
1569         end = str + strlen(str);
1570         rest = identifier(str, end);
1571         if (rest != end) {
1572                 int len = end - str - 1;
1573                 arg_error("Invalid name cannot undefine macro: `%*.*s'\n", 
1574                         len, len, str);
1575         }
1576         result = append_string(&compiler->undef_count,
1577                 &compiler->undefs, str, "undefs");
1578         return result;
1579 }
1580
1581 static const struct compiler_flag romcc_flags[] = {
1582         { "trigraphs",                 COMPILER_TRIGRAPHS },
1583         { "pp-only",                   COMPILER_PP_ONLY },
1584         { "eliminate-inefectual-code", COMPILER_ELIMINATE_INEFECTUAL_CODE },
1585         { "simplify",                  COMPILER_SIMPLIFY },
1586         { "scc-transform",             COMPILER_SCC_TRANSFORM },
1587         { "simplify-op",               COMPILER_SIMPLIFY_OP },
1588         { "simplify-phi",              COMPILER_SIMPLIFY_PHI },
1589         { "simplify-label",            COMPILER_SIMPLIFY_LABEL },
1590         { "simplify-branch",           COMPILER_SIMPLIFY_BRANCH },
1591         { "simplify-copy",             COMPILER_SIMPLIFY_COPY },
1592         { "simplify-arith",            COMPILER_SIMPLIFY_ARITH },
1593         { "simplify-shift",            COMPILER_SIMPLIFY_SHIFT },
1594         { "simplify-bitwise",          COMPILER_SIMPLIFY_BITWISE },
1595         { "simplify-logical",          COMPILER_SIMPLIFY_LOGICAL },
1596         { "simplify-bitfield",         COMPILER_SIMPLIFY_BITFIELD },
1597         { 0, 0 },
1598 };
1599 static const struct compiler_arg romcc_args[] = {
1600         { "inline-policy",             COMPILER_INLINE_MASK,
1601                 {
1602                         { "always",      COMPILER_INLINE_ALWAYS, },
1603                         { "never",       COMPILER_INLINE_NEVER, },
1604                         { "defaulton",   COMPILER_INLINE_DEFAULTON, },
1605                         { "defaultoff",  COMPILER_INLINE_DEFAULTOFF, },
1606                         { "nopenalty",   COMPILER_INLINE_NOPENALTY, },
1607                         { 0, 0 },
1608                 },
1609         },
1610         { 0, 0 },
1611 };
1612 static const struct compiler_flag romcc_opt_flags[] = {
1613         { "-O",  COMPILER_SIMPLIFY },
1614         { "-O2", COMPILER_SIMPLIFY | COMPILER_SCC_TRANSFORM },
1615         { "-E",  COMPILER_PP_ONLY },
1616         { 0, 0, },
1617 };
1618 static const struct compiler_flag romcc_debug_flags[] = {
1619         { "all",                   DEBUG_ALL },
1620         { "abort-on-error",        DEBUG_ABORT_ON_ERROR },
1621         { "basic-blocks",          DEBUG_BASIC_BLOCKS },
1622         { "fdominators",           DEBUG_FDOMINATORS },
1623         { "rdominators",           DEBUG_RDOMINATORS },
1624         { "triples",               DEBUG_TRIPLES },
1625         { "interference",          DEBUG_INTERFERENCE },
1626         { "scc-transform",         DEBUG_SCC_TRANSFORM },
1627         { "scc-transform2",        DEBUG_SCC_TRANSFORM2 },
1628         { "rebuild-ssa-form",      DEBUG_REBUILD_SSA_FORM },
1629         { "inline",                DEBUG_INLINE },
1630         { "live-range-conflicts",  DEBUG_RANGE_CONFLICTS },
1631         { "live-range-conflicts2", DEBUG_RANGE_CONFLICTS2 },
1632         { "color-graph",           DEBUG_COLOR_GRAPH },
1633         { "color-graph2",          DEBUG_COLOR_GRAPH2 },
1634         { "coalescing",            DEBUG_COALESCING },
1635         { "coalescing2",           DEBUG_COALESCING2 },
1636         { "verification",          DEBUG_VERIFICATION },
1637         { "calls",                 DEBUG_CALLS },
1638         { "calls2",                DEBUG_CALLS2 },
1639         { "tokens",                DEBUG_TOKENS },
1640         { 0, 0 },
1641 };
1642
1643 static int compiler_encode_flag(
1644         struct compiler_state *compiler, const char *flag)
1645 {
1646         int act;
1647         int result;
1648
1649         act = 1;
1650         result = -1;
1651         if (strncmp(flag, "no-", 3) == 0) {
1652                 flag += 3;
1653                 act = 0;
1654         }
1655         if (strncmp(flag, "-O", 2) == 0) {
1656                 result = set_flag(romcc_opt_flags, &compiler->flags, act, flag);
1657         }
1658         else if (strncmp(flag, "-E", 2) == 0) {
1659                 result = set_flag(romcc_opt_flags, &compiler->flags, act, flag);
1660         }
1661         else if (strncmp(flag, "-I", 2) == 0) {
1662                 result = append_include_path(compiler, flag + 2);
1663         }
1664         else if (strncmp(flag, "-D", 2) == 0) {
1665                 result = append_define(compiler, flag + 2);
1666         }
1667         else if (strncmp(flag, "-U", 2) == 0) {
1668                 result = append_undef(compiler, flag + 2);
1669         }
1670         else if (act && strncmp(flag, "label-prefix=", 13) == 0) {
1671                 result = 0;
1672                 compiler->label_prefix = flag + 13;
1673         }
1674         else if (act && strncmp(flag, "max-allocation-passes=", 22) == 0) {
1675                 unsigned long max_passes;
1676                 char *end;
1677                 max_passes = strtoul(flag + 22, &end, 10);
1678                 if (end[0] == '\0') {
1679                         result = 0;
1680                         compiler->max_allocation_passes = max_passes;
1681                 }
1682         }
1683         else if (act && strcmp(flag, "debug") == 0) {
1684                 result = 0;
1685                 compiler->debug |= DEBUG_DEFAULT;
1686         }
1687         else if (strncmp(flag, "debug-", 6) == 0) {
1688                 flag += 6;
1689                 result = set_flag(romcc_debug_flags, &compiler->debug, act, flag);
1690         }
1691         else {
1692                 result = set_flag(romcc_flags, &compiler->flags, act, flag);
1693                 if (result < 0) {
1694                         result = set_arg(romcc_args, &compiler->flags, flag);
1695                 }
1696         }
1697         return result;
1698 }
1699
1700 static void compiler_usage(FILE *fp)
1701 {
1702         flag_usage(fp, romcc_opt_flags, "", 0);
1703         flag_usage(fp, romcc_flags, "-f", "-fno-");
1704         arg_usage(fp,  romcc_args, "-f");
1705         flag_usage(fp, romcc_debug_flags, "-fdebug-", "-fno-debug-");
1706         fprintf(fp, "-flabel-prefix=<prefix for assembly language labels>\n");
1707         fprintf(fp, "--label-prefix=<prefix for assembly language labels>\n");
1708         fprintf(fp, "-I<include path>\n");
1709         fprintf(fp, "-D<macro>[=defn]\n");
1710         fprintf(fp, "-U<macro>\n");
1711 }
1712
1713 static void do_cleanup(struct compile_state *state)
1714 {
1715         if (state->output) {
1716                 fclose(state->output);
1717                 unlink(state->compiler->ofilename);
1718                 state->output = 0;
1719         }
1720         if (state->dbgout) {
1721                 fflush(state->dbgout);
1722         }
1723         if (state->errout) {
1724                 fflush(state->errout);
1725         }
1726 }
1727
1728 static struct compile_state *exit_state;
1729 static void exit_cleanup(void)
1730 {
1731         if (exit_state) {
1732                 do_cleanup(exit_state);
1733         }
1734 }
1735
1736 static int get_col(struct file_state *file)
1737 {
1738         int col;
1739         const char *ptr, *end;
1740         ptr = file->line_start;
1741         end = file->pos;
1742         for(col = 0; ptr < end; ptr++) {
1743                 if (*ptr != '\t') {
1744                         col++;
1745                 } 
1746                 else {
1747                         col = (col & ~7) + 8;
1748                 }
1749         }
1750         return col;
1751 }
1752
1753 static void loc(FILE *fp, struct compile_state *state, struct triple *triple)
1754 {
1755         int col;
1756         if (triple && triple->occurance) {
1757                 struct occurance *spot;
1758                 for(spot = triple->occurance; spot; spot = spot->parent) {
1759                         fprintf(fp, "%s:%d.%d: ", 
1760                                 spot->filename, spot->line, spot->col);
1761                 }
1762                 return;
1763         }
1764         if (!state->file) {
1765                 return;
1766         }
1767         col = get_col(state->file);
1768         fprintf(fp, "%s:%d.%d: ", 
1769                 state->file->report_name, state->file->report_line, col);
1770 }
1771
1772 static void __attribute__ ((noreturn)) internal_error(struct compile_state *state, struct triple *ptr, 
1773         const char *fmt, ...)
1774 {
1775         FILE *fp = state->errout;
1776         va_list args;
1777         va_start(args, fmt);
1778         loc(fp, state, ptr);
1779         fputc('\n', fp);
1780         if (ptr) {
1781                 fprintf(fp, "%p %-10s ", ptr, tops(ptr->op));
1782         }
1783         fprintf(fp, "Internal compiler error: ");
1784         vfprintf(fp, fmt, args);
1785         fprintf(fp, "\n");
1786         va_end(args);
1787         do_cleanup(state);
1788         abort();
1789 }
1790
1791
1792 static void internal_warning(struct compile_state *state, struct triple *ptr, 
1793         const char *fmt, ...)
1794 {
1795         FILE *fp = state->errout;
1796         va_list args;
1797         va_start(args, fmt);
1798         loc(fp, state, ptr);
1799         if (ptr) {
1800                 fprintf(fp, "%p %-10s ", ptr, tops(ptr->op));
1801         }
1802         fprintf(fp, "Internal compiler warning: ");
1803         vfprintf(fp, fmt, args);
1804         fprintf(fp, "\n");
1805         va_end(args);
1806 }
1807
1808
1809
1810 static void __attribute__ ((noreturn)) error(struct compile_state *state, struct triple *ptr, 
1811         const char *fmt, ...)
1812 {
1813         FILE *fp = state->errout;
1814         va_list args;
1815         va_start(args, fmt);
1816         loc(fp, state, ptr);
1817         fputc('\n', fp);
1818         if (ptr && (state->compiler->debug & DEBUG_ABORT_ON_ERROR)) {
1819                 fprintf(fp, "%p %-10s ", ptr, tops(ptr->op));
1820         }
1821         vfprintf(fp, fmt, args);
1822         va_end(args);
1823         fprintf(fp, "\n");
1824         do_cleanup(state);
1825         if (state->compiler->debug & DEBUG_ABORT_ON_ERROR) {
1826                 abort();
1827         }
1828         exit(1);
1829 }
1830
1831 static void warning(struct compile_state *state, struct triple *ptr, 
1832         const char *fmt, ...)
1833 {
1834         FILE *fp = state->errout;
1835         va_list args;
1836         va_start(args, fmt);
1837         loc(fp, state, ptr);
1838         fprintf(fp, "warning: "); 
1839         if (ptr && (state->compiler->debug & DEBUG_ABORT_ON_ERROR)) {
1840                 fprintf(fp, "%p %-10s ", ptr, tops(ptr->op));
1841         }
1842         vfprintf(fp, fmt, args);
1843         fprintf(fp, "\n");
1844         va_end(args);
1845 }
1846
1847 #define FINISHME() warning(state, 0, "FINISHME @ %s.%s:%d", __FILE__, __func__, __LINE__)
1848
1849 static void valid_op(struct compile_state *state, int op)
1850 {
1851         char *fmt = "invalid op: %d";
1852         if (op >= OP_MAX) {
1853                 internal_error(state, 0, fmt, op);
1854         }
1855         if (op < 0) {
1856                 internal_error(state, 0, fmt, op);
1857         }
1858 }
1859
1860 static void valid_ins(struct compile_state *state, struct triple *ptr)
1861 {
1862         valid_op(state, ptr->op);
1863 }
1864
1865 #if DEBUG_ROMCC_WARNING
1866 static void valid_param_count(struct compile_state *state, struct triple *ins)
1867 {
1868         int lhs, rhs, misc, targ;
1869         valid_ins(state, ins);
1870         lhs  = table_ops[ins->op].lhs;
1871         rhs  = table_ops[ins->op].rhs;
1872         misc = table_ops[ins->op].misc;
1873         targ = table_ops[ins->op].targ;
1874
1875         if ((lhs >= 0) && (ins->lhs != lhs)) {
1876                 internal_error(state, ins, "Bad lhs count");
1877         }
1878         if ((rhs >= 0) && (ins->rhs != rhs)) {
1879                 internal_error(state, ins, "Bad rhs count");
1880         }
1881         if ((misc >= 0) && (ins->misc != misc)) {
1882                 internal_error(state, ins, "Bad misc count");
1883         }
1884         if ((targ >= 0) && (ins->targ != targ)) {
1885                 internal_error(state, ins, "Bad targ count");
1886         }
1887 }
1888 #endif
1889
1890 static struct type void_type;
1891 static struct type unknown_type;
1892 static void use_triple(struct triple *used, struct triple *user)
1893 {
1894         struct triple_set **ptr, *new;
1895         if (!used)
1896                 return;
1897         if (!user)
1898                 return;
1899         ptr = &used->use;
1900         while(*ptr) {
1901                 if ((*ptr)->member == user) {
1902                         return;
1903                 }
1904                 ptr = &(*ptr)->next;
1905         }
1906         /* Append new to the head of the list, 
1907          * copy_func and rename_block_variables
1908          * depends on this.
1909          */
1910         new = xcmalloc(sizeof(*new), "triple_set");
1911         new->member = user;
1912         new->next   = used->use;
1913         used->use   = new;
1914 }
1915
1916 static void unuse_triple(struct triple *used, struct triple *unuser)
1917 {
1918         struct triple_set *use, **ptr;
1919         if (!used) {
1920                 return;
1921         }
1922         ptr = &used->use;
1923         while(*ptr) {
1924                 use = *ptr;
1925                 if (use->member == unuser) {
1926                         *ptr = use->next;
1927                         xfree(use);
1928                 }
1929                 else {
1930                         ptr = &use->next;
1931                 }
1932         }
1933 }
1934
1935 static void put_occurance(struct occurance *occurance)
1936 {
1937         if (occurance) {
1938                 occurance->count -= 1;
1939                 if (occurance->count <= 0) {
1940                         if (occurance->parent) {
1941                                 put_occurance(occurance->parent);
1942                         }
1943                         xfree(occurance);
1944                 }
1945         }
1946 }
1947
1948 static void get_occurance(struct occurance *occurance)
1949 {
1950         if (occurance) {
1951                 occurance->count += 1;
1952         }
1953 }
1954
1955
1956 static struct occurance *new_occurance(struct compile_state *state)
1957 {
1958         struct occurance *result, *last;
1959         const char *filename;
1960         const char *function;
1961         int line, col;
1962
1963         function = "";
1964         filename = 0;
1965         line = 0;
1966         col  = 0;
1967         if (state->file) {
1968                 filename = state->file->report_name;
1969                 line     = state->file->report_line;
1970                 col      = get_col(state->file);
1971         }
1972         if (state->function) {
1973                 function = state->function;
1974         }
1975         last = state->last_occurance;
1976         if (last &&
1977                 (last->col == col) &&
1978                 (last->line == line) &&
1979                 (last->function == function) &&
1980                 ((last->filename == filename) ||
1981                         (strcmp(last->filename, filename) == 0))) 
1982         {
1983                 get_occurance(last);
1984                 return last;
1985         }
1986         if (last) {
1987                 state->last_occurance = 0;
1988                 put_occurance(last);
1989         }
1990         result = xmalloc(sizeof(*result), "occurance");
1991         result->count    = 2;
1992         result->filename = filename;
1993         result->function = function;
1994         result->line     = line;
1995         result->col      = col;
1996         result->parent   = 0;
1997         state->last_occurance = result;
1998         return result;
1999 }
2000
2001 static struct occurance *inline_occurance(struct compile_state *state,
2002         struct occurance *base, struct occurance *top)
2003 {
2004         struct occurance *result, *last;
2005         if (top->parent) {
2006                 internal_error(state, 0, "inlining an already inlined function?");
2007         }
2008         /* If I have a null base treat it that way */
2009         if ((base->parent == 0) &&
2010                 (base->col == 0) &&
2011                 (base->line == 0) &&
2012                 (base->function[0] == '\0') &&
2013                 (base->filename[0] == '\0')) {
2014                 base = 0;
2015         }
2016         /* See if I can reuse the last occurance I had */
2017         last = state->last_occurance;
2018         if (last &&
2019                 (last->parent   == base) &&
2020                 (last->col      == top->col) &&
2021                 (last->line     == top->line) &&
2022                 (last->function == top->function) &&
2023                 (last->filename == top->filename)) {
2024                 get_occurance(last);
2025                 return last;
2026         }
2027         /* I can't reuse the last occurance so free it */
2028         if (last) {
2029                 state->last_occurance = 0;
2030                 put_occurance(last);
2031         }
2032         /* Generate a new occurance structure */
2033         get_occurance(base);
2034         result = xmalloc(sizeof(*result), "occurance");
2035         result->count    = 2;
2036         result->filename = top->filename;
2037         result->function = top->function;
2038         result->line     = top->line;
2039         result->col      = top->col;
2040         result->parent   = base;
2041         state->last_occurance = result;
2042         return result;
2043 }
2044
2045 static struct occurance dummy_occurance = {
2046         .count    = 2,
2047         .filename = __FILE__,
2048         .function = "",
2049         .line     = __LINE__,
2050         .col      = 0,
2051         .parent   = 0,
2052 };
2053
2054 /* The undef triple is used as a place holder when we are removing pointers
2055  * from a triple.  Having allows certain sanity checks to pass even
2056  * when the original triple that was pointed to is gone.
2057  */
2058 static struct triple unknown_triple = {
2059         .next      = &unknown_triple,
2060         .prev      = &unknown_triple,
2061         .use       = 0,
2062         .op        = OP_UNKNOWNVAL,
2063         .lhs       = 0,
2064         .rhs       = 0,
2065         .misc      = 0,
2066         .targ      = 0,
2067         .type      = &unknown_type,
2068         .id        = -1, /* An invalid id */
2069         .u = { .cval = 0, },
2070         .occurance = &dummy_occurance,
2071         .param = { [0] = 0, [1] = 0, },
2072 };
2073
2074
2075 static size_t registers_of(struct compile_state *state, struct type *type);
2076
2077 static struct triple *alloc_triple(struct compile_state *state, 
2078         int op, struct type *type, int lhs_wanted, int rhs_wanted,
2079         struct occurance *occurance)
2080 {
2081         size_t size, extra_count, min_count;
2082         int lhs, rhs, misc, targ;
2083         struct triple *ret, dummy;
2084         dummy.op = op;
2085         dummy.occurance = occurance;
2086         valid_op(state, op);
2087         lhs = table_ops[op].lhs;
2088         rhs = table_ops[op].rhs;
2089         misc = table_ops[op].misc;
2090         targ = table_ops[op].targ;
2091
2092         switch(op) {
2093         case OP_FCALL:
2094                 rhs = rhs_wanted;
2095                 break;
2096         case OP_PHI:
2097                 rhs = rhs_wanted;
2098                 break;
2099         case OP_ADECL:
2100                 lhs = registers_of(state, type);
2101                 break;
2102         case OP_TUPLE:
2103                 lhs = registers_of(state, type);
2104                 break;
2105         case OP_ASM:
2106                 rhs = rhs_wanted;
2107                 lhs = lhs_wanted;
2108                 break;
2109         }
2110         if ((rhs < 0) || (rhs > MAX_RHS)) {
2111                 internal_error(state, &dummy, "bad rhs count %d", rhs);
2112         }
2113         if ((lhs < 0) || (lhs > MAX_LHS)) {
2114                 internal_error(state, &dummy, "bad lhs count %d", lhs);
2115         }
2116         if ((misc < 0) || (misc > MAX_MISC)) {
2117                 internal_error(state, &dummy, "bad misc count %d", misc);
2118         }
2119         if ((targ < 0) || (targ > MAX_TARG)) {
2120                 internal_error(state, &dummy, "bad targs count %d", targ);
2121         }
2122
2123         min_count = sizeof(ret->param)/sizeof(ret->param[0]);
2124         extra_count = lhs + rhs + misc + targ;
2125         extra_count = (extra_count < min_count)? 0 : extra_count - min_count;
2126
2127         size = sizeof(*ret) + sizeof(ret->param[0]) * extra_count;
2128         ret = xcmalloc(size, "tripple");
2129         ret->op        = op;
2130         ret->lhs       = lhs;
2131         ret->rhs       = rhs;
2132         ret->misc      = misc;
2133         ret->targ      = targ;
2134         ret->type      = type;
2135         ret->next      = ret;
2136         ret->prev      = ret;
2137         ret->occurance = occurance;
2138         /* A simple sanity check */
2139         if ((ret->op != op) ||
2140                 (ret->lhs != lhs) ||
2141                 (ret->rhs != rhs) ||
2142                 (ret->misc != misc) ||
2143                 (ret->targ != targ) ||
2144                 (ret->type != type) ||
2145                 (ret->next != ret) ||
2146                 (ret->prev != ret) ||
2147                 (ret->occurance != occurance)) {
2148                 internal_error(state, ret, "huh?");
2149         }
2150         return ret;
2151 }
2152
2153 struct triple *dup_triple(struct compile_state *state, struct triple *src)
2154 {
2155         struct triple *dup;
2156         int src_lhs, src_rhs, src_size;
2157         src_lhs = src->lhs;
2158         src_rhs = src->rhs;
2159         src_size = TRIPLE_SIZE(src);
2160         get_occurance(src->occurance);
2161         dup = alloc_triple(state, src->op, src->type, src_lhs, src_rhs,
2162                 src->occurance);
2163         memcpy(dup, src, sizeof(*src));
2164         memcpy(dup->param, src->param, src_size * sizeof(src->param[0]));
2165         return dup;
2166 }
2167
2168 static struct triple *copy_triple(struct compile_state *state, struct triple *src)
2169 {
2170         struct triple *copy;
2171         copy = dup_triple(state, src);
2172         copy->use = 0;
2173         copy->next = copy->prev = copy;
2174         return copy;
2175 }
2176
2177 static struct triple *new_triple(struct compile_state *state, 
2178         int op, struct type *type, int lhs, int rhs)
2179 {
2180         struct triple *ret;
2181         struct occurance *occurance;
2182         occurance = new_occurance(state);
2183         ret = alloc_triple(state, op, type, lhs, rhs, occurance);
2184         return ret;
2185 }
2186
2187 static struct triple *build_triple(struct compile_state *state, 
2188         int op, struct type *type, struct triple *left, struct triple *right,
2189         struct occurance *occurance)
2190 {
2191         struct triple *ret;
2192         size_t count;
2193         ret = alloc_triple(state, op, type, -1, -1, occurance);
2194         count = TRIPLE_SIZE(ret);
2195         if (count > 0) {
2196                 ret->param[0] = left;
2197         }
2198         if (count > 1) {
2199                 ret->param[1] = right;
2200         }
2201         return ret;
2202 }
2203
2204 static struct triple *triple(struct compile_state *state, 
2205         int op, struct type *type, struct triple *left, struct triple *right)
2206 {
2207         struct triple *ret;
2208         size_t count;
2209         ret = new_triple(state, op, type, -1, -1);
2210         count = TRIPLE_SIZE(ret);
2211         if (count >= 1) {
2212                 ret->param[0] = left;
2213         }
2214         if (count >= 2) {
2215                 ret->param[1] = right;
2216         }
2217         return ret;
2218 }
2219
2220 static struct triple *branch(struct compile_state *state, 
2221         struct triple *targ, struct triple *test)
2222 {
2223         struct triple *ret;
2224         if (test) {
2225                 ret = new_triple(state, OP_CBRANCH, &void_type, -1, 1);
2226                 RHS(ret, 0) = test;
2227         } else {
2228                 ret = new_triple(state, OP_BRANCH, &void_type, -1, 0);
2229         }
2230         TARG(ret, 0) = targ;
2231         /* record the branch target was used */
2232         if (!targ || (targ->op != OP_LABEL)) {
2233                 internal_error(state, 0, "branch not to label");
2234         }
2235         return ret;
2236 }
2237
2238 static int triple_is_label(struct compile_state *state, struct triple *ins);
2239 static int triple_is_call(struct compile_state *state, struct triple *ins);
2240 static int triple_is_cbranch(struct compile_state *state, struct triple *ins);
2241 static void insert_triple(struct compile_state *state,
2242         struct triple *first, struct triple *ptr)
2243 {
2244         if (ptr) {
2245                 if ((ptr->id & TRIPLE_FLAG_FLATTENED) || (ptr->next != ptr)) {
2246                         internal_error(state, ptr, "expression already used");
2247                 }
2248                 ptr->next       = first;
2249                 ptr->prev       = first->prev;
2250                 ptr->prev->next = ptr;
2251                 ptr->next->prev = ptr;
2252
2253                 if (triple_is_cbranch(state, ptr->prev) ||
2254                         triple_is_call(state, ptr->prev)) {
2255                         unuse_triple(first, ptr->prev);
2256                         use_triple(ptr, ptr->prev);
2257                 }
2258         }
2259 }
2260
2261 static int triple_stores_block(struct compile_state *state, struct triple *ins)
2262 {
2263         /* This function is used to determine if u.block 
2264          * is utilized to store the current block number.
2265          */
2266         int stores_block;
2267         valid_ins(state, ins);
2268         stores_block = (table_ops[ins->op].flags & BLOCK) == BLOCK;
2269         return stores_block;
2270 }
2271
2272 static int triple_is_branch(struct compile_state *state, struct triple *ins);
2273 static struct block *block_of_triple(struct compile_state *state, 
2274         struct triple *ins)
2275 {
2276         struct triple *first;
2277         if (!ins || ins == &unknown_triple) {
2278                 return 0;
2279         }
2280         first = state->first;
2281         while(ins != first && !triple_is_branch(state, ins->prev) &&
2282                 !triple_stores_block(state, ins)) 
2283         { 
2284                 if (ins == ins->prev) {
2285                         internal_error(state, ins, "ins == ins->prev?");
2286                 }
2287                 ins = ins->prev;
2288         }
2289         return triple_stores_block(state, ins)? ins->u.block: 0;
2290 }
2291
2292 static void generate_lhs_pieces(struct compile_state *state, struct triple *ins);
2293 static struct triple *pre_triple(struct compile_state *state,
2294         struct triple *base,
2295         int op, struct type *type, struct triple *left, struct triple *right)
2296 {
2297         struct block *block;
2298         struct triple *ret;
2299         int i;
2300         /* If I am an OP_PIECE jump to the real instruction */
2301         if (base->op == OP_PIECE) {
2302                 base = MISC(base, 0);
2303         }
2304         block = block_of_triple(state, base);
2305         get_occurance(base->occurance);
2306         ret = build_triple(state, op, type, left, right, base->occurance);
2307         generate_lhs_pieces(state, ret);
2308         if (triple_stores_block(state, ret)) {
2309                 ret->u.block = block;
2310         }
2311         insert_triple(state, base, ret);
2312         for(i = 0; i < ret->lhs; i++) {
2313                 struct triple *piece;
2314                 piece = LHS(ret, i);
2315                 insert_triple(state, base, piece);
2316                 use_triple(ret, piece);
2317                 use_triple(piece, ret);
2318         }
2319         if (block && (block->first == base)) {
2320                 block->first = ret;
2321         }
2322         return ret;
2323 }
2324
2325 static struct triple *post_triple(struct compile_state *state,
2326         struct triple *base,
2327         int op, struct type *type, struct triple *left, struct triple *right)
2328 {
2329         struct block *block;
2330         struct triple *ret, *next;
2331         int zlhs, i;
2332         /* If I am an OP_PIECE jump to the real instruction */
2333         if (base->op == OP_PIECE) {
2334                 base = MISC(base, 0);
2335         }
2336         /* If I have a left hand side skip over it */
2337         zlhs = base->lhs;
2338         if (zlhs) {
2339                 base = LHS(base, zlhs - 1);
2340         }
2341
2342         block = block_of_triple(state, base);
2343         get_occurance(base->occurance);
2344         ret = build_triple(state, op, type, left, right, base->occurance);
2345         generate_lhs_pieces(state, ret);
2346         if (triple_stores_block(state, ret)) {
2347                 ret->u.block = block;
2348         }
2349         next = base->next;
2350         insert_triple(state, next, ret);
2351         zlhs = ret->lhs;
2352         for(i = 0; i < zlhs; i++) {
2353                 struct triple *piece;
2354                 piece = LHS(ret, i);
2355                 insert_triple(state, next, piece);
2356                 use_triple(ret, piece);
2357                 use_triple(piece, ret);
2358         }
2359         if (block && (block->last == base)) {
2360                 block->last = ret;
2361                 if (zlhs) {
2362                         block->last = LHS(ret, zlhs - 1);
2363                 }
2364         }
2365         return ret;
2366 }
2367
2368 static struct type *reg_type(
2369         struct compile_state *state, struct type *type, int reg);
2370
2371 static void generate_lhs_piece(
2372         struct compile_state *state, struct triple *ins, int index)
2373 {
2374         struct type *piece_type;
2375         struct triple *piece;
2376         get_occurance(ins->occurance);
2377         piece_type = reg_type(state, ins->type, index * REG_SIZEOF_REG);
2378
2379         if ((piece_type->type & TYPE_MASK) == TYPE_BITFIELD) {
2380                 piece_type = piece_type->left;
2381         }
2382 #if 0
2383 {
2384         static void name_of(FILE *fp, struct type *type);
2385         FILE * fp = state->errout;
2386         fprintf(fp, "piece_type(%d): ", index);
2387         name_of(fp, piece_type);
2388         fprintf(fp, "\n");
2389 }
2390 #endif
2391         piece = alloc_triple(state, OP_PIECE, piece_type, -1, -1, ins->occurance);
2392         piece->u.cval  = index;
2393         LHS(ins, piece->u.cval) = piece;
2394         MISC(piece, 0) = ins;
2395 }
2396
2397 static void generate_lhs_pieces(struct compile_state *state, struct triple *ins)
2398 {
2399         int i, zlhs;
2400         zlhs = ins->lhs;
2401         for(i = 0; i < zlhs; i++) {
2402                 generate_lhs_piece(state, ins, i);
2403         }
2404 }
2405
2406 static struct triple *label(struct compile_state *state)
2407 {
2408         /* Labels don't get a type */
2409         struct triple *result;
2410         result = triple(state, OP_LABEL, &void_type, 0, 0);
2411         return result;
2412 }
2413
2414 static struct triple *mkprog(struct compile_state *state, ...)
2415 {
2416         struct triple *prog, *head, *arg;
2417         va_list args;
2418         int i;
2419
2420         head = label(state);
2421         prog = new_triple(state, OP_PROG, &void_type, -1, -1);
2422         RHS(prog, 0) = head;
2423         va_start(args, state);
2424         i = 0;
2425         while((arg = va_arg(args, struct triple *)) != 0) {
2426                 if (++i >= 100) {
2427                         internal_error(state, 0, "too many arguments to mkprog");
2428                 }
2429                 flatten(state, head, arg);
2430         }
2431         va_end(args);
2432         prog->type = head->prev->type;
2433         return prog;
2434 }
2435 static void name_of(FILE *fp, struct type *type);
2436 static void display_triple(FILE *fp, struct triple *ins)
2437 {
2438         struct occurance *ptr;
2439         const char *reg;
2440         char pre, post, vol;
2441         pre = post = vol = ' ';
2442         if (ins) {
2443                 if (ins->id & TRIPLE_FLAG_PRE_SPLIT) {
2444                         pre = '^';
2445                 }
2446                 if (ins->id & TRIPLE_FLAG_POST_SPLIT) {
2447                         post = ',';
2448                 }
2449                 if (ins->id & TRIPLE_FLAG_VOLATILE) {
2450                         vol = 'v';
2451                 }
2452                 reg = arch_reg_str(ID_REG(ins->id));
2453         }
2454         if (ins == 0) {
2455                 fprintf(fp, "(%p) <nothing> ", ins);
2456         }
2457         else if (ins->op == OP_INTCONST) {
2458                 fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s <0x%08lx>         ",
2459                         ins, pre, post, vol, reg, ins->template_id, tops(ins->op), 
2460                         (unsigned long)(ins->u.cval));
2461         }
2462         else if (ins->op == OP_ADDRCONST) {
2463                 fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s %-10p <0x%08lx>",
2464                         ins, pre, post, vol, reg, ins->template_id, tops(ins->op), 
2465                         MISC(ins, 0), (unsigned long)(ins->u.cval));
2466         }
2467         else if (ins->op == OP_INDEX) {
2468                 fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s %-10p <0x%08lx>",
2469                         ins, pre, post, vol, reg, ins->template_id, tops(ins->op), 
2470                         RHS(ins, 0), (unsigned long)(ins->u.cval));
2471         }
2472         else if (ins->op == OP_PIECE) {
2473                 fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s %-10p <0x%08lx>",
2474                         ins, pre, post, vol, reg, ins->template_id, tops(ins->op), 
2475                         MISC(ins, 0), (unsigned long)(ins->u.cval));
2476         }
2477         else {
2478                 int i, count;
2479                 fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s", 
2480                         ins, pre, post, vol, reg, ins->template_id, tops(ins->op));
2481                 if (table_ops[ins->op].flags & BITFIELD) {
2482                         fprintf(fp, " <%2d-%2d:%2d>", 
2483                                 ins->u.bitfield.offset,
2484                                 ins->u.bitfield.offset + ins->u.bitfield.size,
2485                                 ins->u.bitfield.size);
2486                 }
2487                 count = TRIPLE_SIZE(ins);
2488                 for(i = 0; i < count; i++) {
2489                         fprintf(fp, " %-10p", ins->param[i]);
2490                 }
2491                 for(; i < 2; i++) {
2492                         fprintf(fp, "           ");
2493                 }
2494         }
2495         if (ins) {
2496                 struct triple_set *user;
2497 #if DEBUG_DISPLAY_TYPES
2498                 fprintf(fp, " <");
2499                 name_of(fp, ins->type);
2500                 fprintf(fp, "> ");
2501 #endif
2502 #if DEBUG_DISPLAY_USES
2503                 fprintf(fp, " [");
2504                 for(user = ins->use; user; user = user->next) {
2505                         fprintf(fp, " %-10p", user->member);
2506                 }
2507                 fprintf(fp, " ]");
2508 #endif
2509                 fprintf(fp, " @");
2510                 for(ptr = ins->occurance; ptr; ptr = ptr->parent) {
2511                         fprintf(fp, " %s,%s:%d.%d",
2512                                 ptr->function, 
2513                                 ptr->filename,
2514                                 ptr->line, 
2515                                 ptr->col);
2516                 }
2517                 if (ins->op == OP_ASM) {
2518                         fprintf(fp, "\n\t%s", ins->u.ainfo->str);
2519                 }
2520         }
2521         fprintf(fp, "\n");
2522         fflush(fp);
2523 }
2524
2525 static int equiv_types(struct type *left, struct type *right);
2526 static void display_triple_changes(
2527         FILE *fp, const struct triple *new, const struct triple *orig)
2528 {
2529
2530         int new_count, orig_count;
2531         new_count = TRIPLE_SIZE(new);
2532         orig_count = TRIPLE_SIZE(orig);
2533         if ((new->op != orig->op) ||
2534                 (new_count != orig_count) ||
2535                 (memcmp(orig->param, new->param,        
2536                         orig_count * sizeof(orig->param[0])) != 0) ||
2537                 (memcmp(&orig->u, &new->u, sizeof(orig->u)) != 0)) 
2538         {
2539                 struct occurance *ptr;
2540                 int i, min_count, indent;
2541                 fprintf(fp, "(%p %p)", new, orig);
2542                 if (orig->op == new->op) {
2543                         fprintf(fp, " %-11s", tops(orig->op));
2544                 } else {
2545                         fprintf(fp, " [%-10s %-10s]", 
2546                                 tops(new->op), tops(orig->op));
2547                 }
2548                 min_count = new_count;
2549                 if (min_count > orig_count) {
2550                         min_count = orig_count;
2551                 }
2552                 for(indent = i = 0; i < min_count; i++) {
2553                         if (orig->param[i] == new->param[i]) {
2554                                 fprintf(fp, " %-11p", 
2555                                         orig->param[i]);
2556                                 indent += 12;
2557                         } else {
2558                                 fprintf(fp, " [%-10p %-10p]",
2559                                         new->param[i], 
2560                                         orig->param[i]);
2561                                 indent += 24;
2562                         }
2563                 }
2564                 for(; i < orig_count; i++) {
2565                         fprintf(fp, " [%-9p]", orig->param[i]);
2566                         indent += 12;
2567                 }
2568                 for(; i < new_count; i++) {
2569                         fprintf(fp, " [%-9p]", new->param[i]);
2570                         indent += 12;
2571                 }
2572                 if ((new->op == OP_INTCONST)||
2573                         (new->op == OP_ADDRCONST)) {
2574                         fprintf(fp, " <0x%08lx>", 
2575                                 (unsigned long)(new->u.cval));
2576                         indent += 13;
2577                 }
2578                 for(;indent < 36; indent++) {
2579                         putc(' ', fp);
2580                 }
2581
2582 #if DEBUG_DISPLAY_TYPES
2583                 fprintf(fp, " <");
2584                 name_of(fp, new->type);
2585                 if (!equiv_types(new->type, orig->type)) {
2586                         fprintf(fp, " -- ");
2587                         name_of(fp, orig->type);
2588                 }
2589                 fprintf(fp, "> ");
2590 #endif
2591
2592                 fprintf(fp, " @");
2593                 for(ptr = orig->occurance; ptr; ptr = ptr->parent) {
2594                         fprintf(fp, " %s,%s:%d.%d",
2595                                 ptr->function, 
2596                                 ptr->filename,
2597                                 ptr->line, 
2598                                 ptr->col);
2599                         
2600                 }
2601                 fprintf(fp, "\n");
2602                 fflush(fp);
2603         }
2604 }
2605
2606 static int triple_is_pure(struct compile_state *state, struct triple *ins, unsigned id)
2607 {
2608         /* Does the triple have no side effects.
2609          * I.e. Rexecuting the triple with the same arguments 
2610          * gives the same value.
2611          */
2612         unsigned pure;
2613         valid_ins(state, ins);
2614         pure = PURE_BITS(table_ops[ins->op].flags);
2615         if ((pure != PURE) && (pure != IMPURE)) {
2616                 internal_error(state, 0, "Purity of %s not known",
2617                         tops(ins->op));
2618         }
2619         return (pure == PURE) && !(id & TRIPLE_FLAG_VOLATILE);
2620 }
2621
2622 static int triple_is_branch_type(struct compile_state *state, 
2623         struct triple *ins, unsigned type)
2624 {
2625         /* Is this one of the passed branch types? */
2626         valid_ins(state, ins);
2627         return (BRANCH_BITS(table_ops[ins->op].flags) == type);
2628 }
2629
2630 static int triple_is_branch(struct compile_state *state, struct triple *ins)
2631 {
2632         /* Is this triple a branch instruction? */
2633         valid_ins(state, ins);
2634         return (BRANCH_BITS(table_ops[ins->op].flags) != 0);
2635 }
2636
2637 static int triple_is_cbranch(struct compile_state *state, struct triple *ins)
2638 {
2639         /* Is this triple a conditional branch instruction? */
2640         return triple_is_branch_type(state, ins, CBRANCH);
2641 }
2642
2643 static int triple_is_ubranch(struct compile_state *state, struct triple *ins)
2644 {
2645         /* Is this triple a unconditional branch instruction? */
2646         unsigned type;
2647         valid_ins(state, ins);
2648         type = BRANCH_BITS(table_ops[ins->op].flags);
2649         return (type != 0) && (type != CBRANCH);
2650 }
2651
2652 static int triple_is_call(struct compile_state *state, struct triple *ins)
2653 {
2654         /* Is this triple a call instruction? */
2655         return triple_is_branch_type(state, ins, CALLBRANCH);
2656 }
2657
2658 static int triple_is_ret(struct compile_state *state, struct triple *ins)
2659 {
2660         /* Is this triple a return instruction? */
2661         return triple_is_branch_type(state, ins, RETBRANCH);
2662 }
2663  
2664 #if DEBUG_ROMCC_WARNING
2665 static int triple_is_simple_ubranch(struct compile_state *state, struct triple *ins)
2666 {
2667         /* Is this triple an unconditional branch and not a call or a
2668          * return? */
2669         return triple_is_branch_type(state, ins, UBRANCH);
2670 }
2671 #endif
2672
2673 static int triple_is_end(struct compile_state *state, struct triple *ins)
2674 {
2675         return triple_is_branch_type(state, ins, ENDBRANCH);
2676 }
2677
2678 static int triple_is_label(struct compile_state *state, struct triple *ins)
2679 {
2680         valid_ins(state, ins);
2681         return (ins->op == OP_LABEL);
2682 }
2683
2684 static struct triple *triple_to_block_start(
2685         struct compile_state *state, struct triple *start)
2686 {
2687         while(!triple_is_branch(state, start->prev) &&
2688                 (!triple_is_label(state, start) || !start->use)) {
2689                 start = start->prev;
2690         }
2691         return start;
2692 }
2693
2694 static int triple_is_def(struct compile_state *state, struct triple *ins)
2695 {
2696         /* This function is used to determine which triples need
2697          * a register.
2698          */
2699         int is_def;
2700         valid_ins(state, ins);
2701         is_def = (table_ops[ins->op].flags & DEF) == DEF;
2702         if (ins->lhs >= 1) {
2703                 is_def = 0;
2704         }
2705         return is_def;
2706 }
2707
2708 static int triple_is_structural(struct compile_state *state, struct triple *ins)
2709 {
2710         int is_structural;
2711         valid_ins(state, ins);
2712         is_structural = (table_ops[ins->op].flags & STRUCTURAL) == STRUCTURAL;
2713         return is_structural;
2714 }
2715
2716 static int triple_is_part(struct compile_state *state, struct triple *ins)
2717 {
2718         int is_part;
2719         valid_ins(state, ins);
2720         is_part = (table_ops[ins->op].flags & PART) == PART;
2721         return is_part;
2722 }
2723
2724 static int triple_is_auto_var(struct compile_state *state, struct triple *ins)
2725 {
2726         return (ins->op == OP_PIECE) && (MISC(ins, 0)->op == OP_ADECL);
2727 }
2728
2729 static struct triple **triple_iter(struct compile_state *state,
2730         size_t count, struct triple **vector,
2731         struct triple *ins, struct triple **last)
2732 {
2733         struct triple **ret;
2734         ret = 0;
2735         if (count) {
2736                 if (!last) {
2737                         ret = vector;
2738                 }
2739                 else if ((last >= vector) && (last < (vector + count - 1))) {
2740                         ret = last + 1;
2741                 }
2742         }
2743         return ret;
2744         
2745 }
2746
2747 static struct triple **triple_lhs(struct compile_state *state,
2748         struct triple *ins, struct triple **last)
2749 {
2750         return triple_iter(state, ins->lhs, &LHS(ins,0), 
2751                 ins, last);
2752 }
2753
2754 static struct triple **triple_rhs(struct compile_state *state,
2755         struct triple *ins, struct triple **last)
2756 {
2757         return triple_iter(state, ins->rhs, &RHS(ins,0), 
2758                 ins, last);
2759 }
2760
2761 static struct triple **triple_misc(struct compile_state *state,
2762         struct triple *ins, struct triple **last)
2763 {
2764         return triple_iter(state, ins->misc, &MISC(ins,0), 
2765                 ins, last);
2766 }
2767
2768 static struct triple **do_triple_targ(struct compile_state *state,
2769         struct triple *ins, struct triple **last, int call_edges, int next_edges)
2770 {
2771         size_t count;
2772         struct triple **ret, **vector;
2773         int next_is_targ;
2774         ret = 0;
2775         count = ins->targ;
2776         next_is_targ = 0;
2777         if (triple_is_cbranch(state, ins)) {
2778                 next_is_targ = 1;
2779         }
2780         if (!call_edges && triple_is_call(state, ins)) {
2781                 count = 0;
2782         }
2783         if (next_edges && triple_is_call(state, ins)) {
2784                 next_is_targ = 1;
2785         }
2786         vector = &TARG(ins, 0);
2787         if (!ret && next_is_targ) {
2788                 if (!last) {
2789                         ret = &ins->next;
2790                 } else if (last == &ins->next) {
2791                         last = 0;
2792                 }
2793         }
2794         if (!ret && count) {
2795                 if (!last) {
2796                         ret = vector;
2797                 }
2798                 else if ((last >= vector) && (last < (vector + count - 1))) {
2799                         ret = last + 1;
2800                 }
2801                 else if (last == vector + count - 1) {
2802                         last = 0;
2803                 }
2804         }
2805         if (!ret && triple_is_ret(state, ins) && call_edges) {
2806                 struct triple_set *use;
2807                 for(use = ins->use; use; use = use->next) {
2808                         if (!triple_is_call(state, use->member)) {
2809                                 continue;
2810                         }
2811                         if (!last) {
2812                                 ret = &use->member->next;
2813                                 break;
2814                         }
2815                         else if (last == &use->member->next) {
2816                                 last = 0;
2817                         }
2818                 }
2819         }
2820         return ret;
2821 }
2822
2823 static struct triple **triple_targ(struct compile_state *state,
2824         struct triple *ins, struct triple **last)
2825 {
2826         return do_triple_targ(state, ins, last, 1, 1);
2827 }
2828
2829 static struct triple **triple_edge_targ(struct compile_state *state,
2830         struct triple *ins, struct triple **last)
2831 {
2832         return do_triple_targ(state, ins, last, 
2833                 state->functions_joined, !state->functions_joined);
2834 }
2835
2836 static struct triple *after_lhs(struct compile_state *state, struct triple *ins)
2837 {
2838         struct triple *next;
2839         int lhs, i;
2840         lhs = ins->lhs;
2841         next = ins->next;
2842         for(i = 0; i < lhs; i++) {
2843                 struct triple *piece;
2844                 piece = LHS(ins, i);
2845                 if (next != piece) {
2846                         internal_error(state, ins, "malformed lhs on %s",
2847                                 tops(ins->op));
2848                 }
2849                 if (next->op != OP_PIECE) {
2850                         internal_error(state, ins, "bad lhs op %s at %d on %s",
2851                                 tops(next->op), i, tops(ins->op));
2852                 }
2853                 if (next->u.cval != i) {
2854                         internal_error(state, ins, "bad u.cval of %d %d expected",
2855                                 next->u.cval, i);
2856                 }
2857                 next = next->next;
2858         }
2859         return next;
2860 }
2861
2862 /* Function piece accessor functions */
2863 static struct triple *do_farg(struct compile_state *state, 
2864         struct triple *func, unsigned index)
2865 {
2866         struct type *ftype;
2867         struct triple *first, *arg;
2868         unsigned i;
2869
2870         ftype = func->type;
2871         if((index < 0) || (index >= (ftype->elements + 2))) {
2872                 internal_error(state, func, "bad argument index: %d", index);
2873         }
2874         first = RHS(func, 0);
2875         arg = first->next;
2876         for(i = 0; i < index; i++, arg = after_lhs(state, arg)) {
2877                 /* do nothing */
2878         }
2879         if (arg->op != OP_ADECL) {
2880                 internal_error(state, 0, "arg not adecl?");
2881         }
2882         return arg;
2883 }
2884 static struct triple *fresult(struct compile_state *state, struct triple *func)
2885 {
2886         return do_farg(state, func, 0);
2887 }
2888 static struct triple *fretaddr(struct compile_state *state, struct triple *func)
2889 {
2890         return do_farg(state, func, 1);
2891 }
2892 static struct triple *farg(struct compile_state *state, 
2893         struct triple *func, unsigned index)
2894 {
2895         return do_farg(state, func, index + 2);
2896 }
2897
2898
2899 static void display_func(struct compile_state *state, FILE *fp, struct triple *func)
2900 {
2901         struct triple *first, *ins;
2902         fprintf(fp, "display_func %s\n", func->type->type_ident->name);
2903         first = ins = RHS(func, 0);
2904         do {
2905                 if (triple_is_label(state, ins) && ins->use) {
2906                         fprintf(fp, "%p:\n", ins);
2907                 }
2908                 display_triple(fp, ins);
2909
2910                 if (triple_is_branch(state, ins)) {
2911                         fprintf(fp, "\n");
2912                 }
2913                 if (ins->next->prev != ins) {
2914                         internal_error(state, ins->next, "bad prev");
2915                 }
2916                 ins = ins->next;
2917         } while(ins != first);
2918 }
2919
2920 static void verify_use(struct compile_state *state,
2921         struct triple *user, struct triple *used)
2922 {
2923         int size, i;
2924         size = TRIPLE_SIZE(user);
2925         for(i = 0; i < size; i++) {
2926                 if (user->param[i] == used) {
2927                         break;
2928                 }
2929         }
2930         if (triple_is_branch(state, user)) {
2931                 if (user->next == used) {
2932                         i = -1;
2933                 }
2934         }
2935         if (i == size) {
2936                 internal_error(state, user, "%s(%p) does not use %s(%p)",
2937                         tops(user->op), user, tops(used->op), used);
2938         }
2939 }
2940
2941 static int find_rhs_use(struct compile_state *state, 
2942         struct triple *user, struct triple *used)
2943 {
2944         struct triple **param;
2945         int size, i;
2946         verify_use(state, user, used);
2947
2948 #if DEBUG_ROMCC_WARNINGS
2949 #warning "AUDIT ME ->rhs"
2950 #endif
2951         size = user->rhs;
2952         param = &RHS(user, 0);
2953         for(i = 0; i < size; i++) {
2954                 if (param[i] == used) {
2955                         return i;
2956                 }
2957         }
2958         return -1;
2959 }
2960
2961 static void free_triple(struct compile_state *state, struct triple *ptr)
2962 {
2963         size_t size;
2964         size = sizeof(*ptr) - sizeof(ptr->param) +
2965                 (sizeof(ptr->param[0])*TRIPLE_SIZE(ptr));
2966         ptr->prev->next = ptr->next;
2967         ptr->next->prev = ptr->prev;
2968         if (ptr->use) {
2969                 internal_error(state, ptr, "ptr->use != 0");
2970         }
2971         put_occurance(ptr->occurance);
2972         memset(ptr, -1, size);
2973         xfree(ptr);
2974 }
2975
2976 static void release_triple(struct compile_state *state, struct triple *ptr)
2977 {
2978         struct triple_set *set, *next;
2979         struct triple **expr;
2980         struct block *block;
2981         if (ptr == &unknown_triple) {
2982                 return;
2983         }
2984         valid_ins(state, ptr);
2985         /* Make certain the we are not the first or last element of a block */
2986         block = block_of_triple(state, ptr);
2987         if (block) {
2988                 if ((block->last == ptr) && (block->first == ptr)) {
2989                         block->last = block->first = 0;
2990                 }
2991                 else if (block->last == ptr) {
2992                         block->last = ptr->prev;
2993                 }
2994                 else if (block->first == ptr) {
2995                         block->first = ptr->next;
2996                 }
2997         }
2998         /* Remove ptr from use chains where it is the user */
2999         expr = triple_rhs(state, ptr, 0);
3000         for(; expr; expr = triple_rhs(state, ptr, expr)) {
3001                 if (*expr) {
3002                         unuse_triple(*expr, ptr);
3003                 }
3004         }
3005         expr = triple_lhs(state, ptr, 0);
3006         for(; expr; expr = triple_lhs(state, ptr, expr)) {
3007                 if (*expr) {
3008                         unuse_triple(*expr, ptr);
3009                 }
3010         }
3011         expr = triple_misc(state, ptr, 0);
3012         for(; expr; expr = triple_misc(state, ptr, expr)) {
3013                 if (*expr) {
3014                         unuse_triple(*expr, ptr);
3015                 }
3016         }
3017         expr = triple_targ(state, ptr, 0);
3018         for(; expr; expr = triple_targ(state, ptr, expr)) {
3019                 if (*expr){
3020                         unuse_triple(*expr, ptr);
3021                 }
3022         }
3023         /* Reomve ptr from use chains where it is used */
3024         for(set = ptr->use; set; set = next) {
3025                 next = set->next;
3026                 valid_ins(state, set->member);
3027                 expr = triple_rhs(state, set->member, 0);
3028                 for(; expr; expr = triple_rhs(state, set->member, expr)) {
3029                         if (*expr == ptr) {
3030                                 *expr = &unknown_triple;
3031                         }
3032                 }
3033                 expr = triple_lhs(state, set->member, 0);
3034                 for(; expr; expr = triple_lhs(state, set->member, expr)) {
3035                         if (*expr == ptr) {
3036                                 *expr = &unknown_triple;
3037                         }
3038                 }
3039                 expr = triple_misc(state, set->member, 0);
3040                 for(; expr; expr = triple_misc(state, set->member, expr)) {
3041                         if (*expr == ptr) {
3042                                 *expr = &unknown_triple;
3043                         }
3044                 }
3045                 expr = triple_targ(state, set->member, 0);
3046                 for(; expr; expr = triple_targ(state, set->member, expr)) {
3047                         if (*expr == ptr) {
3048                                 *expr = &unknown_triple;
3049                         }
3050                 }
3051                 unuse_triple(ptr, set->member);
3052         }
3053         free_triple(state, ptr);
3054 }
3055
3056 static void print_triples(struct compile_state *state);
3057 static void print_blocks(struct compile_state *state, const char *func, FILE *fp);
3058
3059 #define TOK_UNKNOWN       0
3060 #define TOK_SPACE         1
3061 #define TOK_SEMI          2
3062 #define TOK_LBRACE        3
3063 #define TOK_RBRACE        4
3064 #define TOK_COMMA         5
3065 #define TOK_EQ            6
3066 #define TOK_COLON         7
3067 #define TOK_LBRACKET      8
3068 #define TOK_RBRACKET      9
3069 #define TOK_LPAREN        10
3070 #define TOK_RPAREN        11
3071 #define TOK_STAR          12
3072 #define TOK_DOTS          13
3073 #define TOK_MORE          14
3074 #define TOK_LESS          15
3075 #define TOK_TIMESEQ       16
3076 #define TOK_DIVEQ         17
3077 #define TOK_MODEQ         18
3078 #define TOK_PLUSEQ        19
3079 #define TOK_MINUSEQ       20
3080 #define TOK_SLEQ          21
3081 #define TOK_SREQ          22
3082 #define TOK_ANDEQ         23
3083 #define TOK_XOREQ         24
3084 #define TOK_OREQ          25
3085 #define TOK_EQEQ          26
3086 #define TOK_NOTEQ         27
3087 #define TOK_QUEST         28
3088 #define TOK_LOGOR         29
3089 #define TOK_LOGAND        30
3090 #define TOK_OR            31
3091 #define TOK_AND           32
3092 #define TOK_XOR           33
3093 #define TOK_LESSEQ        34
3094 #define TOK_MOREEQ        35
3095 #define TOK_SL            36
3096 #define TOK_SR            37
3097 #define TOK_PLUS          38
3098 #define TOK_MINUS         39
3099 #define TOK_DIV           40
3100 #define TOK_MOD           41
3101 #define TOK_PLUSPLUS      42
3102 #define TOK_MINUSMINUS    43
3103 #define TOK_BANG          44
3104 #define TOK_ARROW         45
3105 #define TOK_DOT           46
3106 #define TOK_TILDE         47
3107 #define TOK_LIT_STRING    48
3108 #define TOK_LIT_CHAR      49
3109 #define TOK_LIT_INT       50
3110 #define TOK_LIT_FLOAT     51
3111 #define TOK_MACRO         52
3112 #define TOK_CONCATENATE   53
3113
3114 #define TOK_IDENT         54
3115 #define TOK_STRUCT_NAME   55
3116 #define TOK_ENUM_CONST    56
3117 #define TOK_TYPE_NAME     57
3118
3119 #define TOK_AUTO          58
3120 #define TOK_BREAK         59
3121 #define TOK_CASE          60
3122 #define TOK_CHAR          61
3123 #define TOK_CONST         62
3124 #define TOK_CONTINUE      63
3125 #define TOK_DEFAULT       64
3126 #define TOK_DO            65
3127 #define TOK_DOUBLE        66
3128 #define TOK_ELSE          67
3129 #define TOK_ENUM          68
3130 #define TOK_EXTERN        69
3131 #define TOK_FLOAT         70
3132 #define TOK_FOR           71
3133 #define TOK_GOTO          72
3134 #define TOK_IF            73
3135 #define TOK_INLINE        74
3136 #define TOK_INT           75
3137 #define TOK_LONG          76
3138 #define TOK_REGISTER      77
3139 #define TOK_RESTRICT      78
3140 #define TOK_RETURN        79
3141 #define TOK_SHORT         80
3142 #define TOK_SIGNED        81
3143 #define TOK_SIZEOF        82
3144 #define TOK_STATIC        83
3145 #define TOK_STRUCT        84
3146 #define TOK_SWITCH        85
3147 #define TOK_TYPEDEF       86
3148 #define TOK_UNION         87
3149 #define TOK_UNSIGNED      88
3150 #define TOK_VOID          89
3151 #define TOK_VOLATILE      90
3152 #define TOK_WHILE         91
3153 #define TOK_ASM           92
3154 #define TOK_ATTRIBUTE     93
3155 #define TOK_ALIGNOF       94
3156 #define TOK_FIRST_KEYWORD TOK_AUTO
3157 #define TOK_LAST_KEYWORD  TOK_ALIGNOF
3158
3159 #define TOK_MDEFINE       100
3160 #define TOK_MDEFINED      101
3161 #define TOK_MUNDEF        102
3162 #define TOK_MINCLUDE      103
3163 #define TOK_MLINE         104
3164 #define TOK_MERROR        105
3165 #define TOK_MWARNING      106
3166 #define TOK_MPRAGMA       107
3167 #define TOK_MIFDEF        108
3168 #define TOK_MIFNDEF       109
3169 #define TOK_MELIF         110
3170 #define TOK_MENDIF        111
3171
3172 #define TOK_FIRST_MACRO   TOK_MDEFINE
3173 #define TOK_LAST_MACRO    TOK_MENDIF
3174          
3175 #define TOK_MIF           112
3176 #define TOK_MELSE         113
3177 #define TOK_MIDENT        114
3178
3179 #define TOK_EOL           115
3180 #define TOK_EOF           116
3181
3182 static const char *tokens[] = {
3183 [TOK_UNKNOWN     ] = ":unknown:",
3184 [TOK_SPACE       ] = ":space:",
3185 [TOK_SEMI        ] = ";",
3186 [TOK_LBRACE      ] = "{",
3187 [TOK_RBRACE      ] = "}",
3188 [TOK_COMMA       ] = ",",
3189 [TOK_EQ          ] = "=",
3190 [TOK_COLON       ] = ":",
3191 [TOK_LBRACKET    ] = "[",
3192 [TOK_RBRACKET    ] = "]",
3193 [TOK_LPAREN      ] = "(",
3194 [TOK_RPAREN      ] = ")",
3195 [TOK_STAR        ] = "*",
3196 [TOK_DOTS        ] = "...",
3197 [TOK_MORE        ] = ">",
3198 [TOK_LESS        ] = "<",
3199 [TOK_TIMESEQ     ] = "*=",
3200 [TOK_DIVEQ       ] = "/=",
3201 [TOK_MODEQ       ] = "%=",
3202 [TOK_PLUSEQ      ] = "+=",
3203 [TOK_MINUSEQ     ] = "-=",
3204 [TOK_SLEQ        ] = "<<=",
3205 [TOK_SREQ        ] = ">>=",
3206 [TOK_ANDEQ       ] = "&=",
3207 [TOK_XOREQ       ] = "^=",
3208 [TOK_OREQ        ] = "|=",
3209 [TOK_EQEQ        ] = "==",
3210 [TOK_NOTEQ       ] = "!=",
3211 [TOK_QUEST       ] = "?",
3212 [TOK_LOGOR       ] = "||",
3213 [TOK_LOGAND      ] = "&&",
3214 [TOK_OR          ] = "|",
3215 [TOK_AND         ] = "&",
3216 [TOK_XOR         ] = "^",
3217 [TOK_LESSEQ      ] = "<=",
3218 [TOK_MOREEQ      ] = ">=",
3219 [TOK_SL          ] = "<<",
3220 [TOK_SR          ] = ">>",
3221 [TOK_PLUS        ] = "+",
3222 [TOK_MINUS       ] = "-",
3223 [TOK_DIV         ] = "/",
3224 [TOK_MOD         ] = "%",
3225 [TOK_PLUSPLUS    ] = "++",
3226 [TOK_MINUSMINUS  ] = "--",
3227 [TOK_BANG        ] = "!",
3228 [TOK_ARROW       ] = "->",
3229 [TOK_DOT         ] = ".",
3230 [TOK_TILDE       ] = "~",
3231 [TOK_LIT_STRING  ] = ":string:",
3232 [TOK_IDENT       ] = ":ident:",
3233 [TOK_TYPE_NAME   ] = ":typename:",
3234 [TOK_LIT_CHAR    ] = ":char:",
3235 [TOK_LIT_INT     ] = ":integer:",
3236 [TOK_LIT_FLOAT   ] = ":float:",
3237 [TOK_MACRO       ] = "#",
3238 [TOK_CONCATENATE ] = "##",
3239
3240 [TOK_AUTO        ] = "auto",
3241 [TOK_BREAK       ] = "break",
3242 [TOK_CASE        ] = "case",
3243 [TOK_CHAR        ] = "char",
3244 [TOK_CONST       ] = "const",
3245 [TOK_CONTINUE    ] = "continue",
3246 [TOK_DEFAULT     ] = "default",
3247 [TOK_DO          ] = "do",
3248 [TOK_DOUBLE      ] = "double",
3249 [TOK_ELSE        ] = "else",
3250 [TOK_ENUM        ] = "enum",
3251 [TOK_EXTERN      ] = "extern",
3252 [TOK_FLOAT       ] = "float",
3253 [TOK_FOR         ] = "for",
3254 [TOK_GOTO        ] = "goto",
3255 [TOK_IF          ] = "if",
3256 [TOK_INLINE      ] = "inline",
3257 [TOK_INT         ] = "int",
3258 [TOK_LONG        ] = "long",
3259 [TOK_REGISTER    ] = "register",
3260 [TOK_RESTRICT    ] = "restrict",
3261 [TOK_RETURN      ] = "return",
3262 [TOK_SHORT       ] = "short",
3263 [TOK_SIGNED      ] = "signed",
3264 [TOK_SIZEOF      ] = "sizeof",
3265 [TOK_STATIC      ] = "static",
3266 [TOK_STRUCT      ] = "struct",
3267 [TOK_SWITCH      ] = "switch",
3268 [TOK_TYPEDEF     ] = "typedef",
3269 [TOK_UNION       ] = "union",
3270 [TOK_UNSIGNED    ] = "unsigned",
3271 [TOK_VOID        ] = "void",
3272 [TOK_VOLATILE    ] = "volatile",
3273 [TOK_WHILE       ] = "while",
3274 [TOK_ASM         ] = "asm",
3275 [TOK_ATTRIBUTE   ] = "__attribute__",
3276 [TOK_ALIGNOF     ] = "__alignof__",
3277
3278 [TOK_MDEFINE     ] = "#define",
3279 [TOK_MDEFINED    ] = "#defined",
3280 [TOK_MUNDEF      ] = "#undef",
3281 [TOK_MINCLUDE    ] = "#include",
3282 [TOK_MLINE       ] = "#line",
3283 [TOK_MERROR      ] = "#error",
3284 [TOK_MWARNING    ] = "#warning",
3285 [TOK_MPRAGMA     ] = "#pragma",
3286 [TOK_MIFDEF      ] = "#ifdef",
3287 [TOK_MIFNDEF     ] = "#ifndef",
3288 [TOK_MELIF       ] = "#elif",
3289 [TOK_MENDIF      ] = "#endif",
3290
3291 [TOK_MIF         ] = "#if",
3292 [TOK_MELSE       ] = "#else",
3293 [TOK_MIDENT      ] = "#:ident:",
3294 [TOK_EOL         ] = "EOL", 
3295 [TOK_EOF         ] = "EOF",
3296 };
3297
3298 static unsigned int hash(const char *str, int str_len)
3299 {
3300         unsigned int hash;
3301         const char *end;
3302         end = str + str_len;
3303         hash = 0;
3304         for(; str < end; str++) {
3305                 hash = (hash *263) + *str;
3306         }
3307         hash = hash & (HASH_TABLE_SIZE -1);
3308         return hash;
3309 }
3310
3311 static struct hash_entry *lookup(
3312         struct compile_state *state, const char *name, int name_len)
3313 {
3314         struct hash_entry *entry;
3315         unsigned int index;
3316         index = hash(name, name_len);
3317         entry = state->hash_table[index];
3318         while(entry && 
3319                 ((entry->name_len != name_len) ||
3320                         (memcmp(entry->name, name, name_len) != 0))) {
3321                 entry = entry->next;
3322         }
3323         if (!entry) {
3324                 char *new_name;
3325                 /* Get a private copy of the name */
3326                 new_name = xmalloc(name_len + 1, "hash_name");
3327                 memcpy(new_name, name, name_len);
3328                 new_name[name_len] = '\0';
3329
3330                 /* Create a new hash entry */
3331                 entry = xcmalloc(sizeof(*entry), "hash_entry");
3332                 entry->next = state->hash_table[index];
3333                 entry->name = new_name;
3334                 entry->name_len = name_len;
3335
3336                 /* Place the new entry in the hash table */
3337                 state->hash_table[index] = entry;
3338         }
3339         return entry;
3340 }
3341
3342 static void ident_to_keyword(struct compile_state *state, struct token *tk)
3343 {
3344         struct hash_entry *entry;
3345         entry = tk->ident;
3346         if (entry && ((entry->tok == TOK_TYPE_NAME) ||
3347                 (entry->tok == TOK_ENUM_CONST) ||
3348                 ((entry->tok >= TOK_FIRST_KEYWORD) && 
3349                         (entry->tok <= TOK_LAST_KEYWORD)))) {
3350                 tk->tok = entry->tok;
3351         }
3352 }
3353
3354 static void ident_to_macro(struct compile_state *state, struct token *tk)
3355 {
3356         struct hash_entry *entry;
3357         entry = tk->ident;
3358         if (!entry)
3359                 return;
3360         if ((entry->tok >= TOK_FIRST_MACRO) && (entry->tok <= TOK_LAST_MACRO)) {
3361                 tk->tok = entry->tok;
3362         }
3363         else if (entry->tok == TOK_IF) {
3364                 tk->tok = TOK_MIF;
3365         }
3366         else if (entry->tok == TOK_ELSE) {
3367                 tk->tok = TOK_MELSE;
3368         }
3369         else {
3370                 tk->tok = TOK_MIDENT;
3371         }
3372 }
3373
3374 static void hash_keyword(
3375         struct compile_state *state, const char *keyword, int tok)
3376 {
3377         struct hash_entry *entry;
3378         entry = lookup(state, keyword, strlen(keyword));
3379         if (entry && entry->tok != TOK_UNKNOWN) {
3380                 die("keyword %s already hashed", keyword);
3381         }
3382         entry->tok  = tok;
3383 }
3384
3385 static void romcc_symbol(
3386         struct compile_state *state, struct hash_entry *ident,
3387         struct symbol **chain, struct triple *def, struct type *type, int depth)
3388 {
3389         struct symbol *sym;
3390         if (*chain && ((*chain)->scope_depth >= depth)) {
3391                 error(state, 0, "%s already defined", ident->name);
3392         }
3393         sym = xcmalloc(sizeof(*sym), "symbol");
3394         sym->ident = ident;
3395         sym->def   = def;
3396         sym->type  = type;
3397         sym->scope_depth = depth;
3398         sym->next = *chain;
3399         *chain    = sym;
3400 }
3401
3402 static void symbol(
3403         struct compile_state *state, struct hash_entry *ident,
3404         struct symbol **chain, struct triple *def, struct type *type)
3405 {
3406         romcc_symbol(state, ident, chain, def, type, state->scope_depth);
3407 }
3408
3409 static void var_symbol(struct compile_state *state, 
3410         struct hash_entry *ident, struct triple *def)
3411 {
3412         if ((def->type->type & TYPE_MASK) == TYPE_PRODUCT) {
3413                 internal_error(state, 0, "bad var type");
3414         }
3415         symbol(state, ident, &ident->sym_ident, def, def->type);
3416 }
3417
3418 static void label_symbol(struct compile_state *state, 
3419         struct hash_entry *ident, struct triple *label, int depth)
3420 {
3421         romcc_symbol(state, ident, &ident->sym_label, label, &void_type, depth);
3422 }
3423
3424 static void start_scope(struct compile_state *state)
3425 {
3426         state->scope_depth++;
3427 }
3428
3429 static void end_scope_syms(struct compile_state *state,
3430         struct symbol **chain, int depth)
3431 {
3432         struct symbol *sym, *next;
3433         sym = *chain;
3434         while(sym && (sym->scope_depth == depth)) {
3435                 next = sym->next;
3436                 xfree(sym);
3437                 sym = next;
3438         }
3439         *chain = sym;
3440 }
3441
3442 static void end_scope(struct compile_state *state)
3443 {
3444         int i;
3445         int depth;
3446         /* Walk through the hash table and remove all symbols
3447          * in the current scope. 
3448          */
3449         depth = state->scope_depth;
3450         for(i = 0; i < HASH_TABLE_SIZE; i++) {
3451                 struct hash_entry *entry;
3452                 entry = state->hash_table[i];
3453                 while(entry) {
3454                         end_scope_syms(state, &entry->sym_label, depth);
3455                         end_scope_syms(state, &entry->sym_tag,   depth);
3456                         end_scope_syms(state, &entry->sym_ident, depth);
3457                         entry = entry->next;
3458                 }
3459         }
3460         state->scope_depth = depth - 1;
3461 }
3462
3463 static void register_keywords(struct compile_state *state)
3464 {
3465         hash_keyword(state, "auto",          TOK_AUTO);
3466         hash_keyword(state, "break",         TOK_BREAK);
3467         hash_keyword(state, "case",          TOK_CASE);
3468         hash_keyword(state, "char",          TOK_CHAR);
3469         hash_keyword(state, "const",         TOK_CONST);
3470         hash_keyword(state, "continue",      TOK_CONTINUE);
3471         hash_keyword(state, "default",       TOK_DEFAULT);
3472         hash_keyword(state, "do",            TOK_DO);
3473         hash_keyword(state, "double",        TOK_DOUBLE);
3474         hash_keyword(state, "else",          TOK_ELSE);
3475         hash_keyword(state, "enum",          TOK_ENUM);
3476         hash_keyword(state, "extern",        TOK_EXTERN);
3477         hash_keyword(state, "float",         TOK_FLOAT);
3478         hash_keyword(state, "for",           TOK_FOR);
3479         hash_keyword(state, "goto",          TOK_GOTO);
3480         hash_keyword(state, "if",            TOK_IF);
3481         hash_keyword(state, "inline",        TOK_INLINE);
3482         hash_keyword(state, "int",           TOK_INT);
3483         hash_keyword(state, "long",          TOK_LONG);
3484         hash_keyword(state, "register",      TOK_REGISTER);
3485         hash_keyword(state, "restrict",      TOK_RESTRICT);
3486         hash_keyword(state, "return",        TOK_RETURN);
3487         hash_keyword(state, "short",         TOK_SHORT);
3488         hash_keyword(state, "signed",        TOK_SIGNED);
3489         hash_keyword(state, "sizeof",        TOK_SIZEOF);
3490         hash_keyword(state, "static",        TOK_STATIC);
3491         hash_keyword(state, "struct",        TOK_STRUCT);
3492         hash_keyword(state, "switch",        TOK_SWITCH);
3493         hash_keyword(state, "typedef",       TOK_TYPEDEF);
3494         hash_keyword(state, "union",         TOK_UNION);
3495         hash_keyword(state, "unsigned",      TOK_UNSIGNED);
3496         hash_keyword(state, "void",          TOK_VOID);
3497         hash_keyword(state, "volatile",      TOK_VOLATILE);
3498         hash_keyword(state, "__volatile__",  TOK_VOLATILE);
3499         hash_keyword(state, "while",         TOK_WHILE);
3500         hash_keyword(state, "asm",           TOK_ASM);
3501         hash_keyword(state, "__asm__",       TOK_ASM);
3502         hash_keyword(state, "__attribute__", TOK_ATTRIBUTE);
3503         hash_keyword(state, "__alignof__",   TOK_ALIGNOF);
3504 }
3505
3506 static void register_macro_keywords(struct compile_state *state)
3507 {
3508         hash_keyword(state, "define",        TOK_MDEFINE);
3509         hash_keyword(state, "defined",       TOK_MDEFINED);
3510         hash_keyword(state, "undef",         TOK_MUNDEF);
3511         hash_keyword(state, "include",       TOK_MINCLUDE);
3512         hash_keyword(state, "line",          TOK_MLINE);
3513         hash_keyword(state, "error",         TOK_MERROR);
3514         hash_keyword(state, "warning",       TOK_MWARNING);
3515         hash_keyword(state, "pragma",        TOK_MPRAGMA);
3516         hash_keyword(state, "ifdef",         TOK_MIFDEF);
3517         hash_keyword(state, "ifndef",        TOK_MIFNDEF);
3518         hash_keyword(state, "elif",          TOK_MELIF);
3519         hash_keyword(state, "endif",         TOK_MENDIF);
3520 }
3521
3522
3523 static void undef_macro(struct compile_state *state, struct hash_entry *ident)
3524 {
3525         if (ident->sym_define != 0) {
3526                 struct macro *macro;
3527                 struct macro_arg *arg, *anext;
3528                 macro = ident->sym_define;
3529                 ident->sym_define = 0;
3530                 
3531                 /* Free the macro arguments... */
3532                 anext = macro->args;
3533                 while(anext) {
3534                         arg = anext;
3535                         anext = arg->next;
3536                         xfree(arg);
3537                 }
3538
3539                 /* Free the macro buffer */
3540                 xfree(macro->buf);
3541
3542                 /* Now free the macro itself */
3543                 xfree(macro);
3544         }
3545 }
3546
3547 static void do_define_macro(struct compile_state *state, 
3548         struct hash_entry *ident, const char *body, 
3549         int argc, struct macro_arg *args)
3550 {
3551         struct macro *macro;
3552         struct macro_arg *arg;
3553         size_t body_len;
3554
3555         /* Find the length of the body */
3556         body_len = strlen(body);
3557         macro = ident->sym_define;
3558         if (macro != 0) {
3559                 int identical_bodies, identical_args;
3560                 struct macro_arg *oarg;
3561                 /* Explicitly allow identical redfinitions of the same macro */
3562                 identical_bodies = 
3563                         (macro->buf_len == body_len) &&
3564                         (memcmp(macro->buf, body, body_len) == 0);
3565                 identical_args = macro->argc == argc;
3566                 oarg = macro->args;
3567                 arg = args;
3568                 while(identical_args && arg) {
3569                         identical_args = oarg->ident == arg->ident;
3570                         arg = arg->next;
3571                         oarg = oarg->next;
3572                 }
3573                 if (identical_bodies && identical_args) {
3574                         xfree(body);
3575                         return;
3576                 }
3577                 error(state, 0, "macro %s already defined\n", ident->name);
3578         }
3579 #if 0
3580         fprintf(state->errout, "#define %s: `%*.*s'\n",
3581                 ident->name, body_len, body_len, body);
3582 #endif
3583         macro = xmalloc(sizeof(*macro), "macro");
3584         macro->ident   = ident;
3585         macro->buf     = body;
3586         macro->buf_len = body_len;
3587         macro->args    = args;
3588         macro->argc    = argc;
3589
3590         ident->sym_define = macro;
3591 }
3592         
3593 static void define_macro(
3594         struct compile_state *state,
3595         struct hash_entry *ident,
3596         const char *body, int body_len,
3597         int argc, struct macro_arg *args)
3598 {
3599         char *buf;
3600         buf = xmalloc(body_len + 1, "macro buf");
3601         memcpy(buf, body, body_len);
3602         buf[body_len] = '\0';
3603         do_define_macro(state, ident, buf, argc, args);
3604 }
3605
3606 static void register_builtin_macro(struct compile_state *state,
3607         const char *name, const char *value)
3608 {
3609         struct hash_entry *ident;
3610
3611         if (value[0] == '(') {
3612                 internal_error(state, 0, "Builtin macros with arguments not supported");
3613         }
3614         ident = lookup(state, name, strlen(name));
3615         define_macro(state, ident, value, strlen(value), -1, 0);
3616 }
3617
3618 static void register_builtin_macros(struct compile_state *state)
3619 {
3620         char buf[30];
3621         char scratch[30];
3622         time_t now;
3623         struct tm *tm;
3624         now = time(NULL);
3625         tm = localtime(&now);
3626
3627         register_builtin_macro(state, "__ROMCC__", VERSION_MAJOR);
3628         register_builtin_macro(state, "__ROMCC_MINOR__", VERSION_MINOR);
3629         register_builtin_macro(state, "__FILE__", "\"This should be the filename\"");
3630         register_builtin_macro(state, "__LINE__", "54321");
3631
3632         strftime(scratch, sizeof(scratch), "%b %e %Y", tm);
3633         sprintf(buf, "\"%s\"", scratch);
3634         register_builtin_macro(state, "__DATE__", buf);
3635
3636         strftime(scratch, sizeof(scratch), "%H:%M:%S", tm);
3637         sprintf(buf, "\"%s\"", scratch);
3638         register_builtin_macro(state, "__TIME__", buf);
3639
3640         /* I can't be a conforming implementation of C :( */
3641         register_builtin_macro(state, "__STDC__", "0");
3642         /* In particular I don't conform to C99 */
3643         register_builtin_macro(state, "__STDC_VERSION__", "199901L");
3644         
3645 }
3646
3647 static void process_cmdline_macros(struct compile_state *state)
3648 {
3649         const char **macro, *name;
3650         struct hash_entry *ident;
3651         for(macro = state->compiler->defines; (name = *macro); macro++) {
3652                 const char *body;
3653                 size_t name_len;
3654
3655                 name_len = strlen(name);
3656                 body = strchr(name, '=');
3657                 if (!body) {
3658                         body = "\0";
3659                 } else {
3660                         name_len = body - name;
3661                         body++;
3662                 }
3663                 ident = lookup(state, name, name_len);
3664                 define_macro(state, ident, body, strlen(body), -1, 0);
3665         }
3666         for(macro = state->compiler->undefs; (name = *macro); macro++) {
3667                 ident = lookup(state, name, strlen(name));
3668                 undef_macro(state, ident);
3669         }
3670 }
3671
3672 static int spacep(int c)
3673 {
3674         int ret = 0;
3675         switch(c) {
3676         case ' ':
3677         case '\t':
3678         case '\f':
3679         case '\v':
3680         case '\r':
3681                 ret = 1;
3682                 break;
3683         }
3684         return ret;
3685 }
3686
3687 static int digitp(int c)
3688 {
3689         int ret = 0;
3690         switch(c) {
3691         case '0': case '1': case '2': case '3': case '4': 
3692         case '5': case '6': case '7': case '8': case '9':
3693                 ret = 1;
3694                 break;
3695         }
3696         return ret;
3697 }
3698 static int digval(int c)
3699 {
3700         int val = -1;
3701         if ((c >= '0') && (c <= '9')) {
3702                 val = c - '0';
3703         }
3704         return val;
3705 }
3706
3707 static int hexdigitp(int c)
3708 {
3709         int ret = 0;
3710         switch(c) {
3711         case '0': case '1': case '2': case '3': case '4': 
3712         case '5': case '6': case '7': case '8': case '9':
3713         case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
3714         case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
3715                 ret = 1;
3716                 break;
3717         }
3718         return ret;
3719 }
3720 static int hexdigval(int c) 
3721 {
3722         int val = -1;
3723         if ((c >= '0') && (c <= '9')) {
3724                 val = c - '0';
3725         }
3726         else if ((c >= 'A') && (c <= 'F')) {
3727                 val = 10 + (c - 'A');
3728         }
3729         else if ((c >= 'a') && (c <= 'f')) {
3730                 val = 10 + (c - 'a');
3731         }
3732         return val;
3733 }
3734
3735 static int octdigitp(int c)
3736 {
3737         int ret = 0;
3738         switch(c) {
3739         case '0': case '1': case '2': case '3': 
3740         case '4': case '5': case '6': case '7':
3741                 ret = 1;
3742                 break;
3743         }
3744         return ret;
3745 }
3746 static int octdigval(int c)
3747 {
3748         int val = -1;
3749         if ((c >= '0') && (c <= '7')) {
3750                 val = c - '0';
3751         }
3752         return val;
3753 }
3754
3755 static int letterp(int c)
3756 {
3757         int ret = 0;
3758         switch(c) {
3759         case 'a': case 'b': case 'c': case 'd': case 'e':
3760         case 'f': case 'g': case 'h': case 'i': case 'j':
3761         case 'k': case 'l': case 'm': case 'n': case 'o':
3762         case 'p': case 'q': case 'r': case 's': case 't':
3763         case 'u': case 'v': case 'w': case 'x': case 'y':
3764         case 'z':
3765         case 'A': case 'B': case 'C': case 'D': case 'E':
3766         case 'F': case 'G': case 'H': case 'I': case 'J':
3767         case 'K': case 'L': case 'M': case 'N': case 'O':
3768         case 'P': case 'Q': case 'R': case 'S': case 'T':
3769         case 'U': case 'V': case 'W': case 'X': case 'Y':
3770         case 'Z':
3771         case '_':
3772                 ret = 1;
3773                 break;
3774         }
3775         return ret;
3776 }
3777
3778 static const char *identifier(const char *str, const char *end)
3779 {
3780         if (letterp(*str)) {
3781                 for(; str < end; str++) {
3782                         int c;
3783                         c = *str;
3784                         if (!letterp(c) && !digitp(c)) {
3785                                 break;
3786                         }
3787                 }
3788         }
3789         return str;
3790 }
3791
3792 static int char_value(struct compile_state *state,
3793         const signed char **strp, const signed char *end)
3794 {
3795         const signed char *str;
3796         int c;
3797         str = *strp;
3798         c = *str++;
3799         if ((c == '\\') && (str < end)) {
3800                 switch(*str) {
3801                 case 'n':  c = '\n'; str++; break;
3802                 case 't':  c = '\t'; str++; break;
3803                 case 'v':  c = '\v'; str++; break;
3804                 case 'b':  c = '\b'; str++; break;
3805                 case 'r':  c = '\r'; str++; break;
3806                 case 'f':  c = '\f'; str++; break;
3807                 case 'a':  c = '\a'; str++; break;
3808                 case '\\': c = '\\'; str++; break;
3809                 case '?':  c = '?';  str++; break;
3810                 case '\'': c = '\''; str++; break;
3811                 case '"':  c = '"';  str++; break;
3812                 case 'x': 
3813                         c = 0;
3814                         str++;
3815                         while((str < end) && hexdigitp(*str)) {
3816                                 c <<= 4;
3817                                 c += hexdigval(*str);
3818                                 str++;
3819                         }
3820                         break;
3821                 case '0': case '1': case '2': case '3': 
3822                 case '4': case '5': case '6': case '7':
3823                         c = 0;
3824                         while((str < end) && octdigitp(*str)) {
3825                                 c <<= 3;
3826                                 c += octdigval(*str);
3827                                 str++;
3828                         }
3829                         break;
3830                 default:
3831                         error(state, 0, "Invalid character constant");
3832                         break;
3833                 }
3834         }
3835         *strp = str;
3836         return c;
3837 }
3838
3839 static const char *next_char(struct file_state *file, const char *pos, int index)
3840 {
3841         const char *end = file->buf + file->size;
3842         while(pos < end) {
3843                 /* Lookup the character */
3844                 int size = 1;
3845                 int c = *pos;
3846                 /* Is this a trigraph? */
3847                 if (file->trigraphs &&
3848                         (c == '?') && ((end - pos) >= 3) && (pos[1] == '?')) 
3849                 {
3850                         switch(pos[2]) {
3851                         case '=': c = '#'; break;
3852                         case '/': c = '\\'; break;
3853                         case '\'': c = '^'; break;
3854                         case '(': c = '['; break;
3855                         case ')': c = ']'; break;
3856                         case '!': c = '!'; break;
3857                         case '<': c = '{'; break;
3858                         case '>': c = '}'; break;
3859                         case '-': c = '~'; break;
3860                         }
3861                         if (c != '?') {
3862                                 size = 3;
3863                         }
3864                 }
3865                 /* Is this an escaped newline? */
3866                 if (file->join_lines &&
3867                         (c == '\\') && (pos + size < end) && ((pos[1] == '\n') || ((pos[1] == '\r') && (pos[2] == '\n'))))
3868                 {
3869                         int cr_offset = ((pos[1] == '\r') && (pos[2] == '\n'))?1:0;
3870                         /* At the start of a line just eat it */
3871                         if (pos == file->pos) {
3872                                 file->line++;
3873                                 file->report_line++;
3874                                 file->line_start = pos + size + 1 + cr_offset;
3875                         }
3876                         pos += size + 1 + cr_offset;
3877                 }
3878                 /* Do I need to ga any farther? */
3879                 else if (index == 0) {
3880                         break;
3881                 }
3882                 /* Process a normal character */
3883                 else {
3884                         pos += size;
3885                         index -= 1;
3886                 }
3887         }
3888         return pos;
3889 }
3890
3891 static int get_char(struct file_state *file, const char *pos)
3892 {
3893         const char *end = file->buf + file->size;
3894         int c;
3895         c = -1;
3896         pos = next_char(file, pos, 0);
3897         if (pos < end) {
3898                 /* Lookup the character */
3899                 c = *pos;
3900                 /* If it is a trigraph get the trigraph value */
3901                 if (file->trigraphs &&
3902                         (c == '?') && ((end - pos) >= 3) && (pos[1] == '?')) 
3903                 {
3904                         switch(pos[2]) {
3905                         case '=': c = '#'; break;
3906                         case '/': c = '\\'; break;
3907                         case '\'': c = '^'; break;
3908                         case '(': c = '['; break;
3909                         case ')': c = ']'; break;
3910                         case '!': c = '!'; break;
3911                         case '<': c = '{'; break;
3912                         case '>': c = '}'; break;
3913                         case '-': c = '~'; break;
3914                         }
3915                 }
3916         }
3917         return c;
3918 }
3919
3920 static void eat_chars(struct file_state *file, const char *targ)
3921 {
3922         const char *pos = file->pos;
3923         while(pos < targ) {
3924                 /* Do we have a newline? */
3925                 if (pos[0] == '\n') {
3926                         file->line++;
3927                         file->report_line++;
3928                         file->line_start = pos + 1;
3929                 }
3930                 pos++;
3931         }
3932         file->pos = pos;
3933 }
3934
3935
3936 static size_t char_strlen(struct file_state *file, const char *src, const char *end)
3937 {
3938         size_t len;
3939         len = 0;
3940         while(src < end) {
3941                 src = next_char(file, src, 1);
3942                 len++;
3943         }
3944         return len;
3945 }
3946
3947 static void char_strcpy(char *dest, 
3948         struct file_state *file, const char *src, const char *end)
3949 {
3950         while(src < end) {
3951                 int c;
3952                 c = get_char(file, src);
3953                 src = next_char(file, src, 1);
3954                 *dest++ = c;
3955         }
3956 }
3957
3958 static char *char_strdup(struct file_state *file, 
3959         const char *start, const char *end, const char *id)
3960 {
3961         char *str;
3962         size_t str_len;
3963         str_len = char_strlen(file, start, end);
3964         str = xcmalloc(str_len + 1, id);
3965         char_strcpy(str, file, start, end);
3966         str[str_len] = '\0';
3967         return str;
3968 }
3969
3970 static const char *after_digits(struct file_state *file, const char *ptr)
3971 {
3972         while(digitp(get_char(file, ptr))) {
3973                 ptr = next_char(file, ptr, 1);
3974         }
3975         return ptr;
3976 }
3977
3978 static const char *after_octdigits(struct file_state *file, const char *ptr)
3979 {
3980         while(octdigitp(get_char(file, ptr))) {
3981                 ptr = next_char(file, ptr, 1);
3982         }
3983         return ptr;
3984 }
3985
3986 static const char *after_hexdigits(struct file_state *file, const char *ptr)
3987 {
3988         while(hexdigitp(get_char(file, ptr))) {
3989                 ptr = next_char(file, ptr, 1);
3990         }
3991         return ptr;
3992 }
3993
3994 static const char *after_alnums(struct file_state *file, const char *ptr)
3995 {
3996         int c;
3997         c = get_char(file, ptr);
3998         while(letterp(c) || digitp(c)) {
3999                 ptr = next_char(file, ptr, 1);
4000                 c = get_char(file, ptr);
4001         }
4002         return ptr;
4003 }
4004
4005 static void save_string(struct file_state *file,
4006         struct token *tk, const char *start, const char *end, const char *id)
4007 {
4008         char *str;
4009
4010         /* Create a private copy of the string */
4011         str = char_strdup(file, start, end, id);
4012
4013         /* Store the copy in the token */
4014         tk->val.str = str;
4015         tk->str_len = strlen(str);
4016 }
4017
4018 static void raw_next_token(struct compile_state *state, 
4019         struct file_state *file, struct token *tk)
4020 {
4021         const char *token;
4022         int c, c1, c2, c3;
4023         const char *tokp;
4024         int eat;
4025         int tok;
4026
4027         tk->str_len = 0;
4028         tk->ident = 0;
4029         token = tokp = next_char(file, file->pos, 0);
4030         tok = TOK_UNKNOWN;
4031         c  = get_char(file, tokp);
4032         tokp = next_char(file, tokp, 1);
4033         eat = 0;
4034         c1 = get_char(file, tokp);
4035         c2 = get_char(file, next_char(file, tokp, 1));
4036         c3 = get_char(file, next_char(file, tokp, 2));
4037
4038         /* The end of the file */
4039         if (c == -1) {
4040                 tok = TOK_EOF;
4041         }
4042         /* Whitespace */
4043         else if (spacep(c)) {
4044                 tok = TOK_SPACE;
4045                 while (spacep(get_char(file, tokp))) {
4046                         tokp = next_char(file, tokp, 1);
4047                 }
4048         }
4049         /* EOL Comments */
4050         else if ((c == '/') && (c1 == '/')) {
4051                 tok = TOK_SPACE;
4052                 tokp = next_char(file, tokp, 1);
4053                 while((c = get_char(file, tokp)) != -1) {
4054                         /* Advance to the next character only after we verify
4055                          * the current character is not a newline.  
4056                          * EOL is special to the preprocessor so we don't
4057                          * want to loose any.
4058                          */
4059                         if (c == '\n') {
4060                                 break;
4061                         }
4062                         tokp = next_char(file, tokp, 1);
4063                 }
4064         }
4065         /* Comments */
4066         else if ((c == '/') && (c1 == '*')) {
4067                 tokp = next_char(file, tokp, 2);
4068                 c = c2;
4069                 while((c1 = get_char(file, tokp)) != -1) {
4070                         tokp = next_char(file, tokp, 1);
4071                         if ((c == '*') && (c1 == '/')) {
4072                                 tok = TOK_SPACE;
4073                                 break;
4074                         }
4075                         c = c1;
4076                 }
4077                 if (tok == TOK_UNKNOWN) {
4078                         error(state, 0, "unterminated comment");
4079                 }
4080         }
4081         /* string constants */
4082         else if ((c == '"') || ((c == 'L') && (c1 == '"'))) {
4083                 int wchar, multiline;
4084
4085                 wchar = 0;
4086                 multiline = 0;
4087                 if (c == 'L') {
4088                         wchar = 1;
4089                         tokp = next_char(file, tokp, 1);
4090                 }
4091                 while((c = get_char(file, tokp)) != -1) {
4092                         tokp = next_char(file, tokp, 1);
4093                         if (c == '\n') {
4094                                 multiline = 1;
4095                         }
4096                         else if (c == '\\') {
4097                                 tokp = next_char(file, tokp, 1);
4098                         }
4099                         else if (c == '"') {
4100                                 tok = TOK_LIT_STRING;
4101                                 break;
4102                         }
4103                 }
4104                 if (tok == TOK_UNKNOWN) {
4105                         error(state, 0, "unterminated string constant");
4106                 }
4107                 if (multiline) {
4108                         warning(state, 0, "multiline string constant");
4109                 }
4110
4111                 /* Save the string value */
4112                 save_string(file, tk, token, tokp, "literal string");
4113         }
4114         /* character constants */
4115         else if ((c == '\'') || ((c == 'L') && (c1 == '\''))) {
4116                 int wchar, multiline;
4117
4118                 wchar = 0;
4119                 multiline = 0;
4120                 if (c == 'L') {
4121                         wchar = 1;
4122                         tokp = next_char(file, tokp, 1);
4123                 }
4124                 while((c = get_char(file, tokp)) != -1) {
4125                         tokp = next_char(file, tokp, 1);
4126                         if (c == '\n') {
4127                                 multiline = 1;
4128                         }
4129                         else if (c == '\\') {
4130                                 tokp = next_char(file, tokp, 1);
4131                         }
4132                         else if (c == '\'') {
4133                                 tok = TOK_LIT_CHAR;
4134                                 break;
4135                         }
4136                 }
4137                 if (tok == TOK_UNKNOWN) {
4138                         error(state, 0, "unterminated character constant");
4139                 }
4140                 if (multiline) {
4141                         warning(state, 0, "multiline character constant");
4142                 }
4143
4144                 /* Save the character value */
4145                 save_string(file, tk, token, tokp, "literal character");
4146         }
4147         /* integer and floating constants 
4148          * Integer Constants
4149          * {digits}
4150          * 0[Xx]{hexdigits}
4151          * 0{octdigit}+
4152          * 
4153          * Floating constants
4154          * {digits}.{digits}[Ee][+-]?{digits}
4155          * {digits}.{digits}
4156          * {digits}[Ee][+-]?{digits}
4157          * .{digits}[Ee][+-]?{digits}
4158          * .{digits}
4159          */
4160         else if (digitp(c) || ((c == '.') && (digitp(c1)))) {
4161                 const char *next;
4162                 int is_float;
4163                 int cn;
4164                 is_float = 0;
4165                 if (c != '.') {
4166                         next = after_digits(file, tokp);
4167                 }
4168                 else {
4169                         next = token;
4170                 }
4171                 cn = get_char(file, next);
4172                 if (cn == '.') {
4173                         next = next_char(file, next, 1);
4174                         next = after_digits(file, next);
4175                         is_float = 1;
4176                 }
4177                 cn = get_char(file, next);
4178                 if ((cn == 'e') || (cn == 'E')) {
4179                         const char *new;
4180                         next = next_char(file, next, 1);
4181                         cn = get_char(file, next);
4182                         if ((cn == '+') || (cn == '-')) {
4183                                 next = next_char(file, next, 1);
4184                         }
4185                         new = after_digits(file, next);
4186                         is_float |= (new != next);
4187                         next = new;
4188                 }
4189                 if (is_float) {
4190                         tok = TOK_LIT_FLOAT;
4191                         cn = get_char(file, next);
4192                         if ((cn  == 'f') || (cn == 'F') || (cn == 'l') || (cn == 'L')) {
4193                                 next = next_char(file, next, 1);
4194                         }
4195                 }
4196                 if (!is_float && digitp(c)) {
4197                         tok = TOK_LIT_INT;
4198                         if ((c == '0') && ((c1 == 'x') || (c1 == 'X'))) {
4199                                 next = next_char(file, tokp, 1);
4200                                 next = after_hexdigits(file, next);
4201                         }
4202                         else if (c == '0') {
4203                                 next = after_octdigits(file, tokp);
4204                         }
4205                         else {
4206                                 next = after_digits(file, tokp);
4207                         }
4208                         /* crazy integer suffixes */
4209                         cn = get_char(file, next);
4210                         if ((cn == 'u') || (cn == 'U')) {
4211                                 next = next_char(file, next, 1);
4212                                 cn = get_char(file, next);
4213                                 if ((cn == 'l') || (cn == 'L')) {
4214                                         next = next_char(file, next, 1);
4215                                         cn = get_char(file, next);
4216                                 }
4217                                 if ((cn == 'l') || (cn == 'L')) {
4218                                         next = next_char(file, next, 1);
4219                                 }
4220                         }
4221                         else if ((cn == 'l') || (cn == 'L')) {
4222                                 next = next_char(file, next, 1);
4223                                 cn = get_char(file, next);
4224                                 if ((cn == 'l') || (cn == 'L')) {
4225                                         next = next_char(file, next, 1);
4226                                         cn = get_char(file, next);
4227                                 }
4228                                 if ((cn == 'u') || (cn == 'U')) {
4229                                         next = next_char(file, next, 1);
4230                                 }
4231                         }
4232                 }
4233                 tokp = next;
4234
4235                 /* Save the integer/floating point value */
4236                 save_string(file, tk, token, tokp, "literal number");
4237         }
4238         /* identifiers */
4239         else if (letterp(c)) {
4240                 tok = TOK_IDENT;
4241
4242                 /* Find and save the identifier string */
4243                 tokp = after_alnums(file, tokp);
4244                 save_string(file, tk, token, tokp, "identifier");
4245
4246                 /* Look up to see which identifier it is */
4247                 tk->ident = lookup(state, tk->val.str, tk->str_len);
4248
4249                 /* Free the identifier string */
4250                 tk->str_len = 0;
4251                 xfree(tk->val.str);
4252
4253                 /* See if this identifier can be macro expanded */
4254                 tk->val.notmacro = 0;
4255                 c = get_char(file, tokp);
4256                 if (c == '$') {
4257                         tokp = next_char(file, tokp, 1);
4258                         tk->val.notmacro = 1;
4259                 }
4260         }
4261         /* C99 alternate macro characters */
4262         else if ((c == '%') && (c1 == ':') && (c2 == '%') && (c3 == ':')) { 
4263                 eat += 3;
4264                 tok = TOK_CONCATENATE; 
4265         }
4266         else if ((c == '.') && (c1 == '.') && (c2 == '.')) { eat += 2; tok = TOK_DOTS; }
4267         else if ((c == '<') && (c1 == '<') && (c2 == '=')) { eat += 2; tok = TOK_SLEQ; }
4268         else if ((c == '>') && (c1 == '>') && (c2 == '=')) { eat += 2; tok = TOK_SREQ; }
4269         else if ((c == '*') && (c1 == '=')) { eat += 1; tok = TOK_TIMESEQ; }
4270         else if ((c == '/') && (c1 == '=')) { eat += 1; tok = TOK_DIVEQ; }
4271         else if ((c == '%') && (c1 == '=')) { eat += 1; tok = TOK_MODEQ; }
4272         else if ((c == '+') && (c1 == '=')) { eat += 1; tok = TOK_PLUSEQ; }
4273         else if ((c == '-') && (c1 == '=')) { eat += 1; tok = TOK_MINUSEQ; }
4274         else if ((c == '&') && (c1 == '=')) { eat += 1; tok = TOK_ANDEQ; }
4275         else if ((c == '^') && (c1 == '=')) { eat += 1; tok = TOK_XOREQ; }
4276         else if ((c == '|') && (c1 == '=')) { eat += 1; tok = TOK_OREQ; }
4277         else if ((c == '=') && (c1 == '=')) { eat += 1; tok = TOK_EQEQ; }
4278         else if ((c == '!') && (c1 == '=')) { eat += 1; tok = TOK_NOTEQ; }
4279         else if ((c == '|') && (c1 == '|')) { eat += 1; tok = TOK_LOGOR; }
4280         else if ((c == '&') && (c1 == '&')) { eat += 1; tok = TOK_LOGAND; }
4281         else if ((c == '<') && (c1 == '=')) { eat += 1; tok = TOK_LESSEQ; }
4282         else if ((c == '>') && (c1 == '=')) { eat += 1; tok = TOK_MOREEQ; }
4283         else if ((c == '<') && (c1 == '<')) { eat += 1; tok = TOK_SL; }
4284         else if ((c == '>') && (c1 == '>')) { eat += 1; tok = TOK_SR; }
4285         else if ((c == '+') && (c1 == '+')) { eat += 1; tok = TOK_PLUSPLUS; }
4286         else if ((c == '-') && (c1 == '-')) { eat += 1; tok = TOK_MINUSMINUS; }
4287         else if ((c == '-') && (c1 == '>')) { eat += 1; tok = TOK_ARROW; }
4288         else if ((c == '<') && (c1 == ':')) { eat += 1; tok = TOK_LBRACKET; }
4289         else if ((c == ':') && (c1 == '>')) { eat += 1; tok = TOK_RBRACKET; }
4290         else if ((c == '<') && (c1 == '%')) { eat += 1; tok = TOK_LBRACE; }
4291         else if ((c == '%') && (c1 == '>')) { eat += 1; tok = TOK_RBRACE; }
4292         else if ((c == '%') && (c1 == ':')) { eat += 1; tok = TOK_MACRO; }
4293         else if ((c == '#') && (c1 == '#')) { eat += 1; tok = TOK_CONCATENATE; }
4294         else if (c == ';') { tok = TOK_SEMI; }
4295         else if (c == '{') { tok = TOK_LBRACE; }
4296         else if (c == '}') { tok = TOK_RBRACE; }
4297         else if (c == ',') { tok = TOK_COMMA; }
4298         else if (c == '=') { tok = TOK_EQ; }
4299         else if (c == ':') { tok = TOK_COLON; }
4300         else if (c == '[') { tok = TOK_LBRACKET; }
4301         else if (c == ']') { tok = TOK_RBRACKET; }
4302         else if (c == '(') { tok = TOK_LPAREN; }
4303         else if (c == ')') { tok = TOK_RPAREN; }
4304         else if (c == '*') { tok = TOK_STAR; }
4305         else if (c == '>') { tok = TOK_MORE; }
4306         else if (c == '<') { tok = TOK_LESS; }
4307         else if (c == '?') { tok = TOK_QUEST; }
4308         else if (c == '|') { tok = TOK_OR; }
4309         else if (c == '&') { tok = TOK_AND; }
4310         else if (c == '^') { tok = TOK_XOR; }
4311         else if (c == '+') { tok = TOK_PLUS; }
4312         else if (c == '-') { tok = TOK_MINUS; }
4313         else if (c == '/') { tok = TOK_DIV; }
4314         else if (c == '%') { tok = TOK_MOD; }
4315         else if (c == '!') { tok = TOK_BANG; }
4316         else if (c == '.') { tok = TOK_DOT; }
4317         else if (c == '~') { tok = TOK_TILDE; }
4318         else if (c == '#') { tok = TOK_MACRO; }
4319         else if (c == '\n') { tok = TOK_EOL; }
4320
4321         tokp = next_char(file, tokp, eat);
4322         eat_chars(file, tokp);
4323         tk->tok = tok;
4324         tk->pos = token;
4325 }
4326
4327 static void check_tok(struct compile_state *state, struct token *tk, int tok)
4328 {
4329         if (tk->tok != tok) {
4330                 const char *name1, *name2;
4331                 name1 = tokens[tk->tok];
4332                 name2 = "";
4333                 if ((tk->tok == TOK_IDENT) || (tk->tok == TOK_MIDENT)) {
4334                         name2 = tk->ident->name;
4335                 }
4336                 error(state, 0, "\tfound %s %s expected %s",
4337                         name1, name2, tokens[tok]);
4338         }
4339 }
4340
4341 struct macro_arg_value {
4342         struct hash_entry *ident;
4343         char *value;
4344         size_t len;
4345 };
4346 static struct macro_arg_value *read_macro_args(
4347         struct compile_state *state, struct macro *macro, 
4348         struct file_state *file, struct token *tk)
4349 {
4350         struct macro_arg_value *argv;
4351         struct macro_arg *arg;
4352         int paren_depth;
4353         int i;
4354
4355         if (macro->argc == 0) {
4356                 do {
4357                         raw_next_token(state, file, tk);
4358                 } while(tk->tok == TOK_SPACE);
4359                 return NULL;
4360         }
4361         argv = xcmalloc(sizeof(*argv) * macro->argc, "macro args");
4362         for(i = 0, arg = macro->args; arg; arg = arg->next, i++) {
4363                 argv[i].value = 0;
4364                 argv[i].len   = 0;
4365                 argv[i].ident = arg->ident;
4366         }
4367         paren_depth = 0;
4368         i = 0;
4369         
4370         for(;;) {
4371                 const char *start;
4372                 size_t len;
4373                 start = file->pos;
4374                 raw_next_token(state, file, tk);
4375                 
4376                 if (!paren_depth && (tk->tok == TOK_COMMA) &&
4377                         (argv[i].ident != state->i___VA_ARGS__)) 
4378                 {
4379                         i++;
4380                         if (i >= macro->argc) {
4381                                 error(state, 0, "too many args to %s\n",
4382                                         macro->ident->name);
4383                         }
4384                         continue;
4385                 }
4386                 
4387                 if (tk->tok == TOK_LPAREN) {
4388                         paren_depth++;
4389                 }
4390                 
4391                 if (tk->tok == TOK_RPAREN) {
4392                         if (paren_depth == 0) {
4393                                 break;
4394                         }
4395                         paren_depth--;
4396                 }
4397                 if (tk->tok == TOK_EOF) {
4398                         error(state, 0, "End of file encountered while parsing macro arguments");
4399                 }
4400
4401                 len = char_strlen(file, start, file->pos);
4402                 argv[i].value = xrealloc(
4403                         argv[i].value, argv[i].len + len, "macro args");
4404                 char_strcpy((char *)argv[i].value + argv[i].len, file, start, file->pos);
4405                 argv[i].len += len;
4406         }
4407         if (i != macro->argc -1) {
4408                 error(state, 0, "missing %s arg %d\n", 
4409                         macro->ident->name, i +2);
4410         }
4411         return argv;
4412 }
4413
4414
4415 static void free_macro_args(struct macro *macro, struct macro_arg_value *argv)
4416 {
4417         int i;
4418         for(i = 0; i < macro->argc; i++) {
4419                 xfree(argv[i].value);
4420         }
4421         xfree(argv);
4422 }
4423
4424 struct macro_buf {
4425         char *str;
4426         size_t len, pos;
4427 };
4428
4429 static void grow_macro_buf(struct compile_state *state,
4430         const char *id, struct macro_buf *buf,
4431         size_t grow)
4432 {
4433         if ((buf->pos + grow) >= buf->len) {
4434                 buf->str = xrealloc(buf->str, buf->len + grow, id);
4435                 buf->len += grow;
4436         }
4437 }
4438
4439 static void append_macro_text(struct compile_state *state,
4440         const char *id, struct macro_buf *buf,
4441         const char *fstart, size_t flen)
4442 {
4443         grow_macro_buf(state, id, buf, flen);
4444         memcpy(buf->str + buf->pos, fstart, flen);
4445 #if 0
4446         fprintf(state->errout, "append: `%*.*s' `%*.*s'\n",
4447                 buf->pos, buf->pos, buf->str,
4448                 flen, flen, buf->str + buf->pos);
4449 #endif
4450         buf->pos += flen;
4451 }
4452
4453
4454 static void append_macro_chars(struct compile_state *state,
4455         const char *id, struct macro_buf *buf,
4456         struct file_state *file, const char *start, const char *end)
4457 {
4458         size_t flen;
4459         flen = char_strlen(file, start, end);
4460         grow_macro_buf(state, id, buf, flen);
4461         char_strcpy(buf->str + buf->pos, file, start, end);
4462 #if 0
4463         fprintf(state->errout, "append: `%*.*s' `%*.*s'\n",
4464                 buf->pos, buf->pos, buf->str,
4465                 flen, flen, buf->str + buf->pos);
4466 #endif
4467         buf->pos += flen;
4468 }
4469
4470 static int compile_macro(struct compile_state *state, 
4471         struct file_state **filep, struct token *tk);
4472
4473 static void macro_expand_args(struct compile_state *state, 
4474         struct macro *macro, struct macro_arg_value *argv, struct token *tk)
4475 {
4476         int i;
4477         
4478         for(i = 0; i < macro->argc; i++) {
4479                 struct file_state fmacro, *file;
4480                 struct macro_buf buf;
4481
4482                 fmacro.prev        = 0;
4483                 fmacro.basename    = argv[i].ident->name;
4484                 fmacro.dirname     = "";
4485                 fmacro.buf         = (char *)argv[i].value;
4486                 fmacro.size        = argv[i].len;
4487                 fmacro.pos         = fmacro.buf;
4488                 fmacro.line        = 1;
4489                 fmacro.line_start  = fmacro.buf;
4490                 fmacro.report_line = 1;
4491                 fmacro.report_name = fmacro.basename;
4492                 fmacro.report_dir  = fmacro.dirname;
4493                 fmacro.macro       = 1;
4494                 fmacro.trigraphs   = 0;
4495                 fmacro.join_lines  = 0;
4496
4497                 buf.len = argv[i].len;
4498                 buf.str = xmalloc(buf.len, argv[i].ident->name);
4499                 buf.pos = 0;
4500
4501                 file = &fmacro;
4502                 for(;;) {
4503                         raw_next_token(state, file, tk);
4504                         
4505                         /* If we have recursed into another macro body
4506                          * get out of it.
4507                          */
4508                         if (tk->tok == TOK_EOF) {
4509                                 struct file_state *old;
4510                                 old = file;
4511                                 file = file->prev;
4512                                 if (!file) {
4513                                         break;
4514                                 }
4515                                 /* old->basename is used keep it */
4516                                 xfree(old->dirname);
4517                                 xfree(old->buf);
4518                                 xfree(old);
4519                                 continue;
4520                         }
4521                         else if (tk->ident && tk->ident->sym_define) {
4522                                 if (compile_macro(state, &file, tk)) {
4523                                         continue;
4524                                 }
4525                         }
4526
4527                         append_macro_chars(state, macro->ident->name, &buf,
4528                                 file, tk->pos, file->pos);
4529                 }
4530                         
4531                 xfree(argv[i].value);
4532                 argv[i].value = buf.str;
4533                 argv[i].len   = buf.pos;
4534         }
4535         return;
4536 }
4537
4538 static void expand_macro(struct compile_state *state,
4539         struct macro *macro, struct macro_buf *buf,
4540         struct macro_arg_value *argv, struct token *tk)
4541 {
4542         struct file_state fmacro;
4543         const char space[] = " ";
4544         const char *fstart;
4545         size_t flen;
4546         int i, j;
4547
4548         /* Place the macro body in a dummy file */
4549         fmacro.prev        = 0;
4550         fmacro.basename    = macro->ident->name;
4551         fmacro.dirname     = "";
4552         fmacro.buf         = macro->buf;
4553         fmacro.size        = macro->buf_len;
4554         fmacro.pos         = fmacro.buf;
4555         fmacro.line        = 1;
4556         fmacro.line_start  = fmacro.buf;
4557         fmacro.report_line = 1;
4558         fmacro.report_name = fmacro.basename;
4559         fmacro.report_dir  = fmacro.dirname;
4560         fmacro.macro       = 1;
4561         fmacro.trigraphs   = 0;
4562         fmacro.join_lines  = 0;
4563         
4564         /* Allocate a buffer to hold the macro expansion */
4565         buf->len = macro->buf_len + 3;
4566         buf->str = xmalloc(buf->len, macro->ident->name);
4567         buf->pos = 0;
4568         
4569         fstart = fmacro.pos;
4570         raw_next_token(state, &fmacro, tk);
4571         while(tk->tok != TOK_EOF) {
4572                 flen = fmacro.pos - fstart;
4573                 switch(tk->tok) {
4574                 case TOK_IDENT:
4575                         for(i = 0; i < macro->argc; i++) {
4576                                 if (argv[i].ident == tk->ident) {
4577                                         break;
4578                                 }
4579                         }
4580                         if (i >= macro->argc) {
4581                                 break;
4582                         }
4583                         /* Substitute macro parameter */
4584                         fstart = argv[i].value;
4585                         flen   = argv[i].len;
4586                         break;
4587                 case TOK_MACRO:
4588                         if (macro->argc < 0) {
4589                                 break;
4590                         }
4591                         do {
4592                                 raw_next_token(state, &fmacro, tk);
4593                         } while(tk->tok == TOK_SPACE);
4594                         check_tok(state, tk, TOK_IDENT);
4595                         for(i = 0; i < macro->argc; i++) {
4596                                 if (argv[i].ident == tk->ident) {
4597                                         break;
4598                                 }
4599                         }
4600                         if (i >= macro->argc) {
4601                                 error(state, 0, "parameter `%s' not found",
4602                                         tk->ident->name);
4603                         }
4604                         /* Stringize token */
4605                         append_macro_text(state, macro->ident->name, buf, "\"", 1);
4606                         for(j = 0; j < argv[i].len; j++) {
4607                                 char *str = argv[i].value + j;
4608                                 size_t len = 1;
4609                                 if (*str == '\\') {
4610                                         str = "\\";
4611                                         len = 2;
4612                                 } 
4613                                 else if (*str == '"') {
4614                                         str = "\\\"";
4615                                         len = 2;
4616                                 }
4617                                 append_macro_text(state, macro->ident->name, buf, str, len);
4618                         }
4619                         append_macro_text(state, macro->ident->name, buf, "\"", 1);
4620                         fstart = 0;
4621                         flen   = 0;
4622                         break;
4623                 case TOK_CONCATENATE:
4624                         /* Concatenate tokens */
4625                         /* Delete the previous whitespace token */
4626                         if (buf->str[buf->pos - 1] == ' ') {
4627                                 buf->pos -= 1;
4628                         }
4629                         /* Skip the next sequence of whitspace tokens */
4630                         do {
4631                                 fstart = fmacro.pos;
4632                                 raw_next_token(state, &fmacro, tk);
4633                         } while(tk->tok == TOK_SPACE);
4634                         /* Restart at the top of the loop.
4635                          * I need to process the non white space token.
4636                          */
4637                         continue;
4638                         break;
4639                 case TOK_SPACE:
4640                         /* Collapse multiple spaces into one */
4641                         if (buf->str[buf->pos - 1] != ' ') {
4642                                 fstart = space;
4643                                 flen   = 1;
4644                         } else {
4645                                 fstart = 0;
4646                                 flen   = 0;
4647                         }
4648                         break;
4649                 default:
4650                         break;
4651                 }
4652
4653                 append_macro_text(state, macro->ident->name, buf, fstart, flen);
4654                 
4655                 fstart = fmacro.pos;
4656                 raw_next_token(state, &fmacro, tk);
4657         }
4658 }
4659
4660 static void tag_macro_name(struct compile_state *state,
4661         struct macro *macro, struct macro_buf *buf,
4662         struct token *tk)
4663 {
4664         /* Guard all instances of the macro name in the replacement
4665          * text from further macro expansion.
4666          */
4667         struct file_state fmacro;
4668         const char *fstart;
4669         size_t flen;
4670
4671         /* Put the old macro expansion buffer in a file */
4672         fmacro.prev        = 0;
4673         fmacro.basename    = macro->ident->name;
4674         fmacro.dirname     = "";
4675         fmacro.buf         = buf->str;
4676         fmacro.size        = buf->pos;
4677         fmacro.pos         = fmacro.buf;
4678         fmacro.line        = 1;
4679         fmacro.line_start  = fmacro.buf;
4680         fmacro.report_line = 1;
4681         fmacro.report_name = fmacro.basename;
4682         fmacro.report_dir  = fmacro.dirname;
4683         fmacro.macro       = 1;
4684         fmacro.trigraphs   = 0;
4685         fmacro.join_lines  = 0;
4686         
4687         /* Allocate a new macro expansion buffer */
4688         buf->len = macro->buf_len + 3;
4689         buf->str = xmalloc(buf->len, macro->ident->name);
4690         buf->pos = 0;
4691         
4692         fstart = fmacro.pos;
4693         raw_next_token(state, &fmacro, tk);
4694         while(tk->tok != TOK_EOF) {
4695                 flen = fmacro.pos - fstart;
4696                 if ((tk->tok == TOK_IDENT) &&
4697                         (tk->ident == macro->ident) &&
4698                         (tk->val.notmacro == 0)) 
4699                 {
4700                         append_macro_text(state, macro->ident->name, buf, fstart, flen);
4701                         fstart = "$";
4702                         flen   = 1;
4703                 }
4704
4705                 append_macro_text(state, macro->ident->name, buf, fstart, flen);
4706                 
4707                 fstart = fmacro.pos;
4708                 raw_next_token(state, &fmacro, tk);
4709         }
4710         xfree(fmacro.buf);
4711 }
4712
4713 static int compile_macro(struct compile_state *state, 
4714         struct file_state **filep, struct token *tk)
4715 {
4716         struct file_state *file;
4717         struct hash_entry *ident;
4718         struct macro *macro;
4719         struct macro_arg_value *argv;
4720         struct macro_buf buf;
4721
4722 #if 0
4723         fprintf(state->errout, "macro: %s\n", tk->ident->name);
4724 #endif
4725         ident = tk->ident;
4726         macro = ident->sym_define;
4727
4728         /* If this token comes from a macro expansion ignore it */
4729         if (tk->val.notmacro) {
4730                 return 0;
4731         }
4732         /* If I am a function like macro and the identifier is not followed
4733          * by a left parenthesis, do nothing.
4734          */
4735         if ((macro->argc >= 0) && (get_char(*filep, (*filep)->pos) != '(')) {
4736                 return 0;
4737         }
4738
4739         /* Read in the macro arguments */
4740         argv = 0;
4741         if (macro->argc >= 0) {
4742                 raw_next_token(state, *filep, tk);
4743                 check_tok(state, tk, TOK_LPAREN);
4744
4745                 argv = read_macro_args(state, macro, *filep, tk);
4746
4747                 check_tok(state, tk, TOK_RPAREN);
4748         }
4749         /* Macro expand the macro arguments */
4750         macro_expand_args(state, macro, argv, tk);
4751
4752         buf.str = 0;
4753         buf.len = 0;
4754         buf.pos = 0;
4755         if (ident == state->i___FILE__) {
4756                 buf.len = strlen(state->file->basename) + 1 + 2 + 3;
4757                 buf.str = xmalloc(buf.len, ident->name);
4758                 sprintf(buf.str, "\"%s\"", state->file->basename);
4759                 buf.pos = strlen(buf.str);
4760         }
4761         else if (ident == state->i___LINE__) {
4762                 buf.len = 30;
4763                 buf.str = xmalloc(buf.len, ident->name);
4764                 sprintf(buf.str, "%d", state->file->line);
4765                 buf.pos = strlen(buf.str);
4766         }
4767         else {
4768                 expand_macro(state, macro, &buf, argv, tk);
4769         }
4770         /* Tag the macro name with a $ so it will no longer
4771          * be regonized as a canidate for macro expansion.
4772          */
4773         tag_macro_name(state, macro, &buf, tk);
4774
4775 #if 0
4776         fprintf(state->errout, "%s: %d -> `%*.*s'\n",
4777                 ident->name, buf.pos, buf.pos, (int)(buf.pos), buf.str);
4778 #endif
4779
4780         free_macro_args(macro, argv);
4781
4782         file = xmalloc(sizeof(*file), "file_state");
4783         file->prev        = *filep;
4784         file->basename    = xstrdup(ident->name);
4785         file->dirname     = xstrdup("");
4786         file->buf         = buf.str;
4787         file->size        = buf.pos;
4788         file->pos         = file->buf;
4789         file->line        = 1;
4790         file->line_start  = file->pos;
4791         file->report_line = 1;
4792         file->report_name = file->basename;
4793         file->report_dir  = file->dirname;
4794         file->macro       = 1;
4795         file->trigraphs   = 0;
4796         file->join_lines  = 0;
4797         *filep = file;
4798         return 1;
4799 }
4800
4801 static void eat_tokens(struct compile_state *state, int targ_tok)
4802 {
4803         if (state->eat_depth > 0) {
4804                 internal_error(state, 0, "Already eating...");
4805         }
4806         state->eat_depth = state->if_depth;
4807         state->eat_targ = targ_tok;
4808 }
4809 static int if_eat(struct compile_state *state)
4810 {
4811         return state->eat_depth > 0;
4812 }
4813 static int if_value(struct compile_state *state)
4814 {
4815         int index, offset;
4816         index = state->if_depth / CHAR_BIT;
4817         offset = state->if_depth % CHAR_BIT;
4818         return !!(state->if_bytes[index] & (1 << (offset)));
4819 }
4820 static void set_if_value(struct compile_state *state, int value) 
4821 {
4822         int index, offset;
4823         index = state->if_depth / CHAR_BIT;
4824         offset = state->if_depth % CHAR_BIT;
4825
4826         state->if_bytes[index] &= ~(1 << offset);
4827         if (value) {
4828                 state->if_bytes[index] |= (1 << offset);
4829         }
4830 }
4831 static void in_if(struct compile_state *state, const char *name)
4832 {
4833         if (state->if_depth <= 0) {
4834                 error(state, 0, "%s without #if", name);
4835         }
4836 }
4837 static void enter_if(struct compile_state *state)
4838 {
4839         state->if_depth += 1;
4840         if (state->if_depth > MAX_PP_IF_DEPTH) {
4841                 error(state, 0, "#if depth too great");
4842         }
4843 }
4844 static void reenter_if(struct compile_state *state, const char *name)
4845 {
4846         in_if(state, name);
4847         if ((state->eat_depth == state->if_depth) &&
4848                 (state->eat_targ == TOK_MELSE)) {
4849                 state->eat_depth = 0;
4850                 state->eat_targ = 0;
4851         }
4852 }
4853 static void enter_else(struct compile_state *state, const char *name)
4854 {
4855         in_if(state, name);
4856         if ((state->eat_depth == state->if_depth) &&
4857                 (state->eat_targ == TOK_MELSE)) {
4858                 state->eat_depth = 0;
4859                 state->eat_targ = 0;
4860         }
4861 }
4862 static void exit_if(struct compile_state *state, const char *name)
4863 {
4864         in_if(state, name);
4865         if (state->eat_depth == state->if_depth) {
4866                 state->eat_depth = 0;
4867                 state->eat_targ = 0;
4868         }
4869         state->if_depth -= 1;
4870 }
4871
4872 static void raw_token(struct compile_state *state, struct token *tk)
4873 {
4874         struct file_state *file;
4875         int rescan;
4876
4877         file = state->file;
4878         raw_next_token(state, file, tk);
4879         do {
4880                 rescan = 0;
4881                 file = state->file;
4882                 /* Exit out of an include directive or macro call */
4883                 if ((tk->tok == TOK_EOF) && 
4884                         (file != state->macro_file) && file->prev) 
4885                 {
4886                         state->file = file->prev;
4887                         /* file->basename is used keep it */
4888                         xfree(file->dirname);
4889                         xfree(file->buf);
4890                         xfree(file);
4891                         file = 0;
4892                         raw_next_token(state, state->file, tk);
4893                         rescan = 1;
4894                 }
4895         } while(rescan);
4896 }
4897
4898 static void pp_token(struct compile_state *state, struct token *tk)
4899 {
4900         struct file_state *file;
4901         int rescan;
4902
4903         raw_token(state, tk);
4904         do {
4905                 rescan = 0;
4906                 file = state->file;
4907                 if (tk->tok == TOK_SPACE) {
4908                         raw_token(state, tk);
4909                         rescan = 1;
4910                 }
4911                 else if (tk->tok == TOK_IDENT) {
4912                         if (state->token_base == 0) {
4913                                 ident_to_keyword(state, tk);
4914                         } else {
4915                                 ident_to_macro(state, tk);
4916                         }
4917                 }
4918         } while(rescan);
4919 }
4920
4921 static void preprocess(struct compile_state *state, struct token *tk);
4922
4923 static void token(struct compile_state *state, struct token *tk)
4924 {
4925         int rescan;
4926         pp_token(state, tk);
4927         do {
4928                 rescan = 0;
4929                 /* Process a macro directive */
4930                 if (tk->tok == TOK_MACRO) {
4931                         /* Only match preprocessor directives at the start of a line */
4932                         const char *ptr;
4933                         ptr = state->file->line_start;
4934                         while((ptr < tk->pos)
4935                                 && spacep(get_char(state->file, ptr)))
4936                         {
4937                                 ptr = next_char(state->file, ptr, 1);
4938                         }
4939                         if (ptr == tk->pos) {
4940                                 preprocess(state, tk);
4941                                 rescan = 1;
4942                         }
4943                 }
4944                 /* Expand a macro call */
4945                 else if (tk->ident && tk->ident->sym_define) {
4946                         rescan = compile_macro(state, &state->file, tk);
4947                         if (rescan) {
4948                                 pp_token(state, tk);
4949                         }
4950                 }
4951                 /* Eat tokens disabled by the preprocessor 
4952                  * (Unless we are parsing a preprocessor directive 
4953                  */
4954                 else if (if_eat(state) && (state->token_base == 0)) {
4955                         pp_token(state, tk);
4956                         rescan = 1;
4957                 }
4958                 /* Make certain EOL only shows up in preprocessor directives */
4959                 else if ((tk->tok == TOK_EOL) && (state->token_base == 0)) {
4960                         pp_token(state, tk);
4961                         rescan = 1;
4962                 }
4963                 /* Error on unknown tokens */
4964                 else if (tk->tok == TOK_UNKNOWN) {
4965                         error(state, 0, "unknown token");
4966                 }
4967         } while(rescan);
4968 }
4969
4970
4971 static inline struct token *get_token(struct compile_state *state, int offset)
4972 {
4973         int index;
4974         index = state->token_base + offset;
4975         if (index >= sizeof(state->token)/sizeof(state->token[0])) {
4976                 internal_error(state, 0, "token array to small");
4977         }
4978         return &state->token[index];
4979 }
4980
4981 static struct token *do_eat_token(struct compile_state *state, int tok)
4982 {
4983         struct token *tk;
4984         int i;
4985         check_tok(state, get_token(state, 1), tok);
4986         
4987         /* Free the old token value */
4988         tk = get_token(state, 0);
4989         if (tk->str_len) {
4990                 memset((void *)tk->val.str, -1, tk->str_len);
4991                 xfree(tk->val.str);
4992         }
4993         /* Overwrite the old token with newer tokens */
4994         for(i = state->token_base; i < sizeof(state->token)/sizeof(state->token[0]) - 1; i++) {
4995                 state->token[i] = state->token[i + 1];
4996         }
4997         /* Clear the last token */
4998         memset(&state->token[i], 0, sizeof(state->token[i]));
4999         state->token[i].tok = -1;
5000
5001         /* Return the token */
5002         return tk;
5003 }
5004
5005 static int raw_peek(struct compile_state *state)
5006 {
5007         struct token *tk1;
5008         tk1 = get_token(state, 1);
5009         if (tk1->tok == -1) {
5010                 raw_token(state, tk1);
5011         }
5012         return tk1->tok;
5013 }
5014
5015 static struct token *raw_eat(struct compile_state *state, int tok)
5016 {
5017         raw_peek(state);
5018         return do_eat_token(state, tok);
5019 }
5020
5021 static int pp_peek(struct compile_state *state)
5022 {
5023         struct token *tk1;
5024         tk1 = get_token(state, 1);
5025         if (tk1->tok == -1) {
5026                 pp_token(state, tk1);
5027         }
5028         return tk1->tok;
5029 }
5030
5031 static struct token *pp_eat(struct compile_state *state, int tok)
5032 {
5033         pp_peek(state);
5034         return do_eat_token(state, tok);
5035 }
5036
5037 static int peek(struct compile_state *state)
5038 {
5039         struct token *tk1;
5040         tk1 = get_token(state, 1);
5041         if (tk1->tok == -1) {
5042                 token(state, tk1);
5043         }
5044         return tk1->tok;
5045 }
5046
5047 static int peek2(struct compile_state *state)
5048 {
5049         struct token *tk1, *tk2;
5050         tk1 = get_token(state, 1);
5051         tk2 = get_token(state, 2);
5052         if (tk1->tok == -1) {
5053                 token(state, tk1);
5054         }
5055         if (tk2->tok == -1) {
5056                 token(state, tk2);
5057         }
5058         return tk2->tok;
5059 }
5060
5061 static struct token *eat(struct compile_state *state, int tok)
5062 {
5063         peek(state);
5064         return do_eat_token(state, tok);
5065 }
5066
5067 static void compile_file(struct compile_state *state, const char *filename, int local)
5068 {
5069         char cwd[MAX_CWD_SIZE];
5070         const char *subdir, *base;
5071         int subdir_len;
5072         struct file_state *file;
5073         char *basename;
5074         file = xmalloc(sizeof(*file), "file_state");
5075
5076         base = strrchr(filename, '/');
5077         subdir = filename;
5078         if (base != 0) {
5079                 subdir_len = base - filename;
5080                 base++;
5081         }
5082         else {
5083                 base = filename;
5084                 subdir_len = 0;
5085         }
5086         basename = xmalloc(strlen(base) +1, "basename");
5087         strcpy(basename, base);
5088         file->basename = basename;
5089
5090         if (getcwd(cwd, sizeof(cwd)) == 0) {
5091                 die("cwd buffer to small");
5092         }
5093         if ((subdir[0] == '/') || ((subdir[1] == ':') && ((subdir[2] == '/') || (subdir[2] == '\\')))) {
5094                 file->dirname = xmalloc(subdir_len + 1, "dirname");
5095                 memcpy(file->dirname, subdir, subdir_len);
5096                 file->dirname[subdir_len] = '\0';
5097         }
5098         else {
5099                 const char *dir;
5100                 int dirlen;
5101                 const char **path;
5102                 /* Find the appropriate directory... */
5103                 dir = 0;
5104                 if (!state->file && exists(cwd, filename)) {
5105                         dir = cwd;
5106                 }
5107                 if (local && state->file && exists(state->file->dirname, filename)) {
5108                         dir = state->file->dirname;
5109                 }
5110                 for(path = state->compiler->include_paths; !dir && *path; path++) {
5111                         if (exists(*path, filename)) {
5112                                 dir = *path;
5113                         }
5114                 }
5115                 if (!dir) {
5116                         error(state, 0, "Cannot open `%s'\n", filename);
5117                 }
5118                 dirlen = strlen(dir);
5119                 file->dirname = xmalloc(dirlen + 1 + subdir_len + 1, "dirname");
5120                 memcpy(file->dirname, dir, dirlen);
5121                 file->dirname[dirlen] = '/';
5122                 memcpy(file->dirname + dirlen + 1, subdir, subdir_len);
5123                 file->dirname[dirlen + 1 + subdir_len] = '\0';
5124         }
5125         file->buf = slurp_file(file->dirname, file->basename, &file->size);
5126
5127         file->pos = file->buf;
5128         file->line_start = file->pos;
5129         file->line = 1;
5130
5131         file->report_line = 1;
5132         file->report_name = file->basename;
5133         file->report_dir  = file->dirname;
5134         file->macro       = 0;
5135         file->trigraphs   = (state->compiler->flags & COMPILER_TRIGRAPHS)? 1: 0;
5136         file->join_lines  = 1;
5137
5138         file->prev = state->file;
5139         state->file = file;
5140 }
5141
5142 static struct triple *constant_expr(struct compile_state *state);
5143 static void integral(struct compile_state *state, struct triple *def);
5144
5145 static int mcexpr(struct compile_state *state)
5146 {
5147         struct triple *cvalue;
5148         cvalue = constant_expr(state);
5149         integral(state, cvalue);
5150         if (cvalue->op != OP_INTCONST) {
5151                 error(state, 0, "integer constant expected");
5152         }
5153         return cvalue->u.cval != 0;
5154 }
5155
5156 static void preprocess(struct compile_state *state, struct token *current_token)
5157 {
5158         /* Doing much more with the preprocessor would require
5159          * a parser and a major restructuring.
5160          * Postpone that for later.
5161          */
5162         int old_token_base;
5163         int tok;
5164         
5165         state->macro_file = state->file;
5166
5167         old_token_base = state->token_base;
5168         state->token_base = current_token - state->token;
5169
5170         tok = pp_peek(state);
5171         switch(tok) {
5172         case TOK_LIT_INT:
5173         {
5174                 struct token *tk;
5175                 int override_line;
5176                 tk = pp_eat(state, TOK_LIT_INT);
5177                 override_line = strtoul(tk->val.str, 0, 10);
5178                 /* I have a preprocessor  line marker parse it */
5179                 if (pp_peek(state) == TOK_LIT_STRING) {
5180                         const char *token, *base;
5181                         char *name, *dir;
5182                         int name_len, dir_len;
5183                         tk = pp_eat(state, TOK_LIT_STRING);
5184                         name = xmalloc(tk->str_len, "report_name");
5185                         token = tk->val.str + 1;
5186                         base = strrchr(token, '/');
5187                         name_len = tk->str_len -2;
5188                         if (base != 0) {
5189                                 dir_len = base - token;
5190                                 base++;
5191                                 name_len -= base - token;
5192                         } else {
5193                                 dir_len = 0;
5194                                 base = token;
5195                         }
5196                         memcpy(name, base, name_len);
5197                         name[name_len] = '\0';
5198                         dir = xmalloc(dir_len + 1, "report_dir");
5199                         memcpy(dir, token, dir_len);
5200                         dir[dir_len] = '\0';
5201                         state->file->report_line = override_line - 1;
5202                         state->file->report_name = name;
5203                         state->file->report_dir = dir;
5204                         state->file->macro      = 0;
5205                 }
5206                 break;
5207         }
5208         case TOK_MLINE:
5209         {
5210                 struct token *tk;
5211                 pp_eat(state, TOK_MLINE);
5212                 tk = eat(state, TOK_LIT_INT);
5213                 state->file->report_line = strtoul(tk->val.str, 0, 10) -1;
5214                 if (pp_peek(state) == TOK_LIT_STRING) {
5215                         const char *token, *base;
5216                         char *name, *dir;
5217                         int name_len, dir_len;
5218                         tk = pp_eat(state, TOK_LIT_STRING);
5219                         name = xmalloc(tk->str_len, "report_name");
5220                         token = tk->val.str + 1;
5221                         base = strrchr(token, '/');
5222                         name_len = tk->str_len - 2;
5223                         if (base != 0) {
5224                                 dir_len = base - token;
5225                                 base++;
5226                                 name_len -= base - token;
5227                         } else {
5228                                 dir_len = 0;
5229                                 base = token;
5230                         }
5231                         memcpy(name, base, name_len);
5232                         name[name_len] = '\0';
5233                         dir = xmalloc(dir_len + 1, "report_dir");
5234                         memcpy(dir, token, dir_len);
5235                         dir[dir_len] = '\0';
5236                         state->file->report_name = name;
5237                         state->file->report_dir = dir;
5238                         state->file->macro      = 0;
5239                 }
5240                 break;
5241         }
5242         case TOK_MUNDEF:
5243         {
5244                 struct hash_entry *ident;
5245                 pp_eat(state, TOK_MUNDEF);
5246                 if (if_eat(state))  /* quit early when #if'd out */
5247                         break;
5248                 
5249                 ident = pp_eat(state, TOK_MIDENT)->ident;
5250
5251                 undef_macro(state, ident);
5252                 break;
5253         }
5254         case TOK_MPRAGMA:
5255                 pp_eat(state, TOK_MPRAGMA);
5256                 if (if_eat(state))  /* quit early when #if'd out */
5257                         break;
5258                 warning(state, 0, "Ignoring pragma"); 
5259                 break;
5260         case TOK_MELIF:
5261                 pp_eat(state, TOK_MELIF);
5262                 reenter_if(state, "#elif");
5263                 if (if_eat(state))   /* quit early when #if'd out */
5264                         break;
5265                 /* If the #if was taken the #elif just disables the following code */
5266                 if (if_value(state)) {
5267                         eat_tokens(state, TOK_MENDIF);
5268                 }
5269                 /* If the previous #if was not taken see if the #elif enables the 
5270                  * trailing code.
5271                  */
5272                 else {
5273                         set_if_value(state, mcexpr(state));
5274                         if (!if_value(state)) {
5275                                 eat_tokens(state, TOK_MELSE);
5276                         }
5277                 }
5278                 break;
5279         case TOK_MIF:
5280                 pp_eat(state, TOK_MIF);
5281                 enter_if(state);
5282                 if (if_eat(state))  /* quit early when #if'd out */
5283                         break;
5284                 set_if_value(state, mcexpr(state));
5285                 if (!if_value(state)) {
5286                         eat_tokens(state, TOK_MELSE);
5287                 }
5288                 break;
5289         case TOK_MIFNDEF:
5290         {
5291                 struct hash_entry *ident;
5292
5293                 pp_eat(state, TOK_MIFNDEF);
5294                 enter_if(state);
5295                 if (if_eat(state))  /* quit early when #if'd out */
5296                         break;
5297                 ident = pp_eat(state, TOK_MIDENT)->ident;
5298                 set_if_value(state, ident->sym_define == 0);
5299                 if (!if_value(state)) {
5300                         eat_tokens(state, TOK_MELSE);
5301                 }
5302                 break;
5303         }
5304         case TOK_MIFDEF:
5305         {
5306                 struct hash_entry *ident;
5307                 pp_eat(state, TOK_MIFDEF);
5308                 enter_if(state);
5309                 if (if_eat(state))  /* quit early when #if'd out */
5310                         break;
5311                 ident = pp_eat(state, TOK_MIDENT)->ident;
5312                 set_if_value(state, ident->sym_define != 0);
5313                 if (!if_value(state)) {
5314                         eat_tokens(state, TOK_MELSE);
5315                 }
5316                 break;
5317         }
5318         case TOK_MELSE:
5319                 pp_eat(state, TOK_MELSE);
5320                 enter_else(state, "#else");
5321                 if (!if_eat(state) && if_value(state)) {
5322                         eat_tokens(state, TOK_MENDIF);
5323                 }
5324                 break;
5325         case TOK_MENDIF:
5326                 pp_eat(state, TOK_MENDIF);
5327                 exit_if(state, "#endif");
5328                 break;
5329         case TOK_MDEFINE:
5330         {
5331                 struct hash_entry *ident;
5332                 struct macro_arg *args, **larg;
5333                 const char *mstart, *mend;
5334                 int argc;
5335
5336                 pp_eat(state, TOK_MDEFINE);
5337                 if (if_eat(state))  /* quit early when #if'd out */
5338                         break;
5339                 ident = pp_eat(state, TOK_MIDENT)->ident;
5340                 argc = -1;
5341                 args = 0;
5342                 larg = &args;
5343
5344                 /* Parse macro parameters */
5345                 if (raw_peek(state) == TOK_LPAREN) {
5346                         raw_eat(state, TOK_LPAREN);
5347                         argc += 1;
5348
5349                         for(;;) {
5350                                 struct macro_arg *narg, *arg;
5351                                 struct hash_entry *aident;
5352                                 int tok;
5353
5354                                 tok = pp_peek(state);
5355                                 if (!args && (tok == TOK_RPAREN)) {
5356                                         break;
5357                                 }
5358                                 else if (tok == TOK_DOTS) {
5359                                         pp_eat(state, TOK_DOTS);
5360                                         aident = state->i___VA_ARGS__;
5361                                 } 
5362                                 else {
5363                                         aident = pp_eat(state, TOK_MIDENT)->ident;
5364                                 }
5365                                 
5366                                 narg = xcmalloc(sizeof(*arg), "macro arg");
5367                                 narg->ident = aident;
5368
5369                                 /* Verify I don't have a duplicate identifier */
5370                                 for(arg = args; arg; arg = arg->next) {
5371                                         if (arg->ident == narg->ident) {
5372                                                 error(state, 0, "Duplicate macro arg `%s'",
5373                                                         narg->ident->name);
5374                                         }
5375                                 }
5376                                 /* Add the new argument to the end of the list */
5377                                 *larg = narg;
5378                                 larg = &narg->next;
5379                                 argc += 1;
5380
5381                                 if ((aident == state->i___VA_ARGS__) ||
5382                                         (pp_peek(state) != TOK_COMMA)) {
5383                                         break;
5384                                 }
5385                                 pp_eat(state, TOK_COMMA);
5386                         }
5387                         pp_eat(state, TOK_RPAREN);
5388                 }
5389                 /* Remove leading whitespace */
5390                 while(raw_peek(state) == TOK_SPACE) {
5391                         raw_eat(state, TOK_SPACE);
5392                 }
5393
5394                 /* Remember the start of the macro body */
5395                 tok = raw_peek(state);
5396                 mend = mstart = get_token(state, 1)->pos;
5397
5398                 /* Find the end of the macro */
5399                 for(tok = raw_peek(state); tok != TOK_EOL; tok = raw_peek(state)) {
5400                         raw_eat(state, tok);
5401                         /* Remember the end of the last non space token */
5402                         raw_peek(state);
5403                         if (tok != TOK_SPACE) {
5404                                 mend = get_token(state, 1)->pos;
5405                         }
5406                 }
5407                 
5408                 /* Now that I have found the body defined the token */
5409                 do_define_macro(state, ident,
5410                         char_strdup(state->file, mstart, mend, "macro buf"),
5411                         argc, args);
5412                 break;
5413         }
5414         case TOK_MERROR:
5415         {
5416                 const char *start, *end;
5417                 int len;
5418                 
5419                 pp_eat(state, TOK_MERROR);
5420                 /* Find the start of the line */
5421                 raw_peek(state);
5422                 start = get_token(state, 1)->pos;
5423
5424                 /* Find the end of the line */
5425                 while((tok = raw_peek(state)) != TOK_EOL) {
5426                         raw_eat(state, tok);
5427                 }
5428                 end = get_token(state, 1)->pos;
5429                 len = end - start;
5430                 if (!if_eat(state)) {
5431                         error(state, 0, "%*.*s", len, len, start);
5432                 }
5433                 break;
5434         }
5435         case TOK_MWARNING:
5436         {
5437                 const char *start, *end;
5438                 int len;
5439                 
5440                 pp_eat(state, TOK_MWARNING);
5441
5442                 /* Find the start of the line */
5443                 raw_peek(state);
5444                 start = get_token(state, 1)->pos;
5445                  
5446                 /* Find the end of the line */
5447                 while((tok = raw_peek(state)) != TOK_EOL) {
5448                         raw_eat(state, tok);
5449                 }
5450                 end = get_token(state, 1)->pos;
5451                 len = end - start;
5452                 if (!if_eat(state)) {
5453                         warning(state, 0, "%*.*s", len, len, start);
5454                 }
5455                 break;
5456         }
5457         case TOK_MINCLUDE:
5458         {
5459                 char *name;
5460                 int local;
5461                 local = 0;
5462                 name = 0;
5463
5464                 pp_eat(state, TOK_MINCLUDE);
5465                 if (if_eat(state)) {
5466                         /* Find the end of the line */
5467                         while((tok = raw_peek(state)) != TOK_EOL) {
5468                                 raw_eat(state, tok);
5469                         }
5470                         break;
5471                 }
5472                 tok = peek(state);
5473                 if (tok == TOK_LIT_STRING) {
5474                         struct token *tk;
5475                         const char *token;
5476                         int name_len;
5477                         tk = eat(state, TOK_LIT_STRING);
5478                         name = xmalloc(tk->str_len, "include");
5479                         token = tk->val.str +1;
5480                         name_len = tk->str_len -2;
5481                         if (*token == '"') {
5482                                 token++;
5483                                 name_len--;
5484                         }
5485                         memcpy(name, token, name_len);
5486                         name[name_len] = '\0';
5487                         local = 1;
5488                 }
5489                 else if (tok == TOK_LESS) {
5490                         struct macro_buf buf;
5491                         eat(state, TOK_LESS);
5492
5493                         buf.len = 40;
5494                         buf.str = xmalloc(buf.len, "include");
5495                         buf.pos = 0;
5496
5497                         tok = peek(state);
5498                         while((tok != TOK_MORE) &&
5499                                 (tok != TOK_EOL) && (tok != TOK_EOF))
5500                         {
5501                                 struct token *tk;
5502                                 tk = eat(state, tok);
5503                                 append_macro_chars(state, "include", &buf,
5504                                         state->file, tk->pos, state->file->pos);
5505                                 tok = peek(state);
5506                         }
5507                         append_macro_text(state, "include", &buf, "\0", 1);
5508                         if (peek(state) != TOK_MORE) {
5509                                 error(state, 0, "Unterminated include directive");
5510                         }
5511                         eat(state, TOK_MORE);
5512                         local = 0;
5513                         name = buf.str;
5514                 }
5515                 else {
5516                         error(state, 0, "Invalid include directive");
5517                 }
5518                 /* Error if there are any tokens after the include */
5519                 if (pp_peek(state) != TOK_EOL) {
5520                         error(state, 0, "garbage after include directive");
5521                 }
5522                 if (!if_eat(state)) {
5523                         compile_file(state, name, local);
5524                 }
5525                 xfree(name);
5526                 break;
5527         }
5528         case TOK_EOL:
5529                 /* Ignore # without a follwing ident */
5530                 break;
5531         default:
5532         {
5533                 const char *name1, *name2;
5534                 name1 = tokens[tok];
5535                 name2 = "";
5536                 if (tok == TOK_MIDENT) {
5537                         name2 = get_token(state, 1)->ident->name;
5538                 }
5539                 error(state, 0, "Invalid preprocessor directive: %s %s", 
5540                         name1, name2);
5541                 break;
5542         }
5543         }
5544         /* Consume the rest of the macro line */
5545         do {
5546                 tok = pp_peek(state);
5547                 pp_eat(state, tok);
5548         } while((tok != TOK_EOF) && (tok != TOK_EOL));
5549         state->token_base = old_token_base;
5550         state->macro_file = NULL;
5551         return;
5552 }
5553
5554 /* Type helper functions */
5555
5556 static struct type *new_type(
5557         unsigned int type, struct type *left, struct type *right)
5558 {
5559         struct type *result;
5560         result = xmalloc(sizeof(*result), "type");
5561         result->type = type;
5562         result->left = left;
5563         result->right = right;
5564         result->field_ident = 0;
5565         result->type_ident = 0;
5566         result->elements = 0;
5567         return result;
5568 }
5569
5570 static struct type *clone_type(unsigned int specifiers, struct type *old)
5571 {
5572         struct type *result;
5573         result = xmalloc(sizeof(*result), "type");
5574         memcpy(result, old, sizeof(*result));
5575         result->type &= TYPE_MASK;
5576         result->type |= specifiers;
5577         return result;
5578 }
5579
5580 static struct type *dup_type(struct compile_state *state, struct type *orig)
5581 {
5582         struct type *new;
5583         new = xcmalloc(sizeof(*new), "type");
5584         new->type = orig->type;
5585         new->field_ident = orig->field_ident;
5586         new->type_ident  = orig->type_ident;
5587         new->elements    = orig->elements;
5588         if (orig->left) {
5589                 new->left = dup_type(state, orig->left);
5590         }
5591         if (orig->right) {
5592                 new->right = dup_type(state, orig->right);
5593         }
5594         return new;
5595 }
5596
5597
5598 static struct type *invalid_type(struct compile_state *state, struct type *type)
5599 {
5600         struct type *invalid, *member;
5601         invalid = 0;
5602         if (!type) {
5603                 internal_error(state, 0, "type missing?");
5604         }
5605         switch(type->type & TYPE_MASK) {
5606         case TYPE_VOID:
5607         case TYPE_CHAR:         case TYPE_UCHAR:
5608         case TYPE_SHORT:        case TYPE_USHORT:
5609         case TYPE_INT:          case TYPE_UINT:
5610         case TYPE_LONG:         case TYPE_ULONG:
5611         case TYPE_LLONG:        case TYPE_ULLONG:
5612         case TYPE_POINTER:
5613         case TYPE_ENUM:
5614                 break;
5615         case TYPE_BITFIELD:
5616                 invalid = invalid_type(state, type->left);
5617                 break;
5618         case TYPE_ARRAY:
5619                 invalid = invalid_type(state, type->left);
5620                 break;
5621         case TYPE_STRUCT:
5622         case TYPE_TUPLE:
5623                 member = type->left;
5624                 while(member && (invalid == 0) && 
5625                         ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
5626                         invalid = invalid_type(state, member->left);
5627                         member = member->right;
5628                 }
5629                 if (!invalid) {
5630                         invalid = invalid_type(state, member);
5631                 }
5632                 break;
5633         case TYPE_UNION:
5634         case TYPE_JOIN:
5635                 member = type->left;
5636                 while(member && (invalid == 0) &&
5637                         ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
5638                         invalid = invalid_type(state, member->left);
5639                         member = member->right;
5640                 }
5641                 if (!invalid) {
5642                         invalid = invalid_type(state, member);
5643                 }
5644                 break;
5645         default:
5646                 invalid = type;
5647                 break;
5648         }
5649         return invalid;
5650         
5651 }
5652
5653 #define MASK_UCHAR(X)    ((X) & ((ulong_t)0xff))
5654 #define MASK_USHORT(X)   ((X) & (((ulong_t)1 << (SIZEOF_SHORT)) - 1))
5655 static inline ulong_t mask_uint(ulong_t x)
5656 {
5657         if (SIZEOF_INT < SIZEOF_LONG) {
5658                 ulong_t mask = (1ULL << ((ulong_t)(SIZEOF_INT))) -1;
5659                 x &= mask;
5660         }
5661         return x;
5662 }
5663 #define MASK_UINT(X)      (mask_uint(X))
5664 #define MASK_ULONG(X)    (X)
5665
5666 static struct type void_type    = { .type  = TYPE_VOID };
5667 static struct type char_type    = { .type  = TYPE_CHAR };
5668 static struct type uchar_type   = { .type  = TYPE_UCHAR };
5669 #if DEBUG_ROMCC_WARNING
5670 static struct type short_type   = { .type  = TYPE_SHORT };
5671 #endif
5672 static struct type ushort_type  = { .type  = TYPE_USHORT };
5673 static struct type int_type     = { .type  = TYPE_INT };
5674 static struct type uint_type    = { .type  = TYPE_UINT };
5675 static struct type long_type    = { .type  = TYPE_LONG };
5676 static struct type ulong_type   = { .type  = TYPE_ULONG };
5677 static struct type unknown_type = { .type  = TYPE_UNKNOWN };
5678
5679 static struct type void_ptr_type  = {
5680         .type = TYPE_POINTER,
5681         .left = &void_type,
5682 };
5683
5684 #if DEBUG_ROMCC_WARNING
5685 static struct type void_func_type = { 
5686         .type  = TYPE_FUNCTION,
5687         .left  = &void_type,
5688         .right = &void_type,
5689 };
5690 #endif
5691
5692 static size_t bits_to_bytes(size_t size)
5693 {
5694         return (size + SIZEOF_CHAR - 1)/SIZEOF_CHAR;
5695 }
5696
5697 static struct triple *variable(struct compile_state *state, struct type *type)
5698 {
5699         struct triple *result;
5700         if ((type->type & STOR_MASK) != STOR_PERM) {
5701                 result = triple(state, OP_ADECL, type, 0, 0);
5702                 generate_lhs_pieces(state, result);
5703         }
5704         else {
5705                 result = triple(state, OP_SDECL, type, 0, 0);
5706         }
5707         return result;
5708 }
5709
5710 static void stor_of(FILE *fp, struct type *type)
5711 {
5712         switch(type->type & STOR_MASK) {
5713         case STOR_AUTO:
5714                 fprintf(fp, "auto ");
5715                 break;
5716         case STOR_STATIC:
5717                 fprintf(fp, "static ");
5718                 break;
5719         case STOR_LOCAL:
5720                 fprintf(fp, "local ");
5721                 break;
5722         case STOR_EXTERN:
5723                 fprintf(fp, "extern ");
5724                 break;
5725         case STOR_REGISTER:
5726                 fprintf(fp, "register ");
5727                 break;
5728         case STOR_TYPEDEF:
5729                 fprintf(fp, "typedef ");
5730                 break;
5731         case STOR_INLINE | STOR_LOCAL:
5732                 fprintf(fp, "inline ");
5733                 break;
5734         case STOR_INLINE | STOR_STATIC:
5735                 fprintf(fp, "static inline");
5736                 break;
5737         case STOR_INLINE | STOR_EXTERN:
5738                 fprintf(fp, "extern inline");
5739                 break;
5740         default:
5741                 fprintf(fp, "stor:%x", type->type & STOR_MASK);
5742                 break;
5743         }
5744 }
5745 static void qual_of(FILE *fp, struct type *type)
5746 {
5747         if (type->type & QUAL_CONST) {
5748                 fprintf(fp, " const");
5749         }
5750         if (type->type & QUAL_VOLATILE) {
5751                 fprintf(fp, " volatile");
5752         }
5753         if (type->type & QUAL_RESTRICT) {
5754                 fprintf(fp, " restrict");
5755         }
5756 }
5757
5758 static void name_of(FILE *fp, struct type *type)
5759 {
5760         unsigned int base_type;
5761         base_type = type->type & TYPE_MASK;
5762         if ((base_type != TYPE_PRODUCT) && (base_type != TYPE_OVERLAP)) {
5763                 stor_of(fp, type);
5764         }
5765         switch(base_type) {
5766         case TYPE_VOID:
5767                 fprintf(fp, "void");
5768                 qual_of(fp, type);
5769                 break;
5770         case TYPE_CHAR:
5771                 fprintf(fp, "signed char");
5772                 qual_of(fp, type);
5773                 break;
5774         case TYPE_UCHAR:
5775                 fprintf(fp, "unsigned char");
5776                 qual_of(fp, type);
5777                 break;
5778         case TYPE_SHORT:
5779                 fprintf(fp, "signed short");
5780                 qual_of(fp, type);
5781                 break;
5782         case TYPE_USHORT:
5783                 fprintf(fp, "unsigned short");
5784                 qual_of(fp, type);
5785                 break;
5786         case TYPE_INT:
5787                 fprintf(fp, "signed int");
5788                 qual_of(fp, type);
5789                 break;
5790         case TYPE_UINT:
5791                 fprintf(fp, "unsigned int");
5792                 qual_of(fp, type);
5793                 break;
5794         case TYPE_LONG:
5795                 fprintf(fp, "signed long");
5796                 qual_of(fp, type);
5797                 break;
5798         case TYPE_ULONG:
5799                 fprintf(fp, "unsigned long");
5800                 qual_of(fp, type);
5801                 break;
5802         case TYPE_POINTER:
5803                 name_of(fp, type->left);
5804                 fprintf(fp, " * ");
5805                 qual_of(fp, type);
5806                 break;
5807         case TYPE_PRODUCT:
5808                 name_of(fp, type->left);
5809                 fprintf(fp, ", ");
5810                 name_of(fp, type->right);
5811                 break;
5812         case TYPE_OVERLAP:
5813                 name_of(fp, type->left);
5814                 fprintf(fp, ",| ");
5815                 name_of(fp, type->right);
5816                 break;
5817         case TYPE_ENUM:
5818                 fprintf(fp, "enum %s", 
5819                         (type->type_ident)? type->type_ident->name : "");
5820                 qual_of(fp, type);
5821                 break;
5822         case TYPE_STRUCT:
5823                 fprintf(fp, "struct %s { ", 
5824                         (type->type_ident)? type->type_ident->name : "");
5825                 name_of(fp, type->left);
5826                 fprintf(fp, " } ");
5827                 qual_of(fp, type);
5828                 break;
5829         case TYPE_UNION:
5830                 fprintf(fp, "union %s { ", 
5831                         (type->type_ident)? type->type_ident->name : "");
5832                 name_of(fp, type->left);
5833                 fprintf(fp, " } ");
5834                 qual_of(fp, type);
5835                 break;
5836         case TYPE_FUNCTION:
5837                 name_of(fp, type->left);
5838                 fprintf(fp, " (*)(");
5839                 name_of(fp, type->right);
5840                 fprintf(fp, ")");
5841                 break;
5842         case TYPE_ARRAY:
5843                 name_of(fp, type->left);
5844                 fprintf(fp, " [%ld]", (long)(type->elements));
5845                 break;
5846         case TYPE_TUPLE:
5847                 fprintf(fp, "tuple { "); 
5848                 name_of(fp, type->left);
5849                 fprintf(fp, " } ");
5850                 qual_of(fp, type);
5851                 break;
5852         case TYPE_JOIN:
5853                 fprintf(fp, "join { ");
5854                 name_of(fp, type->left);
5855                 fprintf(fp, " } ");
5856                 qual_of(fp, type);
5857                 break;
5858         case TYPE_BITFIELD:
5859                 name_of(fp, type->left);
5860                 fprintf(fp, " : %d ", type->elements);
5861                 qual_of(fp, type);
5862                 break;
5863         case TYPE_UNKNOWN:
5864                 fprintf(fp, "unknown_t");
5865                 break;
5866         default:
5867                 fprintf(fp, "????: %x", base_type);
5868                 break;
5869         }
5870         if (type->field_ident && type->field_ident->name) {
5871                 fprintf(fp, " .%s", type->field_ident->name);
5872         }
5873 }
5874
5875 static size_t align_of(struct compile_state *state, struct type *type)
5876 {
5877         size_t align;
5878         align = 0;
5879         switch(type->type & TYPE_MASK) {
5880         case TYPE_VOID:
5881                 align = 1;
5882                 break;
5883         case TYPE_BITFIELD:
5884                 align = 1;
5885                 break;
5886         case TYPE_CHAR:
5887         case TYPE_UCHAR:
5888                 align = ALIGNOF_CHAR;
5889                 break;
5890         case TYPE_SHORT:
5891         case TYPE_USHORT:
5892                 align = ALIGNOF_SHORT;
5893                 break;
5894         case TYPE_INT:
5895         case TYPE_UINT:
5896         case TYPE_ENUM:
5897                 align = ALIGNOF_INT;
5898                 break;
5899         case TYPE_LONG:
5900         case TYPE_ULONG:
5901                 align = ALIGNOF_LONG;
5902                 break;
5903         case TYPE_POINTER:
5904                 align = ALIGNOF_POINTER;
5905                 break;
5906         case TYPE_PRODUCT:
5907         case TYPE_OVERLAP:
5908         {
5909                 size_t left_align, right_align;
5910                 left_align  = align_of(state, type->left);
5911                 right_align = align_of(state, type->right);
5912                 align = (left_align >= right_align) ? left_align : right_align;
5913                 break;
5914         }
5915         case TYPE_ARRAY:
5916                 align = align_of(state, type->left);
5917                 break;
5918         case TYPE_STRUCT:
5919         case TYPE_TUPLE:
5920         case TYPE_UNION:
5921         case TYPE_JOIN:
5922                 align = align_of(state, type->left);
5923                 break;
5924         default:
5925                 error(state, 0, "alignof not yet defined for type\n");
5926                 break;
5927         }
5928         return align;
5929 }
5930
5931 static size_t reg_align_of(struct compile_state *state, struct type *type)
5932 {
5933         size_t align;
5934         align = 0;
5935         switch(type->type & TYPE_MASK) {
5936         case TYPE_VOID:
5937                 align = 1;
5938                 break;
5939         case TYPE_BITFIELD:
5940                 align = 1;
5941                 break;
5942         case TYPE_CHAR:
5943         case TYPE_UCHAR:
5944                 align = REG_ALIGNOF_CHAR;
5945                 break;
5946         case TYPE_SHORT:
5947         case TYPE_USHORT:
5948                 align = REG_ALIGNOF_SHORT;
5949                 break;
5950         case TYPE_INT:
5951         case TYPE_UINT:
5952         case TYPE_ENUM:
5953                 align = REG_ALIGNOF_INT;
5954                 break;
5955         case TYPE_LONG:
5956         case TYPE_ULONG:
5957                 align = REG_ALIGNOF_LONG;
5958                 break;
5959         case TYPE_POINTER:
5960                 align = REG_ALIGNOF_POINTER;
5961                 break;
5962         case TYPE_PRODUCT:
5963         case TYPE_OVERLAP:
5964         {
5965                 size_t left_align, right_align;
5966                 left_align  = reg_align_of(state, type->left);
5967                 right_align = reg_align_of(state, type->right);
5968                 align = (left_align >= right_align) ? left_align : right_align;
5969                 break;
5970         }
5971         case TYPE_ARRAY:
5972                 align = reg_align_of(state, type->left);
5973                 break;
5974         case TYPE_STRUCT:
5975         case TYPE_UNION:
5976         case TYPE_TUPLE:
5977         case TYPE_JOIN:
5978                 align = reg_align_of(state, type->left);
5979                 break;
5980         default:
5981                 error(state, 0, "alignof not yet defined for type\n");
5982                 break;
5983         }
5984         return align;
5985 }
5986
5987 static size_t align_of_in_bytes(struct compile_state *state, struct type *type)
5988 {
5989         return bits_to_bytes(align_of(state, type));
5990 }
5991 static size_t size_of(struct compile_state *state, struct type *type);
5992 static size_t reg_size_of(struct compile_state *state, struct type *type);
5993
5994 static size_t needed_padding(struct compile_state *state, 
5995         struct type *type, size_t offset)
5996 {
5997         size_t padding, align;
5998         align = align_of(state, type);
5999         /* Align to the next machine word if the bitfield does completely
6000          * fit into the current word.
6001          */
6002         if ((type->type & TYPE_MASK) == TYPE_BITFIELD) {
6003                 size_t size;
6004                 size = size_of(state, type);
6005                 if ((offset + type->elements)/size != offset/size) {
6006                         align = size;
6007                 }
6008         }
6009         padding = 0;
6010         if (offset % align) {
6011                 padding = align - (offset % align);
6012         }
6013         return padding;
6014 }
6015
6016 static size_t reg_needed_padding(struct compile_state *state, 
6017         struct type *type, size_t offset)
6018 {
6019         size_t padding, align;
6020         align = reg_align_of(state, type);
6021         /* Align to the next register word if the bitfield does completely
6022          * fit into the current register.
6023          */
6024         if (((type->type & TYPE_MASK) == TYPE_BITFIELD) &&
6025                 (((offset + type->elements)/REG_SIZEOF_REG) != (offset/REG_SIZEOF_REG))) 
6026         {
6027                 align = REG_SIZEOF_REG;
6028         }
6029         padding = 0;
6030         if (offset % align) {
6031                 padding = align - (offset % align);
6032         }
6033         return padding;
6034 }
6035
6036 static size_t size_of(struct compile_state *state, struct type *type)
6037 {
6038         size_t size;
6039         size = 0;
6040         switch(type->type & TYPE_MASK) {
6041         case TYPE_VOID:
6042                 size = 0;
6043                 break;
6044         case TYPE_BITFIELD:
6045                 size = type->elements;
6046                 break;
6047         case TYPE_CHAR:
6048         case TYPE_UCHAR:
6049                 size = SIZEOF_CHAR;
6050                 break;
6051         case TYPE_SHORT:
6052         case TYPE_USHORT:
6053                 size = SIZEOF_SHORT;
6054                 break;
6055         case TYPE_INT:
6056         case TYPE_UINT:
6057         case TYPE_ENUM:
6058                 size = SIZEOF_INT;
6059                 break;
6060         case TYPE_LONG:
6061         case TYPE_ULONG:
6062                 size = SIZEOF_LONG;
6063                 break;
6064         case TYPE_POINTER:
6065                 size = SIZEOF_POINTER;
6066                 break;
6067         case TYPE_PRODUCT:
6068         {
6069                 size_t pad;
6070                 size = 0;
6071                 while((type->type & TYPE_MASK) == TYPE_PRODUCT) {
6072                         pad = needed_padding(state, type->left, size);
6073                         size = size + pad + size_of(state, type->left);
6074                         type = type->right;
6075                 }
6076                 pad = needed_padding(state, type, size);
6077                 size = size + pad + size_of(state, type);
6078                 break;
6079         }
6080         case TYPE_OVERLAP:
6081         {
6082                 size_t size_left, size_right;
6083                 size_left = size_of(state, type->left);
6084                 size_right = size_of(state, type->right);
6085                 size = (size_left >= size_right)? size_left : size_right;
6086                 break;
6087         }
6088         case TYPE_ARRAY:
6089                 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
6090                         internal_error(state, 0, "Invalid array type");
6091                 } else {
6092                         size = size_of(state, type->left) * type->elements;
6093                 }
6094                 break;
6095         case TYPE_STRUCT:
6096         case TYPE_TUPLE:
6097         {
6098                 size_t pad;
6099                 size = size_of(state, type->left);
6100                 /* Pad structures so their size is a multiples of their alignment */
6101                 pad = needed_padding(state, type, size);
6102                 size = size + pad;
6103                 break;
6104         }
6105         case TYPE_UNION:
6106         case TYPE_JOIN:
6107         {
6108                 size_t pad;
6109                 size = size_of(state, type->left);
6110                 /* Pad unions so their size is a multiple of their alignment */
6111                 pad = needed_padding(state, type, size);
6112                 size = size + pad;
6113                 break;
6114         }
6115         default:
6116                 internal_error(state, 0, "sizeof not yet defined for type");
6117                 break;
6118         }
6119         return size;
6120 }
6121
6122 static size_t reg_size_of(struct compile_state *state, struct type *type)
6123 {
6124         size_t size;
6125         size = 0;
6126         switch(type->type & TYPE_MASK) {
6127         case TYPE_VOID:
6128                 size = 0;
6129                 break;
6130         case TYPE_BITFIELD:
6131                 size = type->elements;
6132                 break;
6133         case TYPE_CHAR:
6134         case TYPE_UCHAR:
6135                 size = REG_SIZEOF_CHAR;
6136                 break;
6137         case TYPE_SHORT:
6138         case TYPE_USHORT:
6139                 size = REG_SIZEOF_SHORT;
6140                 break;
6141         case TYPE_INT:
6142         case TYPE_UINT:
6143         case TYPE_ENUM:
6144                 size = REG_SIZEOF_INT;
6145                 break;
6146         case TYPE_LONG:
6147         case TYPE_ULONG:
6148                 size = REG_SIZEOF_LONG;
6149                 break;
6150         case TYPE_POINTER:
6151                 size = REG_SIZEOF_POINTER;
6152                 break;
6153         case TYPE_PRODUCT:
6154         {
6155                 size_t pad;
6156                 size = 0;
6157                 while((type->type & TYPE_MASK) == TYPE_PRODUCT) {
6158                         pad = reg_needed_padding(state, type->left, size);
6159                         size = size + pad + reg_size_of(state, type->left);
6160                         type = type->right;
6161                 }
6162                 pad = reg_needed_padding(state, type, size);
6163                 size = size + pad + reg_size_of(state, type);
6164                 break;
6165         }
6166         case TYPE_OVERLAP:
6167         {
6168                 size_t size_left, size_right;
6169                 size_left  = reg_size_of(state, type->left);
6170                 size_right = reg_size_of(state, type->right);
6171                 size = (size_left >= size_right)? size_left : size_right;
6172                 break;
6173         }
6174         case TYPE_ARRAY:
6175                 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
6176                         internal_error(state, 0, "Invalid array type");
6177                 } else {
6178                         size = reg_size_of(state, type->left) * type->elements;
6179                 }
6180                 break;
6181         case TYPE_STRUCT:
6182         case TYPE_TUPLE:
6183         {
6184                 size_t pad;
6185                 size = reg_size_of(state, type->left);
6186                 /* Pad structures so their size is a multiples of their alignment */
6187                 pad = reg_needed_padding(state, type, size);
6188                 size = size + pad;
6189                 break;
6190         }
6191         case TYPE_UNION:
6192         case TYPE_JOIN:
6193         {
6194                 size_t pad;
6195                 size = reg_size_of(state, type->left);
6196                 /* Pad unions so their size is a multiple of their alignment */
6197                 pad = reg_needed_padding(state, type, size);
6198                 size = size + pad;
6199                 break;
6200         }
6201         default:
6202                 internal_error(state, 0, "sizeof not yet defined for type");
6203                 break;
6204         }
6205         return size;
6206 }
6207
6208 static size_t registers_of(struct compile_state *state, struct type *type)
6209 {
6210         size_t registers;
6211         registers = reg_size_of(state, type);
6212         registers += REG_SIZEOF_REG - 1;
6213         registers /= REG_SIZEOF_REG;
6214         return registers;
6215 }
6216
6217 static size_t size_of_in_bytes(struct compile_state *state, struct type *type)
6218 {
6219         return bits_to_bytes(size_of(state, type));
6220 }
6221
6222 static size_t field_offset(struct compile_state *state, 
6223         struct type *type, struct hash_entry *field)
6224 {
6225         struct type *member;
6226         size_t size;
6227
6228         size = 0;
6229         member = 0;
6230         if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
6231                 member = type->left;
6232                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6233                         size += needed_padding(state, member->left, size);
6234                         if (member->left->field_ident == field) {
6235                                 member = member->left;
6236                                 break;
6237                         }
6238                         size += size_of(state, member->left);
6239                         member = member->right;
6240                 }
6241                 size += needed_padding(state, member, size);
6242         }
6243         else if ((type->type & TYPE_MASK) == TYPE_UNION) {
6244                 member = type->left;
6245                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6246                         if (member->left->field_ident == field) {
6247                                 member = member->left;
6248                                 break;
6249                         }
6250                         member = member->right;
6251                 }
6252         }
6253         else {
6254                 internal_error(state, 0, "field_offset only works on structures and unions");
6255         }
6256
6257         if (!member || (member->field_ident != field)) {
6258                 error(state, 0, "member %s not present", field->name);
6259         }
6260         return size;
6261 }
6262
6263 static size_t field_reg_offset(struct compile_state *state, 
6264         struct type *type, struct hash_entry *field)
6265 {
6266         struct type *member;
6267         size_t size;
6268
6269         size = 0;
6270         member = 0;
6271         if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
6272                 member = type->left;
6273                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6274                         size += reg_needed_padding(state, member->left, size);
6275                         if (member->left->field_ident == field) {
6276                                 member = member->left;
6277                                 break;
6278                         }
6279                         size += reg_size_of(state, member->left);
6280                         member = member->right;
6281                 }
6282         }
6283         else if ((type->type & TYPE_MASK) == TYPE_UNION) {
6284                 member = type->left;
6285                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6286                         if (member->left->field_ident == field) {
6287                                 member = member->left;
6288                                 break;
6289                         }
6290                         member = member->right;
6291                 }
6292         }
6293         else {
6294                 internal_error(state, 0, "field_reg_offset only works on structures and unions");
6295         }
6296
6297         size += reg_needed_padding(state, member, size);
6298         if (!member || (member->field_ident != field)) {
6299                 error(state, 0, "member %s not present", field->name);
6300         }
6301         return size;
6302 }
6303
6304 static struct type *field_type(struct compile_state *state, 
6305         struct type *type, struct hash_entry *field)
6306 {
6307         struct type *member;
6308
6309         member = 0;
6310         if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
6311                 member = type->left;
6312                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6313                         if (member->left->field_ident == field) {
6314                                 member = member->left;
6315                                 break;
6316                         }
6317                         member = member->right;
6318                 }
6319         }
6320         else if ((type->type & TYPE_MASK) == TYPE_UNION) {
6321                 member = type->left;
6322                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6323                         if (member->left->field_ident == field) {
6324                                 member = member->left;
6325                                 break;
6326                         }
6327                         member = member->right;
6328                 }
6329         }
6330         else {
6331                 internal_error(state, 0, "field_type only works on structures and unions");
6332         }
6333         
6334         if (!member || (member->field_ident != field)) {
6335                 error(state, 0, "member %s not present", field->name);
6336         }
6337         return member;
6338 }
6339
6340 static size_t index_offset(struct compile_state *state, 
6341         struct type *type, ulong_t index)
6342 {
6343         struct type *member;
6344         size_t size;
6345         size = 0;
6346         if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
6347                 size = size_of(state, type->left) * index;
6348         }
6349         else if ((type->type & TYPE_MASK) == TYPE_TUPLE) {
6350                 ulong_t i;
6351                 member = type->left;
6352                 i = 0;
6353                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6354                         size += needed_padding(state, member->left, size);
6355                         if (i == index) {
6356                                 member = member->left;
6357                                 break;
6358                         }
6359                         size += size_of(state, member->left);
6360                         i++;
6361                         member = member->right;
6362                 }
6363                 size += needed_padding(state, member, size);
6364                 if (i != index) {
6365                         internal_error(state, 0, "Missing member index: %u", index);
6366                 }
6367         }
6368         else if ((type->type & TYPE_MASK) == TYPE_JOIN) {
6369                 ulong_t i;
6370                 size = 0;
6371                 member = type->left;
6372                 i = 0;
6373                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6374                         if (i == index) {
6375                                 member = member->left;
6376                                 break;
6377                         }
6378                         i++;
6379                         member = member->right;
6380                 }
6381                 if (i != index) {
6382                         internal_error(state, 0, "Missing member index: %u", index);
6383                 }
6384         }
6385         else {
6386                 internal_error(state, 0, 
6387                         "request for index %u in something not an array, tuple or join",
6388                         index);
6389         }
6390         return size;
6391 }
6392
6393 static size_t index_reg_offset(struct compile_state *state, 
6394         struct type *type, ulong_t index)
6395 {
6396         struct type *member;
6397         size_t size;
6398         size = 0;
6399         if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
6400                 size = reg_size_of(state, type->left) * index;
6401         }
6402         else if ((type->type & TYPE_MASK) == TYPE_TUPLE) {
6403                 ulong_t i;
6404                 member = type->left;
6405                 i = 0;
6406                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6407                         size += reg_needed_padding(state, member->left, size);
6408                         if (i == index) {
6409                                 member = member->left;
6410                                 break;
6411                         }
6412                         size += reg_size_of(state, member->left);
6413                         i++;
6414                         member = member->right;
6415                 }
6416                 size += reg_needed_padding(state, member, size);
6417                 if (i != index) {
6418                         internal_error(state, 0, "Missing member index: %u", index);
6419                 }
6420                 
6421         }
6422         else if ((type->type & TYPE_MASK) == TYPE_JOIN) {
6423                 ulong_t i;
6424                 size = 0;
6425                 member = type->left;
6426                 i = 0;
6427                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6428                         if (i == index) {
6429                                 member = member->left;
6430                                 break;
6431                         }
6432                         i++;
6433                         member = member->right;
6434                 }
6435                 if (i != index) {
6436                         internal_error(state, 0, "Missing member index: %u", index);
6437                 }
6438         }
6439         else {
6440                 internal_error(state, 0, 
6441                         "request for index %u in something not an array, tuple or join",
6442                         index);
6443         }
6444         return size;
6445 }
6446
6447 static struct type *index_type(struct compile_state *state,
6448         struct type *type, ulong_t index)
6449 {
6450         struct type *member;
6451         if (index >= type->elements) {
6452                 internal_error(state, 0, "Invalid element %u requested", index);
6453         }
6454         if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
6455                 member = type->left;
6456         }
6457         else if ((type->type & TYPE_MASK) == TYPE_TUPLE) {
6458                 ulong_t i;
6459                 member = type->left;
6460                 i = 0;
6461                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6462                         if (i == index) {
6463                                 member = member->left;
6464                                 break;
6465                         }
6466                         i++;
6467                         member = member->right;
6468                 }
6469                 if (i != index) {
6470                         internal_error(state, 0, "Missing member index: %u", index);
6471                 }
6472         }
6473         else if ((type->type & TYPE_MASK) == TYPE_JOIN) {
6474                 ulong_t i;
6475                 member = type->left;
6476                 i = 0;
6477                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6478                         if (i == index) {
6479                                 member = member->left;
6480                                 break;
6481                         }
6482                         i++;
6483                         member = member->right;
6484                 }
6485                 if (i != index) {
6486                         internal_error(state, 0, "Missing member index: %u", index);
6487                 }
6488         }
6489         else {
6490                 member = 0;
6491                 internal_error(state, 0, 
6492                         "request for index %u in something not an array, tuple or join",
6493                         index);
6494         }
6495         return member;
6496 }
6497
6498 static struct type *unpack_type(struct compile_state *state, struct type *type)
6499 {
6500         /* If I have a single register compound type not a bit-field
6501          * find the real type.
6502          */
6503         struct type *start_type;
6504         size_t size;
6505         /* Get out early if I need multiple registers for this type */
6506         size = reg_size_of(state, type);
6507         if (size > REG_SIZEOF_REG) {
6508                 return type;
6509         }
6510         /* Get out early if I don't need any registers for this type */
6511         if (size == 0) {
6512                 return &void_type;
6513         }
6514         /* Loop until I have no more layers I can remove */
6515         do {
6516                 start_type = type;
6517                 switch(type->type & TYPE_MASK) {
6518                 case TYPE_ARRAY:
6519                         /* If I have a single element the unpacked type
6520                          * is that element.
6521                          */
6522                         if (type->elements == 1) {
6523                                 type = type->left;
6524                         }
6525                         break;
6526                 case TYPE_STRUCT:
6527                 case TYPE_TUPLE:
6528                         /* If I have a single element the unpacked type
6529                          * is that element.
6530                          */
6531                         if (type->elements == 1) {
6532                                 type = type->left;
6533                         }
6534                         /* If I have multiple elements the unpacked
6535                          * type is the non-void element.
6536                          */
6537                         else {
6538                                 struct type *next, *member;
6539                                 struct type *sub_type;
6540                                 sub_type = 0;
6541                                 next = type->left;
6542                                 while(next) {
6543                                         member = next;
6544                                         next = 0;
6545                                         if ((member->type & TYPE_MASK) == TYPE_PRODUCT) {
6546                                                 next = member->right;
6547                                                 member = member->left;
6548                                         }
6549                                         if (reg_size_of(state, member) > 0) {
6550                                                 if (sub_type) {
6551                                                         internal_error(state, 0, "true compound type in a register");
6552                                                 }
6553                                                 sub_type = member;
6554                                         }
6555                                 }
6556                                 if (sub_type) {
6557                                         type = sub_type;
6558                                 }
6559                         }
6560                         break;
6561
6562                 case TYPE_UNION:
6563                 case TYPE_JOIN:
6564                         /* If I have a single element the unpacked type
6565                          * is that element.
6566                          */
6567                         if (type->elements == 1) {
6568                                 type = type->left;
6569                         }
6570                         /* I can't in general unpack union types */
6571                         break;
6572                 default:
6573                         /* If I'm not a compound type I can't unpack it */
6574                         break;
6575                 }
6576         } while(start_type != type);
6577         switch(type->type & TYPE_MASK) {
6578         case TYPE_STRUCT:
6579         case TYPE_ARRAY:
6580         case TYPE_TUPLE:
6581                 internal_error(state, 0, "irredicible type?");
6582                 break;
6583         }
6584         return type;
6585 }
6586
6587 static int equiv_types(struct type *left, struct type *right);
6588 static int is_compound_type(struct type *type);
6589
6590 static struct type *reg_type(
6591         struct compile_state *state, struct type *type, int reg_offset)
6592 {
6593         struct type *member;
6594         size_t size;
6595 #if 1
6596         struct type *invalid;
6597         invalid = invalid_type(state, type);
6598         if (invalid) {
6599                 fprintf(state->errout, "type: ");
6600                 name_of(state->errout, type);
6601                 fprintf(state->errout, "\n");
6602                 fprintf(state->errout, "invalid: ");
6603                 name_of(state->errout, invalid);
6604                 fprintf(state->errout, "\n");
6605                 internal_error(state, 0, "bad input type?");
6606         }
6607 #endif
6608
6609         size = reg_size_of(state, type);
6610         if (reg_offset > size) {
6611                 member = 0;
6612                 fprintf(state->errout, "type: ");
6613                 name_of(state->errout, type);
6614                 fprintf(state->errout, "\n");
6615                 internal_error(state, 0, "offset outside of type");
6616         }
6617         else {
6618                 switch(type->type & TYPE_MASK) {
6619                         /* Don't do anything with the basic types */
6620                 case TYPE_VOID:
6621                 case TYPE_CHAR:         case TYPE_UCHAR:
6622                 case TYPE_SHORT:        case TYPE_USHORT:
6623                 case TYPE_INT:          case TYPE_UINT:
6624                 case TYPE_LONG:         case TYPE_ULONG:
6625                 case TYPE_LLONG:        case TYPE_ULLONG:
6626                 case TYPE_FLOAT:        case TYPE_DOUBLE:
6627                 case TYPE_LDOUBLE:
6628                 case TYPE_POINTER:
6629                 case TYPE_ENUM:
6630                 case TYPE_BITFIELD:
6631                         member = type;
6632                         break;
6633                 case TYPE_ARRAY:
6634                         member = type->left;
6635                         size = reg_size_of(state, member);
6636                         if (size > REG_SIZEOF_REG) {
6637                                 member = reg_type(state, member, reg_offset % size);
6638                         }
6639                         break;
6640                 case TYPE_STRUCT:
6641                 case TYPE_TUPLE:
6642                 {
6643                         size_t offset;
6644                         offset = 0;
6645                         member = type->left;
6646                         while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6647                                 size = reg_size_of(state, member->left);
6648                                 offset += reg_needed_padding(state, member->left, offset);
6649                                 if ((offset + size) > reg_offset) {
6650                                         member = member->left;
6651                                         break;
6652                                 }
6653                                 offset += size;
6654                                 member = member->right;
6655                         }
6656                         offset += reg_needed_padding(state, member, offset);
6657                         member = reg_type(state, member, reg_offset - offset);
6658                         break;
6659                 }
6660                 case TYPE_UNION:
6661                 case TYPE_JOIN:
6662                 {
6663                         struct type *join, **jnext, *mnext;
6664                         join = new_type(TYPE_JOIN, 0, 0);
6665                         jnext = &join->left;
6666                         mnext = type->left;
6667                         while(mnext) {
6668                                 size_t size;
6669                                 member = mnext;
6670                                 mnext = 0;
6671                                 if ((member->type & TYPE_MASK) == TYPE_OVERLAP) {
6672                                         mnext = member->right;
6673                                         member = member->left;
6674                                 }
6675                                 size = reg_size_of(state, member);
6676                                 if (size > reg_offset) {
6677                                         struct type *part, *hunt;
6678                                         part = reg_type(state, member, reg_offset);
6679                                         /* See if this type is already in the union */
6680                                         hunt = join->left;
6681                                         while(hunt) {
6682                                                 struct type *test = hunt;
6683                                                 hunt = 0;
6684                                                 if ((test->type & TYPE_MASK) == TYPE_OVERLAP) {
6685                                                         hunt = test->right;
6686                                                         test = test->left;
6687                                                 }
6688                                                 if (equiv_types(part, test)) {
6689                                                         goto next;
6690                                                 }
6691                                         }
6692                                         /* Nope add it */
6693                                         if (!*jnext) {
6694                                                 *jnext = part;
6695                                         } else {
6696                                                 *jnext = new_type(TYPE_OVERLAP, *jnext, part);
6697                                                 jnext = &(*jnext)->right;
6698                                         }
6699                                         join->elements++;
6700                                 }
6701                         next:
6702                                 ;
6703                         }
6704                         if (join->elements == 0) {
6705                                 internal_error(state, 0, "No elements?");
6706                         }
6707                         member = join;
6708                         break;
6709                 }
6710                 default:
6711                         member = 0;
6712                         fprintf(state->errout, "type: ");
6713                         name_of(state->errout, type);
6714                         fprintf(state->errout, "\n");
6715                         internal_error(state, 0, "reg_type not yet defined for type");
6716                         
6717                 }
6718         }
6719         /* If I have a single register compound type not a bit-field
6720          * find the real type.
6721          */
6722         member = unpack_type(state, member);
6723                 ;
6724         size  = reg_size_of(state, member);
6725         if (size > REG_SIZEOF_REG) {
6726                 internal_error(state, 0, "Cannot find type of single register");
6727         }
6728 #if 1
6729         invalid = invalid_type(state, member);
6730         if (invalid) {
6731                 fprintf(state->errout, "type: ");
6732                 name_of(state->errout, member);
6733                 fprintf(state->errout, "\n");
6734                 fprintf(state->errout, "invalid: ");
6735                 name_of(state->errout, invalid);
6736                 fprintf(state->errout, "\n");
6737                 internal_error(state, 0, "returning bad type?");
6738         }
6739 #endif
6740         return member;
6741 }
6742
6743 static struct type *next_field(struct compile_state *state,
6744         struct type *type, struct type *prev_member) 
6745 {
6746         struct type *member;
6747         if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
6748                 internal_error(state, 0, "next_field only works on structures");
6749         }
6750         member = type->left;
6751         while((member->type & TYPE_MASK) == TYPE_PRODUCT) {
6752                 if (!prev_member) {
6753                         member = member->left;
6754                         break;
6755                 }
6756                 if (member->left == prev_member) {
6757                         prev_member = 0;
6758                 }
6759                 member = member->right;
6760         }
6761         if (member == prev_member) {
6762                 prev_member = 0;
6763         }
6764         if (prev_member) {
6765                 internal_error(state, 0, "prev_member %s not present", 
6766                         prev_member->field_ident->name);
6767         }
6768         return member;
6769 }
6770
6771 typedef void (*walk_type_fields_cb_t)(struct compile_state *state, struct type *type, 
6772         size_t ret_offset, size_t mem_offset, void *arg);
6773
6774 static void walk_type_fields(struct compile_state *state,
6775         struct type *type, size_t reg_offset, size_t mem_offset,
6776         walk_type_fields_cb_t cb, void *arg);
6777
6778 static void walk_struct_fields(struct compile_state *state,
6779         struct type *type, size_t reg_offset, size_t mem_offset,
6780         walk_type_fields_cb_t cb, void *arg)
6781 {
6782         struct type *tptr;
6783         ulong_t i;
6784         if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
6785                 internal_error(state, 0, "walk_struct_fields only works on structures");
6786         }
6787         tptr = type->left;
6788         for(i = 0; i < type->elements; i++) {
6789                 struct type *mtype;
6790                 mtype = tptr;
6791                 if ((mtype->type & TYPE_MASK) == TYPE_PRODUCT) {
6792                         mtype = mtype->left;
6793                 }
6794                 walk_type_fields(state, mtype, 
6795                         reg_offset + 
6796                         field_reg_offset(state, type, mtype->field_ident),
6797                         mem_offset + 
6798                         field_offset(state, type, mtype->field_ident),
6799                         cb, arg);
6800                 tptr = tptr->right;
6801         }
6802         
6803 }
6804
6805 static void walk_type_fields(struct compile_state *state,
6806         struct type *type, size_t reg_offset, size_t mem_offset,
6807         walk_type_fields_cb_t cb, void *arg)
6808 {
6809         switch(type->type & TYPE_MASK) {
6810         case TYPE_STRUCT:
6811                 walk_struct_fields(state, type, reg_offset, mem_offset, cb, arg);
6812                 break;
6813         case TYPE_CHAR:
6814         case TYPE_UCHAR:
6815         case TYPE_SHORT:
6816         case TYPE_USHORT:
6817         case TYPE_INT:
6818         case TYPE_UINT:
6819         case TYPE_LONG:
6820         case TYPE_ULONG:
6821                 cb(state, type, reg_offset, mem_offset, arg);
6822                 break;
6823         case TYPE_VOID:
6824                 break;
6825         default:
6826                 internal_error(state, 0, "walk_type_fields not yet implemented for type");
6827         }
6828 }
6829
6830 static void arrays_complete(struct compile_state *state, struct type *type)
6831 {
6832         if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
6833                 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
6834                         error(state, 0, "array size not specified");
6835                 }
6836                 arrays_complete(state, type->left);
6837         }
6838 }
6839
6840 static unsigned int get_basic_type(struct type *type)
6841 {
6842         unsigned int basic;
6843         basic = type->type & TYPE_MASK;
6844         /* Convert enums to ints */
6845         if (basic == TYPE_ENUM) {
6846                 basic = TYPE_INT;
6847         }
6848         /* Convert bitfields to standard types */
6849         else if (basic == TYPE_BITFIELD) {
6850                 if (type->elements <= SIZEOF_CHAR) {
6851                         basic = TYPE_CHAR;
6852                 }
6853                 else if (type->elements <= SIZEOF_SHORT) {
6854                         basic = TYPE_SHORT;
6855                 }
6856                 else if (type->elements <= SIZEOF_INT) {
6857                         basic = TYPE_INT;
6858                 }
6859                 else if (type->elements <= SIZEOF_LONG) {
6860                         basic = TYPE_LONG;
6861                 }
6862                 if (!TYPE_SIGNED(type->left->type)) {
6863                         basic += 1;
6864                 }
6865         }
6866         return basic;
6867 }
6868
6869 static unsigned int do_integral_promotion(unsigned int type)
6870 {
6871         if (TYPE_INTEGER(type) && (TYPE_RANK(type) < TYPE_RANK(TYPE_INT))) {
6872                 type = TYPE_INT;
6873         }
6874         return type;
6875 }
6876
6877 static unsigned int do_arithmetic_conversion(
6878         unsigned int left, unsigned int right)
6879 {
6880         if ((left == TYPE_LDOUBLE) || (right == TYPE_LDOUBLE)) {
6881                 return TYPE_LDOUBLE;
6882         }
6883         else if ((left == TYPE_DOUBLE) || (right == TYPE_DOUBLE)) {
6884                 return TYPE_DOUBLE;
6885         }
6886         else if ((left == TYPE_FLOAT) || (right == TYPE_FLOAT)) {
6887                 return TYPE_FLOAT;
6888         }
6889         left = do_integral_promotion(left);
6890         right = do_integral_promotion(right);
6891         /* If both operands have the same size done */
6892         if (left == right) {
6893                 return left;
6894         }
6895         /* If both operands have the same signedness pick the larger */
6896         else if (!!TYPE_UNSIGNED(left) == !!TYPE_UNSIGNED(right)) {
6897                 return (TYPE_RANK(left) >= TYPE_RANK(right)) ? left : right;
6898         }
6899         /* If the signed type can hold everything use it */
6900         else if (TYPE_SIGNED(left) && (TYPE_RANK(left) > TYPE_RANK(right))) {
6901                 return left;
6902         }
6903         else if (TYPE_SIGNED(right) && (TYPE_RANK(right) > TYPE_RANK(left))) {
6904                 return right;
6905         }
6906         /* Convert to the unsigned type with the same rank as the signed type */
6907         else if (TYPE_SIGNED(left)) {
6908                 return TYPE_MKUNSIGNED(left);
6909         }
6910         else {
6911                 return TYPE_MKUNSIGNED(right);
6912         }
6913 }
6914
6915 /* see if two types are the same except for qualifiers */
6916 static int equiv_types(struct type *left, struct type *right)
6917 {
6918         unsigned int type;
6919         /* Error if the basic types do not match */
6920         if ((left->type & TYPE_MASK) != (right->type & TYPE_MASK)) {
6921                 return 0;
6922         }
6923         type = left->type & TYPE_MASK;
6924         /* If the basic types match and it is a void type we are done */
6925         if (type == TYPE_VOID) {
6926                 return 1;
6927         }
6928         /* For bitfields we need to compare the sizes */
6929         else if (type == TYPE_BITFIELD) {
6930                 return (left->elements == right->elements) &&
6931                         (TYPE_SIGNED(left->left->type) == TYPE_SIGNED(right->left->type));
6932         }
6933         /* if the basic types match and it is an arithmetic type we are done */
6934         else if (TYPE_ARITHMETIC(type)) {
6935                 return 1;
6936         }
6937         /* If it is a pointer type recurse and keep testing */
6938         else if (type == TYPE_POINTER) {
6939                 return equiv_types(left->left, right->left);
6940         }
6941         else if (type == TYPE_ARRAY) {
6942                 return (left->elements == right->elements) &&
6943                         equiv_types(left->left, right->left);
6944         }
6945         /* test for struct equality */
6946         else if (type == TYPE_STRUCT) {
6947                 return left->type_ident == right->type_ident;
6948         }
6949         /* test for union equality */
6950         else if (type == TYPE_UNION) {
6951                 return left->type_ident == right->type_ident;
6952         }
6953         /* Test for equivalent functions */
6954         else if (type == TYPE_FUNCTION) {
6955                 return equiv_types(left->left, right->left) &&
6956                         equiv_types(left->right, right->right);
6957         }
6958         /* We only see TYPE_PRODUCT as part of function equivalence matching */
6959         /* We also see TYPE_PRODUCT as part of of tuple equivalence matchin */
6960         else if (type == TYPE_PRODUCT) {
6961                 return equiv_types(left->left, right->left) &&
6962                         equiv_types(left->right, right->right);
6963         }
6964         /* We should see TYPE_OVERLAP when comparing joins */
6965         else if (type == TYPE_OVERLAP) {
6966                 return equiv_types(left->left, right->left) &&
6967                         equiv_types(left->right, right->right);
6968         }
6969         /* Test for equivalence of tuples */
6970         else if (type == TYPE_TUPLE) {
6971                 return (left->elements == right->elements) &&
6972                         equiv_types(left->left, right->left);
6973         }
6974         /* Test for equivalence of joins */
6975         else if (type == TYPE_JOIN) {
6976                 return (left->elements == right->elements) &&
6977                         equiv_types(left->left, right->left);
6978         }
6979         else {
6980                 return 0;
6981         }
6982 }
6983
6984 static int equiv_ptrs(struct type *left, struct type *right)
6985 {
6986         if (((left->type & TYPE_MASK) != TYPE_POINTER) ||
6987                 ((right->type & TYPE_MASK) != TYPE_POINTER)) {
6988                 return 0;
6989         }
6990         return equiv_types(left->left, right->left);
6991 }
6992
6993 static struct type *compatible_types(struct type *left, struct type *right)
6994 {
6995         struct type *result;
6996         unsigned int type, qual_type;
6997         /* Error if the basic types do not match */
6998         if ((left->type & TYPE_MASK) != (right->type & TYPE_MASK)) {
6999                 return 0;
7000         }
7001         type = left->type & TYPE_MASK;
7002         qual_type = (left->type & ~STOR_MASK) | (right->type & ~STOR_MASK);
7003         result = 0;
7004         /* if the basic types match and it is an arithmetic type we are done */
7005         if (TYPE_ARITHMETIC(type)) {
7006                 result = new_type(qual_type, 0, 0);
7007         }
7008         /* If it is a pointer type recurse and keep testing */
7009         else if (type == TYPE_POINTER) {
7010                 result = compatible_types(left->left, right->left);
7011                 if (result) {
7012                         result = new_type(qual_type, result, 0);
7013                 }
7014         }
7015         /* test for struct equality */
7016         else if (type == TYPE_STRUCT) {
7017                 if (left->type_ident == right->type_ident) {
7018                         result = left;
7019                 }
7020         }
7021         /* test for union equality */
7022         else if (type == TYPE_UNION) {
7023                 if (left->type_ident == right->type_ident) {
7024                         result = left;
7025                 }
7026         }
7027         /* Test for equivalent functions */
7028         else if (type == TYPE_FUNCTION) {
7029                 struct type *lf, *rf;
7030                 lf = compatible_types(left->left, right->left);
7031                 rf = compatible_types(left->right, right->right);
7032                 if (lf && rf) {
7033                         result = new_type(qual_type, lf, rf);
7034                 }
7035         }
7036         /* We only see TYPE_PRODUCT as part of function equivalence matching */
7037         else if (type == TYPE_PRODUCT) {
7038                 struct type *lf, *rf;
7039                 lf = compatible_types(left->left, right->left);
7040                 rf = compatible_types(left->right, right->right);
7041                 if (lf && rf) {
7042                         result = new_type(qual_type, lf, rf);
7043                 }
7044         }
7045         else {
7046                 /* Nothing else is compatible */
7047         }
7048         return result;
7049 }
7050
7051 /* See if left is a equivalent to right or right is a union member of left */
7052 static int is_subset_type(struct type *left, struct type *right)
7053 {
7054         if (equiv_types(left, right)) {
7055                 return 1;
7056         }
7057         if ((left->type & TYPE_MASK) == TYPE_JOIN) {
7058                 struct type *member, *mnext;
7059                 mnext = left->left;
7060                 while(mnext) {
7061                         member = mnext;
7062                         mnext = 0;
7063                         if ((member->type & TYPE_MASK) == TYPE_OVERLAP) {
7064                                 mnext = member->right;
7065                                 member = member->left;
7066                         }
7067                         if (is_subset_type( member, right)) {
7068                                 return 1;
7069                         }
7070                 }
7071         }
7072         return 0;
7073 }
7074
7075 static struct type *compatible_ptrs(struct type *left, struct type *right)
7076 {
7077         struct type *result;
7078         if (((left->type & TYPE_MASK) != TYPE_POINTER) ||
7079                 ((right->type & TYPE_MASK) != TYPE_POINTER)) {
7080                 return 0;
7081         }
7082         result = compatible_types(left->left, right->left);
7083         if (result) {
7084                 unsigned int qual_type;
7085                 qual_type = (left->type & ~STOR_MASK) | (right->type & ~STOR_MASK);
7086                 result = new_type(qual_type, result, 0);
7087         }
7088         return result;
7089         
7090 }
7091 static struct triple *integral_promotion(
7092         struct compile_state *state, struct triple *def)
7093 {
7094         struct type *type;
7095         type = def->type;
7096         /* As all operations are carried out in registers
7097          * the values are converted on load I just convert
7098          * logical type of the operand.
7099          */
7100         if (TYPE_INTEGER(type->type)) {
7101                 unsigned int int_type;
7102                 int_type = type->type & ~TYPE_MASK;
7103                 int_type |= do_integral_promotion(get_basic_type(type));
7104                 if (int_type != type->type) {
7105                         if (def->op != OP_LOAD) {
7106                                 def->type = new_type(int_type, 0, 0);
7107                         }
7108                         else {
7109                                 def = triple(state, OP_CONVERT, 
7110                                         new_type(int_type, 0, 0), def, 0);
7111                         }
7112                 }
7113         }
7114         return def;
7115 }
7116
7117
7118 static void arithmetic(struct compile_state *state, struct triple *def)
7119 {
7120         if (!TYPE_ARITHMETIC(def->type->type)) {
7121                 error(state, 0, "arithmetic type expexted");
7122         }
7123 }
7124
7125 static void ptr_arithmetic(struct compile_state *state, struct triple *def)
7126 {
7127         if (!TYPE_PTR(def->type->type) && !TYPE_ARITHMETIC(def->type->type)) {
7128                 error(state, def, "pointer or arithmetic type expected");
7129         }
7130 }
7131
7132 static int is_integral(struct triple *ins)
7133 {
7134         return TYPE_INTEGER(ins->type->type);
7135 }
7136
7137 static void integral(struct compile_state *state, struct triple *def)
7138 {
7139         if (!is_integral(def)) {
7140                 error(state, 0, "integral type expected");
7141         }
7142 }
7143
7144
7145 static void bool(struct compile_state *state, struct triple *def)
7146 {
7147         if (!TYPE_ARITHMETIC(def->type->type) &&
7148                 ((def->type->type & TYPE_MASK) != TYPE_POINTER)) {
7149                 error(state, 0, "arithmetic or pointer type expected");
7150         }
7151 }
7152
7153 static int is_signed(struct type *type)
7154 {
7155         if ((type->type & TYPE_MASK) == TYPE_BITFIELD) {
7156                 type = type->left;
7157         }
7158         return !!TYPE_SIGNED(type->type);
7159 }
7160 static int is_compound_type(struct type *type)
7161 {
7162         int is_compound;
7163         switch((type->type & TYPE_MASK)) {
7164         case TYPE_ARRAY:
7165         case TYPE_STRUCT:
7166         case TYPE_TUPLE:
7167         case TYPE_UNION:
7168         case TYPE_JOIN: 
7169                 is_compound = 1;
7170                 break;
7171         default:
7172                 is_compound = 0;
7173                 break;
7174         }
7175         return is_compound;
7176 }
7177
7178 /* Is this value located in a register otherwise it must be in memory */
7179 static int is_in_reg(struct compile_state *state, struct triple *def)
7180 {
7181         int in_reg;
7182         if (def->op == OP_ADECL) {
7183                 in_reg = 1;
7184         }
7185         else if ((def->op == OP_SDECL) || (def->op == OP_DEREF)) {
7186                 in_reg = 0;
7187         }
7188         else if (triple_is_part(state, def)) {
7189                 in_reg = is_in_reg(state, MISC(def, 0));
7190         }
7191         else {
7192                 internal_error(state, def, "unknown expr storage location");
7193                 in_reg = -1;
7194         }
7195         return in_reg;
7196 }
7197
7198 /* Is this an auto or static variable location? Something that can
7199  * be assigned to.  Otherwise it must must be a pure value, a temporary.
7200  */
7201 static int is_lvalue(struct compile_state *state, struct triple *def)
7202 {
7203         int ret;
7204         ret = 0;
7205         if (!def) {
7206                 return 0;
7207         }
7208         if ((def->op == OP_ADECL) || 
7209                 (def->op == OP_SDECL) || 
7210                 (def->op == OP_DEREF) ||
7211                 (def->op == OP_BLOBCONST) ||
7212                 (def->op == OP_LIST)) {
7213                 ret = 1;
7214         }
7215         else if (triple_is_part(state, def)) {
7216                 ret = is_lvalue(state, MISC(def, 0));
7217         }
7218         return ret;
7219 }
7220
7221 static void clvalue(struct compile_state *state, struct triple *def)
7222 {
7223         if (!def) {
7224                 internal_error(state, def, "nothing where lvalue expected?");
7225         }
7226         if (!is_lvalue(state, def)) { 
7227                 error(state, def, "lvalue expected");
7228         }
7229 }
7230 static void lvalue(struct compile_state *state, struct triple *def)
7231 {
7232         clvalue(state, def);
7233         if (def->type->type & QUAL_CONST) {
7234                 error(state, def, "modifable lvalue expected");
7235         }
7236 }
7237
7238 static int is_pointer(struct triple *def)
7239 {
7240         return (def->type->type & TYPE_MASK) == TYPE_POINTER;
7241 }
7242
7243 static void pointer(struct compile_state *state, struct triple *def)
7244 {
7245         if (!is_pointer(def)) {
7246                 error(state, def, "pointer expected");
7247         }
7248 }
7249
7250 static struct triple *int_const(
7251         struct compile_state *state, struct type *type, ulong_t value)
7252 {
7253         struct triple *result;
7254         switch(type->type & TYPE_MASK) {
7255         case TYPE_CHAR:
7256         case TYPE_INT:   case TYPE_UINT:
7257         case TYPE_LONG:  case TYPE_ULONG:
7258                 break;
7259         default:
7260                 internal_error(state, 0, "constant for unknown type");
7261         }
7262         result = triple(state, OP_INTCONST, type, 0, 0);
7263         result->u.cval = value;
7264         return result;
7265 }
7266
7267
7268 static struct triple *read_expr(struct compile_state *state, struct triple *def);
7269
7270 static struct triple *do_mk_addr_expr(struct compile_state *state, 
7271         struct triple *expr, struct type *type, ulong_t offset)
7272 {
7273         struct triple *result;
7274         struct type *ptr_type;
7275         clvalue(state, expr);
7276
7277         ptr_type = new_type(TYPE_POINTER | (type->type & QUAL_MASK), type, 0);
7278
7279         
7280         result = 0;
7281         if (expr->op == OP_ADECL) {
7282                 error(state, expr, "address of auto variables not supported");
7283         }
7284         else if (expr->op == OP_SDECL) {
7285                 result = triple(state, OP_ADDRCONST, ptr_type, 0, 0);
7286                 MISC(result, 0) = expr;
7287                 result->u.cval = offset;
7288         }
7289         else if (expr->op == OP_DEREF) {
7290                 result = triple(state, OP_ADD, ptr_type,
7291                         RHS(expr, 0),
7292                         int_const(state, &ulong_type, offset));
7293         }
7294         else if (expr->op == OP_BLOBCONST) {
7295                 FINISHME();
7296                 internal_error(state, expr, "not yet implemented");
7297         }
7298         else if (expr->op == OP_LIST) {
7299                 error(state, 0, "Function addresses not supported");
7300         }
7301         else if (triple_is_part(state, expr)) {
7302                 struct triple *part;
7303                 part = expr;
7304                 expr = MISC(expr, 0);
7305                 if (part->op == OP_DOT) {
7306                         offset += bits_to_bytes(
7307                                 field_offset(state, expr->type, part->u.field));
7308                 }
7309                 else if (part->op == OP_INDEX) {
7310                         offset += bits_to_bytes(
7311                                 index_offset(state, expr->type, part->u.cval));
7312                 }
7313                 else {
7314                         internal_error(state, part, "unhandled part type");
7315                 }
7316                 result = do_mk_addr_expr(state, expr, type, offset);
7317         }
7318         if (!result) {
7319                 internal_error(state, expr, "cannot take address of expression");
7320         }
7321         return result;
7322 }
7323
7324 static struct triple *mk_addr_expr(
7325         struct compile_state *state, struct triple *expr, ulong_t offset)
7326 {
7327         return do_mk_addr_expr(state, expr, expr->type, offset);
7328 }
7329
7330 static struct triple *mk_deref_expr(
7331         struct compile_state *state, struct triple *expr)
7332 {
7333         struct type *base_type;
7334         pointer(state, expr);
7335         base_type = expr->type->left;
7336         return triple(state, OP_DEREF, base_type, expr, 0);
7337 }
7338
7339 /* lvalue conversions always apply except when certain operators
7340  * are applied.  So I apply apply it when I know no more
7341  * operators will be applied.
7342  */
7343 static struct triple *lvalue_conversion(struct compile_state *state, struct triple *def)
7344 {
7345         /* Tranform an array to a pointer to the first element */
7346         if ((def->type->type & TYPE_MASK) == TYPE_ARRAY) {
7347                 struct type *type;
7348                 type = new_type(
7349                         TYPE_POINTER | (def->type->type & QUAL_MASK),
7350                         def->type->left, 0);
7351                 if ((def->op == OP_SDECL) || IS_CONST_OP(def->op)) {
7352                         struct triple *addrconst;
7353                         if ((def->op != OP_SDECL) && (def->op != OP_BLOBCONST)) {
7354                                 internal_error(state, def, "bad array constant");
7355                         }
7356                         addrconst = triple(state, OP_ADDRCONST, type, 0, 0);
7357                         MISC(addrconst, 0) = def;
7358                         def = addrconst;
7359                 }
7360                 else {
7361                         def = triple(state, OP_CONVERT, type, def, 0);
7362                 }
7363         }
7364         /* Transform a function to a pointer to it */
7365         else if ((def->type->type & TYPE_MASK) == TYPE_FUNCTION) {
7366                 def = mk_addr_expr(state, def, 0);
7367         }
7368         return def;
7369 }
7370
7371 static struct triple *deref_field(
7372         struct compile_state *state, struct triple *expr, struct hash_entry *field)
7373 {
7374         struct triple *result;
7375         struct type *type, *member;
7376         ulong_t offset;
7377         if (!field) {
7378                 internal_error(state, 0, "No field passed to deref_field");
7379         }
7380         result = 0;
7381         type = expr->type;
7382         if (((type->type & TYPE_MASK) != TYPE_STRUCT) &&
7383                 ((type->type & TYPE_MASK) != TYPE_UNION)) {
7384                 error(state, 0, "request for member %s in something not a struct or union",
7385                         field->name);
7386         }
7387         member = field_type(state, type, field);
7388         if ((type->type & STOR_MASK) == STOR_PERM) {
7389                 /* Do the pointer arithmetic to get a deref the field */
7390                 offset = bits_to_bytes(field_offset(state, type, field));
7391                 result = do_mk_addr_expr(state, expr, member, offset);
7392                 result = mk_deref_expr(state, result);
7393         }
7394         else {
7395                 /* Find the variable for the field I want. */
7396                 result = triple(state, OP_DOT, member, expr, 0);
7397                 result->u.field = field;
7398         }
7399         return result;
7400 }
7401
7402 static struct triple *deref_index(
7403         struct compile_state *state, struct triple *expr, size_t index)
7404 {
7405         struct triple *result;
7406         struct type *type, *member;
7407         ulong_t offset;
7408
7409         result = 0;
7410         type = expr->type;
7411         member = index_type(state, type, index);
7412
7413         if ((type->type & STOR_MASK) == STOR_PERM) {
7414                 offset = bits_to_bytes(index_offset(state, type, index));
7415                 result = do_mk_addr_expr(state, expr, member, offset);
7416                 result = mk_deref_expr(state, result);
7417         }
7418         else {
7419                 result = triple(state, OP_INDEX, member, expr, 0);
7420                 result->u.cval = index;
7421         }
7422         return result;
7423 }
7424
7425 static struct triple *read_expr(struct compile_state *state, struct triple *def)
7426 {
7427         int op;
7428         if  (!def) {
7429                 return 0;
7430         }
7431 #if DEBUG_ROMCC_WARNINGS
7432 #warning "CHECK_ME is this the only place I need to do lvalue conversions?"
7433 #endif
7434         /* Transform lvalues into something we can read */
7435         def = lvalue_conversion(state, def);
7436         if (!is_lvalue(state, def)) {
7437                 return def;
7438         }
7439         if (is_in_reg(state, def)) {
7440                 op = OP_READ;
7441         } else {
7442                 if (def->op == OP_SDECL) {
7443                         def = mk_addr_expr(state, def, 0);
7444                         def = mk_deref_expr(state, def);
7445                 }
7446                 op = OP_LOAD;
7447         }
7448         def = triple(state, op, def->type, def, 0);
7449         if (def->type->type & QUAL_VOLATILE) {
7450                 def->id |= TRIPLE_FLAG_VOLATILE;
7451         }
7452         return def;
7453 }
7454
7455 int is_write_compatible(struct compile_state *state, 
7456         struct type *dest, struct type *rval)
7457 {
7458         int compatible = 0;
7459         /* Both operands have arithmetic type */
7460         if (TYPE_ARITHMETIC(dest->type) && TYPE_ARITHMETIC(rval->type)) {
7461                 compatible = 1;
7462         }
7463         /* One operand is a pointer and the other is a pointer to void */
7464         else if (((dest->type & TYPE_MASK) == TYPE_POINTER) &&
7465                 ((rval->type & TYPE_MASK) == TYPE_POINTER) &&
7466                 (((dest->left->type & TYPE_MASK) == TYPE_VOID) ||
7467                         ((rval->left->type & TYPE_MASK) == TYPE_VOID))) {
7468                 compatible = 1;
7469         }
7470         /* If both types are the same without qualifiers we are good */
7471         else if (equiv_ptrs(dest, rval)) {
7472                 compatible = 1;
7473         }
7474         /* test for struct/union equality  */
7475         else if (equiv_types(dest, rval)) {
7476                 compatible = 1;
7477         }
7478         return compatible;
7479 }
7480
7481 static void write_compatible(struct compile_state *state,
7482         struct type *dest, struct type *rval)
7483 {
7484         if (!is_write_compatible(state, dest, rval)) {
7485                 FILE *fp = state->errout;
7486                 fprintf(fp, "dest: ");
7487                 name_of(fp, dest);
7488                 fprintf(fp,"\nrval: ");
7489                 name_of(fp, rval);
7490                 fprintf(fp, "\n");
7491                 error(state, 0, "Incompatible types in assignment");
7492         }
7493 }
7494
7495 static int is_init_compatible(struct compile_state *state,
7496         struct type *dest, struct type *rval)
7497 {
7498         int compatible = 0;
7499         if (is_write_compatible(state, dest, rval)) {
7500                 compatible = 1;
7501         }
7502         else if (equiv_types(dest, rval)) {
7503                 compatible = 1;
7504         }
7505         return compatible;
7506 }
7507
7508 static struct triple *write_expr(
7509         struct compile_state *state, struct triple *dest, struct triple *rval)
7510 {
7511         struct triple *def;
7512         int op;
7513
7514         def = 0;
7515         if (!rval) {
7516                 internal_error(state, 0, "missing rval");
7517         }
7518
7519         if (rval->op == OP_LIST) {
7520                 internal_error(state, 0, "expression of type OP_LIST?");
7521         }
7522         if (!is_lvalue(state, dest)) {
7523                 internal_error(state, 0, "writing to a non lvalue?");
7524         }
7525         if (dest->type->type & QUAL_CONST) {
7526                 internal_error(state, 0, "modifable lvalue expexted");
7527         }
7528
7529         write_compatible(state, dest->type, rval->type);
7530         if (!equiv_types(dest->type, rval->type)) {
7531                 rval = triple(state, OP_CONVERT, dest->type, rval, 0);
7532         }
7533
7534         /* Now figure out which assignment operator to use */
7535         op = -1;
7536         if (is_in_reg(state, dest)) {
7537                 def = triple(state, OP_WRITE, dest->type, rval, dest);
7538                 if (MISC(def, 0) != dest) {
7539                         internal_error(state, def, "huh?");
7540                 }
7541                 if (RHS(def, 0) != rval) {
7542                         internal_error(state, def, "huh?");
7543                 }
7544         } else {
7545                 def = triple(state, OP_STORE, dest->type, dest, rval);
7546         }
7547         if (def->type->type & QUAL_VOLATILE) {
7548                 def->id |= TRIPLE_FLAG_VOLATILE;
7549         }
7550         return def;
7551 }
7552
7553 static struct triple *init_expr(
7554         struct compile_state *state, struct triple *dest, struct triple *rval)
7555 {
7556         struct triple *def;
7557
7558         def = 0;
7559         if (!rval) {
7560                 internal_error(state, 0, "missing rval");
7561         }
7562         if ((dest->type->type & STOR_MASK) != STOR_PERM) {
7563                 rval = read_expr(state, rval);
7564                 def = write_expr(state, dest, rval);
7565         }
7566         else {
7567                 /* Fill in the array size if necessary */
7568                 if (((dest->type->type & TYPE_MASK) == TYPE_ARRAY) &&
7569                         ((rval->type->type & TYPE_MASK) == TYPE_ARRAY)) {
7570                         if (dest->type->elements == ELEMENT_COUNT_UNSPECIFIED) {
7571                                 dest->type->elements = rval->type->elements;
7572                         }
7573                 }
7574                 if (!equiv_types(dest->type, rval->type)) {
7575                         error(state, 0, "Incompatible types in inializer");
7576                 }
7577                 MISC(dest, 0) = rval;
7578                 insert_triple(state, dest, rval);
7579                 rval->id |= TRIPLE_FLAG_FLATTENED;
7580                 use_triple(MISC(dest, 0), dest);
7581         }
7582         return def;
7583 }
7584
7585 struct type *arithmetic_result(
7586         struct compile_state *state, struct triple *left, struct triple *right)
7587 {
7588         struct type *type;
7589         /* Sanity checks to ensure I am working with arithmetic types */
7590         arithmetic(state, left);
7591         arithmetic(state, right);
7592         type = new_type(
7593                 do_arithmetic_conversion(
7594                         get_basic_type(left->type),
7595                         get_basic_type(right->type)),
7596                 0, 0);
7597         return type;
7598 }
7599
7600 struct type *ptr_arithmetic_result(
7601         struct compile_state *state, struct triple *left, struct triple *right)
7602 {
7603         struct type *type;
7604         /* Sanity checks to ensure I am working with the proper types */
7605         ptr_arithmetic(state, left);
7606         arithmetic(state, right);
7607         if (TYPE_ARITHMETIC(left->type->type) && 
7608                 TYPE_ARITHMETIC(right->type->type)) {
7609                 type = arithmetic_result(state, left, right);
7610         }
7611         else if (TYPE_PTR(left->type->type)) {
7612                 type = left->type;
7613         }
7614         else {
7615                 internal_error(state, 0, "huh?");
7616                 type = 0;
7617         }
7618         return type;
7619 }
7620
7621 /* boolean helper function */
7622
7623 static struct triple *ltrue_expr(struct compile_state *state, 
7624         struct triple *expr)
7625 {
7626         switch(expr->op) {
7627         case OP_LTRUE:   case OP_LFALSE:  case OP_EQ:      case OP_NOTEQ:
7628         case OP_SLESS:   case OP_ULESS:   case OP_SMORE:   case OP_UMORE:
7629         case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
7630                 /* If the expression is already boolean do nothing */
7631                 break;
7632         default:
7633                 expr = triple(state, OP_LTRUE, &int_type, expr, 0);
7634                 break;
7635         }
7636         return expr;
7637 }
7638
7639 static struct triple *lfalse_expr(struct compile_state *state, 
7640         struct triple *expr)
7641 {
7642         return triple(state, OP_LFALSE, &int_type, expr, 0);
7643 }
7644
7645 static struct triple *mkland_expr(
7646         struct compile_state *state,
7647         struct triple *left, struct triple *right)
7648 {
7649         struct triple *def, *val, *var, *jmp, *mid, *end;
7650         struct triple *lstore, *rstore;
7651
7652         /* Generate some intermediate triples */
7653         end = label(state);
7654         var = variable(state, &int_type);
7655         
7656         /* Store the left hand side value */
7657         lstore = write_expr(state, var, left);
7658
7659         /* Jump if the value is false */
7660         jmp =  branch(state, end, 
7661                 lfalse_expr(state, read_expr(state, var)));
7662         mid = label(state);
7663         
7664         /* Store the right hand side value */
7665         rstore = write_expr(state, var, right);
7666
7667         /* An expression for the computed value */
7668         val = read_expr(state, var);
7669
7670         /* Generate the prog for a logical and */
7671         def = mkprog(state, var, lstore, jmp, mid, rstore, end, val, 0UL);
7672         
7673         return def;
7674 }
7675
7676 static struct triple *mklor_expr(
7677         struct compile_state *state,
7678         struct triple *left, struct triple *right)
7679 {
7680         struct triple *def, *val, *var, *jmp, *mid, *end;
7681
7682         /* Generate some intermediate triples */
7683         end = label(state);
7684         var = variable(state, &int_type);
7685         
7686         /* Store the left hand side value */
7687         left = write_expr(state, var, left);
7688         
7689         /* Jump if the value is true */
7690         jmp = branch(state, end, read_expr(state, var));
7691         mid = label(state);
7692         
7693         /* Store the right hand side value */
7694         right = write_expr(state, var, right);
7695                 
7696         /* An expression for the computed value*/
7697         val = read_expr(state, var);
7698
7699         /* Generate the prog for a logical or */
7700         def = mkprog(state, var, left, jmp, mid, right, end, val, 0UL);
7701
7702         return def;
7703 }
7704
7705 static struct triple *mkcond_expr(
7706         struct compile_state *state, 
7707         struct triple *test, struct triple *left, struct triple *right)
7708 {
7709         struct triple *def, *val, *var, *jmp1, *jmp2, *top, *mid, *end;
7710         struct type *result_type;
7711         unsigned int left_type, right_type;
7712         bool(state, test);
7713         left_type = left->type->type;
7714         right_type = right->type->type;
7715         result_type = 0;
7716         /* Both operands have arithmetic type */
7717         if (TYPE_ARITHMETIC(left_type) && TYPE_ARITHMETIC(right_type)) {
7718                 result_type = arithmetic_result(state, left, right);
7719         }
7720         /* Both operands have void type */
7721         else if (((left_type & TYPE_MASK) == TYPE_VOID) &&
7722                 ((right_type & TYPE_MASK) == TYPE_VOID)) {
7723                 result_type = &void_type;
7724         }
7725         /* pointers to the same type... */
7726         else if ((result_type = compatible_ptrs(left->type, right->type))) {
7727                 ;
7728         }
7729         /* Both operands are pointers and left is a pointer to void */
7730         else if (((left_type & TYPE_MASK) == TYPE_POINTER) &&
7731                 ((right_type & TYPE_MASK) == TYPE_POINTER) &&
7732                 ((left->type->left->type & TYPE_MASK) == TYPE_VOID)) {
7733                 result_type = right->type;
7734         }
7735         /* Both operands are pointers and right is a pointer to void */
7736         else if (((left_type & TYPE_MASK) == TYPE_POINTER) &&
7737                 ((right_type & TYPE_MASK) == TYPE_POINTER) &&
7738                 ((right->type->left->type & TYPE_MASK) == TYPE_VOID)) {
7739                 result_type = left->type;
7740         }
7741         if (!result_type) {
7742                 error(state, 0, "Incompatible types in conditional expression");
7743         }
7744         /* Generate some intermediate triples */
7745         mid = label(state);
7746         end = label(state);
7747         var = variable(state, result_type);
7748
7749         /* Branch if the test is false */
7750         jmp1 = branch(state, mid, lfalse_expr(state, read_expr(state, test)));
7751         top = label(state);
7752
7753         /* Store the left hand side value */
7754         left = write_expr(state, var, left);
7755
7756         /* Branch to the end */
7757         jmp2 = branch(state, end, 0);
7758
7759         /* Store the right hand side value */
7760         right = write_expr(state, var, right);
7761         
7762         /* An expression for the computed value */
7763         val = read_expr(state, var);
7764
7765         /* Generate the prog for a conditional expression */
7766         def = mkprog(state, var, jmp1, top, left, jmp2, mid, right, end, val, 0UL);
7767
7768         return def;
7769 }
7770
7771
7772 static int expr_depth(struct compile_state *state, struct triple *ins)
7773 {
7774 #if DEBUG_ROMCC_WARNINGS
7775 #warning "FIXME move optimal ordering of subexpressions into the optimizer"
7776 #endif
7777         int count;
7778         count = 0;
7779         if (!ins || (ins->id & TRIPLE_FLAG_FLATTENED)) {
7780                 count = 0;
7781         }
7782         else if (ins->op == OP_DEREF) {
7783                 count = expr_depth(state, RHS(ins, 0)) - 1;
7784         }
7785         else if (ins->op == OP_VAL) {
7786                 count = expr_depth(state, RHS(ins, 0)) - 1;
7787         }
7788         else if (ins->op == OP_FCALL) {
7789                 /* Don't figure the depth of a call just guess it is huge */
7790                 count = 1000;
7791         }
7792         else {
7793                 struct triple **expr;
7794                 expr = triple_rhs(state, ins, 0);
7795                 for(;expr; expr = triple_rhs(state, ins, expr)) {
7796                         if (*expr) {
7797                                 int depth;
7798                                 depth = expr_depth(state, *expr);
7799                                 if (depth > count) {
7800                                         count = depth;
7801                                 }
7802                         }
7803                 }
7804         }
7805         return count + 1;
7806 }
7807
7808 static struct triple *flatten_generic(
7809         struct compile_state *state, struct triple *first, struct triple *ptr,
7810         int ignored)
7811 {
7812         struct rhs_vector {
7813                 int depth;
7814                 struct triple **ins;
7815         } vector[MAX_RHS];
7816         int i, rhs, lhs;
7817         /* Only operations with just a rhs and a lhs should come here */
7818         rhs = ptr->rhs;
7819         lhs = ptr->lhs;
7820         if (TRIPLE_SIZE(ptr) != lhs + rhs + ignored) {
7821                 internal_error(state, ptr, "unexpected args for: %d %s",
7822                         ptr->op, tops(ptr->op));
7823         }
7824         /* Find the depth of the rhs elements */
7825         for(i = 0; i < rhs; i++) {
7826                 vector[i].ins = &RHS(ptr, i);
7827                 vector[i].depth = expr_depth(state, *vector[i].ins);
7828         }
7829         /* Selection sort the rhs */
7830         for(i = 0; i < rhs; i++) {
7831                 int j, max = i;
7832                 for(j = i + 1; j < rhs; j++ ) {
7833                         if (vector[j].depth > vector[max].depth) {
7834                                 max = j;
7835                         }
7836                 }
7837                 if (max != i) {
7838                         struct rhs_vector tmp;
7839                         tmp = vector[i];
7840                         vector[i] = vector[max];
7841                         vector[max] = tmp;
7842                 }
7843         }
7844         /* Now flatten the rhs elements */
7845         for(i = 0; i < rhs; i++) {
7846                 *vector[i].ins = flatten(state, first, *vector[i].ins);
7847                 use_triple(*vector[i].ins, ptr);
7848         }
7849         if (lhs) {
7850                 insert_triple(state, first, ptr);
7851                 ptr->id |= TRIPLE_FLAG_FLATTENED;
7852                 ptr->id &= ~TRIPLE_FLAG_LOCAL;
7853                 
7854                 /* Now flatten the lhs elements */
7855                 for(i = 0; i < lhs; i++) {
7856                         struct triple **ins = &LHS(ptr, i);
7857                         *ins = flatten(state, first, *ins);
7858                         use_triple(*ins, ptr);
7859                 }
7860         }
7861         return ptr;
7862 }
7863
7864 static struct triple *flatten_prog(
7865         struct compile_state *state, struct triple *first, struct triple *ptr)
7866 {
7867         struct triple *head, *body, *val;
7868         head = RHS(ptr, 0);
7869         RHS(ptr, 0) = 0;
7870         val  = head->prev;
7871         body = head->next;
7872         release_triple(state, head);
7873         release_triple(state, ptr);
7874         val->next        = first;
7875         body->prev       = first->prev;
7876         body->prev->next = body;
7877         val->next->prev  = val;
7878
7879         if (triple_is_cbranch(state, body->prev) ||
7880                 triple_is_call(state, body->prev)) {
7881                 unuse_triple(first, body->prev);
7882                 use_triple(body, body->prev);
7883         }
7884         
7885         if (!(val->id & TRIPLE_FLAG_FLATTENED)) {
7886                 internal_error(state, val, "val not flattened?");
7887         }
7888
7889         return val;
7890 }
7891
7892
7893 static struct triple *flatten_part(
7894         struct compile_state *state, struct triple *first, struct triple *ptr)
7895 {
7896         if (!triple_is_part(state, ptr)) {
7897                 internal_error(state, ptr,  "not a part");
7898         }
7899         if (ptr->rhs || ptr->lhs || ptr->targ || (ptr->misc != 1)) {
7900                 internal_error(state, ptr, "unexpected args for: %d %s",
7901                         ptr->op, tops(ptr->op));
7902         }
7903         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
7904         use_triple(MISC(ptr, 0), ptr);
7905         return flatten_generic(state, first, ptr, 1);
7906 }
7907
7908 static struct triple *flatten(
7909         struct compile_state *state, struct triple *first, struct triple *ptr)
7910 {
7911         struct triple *orig_ptr;
7912         if (!ptr)
7913                 return 0;
7914         do {
7915                 orig_ptr = ptr;
7916                 /* Only flatten triples once */
7917                 if (ptr->id & TRIPLE_FLAG_FLATTENED) {
7918                         return ptr;
7919                 }
7920                 switch(ptr->op) {
7921                 case OP_VAL:
7922                         RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
7923                         return MISC(ptr, 0);
7924                         break;
7925                 case OP_PROG:
7926                         ptr = flatten_prog(state, first, ptr);
7927                         break;
7928                 case OP_FCALL:
7929                         ptr = flatten_generic(state, first, ptr, 1);
7930                         insert_triple(state, first, ptr);
7931                         ptr->id |= TRIPLE_FLAG_FLATTENED;
7932                         ptr->id &= ~TRIPLE_FLAG_LOCAL;
7933                         if (ptr->next != ptr) {
7934                                 use_triple(ptr->next, ptr);
7935                         }
7936                         break;
7937                 case OP_READ:
7938                 case OP_LOAD:
7939                         RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
7940                         use_triple(RHS(ptr, 0), ptr);
7941                         break;
7942                 case OP_WRITE:
7943                         ptr = flatten_generic(state, first, ptr, 1);
7944                         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
7945                         use_triple(MISC(ptr, 0), ptr);
7946                         break;
7947                 case OP_BRANCH:
7948                         use_triple(TARG(ptr, 0), ptr);
7949                         break;
7950                 case OP_CBRANCH:
7951                         RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
7952                         use_triple(RHS(ptr, 0), ptr);
7953                         use_triple(TARG(ptr, 0), ptr);
7954                         insert_triple(state, first, ptr);
7955                         ptr->id |= TRIPLE_FLAG_FLATTENED;
7956                         ptr->id &= ~TRIPLE_FLAG_LOCAL;
7957                         if (ptr->next != ptr) {
7958                                 use_triple(ptr->next, ptr);
7959                         }
7960                         break;
7961                 case OP_CALL:
7962                         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
7963                         use_triple(MISC(ptr, 0), ptr);
7964                         use_triple(TARG(ptr, 0), ptr);
7965                         insert_triple(state, first, ptr);
7966                         ptr->id |= TRIPLE_FLAG_FLATTENED;
7967                         ptr->id &= ~TRIPLE_FLAG_LOCAL;
7968                         if (ptr->next != ptr) {
7969                                 use_triple(ptr->next, ptr);
7970                         }
7971                         break;
7972                 case OP_RET:
7973                         RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
7974                         use_triple(RHS(ptr, 0), ptr);
7975                         break;
7976                 case OP_BLOBCONST:
7977                         insert_triple(state, state->global_pool, ptr);
7978                         ptr->id |= TRIPLE_FLAG_FLATTENED;
7979                         ptr->id &= ~TRIPLE_FLAG_LOCAL;
7980                         ptr = triple(state, OP_SDECL, ptr->type, ptr, 0);
7981                         use_triple(MISC(ptr, 0), ptr);
7982                         break;
7983                 case OP_DEREF:
7984                         /* Since OP_DEREF is just a marker delete it when I flatten it */
7985                         ptr = RHS(ptr, 0);
7986                         RHS(orig_ptr, 0) = 0;
7987                         free_triple(state, orig_ptr);
7988                         break;
7989                 case OP_DOT:
7990                         if (RHS(ptr, 0)->op == OP_DEREF) {
7991                                 struct triple *base, *left;
7992                                 ulong_t offset;
7993                                 base = MISC(ptr, 0);
7994                                 offset = bits_to_bytes(field_offset(state, base->type, ptr->u.field));
7995                                 left = RHS(base, 0);
7996                                 ptr = triple(state, OP_ADD, left->type, 
7997                                         read_expr(state, left),
7998                                         int_const(state, &ulong_type, offset));
7999                                 free_triple(state, base);
8000                         }
8001                         else {
8002                                 ptr = flatten_part(state, first, ptr);
8003                         }
8004                         break;
8005                 case OP_INDEX:
8006                         if (RHS(ptr, 0)->op == OP_DEREF) {
8007                                 struct triple *base, *left;
8008                                 ulong_t offset;
8009                                 base = MISC(ptr, 0);
8010                                 offset = bits_to_bytes(index_offset(state, base->type, ptr->u.cval));
8011                                 left = RHS(base, 0);
8012                                 ptr = triple(state, OP_ADD, left->type,
8013                                         read_expr(state, left),
8014                                         int_const(state, &long_type, offset));
8015                                 free_triple(state, base);
8016                         }
8017                         else {
8018                                 ptr = flatten_part(state, first, ptr);
8019                         }
8020                         break;
8021                 case OP_PIECE:
8022                         ptr = flatten_part(state, first, ptr);
8023                         use_triple(ptr, MISC(ptr, 0));
8024                         break;
8025                 case OP_ADDRCONST:
8026                         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
8027                         use_triple(MISC(ptr, 0), ptr);
8028                         break;
8029                 case OP_SDECL:
8030                         first = state->global_pool;
8031                         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
8032                         use_triple(MISC(ptr, 0), ptr);
8033                         insert_triple(state, first, ptr);
8034                         ptr->id |= TRIPLE_FLAG_FLATTENED;
8035                         ptr->id &= ~TRIPLE_FLAG_LOCAL;
8036                         return ptr;
8037                 case OP_ADECL:
8038                         ptr = flatten_generic(state, first, ptr, 0);
8039                         break;
8040                 default:
8041                         /* Flatten the easy cases we don't override */
8042                         ptr = flatten_generic(state, first, ptr, 0);
8043                         break;
8044                 }
8045         } while(ptr && (ptr != orig_ptr));
8046         if (ptr && !(ptr->id & TRIPLE_FLAG_FLATTENED)) {
8047                 insert_triple(state, first, ptr);
8048                 ptr->id |= TRIPLE_FLAG_FLATTENED;
8049                 ptr->id &= ~TRIPLE_FLAG_LOCAL;
8050         }
8051         return ptr;
8052 }
8053
8054 static void release_expr(struct compile_state *state, struct triple *expr)
8055 {
8056         struct triple *head;
8057         head = label(state);
8058         flatten(state, head, expr);
8059         while(head->next != head) {
8060                 release_triple(state, head->next);
8061         }
8062         free_triple(state, head);
8063 }
8064
8065 static int replace_rhs_use(struct compile_state *state,
8066         struct triple *orig, struct triple *new, struct triple *use)
8067 {
8068         struct triple **expr;
8069         int found;
8070         found = 0;
8071         expr = triple_rhs(state, use, 0);
8072         for(;expr; expr = triple_rhs(state, use, expr)) {
8073                 if (*expr == orig) {
8074                         *expr = new;
8075                         found = 1;
8076                 }
8077         }
8078         if (found) {
8079                 unuse_triple(orig, use);
8080                 use_triple(new, use);
8081         }
8082         return found;
8083 }
8084
8085 static int replace_lhs_use(struct compile_state *state,
8086         struct triple *orig, struct triple *new, struct triple *use)
8087 {
8088         struct triple **expr;
8089         int found;
8090         found = 0;
8091         expr = triple_lhs(state, use, 0);
8092         for(;expr; expr = triple_lhs(state, use, expr)) {
8093                 if (*expr == orig) {
8094                         *expr = new;
8095                         found = 1;
8096                 }
8097         }
8098         if (found) {
8099                 unuse_triple(orig, use);
8100                 use_triple(new, use);
8101         }
8102         return found;
8103 }
8104
8105 static int replace_misc_use(struct compile_state *state,
8106         struct triple *orig, struct triple *new, struct triple *use)
8107 {
8108         struct triple **expr;
8109         int found;
8110         found = 0;
8111         expr = triple_misc(state, use, 0);
8112         for(;expr; expr = triple_misc(state, use, expr)) {
8113                 if (*expr == orig) {
8114                         *expr = new;
8115                         found = 1;
8116                 }
8117         }
8118         if (found) {
8119                 unuse_triple(orig, use);
8120                 use_triple(new, use);
8121         }
8122         return found;
8123 }
8124
8125 static int replace_targ_use(struct compile_state *state,
8126         struct triple *orig, struct triple *new, struct triple *use)
8127 {
8128         struct triple **expr;
8129         int found;
8130         found = 0;
8131         expr = triple_targ(state, use, 0);
8132         for(;expr; expr = triple_targ(state, use, expr)) {
8133                 if (*expr == orig) {
8134                         *expr = new;
8135                         found = 1;
8136                 }
8137         }
8138         if (found) {
8139                 unuse_triple(orig, use);
8140                 use_triple(new, use);
8141         }
8142         return found;
8143 }
8144
8145 static void replace_use(struct compile_state *state,
8146         struct triple *orig, struct triple *new, struct triple *use)
8147 {
8148         int found;
8149         found = 0;
8150         found |= replace_rhs_use(state, orig, new, use);
8151         found |= replace_lhs_use(state, orig, new, use);
8152         found |= replace_misc_use(state, orig, new, use);
8153         found |= replace_targ_use(state, orig, new, use);
8154         if (!found) {
8155                 internal_error(state, use, "use without use");
8156         }
8157 }
8158
8159 static void propogate_use(struct compile_state *state,
8160         struct triple *orig, struct triple *new)
8161 {
8162         struct triple_set *user, *next;
8163         for(user = orig->use; user; user = next) {
8164                 /* Careful replace_use modifies the use chain and
8165                  * removes use.  So we must get a copy of the next
8166                  * entry early.
8167                  */
8168                 next = user->next;
8169                 replace_use(state, orig, new, user->member);
8170         }
8171         if (orig->use) {
8172                 internal_error(state, orig, "used after propogate_use");
8173         }
8174 }
8175
8176 /*
8177  * Code generators
8178  * ===========================
8179  */
8180
8181 static struct triple *mk_cast_expr(
8182         struct compile_state *state, struct type *type, struct triple *expr)
8183 {
8184         struct triple *def;
8185         def = read_expr(state, expr);
8186         def = triple(state, OP_CONVERT, type, def, 0);
8187         return def;
8188 }
8189
8190 static struct triple *mk_add_expr(
8191         struct compile_state *state, struct triple *left, struct triple *right)
8192 {
8193         struct type *result_type;
8194         /* Put pointer operands on the left */
8195         if (is_pointer(right)) {
8196                 struct triple *tmp;
8197                 tmp = left;
8198                 left = right;
8199                 right = tmp;
8200         }
8201         left  = read_expr(state, left);
8202         right = read_expr(state, right);
8203         result_type = ptr_arithmetic_result(state, left, right);
8204         if (is_pointer(left)) {
8205                 struct type *ptr_math;
8206                 int op;
8207                 if (is_signed(right->type)) {
8208                         ptr_math = &long_type;
8209                         op = OP_SMUL;
8210                 } else {
8211                         ptr_math = &ulong_type;
8212                         op = OP_UMUL;
8213                 }
8214                 if (!equiv_types(right->type, ptr_math)) {
8215                         right = mk_cast_expr(state, ptr_math, right);
8216                 }
8217                 right = triple(state, op, ptr_math, right, 
8218                         int_const(state, ptr_math, 
8219                                 size_of_in_bytes(state, left->type->left)));
8220         }
8221         return triple(state, OP_ADD, result_type, left, right);
8222 }
8223
8224 static struct triple *mk_sub_expr(
8225         struct compile_state *state, struct triple *left, struct triple *right)
8226 {
8227         struct type *result_type;
8228         result_type = ptr_arithmetic_result(state, left, right);
8229         left  = read_expr(state, left);
8230         right = read_expr(state, right);
8231         if (is_pointer(left)) {
8232                 struct type *ptr_math;
8233                 int op;
8234                 if (is_signed(right->type)) {
8235                         ptr_math = &long_type;
8236                         op = OP_SMUL;
8237                 } else {
8238                         ptr_math = &ulong_type;
8239                         op = OP_UMUL;
8240                 }
8241                 if (!equiv_types(right->type, ptr_math)) {
8242                         right = mk_cast_expr(state, ptr_math, right);
8243                 }
8244                 right = triple(state, op, ptr_math, right, 
8245                         int_const(state, ptr_math, 
8246                                 size_of_in_bytes(state, left->type->left)));
8247         }
8248         return triple(state, OP_SUB, result_type, left, right);
8249 }
8250
8251 static struct triple *mk_pre_inc_expr(
8252         struct compile_state *state, struct triple *def)
8253 {
8254         struct triple *val;
8255         lvalue(state, def);
8256         val = mk_add_expr(state, def, int_const(state, &int_type, 1));
8257         return triple(state, OP_VAL, def->type,
8258                 write_expr(state, def, val),
8259                 val);
8260 }
8261
8262 static struct triple *mk_pre_dec_expr(
8263         struct compile_state *state, struct triple *def)
8264 {
8265         struct triple *val;
8266         lvalue(state, def);
8267         val = mk_sub_expr(state, def, int_const(state, &int_type, 1));
8268         return triple(state, OP_VAL, def->type,
8269                 write_expr(state, def, val),
8270                 val);
8271 }
8272
8273 static struct triple *mk_post_inc_expr(
8274         struct compile_state *state, struct triple *def)
8275 {
8276         struct triple *val;
8277         lvalue(state, def);
8278         val = read_expr(state, def);
8279         return triple(state, OP_VAL, def->type,
8280                 write_expr(state, def,
8281                         mk_add_expr(state, val, int_const(state, &int_type, 1)))
8282                 , val);
8283 }
8284
8285 static struct triple *mk_post_dec_expr(
8286         struct compile_state *state, struct triple *def)
8287 {
8288         struct triple *val;
8289         lvalue(state, def);
8290         val = read_expr(state, def);
8291         return triple(state, OP_VAL, def->type, 
8292                 write_expr(state, def,
8293                         mk_sub_expr(state, val, int_const(state, &int_type, 1)))
8294                 , val);
8295 }
8296
8297 static struct triple *mk_subscript_expr(
8298         struct compile_state *state, struct triple *left, struct triple *right)
8299 {
8300         left  = read_expr(state, left);
8301         right = read_expr(state, right);
8302         if (!is_pointer(left) && !is_pointer(right)) {
8303                 error(state, left, "subscripted value is not a pointer");
8304         }
8305         return mk_deref_expr(state, mk_add_expr(state, left, right));
8306 }
8307
8308
8309 /*
8310  * Compile time evaluation
8311  * ===========================
8312  */
8313 static int is_const(struct triple *ins)
8314 {
8315         return IS_CONST_OP(ins->op);
8316 }
8317
8318 static int is_simple_const(struct triple *ins)
8319 {
8320         /* Is this a constant that u.cval has the value.
8321          * Or equivalently is this a constant that read_const
8322          * works on.
8323          * So far only OP_INTCONST qualifies.  
8324          */
8325         return (ins->op == OP_INTCONST);
8326 }
8327
8328 static int constants_equal(struct compile_state *state, 
8329         struct triple *left, struct triple *right)
8330 {
8331         int equal;
8332         if ((left->op == OP_UNKNOWNVAL) || (right->op == OP_UNKNOWNVAL)) {
8333                 equal = 0;
8334         }
8335         else if (!is_const(left) || !is_const(right)) {
8336                 equal = 0;
8337         }
8338         else if (left->op != right->op) {
8339                 equal = 0;
8340         }
8341         else if (!equiv_types(left->type, right->type)) {
8342                 equal = 0;
8343         }
8344         else {
8345                 equal = 0;
8346                 switch(left->op) {
8347                 case OP_INTCONST:
8348                         if (left->u.cval == right->u.cval) {
8349                                 equal = 1;
8350                         }
8351                         break;
8352                 case OP_BLOBCONST:
8353                 {
8354                         size_t lsize, rsize, bytes;
8355                         lsize = size_of(state, left->type);
8356                         rsize = size_of(state, right->type);
8357                         if (lsize != rsize) {
8358                                 break;
8359                         }
8360                         bytes = bits_to_bytes(lsize);
8361                         if (memcmp(left->u.blob, right->u.blob, bytes) == 0) {
8362                                 equal = 1;
8363                         }
8364                         break;
8365                 }
8366                 case OP_ADDRCONST:
8367                         if ((MISC(left, 0) == MISC(right, 0)) &&
8368                                 (left->u.cval == right->u.cval)) {
8369                                 equal = 1;
8370                         }
8371                         break;
8372                 default:
8373                         internal_error(state, left, "uknown constant type");
8374                         break;
8375                 }
8376         }
8377         return equal;
8378 }
8379
8380 static int is_zero(struct triple *ins)
8381 {
8382         return is_simple_const(ins) && (ins->u.cval == 0);
8383 }
8384
8385 static int is_one(struct triple *ins)
8386 {
8387         return is_simple_const(ins) && (ins->u.cval == 1);
8388 }
8389
8390 #if DEBUG_ROMCC_WARNING
8391 static long_t bit_count(ulong_t value)
8392 {
8393         int count;
8394         int i;
8395         count = 0;
8396         for(i = (sizeof(ulong_t)*8) -1; i >= 0; i--) {
8397                 ulong_t mask;
8398                 mask = 1;
8399                 mask <<= i;
8400                 if (value & mask) {
8401                         count++;
8402                 }
8403         }
8404         return count;
8405         
8406 }
8407 #endif
8408
8409 static long_t bsr(ulong_t value)
8410 {
8411         int i;
8412         for(i = (sizeof(ulong_t)*8) -1; i >= 0; i--) {
8413                 ulong_t mask;
8414                 mask = 1;
8415                 mask <<= i;
8416                 if (value & mask) {
8417                         return i;
8418                 }
8419         }
8420         return -1;
8421 }
8422
8423 static long_t bsf(ulong_t value)
8424 {
8425         int i;
8426         for(i = 0; i < (sizeof(ulong_t)*8); i++) {
8427                 ulong_t mask;
8428                 mask = 1;
8429                 mask <<= 1;
8430                 if (value & mask) {
8431                         return i;
8432                 }
8433         }
8434         return -1;
8435 }
8436
8437 static long_t ilog2(ulong_t value)
8438 {
8439         return bsr(value);
8440 }
8441
8442 static long_t tlog2(struct triple *ins)
8443 {
8444         return ilog2(ins->u.cval);
8445 }
8446
8447 static int is_pow2(struct triple *ins)
8448 {
8449         ulong_t value, mask;
8450         long_t log;
8451         if (!is_const(ins)) {
8452                 return 0;
8453         }
8454         value = ins->u.cval;
8455         log = ilog2(value);
8456         if (log == -1) {
8457                 return 0;
8458         }
8459         mask = 1;
8460         mask <<= log;
8461         return  ((value & mask) == value);
8462 }
8463
8464 static ulong_t read_const(struct compile_state *state,
8465         struct triple *ins, struct triple *rhs)
8466 {
8467         switch(rhs->type->type &TYPE_MASK) {
8468         case TYPE_CHAR:   
8469         case TYPE_SHORT:
8470         case TYPE_INT:
8471         case TYPE_LONG:
8472         case TYPE_UCHAR:   
8473         case TYPE_USHORT:  
8474         case TYPE_UINT:
8475         case TYPE_ULONG:
8476         case TYPE_POINTER:
8477         case TYPE_BITFIELD:
8478                 break;
8479         default:
8480                 fprintf(state->errout, "type: ");
8481                 name_of(state->errout, rhs->type);
8482                 fprintf(state->errout, "\n");
8483                 internal_warning(state, rhs, "bad type to read_const");
8484                 break;
8485         }
8486         if (!is_simple_const(rhs)) {
8487                 internal_error(state, rhs, "bad op to read_const");
8488         }
8489         return rhs->u.cval;
8490 }
8491
8492 static long_t read_sconst(struct compile_state *state,
8493         struct triple *ins, struct triple *rhs)
8494 {
8495         return (long_t)(rhs->u.cval);
8496 }
8497
8498 int const_ltrue(struct compile_state *state, struct triple *ins, struct triple *rhs)
8499 {
8500         if (!is_const(rhs)) {
8501                 internal_error(state, 0, "non const passed to const_true");
8502         }
8503         return !is_zero(rhs);
8504 }
8505
8506 int const_eq(struct compile_state *state, struct triple *ins,
8507         struct triple *left, struct triple *right)
8508 {
8509         int result;
8510         if (!is_const(left) || !is_const(right)) {
8511                 internal_warning(state, ins, "non const passed to const_eq");
8512                 result = -1;
8513         }
8514         else if (left == right) {
8515                 result = 1;
8516         }
8517         else if (is_simple_const(left) && is_simple_const(right)) {
8518                 ulong_t lval, rval;
8519                 lval = read_const(state, ins, left);
8520                 rval = read_const(state, ins, right);
8521                 result = (lval == rval);
8522         }
8523         else if ((left->op == OP_ADDRCONST) && 
8524                 (right->op == OP_ADDRCONST)) {
8525                 result = (MISC(left, 0) == MISC(right, 0)) &&
8526                         (left->u.cval == right->u.cval);
8527         }
8528         else {
8529                 internal_warning(state, ins, "incomparable constants passed to const_eq");
8530                 result = -1;
8531         }
8532         return result;
8533         
8534 }
8535
8536 int const_ucmp(struct compile_state *state, struct triple *ins,
8537         struct triple *left, struct triple *right)
8538 {
8539         int result;
8540         if (!is_const(left) || !is_const(right)) {
8541                 internal_warning(state, ins, "non const past to const_ucmp");
8542                 result = -2;
8543         }
8544         else if (left == right) {
8545                 result = 0;
8546         }
8547         else if (is_simple_const(left) && is_simple_const(right)) {
8548                 ulong_t lval, rval;
8549                 lval = read_const(state, ins, left);
8550                 rval = read_const(state, ins, right);
8551                 result = 0;
8552                 if (lval > rval) {
8553                         result = 1;
8554                 } else if (rval > lval) {
8555                         result = -1;
8556                 }
8557         }
8558         else if ((left->op == OP_ADDRCONST) && 
8559                 (right->op == OP_ADDRCONST) &&
8560                 (MISC(left, 0) == MISC(right, 0))) {
8561                 result = 0;
8562                 if (left->u.cval > right->u.cval) {
8563                         result = 1;
8564                 } else if (left->u.cval < right->u.cval) {
8565                         result = -1;
8566                 }
8567         }
8568         else {
8569                 internal_warning(state, ins, "incomparable constants passed to const_ucmp");
8570                 result = -2;
8571         }
8572         return result;
8573 }
8574
8575 int const_scmp(struct compile_state *state, struct triple *ins,
8576         struct triple *left, struct triple *right)
8577 {
8578         int result;
8579         if (!is_const(left) || !is_const(right)) {
8580                 internal_warning(state, ins, "non const past to ucmp_const");
8581                 result = -2;
8582         }
8583         else if (left == right) {
8584                 result = 0;
8585         }
8586         else if (is_simple_const(left) && is_simple_const(right)) {
8587                 long_t lval, rval;
8588                 lval = read_sconst(state, ins, left);
8589                 rval = read_sconst(state, ins, right);
8590                 result = 0;
8591                 if (lval > rval) {
8592                         result = 1;
8593                 } else if (rval > lval) {
8594                         result = -1;
8595                 }
8596         }
8597         else {
8598                 internal_warning(state, ins, "incomparable constants passed to const_scmp");
8599                 result = -2;
8600         }
8601         return result;
8602 }
8603
8604 static void unuse_rhs(struct compile_state *state, struct triple *ins)
8605 {
8606         struct triple **expr;
8607         expr = triple_rhs(state, ins, 0);
8608         for(;expr;expr = triple_rhs(state, ins, expr)) {
8609                 if (*expr) {
8610                         unuse_triple(*expr, ins);
8611                         *expr = 0;
8612                 }
8613         }
8614 }
8615
8616 static void unuse_lhs(struct compile_state *state, struct triple *ins)
8617 {
8618         struct triple **expr;
8619         expr = triple_lhs(state, ins, 0);
8620         for(;expr;expr = triple_lhs(state, ins, expr)) {
8621                 unuse_triple(*expr, ins);
8622                 *expr = 0;
8623         }
8624 }
8625
8626 #if DEBUG_ROMCC_WARNING
8627 static void unuse_misc(struct compile_state *state, struct triple *ins)
8628 {
8629         struct triple **expr;
8630         expr = triple_misc(state, ins, 0);
8631         for(;expr;expr = triple_misc(state, ins, expr)) {
8632                 unuse_triple(*expr, ins);
8633                 *expr = 0;
8634         }
8635 }
8636
8637 static void unuse_targ(struct compile_state *state, struct triple *ins)
8638 {
8639         int i;
8640         struct triple **slot;
8641         slot = &TARG(ins, 0);
8642         for(i = 0; i < ins->targ; i++) {
8643                 unuse_triple(slot[i], ins);
8644                 slot[i] = 0;
8645         }
8646 }
8647
8648 static void check_lhs(struct compile_state *state, struct triple *ins)
8649 {
8650         struct triple **expr;
8651         expr = triple_lhs(state, ins, 0);
8652         for(;expr;expr = triple_lhs(state, ins, expr)) {
8653                 internal_error(state, ins, "unexpected lhs");
8654         }
8655         
8656 }
8657 #endif
8658
8659 static void check_misc(struct compile_state *state, struct triple *ins)
8660 {
8661         struct triple **expr;
8662         expr = triple_misc(state, ins, 0);
8663         for(;expr;expr = triple_misc(state, ins, expr)) {
8664                 if (*expr) {
8665                         internal_error(state, ins, "unexpected misc");
8666                 }
8667         }
8668 }
8669
8670 static void check_targ(struct compile_state *state, struct triple *ins)
8671 {
8672         struct triple **expr;
8673         expr = triple_targ(state, ins, 0);
8674         for(;expr;expr = triple_targ(state, ins, expr)) {
8675                 internal_error(state, ins, "unexpected targ");
8676         }
8677 }
8678
8679 static void wipe_ins(struct compile_state *state, struct triple *ins)
8680 {
8681         /* Becareful which instructions you replace the wiped
8682          * instruction with, as there are not enough slots
8683          * in all instructions to hold all others.
8684          */
8685         check_targ(state, ins);
8686         check_misc(state, ins);
8687         unuse_rhs(state, ins);
8688         unuse_lhs(state, ins);
8689         ins->lhs  = 0;
8690         ins->rhs  = 0;
8691         ins->misc = 0;
8692         ins->targ = 0;
8693 }
8694
8695 #if DEBUG_ROMCC_WARNING
8696 static void wipe_branch(struct compile_state *state, struct triple *ins)
8697 {
8698         /* Becareful which instructions you replace the wiped
8699          * instruction with, as there are not enough slots
8700          * in all instructions to hold all others.
8701          */
8702         unuse_rhs(state, ins);
8703         unuse_lhs(state, ins);
8704         unuse_misc(state, ins);
8705         unuse_targ(state, ins);
8706         ins->lhs  = 0;
8707         ins->rhs  = 0;
8708         ins->misc = 0;
8709         ins->targ = 0;
8710 }
8711 #endif
8712
8713 static void mkcopy(struct compile_state *state, 
8714         struct triple *ins, struct triple *rhs)
8715 {
8716         struct block *block;
8717         if (!equiv_types(ins->type, rhs->type)) {
8718                 FILE *fp = state->errout;
8719                 fprintf(fp, "src type: ");
8720                 name_of(fp, rhs->type);
8721                 fprintf(fp, "\ndst type: ");
8722                 name_of(fp, ins->type);
8723                 fprintf(fp, "\n");
8724                 internal_error(state, ins, "mkcopy type mismatch");
8725         }
8726         block = block_of_triple(state, ins);
8727         wipe_ins(state, ins);
8728         ins->op = OP_COPY;
8729         ins->rhs  = 1;
8730         ins->u.block = block;
8731         RHS(ins, 0) = rhs;
8732         use_triple(RHS(ins, 0), ins);
8733 }
8734
8735 static void mkconst(struct compile_state *state, 
8736         struct triple *ins, ulong_t value)
8737 {
8738         if (!is_integral(ins) && !is_pointer(ins)) {
8739                 fprintf(state->errout, "type: ");
8740                 name_of(state->errout, ins->type);
8741                 fprintf(state->errout, "\n");
8742                 internal_error(state, ins, "unknown type to make constant value: %ld",
8743                         value);
8744         }
8745         wipe_ins(state, ins);
8746         ins->op = OP_INTCONST;
8747         ins->u.cval = value;
8748 }
8749
8750 static void mkaddr_const(struct compile_state *state,
8751         struct triple *ins, struct triple *sdecl, ulong_t value)
8752 {
8753         if ((sdecl->op != OP_SDECL) && (sdecl->op != OP_LABEL)) {
8754                 internal_error(state, ins, "bad base for addrconst");
8755         }
8756         wipe_ins(state, ins);
8757         ins->op = OP_ADDRCONST;
8758         ins->misc = 1;
8759         MISC(ins, 0) = sdecl;
8760         ins->u.cval = value;
8761         use_triple(sdecl, ins);
8762 }
8763
8764 #if DEBUG_DECOMPOSE_PRINT_TUPLES
8765 static void print_tuple(struct compile_state *state, 
8766         struct triple *ins, struct triple *tuple)
8767 {
8768         FILE *fp = state->dbgout;
8769         fprintf(fp, "%5s %p tuple: %p ", tops(ins->op), ins, tuple);
8770         name_of(fp, tuple->type);
8771         if (tuple->lhs > 0) {
8772                 fprintf(fp, " lhs: ");
8773                 name_of(fp, LHS(tuple, 0)->type);
8774         }
8775         fprintf(fp, "\n");
8776         
8777 }
8778 #endif
8779
8780 static struct triple *decompose_with_tuple(struct compile_state *state, 
8781         struct triple *ins, struct triple *tuple)
8782 {
8783         struct triple *next;
8784         next = ins->next;
8785         flatten(state, next, tuple);
8786 #if DEBUG_DECOMPOSE_PRINT_TUPLES
8787         print_tuple(state, ins, tuple);
8788 #endif
8789
8790         if (!is_compound_type(tuple->type) && (tuple->lhs > 0)) {
8791                 struct triple *tmp;
8792                 if (tuple->lhs != 1) {
8793                         internal_error(state, tuple, "plain type in multiple registers?");
8794                 }
8795                 tmp = LHS(tuple, 0);
8796                 release_triple(state, tuple);
8797                 tuple = tmp;
8798         }
8799
8800         propogate_use(state, ins, tuple);
8801         release_triple(state, ins);
8802         
8803         return next;
8804 }
8805
8806 static struct triple *decompose_unknownval(struct compile_state *state,
8807         struct triple *ins)
8808 {
8809         struct triple *tuple;
8810         ulong_t i;
8811
8812 #if DEBUG_DECOMPOSE_HIRES
8813         FILE *fp = state->dbgout;
8814         fprintf(fp, "unknown type: ");
8815         name_of(fp, ins->type);
8816         fprintf(fp, "\n");
8817 #endif
8818
8819         get_occurance(ins->occurance);
8820         tuple = alloc_triple(state, OP_TUPLE, ins->type, -1, -1, 
8821                 ins->occurance);
8822
8823         for(i = 0; i < tuple->lhs; i++) {
8824                 struct type *piece_type;
8825                 struct triple *unknown;
8826
8827                 piece_type = reg_type(state, ins->type, i * REG_SIZEOF_REG);
8828                 get_occurance(tuple->occurance);
8829                 unknown = alloc_triple(state, OP_UNKNOWNVAL, piece_type, 0, 0,
8830                         tuple->occurance);
8831                 LHS(tuple, i) = unknown;
8832         }
8833         return decompose_with_tuple(state, ins, tuple);
8834 }
8835
8836
8837 static struct triple *decompose_read(struct compile_state *state, 
8838         struct triple *ins)
8839 {
8840         struct triple *tuple, *lval;
8841         ulong_t i;
8842
8843         lval = RHS(ins, 0);
8844
8845         if (lval->op == OP_PIECE) {
8846                 return ins->next;
8847         }
8848         get_occurance(ins->occurance);
8849         tuple = alloc_triple(state, OP_TUPLE, lval->type, -1, -1,
8850                 ins->occurance);
8851
8852         if ((tuple->lhs != lval->lhs) &&
8853                 (!triple_is_def(state, lval) || (tuple->lhs != 1))) 
8854         {
8855                 internal_error(state, ins, "lhs size inconsistency?");
8856         }
8857         for(i = 0; i < tuple->lhs; i++) {
8858                 struct triple *piece, *read, *bitref;
8859                 if ((i != 0) || !triple_is_def(state, lval)) {
8860                         piece = LHS(lval, i);
8861                 } else {
8862                         piece = lval;
8863                 }
8864
8865                 /* See if the piece is really a bitref */
8866                 bitref = 0;
8867                 if (piece->op == OP_BITREF) {
8868                         bitref = piece;
8869                         piece = RHS(bitref, 0);
8870                 }
8871
8872                 get_occurance(tuple->occurance);
8873                 read = alloc_triple(state, OP_READ, piece->type, -1, -1, 
8874                         tuple->occurance);
8875                 RHS(read, 0) = piece;
8876
8877                 if (bitref) {
8878                         struct triple *extract;
8879                         int op;
8880                         if (is_signed(bitref->type->left)) {
8881                                 op = OP_SEXTRACT;
8882                         } else {
8883                                 op = OP_UEXTRACT;
8884                         }
8885                         get_occurance(tuple->occurance);
8886                         extract = alloc_triple(state, op, bitref->type, -1, -1,
8887                                 tuple->occurance);
8888                         RHS(extract, 0) = read;
8889                         extract->u.bitfield.size   = bitref->u.bitfield.size;
8890                         extract->u.bitfield.offset = bitref->u.bitfield.offset;
8891
8892                         read = extract;
8893                 }
8894
8895                 LHS(tuple, i) = read;
8896         }
8897         return decompose_with_tuple(state, ins, tuple);
8898 }
8899
8900 static struct triple *decompose_write(struct compile_state *state, 
8901         struct triple *ins)
8902 {
8903         struct triple *tuple, *lval, *val;
8904         ulong_t i;
8905         
8906         lval = MISC(ins, 0);
8907         val = RHS(ins, 0);
8908         get_occurance(ins->occurance);
8909         tuple = alloc_triple(state, OP_TUPLE, ins->type, -1, -1,
8910                 ins->occurance);
8911
8912         if ((tuple->lhs != lval->lhs) &&
8913                 (!triple_is_def(state, lval) || tuple->lhs != 1)) 
8914         {
8915                 internal_error(state, ins, "lhs size inconsistency?");
8916         }
8917         for(i = 0; i < tuple->lhs; i++) {
8918                 struct triple *piece, *write, *pval, *bitref;
8919                 if ((i != 0) || !triple_is_def(state, lval)) {
8920                         piece = LHS(lval, i);
8921                 } else {
8922                         piece = lval;
8923                 }
8924                 if ((i == 0) && (tuple->lhs == 1) && (val->lhs == 0)) {
8925                         pval = val;
8926                 }
8927                 else {
8928                         if (i > val->lhs) {
8929                                 internal_error(state, ins, "lhs size inconsistency?");
8930                         }
8931                         pval = LHS(val, i);
8932                 }
8933                 
8934                 /* See if the piece is really a bitref */
8935                 bitref = 0;
8936                 if (piece->op == OP_BITREF) {
8937                         struct triple *read, *deposit;
8938                         bitref = piece;
8939                         piece = RHS(bitref, 0);
8940
8941                         /* Read the destination register */
8942                         get_occurance(tuple->occurance);
8943                         read = alloc_triple(state, OP_READ, piece->type, -1, -1,
8944                                 tuple->occurance);
8945                         RHS(read, 0) = piece;
8946
8947                         /* Deposit the new bitfield value */
8948                         get_occurance(tuple->occurance);
8949                         deposit = alloc_triple(state, OP_DEPOSIT, piece->type, -1, -1,
8950                                 tuple->occurance);
8951                         RHS(deposit, 0) = read;
8952                         RHS(deposit, 1) = pval;
8953                         deposit->u.bitfield.size   = bitref->u.bitfield.size;
8954                         deposit->u.bitfield.offset = bitref->u.bitfield.offset;
8955
8956                         /* Now write the newly generated value */
8957                         pval = deposit;
8958                 }
8959
8960                 get_occurance(tuple->occurance);
8961                 write = alloc_triple(state, OP_WRITE, piece->type, -1, -1, 
8962                         tuple->occurance);
8963                 MISC(write, 0) = piece;
8964                 RHS(write, 0) = pval;
8965                 LHS(tuple, i) = write;
8966         }
8967         return decompose_with_tuple(state, ins, tuple);
8968 }
8969
8970 struct decompose_load_info {
8971         struct occurance *occurance;
8972         struct triple *lval;
8973         struct triple *tuple;
8974 };
8975 static void decompose_load_cb(struct compile_state *state,
8976         struct type *type, size_t reg_offset, size_t mem_offset, void *arg)
8977 {
8978         struct decompose_load_info *info = arg;
8979         struct triple *load;
8980         
8981         if (reg_offset > info->tuple->lhs) {
8982                 internal_error(state, info->tuple, "lhs to small?");
8983         }
8984         get_occurance(info->occurance);
8985         load = alloc_triple(state, OP_LOAD, type, -1, -1, info->occurance);
8986         RHS(load, 0) = mk_addr_expr(state, info->lval, mem_offset);
8987         LHS(info->tuple, reg_offset/REG_SIZEOF_REG) = load;
8988 }
8989
8990 static struct triple *decompose_load(struct compile_state *state, 
8991         struct triple *ins)
8992 {
8993         struct triple *tuple;
8994         struct decompose_load_info info;
8995
8996         if (!is_compound_type(ins->type)) {
8997                 return ins->next;
8998         }
8999         get_occurance(ins->occurance);
9000         tuple = alloc_triple(state, OP_TUPLE, ins->type, -1, -1,
9001                 ins->occurance);
9002
9003         info.occurance = ins->occurance;
9004         info.lval      = RHS(ins, 0);
9005         info.tuple     = tuple;
9006         walk_type_fields(state, ins->type, 0, 0, decompose_load_cb, &info);
9007
9008         return decompose_with_tuple(state, ins, tuple);
9009 }
9010
9011
9012 struct decompose_store_info {
9013         struct occurance *occurance;
9014         struct triple *lval;
9015         struct triple *val;
9016         struct triple *tuple;
9017 };
9018 static void decompose_store_cb(struct compile_state *state,
9019         struct type *type, size_t reg_offset, size_t mem_offset, void *arg)
9020 {
9021         struct decompose_store_info *info = arg;
9022         struct triple *store;
9023         
9024         if (reg_offset > info->tuple->lhs) {
9025                 internal_error(state, info->tuple, "lhs to small?");
9026         }
9027         get_occurance(info->occurance);
9028         store = alloc_triple(state, OP_STORE, type, -1, -1, info->occurance);
9029         RHS(store, 0) = mk_addr_expr(state, info->lval, mem_offset);
9030         RHS(store, 1) = LHS(info->val, reg_offset);
9031         LHS(info->tuple, reg_offset/REG_SIZEOF_REG) = store;
9032 }
9033
9034 static struct triple *decompose_store(struct compile_state *state, 
9035         struct triple *ins)
9036 {
9037         struct triple *tuple;
9038         struct decompose_store_info info;
9039
9040         if (!is_compound_type(ins->type)) {
9041                 return ins->next;
9042         }
9043         get_occurance(ins->occurance);
9044         tuple = alloc_triple(state, OP_TUPLE, ins->type, -1, -1,
9045                 ins->occurance);
9046
9047         info.occurance = ins->occurance;
9048         info.lval      = RHS(ins, 0);
9049         info.val       = RHS(ins, 1);
9050         info.tuple     = tuple;
9051         walk_type_fields(state, ins->type, 0, 0, decompose_store_cb, &info);
9052
9053         return decompose_with_tuple(state, ins, tuple);
9054 }
9055
9056 static struct triple *decompose_dot(struct compile_state *state, 
9057         struct triple *ins)
9058 {
9059         struct triple *tuple, *lval;
9060         struct type *type;
9061         size_t reg_offset;
9062         int i, idx;
9063
9064         lval = MISC(ins, 0);
9065         reg_offset = field_reg_offset(state, lval->type, ins->u.field);
9066         idx  = reg_offset/REG_SIZEOF_REG;
9067         type = field_type(state, lval->type, ins->u.field);
9068 #if DEBUG_DECOMPOSE_HIRES
9069         {
9070                 FILE *fp = state->dbgout;
9071                 fprintf(fp, "field type: ");
9072                 name_of(fp, type);
9073                 fprintf(fp, "\n");
9074         }
9075 #endif
9076
9077         get_occurance(ins->occurance);
9078         tuple = alloc_triple(state, OP_TUPLE, type, -1, -1, 
9079                 ins->occurance);
9080
9081         if (((ins->type->type & TYPE_MASK) == TYPE_BITFIELD) &&
9082                 (tuple->lhs != 1))
9083         {
9084                 internal_error(state, ins, "multi register bitfield?");
9085         }
9086
9087         for(i = 0; i < tuple->lhs; i++, idx++) {
9088                 struct triple *piece;
9089                 if (!triple_is_def(state, lval)) {
9090                         if (idx > lval->lhs) {
9091                                 internal_error(state, ins, "inconsistent lhs count");
9092                         }
9093                         piece = LHS(lval, idx);
9094                 } else {
9095                         if (idx != 0) {
9096                                 internal_error(state, ins, "bad reg_offset into def");
9097                         }
9098                         if (i != 0) {
9099                                 internal_error(state, ins, "bad reg count from def");
9100                         }
9101                         piece = lval;
9102                 }
9103
9104                 /* Remember the offset of the bitfield */
9105                 if ((type->type & TYPE_MASK) == TYPE_BITFIELD) {
9106                         get_occurance(ins->occurance);
9107                         piece = build_triple(state, OP_BITREF, type, piece, 0,
9108                                 ins->occurance);
9109                         piece->u.bitfield.size   = size_of(state, type);
9110                         piece->u.bitfield.offset = reg_offset % REG_SIZEOF_REG;
9111                 }
9112                 else if ((reg_offset % REG_SIZEOF_REG) != 0) {
9113                         internal_error(state, ins, 
9114                                 "request for a nonbitfield sub register?");
9115                 }
9116
9117                 LHS(tuple, i) = piece;
9118         }
9119
9120         return decompose_with_tuple(state, ins, tuple);
9121 }
9122
9123 static struct triple *decompose_index(struct compile_state *state, 
9124         struct triple *ins)
9125 {
9126         struct triple *tuple, *lval;
9127         struct type *type;
9128         int i, idx;
9129
9130         lval = MISC(ins, 0);
9131         idx = index_reg_offset(state, lval->type, ins->u.cval)/REG_SIZEOF_REG;
9132         type = index_type(state, lval->type, ins->u.cval);
9133 #if DEBUG_DECOMPOSE_HIRES
9134 {
9135         FILE *fp = state->dbgout;
9136         fprintf(fp, "index type: ");
9137         name_of(fp, type);
9138         fprintf(fp, "\n");
9139 }
9140 #endif
9141
9142         get_occurance(ins->occurance);
9143         tuple = alloc_triple(state, OP_TUPLE, type, -1, -1, 
9144                 ins->occurance);
9145
9146         for(i = 0; i < tuple->lhs; i++, idx++) {
9147                 struct triple *piece;
9148                 if (!triple_is_def(state, lval)) {
9149                         if (idx > lval->lhs) {
9150                                 internal_error(state, ins, "inconsistent lhs count");
9151                         }
9152                         piece = LHS(lval, idx);
9153                 } else {
9154                         if (idx != 0) {
9155                                 internal_error(state, ins, "bad reg_offset into def");
9156                         }
9157                         if (i != 0) {
9158                                 internal_error(state, ins, "bad reg count from def");
9159                         }
9160                         piece = lval;
9161                 }
9162                 LHS(tuple, i) = piece;
9163         }
9164
9165         return decompose_with_tuple(state, ins, tuple);
9166 }
9167
9168 static void decompose_compound_types(struct compile_state *state)
9169 {
9170         struct triple *ins, *next, *first;
9171         FILE *fp;
9172         fp = state->dbgout;
9173         first = state->first;
9174         ins = first;
9175
9176         /* Pass one expand compound values into pseudo registers.
9177          */
9178         next = first;
9179         do {
9180                 ins = next;
9181                 next = ins->next;
9182                 switch(ins->op) {
9183                 case OP_UNKNOWNVAL:
9184                         next = decompose_unknownval(state, ins);
9185                         break;
9186
9187                 case OP_READ:
9188                         next = decompose_read(state, ins);
9189                         break;
9190
9191                 case OP_WRITE:
9192                         next = decompose_write(state, ins);
9193                         break;
9194
9195
9196                 /* Be very careful with the load/store logic. These
9197                  * operations must convert from the in register layout
9198                  * to the in memory layout, which is nontrivial.
9199                  */
9200                 case OP_LOAD:
9201                         next = decompose_load(state, ins);
9202                         break;
9203                 case OP_STORE:
9204                         next = decompose_store(state, ins);
9205                         break;
9206
9207                 case OP_DOT:
9208                         next = decompose_dot(state, ins);
9209                         break;
9210                 case OP_INDEX:
9211                         next = decompose_index(state, ins);
9212                         break;
9213                         
9214                 }
9215 #if DEBUG_DECOMPOSE_HIRES
9216                 fprintf(fp, "decompose next: %p \n", next);
9217                 fflush(fp);
9218                 fprintf(fp, "next->op: %d %s\n",
9219                         next->op, tops(next->op));
9220                 /* High resolution debugging mode */
9221                 print_triples(state);
9222 #endif
9223         } while (next != first);
9224
9225         /* Pass two remove the tuples.
9226          */
9227         ins = first;
9228         do {
9229                 next = ins->next;
9230                 if (ins->op == OP_TUPLE) {
9231                         if (ins->use) {
9232                                 internal_error(state, ins, "tuple used");
9233                         }
9234                         else {
9235                                 release_triple(state, ins);
9236                         }
9237                 } 
9238                 ins = next;
9239         } while(ins != first);
9240         ins = first;
9241         do {
9242                 next = ins->next;
9243                 if (ins->op == OP_BITREF) {
9244                         if (ins->use) {
9245                                 internal_error(state, ins, "bitref used");
9246                         } 
9247                         else {
9248                                 release_triple(state, ins);
9249                         }
9250                 }
9251                 ins = next;
9252         } while(ins != first);
9253
9254         /* Pass three verify the state and set ->id to 0.
9255          */
9256         next = first;
9257         do {
9258                 ins = next;
9259                 next = ins->next;
9260                 ins->id &= ~TRIPLE_FLAG_FLATTENED;
9261                 if (triple_stores_block(state, ins)) {
9262                         ins->u.block = 0;
9263                 }
9264                 if (triple_is_def(state, ins)) {
9265                         if (reg_size_of(state, ins->type) > REG_SIZEOF_REG) {
9266                                 internal_error(state, ins, "multi register value remains?");
9267                         }
9268                 }
9269                 if (ins->op == OP_DOT) {
9270                         internal_error(state, ins, "OP_DOT remains?");
9271                 }
9272                 if (ins->op == OP_INDEX) {
9273                         internal_error(state, ins, "OP_INDEX remains?");
9274                 }
9275                 if (ins->op == OP_BITREF) {
9276                         internal_error(state, ins, "OP_BITREF remains?");
9277                 }
9278                 if (ins->op == OP_TUPLE) {
9279                         internal_error(state, ins, "OP_TUPLE remains?");
9280                 }
9281         } while(next != first);
9282 }
9283
9284 /* For those operations that cannot be simplified */
9285 static void simplify_noop(struct compile_state *state, struct triple *ins)
9286 {
9287         return;
9288 }
9289
9290 static void simplify_smul(struct compile_state *state, struct triple *ins)
9291 {
9292         if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
9293                 struct triple *tmp;
9294                 tmp = RHS(ins, 0);
9295                 RHS(ins, 0) = RHS(ins, 1);
9296                 RHS(ins, 1) = tmp;
9297         }
9298         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
9299                 long_t left, right;
9300                 left  = read_sconst(state, ins, RHS(ins, 0));
9301                 right = read_sconst(state, ins, RHS(ins, 1));
9302                 mkconst(state, ins, left * right);
9303         }
9304         else if (is_zero(RHS(ins, 1))) {
9305                 mkconst(state, ins, 0);
9306         }
9307         else if (is_one(RHS(ins, 1))) {
9308                 mkcopy(state, ins, RHS(ins, 0));
9309         }
9310         else if (is_pow2(RHS(ins, 1))) {
9311                 struct triple *val;
9312                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
9313                 ins->op = OP_SL;
9314                 insert_triple(state, state->global_pool, val);
9315                 unuse_triple(RHS(ins, 1), ins);
9316                 use_triple(val, ins);
9317                 RHS(ins, 1) = val;
9318         }
9319 }
9320
9321 static void simplify_umul(struct compile_state *state, struct triple *ins)
9322 {
9323         if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
9324                 struct triple *tmp;
9325                 tmp = RHS(ins, 0);
9326                 RHS(ins, 0) = RHS(ins, 1);
9327                 RHS(ins, 1) = tmp;
9328         }
9329         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9330                 ulong_t left, right;
9331                 left  = read_const(state, ins, RHS(ins, 0));
9332                 right = read_const(state, ins, RHS(ins, 1));
9333                 mkconst(state, ins, left * right);
9334         }
9335         else if (is_zero(RHS(ins, 1))) {
9336                 mkconst(state, ins, 0);
9337         }
9338         else if (is_one(RHS(ins, 1))) {
9339                 mkcopy(state, ins, RHS(ins, 0));
9340         }
9341         else if (is_pow2(RHS(ins, 1))) {
9342                 struct triple *val;
9343                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
9344                 ins->op = OP_SL;
9345                 insert_triple(state, state->global_pool, val);
9346                 unuse_triple(RHS(ins, 1), ins);
9347                 use_triple(val, ins);
9348                 RHS(ins, 1) = val;
9349         }
9350 }
9351
9352 static void simplify_sdiv(struct compile_state *state, struct triple *ins)
9353 {
9354         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
9355                 long_t left, right;
9356                 left  = read_sconst(state, ins, RHS(ins, 0));
9357                 right = read_sconst(state, ins, RHS(ins, 1));
9358                 mkconst(state, ins, left / right);
9359         }
9360         else if (is_zero(RHS(ins, 0))) {
9361                 mkconst(state, ins, 0);
9362         }
9363         else if (is_zero(RHS(ins, 1))) {
9364                 error(state, ins, "division by zero");
9365         }
9366         else if (is_one(RHS(ins, 1))) {
9367                 mkcopy(state, ins, RHS(ins, 0));
9368         }
9369         else if (is_pow2(RHS(ins, 1))) {
9370                 struct triple *val;
9371                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
9372                 ins->op = OP_SSR;
9373                 insert_triple(state, state->global_pool, val);
9374                 unuse_triple(RHS(ins, 1), ins);
9375                 use_triple(val, ins);
9376                 RHS(ins, 1) = val;
9377         }
9378 }
9379
9380 static void simplify_udiv(struct compile_state *state, struct triple *ins)
9381 {
9382         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9383                 ulong_t left, right;
9384                 left  = read_const(state, ins, RHS(ins, 0));
9385                 right = read_const(state, ins, RHS(ins, 1));
9386                 mkconst(state, ins, left / right);
9387         }
9388         else if (is_zero(RHS(ins, 0))) {
9389                 mkconst(state, ins, 0);
9390         }
9391         else if (is_zero(RHS(ins, 1))) {
9392                 error(state, ins, "division by zero");
9393         }
9394         else if (is_one(RHS(ins, 1))) {
9395                 mkcopy(state, ins, RHS(ins, 0));
9396         }
9397         else if (is_pow2(RHS(ins, 1))) {
9398                 struct triple *val;
9399                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
9400                 ins->op = OP_USR;
9401                 insert_triple(state, state->global_pool, val);
9402                 unuse_triple(RHS(ins, 1), ins);
9403                 use_triple(val, ins);
9404                 RHS(ins, 1) = val;
9405         }
9406 }
9407
9408 static void simplify_smod(struct compile_state *state, struct triple *ins)
9409 {
9410         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9411                 long_t left, right;
9412                 left  = read_const(state, ins, RHS(ins, 0));
9413                 right = read_const(state, ins, RHS(ins, 1));
9414                 mkconst(state, ins, left % right);
9415         }
9416         else if (is_zero(RHS(ins, 0))) {
9417                 mkconst(state, ins, 0);
9418         }
9419         else if (is_zero(RHS(ins, 1))) {
9420                 error(state, ins, "division by zero");
9421         }
9422         else if (is_one(RHS(ins, 1))) {
9423                 mkconst(state, ins, 0);
9424         }
9425         else if (is_pow2(RHS(ins, 1))) {
9426                 struct triple *val;
9427                 val = int_const(state, ins->type, RHS(ins, 1)->u.cval - 1);
9428                 ins->op = OP_AND;
9429                 insert_triple(state, state->global_pool, val);
9430                 unuse_triple(RHS(ins, 1), ins);
9431                 use_triple(val, ins);
9432                 RHS(ins, 1) = val;
9433         }
9434 }
9435
9436 static void simplify_umod(struct compile_state *state, struct triple *ins)
9437 {
9438         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9439                 ulong_t left, right;
9440                 left  = read_const(state, ins, RHS(ins, 0));
9441                 right = read_const(state, ins, RHS(ins, 1));
9442                 mkconst(state, ins, left % right);
9443         }
9444         else if (is_zero(RHS(ins, 0))) {
9445                 mkconst(state, ins, 0);
9446         }
9447         else if (is_zero(RHS(ins, 1))) {
9448                 error(state, ins, "division by zero");
9449         }
9450         else if (is_one(RHS(ins, 1))) {
9451                 mkconst(state, ins, 0);
9452         }
9453         else if (is_pow2(RHS(ins, 1))) {
9454                 struct triple *val;
9455                 val = int_const(state, ins->type, RHS(ins, 1)->u.cval - 1);
9456                 ins->op = OP_AND;
9457                 insert_triple(state, state->global_pool, val);
9458                 unuse_triple(RHS(ins, 1), ins);
9459                 use_triple(val, ins);
9460                 RHS(ins, 1) = val;
9461         }
9462 }
9463
9464 static void simplify_add(struct compile_state *state, struct triple *ins)
9465 {
9466         /* start with the pointer on the left */
9467         if (is_pointer(RHS(ins, 1))) {
9468                 struct triple *tmp;
9469                 tmp = RHS(ins, 0);
9470                 RHS(ins, 0) = RHS(ins, 1);
9471                 RHS(ins, 1) = tmp;
9472         }
9473         if (is_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9474                 if (RHS(ins, 0)->op == OP_INTCONST) {
9475                         ulong_t left, right;
9476                         left  = read_const(state, ins, RHS(ins, 0));
9477                         right = read_const(state, ins, RHS(ins, 1));
9478                         mkconst(state, ins, left + right);
9479                 }
9480                 else if (RHS(ins, 0)->op == OP_ADDRCONST) {
9481                         struct triple *sdecl;
9482                         ulong_t left, right;
9483                         sdecl = MISC(RHS(ins, 0), 0);
9484                         left  = RHS(ins, 0)->u.cval;
9485                         right = RHS(ins, 1)->u.cval;
9486                         mkaddr_const(state, ins, sdecl, left + right);
9487                 }
9488                 else {
9489                         internal_warning(state, ins, "Optimize me!");
9490                 }
9491         }
9492         else if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
9493                 struct triple *tmp;
9494                 tmp = RHS(ins, 1);
9495                 RHS(ins, 1) = RHS(ins, 0);
9496                 RHS(ins, 0) = tmp;
9497         }
9498 }
9499
9500 static void simplify_sub(struct compile_state *state, struct triple *ins)
9501 {
9502         if (is_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9503                 if (RHS(ins, 0)->op == OP_INTCONST) {
9504                         ulong_t left, right;
9505                         left  = read_const(state, ins, RHS(ins, 0));
9506                         right = read_const(state, ins, RHS(ins, 1));
9507                         mkconst(state, ins, left - right);
9508                 }
9509                 else if (RHS(ins, 0)->op == OP_ADDRCONST) {
9510                         struct triple *sdecl;
9511                         ulong_t left, right;
9512                         sdecl = MISC(RHS(ins, 0), 0);
9513                         left  = RHS(ins, 0)->u.cval;
9514                         right = RHS(ins, 1)->u.cval;
9515                         mkaddr_const(state, ins, sdecl, left - right);
9516                 }
9517                 else {
9518                         internal_warning(state, ins, "Optimize me!");
9519                 }
9520         }
9521 }
9522
9523 static void simplify_sl(struct compile_state *state, struct triple *ins)
9524 {
9525         if (is_simple_const(RHS(ins, 1))) {
9526                 ulong_t right;
9527                 right = read_const(state, ins, RHS(ins, 1));
9528                 if (right >= (size_of(state, ins->type))) {
9529                         warning(state, ins, "left shift count >= width of type");
9530                 }
9531         }
9532         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9533                 ulong_t left, right;
9534                 left  = read_const(state, ins, RHS(ins, 0));
9535                 right = read_const(state, ins, RHS(ins, 1));
9536                 mkconst(state, ins,  left << right);
9537         }
9538 }
9539
9540 static void simplify_usr(struct compile_state *state, struct triple *ins)
9541 {
9542         if (is_simple_const(RHS(ins, 1))) {
9543                 ulong_t right;
9544                 right = read_const(state, ins, RHS(ins, 1));
9545                 if (right >= (size_of(state, ins->type))) {
9546                         warning(state, ins, "right shift count >= width of type");
9547                 }
9548         }
9549         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9550                 ulong_t left, right;
9551                 left  = read_const(state, ins, RHS(ins, 0));
9552                 right = read_const(state, ins, RHS(ins, 1));
9553                 mkconst(state, ins, left >> right);
9554         }
9555 }
9556
9557 static void simplify_ssr(struct compile_state *state, struct triple *ins)
9558 {
9559         if (is_simple_const(RHS(ins, 1))) {
9560                 ulong_t right;
9561                 right = read_const(state, ins, RHS(ins, 1));
9562                 if (right >= (size_of(state, ins->type))) {
9563                         warning(state, ins, "right shift count >= width of type");
9564                 }
9565         }
9566         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9567                 long_t left, right;
9568                 left  = read_sconst(state, ins, RHS(ins, 0));
9569                 right = read_sconst(state, ins, RHS(ins, 1));
9570                 mkconst(state, ins, left >> right);
9571         }
9572 }
9573
9574 static void simplify_and(struct compile_state *state, struct triple *ins)
9575 {
9576         struct triple *left, *right;
9577         left = RHS(ins, 0);
9578         right = RHS(ins, 1);
9579
9580         if (is_simple_const(left) && is_simple_const(right)) {
9581                 ulong_t lval, rval;
9582                 lval = read_const(state, ins, left);
9583                 rval = read_const(state, ins, right);
9584                 mkconst(state, ins, lval & rval);
9585         }
9586         else if (is_zero(right) || is_zero(left)) {
9587                 mkconst(state, ins, 0);
9588         }
9589 }
9590
9591 static void simplify_or(struct compile_state *state, struct triple *ins)
9592 {
9593         struct triple *left, *right;
9594         left = RHS(ins, 0);
9595         right = RHS(ins, 1);
9596
9597         if (is_simple_const(left) && is_simple_const(right)) {
9598                 ulong_t lval, rval;
9599                 lval = read_const(state, ins, left);
9600                 rval = read_const(state, ins, right);
9601                 mkconst(state, ins, lval | rval);
9602         }
9603 #if 0 /* I need to handle type mismatches here... */
9604         else if (is_zero(right)) {
9605                 mkcopy(state, ins, left);
9606         }
9607         else if (is_zero(left)) {
9608                 mkcopy(state, ins, right);
9609         }
9610 #endif
9611 }
9612
9613 static void simplify_xor(struct compile_state *state, struct triple *ins)
9614 {
9615         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9616                 ulong_t left, right;
9617                 left  = read_const(state, ins, RHS(ins, 0));
9618                 right = read_const(state, ins, RHS(ins, 1));
9619                 mkconst(state, ins, left ^ right);
9620         }
9621 }
9622
9623 static void simplify_pos(struct compile_state *state, struct triple *ins)
9624 {
9625         if (is_const(RHS(ins, 0))) {
9626                 mkconst(state, ins, RHS(ins, 0)->u.cval);
9627         }
9628         else {
9629                 mkcopy(state, ins, RHS(ins, 0));
9630         }
9631 }
9632
9633 static void simplify_neg(struct compile_state *state, struct triple *ins)
9634 {
9635         if (is_simple_const(RHS(ins, 0))) {
9636                 ulong_t left;
9637                 left = read_const(state, ins, RHS(ins, 0));
9638                 mkconst(state, ins, -left);
9639         }
9640         else if (RHS(ins, 0)->op == OP_NEG) {
9641                 mkcopy(state, ins, RHS(RHS(ins, 0), 0));
9642         }
9643 }
9644
9645 static void simplify_invert(struct compile_state *state, struct triple *ins)
9646 {
9647         if (is_simple_const(RHS(ins, 0))) {
9648                 ulong_t left;
9649                 left = read_const(state, ins, RHS(ins, 0));
9650                 mkconst(state, ins, ~left);
9651         }
9652 }
9653
9654 static void simplify_eq(struct compile_state *state, struct triple *ins)
9655 {
9656         struct triple *left, *right;
9657         left = RHS(ins, 0);
9658         right = RHS(ins, 1);
9659
9660         if (is_const(left) && is_const(right)) {
9661                 int val;
9662                 val = const_eq(state, ins, left, right);
9663                 if (val >= 0) {
9664                         mkconst(state, ins, val == 1);
9665                 }
9666         }
9667         else if (left == right) {
9668                 mkconst(state, ins, 1);
9669         }
9670 }
9671
9672 static void simplify_noteq(struct compile_state *state, struct triple *ins)
9673 {
9674         struct triple *left, *right;
9675         left = RHS(ins, 0);
9676         right = RHS(ins, 1);
9677
9678         if (is_const(left) && is_const(right)) {
9679                 int val;
9680                 val = const_eq(state, ins, left, right);
9681                 if (val >= 0) {
9682                         mkconst(state, ins, val != 1);
9683                 }
9684         }
9685         if (left == right) {
9686                 mkconst(state, ins, 0);
9687         }
9688 }
9689
9690 static void simplify_sless(struct compile_state *state, struct triple *ins)
9691 {
9692         struct triple *left, *right;
9693         left = RHS(ins, 0);
9694         right = RHS(ins, 1);
9695
9696         if (is_const(left) && is_const(right)) {
9697                 int val;
9698                 val = const_scmp(state, ins, left, right);
9699                 if ((val >= -1) && (val <= 1)) {
9700                         mkconst(state, ins, val < 0);
9701                 }
9702         }
9703         else if (left == right) {
9704                 mkconst(state, ins, 0);
9705         }
9706 }
9707
9708 static void simplify_uless(struct compile_state *state, struct triple *ins)
9709 {
9710         struct triple *left, *right;
9711         left = RHS(ins, 0);
9712         right = RHS(ins, 1);
9713
9714         if (is_const(left) && is_const(right)) {
9715                 int val;
9716                 val = const_ucmp(state, ins, left, right);
9717                 if ((val >= -1) && (val <= 1)) {
9718                         mkconst(state, ins, val < 0);
9719                 }
9720         }
9721         else if (is_zero(right)) {
9722                 mkconst(state, ins, 0);
9723         }
9724         else if (left == right) {
9725                 mkconst(state, ins, 0);
9726         }
9727 }
9728
9729 static void simplify_smore(struct compile_state *state, struct triple *ins)
9730 {
9731         struct triple *left, *right;
9732         left = RHS(ins, 0);
9733         right = RHS(ins, 1);
9734
9735         if (is_const(left) && is_const(right)) {
9736                 int val;
9737                 val = const_scmp(state, ins, left, right);
9738                 if ((val >= -1) && (val <= 1)) {
9739                         mkconst(state, ins, val > 0);
9740                 }
9741         }
9742         else if (left == right) {
9743                 mkconst(state, ins, 0);
9744         }
9745 }
9746
9747 static void simplify_umore(struct compile_state *state, struct triple *ins)
9748 {
9749         struct triple *left, *right;
9750         left = RHS(ins, 0);
9751         right = RHS(ins, 1);
9752
9753         if (is_const(left) && is_const(right)) {
9754                 int val;
9755                 val = const_ucmp(state, ins, left, right);
9756                 if ((val >= -1) && (val <= 1)) {
9757                         mkconst(state, ins, val > 0);
9758                 }
9759         }
9760         else if (is_zero(left)) {
9761                 mkconst(state, ins, 0);
9762         }
9763         else if (left == right) {
9764                 mkconst(state, ins, 0);
9765         }
9766 }
9767
9768
9769 static void simplify_slesseq(struct compile_state *state, struct triple *ins)
9770 {
9771         struct triple *left, *right;
9772         left = RHS(ins, 0);
9773         right = RHS(ins, 1);
9774
9775         if (is_const(left) && is_const(right)) {
9776                 int val;
9777                 val = const_scmp(state, ins, left, right);
9778                 if ((val >= -1) && (val <= 1)) {
9779                         mkconst(state, ins, val <= 0);
9780                 }
9781         }
9782         else if (left == right) {
9783                 mkconst(state, ins, 1);
9784         }
9785 }
9786
9787 static void simplify_ulesseq(struct compile_state *state, struct triple *ins)
9788 {
9789         struct triple *left, *right;
9790         left = RHS(ins, 0);
9791         right = RHS(ins, 1);
9792
9793         if (is_const(left) && is_const(right)) {
9794                 int val;
9795                 val = const_ucmp(state, ins, left, right);
9796                 if ((val >= -1) && (val <= 1)) {
9797                         mkconst(state, ins, val <= 0);
9798                 }
9799         }
9800         else if (is_zero(left)) {
9801                 mkconst(state, ins, 1);
9802         }
9803         else if (left == right) {
9804                 mkconst(state, ins, 1);
9805         }
9806 }
9807
9808 static void simplify_smoreeq(struct compile_state *state, struct triple *ins)
9809 {
9810         struct triple *left, *right;
9811         left = RHS(ins, 0);
9812         right = RHS(ins, 1);
9813
9814         if (is_const(left) && is_const(right)) {
9815                 int val;
9816                 val = const_scmp(state, ins, left, right);
9817                 if ((val >= -1) && (val <= 1)) {
9818                         mkconst(state, ins, val >= 0);
9819                 }
9820         }
9821         else if (left == right) {
9822                 mkconst(state, ins, 1);
9823         }
9824 }
9825
9826 static void simplify_umoreeq(struct compile_state *state, struct triple *ins)
9827 {
9828         struct triple *left, *right;
9829         left = RHS(ins, 0);
9830         right = RHS(ins, 1);
9831
9832         if (is_const(left) && is_const(right)) {
9833                 int val;
9834                 val = const_ucmp(state, ins, left, right);
9835                 if ((val >= -1) && (val <= 1)) {
9836                         mkconst(state, ins, val >= 0);
9837                 }
9838         }
9839         else if (is_zero(right)) {
9840                 mkconst(state, ins, 1);
9841         }
9842         else if (left == right) {
9843                 mkconst(state, ins, 1);
9844         }
9845 }
9846
9847 static void simplify_lfalse(struct compile_state *state, struct triple *ins)
9848 {
9849         struct triple *rhs;
9850         rhs = RHS(ins, 0);
9851
9852         if (is_const(rhs)) {
9853                 mkconst(state, ins, !const_ltrue(state, ins, rhs));
9854         }
9855         /* Otherwise if I am the only user... */
9856         else if ((rhs->use) &&
9857                 (rhs->use->member == ins) && (rhs->use->next == 0)) {
9858                 int need_copy = 1;
9859                 /* Invert a boolean operation */
9860                 switch(rhs->op) {
9861                 case OP_LTRUE:   rhs->op = OP_LFALSE;  break;
9862                 case OP_LFALSE:  rhs->op = OP_LTRUE;   break;
9863                 case OP_EQ:      rhs->op = OP_NOTEQ;   break;
9864                 case OP_NOTEQ:   rhs->op = OP_EQ;      break;
9865                 case OP_SLESS:   rhs->op = OP_SMOREEQ; break;
9866                 case OP_ULESS:   rhs->op = OP_UMOREEQ; break;
9867                 case OP_SMORE:   rhs->op = OP_SLESSEQ; break;
9868                 case OP_UMORE:   rhs->op = OP_ULESSEQ; break;
9869                 case OP_SLESSEQ: rhs->op = OP_SMORE;   break;
9870                 case OP_ULESSEQ: rhs->op = OP_UMORE;   break;
9871                 case OP_SMOREEQ: rhs->op = OP_SLESS;   break;
9872                 case OP_UMOREEQ: rhs->op = OP_ULESS;   break;
9873                 default:
9874                         need_copy = 0;
9875                         break;
9876                 }
9877                 if (need_copy) {
9878                         mkcopy(state, ins, rhs);
9879                 }
9880         }
9881 }
9882
9883 static void simplify_ltrue (struct compile_state *state, struct triple *ins)
9884 {
9885         struct triple *rhs;
9886         rhs = RHS(ins, 0);
9887
9888         if (is_const(rhs)) {
9889                 mkconst(state, ins, const_ltrue(state, ins, rhs));
9890         }
9891         else switch(rhs->op) {
9892         case OP_LTRUE:   case OP_LFALSE:  case OP_EQ:      case OP_NOTEQ:
9893         case OP_SLESS:   case OP_ULESS:   case OP_SMORE:   case OP_UMORE:
9894         case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
9895                 mkcopy(state, ins, rhs);
9896         }
9897
9898 }
9899
9900 static void simplify_load(struct compile_state *state, struct triple *ins)
9901 {
9902         struct triple *addr, *sdecl, *blob;
9903
9904         /* If I am doing a load with a constant pointer from a constant
9905          * table get the value.
9906          */
9907         addr = RHS(ins, 0);
9908         if ((addr->op == OP_ADDRCONST) && (sdecl = MISC(addr, 0)) &&
9909                 (sdecl->op == OP_SDECL) && (blob = MISC(sdecl, 0)) &&
9910                 (blob->op == OP_BLOBCONST)) {
9911                 unsigned char buffer[SIZEOF_WORD];
9912                 size_t reg_size, mem_size;
9913                 const char *src, *end;
9914                 ulong_t val;
9915                 reg_size = reg_size_of(state, ins->type);
9916                 if (reg_size > REG_SIZEOF_REG) {
9917                         internal_error(state, ins, "load size greater than register");
9918                 }
9919                 mem_size = size_of(state, ins->type);
9920                 end = blob->u.blob;
9921                 end += bits_to_bytes(size_of(state, sdecl->type));
9922                 src = blob->u.blob;
9923                 src += addr->u.cval;
9924
9925                 if (src > end) {
9926                         error(state, ins, "Load address out of bounds");
9927                 }
9928
9929                 memset(buffer, 0, sizeof(buffer));
9930                 memcpy(buffer, src, bits_to_bytes(mem_size));
9931
9932                 switch(mem_size) {
9933                 case SIZEOF_I8:  val = *((uint8_t *) buffer); break;
9934                 case SIZEOF_I16: val = *((uint16_t *)buffer); break;
9935                 case SIZEOF_I32: val = *((uint32_t *)buffer); break;
9936                 case SIZEOF_I64: val = *((uint64_t *)buffer); break;
9937                 default:
9938                         internal_error(state, ins, "mem_size: %d not handled",
9939                                 mem_size);
9940                         val = 0;
9941                         break;
9942                 }
9943                 mkconst(state, ins, val);
9944         }
9945 }
9946
9947 static void simplify_uextract(struct compile_state *state, struct triple *ins)
9948 {
9949         if (is_simple_const(RHS(ins, 0))) {
9950                 ulong_t val;
9951                 ulong_t mask;
9952                 val = read_const(state, ins, RHS(ins, 0));
9953                 mask = 1;
9954                 mask <<= ins->u.bitfield.size;
9955                 mask -= 1;
9956                 val >>= ins->u.bitfield.offset;
9957                 val &= mask;
9958                 mkconst(state, ins, val);
9959         }
9960 }
9961
9962 static void simplify_sextract(struct compile_state *state, struct triple *ins)
9963 {
9964         if (is_simple_const(RHS(ins, 0))) {
9965                 ulong_t val;
9966                 ulong_t mask;
9967                 long_t sval;
9968                 val = read_const(state, ins, RHS(ins, 0));
9969                 mask = 1;
9970                 mask <<= ins->u.bitfield.size;
9971                 mask -= 1;
9972                 val >>= ins->u.bitfield.offset;
9973                 val &= mask;
9974                 val <<= (SIZEOF_LONG - ins->u.bitfield.size);
9975                 sval = val;
9976                 sval >>= (SIZEOF_LONG - ins->u.bitfield.size); 
9977                 mkconst(state, ins, sval);
9978         }
9979 }
9980
9981 static void simplify_deposit(struct compile_state *state, struct triple *ins)
9982 {
9983         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9984                 ulong_t targ, val;
9985                 ulong_t mask;
9986                 targ = read_const(state, ins, RHS(ins, 0));
9987                 val  = read_const(state, ins, RHS(ins, 1));
9988                 mask = 1;
9989                 mask <<= ins->u.bitfield.size;
9990                 mask -= 1;
9991                 mask <<= ins->u.bitfield.offset;
9992                 targ &= ~mask;
9993                 val <<= ins->u.bitfield.offset;
9994                 val &= mask;
9995                 targ |= val;
9996                 mkconst(state, ins, targ);
9997         }
9998 }
9999
10000 static void simplify_copy(struct compile_state *state, struct triple *ins)
10001 {
10002         struct triple *right;
10003         right = RHS(ins, 0);
10004         if (is_subset_type(ins->type, right->type)) {
10005                 ins->type = right->type;
10006         }
10007         if (equiv_types(ins->type, right->type)) {
10008                 ins->op = OP_COPY;/* I don't need to convert if the types match */
10009         } else {
10010                 if (ins->op == OP_COPY) {
10011                         internal_error(state, ins, "type mismatch on copy");
10012                 }
10013         }
10014         if (is_const(right) && (right->op == OP_ADDRCONST) && is_pointer(ins)) {
10015                 struct triple *sdecl;
10016                 ulong_t offset;
10017                 sdecl  = MISC(right, 0);
10018                 offset = right->u.cval;
10019                 mkaddr_const(state, ins, sdecl, offset);
10020         }
10021         else if (is_const(right) && is_write_compatible(state, ins->type, right->type)) {
10022                 switch(right->op) {
10023                 case OP_INTCONST:
10024                 {
10025                         ulong_t left;
10026                         left = read_const(state, ins, right);
10027                         /* Ensure I have not overflowed the destination. */
10028                         if (size_of(state, right->type) > size_of(state, ins->type)) {
10029                                 ulong_t mask;
10030                                 mask = 1;
10031                                 mask <<= size_of(state, ins->type);
10032                                 mask -= 1;
10033                                 left &= mask;
10034                         }
10035                         /* Ensure I am properly sign extended */
10036                         if (size_of(state, right->type) < size_of(state, ins->type) &&
10037                                 is_signed(right->type)) {
10038                                 long_t val;
10039                                 int shift;
10040                                 shift = SIZEOF_LONG - size_of(state, right->type);
10041                                 val = left;
10042                                 val <<= shift;
10043                                 val >>= shift;
10044                                 left = val;
10045                         }
10046                         mkconst(state, ins, left);
10047                         break;
10048                 }
10049                 default:
10050                         internal_error(state, ins, "uknown constant");
10051                         break;
10052                 }
10053         }
10054 }
10055
10056 static int phi_present(struct block *block)
10057 {
10058         struct triple *ptr;
10059         if (!block) {
10060                 return 0;
10061         }
10062         ptr = block->first;
10063         do {
10064                 if (ptr->op == OP_PHI) {
10065                         return 1;
10066                 }
10067                 ptr = ptr->next;
10068         } while(ptr != block->last);
10069         return 0;
10070 }
10071
10072 static int phi_dependency(struct block *block)
10073 {
10074         /* A block has a phi dependency if a phi function
10075          * depends on that block to exist, and makes a block
10076          * that is otherwise useless unsafe to remove.
10077          */
10078         if (block) {
10079                 struct block_set *edge;
10080                 for(edge = block->edges; edge; edge = edge->next) {
10081                         if (phi_present(edge->member)) {
10082                                 return 1;
10083                         }
10084                 }
10085         }
10086         return 0;
10087 }
10088
10089 static struct triple *branch_target(struct compile_state *state, struct triple *ins)
10090 {
10091         struct triple *targ;
10092         targ = TARG(ins, 0);
10093         /* During scc_transform temporary triples are allocated that
10094          * loop back onto themselves. If I see one don't advance the
10095          * target.
10096          */
10097         while(triple_is_structural(state, targ) && 
10098                 (targ->next != targ) && (targ->next != state->first)) {
10099                 targ = targ->next;
10100         }
10101         return targ;
10102 }
10103
10104
10105 static void simplify_branch(struct compile_state *state, struct triple *ins)
10106 {
10107         int simplified, loops;
10108         if ((ins->op != OP_BRANCH) && (ins->op != OP_CBRANCH)) {
10109                 internal_error(state, ins, "not branch");
10110         }
10111         if (ins->use != 0) {
10112                 internal_error(state, ins, "branch use");
10113         }
10114         /* The challenge here with simplify branch is that I need to 
10115          * make modifications to the control flow graph as well
10116          * as to the branch instruction itself.  That is handled
10117          * by rebuilding the basic blocks after simplify all is called.
10118          */
10119
10120         /* If we have a branch to an unconditional branch update
10121          * our target.  But watch out for dependencies from phi
10122          * functions.
10123          * Also only do this a limited number of times so
10124          * we don't get into an infinite loop.
10125          */
10126         loops = 0;
10127         do {
10128                 struct triple *targ;
10129                 simplified = 0;
10130                 targ = branch_target(state, ins);
10131                 if ((targ != ins) && (targ->op == OP_BRANCH) && 
10132                         !phi_dependency(targ->u.block))
10133                 {
10134                         unuse_triple(TARG(ins, 0), ins);
10135                         TARG(ins, 0) = TARG(targ, 0);
10136                         use_triple(TARG(ins, 0), ins);
10137                         simplified = 1;
10138                 }
10139         } while(simplified && (++loops < 20));
10140
10141         /* If we have a conditional branch with a constant condition
10142          * make it an unconditional branch.
10143          */
10144         if ((ins->op == OP_CBRANCH) && is_simple_const(RHS(ins, 0))) {
10145                 struct triple *targ;
10146                 ulong_t value;
10147                 value = read_const(state, ins, RHS(ins, 0));
10148                 unuse_triple(RHS(ins, 0), ins);
10149                 targ = TARG(ins, 0);
10150                 ins->rhs  = 0;
10151                 ins->targ = 1;
10152                 ins->op = OP_BRANCH;
10153                 if (value) {
10154                         unuse_triple(ins->next, ins);
10155                         TARG(ins, 0) = targ;
10156                 }
10157                 else {
10158                         unuse_triple(targ, ins);
10159                         TARG(ins, 0) = ins->next;
10160                 }
10161         }
10162
10163         /* If we have a branch to the next instruction,
10164          * make it a noop.
10165          */
10166         if (TARG(ins, 0) == ins->next) {
10167                 unuse_triple(TARG(ins, 0), ins);
10168                 if (ins->op == OP_CBRANCH) {
10169                         unuse_triple(RHS(ins, 0), ins);
10170                         unuse_triple(ins->next, ins);
10171                 }
10172                 ins->lhs = 0;
10173                 ins->rhs = 0;
10174                 ins->misc = 0;
10175                 ins->targ = 0;
10176                 ins->op = OP_NOOP;
10177                 if (ins->use) {
10178                         internal_error(state, ins, "noop use != 0");
10179                 }
10180         }
10181 }
10182
10183 static void simplify_label(struct compile_state *state, struct triple *ins)
10184 {
10185         /* Ignore volatile labels */
10186         if (!triple_is_pure(state, ins, ins->id)) {
10187                 return;
10188         }
10189         if (ins->use == 0) {
10190                 ins->op = OP_NOOP;
10191         }
10192         else if (ins->prev->op == OP_LABEL) {
10193                 /* In general it is not safe to merge one label that
10194                  * imediately follows another.  The problem is that the empty
10195                  * looking block may have phi functions that depend on it.
10196                  */
10197                 if (!phi_dependency(ins->prev->u.block)) {
10198                         struct triple_set *user, *next;
10199                         ins->op = OP_NOOP;
10200                         for(user = ins->use; user; user = next) {
10201                                 struct triple *use, **expr;
10202                                 next = user->next;
10203                                 use = user->member;
10204                                 expr = triple_targ(state, use, 0);
10205                                 for(;expr; expr = triple_targ(state, use, expr)) {
10206                                         if (*expr == ins) {
10207                                                 *expr = ins->prev;
10208                                                 unuse_triple(ins, use);
10209                                                 use_triple(ins->prev, use);
10210                                         }
10211                                         
10212                                 }
10213                         }
10214                         if (ins->use) {
10215                                 internal_error(state, ins, "noop use != 0");
10216                         }
10217                 }
10218         }
10219 }
10220
10221 static void simplify_phi(struct compile_state *state, struct triple *ins)
10222 {
10223         struct triple **slot;
10224         struct triple *value;
10225         int zrhs, i;
10226         ulong_t cvalue;
10227         slot = &RHS(ins, 0);
10228         zrhs = ins->rhs;
10229         if (zrhs == 0) {
10230                 return;
10231         }
10232         /* See if all of the rhs members of a phi have the same value */
10233         if (slot[0] && is_simple_const(slot[0])) {
10234                 cvalue = read_const(state, ins, slot[0]);
10235                 for(i = 1; i < zrhs; i++) {
10236                         if (    !slot[i] ||
10237                                 !is_simple_const(slot[i]) ||
10238                                 !equiv_types(slot[0]->type, slot[i]->type) ||
10239                                 (cvalue != read_const(state, ins, slot[i]))) {
10240                                 break;
10241                         }
10242                 }
10243                 if (i == zrhs) {
10244                         mkconst(state, ins, cvalue);
10245                         return;
10246                 }
10247         }
10248         
10249         /* See if all of rhs members of a phi are the same */
10250         value = slot[0];
10251         for(i = 1; i < zrhs; i++) {
10252                 if (slot[i] != value) {
10253                         break;
10254                 }
10255         }
10256         if (i == zrhs) {
10257                 /* If the phi has a single value just copy it */
10258                 if (!is_subset_type(ins->type, value->type)) {
10259                         internal_error(state, ins, "bad input type to phi");
10260                 }
10261                 /* Make the types match */
10262                 if (!equiv_types(ins->type, value->type)) {
10263                         ins->type = value->type;
10264                 }
10265                 /* Now make the actual copy */
10266                 mkcopy(state, ins, value);
10267                 return;
10268         }
10269 }
10270
10271
10272 static void simplify_bsf(struct compile_state *state, struct triple *ins)
10273 {
10274         if (is_simple_const(RHS(ins, 0))) {
10275                 ulong_t left;
10276                 left = read_const(state, ins, RHS(ins, 0));
10277                 mkconst(state, ins, bsf(left));
10278         }
10279 }
10280
10281 static void simplify_bsr(struct compile_state *state, struct triple *ins)
10282 {
10283         if (is_simple_const(RHS(ins, 0))) {
10284                 ulong_t left;
10285                 left = read_const(state, ins, RHS(ins, 0));
10286                 mkconst(state, ins, bsr(left));
10287         }
10288 }
10289
10290
10291 typedef void (*simplify_t)(struct compile_state *state, struct triple *ins);
10292 static const struct simplify_table {
10293         simplify_t func;
10294         unsigned long flag;
10295 } table_simplify[] = {
10296 #define simplify_sdivt    simplify_noop
10297 #define simplify_udivt    simplify_noop
10298 #define simplify_piece    simplify_noop
10299
10300 [OP_SDIVT      ] = { simplify_sdivt,    COMPILER_SIMPLIFY_ARITH },
10301 [OP_UDIVT      ] = { simplify_udivt,    COMPILER_SIMPLIFY_ARITH },
10302 [OP_SMUL       ] = { simplify_smul,     COMPILER_SIMPLIFY_ARITH },
10303 [OP_UMUL       ] = { simplify_umul,     COMPILER_SIMPLIFY_ARITH },
10304 [OP_SDIV       ] = { simplify_sdiv,     COMPILER_SIMPLIFY_ARITH },
10305 [OP_UDIV       ] = { simplify_udiv,     COMPILER_SIMPLIFY_ARITH },
10306 [OP_SMOD       ] = { simplify_smod,     COMPILER_SIMPLIFY_ARITH },
10307 [OP_UMOD       ] = { simplify_umod,     COMPILER_SIMPLIFY_ARITH },
10308 [OP_ADD        ] = { simplify_add,      COMPILER_SIMPLIFY_ARITH },
10309 [OP_SUB        ] = { simplify_sub,      COMPILER_SIMPLIFY_ARITH },
10310 [OP_SL         ] = { simplify_sl,       COMPILER_SIMPLIFY_SHIFT },
10311 [OP_USR        ] = { simplify_usr,      COMPILER_SIMPLIFY_SHIFT },
10312 [OP_SSR        ] = { simplify_ssr,      COMPILER_SIMPLIFY_SHIFT },
10313 [OP_AND        ] = { simplify_and,      COMPILER_SIMPLIFY_BITWISE },
10314 [OP_XOR        ] = { simplify_xor,      COMPILER_SIMPLIFY_BITWISE },
10315 [OP_OR         ] = { simplify_or,       COMPILER_SIMPLIFY_BITWISE },
10316 [OP_POS        ] = { simplify_pos,      COMPILER_SIMPLIFY_ARITH },
10317 [OP_NEG        ] = { simplify_neg,      COMPILER_SIMPLIFY_ARITH },
10318 [OP_INVERT     ] = { simplify_invert,   COMPILER_SIMPLIFY_BITWISE },
10319
10320 [OP_EQ         ] = { simplify_eq,       COMPILER_SIMPLIFY_LOGICAL },
10321 [OP_NOTEQ      ] = { simplify_noteq,    COMPILER_SIMPLIFY_LOGICAL },
10322 [OP_SLESS      ] = { simplify_sless,    COMPILER_SIMPLIFY_LOGICAL },
10323 [OP_ULESS      ] = { simplify_uless,    COMPILER_SIMPLIFY_LOGICAL },
10324 [OP_SMORE      ] = { simplify_smore,    COMPILER_SIMPLIFY_LOGICAL },
10325 [OP_UMORE      ] = { simplify_umore,    COMPILER_SIMPLIFY_LOGICAL },
10326 [OP_SLESSEQ    ] = { simplify_slesseq,  COMPILER_SIMPLIFY_LOGICAL },
10327 [OP_ULESSEQ    ] = { simplify_ulesseq,  COMPILER_SIMPLIFY_LOGICAL },
10328 [OP_SMOREEQ    ] = { simplify_smoreeq,  COMPILER_SIMPLIFY_LOGICAL },
10329 [OP_UMOREEQ    ] = { simplify_umoreeq,  COMPILER_SIMPLIFY_LOGICAL },
10330 [OP_LFALSE     ] = { simplify_lfalse,   COMPILER_SIMPLIFY_LOGICAL },
10331 [OP_LTRUE      ] = { simplify_ltrue,    COMPILER_SIMPLIFY_LOGICAL },
10332
10333 [OP_LOAD       ] = { simplify_load,     COMPILER_SIMPLIFY_OP },
10334 [OP_STORE      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10335
10336 [OP_UEXTRACT   ] = { simplify_uextract, COMPILER_SIMPLIFY_BITFIELD },
10337 [OP_SEXTRACT   ] = { simplify_sextract, COMPILER_SIMPLIFY_BITFIELD },
10338 [OP_DEPOSIT    ] = { simplify_deposit,  COMPILER_SIMPLIFY_BITFIELD },
10339
10340 [OP_NOOP       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10341
10342 [OP_INTCONST   ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10343 [OP_BLOBCONST  ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10344 [OP_ADDRCONST  ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10345 [OP_UNKNOWNVAL ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10346
10347 [OP_WRITE      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10348 [OP_READ       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10349 [OP_COPY       ] = { simplify_copy,     COMPILER_SIMPLIFY_COPY },
10350 [OP_CONVERT    ] = { simplify_copy,     COMPILER_SIMPLIFY_COPY },
10351 [OP_PIECE      ] = { simplify_piece,    COMPILER_SIMPLIFY_OP },
10352 [OP_ASM        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10353
10354 [OP_DOT        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10355 [OP_INDEX      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10356
10357 [OP_LIST       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10358 [OP_BRANCH     ] = { simplify_branch,   COMPILER_SIMPLIFY_BRANCH },
10359 [OP_CBRANCH    ] = { simplify_branch,   COMPILER_SIMPLIFY_BRANCH },
10360 [OP_CALL       ] = { simplify_noop,     COMPILER_SIMPLIFY_BRANCH },
10361 [OP_RET        ] = { simplify_noop,     COMPILER_SIMPLIFY_BRANCH },
10362 [OP_LABEL      ] = { simplify_label,    COMPILER_SIMPLIFY_LABEL },
10363 [OP_ADECL      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10364 [OP_SDECL      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10365 [OP_PHI        ] = { simplify_phi,      COMPILER_SIMPLIFY_PHI },
10366
10367 [OP_INB        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10368 [OP_INW        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10369 [OP_INL        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10370 [OP_OUTB       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10371 [OP_OUTW       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10372 [OP_OUTL       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10373 [OP_BSF        ] = { simplify_bsf,      COMPILER_SIMPLIFY_OP },
10374 [OP_BSR        ] = { simplify_bsr,      COMPILER_SIMPLIFY_OP },
10375 [OP_RDMSR      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10376 [OP_WRMSR      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },               
10377 [OP_HLT        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10378 };
10379
10380 static inline void debug_simplify(struct compile_state *state, 
10381         simplify_t do_simplify, struct triple *ins)
10382 {
10383 #if DEBUG_SIMPLIFY_HIRES
10384                 if (state->functions_joined && (do_simplify != simplify_noop)) {
10385                         /* High resolution debugging mode */
10386                         fprintf(state->dbgout, "simplifing: ");
10387                         display_triple(state->dbgout, ins);
10388                 }
10389 #endif
10390                 do_simplify(state, ins);
10391 #if DEBUG_SIMPLIFY_HIRES
10392                 if (state->functions_joined && (do_simplify != simplify_noop)) {
10393                         /* High resolution debugging mode */
10394                         fprintf(state->dbgout, "simplified: ");
10395                         display_triple(state->dbgout, ins);
10396                 }
10397 #endif
10398 }
10399 static void simplify(struct compile_state *state, struct triple *ins)
10400 {
10401         int op;
10402         simplify_t do_simplify;
10403         if (ins == &unknown_triple) {
10404                 internal_error(state, ins, "simplifying the unknown triple?");
10405         }
10406         do {
10407                 op = ins->op;
10408                 do_simplify = 0;
10409                 if ((op < 0) || (op > sizeof(table_simplify)/sizeof(table_simplify[0]))) {
10410                         do_simplify = 0;
10411                 }
10412                 else {
10413                         do_simplify = table_simplify[op].func;
10414                 }
10415                 if (do_simplify && 
10416                         !(state->compiler->flags & table_simplify[op].flag)) {
10417                         do_simplify = simplify_noop;
10418                 }
10419                 if (do_simplify && (ins->id & TRIPLE_FLAG_VOLATILE)) {
10420                         do_simplify = simplify_noop;
10421                 }
10422         
10423                 if (!do_simplify) {
10424                         internal_error(state, ins, "cannot simplify op: %d %s",
10425                                 op, tops(op));
10426                         return;
10427                 }
10428                 debug_simplify(state, do_simplify, ins);
10429         } while(ins->op != op);
10430 }
10431
10432 static void rebuild_ssa_form(struct compile_state *state);
10433
10434 static void simplify_all(struct compile_state *state)
10435 {
10436         struct triple *ins, *first;
10437         if (!(state->compiler->flags & COMPILER_SIMPLIFY)) {
10438                 return;
10439         }
10440         first = state->first;
10441         ins = first->prev;
10442         do {
10443                 simplify(state, ins);
10444                 ins = ins->prev;
10445         } while(ins != first->prev);
10446         ins = first;
10447         do {
10448                 simplify(state, ins);
10449                 ins = ins->next;
10450         }while(ins != first);
10451         rebuild_ssa_form(state);
10452
10453         print_blocks(state, __func__, state->dbgout);
10454 }
10455
10456 /*
10457  * Builtins....
10458  * ============================
10459  */
10460
10461 static void register_builtin_function(struct compile_state *state,
10462         const char *name, int op, struct type *rtype, ...)
10463 {
10464         struct type *ftype, *atype, *ctype, *crtype, *param, **next;
10465         struct triple *def, *arg, *result, *work, *last, *first, *retvar, *ret;
10466         struct hash_entry *ident;
10467         struct file_state file;
10468         int parameters;
10469         int name_len;
10470         va_list args;
10471         int i;
10472
10473         /* Dummy file state to get debug handling right */
10474         memset(&file, 0, sizeof(file));
10475         file.basename = "<built-in>";
10476         file.line = 1;
10477         file.report_line = 1;
10478         file.report_name = file.basename;
10479         file.prev = state->file;
10480         state->file = &file;
10481         state->function = name;
10482
10483         /* Find the Parameter count */
10484         valid_op(state, op);
10485         parameters = table_ops[op].rhs;
10486         if (parameters < 0 ) {
10487                 internal_error(state, 0, "Invalid builtin parameter count");
10488         }
10489
10490         /* Find the function type */
10491         ftype = new_type(TYPE_FUNCTION | STOR_INLINE | STOR_STATIC, rtype, 0);
10492         ftype->elements = parameters;
10493         next = &ftype->right;
10494         va_start(args, rtype);
10495         for(i = 0; i < parameters; i++) {
10496                 atype = va_arg(args, struct type *);
10497                 if (!*next) {
10498                         *next = atype;
10499                 } else {
10500                         *next = new_type(TYPE_PRODUCT, *next, atype);
10501                         next = &((*next)->right);
10502                 }
10503         }
10504         if (!*next) {
10505                 *next = &void_type;
10506         }
10507         va_end(args);
10508
10509         /* Get the initial closure type */
10510         ctype = new_type(TYPE_JOIN, &void_type, 0);
10511         ctype->elements = 1;
10512
10513         /* Get the return type */
10514         crtype = new_type(TYPE_TUPLE, new_type(TYPE_PRODUCT, ctype, rtype), 0);
10515         crtype->elements = 2;
10516
10517         /* Generate the needed triples */
10518         def = triple(state, OP_LIST, ftype, 0, 0);
10519         first = label(state);
10520         RHS(def, 0) = first;
10521         result = flatten(state, first, variable(state, crtype));
10522         retvar = flatten(state, first, variable(state, &void_ptr_type));
10523         ret = triple(state, OP_RET, &void_type, read_expr(state, retvar), 0);
10524
10525         /* Now string them together */
10526         param = ftype->right;
10527         for(i = 0; i < parameters; i++) {
10528                 if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
10529                         atype = param->left;
10530                 } else {
10531                         atype = param;
10532                 }
10533                 arg = flatten(state, first, variable(state, atype));
10534                 param = param->right;
10535         }
10536         work = new_triple(state, op, rtype, -1, parameters);
10537         generate_lhs_pieces(state, work);
10538         for(i = 0; i < parameters; i++) {
10539                 RHS(work, i) = read_expr(state, farg(state, def, i));
10540         }
10541         if ((rtype->type & TYPE_MASK) != TYPE_VOID) {
10542                 work = write_expr(state, deref_index(state, result, 1), work);
10543         }
10544         work = flatten(state, first, work);
10545         last = flatten(state, first, label(state));
10546         ret  = flatten(state, first, ret);
10547         name_len = strlen(name);
10548         ident = lookup(state, name, name_len);
10549         ftype->type_ident = ident;
10550         symbol(state, ident, &ident->sym_ident, def, ftype);
10551         
10552         state->file = file.prev;
10553         state->function = 0;
10554         state->main_function = 0;
10555
10556         if (!state->functions) {
10557                 state->functions = def;
10558         } else {
10559                 insert_triple(state, state->functions, def);
10560         }
10561         if (state->compiler->debug & DEBUG_INLINE) {
10562                 FILE *fp = state->dbgout;
10563                 fprintf(fp, "\n");
10564                 loc(fp, state, 0);
10565                 fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
10566                 display_func(state, fp, def);
10567                 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
10568         }
10569 }
10570
10571 static struct type *partial_struct(struct compile_state *state,
10572         const char *field_name, struct type *type, struct type *rest)
10573 {
10574         struct hash_entry *field_ident;
10575         struct type *result;
10576         int field_name_len;
10577
10578         field_name_len = strlen(field_name);
10579         field_ident = lookup(state, field_name, field_name_len);
10580
10581         result = clone_type(0, type);
10582         result->field_ident = field_ident;
10583
10584         if (rest) {
10585                 result = new_type(TYPE_PRODUCT, result, rest);
10586         }
10587         return result;
10588 }
10589
10590 static struct type *register_builtin_type(struct compile_state *state,
10591         const char *name, struct type *type)
10592 {
10593         struct hash_entry *ident;
10594         int name_len;
10595
10596         name_len = strlen(name);
10597         ident = lookup(state, name, name_len);
10598         
10599         if ((type->type & TYPE_MASK) == TYPE_PRODUCT) {
10600                 ulong_t elements = 0;
10601                 struct type *field;
10602                 type = new_type(TYPE_STRUCT, type, 0);
10603                 field = type->left;
10604                 while((field->type & TYPE_MASK) == TYPE_PRODUCT) {
10605                         elements++;
10606                         field = field->right;
10607                 }
10608                 elements++;
10609                 symbol(state, ident, &ident->sym_tag, 0, type);
10610                 type->type_ident = ident;
10611                 type->elements = elements;
10612         }
10613         symbol(state, ident, &ident->sym_ident, 0, type);
10614         ident->tok = TOK_TYPE_NAME;
10615         return type;
10616 }
10617
10618
10619 static void register_builtins(struct compile_state *state)
10620 {
10621         struct type *div_type, *ldiv_type;
10622         struct type *udiv_type, *uldiv_type;
10623         struct type *msr_type;
10624
10625         div_type = register_builtin_type(state, "__builtin_div_t",
10626                 partial_struct(state, "quot", &int_type,
10627                 partial_struct(state, "rem",  &int_type, 0)));
10628         ldiv_type = register_builtin_type(state, "__builtin_ldiv_t",
10629                 partial_struct(state, "quot", &long_type,
10630                 partial_struct(state, "rem",  &long_type, 0)));
10631         udiv_type = register_builtin_type(state, "__builtin_udiv_t",
10632                 partial_struct(state, "quot", &uint_type,
10633                 partial_struct(state, "rem",  &uint_type, 0)));
10634         uldiv_type = register_builtin_type(state, "__builtin_uldiv_t",
10635                 partial_struct(state, "quot", &ulong_type,
10636                 partial_struct(state, "rem",  &ulong_type, 0)));
10637
10638         register_builtin_function(state, "__builtin_div",   OP_SDIVT, div_type,
10639                 &int_type, &int_type);
10640         register_builtin_function(state, "__builtin_ldiv",  OP_SDIVT, ldiv_type,
10641                 &long_type, &long_type);
10642         register_builtin_function(state, "__builtin_udiv",  OP_UDIVT, udiv_type,
10643                 &uint_type, &uint_type);
10644         register_builtin_function(state, "__builtin_uldiv", OP_UDIVT, uldiv_type,
10645                 &ulong_type, &ulong_type);
10646
10647         register_builtin_function(state, "__builtin_inb", OP_INB, &uchar_type, 
10648                 &ushort_type);
10649         register_builtin_function(state, "__builtin_inw", OP_INW, &ushort_type,
10650                 &ushort_type);
10651         register_builtin_function(state, "__builtin_inl", OP_INL, &uint_type,   
10652                 &ushort_type);
10653
10654         register_builtin_function(state, "__builtin_outb", OP_OUTB, &void_type, 
10655                 &uchar_type, &ushort_type);
10656         register_builtin_function(state, "__builtin_outw", OP_OUTW, &void_type, 
10657                 &ushort_type, &ushort_type);
10658         register_builtin_function(state, "__builtin_outl", OP_OUTL, &void_type, 
10659                 &uint_type, &ushort_type);
10660         
10661         register_builtin_function(state, "__builtin_bsf", OP_BSF, &int_type, 
10662                 &int_type);
10663         register_builtin_function(state, "__builtin_bsr", OP_BSR, &int_type, 
10664                 &int_type);
10665
10666         msr_type = register_builtin_type(state, "__builtin_msr_t",
10667                 partial_struct(state, "lo", &ulong_type,
10668                 partial_struct(state, "hi", &ulong_type, 0)));
10669
10670         register_builtin_function(state, "__builtin_rdmsr", OP_RDMSR, msr_type,
10671                 &ulong_type);
10672         register_builtin_function(state, "__builtin_wrmsr", OP_WRMSR, &void_type,
10673                 &ulong_type, &ulong_type, &ulong_type);
10674         
10675         register_builtin_function(state, "__builtin_hlt", OP_HLT, &void_type, 
10676                 &void_type);
10677 }
10678
10679 static struct type *declarator(
10680         struct compile_state *state, struct type *type, 
10681         struct hash_entry **ident, int need_ident);
10682 static void decl(struct compile_state *state, struct triple *first);
10683 static struct type *specifier_qualifier_list(struct compile_state *state);
10684 #if DEBUG_ROMCC_WARNING
10685 static int isdecl_specifier(int tok);
10686 #endif
10687 static struct type *decl_specifiers(struct compile_state *state);
10688 static int istype(int tok);
10689 static struct triple *expr(struct compile_state *state);
10690 static struct triple *assignment_expr(struct compile_state *state);
10691 static struct type *type_name(struct compile_state *state);
10692 static void statement(struct compile_state *state, struct triple *first);
10693
10694 static struct triple *call_expr(
10695         struct compile_state *state, struct triple *func)
10696 {
10697         struct triple *def;
10698         struct type *param, *type;
10699         ulong_t pvals, index;
10700
10701         if ((func->type->type & TYPE_MASK) != TYPE_FUNCTION) {
10702                 error(state, 0, "Called object is not a function");
10703         }
10704         if (func->op != OP_LIST) {
10705                 internal_error(state, 0, "improper function");
10706         }
10707         eat(state, TOK_LPAREN);
10708         /* Find the return type without any specifiers */
10709         type = clone_type(0, func->type->left);
10710         /* Count the number of rhs entries for OP_FCALL */
10711         param = func->type->right;
10712         pvals = 0;
10713         while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
10714                 pvals++;
10715                 param = param->right;
10716         }
10717         if ((param->type & TYPE_MASK) != TYPE_VOID) {
10718                 pvals++;
10719         }
10720         def = new_triple(state, OP_FCALL, type, -1, pvals);
10721         MISC(def, 0) = func;
10722
10723         param = func->type->right;
10724         for(index = 0; index < pvals; index++) {
10725                 struct triple *val;
10726                 struct type *arg_type;
10727                 val = read_expr(state, assignment_expr(state));
10728                 arg_type = param;
10729                 if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
10730                         arg_type = param->left;
10731                 }
10732                 write_compatible(state, arg_type, val->type);
10733                 RHS(def, index) = val;
10734                 if (index != (pvals - 1)) {
10735                         eat(state, TOK_COMMA);
10736                         param = param->right;
10737                 }
10738         }
10739         eat(state, TOK_RPAREN);
10740         return def;
10741 }
10742
10743
10744 static struct triple *character_constant(struct compile_state *state)
10745 {
10746         struct triple *def;
10747         struct token *tk;
10748         const signed char *str, *end;
10749         int c;
10750         int str_len;
10751         tk = eat(state, TOK_LIT_CHAR);
10752         str = (signed char *)tk->val.str + 1;
10753         str_len = tk->str_len - 2;
10754         if (str_len <= 0) {
10755                 error(state, 0, "empty character constant");
10756         }
10757         end = str + str_len;
10758         c = char_value(state, &str, end);
10759         if (str != end) {
10760                 error(state, 0, "multibyte character constant not supported");
10761         }
10762         def = int_const(state, &char_type, (ulong_t)((long_t)c));
10763         return def;
10764 }
10765
10766 static struct triple *string_constant(struct compile_state *state)
10767 {
10768         struct triple *def;
10769         struct token *tk;
10770         struct type *type;
10771         const signed char *str, *end;
10772         signed char *buf, *ptr;
10773         int str_len;
10774
10775         buf = 0;
10776         type = new_type(TYPE_ARRAY, &char_type, 0);
10777         type->elements = 0;
10778         /* The while loop handles string concatenation */
10779         do {
10780                 tk = eat(state, TOK_LIT_STRING);
10781                 str = (signed char *)tk->val.str + 1;
10782                 str_len = tk->str_len - 2;
10783                 if (str_len < 0) {
10784                         error(state, 0, "negative string constant length");
10785                 }
10786                 /* ignore empty string tokens */
10787                 if ('"' == *str && 0 == str[1])
10788                         continue;
10789                 end = str + str_len;
10790                 ptr = buf;
10791                 buf = xmalloc(type->elements + str_len + 1, "string_constant");
10792                 memcpy(buf, ptr, type->elements);
10793                 ptr = buf + type->elements;
10794                 do {
10795                         *ptr++ = char_value(state, &str, end);
10796                 } while(str < end);
10797                 type->elements = ptr - buf;
10798         } while(peek(state) == TOK_LIT_STRING);
10799         *ptr = '\0';
10800         type->elements += 1;
10801         def = triple(state, OP_BLOBCONST, type, 0, 0);
10802         def->u.blob = buf;
10803
10804         return def;
10805 }
10806
10807
10808 static struct triple *integer_constant(struct compile_state *state)
10809 {
10810         struct triple *def;
10811         unsigned long val;
10812         struct token *tk;
10813         char *end;
10814         int u, l, decimal;
10815         struct type *type;
10816
10817         tk = eat(state, TOK_LIT_INT);
10818         errno = 0;
10819         decimal = (tk->val.str[0] != '0');
10820         val = strtoul(tk->val.str, &end, 0);
10821         if ((val > ULONG_T_MAX) || ((val == ULONG_MAX) && (errno == ERANGE))) {
10822                 error(state, 0, "Integer constant to large");
10823         }
10824         u = l = 0;
10825         if ((*end == 'u') || (*end == 'U')) {
10826                 u = 1;
10827                         end++;
10828         }
10829         if ((*end == 'l') || (*end == 'L')) {
10830                 l = 1;
10831                 end++;
10832         }
10833         if ((*end == 'u') || (*end == 'U')) {
10834                 u = 1;
10835                 end++;
10836         }
10837         if (*end) {
10838                 error(state, 0, "Junk at end of integer constant");
10839         }
10840         if (u && l)  {
10841                 type = &ulong_type;
10842         }
10843         else if (l) {
10844                 type = &long_type;
10845                 if (!decimal && (val > LONG_T_MAX)) {
10846                         type = &ulong_type;
10847                 }
10848         }
10849         else if (u) {
10850                 type = &uint_type;
10851                 if (val > UINT_T_MAX) {
10852                         type = &ulong_type;
10853                 }
10854         }
10855         else {
10856                 type = &int_type;
10857                 if (!decimal && (val > INT_T_MAX) && (val <= UINT_T_MAX)) {
10858                         type = &uint_type;
10859                 }
10860                 else if (!decimal && (val > LONG_T_MAX)) {
10861                         type = &ulong_type;
10862                 }
10863                 else if (val > INT_T_MAX) {
10864                         type = &long_type;
10865                 }
10866         }
10867         def = int_const(state, type, val);
10868         return def;
10869 }
10870
10871 static struct triple *primary_expr(struct compile_state *state)
10872 {
10873         struct triple *def;
10874         int tok;
10875         tok = peek(state);
10876         switch(tok) {
10877         case TOK_IDENT:
10878         {
10879                 struct hash_entry *ident;
10880                 /* Here ident is either:
10881                  * a varable name
10882                  * a function name
10883                  */
10884                 ident = eat(state, TOK_IDENT)->ident;
10885                 if (!ident->sym_ident) {
10886                         error(state, 0, "%s undeclared", ident->name);
10887                 }
10888                 def = ident->sym_ident->def;
10889                 break;
10890         }
10891         case TOK_ENUM_CONST:
10892         {
10893                 struct hash_entry *ident;
10894                 /* Here ident is an enumeration constant */
10895                 ident = eat(state, TOK_ENUM_CONST)->ident;
10896                 if (!ident->sym_ident) {
10897                         error(state, 0, "%s undeclared", ident->name);
10898                 }
10899                 def = ident->sym_ident->def;
10900                 break;
10901         }
10902         case TOK_MIDENT:
10903         {
10904                 struct hash_entry *ident;
10905                 ident = eat(state, TOK_MIDENT)->ident;
10906                 warning(state, 0, "Replacing undefined macro: %s with 0",
10907                         ident->name);
10908                 def = int_const(state, &int_type, 0);
10909                 break;
10910         }
10911         case TOK_LPAREN:
10912                 eat(state, TOK_LPAREN);
10913                 def = expr(state);
10914                 eat(state, TOK_RPAREN);
10915                 break;
10916         case TOK_LIT_INT:
10917                 def = integer_constant(state);
10918                 break;
10919         case TOK_LIT_FLOAT:
10920                 eat(state, TOK_LIT_FLOAT);
10921                 error(state, 0, "Floating point constants not supported");
10922                 def = 0;
10923                 FINISHME();
10924                 break;
10925         case TOK_LIT_CHAR:
10926                 def = character_constant(state);
10927                 break;
10928         case TOK_LIT_STRING:
10929                 def = string_constant(state);
10930                 break;
10931         default:
10932                 def = 0;
10933                 error(state, 0, "Unexpected token: %s\n", tokens[tok]);
10934         }
10935         return def;
10936 }
10937
10938 static struct triple *postfix_expr(struct compile_state *state)
10939 {
10940         struct triple *def;
10941         int postfix;
10942         def = primary_expr(state);
10943         do {
10944                 struct triple *left;
10945                 int tok;
10946                 postfix = 1;
10947                 left = def;
10948                 switch((tok = peek(state))) {
10949                 case TOK_LBRACKET:
10950                         eat(state, TOK_LBRACKET);
10951                         def = mk_subscript_expr(state, left, expr(state));
10952                         eat(state, TOK_RBRACKET);
10953                         break;
10954                 case TOK_LPAREN:
10955                         def = call_expr(state, def);
10956                         break;
10957                 case TOK_DOT:
10958                 {
10959                         struct hash_entry *field;
10960                         eat(state, TOK_DOT);
10961                         field = eat(state, TOK_IDENT)->ident;
10962                         def = deref_field(state, def, field);
10963                         break;
10964                 }
10965                 case TOK_ARROW:
10966                 {
10967                         struct hash_entry *field;
10968                         eat(state, TOK_ARROW);
10969                         field = eat(state, TOK_IDENT)->ident;
10970                         def = mk_deref_expr(state, read_expr(state, def));
10971                         def = deref_field(state, def, field);
10972                         break;
10973                 }
10974                 case TOK_PLUSPLUS:
10975                         eat(state, TOK_PLUSPLUS);
10976                         def = mk_post_inc_expr(state, left);
10977                         break;
10978                 case TOK_MINUSMINUS:
10979                         eat(state, TOK_MINUSMINUS);
10980                         def = mk_post_dec_expr(state, left);
10981                         break;
10982                 default:
10983                         postfix = 0;
10984                         break;
10985                 }
10986         } while(postfix);
10987         return def;
10988 }
10989
10990 static struct triple *cast_expr(struct compile_state *state);
10991
10992 static struct triple *unary_expr(struct compile_state *state)
10993 {
10994         struct triple *def, *right;
10995         int tok;
10996         switch((tok = peek(state))) {
10997         case TOK_PLUSPLUS:
10998                 eat(state, TOK_PLUSPLUS);
10999                 def = mk_pre_inc_expr(state, unary_expr(state));
11000                 break;
11001         case TOK_MINUSMINUS:
11002                 eat(state, TOK_MINUSMINUS);
11003                 def = mk_pre_dec_expr(state, unary_expr(state));
11004                 break;
11005         case TOK_AND:
11006                 eat(state, TOK_AND);
11007                 def = mk_addr_expr(state, cast_expr(state), 0);
11008                 break;
11009         case TOK_STAR:
11010                 eat(state, TOK_STAR);
11011                 def = mk_deref_expr(state, read_expr(state, cast_expr(state)));
11012                 break;
11013         case TOK_PLUS:
11014                 eat(state, TOK_PLUS);
11015                 right = read_expr(state, cast_expr(state));
11016                 arithmetic(state, right);
11017                 def = integral_promotion(state, right);
11018                 break;
11019         case TOK_MINUS:
11020                 eat(state, TOK_MINUS);
11021                 right = read_expr(state, cast_expr(state));
11022                 arithmetic(state, right);
11023                 def = integral_promotion(state, right);
11024                 def = triple(state, OP_NEG, def->type, def, 0);
11025                 break;
11026         case TOK_TILDE:
11027                 eat(state, TOK_TILDE);
11028                 right = read_expr(state, cast_expr(state));
11029                 integral(state, right);
11030                 def = integral_promotion(state, right);
11031                 def = triple(state, OP_INVERT, def->type, def, 0);
11032                 break;
11033         case TOK_BANG:
11034                 eat(state, TOK_BANG);
11035                 right = read_expr(state, cast_expr(state));
11036                 bool(state, right);
11037                 def = lfalse_expr(state, right);
11038                 break;
11039         case TOK_SIZEOF:
11040         {
11041                 struct type *type;
11042                 int tok1, tok2;
11043                 eat(state, TOK_SIZEOF);
11044                 tok1 = peek(state);
11045                 tok2 = peek2(state);
11046                 if ((tok1 == TOK_LPAREN) && istype(tok2)) {
11047                         eat(state, TOK_LPAREN);
11048                         type = type_name(state);
11049                         eat(state, TOK_RPAREN);
11050                 }
11051                 else {
11052                         struct triple *expr;
11053                         expr = unary_expr(state);
11054                         type = expr->type;
11055                         release_expr(state, expr);
11056                 }
11057                 def = int_const(state, &ulong_type, size_of_in_bytes(state, type));
11058                 break;
11059         }
11060         case TOK_ALIGNOF:
11061         {
11062                 struct type *type;
11063                 int tok1, tok2;
11064                 eat(state, TOK_ALIGNOF);
11065                 tok1 = peek(state);
11066                 tok2 = peek2(state);
11067                 if ((tok1 == TOK_LPAREN) && istype(tok2)) {
11068                         eat(state, TOK_LPAREN);
11069                         type = type_name(state);
11070                         eat(state, TOK_RPAREN);
11071                 }
11072                 else {
11073                         struct triple *expr;
11074                         expr = unary_expr(state);
11075                         type = expr->type;
11076                         release_expr(state, expr);
11077                 }
11078                 def = int_const(state, &ulong_type, align_of_in_bytes(state, type));
11079                 break;
11080         }
11081         case TOK_MDEFINED:
11082         {
11083                 /* We only come here if we are called from the preprocessor */
11084                 struct hash_entry *ident;
11085                 int parens;
11086                 eat(state, TOK_MDEFINED);
11087                 parens = 0;
11088                 if (pp_peek(state) == TOK_LPAREN) {
11089                         pp_eat(state, TOK_LPAREN);
11090                         parens = 1;
11091                 }
11092                 ident = pp_eat(state, TOK_MIDENT)->ident;
11093                 if (parens) {
11094                         eat(state, TOK_RPAREN);
11095                 }
11096                 def = int_const(state, &int_type, ident->sym_define != 0);
11097                 break;
11098         }
11099         default:
11100                 def = postfix_expr(state);
11101                 break;
11102         }
11103         return def;
11104 }
11105
11106 static struct triple *cast_expr(struct compile_state *state)
11107 {
11108         struct triple *def;
11109         int tok1, tok2;
11110         tok1 = peek(state);
11111         tok2 = peek2(state);
11112         if ((tok1 == TOK_LPAREN) && istype(tok2)) {
11113                 struct type *type;
11114                 eat(state, TOK_LPAREN);
11115                 type = type_name(state);
11116                 eat(state, TOK_RPAREN);
11117                 def = mk_cast_expr(state, type, cast_expr(state));
11118         }
11119         else {
11120                 def = unary_expr(state);
11121         }
11122         return def;
11123 }
11124
11125 static struct triple *mult_expr(struct compile_state *state)
11126 {
11127         struct triple *def;
11128         int done;
11129         def = cast_expr(state);
11130         do {
11131                 struct triple *left, *right;
11132                 struct type *result_type;
11133                 int tok, op, sign;
11134                 done = 0;
11135                 tok = peek(state);
11136                 switch(tok) {
11137                 case TOK_STAR:
11138                 case TOK_DIV:
11139                 case TOK_MOD:
11140                         left = read_expr(state, def);
11141                         arithmetic(state, left);
11142
11143                         eat(state, tok);
11144
11145                         right = read_expr(state, cast_expr(state));
11146                         arithmetic(state, right);
11147
11148                         result_type = arithmetic_result(state, left, right);
11149                         sign = is_signed(result_type);
11150                         op = -1;
11151                         switch(tok) {
11152                         case TOK_STAR: op = sign? OP_SMUL : OP_UMUL; break;
11153                         case TOK_DIV:  op = sign? OP_SDIV : OP_UDIV; break;
11154                         case TOK_MOD:  op = sign? OP_SMOD : OP_UMOD; break;
11155                         }
11156                         def = triple(state, op, result_type, left, right);
11157                         break;
11158                 default:
11159                         done = 1;
11160                         break;
11161                 }
11162         } while(!done);
11163         return def;
11164 }
11165
11166 static struct triple *add_expr(struct compile_state *state)
11167 {
11168         struct triple *def;
11169         int done;
11170         def = mult_expr(state);
11171         do {
11172                 done = 0;
11173                 switch( peek(state)) {
11174                 case TOK_PLUS:
11175                         eat(state, TOK_PLUS);
11176                         def = mk_add_expr(state, def, mult_expr(state));
11177                         break;
11178                 case TOK_MINUS:
11179                         eat(state, TOK_MINUS);
11180                         def = mk_sub_expr(state, def, mult_expr(state));
11181                         break;
11182                 default:
11183                         done = 1;
11184                         break;
11185                 }
11186         } while(!done);
11187         return def;
11188 }
11189
11190 static struct triple *shift_expr(struct compile_state *state)
11191 {
11192         struct triple *def;
11193         int done;
11194         def = add_expr(state);
11195         do {
11196                 struct triple *left, *right;
11197                 int tok, op;
11198                 done = 0;
11199                 switch((tok = peek(state))) {
11200                 case TOK_SL:
11201                 case TOK_SR:
11202                         left = read_expr(state, def);
11203                         integral(state, left);
11204                         left = integral_promotion(state, left);
11205
11206                         eat(state, tok);
11207
11208                         right = read_expr(state, add_expr(state));
11209                         integral(state, right);
11210                         right = integral_promotion(state, right);
11211                         
11212                         op = (tok == TOK_SL)? OP_SL : 
11213                                 is_signed(left->type)? OP_SSR: OP_USR;
11214
11215                         def = triple(state, op, left->type, left, right);
11216                         break;
11217                 default:
11218                         done = 1;
11219                         break;
11220                 }
11221         } while(!done);
11222         return def;
11223 }
11224
11225 static struct triple *relational_expr(struct compile_state *state)
11226 {
11227 #if DEBUG_ROMCC_WARNINGS
11228 #warning "Extend relational exprs to work on more than arithmetic types"
11229 #endif
11230         struct triple *def;
11231         int done;
11232         def = shift_expr(state);
11233         do {
11234                 struct triple *left, *right;
11235                 struct type *arg_type;
11236                 int tok, op, sign;
11237                 done = 0;
11238                 switch((tok = peek(state))) {
11239                 case TOK_LESS:
11240                 case TOK_MORE:
11241                 case TOK_LESSEQ:
11242                 case TOK_MOREEQ:
11243                         left = read_expr(state, def);
11244                         arithmetic(state, left);
11245
11246                         eat(state, tok);
11247
11248                         right = read_expr(state, shift_expr(state));
11249                         arithmetic(state, right);
11250
11251                         arg_type = arithmetic_result(state, left, right);
11252                         sign = is_signed(arg_type);
11253                         op = -1;
11254                         switch(tok) {
11255                         case TOK_LESS:   op = sign? OP_SLESS : OP_ULESS; break;
11256                         case TOK_MORE:   op = sign? OP_SMORE : OP_UMORE; break;
11257                         case TOK_LESSEQ: op = sign? OP_SLESSEQ : OP_ULESSEQ; break;
11258                         case TOK_MOREEQ: op = sign? OP_SMOREEQ : OP_UMOREEQ; break;
11259                         }
11260                         def = triple(state, op, &int_type, left, right);
11261                         break;
11262                 default:
11263                         done = 1;
11264                         break;
11265                 }
11266         } while(!done);
11267         return def;
11268 }
11269
11270 static struct triple *equality_expr(struct compile_state *state)
11271 {
11272 #if DEBUG_ROMCC_WARNINGS
11273 #warning "Extend equality exprs to work on more than arithmetic types"
11274 #endif
11275         struct triple *def;
11276         int done;
11277         def = relational_expr(state);
11278         do {
11279                 struct triple *left, *right;
11280                 int tok, op;
11281                 done = 0;
11282                 switch((tok = peek(state))) {
11283                 case TOK_EQEQ:
11284                 case TOK_NOTEQ:
11285                         left = read_expr(state, def);
11286                         arithmetic(state, left);
11287                         eat(state, tok);
11288                         right = read_expr(state, relational_expr(state));
11289                         arithmetic(state, right);
11290                         op = (tok == TOK_EQEQ) ? OP_EQ: OP_NOTEQ;
11291                         def = triple(state, op, &int_type, left, right);
11292                         break;
11293                 default:
11294                         done = 1;
11295                         break;
11296                 }
11297         } while(!done);
11298         return def;
11299 }
11300
11301 static struct triple *and_expr(struct compile_state *state)
11302 {
11303         struct triple *def;
11304         def = equality_expr(state);
11305         while(peek(state) == TOK_AND) {
11306                 struct triple *left, *right;
11307                 struct type *result_type;
11308                 left = read_expr(state, def);
11309                 integral(state, left);
11310                 eat(state, TOK_AND);
11311                 right = read_expr(state, equality_expr(state));
11312                 integral(state, right);
11313                 result_type = arithmetic_result(state, left, right);
11314                 def = triple(state, OP_AND, result_type, left, right);
11315         }
11316         return def;
11317 }
11318
11319 static struct triple *xor_expr(struct compile_state *state)
11320 {
11321         struct triple *def;
11322         def = and_expr(state);
11323         while(peek(state) == TOK_XOR) {
11324                 struct triple *left, *right;
11325                 struct type *result_type;
11326                 left = read_expr(state, def);
11327                 integral(state, left);
11328                 eat(state, TOK_XOR);
11329                 right = read_expr(state, and_expr(state));
11330                 integral(state, right);
11331                 result_type = arithmetic_result(state, left, right);
11332                 def = triple(state, OP_XOR, result_type, left, right);
11333         }
11334         return def;
11335 }
11336
11337 static struct triple *or_expr(struct compile_state *state)
11338 {
11339         struct triple *def;
11340         def = xor_expr(state);
11341         while(peek(state) == TOK_OR) {
11342                 struct triple *left, *right;
11343                 struct type *result_type;
11344                 left = read_expr(state, def);
11345                 integral(state, left);
11346                 eat(state, TOK_OR);
11347                 right = read_expr(state, xor_expr(state));
11348                 integral(state, right);
11349                 result_type = arithmetic_result(state, left, right);
11350                 def = triple(state, OP_OR, result_type, left, right);
11351         }
11352         return def;
11353 }
11354
11355 static struct triple *land_expr(struct compile_state *state)
11356 {
11357         struct triple *def;
11358         def = or_expr(state);
11359         while(peek(state) == TOK_LOGAND) {
11360                 struct triple *left, *right;
11361                 left = read_expr(state, def);
11362                 bool(state, left);
11363                 eat(state, TOK_LOGAND);
11364                 right = read_expr(state, or_expr(state));
11365                 bool(state, right);
11366
11367                 def = mkland_expr(state,
11368                         ltrue_expr(state, left),
11369                         ltrue_expr(state, right));
11370         }
11371         return def;
11372 }
11373
11374 static struct triple *lor_expr(struct compile_state *state)
11375 {
11376         struct triple *def;
11377         def = land_expr(state);
11378         while(peek(state) == TOK_LOGOR) {
11379                 struct triple *left, *right;
11380                 left = read_expr(state, def);
11381                 bool(state, left);
11382                 eat(state, TOK_LOGOR);
11383                 right = read_expr(state, land_expr(state));
11384                 bool(state, right);
11385
11386                 def = mklor_expr(state, 
11387                         ltrue_expr(state, left),
11388                         ltrue_expr(state, right));
11389         }
11390         return def;
11391 }
11392
11393 static struct triple *conditional_expr(struct compile_state *state)
11394 {
11395         struct triple *def;
11396         def = lor_expr(state);
11397         if (peek(state) == TOK_QUEST) {
11398                 struct triple *test, *left, *right;
11399                 bool(state, def);
11400                 test = ltrue_expr(state, read_expr(state, def));
11401                 eat(state, TOK_QUEST);
11402                 left = read_expr(state, expr(state));
11403                 eat(state, TOK_COLON);
11404                 right = read_expr(state, conditional_expr(state));
11405
11406                 def = mkcond_expr(state, test, left, right);
11407         }
11408         return def;
11409 }
11410
11411 struct cv_triple {
11412         struct triple *val;
11413         int id;
11414 };
11415
11416 static void set_cv(struct compile_state *state, struct cv_triple *cv,
11417         struct triple *dest, struct triple *val)
11418 {
11419         if (cv[dest->id].val) {
11420                 free_triple(state, cv[dest->id].val);
11421         }
11422         cv[dest->id].val = val;
11423 }
11424 static struct triple *get_cv(struct compile_state *state, struct cv_triple *cv,
11425         struct triple *src)
11426 {
11427         return cv[src->id].val;
11428 }
11429
11430 static struct triple *eval_const_expr(
11431         struct compile_state *state, struct triple *expr)
11432 {
11433         struct triple *def;
11434         if (is_const(expr)) {
11435                 def = expr;
11436         }
11437         else {
11438                 /* If we don't start out as a constant simplify into one */
11439                 struct triple *head, *ptr;
11440                 struct cv_triple *cv;
11441                 int i, count;
11442                 head = label(state); /* dummy initial triple */
11443                 flatten(state, head, expr);
11444                 count = 1;
11445                 for(ptr = head->next; ptr != head; ptr = ptr->next) {
11446                         count++;
11447                 }
11448                 cv = xcmalloc(sizeof(struct cv_triple)*count, "const value vector");
11449                 i = 1;
11450                 for(ptr = head->next; ptr != head; ptr = ptr->next) {
11451                         cv[i].val = 0;
11452                         cv[i].id  = ptr->id;
11453                         ptr->id   = i;
11454                         i++;
11455                 }
11456                 ptr = head->next;
11457                 do {
11458                         valid_ins(state, ptr);
11459                         if ((ptr->op == OP_PHI) || (ptr->op == OP_LIST)) {
11460                                 internal_error(state, ptr, 
11461                                         "unexpected %s in constant expression",
11462                                         tops(ptr->op));
11463                         }
11464                         else if (ptr->op == OP_LIST) {
11465                         }
11466                         else if (triple_is_structural(state, ptr)) {
11467                                 ptr = ptr->next;
11468                         }
11469                         else if (triple_is_ubranch(state, ptr)) {
11470                                 ptr = TARG(ptr, 0);
11471                         }
11472                         else if (triple_is_cbranch(state, ptr)) {
11473                                 struct triple *cond_val;
11474                                 cond_val = get_cv(state, cv, RHS(ptr, 0));
11475                                 if (!cond_val || !is_const(cond_val) || 
11476                                         (cond_val->op != OP_INTCONST)) 
11477                                 {
11478                                         internal_error(state, ptr, "bad branch condition");
11479                                 }
11480                                 if (cond_val->u.cval == 0) {
11481                                         ptr = ptr->next;
11482                                 } else {
11483                                         ptr = TARG(ptr, 0);
11484                                 }
11485                         }
11486                         else if (triple_is_branch(state, ptr)) {
11487                                 error(state, ptr, "bad branch type in constant expression");
11488                         }
11489                         else if (ptr->op == OP_WRITE) {
11490                                 struct triple *val;
11491                                 val = get_cv(state, cv, RHS(ptr, 0));
11492                                 
11493                                 set_cv(state, cv, MISC(ptr, 0), 
11494                                         copy_triple(state, val));
11495                                 set_cv(state, cv, ptr, 
11496                                         copy_triple(state, val));
11497                                 ptr = ptr->next;
11498                         }
11499                         else if (ptr->op == OP_READ) {
11500                                 set_cv(state, cv, ptr, 
11501                                         copy_triple(state, 
11502                                                 get_cv(state, cv, RHS(ptr, 0))));
11503                                 ptr = ptr->next;
11504                         }
11505                         else if (triple_is_pure(state, ptr, cv[ptr->id].id)) {
11506                                 struct triple *val, **rhs;
11507                                 val = copy_triple(state, ptr);
11508                                 rhs = triple_rhs(state, val, 0);
11509                                 for(; rhs; rhs = triple_rhs(state, val, rhs)) {
11510                                         if (!*rhs) {
11511                                                 internal_error(state, ptr, "Missing rhs");
11512                                         }
11513                                         *rhs = get_cv(state, cv, *rhs);
11514                                 }
11515                                 simplify(state, val);
11516                                 set_cv(state, cv, ptr, val);
11517                                 ptr = ptr->next;
11518                         }
11519                         else {
11520                                 error(state, ptr, "impure operation in constant expression");
11521                         }
11522                         
11523                 } while(ptr != head);
11524
11525                 /* Get the result value */
11526                 def = get_cv(state, cv, head->prev);
11527                 cv[head->prev->id].val = 0;
11528
11529                 /* Free the temporary values */
11530                 for(i = 0; i < count; i++) {
11531                         if (cv[i].val) {
11532                                 free_triple(state, cv[i].val);
11533                                 cv[i].val = 0;
11534                         }
11535                 }
11536                 xfree(cv);
11537                 /* Free the intermediate expressions */
11538                 while(head->next != head) {
11539                         release_triple(state, head->next);
11540                 }
11541                 free_triple(state, head);
11542         }
11543         if (!is_const(def)) {
11544                 error(state, expr, "Not a constant expression");
11545         }
11546         return def;
11547 }
11548
11549 static struct triple *constant_expr(struct compile_state *state)
11550 {
11551         return eval_const_expr(state, conditional_expr(state));
11552 }
11553
11554 static struct triple *assignment_expr(struct compile_state *state)
11555 {
11556         struct triple *def, *left, *right;
11557         int tok, op, sign;
11558         /* The C grammer in K&R shows assignment expressions
11559          * only taking unary expressions as input on their
11560          * left hand side.  But specifies the precedence of
11561          * assignemnt as the lowest operator except for comma.
11562          *
11563          * Allowing conditional expressions on the left hand side
11564          * of an assignement results in a grammar that accepts
11565          * a larger set of statements than standard C.   As long
11566          * as the subset of the grammar that is standard C behaves
11567          * correctly this should cause no problems.
11568          * 
11569          * For the extra token strings accepted by the grammar
11570          * none of them should produce a valid lvalue, so they
11571          * should not produce functioning programs.
11572          *
11573          * GCC has this bug as well, so surprises should be minimal.
11574          */
11575         def = conditional_expr(state);
11576         left = def;
11577         switch((tok = peek(state))) {
11578         case TOK_EQ:
11579                 lvalue(state, left);
11580                 eat(state, TOK_EQ);
11581                 def = write_expr(state, left, 
11582                         read_expr(state, assignment_expr(state)));
11583                 break;
11584         case TOK_TIMESEQ:
11585         case TOK_DIVEQ:
11586         case TOK_MODEQ:
11587                 lvalue(state, left);
11588                 arithmetic(state, left);
11589                 eat(state, tok);
11590                 right = read_expr(state, assignment_expr(state));
11591                 arithmetic(state, right);
11592
11593                 sign = is_signed(left->type);
11594                 op = -1;
11595                 switch(tok) {
11596                 case TOK_TIMESEQ: op = sign? OP_SMUL : OP_UMUL; break;
11597                 case TOK_DIVEQ:   op = sign? OP_SDIV : OP_UDIV; break;
11598                 case TOK_MODEQ:   op = sign? OP_SMOD : OP_UMOD; break;
11599                 }
11600                 def = write_expr(state, left,
11601                         triple(state, op, left->type, 
11602                                 read_expr(state, left), right));
11603                 break;
11604         case TOK_PLUSEQ:
11605                 lvalue(state, left);
11606                 eat(state, TOK_PLUSEQ);
11607                 def = write_expr(state, left,
11608                         mk_add_expr(state, left, assignment_expr(state)));
11609                 break;
11610         case TOK_MINUSEQ:
11611                 lvalue(state, left);
11612                 eat(state, TOK_MINUSEQ);
11613                 def = write_expr(state, left,
11614                         mk_sub_expr(state, left, assignment_expr(state)));
11615                 break;
11616         case TOK_SLEQ:
11617         case TOK_SREQ:
11618         case TOK_ANDEQ:
11619         case TOK_XOREQ:
11620         case TOK_OREQ:
11621                 lvalue(state, left);
11622                 integral(state, left);
11623                 eat(state, tok);
11624                 right = read_expr(state, assignment_expr(state));
11625                 integral(state, right);
11626                 right = integral_promotion(state, right);
11627                 sign = is_signed(left->type);
11628                 op = -1;
11629                 switch(tok) {
11630                 case TOK_SLEQ:  op = OP_SL; break;
11631                 case TOK_SREQ:  op = sign? OP_SSR: OP_USR; break;
11632                 case TOK_ANDEQ: op = OP_AND; break;
11633                 case TOK_XOREQ: op = OP_XOR; break;
11634                 case TOK_OREQ:  op = OP_OR; break;
11635                 }
11636                 def = write_expr(state, left,
11637                         triple(state, op, left->type, 
11638                                 read_expr(state, left), right));
11639                 break;
11640         }
11641         return def;
11642 }
11643
11644 static struct triple *expr(struct compile_state *state)
11645 {
11646         struct triple *def;
11647         def = assignment_expr(state);
11648         while(peek(state) == TOK_COMMA) {
11649                 eat(state, TOK_COMMA);
11650                 def = mkprog(state, def, assignment_expr(state), 0UL);
11651         }
11652         return def;
11653 }
11654
11655 static void expr_statement(struct compile_state *state, struct triple *first)
11656 {
11657         if (peek(state) != TOK_SEMI) {
11658                 /* lvalue conversions always apply except when certian operators
11659                  * are applied.  I apply the lvalue conversions here
11660                  * as I know no more operators will be applied.
11661                  */
11662                 flatten(state, first, lvalue_conversion(state, expr(state)));
11663         }
11664         eat(state, TOK_SEMI);
11665 }
11666
11667 static void if_statement(struct compile_state *state, struct triple *first)
11668 {
11669         struct triple *test, *jmp1, *jmp2, *middle, *end;
11670
11671         jmp1 = jmp2 = middle = 0;
11672         eat(state, TOK_IF);
11673         eat(state, TOK_LPAREN);
11674         test = expr(state);
11675         bool(state, test);
11676         /* Cleanup and invert the test */
11677         test = lfalse_expr(state, read_expr(state, test));
11678         eat(state, TOK_RPAREN);
11679         /* Generate the needed pieces */
11680         middle = label(state);
11681         jmp1 = branch(state, middle, test);
11682         /* Thread the pieces together */
11683         flatten(state, first, test);
11684         flatten(state, first, jmp1);
11685         flatten(state, first, label(state));
11686         statement(state, first);
11687         if (peek(state) == TOK_ELSE) {
11688                 eat(state, TOK_ELSE);
11689                 /* Generate the rest of the pieces */
11690                 end = label(state);
11691                 jmp2 = branch(state, end, 0);
11692                 /* Thread them together */
11693                 flatten(state, first, jmp2);
11694                 flatten(state, first, middle);
11695                 statement(state, first);
11696                 flatten(state, first, end);
11697         }
11698         else {
11699                 flatten(state, first, middle);
11700         }
11701 }
11702
11703 static void for_statement(struct compile_state *state, struct triple *first)
11704 {
11705         struct triple *head, *test, *tail, *jmp1, *jmp2, *end;
11706         struct triple *label1, *label2, *label3;
11707         struct hash_entry *ident;
11708
11709         eat(state, TOK_FOR);
11710         eat(state, TOK_LPAREN);
11711         head = test = tail = jmp1 = jmp2 = 0;
11712         if (peek(state) != TOK_SEMI) {
11713                 head = expr(state);
11714         } 
11715         eat(state, TOK_SEMI);
11716         if (peek(state) != TOK_SEMI) {
11717                 test = expr(state);
11718                 bool(state, test);
11719                 test = ltrue_expr(state, read_expr(state, test));
11720         }
11721         eat(state, TOK_SEMI);
11722         if (peek(state) != TOK_RPAREN) {
11723                 tail = expr(state);
11724         }
11725         eat(state, TOK_RPAREN);
11726         /* Generate the needed pieces */
11727         label1 = label(state);
11728         label2 = label(state);
11729         label3 = label(state);
11730         if (test) {
11731                 jmp1 = branch(state, label3, 0);
11732                 jmp2 = branch(state, label1, test);
11733         }
11734         else {
11735                 jmp2 = branch(state, label1, 0);
11736         }
11737         end = label(state);
11738         /* Remember where break and continue go */
11739         start_scope(state);
11740         ident = state->i_break;
11741         symbol(state, ident, &ident->sym_ident, end, end->type);
11742         ident = state->i_continue;
11743         symbol(state, ident, &ident->sym_ident, label2, label2->type);
11744         /* Now include the body */
11745         flatten(state, first, head);
11746         flatten(state, first, jmp1);
11747         flatten(state, first, label1);
11748         statement(state, first);
11749         flatten(state, first, label2);
11750         flatten(state, first, tail);
11751         flatten(state, first, label3);
11752         flatten(state, first, test);
11753         flatten(state, first, jmp2);
11754         flatten(state, first, end);
11755         /* Cleanup the break/continue scope */
11756         end_scope(state);
11757 }
11758
11759 static void while_statement(struct compile_state *state, struct triple *first)
11760 {
11761         struct triple *label1, *test, *label2, *jmp1, *jmp2, *end;
11762         struct hash_entry *ident;
11763         eat(state, TOK_WHILE);
11764         eat(state, TOK_LPAREN);
11765         test = expr(state);
11766         bool(state, test);
11767         test = ltrue_expr(state, read_expr(state, test));
11768         eat(state, TOK_RPAREN);
11769         /* Generate the needed pieces */
11770         label1 = label(state);
11771         label2 = label(state);
11772         jmp1 = branch(state, label2, 0);
11773         jmp2 = branch(state, label1, test);
11774         end = label(state);
11775         /* Remember where break and continue go */
11776         start_scope(state);
11777         ident = state->i_break;
11778         symbol(state, ident, &ident->sym_ident, end, end->type);
11779         ident = state->i_continue;
11780         symbol(state, ident, &ident->sym_ident, label2, label2->type);
11781         /* Thread them together */
11782         flatten(state, first, jmp1);
11783         flatten(state, first, label1);
11784         statement(state, first);
11785         flatten(state, first, label2);
11786         flatten(state, first, test);
11787         flatten(state, first, jmp2);
11788         flatten(state, first, end);
11789         /* Cleanup the break/continue scope */
11790         end_scope(state);
11791 }
11792
11793 static void do_statement(struct compile_state *state, struct triple *first)
11794 {
11795         struct triple *label1, *label2, *test, *end;
11796         struct hash_entry *ident;
11797         eat(state, TOK_DO);
11798         /* Generate the needed pieces */
11799         label1 = label(state);
11800         label2 = label(state);
11801         end = label(state);
11802         /* Remember where break and continue go */
11803         start_scope(state);
11804         ident = state->i_break;
11805         symbol(state, ident, &ident->sym_ident, end, end->type);
11806         ident = state->i_continue;
11807         symbol(state, ident, &ident->sym_ident, label2, label2->type);
11808         /* Now include the body */
11809         flatten(state, first, label1);
11810         statement(state, first);
11811         /* Cleanup the break/continue scope */
11812         end_scope(state);
11813         /* Eat the rest of the loop */
11814         eat(state, TOK_WHILE);
11815         eat(state, TOK_LPAREN);
11816         test = read_expr(state, expr(state));
11817         bool(state, test);
11818         eat(state, TOK_RPAREN);
11819         eat(state, TOK_SEMI);
11820         /* Thread the pieces together */
11821         test = ltrue_expr(state, test);
11822         flatten(state, first, label2);
11823         flatten(state, first, test);
11824         flatten(state, first, branch(state, label1, test));
11825         flatten(state, first, end);
11826 }
11827
11828
11829 static void return_statement(struct compile_state *state, struct triple *first)
11830 {
11831         struct triple *jmp, *mv, *dest, *var, *val;
11832         int last;
11833         eat(state, TOK_RETURN);
11834
11835 #if DEBUG_ROMCC_WARNINGS
11836 #warning "FIXME implement a more general excess branch elimination"
11837 #endif
11838         val = 0;
11839         /* If we have a return value do some more work */
11840         if (peek(state) != TOK_SEMI) {
11841                 val = read_expr(state, expr(state));
11842         }
11843         eat(state, TOK_SEMI);
11844
11845         /* See if this last statement in a function */
11846         last = ((peek(state) == TOK_RBRACE) && 
11847                 (state->scope_depth == GLOBAL_SCOPE_DEPTH +2));
11848
11849         /* Find the return variable */
11850         var = fresult(state, state->main_function);
11851
11852         /* Find the return destination */
11853         dest = state->i_return->sym_ident->def;
11854         mv = jmp = 0;
11855         /* If needed generate a jump instruction */
11856         if (!last) {
11857                 jmp = branch(state, dest, 0);
11858         }
11859         /* If needed generate an assignment instruction */
11860         if (val) {
11861                 mv = write_expr(state, deref_index(state, var, 1), val);
11862         }
11863         /* Now put the code together */
11864         if (mv) {
11865                 flatten(state, first, mv);
11866                 flatten(state, first, jmp);
11867         }
11868         else if (jmp) {
11869                 flatten(state, first, jmp);
11870         }
11871 }
11872
11873 static void break_statement(struct compile_state *state, struct triple *first)
11874 {
11875         struct triple *dest;
11876         eat(state, TOK_BREAK);
11877         eat(state, TOK_SEMI);
11878         if (!state->i_break->sym_ident) {
11879                 error(state, 0, "break statement not within loop or switch");
11880         }
11881         dest = state->i_break->sym_ident->def;
11882         flatten(state, first, branch(state, dest, 0));
11883 }
11884
11885 static void continue_statement(struct compile_state *state, struct triple *first)
11886 {
11887         struct triple *dest;
11888         eat(state, TOK_CONTINUE);
11889         eat(state, TOK_SEMI);
11890         if (!state->i_continue->sym_ident) {
11891                 error(state, 0, "continue statement outside of a loop");
11892         }
11893         dest = state->i_continue->sym_ident->def;
11894         flatten(state, first, branch(state, dest, 0));
11895 }
11896
11897 static void goto_statement(struct compile_state *state, struct triple *first)
11898 {
11899         struct hash_entry *ident;
11900         eat(state, TOK_GOTO);
11901         ident = eat(state, TOK_IDENT)->ident;
11902         if (!ident->sym_label) {
11903                 /* If this is a forward branch allocate the label now,
11904                  * it will be flattend in the appropriate location later.
11905                  */
11906                 struct triple *ins;
11907                 ins = label(state);
11908                 label_symbol(state, ident, ins, FUNCTION_SCOPE_DEPTH);
11909         }
11910         eat(state, TOK_SEMI);
11911
11912         flatten(state, first, branch(state, ident->sym_label->def, 0));
11913 }
11914
11915 static void labeled_statement(struct compile_state *state, struct triple *first)
11916 {
11917         struct triple *ins;
11918         struct hash_entry *ident;
11919
11920         ident = eat(state, TOK_IDENT)->ident;
11921         if (ident->sym_label && ident->sym_label->def) {
11922                 ins = ident->sym_label->def;
11923                 put_occurance(ins->occurance);
11924                 ins->occurance = new_occurance(state);
11925         }
11926         else {
11927                 ins = label(state);
11928                 label_symbol(state, ident, ins, FUNCTION_SCOPE_DEPTH);
11929         }
11930         if (ins->id & TRIPLE_FLAG_FLATTENED) {
11931                 error(state, 0, "label %s already defined", ident->name);
11932         }
11933         flatten(state, first, ins);
11934
11935         eat(state, TOK_COLON);
11936         statement(state, first);
11937 }
11938
11939 static void switch_statement(struct compile_state *state, struct triple *first)
11940 {
11941         struct triple *value, *top, *end, *dbranch;
11942         struct hash_entry *ident;
11943
11944         /* See if we have a valid switch statement */
11945         eat(state, TOK_SWITCH);
11946         eat(state, TOK_LPAREN);
11947         value = expr(state);
11948         integral(state, value);
11949         value = read_expr(state, value);
11950         eat(state, TOK_RPAREN);
11951         /* Generate the needed pieces */
11952         top = label(state);
11953         end = label(state);
11954         dbranch = branch(state, end, 0);
11955         /* Remember where case branches and break goes */
11956         start_scope(state);
11957         ident = state->i_switch;
11958         symbol(state, ident, &ident->sym_ident, value, value->type);
11959         ident = state->i_case;
11960         symbol(state, ident, &ident->sym_ident, top, top->type);
11961         ident = state->i_break;
11962         symbol(state, ident, &ident->sym_ident, end, end->type);
11963         ident = state->i_default;
11964         symbol(state, ident, &ident->sym_ident, dbranch, dbranch->type);
11965         /* Thread them together */
11966         flatten(state, first, value);
11967         flatten(state, first, top);
11968         flatten(state, first, dbranch);
11969         statement(state, first);
11970         flatten(state, first, end);
11971         /* Cleanup the switch scope */
11972         end_scope(state);
11973 }
11974
11975 static void case_statement(struct compile_state *state, struct triple *first)
11976 {
11977         struct triple *cvalue, *dest, *test, *jmp;
11978         struct triple *ptr, *value, *top, *dbranch;
11979
11980         /* See if w have a valid case statement */
11981         eat(state, TOK_CASE);
11982         cvalue = constant_expr(state);
11983         integral(state, cvalue);
11984         if (cvalue->op != OP_INTCONST) {
11985                 error(state, 0, "integer constant expected");
11986         }
11987         eat(state, TOK_COLON);
11988         if (!state->i_case->sym_ident) {
11989                 error(state, 0, "case statement not within a switch");
11990         }
11991
11992         /* Lookup the interesting pieces */
11993         top = state->i_case->sym_ident->def;
11994         value = state->i_switch->sym_ident->def;
11995         dbranch = state->i_default->sym_ident->def;
11996
11997         /* See if this case label has already been used */
11998         for(ptr = top; ptr != dbranch; ptr = ptr->next) {
11999                 if (ptr->op != OP_EQ) {
12000                         continue;
12001                 }
12002                 if (RHS(ptr, 1)->u.cval == cvalue->u.cval) {
12003                         error(state, 0, "duplicate case %d statement",
12004                                 cvalue->u.cval);
12005                 }
12006         }
12007         /* Generate the needed pieces */
12008         dest = label(state);
12009         test = triple(state, OP_EQ, &int_type, value, cvalue);
12010         jmp = branch(state, dest, test);
12011         /* Thread the pieces together */
12012         flatten(state, dbranch, test);
12013         flatten(state, dbranch, jmp);
12014         flatten(state, dbranch, label(state));
12015         flatten(state, first, dest);
12016         statement(state, first);
12017 }
12018
12019 static void default_statement(struct compile_state *state, struct triple *first)
12020 {
12021         struct triple *dest;
12022         struct triple *dbranch, *end;
12023
12024         /* See if we have a valid default statement */
12025         eat(state, TOK_DEFAULT);
12026         eat(state, TOK_COLON);
12027
12028         if (!state->i_case->sym_ident) {
12029                 error(state, 0, "default statement not within a switch");
12030         }
12031
12032         /* Lookup the interesting pieces */
12033         dbranch = state->i_default->sym_ident->def;
12034         end = state->i_break->sym_ident->def;
12035
12036         /* See if a default statement has already happened */
12037         if (TARG(dbranch, 0) != end) {
12038                 error(state, 0, "duplicate default statement");
12039         }
12040
12041         /* Generate the needed pieces */
12042         dest = label(state);
12043
12044         /* Blame the branch on the default statement */
12045         put_occurance(dbranch->occurance);
12046         dbranch->occurance = new_occurance(state);
12047
12048         /* Thread the pieces together */
12049         TARG(dbranch, 0) = dest;
12050         use_triple(dest, dbranch);
12051         flatten(state, first, dest);
12052         statement(state, first);
12053 }
12054
12055 static void asm_statement(struct compile_state *state, struct triple *first)
12056 {
12057         struct asm_info *info;
12058         struct {
12059                 struct triple *constraint;
12060                 struct triple *expr;
12061         } out_param[MAX_LHS], in_param[MAX_RHS], clob_param[MAX_LHS];
12062         struct triple *def, *asm_str;
12063         int out, in, clobbers, more, colons, i;
12064         int flags;
12065
12066         flags = 0;
12067         eat(state, TOK_ASM);
12068         /* For now ignore the qualifiers */
12069         switch(peek(state)) {
12070         case TOK_CONST:
12071                 eat(state, TOK_CONST);
12072                 break;
12073         case TOK_VOLATILE:
12074                 eat(state, TOK_VOLATILE);
12075                 flags |= TRIPLE_FLAG_VOLATILE;
12076                 break;
12077         }
12078         eat(state, TOK_LPAREN);
12079         asm_str = string_constant(state);
12080
12081         colons = 0;
12082         out = in = clobbers = 0;
12083         /* Outputs */
12084         if ((colons == 0) && (peek(state) == TOK_COLON)) {
12085                 eat(state, TOK_COLON);
12086                 colons++;
12087                 more = (peek(state) == TOK_LIT_STRING);
12088                 while(more) {
12089                         struct triple *var;
12090                         struct triple *constraint;
12091                         char *str;
12092                         more = 0;
12093                         if (out > MAX_LHS) {
12094                                 error(state, 0, "Maximum output count exceeded.");
12095                         }
12096                         constraint = string_constant(state);
12097                         str = constraint->u.blob;
12098                         if (str[0] != '=') {
12099                                 error(state, 0, "Output constraint does not start with =");
12100                         }
12101                         constraint->u.blob = str + 1;
12102                         eat(state, TOK_LPAREN);
12103                         var = conditional_expr(state);
12104                         eat(state, TOK_RPAREN);
12105
12106                         lvalue(state, var);
12107                         out_param[out].constraint = constraint;
12108                         out_param[out].expr       = var;
12109                         if (peek(state) == TOK_COMMA) {
12110                                 eat(state, TOK_COMMA);
12111                                 more = 1;
12112                         }
12113                         out++;
12114                 }
12115         }
12116         /* Inputs */
12117         if ((colons == 1) && (peek(state) == TOK_COLON)) {
12118                 eat(state, TOK_COLON);
12119                 colons++;
12120                 more = (peek(state) == TOK_LIT_STRING);
12121                 while(more) {
12122                         struct triple *val;
12123                         struct triple *constraint;
12124                         char *str;
12125                         more = 0;
12126                         if (in > MAX_RHS) {
12127                                 error(state, 0, "Maximum input count exceeded.");
12128                         }
12129                         constraint = string_constant(state);
12130                         str = constraint->u.blob;
12131                         if (digitp(str[0] && str[1] == '\0')) {
12132                                 int val;
12133                                 val = digval(str[0]);
12134                                 if ((val < 0) || (val >= out)) {
12135                                         error(state, 0, "Invalid input constraint %d", val);
12136                                 }
12137                         }
12138                         eat(state, TOK_LPAREN);
12139                         val = conditional_expr(state);
12140                         eat(state, TOK_RPAREN);
12141
12142                         in_param[in].constraint = constraint;
12143                         in_param[in].expr       = val;
12144                         if (peek(state) == TOK_COMMA) {
12145                                 eat(state, TOK_COMMA);
12146                                 more = 1;
12147                         }
12148                         in++;
12149                 }
12150         }
12151
12152         /* Clobber */
12153         if ((colons == 2) && (peek(state) == TOK_COLON)) {
12154                 eat(state, TOK_COLON);
12155                 colons++;
12156                 more = (peek(state) == TOK_LIT_STRING);
12157                 while(more) {
12158                         struct triple *clobber;
12159                         more = 0;
12160                         if ((clobbers + out) > MAX_LHS) {
12161                                 error(state, 0, "Maximum clobber limit exceeded.");
12162                         }
12163                         clobber = string_constant(state);
12164
12165                         clob_param[clobbers].constraint = clobber;
12166                         if (peek(state) == TOK_COMMA) {
12167                                 eat(state, TOK_COMMA);
12168                                 more = 1;
12169                         }
12170                         clobbers++;
12171                 }
12172         }
12173         eat(state, TOK_RPAREN);
12174         eat(state, TOK_SEMI);
12175
12176
12177         info = xcmalloc(sizeof(*info), "asm_info");
12178         info->str = asm_str->u.blob;
12179         free_triple(state, asm_str);
12180
12181         def = new_triple(state, OP_ASM, &void_type, clobbers + out, in);
12182         def->u.ainfo = info;
12183         def->id |= flags;
12184
12185         /* Find the register constraints */
12186         for(i = 0; i < out; i++) {
12187                 struct triple *constraint;
12188                 constraint = out_param[i].constraint;
12189                 info->tmpl.lhs[i] = arch_reg_constraint(state, 
12190                         out_param[i].expr->type, constraint->u.blob);
12191                 free_triple(state, constraint);
12192         }
12193         for(; i - out < clobbers; i++) {
12194                 struct triple *constraint;
12195                 constraint = clob_param[i - out].constraint;
12196                 info->tmpl.lhs[i] = arch_reg_clobber(state, constraint->u.blob);
12197                 free_triple(state, constraint);
12198         }
12199         for(i = 0; i < in; i++) {
12200                 struct triple *constraint;
12201                 const char *str;
12202                 constraint = in_param[i].constraint;
12203                 str = constraint->u.blob;
12204                 if (digitp(str[0]) && str[1] == '\0') {
12205                         struct reg_info cinfo;
12206                         int val;
12207                         val = digval(str[0]);
12208                         cinfo.reg = info->tmpl.lhs[val].reg;
12209                         cinfo.regcm = arch_type_to_regcm(state, in_param[i].expr->type);
12210                         cinfo.regcm &= info->tmpl.lhs[val].regcm;
12211                         if (cinfo.reg == REG_UNSET) {
12212                                 cinfo.reg = REG_VIRT0 + val;
12213                         }
12214                         if (cinfo.regcm == 0) {
12215                                 error(state, 0, "No registers for %d", val);
12216                         }
12217                         info->tmpl.lhs[val] = cinfo;
12218                         info->tmpl.rhs[i]   = cinfo;
12219                                 
12220                 } else {
12221                         info->tmpl.rhs[i] = arch_reg_constraint(state, 
12222                                 in_param[i].expr->type, str);
12223                 }
12224                 free_triple(state, constraint);
12225         }
12226
12227         /* Now build the helper expressions */
12228         for(i = 0; i < in; i++) {
12229                 RHS(def, i) = read_expr(state, in_param[i].expr);
12230         }
12231         flatten(state, first, def);
12232         for(i = 0; i < (out + clobbers); i++) {
12233                 struct type *type;
12234                 struct triple *piece;
12235                 if (i < out) {
12236                         type = out_param[i].expr->type;
12237                 } else {
12238                         size_t size = arch_reg_size(info->tmpl.lhs[i].reg);
12239                         if (size >= SIZEOF_LONG) {
12240                                 type = &ulong_type;
12241                         } 
12242                         else if (size >= SIZEOF_INT) {
12243                                 type = &uint_type;
12244                         }
12245                         else if (size >= SIZEOF_SHORT) {
12246                                 type = &ushort_type;
12247                         }
12248                         else {
12249                                 type = &uchar_type;
12250                         }
12251                 }
12252                 piece = triple(state, OP_PIECE, type, def, 0);
12253                 piece->u.cval = i;
12254                 LHS(def, i) = piece;
12255                 flatten(state, first, piece);
12256         }
12257         /* And write the helpers to their destinations */
12258         for(i = 0; i < out; i++) {
12259                 struct triple *piece;
12260                 piece = LHS(def, i);
12261                 flatten(state, first,
12262                         write_expr(state, out_param[i].expr, piece));
12263         }
12264 }
12265
12266
12267 static int isdecl(int tok)
12268 {
12269         switch(tok) {
12270         case TOK_AUTO:
12271         case TOK_REGISTER:
12272         case TOK_STATIC:
12273         case TOK_EXTERN:
12274         case TOK_TYPEDEF:
12275         case TOK_CONST:
12276         case TOK_RESTRICT:
12277         case TOK_VOLATILE:
12278         case TOK_VOID:
12279         case TOK_CHAR:
12280         case TOK_SHORT:
12281         case TOK_INT:
12282         case TOK_LONG:
12283         case TOK_FLOAT:
12284         case TOK_DOUBLE:
12285         case TOK_SIGNED:
12286         case TOK_UNSIGNED:
12287         case TOK_STRUCT:
12288         case TOK_UNION:
12289         case TOK_ENUM:
12290         case TOK_TYPE_NAME: /* typedef name */
12291                 return 1;
12292         default:
12293                 return 0;
12294         }
12295 }
12296
12297 static void compound_statement(struct compile_state *state, struct triple *first)
12298 {
12299         eat(state, TOK_LBRACE);
12300         start_scope(state);
12301
12302         /* statement-list opt */
12303         while (peek(state) != TOK_RBRACE) {
12304                 statement(state, first);
12305         }
12306         end_scope(state);
12307         eat(state, TOK_RBRACE);
12308 }
12309
12310 static void statement(struct compile_state *state, struct triple *first)
12311 {
12312         int tok;
12313         tok = peek(state);
12314         if (tok == TOK_LBRACE) {
12315                 compound_statement(state, first);
12316         }
12317         else if (tok == TOK_IF) {
12318                 if_statement(state, first); 
12319         }
12320         else if (tok == TOK_FOR) {
12321                 for_statement(state, first);
12322         }
12323         else if (tok == TOK_WHILE) {
12324                 while_statement(state, first);
12325         }
12326         else if (tok == TOK_DO) {
12327                 do_statement(state, first);
12328         }
12329         else if (tok == TOK_RETURN) {
12330                 return_statement(state, first);
12331         }
12332         else if (tok == TOK_BREAK) {
12333                 break_statement(state, first);
12334         }
12335         else if (tok == TOK_CONTINUE) {
12336                 continue_statement(state, first);
12337         }
12338         else if (tok == TOK_GOTO) {
12339                 goto_statement(state, first);
12340         }
12341         else if (tok == TOK_SWITCH) {
12342                 switch_statement(state, first);
12343         }
12344         else if (tok == TOK_ASM) {
12345                 asm_statement(state, first);
12346         }
12347         else if ((tok == TOK_IDENT) && (peek2(state) == TOK_COLON)) {
12348                 labeled_statement(state, first); 
12349         }
12350         else if (tok == TOK_CASE) {
12351                 case_statement(state, first);
12352         }
12353         else if (tok == TOK_DEFAULT) {
12354                 default_statement(state, first);
12355         }
12356         else if (isdecl(tok)) {
12357                 /* This handles C99 intermixing of statements and decls */
12358                 decl(state, first);
12359         }
12360         else {
12361                 expr_statement(state, first);
12362         }
12363 }
12364
12365 static struct type *param_decl(struct compile_state *state)
12366 {
12367         struct type *type;
12368         struct hash_entry *ident;
12369         /* Cheat so the declarator will know we are not global */
12370         start_scope(state); 
12371         ident = 0;
12372         type = decl_specifiers(state);
12373         type = declarator(state, type, &ident, 0);
12374         type->field_ident = ident;
12375         end_scope(state);
12376         return type;
12377 }
12378
12379 static struct type *param_type_list(struct compile_state *state, struct type *type)
12380 {
12381         struct type *ftype, **next;
12382         ftype = new_type(TYPE_FUNCTION | (type->type & STOR_MASK), type, param_decl(state));
12383         next = &ftype->right;
12384         ftype->elements = 1;
12385         while(peek(state) == TOK_COMMA) {
12386                 eat(state, TOK_COMMA);
12387                 if (peek(state) == TOK_DOTS) {
12388                         eat(state, TOK_DOTS);
12389                         error(state, 0, "variadic functions not supported");
12390                 }
12391                 else {
12392                         *next = new_type(TYPE_PRODUCT, *next, param_decl(state));
12393                         next = &((*next)->right);
12394                         ftype->elements++;
12395                 }
12396         }
12397         return ftype;
12398 }
12399
12400 static struct type *type_name(struct compile_state *state)
12401 {
12402         struct type *type;
12403         type = specifier_qualifier_list(state);
12404         /* abstract-declarator (may consume no tokens) */
12405         type = declarator(state, type, 0, 0);
12406         return type;
12407 }
12408
12409 static struct type *direct_declarator(
12410         struct compile_state *state, struct type *type, 
12411         struct hash_entry **pident, int need_ident)
12412 {
12413         struct hash_entry *ident;
12414         struct type *outer;
12415         int op;
12416         outer = 0;
12417         arrays_complete(state, type);
12418         switch(peek(state)) {
12419         case TOK_IDENT:
12420                 ident = eat(state, TOK_IDENT)->ident;
12421                 if (!ident) {
12422                         error(state, 0, "Unexpected identifier found");
12423                 }
12424                 /* The name of what we are declaring */
12425                 *pident = ident;
12426                 break;
12427         case TOK_LPAREN:
12428                 eat(state, TOK_LPAREN);
12429                 outer = declarator(state, type, pident, need_ident);
12430                 eat(state, TOK_RPAREN);
12431                 break;
12432         default:
12433                 if (need_ident) {
12434                         error(state, 0, "Identifier expected");
12435                 }
12436                 break;
12437         }
12438         do {
12439                 op = 1;
12440                 arrays_complete(state, type);
12441                 switch(peek(state)) {
12442                 case TOK_LPAREN:
12443                         eat(state, TOK_LPAREN);
12444                         type = param_type_list(state, type);
12445                         eat(state, TOK_RPAREN);
12446                         break;
12447                 case TOK_LBRACKET:
12448                 {
12449                         unsigned int qualifiers;
12450                         struct triple *value;
12451                         value = 0;
12452                         eat(state, TOK_LBRACKET);
12453                         if (peek(state) != TOK_RBRACKET) {
12454                                 value = constant_expr(state);
12455                                 integral(state, value);
12456                         }
12457                         eat(state, TOK_RBRACKET);
12458
12459                         qualifiers = type->type & (QUAL_MASK | STOR_MASK);
12460                         type = new_type(TYPE_ARRAY | qualifiers, type, 0);
12461                         if (value) {
12462                                 type->elements = value->u.cval;
12463                                 free_triple(state, value);
12464                         } else {
12465                                 type->elements = ELEMENT_COUNT_UNSPECIFIED;
12466                                 op = 0;
12467                         }
12468                 }
12469                         break;
12470                 default:
12471                         op = 0;
12472                         break;
12473                 }
12474         } while(op);
12475         if (outer) {
12476                 struct type *inner;
12477                 arrays_complete(state, type);
12478                 FINISHME();
12479                 for(inner = outer; inner->left; inner = inner->left)
12480                         ;
12481                 inner->left = type;
12482                 type = outer;
12483         }
12484         return type;
12485 }
12486
12487 static struct type *declarator(
12488         struct compile_state *state, struct type *type, 
12489         struct hash_entry **pident, int need_ident)
12490 {
12491         while(peek(state) == TOK_STAR) {
12492                 eat(state, TOK_STAR);
12493                 type = new_type(TYPE_POINTER | (type->type & STOR_MASK), type, 0);
12494         }
12495         type = direct_declarator(state, type, pident, need_ident);
12496         return type;
12497 }
12498
12499 static struct type *typedef_name(
12500         struct compile_state *state, unsigned int specifiers)
12501 {
12502         struct hash_entry *ident;
12503         struct type *type;
12504         ident = eat(state, TOK_TYPE_NAME)->ident;
12505         type = ident->sym_ident->type;
12506         specifiers |= type->type & QUAL_MASK;
12507         if ((specifiers & (STOR_MASK | QUAL_MASK)) != 
12508                 (type->type & (STOR_MASK | QUAL_MASK))) {
12509                 type = clone_type(specifiers, type);
12510         }
12511         return type;
12512 }
12513
12514 static struct type *enum_specifier(
12515         struct compile_state *state, unsigned int spec)
12516 {
12517         struct hash_entry *ident;
12518         ulong_t base;
12519         int tok;
12520         struct type *enum_type;
12521         enum_type = 0;
12522         ident = 0;
12523         eat(state, TOK_ENUM);
12524         tok = peek(state);
12525         if ((tok == TOK_IDENT) || (tok == TOK_ENUM_CONST) || (tok == TOK_TYPE_NAME)) {
12526                 ident = eat(state, tok)->ident;
12527         }
12528         base = 0;
12529         if (!ident || (peek(state) == TOK_LBRACE)) {
12530                 struct type **next;
12531                 eat(state, TOK_LBRACE);
12532                 enum_type = new_type(TYPE_ENUM | spec, 0, 0);
12533                 enum_type->type_ident = ident;
12534                 next = &enum_type->right;
12535                 do {
12536                         struct hash_entry *eident;
12537                         struct triple *value;
12538                         struct type *entry;
12539                         eident = eat(state, TOK_IDENT)->ident;
12540                         if (eident->sym_ident) {
12541                                 error(state, 0, "%s already declared", 
12542                                         eident->name);
12543                         }
12544                         eident->tok = TOK_ENUM_CONST;
12545                         if (peek(state) == TOK_EQ) {
12546                                 struct triple *val;
12547                                 eat(state, TOK_EQ);
12548                                 val = constant_expr(state);
12549                                 integral(state, val);
12550                                 base = val->u.cval;
12551                         }
12552                         value = int_const(state, &int_type, base);
12553                         symbol(state, eident, &eident->sym_ident, value, &int_type);
12554                         entry = new_type(TYPE_LIST, 0, 0);
12555                         entry->field_ident = eident;
12556                         *next = entry;
12557                         next = &entry->right;
12558                         base += 1;
12559                         if (peek(state) == TOK_COMMA) {
12560                                 eat(state, TOK_COMMA);
12561                         }
12562                 } while(peek(state) != TOK_RBRACE);
12563                 eat(state, TOK_RBRACE);
12564                 if (ident) {
12565                         symbol(state, ident, &ident->sym_tag, 0, enum_type);
12566                 }
12567         }
12568         if (ident && ident->sym_tag &&
12569                 ident->sym_tag->type &&
12570                 ((ident->sym_tag->type->type & TYPE_MASK) == TYPE_ENUM)) {
12571                 enum_type = clone_type(spec, ident->sym_tag->type);
12572         }
12573         else if (ident && !enum_type) {
12574                 error(state, 0, "enum %s undeclared", ident->name);
12575         }
12576         return enum_type;
12577 }
12578
12579 static struct type *struct_declarator(
12580         struct compile_state *state, struct type *type, struct hash_entry **ident)
12581 {
12582         if (peek(state) != TOK_COLON) {
12583                 type = declarator(state, type, ident, 1);
12584         }
12585         if (peek(state) == TOK_COLON) {
12586                 struct triple *value;
12587                 eat(state, TOK_COLON);
12588                 value = constant_expr(state);
12589                 if (value->op != OP_INTCONST) {
12590                         error(state, 0, "Invalid constant expression");
12591                 }
12592                 if (value->u.cval > size_of(state, type)) {
12593                         error(state, 0, "bitfield larger than base type");
12594                 }
12595                 if (!TYPE_INTEGER(type->type) || ((type->type & TYPE_MASK) == TYPE_BITFIELD)) {
12596                         error(state, 0, "bitfield base not an integer type");
12597                 }
12598                 type = new_type(TYPE_BITFIELD, type, 0);
12599                 type->elements = value->u.cval;
12600         }
12601         return type;
12602 }
12603
12604 static struct type *struct_or_union_specifier(
12605         struct compile_state *state, unsigned int spec)
12606 {
12607         struct type *struct_type;
12608         struct hash_entry *ident;
12609         unsigned int type_main;
12610         unsigned int type_join;
12611         int tok;
12612         struct_type = 0;
12613         ident = 0;
12614         switch(peek(state)) {
12615         case TOK_STRUCT:
12616                 eat(state, TOK_STRUCT);
12617                 type_main = TYPE_STRUCT;
12618                 type_join = TYPE_PRODUCT;
12619                 break;
12620         case TOK_UNION:
12621                 eat(state, TOK_UNION);
12622                 type_main = TYPE_UNION;
12623                 type_join = TYPE_OVERLAP;
12624                 break;
12625         default:
12626                 eat(state, TOK_STRUCT);
12627                 type_main = TYPE_STRUCT;
12628                 type_join = TYPE_PRODUCT;
12629                 break;
12630         }
12631         tok = peek(state);
12632         if ((tok == TOK_IDENT) || (tok == TOK_ENUM_CONST) || (tok == TOK_TYPE_NAME)) {
12633                 ident = eat(state, tok)->ident;
12634         }
12635         if (!ident || (peek(state) == TOK_LBRACE)) {
12636                 ulong_t elements;
12637                 struct type **next;
12638                 elements = 0;
12639                 eat(state, TOK_LBRACE);
12640                 next = &struct_type;
12641                 do {
12642                         struct type *base_type;
12643                         int done;
12644                         base_type = specifier_qualifier_list(state);
12645                         do {
12646                                 struct type *type;
12647                                 struct hash_entry *fident;
12648                                 done = 1;
12649                                 type = struct_declarator(state, base_type, &fident);
12650                                 elements++;
12651                                 if (peek(state) == TOK_COMMA) {
12652                                         done = 0;
12653                                         eat(state, TOK_COMMA);
12654                                 }
12655                                 type = clone_type(0, type);
12656                                 type->field_ident = fident;
12657                                 if (*next) {
12658                                         *next = new_type(type_join, *next, type);
12659                                         next = &((*next)->right);
12660                                 } else {
12661                                         *next = type;
12662                                 }
12663                         } while(!done);
12664                         eat(state, TOK_SEMI);
12665                 } while(peek(state) != TOK_RBRACE);
12666                 eat(state, TOK_RBRACE);
12667                 struct_type = new_type(type_main | spec, struct_type, 0);
12668                 struct_type->type_ident = ident;
12669                 struct_type->elements = elements;
12670                 if (ident) {
12671                         symbol(state, ident, &ident->sym_tag, 0, struct_type);
12672                 }
12673         }
12674         if (ident && ident->sym_tag && 
12675                 ident->sym_tag->type && 
12676                 ((ident->sym_tag->type->type & TYPE_MASK) == type_main)) {
12677                 struct_type = clone_type(spec, ident->sym_tag->type);
12678         }
12679         else if (ident && !struct_type) {
12680                 error(state, 0, "%s %s undeclared", 
12681                         (type_main == TYPE_STRUCT)?"struct" : "union",
12682                         ident->name);
12683         }
12684         return struct_type;
12685 }
12686
12687 static unsigned int storage_class_specifier_opt(struct compile_state *state)
12688 {
12689         unsigned int specifiers;
12690         switch(peek(state)) {
12691         case TOK_AUTO:
12692                 eat(state, TOK_AUTO);
12693                 specifiers = STOR_AUTO;
12694                 break;
12695         case TOK_REGISTER:
12696                 eat(state, TOK_REGISTER);
12697                 specifiers = STOR_REGISTER;
12698                 break;
12699         case TOK_STATIC:
12700                 eat(state, TOK_STATIC);
12701                 specifiers = STOR_STATIC;
12702                 break;
12703         case TOK_EXTERN:
12704                 eat(state, TOK_EXTERN);
12705                 specifiers = STOR_EXTERN;
12706                 break;
12707         case TOK_TYPEDEF:
12708                 eat(state, TOK_TYPEDEF);
12709                 specifiers = STOR_TYPEDEF;
12710                 break;
12711         default:
12712                 if (state->scope_depth <= GLOBAL_SCOPE_DEPTH) {
12713                         specifiers = STOR_LOCAL;
12714                 }
12715                 else {
12716                         specifiers = STOR_AUTO;
12717                 }
12718         }
12719         return specifiers;
12720 }
12721
12722 static unsigned int function_specifier_opt(struct compile_state *state)
12723 {
12724         /* Ignore the inline keyword */
12725         unsigned int specifiers;
12726         specifiers = 0;
12727         switch(peek(state)) {
12728         case TOK_INLINE:
12729                 eat(state, TOK_INLINE);
12730                 specifiers = STOR_INLINE;
12731         }
12732         return specifiers;
12733 }
12734
12735 static unsigned int attrib(struct compile_state *state, unsigned int attributes)
12736 {
12737         int tok = peek(state);
12738         switch(tok) {
12739         case TOK_COMMA:
12740         case TOK_LPAREN:
12741                 /* The empty attribute ignore it */
12742                 break;
12743         case TOK_IDENT:
12744         case TOK_ENUM_CONST:
12745         case TOK_TYPE_NAME:
12746         {
12747                 struct hash_entry *ident;
12748                 ident = eat(state, TOK_IDENT)->ident;
12749
12750                 if (ident == state->i_noinline) {
12751                         if (attributes & ATTRIB_ALWAYS_INLINE) {
12752                                 error(state, 0, "both always_inline and noinline attribtes");
12753                         }
12754                         attributes |= ATTRIB_NOINLINE;
12755                 }
12756                 else if (ident == state->i_always_inline) {
12757                         if (attributes & ATTRIB_NOINLINE) {
12758                                 error(state, 0, "both noinline and always_inline attribtes");
12759                         }
12760                         attributes |= ATTRIB_ALWAYS_INLINE;
12761                 }
12762                 else if (ident == state->i_noreturn) {
12763                         // attribute((noreturn)) does nothing (yet?)
12764                 }
12765                 else {
12766                         error(state, 0, "Unknown attribute:%s", ident->name);
12767                 }
12768                 break;
12769         }
12770         default:
12771                 error(state, 0, "Unexpected token: %s\n", tokens[tok]);
12772                 break;
12773         }
12774         return attributes;
12775 }
12776
12777 static unsigned int attribute_list(struct compile_state *state, unsigned type)
12778 {
12779         type = attrib(state, type);
12780         while(peek(state) == TOK_COMMA) {
12781                 eat(state, TOK_COMMA);
12782                 type = attrib(state, type);
12783         }
12784         return type;
12785 }
12786
12787 static unsigned int attributes_opt(struct compile_state *state, unsigned type)
12788 {
12789         if (peek(state) == TOK_ATTRIBUTE) {
12790                 eat(state, TOK_ATTRIBUTE);
12791                 eat(state, TOK_LPAREN);
12792                 eat(state, TOK_LPAREN);
12793                 type = attribute_list(state, type);
12794                 eat(state, TOK_RPAREN);
12795                 eat(state, TOK_RPAREN);
12796         }
12797         return type;
12798 }
12799
12800 static unsigned int type_qualifiers(struct compile_state *state)
12801 {
12802         unsigned int specifiers;
12803         int done;
12804         done = 0;
12805         specifiers = QUAL_NONE;
12806         do {
12807                 switch(peek(state)) {
12808                 case TOK_CONST:
12809                         eat(state, TOK_CONST);
12810                         specifiers |= QUAL_CONST;
12811                         break;
12812                 case TOK_VOLATILE:
12813                         eat(state, TOK_VOLATILE);
12814                         specifiers |= QUAL_VOLATILE;
12815                         break;
12816                 case TOK_RESTRICT:
12817                         eat(state, TOK_RESTRICT);
12818                         specifiers |= QUAL_RESTRICT;
12819                         break;
12820                 default:
12821                         done = 1;
12822                         break;
12823                 }
12824         } while(!done);
12825         return specifiers;
12826 }
12827
12828 static struct type *type_specifier(
12829         struct compile_state *state, unsigned int spec)
12830 {
12831         struct type *type;
12832         int tok;
12833         type = 0;
12834         switch((tok = peek(state))) {
12835         case TOK_VOID:
12836                 eat(state, TOK_VOID);
12837                 type = new_type(TYPE_VOID | spec, 0, 0);
12838                 break;
12839         case TOK_CHAR:
12840                 eat(state, TOK_CHAR);
12841                 type = new_type(TYPE_CHAR | spec, 0, 0);
12842                 break;
12843         case TOK_SHORT:
12844                 eat(state, TOK_SHORT);
12845                 if (peek(state) == TOK_INT) {
12846                         eat(state, TOK_INT);
12847                 }
12848                 type = new_type(TYPE_SHORT | spec, 0, 0);
12849                 break;
12850         case TOK_INT:
12851                 eat(state, TOK_INT);
12852                 type = new_type(TYPE_INT | spec, 0, 0);
12853                 break;
12854         case TOK_LONG:
12855                 eat(state, TOK_LONG);
12856                 switch(peek(state)) {
12857                 case TOK_LONG:
12858                         eat(state, TOK_LONG);
12859                         error(state, 0, "long long not supported");
12860                         break;
12861                 case TOK_DOUBLE:
12862                         eat(state, TOK_DOUBLE);
12863                         error(state, 0, "long double not supported");
12864                         break;
12865                 case TOK_INT:
12866                         eat(state, TOK_INT);
12867                         type = new_type(TYPE_LONG | spec, 0, 0);
12868                         break;
12869                 default:
12870                         type = new_type(TYPE_LONG | spec, 0, 0);
12871                         break;
12872                 }
12873                 break;
12874         case TOK_FLOAT:
12875                 eat(state, TOK_FLOAT);
12876                 error(state, 0, "type float not supported");
12877                 break;
12878         case TOK_DOUBLE:
12879                 eat(state, TOK_DOUBLE);
12880                 error(state, 0, "type double not supported");
12881                 break;
12882         case TOK_SIGNED:
12883                 eat(state, TOK_SIGNED);
12884                 switch(peek(state)) {
12885                 case TOK_LONG:
12886                         eat(state, TOK_LONG);
12887                         switch(peek(state)) {
12888                         case TOK_LONG:
12889                                 eat(state, TOK_LONG);
12890                                 error(state, 0, "type long long not supported");
12891                                 break;
12892                         case TOK_INT:
12893                                 eat(state, TOK_INT);
12894                                 type = new_type(TYPE_LONG | spec, 0, 0);
12895                                 break;
12896                         default:
12897                                 type = new_type(TYPE_LONG | spec, 0, 0);
12898                                 break;
12899                         }
12900                         break;
12901                 case TOK_INT:
12902                         eat(state, TOK_INT);
12903                         type = new_type(TYPE_INT | spec, 0, 0);
12904                         break;
12905                 case TOK_SHORT:
12906                         eat(state, TOK_SHORT);
12907                         type = new_type(TYPE_SHORT | spec, 0, 0);
12908                         break;
12909                 case TOK_CHAR:
12910                         eat(state, TOK_CHAR);
12911                         type = new_type(TYPE_CHAR | spec, 0, 0);
12912                         break;
12913                 default:
12914                         type = new_type(TYPE_INT | spec, 0, 0);
12915                         break;
12916                 }
12917                 break;
12918         case TOK_UNSIGNED:
12919                 eat(state, TOK_UNSIGNED);
12920                 switch(peek(state)) {
12921                 case TOK_LONG:
12922                         eat(state, TOK_LONG);
12923                         switch(peek(state)) {
12924                         case TOK_LONG:
12925                                 eat(state, TOK_LONG);
12926                                 error(state, 0, "unsigned long long not supported");
12927                                 break;
12928                         case TOK_INT:
12929                                 eat(state, TOK_INT);
12930                                 type = new_type(TYPE_ULONG | spec, 0, 0);
12931                                 break;
12932                         default:
12933                                 type = new_type(TYPE_ULONG | spec, 0, 0);
12934                                 break;
12935                         }
12936                         break;
12937                 case TOK_INT:
12938                         eat(state, TOK_INT);
12939                         type = new_type(TYPE_UINT | spec, 0, 0);
12940                         break;
12941                 case TOK_SHORT:
12942                         eat(state, TOK_SHORT);
12943                         type = new_type(TYPE_USHORT | spec, 0, 0);
12944                         break;
12945                 case TOK_CHAR:
12946                         eat(state, TOK_CHAR);
12947                         type = new_type(TYPE_UCHAR | spec, 0, 0);
12948                         break;
12949                 default:
12950                         type = new_type(TYPE_UINT | spec, 0, 0);
12951                         break;
12952                 }
12953                 break;
12954                 /* struct or union specifier */
12955         case TOK_STRUCT:
12956         case TOK_UNION:
12957                 type = struct_or_union_specifier(state, spec);
12958                 break;
12959                 /* enum-spefifier */
12960         case TOK_ENUM:
12961                 type = enum_specifier(state, spec);
12962                 break;
12963                 /* typedef name */
12964         case TOK_TYPE_NAME:
12965                 type = typedef_name(state, spec);
12966                 break;
12967         default:
12968                 error(state, 0, "bad type specifier %s", 
12969                         tokens[tok]);
12970                 break;
12971         }
12972         return type;
12973 }
12974
12975 static int istype(int tok)
12976 {
12977         switch(tok) {
12978         case TOK_CONST:
12979         case TOK_RESTRICT:
12980         case TOK_VOLATILE:
12981         case TOK_VOID:
12982         case TOK_CHAR:
12983         case TOK_SHORT:
12984         case TOK_INT:
12985         case TOK_LONG:
12986         case TOK_FLOAT:
12987         case TOK_DOUBLE:
12988         case TOK_SIGNED:
12989         case TOK_UNSIGNED:
12990         case TOK_STRUCT:
12991         case TOK_UNION:
12992         case TOK_ENUM:
12993         case TOK_TYPE_NAME:
12994                 return 1;
12995         default:
12996                 return 0;
12997         }
12998 }
12999
13000
13001 static struct type *specifier_qualifier_list(struct compile_state *state)
13002 {
13003         struct type *type;
13004         unsigned int specifiers = 0;
13005
13006         /* type qualifiers */
13007         specifiers |= type_qualifiers(state);
13008
13009         /* type specifier */
13010         type = type_specifier(state, specifiers);
13011
13012         return type;
13013 }
13014
13015 #if DEBUG_ROMCC_WARNING
13016 static int isdecl_specifier(int tok)
13017 {
13018         switch(tok) {
13019                 /* storage class specifier */
13020         case TOK_AUTO:
13021         case TOK_REGISTER:
13022         case TOK_STATIC:
13023         case TOK_EXTERN:
13024         case TOK_TYPEDEF:
13025                 /* type qualifier */
13026         case TOK_CONST:
13027         case TOK_RESTRICT:
13028         case TOK_VOLATILE:
13029                 /* type specifiers */
13030         case TOK_VOID:
13031         case TOK_CHAR:
13032         case TOK_SHORT:
13033         case TOK_INT:
13034         case TOK_LONG:
13035         case TOK_FLOAT:
13036         case TOK_DOUBLE:
13037         case TOK_SIGNED:
13038         case TOK_UNSIGNED:
13039                 /* struct or union specifier */
13040         case TOK_STRUCT:
13041         case TOK_UNION:
13042                 /* enum-spefifier */
13043         case TOK_ENUM:
13044                 /* typedef name */
13045         case TOK_TYPE_NAME:
13046                 /* function specifiers */
13047         case TOK_INLINE:
13048                 return 1;
13049         default:
13050                 return 0;
13051         }
13052 }
13053 #endif
13054
13055 static struct type *decl_specifiers(struct compile_state *state)
13056 {
13057         struct type *type;
13058         unsigned int specifiers;
13059         /* I am overly restrictive in the arragement of specifiers supported.
13060          * C is overly flexible in this department it makes interpreting
13061          * the parse tree difficult.
13062          */
13063         specifiers = 0;
13064
13065         /* storage class specifier */
13066         specifiers |= storage_class_specifier_opt(state);
13067
13068         /* function-specifier */
13069         specifiers |= function_specifier_opt(state);
13070
13071         /* attributes */
13072         specifiers |= attributes_opt(state, 0);
13073
13074         /* type qualifier */
13075         specifiers |= type_qualifiers(state);
13076
13077         /* type specifier */
13078         type = type_specifier(state, specifiers);
13079         return type;
13080 }
13081
13082 struct field_info {
13083         struct type *type;
13084         size_t offset;
13085 };
13086
13087 static struct field_info designator(struct compile_state *state, struct type *type)
13088 {
13089         int tok;
13090         struct field_info info;
13091         info.offset = ~0U;
13092         info.type = 0;
13093         do {
13094                 switch(peek(state)) {
13095                 case TOK_LBRACKET:
13096                 {
13097                         struct triple *value;
13098                         if ((type->type & TYPE_MASK) != TYPE_ARRAY) {
13099                                 error(state, 0, "Array designator not in array initializer");
13100                         }
13101                         eat(state, TOK_LBRACKET);
13102                         value = constant_expr(state);
13103                         eat(state, TOK_RBRACKET);
13104
13105                         info.type = type->left;
13106                         info.offset = value->u.cval * size_of(state, info.type);
13107                         break;
13108                 }
13109                 case TOK_DOT:
13110                 {
13111                         struct hash_entry *field;
13112                         if (((type->type & TYPE_MASK) != TYPE_STRUCT) &&
13113                                 ((type->type & TYPE_MASK) != TYPE_UNION))
13114                         {
13115                                 error(state, 0, "Struct designator not in struct initializer");
13116                         }
13117                         eat(state, TOK_DOT);
13118                         field = eat(state, TOK_IDENT)->ident;
13119                         info.offset = field_offset(state, type, field);
13120                         info.type   = field_type(state, type, field);
13121                         break;
13122                 }
13123                 default:
13124                         error(state, 0, "Invalid designator");
13125                 }
13126                 tok = peek(state);
13127         } while((tok == TOK_LBRACKET) || (tok == TOK_DOT));
13128         eat(state, TOK_EQ);
13129         return info;
13130 }
13131
13132 static struct triple *initializer(
13133         struct compile_state *state, struct type *type)
13134 {
13135         struct triple *result;
13136 #if DEBUG_ROMCC_WARNINGS
13137 #warning "FIXME more consistent initializer handling (where should eval_const_expr go?"
13138 #endif
13139         if (peek(state) != TOK_LBRACE) {
13140                 result = assignment_expr(state);
13141                 if (((type->type & TYPE_MASK) == TYPE_ARRAY) &&
13142                         (type->elements == ELEMENT_COUNT_UNSPECIFIED) &&
13143                         ((result->type->type & TYPE_MASK) == TYPE_ARRAY) &&
13144                         (result->type->elements != ELEMENT_COUNT_UNSPECIFIED) &&
13145                         (equiv_types(type->left, result->type->left))) {
13146                         type->elements = result->type->elements;
13147                 }
13148                 if (is_lvalue(state, result) && 
13149                         ((result->type->type & TYPE_MASK) == TYPE_ARRAY) &&
13150                         (type->type & TYPE_MASK) != TYPE_ARRAY)
13151                 {
13152                         result = lvalue_conversion(state, result);
13153                 }
13154                 if (!is_init_compatible(state, type, result->type)) {
13155                         error(state, 0, "Incompatible types in initializer");
13156                 }
13157                 if (!equiv_types(type, result->type)) {
13158                         result = mk_cast_expr(state, type, result);
13159                 }
13160         }
13161         else {
13162                 int comma;
13163                 size_t max_offset;
13164                 struct field_info info;
13165                 void *buf;
13166                 if (((type->type & TYPE_MASK) != TYPE_ARRAY) &&
13167                         ((type->type & TYPE_MASK) != TYPE_STRUCT)) {
13168                         internal_error(state, 0, "unknown initializer type");
13169                 }
13170                 info.offset = 0;
13171                 info.type = type->left;
13172                 if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
13173                         info.type = next_field(state, type, 0);
13174                 }
13175                 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
13176                         max_offset = 0;
13177                 } else {
13178                         max_offset = size_of(state, type);
13179                 }
13180                 buf = xcmalloc(bits_to_bytes(max_offset), "initializer");
13181                 eat(state, TOK_LBRACE);
13182                 do {
13183                         struct triple *value;
13184                         struct type *value_type;
13185                         size_t value_size;
13186                         void *dest;
13187                         int tok;
13188                         comma = 0;
13189                         tok = peek(state);
13190                         if ((tok == TOK_LBRACKET) || (tok == TOK_DOT)) {
13191                                 info = designator(state, type);
13192                         }
13193                         if ((type->elements != ELEMENT_COUNT_UNSPECIFIED) &&
13194                                 (info.offset >= max_offset)) {
13195                                 error(state, 0, "element beyond bounds");
13196                         }
13197                         value_type = info.type;
13198                         value = eval_const_expr(state, initializer(state, value_type));
13199                         value_size = size_of(state, value_type);
13200                         if (((type->type & TYPE_MASK) == TYPE_ARRAY) &&
13201                                 (type->elements == ELEMENT_COUNT_UNSPECIFIED) &&
13202                                 (max_offset <= info.offset)) {
13203                                 void *old_buf;
13204                                 size_t old_size;
13205                                 old_buf = buf;
13206                                 old_size = max_offset;
13207                                 max_offset = info.offset + value_size;
13208                                 buf = xmalloc(bits_to_bytes(max_offset), "initializer");
13209                                 memcpy(buf, old_buf, bits_to_bytes(old_size));
13210                                 xfree(old_buf);
13211                         }
13212                         dest = ((char *)buf) + bits_to_bytes(info.offset);
13213 #if DEBUG_INITIALIZER
13214                         fprintf(state->errout, "dest = buf + %d max_offset: %d value_size: %d op: %d\n", 
13215                                 dest - buf,
13216                                 bits_to_bytes(max_offset),
13217                                 bits_to_bytes(value_size),
13218                                 value->op);
13219 #endif
13220                         if (value->op == OP_BLOBCONST) {
13221                                 memcpy(dest, value->u.blob, bits_to_bytes(value_size));
13222                         }
13223                         else if ((value->op == OP_INTCONST) && (value_size == SIZEOF_I8)) {
13224 #if DEBUG_INITIALIZER
13225                                 fprintf(state->errout, "byte: %02x\n", value->u.cval & 0xff);
13226 #endif
13227                                 *((uint8_t *)dest) = value->u.cval & 0xff;
13228                         }
13229                         else if ((value->op == OP_INTCONST) && (value_size == SIZEOF_I16)) {
13230                                 *((uint16_t *)dest) = value->u.cval & 0xffff;
13231                         }
13232                         else if ((value->op == OP_INTCONST) && (value_size == SIZEOF_I32)) {
13233                                 *((uint32_t *)dest) = value->u.cval & 0xffffffff;
13234                         }
13235                         else {
13236                                 internal_error(state, 0, "unhandled constant initializer");
13237                         }
13238                         free_triple(state, value);
13239                         if (peek(state) == TOK_COMMA) {
13240                                 eat(state, TOK_COMMA);
13241                                 comma = 1;
13242                         }
13243                         info.offset += value_size;
13244                         if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
13245                                 info.type = next_field(state, type, info.type);
13246                                 info.offset = field_offset(state, type, 
13247                                         info.type->field_ident);
13248                         }
13249                 } while(comma && (peek(state) != TOK_RBRACE));
13250                 if ((type->elements == ELEMENT_COUNT_UNSPECIFIED) &&
13251                         ((type->type & TYPE_MASK) == TYPE_ARRAY)) {
13252                         type->elements = max_offset / size_of(state, type->left);
13253                 }
13254                 eat(state, TOK_RBRACE);
13255                 result = triple(state, OP_BLOBCONST, type, 0, 0);
13256                 result->u.blob = buf;
13257         }
13258         return result;
13259 }
13260
13261 static void resolve_branches(struct compile_state *state, struct triple *first)
13262 {
13263         /* Make a second pass and finish anything outstanding
13264          * with respect to branches.  The only outstanding item
13265          * is to see if there are goto to labels that have not
13266          * been defined and to error about them.
13267          */
13268         int i;
13269         struct triple *ins;
13270         /* Also error on branches that do not use their targets */
13271         ins = first;
13272         do {
13273                 if (!triple_is_ret(state, ins)) {
13274                         struct triple **expr ;
13275                         struct triple_set *set;
13276                         expr = triple_targ(state, ins, 0);
13277                         for(; expr; expr = triple_targ(state, ins, expr)) {
13278                                 struct triple *targ;
13279                                 targ = *expr;
13280                                 for(set = targ?targ->use:0; set; set = set->next) {
13281                                         if (set->member == ins) {
13282                                                 break;
13283                                         }
13284                                 }
13285                                 if (!set) {
13286                                         internal_error(state, ins, "targ not used");
13287                                 }
13288                         }
13289                 }
13290                 ins = ins->next;
13291         } while(ins != first);
13292         /* See if there are goto to labels that have not been defined */
13293         for(i = 0; i < HASH_TABLE_SIZE; i++) {
13294                 struct hash_entry *entry;
13295                 for(entry = state->hash_table[i]; entry; entry = entry->next) {
13296                         struct triple *ins;
13297                         if (!entry->sym_label) {
13298                                 continue;
13299                         }
13300                         ins = entry->sym_label->def;
13301                         if (!(ins->id & TRIPLE_FLAG_FLATTENED)) {
13302                                 error(state, ins, "label `%s' used but not defined",
13303                                         entry->name);
13304                         }
13305                 }
13306         }
13307 }
13308
13309 static struct triple *function_definition(
13310         struct compile_state *state, struct type *type)
13311 {
13312         struct triple *def, *tmp, *first, *end, *retvar, *result, *ret;
13313         struct triple *fname;
13314         struct type *fname_type;
13315         struct hash_entry *ident;
13316         struct type *param, *crtype, *ctype;
13317         int i;
13318         if ((type->type &TYPE_MASK) != TYPE_FUNCTION) {
13319                 error(state, 0, "Invalid function header");
13320         }
13321
13322         /* Verify the function type */
13323         if (((type->right->type & TYPE_MASK) != TYPE_VOID)  &&
13324                 ((type->right->type & TYPE_MASK) != TYPE_PRODUCT) &&
13325                 (type->right->field_ident == 0)) {
13326                 error(state, 0, "Invalid function parameters");
13327         }
13328         param = type->right;
13329         i = 0;
13330         while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
13331                 i++;
13332                 if (!param->left->field_ident) {
13333                         error(state, 0, "No identifier for parameter %d\n", i);
13334                 }
13335                 param = param->right;
13336         }
13337         i++;
13338         if (((param->type & TYPE_MASK) != TYPE_VOID) && !param->field_ident) {
13339                 error(state, 0, "No identifier for paramter %d\n", i);
13340         }
13341         
13342         /* Get a list of statements for this function. */
13343         def = triple(state, OP_LIST, type, 0, 0);
13344
13345         /* Start a new scope for the passed parameters */
13346         start_scope(state);
13347
13348         /* Put a label at the very start of a function */
13349         first = label(state);
13350         RHS(def, 0) = first;
13351
13352         /* Put a label at the very end of a function */
13353         end = label(state);
13354         flatten(state, first, end);
13355         /* Remember where return goes */
13356         ident = state->i_return;
13357         symbol(state, ident, &ident->sym_ident, end, end->type);
13358
13359         /* Get the initial closure type */
13360         ctype = new_type(TYPE_JOIN, &void_type, 0);
13361         ctype->elements = 1;
13362
13363         /* Add a variable for the return value */
13364         crtype = new_type(TYPE_TUPLE, 
13365                 /* Remove all type qualifiers from the return type */
13366                 new_type(TYPE_PRODUCT, ctype, clone_type(0, type->left)), 0);
13367         crtype->elements = 2;
13368         result = flatten(state, end, variable(state, crtype));
13369
13370         /* Allocate a variable for the return address */
13371         retvar = flatten(state, end, variable(state, &void_ptr_type));
13372
13373         /* Add in the return instruction */
13374         ret = triple(state, OP_RET, &void_type, read_expr(state, retvar), 0);
13375         ret = flatten(state, first, ret);
13376
13377         /* Walk through the parameters and create symbol table entries
13378          * for them.
13379          */
13380         param = type->right;
13381         while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
13382                 ident = param->left->field_ident;
13383                 tmp = variable(state, param->left);
13384                 var_symbol(state, ident, tmp);
13385                 flatten(state, end, tmp);
13386                 param = param->right;
13387         }
13388         if ((param->type & TYPE_MASK) != TYPE_VOID) {
13389                 /* And don't forget the last parameter */
13390                 ident = param->field_ident;
13391                 tmp = variable(state, param);
13392                 symbol(state, ident, &ident->sym_ident, tmp, tmp->type);
13393                 flatten(state, end, tmp);
13394         }
13395
13396         /* Add the declaration static const char __func__ [] = "func-name"  */
13397         fname_type = new_type(TYPE_ARRAY, 
13398                 clone_type(QUAL_CONST | STOR_STATIC, &char_type), 0);
13399         fname_type->type |= QUAL_CONST | STOR_STATIC;
13400         fname_type->elements = strlen(state->function) + 1;
13401
13402         fname = triple(state, OP_BLOBCONST, fname_type, 0, 0);
13403         fname->u.blob = (void *)state->function;
13404         fname = flatten(state, end, fname);
13405
13406         ident = state->i___func__;
13407         symbol(state, ident, &ident->sym_ident, fname, fname_type);
13408
13409         /* Remember which function I am compiling.
13410          * Also assume the last defined function is the main function.
13411          */
13412         state->main_function = def;
13413
13414         /* Now get the actual function definition */
13415         compound_statement(state, end);
13416
13417         /* Finish anything unfinished with branches */
13418         resolve_branches(state, first);
13419
13420         /* Remove the parameter scope */
13421         end_scope(state);
13422
13423
13424         /* Remember I have defined a function */
13425         if (!state->functions) {
13426                 state->functions = def;
13427         } else {
13428                 insert_triple(state, state->functions, def);
13429         }
13430         if (state->compiler->debug & DEBUG_INLINE) {
13431                 FILE *fp = state->dbgout;
13432                 fprintf(fp, "\n");
13433                 loc(fp, state, 0);
13434                 fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
13435                 display_func(state, fp, def);
13436                 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
13437         }
13438
13439         return def;
13440 }
13441
13442 static struct triple *do_decl(struct compile_state *state, 
13443         struct type *type, struct hash_entry *ident)
13444 {
13445         struct triple *def;
13446         def = 0;
13447         /* Clean up the storage types used */
13448         switch (type->type & STOR_MASK) {
13449         case STOR_AUTO:
13450         case STOR_STATIC:
13451                 /* These are the good types I am aiming for */
13452                 break;
13453         case STOR_REGISTER:
13454                 type->type &= ~STOR_MASK;
13455                 type->type |= STOR_AUTO;
13456                 break;
13457         case STOR_LOCAL:
13458         case STOR_EXTERN:
13459                 type->type &= ~STOR_MASK;
13460                 type->type |= STOR_STATIC;
13461                 break;
13462         case STOR_TYPEDEF:
13463                 if (!ident) {
13464                         error(state, 0, "typedef without name");
13465                 }
13466                 symbol(state, ident, &ident->sym_ident, 0, type);
13467                 ident->tok = TOK_TYPE_NAME;
13468                 return 0;
13469                 break;
13470         default:
13471                 internal_error(state, 0, "Undefined storage class");
13472         }
13473         if ((type->type & TYPE_MASK) == TYPE_FUNCTION) {
13474                 error(state, 0, "Function prototypes not supported");
13475         }
13476         if (ident && 
13477                 ((type->type & STOR_MASK) == STOR_STATIC) &&
13478                 ((type->type & QUAL_CONST) == 0)) {
13479                 error(state, 0, "non const static variables not supported");
13480         }
13481         if (ident) {
13482                 def = variable(state, type);
13483                 var_symbol(state, ident, def);
13484         }
13485         return def;
13486 }
13487
13488 static void decl(struct compile_state *state, struct triple *first)
13489 {
13490         struct type *base_type, *type;
13491         struct hash_entry *ident;
13492         struct triple *def;
13493         int global;
13494         global = (state->scope_depth <= GLOBAL_SCOPE_DEPTH);
13495         base_type = decl_specifiers(state);
13496         ident = 0;
13497         type = declarator(state, base_type, &ident, 0);
13498         type->type = attributes_opt(state, type->type);
13499         if (global && ident && (peek(state) == TOK_LBRACE)) {
13500                 /* function */
13501                 type->type_ident = ident;
13502                 state->function = ident->name;
13503                 def = function_definition(state, type);
13504                 symbol(state, ident, &ident->sym_ident, def, type);
13505                 state->function = 0;
13506         }
13507         else {
13508                 int done;
13509                 flatten(state, first, do_decl(state, type, ident));
13510                 /* type or variable definition */
13511                 do {
13512                         done = 1;
13513                         if (peek(state) == TOK_EQ) {
13514                                 if (!ident) {
13515                                         error(state, 0, "cannot assign to a type");
13516                                 }
13517                                 eat(state, TOK_EQ);
13518                                 flatten(state, first,
13519                                         init_expr(state, 
13520                                                 ident->sym_ident->def, 
13521                                                 initializer(state, type)));
13522                         }
13523                         arrays_complete(state, type);
13524                         if (peek(state) == TOK_COMMA) {
13525                                 eat(state, TOK_COMMA);
13526                                 ident = 0;
13527                                 type = declarator(state, base_type, &ident, 0);
13528                                 flatten(state, first, do_decl(state, type, ident));
13529                                 done = 0;
13530                         }
13531                 } while(!done);
13532                 eat(state, TOK_SEMI);
13533         }
13534 }
13535
13536 static void decls(struct compile_state *state)
13537 {
13538         struct triple *list;
13539         int tok;
13540         list = label(state);
13541         while(1) {
13542                 tok = peek(state);
13543                 if (tok == TOK_EOF) {
13544                         return;
13545                 }
13546                 if (tok == TOK_SPACE) {
13547                         eat(state, TOK_SPACE);
13548                 }
13549                 decl(state, list);
13550                 if (list->next != list) {
13551                         error(state, 0, "global variables not supported");
13552                 }
13553         }
13554 }
13555
13556 /* 
13557  * Function inlining
13558  */
13559 struct triple_reg_set {
13560         struct triple_reg_set *next;
13561         struct triple *member;
13562         struct triple *new;
13563 };
13564 struct reg_block {
13565         struct block *block;
13566         struct triple_reg_set *in;
13567         struct triple_reg_set *out;
13568         int vertex;
13569 };
13570 static void setup_basic_blocks(struct compile_state *, struct basic_blocks *bb);
13571 static void analyze_basic_blocks(struct compile_state *state, struct basic_blocks *bb);
13572 static void free_basic_blocks(struct compile_state *, struct basic_blocks *bb);
13573 static int tdominates(struct compile_state *state, struct triple *dom, struct triple *sub);
13574 static void walk_blocks(struct compile_state *state, struct basic_blocks *bb,
13575         void (*cb)(struct compile_state *state, struct block *block, void *arg),
13576         void *arg);
13577 static void print_block(
13578         struct compile_state *state, struct block *block, void *arg);
13579 static int do_triple_set(struct triple_reg_set **head, 
13580         struct triple *member, struct triple *new_member);
13581 static void do_triple_unset(struct triple_reg_set **head, struct triple *member);
13582 static struct reg_block *compute_variable_lifetimes(
13583         struct compile_state *state, struct basic_blocks *bb);
13584 static void free_variable_lifetimes(struct compile_state *state, 
13585         struct basic_blocks *bb, struct reg_block *blocks);
13586 #if DEBUG_EXPLICIT_CLOSURES
13587 static void print_live_variables(struct compile_state *state, 
13588         struct basic_blocks *bb, struct reg_block *rb, FILE *fp);
13589 #endif
13590
13591
13592 static struct triple *call(struct compile_state *state,
13593         struct triple *retvar, struct triple *ret_addr, 
13594         struct triple *targ, struct triple *ret)
13595 {
13596         struct triple *call;
13597
13598         if (!retvar || !is_lvalue(state, retvar)) {
13599                 internal_error(state, 0, "writing to a non lvalue?");
13600         }
13601         write_compatible(state, retvar->type, &void_ptr_type);
13602
13603         call = new_triple(state, OP_CALL, &void_type, 1, 0);
13604         TARG(call, 0) = targ;
13605         MISC(call, 0) = ret;
13606         if (!targ || (targ->op != OP_LABEL)) {
13607                 internal_error(state, 0, "call not to a label");
13608         }
13609         if (!ret || (ret->op != OP_RET)) {
13610                 internal_error(state, 0, "call not matched with return");
13611         }
13612         return call;
13613 }
13614
13615 static void walk_functions(struct compile_state *state,
13616         void (*cb)(struct compile_state *state, struct triple *func, void *arg),
13617         void *arg)
13618 {
13619         struct triple *func, *first;
13620         func = first = state->functions;
13621         do {
13622                 cb(state, func, arg);
13623                 func = func->next;
13624         } while(func != first);
13625 }
13626
13627 static void reverse_walk_functions(struct compile_state *state,
13628         void (*cb)(struct compile_state *state, struct triple *func, void *arg),
13629         void *arg)
13630 {
13631         struct triple *func, *first;
13632         func = first = state->functions;
13633         do {
13634                 func = func->prev;
13635                 cb(state, func, arg);
13636         } while(func != first);
13637 }
13638
13639
13640 static void mark_live(struct compile_state *state, struct triple *func, void *arg)
13641 {
13642         struct triple *ptr, *first;
13643         if (func->u.cval == 0) {
13644                 return;
13645         }
13646         ptr = first = RHS(func, 0);
13647         do {
13648                 if (ptr->op == OP_FCALL) {
13649                         struct triple *called_func;
13650                         called_func = MISC(ptr, 0);
13651                         /* Mark the called function as used */
13652                         if (!(func->id & TRIPLE_FLAG_FLATTENED)) {
13653                                 called_func->u.cval++;
13654                         }
13655                         /* Remove the called function from the list */
13656                         called_func->prev->next = called_func->next;
13657                         called_func->next->prev = called_func->prev;
13658
13659                         /* Place the called function before me on the list */
13660                         called_func->next       = func;
13661                         called_func->prev       = func->prev;
13662                         called_func->prev->next = called_func;
13663                         called_func->next->prev = called_func;
13664                 }
13665                 ptr = ptr->next;
13666         } while(ptr != first);
13667         func->id |= TRIPLE_FLAG_FLATTENED;
13668 }
13669
13670 static void mark_live_functions(struct compile_state *state)
13671 {
13672         /* Ensure state->main_function is the last function in 
13673          * the list of functions.
13674          */
13675         if ((state->main_function->next != state->functions) ||
13676                 (state->functions->prev != state->main_function)) {
13677                 internal_error(state, 0, 
13678                         "state->main_function is not at the end of the function list ");
13679         }
13680         state->main_function->u.cval = 1;
13681         reverse_walk_functions(state, mark_live, 0);
13682 }
13683
13684 static int local_triple(struct compile_state *state, 
13685         struct triple *func, struct triple *ins)
13686 {
13687         int local = (ins->id & TRIPLE_FLAG_LOCAL);
13688 #if 0
13689         if (!local) {
13690                 FILE *fp = state->errout;
13691                 fprintf(fp, "global: ");
13692                 display_triple(fp, ins);
13693         }
13694 #endif
13695         return local;
13696 }
13697
13698 struct triple *copy_func(struct compile_state *state, struct triple *ofunc, 
13699         struct occurance *base_occurance)
13700 {
13701         struct triple *nfunc;
13702         struct triple *nfirst, *ofirst;
13703         struct triple *new, *old;
13704
13705         if (state->compiler->debug & DEBUG_INLINE) {
13706                 FILE *fp = state->dbgout;
13707                 fprintf(fp, "\n");
13708                 loc(fp, state, 0);
13709                 fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
13710                 display_func(state, fp, ofunc);
13711                 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
13712         }
13713
13714         /* Make a new copy of the old function */
13715         nfunc = triple(state, OP_LIST, ofunc->type, 0, 0);
13716         nfirst = 0;
13717         ofirst = old = RHS(ofunc, 0);
13718         do {
13719                 struct triple *new;
13720                 struct occurance *occurance;
13721                 int old_lhs, old_rhs;
13722                 old_lhs = old->lhs;
13723                 old_rhs = old->rhs;
13724                 occurance = inline_occurance(state, base_occurance, old->occurance);
13725                 if (ofunc->u.cval && (old->op == OP_FCALL)) {
13726                         MISC(old, 0)->u.cval += 1;
13727                 }
13728                 new = alloc_triple(state, old->op, old->type, old_lhs, old_rhs,
13729                         occurance);
13730                 if (!triple_stores_block(state, new)) {
13731                         memcpy(&new->u, &old->u, sizeof(new->u));
13732                 }
13733                 if (!nfirst) {
13734                         RHS(nfunc, 0) = nfirst = new;
13735                 }
13736                 else {
13737                         insert_triple(state, nfirst, new);
13738                 }
13739                 new->id |= TRIPLE_FLAG_FLATTENED;
13740                 new->id |= old->id & TRIPLE_FLAG_COPY;
13741                 
13742                 /* During the copy remember new as user of old */
13743                 use_triple(old, new);
13744
13745                 /* Remember which instructions are local */
13746                 old->id |= TRIPLE_FLAG_LOCAL;
13747                 old = old->next;
13748         } while(old != ofirst);
13749
13750         /* Make a second pass to fix up any unresolved references */
13751         old = ofirst;
13752         new = nfirst;
13753         do {
13754                 struct triple **oexpr, **nexpr;
13755                 int count, i;
13756                 /* Lookup where the copy is, to join pointers */
13757                 count = TRIPLE_SIZE(old);
13758                 for(i = 0; i < count; i++) {
13759                         oexpr = &old->param[i];
13760                         nexpr = &new->param[i];
13761                         if (*oexpr && !*nexpr) {
13762                                 if (!local_triple(state, ofunc, *oexpr)) {
13763                                         *nexpr = *oexpr;
13764                                 }
13765                                 else if ((*oexpr)->use) {
13766                                         *nexpr = (*oexpr)->use->member;
13767                                 }
13768                                 if (*nexpr == old) {
13769                                         internal_error(state, 0, "new == old?");
13770                                 }
13771                                 use_triple(*nexpr, new);
13772                         }
13773                         if (!*nexpr && *oexpr) {
13774                                 internal_error(state, 0, "Could not copy %d", i);
13775                         }
13776                 }
13777                 old = old->next;
13778                 new = new->next;
13779         } while((old != ofirst) && (new != nfirst));
13780         
13781         /* Make a third pass to cleanup the extra useses */
13782         old = ofirst;
13783         new = nfirst;
13784         do {
13785                 unuse_triple(old, new);
13786                 /* Forget which instructions are local */
13787                 old->id &= ~TRIPLE_FLAG_LOCAL;
13788                 old = old->next;
13789                 new = new->next;
13790         } while ((old != ofirst) && (new != nfirst));
13791         return nfunc;
13792 }
13793
13794 static void expand_inline_call(
13795         struct compile_state *state, struct triple *me, struct triple *fcall)
13796 {
13797         /* Inline the function call */
13798         struct type *ptype;
13799         struct triple *ofunc, *nfunc, *nfirst, *result, *retvar, *ins;
13800         struct triple *end, *nend;
13801         int pvals, i;
13802
13803         /* Find the triples */
13804         ofunc = MISC(fcall, 0);
13805         if (ofunc->op != OP_LIST) {
13806                 internal_error(state, 0, "improper function");
13807         }
13808         nfunc = copy_func(state, ofunc, fcall->occurance);
13809         /* Prepend the parameter reading into the new function list */
13810         ptype = nfunc->type->right;
13811         pvals = fcall->rhs;
13812         for(i = 0; i < pvals; i++) {
13813                 struct type *atype;
13814                 struct triple *arg, *param;
13815                 atype = ptype;
13816                 if ((ptype->type & TYPE_MASK) == TYPE_PRODUCT) {
13817                         atype = ptype->left;
13818                 }
13819                 param = farg(state, nfunc, i);
13820                 if ((param->type->type & TYPE_MASK) != (atype->type & TYPE_MASK)) {
13821                         internal_error(state, fcall, "param %d type mismatch", i);
13822                 }
13823                 arg = RHS(fcall, i);
13824                 flatten(state, fcall, write_expr(state, param, arg));
13825                 ptype = ptype->right;
13826         }
13827         result = 0;
13828         if ((nfunc->type->left->type & TYPE_MASK) != TYPE_VOID) {
13829                 result = read_expr(state, 
13830                         deref_index(state, fresult(state, nfunc), 1));
13831         }
13832         if (state->compiler->debug & DEBUG_INLINE) {
13833                 FILE *fp = state->dbgout;
13834                 fprintf(fp, "\n");
13835                 loc(fp, state, 0);
13836                 fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
13837                 display_func(state, fp, nfunc);
13838                 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
13839         }
13840
13841         /* 
13842          * Get rid of the extra triples 
13843          */
13844         /* Remove the read of the return address */
13845         ins = RHS(nfunc, 0)->prev->prev;
13846         if ((ins->op != OP_READ) || (RHS(ins, 0) != fretaddr(state, nfunc))) {
13847                 internal_error(state, ins, "Not return addres read?");
13848         }
13849         release_triple(state, ins);
13850         /* Remove the return instruction */
13851         ins = RHS(nfunc, 0)->prev;
13852         if (ins->op != OP_RET) {
13853                 internal_error(state, ins, "Not return?");
13854         }
13855         release_triple(state, ins);
13856         /* Remove the retaddres variable */
13857         retvar = fretaddr(state, nfunc);
13858         if ((retvar->lhs != 1) || 
13859                 (retvar->op != OP_ADECL) ||
13860                 (retvar->next->op != OP_PIECE) ||
13861                 (MISC(retvar->next, 0) != retvar)) {
13862                 internal_error(state, retvar, "Not the return address?");
13863         }
13864         release_triple(state, retvar->next);
13865         release_triple(state, retvar);
13866
13867         /* Remove the label at the start of the function */
13868         ins = RHS(nfunc, 0);
13869         if (ins->op != OP_LABEL) {
13870                 internal_error(state, ins, "Not label?");
13871         }
13872         nfirst = ins->next;
13873         free_triple(state, ins);
13874         /* Release the new function header */
13875         RHS(nfunc, 0) = 0;
13876         free_triple(state, nfunc);
13877
13878         /* Append the new function list onto the return list */
13879         end = fcall->prev;
13880         nend = nfirst->prev;
13881         end->next    = nfirst;
13882         nfirst->prev = end;
13883         nend->next   = fcall;
13884         fcall->prev  = nend;
13885
13886         /* Now the result reading code */
13887         if (result) {
13888                 result = flatten(state, fcall, result);
13889                 propogate_use(state, fcall, result);
13890         }
13891
13892         /* Release the original fcall instruction */
13893         release_triple(state, fcall);
13894
13895         return;
13896 }
13897
13898 /*
13899  *
13900  * Type of the result variable.
13901  * 
13902  *                                     result
13903  *                                        |
13904  *                             +----------+------------+
13905  *                             |                       |
13906  *                     union of closures         result_type
13907  *                             |
13908  *          +------------------+---------------+
13909  *          |                                  |
13910  *       closure1                    ...   closuerN
13911  *          |                                  | 
13912  *  +----+--+-+--------+-----+       +----+----+---+-----+
13913  *  |    |    |        |     |       |    |        |     |
13914  * var1 var2 var3 ... varN result   var1 var2 ... varN result
13915  *                           |
13916  *                  +--------+---------+
13917  *                  |                  |
13918  *          union of closures     result_type
13919  *                  |
13920  *            +-----+-------------------+
13921  *            |                         |
13922  *         closure1            ...  closureN
13923  *            |                         |
13924  *  +-----+---+----+----+      +----+---+----+-----+
13925  *  |     |        |    |      |    |        |     |
13926  * var1 var2 ... varN result  var1 var2 ... varN result
13927  */
13928
13929 static int add_closure_type(struct compile_state *state, 
13930         struct triple *func, struct type *closure_type)
13931 {
13932         struct type *type, *ctype, **next;
13933         struct triple *var, *new_var;
13934         int i;
13935
13936 #if 0
13937         FILE *fp = state->errout;
13938         fprintf(fp, "original_type: ");
13939         name_of(fp, fresult(state, func)->type);
13940         fprintf(fp, "\n");
13941 #endif
13942         /* find the original type */
13943         var = fresult(state, func);
13944         type = var->type;
13945         if (type->elements != 2) {
13946                 internal_error(state, var, "bad return type");
13947         }
13948
13949         /* Find the complete closure type and update it */
13950         ctype = type->left->left;
13951         next = &ctype->left;
13952         while(((*next)->type & TYPE_MASK) == TYPE_OVERLAP) {
13953                 next = &(*next)->right;
13954         }
13955         *next = new_type(TYPE_OVERLAP, *next, dup_type(state, closure_type));
13956         ctype->elements += 1;
13957
13958 #if 0
13959         fprintf(fp, "new_type: ");
13960         name_of(fp, type);
13961         fprintf(fp, "\n");
13962         fprintf(fp, "ctype: %p %d bits: %d ", 
13963                 ctype, ctype->elements, reg_size_of(state, ctype));
13964         name_of(fp, ctype);
13965         fprintf(fp, "\n");
13966 #endif
13967         
13968         /* Regenerate the variable with the new type definition */
13969         new_var = pre_triple(state, var, OP_ADECL, type, 0, 0);
13970         new_var->id |= TRIPLE_FLAG_FLATTENED;
13971         for(i = 0; i < new_var->lhs; i++) {
13972                 LHS(new_var, i)->id |= TRIPLE_FLAG_FLATTENED;
13973         }
13974         
13975         /* Point everyone at the new variable */
13976         propogate_use(state, var, new_var);
13977
13978         /* Release the original variable */
13979         for(i = 0; i < var->lhs; i++) {
13980                 release_triple(state, LHS(var, i));
13981         }
13982         release_triple(state, var);
13983         
13984         /* Return the index of the added closure type */
13985         return ctype->elements - 1;
13986 }
13987
13988 static struct triple *closure_expr(struct compile_state *state,
13989         struct triple *func, int closure_idx, int var_idx)
13990 {
13991         return deref_index(state,
13992                 deref_index(state,
13993                         deref_index(state, fresult(state, func), 0),
13994                         closure_idx),
13995                 var_idx);
13996 }
13997
13998
13999 static void insert_triple_set(
14000         struct triple_reg_set **head, struct triple *member)
14001 {
14002         struct triple_reg_set *new;
14003         new = xcmalloc(sizeof(*new), "triple_set");
14004         new->member = member;
14005         new->new    = 0;
14006         new->next   = *head;
14007         *head       = new;
14008 }
14009
14010 static int ordered_triple_set(
14011         struct triple_reg_set **head, struct triple *member)
14012 {
14013         struct triple_reg_set **ptr;
14014         if (!member)
14015                 return 0;
14016         ptr = head;
14017         while(*ptr) {
14018                 if (member == (*ptr)->member) {
14019                         return 0;
14020                 }
14021                 /* keep the list ordered */
14022                 if (member->id < (*ptr)->member->id) {
14023                         break;
14024                 }
14025                 ptr = &(*ptr)->next;
14026         }
14027         insert_triple_set(ptr, member);
14028         return 1;
14029 }
14030
14031
14032 static void free_closure_variables(struct compile_state *state,
14033         struct triple_reg_set **enclose)
14034 {
14035         struct triple_reg_set *entry, *next;
14036         for(entry = *enclose; entry; entry = next) {
14037                 next = entry->next;
14038                 do_triple_unset(enclose, entry->member);
14039         }
14040 }
14041
14042 static int lookup_closure_index(struct compile_state *state,
14043         struct triple *me, struct triple *val)
14044 {
14045         struct triple *first, *ins, *next;
14046         first = RHS(me, 0);
14047         ins = next = first;
14048         do {
14049                 struct triple *result;
14050                 struct triple *index0, *index1, *index2, *read, *write;
14051                 ins = next;
14052                 next = ins->next;
14053                 if (ins->op != OP_CALL) {
14054                         continue;
14055                 }
14056                 /* I am at a previous call point examine it closely */
14057                 if (ins->next->op != OP_LABEL) {
14058                         internal_error(state, ins, "call not followed by label");
14059                 }
14060                 /* Does this call does not enclose any variables? */
14061                 if ((ins->next->next->op != OP_INDEX) ||
14062                         (ins->next->next->u.cval != 0) ||
14063                         (result = MISC(ins->next->next, 0)) ||
14064                         (result->id & TRIPLE_FLAG_LOCAL)) {
14065                         continue;
14066                 }
14067                 index0 = ins->next->next;
14068                 /* The pattern is:
14069                  * 0 index result < 0 >
14070                  * 1 index 0 < ? >
14071                  * 2 index 1 < ? >
14072                  * 3 read  2
14073                  * 4 write 3 var
14074                  */
14075                 for(index0 = ins->next->next;
14076                         (index0->op == OP_INDEX) &&
14077                                 (MISC(index0, 0) == result) &&
14078                                 (index0->u.cval == 0) ; 
14079                         index0 = write->next)
14080                 {
14081                         index1 = index0->next;
14082                         index2 = index1->next;
14083                         read   = index2->next;
14084                         write  = read->next;
14085                         if ((index0->op != OP_INDEX) ||
14086                                 (index1->op != OP_INDEX) ||
14087                                 (index2->op != OP_INDEX) ||
14088                                 (read->op != OP_READ) ||
14089                                 (write->op != OP_WRITE) ||
14090                                 (MISC(index1, 0) != index0) ||
14091                                 (MISC(index2, 0) != index1) ||
14092                                 (RHS(read, 0) != index2) ||
14093                                 (RHS(write, 0) != read)) {
14094                                 internal_error(state, index0, "bad var read");
14095                         }
14096                         if (MISC(write, 0) == val) {
14097                                 return index2->u.cval;
14098                         }
14099                 }
14100         } while(next != first);
14101         return -1;
14102 }
14103
14104 static inline int enclose_triple(struct triple *ins)
14105 {
14106         return (ins && ((ins->type->type & TYPE_MASK) != TYPE_VOID));
14107 }
14108
14109 static void compute_closure_variables(struct compile_state *state,
14110         struct triple *me, struct triple *fcall, struct triple_reg_set **enclose)
14111 {
14112         struct triple_reg_set *set, *vars, **last_var;
14113         struct basic_blocks bb;
14114         struct reg_block *rb;
14115         struct block *block;
14116         struct triple *old_result, *first, *ins;
14117         size_t count, idx;
14118         unsigned long used_indicies;
14119         int i, max_index;
14120 #define MAX_INDICIES (sizeof(used_indicies)*CHAR_BIT)
14121 #define ID_BITS(X) ((X) & (TRIPLE_FLAG_LOCAL -1))
14122         struct { 
14123                 unsigned id;
14124                 int index;
14125         } *info;
14126
14127         
14128         /* Find the basic blocks of this function */
14129         bb.func = me;
14130         bb.first = RHS(me, 0);
14131         old_result = 0;
14132         if (!triple_is_ret(state, bb.first->prev)) {
14133                 bb.func = 0;
14134         } else {
14135                 old_result = fresult(state, me);
14136         }
14137         analyze_basic_blocks(state, &bb);
14138
14139         /* Find which variables are currently alive in a given block */
14140         rb = compute_variable_lifetimes(state, &bb);
14141
14142         /* Find the variables that are currently alive */
14143         block = block_of_triple(state, fcall);
14144         if (!block || (block->vertex <= 0) || (block->vertex > bb.last_vertex)) {
14145                 internal_error(state, fcall, "No reg block? block: %p", block);
14146         }
14147
14148 #if DEBUG_EXPLICIT_CLOSURES
14149         print_live_variables(state, &bb, rb, state->dbgout);
14150         fflush(state->dbgout);
14151 #endif
14152
14153         /* Count the number of triples in the function */
14154         first = RHS(me, 0);
14155         ins = first;
14156         count = 0;
14157         do {
14158                 count++;
14159                 ins = ins->next;
14160         } while(ins != first);
14161
14162         /* Allocate some memory to temorary hold the id info */
14163         info = xcmalloc(sizeof(*info) * (count +1), "info");
14164
14165         /* Mark the local function */
14166         first = RHS(me, 0);
14167         ins = first;
14168         idx = 1;
14169         do {
14170                 info[idx].id = ins->id;
14171                 ins->id = TRIPLE_FLAG_LOCAL | idx;
14172                 idx++;
14173                 ins = ins->next;
14174         } while(ins != first);
14175
14176         /* 
14177          * Build the list of variables to enclose.
14178          *
14179          * A target it to put the same variable in the
14180          * same slot for ever call of a given function.
14181          * After coloring this removes all of the variable
14182          * manipulation code.
14183          *
14184          * The list of variables to enclose is built ordered
14185          * program order because except in corner cases this
14186          * gives me the stability of assignment I need.
14187          *
14188          * To gurantee that stability I lookup the variables
14189          * to see where they have been used before and
14190          * I build my final list with the assigned indicies.
14191          */
14192         vars = 0;
14193         if (enclose_triple(old_result)) {
14194                 ordered_triple_set(&vars, old_result);
14195         }
14196         for(set = rb[block->vertex].out; set; set = set->next) {
14197                 if (!enclose_triple(set->member)) {
14198                         continue;
14199                 }
14200                 if ((set->member == fcall) || (set->member == old_result)) {
14201                         continue;
14202                 }
14203                 if (!local_triple(state, me, set->member)) {
14204                         internal_error(state, set->member, "not local?");
14205                 }
14206                 ordered_triple_set(&vars, set->member);
14207         }
14208
14209         /* Lookup the current indicies of the live varialbe */
14210         used_indicies = 0;
14211         max_index = -1;
14212         for(set = vars; set ; set = set->next) {
14213                 struct triple *ins;
14214                 int index;
14215                 ins = set->member;
14216                 index  = lookup_closure_index(state, me, ins);
14217                 info[ID_BITS(ins->id)].index = index;
14218                 if (index < 0) {
14219                         continue;
14220                 }
14221                 if (index >= MAX_INDICIES) {
14222                         internal_error(state, ins, "index unexpectedly large");
14223                 }
14224                 if (used_indicies & (1 << index)) {
14225                         internal_error(state, ins, "index previously used?");
14226                 }
14227                 /* Remember which indicies have been used */
14228                 used_indicies |= (1 << index);
14229                 if (index > max_index) {
14230                         max_index = index;
14231                 }
14232         }
14233
14234         /* Walk through the live variables and make certain
14235          * everything is assigned an index.
14236          */
14237         for(set = vars; set; set = set->next) {
14238                 struct triple *ins;
14239                 int index;
14240                 ins = set->member;
14241                 index = info[ID_BITS(ins->id)].index;
14242                 if (index >= 0) {
14243                         continue;
14244                 }
14245                 /* Find the lowest unused index value */
14246                 for(index = 0; index < MAX_INDICIES; index++) {
14247                         if (!(used_indicies & (1 << index))) {
14248                                 break;
14249                         }
14250                 }
14251                 if (index == MAX_INDICIES) {
14252                         internal_error(state, ins, "no free indicies?");
14253                 }
14254                 info[ID_BITS(ins->id)].index = index;
14255                 /* Remember which indicies have been used */
14256                 used_indicies |= (1 << index);
14257                 if (index > max_index) {
14258                         max_index = index;
14259                 }
14260         }
14261
14262         /* Build the return list of variables with positions matching
14263          * their indicies.
14264          */
14265         *enclose = 0;
14266         last_var = enclose;
14267         for(i = 0; i <= max_index; i++) {
14268                 struct triple *var;
14269                 var = 0;
14270                 if (used_indicies & (1 << i)) {
14271                         for(set = vars; set; set = set->next) {
14272                                 int index;
14273                                 index = info[ID_BITS(set->member->id)].index;
14274                                 if (index == i) {
14275                                         var = set->member;
14276                                         break;
14277                                 }
14278                         }
14279                         if (!var) {
14280                                 internal_error(state, me, "missing variable");
14281                         }
14282                 }
14283                 insert_triple_set(last_var, var);
14284                 last_var = &(*last_var)->next;
14285         }
14286
14287 #if DEBUG_EXPLICIT_CLOSURES
14288         /* Print out the variables to be enclosed */
14289         loc(state->dbgout, state, fcall);
14290         fprintf(state->dbgout, "Alive: \n");
14291         for(set = *enclose; set; set = set->next) {
14292                 display_triple(state->dbgout, set->member);
14293         }
14294         fflush(state->dbgout);
14295 #endif
14296
14297         /* Clear the marks */
14298         ins = first;
14299         do {
14300                 ins->id = info[ID_BITS(ins->id)].id;
14301                 ins = ins->next;
14302         } while(ins != first);
14303
14304         /* Release the ordered list of live variables */
14305         free_closure_variables(state, &vars);
14306
14307         /* Release the storage of the old ids */
14308         xfree(info);
14309
14310         /* Release the variable lifetime information */
14311         free_variable_lifetimes(state, &bb, rb);
14312
14313         /* Release the basic blocks of this function */
14314         free_basic_blocks(state, &bb);
14315 }
14316
14317 static void expand_function_call(
14318         struct compile_state *state, struct triple *me, struct triple *fcall)
14319 {
14320         /* Generate an ordinary function call */
14321         struct type *closure_type, **closure_next;
14322         struct triple *func, *func_first, *func_last, *retvar;
14323         struct triple *first;
14324         struct type *ptype, *rtype;
14325         struct triple *jmp;
14326         struct triple *ret_addr, *ret_loc, *ret_set;
14327         struct triple_reg_set *enclose, *set;
14328         int closure_idx, pvals, i;
14329
14330 #if DEBUG_EXPLICIT_CLOSURES
14331         FILE *fp = state->dbgout;
14332         fprintf(fp, "\ndisplay_func(me) ptr: %p\n", fcall);
14333         display_func(state, fp, MISC(fcall, 0));
14334         display_func(state, fp, me);
14335         fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
14336 #endif
14337
14338         /* Find the triples */
14339         func = MISC(fcall, 0);
14340         func_first = RHS(func, 0);
14341         retvar = fretaddr(state, func);
14342         func_last  = func_first->prev;
14343         first = fcall->next;
14344
14345         /* Find what I need to enclose */
14346         compute_closure_variables(state, me, fcall, &enclose);
14347
14348         /* Compute the closure type */
14349         closure_type = new_type(TYPE_TUPLE, 0, 0);
14350         closure_type->elements = 0;
14351         closure_next = &closure_type->left;
14352         for(set = enclose; set ; set = set->next) {
14353                 struct type *type;
14354                 type = &void_type;
14355                 if (set->member) {
14356                         type = set->member->type;
14357                 }
14358                 if (!*closure_next) {
14359                         *closure_next = type;
14360                 } else {
14361                         *closure_next = new_type(TYPE_PRODUCT, *closure_next, 
14362                                 type);
14363                         closure_next = &(*closure_next)->right;
14364                 }
14365                 closure_type->elements += 1;
14366         }
14367         if (closure_type->elements == 0) {
14368                 closure_type->type = TYPE_VOID;
14369         }
14370
14371
14372 #if DEBUG_EXPLICIT_CLOSURES
14373         fprintf(state->dbgout, "closure type: ");
14374         name_of(state->dbgout, closure_type);
14375         fprintf(state->dbgout, "\n");
14376 #endif
14377
14378         /* Update the called functions closure variable */
14379         closure_idx = add_closure_type(state, func, closure_type);
14380
14381         /* Generate some needed triples */
14382         ret_loc = label(state);
14383         ret_addr = triple(state, OP_ADDRCONST, &void_ptr_type, ret_loc, 0);
14384
14385         /* Pass the parameters to the new function */
14386         ptype = func->type->right;
14387         pvals = fcall->rhs;
14388         for(i = 0; i < pvals; i++) {
14389                 struct type *atype;
14390                 struct triple *arg, *param;
14391                 atype = ptype;
14392                 if ((ptype->type & TYPE_MASK) == TYPE_PRODUCT) {
14393                         atype = ptype->left;
14394                 }
14395                 param = farg(state, func, i);
14396                 if ((param->type->type & TYPE_MASK) != (atype->type & TYPE_MASK)) {
14397                         internal_error(state, fcall, "param type mismatch");
14398                 }
14399                 arg = RHS(fcall, i);
14400                 flatten(state, first, write_expr(state, param, arg));
14401                 ptype = ptype->right;
14402         }
14403         rtype = func->type->left;
14404
14405         /* Thread the triples together */
14406         ret_loc       = flatten(state, first, ret_loc);
14407
14408         /* Save the active variables in the result variable */
14409         for(i = 0, set = enclose; set ; set = set->next, i++) {
14410                 if (!set->member) {
14411                         continue;
14412                 }
14413                 flatten(state, ret_loc,
14414                         write_expr(state,
14415                                 closure_expr(state, func, closure_idx, i),
14416                                 read_expr(state, set->member)));
14417         }
14418
14419         /* Initialize the return value */
14420         if ((rtype->type & TYPE_MASK) != TYPE_VOID) {
14421                 flatten(state, ret_loc, 
14422                         write_expr(state, 
14423                                 deref_index(state, fresult(state, func), 1),
14424                                 new_triple(state, OP_UNKNOWNVAL, rtype,  0, 0)));
14425         }
14426
14427         ret_addr      = flatten(state, ret_loc, ret_addr);
14428         ret_set       = flatten(state, ret_loc, write_expr(state, retvar, ret_addr));
14429         jmp           = flatten(state, ret_loc, 
14430                 call(state, retvar, ret_addr, func_first, func_last));
14431
14432         /* Find the result */
14433         if ((rtype->type & TYPE_MASK) != TYPE_VOID) {
14434                 struct triple * result;
14435                 result = flatten(state, first, 
14436                         read_expr(state, 
14437                                 deref_index(state, fresult(state, func), 1)));
14438
14439                 propogate_use(state, fcall, result);
14440         }
14441
14442         /* Release the original fcall instruction */
14443         release_triple(state, fcall);
14444
14445         /* Restore the active variables from the result variable */
14446         for(i = 0, set = enclose; set ; set = set->next, i++) {
14447                 struct triple_set *use, *next;
14448                 struct triple *new;
14449                 struct basic_blocks bb;
14450                 if (!set->member || (set->member == fcall)) {
14451                         continue;
14452                 }
14453                 /* Generate an expression for the value */
14454                 new = flatten(state, first,
14455                         read_expr(state, 
14456                                 closure_expr(state, func, closure_idx, i)));
14457
14458
14459                 /* If the original is an lvalue restore the preserved value */
14460                 if (is_lvalue(state, set->member)) {
14461                         flatten(state, first,
14462                                 write_expr(state, set->member, new));
14463                         continue;
14464                 }
14465                 /*
14466                  * If the original is a value update the dominated uses.
14467                  */
14468                 
14469                 /* Analyze the basic blocks so I can see who dominates whom */
14470                 bb.func = me;
14471                 bb.first = RHS(me, 0);
14472                 if (!triple_is_ret(state, bb.first->prev)) {
14473                         bb.func = 0;
14474                 }
14475                 analyze_basic_blocks(state, &bb);
14476                 
14477
14478 #if DEBUG_EXPLICIT_CLOSURES
14479                 fprintf(state->errout, "Updating domindated uses: %p -> %p\n",
14480                         set->member, new);
14481 #endif
14482                 /* If fcall dominates the use update the expression */
14483                 for(use = set->member->use; use; use = next) {
14484                         /* Replace use modifies the use chain and 
14485                          * removes use, so I must take a copy of the
14486                          * next entry early.
14487                          */
14488                         next = use->next;
14489                         if (!tdominates(state, fcall, use->member)) {
14490                                 continue;
14491                         }
14492                         replace_use(state, set->member, new, use->member);
14493                 }
14494
14495                 /* Release the basic blocks, the instructions will be
14496                  * different next time, and flatten/insert_triple does
14497                  * not update the block values so I can't cache the analysis.
14498                  */
14499                 free_basic_blocks(state, &bb);
14500         }
14501
14502         /* Release the closure variable list */
14503         free_closure_variables(state, &enclose);
14504
14505         if (state->compiler->debug & DEBUG_INLINE) {
14506                 FILE *fp = state->dbgout;
14507                 fprintf(fp, "\n");
14508                 loc(fp, state, 0);
14509                 fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
14510                 display_func(state, fp, func);
14511                 display_func(state, fp, me);
14512                 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
14513         }
14514
14515         return;
14516 }
14517
14518 static int do_inline(struct compile_state *state, struct triple *func)
14519 {
14520         int do_inline;
14521         int policy;
14522
14523         policy = state->compiler->flags & COMPILER_INLINE_MASK;
14524         switch(policy) {
14525         case COMPILER_INLINE_ALWAYS:
14526                 do_inline = 1;
14527                 if (func->type->type & ATTRIB_NOINLINE) {
14528                         error(state, func, "noinline with always_inline compiler option");
14529                 }
14530                 break;
14531         case COMPILER_INLINE_NEVER:
14532                 do_inline = 0;
14533                 if (func->type->type & ATTRIB_ALWAYS_INLINE) {
14534                         error(state, func, "always_inline with noinline compiler option");
14535                 }
14536                 break;
14537         case COMPILER_INLINE_DEFAULTON:
14538                 switch(func->type->type & STOR_MASK) {
14539                 case STOR_STATIC | STOR_INLINE:
14540                 case STOR_LOCAL  | STOR_INLINE:
14541                 case STOR_EXTERN | STOR_INLINE:
14542                         do_inline = 1;
14543                         break;
14544                 default:
14545                         do_inline = 1;
14546                         break;
14547                 }
14548                 break;
14549         case COMPILER_INLINE_DEFAULTOFF:
14550                 switch(func->type->type & STOR_MASK) {
14551                 case STOR_STATIC | STOR_INLINE:
14552                 case STOR_LOCAL  | STOR_INLINE:
14553                 case STOR_EXTERN | STOR_INLINE:
14554                         do_inline = 1;
14555                         break;
14556                 default:
14557                         do_inline = 0;
14558                         break;
14559                 }
14560                 break;
14561         case COMPILER_INLINE_NOPENALTY:
14562                 switch(func->type->type & STOR_MASK) {
14563                 case STOR_STATIC | STOR_INLINE:
14564                 case STOR_LOCAL  | STOR_INLINE:
14565                 case STOR_EXTERN | STOR_INLINE:
14566                         do_inline = 1;
14567                         break;
14568                 default:
14569                         do_inline = (func->u.cval == 1);
14570                         break;
14571                 }
14572                 break;
14573         default:
14574                 do_inline = 0;
14575                 internal_error(state, 0, "Unimplemented inline policy");
14576                 break;
14577         }
14578         /* Force inlining */
14579         if (func->type->type & ATTRIB_NOINLINE) {
14580                 do_inline = 0;
14581         }
14582         if (func->type->type & ATTRIB_ALWAYS_INLINE) {
14583                 do_inline = 1;
14584         }
14585         return do_inline;
14586 }
14587
14588 static void inline_function(struct compile_state *state, struct triple *me, void *arg)
14589 {
14590         struct triple *first, *ptr, *next;
14591         /* If the function is not used don't bother */
14592         if (me->u.cval <= 0) {
14593                 return;
14594         }
14595         if (state->compiler->debug & DEBUG_CALLS2) {
14596                 FILE *fp = state->dbgout;
14597                 fprintf(fp, "in: %s\n",
14598                         me->type->type_ident->name);
14599         }
14600
14601         first = RHS(me, 0);
14602         ptr = next = first;
14603         do {
14604                 struct triple *func, *prev;
14605                 ptr = next;
14606                 prev = ptr->prev;
14607                 next = ptr->next;
14608                 if (ptr->op != OP_FCALL) {
14609                         continue;
14610                 }
14611                 func = MISC(ptr, 0);
14612                 /* See if the function should be inlined */
14613                 if (!do_inline(state, func)) {
14614                         /* Put a label after the fcall */
14615                         post_triple(state, ptr, OP_LABEL, &void_type, 0, 0);
14616                         continue;
14617                 }
14618                 if (state->compiler->debug & DEBUG_CALLS) {
14619                         FILE *fp = state->dbgout;
14620                         if (state->compiler->debug & DEBUG_CALLS2) {
14621                                 loc(fp, state, ptr);
14622                         }
14623                         fprintf(fp, "inlining %s\n",
14624                                 func->type->type_ident->name);
14625                         fflush(fp);
14626                 }
14627
14628                 /* Update the function use counts */
14629                 func->u.cval -= 1;
14630
14631                 /* Replace the fcall with the called function */
14632                 expand_inline_call(state, me, ptr);
14633
14634                 next = prev->next;
14635         } while (next != first);
14636
14637         ptr = next = first;
14638         do {
14639                 struct triple *prev, *func;
14640                 ptr = next;
14641                 prev = ptr->prev;
14642                 next = ptr->next;
14643                 if (ptr->op != OP_FCALL) {
14644                         continue;
14645                 }
14646                 func = MISC(ptr, 0);
14647                 if (state->compiler->debug & DEBUG_CALLS) {
14648                         FILE *fp = state->dbgout;
14649                         if (state->compiler->debug & DEBUG_CALLS2) {
14650                                 loc(fp, state, ptr);
14651                         }
14652                         fprintf(fp, "calling %s\n",
14653                                 func->type->type_ident->name);
14654                         fflush(fp);
14655                 }
14656                 /* Replace the fcall with the instruction sequence
14657                  * needed to make the call.
14658                  */
14659                 expand_function_call(state, me, ptr);
14660                 next = prev->next;
14661         } while(next != first);
14662 }
14663
14664 static void inline_functions(struct compile_state *state, struct triple *func)
14665 {
14666         inline_function(state, func, 0);
14667         reverse_walk_functions(state, inline_function, 0);
14668 }
14669
14670 static void insert_function(struct compile_state *state,
14671         struct triple *func, void *arg)
14672 {
14673         struct triple *first, *end, *ffirst, *fend;
14674
14675         if (state->compiler->debug & DEBUG_INLINE) {
14676                 FILE *fp = state->errout;
14677                 fprintf(fp, "%s func count: %d\n", 
14678                         func->type->type_ident->name, func->u.cval);
14679         }
14680         if (func->u.cval == 0) {
14681                 return;
14682         }
14683
14684         /* Find the end points of the lists */
14685         first  = arg;
14686         end    = first->prev;
14687         ffirst = RHS(func, 0);
14688         fend   = ffirst->prev;
14689
14690         /* splice the lists together */
14691         end->next    = ffirst;
14692         ffirst->prev = end;
14693         fend->next   = first;
14694         first->prev  = fend;
14695 }
14696
14697 struct triple *input_asm(struct compile_state *state)
14698 {
14699         struct asm_info *info;
14700         struct triple *def;
14701         int i, out;
14702         
14703         info = xcmalloc(sizeof(*info), "asm_info");
14704         info->str = "";
14705
14706         out = sizeof(arch_input_regs)/sizeof(arch_input_regs[0]);
14707         memcpy(&info->tmpl.lhs, arch_input_regs, sizeof(arch_input_regs));
14708
14709         def = new_triple(state, OP_ASM, &void_type, out, 0);
14710         def->u.ainfo = info;
14711         def->id |= TRIPLE_FLAG_VOLATILE;
14712         
14713         for(i = 0; i < out; i++) {
14714                 struct triple *piece;
14715                 piece = triple(state, OP_PIECE, &int_type, def, 0);
14716                 piece->u.cval = i;
14717                 LHS(def, i) = piece;
14718         }
14719
14720         return def;
14721 }
14722
14723 struct triple *output_asm(struct compile_state *state)
14724 {
14725         struct asm_info *info;
14726         struct triple *def;
14727         int in;
14728         
14729         info = xcmalloc(sizeof(*info), "asm_info");
14730         info->str = "";
14731
14732         in = sizeof(arch_output_regs)/sizeof(arch_output_regs[0]);
14733         memcpy(&info->tmpl.rhs, arch_output_regs, sizeof(arch_output_regs));
14734
14735         def = new_triple(state, OP_ASM, &void_type, 0, in);
14736         def->u.ainfo = info;
14737         def->id |= TRIPLE_FLAG_VOLATILE;
14738         
14739         return def;
14740 }
14741
14742 static void join_functions(struct compile_state *state)
14743 {
14744         struct triple *jmp, *start, *end, *call, *in, *out, *func;
14745         struct file_state file;
14746         struct type *pnext, *param;
14747         struct type *result_type, *args_type;
14748         int idx;
14749
14750         /* Be clear the functions have not been joined yet */
14751         state->functions_joined = 0;
14752
14753         /* Dummy file state to get debug handing right */
14754         memset(&file, 0, sizeof(file));
14755         file.basename = "";
14756         file.line = 0;
14757         file.report_line = 0;
14758         file.report_name = file.basename;
14759         file.prev = state->file;
14760         state->file = &file;
14761         state->function = "";
14762
14763         if (!state->main_function) {
14764                 error(state, 0, "No functions to compile\n");
14765         }
14766
14767         /* The type of arguments */
14768         args_type   = state->main_function->type->right;
14769         /* The return type without any specifiers */
14770         result_type = clone_type(0, state->main_function->type->left);
14771
14772
14773         /* Verify the external arguments */
14774         if (registers_of(state, args_type) > ARCH_INPUT_REGS) {
14775                 error(state, state->main_function, 
14776                         "Too many external input arguments");
14777         }
14778         if (registers_of(state, result_type) > ARCH_OUTPUT_REGS) {
14779                 error(state, state->main_function, 
14780                         "Too many external output arguments");
14781         }
14782
14783         /* Lay down the basic program structure */
14784         end           = label(state);
14785         start         = label(state);
14786         start         = flatten(state, state->first, start);
14787         end           = flatten(state, state->first, end);
14788         in            = input_asm(state);
14789         out           = output_asm(state);
14790         call          = new_triple(state, OP_FCALL, result_type, -1, registers_of(state, args_type));
14791         MISC(call, 0) = state->main_function;
14792         in            = flatten(state, state->first, in);
14793         call          = flatten(state, state->first, call);
14794         out           = flatten(state, state->first, out);
14795
14796
14797         /* Read the external input arguments */
14798         pnext = args_type;
14799         idx = 0;
14800         while(pnext && ((pnext->type & TYPE_MASK) != TYPE_VOID)) {
14801                 struct triple *expr;
14802                 param = pnext;
14803                 pnext = 0;
14804                 if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
14805                         pnext = param->right;
14806                         param = param->left;
14807                 }
14808                 if (registers_of(state, param) != 1) {
14809                         error(state, state->main_function, 
14810                                 "Arg: %d %s requires multiple registers", 
14811                                 idx + 1, param->field_ident->name);
14812                 }
14813                 expr = read_expr(state, LHS(in, idx));
14814                 RHS(call, idx) = expr;
14815                 expr = flatten(state, call, expr);
14816                 use_triple(expr, call);
14817
14818                 idx++;  
14819         }
14820
14821
14822         /* Write the external output arguments */
14823         pnext = result_type;
14824         if ((pnext->type & TYPE_MASK) == TYPE_STRUCT) {
14825                 pnext = result_type->left;
14826         }
14827         for(idx = 0; idx < out->rhs; idx++) {
14828                 struct triple *expr;
14829                 param = pnext;
14830                 pnext = 0;
14831                 if (param && ((param->type & TYPE_MASK) == TYPE_PRODUCT)) {
14832                         pnext = param->right;
14833                         param = param->left;
14834                 }
14835                 if (param && ((param->type & TYPE_MASK) == TYPE_VOID)) {
14836                         param = 0;
14837                 }
14838                 if (param) {
14839                         if (registers_of(state, param) != 1) {
14840                                 error(state, state->main_function,
14841                                         "Result: %d %s requires multiple registers",
14842                                         idx, param->field_ident->name);
14843                         }
14844                         expr = read_expr(state, call);
14845                         if ((result_type->type & TYPE_MASK) == TYPE_STRUCT) {
14846                                 expr = deref_field(state, expr, param->field_ident);
14847                         }
14848                 } else {
14849                         expr = triple(state, OP_UNKNOWNVAL, &int_type, 0, 0);
14850                 }
14851                 flatten(state, out, expr);
14852                 RHS(out, idx) = expr;
14853                 use_triple(expr, out);
14854         }
14855
14856         /* Allocate a dummy containing function */
14857         func = triple(state, OP_LIST, 
14858                 new_type(TYPE_FUNCTION, &void_type, &void_type), 0, 0);
14859         func->type->type_ident = lookup(state, "", 0);
14860         RHS(func, 0) = state->first;
14861         func->u.cval = 1;
14862
14863         /* See which functions are called, and how often */
14864         mark_live_functions(state);
14865         inline_functions(state, func);
14866         walk_functions(state, insert_function, end);
14867
14868         if (start->next != end) {
14869                 jmp = flatten(state, start, branch(state, end, 0));
14870         }
14871
14872         /* OK now the functions have been joined. */
14873         state->functions_joined = 1;
14874
14875         /* Done now cleanup */
14876         state->file = file.prev;
14877         state->function = 0;
14878 }
14879
14880 /*
14881  * Data structurs for optimation.
14882  */
14883
14884
14885 static int do_use_block(
14886         struct block *used, struct block_set **head, struct block *user, 
14887         int front)
14888 {
14889         struct block_set **ptr, *new;
14890         if (!used)
14891                 return 0;
14892         if (!user)
14893                 return 0;
14894         ptr = head;
14895         while(*ptr) {
14896                 if ((*ptr)->member == user) {
14897                         return 0;
14898                 }
14899                 ptr = &(*ptr)->next;
14900         }
14901         new = xcmalloc(sizeof(*new), "block_set");
14902         new->member = user;
14903         if (front) {
14904                 new->next = *head;
14905                 *head = new;
14906         }
14907         else {
14908                 new->next = 0;
14909                 *ptr = new;
14910         }
14911         return 1;
14912 }
14913 static int do_unuse_block(
14914         struct block *used, struct block_set **head, struct block *unuser)
14915 {
14916         struct block_set *use, **ptr;
14917         int count;
14918         count = 0;
14919         ptr = head;
14920         while(*ptr) {
14921                 use = *ptr;
14922                 if (use->member == unuser) {
14923                         *ptr = use->next;
14924                         memset(use, -1, sizeof(*use));
14925                         xfree(use);
14926                         count += 1;
14927                 }
14928                 else {
14929                         ptr = &use->next;
14930                 }
14931         }
14932         return count;
14933 }
14934
14935 static void use_block(struct block *used, struct block *user)
14936 {
14937         int count;
14938         /* Append new to the head of the list, print_block
14939          * depends on this.
14940          */
14941         count = do_use_block(used, &used->use, user, 1); 
14942         used->users += count;
14943 }
14944 static void unuse_block(struct block *used, struct block *unuser)
14945 {
14946         int count;
14947         count = do_unuse_block(used, &used->use, unuser); 
14948         used->users -= count;
14949 }
14950
14951 static void add_block_edge(struct block *block, struct block *edge, int front)
14952 {
14953         int count;
14954         count = do_use_block(block, &block->edges, edge, front);
14955         block->edge_count += count;
14956 }
14957
14958 static void remove_block_edge(struct block *block, struct block *edge)
14959 {
14960         int count;
14961         count = do_unuse_block(block, &block->edges, edge);
14962         block->edge_count -= count;
14963 }
14964
14965 static void idom_block(struct block *idom, struct block *user)
14966 {
14967         do_use_block(idom, &idom->idominates, user, 0);
14968 }
14969
14970 static void unidom_block(struct block *idom, struct block *unuser)
14971 {
14972         do_unuse_block(idom, &idom->idominates, unuser);
14973 }
14974
14975 static void domf_block(struct block *block, struct block *domf)
14976 {
14977         do_use_block(block, &block->domfrontier, domf, 0);
14978 }
14979
14980 static void undomf_block(struct block *block, struct block *undomf)
14981 {
14982         do_unuse_block(block, &block->domfrontier, undomf);
14983 }
14984
14985 static void ipdom_block(struct block *ipdom, struct block *user)
14986 {
14987         do_use_block(ipdom, &ipdom->ipdominates, user, 0);
14988 }
14989
14990 static void unipdom_block(struct block *ipdom, struct block *unuser)
14991 {
14992         do_unuse_block(ipdom, &ipdom->ipdominates, unuser);
14993 }
14994
14995 static void ipdomf_block(struct block *block, struct block *ipdomf)
14996 {
14997         do_use_block(block, &block->ipdomfrontier, ipdomf, 0);
14998 }
14999
15000 static void unipdomf_block(struct block *block, struct block *unipdomf)
15001 {
15002         do_unuse_block(block, &block->ipdomfrontier, unipdomf);
15003 }
15004
15005 static int walk_triples(
15006         struct compile_state *state, 
15007         int (*cb)(struct compile_state *state, struct triple *ptr, void *arg),
15008         void *arg)
15009 {
15010         struct triple *ptr;
15011         int result;
15012         ptr = state->first;
15013         do {
15014                 result = cb(state, ptr, arg);
15015                 if (ptr->next->prev != ptr) {
15016                         internal_error(state, ptr->next, "bad prev");
15017                 }
15018                 ptr = ptr->next;
15019         } while((result == 0) && (ptr != state->first));
15020         return result;
15021 }
15022
15023 #define PRINT_LIST 1
15024 static int do_print_triple(struct compile_state *state, struct triple *ins, void *arg)
15025 {
15026         FILE *fp = arg;
15027         int op;
15028         op = ins->op;
15029         if (op == OP_LIST) {
15030 #if !PRINT_LIST
15031                 return 0;
15032 #endif
15033         }
15034         if ((op == OP_LABEL) && (ins->use)) {
15035                 fprintf(fp, "\n%p:\n", ins);
15036         }
15037         display_triple(fp, ins);
15038
15039         if (triple_is_branch(state, ins) && ins->use && 
15040                 (ins->op != OP_RET) && (ins->op != OP_FCALL)) {
15041                 internal_error(state, ins, "branch used?");
15042         }
15043         if (triple_is_branch(state, ins)) {
15044                 fprintf(fp, "\n");
15045         }
15046         return 0;
15047 }
15048
15049 static void print_triples(struct compile_state *state)
15050 {
15051         if (state->compiler->debug & DEBUG_TRIPLES) {
15052                 FILE *fp = state->dbgout;
15053                 fprintf(fp, "--------------- triples ---------------\n");
15054                 walk_triples(state, do_print_triple, fp);
15055                 fprintf(fp, "\n");
15056         }
15057 }
15058
15059 struct cf_block {
15060         struct block *block;
15061 };
15062 static void find_cf_blocks(struct cf_block *cf, struct block *block)
15063 {
15064         struct block_set *edge;
15065         if (!block || (cf[block->vertex].block == block)) {
15066                 return;
15067         }
15068         cf[block->vertex].block = block;
15069         for(edge = block->edges; edge; edge = edge->next) {
15070                 find_cf_blocks(cf, edge->member);
15071         }
15072 }
15073
15074 static void print_control_flow(struct compile_state *state,
15075         FILE *fp, struct basic_blocks *bb)
15076 {
15077         struct cf_block *cf;
15078         int i;
15079         fprintf(fp, "\ncontrol flow\n");
15080         cf = xcmalloc(sizeof(*cf) * (bb->last_vertex + 1), "cf_block");
15081         find_cf_blocks(cf, bb->first_block);
15082
15083         for(i = 1; i <= bb->last_vertex; i++) {
15084                 struct block *block;
15085                 struct block_set *edge;
15086                 block = cf[i].block;
15087                 if (!block)
15088                         continue;
15089                 fprintf(fp, "(%p) %d:", block, block->vertex);
15090                 for(edge = block->edges; edge; edge = edge->next) {
15091                         fprintf(fp, " %d", edge->member->vertex);
15092                 }
15093                 fprintf(fp, "\n");
15094         }
15095
15096         xfree(cf);
15097 }
15098
15099 static void free_basic_block(struct compile_state *state, struct block *block)
15100 {
15101         struct block_set *edge, *entry;
15102         struct block *child;
15103         if (!block) {
15104                 return;
15105         }
15106         if (block->vertex == -1) {
15107                 return;
15108         }
15109         block->vertex = -1;
15110         for(edge = block->edges; edge; edge = edge->next) {
15111                 if (edge->member) {
15112                         unuse_block(edge->member, block);
15113                 }
15114         }
15115         if (block->idom) {
15116                 unidom_block(block->idom, block);
15117         }
15118         block->idom = 0;
15119         if (block->ipdom) {
15120                 unipdom_block(block->ipdom, block);
15121         }
15122         block->ipdom = 0;
15123         while((entry = block->use)) {
15124                 child = entry->member;
15125                 unuse_block(block, child);
15126                 if (child && (child->vertex != -1)) {
15127                         for(edge = child->edges; edge; edge = edge->next) {
15128                                 edge->member = 0;
15129                         }
15130                 }
15131         }
15132         while((entry = block->idominates)) {
15133                 child = entry->member;
15134                 unidom_block(block, child);
15135                 if (child && (child->vertex != -1)) {
15136                         child->idom = 0;
15137                 }
15138         }
15139         while((entry = block->domfrontier)) {
15140                 child = entry->member;
15141                 undomf_block(block, child);
15142         }
15143         while((entry = block->ipdominates)) {
15144                 child = entry->member;
15145                 unipdom_block(block, child);
15146                 if (child && (child->vertex != -1)) {
15147                         child->ipdom = 0;
15148                 }
15149         }
15150         while((entry = block->ipdomfrontier)) {
15151                 child = entry->member;
15152                 unipdomf_block(block, child);
15153         }
15154         if (block->users != 0) {
15155                 internal_error(state, 0, "block still has users");
15156         }
15157         while((edge = block->edges)) {
15158                 child = edge->member;
15159                 remove_block_edge(block, child);
15160                 
15161                 if (child && (child->vertex != -1)) {
15162                         free_basic_block(state, child);
15163                 }
15164         }
15165         memset(block, -1, sizeof(*block));
15166 #ifndef WIN32
15167         xfree(block);
15168 #endif
15169 }
15170
15171 static void free_basic_blocks(struct compile_state *state, 
15172         struct basic_blocks *bb)
15173 {
15174         struct triple *first, *ins;
15175         free_basic_block(state, bb->first_block);
15176         bb->last_vertex = 0;
15177         bb->first_block = bb->last_block = 0;
15178         first = bb->first;
15179         ins = first;
15180         do {
15181                 if (triple_stores_block(state, ins)) {
15182                         ins->u.block = 0;
15183                 }
15184                 ins = ins->next;
15185         } while(ins != first);
15186         
15187 }
15188
15189 static struct block *basic_block(struct compile_state *state, 
15190         struct basic_blocks *bb, struct triple *first)
15191 {
15192         struct block *block;
15193         struct triple *ptr;
15194         if (!triple_is_label(state, first)) {
15195                 internal_error(state, first, "block does not start with a label");
15196         }
15197         /* See if this basic block has already been setup */
15198         if (first->u.block != 0) {
15199                 return first->u.block;
15200         }
15201         /* Allocate another basic block structure */
15202         bb->last_vertex += 1;
15203         block = xcmalloc(sizeof(*block), "block");
15204         block->first = block->last = first;
15205         block->vertex = bb->last_vertex;
15206         ptr = first;
15207         do {
15208                 if ((ptr != first) && triple_is_label(state, ptr) && (ptr->use)) { 
15209                         break;
15210                 }
15211                 block->last = ptr;
15212                 /* If ptr->u is not used remember where the baic block is */
15213                 if (triple_stores_block(state, ptr)) {
15214                         ptr->u.block = block;
15215                 }
15216                 if (triple_is_branch(state, ptr)) {
15217                         break;
15218                 }
15219                 ptr = ptr->next;
15220         } while (ptr != bb->first);
15221         if ((ptr == bb->first) ||
15222                 ((ptr->next == bb->first) && (
15223                         triple_is_end(state, ptr) || 
15224                         triple_is_ret(state, ptr))))
15225         {
15226                 /* The block has no outflowing edges */
15227         }
15228         else if (triple_is_label(state, ptr)) {
15229                 struct block *next;
15230                 next = basic_block(state, bb, ptr);
15231                 add_block_edge(block, next, 0);
15232                 use_block(next, block);
15233         }
15234         else if (triple_is_branch(state, ptr)) {
15235                 struct triple **expr, *first;
15236                 struct block *child;
15237                 /* Find the branch targets.
15238                  * I special case the first branch as that magically
15239                  * avoids some difficult cases for the register allocator.
15240                  */
15241                 expr = triple_edge_targ(state, ptr, 0);
15242                 if (!expr) {
15243                         internal_error(state, ptr, "branch without targets");
15244                 }
15245                 first = *expr;
15246                 expr = triple_edge_targ(state, ptr, expr);
15247                 for(; expr; expr = triple_edge_targ(state, ptr, expr)) {
15248                         if (!*expr) continue;
15249                         child = basic_block(state, bb, *expr);
15250                         use_block(child, block);
15251                         add_block_edge(block, child, 0);
15252                 }
15253                 if (first) {
15254                         child = basic_block(state, bb, first);
15255                         use_block(child, block);
15256                         add_block_edge(block, child, 1);
15257
15258                         /* Be certain the return block of a call is
15259                          * in a basic block.  When it is not find
15260                          * start of the block, insert a label if
15261                          * necessary and build the basic block.
15262                          * Then add a fake edge from the start block
15263                          * to the return block of the function.
15264                          */
15265                         if (state->functions_joined && triple_is_call(state, ptr)
15266                                 && !block_of_triple(state, MISC(ptr, 0))) {
15267                                 struct block *tail;
15268                                 struct triple *start;
15269                                 start = triple_to_block_start(state, MISC(ptr, 0));
15270                                 if (!triple_is_label(state, start)) {
15271                                         start = pre_triple(state,
15272                                                 start, OP_LABEL, &void_type, 0, 0);
15273                                 }
15274                                 tail = basic_block(state, bb, start);
15275                                 add_block_edge(child, tail, 0);
15276                                 use_block(tail, child);
15277                         }
15278                 }
15279         }
15280         else {
15281                 internal_error(state, 0, "Bad basic block split");
15282         }
15283 #if 0
15284 {
15285         struct block_set *edge;
15286         FILE *fp = state->errout;
15287         fprintf(fp, "basic_block: %10p [%2d] ( %10p - %10p )",
15288                 block, block->vertex, 
15289                 block->first, block->last);
15290         for(edge = block->edges; edge; edge = edge->next) {
15291                 fprintf(fp, " %10p [%2d]",
15292                         edge->member ? edge->member->first : 0,
15293                         edge->member ? edge->member->vertex : -1);
15294         }
15295         fprintf(fp, "\n");
15296 }
15297 #endif
15298         return block;
15299 }
15300
15301
15302 static void walk_blocks(struct compile_state *state, struct basic_blocks *bb,
15303         void (*cb)(struct compile_state *state, struct block *block, void *arg),
15304         void *arg)
15305 {
15306         struct triple *ptr, *first;
15307         struct block *last_block;
15308         last_block = 0;
15309         first = bb->first;
15310         ptr = first;
15311         do {
15312                 if (triple_stores_block(state, ptr)) {
15313                         struct block *block;
15314                         block = ptr->u.block;
15315                         if (block && (block != last_block)) {
15316                                 cb(state, block, arg);
15317                         }
15318                         last_block = block;
15319                 }
15320                 ptr = ptr->next;
15321         } while(ptr != first);
15322 }
15323
15324 static void print_block(
15325         struct compile_state *state, struct block *block, void *arg)
15326 {
15327         struct block_set *user, *edge;
15328         struct triple *ptr;
15329         FILE *fp = arg;
15330
15331         fprintf(fp, "\nblock: %p (%d) ",
15332                 block, 
15333                 block->vertex);
15334
15335         for(edge = block->edges; edge; edge = edge->next) {
15336                 fprintf(fp, " %p<-%p",
15337                         edge->member,
15338                         (edge->member && edge->member->use)?
15339                         edge->member->use->member : 0);
15340         }
15341         fprintf(fp, "\n");
15342         if (block->first->op == OP_LABEL) {
15343                 fprintf(fp, "%p:\n", block->first);
15344         }
15345         for(ptr = block->first; ; ) {
15346                 display_triple(fp, ptr);
15347                 if (ptr == block->last)
15348                         break;
15349                 ptr = ptr->next;
15350                 if (ptr == block->first) {
15351                         internal_error(state, 0, "missing block last?");
15352                 }
15353         }
15354         fprintf(fp, "users %d: ", block->users);
15355         for(user = block->use; user; user = user->next) {
15356                 fprintf(fp, "%p (%d) ", 
15357                         user->member,
15358                         user->member->vertex);
15359         }
15360         fprintf(fp,"\n\n");
15361 }
15362
15363
15364 static void romcc_print_blocks(struct compile_state *state, FILE *fp)
15365 {
15366         fprintf(fp, "--------------- blocks ---------------\n");
15367         walk_blocks(state, &state->bb, print_block, fp);
15368 }
15369 static void print_blocks(struct compile_state *state, const char *func, FILE *fp)
15370 {
15371         if (state->compiler->debug & DEBUG_BASIC_BLOCKS) {
15372                 fprintf(fp, "After %s\n", func);
15373                 romcc_print_blocks(state, fp);
15374                 if (state->compiler->debug & DEBUG_FDOMINATORS) {
15375                         print_dominators(state, fp, &state->bb);
15376                         print_dominance_frontiers(state, fp, &state->bb);
15377                 }
15378                 print_control_flow(state, fp, &state->bb);
15379         }
15380 }
15381
15382 static void prune_nonblock_triples(struct compile_state *state, 
15383         struct basic_blocks *bb)
15384 {
15385         struct block *block;
15386         struct triple *first, *ins, *next;
15387         /* Delete the triples not in a basic block */
15388         block = 0;
15389         first = bb->first;
15390         ins = first;
15391         do {
15392                 next = ins->next;
15393                 if (ins->op == OP_LABEL) {
15394                         block = ins->u.block;
15395                 }
15396                 if (!block) {
15397                         struct triple_set *use;
15398                         for(use = ins->use; use; use = use->next) {
15399                                 struct block *block;
15400                                 block = block_of_triple(state, use->member);
15401                                 if (block != 0) {
15402                                         internal_error(state, ins, "pruning used ins?");
15403                                 }
15404                         }
15405                         release_triple(state, ins);
15406                 }
15407                 if (block && block->last == ins) {
15408                         block = 0;
15409                 }
15410                 ins = next;
15411         } while(ins != first);
15412 }
15413
15414 static void setup_basic_blocks(struct compile_state *state, 
15415         struct basic_blocks *bb)
15416 {
15417         if (!triple_stores_block(state, bb->first)) {
15418                 internal_error(state, 0, "ins will not store block?");
15419         }
15420         /* Initialize the state */
15421         bb->first_block = bb->last_block = 0;
15422         bb->last_vertex = 0;
15423         free_basic_blocks(state, bb);
15424
15425         /* Find the basic blocks */
15426         bb->first_block = basic_block(state, bb, bb->first);
15427
15428         /* Be certain the last instruction of a function, or the
15429          * entire program is in a basic block.  When it is not find 
15430          * the start of the block, insert a label if necessary and build 
15431          * basic block.  Then add a fake edge from the start block
15432          * to the final block.
15433          */
15434         if (!block_of_triple(state, bb->first->prev)) {
15435                 struct triple *start;
15436                 struct block *tail;
15437                 start = triple_to_block_start(state, bb->first->prev);
15438                 if (!triple_is_label(state, start)) {
15439                         start = pre_triple(state,
15440                                 start, OP_LABEL, &void_type, 0, 0);
15441                 }
15442                 tail = basic_block(state, bb, start);
15443                 add_block_edge(bb->first_block, tail, 0);
15444                 use_block(tail, bb->first_block);
15445         }
15446         
15447         /* Find the last basic block.
15448          */
15449         bb->last_block = block_of_triple(state, bb->first->prev);
15450
15451         /* Delete the triples not in a basic block */
15452         prune_nonblock_triples(state, bb);
15453
15454 #if 0
15455         /* If we are debugging print what I have just done */
15456         if (state->compiler->debug & DEBUG_BASIC_BLOCKS) {
15457                 print_blocks(state, state->dbgout);
15458                 print_control_flow(state, bb);
15459         }
15460 #endif
15461 }
15462
15463
15464 struct sdom_block {
15465         struct block *block;
15466         struct sdom_block *sdominates;
15467         struct sdom_block *sdom_next;
15468         struct sdom_block *sdom;
15469         struct sdom_block *label;
15470         struct sdom_block *parent;
15471         struct sdom_block *ancestor;
15472         int vertex;
15473 };
15474
15475
15476 static void unsdom_block(struct sdom_block *block)
15477 {
15478         struct sdom_block **ptr;
15479         if (!block->sdom_next) {
15480                 return;
15481         }
15482         ptr = &block->sdom->sdominates;
15483         while(*ptr) {
15484                 if ((*ptr) == block) {
15485                         *ptr = block->sdom_next;
15486                         return;
15487                 }
15488                 ptr = &(*ptr)->sdom_next;
15489         }
15490 }
15491
15492 static void sdom_block(struct sdom_block *sdom, struct sdom_block *block)
15493 {
15494         unsdom_block(block);
15495         block->sdom = sdom;
15496         block->sdom_next = sdom->sdominates;
15497         sdom->sdominates = block;
15498 }
15499
15500
15501
15502 static int initialize_sdblock(struct sdom_block *sd,
15503         struct block *parent, struct block *block, int vertex)
15504 {
15505         struct block_set *edge;
15506         if (!block || (sd[block->vertex].block == block)) {
15507                 return vertex;
15508         }
15509         vertex += 1;
15510         /* Renumber the blocks in a convinient fashion */
15511         block->vertex = vertex;
15512         sd[vertex].block    = block;
15513         sd[vertex].sdom     = &sd[vertex];
15514         sd[vertex].label    = &sd[vertex];
15515         sd[vertex].parent   = parent? &sd[parent->vertex] : 0;
15516         sd[vertex].ancestor = 0;
15517         sd[vertex].vertex   = vertex;
15518         for(edge = block->edges; edge; edge = edge->next) {
15519                 vertex = initialize_sdblock(sd, block, edge->member, vertex);
15520         }
15521         return vertex;
15522 }
15523
15524 static int initialize_spdblock(
15525         struct compile_state *state, struct sdom_block *sd,
15526         struct block *parent, struct block *block, int vertex)
15527 {
15528         struct block_set *user;
15529         if (!block || (sd[block->vertex].block == block)) {
15530                 return vertex;
15531         }
15532         vertex += 1;
15533         /* Renumber the blocks in a convinient fashion */
15534         block->vertex = vertex;
15535         sd[vertex].block    = block;
15536         sd[vertex].sdom     = &sd[vertex];
15537         sd[vertex].label    = &sd[vertex];
15538         sd[vertex].parent   = parent? &sd[parent->vertex] : 0;
15539         sd[vertex].ancestor = 0;
15540         sd[vertex].vertex   = vertex;
15541         for(user = block->use; user; user = user->next) {
15542                 vertex = initialize_spdblock(state, sd, block, user->member, vertex);
15543         }
15544         return vertex;
15545 }
15546
15547 static int setup_spdblocks(struct compile_state *state, 
15548         struct basic_blocks *bb, struct sdom_block *sd)
15549 {
15550         struct block *block;
15551         int vertex;
15552         /* Setup as many sdpblocks as possible without using fake edges */
15553         vertex = initialize_spdblock(state, sd, 0, bb->last_block, 0);
15554
15555         /* Walk through the graph and find unconnected blocks.  Add a
15556          * fake edge from the unconnected blocks to the end of the
15557          * graph. 
15558          */
15559         block = bb->first_block->last->next->u.block;
15560         for(; block && block != bb->first_block; block = block->last->next->u.block) {
15561                 if (sd[block->vertex].block == block) {
15562                         continue;
15563                 }
15564 #if DEBUG_SDP_BLOCKS
15565                 {
15566                         FILE *fp = state->errout;
15567                         fprintf(fp, "Adding %d\n", vertex +1);
15568                 }
15569 #endif
15570                 add_block_edge(block, bb->last_block, 0);
15571                 use_block(bb->last_block, block);
15572
15573                 vertex = initialize_spdblock(state, sd, bb->last_block, block, vertex);
15574         }
15575         return vertex;
15576 }
15577
15578 static void compress_ancestors(struct sdom_block *v)
15579 {
15580         /* This procedure assumes ancestor(v) != 0 */
15581         /* if (ancestor(ancestor(v)) != 0) {
15582          *      compress(ancestor(ancestor(v)));
15583          *      if (semi(label(ancestor(v))) < semi(label(v))) {
15584          *              label(v) = label(ancestor(v));
15585          *      }
15586          *      ancestor(v) = ancestor(ancestor(v));
15587          * }
15588          */
15589         if (!v->ancestor) {
15590                 return;
15591         }
15592         if (v->ancestor->ancestor) {
15593                 compress_ancestors(v->ancestor->ancestor);
15594                 if (v->ancestor->label->sdom->vertex < v->label->sdom->vertex) {
15595                         v->label = v->ancestor->label;
15596                 }
15597                 v->ancestor = v->ancestor->ancestor;
15598         }
15599 }
15600
15601 static void compute_sdom(struct compile_state *state, 
15602         struct basic_blocks *bb, struct sdom_block *sd)
15603 {
15604         int i;
15605         /* // step 2 
15606          *  for each v <= pred(w) {
15607          *      u = EVAL(v);
15608          *      if (semi[u] < semi[w] { 
15609          *              semi[w] = semi[u]; 
15610          *      } 
15611          * }
15612          * add w to bucket(vertex(semi[w]));
15613          * LINK(parent(w), w);
15614          *
15615          * // step 3
15616          * for each v <= bucket(parent(w)) {
15617          *      delete v from bucket(parent(w));
15618          *      u = EVAL(v);
15619          *      dom(v) = (semi[u] < semi[v]) ? u : parent(w);
15620          * }
15621          */
15622         for(i = bb->last_vertex; i >= 2; i--) {
15623                 struct sdom_block *v, *parent, *next;
15624                 struct block_set *user;
15625                 struct block *block;
15626                 block = sd[i].block;
15627                 parent = sd[i].parent;
15628                 /* Step 2 */
15629                 for(user = block->use; user; user = user->next) {
15630                         struct sdom_block *v, *u;
15631                         v = &sd[user->member->vertex];
15632                         u = !(v->ancestor)? v : (compress_ancestors(v), v->label);
15633                         if (u->sdom->vertex < sd[i].sdom->vertex) {
15634                                 sd[i].sdom = u->sdom;
15635                         }
15636                 }
15637                 sdom_block(sd[i].sdom, &sd[i]);
15638                 sd[i].ancestor = parent;
15639                 /* Step 3 */
15640                 for(v = parent->sdominates; v; v = next) {
15641                         struct sdom_block *u;
15642                         next = v->sdom_next;
15643                         unsdom_block(v);
15644                         u = (!v->ancestor) ? v : (compress_ancestors(v), v->label);
15645                         v->block->idom = (u->sdom->vertex < v->sdom->vertex)? 
15646                                 u->block : parent->block;
15647                 }
15648         }
15649 }
15650
15651 static void compute_spdom(struct compile_state *state, 
15652         struct basic_blocks *bb, struct sdom_block *sd)
15653 {
15654         int i;
15655         /* // step 2 
15656          *  for each v <= pred(w) {
15657          *      u = EVAL(v);
15658          *      if (semi[u] < semi[w] { 
15659          *              semi[w] = semi[u]; 
15660          *      } 
15661          * }
15662          * add w to bucket(vertex(semi[w]));
15663          * LINK(parent(w), w);
15664          *
15665          * // step 3
15666          * for each v <= bucket(parent(w)) {
15667          *      delete v from bucket(parent(w));
15668          *      u = EVAL(v);
15669          *      dom(v) = (semi[u] < semi[v]) ? u : parent(w);
15670          * }
15671          */
15672         for(i = bb->last_vertex; i >= 2; i--) {
15673                 struct sdom_block *u, *v, *parent, *next;
15674                 struct block_set *edge;
15675                 struct block *block;
15676                 block = sd[i].block;
15677                 parent = sd[i].parent;
15678                 /* Step 2 */
15679                 for(edge = block->edges; edge; edge = edge->next) {
15680                         v = &sd[edge->member->vertex];
15681                         u = !(v->ancestor)? v : (compress_ancestors(v), v->label);
15682                         if (u->sdom->vertex < sd[i].sdom->vertex) {
15683                                 sd[i].sdom = u->sdom;
15684                         }
15685                 }
15686                 sdom_block(sd[i].sdom, &sd[i]);
15687                 sd[i].ancestor = parent;
15688                 /* Step 3 */
15689                 for(v = parent->sdominates; v; v = next) {
15690                         struct sdom_block *u;
15691                         next = v->sdom_next;
15692                         unsdom_block(v);
15693                         u = (!v->ancestor) ? v : (compress_ancestors(v), v->label);
15694                         v->block->ipdom = (u->sdom->vertex < v->sdom->vertex)? 
15695                                 u->block : parent->block;
15696                 }
15697         }
15698 }
15699
15700 static void compute_idom(struct compile_state *state, 
15701         struct basic_blocks *bb, struct sdom_block *sd)
15702 {
15703         int i;
15704         for(i = 2; i <= bb->last_vertex; i++) {
15705                 struct block *block;
15706                 block = sd[i].block;
15707                 if (block->idom->vertex != sd[i].sdom->vertex) {
15708                         block->idom = block->idom->idom;
15709                 }
15710                 idom_block(block->idom, block);
15711         }
15712         sd[1].block->idom = 0;
15713 }
15714
15715 static void compute_ipdom(struct compile_state *state, 
15716         struct basic_blocks *bb, struct sdom_block *sd)
15717 {
15718         int i;
15719         for(i = 2; i <= bb->last_vertex; i++) {
15720                 struct block *block;
15721                 block = sd[i].block;
15722                 if (block->ipdom->vertex != sd[i].sdom->vertex) {
15723                         block->ipdom = block->ipdom->ipdom;
15724                 }
15725                 ipdom_block(block->ipdom, block);
15726         }
15727         sd[1].block->ipdom = 0;
15728 }
15729
15730         /* Theorem 1:
15731          *   Every vertex of a flowgraph G = (V, E, r) except r has
15732          *   a unique immediate dominator.  
15733          *   The edges {(idom(w), w) |w <= V - {r}} form a directed tree
15734          *   rooted at r, called the dominator tree of G, such that 
15735          *   v dominates w if and only if v is a proper ancestor of w in
15736          *   the dominator tree.
15737          */
15738         /* Lemma 1:  
15739          *   If v and w are vertices of G such that v <= w,
15740          *   than any path from v to w must contain a common ancestor
15741          *   of v and w in T.
15742          */
15743         /* Lemma 2:  For any vertex w != r, idom(w) -> w */
15744         /* Lemma 3:  For any vertex w != r, sdom(w) -> w */
15745         /* Lemma 4:  For any vertex w != r, idom(w) -> sdom(w) */
15746         /* Theorem 2:
15747          *   Let w != r.  Suppose every u for which sdom(w) -> u -> w satisfies
15748          *   sdom(u) >= sdom(w).  Then idom(w) = sdom(w).
15749          */
15750         /* Theorem 3:
15751          *   Let w != r and let u be a vertex for which sdom(u) is 
15752          *   minimum amoung vertices u satisfying sdom(w) -> u -> w.
15753          *   Then sdom(u) <= sdom(w) and idom(u) = idom(w).
15754          */
15755         /* Lemma 5:  Let vertices v,w satisfy v -> w.
15756          *           Then v -> idom(w) or idom(w) -> idom(v)
15757          */
15758
15759 static void find_immediate_dominators(struct compile_state *state,
15760         struct basic_blocks *bb)
15761 {
15762         struct sdom_block *sd;
15763         /* w->sdom = min{v| there is a path v = v0,v1,...,vk = w such that:
15764          *           vi > w for (1 <= i <= k - 1}
15765          */
15766         /* Theorem 4:
15767          *   For any vertex w != r.
15768          *   sdom(w) = min(
15769          *                 {v|(v,w) <= E  and v < w } U 
15770          *                 {sdom(u) | u > w and there is an edge (v, w) such that u -> v})
15771          */
15772         /* Corollary 1:
15773          *   Let w != r and let u be a vertex for which sdom(u) is 
15774          *   minimum amoung vertices u satisfying sdom(w) -> u -> w.
15775          *   Then:
15776          *                   { sdom(w) if sdom(w) = sdom(u),
15777          *        idom(w) = {
15778          *                   { idom(u) otherwise
15779          */
15780         /* The algorithm consists of the following 4 steps.
15781          * Step 1.  Carry out a depth-first search of the problem graph.  
15782          *    Number the vertices from 1 to N as they are reached during
15783          *    the search.  Initialize the variables used in succeeding steps.
15784          * Step 2.  Compute the semidominators of all vertices by applying
15785          *    theorem 4.   Carry out the computation vertex by vertex in
15786          *    decreasing order by number.
15787          * Step 3.  Implicitly define the immediate dominator of each vertex
15788          *    by applying Corollary 1.
15789          * Step 4.  Explicitly define the immediate dominator of each vertex,
15790          *    carrying out the computation vertex by vertex in increasing order
15791          *    by number.
15792          */
15793         /* Step 1 initialize the basic block information */
15794         sd = xcmalloc(sizeof(*sd) * (bb->last_vertex + 1), "sdom_state");
15795         initialize_sdblock(sd, 0, bb->first_block, 0);
15796 #if 0
15797         sd[1].size  = 0;
15798         sd[1].label = 0;
15799         sd[1].sdom  = 0;
15800 #endif
15801         /* Step 2 compute the semidominators */
15802         /* Step 3 implicitly define the immediate dominator of each vertex */
15803         compute_sdom(state, bb, sd);
15804         /* Step 4 explicitly define the immediate dominator of each vertex */
15805         compute_idom(state, bb, sd);
15806         xfree(sd);
15807 }
15808
15809 static void find_post_dominators(struct compile_state *state,
15810         struct basic_blocks *bb)
15811 {
15812         struct sdom_block *sd;
15813         int vertex;
15814         /* Step 1 initialize the basic block information */
15815         sd = xcmalloc(sizeof(*sd) * (bb->last_vertex + 1), "sdom_state");
15816
15817         vertex = setup_spdblocks(state, bb, sd);
15818         if (vertex != bb->last_vertex) {
15819                 internal_error(state, 0, "missing %d blocks",
15820                         bb->last_vertex - vertex);
15821         }
15822
15823         /* Step 2 compute the semidominators */
15824         /* Step 3 implicitly define the immediate dominator of each vertex */
15825         compute_spdom(state, bb, sd);
15826         /* Step 4 explicitly define the immediate dominator of each vertex */
15827         compute_ipdom(state, bb, sd);
15828         xfree(sd);
15829 }
15830
15831
15832
15833 static void find_block_domf(struct compile_state *state, struct block *block)
15834 {
15835         struct block *child;
15836         struct block_set *user, *edge;
15837         if (block->domfrontier != 0) {
15838                 internal_error(state, block->first, "domfrontier present?");
15839         }
15840         for(user = block->idominates; user; user = user->next) {
15841                 child = user->member;
15842                 if (child->idom != block) {
15843                         internal_error(state, block->first, "bad idom");
15844                 }
15845                 find_block_domf(state, child);
15846         }
15847         for(edge = block->edges; edge; edge = edge->next) {
15848                 if (edge->member->idom != block) {
15849                         domf_block(block, edge->member);
15850                 }
15851         }
15852         for(user = block->idominates; user; user = user->next) {
15853                 struct block_set *frontier;
15854                 child = user->member;
15855                 for(frontier = child->domfrontier; frontier; frontier = frontier->next) {
15856                         if (frontier->member->idom != block) {
15857                                 domf_block(block, frontier->member);
15858                         }
15859                 }
15860         }
15861 }
15862
15863 static void find_block_ipdomf(struct compile_state *state, struct block *block)
15864 {
15865         struct block *child;
15866         struct block_set *user;
15867         if (block->ipdomfrontier != 0) {
15868                 internal_error(state, block->first, "ipdomfrontier present?");
15869         }
15870         for(user = block->ipdominates; user; user = user->next) {
15871                 child = user->member;
15872                 if (child->ipdom != block) {
15873                         internal_error(state, block->first, "bad ipdom");
15874                 }
15875                 find_block_ipdomf(state, child);
15876         }
15877         for(user = block->use; user; user = user->next) {
15878                 if (user->member->ipdom != block) {
15879                         ipdomf_block(block, user->member);
15880                 }
15881         }
15882         for(user = block->ipdominates; user; user = user->next) {
15883                 struct block_set *frontier;
15884                 child = user->member;
15885                 for(frontier = child->ipdomfrontier; frontier; frontier = frontier->next) {
15886                         if (frontier->member->ipdom != block) {
15887                                 ipdomf_block(block, frontier->member);
15888                         }
15889                 }
15890         }
15891 }
15892
15893 static void print_dominated(
15894         struct compile_state *state, struct block *block, void *arg)
15895 {
15896         struct block_set *user;
15897         FILE *fp = arg;
15898
15899         fprintf(fp, "%d:", block->vertex);
15900         for(user = block->idominates; user; user = user->next) {
15901                 fprintf(fp, " %d", user->member->vertex);
15902                 if (user->member->idom != block) {
15903                         internal_error(state, user->member->first, "bad idom");
15904                 }
15905         }
15906         fprintf(fp,"\n");
15907 }
15908
15909 static void print_dominated2(
15910         struct compile_state *state, FILE *fp, int depth, struct block *block)
15911 {
15912         struct block_set *user;
15913         struct triple *ins;
15914         struct occurance *ptr, *ptr2;
15915         const char *filename1, *filename2;
15916         int equal_filenames;
15917         int i;
15918         for(i = 0; i < depth; i++) {
15919                 fprintf(fp, "   ");
15920         }
15921         fprintf(fp, "%3d: %p (%p - %p) @", 
15922                 block->vertex, block, block->first, block->last);
15923         ins = block->first;
15924         while(ins != block->last && (ins->occurance->line == 0)) {
15925                 ins = ins->next;
15926         }
15927         ptr = ins->occurance;
15928         ptr2 = block->last->occurance;
15929         filename1 = ptr->filename? ptr->filename : "";
15930         filename2 = ptr2->filename? ptr2->filename : "";
15931         equal_filenames = (strcmp(filename1, filename2) == 0);
15932         if ((ptr == ptr2) || (equal_filenames && ptr->line == ptr2->line)) {
15933                 fprintf(fp, " %s:%d", ptr->filename, ptr->line);
15934         } else if (equal_filenames) {
15935                 fprintf(fp, " %s:(%d - %d)",
15936                         ptr->filename, ptr->line, ptr2->line);
15937         } else {
15938                 fprintf(fp, " (%s:%d - %s:%d)",
15939                         ptr->filename, ptr->line,
15940                         ptr2->filename, ptr2->line);
15941         }
15942         fprintf(fp, "\n");
15943         for(user = block->idominates; user; user = user->next) {
15944                 print_dominated2(state, fp, depth + 1, user->member);
15945         }
15946 }
15947
15948 static void print_dominators(struct compile_state *state, FILE *fp, struct basic_blocks *bb)
15949 {
15950         fprintf(fp, "\ndominates\n");
15951         walk_blocks(state, bb, print_dominated, fp);
15952         fprintf(fp, "dominates\n");
15953         print_dominated2(state, fp, 0, bb->first_block);
15954 }
15955
15956
15957 static int print_frontiers(
15958         struct compile_state *state, FILE *fp, struct block *block, int vertex)
15959 {
15960         struct block_set *user, *edge;
15961
15962         if (!block || (block->vertex != vertex + 1)) {
15963                 return vertex;
15964         }
15965         vertex += 1;
15966
15967         fprintf(fp, "%d:", block->vertex);
15968         for(user = block->domfrontier; user; user = user->next) {
15969                 fprintf(fp, " %d", user->member->vertex);
15970         }
15971         fprintf(fp, "\n");
15972         
15973         for(edge = block->edges; edge; edge = edge->next) {
15974                 vertex = print_frontiers(state, fp, edge->member, vertex);
15975         }
15976         return vertex;
15977 }
15978 static void print_dominance_frontiers(struct compile_state *state,
15979         FILE *fp, struct basic_blocks *bb)
15980 {
15981         fprintf(fp, "\ndominance frontiers\n");
15982         print_frontiers(state, fp, bb->first_block, 0);
15983         
15984 }
15985
15986 static void analyze_idominators(struct compile_state *state, struct basic_blocks *bb)
15987 {
15988         /* Find the immediate dominators */
15989         find_immediate_dominators(state, bb);
15990         /* Find the dominance frontiers */
15991         find_block_domf(state, bb->first_block);
15992         /* If debuging print the print what I have just found */
15993         if (state->compiler->debug & DEBUG_FDOMINATORS) {
15994                 print_dominators(state, state->dbgout, bb);
15995                 print_dominance_frontiers(state, state->dbgout, bb);
15996                 print_control_flow(state, state->dbgout, bb);
15997         }
15998 }
15999
16000
16001 static void print_ipdominated(
16002         struct compile_state *state, struct block *block, void *arg)
16003 {
16004         struct block_set *user;
16005         FILE *fp = arg;
16006
16007         fprintf(fp, "%d:", block->vertex);
16008         for(user = block->ipdominates; user; user = user->next) {
16009                 fprintf(fp, " %d", user->member->vertex);
16010                 if (user->member->ipdom != block) {
16011                         internal_error(state, user->member->first, "bad ipdom");
16012                 }
16013         }
16014         fprintf(fp, "\n");
16015 }
16016
16017 static void print_ipdominators(struct compile_state *state, FILE *fp,
16018         struct basic_blocks *bb)
16019 {
16020         fprintf(fp, "\nipdominates\n");
16021         walk_blocks(state, bb, print_ipdominated, fp);
16022 }
16023
16024 static int print_pfrontiers(
16025         struct compile_state *state, FILE *fp, struct block *block, int vertex)
16026 {
16027         struct block_set *user;
16028
16029         if (!block || (block->vertex != vertex + 1)) {
16030                 return vertex;
16031         }
16032         vertex += 1;
16033
16034         fprintf(fp, "%d:", block->vertex);
16035         for(user = block->ipdomfrontier; user; user = user->next) {
16036                 fprintf(fp, " %d", user->member->vertex);
16037         }
16038         fprintf(fp, "\n");
16039         for(user = block->use; user; user = user->next) {
16040                 vertex = print_pfrontiers(state, fp, user->member, vertex);
16041         }
16042         return vertex;
16043 }
16044 static void print_ipdominance_frontiers(struct compile_state *state,
16045         FILE *fp, struct basic_blocks *bb)
16046 {
16047         fprintf(fp, "\nipdominance frontiers\n");
16048         print_pfrontiers(state, fp, bb->last_block, 0);
16049         
16050 }
16051
16052 static void analyze_ipdominators(struct compile_state *state,
16053         struct basic_blocks *bb)
16054 {
16055         /* Find the post dominators */
16056         find_post_dominators(state, bb);
16057         /* Find the control dependencies (post dominance frontiers) */
16058         find_block_ipdomf(state, bb->last_block);
16059         /* If debuging print the print what I have just found */
16060         if (state->compiler->debug & DEBUG_RDOMINATORS) {
16061                 print_ipdominators(state, state->dbgout, bb);
16062                 print_ipdominance_frontiers(state, state->dbgout, bb);
16063                 print_control_flow(state, state->dbgout, bb);
16064         }
16065 }
16066
16067 static int bdominates(struct compile_state *state,
16068         struct block *dom, struct block *sub)
16069 {
16070         while(sub && (sub != dom)) {
16071                 sub = sub->idom;
16072         }
16073         return sub == dom;
16074 }
16075
16076 static int tdominates(struct compile_state *state,
16077         struct triple *dom, struct triple *sub)
16078 {
16079         struct block *bdom, *bsub;
16080         int result;
16081         bdom = block_of_triple(state, dom);
16082         bsub = block_of_triple(state, sub);
16083         if (bdom != bsub) {
16084                 result = bdominates(state, bdom, bsub);
16085         } 
16086         else {
16087                 struct triple *ins;
16088                 if (!bdom || !bsub) {
16089                         internal_error(state, dom, "huh?");
16090                 }
16091                 ins = sub;
16092                 while((ins != bsub->first) && (ins != dom)) {
16093                         ins = ins->prev;
16094                 }
16095                 result = (ins == dom);
16096         }
16097         return result;
16098 }
16099
16100 static void analyze_basic_blocks(
16101         struct compile_state *state, struct basic_blocks *bb)
16102 {
16103         setup_basic_blocks(state, bb);
16104         analyze_idominators(state, bb);
16105         analyze_ipdominators(state, bb);
16106 }
16107
16108 static void insert_phi_operations(struct compile_state *state)
16109 {
16110         size_t size;
16111         struct triple *first;
16112         int *has_already, *work;
16113         struct block *work_list, **work_list_tail;
16114         int iter;
16115         struct triple *var, *vnext;
16116
16117         size = sizeof(int) * (state->bb.last_vertex + 1);
16118         has_already = xcmalloc(size, "has_already");
16119         work =        xcmalloc(size, "work");
16120         iter = 0;
16121
16122         first = state->first;
16123         for(var = first->next; var != first ; var = vnext) {
16124                 struct block *block;
16125                 struct triple_set *user, *unext;
16126                 vnext = var->next;
16127
16128                 if (!triple_is_auto_var(state, var) || !var->use) {
16129                         continue;
16130                 }
16131                         
16132                 iter += 1;
16133                 work_list = 0;
16134                 work_list_tail = &work_list;
16135                 for(user = var->use; user; user = unext) {
16136                         unext = user->next;
16137                         if (MISC(var, 0) == user->member) {
16138                                 continue;
16139                         }
16140                         if (user->member->op == OP_READ) {
16141                                 continue;
16142                         }
16143                         if (user->member->op != OP_WRITE) {
16144                                 internal_error(state, user->member, 
16145                                         "bad variable access");
16146                         }
16147                         block = user->member->u.block;
16148                         if (!block) {
16149                                 warning(state, user->member, "dead code");
16150                                 release_triple(state, user->member);
16151                                 continue;
16152                         }
16153                         if (work[block->vertex] >= iter) {
16154                                 continue;
16155                         }
16156                         work[block->vertex] = iter;
16157                         *work_list_tail = block;
16158                         block->work_next = 0;
16159                         work_list_tail = &block->work_next;
16160                 }
16161                 for(block = work_list; block; block = block->work_next) {
16162                         struct block_set *df;
16163                         for(df = block->domfrontier; df; df = df->next) {
16164                                 struct triple *phi;
16165                                 struct block *front;
16166                                 int in_edges;
16167                                 front = df->member;
16168
16169                                 if (has_already[front->vertex] >= iter) {
16170                                         continue;
16171                                 }
16172                                 /* Count how many edges flow into this block */
16173                                 in_edges = front->users;
16174                                 /* Insert a phi function for this variable */
16175                                 get_occurance(var->occurance);
16176                                 phi = alloc_triple(
16177                                         state, OP_PHI, var->type, -1, in_edges, 
16178                                         var->occurance);
16179                                 phi->u.block = front;
16180                                 MISC(phi, 0) = var;
16181                                 use_triple(var, phi);
16182 #if 1
16183                                 if (phi->rhs != in_edges) {
16184                                         internal_error(state, phi, "phi->rhs: %d != in_edges: %d",
16185                                                 phi->rhs, in_edges);
16186                                 }
16187 #endif
16188                                 /* Insert the phi functions immediately after the label */
16189                                 insert_triple(state, front->first->next, phi);
16190                                 if (front->first == front->last) {
16191                                         front->last = front->first->next;
16192                                 }
16193                                 has_already[front->vertex] = iter;
16194                                 transform_to_arch_instruction(state, phi);
16195
16196                                 /* If necessary plan to visit the basic block */
16197                                 if (work[front->vertex] >= iter) {
16198                                         continue;
16199                                 }
16200                                 work[front->vertex] = iter;
16201                                 *work_list_tail = front;
16202                                 front->work_next = 0;
16203                                 work_list_tail = &front->work_next;
16204                         }
16205                 }
16206         }
16207         xfree(has_already);
16208         xfree(work);
16209 }
16210
16211
16212 struct stack {
16213         struct triple_set *top;
16214         unsigned orig_id;
16215 };
16216
16217 static int count_auto_vars(struct compile_state *state)
16218 {
16219         struct triple *first, *ins;
16220         int auto_vars = 0;
16221         first = state->first;
16222         ins = first;
16223         do {
16224                 if (triple_is_auto_var(state, ins)) {
16225                         auto_vars += 1;
16226                 }
16227                 ins = ins->next;
16228         } while(ins != first);
16229         return auto_vars;
16230 }
16231
16232 static void number_auto_vars(struct compile_state *state, struct stack *stacks)
16233 {
16234         struct triple *first, *ins;
16235         int auto_vars = 0;
16236         first = state->first;
16237         ins = first;
16238         do {
16239                 if (triple_is_auto_var(state, ins)) {
16240                         auto_vars += 1;
16241                         stacks[auto_vars].orig_id = ins->id;
16242                         ins->id = auto_vars;
16243                 }
16244                 ins = ins->next;
16245         } while(ins != first);
16246 }
16247
16248 static void restore_auto_vars(struct compile_state *state, struct stack *stacks)
16249 {
16250         struct triple *first, *ins;
16251         first = state->first;
16252         ins = first;
16253         do {
16254                 if (triple_is_auto_var(state, ins)) {
16255                         ins->id = stacks[ins->id].orig_id;
16256                 }
16257                 ins = ins->next;
16258         } while(ins != first);
16259 }
16260
16261 static struct triple *peek_triple(struct stack *stacks, struct triple *var)
16262 {
16263         struct triple_set *head;
16264         struct triple *top_val;
16265         top_val = 0;
16266         head = stacks[var->id].top;
16267         if (head) {
16268                 top_val = head->member;
16269         }
16270         return top_val;
16271 }
16272
16273 static void push_triple(struct stack *stacks, struct triple *var, struct triple *val)
16274 {
16275         struct triple_set *new;
16276         /* Append new to the head of the list,
16277          * it's the only sensible behavoir for a stack.
16278          */
16279         new = xcmalloc(sizeof(*new), "triple_set");
16280         new->member = val;
16281         new->next   = stacks[var->id].top;
16282         stacks[var->id].top = new;
16283 }
16284
16285 static void pop_triple(struct stack *stacks, struct triple *var, struct triple *oldval)
16286 {
16287         struct triple_set *set, **ptr;
16288         ptr = &stacks[var->id].top;
16289         while(*ptr) {
16290                 set = *ptr;
16291                 if (set->member == oldval) {
16292                         *ptr = set->next;
16293                         xfree(set);
16294                         /* Only free one occurance from the stack */
16295                         return;
16296                 }
16297                 else {
16298                         ptr = &set->next;
16299                 }
16300         }
16301 }
16302
16303 /*
16304  * C(V)
16305  * S(V)
16306  */
16307 static void fixup_block_phi_variables(
16308         struct compile_state *state, struct stack *stacks, struct block *parent, struct block *block)
16309 {
16310         struct block_set *set;
16311         struct triple *ptr;
16312         int edge;
16313         if (!parent || !block)
16314                 return;
16315         /* Find the edge I am coming in on */
16316         edge = 0;
16317         for(set = block->use; set; set = set->next, edge++) {
16318                 if (set->member == parent) {
16319                         break;
16320                 }
16321         }
16322         if (!set) {
16323                 internal_error(state, 0, "phi input is not on a control predecessor");
16324         }
16325         for(ptr = block->first; ; ptr = ptr->next) {
16326                 if (ptr->op == OP_PHI) {
16327                         struct triple *var, *val, **slot;
16328                         var = MISC(ptr, 0);
16329                         if (!var) {
16330                                 internal_error(state, ptr, "no var???");
16331                         }
16332                         /* Find the current value of the variable */
16333                         val = peek_triple(stacks, var);
16334                         if (val && ((val->op == OP_WRITE) || (val->op == OP_READ))) {
16335                                 internal_error(state, val, "bad value in phi");
16336                         }
16337                         if (edge >= ptr->rhs) {
16338                                 internal_error(state, ptr, "edges > phi rhs");
16339                         }
16340                         slot = &RHS(ptr, edge);
16341                         if ((*slot != 0) && (*slot != val)) {
16342                                 internal_error(state, ptr, "phi already bound on this edge");
16343                         }
16344                         *slot = val;
16345                         use_triple(val, ptr);
16346                 }
16347                 if (ptr == block->last) {
16348                         break;
16349                 }
16350         }
16351 }
16352
16353
16354 static void rename_block_variables(
16355         struct compile_state *state, struct stack *stacks, struct block *block)
16356 {
16357         struct block_set *user, *edge;
16358         struct triple *ptr, *next, *last;
16359         int done;
16360         if (!block)
16361                 return;
16362         last = block->first;
16363         done = 0;
16364         for(ptr = block->first; !done; ptr = next) {
16365                 next = ptr->next;
16366                 if (ptr == block->last) {
16367                         done = 1;
16368                 }
16369                 /* RHS(A) */
16370                 if (ptr->op == OP_READ) {
16371                         struct triple *var, *val;
16372                         var = RHS(ptr, 0);
16373                         if (!triple_is_auto_var(state, var)) {
16374                                 internal_error(state, ptr, "read of non auto var!");
16375                         }
16376                         unuse_triple(var, ptr);
16377                         /* Find the current value of the variable */
16378                         val = peek_triple(stacks, var);
16379                         if (!val) {
16380                                 /* Let the optimizer at variables that are not initially
16381                                  * set.  But give it a bogus value so things seem to
16382                                  * work by accident.  This is useful for bitfields because
16383                                  * setting them always involves a read-modify-write.
16384                                  */
16385                                 if (TYPE_ARITHMETIC(ptr->type->type)) {
16386                                         val = pre_triple(state, ptr, OP_INTCONST, ptr->type, 0, 0);
16387                                         val->u.cval = 0xdeadbeaf;
16388                                 } else {
16389                                         val = pre_triple(state, ptr, OP_UNKNOWNVAL, ptr->type, 0, 0);
16390                                 }
16391                         }
16392                         if (!val) {
16393                                 error(state, ptr, "variable used without being set");
16394                         }
16395                         if ((val->op == OP_WRITE) || (val->op == OP_READ)) {
16396                                 internal_error(state, val, "bad value in read");
16397                         }
16398                         propogate_use(state, ptr, val);
16399                         release_triple(state, ptr);
16400                         continue;
16401                 }
16402                 /* LHS(A) */
16403                 if (ptr->op == OP_WRITE) {
16404                         struct triple *var, *val, *tval;
16405                         var = MISC(ptr, 0);
16406                         if (!triple_is_auto_var(state, var)) {
16407                                 internal_error(state, ptr, "write to non auto var!");
16408                         }
16409                         tval = val = RHS(ptr, 0);
16410                         if ((val->op == OP_WRITE) || (val->op == OP_READ) ||
16411                                 triple_is_auto_var(state, val)) {
16412                                 internal_error(state, ptr, "bad value in write");
16413                         }
16414                         /* Insert a cast if the types differ */
16415                         if (!is_subset_type(ptr->type, val->type)) {
16416                                 if (val->op == OP_INTCONST) {
16417                                         tval = pre_triple(state, ptr, OP_INTCONST, ptr->type, 0, 0);
16418                                         tval->u.cval = val->u.cval;
16419                                 }
16420                                 else {
16421                                         tval = pre_triple(state, ptr, OP_CONVERT, ptr->type, val, 0);
16422                                         use_triple(val, tval);
16423                                 }
16424                                 transform_to_arch_instruction(state, tval);
16425                                 unuse_triple(val, ptr);
16426                                 RHS(ptr, 0) = tval;
16427                                 use_triple(tval, ptr);
16428                         }
16429                         propogate_use(state, ptr, tval);
16430                         unuse_triple(var, ptr);
16431                         /* Push OP_WRITE ptr->right onto a stack of variable uses */
16432                         push_triple(stacks, var, tval);
16433                 }
16434                 if (ptr->op == OP_PHI) {
16435                         struct triple *var;
16436                         var = MISC(ptr, 0);
16437                         if (!triple_is_auto_var(state, var)) {
16438                                 internal_error(state, ptr, "phi references non auto var!");
16439                         }
16440                         /* Push OP_PHI onto a stack of variable uses */
16441                         push_triple(stacks, var, ptr);
16442                 }
16443                 last = ptr;
16444         }
16445         block->last = last;
16446
16447         /* Fixup PHI functions in the cf successors */
16448         for(edge = block->edges; edge; edge = edge->next) {
16449                 fixup_block_phi_variables(state, stacks, block, edge->member);
16450         }
16451         /* rename variables in the dominated nodes */
16452         for(user = block->idominates; user; user = user->next) {
16453                 rename_block_variables(state, stacks, user->member);
16454         }
16455         /* pop the renamed variable stack */
16456         last = block->first;
16457         done = 0;
16458         for(ptr = block->first; !done ; ptr = next) {
16459                 next = ptr->next;
16460                 if (ptr == block->last) {
16461                         done = 1;
16462                 }
16463                 if (ptr->op == OP_WRITE) {
16464                         struct triple *var;
16465                         var = MISC(ptr, 0);
16466                         /* Pop OP_WRITE ptr->right from the stack of variable uses */
16467                         pop_triple(stacks, var, RHS(ptr, 0));
16468                         release_triple(state, ptr);
16469                         continue;
16470                 }
16471                 if (ptr->op == OP_PHI) {
16472                         struct triple *var;
16473                         var = MISC(ptr, 0);
16474                         /* Pop OP_WRITE ptr->right from the stack of variable uses */
16475                         pop_triple(stacks, var, ptr);
16476                 }
16477                 last = ptr;
16478         }
16479         block->last = last;
16480 }
16481
16482 static void rename_variables(struct compile_state *state)
16483 {
16484         struct stack *stacks;
16485         int auto_vars;
16486
16487         /* Allocate stacks for the Variables */
16488         auto_vars = count_auto_vars(state);
16489         stacks = xcmalloc(sizeof(stacks[0])*(auto_vars + 1), "auto var stacks");
16490
16491         /* Give each auto_var a stack */
16492         number_auto_vars(state, stacks);
16493
16494         /* Rename the variables */
16495         rename_block_variables(state, stacks, state->bb.first_block);
16496
16497         /* Remove the stacks from the auto_vars */
16498         restore_auto_vars(state, stacks);
16499         xfree(stacks);
16500 }
16501
16502 static void prune_block_variables(struct compile_state *state,
16503         struct block *block)
16504 {
16505         struct block_set *user;
16506         struct triple *next, *ptr;
16507         int done;
16508
16509         done = 0;
16510         for(ptr = block->first; !done; ptr = next) {
16511                 /* Be extremely careful I am deleting the list
16512                  * as I walk trhough it.
16513                  */
16514                 next = ptr->next;
16515                 if (ptr == block->last) {
16516                         done = 1;
16517                 }
16518                 if (triple_is_auto_var(state, ptr)) {
16519                         struct triple_set *user, *next;
16520                         for(user = ptr->use; user; user = next) {
16521                                 struct triple *use;
16522                                 next = user->next;
16523                                 use = user->member;
16524                                 if (MISC(ptr, 0) == user->member) {
16525                                         continue;
16526                                 }
16527                                 if (use->op != OP_PHI) {
16528                                         internal_error(state, use, "decl still used");
16529                                 }
16530                                 if (MISC(use, 0) != ptr) {
16531                                         internal_error(state, use, "bad phi use of decl");
16532                                 }
16533                                 unuse_triple(ptr, use);
16534                                 MISC(use, 0) = 0;
16535                         }
16536                         if ((ptr->u.cval == 0) && (MISC(ptr, 0)->lhs == 1)) {
16537                                 /* Delete the adecl */
16538                                 release_triple(state, MISC(ptr, 0));
16539                                 /* And the piece */
16540                                 release_triple(state, ptr);
16541                         }
16542                         continue;
16543                 }
16544         }
16545         for(user = block->idominates; user; user = user->next) {
16546                 prune_block_variables(state, user->member);
16547         }
16548 }
16549
16550 struct phi_triple {
16551         struct triple *phi;
16552         unsigned orig_id;
16553         int alive;
16554 };
16555
16556 static void keep_phi(struct compile_state *state, struct phi_triple *live, struct triple *phi)
16557 {
16558         struct triple **slot;
16559         int zrhs, i;
16560         if (live[phi->id].alive) {
16561                 return;
16562         }
16563         live[phi->id].alive = 1;
16564         zrhs = phi->rhs;
16565         slot = &RHS(phi, 0);
16566         for(i = 0; i < zrhs; i++) {
16567                 struct triple *used;
16568                 used = slot[i];
16569                 if (used && (used->op == OP_PHI)) {
16570                         keep_phi(state, live, used);
16571                 }
16572         }
16573 }
16574
16575 static void prune_unused_phis(struct compile_state *state)
16576 {
16577         struct triple *first, *phi;
16578         struct phi_triple *live;
16579         int phis, i;
16580         
16581         /* Find the first instruction */
16582         first = state->first;
16583
16584         /* Count how many phi functions I need to process */
16585         phis = 0;
16586         for(phi = first->next; phi != first; phi = phi->next) {
16587                 if (phi->op == OP_PHI) {
16588                         phis += 1;
16589                 }
16590         }
16591         
16592         /* Mark them all dead */
16593         live = xcmalloc(sizeof(*live) * (phis + 1), "phi_triple");
16594         phis = 0;
16595         for(phi = first->next; phi != first; phi = phi->next) {
16596                 if (phi->op != OP_PHI) {
16597                         continue;
16598                 }
16599                 live[phis].alive   = 0;
16600                 live[phis].orig_id = phi->id;
16601                 live[phis].phi     = phi;
16602                 phi->id = phis;
16603                 phis += 1;
16604         }
16605         
16606         /* Mark phis alive that are used by non phis */
16607         for(i = 0; i < phis; i++) {
16608                 struct triple_set *set;
16609                 for(set = live[i].phi->use; !live[i].alive && set; set = set->next) {
16610                         if (set->member->op != OP_PHI) {
16611                                 keep_phi(state, live, live[i].phi);
16612                                 break;
16613                         }
16614                 }
16615         }
16616
16617         /* Delete the extraneous phis */
16618         for(i = 0; i < phis; i++) {
16619                 struct triple **slot;
16620                 int zrhs, j;
16621                 if (!live[i].alive) {
16622                         release_triple(state, live[i].phi);
16623                         continue;
16624                 }
16625                 phi = live[i].phi;
16626                 slot = &RHS(phi, 0);
16627                 zrhs = phi->rhs;
16628                 for(j = 0; j < zrhs; j++) {
16629                         if(!slot[j]) {
16630                                 struct triple *unknown;
16631                                 get_occurance(phi->occurance);
16632                                 unknown = flatten(state, state->global_pool,
16633                                         alloc_triple(state, OP_UNKNOWNVAL,
16634                                                 phi->type, 0, 0, phi->occurance));
16635                                 slot[j] = unknown;
16636                                 use_triple(unknown, phi);
16637                                 transform_to_arch_instruction(state, unknown);
16638 #if 0                           
16639                                 warning(state, phi, "variable not set at index %d on all paths to use", j);
16640 #endif
16641                         }
16642                 }
16643         }
16644         xfree(live);
16645 }
16646
16647 static void transform_to_ssa_form(struct compile_state *state)
16648 {
16649         insert_phi_operations(state);
16650         rename_variables(state);
16651
16652         prune_block_variables(state, state->bb.first_block);
16653         prune_unused_phis(state);
16654
16655         print_blocks(state, __func__, state->dbgout);
16656 }
16657
16658
16659 static void clear_vertex(
16660         struct compile_state *state, struct block *block, void *arg)
16661 {
16662         /* Clear the current blocks vertex and the vertex of all
16663          * of the current blocks neighbors in case there are malformed
16664          * blocks with now instructions at this point.
16665          */
16666         struct block_set *user, *edge;
16667         block->vertex = 0;
16668         for(edge = block->edges; edge; edge = edge->next) {
16669                 edge->member->vertex = 0;
16670         }
16671         for(user = block->use; user; user = user->next) {
16672                 user->member->vertex = 0;
16673         }
16674 }
16675
16676 static void mark_live_block(
16677         struct compile_state *state, struct block *block, int *next_vertex)
16678 {
16679         /* See if this is a block that has not been marked */
16680         if (block->vertex != 0) {
16681                 return;
16682         }
16683         block->vertex = *next_vertex;
16684         *next_vertex += 1;
16685         if (triple_is_branch(state, block->last)) {
16686                 struct triple **targ;
16687                 targ = triple_edge_targ(state, block->last, 0);
16688                 for(; targ; targ = triple_edge_targ(state, block->last, targ)) {
16689                         if (!*targ) {
16690                                 continue;
16691                         }
16692                         if (!triple_stores_block(state, *targ)) {
16693                                 internal_error(state, 0, "bad targ");
16694                         }
16695                         mark_live_block(state, (*targ)->u.block, next_vertex);
16696                 }
16697                 /* Ensure the last block of a function remains alive */
16698                 if (triple_is_call(state, block->last)) {
16699                         mark_live_block(state, MISC(block->last, 0)->u.block, next_vertex);
16700                 }
16701         }
16702         else if (block->last->next != state->first) {
16703                 struct triple *ins;
16704                 ins = block->last->next;
16705                 if (!triple_stores_block(state, ins)) {
16706                         internal_error(state, 0, "bad block start");
16707                 }
16708                 mark_live_block(state, ins->u.block, next_vertex);
16709         }
16710 }
16711
16712 static void transform_from_ssa_form(struct compile_state *state)
16713 {
16714         /* To get out of ssa form we insert moves on the incoming
16715          * edges to blocks containting phi functions.
16716          */
16717         struct triple *first;
16718         struct triple *phi, *var, *next;
16719         int next_vertex;
16720
16721         /* Walk the control flow to see which blocks remain alive */
16722         walk_blocks(state, &state->bb, clear_vertex, 0);
16723         next_vertex = 1;
16724         mark_live_block(state, state->bb.first_block, &next_vertex);
16725
16726         /* Walk all of the operations to find the phi functions */
16727         first = state->first;
16728         for(phi = first->next; phi != first ; phi = next) {
16729                 struct block_set *set;
16730                 struct block *block;
16731                 struct triple **slot;
16732                 struct triple *var;
16733                 struct triple_set *use, *use_next;
16734                 int edge, writers, readers;
16735                 next = phi->next;
16736                 if (phi->op != OP_PHI) {
16737                         continue;
16738                 }
16739
16740                 block = phi->u.block;
16741                 slot  = &RHS(phi, 0);
16742
16743                 /* If this phi is in a dead block just forget it */
16744                 if (block->vertex == 0) {
16745                         release_triple(state, phi);
16746                         continue;
16747                 }
16748
16749                 /* Forget uses from code in dead blocks */
16750                 for(use = phi->use; use; use = use_next) {
16751                         struct block *ublock;
16752                         struct triple **expr;
16753                         use_next = use->next;
16754                         ublock = block_of_triple(state, use->member);
16755                         if ((use->member == phi) || (ublock->vertex != 0)) {
16756                                 continue;
16757                         }
16758                         expr = triple_rhs(state, use->member, 0);
16759                         for(; expr; expr = triple_rhs(state, use->member, expr)) {
16760                                 if (*expr == phi) {
16761                                         *expr = 0;
16762                                 }
16763                         }
16764                         unuse_triple(phi, use->member);
16765                 }
16766                 /* A variable to replace the phi function */
16767                 if (registers_of(state, phi->type) != 1) {
16768                         internal_error(state, phi, "phi->type does not fit in a single register!");
16769                 }
16770                 var = post_triple(state, phi, OP_ADECL, phi->type, 0, 0);
16771                 var = var->next; /* point at the var */
16772                         
16773                 /* Replaces use of phi with var */
16774                 propogate_use(state, phi, var);
16775
16776                 /* Count the readers */
16777                 readers = 0;
16778                 for(use = var->use; use; use = use->next) {
16779                         if (use->member != MISC(var, 0)) {
16780                                 readers++;
16781                         }
16782                 }
16783
16784                 /* Walk all of the incoming edges/blocks and insert moves.
16785                  */
16786                 writers = 0;
16787                 for(edge = 0, set = block->use; set; set = set->next, edge++) {
16788                         struct block *eblock, *vblock;
16789                         struct triple *move;
16790                         struct triple *val, *base;
16791                         eblock = set->member;
16792                         val = slot[edge];
16793                         slot[edge] = 0;
16794                         unuse_triple(val, phi);
16795                         vblock = block_of_triple(state, val);
16796
16797                         /* If we don't have a value that belongs in an OP_WRITE
16798                          * continue on.
16799                          */
16800                         if (!val || (val == &unknown_triple) || (val == phi)
16801                                 || (vblock && (vblock->vertex == 0))) {
16802                                 continue;
16803                         }
16804                         /* If the value should never occur error */
16805                         if (!vblock) {
16806                                 internal_error(state, val, "no vblock?");
16807                                 continue;
16808                         }
16809
16810                         /* If the value occurs in a dead block see if a replacement
16811                          * block can be found.
16812                          */
16813                         while(eblock && (eblock->vertex == 0)) {
16814                                 eblock = eblock->idom;
16815                         }
16816                         /* If not continue on with the next value. */
16817                         if (!eblock || (eblock->vertex == 0)) {
16818                                 continue;
16819                         }
16820
16821                         /* If we have an empty incoming block ignore it. */
16822                         if (!eblock->first) {
16823                                 internal_error(state, 0, "empty block?");
16824                         }
16825                         
16826                         /* Make certain the write is placed in the edge block... */
16827                         /* Walk through the edge block backwards to find an
16828                          * appropriate location for the OP_WRITE.
16829                          */
16830                         for(base = eblock->last; base != eblock->first; base = base->prev) {
16831                                 struct triple **expr;
16832                                 if (base->op == OP_PIECE) {
16833                                         base = MISC(base, 0);
16834                                 }
16835                                 if ((base == var) || (base == val)) {
16836                                         goto out;
16837                                 }
16838                                 expr = triple_lhs(state, base, 0);
16839                                 for(; expr; expr = triple_lhs(state, base, expr)) {
16840                                         if ((*expr) == val) {
16841                                                 goto out;
16842                                         }
16843                                 }
16844                                 expr = triple_rhs(state, base, 0);
16845                                 for(; expr; expr = triple_rhs(state, base, expr)) {
16846                                         if ((*expr) == var) {
16847                                                 goto out;
16848                                         }
16849                                 }
16850                         }
16851                 out:
16852                         if (triple_is_branch(state, base)) {
16853                                 internal_error(state, base,
16854                                         "Could not insert write to phi");
16855                         }
16856                         move = post_triple(state, base, OP_WRITE, var->type, val, var);
16857                         use_triple(val, move);
16858                         use_triple(var, move);
16859                         writers++;
16860                 }
16861                 if (!writers && readers) {
16862                         internal_error(state, var, "no value written to in use phi?");
16863                 }
16864                 /* If var is not used free it */
16865                 if (!writers) {
16866                         release_triple(state, MISC(var, 0));
16867                         release_triple(state, var);
16868                 }
16869                 /* Release the phi function */
16870                 release_triple(state, phi);
16871         }
16872         
16873         /* Walk all of the operations to find the adecls */
16874         for(var = first->next; var != first ; var = var->next) {
16875                 struct triple_set *use, *use_next;
16876                 if (!triple_is_auto_var(state, var)) {
16877                         continue;
16878                 }
16879
16880                 /* Walk through all of the rhs uses of var and
16881                  * replace them with read of var.
16882                  */
16883                 for(use = var->use; use; use = use_next) {
16884                         struct triple *read, *user;
16885                         struct triple **slot;
16886                         int zrhs, i, used;
16887                         use_next = use->next;
16888                         user = use->member;
16889                         
16890                         /* Generate a read of var */
16891                         read = pre_triple(state, user, OP_READ, var->type, var, 0);
16892                         use_triple(var, read);
16893
16894                         /* Find the rhs uses and see if they need to be replaced */
16895                         used = 0;
16896                         zrhs = user->rhs;
16897                         slot = &RHS(user, 0);
16898                         for(i = 0; i < zrhs; i++) {
16899                                 if (slot[i] == var) {
16900                                         slot[i] = read;
16901                                         used = 1;
16902                                 }
16903                         }
16904                         /* If we did use it cleanup the uses */
16905                         if (used) {
16906                                 unuse_triple(var, user);
16907                                 use_triple(read, user);
16908                         } 
16909                         /* If we didn't use it release the extra triple */
16910                         else {
16911                                 release_triple(state, read);
16912                         }
16913                 }
16914         }
16915 }
16916
16917 #define HI() if (state->compiler->debug & DEBUG_REBUILD_SSA_FORM) { \
16918         FILE *fp = state->dbgout; \
16919         fprintf(fp, "@ %s:%d\n", __FILE__, __LINE__); romcc_print_blocks(state, fp); \
16920         } 
16921
16922 static void rebuild_ssa_form(struct compile_state *state)
16923 {
16924 HI();
16925         transform_from_ssa_form(state);
16926 HI();
16927         state->bb.first = state->first;
16928         free_basic_blocks(state, &state->bb);
16929         analyze_basic_blocks(state, &state->bb);
16930 HI();
16931         insert_phi_operations(state);
16932 HI();
16933         rename_variables(state);
16934 HI();
16935         
16936         prune_block_variables(state, state->bb.first_block);
16937 HI();
16938         prune_unused_phis(state);
16939 HI();
16940 }
16941 #undef HI
16942
16943 /* 
16944  * Register conflict resolution
16945  * =========================================================
16946  */
16947
16948 static struct reg_info find_def_color(
16949         struct compile_state *state, struct triple *def)
16950 {
16951         struct triple_set *set;
16952         struct reg_info info;
16953         info.reg = REG_UNSET;
16954         info.regcm = 0;
16955         if (!triple_is_def(state, def)) {
16956                 return info;
16957         }
16958         info = arch_reg_lhs(state, def, 0);
16959         if (info.reg >= MAX_REGISTERS) {
16960                 info.reg = REG_UNSET;
16961         }
16962         for(set = def->use; set; set = set->next) {
16963                 struct reg_info tinfo;
16964                 int i;
16965                 i = find_rhs_use(state, set->member, def);
16966                 if (i < 0) {
16967                         continue;
16968                 }
16969                 tinfo = arch_reg_rhs(state, set->member, i);
16970                 if (tinfo.reg >= MAX_REGISTERS) {
16971                         tinfo.reg = REG_UNSET;
16972                 }
16973                 if ((tinfo.reg != REG_UNSET) && 
16974                         (info.reg != REG_UNSET) &&
16975                         (tinfo.reg != info.reg)) {
16976                         internal_error(state, def, "register conflict");
16977                 }
16978                 if ((info.regcm & tinfo.regcm) == 0) {
16979                         internal_error(state, def, "regcm conflict %x & %x == 0",
16980                                 info.regcm, tinfo.regcm);
16981                 }
16982                 if (info.reg == REG_UNSET) {
16983                         info.reg = tinfo.reg;
16984                 }
16985                 info.regcm &= tinfo.regcm;
16986         }
16987         if (info.reg >= MAX_REGISTERS) {
16988                 internal_error(state, def, "register out of range");
16989         }
16990         return info;
16991 }
16992
16993 static struct reg_info find_lhs_pre_color(
16994         struct compile_state *state, struct triple *ins, int index)
16995 {
16996         struct reg_info info;
16997         int zlhs, zrhs, i;
16998         zrhs = ins->rhs;
16999         zlhs = ins->lhs;
17000         if (!zlhs && triple_is_def(state, ins)) {
17001                 zlhs = 1;
17002         }
17003         if (index >= zlhs) {
17004                 internal_error(state, ins, "Bad lhs %d", index);
17005         }
17006         info = arch_reg_lhs(state, ins, index);
17007         for(i = 0; i < zrhs; i++) {
17008                 struct reg_info rinfo;
17009                 rinfo = arch_reg_rhs(state, ins, i);
17010                 if ((info.reg == rinfo.reg) &&
17011                         (rinfo.reg >= MAX_REGISTERS)) {
17012                         struct reg_info tinfo;
17013                         tinfo = find_lhs_pre_color(state, RHS(ins, index), 0);
17014                         info.reg = tinfo.reg;
17015                         info.regcm &= tinfo.regcm;
17016                         break;
17017                 }
17018         }
17019         if (info.reg >= MAX_REGISTERS) {
17020                 info.reg = REG_UNSET;
17021         }
17022         return info;
17023 }
17024
17025 static struct reg_info find_rhs_post_color(
17026         struct compile_state *state, struct triple *ins, int index);
17027
17028 static struct reg_info find_lhs_post_color(
17029         struct compile_state *state, struct triple *ins, int index)
17030 {
17031         struct triple_set *set;
17032         struct reg_info info;
17033         struct triple *lhs;
17034 #if DEBUG_TRIPLE_COLOR
17035         fprintf(state->errout, "find_lhs_post_color(%p, %d)\n",
17036                 ins, index);
17037 #endif
17038         if ((index == 0) && triple_is_def(state, ins)) {
17039                 lhs = ins;
17040         }
17041         else if (index < ins->lhs) {
17042                 lhs = LHS(ins, index);
17043         }
17044         else {
17045                 internal_error(state, ins, "Bad lhs %d", index);
17046                 lhs = 0;
17047         }
17048         info = arch_reg_lhs(state, ins, index);
17049         if (info.reg >= MAX_REGISTERS) {
17050                 info.reg = REG_UNSET;
17051         }
17052         for(set = lhs->use; set; set = set->next) {
17053                 struct reg_info rinfo;
17054                 struct triple *user;
17055                 int zrhs, i;
17056                 user = set->member;
17057                 zrhs = user->rhs;
17058                 for(i = 0; i < zrhs; i++) {
17059                         if (RHS(user, i) != lhs) {
17060                                 continue;
17061                         }
17062                         rinfo = find_rhs_post_color(state, user, i);
17063                         if ((info.reg != REG_UNSET) &&
17064                                 (rinfo.reg != REG_UNSET) &&
17065                                 (info.reg != rinfo.reg)) {
17066                                 internal_error(state, ins, "register conflict");
17067                         }
17068                         if ((info.regcm & rinfo.regcm) == 0) {
17069                                 internal_error(state, ins, "regcm conflict %x & %x == 0",
17070                                         info.regcm, rinfo.regcm);
17071                         }
17072                         if (info.reg == REG_UNSET) {
17073                                 info.reg = rinfo.reg;
17074                         }
17075                         info.regcm &= rinfo.regcm;
17076                 }
17077         }
17078 #if DEBUG_TRIPLE_COLOR
17079         fprintf(state->errout, "find_lhs_post_color(%p, %d) -> ( %d, %x)\n",
17080                 ins, index, info.reg, info.regcm);
17081 #endif
17082         return info;
17083 }
17084
17085 static struct reg_info find_rhs_post_color(
17086         struct compile_state *state, struct triple *ins, int index)
17087 {
17088         struct reg_info info, rinfo;
17089         int zlhs, i;
17090 #if DEBUG_TRIPLE_COLOR
17091         fprintf(state->errout, "find_rhs_post_color(%p, %d)\n",
17092                 ins, index);
17093 #endif
17094         rinfo = arch_reg_rhs(state, ins, index);
17095         zlhs = ins->lhs;
17096         if (!zlhs && triple_is_def(state, ins)) {
17097                 zlhs = 1;
17098         }
17099         info = rinfo;
17100         if (info.reg >= MAX_REGISTERS) {
17101                 info.reg = REG_UNSET;
17102         }
17103         for(i = 0; i < zlhs; i++) {
17104                 struct reg_info linfo;
17105                 linfo = arch_reg_lhs(state, ins, i);
17106                 if ((linfo.reg == rinfo.reg) &&
17107                         (linfo.reg >= MAX_REGISTERS)) {
17108                         struct reg_info tinfo;
17109                         tinfo = find_lhs_post_color(state, ins, i);
17110                         if (tinfo.reg >= MAX_REGISTERS) {
17111                                 tinfo.reg = REG_UNSET;
17112                         }
17113                         info.regcm &= linfo.regcm;
17114                         info.regcm &= tinfo.regcm;
17115                         if (info.reg != REG_UNSET) {
17116                                 internal_error(state, ins, "register conflict");
17117                         }
17118                         if (info.regcm == 0) {
17119                                 internal_error(state, ins, "regcm conflict");
17120                         }
17121                         info.reg = tinfo.reg;
17122                 }
17123         }
17124 #if DEBUG_TRIPLE_COLOR
17125         fprintf(state->errout, "find_rhs_post_color(%p, %d) -> ( %d, %x)\n",
17126                 ins, index, info.reg, info.regcm);
17127 #endif
17128         return info;
17129 }
17130
17131 static struct reg_info find_lhs_color(
17132         struct compile_state *state, struct triple *ins, int index)
17133 {
17134         struct reg_info pre, post, info;
17135 #if DEBUG_TRIPLE_COLOR
17136         fprintf(state->errout, "find_lhs_color(%p, %d)\n",
17137                 ins, index);
17138 #endif
17139         pre = find_lhs_pre_color(state, ins, index);
17140         post = find_lhs_post_color(state, ins, index);
17141         if ((pre.reg != post.reg) &&
17142                 (pre.reg != REG_UNSET) &&
17143                 (post.reg != REG_UNSET)) {
17144                 internal_error(state, ins, "register conflict");
17145         }
17146         info.regcm = pre.regcm & post.regcm;
17147         info.reg = pre.reg;
17148         if (info.reg == REG_UNSET) {
17149                 info.reg = post.reg;
17150         }
17151 #if DEBUG_TRIPLE_COLOR
17152         fprintf(state->errout, "find_lhs_color(%p, %d) -> ( %d, %x) ... (%d, %x) (%d, %x)\n",
17153                 ins, index, info.reg, info.regcm,
17154                 pre.reg, pre.regcm, post.reg, post.regcm);
17155 #endif
17156         return info;
17157 }
17158
17159 static struct triple *post_copy(struct compile_state *state, struct triple *ins)
17160 {
17161         struct triple_set *entry, *next;
17162         struct triple *out;
17163         struct reg_info info, rinfo;
17164
17165         info = arch_reg_lhs(state, ins, 0);
17166         out = post_triple(state, ins, OP_COPY, ins->type, ins, 0);
17167         use_triple(RHS(out, 0), out);
17168         /* Get the users of ins to use out instead */
17169         for(entry = ins->use; entry; entry = next) {
17170                 int i;
17171                 next = entry->next;
17172                 if (entry->member == out) {
17173                         continue;
17174                 }
17175                 i = find_rhs_use(state, entry->member, ins);
17176                 if (i < 0) {
17177                         continue;
17178                 }
17179                 rinfo = arch_reg_rhs(state, entry->member, i);
17180                 if ((info.reg == REG_UNNEEDED) && (rinfo.reg == REG_UNNEEDED)) {
17181                         continue;
17182                 }
17183                 replace_rhs_use(state, ins, out, entry->member);
17184         }
17185         transform_to_arch_instruction(state, out);
17186         return out;
17187 }
17188
17189 static struct triple *typed_pre_copy(
17190         struct compile_state *state, struct type *type, struct triple *ins, int index)
17191 {
17192         /* Carefully insert enough operations so that I can
17193          * enter any operation with a GPR32.
17194          */
17195         struct triple *in;
17196         struct triple **expr;
17197         unsigned classes;
17198         struct reg_info info;
17199         int op;
17200         if (ins->op == OP_PHI) {
17201                 internal_error(state, ins, "pre_copy on a phi?");
17202         }
17203         classes = arch_type_to_regcm(state, type);
17204         info = arch_reg_rhs(state, ins, index);
17205         expr = &RHS(ins, index);
17206         if ((info.regcm & classes) == 0) {
17207                 FILE *fp = state->errout;
17208                 fprintf(fp, "src_type: ");
17209                 name_of(fp, ins->type);
17210                 fprintf(fp, "\ndst_type: ");
17211                 name_of(fp, type);
17212                 fprintf(fp, "\n");
17213                 internal_error(state, ins, "pre_copy with no register classes");
17214         }
17215         op = OP_COPY;
17216         if (!equiv_types(type, (*expr)->type)) {
17217                 op = OP_CONVERT;
17218         }
17219         in = pre_triple(state, ins, op, type, *expr, 0);
17220         unuse_triple(*expr, ins);
17221         *expr = in;
17222         use_triple(RHS(in, 0), in);
17223         use_triple(in, ins);
17224         transform_to_arch_instruction(state, in);
17225         return in;
17226         
17227 }
17228 static struct triple *pre_copy(
17229         struct compile_state *state, struct triple *ins, int index)
17230 {
17231         return typed_pre_copy(state, RHS(ins, index)->type, ins, index);
17232 }
17233
17234
17235 static void insert_copies_to_phi(struct compile_state *state)
17236 {
17237         /* To get out of ssa form we insert moves on the incoming
17238          * edges to blocks containting phi functions.
17239          */
17240         struct triple *first;
17241         struct triple *phi;
17242
17243         /* Walk all of the operations to find the phi functions */
17244         first = state->first;
17245         for(phi = first->next; phi != first ; phi = phi->next) {
17246                 struct block_set *set;
17247                 struct block *block;
17248                 struct triple **slot, *copy;
17249                 int edge;
17250                 if (phi->op != OP_PHI) {
17251                         continue;
17252                 }
17253                 phi->id |= TRIPLE_FLAG_POST_SPLIT;
17254                 block = phi->u.block;
17255                 slot  = &RHS(phi, 0);
17256                 /* Phi's that feed into mandatory live range joins
17257                  * cause nasty complications.  Insert a copy of
17258                  * the phi value so I never have to deal with
17259                  * that in the rest of the code.
17260                  */
17261                 copy = post_copy(state, phi);
17262                 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
17263                 /* Walk all of the incoming edges/blocks and insert moves.
17264                  */
17265                 for(edge = 0, set = block->use; set; set = set->next, edge++) {
17266                         struct block *eblock;
17267                         struct triple *move;
17268                         struct triple *val;
17269                         struct triple *ptr;
17270                         eblock = set->member;
17271                         val = slot[edge];
17272
17273                         if (val == phi) {
17274                                 continue;
17275                         }
17276
17277                         get_occurance(val->occurance);
17278                         move = build_triple(state, OP_COPY, val->type, val, 0,
17279                                 val->occurance);
17280                         move->u.block = eblock;
17281                         move->id |= TRIPLE_FLAG_PRE_SPLIT;
17282                         use_triple(val, move);
17283                         
17284                         slot[edge] = move;
17285                         unuse_triple(val, phi);
17286                         use_triple(move, phi);
17287
17288                         /* Walk up the dominator tree until I have found the appropriate block */
17289                         while(eblock && !tdominates(state, val, eblock->last)) {
17290                                 eblock = eblock->idom;
17291                         }
17292                         if (!eblock) {
17293                                 internal_error(state, phi, "Cannot find block dominated by %p",
17294                                         val);
17295                         }
17296
17297                         /* Walk through the block backwards to find
17298                          * an appropriate location for the OP_COPY.
17299                          */
17300                         for(ptr = eblock->last; ptr != eblock->first; ptr = ptr->prev) {
17301                                 struct triple **expr;
17302                                 if (ptr->op == OP_PIECE) {
17303                                         ptr = MISC(ptr, 0);
17304                                 }
17305                                 if ((ptr == phi) || (ptr == val)) {
17306                                         goto out;
17307                                 }
17308                                 expr = triple_lhs(state, ptr, 0);
17309                                 for(;expr; expr = triple_lhs(state, ptr, expr)) {
17310                                         if ((*expr) == val) {
17311                                                 goto out;
17312                                         }
17313                                 }
17314                                 expr = triple_rhs(state, ptr, 0);
17315                                 for(;expr; expr = triple_rhs(state, ptr, expr)) {
17316                                         if ((*expr) == phi) {
17317                                                 goto out;
17318                                         }
17319                                 }
17320                         }
17321                 out:
17322                         if (triple_is_branch(state, ptr)) {
17323                                 internal_error(state, ptr,
17324                                         "Could not insert write to phi");
17325                         }
17326                         insert_triple(state, after_lhs(state, ptr), move);
17327                         if (eblock->last == after_lhs(state, ptr)->prev) {
17328                                 eblock->last = move;
17329                         }
17330                         transform_to_arch_instruction(state, move);
17331                 }
17332         }
17333         print_blocks(state, __func__, state->dbgout);
17334 }
17335
17336 struct triple_reg_set;
17337 struct reg_block;
17338
17339
17340 static int do_triple_set(struct triple_reg_set **head, 
17341         struct triple *member, struct triple *new_member)
17342 {
17343         struct triple_reg_set **ptr, *new;
17344         if (!member)
17345                 return 0;
17346         ptr = head;
17347         while(*ptr) {
17348                 if ((*ptr)->member == member) {
17349                         return 0;
17350                 }
17351                 ptr = &(*ptr)->next;
17352         }
17353         new = xcmalloc(sizeof(*new), "triple_set");
17354         new->member = member;
17355         new->new    = new_member;
17356         new->next   = *head;
17357         *head       = new;
17358         return 1;
17359 }
17360
17361 static void do_triple_unset(struct triple_reg_set **head, struct triple *member)
17362 {
17363         struct triple_reg_set *entry, **ptr;
17364         ptr = head;
17365         while(*ptr) {
17366                 entry = *ptr;
17367                 if (entry->member == member) {
17368                         *ptr = entry->next;
17369                         xfree(entry);
17370                         return;
17371                 }
17372                 else {
17373                         ptr = &entry->next;
17374                 }
17375         }
17376 }
17377
17378 static int in_triple(struct reg_block *rb, struct triple *in)
17379 {
17380         return do_triple_set(&rb->in, in, 0);
17381 }
17382
17383 #if DEBUG_ROMCC_WARNING
17384 static void unin_triple(struct reg_block *rb, struct triple *unin)
17385 {
17386         do_triple_unset(&rb->in, unin);
17387 }
17388 #endif
17389
17390 static int out_triple(struct reg_block *rb, struct triple *out)
17391 {
17392         return do_triple_set(&rb->out, out, 0);
17393 }
17394 #if DEBUG_ROMCC_WARNING
17395 static void unout_triple(struct reg_block *rb, struct triple *unout)
17396 {
17397         do_triple_unset(&rb->out, unout);
17398 }
17399 #endif
17400
17401 static int initialize_regblock(struct reg_block *blocks,
17402         struct block *block, int vertex)
17403 {
17404         struct block_set *user;
17405         if (!block || (blocks[block->vertex].block == block)) {
17406                 return vertex;
17407         }
17408         vertex += 1;
17409         /* Renumber the blocks in a convinient fashion */
17410         block->vertex = vertex;
17411         blocks[vertex].block    = block;
17412         blocks[vertex].vertex   = vertex;
17413         for(user = block->use; user; user = user->next) {
17414                 vertex = initialize_regblock(blocks, user->member, vertex);
17415         }
17416         return vertex;
17417 }
17418
17419 static struct triple *part_to_piece(struct compile_state *state, struct triple *ins)
17420 {
17421 /* Part to piece is a best attempt and it cannot be correct all by
17422  * itself.  If various values are read as different sizes in different
17423  * parts of the code this function cannot work.  Or rather it cannot
17424  * work in conjunction with compute_variable_liftimes.  As the
17425  * analysis will get confused.
17426  */
17427         struct triple *base;
17428         unsigned reg;
17429         if (!is_lvalue(state, ins)) {
17430                 return ins;
17431         }
17432         base = 0;
17433         reg = 0;
17434         while(ins && triple_is_part(state, ins) && (ins->op != OP_PIECE)) {
17435                 base = MISC(ins, 0);
17436                 switch(ins->op) {
17437                 case OP_INDEX:
17438                         reg += index_reg_offset(state, base->type, ins->u.cval)/REG_SIZEOF_REG;
17439                         break;
17440                 case OP_DOT:
17441                         reg += field_reg_offset(state, base->type, ins->u.field)/REG_SIZEOF_REG;
17442                         break;
17443                 default:
17444                         internal_error(state, ins, "unhandled part");
17445                         break;
17446                 }
17447                 ins = base;
17448         }
17449         if (base) {
17450                 if (reg > base->lhs) {
17451                         internal_error(state, base, "part out of range?");
17452                 }
17453                 ins = LHS(base, reg);
17454         }
17455         return ins;
17456 }
17457
17458 static int this_def(struct compile_state *state, 
17459         struct triple *ins, struct triple *other)
17460 {
17461         if (ins == other) {
17462                 return 1;
17463         }
17464         if (ins->op == OP_WRITE) {
17465                 ins = part_to_piece(state, MISC(ins, 0));
17466         }
17467         return ins == other;
17468 }
17469
17470 static int phi_in(struct compile_state *state, struct reg_block *blocks,
17471         struct reg_block *rb, struct block *suc)
17472 {
17473         /* Read the conditional input set of a successor block
17474          * (i.e. the input to the phi nodes) and place it in the
17475          * current blocks output set.
17476          */
17477         struct block_set *set;
17478         struct triple *ptr;
17479         int edge;
17480         int done, change;
17481         change = 0;
17482         /* Find the edge I am coming in on */
17483         for(edge = 0, set = suc->use; set; set = set->next, edge++) {
17484                 if (set->member == rb->block) {
17485                         break;
17486                 }
17487         }
17488         if (!set) {
17489                 internal_error(state, 0, "Not coming on a control edge?");
17490         }
17491         for(done = 0, ptr = suc->first; !done; ptr = ptr->next) {
17492                 struct triple **slot, *expr, *ptr2;
17493                 int out_change, done2;
17494                 done = (ptr == suc->last);
17495                 if (ptr->op != OP_PHI) {
17496                         continue;
17497                 }
17498                 slot = &RHS(ptr, 0);
17499                 expr = slot[edge];
17500                 out_change = out_triple(rb, expr);
17501                 if (!out_change) {
17502                         continue;
17503                 }
17504                 /* If we don't define the variable also plast it
17505                  * in the current blocks input set.
17506                  */
17507                 ptr2 = rb->block->first;
17508                 for(done2 = 0; !done2; ptr2 = ptr2->next) {
17509                         if (this_def(state, ptr2, expr)) {
17510                                 break;
17511                         }
17512                         done2 = (ptr2 == rb->block->last);
17513                 }
17514                 if (!done2) {
17515                         continue;
17516                 }
17517                 change |= in_triple(rb, expr);
17518         }
17519         return change;
17520 }
17521
17522 static int reg_in(struct compile_state *state, struct reg_block *blocks,
17523         struct reg_block *rb, struct block *suc)
17524 {
17525         struct triple_reg_set *in_set;
17526         int change;
17527         change = 0;
17528         /* Read the input set of a successor block
17529          * and place it in the current blocks output set.
17530          */
17531         in_set = blocks[suc->vertex].in;
17532         for(; in_set; in_set = in_set->next) {
17533                 int out_change, done;
17534                 struct triple *first, *last, *ptr;
17535                 out_change = out_triple(rb, in_set->member);
17536                 if (!out_change) {
17537                         continue;
17538                 }
17539                 /* If we don't define the variable also place it
17540                  * in the current blocks input set.
17541                  */
17542                 first = rb->block->first;
17543                 last = rb->block->last;
17544                 done = 0;
17545                 for(ptr = first; !done; ptr = ptr->next) {
17546                         if (this_def(state, ptr, in_set->member)) {
17547                                 break;
17548                         }
17549                         done = (ptr == last);
17550                 }
17551                 if (!done) {
17552                         continue;
17553                 }
17554                 change |= in_triple(rb, in_set->member);
17555         }
17556         change |= phi_in(state, blocks, rb, suc);
17557         return change;
17558 }
17559
17560 static int use_in(struct compile_state *state, struct reg_block *rb)
17561 {
17562         /* Find the variables we use but don't define and add
17563          * it to the current blocks input set.
17564          */
17565 #if DEBUG_ROMCC_WARNINGS
17566 #warning "FIXME is this O(N^2) algorithm bad?"
17567 #endif
17568         struct block *block;
17569         struct triple *ptr;
17570         int done;
17571         int change;
17572         block = rb->block;
17573         change = 0;
17574         for(done = 0, ptr = block->last; !done; ptr = ptr->prev) {
17575                 struct triple **expr;
17576                 done = (ptr == block->first);
17577                 /* The variable a phi function uses depends on the
17578                  * control flow, and is handled in phi_in, not
17579                  * here.
17580                  */
17581                 if (ptr->op == OP_PHI) {
17582                         continue;
17583                 }
17584                 expr = triple_rhs(state, ptr, 0);
17585                 for(;expr; expr = triple_rhs(state, ptr, expr)) {
17586                         struct triple *rhs, *test;
17587                         int tdone;
17588                         rhs = part_to_piece(state, *expr);
17589                         if (!rhs) {
17590                                 continue;
17591                         }
17592
17593                         /* See if rhs is defined in this block.
17594                          * A write counts as a definition.
17595                          */
17596                         for(tdone = 0, test = ptr; !tdone; test = test->prev) {
17597                                 tdone = (test == block->first);
17598                                 if (this_def(state, test, rhs)) {
17599                                         rhs = 0;
17600                                         break;
17601                                 }
17602                         }
17603                         /* If I still have a valid rhs add it to in */
17604                         change |= in_triple(rb, rhs);
17605                 }
17606         }
17607         return change;
17608 }
17609
17610 static struct reg_block *compute_variable_lifetimes(
17611         struct compile_state *state, struct basic_blocks *bb)
17612 {
17613         struct reg_block *blocks;
17614         int change;
17615         blocks = xcmalloc(
17616                 sizeof(*blocks)*(bb->last_vertex + 1), "reg_block");
17617         initialize_regblock(blocks, bb->last_block, 0);
17618         do {
17619                 int i;
17620                 change = 0;
17621                 for(i = 1; i <= bb->last_vertex; i++) {
17622                         struct block_set *edge;
17623                         struct reg_block *rb;
17624                         rb = &blocks[i];
17625                         /* Add the all successor's input set to in */
17626                         for(edge = rb->block->edges; edge; edge = edge->next) {
17627                                 change |= reg_in(state, blocks, rb, edge->member);
17628                         }
17629                         /* Add use to in... */
17630                         change |= use_in(state, rb);
17631                 }
17632         } while(change);
17633         return blocks;
17634 }
17635
17636 static void free_variable_lifetimes(struct compile_state *state, 
17637         struct basic_blocks *bb, struct reg_block *blocks)
17638 {
17639         int i;
17640         /* free in_set && out_set on each block */
17641         for(i = 1; i <= bb->last_vertex; i++) {
17642                 struct triple_reg_set *entry, *next;
17643                 struct reg_block *rb;
17644                 rb = &blocks[i];
17645                 for(entry = rb->in; entry ; entry = next) {
17646                         next = entry->next;
17647                         do_triple_unset(&rb->in, entry->member);
17648                 }
17649                 for(entry = rb->out; entry; entry = next) {
17650                         next = entry->next;
17651                         do_triple_unset(&rb->out, entry->member);
17652                 }
17653         }
17654         xfree(blocks);
17655
17656 }
17657
17658 typedef void (*wvl_cb_t)(
17659         struct compile_state *state, 
17660         struct reg_block *blocks, struct triple_reg_set *live, 
17661         struct reg_block *rb, struct triple *ins, void *arg);
17662
17663 static void walk_variable_lifetimes(struct compile_state *state,
17664         struct basic_blocks *bb, struct reg_block *blocks, 
17665         wvl_cb_t cb, void *arg)
17666 {
17667         int i;
17668         
17669         for(i = 1; i <= state->bb.last_vertex; i++) {
17670                 struct triple_reg_set *live;
17671                 struct triple_reg_set *entry, *next;
17672                 struct triple *ptr, *prev;
17673                 struct reg_block *rb;
17674                 struct block *block;
17675                 int done;
17676
17677                 /* Get the blocks */
17678                 rb = &blocks[i];
17679                 block = rb->block;
17680
17681                 /* Copy out into live */
17682                 live = 0;
17683                 for(entry = rb->out; entry; entry = next) {
17684                         next = entry->next;
17685                         do_triple_set(&live, entry->member, entry->new);
17686                 }
17687                 /* Walk through the basic block calculating live */
17688                 for(done = 0, ptr = block->last; !done; ptr = prev) {
17689                         struct triple **expr;
17690
17691                         prev = ptr->prev;
17692                         done = (ptr == block->first);
17693
17694                         /* Ensure the current definition is in live */
17695                         if (triple_is_def(state, ptr)) {
17696                                 do_triple_set(&live, ptr, 0);
17697                         }
17698
17699                         /* Inform the callback function of what is
17700                          * going on.
17701                          */
17702                          cb(state, blocks, live, rb, ptr, arg);
17703                         
17704                         /* Remove the current definition from live */
17705                         do_triple_unset(&live, ptr);
17706
17707                         /* Add the current uses to live.
17708                          *
17709                          * It is safe to skip phi functions because they do
17710                          * not have any block local uses, and the block
17711                          * output sets already properly account for what
17712                          * control flow depedent uses phi functions do have.
17713                          */
17714                         if (ptr->op == OP_PHI) {
17715                                 continue;
17716                         }
17717                         expr = triple_rhs(state, ptr, 0);
17718                         for(;expr; expr = triple_rhs(state, ptr, expr)) {
17719                                 /* If the triple is not a definition skip it. */
17720                                 if (!*expr || !triple_is_def(state, *expr)) {
17721                                         continue;
17722                                 }
17723                                 do_triple_set(&live, *expr, 0);
17724                         }
17725                 }
17726                 /* Free live */
17727                 for(entry = live; entry; entry = next) {
17728                         next = entry->next;
17729                         do_triple_unset(&live, entry->member);
17730                 }
17731         }
17732 }
17733
17734 struct print_live_variable_info {
17735         struct reg_block *rb;
17736         FILE *fp;
17737 };
17738 #if DEBUG_EXPLICIT_CLOSURES
17739 static void print_live_variables_block(
17740         struct compile_state *state, struct block *block, void *arg)
17741
17742 {
17743         struct print_live_variable_info *info = arg;
17744         struct block_set *edge;
17745         FILE *fp = info->fp;
17746         struct reg_block *rb;
17747         struct triple *ptr;
17748         int phi_present;
17749         int done;
17750         rb = &info->rb[block->vertex];
17751
17752         fprintf(fp, "\nblock: %p (%d),",
17753                 block,  block->vertex);
17754         for(edge = block->edges; edge; edge = edge->next) {
17755                 fprintf(fp, " %p<-%p",
17756                         edge->member, 
17757                         edge->member && edge->member->use?edge->member->use->member : 0);
17758         }
17759         fprintf(fp, "\n");
17760         if (rb->in) {
17761                 struct triple_reg_set *in_set;
17762                 fprintf(fp, "        in:");
17763                 for(in_set = rb->in; in_set; in_set = in_set->next) {
17764                         fprintf(fp, " %-10p", in_set->member);
17765                 }
17766                 fprintf(fp, "\n");
17767         }
17768         phi_present = 0;
17769         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
17770                 done = (ptr == block->last);
17771                 if (ptr->op == OP_PHI) {
17772                         phi_present = 1;
17773                         break;
17774                 }
17775         }
17776         if (phi_present) {
17777                 int edge;
17778                 for(edge = 0; edge < block->users; edge++) {
17779                         fprintf(fp, "     in(%d):", edge);
17780                         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
17781                                 struct triple **slot;
17782                                 done = (ptr == block->last);
17783                                 if (ptr->op != OP_PHI) {
17784                                         continue;
17785                                 }
17786                                 slot = &RHS(ptr, 0);
17787                                 fprintf(fp, " %-10p", slot[edge]);
17788                         }
17789                         fprintf(fp, "\n");
17790                 }
17791         }
17792         if (block->first->op == OP_LABEL) {
17793                 fprintf(fp, "%p:\n", block->first);
17794         }
17795         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
17796                 done = (ptr == block->last);
17797                 display_triple(fp, ptr);
17798         }
17799         if (rb->out) {
17800                 struct triple_reg_set *out_set;
17801                 fprintf(fp, "       out:");
17802                 for(out_set = rb->out; out_set; out_set = out_set->next) {
17803                         fprintf(fp, " %-10p", out_set->member);
17804                 }
17805                 fprintf(fp, "\n");
17806         }
17807         fprintf(fp, "\n");
17808 }
17809
17810 static void print_live_variables(struct compile_state *state, 
17811         struct basic_blocks *bb, struct reg_block *rb, FILE *fp)
17812 {
17813         struct print_live_variable_info info;
17814         info.rb = rb;
17815         info.fp = fp;
17816         fprintf(fp, "\nlive variables by block\n");
17817         walk_blocks(state, bb, print_live_variables_block, &info);
17818
17819 }
17820 #endif
17821
17822 static int count_triples(struct compile_state *state)
17823 {
17824         struct triple *first, *ins;
17825         int triples = 0;
17826         first = state->first;
17827         ins = first;
17828         do {
17829                 triples++;
17830                 ins = ins->next;
17831         } while (ins != first);
17832         return triples;
17833 }
17834
17835
17836 struct dead_triple {
17837         struct triple *triple;
17838         struct dead_triple *work_next;
17839         struct block *block;
17840         int old_id;
17841         int flags;
17842 #define TRIPLE_FLAG_ALIVE 1
17843 #define TRIPLE_FLAG_FREE  1
17844 };
17845
17846 static void print_dead_triples(struct compile_state *state, 
17847         struct dead_triple *dtriple)
17848 {
17849         struct triple *first, *ins;
17850         struct dead_triple *dt;
17851         FILE *fp;
17852         if (!(state->compiler->debug & DEBUG_TRIPLES)) {
17853                 return;
17854         }
17855         fp = state->dbgout;
17856         fprintf(fp, "--------------- dtriples ---------------\n");
17857         first = state->first;
17858         ins = first;
17859         do {
17860                 dt = &dtriple[ins->id];
17861                 if ((ins->op == OP_LABEL) && (ins->use)) {
17862                         fprintf(fp, "\n%p:\n", ins);
17863                 }
17864                 fprintf(fp, "%c", 
17865                         (dt->flags & TRIPLE_FLAG_ALIVE)?' ': '-');
17866                 display_triple(fp, ins);
17867                 if (triple_is_branch(state, ins)) {
17868                         fprintf(fp, "\n");
17869                 }
17870                 ins = ins->next;
17871         } while(ins != first);
17872         fprintf(fp, "\n");
17873 }
17874
17875
17876 static void awaken(
17877         struct compile_state *state,
17878         struct dead_triple *dtriple, struct triple **expr,
17879         struct dead_triple ***work_list_tail)
17880 {
17881         struct triple *triple;
17882         struct dead_triple *dt;
17883         if (!expr) {
17884                 return;
17885         }
17886         triple = *expr;
17887         if (!triple) {
17888                 return;
17889         }
17890         if (triple->id <= 0)  {
17891                 internal_error(state, triple, "bad triple id: %d",
17892                         triple->id);
17893         }
17894         if (triple->op == OP_NOOP) {
17895                 internal_error(state, triple, "awakening noop?");
17896                 return;
17897         }
17898         dt = &dtriple[triple->id];
17899         if (!(dt->flags & TRIPLE_FLAG_ALIVE)) {
17900                 dt->flags |= TRIPLE_FLAG_ALIVE;
17901                 if (!dt->work_next) {
17902                         **work_list_tail = dt;
17903                         *work_list_tail = &dt->work_next;
17904                 }
17905         }
17906 }
17907
17908 static void eliminate_inefectual_code(struct compile_state *state)
17909 {
17910         struct block *block;
17911         struct dead_triple *dtriple, *work_list, **work_list_tail, *dt;
17912         int triples, i;
17913         struct triple *first, *final, *ins;
17914
17915         if (!(state->compiler->flags & COMPILER_ELIMINATE_INEFECTUAL_CODE)) {
17916                 return;
17917         }
17918
17919         /* Setup the work list */
17920         work_list = 0;
17921         work_list_tail = &work_list;
17922
17923         first = state->first;
17924         final = state->first->prev;
17925
17926         /* Count how many triples I have */
17927         triples = count_triples(state);
17928
17929         /* Now put then in an array and mark all of the triples dead */
17930         dtriple = xcmalloc(sizeof(*dtriple) * (triples + 1), "dtriples");
17931         
17932         ins = first;
17933         i = 1;
17934         block = 0;
17935         do {
17936                 dtriple[i].triple = ins;
17937                 dtriple[i].block  = block_of_triple(state, ins);
17938                 dtriple[i].flags  = 0;
17939                 dtriple[i].old_id = ins->id;
17940                 ins->id = i;
17941                 /* See if it is an operation we always keep */
17942                 if (!triple_is_pure(state, ins, dtriple[i].old_id)) {
17943                         awaken(state, dtriple, &ins, &work_list_tail);
17944                 }
17945                 i++;
17946                 ins = ins->next;
17947         } while(ins != first);
17948         while(work_list) {
17949                 struct block *block;
17950                 struct dead_triple *dt;
17951                 struct block_set *user;
17952                 struct triple **expr;
17953                 dt = work_list;
17954                 work_list = dt->work_next;
17955                 if (!work_list) {
17956                         work_list_tail = &work_list;
17957                 }
17958                 /* Make certain the block the current instruction is in lives */
17959                 block = block_of_triple(state, dt->triple);
17960                 awaken(state, dtriple, &block->first, &work_list_tail);
17961                 if (triple_is_branch(state, block->last)) {
17962                         awaken(state, dtriple, &block->last, &work_list_tail);
17963                 } else {
17964                         awaken(state, dtriple, &block->last->next, &work_list_tail);
17965                 }
17966
17967                 /* Wake up the data depencencies of this triple */
17968                 expr = 0;
17969                 do {
17970                         expr = triple_rhs(state, dt->triple, expr);
17971                         awaken(state, dtriple, expr, &work_list_tail);
17972                 } while(expr);
17973                 do {
17974                         expr = triple_lhs(state, dt->triple, expr);
17975                         awaken(state, dtriple, expr, &work_list_tail);
17976                 } while(expr);
17977                 do {
17978                         expr = triple_misc(state, dt->triple, expr);
17979                         awaken(state, dtriple, expr, &work_list_tail);
17980                 } while(expr);
17981                 /* Wake up the forward control dependencies */
17982                 do {
17983                         expr = triple_targ(state, dt->triple, expr);
17984                         awaken(state, dtriple, expr, &work_list_tail);
17985                 } while(expr);
17986                 /* Wake up the reverse control dependencies of this triple */
17987                 for(user = dt->block->ipdomfrontier; user; user = user->next) {
17988                         struct triple *last;
17989                         last = user->member->last;
17990                         while((last->op == OP_NOOP) && (last != user->member->first)) {
17991 #if DEBUG_ROMCC_WARNINGS
17992 #warning "Should we bring the awakening noops back?"
17993 #endif
17994                                 // internal_warning(state, last, "awakening noop?");
17995                                 last = last->prev;
17996                         }
17997                         awaken(state, dtriple, &last, &work_list_tail);
17998                 }
17999         }
18000         print_dead_triples(state, dtriple);
18001         for(dt = &dtriple[1]; dt <= &dtriple[triples]; dt++) {
18002                 if ((dt->triple->op == OP_NOOP) && 
18003                         (dt->flags & TRIPLE_FLAG_ALIVE)) {
18004                         internal_error(state, dt->triple, "noop effective?");
18005                 }
18006                 dt->triple->id = dt->old_id;    /* Restore the color */
18007                 if (!(dt->flags & TRIPLE_FLAG_ALIVE)) {
18008                         release_triple(state, dt->triple);
18009                 }
18010         }
18011         xfree(dtriple);
18012
18013         rebuild_ssa_form(state);
18014
18015         print_blocks(state, __func__, state->dbgout);
18016 }
18017
18018
18019 static void insert_mandatory_copies(struct compile_state *state)
18020 {
18021         struct triple *ins, *first;
18022
18023         /* The object is with a minimum of inserted copies,
18024          * to resolve in fundamental register conflicts between
18025          * register value producers and consumers.
18026          * Theoretically we may be greater than minimal when we
18027          * are inserting copies before instructions but that
18028          * case should be rare.
18029          */
18030         first = state->first;
18031         ins = first;
18032         do {
18033                 struct triple_set *entry, *next;
18034                 struct triple *tmp;
18035                 struct reg_info info;
18036                 unsigned reg, regcm;
18037                 int do_post_copy, do_pre_copy;
18038                 tmp = 0;
18039                 if (!triple_is_def(state, ins)) {
18040                         goto next;
18041                 }
18042                 /* Find the architecture specific color information */
18043                 info = find_lhs_pre_color(state, ins, 0);
18044                 if (info.reg >= MAX_REGISTERS) {
18045                         info.reg = REG_UNSET;
18046                 }
18047
18048                 reg = REG_UNSET;
18049                 regcm = arch_type_to_regcm(state, ins->type);
18050                 do_post_copy = do_pre_copy = 0;
18051
18052                 /* Walk through the uses of ins and check for conflicts */
18053                 for(entry = ins->use; entry; entry = next) {
18054                         struct reg_info rinfo;
18055                         int i;
18056                         next = entry->next;
18057                         i = find_rhs_use(state, entry->member, ins);
18058                         if (i < 0) {
18059                                 continue;
18060                         }
18061                         
18062                         /* Find the users color requirements */
18063                         rinfo = arch_reg_rhs(state, entry->member, i);
18064                         if (rinfo.reg >= MAX_REGISTERS) {
18065                                 rinfo.reg = REG_UNSET;
18066                         }
18067                         
18068                         /* See if I need a pre_copy */
18069                         if (rinfo.reg != REG_UNSET) {
18070                                 if ((reg != REG_UNSET) && (reg != rinfo.reg)) {
18071                                         do_pre_copy = 1;
18072                                 }
18073                                 reg = rinfo.reg;
18074                         }
18075                         regcm &= rinfo.regcm;
18076                         regcm = arch_regcm_normalize(state, regcm);
18077                         if (regcm == 0) {
18078                                 do_pre_copy = 1;
18079                         }
18080                         /* Always use pre_copies for constants.
18081                          * They do not take up any registers until a
18082                          * copy places them in one.
18083                          */
18084                         if ((info.reg == REG_UNNEEDED) && 
18085                                 (rinfo.reg != REG_UNNEEDED)) {
18086                                 do_pre_copy = 1;
18087                         }
18088                 }
18089                 do_post_copy =
18090                         !do_pre_copy &&
18091                         (((info.reg != REG_UNSET) && 
18092                                 (reg != REG_UNSET) &&
18093                                 (info.reg != reg)) ||
18094                         ((info.regcm & regcm) == 0));
18095
18096                 reg = info.reg;
18097                 regcm = info.regcm;
18098                 /* Walk through the uses of ins and do a pre_copy or see if a post_copy is warranted */
18099                 for(entry = ins->use; entry; entry = next) {
18100                         struct reg_info rinfo;
18101                         int i;
18102                         next = entry->next;
18103                         i = find_rhs_use(state, entry->member, ins);
18104                         if (i < 0) {
18105                                 continue;
18106                         }
18107                         
18108                         /* Find the users color requirements */
18109                         rinfo = arch_reg_rhs(state, entry->member, i);
18110                         if (rinfo.reg >= MAX_REGISTERS) {
18111                                 rinfo.reg = REG_UNSET;
18112                         }
18113
18114                         /* Now see if it is time to do the pre_copy */
18115                         if (rinfo.reg != REG_UNSET) {
18116                                 if (((reg != REG_UNSET) && (reg != rinfo.reg)) ||
18117                                         ((regcm & rinfo.regcm) == 0) ||
18118                                         /* Don't let a mandatory coalesce sneak
18119                                          * into a operation that is marked to prevent
18120                                          * coalescing.
18121                                          */
18122                                         ((reg != REG_UNNEEDED) &&
18123                                         ((ins->id & TRIPLE_FLAG_POST_SPLIT) ||
18124                                         (entry->member->id & TRIPLE_FLAG_PRE_SPLIT)))
18125                                         ) {
18126                                         if (do_pre_copy) {
18127                                                 struct triple *user;
18128                                                 user = entry->member;
18129                                                 if (RHS(user, i) != ins) {
18130                                                         internal_error(state, user, "bad rhs");
18131                                                 }
18132                                                 tmp = pre_copy(state, user, i);
18133                                                 tmp->id |= TRIPLE_FLAG_PRE_SPLIT;
18134                                                 continue;
18135                                         } else {
18136                                                 do_post_copy = 1;
18137                                         }
18138                                 }
18139                                 reg = rinfo.reg;
18140                         }
18141                         if ((regcm & rinfo.regcm) == 0) {
18142                                 if (do_pre_copy) {
18143                                         struct triple *user;
18144                                         user = entry->member;
18145                                         if (RHS(user, i) != ins) {
18146                                                 internal_error(state, user, "bad rhs");
18147                                         }
18148                                         tmp = pre_copy(state, user, i);
18149                                         tmp->id |= TRIPLE_FLAG_PRE_SPLIT;
18150                                         continue;
18151                                 } else {
18152                                         do_post_copy = 1;
18153                                 }
18154                         }
18155                         regcm &= rinfo.regcm;
18156                         
18157                 }
18158                 if (do_post_copy) {
18159                         struct reg_info pre, post;
18160                         tmp = post_copy(state, ins);
18161                         tmp->id |= TRIPLE_FLAG_PRE_SPLIT;
18162                         pre = arch_reg_lhs(state, ins, 0);
18163                         post = arch_reg_lhs(state, tmp, 0);
18164                         if ((pre.reg == post.reg) && (pre.regcm == post.regcm)) {
18165                                 internal_error(state, tmp, "useless copy");
18166                         }
18167                 }
18168         next:
18169                 ins = ins->next;
18170         } while(ins != first);
18171
18172         print_blocks(state, __func__, state->dbgout);
18173 }
18174
18175
18176 struct live_range_edge;
18177 struct live_range_def;
18178 struct live_range {
18179         struct live_range_edge *edges;
18180         struct live_range_def *defs;
18181 /* Note. The list pointed to by defs is kept in order.
18182  * That is baring splits in the flow control
18183  * defs dominates defs->next wich dominates defs->next->next
18184  * etc.
18185  */
18186         unsigned color;
18187         unsigned classes;
18188         unsigned degree;
18189         unsigned length;
18190         struct live_range *group_next, **group_prev;
18191 };
18192
18193 struct live_range_edge {
18194         struct live_range_edge *next;
18195         struct live_range *node;
18196 };
18197
18198 struct live_range_def {
18199         struct live_range_def *next;
18200         struct live_range_def *prev;
18201         struct live_range *lr;
18202         struct triple *def;
18203         unsigned orig_id;
18204 };
18205
18206 #define LRE_HASH_SIZE 2048
18207 struct lre_hash {
18208         struct lre_hash *next;
18209         struct live_range *left;
18210         struct live_range *right;
18211 };
18212
18213
18214 struct reg_state {
18215         struct lre_hash *hash[LRE_HASH_SIZE];
18216         struct reg_block *blocks;
18217         struct live_range_def *lrd;
18218         struct live_range *lr;
18219         struct live_range *low, **low_tail;
18220         struct live_range *high, **high_tail;
18221         unsigned defs;
18222         unsigned ranges;
18223         int passes, max_passes;
18224 };
18225
18226
18227 struct print_interference_block_info {
18228         struct reg_state *rstate;
18229         FILE *fp;
18230         int need_edges;
18231 };
18232 static void print_interference_block(
18233         struct compile_state *state, struct block *block, void *arg)
18234
18235 {
18236         struct print_interference_block_info *info = arg;
18237         struct reg_state *rstate = info->rstate;
18238         struct block_set *edge;
18239         FILE *fp = info->fp;
18240         struct reg_block *rb;
18241         struct triple *ptr;
18242         int phi_present;
18243         int done;
18244         rb = &rstate->blocks[block->vertex];
18245
18246         fprintf(fp, "\nblock: %p (%d),",
18247                 block,  block->vertex);
18248         for(edge = block->edges; edge; edge = edge->next) {
18249                 fprintf(fp, " %p<-%p",
18250                         edge->member, 
18251                         edge->member && edge->member->use?edge->member->use->member : 0);
18252         }
18253         fprintf(fp, "\n");
18254         if (rb->in) {
18255                 struct triple_reg_set *in_set;
18256                 fprintf(fp, "        in:");
18257                 for(in_set = rb->in; in_set; in_set = in_set->next) {
18258                         fprintf(fp, " %-10p", in_set->member);
18259                 }
18260                 fprintf(fp, "\n");
18261         }
18262         phi_present = 0;
18263         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
18264                 done = (ptr == block->last);
18265                 if (ptr->op == OP_PHI) {
18266                         phi_present = 1;
18267                         break;
18268                 }
18269         }
18270         if (phi_present) {
18271                 int edge;
18272                 for(edge = 0; edge < block->users; edge++) {
18273                         fprintf(fp, "     in(%d):", edge);
18274                         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
18275                                 struct triple **slot;
18276                                 done = (ptr == block->last);
18277                                 if (ptr->op != OP_PHI) {
18278                                         continue;
18279                                 }
18280                                 slot = &RHS(ptr, 0);
18281                                 fprintf(fp, " %-10p", slot[edge]);
18282                         }
18283                         fprintf(fp, "\n");
18284                 }
18285         }
18286         if (block->first->op == OP_LABEL) {
18287                 fprintf(fp, "%p:\n", block->first);
18288         }
18289         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
18290                 struct live_range *lr;
18291                 unsigned id;
18292                 int op;
18293                 op = ptr->op;
18294                 done = (ptr == block->last);
18295                 lr = rstate->lrd[ptr->id].lr;
18296                 
18297                 id = ptr->id;
18298                 ptr->id = rstate->lrd[id].orig_id;
18299                 SET_REG(ptr->id, lr->color);
18300                 display_triple(fp, ptr);
18301                 ptr->id = id;
18302
18303                 if (triple_is_def(state, ptr) && (lr->defs == 0)) {
18304                         internal_error(state, ptr, "lr has no defs!");
18305                 }
18306                 if (info->need_edges) {
18307                         if (lr->defs) {
18308                                 struct live_range_def *lrd;
18309                                 fprintf(fp, "       range:");
18310                                 lrd = lr->defs;
18311                                 do {
18312                                         fprintf(fp, " %-10p", lrd->def);
18313                                         lrd = lrd->next;
18314                                 } while(lrd != lr->defs);
18315                                 fprintf(fp, "\n");
18316                         }
18317                         if (lr->edges > 0) {
18318                                 struct live_range_edge *edge;
18319                                 fprintf(fp, "       edges:");
18320                                 for(edge = lr->edges; edge; edge = edge->next) {
18321                                         struct live_range_def *lrd;
18322                                         lrd = edge->node->defs;
18323                                         do {
18324                                                 fprintf(fp, " %-10p", lrd->def);
18325                                                 lrd = lrd->next;
18326                                         } while(lrd != edge->node->defs);
18327                                         fprintf(fp, "|");
18328                                 }
18329                                 fprintf(fp, "\n");
18330                         }
18331                 }
18332                 /* Do a bunch of sanity checks */
18333                 valid_ins(state, ptr);
18334                 if ((ptr->id < 0) || (ptr->id > rstate->defs)) {
18335                         internal_error(state, ptr, "Invalid triple id: %d",
18336                                 ptr->id);
18337                 }
18338         }
18339         if (rb->out) {
18340                 struct triple_reg_set *out_set;
18341                 fprintf(fp, "       out:");
18342                 for(out_set = rb->out; out_set; out_set = out_set->next) {
18343                         fprintf(fp, " %-10p", out_set->member);
18344                 }
18345                 fprintf(fp, "\n");
18346         }
18347         fprintf(fp, "\n");
18348 }
18349
18350 static void print_interference_blocks(
18351         struct compile_state *state, struct reg_state *rstate, FILE *fp, int need_edges)
18352 {
18353         struct print_interference_block_info info;
18354         info.rstate = rstate;
18355         info.fp = fp;
18356         info.need_edges = need_edges;
18357         fprintf(fp, "\nlive variables by block\n");
18358         walk_blocks(state, &state->bb, print_interference_block, &info);
18359
18360 }
18361
18362 static unsigned regc_max_size(struct compile_state *state, int classes)
18363 {
18364         unsigned max_size;
18365         int i;
18366         max_size = 0;
18367         for(i = 0; i < MAX_REGC; i++) {
18368                 if (classes & (1 << i)) {
18369                         unsigned size;
18370                         size = arch_regc_size(state, i);
18371                         if (size > max_size) {
18372                                 max_size = size;
18373                         }
18374                 }
18375         }
18376         return max_size;
18377 }
18378
18379 static int reg_is_reg(struct compile_state *state, int reg1, int reg2)
18380 {
18381         unsigned equivs[MAX_REG_EQUIVS];
18382         int i;
18383         if ((reg1 < 0) || (reg1 >= MAX_REGISTERS)) {
18384                 internal_error(state, 0, "invalid register");
18385         }
18386         if ((reg2 < 0) || (reg2 >= MAX_REGISTERS)) {
18387                 internal_error(state, 0, "invalid register");
18388         }
18389         arch_reg_equivs(state, equivs, reg1);
18390         for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
18391                 if (equivs[i] == reg2) {
18392                         return 1;
18393                 }
18394         }
18395         return 0;
18396 }
18397
18398 static void reg_fill_used(struct compile_state *state, char *used, int reg)
18399 {
18400         unsigned equivs[MAX_REG_EQUIVS];
18401         int i;
18402         if (reg == REG_UNNEEDED) {
18403                 return;
18404         }
18405         arch_reg_equivs(state, equivs, reg);
18406         for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
18407                 used[equivs[i]] = 1;
18408         }
18409         return;
18410 }
18411
18412 static void reg_inc_used(struct compile_state *state, char *used, int reg)
18413 {
18414         unsigned equivs[MAX_REG_EQUIVS];
18415         int i;
18416         if (reg == REG_UNNEEDED) {
18417                 return;
18418         }
18419         arch_reg_equivs(state, equivs, reg);
18420         for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
18421                 used[equivs[i]] += 1;
18422         }
18423         return;
18424 }
18425
18426 static unsigned int hash_live_edge(
18427         struct live_range *left, struct live_range *right)
18428 {
18429         unsigned int hash, val;
18430         unsigned long lval, rval;
18431         lval = ((unsigned long)left)/sizeof(struct live_range);
18432         rval = ((unsigned long)right)/sizeof(struct live_range);
18433         hash = 0;
18434         while(lval) {
18435                 val = lval & 0xff;
18436                 lval >>= 8;
18437                 hash = (hash *263) + val;
18438         }
18439         while(rval) {
18440                 val = rval & 0xff;
18441                 rval >>= 8;
18442                 hash = (hash *263) + val;
18443         }
18444         hash = hash & (LRE_HASH_SIZE - 1);
18445         return hash;
18446 }
18447
18448 static struct lre_hash **lre_probe(struct reg_state *rstate,
18449         struct live_range *left, struct live_range *right)
18450 {
18451         struct lre_hash **ptr;
18452         unsigned int index;
18453         /* Ensure left <= right */
18454         if (left > right) {
18455                 struct live_range *tmp;
18456                 tmp = left;
18457                 left = right;
18458                 right = tmp;
18459         }
18460         index = hash_live_edge(left, right);
18461         
18462         ptr = &rstate->hash[index];
18463         while(*ptr) {
18464                 if (((*ptr)->left == left) && ((*ptr)->right == right)) {
18465                         break;
18466                 }
18467                 ptr = &(*ptr)->next;
18468         }
18469         return ptr;
18470 }
18471
18472 static int interfere(struct reg_state *rstate,
18473         struct live_range *left, struct live_range *right)
18474 {
18475         struct lre_hash **ptr;
18476         ptr = lre_probe(rstate, left, right);
18477         return ptr && *ptr;
18478 }
18479
18480 static void add_live_edge(struct reg_state *rstate, 
18481         struct live_range *left, struct live_range *right)
18482 {
18483         /* FIXME the memory allocation overhead is noticeable here... */
18484         struct lre_hash **ptr, *new_hash;
18485         struct live_range_edge *edge;
18486
18487         if (left == right) {
18488                 return;
18489         }
18490         if ((left == &rstate->lr[0]) || (right == &rstate->lr[0])) {
18491                 return;
18492         }
18493         /* Ensure left <= right */
18494         if (left > right) {
18495                 struct live_range *tmp;
18496                 tmp = left;
18497                 left = right;
18498                 right = tmp;
18499         }
18500         ptr = lre_probe(rstate, left, right);
18501         if (*ptr) {
18502                 return;
18503         }
18504 #if 0
18505         fprintf(state->errout, "new_live_edge(%p, %p)\n",
18506                 left, right);
18507 #endif
18508         new_hash = xmalloc(sizeof(*new_hash), "lre_hash");
18509         new_hash->next  = *ptr;
18510         new_hash->left  = left;
18511         new_hash->right = right;
18512         *ptr = new_hash;
18513
18514         edge = xmalloc(sizeof(*edge), "live_range_edge");
18515         edge->next   = left->edges;
18516         edge->node   = right;
18517         left->edges  = edge;
18518         left->degree += 1;
18519         
18520         edge = xmalloc(sizeof(*edge), "live_range_edge");
18521         edge->next    = right->edges;
18522         edge->node    = left;
18523         right->edges  = edge;
18524         right->degree += 1;
18525 }
18526
18527 static void remove_live_edge(struct reg_state *rstate,
18528         struct live_range *left, struct live_range *right)
18529 {
18530         struct live_range_edge *edge, **ptr;
18531         struct lre_hash **hptr, *entry;
18532         hptr = lre_probe(rstate, left, right);
18533         if (!hptr || !*hptr) {
18534                 return;
18535         }
18536         entry = *hptr;
18537         *hptr = entry->next;
18538         xfree(entry);
18539
18540         for(ptr = &left->edges; *ptr; ptr = &(*ptr)->next) {
18541                 edge = *ptr;
18542                 if (edge->node == right) {
18543                         *ptr = edge->next;
18544                         memset(edge, 0, sizeof(*edge));
18545                         xfree(edge);
18546                         right->degree--;
18547                         break;
18548                 }
18549         }
18550         for(ptr = &right->edges; *ptr; ptr = &(*ptr)->next) {
18551                 edge = *ptr;
18552                 if (edge->node == left) {
18553                         *ptr = edge->next;
18554                         memset(edge, 0, sizeof(*edge));
18555                         xfree(edge);
18556                         left->degree--;
18557                         break;
18558                 }
18559         }
18560 }
18561
18562 static void remove_live_edges(struct reg_state *rstate, struct live_range *range)
18563 {
18564         struct live_range_edge *edge, *next;
18565         for(edge = range->edges; edge; edge = next) {
18566                 next = edge->next;
18567                 remove_live_edge(rstate, range, edge->node);
18568         }
18569 }
18570
18571 static void transfer_live_edges(struct reg_state *rstate, 
18572         struct live_range *dest, struct live_range *src)
18573 {
18574         struct live_range_edge *edge, *next;
18575         for(edge = src->edges; edge; edge = next) {
18576                 struct live_range *other;
18577                 next = edge->next;
18578                 other = edge->node;
18579                 remove_live_edge(rstate, src, other);
18580                 add_live_edge(rstate, dest, other);
18581         }
18582 }
18583
18584
18585 /* Interference graph...
18586  * 
18587  * new(n) --- Return a graph with n nodes but no edges.
18588  * add(g,x,y) --- Return a graph including g with an between x and y
18589  * interfere(g, x, y) --- Return true if there exists an edge between the nodes
18590  *                x and y in the graph g
18591  * degree(g, x) --- Return the degree of the node x in the graph g
18592  * neighbors(g, x, f) --- Apply function f to each neighbor of node x in the graph g
18593  *
18594  * Implement with a hash table && a set of adjcency vectors.
18595  * The hash table supports constant time implementations of add and interfere.
18596  * The adjacency vectors support an efficient implementation of neighbors.
18597  */
18598
18599 /* 
18600  *     +---------------------------------------------------+
18601  *     |         +--------------+                          |
18602  *     v         v              |                          |
18603  * renumber -> build graph -> colalesce -> spill_costs -> simplify -> select 
18604  *
18605  * -- In simplify implment optimistic coloring... (No backtracking)
18606  * -- Implement Rematerialization it is the only form of spilling we can perform
18607  *    Essentially this means dropping a constant from a register because
18608  *    we can regenerate it later.
18609  *
18610  * --- Very conservative colalescing (don't colalesce just mark the opportunities)
18611  *     coalesce at phi points...
18612  * --- Bias coloring if at all possible do the coalesing a compile time.
18613  *
18614  *
18615  */
18616
18617 #if DEBUG_ROMCC_WARNING
18618 static void different_colored(
18619         struct compile_state *state, struct reg_state *rstate, 
18620         struct triple *parent, struct triple *ins)
18621 {
18622         struct live_range *lr;
18623         struct triple **expr;
18624         lr = rstate->lrd[ins->id].lr;
18625         expr = triple_rhs(state, ins, 0);
18626         for(;expr; expr = triple_rhs(state, ins, expr)) {
18627                 struct live_range *lr2;
18628                 if (!*expr || (*expr == parent) || (*expr == ins)) {
18629                         continue;
18630                 }
18631                 lr2 = rstate->lrd[(*expr)->id].lr;
18632                 if (lr->color == lr2->color) {
18633                         internal_error(state, ins, "live range too big");
18634                 }
18635         }
18636 }
18637 #endif
18638
18639 static struct live_range *coalesce_ranges(
18640         struct compile_state *state, struct reg_state *rstate,
18641         struct live_range *lr1, struct live_range *lr2)
18642 {
18643         struct live_range_def *head, *mid1, *mid2, *end, *lrd;
18644         unsigned color;
18645         unsigned classes;
18646         if (lr1 == lr2) {
18647                 return lr1;
18648         }
18649         if (!lr1->defs || !lr2->defs) {
18650                 internal_error(state, 0,
18651                         "cannot coalese dead live ranges");
18652         }
18653         if ((lr1->color == REG_UNNEEDED) ||
18654                 (lr2->color == REG_UNNEEDED)) {
18655                 internal_error(state, 0, 
18656                         "cannot coalesce live ranges without a possible color");
18657         }
18658         if ((lr1->color != lr2->color) &&
18659                 (lr1->color != REG_UNSET) &&
18660                 (lr2->color != REG_UNSET)) {
18661                 internal_error(state, lr1->defs->def, 
18662                         "cannot coalesce live ranges of different colors");
18663         }
18664         color = lr1->color;
18665         if (color == REG_UNSET) {
18666                 color = lr2->color;
18667         }
18668         classes = lr1->classes & lr2->classes;
18669         if (!classes) {
18670                 internal_error(state, lr1->defs->def,
18671                         "cannot coalesce live ranges with dissimilar register classes");
18672         }
18673         if (state->compiler->debug & DEBUG_COALESCING) {
18674                 FILE *fp = state->errout;
18675                 fprintf(fp, "coalescing:");
18676                 lrd = lr1->defs;
18677                 do {
18678                         fprintf(fp, " %p", lrd->def);
18679                         lrd = lrd->next;
18680                 } while(lrd != lr1->defs);
18681                 fprintf(fp, " |");
18682                 lrd = lr2->defs;
18683                 do {
18684                         fprintf(fp, " %p", lrd->def);
18685                         lrd = lrd->next;
18686                 } while(lrd != lr2->defs);
18687                 fprintf(fp, "\n");
18688         }
18689         /* If there is a clear dominate live range put it in lr1,
18690          * For purposes of this test phi functions are
18691          * considered dominated by the definitions that feed into
18692          * them. 
18693          */
18694         if ((lr1->defs->prev->def->op == OP_PHI) ||
18695                 ((lr2->defs->prev->def->op != OP_PHI) &&
18696                 tdominates(state, lr2->defs->def, lr1->defs->def))) {
18697                 struct live_range *tmp;
18698                 tmp = lr1;
18699                 lr1 = lr2;
18700                 lr2 = tmp;
18701         }
18702 #if 0
18703         if (lr1->defs->orig_id  & TRIPLE_FLAG_POST_SPLIT) {
18704                 fprintf(state->errout, "lr1 post\n");
18705         }
18706         if (lr1->defs->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
18707                 fprintf(state->errout, "lr1 pre\n");
18708         }
18709         if (lr2->defs->orig_id  & TRIPLE_FLAG_POST_SPLIT) {
18710                 fprintf(state->errout, "lr2 post\n");
18711         }
18712         if (lr2->defs->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
18713                 fprintf(state->errout, "lr2 pre\n");
18714         }
18715 #endif
18716 #if 0
18717         fprintf(state->errout, "coalesce color1(%p): %3d color2(%p) %3d\n",
18718                 lr1->defs->def,
18719                 lr1->color,
18720                 lr2->defs->def,
18721                 lr2->color);
18722 #endif
18723         
18724         /* Append lr2 onto lr1 */
18725 #if DEBUG_ROMCC_WARNINGS
18726 #warning "FIXME should this be a merge instead of a splice?"
18727 #endif
18728         /* This FIXME item applies to the correctness of live_range_end 
18729          * and to the necessity of making multiple passes of coalesce_live_ranges.
18730          * A failure to find some coalesce opportunities in coaleace_live_ranges
18731          * does not impact the correct of the compiler just the efficiency with
18732          * which registers are allocated.
18733          */
18734         head = lr1->defs;
18735         mid1 = lr1->defs->prev;
18736         mid2 = lr2->defs;
18737         end  = lr2->defs->prev;
18738         
18739         head->prev = end;
18740         end->next  = head;
18741
18742         mid1->next = mid2;
18743         mid2->prev = mid1;
18744
18745         /* Fixup the live range in the added live range defs */
18746         lrd = head;
18747         do {
18748                 lrd->lr = lr1;
18749                 lrd = lrd->next;
18750         } while(lrd != head);
18751
18752         /* Mark lr2 as free. */
18753         lr2->defs = 0;
18754         lr2->color = REG_UNNEEDED;
18755         lr2->classes = 0;
18756
18757         if (!lr1->defs) {
18758                 internal_error(state, 0, "lr1->defs == 0 ?");
18759         }
18760
18761         lr1->color   = color;
18762         lr1->classes = classes;
18763
18764         /* Keep the graph in sync by transfering the edges from lr2 to lr1 */
18765         transfer_live_edges(rstate, lr1, lr2);
18766
18767         return lr1;
18768 }
18769
18770 static struct live_range_def *live_range_head(
18771         struct compile_state *state, struct live_range *lr,
18772         struct live_range_def *last)
18773 {
18774         struct live_range_def *result;
18775         result = 0;
18776         if (last == 0) {
18777                 result = lr->defs;
18778         }
18779         else if (!tdominates(state, lr->defs->def, last->next->def)) {
18780                 result = last->next;
18781         }
18782         return result;
18783 }
18784
18785 static struct live_range_def *live_range_end(
18786         struct compile_state *state, struct live_range *lr,
18787         struct live_range_def *last)
18788 {
18789         struct live_range_def *result;
18790         result = 0;
18791         if (last == 0) {
18792                 result = lr->defs->prev;
18793         }
18794         else if (!tdominates(state, last->prev->def, lr->defs->prev->def)) {
18795                 result = last->prev;
18796         }
18797         return result;
18798 }
18799
18800
18801 static void initialize_live_ranges(
18802         struct compile_state *state, struct reg_state *rstate)
18803 {
18804         struct triple *ins, *first;
18805         size_t count, size;
18806         int i, j;
18807
18808         first = state->first;
18809         /* First count how many instructions I have.
18810          */
18811         count = count_triples(state);
18812         /* Potentially I need one live range definitions for each
18813          * instruction.
18814          */
18815         rstate->defs = count;
18816         /* Potentially I need one live range for each instruction
18817          * plus an extra for the dummy live range.
18818          */
18819         rstate->ranges = count + 1;
18820         size = sizeof(rstate->lrd[0]) * rstate->defs;
18821         rstate->lrd = xcmalloc(size, "live_range_def");
18822         size = sizeof(rstate->lr[0]) * rstate->ranges;
18823         rstate->lr  = xcmalloc(size, "live_range");
18824
18825         /* Setup the dummy live range */
18826         rstate->lr[0].classes = 0;
18827         rstate->lr[0].color = REG_UNSET;
18828         rstate->lr[0].defs = 0;
18829         i = j = 0;
18830         ins = first;
18831         do {
18832                 /* If the triple is a variable give it a live range */
18833                 if (triple_is_def(state, ins)) {
18834                         struct reg_info info;
18835                         /* Find the architecture specific color information */
18836                         info = find_def_color(state, ins);
18837                         i++;
18838                         rstate->lr[i].defs    = &rstate->lrd[j];
18839                         rstate->lr[i].color   = info.reg;
18840                         rstate->lr[i].classes = info.regcm;
18841                         rstate->lr[i].degree  = 0;
18842                         rstate->lrd[j].lr = &rstate->lr[i];
18843                 } 
18844                 /* Otherwise give the triple the dummy live range. */
18845                 else {
18846                         rstate->lrd[j].lr = &rstate->lr[0];
18847                 }
18848
18849                 /* Initalize the live_range_def */
18850                 rstate->lrd[j].next    = &rstate->lrd[j];
18851                 rstate->lrd[j].prev    = &rstate->lrd[j];
18852                 rstate->lrd[j].def     = ins;
18853                 rstate->lrd[j].orig_id = ins->id;
18854                 ins->id = j;
18855
18856                 j++;
18857                 ins = ins->next;
18858         } while(ins != first);
18859         rstate->ranges = i;
18860
18861         /* Make a second pass to handle achitecture specific register
18862          * constraints.
18863          */
18864         ins = first;
18865         do {
18866                 int zlhs, zrhs, i, j;
18867                 if (ins->id > rstate->defs) {
18868                         internal_error(state, ins, "bad id");
18869                 }
18870                 
18871                 /* Walk through the template of ins and coalesce live ranges */
18872                 zlhs = ins->lhs;
18873                 if ((zlhs == 0) && triple_is_def(state, ins)) {
18874                         zlhs = 1;
18875                 }
18876                 zrhs = ins->rhs;
18877
18878                 if (state->compiler->debug & DEBUG_COALESCING2) {
18879                         fprintf(state->errout, "mandatory coalesce: %p %d %d\n",
18880                                 ins, zlhs, zrhs);
18881                 }
18882
18883                 for(i = 0; i < zlhs; i++) {
18884                         struct reg_info linfo;
18885                         struct live_range_def *lhs;
18886                         linfo = arch_reg_lhs(state, ins, i);
18887                         if (linfo.reg < MAX_REGISTERS) {
18888                                 continue;
18889                         }
18890                         if (triple_is_def(state, ins)) {
18891                                 lhs = &rstate->lrd[ins->id];
18892                         } else {
18893                                 lhs = &rstate->lrd[LHS(ins, i)->id];
18894                         }
18895
18896                         if (state->compiler->debug & DEBUG_COALESCING2) {
18897                                 fprintf(state->errout, "coalesce lhs(%d): %p %d\n",
18898                                         i, lhs, linfo.reg);
18899                         }
18900
18901                         for(j = 0; j < zrhs; j++) {
18902                                 struct reg_info rinfo;
18903                                 struct live_range_def *rhs;
18904                                 rinfo = arch_reg_rhs(state, ins, j);
18905                                 if (rinfo.reg < MAX_REGISTERS) {
18906                                         continue;
18907                                 }
18908                                 rhs = &rstate->lrd[RHS(ins, j)->id];
18909
18910                                 if (state->compiler->debug & DEBUG_COALESCING2) {
18911                                         fprintf(state->errout, "coalesce rhs(%d): %p %d\n",
18912                                                 j, rhs, rinfo.reg);
18913                                 }
18914
18915                                 if (rinfo.reg == linfo.reg) {
18916                                         coalesce_ranges(state, rstate, 
18917                                                 lhs->lr, rhs->lr);
18918                                 }
18919                         }
18920                 }
18921                 ins = ins->next;
18922         } while(ins != first);
18923 }
18924
18925 static void graph_ins(
18926         struct compile_state *state, 
18927         struct reg_block *blocks, struct triple_reg_set *live, 
18928         struct reg_block *rb, struct triple *ins, void *arg)
18929 {
18930         struct reg_state *rstate = arg;
18931         struct live_range *def;
18932         struct triple_reg_set *entry;
18933
18934         /* If the triple is not a definition
18935          * we do not have a definition to add to
18936          * the interference graph.
18937          */
18938         if (!triple_is_def(state, ins)) {
18939                 return;
18940         }
18941         def = rstate->lrd[ins->id].lr;
18942         
18943         /* Create an edge between ins and everything that is
18944          * alive, unless the live_range cannot share
18945          * a physical register with ins.
18946          */
18947         for(entry = live; entry; entry = entry->next) {
18948                 struct live_range *lr;
18949                 if ((entry->member->id < 0) || (entry->member->id > rstate->defs)) {
18950                         internal_error(state, 0, "bad entry?");
18951                 }
18952                 lr = rstate->lrd[entry->member->id].lr;
18953                 if (def == lr) {
18954                         continue;
18955                 }
18956                 if (!arch_regcm_intersect(def->classes, lr->classes)) {
18957                         continue;
18958                 }
18959                 add_live_edge(rstate, def, lr);
18960         }
18961         return;
18962 }
18963
18964 #if DEBUG_CONSISTENCY > 1
18965 static struct live_range *get_verify_live_range(
18966         struct compile_state *state, struct reg_state *rstate, struct triple *ins)
18967 {
18968         struct live_range *lr;
18969         struct live_range_def *lrd;
18970         int ins_found;
18971         if ((ins->id < 0) || (ins->id > rstate->defs)) {
18972                 internal_error(state, ins, "bad ins?");
18973         }
18974         lr = rstate->lrd[ins->id].lr;
18975         ins_found = 0;
18976         lrd = lr->defs;
18977         do {
18978                 if (lrd->def == ins) {
18979                         ins_found = 1;
18980                 }
18981                 lrd = lrd->next;
18982         } while(lrd != lr->defs);
18983         if (!ins_found) {
18984                 internal_error(state, ins, "ins not in live range");
18985         }
18986         return lr;
18987 }
18988
18989 static void verify_graph_ins(
18990         struct compile_state *state, 
18991         struct reg_block *blocks, struct triple_reg_set *live, 
18992         struct reg_block *rb, struct triple *ins, void *arg)
18993 {
18994         struct reg_state *rstate = arg;
18995         struct triple_reg_set *entry1, *entry2;
18996
18997
18998         /* Compare live against edges and make certain the code is working */
18999         for(entry1 = live; entry1; entry1 = entry1->next) {
19000                 struct live_range *lr1;
19001                 lr1 = get_verify_live_range(state, rstate, entry1->member);
19002                 for(entry2 = live; entry2; entry2 = entry2->next) {
19003                         struct live_range *lr2;
19004                         struct live_range_edge *edge2;
19005                         int lr1_found;
19006                         int lr2_degree;
19007                         if (entry2 == entry1) {
19008                                 continue;
19009                         }
19010                         lr2 = get_verify_live_range(state, rstate, entry2->member);
19011                         if (lr1 == lr2) {
19012                                 internal_error(state, entry2->member, 
19013                                         "live range with 2 values simultaneously alive");
19014                         }
19015                         if (!arch_regcm_intersect(lr1->classes, lr2->classes)) {
19016                                 continue;
19017                         }
19018                         if (!interfere(rstate, lr1, lr2)) {
19019                                 internal_error(state, entry2->member, 
19020                                         "edges don't interfere?");
19021                         }
19022                                 
19023                         lr1_found = 0;
19024                         lr2_degree = 0;
19025                         for(edge2 = lr2->edges; edge2; edge2 = edge2->next) {
19026                                 lr2_degree++;
19027                                 if (edge2->node == lr1) {
19028                                         lr1_found = 1;
19029                                 }
19030                         }
19031                         if (lr2_degree != lr2->degree) {
19032                                 internal_error(state, entry2->member,
19033                                         "computed degree: %d does not match reported degree: %d\n",
19034                                         lr2_degree, lr2->degree);
19035                         }
19036                         if (!lr1_found) {
19037                                 internal_error(state, entry2->member, "missing edge");
19038                         }
19039                 }
19040         }
19041         return;
19042 }
19043 #endif
19044
19045 static void print_interference_ins(
19046         struct compile_state *state, 
19047         struct reg_block *blocks, struct triple_reg_set *live, 
19048         struct reg_block *rb, struct triple *ins, void *arg)
19049 {
19050         struct reg_state *rstate = arg;
19051         struct live_range *lr;
19052         unsigned id;
19053         FILE *fp = state->dbgout;
19054
19055         lr = rstate->lrd[ins->id].lr;
19056         id = ins->id;
19057         ins->id = rstate->lrd[id].orig_id;
19058         SET_REG(ins->id, lr->color);
19059         display_triple(state->dbgout, ins);
19060         ins->id = id;
19061
19062         if (lr->defs) {
19063                 struct live_range_def *lrd;
19064                 fprintf(fp, "       range:");
19065                 lrd = lr->defs;
19066                 do {
19067                         fprintf(fp, " %-10p", lrd->def);
19068                         lrd = lrd->next;
19069                 } while(lrd != lr->defs);
19070                 fprintf(fp, "\n");
19071         }
19072         if (live) {
19073                 struct triple_reg_set *entry;
19074                 fprintf(fp, "        live:");
19075                 for(entry = live; entry; entry = entry->next) {
19076                         fprintf(fp, " %-10p", entry->member);
19077                 }
19078                 fprintf(fp, "\n");
19079         }
19080         if (lr->edges) {
19081                 struct live_range_edge *entry;
19082                 fprintf(fp, "       edges:");
19083                 for(entry = lr->edges; entry; entry = entry->next) {
19084                         struct live_range_def *lrd;
19085                         lrd = entry->node->defs;
19086                         do {
19087                                 fprintf(fp, " %-10p", lrd->def);
19088                                 lrd = lrd->next;
19089                         } while(lrd != entry->node->defs);
19090                         fprintf(fp, "|");
19091                 }
19092                 fprintf(fp, "\n");
19093         }
19094         if (triple_is_branch(state, ins)) {
19095                 fprintf(fp, "\n");
19096         }
19097         return;
19098 }
19099
19100 static int coalesce_live_ranges(
19101         struct compile_state *state, struct reg_state *rstate)
19102 {
19103         /* At the point where a value is moved from one
19104          * register to another that value requires two
19105          * registers, thus increasing register pressure.
19106          * Live range coaleescing reduces the register
19107          * pressure by keeping a value in one register
19108          * longer.
19109          *
19110          * In the case of a phi function all paths leading
19111          * into it must be allocated to the same register
19112          * otherwise the phi function may not be removed.
19113          *
19114          * Forcing a value to stay in a single register
19115          * for an extended period of time does have
19116          * limitations when applied to non homogenous
19117          * register pool.  
19118          *
19119          * The two cases I have identified are:
19120          * 1) Two forced register assignments may
19121          *    collide.
19122          * 2) Registers may go unused because they
19123          *    are only good for storing the value
19124          *    and not manipulating it.
19125          *
19126          * Because of this I need to split live ranges,
19127          * even outside of the context of coalesced live
19128          * ranges.  The need to split live ranges does
19129          * impose some constraints on live range coalescing.
19130          *
19131          * - Live ranges may not be coalesced across phi
19132          *   functions.  This creates a 2 headed live
19133          *   range that cannot be sanely split.
19134          *
19135          * - phi functions (coalesced in initialize_live_ranges) 
19136          *   are handled as pre split live ranges so we will
19137          *   never attempt to split them.
19138          */
19139         int coalesced;
19140         int i;
19141
19142         coalesced = 0;
19143         for(i = 0; i <= rstate->ranges; i++) {
19144                 struct live_range *lr1;
19145                 struct live_range_def *lrd1;
19146                 lr1 = &rstate->lr[i];
19147                 if (!lr1->defs) {
19148                         continue;
19149                 }
19150                 lrd1 = live_range_end(state, lr1, 0);
19151                 for(; lrd1; lrd1 = live_range_end(state, lr1, lrd1)) {
19152                         struct triple_set *set;
19153                         if (lrd1->def->op != OP_COPY) {
19154                                 continue;
19155                         }
19156                         /* Skip copies that are the result of a live range split. */
19157                         if (lrd1->orig_id & TRIPLE_FLAG_POST_SPLIT) {
19158                                 continue;
19159                         }
19160                         for(set = lrd1->def->use; set; set = set->next) {
19161                                 struct live_range_def *lrd2;
19162                                 struct live_range *lr2, *res;
19163
19164                                 lrd2 = &rstate->lrd[set->member->id];
19165
19166                                 /* Don't coalesce with instructions
19167                                  * that are the result of a live range
19168                                  * split.
19169                                  */
19170                                 if (lrd2->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
19171                                         continue;
19172                                 }
19173                                 lr2 = rstate->lrd[set->member->id].lr;
19174                                 if (lr1 == lr2) {
19175                                         continue;
19176                                 }
19177                                 if ((lr1->color != lr2->color) &&
19178                                         (lr1->color != REG_UNSET) &&
19179                                         (lr2->color != REG_UNSET)) {
19180                                         continue;
19181                                 }
19182                                 if ((lr1->classes & lr2->classes) == 0) {
19183                                         continue;
19184                                 }
19185                                 
19186                                 if (interfere(rstate, lr1, lr2)) {
19187                                         continue;
19188                                 }
19189
19190                                 res = coalesce_ranges(state, rstate, lr1, lr2);
19191                                 coalesced += 1;
19192                                 if (res != lr1) {
19193                                         goto next;
19194                                 }
19195                         }
19196                 }
19197         next:
19198                 ;
19199         }
19200         return coalesced;
19201 }
19202
19203
19204 static void fix_coalesce_conflicts(struct compile_state *state,
19205         struct reg_block *blocks, struct triple_reg_set *live,
19206         struct reg_block *rb, struct triple *ins, void *arg)
19207 {
19208         int *conflicts = arg;
19209         int zlhs, zrhs, i, j;
19210
19211         /* See if we have a mandatory coalesce operation between
19212          * a lhs and a rhs value.  If so and the rhs value is also
19213          * alive then this triple needs to be pre copied.  Otherwise
19214          * we would have two definitions in the same live range simultaneously
19215          * alive.
19216          */
19217         zlhs = ins->lhs;
19218         if ((zlhs == 0) && triple_is_def(state, ins)) {
19219                 zlhs = 1;
19220         }
19221         zrhs = ins->rhs;
19222         for(i = 0; i < zlhs; i++) {
19223                 struct reg_info linfo;
19224                 linfo = arch_reg_lhs(state, ins, i);
19225                 if (linfo.reg < MAX_REGISTERS) {
19226                         continue;
19227                 }
19228                 for(j = 0; j < zrhs; j++) {
19229                         struct reg_info rinfo;
19230                         struct triple *rhs;
19231                         struct triple_reg_set *set;
19232                         int found;
19233                         found = 0;
19234                         rinfo = arch_reg_rhs(state, ins, j);
19235                         if (rinfo.reg != linfo.reg) {
19236                                 continue;
19237                         }
19238                         rhs = RHS(ins, j);
19239                         for(set = live; set && !found; set = set->next) {
19240                                 if (set->member == rhs) {
19241                                         found = 1;
19242                                 }
19243                         }
19244                         if (found) {
19245                                 struct triple *copy;
19246                                 copy = pre_copy(state, ins, j);
19247                                 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
19248                                 (*conflicts)++;
19249                         }
19250                 }
19251         }
19252         return;
19253 }
19254
19255 static int correct_coalesce_conflicts(
19256         struct compile_state *state, struct reg_block *blocks)
19257 {
19258         int conflicts;
19259         conflicts = 0;
19260         walk_variable_lifetimes(state, &state->bb, blocks, 
19261                 fix_coalesce_conflicts, &conflicts);
19262         return conflicts;
19263 }
19264
19265 static void replace_set_use(struct compile_state *state,
19266         struct triple_reg_set *head, struct triple *orig, struct triple *new)
19267 {
19268         struct triple_reg_set *set;
19269         for(set = head; set; set = set->next) {
19270                 if (set->member == orig) {
19271                         set->member = new;
19272                 }
19273         }
19274 }
19275
19276 static void replace_block_use(struct compile_state *state, 
19277         struct reg_block *blocks, struct triple *orig, struct triple *new)
19278 {
19279         int i;
19280 #if DEBUG_ROMCC_WARNINGS
19281 #warning "WISHLIST visit just those blocks that need it *"
19282 #endif
19283         for(i = 1; i <= state->bb.last_vertex; i++) {
19284                 struct reg_block *rb;
19285                 rb = &blocks[i];
19286                 replace_set_use(state, rb->in, orig, new);
19287                 replace_set_use(state, rb->out, orig, new);
19288         }
19289 }
19290
19291 static void color_instructions(struct compile_state *state)
19292 {
19293         struct triple *ins, *first;
19294         first = state->first;
19295         ins = first;
19296         do {
19297                 if (triple_is_def(state, ins)) {
19298                         struct reg_info info;
19299                         info = find_lhs_color(state, ins, 0);
19300                         if (info.reg >= MAX_REGISTERS) {
19301                                 info.reg = REG_UNSET;
19302                         }
19303                         SET_INFO(ins->id, info);
19304                 }
19305                 ins = ins->next;
19306         } while(ins != first);
19307 }
19308
19309 static struct reg_info read_lhs_color(
19310         struct compile_state *state, struct triple *ins, int index)
19311 {
19312         struct reg_info info;
19313         if ((index == 0) && triple_is_def(state, ins)) {
19314                 info.reg   = ID_REG(ins->id);
19315                 info.regcm = ID_REGCM(ins->id);
19316         }
19317         else if (index < ins->lhs) {
19318                 info = read_lhs_color(state, LHS(ins, index), 0);
19319         }
19320         else {
19321                 internal_error(state, ins, "Bad lhs %d", index);
19322                 info.reg = REG_UNSET;
19323                 info.regcm = 0;
19324         }
19325         return info;
19326 }
19327
19328 static struct triple *resolve_tangle(
19329         struct compile_state *state, struct triple *tangle)
19330 {
19331         struct reg_info info, uinfo;
19332         struct triple_set *set, *next;
19333         struct triple *copy;
19334
19335 #if DEBUG_ROMCC_WARNINGS
19336 #warning "WISHLIST recalculate all affected instructions colors"
19337 #endif
19338         info = find_lhs_color(state, tangle, 0);
19339         for(set = tangle->use; set; set = next) {
19340                 struct triple *user;
19341                 int i, zrhs;
19342                 next = set->next;
19343                 user = set->member;
19344                 zrhs = user->rhs;
19345                 for(i = 0; i < zrhs; i++) {
19346                         if (RHS(user, i) != tangle) {
19347                                 continue;
19348                         }
19349                         uinfo = find_rhs_post_color(state, user, i);
19350                         if (uinfo.reg == info.reg) {
19351                                 copy = pre_copy(state, user, i);
19352                                 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
19353                                 SET_INFO(copy->id, uinfo);
19354                         }
19355                 }
19356         }
19357         copy = 0;
19358         uinfo = find_lhs_pre_color(state, tangle, 0);
19359         if (uinfo.reg == info.reg) {
19360                 struct reg_info linfo;
19361                 copy = post_copy(state, tangle);
19362                 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
19363                 linfo = find_lhs_color(state, copy, 0);
19364                 SET_INFO(copy->id, linfo);
19365         }
19366         info = find_lhs_color(state, tangle, 0);
19367         SET_INFO(tangle->id, info);
19368         
19369         return copy;
19370 }
19371
19372
19373 static void fix_tangles(struct compile_state *state,
19374         struct reg_block *blocks, struct triple_reg_set *live,
19375         struct reg_block *rb, struct triple *ins, void *arg)
19376 {
19377         int *tangles = arg;
19378         struct triple *tangle;
19379         do {
19380                 char used[MAX_REGISTERS];
19381                 struct triple_reg_set *set;
19382                 tangle = 0;
19383
19384                 /* Find out which registers have multiple uses at this point */
19385                 memset(used, 0, sizeof(used));
19386                 for(set = live; set; set = set->next) {
19387                         struct reg_info info;
19388                         info = read_lhs_color(state, set->member, 0);
19389                         if (info.reg == REG_UNSET) {
19390                                 continue;
19391                         }
19392                         reg_inc_used(state, used, info.reg);
19393                 }
19394                 
19395                 /* Now find the least dominated definition of a register in
19396                  * conflict I have seen so far.
19397                  */
19398                 for(set = live; set; set = set->next) {
19399                         struct reg_info info;
19400                         info = read_lhs_color(state, set->member, 0);
19401                         if (used[info.reg] < 2) {
19402                                 continue;
19403                         }
19404                         /* Changing copies that feed into phi functions
19405                          * is incorrect.
19406                          */
19407                         if (set->member->use && 
19408                                 (set->member->use->member->op == OP_PHI)) {
19409                                 continue;
19410                         }
19411                         if (!tangle || tdominates(state, set->member, tangle)) {
19412                                 tangle = set->member;
19413                         }
19414                 }
19415                 /* If I have found a tangle resolve it */
19416                 if (tangle) {
19417                         struct triple *post_copy;
19418                         (*tangles)++;
19419                         post_copy = resolve_tangle(state, tangle);
19420                         if (post_copy) {
19421                                 replace_block_use(state, blocks, tangle, post_copy);
19422                         }
19423                         if (post_copy && (tangle != ins)) {
19424                                 replace_set_use(state, live, tangle, post_copy);
19425                         }
19426                 }
19427         } while(tangle);
19428         return;
19429 }
19430
19431 static int correct_tangles(
19432         struct compile_state *state, struct reg_block *blocks)
19433 {
19434         int tangles;
19435         tangles = 0;
19436         color_instructions(state);
19437         walk_variable_lifetimes(state, &state->bb, blocks, 
19438                 fix_tangles, &tangles);
19439         return tangles;
19440 }
19441
19442
19443 static void ids_from_rstate(struct compile_state *state, struct reg_state *rstate);
19444 static void cleanup_rstate(struct compile_state *state, struct reg_state *rstate);
19445
19446 struct triple *find_constrained_def(
19447         struct compile_state *state, struct live_range *range, struct triple *constrained)
19448 {
19449         struct live_range_def *lrd, *lrd_next;
19450         lrd_next = range->defs;
19451         do {
19452                 struct reg_info info;
19453                 unsigned regcm;
19454
19455                 lrd = lrd_next;
19456                 lrd_next = lrd->next;
19457
19458                 regcm = arch_type_to_regcm(state, lrd->def->type);
19459                 info = find_lhs_color(state, lrd->def, 0);
19460                 regcm      = arch_regcm_reg_normalize(state, regcm);
19461                 info.regcm = arch_regcm_reg_normalize(state, info.regcm);
19462                 /* If the 2 register class masks are equal then
19463                  * the current register class is not constrained.
19464                  */
19465                 if (regcm == info.regcm) {
19466                         continue;
19467                 }
19468                 
19469                 /* If there is just one use.
19470                  * That use cannot accept a larger register class.
19471                  * There are no intervening definitions except
19472                  * definitions that feed into that use.
19473                  * Then a triple is not constrained.
19474                  * FIXME handle this case!
19475                  */
19476 #if DEBUG_ROMCC_WARNINGS
19477 #warning "FIXME ignore cases that cannot be fixed (a definition followed by a use)"
19478 #endif
19479                 
19480
19481                 /* Of the constrained live ranges deal with the
19482                  * least dominated one first.
19483                  */
19484                 if (state->compiler->debug & DEBUG_RANGE_CONFLICTS) {
19485                         fprintf(state->errout, "canidate: %p %-8s regcm: %x %x\n",
19486                                 lrd->def, tops(lrd->def->op), regcm, info.regcm);
19487                 }
19488                 if (!constrained || 
19489                         tdominates(state, lrd->def, constrained))
19490                 {
19491                         constrained = lrd->def;
19492                 }
19493         } while(lrd_next != range->defs);
19494         return constrained;
19495 }
19496
19497 static int split_constrained_ranges(
19498         struct compile_state *state, struct reg_state *rstate, 
19499         struct live_range *range)
19500 {
19501         /* Walk through the edges in conflict and our current live
19502          * range, and find definitions that are more severly constrained
19503          * than they type of data they contain require.
19504          * 
19505          * Then pick one of those ranges and relax the constraints.
19506          */
19507         struct live_range_edge *edge;
19508         struct triple *constrained;
19509
19510         constrained = 0;
19511         for(edge = range->edges; edge; edge = edge->next) {
19512                 constrained = find_constrained_def(state, edge->node, constrained);
19513         }
19514 #if DEBUG_ROMCC_WARNINGS
19515 #warning "FIXME should I call find_constrained_def here only if no previous constrained def was found?"
19516 #endif
19517         if (!constrained) {
19518                 constrained = find_constrained_def(state, range, constrained);
19519         }
19520
19521         if (state->compiler->debug & DEBUG_RANGE_CONFLICTS) {
19522                 fprintf(state->errout, "constrained: ");
19523                 display_triple(state->errout, constrained);
19524         }
19525         if (constrained) {
19526                 ids_from_rstate(state, rstate);
19527                 cleanup_rstate(state, rstate);
19528                 resolve_tangle(state, constrained);
19529         }
19530         return !!constrained;
19531 }
19532         
19533 static int split_ranges(
19534         struct compile_state *state, struct reg_state *rstate,
19535         char *used, struct live_range *range)
19536 {
19537         int split;
19538         if (state->compiler->debug & DEBUG_RANGE_CONFLICTS) {
19539                 fprintf(state->errout, "split_ranges %d %s %p\n", 
19540                         rstate->passes, tops(range->defs->def->op), range->defs->def);
19541         }
19542         if ((range->color == REG_UNNEEDED) ||
19543                 (rstate->passes >= rstate->max_passes)) {
19544                 return 0;
19545         }
19546         split = split_constrained_ranges(state, rstate, range);
19547
19548         /* Ideally I would split the live range that will not be used
19549          * for the longest period of time in hopes that this will 
19550          * (a) allow me to spill a register or
19551          * (b) allow me to place a value in another register.
19552          *
19553          * So far I don't have a test case for this, the resolving
19554          * of mandatory constraints has solved all of my
19555          * know issues.  So I have choosen not to write any
19556          * code until I cat get a better feel for cases where
19557          * it would be useful to have.
19558          *
19559          */
19560 #if DEBUG_ROMCC_WARNINGS
19561 #warning "WISHLIST implement live range splitting..."
19562 #endif
19563         
19564         if (!split && (state->compiler->debug & DEBUG_RANGE_CONFLICTS2)) {
19565                 FILE *fp = state->errout;
19566                 print_interference_blocks(state, rstate, fp, 0);
19567                 print_dominators(state, fp, &state->bb);
19568         }
19569         return split;
19570 }
19571
19572 static FILE *cgdebug_fp(struct compile_state *state)
19573 {
19574         FILE *fp;
19575         fp = 0;
19576         if (!fp && (state->compiler->debug & DEBUG_COLOR_GRAPH2)) {
19577                 fp = state->errout;
19578         }
19579         if (!fp && (state->compiler->debug & DEBUG_COLOR_GRAPH)) {
19580                 fp = state->dbgout;
19581         }
19582         return fp;
19583 }
19584
19585 static void cgdebug_printf(struct compile_state *state, const char *fmt, ...)
19586 {
19587         FILE *fp;
19588         fp = cgdebug_fp(state);
19589         if (fp) {
19590                 va_list args;
19591                 va_start(args, fmt);
19592                 vfprintf(fp, fmt, args);
19593                 va_end(args);
19594         }
19595 }
19596
19597 static void cgdebug_flush(struct compile_state *state)
19598 {
19599         FILE *fp;
19600         fp = cgdebug_fp(state);
19601         if (fp) {
19602                 fflush(fp);
19603         }
19604 }
19605
19606 static void cgdebug_loc(struct compile_state *state, struct triple *ins)
19607 {
19608         FILE *fp;
19609         fp = cgdebug_fp(state);
19610         if (fp) {
19611                 loc(fp, state, ins);
19612         }
19613 }
19614
19615 static int select_free_color(struct compile_state *state, 
19616         struct reg_state *rstate, struct live_range *range)
19617 {
19618         struct triple_set *entry;
19619         struct live_range_def *lrd;
19620         struct live_range_def *phi;
19621         struct live_range_edge *edge;
19622         char used[MAX_REGISTERS];
19623         struct triple **expr;
19624
19625         /* Instead of doing just the trivial color select here I try
19626          * a few extra things because a good color selection will help reduce
19627          * copies.
19628          */
19629
19630         /* Find the registers currently in use */
19631         memset(used, 0, sizeof(used));
19632         for(edge = range->edges; edge; edge = edge->next) {
19633                 if (edge->node->color == REG_UNSET) {
19634                         continue;
19635                 }
19636                 reg_fill_used(state, used, edge->node->color);
19637         }
19638
19639         if (state->compiler->debug & DEBUG_COLOR_GRAPH2) {
19640                 int i;
19641                 i = 0;
19642                 for(edge = range->edges; edge; edge = edge->next) {
19643                         i++;
19644                 }
19645                 cgdebug_printf(state, "\n%s edges: %d", 
19646                         tops(range->defs->def->op), i);
19647                 cgdebug_loc(state, range->defs->def);
19648                 cgdebug_printf(state, "\n");
19649                 for(i = 0; i < MAX_REGISTERS; i++) {
19650                         if (used[i]) {
19651                                 cgdebug_printf(state, "used: %s\n",
19652                                         arch_reg_str(i));
19653                         }
19654                 }
19655         }       
19656
19657         /* If a color is already assigned see if it will work */
19658         if (range->color != REG_UNSET) {
19659                 struct live_range_def *lrd;
19660                 if (!used[range->color]) {
19661                         return 1;
19662                 }
19663                 for(edge = range->edges; edge; edge = edge->next) {
19664                         if (edge->node->color != range->color) {
19665                                 continue;
19666                         }
19667                         warning(state, edge->node->defs->def, "edge: ");
19668                         lrd = edge->node->defs;
19669                         do {
19670                                 warning(state, lrd->def, " %p %s",
19671                                         lrd->def, tops(lrd->def->op));
19672                                 lrd = lrd->next;
19673                         } while(lrd != edge->node->defs);
19674                 }
19675                 lrd = range->defs;
19676                 warning(state, range->defs->def, "def: ");
19677                 do {
19678                         warning(state, lrd->def, " %p %s",
19679                                 lrd->def, tops(lrd->def->op));
19680                         lrd = lrd->next;
19681                 } while(lrd != range->defs);
19682                 internal_error(state, range->defs->def,
19683                         "live range with already used color %s",
19684                         arch_reg_str(range->color));
19685         }
19686
19687         /* If I feed into an expression reuse it's color.
19688          * This should help remove copies in the case of 2 register instructions
19689          * and phi functions.
19690          */
19691         phi = 0;
19692         lrd = live_range_end(state, range, 0);
19693         for(; (range->color == REG_UNSET) && lrd ; lrd = live_range_end(state, range, lrd)) {
19694                 entry = lrd->def->use;
19695                 for(;(range->color == REG_UNSET) && entry; entry = entry->next) {
19696                         struct live_range_def *insd;
19697                         unsigned regcm;
19698                         insd = &rstate->lrd[entry->member->id];
19699                         if (insd->lr->defs == 0) {
19700                                 continue;
19701                         }
19702                         if (!phi && (insd->def->op == OP_PHI) &&
19703                                 !interfere(rstate, range, insd->lr)) {
19704                                 phi = insd;
19705                         }
19706                         if (insd->lr->color == REG_UNSET) {
19707                                 continue;
19708                         }
19709                         regcm = insd->lr->classes;
19710                         if (((regcm & range->classes) == 0) ||
19711                                 (used[insd->lr->color])) {
19712                                 continue;
19713                         }
19714                         if (interfere(rstate, range, insd->lr)) {
19715                                 continue;
19716                         }
19717                         range->color = insd->lr->color;
19718                 }
19719         }
19720         /* If I feed into a phi function reuse it's color or the color
19721          * of something else that feeds into the phi function.
19722          */
19723         if (phi) {
19724                 if (phi->lr->color != REG_UNSET) {
19725                         if (used[phi->lr->color]) {
19726                                 range->color = phi->lr->color;
19727                         }
19728                 }
19729                 else {
19730                         expr = triple_rhs(state, phi->def, 0);
19731                         for(; expr; expr = triple_rhs(state, phi->def, expr)) {
19732                                 struct live_range *lr;
19733                                 unsigned regcm;
19734                                 if (!*expr) {
19735                                         continue;
19736                                 }
19737                                 lr = rstate->lrd[(*expr)->id].lr;
19738                                 if (lr->color == REG_UNSET) {
19739                                         continue;
19740                                 }
19741                                 regcm = lr->classes;
19742                                 if (((regcm & range->classes) == 0) ||
19743                                         (used[lr->color])) {
19744                                         continue;
19745                                 }
19746                                 if (interfere(rstate, range, lr)) {
19747                                         continue;
19748                                 }
19749                                 range->color = lr->color;
19750                         }
19751                 }
19752         }
19753         /* If I don't interfere with a rhs node reuse it's color */
19754         lrd = live_range_head(state, range, 0);
19755         for(; (range->color == REG_UNSET) && lrd ; lrd = live_range_head(state, range, lrd)) {
19756                 expr = triple_rhs(state, lrd->def, 0);
19757                 for(; expr; expr = triple_rhs(state, lrd->def, expr)) {
19758                         struct live_range *lr;
19759                         unsigned regcm;
19760                         if (!*expr) {
19761                                 continue;
19762                         }
19763                         lr = rstate->lrd[(*expr)->id].lr;
19764                         if (lr->color == REG_UNSET) {
19765                                 continue;
19766                         }
19767                         regcm = lr->classes;
19768                         if (((regcm & range->classes) == 0) ||
19769                                 (used[lr->color])) {
19770                                 continue;
19771                         }
19772                         if (interfere(rstate, range, lr)) {
19773                                 continue;
19774                         }
19775                         range->color = lr->color;
19776                         break;
19777                 }
19778         }
19779         /* If I have not opportunitically picked a useful color
19780          * pick the first color that is free.
19781          */
19782         if (range->color == REG_UNSET) {
19783                 range->color = 
19784                         arch_select_free_register(state, used, range->classes);
19785         }
19786         if (range->color == REG_UNSET) {
19787                 struct live_range_def *lrd;
19788                 int i;
19789                 if (split_ranges(state, rstate, used, range)) {
19790                         return 0;
19791                 }
19792                 for(edge = range->edges; edge; edge = edge->next) {
19793                         warning(state, edge->node->defs->def, "edge reg %s",
19794                                 arch_reg_str(edge->node->color));
19795                         lrd = edge->node->defs;
19796                         do {
19797                                 warning(state, lrd->def, " %s %p",
19798                                         tops(lrd->def->op), lrd->def);
19799                                 lrd = lrd->next;
19800                         } while(lrd != edge->node->defs);
19801                 }
19802                 warning(state, range->defs->def, "range: ");
19803                 lrd = range->defs;
19804                 do {
19805                         warning(state, lrd->def, " %s %p",
19806                                 tops(lrd->def->op), lrd->def);
19807                         lrd = lrd->next;
19808                 } while(lrd != range->defs);
19809                         
19810                 warning(state, range->defs->def, "classes: %x",
19811                         range->classes);
19812                 for(i = 0; i < MAX_REGISTERS; i++) {
19813                         if (used[i]) {
19814                                 warning(state, range->defs->def, "used: %s",
19815                                         arch_reg_str(i));
19816                         }
19817                 }
19818                 error(state, range->defs->def, "too few registers");
19819         }
19820         range->classes &= arch_reg_regcm(state, range->color);
19821         if ((range->color == REG_UNSET) || (range->classes == 0)) {
19822                 internal_error(state, range->defs->def, "select_free_color did not?");
19823         }
19824         return 1;
19825 }
19826
19827 static int color_graph(struct compile_state *state, struct reg_state *rstate)
19828 {
19829         int colored;
19830         struct live_range_edge *edge;
19831         struct live_range *range;
19832         if (rstate->low) {
19833                 cgdebug_printf(state, "Lo: ");
19834                 range = rstate->low;
19835                 if (*range->group_prev != range) {
19836                         internal_error(state, 0, "lo: *prev != range?");
19837                 }
19838                 *range->group_prev = range->group_next;
19839                 if (range->group_next) {
19840                         range->group_next->group_prev = range->group_prev;
19841                 }
19842                 if (&range->group_next == rstate->low_tail) {
19843                         rstate->low_tail = range->group_prev;
19844                 }
19845                 if (rstate->low == range) {
19846                         internal_error(state, 0, "low: next != prev?");
19847                 }
19848         }
19849         else if (rstate->high) {
19850                 cgdebug_printf(state, "Hi: ");
19851                 range = rstate->high;
19852                 if (*range->group_prev != range) {
19853                         internal_error(state, 0, "hi: *prev != range?");
19854                 }
19855                 *range->group_prev = range->group_next;
19856                 if (range->group_next) {
19857                         range->group_next->group_prev = range->group_prev;
19858                 }
19859                 if (&range->group_next == rstate->high_tail) {
19860                         rstate->high_tail = range->group_prev;
19861                 }
19862                 if (rstate->high == range) {
19863                         internal_error(state, 0, "high: next != prev?");
19864                 }
19865         }
19866         else {
19867                 return 1;
19868         }
19869         cgdebug_printf(state, " %d\n", range - rstate->lr);
19870         range->group_prev = 0;
19871         for(edge = range->edges; edge; edge = edge->next) {
19872                 struct live_range *node;
19873                 node = edge->node;
19874                 /* Move nodes from the high to the low list */
19875                 if (node->group_prev && (node->color == REG_UNSET) &&
19876                         (node->degree == regc_max_size(state, node->classes))) {
19877                         if (*node->group_prev != node) {
19878                                 internal_error(state, 0, "move: *prev != node?");
19879                         }
19880                         *node->group_prev = node->group_next;
19881                         if (node->group_next) {
19882                                 node->group_next->group_prev = node->group_prev;
19883                         }
19884                         if (&node->group_next == rstate->high_tail) {
19885                                 rstate->high_tail = node->group_prev;
19886                         }
19887                         cgdebug_printf(state, "Moving...%d to low\n", node - rstate->lr);
19888                         node->group_prev  = rstate->low_tail;
19889                         node->group_next  = 0;
19890                         *rstate->low_tail = node;
19891                         rstate->low_tail  = &node->group_next;
19892                         if (*node->group_prev != node) {
19893                                 internal_error(state, 0, "move2: *prev != node?");
19894                         }
19895                 }
19896                 node->degree -= 1;
19897         }
19898         colored = color_graph(state, rstate);
19899         if (colored) {
19900                 cgdebug_printf(state, "Coloring %d @", range - rstate->lr);
19901                 cgdebug_loc(state, range->defs->def);
19902                 cgdebug_flush(state);
19903                 colored = select_free_color(state, rstate, range);
19904                 if (colored) {
19905                         cgdebug_printf(state, " %s\n", arch_reg_str(range->color));
19906                 }
19907         }
19908         return colored;
19909 }
19910
19911 static void verify_colors(struct compile_state *state, struct reg_state *rstate)
19912 {
19913         struct live_range *lr;
19914         struct live_range_edge *edge;
19915         struct triple *ins, *first;
19916         char used[MAX_REGISTERS];
19917         first = state->first;
19918         ins = first;
19919         do {
19920                 if (triple_is_def(state, ins)) {
19921                         if ((ins->id < 0) || (ins->id > rstate->defs)) {
19922                                 internal_error(state, ins, 
19923                                         "triple without a live range def");
19924                         }
19925                         lr = rstate->lrd[ins->id].lr;
19926                         if (lr->color == REG_UNSET) {
19927                                 internal_error(state, ins,
19928                                         "triple without a color");
19929                         }
19930                         /* Find the registers used by the edges */
19931                         memset(used, 0, sizeof(used));
19932                         for(edge = lr->edges; edge; edge = edge->next) {
19933                                 if (edge->node->color == REG_UNSET) {
19934                                         internal_error(state, 0,
19935                                                 "live range without a color");
19936                         }
19937                                 reg_fill_used(state, used, edge->node->color);
19938                         }
19939                         if (used[lr->color]) {
19940                                 internal_error(state, ins,
19941                                         "triple with already used color");
19942                         }
19943                 }
19944                 ins = ins->next;
19945         } while(ins != first);
19946 }
19947
19948 static void color_triples(struct compile_state *state, struct reg_state *rstate)
19949 {
19950         struct live_range_def *lrd;
19951         struct live_range *lr;
19952         struct triple *first, *ins;
19953         first = state->first;
19954         ins = first;
19955         do {
19956                 if ((ins->id < 0) || (ins->id > rstate->defs)) {
19957                         internal_error(state, ins, 
19958                                 "triple without a live range");
19959                 }
19960                 lrd = &rstate->lrd[ins->id];
19961                 lr = lrd->lr;
19962                 ins->id = lrd->orig_id;
19963                 SET_REG(ins->id, lr->color);
19964                 ins = ins->next;
19965         } while (ins != first);
19966 }
19967
19968 static struct live_range *merge_sort_lr(
19969         struct live_range *first, struct live_range *last)
19970 {
19971         struct live_range *mid, *join, **join_tail, *pick;
19972         size_t size;
19973         size = (last - first) + 1;
19974         if (size >= 2) {
19975                 mid = first + size/2;
19976                 first = merge_sort_lr(first, mid -1);
19977                 mid   = merge_sort_lr(mid, last);
19978                 
19979                 join = 0;
19980                 join_tail = &join;
19981                 /* merge the two lists */
19982                 while(first && mid) {
19983                         if ((first->degree < mid->degree) ||
19984                                 ((first->degree == mid->degree) &&
19985                                         (first->length < mid->length))) {
19986                                 pick = first;
19987                                 first = first->group_next;
19988                                 if (first) {
19989                                         first->group_prev = 0;
19990                                 }
19991                         }
19992                         else {
19993                                 pick = mid;
19994                                 mid = mid->group_next;
19995                                 if (mid) {
19996                                         mid->group_prev = 0;
19997                                 }
19998                         }
19999                         pick->group_next = 0;
20000                         pick->group_prev = join_tail;
20001                         *join_tail = pick;
20002                         join_tail = &pick->group_next;
20003                 }
20004                 /* Splice the remaining list */
20005                 pick = (first)? first : mid;
20006                 *join_tail = pick;
20007                 if (pick) { 
20008                         pick->group_prev = join_tail;
20009                 }
20010         }
20011         else {
20012                 if (!first->defs) {
20013                         first = 0;
20014                 }
20015                 join = first;
20016         }
20017         return join;
20018 }
20019
20020 static void ids_from_rstate(struct compile_state *state, 
20021         struct reg_state *rstate)
20022 {
20023         struct triple *ins, *first;
20024         if (!rstate->defs) {
20025                 return;
20026         }
20027         /* Display the graph if desired */
20028         if (state->compiler->debug & DEBUG_INTERFERENCE) {
20029                 FILE *fp = state->dbgout;
20030                 print_interference_blocks(state, rstate, fp, 0);
20031                 print_control_flow(state, fp, &state->bb);
20032                 fflush(fp);
20033         }
20034         first = state->first;
20035         ins = first;
20036         do {
20037                 if (ins->id) {
20038                         struct live_range_def *lrd;
20039                         lrd = &rstate->lrd[ins->id];
20040                         ins->id = lrd->orig_id;
20041                 }
20042                 ins = ins->next;
20043         } while(ins != first);
20044 }
20045
20046 static void cleanup_live_edges(struct reg_state *rstate)
20047 {
20048         int i;
20049         /* Free the edges on each node */
20050         for(i = 1; i <= rstate->ranges; i++) {
20051                 remove_live_edges(rstate, &rstate->lr[i]);
20052         }
20053 }
20054
20055 static void cleanup_rstate(struct compile_state *state, struct reg_state *rstate)
20056 {
20057         cleanup_live_edges(rstate);
20058         xfree(rstate->lrd);
20059         xfree(rstate->lr);
20060
20061         /* Free the variable lifetime information */
20062         if (rstate->blocks) {
20063                 free_variable_lifetimes(state, &state->bb, rstate->blocks);
20064         }
20065         rstate->defs = 0;
20066         rstate->ranges = 0;
20067         rstate->lrd = 0;
20068         rstate->lr = 0;
20069         rstate->blocks = 0;
20070 }
20071
20072 static void verify_consistency(struct compile_state *state);
20073 static void allocate_registers(struct compile_state *state)
20074 {
20075         struct reg_state rstate;
20076         int colored;
20077
20078         /* Clear out the reg_state */
20079         memset(&rstate, 0, sizeof(rstate));
20080         rstate.max_passes = state->compiler->max_allocation_passes;
20081
20082         do {
20083                 struct live_range **point, **next;
20084                 int conflicts;
20085                 int tangles;
20086                 int coalesced;
20087
20088                 if (state->compiler->debug & DEBUG_RANGE_CONFLICTS) {
20089                         FILE *fp = state->errout;
20090                         fprintf(fp, "pass: %d\n", rstate.passes);
20091                         fflush(fp);
20092                 }
20093
20094                 /* Restore ids */
20095                 ids_from_rstate(state, &rstate);
20096
20097                 /* Cleanup the temporary data structures */
20098                 cleanup_rstate(state, &rstate);
20099
20100                 /* Compute the variable lifetimes */
20101                 rstate.blocks = compute_variable_lifetimes(state, &state->bb);
20102
20103                 /* Fix invalid mandatory live range coalesce conflicts */
20104                 conflicts = correct_coalesce_conflicts(state, rstate.blocks);
20105
20106                 /* Fix two simultaneous uses of the same register.
20107                  * In a few pathlogical cases a partial untangle moves
20108                  * the tangle to a part of the graph we won't revisit.
20109                  * So we keep looping until we have no more tangle fixes
20110                  * to apply.
20111                  */
20112                 do {
20113                         tangles = correct_tangles(state, rstate.blocks);
20114                 } while(tangles);
20115
20116                 
20117                 print_blocks(state, "resolve_tangles", state->dbgout);
20118                 verify_consistency(state);
20119                 
20120                 /* Allocate and initialize the live ranges */
20121                 initialize_live_ranges(state, &rstate);
20122
20123                 /* Note currently doing coalescing in a loop appears to 
20124                  * buys me nothing.  The code is left this way in case
20125                  * there is some value in it.  Or if a future bugfix
20126                  * yields some benefit.
20127                  */
20128                 do {
20129                         if (state->compiler->debug & DEBUG_COALESCING) {
20130                                 fprintf(state->errout, "coalescing\n");
20131                         }
20132
20133                         /* Remove any previous live edge calculations */
20134                         cleanup_live_edges(&rstate);
20135
20136                         /* Compute the interference graph */
20137                         walk_variable_lifetimes(
20138                                 state, &state->bb, rstate.blocks, 
20139                                 graph_ins, &rstate);
20140                         
20141                         /* Display the interference graph if desired */
20142                         if (state->compiler->debug & DEBUG_INTERFERENCE) {
20143                                 print_interference_blocks(state, &rstate, state->dbgout, 1);
20144                                 fprintf(state->dbgout, "\nlive variables by instruction\n");
20145                                 walk_variable_lifetimes(
20146                                         state, &state->bb, rstate.blocks, 
20147                                         print_interference_ins, &rstate);
20148                         }
20149                         
20150                         coalesced = coalesce_live_ranges(state, &rstate);
20151
20152                         if (state->compiler->debug & DEBUG_COALESCING) {
20153                                 fprintf(state->errout, "coalesced: %d\n", coalesced);
20154                         }
20155                 } while(coalesced);
20156
20157 #if DEBUG_CONSISTENCY > 1
20158 # if 0
20159                 fprintf(state->errout, "verify_graph_ins...\n");
20160 # endif
20161                 /* Verify the interference graph */
20162                 walk_variable_lifetimes(
20163                         state, &state->bb, rstate.blocks, 
20164                         verify_graph_ins, &rstate);
20165 # if 0
20166                 fprintf(state->errout, "verify_graph_ins done\n");
20167 #endif
20168 #endif
20169                         
20170                 /* Build the groups low and high.  But with the nodes
20171                  * first sorted by degree order.
20172                  */
20173                 rstate.low_tail  = &rstate.low;
20174                 rstate.high_tail = &rstate.high;
20175                 rstate.high = merge_sort_lr(&rstate.lr[1], &rstate.lr[rstate.ranges]);
20176                 if (rstate.high) {
20177                         rstate.high->group_prev = &rstate.high;
20178                 }
20179                 for(point = &rstate.high; *point; point = &(*point)->group_next)
20180                         ;
20181                 rstate.high_tail = point;
20182                 /* Walk through the high list and move everything that needs
20183                  * to be onto low.
20184                  */
20185                 for(point = &rstate.high; *point; point = next) {
20186                         struct live_range *range;
20187                         next = &(*point)->group_next;
20188                         range = *point;
20189                         
20190                         /* If it has a low degree or it already has a color
20191                          * place the node in low.
20192                          */
20193                         if ((range->degree < regc_max_size(state, range->classes)) ||
20194                                 (range->color != REG_UNSET)) {
20195                                 cgdebug_printf(state, "Lo: %5d degree %5d%s\n", 
20196                                         range - rstate.lr, range->degree,
20197                                         (range->color != REG_UNSET) ? " (colored)": "");
20198                                 *range->group_prev = range->group_next;
20199                                 if (range->group_next) {
20200                                         range->group_next->group_prev = range->group_prev;
20201                                 }
20202                                 if (&range->group_next == rstate.high_tail) {
20203                                         rstate.high_tail = range->group_prev;
20204                                 }
20205                                 range->group_prev  = rstate.low_tail;
20206                                 range->group_next  = 0;
20207                                 *rstate.low_tail   = range;
20208                                 rstate.low_tail    = &range->group_next;
20209                                 next = point;
20210                         }
20211                         else {
20212                                 cgdebug_printf(state, "hi: %5d degree %5d%s\n", 
20213                                         range - rstate.lr, range->degree,
20214                                         (range->color != REG_UNSET) ? " (colored)": "");
20215                         }
20216                 }
20217                 /* Color the live_ranges */
20218                 colored = color_graph(state, &rstate);
20219                 rstate.passes++;
20220         } while (!colored);
20221
20222         /* Verify the graph was properly colored */
20223         verify_colors(state, &rstate);
20224
20225         /* Move the colors from the graph to the triples */
20226         color_triples(state, &rstate);
20227
20228         /* Cleanup the temporary data structures */
20229         cleanup_rstate(state, &rstate);
20230
20231         /* Display the new graph */
20232         print_blocks(state, __func__, state->dbgout);
20233 }
20234
20235 /* Sparce Conditional Constant Propogation
20236  * =========================================
20237  */
20238 struct ssa_edge;
20239 struct flow_block;
20240 struct lattice_node {
20241         unsigned old_id;
20242         struct triple *def;
20243         struct ssa_edge *out;
20244         struct flow_block *fblock;
20245         struct triple *val;
20246         /* lattice high   val == def
20247          * lattice const  is_const(val)
20248          * lattice low    other
20249          */
20250 };
20251 struct ssa_edge {
20252         struct lattice_node *src;
20253         struct lattice_node *dst;
20254         struct ssa_edge *work_next;
20255         struct ssa_edge *work_prev;
20256         struct ssa_edge *out_next;
20257 };
20258 struct flow_edge {
20259         struct flow_block *src;
20260         struct flow_block *dst;
20261         struct flow_edge *work_next;
20262         struct flow_edge *work_prev;
20263         struct flow_edge *in_next;
20264         struct flow_edge *out_next;
20265         int executable;
20266 };
20267 #define MAX_FLOW_BLOCK_EDGES 3
20268 struct flow_block {
20269         struct block *block;
20270         struct flow_edge *in;
20271         struct flow_edge *out;
20272         struct flow_edge *edges;
20273 };
20274
20275 struct scc_state {
20276         int ins_count;
20277         struct lattice_node *lattice;
20278         struct ssa_edge     *ssa_edges;
20279         struct flow_block   *flow_blocks;
20280         struct flow_edge    *flow_work_list;
20281         struct ssa_edge     *ssa_work_list;
20282 };
20283
20284
20285 static int is_scc_const(struct compile_state *state, struct triple *ins)
20286 {
20287         return ins && (triple_is_ubranch(state, ins) || is_const(ins));
20288 }
20289
20290 static int is_lattice_hi(struct compile_state *state, struct lattice_node *lnode)
20291 {
20292         return !is_scc_const(state, lnode->val) && (lnode->val == lnode->def);
20293 }
20294
20295 static int is_lattice_const(struct compile_state *state, struct lattice_node *lnode)
20296 {
20297         return is_scc_const(state, lnode->val);
20298 }
20299
20300 static int is_lattice_lo(struct compile_state *state, struct lattice_node *lnode)
20301 {
20302         return (lnode->val != lnode->def) && !is_scc_const(state, lnode->val);
20303 }
20304
20305 static void scc_add_fedge(struct compile_state *state, struct scc_state *scc, 
20306         struct flow_edge *fedge)
20307 {
20308         if (state->compiler->debug & DEBUG_SCC_TRANSFORM2) {
20309                 fprintf(state->errout, "adding fedge: %p (%4d -> %5d)\n",
20310                         fedge,
20311                         fedge->src->block?fedge->src->block->last->id: 0,
20312                         fedge->dst->block?fedge->dst->block->first->id: 0);
20313         }
20314         if ((fedge == scc->flow_work_list) ||
20315                 (fedge->work_next != fedge) ||
20316                 (fedge->work_prev != fedge)) {
20317
20318                 if (state->compiler->debug & DEBUG_SCC_TRANSFORM2) {
20319                         fprintf(state->errout, "dupped fedge: %p\n",
20320                                 fedge);
20321                 }
20322                 return;
20323         }
20324         if (!scc->flow_work_list) {
20325                 scc->flow_work_list = fedge;
20326                 fedge->work_next = fedge->work_prev = fedge;
20327         }
20328         else {
20329                 struct flow_edge *ftail;
20330                 ftail = scc->flow_work_list->work_prev;
20331                 fedge->work_next = ftail->work_next;
20332                 fedge->work_prev = ftail;
20333                 fedge->work_next->work_prev = fedge;
20334                 fedge->work_prev->work_next = fedge;
20335         }
20336 }
20337
20338 static struct flow_edge *scc_next_fedge(
20339         struct compile_state *state, struct scc_state *scc)
20340 {
20341         struct flow_edge *fedge;
20342         fedge = scc->flow_work_list;
20343         if (fedge) {
20344                 fedge->work_next->work_prev = fedge->work_prev;
20345                 fedge->work_prev->work_next = fedge->work_next;
20346                 if (fedge->work_next != fedge) {
20347                         scc->flow_work_list = fedge->work_next;
20348                 } else {
20349                         scc->flow_work_list = 0;
20350                 }
20351                 fedge->work_next = fedge->work_prev = fedge;
20352         }
20353         return fedge;
20354 }
20355
20356 static void scc_add_sedge(struct compile_state *state, struct scc_state *scc,
20357         struct ssa_edge *sedge)
20358 {
20359         if (state->compiler->debug & DEBUG_SCC_TRANSFORM2) {
20360                 fprintf(state->errout, "adding sedge: %5ld (%4d -> %5d)\n",
20361                         (long)(sedge - scc->ssa_edges),
20362                         sedge->src->def->id,
20363                         sedge->dst->def->id);
20364         }
20365         if ((sedge == scc->ssa_work_list) ||
20366                 (sedge->work_next != sedge) ||
20367                 (sedge->work_prev != sedge)) {
20368
20369                 if (state->compiler->debug & DEBUG_SCC_TRANSFORM2) {
20370                         fprintf(state->errout, "dupped sedge: %5ld\n",
20371                                 (long)(sedge - scc->ssa_edges));
20372                 }
20373                 return;
20374         }
20375         if (!scc->ssa_work_list) {
20376                 scc->ssa_work_list = sedge;
20377                 sedge->work_next = sedge->work_prev = sedge;
20378         }
20379         else {
20380                 struct ssa_edge *stail;
20381                 stail = scc->ssa_work_list->work_prev;
20382                 sedge->work_next = stail->work_next;
20383                 sedge->work_prev = stail;
20384                 sedge->work_next->work_prev = sedge;
20385                 sedge->work_prev->work_next = sedge;
20386         }
20387 }
20388
20389 static struct ssa_edge *scc_next_sedge(
20390         struct compile_state *state, struct scc_state *scc)
20391 {
20392         struct ssa_edge *sedge;
20393         sedge = scc->ssa_work_list;
20394         if (sedge) {
20395                 sedge->work_next->work_prev = sedge->work_prev;
20396                 sedge->work_prev->work_next = sedge->work_next;
20397                 if (sedge->work_next != sedge) {
20398                         scc->ssa_work_list = sedge->work_next;
20399                 } else {
20400                         scc->ssa_work_list = 0;
20401                 }
20402                 sedge->work_next = sedge->work_prev = sedge;
20403         }
20404         return sedge;
20405 }
20406
20407 static void initialize_scc_state(
20408         struct compile_state *state, struct scc_state *scc)
20409 {
20410         int ins_count, ssa_edge_count;
20411         int ins_index, ssa_edge_index, fblock_index;
20412         struct triple *first, *ins;
20413         struct block *block;
20414         struct flow_block *fblock;
20415
20416         memset(scc, 0, sizeof(*scc));
20417
20418         /* Inialize pass zero find out how much memory we need */
20419         first = state->first;
20420         ins = first;
20421         ins_count = ssa_edge_count = 0;
20422         do {
20423                 struct triple_set *edge;
20424                 ins_count += 1;
20425                 for(edge = ins->use; edge; edge = edge->next) {
20426                         ssa_edge_count++;
20427                 }
20428                 ins = ins->next;
20429         } while(ins != first);
20430         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20431                 fprintf(state->errout, "ins_count: %d ssa_edge_count: %d vertex_count: %d\n",
20432                         ins_count, ssa_edge_count, state->bb.last_vertex);
20433         }
20434         scc->ins_count   = ins_count;
20435         scc->lattice     = 
20436                 xcmalloc(sizeof(*scc->lattice)*(ins_count + 1), "lattice");
20437         scc->ssa_edges   = 
20438                 xcmalloc(sizeof(*scc->ssa_edges)*(ssa_edge_count + 1), "ssa_edges");
20439         scc->flow_blocks = 
20440                 xcmalloc(sizeof(*scc->flow_blocks)*(state->bb.last_vertex + 1), 
20441                         "flow_blocks");
20442
20443         /* Initialize pass one collect up the nodes */
20444         fblock = 0;
20445         block = 0;
20446         ins_index = ssa_edge_index = fblock_index = 0;
20447         ins = first;
20448         do {
20449                 if ((ins->op == OP_LABEL) && (block != ins->u.block)) {
20450                         block = ins->u.block;
20451                         if (!block) {
20452                                 internal_error(state, ins, "label without block");
20453                         }
20454                         fblock_index += 1;
20455                         block->vertex = fblock_index;
20456                         fblock = &scc->flow_blocks[fblock_index];
20457                         fblock->block = block;
20458                         fblock->edges = xcmalloc(sizeof(*fblock->edges)*block->edge_count,
20459                                 "flow_edges");
20460                 }
20461                 {
20462                         struct lattice_node *lnode;
20463                         ins_index += 1;
20464                         lnode = &scc->lattice[ins_index];
20465                         lnode->def = ins;
20466                         lnode->out = 0;
20467                         lnode->fblock = fblock;
20468                         lnode->val = ins; /* LATTICE HIGH */
20469                         if (lnode->val->op == OP_UNKNOWNVAL) {
20470                                 lnode->val = 0; /* LATTICE LOW by definition */
20471                         }
20472                         lnode->old_id = ins->id;
20473                         ins->id = ins_index;
20474                 }
20475                 ins = ins->next;
20476         } while(ins != first);
20477         /* Initialize pass two collect up the edges */
20478         block = 0;
20479         fblock = 0;
20480         ins = first;
20481         do {
20482                 {
20483                         struct triple_set *edge;
20484                         struct ssa_edge **stail;
20485                         struct lattice_node *lnode;
20486                         lnode = &scc->lattice[ins->id];
20487                         lnode->out = 0;
20488                         stail = &lnode->out;
20489                         for(edge = ins->use; edge; edge = edge->next) {
20490                                 struct ssa_edge *sedge;
20491                                 ssa_edge_index += 1;
20492                                 sedge = &scc->ssa_edges[ssa_edge_index];
20493                                 *stail = sedge;
20494                                 stail = &sedge->out_next;
20495                                 sedge->src = lnode;
20496                                 sedge->dst = &scc->lattice[edge->member->id];
20497                                 sedge->work_next = sedge->work_prev = sedge;
20498                                 sedge->out_next = 0;
20499                         }
20500                 }
20501                 if ((ins->op == OP_LABEL) && (block != ins->u.block)) {
20502                         struct flow_edge *fedge, **ftail;
20503                         struct block_set *bedge;
20504                         block = ins->u.block;
20505                         fblock = &scc->flow_blocks[block->vertex];
20506                         fblock->in = 0;
20507                         fblock->out = 0;
20508                         ftail = &fblock->out;
20509
20510                         fedge = fblock->edges;
20511                         bedge = block->edges;
20512                         for(; bedge; bedge = bedge->next, fedge++) {
20513                                 fedge->dst = &scc->flow_blocks[bedge->member->vertex];
20514                                 if (fedge->dst->block != bedge->member) {
20515                                         internal_error(state, 0, "block mismatch");
20516                                 }
20517                                 *ftail = fedge;
20518                                 ftail = &fedge->out_next;
20519                                 fedge->out_next = 0;
20520                         }
20521                         for(fedge = fblock->out; fedge; fedge = fedge->out_next) {
20522                                 fedge->src = fblock;
20523                                 fedge->work_next = fedge->work_prev = fedge;
20524                                 fedge->executable = 0;
20525                         }
20526                 }
20527                 ins = ins->next;
20528         } while (ins != first);
20529         block = 0;
20530         fblock = 0;
20531         ins = first;
20532         do {
20533                 if ((ins->op  == OP_LABEL) && (block != ins->u.block)) {
20534                         struct flow_edge **ftail;
20535                         struct block_set *bedge;
20536                         block = ins->u.block;
20537                         fblock = &scc->flow_blocks[block->vertex];
20538                         ftail = &fblock->in;
20539                         for(bedge = block->use; bedge; bedge = bedge->next) {
20540                                 struct block *src_block;
20541                                 struct flow_block *sfblock;
20542                                 struct flow_edge *sfedge;
20543                                 src_block = bedge->member;
20544                                 sfblock = &scc->flow_blocks[src_block->vertex];
20545                                 for(sfedge = sfblock->out; sfedge; sfedge = sfedge->out_next) {
20546                                         if (sfedge->dst == fblock) {
20547                                                 break;
20548                                         }
20549                                 }
20550                                 if (!sfedge) {
20551                                         internal_error(state, 0, "edge mismatch");
20552                                 }
20553                                 *ftail = sfedge;
20554                                 ftail = &sfedge->in_next;
20555                                 sfedge->in_next = 0;
20556                         }
20557                 }
20558                 ins = ins->next;
20559         } while(ins != first);
20560         /* Setup a dummy block 0 as a node above the start node */
20561         {
20562                 struct flow_block *fblock, *dst;
20563                 struct flow_edge *fedge;
20564                 fblock = &scc->flow_blocks[0];
20565                 fblock->block = 0;
20566                 fblock->edges = xcmalloc(sizeof(*fblock->edges)*1, "flow_edges");
20567                 fblock->in = 0;
20568                 fblock->out = fblock->edges;
20569                 dst = &scc->flow_blocks[state->bb.first_block->vertex];
20570                 fedge = fblock->edges;
20571                 fedge->src        = fblock;
20572                 fedge->dst        = dst;
20573                 fedge->work_next  = fedge;
20574                 fedge->work_prev  = fedge;
20575                 fedge->in_next    = fedge->dst->in;
20576                 fedge->out_next   = 0;
20577                 fedge->executable = 0;
20578                 fedge->dst->in = fedge;
20579                 
20580                 /* Initialize the work lists */
20581                 scc->flow_work_list = 0;
20582                 scc->ssa_work_list  = 0;
20583                 scc_add_fedge(state, scc, fedge);
20584         }
20585         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20586                 fprintf(state->errout, "ins_index: %d ssa_edge_index: %d fblock_index: %d\n",
20587                         ins_index, ssa_edge_index, fblock_index);
20588         }
20589 }
20590
20591         
20592 static void free_scc_state(
20593         struct compile_state *state, struct scc_state *scc)
20594 {
20595         int i;
20596         for(i = 0; i < state->bb.last_vertex + 1; i++) {
20597                 struct flow_block *fblock;
20598                 fblock = &scc->flow_blocks[i];
20599                 if (fblock->edges) {
20600                         xfree(fblock->edges);
20601                         fblock->edges = 0;
20602                 }
20603         }
20604         xfree(scc->flow_blocks);
20605         xfree(scc->ssa_edges);
20606         xfree(scc->lattice);
20607         
20608 }
20609
20610 static struct lattice_node *triple_to_lattice(
20611         struct compile_state *state, struct scc_state *scc, struct triple *ins)
20612 {
20613         if (ins->id <= 0) {
20614                 internal_error(state, ins, "bad id");
20615         }
20616         return &scc->lattice[ins->id];
20617 }
20618
20619 static struct triple *preserve_lval(
20620         struct compile_state *state, struct lattice_node *lnode)
20621 {
20622         struct triple *old;
20623         /* Preserve the original value */
20624         if (lnode->val) {
20625                 old = dup_triple(state, lnode->val);
20626                 if (lnode->val != lnode->def) {
20627                         xfree(lnode->val);
20628                 }
20629                 lnode->val = 0;
20630         } else {
20631                 old = 0;
20632         }
20633         return old;
20634 }
20635
20636 static int lval_changed(struct compile_state *state, 
20637         struct triple *old, struct lattice_node *lnode)
20638 {
20639         int changed;
20640         /* See if the lattice value has changed */
20641         changed = 1;
20642         if (!old && !lnode->val) {
20643                 changed = 0;
20644         }
20645         if (changed &&
20646                 lnode->val && old &&
20647                 (memcmp(lnode->val->param, old->param,
20648                         TRIPLE_SIZE(lnode->val) * sizeof(lnode->val->param[0])) == 0) &&
20649                 (memcmp(&lnode->val->u, &old->u, sizeof(old->u)) == 0)) {
20650                 changed = 0;
20651         }
20652         if (old) {
20653                 xfree(old);
20654         }
20655         return changed;
20656
20657 }
20658
20659 static void scc_debug_lnode(
20660         struct compile_state *state, struct scc_state *scc,
20661         struct lattice_node *lnode, int changed)
20662 {
20663         if ((state->compiler->debug & DEBUG_SCC_TRANSFORM2) && lnode->val) {
20664                 display_triple_changes(state->errout, lnode->val, lnode->def);
20665         }
20666         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20667                 FILE *fp = state->errout;
20668                 struct triple *val, **expr;
20669                 val = lnode->val? lnode->val : lnode->def;
20670                 fprintf(fp, "%p %s %3d %10s (",
20671                         lnode->def, 
20672                         ((lnode->def->op == OP_PHI)? "phi: ": "expr:"),
20673                         lnode->def->id,
20674                         tops(lnode->def->op));
20675                 expr = triple_rhs(state, lnode->def, 0);
20676                 for(;expr;expr = triple_rhs(state, lnode->def, expr)) {
20677                         if (*expr) {
20678                                 fprintf(fp, " %d", (*expr)->id);
20679                         }
20680                 }
20681                 if (val->op == OP_INTCONST) {
20682                         fprintf(fp, " <0x%08lx>", (unsigned long)(val->u.cval));
20683                 }
20684                 fprintf(fp, " ) -> %s %s\n",
20685                         (is_lattice_hi(state, lnode)? "hi":
20686                                 is_lattice_const(state, lnode)? "const" : "lo"),
20687                         changed? "changed" : ""
20688                         );
20689         }
20690 }
20691
20692 static int compute_lnode_val(struct compile_state *state, struct scc_state *scc,
20693         struct lattice_node *lnode)
20694 {
20695         int changed;
20696         struct triple *old, *scratch;
20697         struct triple **dexpr, **vexpr;
20698         int count, i;
20699         
20700         /* Store the original value */
20701         old = preserve_lval(state, lnode);
20702
20703         /* Reinitialize the value */
20704         lnode->val = scratch = dup_triple(state, lnode->def);
20705         scratch->id = lnode->old_id;
20706         scratch->next     = scratch;
20707         scratch->prev     = scratch;
20708         scratch->use      = 0;
20709
20710         count = TRIPLE_SIZE(scratch);
20711         for(i = 0; i < count; i++) {
20712                 dexpr = &lnode->def->param[i];
20713                 vexpr = &scratch->param[i];
20714                 *vexpr = *dexpr;
20715                 if (((i < TRIPLE_MISC_OFF(scratch)) ||
20716                         (i >= TRIPLE_TARG_OFF(scratch))) &&
20717                         *dexpr) {
20718                         struct lattice_node *tmp;
20719                         tmp = triple_to_lattice(state, scc, *dexpr);
20720                         *vexpr = (tmp->val)? tmp->val : tmp->def;
20721                 }
20722         }
20723         if (triple_is_branch(state, scratch)) {
20724                 scratch->next = lnode->def->next;
20725         }
20726         /* Recompute the value */
20727 #if DEBUG_ROMCC_WARNINGS
20728 #warning "FIXME see if simplify does anything bad"
20729 #endif
20730         /* So far it looks like only the strength reduction
20731          * optimization are things I need to worry about.
20732          */
20733         simplify(state, scratch);
20734         /* Cleanup my value */
20735         if (scratch->use) {
20736                 internal_error(state, lnode->def, "scratch used?");
20737         }
20738         if ((scratch->prev != scratch) ||
20739                 ((scratch->next != scratch) &&
20740                         (!triple_is_branch(state, lnode->def) ||
20741                                 (scratch->next != lnode->def->next)))) {
20742                 internal_error(state, lnode->def, "scratch in list?");
20743         }
20744         /* undo any uses... */
20745         count = TRIPLE_SIZE(scratch);
20746         for(i = 0; i < count; i++) {
20747                 vexpr = &scratch->param[i];
20748                 if (*vexpr) {
20749                         unuse_triple(*vexpr, scratch);
20750                 }
20751         }
20752         if (lnode->val->op == OP_UNKNOWNVAL) {
20753                 lnode->val = 0; /* Lattice low by definition */
20754         }
20755         /* Find the case when I am lattice high */
20756         if (lnode->val && 
20757                 (lnode->val->op == lnode->def->op) &&
20758                 (memcmp(lnode->val->param, lnode->def->param, 
20759                         count * sizeof(lnode->val->param[0])) == 0) &&
20760                 (memcmp(&lnode->val->u, &lnode->def->u, sizeof(lnode->def->u)) == 0)) {
20761                 lnode->val = lnode->def;
20762         }
20763         /* Only allow lattice high when all of my inputs
20764          * are also lattice high.  Occassionally I can
20765          * have constants with a lattice low input, so
20766          * I do not need to check that case.
20767          */
20768         if (is_lattice_hi(state, lnode)) {
20769                 struct lattice_node *tmp;
20770                 int rhs;
20771                 rhs = lnode->val->rhs;
20772                 for(i = 0; i < rhs; i++) {
20773                         tmp = triple_to_lattice(state, scc, RHS(lnode->val, i));
20774                         if (!is_lattice_hi(state, tmp)) {
20775                                 lnode->val = 0;
20776                                 break;
20777                         }
20778                 }
20779         }
20780         /* Find the cases that are always lattice lo */
20781         if (lnode->val && 
20782                 triple_is_def(state, lnode->val) &&
20783                 !triple_is_pure(state, lnode->val, lnode->old_id)) {
20784                 lnode->val = 0;
20785         }
20786         /* See if the lattice value has changed */
20787         changed = lval_changed(state, old, lnode);
20788         /* See if this value should not change */
20789         if ((lnode->val != lnode->def) && 
20790                 ((      !triple_is_def(state, lnode->def)  &&
20791                         !triple_is_cbranch(state, lnode->def)) ||
20792                         (lnode->def->op == OP_PIECE))) {
20793 #if DEBUG_ROMCC_WARNINGS
20794 #warning "FIXME constant propogate through expressions with multiple left hand sides"
20795 #endif
20796                 if (changed) {
20797                         internal_warning(state, lnode->def, "non def changes value?");
20798                 }
20799                 lnode->val = 0;
20800         }
20801
20802         /* See if we need to free the scratch value */
20803         if (lnode->val != scratch) {
20804                 xfree(scratch);
20805         }
20806         
20807         return changed;
20808 }
20809
20810
20811 static void scc_visit_cbranch(struct compile_state *state, struct scc_state *scc,
20812         struct lattice_node *lnode)
20813 {
20814         struct lattice_node *cond;
20815         struct flow_edge *left, *right;
20816         int changed;
20817
20818         /* Update the branch value */
20819         changed = compute_lnode_val(state, scc, lnode);
20820         scc_debug_lnode(state, scc, lnode, changed);
20821
20822         /* This only applies to conditional branches */
20823         if (!triple_is_cbranch(state, lnode->def)) {
20824                 internal_error(state, lnode->def, "not a conditional branch");
20825         }
20826
20827         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20828                 struct flow_edge *fedge;
20829                 FILE *fp = state->errout;
20830                 fprintf(fp, "%s: %d (",
20831                         tops(lnode->def->op),
20832                         lnode->def->id);
20833                 
20834                 for(fedge = lnode->fblock->out; fedge; fedge = fedge->out_next) {
20835                         fprintf(fp, " %d", fedge->dst->block->vertex);
20836                 }
20837                 fprintf(fp, " )");
20838                 if (lnode->def->rhs > 0) {
20839                         fprintf(fp, " <- %d",
20840                                 RHS(lnode->def, 0)->id);
20841                 }
20842                 fprintf(fp, "\n");
20843         }
20844         cond = triple_to_lattice(state, scc, RHS(lnode->def,0));
20845         for(left = cond->fblock->out; left; left = left->out_next) {
20846                 if (left->dst->block->first == lnode->def->next) {
20847                         break;
20848                 }
20849         }
20850         if (!left) {
20851                 internal_error(state, lnode->def, "Cannot find left branch edge");
20852         }
20853         for(right = cond->fblock->out; right; right = right->out_next) {
20854                 if (right->dst->block->first == TARG(lnode->def, 0)) {
20855                         break;
20856                 }
20857         }
20858         if (!right) {
20859                 internal_error(state, lnode->def, "Cannot find right branch edge");
20860         }
20861         /* I should only come here if the controlling expressions value
20862          * has changed, which means it must be either a constant or lo.
20863          */
20864         if (is_lattice_hi(state, cond)) {
20865                 internal_error(state, cond->def, "condition high?");
20866                 return;
20867         }
20868         if (is_lattice_lo(state, cond)) {
20869                 scc_add_fedge(state, scc, left);
20870                 scc_add_fedge(state, scc, right);
20871         }
20872         else if (cond->val->u.cval) {
20873                 scc_add_fedge(state, scc, right);
20874         } else {
20875                 scc_add_fedge(state, scc, left);
20876         }
20877
20878 }
20879
20880
20881 static void scc_add_sedge_dst(struct compile_state *state, 
20882         struct scc_state *scc, struct ssa_edge *sedge)
20883 {
20884         if (triple_is_cbranch(state, sedge->dst->def)) {
20885                 scc_visit_cbranch(state, scc, sedge->dst);
20886         }
20887         else if (triple_is_def(state, sedge->dst->def)) {
20888                 scc_add_sedge(state, scc, sedge);
20889         }
20890 }
20891
20892 static void scc_visit_phi(struct compile_state *state, struct scc_state *scc, 
20893         struct lattice_node *lnode)
20894 {
20895         struct lattice_node *tmp;
20896         struct triple **slot, *old;
20897         struct flow_edge *fedge;
20898         int changed;
20899         int index;
20900         if (lnode->def->op != OP_PHI) {
20901                 internal_error(state, lnode->def, "not phi");
20902         }
20903         /* Store the original value */
20904         old = preserve_lval(state, lnode);
20905
20906         /* default to lattice high */
20907         lnode->val = lnode->def;
20908         slot = &RHS(lnode->def, 0);
20909         index = 0;
20910         for(fedge = lnode->fblock->in; fedge; index++, fedge = fedge->in_next) {
20911                 if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20912                         fprintf(state->errout, "Examining edge: %d vertex: %d executable: %d\n", 
20913                                 index,
20914                                 fedge->dst->block->vertex,
20915                                 fedge->executable
20916                                 );
20917                 }
20918                 if (!fedge->executable) {
20919                         continue;
20920                 }
20921                 if (!slot[index]) {
20922                         internal_error(state, lnode->def, "no phi value");
20923                 }
20924                 tmp = triple_to_lattice(state, scc, slot[index]);
20925                 /* meet(X, lattice low) = lattice low */
20926                 if (is_lattice_lo(state, tmp)) {
20927                         lnode->val = 0;
20928                 }
20929                 /* meet(X, lattice high) = X */
20930                 else if (is_lattice_hi(state, tmp)) {
20931                         lnode->val = lnode->val;
20932                 }
20933                 /* meet(lattice high, X) = X */
20934                 else if (is_lattice_hi(state, lnode)) {
20935                         lnode->val = dup_triple(state, tmp->val);
20936                         /* Only change the type if necessary */
20937                         if (!is_subset_type(lnode->def->type, tmp->val->type)) {
20938                                 lnode->val->type = lnode->def->type;
20939                         }
20940                 }
20941                 /* meet(const, const) = const or lattice low */
20942                 else if (!constants_equal(state, lnode->val, tmp->val)) {
20943                         lnode->val = 0;
20944                 }
20945
20946                 /* meet(lattice low, X) = lattice low */
20947                 if (is_lattice_lo(state, lnode)) {
20948                         lnode->val = 0;
20949                         break;
20950                 }
20951         }
20952         changed = lval_changed(state, old, lnode);
20953         scc_debug_lnode(state, scc, lnode, changed);
20954
20955         /* If the lattice value has changed update the work lists. */
20956         if (changed) {
20957                 struct ssa_edge *sedge;
20958                 for(sedge = lnode->out; sedge; sedge = sedge->out_next) {
20959                         scc_add_sedge_dst(state, scc, sedge);
20960                 }
20961         }
20962 }
20963
20964
20965 static void scc_visit_expr(struct compile_state *state, struct scc_state *scc,
20966         struct lattice_node *lnode)
20967 {
20968         int changed;
20969
20970         if (!triple_is_def(state, lnode->def)) {
20971                 internal_warning(state, lnode->def, "not visiting an expression?");
20972         }
20973         changed = compute_lnode_val(state, scc, lnode);
20974         scc_debug_lnode(state, scc, lnode, changed);
20975
20976         if (changed) {
20977                 struct ssa_edge *sedge;
20978                 for(sedge = lnode->out; sedge; sedge = sedge->out_next) {
20979                         scc_add_sedge_dst(state, scc, sedge);
20980                 }
20981         }
20982 }
20983
20984 static void scc_writeback_values(
20985         struct compile_state *state, struct scc_state *scc)
20986 {
20987         struct triple *first, *ins;
20988         first = state->first;
20989         ins = first;
20990         do {
20991                 struct lattice_node *lnode;
20992                 lnode = triple_to_lattice(state, scc, ins);
20993                 if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20994                         if (is_lattice_hi(state, lnode) &&
20995                                 (lnode->val->op != OP_NOOP))
20996                         {
20997                                 struct flow_edge *fedge;
20998                                 int executable;
20999                                 executable = 0;
21000                                 for(fedge = lnode->fblock->in; 
21001                                     !executable && fedge; fedge = fedge->in_next) {
21002                                         executable |= fedge->executable;
21003                                 }
21004                                 if (executable) {
21005                                         internal_warning(state, lnode->def,
21006                                                 "lattice node %d %s->%s still high?",
21007                                                 ins->id, 
21008                                                 tops(lnode->def->op),
21009                                                 tops(lnode->val->op));
21010                                 }
21011                         }
21012                 }
21013
21014                 /* Restore id */
21015                 ins->id = lnode->old_id;
21016                 if (lnode->val && (lnode->val != ins)) {
21017                         /* See if it something I know how to write back */
21018                         switch(lnode->val->op) {
21019                         case OP_INTCONST:
21020                                 mkconst(state, ins, lnode->val->u.cval);
21021                                 break;
21022                         case OP_ADDRCONST:
21023                                 mkaddr_const(state, ins, 
21024                                         MISC(lnode->val, 0), lnode->val->u.cval);
21025                                 break;
21026                         default:
21027                                 /* By default don't copy the changes,
21028                                  * recompute them in place instead.
21029                                  */
21030                                 simplify(state, ins);
21031                                 break;
21032                         }
21033                         if (is_const(lnode->val) &&
21034                                 !constants_equal(state, lnode->val, ins)) {
21035                                 internal_error(state, 0, "constants not equal");
21036                         }
21037                         /* Free the lattice nodes */
21038                         xfree(lnode->val);
21039                         lnode->val = 0;
21040                 }
21041                 ins = ins->next;
21042         } while(ins != first);
21043 }
21044
21045 static void scc_transform(struct compile_state *state)
21046 {
21047         struct scc_state scc;
21048         if (!(state->compiler->flags & COMPILER_SCC_TRANSFORM)) {
21049                 return;
21050         }
21051
21052         initialize_scc_state(state, &scc);
21053
21054         while(scc.flow_work_list || scc.ssa_work_list) {
21055                 struct flow_edge *fedge;
21056                 struct ssa_edge *sedge;
21057                 struct flow_edge *fptr;
21058                 while((fedge = scc_next_fedge(state, &scc))) {
21059                         struct block *block;
21060                         struct triple *ptr;
21061                         struct flow_block *fblock;
21062                         int reps;
21063                         int done;
21064                         if (fedge->executable) {
21065                                 continue;
21066                         }
21067                         if (!fedge->dst) {
21068                                 internal_error(state, 0, "fedge without dst");
21069                         }
21070                         if (!fedge->src) {
21071                                 internal_error(state, 0, "fedge without src");
21072                         }
21073                         fedge->executable = 1;
21074                         fblock = fedge->dst;
21075                         block = fblock->block;
21076                         reps = 0;
21077                         for(fptr = fblock->in; fptr; fptr = fptr->in_next) {
21078                                 if (fptr->executable) {
21079                                         reps++;
21080                                 }
21081                         }
21082                         
21083                         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
21084                                 fprintf(state->errout, "vertex: %d reps: %d\n", 
21085                                         block->vertex, reps);
21086                         }
21087
21088                         done = 0;
21089                         for(ptr = block->first; !done; ptr = ptr->next) {
21090                                 struct lattice_node *lnode;
21091                                 done = (ptr == block->last);
21092                                 lnode = &scc.lattice[ptr->id];
21093                                 if (ptr->op == OP_PHI) {
21094                                         scc_visit_phi(state, &scc, lnode);
21095                                 }
21096                                 else if ((reps == 1) && triple_is_def(state, ptr))
21097                                 {
21098                                         scc_visit_expr(state, &scc, lnode);
21099                                 }
21100                         }
21101                         /* Add unconditional branch edges */
21102                         if (!triple_is_cbranch(state, fblock->block->last)) {
21103                                 struct flow_edge *out;
21104                                 for(out = fblock->out; out; out = out->out_next) {
21105                                         scc_add_fedge(state, &scc, out);
21106                                 }
21107                         }
21108                 }
21109                 while((sedge = scc_next_sedge(state, &scc))) {
21110                         struct lattice_node *lnode;
21111                         struct flow_block *fblock;
21112                         lnode = sedge->dst;
21113                         fblock = lnode->fblock;
21114
21115                         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
21116                                 fprintf(state->errout, "sedge: %5ld (%5d -> %5d)\n",
21117                                         (unsigned long)sedge - (unsigned long)scc.ssa_edges,
21118                                         sedge->src->def->id,
21119                                         sedge->dst->def->id);
21120                         }
21121
21122                         if (lnode->def->op == OP_PHI) {
21123                                 scc_visit_phi(state, &scc, lnode);
21124                         }
21125                         else {
21126                                 for(fptr = fblock->in; fptr; fptr = fptr->in_next) {
21127                                         if (fptr->executable) {
21128                                                 break;
21129                                         }
21130                                 }
21131                                 if (fptr) {
21132                                         scc_visit_expr(state, &scc, lnode);
21133                                 }
21134                         }
21135                 }
21136         }
21137         
21138         scc_writeback_values(state, &scc);
21139         free_scc_state(state, &scc);
21140         rebuild_ssa_form(state);
21141         
21142         print_blocks(state, __func__, state->dbgout);
21143 }
21144
21145
21146 static void transform_to_arch_instructions(struct compile_state *state)
21147 {
21148         struct triple *ins, *first;
21149         first = state->first;
21150         ins = first;
21151         do {
21152                 ins = transform_to_arch_instruction(state, ins);
21153         } while(ins != first);
21154         
21155         print_blocks(state, __func__, state->dbgout);
21156 }
21157
21158 #if DEBUG_CONSISTENCY
21159 static void verify_uses(struct compile_state *state)
21160 {
21161         struct triple *first, *ins;
21162         struct triple_set *set;
21163         first = state->first;
21164         ins = first;
21165         do {
21166                 struct triple **expr;
21167                 expr = triple_rhs(state, ins, 0);
21168                 for(; expr; expr = triple_rhs(state, ins, expr)) {
21169                         struct triple *rhs;
21170                         rhs = *expr;
21171                         for(set = rhs?rhs->use:0; set; set = set->next) {
21172                                 if (set->member == ins) {
21173                                         break;
21174                                 }
21175                         }
21176                         if (!set) {
21177                                 internal_error(state, ins, "rhs not used");
21178                         }
21179                 }
21180                 expr = triple_lhs(state, ins, 0);
21181                 for(; expr; expr = triple_lhs(state, ins, expr)) {
21182                         struct triple *lhs;
21183                         lhs = *expr;
21184                         for(set =  lhs?lhs->use:0; set; set = set->next) {
21185                                 if (set->member == ins) {
21186                                         break;
21187                                 }
21188                         }
21189                         if (!set) {
21190                                 internal_error(state, ins, "lhs not used");
21191                         }
21192                 }
21193                 expr = triple_misc(state, ins, 0);
21194                 if (ins->op != OP_PHI) {
21195                         for(; expr; expr = triple_targ(state, ins, expr)) {
21196                                 struct triple *misc;
21197                                 misc = *expr;
21198                                 for(set = misc?misc->use:0; set; set = set->next) {
21199                                         if (set->member == ins) {
21200                                                 break;
21201                                         }
21202                                 }
21203                                 if (!set) {
21204                                         internal_error(state, ins, "misc not used");
21205                                 }
21206                         }
21207                 }
21208                 if (!triple_is_ret(state, ins)) {
21209                         expr = triple_targ(state, ins, 0);
21210                         for(; expr; expr = triple_targ(state, ins, expr)) {
21211                                 struct triple *targ;
21212                                 targ = *expr;
21213                                 for(set = targ?targ->use:0; set; set = set->next) {
21214                                         if (set->member == ins) {
21215                                                 break;
21216                                         }
21217                                 }
21218                                 if (!set) {
21219                                         internal_error(state, ins, "targ not used");
21220                                 }
21221                         }
21222                 }
21223                 ins = ins->next;
21224         } while(ins != first);
21225         
21226 }
21227 static void verify_blocks_present(struct compile_state *state)
21228 {
21229         struct triple *first, *ins;
21230         if (!state->bb.first_block) {
21231                 return;
21232         }
21233         first = state->first;
21234         ins = first;
21235         do {
21236                 valid_ins(state, ins);
21237                 if (triple_stores_block(state, ins)) {
21238                         if (!ins->u.block) {
21239                                 internal_error(state, ins, 
21240                                         "%p not in a block?", ins);
21241                         }
21242                 }
21243                 ins = ins->next;
21244         } while(ins != first);
21245         
21246         
21247 }
21248
21249 static int edge_present(struct compile_state *state, struct block *block, struct triple *edge)
21250 {
21251         struct block_set *bedge;
21252         struct block *targ;
21253         targ = block_of_triple(state, edge);
21254         for(bedge = block->edges; bedge; bedge = bedge->next) {
21255                 if (bedge->member == targ) {
21256                         return 1;
21257                 }
21258         }
21259         return 0;
21260 }
21261
21262 static void verify_blocks(struct compile_state *state)
21263 {
21264         struct triple *ins;
21265         struct block *block;
21266         int blocks;
21267         block = state->bb.first_block;
21268         if (!block) {
21269                 return;
21270         }
21271         blocks = 0;
21272         do {
21273                 int users;
21274                 struct block_set *user, *edge;
21275                 blocks++;
21276                 for(ins = block->first; ins != block->last->next; ins = ins->next) {
21277                         if (triple_stores_block(state, ins) && (ins->u.block != block)) {
21278                                 internal_error(state, ins, "inconsitent block specified");
21279                         }
21280                         valid_ins(state, ins);
21281                 }
21282                 users = 0;
21283                 for(user = block->use; user; user = user->next) {
21284                         users++;
21285                         if (!user->member->first) {
21286                                 internal_error(state, block->first, "user is empty");
21287                         }
21288                         if ((block == state->bb.last_block) &&
21289                                 (user->member == state->bb.first_block)) {
21290                                 continue;
21291                         }
21292                         for(edge = user->member->edges; edge; edge = edge->next) {
21293                                 if (edge->member == block) {
21294                                         break;
21295                                 }
21296                         }
21297                         if (!edge) {
21298                                 internal_error(state, user->member->first,
21299                                         "user does not use block");
21300                         }
21301                 }
21302                 if (triple_is_branch(state, block->last)) {
21303                         struct triple **expr;
21304                         expr = triple_edge_targ(state, block->last, 0);
21305                         for(;expr; expr = triple_edge_targ(state, block->last, expr)) {
21306                                 if (*expr && !edge_present(state, block, *expr)) {
21307                                         internal_error(state, block->last, "no edge to targ");
21308                                 }
21309                         }
21310                 }
21311                 if (!triple_is_ubranch(state, block->last) &&
21312                         (block != state->bb.last_block) &&
21313                         !edge_present(state, block, block->last->next)) {
21314                         internal_error(state, block->last, "no edge to block->last->next");
21315                 }
21316                 for(edge = block->edges; edge; edge = edge->next) {
21317                         for(user = edge->member->use; user; user = user->next) {
21318                                 if (user->member == block) {
21319                                         break;
21320                                 }
21321                         }
21322                         if (!user || user->member != block) {
21323                                 internal_error(state, block->first,
21324                                         "block does not use edge");
21325                         }
21326                         if (!edge->member->first) {
21327                                 internal_error(state, block->first, "edge block is empty");
21328                         }
21329                 }
21330                 if (block->users != users) {
21331                         internal_error(state, block->first, 
21332                                 "computed users %d != stored users %d",
21333                                 users, block->users);
21334                 }
21335                 if (!triple_stores_block(state, block->last->next)) {
21336                         internal_error(state, block->last->next, 
21337                                 "cannot find next block");
21338                 }
21339                 block = block->last->next->u.block;
21340                 if (!block) {
21341                         internal_error(state, block->last->next,
21342                                 "bad next block");
21343                 }
21344         } while(block != state->bb.first_block);
21345         if (blocks != state->bb.last_vertex) {
21346                 internal_error(state, 0, "computed blocks: %d != stored blocks %d",
21347                         blocks, state->bb.last_vertex);
21348         }
21349 }
21350
21351 static void verify_domination(struct compile_state *state)
21352 {
21353         struct triple *first, *ins;
21354         struct triple_set *set;
21355         if (!state->bb.first_block) {
21356                 return;
21357         }
21358         
21359         first = state->first;
21360         ins = first;
21361         do {
21362                 for(set = ins->use; set; set = set->next) {
21363                         struct triple **slot;
21364                         struct triple *use_point;
21365                         int i, zrhs;
21366                         use_point = 0;
21367                         zrhs = set->member->rhs;
21368                         slot = &RHS(set->member, 0);
21369                         /* See if the use is on the right hand side */
21370                         for(i = 0; i < zrhs; i++) {
21371                                 if (slot[i] == ins) {
21372                                         break;
21373                                 }
21374                         }
21375                         if (i < zrhs) {
21376                                 use_point = set->member;
21377                                 if (set->member->op == OP_PHI) {
21378                                         struct block_set *bset;
21379                                         int edge;
21380                                         bset = set->member->u.block->use;
21381                                         for(edge = 0; bset && (edge < i); edge++) {
21382                                                 bset = bset->next;
21383                                         }
21384                                         if (!bset) {
21385                                                 internal_error(state, set->member, 
21386                                                         "no edge for phi rhs %d", i);
21387                                         }
21388                                         use_point = bset->member->last;
21389                                 }
21390                         }
21391                         if (use_point &&
21392                                 !tdominates(state, ins, use_point)) {
21393                                 if (is_const(ins)) {
21394                                         internal_warning(state, ins, 
21395                                         "non dominated rhs use point %p?", use_point);
21396                                 }
21397                                 else {
21398                                         internal_error(state, ins, 
21399                                                 "non dominated rhs use point %p?", use_point);
21400                                 }
21401                         }
21402                 }
21403                 ins = ins->next;
21404         } while(ins != first);
21405 }
21406
21407 static void verify_rhs(struct compile_state *state)
21408 {
21409         struct triple *first, *ins;
21410         first = state->first;
21411         ins = first;
21412         do {
21413                 struct triple **slot;
21414                 int zrhs, i;
21415                 zrhs = ins->rhs;
21416                 slot = &RHS(ins, 0);
21417                 for(i = 0; i < zrhs; i++) {
21418                         if (slot[i] == 0) {
21419                                 internal_error(state, ins,
21420                                         "missing rhs %d on %s",
21421                                         i, tops(ins->op));
21422                         }
21423                         if ((ins->op != OP_PHI) && (slot[i] == ins)) {
21424                                 internal_error(state, ins,
21425                                         "ins == rhs[%d] on %s",
21426                                         i, tops(ins->op));
21427                         }
21428                 }
21429                 ins = ins->next;
21430         } while(ins != first);
21431 }
21432
21433 static void verify_piece(struct compile_state *state)
21434 {
21435         struct triple *first, *ins;
21436         first = state->first;
21437         ins = first;
21438         do {
21439                 struct triple *ptr;
21440                 int lhs, i;
21441                 lhs = ins->lhs;
21442                 for(ptr = ins->next, i = 0; i < lhs; i++, ptr = ptr->next) {
21443                         if (ptr != LHS(ins, i)) {
21444                                 internal_error(state, ins, "malformed lhs on %s",
21445                                         tops(ins->op));
21446                         }
21447                         if (ptr->op != OP_PIECE) {
21448                                 internal_error(state, ins, "bad lhs op %s at %d on %s",
21449                                         tops(ptr->op), i, tops(ins->op));
21450                         }
21451                         if (ptr->u.cval != i) {
21452                                 internal_error(state, ins, "bad u.cval of %d %d expected",
21453                                         ptr->u.cval, i);
21454                         }
21455                 }
21456                 ins = ins->next;
21457         } while(ins != first);
21458 }
21459
21460 static void verify_ins_colors(struct compile_state *state)
21461 {
21462         struct triple *first, *ins;
21463         
21464         first = state->first;
21465         ins = first;
21466         do {
21467                 ins = ins->next;
21468         } while(ins != first);
21469 }
21470
21471 static void verify_unknown(struct compile_state *state)
21472 {
21473         struct triple *first, *ins;
21474         if (    (unknown_triple.next != &unknown_triple) ||
21475                 (unknown_triple.prev != &unknown_triple) ||
21476 #if 0
21477                 (unknown_triple.use != 0) ||
21478 #endif
21479                 (unknown_triple.op != OP_UNKNOWNVAL) ||
21480                 (unknown_triple.lhs != 0) ||
21481                 (unknown_triple.rhs != 0) ||
21482                 (unknown_triple.misc != 0) ||
21483                 (unknown_triple.targ != 0) ||
21484                 (unknown_triple.template_id != 0) ||
21485                 (unknown_triple.id != -1) ||
21486                 (unknown_triple.type != &unknown_type) ||
21487                 (unknown_triple.occurance != &dummy_occurance) ||
21488                 (unknown_triple.param[0] != 0) ||
21489                 (unknown_triple.param[1] != 0)) {
21490                 internal_error(state, &unknown_triple, "unknown_triple corrupted!");
21491         }
21492         if (    (dummy_occurance.count != 2) ||
21493                 (strcmp(dummy_occurance.filename, __FILE__) != 0) ||
21494                 (strcmp(dummy_occurance.function, "") != 0) ||
21495                 (dummy_occurance.col != 0) ||
21496                 (dummy_occurance.parent != 0)) {
21497                 internal_error(state, &unknown_triple, "dummy_occurance corrupted!");
21498         }
21499         if (    (unknown_type.type != TYPE_UNKNOWN)) {
21500                 internal_error(state, &unknown_triple, "unknown_type corrupted!");
21501         }
21502         first = state->first;
21503         ins = first;
21504         do {
21505                 int params, i;
21506                 if (ins == &unknown_triple) {
21507                         internal_error(state, ins, "unknown triple in list");
21508                 }
21509                 params = TRIPLE_SIZE(ins);
21510                 for(i = 0; i < params; i++) {
21511                         if (ins->param[i] == &unknown_triple) {
21512                                 internal_error(state, ins, "unknown triple used!");
21513                         }
21514                 }
21515                 ins = ins->next;
21516         } while(ins != first);
21517 }
21518
21519 static void verify_types(struct compile_state *state)
21520 {
21521         struct triple *first, *ins;
21522         first = state->first;
21523         ins = first;
21524         do {
21525                 struct type *invalid;
21526                 invalid = invalid_type(state, ins->type);
21527                 if (invalid) {
21528                         FILE *fp = state->errout;
21529                         fprintf(fp, "type: ");
21530                         name_of(fp, ins->type);
21531                         fprintf(fp, "\n");
21532                         fprintf(fp, "invalid type: ");
21533                         name_of(fp, invalid);
21534                         fprintf(fp, "\n");
21535                         internal_error(state, ins, "invalid ins type");
21536                 }
21537         } while(ins != first);
21538 }
21539
21540 static void verify_copy(struct compile_state *state)
21541 {
21542         struct triple *first, *ins, *next;
21543         first = state->first;
21544         next = ins = first;
21545         do {
21546                 ins = next;
21547                 next = ins->next;
21548                 if (ins->op != OP_COPY) {
21549                         continue;
21550                 }
21551                 if (!equiv_types(ins->type, RHS(ins, 0)->type)) {
21552                         FILE *fp = state->errout;
21553                         fprintf(fp, "src type: ");
21554                         name_of(fp, RHS(ins, 0)->type);
21555                         fprintf(fp, "\n");
21556                         fprintf(fp, "dst type: ");
21557                         name_of(fp, ins->type);
21558                         fprintf(fp, "\n");
21559                         internal_error(state, ins, "type mismatch in copy");
21560                 }
21561         } while(next != first);
21562 }
21563
21564 static void verify_consistency(struct compile_state *state)
21565 {
21566         verify_unknown(state);
21567         verify_uses(state);
21568         verify_blocks_present(state);
21569         verify_blocks(state);
21570         verify_domination(state);
21571         verify_rhs(state);
21572         verify_piece(state);
21573         verify_ins_colors(state);
21574         verify_types(state);
21575         verify_copy(state);
21576         if (state->compiler->debug & DEBUG_VERIFICATION) {
21577                 fprintf(state->dbgout, "consistency verified\n");
21578         }
21579 }
21580 #else 
21581 static void verify_consistency(struct compile_state *state) {}
21582 #endif /* DEBUG_CONSISTENCY */
21583
21584 static void optimize(struct compile_state *state)
21585 {
21586         /* Join all of the functions into one giant function */
21587         join_functions(state);
21588
21589         /* Dump what the instruction graph intially looks like */
21590         print_triples(state);
21591
21592         /* Replace structures with simpler data types */
21593         decompose_compound_types(state);
21594         print_triples(state);
21595
21596         verify_consistency(state);
21597         /* Analyze the intermediate code */
21598         state->bb.first = state->first;
21599         analyze_basic_blocks(state, &state->bb);
21600
21601         /* Transform the code to ssa form. */
21602         /*
21603          * The transformation to ssa form puts a phi function
21604          * on each of edge of a dominance frontier where that
21605          * phi function might be needed.  At -O2 if we don't
21606          * eleminate the excess phi functions we can get an
21607          * exponential code size growth.  So I kill the extra
21608          * phi functions early and I kill them often.
21609          */
21610         transform_to_ssa_form(state);
21611         verify_consistency(state);
21612
21613         /* Remove dead code */
21614         eliminate_inefectual_code(state);
21615         verify_consistency(state);
21616
21617         /* Do strength reduction and simple constant optimizations */
21618         simplify_all(state);
21619         verify_consistency(state);
21620         /* Propogate constants throughout the code */
21621         scc_transform(state);
21622         verify_consistency(state);
21623 #if DEBUG_ROMCC_WARNINGS
21624 #warning "WISHLIST implement single use constants (least possible register pressure)"
21625 #warning "WISHLIST implement induction variable elimination"
21626 #endif
21627         /* Select architecture instructions and an initial partial
21628          * coloring based on architecture constraints.
21629          */
21630         transform_to_arch_instructions(state);
21631         verify_consistency(state);
21632
21633         /* Remove dead code */
21634         eliminate_inefectual_code(state);
21635         verify_consistency(state);
21636
21637         /* Color all of the variables to see if they will fit in registers */
21638         insert_copies_to_phi(state);
21639         verify_consistency(state);
21640
21641         insert_mandatory_copies(state);
21642         verify_consistency(state);
21643
21644         allocate_registers(state);
21645         verify_consistency(state);
21646
21647         /* Remove the optimization information.
21648          * This is more to check for memory consistency than to free memory.
21649          */
21650         free_basic_blocks(state, &state->bb);
21651 }
21652
21653 static void print_op_asm(struct compile_state *state,
21654         struct triple *ins, FILE *fp)
21655 {
21656         struct asm_info *info;
21657         const char *ptr;
21658         unsigned lhs, rhs, i;
21659         info = ins->u.ainfo;
21660         lhs = ins->lhs;
21661         rhs = ins->rhs;
21662         /* Don't count the clobbers in lhs */
21663         for(i = 0; i < lhs; i++) {
21664                 if (LHS(ins, i)->type == &void_type) {
21665                         break;
21666                 }
21667         }
21668         lhs = i;
21669         fprintf(fp, "#ASM\n");
21670         fputc('\t', fp);
21671         for(ptr = info->str; *ptr; ptr++) {
21672                 char *next;
21673                 unsigned long param;
21674                 struct triple *piece;
21675                 if (*ptr != '%') {
21676                         fputc(*ptr, fp);
21677                         continue;
21678                 }
21679                 ptr++;
21680                 if (*ptr == '%') {
21681                         fputc('%', fp);
21682                         continue;
21683                 }
21684                 param = strtoul(ptr, &next, 10);
21685                 if (ptr == next) {
21686                         error(state, ins, "Invalid asm template");
21687                 }
21688                 if (param >= (lhs + rhs)) {
21689                         error(state, ins, "Invalid param %%%u in asm template",
21690                                 param);
21691                 }
21692                 piece = (param < lhs)? LHS(ins, param) : RHS(ins, param - lhs);
21693                 fprintf(fp, "%s", 
21694                         arch_reg_str(ID_REG(piece->id)));
21695                 ptr = next -1;
21696         }
21697         fprintf(fp, "\n#NOT ASM\n");
21698 }
21699
21700
21701 /* Only use the low x86 byte registers.  This allows me
21702  * allocate the entire register when a byte register is used.
21703  */
21704 #define X86_4_8BIT_GPRS 1
21705
21706 /* x86 featrues */
21707 #define X86_MMX_REGS  (1<<0)
21708 #define X86_XMM_REGS  (1<<1)
21709 #define X86_NOOP_COPY (1<<2)
21710
21711 /* The x86 register classes */
21712 #define REGC_FLAGS       0
21713 #define REGC_GPR8        1
21714 #define REGC_GPR16       2
21715 #define REGC_GPR32       3
21716 #define REGC_DIVIDEND64  4
21717 #define REGC_DIVIDEND32  5
21718 #define REGC_MMX         6
21719 #define REGC_XMM         7
21720 #define REGC_GPR32_8     8
21721 #define REGC_GPR16_8     9
21722 #define REGC_GPR8_LO    10
21723 #define REGC_IMM32      11
21724 #define REGC_IMM16      12
21725 #define REGC_IMM8       13
21726 #define LAST_REGC  REGC_IMM8
21727 #if LAST_REGC >= MAX_REGC
21728 #error "MAX_REGC is to low"
21729 #endif
21730
21731 /* Register class masks */
21732 #define REGCM_FLAGS      (1 << REGC_FLAGS)
21733 #define REGCM_GPR8       (1 << REGC_GPR8)
21734 #define REGCM_GPR16      (1 << REGC_GPR16)
21735 #define REGCM_GPR32      (1 << REGC_GPR32)
21736 #define REGCM_DIVIDEND64 (1 << REGC_DIVIDEND64)
21737 #define REGCM_DIVIDEND32 (1 << REGC_DIVIDEND32)
21738 #define REGCM_MMX        (1 << REGC_MMX)
21739 #define REGCM_XMM        (1 << REGC_XMM)
21740 #define REGCM_GPR32_8    (1 << REGC_GPR32_8)
21741 #define REGCM_GPR16_8    (1 << REGC_GPR16_8)
21742 #define REGCM_GPR8_LO    (1 << REGC_GPR8_LO)
21743 #define REGCM_IMM32      (1 << REGC_IMM32)
21744 #define REGCM_IMM16      (1 << REGC_IMM16)
21745 #define REGCM_IMM8       (1 << REGC_IMM8)
21746 #define REGCM_ALL        ((1 << (LAST_REGC + 1)) - 1)
21747 #define REGCM_IMMALL    (REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)
21748
21749 /* The x86 registers */
21750 #define REG_EFLAGS  2
21751 #define REGC_FLAGS_FIRST REG_EFLAGS
21752 #define REGC_FLAGS_LAST  REG_EFLAGS
21753 #define REG_AL      3
21754 #define REG_BL      4
21755 #define REG_CL      5
21756 #define REG_DL      6
21757 #define REG_AH      7
21758 #define REG_BH      8
21759 #define REG_CH      9
21760 #define REG_DH      10
21761 #define REGC_GPR8_LO_FIRST REG_AL
21762 #define REGC_GPR8_LO_LAST  REG_DL
21763 #define REGC_GPR8_FIRST  REG_AL
21764 #define REGC_GPR8_LAST   REG_DH
21765 #define REG_AX     11
21766 #define REG_BX     12
21767 #define REG_CX     13
21768 #define REG_DX     14
21769 #define REG_SI     15
21770 #define REG_DI     16
21771 #define REG_BP     17
21772 #define REG_SP     18
21773 #define REGC_GPR16_FIRST REG_AX
21774 #define REGC_GPR16_LAST  REG_SP
21775 #define REG_EAX    19
21776 #define REG_EBX    20
21777 #define REG_ECX    21
21778 #define REG_EDX    22
21779 #define REG_ESI    23
21780 #define REG_EDI    24
21781 #define REG_EBP    25
21782 #define REG_ESP    26
21783 #define REGC_GPR32_FIRST REG_EAX
21784 #define REGC_GPR32_LAST  REG_ESP
21785 #define REG_EDXEAX 27
21786 #define REGC_DIVIDEND64_FIRST REG_EDXEAX
21787 #define REGC_DIVIDEND64_LAST  REG_EDXEAX
21788 #define REG_DXAX   28
21789 #define REGC_DIVIDEND32_FIRST REG_DXAX
21790 #define REGC_DIVIDEND32_LAST  REG_DXAX
21791 #define REG_MMX0   29
21792 #define REG_MMX1   30
21793 #define REG_MMX2   31
21794 #define REG_MMX3   32
21795 #define REG_MMX4   33
21796 #define REG_MMX5   34
21797 #define REG_MMX6   35
21798 #define REG_MMX7   36
21799 #define REGC_MMX_FIRST REG_MMX0
21800 #define REGC_MMX_LAST  REG_MMX7
21801 #define REG_XMM0   37
21802 #define REG_XMM1   38
21803 #define REG_XMM2   39
21804 #define REG_XMM3   40
21805 #define REG_XMM4   41
21806 #define REG_XMM5   42
21807 #define REG_XMM6   43
21808 #define REG_XMM7   44
21809 #define REGC_XMM_FIRST REG_XMM0
21810 #define REGC_XMM_LAST  REG_XMM7
21811
21812 #if DEBUG_ROMCC_WARNINGS
21813 #warning "WISHLIST figure out how to use pinsrw and pextrw to better use extended regs"
21814 #endif
21815
21816 #define LAST_REG   REG_XMM7
21817
21818 #define REGC_GPR32_8_FIRST REG_EAX
21819 #define REGC_GPR32_8_LAST  REG_EDX
21820 #define REGC_GPR16_8_FIRST REG_AX
21821 #define REGC_GPR16_8_LAST  REG_DX
21822
21823 #define REGC_IMM8_FIRST    -1
21824 #define REGC_IMM8_LAST     -1
21825 #define REGC_IMM16_FIRST   -2
21826 #define REGC_IMM16_LAST    -1
21827 #define REGC_IMM32_FIRST   -4
21828 #define REGC_IMM32_LAST    -1
21829
21830 #if LAST_REG >= MAX_REGISTERS
21831 #error "MAX_REGISTERS to low"
21832 #endif
21833
21834
21835 static unsigned regc_size[LAST_REGC +1] = {
21836         [REGC_FLAGS]      = REGC_FLAGS_LAST      - REGC_FLAGS_FIRST + 1,
21837         [REGC_GPR8]       = REGC_GPR8_LAST       - REGC_GPR8_FIRST + 1,
21838         [REGC_GPR16]      = REGC_GPR16_LAST      - REGC_GPR16_FIRST + 1,
21839         [REGC_GPR32]      = REGC_GPR32_LAST      - REGC_GPR32_FIRST + 1,
21840         [REGC_DIVIDEND64] = REGC_DIVIDEND64_LAST - REGC_DIVIDEND64_FIRST + 1,
21841         [REGC_DIVIDEND32] = REGC_DIVIDEND32_LAST - REGC_DIVIDEND32_FIRST + 1,
21842         [REGC_MMX]        = REGC_MMX_LAST        - REGC_MMX_FIRST + 1,
21843         [REGC_XMM]        = REGC_XMM_LAST        - REGC_XMM_FIRST + 1,
21844         [REGC_GPR32_8]    = REGC_GPR32_8_LAST    - REGC_GPR32_8_FIRST + 1,
21845         [REGC_GPR16_8]    = REGC_GPR16_8_LAST    - REGC_GPR16_8_FIRST + 1,
21846         [REGC_GPR8_LO]    = REGC_GPR8_LO_LAST    - REGC_GPR8_LO_FIRST + 1,
21847         [REGC_IMM32]      = 0,
21848         [REGC_IMM16]      = 0,
21849         [REGC_IMM8]       = 0,
21850 };
21851
21852 static const struct {
21853         int first, last;
21854 } regcm_bound[LAST_REGC + 1] = {
21855         [REGC_FLAGS]      = { REGC_FLAGS_FIRST,      REGC_FLAGS_LAST },
21856         [REGC_GPR8]       = { REGC_GPR8_FIRST,       REGC_GPR8_LAST },
21857         [REGC_GPR16]      = { REGC_GPR16_FIRST,      REGC_GPR16_LAST },
21858         [REGC_GPR32]      = { REGC_GPR32_FIRST,      REGC_GPR32_LAST },
21859         [REGC_DIVIDEND64] = { REGC_DIVIDEND64_FIRST, REGC_DIVIDEND64_LAST },
21860         [REGC_DIVIDEND32] = { REGC_DIVIDEND32_FIRST, REGC_DIVIDEND32_LAST },
21861         [REGC_MMX]        = { REGC_MMX_FIRST,        REGC_MMX_LAST },
21862         [REGC_XMM]        = { REGC_XMM_FIRST,        REGC_XMM_LAST },
21863         [REGC_GPR32_8]    = { REGC_GPR32_8_FIRST,    REGC_GPR32_8_LAST },
21864         [REGC_GPR16_8]    = { REGC_GPR16_8_FIRST,    REGC_GPR16_8_LAST },
21865         [REGC_GPR8_LO]    = { REGC_GPR8_LO_FIRST,    REGC_GPR8_LO_LAST },
21866         [REGC_IMM32]      = { REGC_IMM32_FIRST,      REGC_IMM32_LAST },
21867         [REGC_IMM16]      = { REGC_IMM16_FIRST,      REGC_IMM16_LAST },
21868         [REGC_IMM8]       = { REGC_IMM8_FIRST,       REGC_IMM8_LAST },
21869 };
21870
21871 #if ARCH_INPUT_REGS != 4
21872 #error ARCH_INPUT_REGS size mismatch
21873 #endif
21874 static const struct reg_info arch_input_regs[ARCH_INPUT_REGS] = {
21875         { .reg = REG_EAX, .regcm = REGCM_GPR32 },
21876         { .reg = REG_EBX, .regcm = REGCM_GPR32 },
21877         { .reg = REG_ECX, .regcm = REGCM_GPR32 },
21878         { .reg = REG_EDX, .regcm = REGCM_GPR32 },
21879 };
21880
21881 #if ARCH_OUTPUT_REGS != 4
21882 #error ARCH_INPUT_REGS size mismatch
21883 #endif
21884 static const struct reg_info arch_output_regs[ARCH_OUTPUT_REGS] = {
21885         { .reg = REG_EAX, .regcm = REGCM_GPR32 },
21886         { .reg = REG_EBX, .regcm = REGCM_GPR32 },
21887         { .reg = REG_ECX, .regcm = REGCM_GPR32 },
21888         { .reg = REG_EDX, .regcm = REGCM_GPR32 },
21889 };
21890
21891 static void init_arch_state(struct arch_state *arch)
21892 {
21893         memset(arch, 0, sizeof(*arch));
21894         arch->features = 0;
21895 }
21896
21897 static const struct compiler_flag arch_flags[] = {
21898         { "mmx",       X86_MMX_REGS },
21899         { "sse",       X86_XMM_REGS },
21900         { "noop-copy", X86_NOOP_COPY },
21901         { 0,     0 },
21902 };
21903 static const struct compiler_flag arch_cpus[] = {
21904         { "i386", 0 },
21905         { "p2",   X86_MMX_REGS },
21906         { "p3",   X86_MMX_REGS | X86_XMM_REGS },
21907         { "p4",   X86_MMX_REGS | X86_XMM_REGS },
21908         { "k7",   X86_MMX_REGS },
21909         { "k8",   X86_MMX_REGS | X86_XMM_REGS },
21910         { "c3",   X86_MMX_REGS },
21911         { "c3-2", X86_MMX_REGS | X86_XMM_REGS }, /* Nehemiah */
21912         {  0,     0 }
21913 };
21914 static int arch_encode_flag(struct arch_state *arch, const char *flag)
21915 {
21916         int result;
21917         int act;
21918
21919         act = 1;
21920         result = -1;
21921         if (strncmp(flag, "no-", 3) == 0) {
21922                 flag += 3;
21923                 act = 0;
21924         }
21925         if (act && strncmp(flag, "cpu=", 4) == 0) {
21926                 flag += 4;
21927                 result = set_flag(arch_cpus, &arch->features, 1, flag);
21928         }
21929         else {
21930                 result = set_flag(arch_flags, &arch->features, act, flag);
21931         }
21932         return result;
21933 }
21934
21935 static void arch_usage(FILE *fp)
21936 {
21937         flag_usage(fp, arch_flags, "-m", "-mno-");
21938         flag_usage(fp, arch_cpus, "-mcpu=", 0);
21939 }
21940
21941 static unsigned arch_regc_size(struct compile_state *state, int class)
21942 {
21943         if ((class < 0) || (class > LAST_REGC)) {
21944                 return 0;
21945         }
21946         return regc_size[class];
21947 }
21948
21949 static int arch_regcm_intersect(unsigned regcm1, unsigned regcm2)
21950 {
21951         /* See if two register classes may have overlapping registers */
21952         unsigned gpr_mask = REGCM_GPR8 | REGCM_GPR8_LO | REGCM_GPR16_8 | REGCM_GPR16 |
21953                 REGCM_GPR32_8 | REGCM_GPR32 | 
21954                 REGCM_DIVIDEND32 | REGCM_DIVIDEND64;
21955
21956         /* Special case for the immediates */
21957         if ((regcm1 & (REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) &&
21958                 ((regcm1 & ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) == 0) &&
21959                 (regcm2 & (REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) &&
21960                 ((regcm2 & ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) == 0)) { 
21961                 return 0;
21962         }
21963         return (regcm1 & regcm2) ||
21964                 ((regcm1 & gpr_mask) && (regcm2 & gpr_mask));
21965 }
21966
21967 static void arch_reg_equivs(
21968         struct compile_state *state, unsigned *equiv, int reg)
21969 {
21970         if ((reg < 0) || (reg > LAST_REG)) {
21971                 internal_error(state, 0, "invalid register");
21972         }
21973         *equiv++ = reg;
21974         switch(reg) {
21975         case REG_AL:
21976 #if X86_4_8BIT_GPRS
21977                 *equiv++ = REG_AH;
21978 #endif
21979                 *equiv++ = REG_AX;
21980                 *equiv++ = REG_EAX;
21981                 *equiv++ = REG_DXAX;
21982                 *equiv++ = REG_EDXEAX;
21983                 break;
21984         case REG_AH:
21985 #if X86_4_8BIT_GPRS
21986                 *equiv++ = REG_AL;
21987 #endif
21988                 *equiv++ = REG_AX;
21989                 *equiv++ = REG_EAX;
21990                 *equiv++ = REG_DXAX;
21991                 *equiv++ = REG_EDXEAX;
21992                 break;
21993         case REG_BL:  
21994 #if X86_4_8BIT_GPRS
21995                 *equiv++ = REG_BH;
21996 #endif
21997                 *equiv++ = REG_BX;
21998                 *equiv++ = REG_EBX;
21999                 break;
22000
22001         case REG_BH:
22002 #if X86_4_8BIT_GPRS
22003                 *equiv++ = REG_BL;
22004 #endif
22005                 *equiv++ = REG_BX;
22006                 *equiv++ = REG_EBX;
22007                 break;
22008         case REG_CL:
22009 #if X86_4_8BIT_GPRS
22010                 *equiv++ = REG_CH;
22011 #endif
22012                 *equiv++ = REG_CX;
22013                 *equiv++ = REG_ECX;
22014                 break;
22015
22016         case REG_CH:
22017 #if X86_4_8BIT_GPRS
22018                 *equiv++ = REG_CL;
22019 #endif
22020                 *equiv++ = REG_CX;
22021                 *equiv++ = REG_ECX;
22022                 break;
22023         case REG_DL:
22024 #if X86_4_8BIT_GPRS
22025                 *equiv++ = REG_DH;
22026 #endif
22027                 *equiv++ = REG_DX;
22028                 *equiv++ = REG_EDX;
22029                 *equiv++ = REG_DXAX;
22030                 *equiv++ = REG_EDXEAX;
22031                 break;
22032         case REG_DH:
22033 #if X86_4_8BIT_GPRS
22034                 *equiv++ = REG_DL;
22035 #endif
22036                 *equiv++ = REG_DX;
22037                 *equiv++ = REG_EDX;
22038                 *equiv++ = REG_DXAX;
22039                 *equiv++ = REG_EDXEAX;
22040                 break;
22041         case REG_AX:
22042                 *equiv++ = REG_AL;
22043                 *equiv++ = REG_AH;
22044                 *equiv++ = REG_EAX;
22045                 *equiv++ = REG_DXAX;
22046                 *equiv++ = REG_EDXEAX;
22047                 break;
22048         case REG_BX:
22049                 *equiv++ = REG_BL;
22050                 *equiv++ = REG_BH;
22051                 *equiv++ = REG_EBX;
22052                 break;
22053         case REG_CX:  
22054                 *equiv++ = REG_CL;
22055                 *equiv++ = REG_CH;
22056                 *equiv++ = REG_ECX;
22057                 break;
22058         case REG_DX:  
22059                 *equiv++ = REG_DL;
22060                 *equiv++ = REG_DH;
22061                 *equiv++ = REG_EDX;
22062                 *equiv++ = REG_DXAX;
22063                 *equiv++ = REG_EDXEAX;
22064                 break;
22065         case REG_SI:  
22066                 *equiv++ = REG_ESI;
22067                 break;
22068         case REG_DI:
22069                 *equiv++ = REG_EDI;
22070                 break;
22071         case REG_BP:
22072                 *equiv++ = REG_EBP;
22073                 break;
22074         case REG_SP:
22075                 *equiv++ = REG_ESP;
22076                 break;
22077         case REG_EAX:
22078                 *equiv++ = REG_AL;
22079                 *equiv++ = REG_AH;
22080                 *equiv++ = REG_AX;
22081                 *equiv++ = REG_DXAX;
22082                 *equiv++ = REG_EDXEAX;
22083                 break;
22084         case REG_EBX:
22085                 *equiv++ = REG_BL;
22086                 *equiv++ = REG_BH;
22087                 *equiv++ = REG_BX;
22088                 break;
22089         case REG_ECX:
22090                 *equiv++ = REG_CL;
22091                 *equiv++ = REG_CH;
22092                 *equiv++ = REG_CX;
22093                 break;
22094         case REG_EDX:
22095                 *equiv++ = REG_DL;
22096                 *equiv++ = REG_DH;
22097                 *equiv++ = REG_DX;
22098                 *equiv++ = REG_DXAX;
22099                 *equiv++ = REG_EDXEAX;
22100                 break;
22101         case REG_ESI: 
22102                 *equiv++ = REG_SI;
22103                 break;
22104         case REG_EDI: 
22105                 *equiv++ = REG_DI;
22106                 break;
22107         case REG_EBP: 
22108                 *equiv++ = REG_BP;
22109                 break;
22110         case REG_ESP: 
22111                 *equiv++ = REG_SP;
22112                 break;
22113         case REG_DXAX: 
22114                 *equiv++ = REG_AL;
22115                 *equiv++ = REG_AH;
22116                 *equiv++ = REG_DL;
22117                 *equiv++ = REG_DH;
22118                 *equiv++ = REG_AX;
22119                 *equiv++ = REG_DX;
22120                 *equiv++ = REG_EAX;
22121                 *equiv++ = REG_EDX;
22122                 *equiv++ = REG_EDXEAX;
22123                 break;
22124         case REG_EDXEAX: 
22125                 *equiv++ = REG_AL;
22126                 *equiv++ = REG_AH;
22127                 *equiv++ = REG_DL;
22128                 *equiv++ = REG_DH;
22129                 *equiv++ = REG_AX;
22130                 *equiv++ = REG_DX;
22131                 *equiv++ = REG_EAX;
22132                 *equiv++ = REG_EDX;
22133                 *equiv++ = REG_DXAX;
22134                 break;
22135         }
22136         *equiv++ = REG_UNSET; 
22137 }
22138
22139 static unsigned arch_avail_mask(struct compile_state *state)
22140 {
22141         unsigned avail_mask;
22142         /* REGCM_GPR8 is not available */
22143         avail_mask = REGCM_GPR8_LO | REGCM_GPR16_8 | REGCM_GPR16 | 
22144                 REGCM_GPR32 | REGCM_GPR32_8 | 
22145                 REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
22146                 REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8 | REGCM_FLAGS;
22147         if (state->arch->features & X86_MMX_REGS) {
22148                 avail_mask |= REGCM_MMX;
22149         }
22150         if (state->arch->features & X86_XMM_REGS) {
22151                 avail_mask |= REGCM_XMM;
22152         }
22153         return avail_mask;
22154 }
22155
22156 static unsigned arch_regcm_normalize(struct compile_state *state, unsigned regcm)
22157 {
22158         unsigned mask, result;
22159         int class, class2;
22160         result = regcm;
22161
22162         for(class = 0, mask = 1; mask; mask <<= 1, class++) {
22163                 if ((result & mask) == 0) {
22164                         continue;
22165                 }
22166                 if (class > LAST_REGC) {
22167                         result &= ~mask;
22168                 }
22169                 for(class2 = 0; class2 <= LAST_REGC; class2++) {
22170                         if ((regcm_bound[class2].first >= regcm_bound[class].first) &&
22171                                 (regcm_bound[class2].last <= regcm_bound[class].last)) {
22172                                 result |= (1 << class2);
22173                         }
22174                 }
22175         }
22176         result &= arch_avail_mask(state);
22177         return result;
22178 }
22179
22180 static unsigned arch_regcm_reg_normalize(struct compile_state *state, unsigned regcm)
22181 {
22182         /* Like arch_regcm_normalize except immediate register classes are excluded */
22183         regcm = arch_regcm_normalize(state, regcm);
22184         /* Remove the immediate register classes */
22185         regcm &= ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8);
22186         return regcm;
22187         
22188 }
22189
22190 static unsigned arch_reg_regcm(struct compile_state *state, int reg)
22191 {
22192         unsigned mask;
22193         int class;
22194         mask = 0;
22195         for(class = 0; class <= LAST_REGC; class++) {
22196                 if ((reg >= regcm_bound[class].first) &&
22197                         (reg <= regcm_bound[class].last)) {
22198                         mask |= (1 << class);
22199                 }
22200         }
22201         if (!mask) {
22202                 internal_error(state, 0, "reg %d not in any class", reg);
22203         }
22204         return mask;
22205 }
22206
22207 static struct reg_info arch_reg_constraint(
22208         struct compile_state *state, struct type *type, const char *constraint)
22209 {
22210         static const struct {
22211                 char class;
22212                 unsigned int mask;
22213                 unsigned int reg;
22214         } constraints[] = {
22215                 { 'r', REGCM_GPR32,   REG_UNSET },
22216                 { 'g', REGCM_GPR32,   REG_UNSET },
22217                 { 'p', REGCM_GPR32,   REG_UNSET },
22218                 { 'q', REGCM_GPR8_LO, REG_UNSET },
22219                 { 'Q', REGCM_GPR32_8, REG_UNSET },
22220                 { 'x', REGCM_XMM,     REG_UNSET },
22221                 { 'y', REGCM_MMX,     REG_UNSET },
22222                 { 'a', REGCM_GPR32,   REG_EAX },
22223                 { 'b', REGCM_GPR32,   REG_EBX },
22224                 { 'c', REGCM_GPR32,   REG_ECX },
22225                 { 'd', REGCM_GPR32,   REG_EDX },
22226                 { 'D', REGCM_GPR32,   REG_EDI },
22227                 { 'S', REGCM_GPR32,   REG_ESI },
22228                 { '\0', 0, REG_UNSET },
22229         };
22230         unsigned int regcm;
22231         unsigned int mask, reg;
22232         struct reg_info result;
22233         const char *ptr;
22234         regcm = arch_type_to_regcm(state, type);
22235         reg = REG_UNSET;
22236         mask = 0;
22237         for(ptr = constraint; *ptr; ptr++) {
22238                 int i;
22239                 if (*ptr ==  ' ') {
22240                         continue;
22241                 }
22242                 for(i = 0; constraints[i].class != '\0'; i++) {
22243                         if (constraints[i].class == *ptr) {
22244                                 break;
22245                         }
22246                 }
22247                 if (constraints[i].class == '\0') {
22248                         error(state, 0, "invalid register constraint ``%c''", *ptr);
22249                         break;
22250                 }
22251                 if ((constraints[i].mask & regcm) == 0) {
22252                         error(state, 0, "invalid register class %c specified",
22253                                 *ptr);
22254                 }
22255                 mask |= constraints[i].mask;
22256                 if (constraints[i].reg != REG_UNSET) {
22257                         if ((reg != REG_UNSET) && (reg != constraints[i].reg)) {
22258                                 error(state, 0, "Only one register may be specified");
22259                         }
22260                         reg = constraints[i].reg;
22261                 }
22262         }
22263         result.reg = reg;
22264         result.regcm = mask;
22265         return result;
22266 }
22267
22268 static struct reg_info arch_reg_clobber(
22269         struct compile_state *state, const char *clobber)
22270 {
22271         struct reg_info result;
22272         if (strcmp(clobber, "memory") == 0) {
22273                 result.reg = REG_UNSET;
22274                 result.regcm = 0;
22275         }
22276         else if (strcmp(clobber, "eax") == 0) {
22277                 result.reg = REG_EAX;
22278                 result.regcm = REGCM_GPR32;
22279         }
22280         else if (strcmp(clobber, "ebx") == 0) {
22281                 result.reg = REG_EBX;
22282                 result.regcm = REGCM_GPR32;
22283         }
22284         else if (strcmp(clobber, "ecx") == 0) {
22285                 result.reg = REG_ECX;
22286                 result.regcm = REGCM_GPR32;
22287         }
22288         else if (strcmp(clobber, "edx") == 0) {
22289                 result.reg = REG_EDX;
22290                 result.regcm = REGCM_GPR32;
22291         }
22292         else if (strcmp(clobber, "esi") == 0) {
22293                 result.reg = REG_ESI;
22294                 result.regcm = REGCM_GPR32;
22295         }
22296         else if (strcmp(clobber, "edi") == 0) {
22297                 result.reg = REG_EDI;
22298                 result.regcm = REGCM_GPR32;
22299         }
22300         else if (strcmp(clobber, "ebp") == 0) {
22301                 result.reg = REG_EBP;
22302                 result.regcm = REGCM_GPR32;
22303         }
22304         else if (strcmp(clobber, "esp") == 0) {
22305                 result.reg = REG_ESP;
22306                 result.regcm = REGCM_GPR32;
22307         }
22308         else if (strcmp(clobber, "cc") == 0) {
22309                 result.reg = REG_EFLAGS;
22310                 result.regcm = REGCM_FLAGS;
22311         }
22312         else if ((strncmp(clobber, "xmm", 3) == 0)  &&
22313                 octdigitp(clobber[3]) && (clobber[4] == '\0')) {
22314                 result.reg = REG_XMM0 + octdigval(clobber[3]);
22315                 result.regcm = REGCM_XMM;
22316         }
22317         else if ((strncmp(clobber, "mm", 2) == 0) &&
22318                 octdigitp(clobber[3]) && (clobber[4] == '\0')) {
22319                 result.reg = REG_MMX0 + octdigval(clobber[3]);
22320                 result.regcm = REGCM_MMX;
22321         }
22322         else {
22323                 error(state, 0, "unknown register name `%s' in asm",
22324                         clobber);
22325                 result.reg = REG_UNSET;
22326                 result.regcm = 0;
22327         }
22328         return result;
22329 }
22330
22331 static int do_select_reg(struct compile_state *state, 
22332         char *used, int reg, unsigned classes)
22333 {
22334         unsigned mask;
22335         if (used[reg]) {
22336                 return REG_UNSET;
22337         }
22338         mask = arch_reg_regcm(state, reg);
22339         return (classes & mask) ? reg : REG_UNSET;
22340 }
22341
22342 static int arch_select_free_register(
22343         struct compile_state *state, char *used, int classes)
22344 {
22345         /* Live ranges with the most neighbors are colored first.
22346          *
22347          * Generally it does not matter which colors are given
22348          * as the register allocator attempts to color live ranges
22349          * in an order where you are guaranteed not to run out of colors.
22350          *
22351          * Occasionally the register allocator cannot find an order
22352          * of register selection that will find a free color.  To
22353          * increase the odds the register allocator will work when
22354          * it guesses first give out registers from register classes
22355          * least likely to run out of registers.
22356          * 
22357          */
22358         int i, reg;
22359         reg = REG_UNSET;
22360         for(i = REGC_XMM_FIRST; (reg == REG_UNSET) && (i <= REGC_XMM_LAST); i++) {
22361                 reg = do_select_reg(state, used, i, classes);
22362         }
22363         for(i = REGC_MMX_FIRST; (reg == REG_UNSET) && (i <= REGC_MMX_LAST); i++) {
22364                 reg = do_select_reg(state, used, i, classes);
22365         }
22366         for(i = REGC_GPR32_LAST; (reg == REG_UNSET) && (i >= REGC_GPR32_FIRST); i--) {
22367                 reg = do_select_reg(state, used, i, classes);
22368         }
22369         for(i = REGC_GPR16_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR16_LAST); i++) {
22370                 reg = do_select_reg(state, used, i, classes);
22371         }
22372         for(i = REGC_GPR8_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR8_LAST); i++) {
22373                 reg = do_select_reg(state, used, i, classes);
22374         }
22375         for(i = REGC_GPR8_LO_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR8_LO_LAST); i++) {
22376                 reg = do_select_reg(state, used, i, classes);
22377         }
22378         for(i = REGC_DIVIDEND32_FIRST; (reg == REG_UNSET) && (i <= REGC_DIVIDEND32_LAST); i++) {
22379                 reg = do_select_reg(state, used, i, classes);
22380         }
22381         for(i = REGC_DIVIDEND64_FIRST; (reg == REG_UNSET) && (i <= REGC_DIVIDEND64_LAST); i++) {
22382                 reg = do_select_reg(state, used, i, classes);
22383         }
22384         for(i = REGC_FLAGS_FIRST; (reg == REG_UNSET) && (i <= REGC_FLAGS_LAST); i++) {
22385                 reg = do_select_reg(state, used, i, classes);
22386         }
22387         return reg;
22388 }
22389
22390
22391 static unsigned arch_type_to_regcm(struct compile_state *state, struct type *type) 
22392 {
22393
22394 #if DEBUG_ROMCC_WARNINGS
22395 #warning "FIXME force types smaller (if legal) before I get here"
22396 #endif
22397         unsigned mask;
22398         mask = 0;
22399         switch(type->type & TYPE_MASK) {
22400         case TYPE_ARRAY:
22401         case TYPE_VOID: 
22402                 mask = 0; 
22403                 break;
22404         case TYPE_CHAR:
22405         case TYPE_UCHAR:
22406                 mask = REGCM_GPR8 | REGCM_GPR8_LO |
22407                         REGCM_GPR16 | REGCM_GPR16_8 | 
22408                         REGCM_GPR32 | REGCM_GPR32_8 |
22409                         REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
22410                         REGCM_MMX | REGCM_XMM |
22411                         REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8;
22412                 break;
22413         case TYPE_SHORT:
22414         case TYPE_USHORT:
22415                 mask =  REGCM_GPR16 | REGCM_GPR16_8 |
22416                         REGCM_GPR32 | REGCM_GPR32_8 |
22417                         REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
22418                         REGCM_MMX | REGCM_XMM |
22419                         REGCM_IMM32 | REGCM_IMM16;
22420                 break;
22421         case TYPE_ENUM:
22422         case TYPE_INT:
22423         case TYPE_UINT:
22424         case TYPE_LONG:
22425         case TYPE_ULONG:
22426         case TYPE_POINTER:
22427                 mask =  REGCM_GPR32 | REGCM_GPR32_8 |
22428                         REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
22429                         REGCM_MMX | REGCM_XMM |
22430                         REGCM_IMM32;
22431                 break;
22432         case TYPE_JOIN:
22433         case TYPE_UNION:
22434                 mask = arch_type_to_regcm(state, type->left);
22435                 break;
22436         case TYPE_OVERLAP:
22437                 mask = arch_type_to_regcm(state, type->left) &
22438                         arch_type_to_regcm(state, type->right);
22439                 break;
22440         case TYPE_BITFIELD:
22441                 mask = arch_type_to_regcm(state, type->left);
22442                 break;
22443         default:
22444                 fprintf(state->errout, "type: ");
22445                 name_of(state->errout, type);
22446                 fprintf(state->errout, "\n");
22447                 internal_error(state, 0, "no register class for type");
22448                 break;
22449         }
22450         mask = arch_regcm_normalize(state, mask);
22451         return mask;
22452 }
22453
22454 static int is_imm32(struct triple *imm)
22455 {
22456         // second condition commented out to prevent compiler warning:
22457         // imm->u.cval is always 32bit unsigned, so the comparison is
22458         // always true.
22459         return ((imm->op == OP_INTCONST) /* && (imm->u.cval <= 0xffffffffUL) */ ) ||
22460                 (imm->op == OP_ADDRCONST);
22461         
22462 }
22463 static int is_imm16(struct triple *imm)
22464 {
22465         return ((imm->op == OP_INTCONST) && (imm->u.cval <= 0xffff));
22466 }
22467 static int is_imm8(struct triple *imm)
22468 {
22469         return ((imm->op == OP_INTCONST) && (imm->u.cval <= 0xff));
22470 }
22471
22472 static int get_imm32(struct triple *ins, struct triple **expr)
22473 {
22474         struct triple *imm;
22475         imm = *expr;
22476         while(imm->op == OP_COPY) {
22477                 imm = RHS(imm, 0);
22478         }
22479         if (!is_imm32(imm)) {
22480                 return 0;
22481         }
22482         unuse_triple(*expr, ins);
22483         use_triple(imm, ins);
22484         *expr = imm;
22485         return 1;
22486 }
22487
22488 static int get_imm8(struct triple *ins, struct triple **expr)
22489 {
22490         struct triple *imm;
22491         imm = *expr;
22492         while(imm->op == OP_COPY) {
22493                 imm = RHS(imm, 0);
22494         }
22495         if (!is_imm8(imm)) {
22496                 return 0;
22497         }
22498         unuse_triple(*expr, ins);
22499         use_triple(imm, ins);
22500         *expr = imm;
22501         return 1;
22502 }
22503
22504 #define TEMPLATE_NOP           0
22505 #define TEMPLATE_INTCONST8     1
22506 #define TEMPLATE_INTCONST32    2
22507 #define TEMPLATE_UNKNOWNVAL    3
22508 #define TEMPLATE_COPY8_REG     5
22509 #define TEMPLATE_COPY16_REG    6
22510 #define TEMPLATE_COPY32_REG    7
22511 #define TEMPLATE_COPY_IMM8     8
22512 #define TEMPLATE_COPY_IMM16    9
22513 #define TEMPLATE_COPY_IMM32   10
22514 #define TEMPLATE_PHI8         11
22515 #define TEMPLATE_PHI16        12
22516 #define TEMPLATE_PHI32        13
22517 #define TEMPLATE_STORE8       14
22518 #define TEMPLATE_STORE16      15
22519 #define TEMPLATE_STORE32      16
22520 #define TEMPLATE_LOAD8        17
22521 #define TEMPLATE_LOAD16       18
22522 #define TEMPLATE_LOAD32       19
22523 #define TEMPLATE_BINARY8_REG  20
22524 #define TEMPLATE_BINARY16_REG 21
22525 #define TEMPLATE_BINARY32_REG 22
22526 #define TEMPLATE_BINARY8_IMM  23
22527 #define TEMPLATE_BINARY16_IMM 24
22528 #define TEMPLATE_BINARY32_IMM 25
22529 #define TEMPLATE_SL8_CL       26
22530 #define TEMPLATE_SL16_CL      27
22531 #define TEMPLATE_SL32_CL      28
22532 #define TEMPLATE_SL8_IMM      29
22533 #define TEMPLATE_SL16_IMM     30
22534 #define TEMPLATE_SL32_IMM     31
22535 #define TEMPLATE_UNARY8       32
22536 #define TEMPLATE_UNARY16      33
22537 #define TEMPLATE_UNARY32      34
22538 #define TEMPLATE_CMP8_REG     35
22539 #define TEMPLATE_CMP16_REG    36
22540 #define TEMPLATE_CMP32_REG    37
22541 #define TEMPLATE_CMP8_IMM     38
22542 #define TEMPLATE_CMP16_IMM    39
22543 #define TEMPLATE_CMP32_IMM    40
22544 #define TEMPLATE_TEST8        41
22545 #define TEMPLATE_TEST16       42
22546 #define TEMPLATE_TEST32       43
22547 #define TEMPLATE_SET          44
22548 #define TEMPLATE_JMP          45
22549 #define TEMPLATE_RET          46
22550 #define TEMPLATE_INB_DX       47
22551 #define TEMPLATE_INB_IMM      48
22552 #define TEMPLATE_INW_DX       49
22553 #define TEMPLATE_INW_IMM      50
22554 #define TEMPLATE_INL_DX       51
22555 #define TEMPLATE_INL_IMM      52
22556 #define TEMPLATE_OUTB_DX      53
22557 #define TEMPLATE_OUTB_IMM     54
22558 #define TEMPLATE_OUTW_DX      55
22559 #define TEMPLATE_OUTW_IMM     56
22560 #define TEMPLATE_OUTL_DX      57
22561 #define TEMPLATE_OUTL_IMM     58
22562 #define TEMPLATE_BSF          59
22563 #define TEMPLATE_RDMSR        60
22564 #define TEMPLATE_WRMSR        61
22565 #define TEMPLATE_UMUL8        62
22566 #define TEMPLATE_UMUL16       63
22567 #define TEMPLATE_UMUL32       64
22568 #define TEMPLATE_DIV8         65
22569 #define TEMPLATE_DIV16        66
22570 #define TEMPLATE_DIV32        67
22571 #define LAST_TEMPLATE       TEMPLATE_DIV32
22572 #if LAST_TEMPLATE >= MAX_TEMPLATES
22573 #error "MAX_TEMPLATES to low"
22574 #endif
22575
22576 #define COPY8_REGCM     (REGCM_DIVIDEND64 | REGCM_DIVIDEND32 | REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO | REGCM_MMX | REGCM_XMM)
22577 #define COPY16_REGCM    (REGCM_DIVIDEND64 | REGCM_DIVIDEND32 | REGCM_GPR32 | REGCM_GPR16 | REGCM_MMX | REGCM_XMM)  
22578 #define COPY32_REGCM    (REGCM_DIVIDEND64 | REGCM_DIVIDEND32 | REGCM_GPR32 | REGCM_MMX | REGCM_XMM)
22579
22580
22581 static struct ins_template templates[] = {
22582         [TEMPLATE_NOP]      = {
22583                 .lhs = { 
22584                         [ 0] = { REG_UNNEEDED, REGCM_IMMALL },
22585                         [ 1] = { REG_UNNEEDED, REGCM_IMMALL },
22586                         [ 2] = { REG_UNNEEDED, REGCM_IMMALL },
22587                         [ 3] = { REG_UNNEEDED, REGCM_IMMALL },
22588                         [ 4] = { REG_UNNEEDED, REGCM_IMMALL },
22589                         [ 5] = { REG_UNNEEDED, REGCM_IMMALL },
22590                         [ 6] = { REG_UNNEEDED, REGCM_IMMALL },
22591                         [ 7] = { REG_UNNEEDED, REGCM_IMMALL },
22592                         [ 8] = { REG_UNNEEDED, REGCM_IMMALL },
22593                         [ 9] = { REG_UNNEEDED, REGCM_IMMALL },
22594                         [10] = { REG_UNNEEDED, REGCM_IMMALL },
22595                         [11] = { REG_UNNEEDED, REGCM_IMMALL },
22596                         [12] = { REG_UNNEEDED, REGCM_IMMALL },
22597                         [13] = { REG_UNNEEDED, REGCM_IMMALL },
22598                         [14] = { REG_UNNEEDED, REGCM_IMMALL },
22599                         [15] = { REG_UNNEEDED, REGCM_IMMALL },
22600                         [16] = { REG_UNNEEDED, REGCM_IMMALL },
22601                         [17] = { REG_UNNEEDED, REGCM_IMMALL },
22602                         [18] = { REG_UNNEEDED, REGCM_IMMALL },
22603                         [19] = { REG_UNNEEDED, REGCM_IMMALL },
22604                         [20] = { REG_UNNEEDED, REGCM_IMMALL },
22605                         [21] = { REG_UNNEEDED, REGCM_IMMALL },
22606                         [22] = { REG_UNNEEDED, REGCM_IMMALL },
22607                         [23] = { REG_UNNEEDED, REGCM_IMMALL },
22608                         [24] = { REG_UNNEEDED, REGCM_IMMALL },
22609                         [25] = { REG_UNNEEDED, REGCM_IMMALL },
22610                         [26] = { REG_UNNEEDED, REGCM_IMMALL },
22611                         [27] = { REG_UNNEEDED, REGCM_IMMALL },
22612                         [28] = { REG_UNNEEDED, REGCM_IMMALL },
22613                         [29] = { REG_UNNEEDED, REGCM_IMMALL },
22614                         [30] = { REG_UNNEEDED, REGCM_IMMALL },
22615                         [31] = { REG_UNNEEDED, REGCM_IMMALL },
22616                         [32] = { REG_UNNEEDED, REGCM_IMMALL },
22617                         [33] = { REG_UNNEEDED, REGCM_IMMALL },
22618                         [34] = { REG_UNNEEDED, REGCM_IMMALL },
22619                         [35] = { REG_UNNEEDED, REGCM_IMMALL },
22620                         [36] = { REG_UNNEEDED, REGCM_IMMALL },
22621                         [37] = { REG_UNNEEDED, REGCM_IMMALL },
22622                         [38] = { REG_UNNEEDED, REGCM_IMMALL },
22623                         [39] = { REG_UNNEEDED, REGCM_IMMALL },
22624                         [40] = { REG_UNNEEDED, REGCM_IMMALL },
22625                         [41] = { REG_UNNEEDED, REGCM_IMMALL },
22626                         [42] = { REG_UNNEEDED, REGCM_IMMALL },
22627                         [43] = { REG_UNNEEDED, REGCM_IMMALL },
22628                         [44] = { REG_UNNEEDED, REGCM_IMMALL },
22629                         [45] = { REG_UNNEEDED, REGCM_IMMALL },
22630                         [46] = { REG_UNNEEDED, REGCM_IMMALL },
22631                         [47] = { REG_UNNEEDED, REGCM_IMMALL },
22632                         [48] = { REG_UNNEEDED, REGCM_IMMALL },
22633                         [49] = { REG_UNNEEDED, REGCM_IMMALL },
22634                         [50] = { REG_UNNEEDED, REGCM_IMMALL },
22635                         [51] = { REG_UNNEEDED, REGCM_IMMALL },
22636                         [52] = { REG_UNNEEDED, REGCM_IMMALL },
22637                         [53] = { REG_UNNEEDED, REGCM_IMMALL },
22638                         [54] = { REG_UNNEEDED, REGCM_IMMALL },
22639                         [55] = { REG_UNNEEDED, REGCM_IMMALL },
22640                         [56] = { REG_UNNEEDED, REGCM_IMMALL },
22641                         [57] = { REG_UNNEEDED, REGCM_IMMALL },
22642                         [58] = { REG_UNNEEDED, REGCM_IMMALL },
22643                         [59] = { REG_UNNEEDED, REGCM_IMMALL },
22644                         [60] = { REG_UNNEEDED, REGCM_IMMALL },
22645                         [61] = { REG_UNNEEDED, REGCM_IMMALL },
22646                         [62] = { REG_UNNEEDED, REGCM_IMMALL },
22647                         [63] = { REG_UNNEEDED, REGCM_IMMALL },
22648                 },
22649         },
22650         [TEMPLATE_INTCONST8] = { 
22651                 .lhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
22652         },
22653         [TEMPLATE_INTCONST32] = { 
22654                 .lhs = { [0] = { REG_UNNEEDED, REGCM_IMM32 } },
22655         },
22656         [TEMPLATE_UNKNOWNVAL] = {
22657                 .lhs = { [0] = { REG_UNSET, COPY32_REGCM } },
22658         },
22659         [TEMPLATE_COPY8_REG] = {
22660                 .lhs = { [0] = { REG_UNSET, COPY8_REGCM } },
22661                 .rhs = { [0] = { REG_UNSET, COPY8_REGCM }  },
22662         },
22663         [TEMPLATE_COPY16_REG] = {
22664                 .lhs = { [0] = { REG_UNSET, COPY16_REGCM } },
22665                 .rhs = { [0] = { REG_UNSET, COPY16_REGCM }  },
22666         },
22667         [TEMPLATE_COPY32_REG] = {
22668                 .lhs = { [0] = { REG_UNSET, COPY32_REGCM } },
22669                 .rhs = { [0] = { REG_UNSET, COPY32_REGCM }  },
22670         },
22671         [TEMPLATE_COPY_IMM8] = {
22672                 .lhs = { [0] = { REG_UNSET, COPY8_REGCM } },
22673                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
22674         },
22675         [TEMPLATE_COPY_IMM16] = {
22676                 .lhs = { [0] = { REG_UNSET, COPY16_REGCM } },
22677                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM16 | REGCM_IMM8 } },
22678         },
22679         [TEMPLATE_COPY_IMM32] = {
22680                 .lhs = { [0] = { REG_UNSET, COPY32_REGCM } },
22681                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8 } },
22682         },
22683         [TEMPLATE_PHI8] = { 
22684                 .lhs = { [0] = { REG_VIRT0, COPY8_REGCM } },
22685                 .rhs = { [0] = { REG_VIRT0, COPY8_REGCM } },
22686         },
22687         [TEMPLATE_PHI16] = { 
22688                 .lhs = { [0] = { REG_VIRT0, COPY16_REGCM } },
22689                 .rhs = { [0] = { REG_VIRT0, COPY16_REGCM } }, 
22690         },
22691         [TEMPLATE_PHI32] = { 
22692                 .lhs = { [0] = { REG_VIRT0, COPY32_REGCM } },
22693                 .rhs = { [0] = { REG_VIRT0, COPY32_REGCM } }, 
22694         },
22695         [TEMPLATE_STORE8] = {
22696                 .rhs = { 
22697                         [0] = { REG_UNSET, REGCM_GPR32 },
22698                         [1] = { REG_UNSET, REGCM_GPR8_LO },
22699                 },
22700         },
22701         [TEMPLATE_STORE16] = {
22702                 .rhs = { 
22703                         [0] = { REG_UNSET, REGCM_GPR32 },
22704                         [1] = { REG_UNSET, REGCM_GPR16 },
22705                 },
22706         },
22707         [TEMPLATE_STORE32] = {
22708                 .rhs = { 
22709                         [0] = { REG_UNSET, REGCM_GPR32 },
22710                         [1] = { REG_UNSET, REGCM_GPR32 },
22711                 },
22712         },
22713         [TEMPLATE_LOAD8] = {
22714                 .lhs = { [0] = { REG_UNSET, REGCM_GPR8_LO } },
22715                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22716         },
22717         [TEMPLATE_LOAD16] = {
22718                 .lhs = { [0] = { REG_UNSET, REGCM_GPR16 } },
22719                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22720         },
22721         [TEMPLATE_LOAD32] = {
22722                 .lhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22723                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22724         },
22725         [TEMPLATE_BINARY8_REG] = {
22726                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22727                 .rhs = { 
22728                         [0] = { REG_VIRT0, REGCM_GPR8_LO },
22729                         [1] = { REG_UNSET, REGCM_GPR8_LO },
22730                 },
22731         },
22732         [TEMPLATE_BINARY16_REG] = {
22733                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22734                 .rhs = { 
22735                         [0] = { REG_VIRT0, REGCM_GPR16 },
22736                         [1] = { REG_UNSET, REGCM_GPR16 },
22737                 },
22738         },
22739         [TEMPLATE_BINARY32_REG] = {
22740                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22741                 .rhs = { 
22742                         [0] = { REG_VIRT0, REGCM_GPR32 },
22743                         [1] = { REG_UNSET, REGCM_GPR32 },
22744                 },
22745         },
22746         [TEMPLATE_BINARY8_IMM] = {
22747                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22748                 .rhs = { 
22749                         [0] = { REG_VIRT0,    REGCM_GPR8_LO },
22750                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22751                 },
22752         },
22753         [TEMPLATE_BINARY16_IMM] = {
22754                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22755                 .rhs = { 
22756                         [0] = { REG_VIRT0,    REGCM_GPR16 },
22757                         [1] = { REG_UNNEEDED, REGCM_IMM16 },
22758                 },
22759         },
22760         [TEMPLATE_BINARY32_IMM] = {
22761                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22762                 .rhs = { 
22763                         [0] = { REG_VIRT0,    REGCM_GPR32 },
22764                         [1] = { REG_UNNEEDED, REGCM_IMM32 },
22765                 },
22766         },
22767         [TEMPLATE_SL8_CL] = {
22768                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22769                 .rhs = { 
22770                         [0] = { REG_VIRT0, REGCM_GPR8_LO },
22771                         [1] = { REG_CL, REGCM_GPR8_LO },
22772                 },
22773         },
22774         [TEMPLATE_SL16_CL] = {
22775                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22776                 .rhs = { 
22777                         [0] = { REG_VIRT0, REGCM_GPR16 },
22778                         [1] = { REG_CL, REGCM_GPR8_LO },
22779                 },
22780         },
22781         [TEMPLATE_SL32_CL] = {
22782                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22783                 .rhs = { 
22784                         [0] = { REG_VIRT0, REGCM_GPR32 },
22785                         [1] = { REG_CL, REGCM_GPR8_LO },
22786                 },
22787         },
22788         [TEMPLATE_SL8_IMM] = {
22789                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22790                 .rhs = { 
22791                         [0] = { REG_VIRT0,    REGCM_GPR8_LO },
22792                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22793                 },
22794         },
22795         [TEMPLATE_SL16_IMM] = {
22796                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22797                 .rhs = { 
22798                         [0] = { REG_VIRT0,    REGCM_GPR16 },
22799                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22800                 },
22801         },
22802         [TEMPLATE_SL32_IMM] = {
22803                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22804                 .rhs = { 
22805                         [0] = { REG_VIRT0,    REGCM_GPR32 },
22806                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22807                 },
22808         },
22809         [TEMPLATE_UNARY8] = {
22810                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22811                 .rhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22812         },
22813         [TEMPLATE_UNARY16] = {
22814                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22815                 .rhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22816         },
22817         [TEMPLATE_UNARY32] = {
22818                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22819                 .rhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22820         },
22821         [TEMPLATE_CMP8_REG] = {
22822                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22823                 .rhs = {
22824                         [0] = { REG_UNSET, REGCM_GPR8_LO },
22825                         [1] = { REG_UNSET, REGCM_GPR8_LO },
22826                 },
22827         },
22828         [TEMPLATE_CMP16_REG] = {
22829                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22830                 .rhs = {
22831                         [0] = { REG_UNSET, REGCM_GPR16 },
22832                         [1] = { REG_UNSET, REGCM_GPR16 },
22833                 },
22834         },
22835         [TEMPLATE_CMP32_REG] = {
22836                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22837                 .rhs = {
22838                         [0] = { REG_UNSET, REGCM_GPR32 },
22839                         [1] = { REG_UNSET, REGCM_GPR32 },
22840                 },
22841         },
22842         [TEMPLATE_CMP8_IMM] = {
22843                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22844                 .rhs = {
22845                         [0] = { REG_UNSET, REGCM_GPR8_LO },
22846                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22847                 },
22848         },
22849         [TEMPLATE_CMP16_IMM] = {
22850                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22851                 .rhs = {
22852                         [0] = { REG_UNSET, REGCM_GPR16 },
22853                         [1] = { REG_UNNEEDED, REGCM_IMM16 },
22854                 },
22855         },
22856         [TEMPLATE_CMP32_IMM] = {
22857                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22858                 .rhs = {
22859                         [0] = { REG_UNSET, REGCM_GPR32 },
22860                         [1] = { REG_UNNEEDED, REGCM_IMM32 },
22861                 },
22862         },
22863         [TEMPLATE_TEST8] = {
22864                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22865                 .rhs = { [0] = { REG_UNSET, REGCM_GPR8_LO } },
22866         },
22867         [TEMPLATE_TEST16] = {
22868                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22869                 .rhs = { [0] = { REG_UNSET, REGCM_GPR16 } },
22870         },
22871         [TEMPLATE_TEST32] = {
22872                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22873                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22874         },
22875         [TEMPLATE_SET] = {
22876                 .lhs = { [0] = { REG_UNSET, REGCM_GPR8_LO } },
22877                 .rhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22878         },
22879         [TEMPLATE_JMP] = {
22880                 .rhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22881         },
22882         [TEMPLATE_RET] = {
22883                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22884         },
22885         [TEMPLATE_INB_DX] = {
22886                 .lhs = { [0] = { REG_AL,  REGCM_GPR8_LO } },  
22887                 .rhs = { [0] = { REG_DX, REGCM_GPR16 } },
22888         },
22889         [TEMPLATE_INB_IMM] = {
22890                 .lhs = { [0] = { REG_AL,  REGCM_GPR8_LO } },  
22891                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
22892         },
22893         [TEMPLATE_INW_DX]  = { 
22894                 .lhs = { [0] = { REG_AX,  REGCM_GPR16 } }, 
22895                 .rhs = { [0] = { REG_DX, REGCM_GPR16 } },
22896         },
22897         [TEMPLATE_INW_IMM] = { 
22898                 .lhs = { [0] = { REG_AX,  REGCM_GPR16 } }, 
22899                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
22900         },
22901         [TEMPLATE_INL_DX]  = {
22902                 .lhs = { [0] = { REG_EAX, REGCM_GPR32 } },
22903                 .rhs = { [0] = { REG_DX, REGCM_GPR16 } },
22904         },
22905         [TEMPLATE_INL_IMM] = {
22906                 .lhs = { [0] = { REG_EAX, REGCM_GPR32 } },
22907                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
22908         },
22909         [TEMPLATE_OUTB_DX] = { 
22910                 .rhs = {
22911                         [0] = { REG_AL,  REGCM_GPR8_LO },
22912                         [1] = { REG_DX, REGCM_GPR16 },
22913                 },
22914         },
22915         [TEMPLATE_OUTB_IMM] = { 
22916                 .rhs = {
22917                         [0] = { REG_AL,  REGCM_GPR8_LO },  
22918                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22919                 },
22920         },
22921         [TEMPLATE_OUTW_DX] = { 
22922                 .rhs = {
22923                         [0] = { REG_AX,  REGCM_GPR16 },
22924                         [1] = { REG_DX, REGCM_GPR16 },
22925                 },
22926         },
22927         [TEMPLATE_OUTW_IMM] = {
22928                 .rhs = {
22929                         [0] = { REG_AX,  REGCM_GPR16 }, 
22930                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22931                 },
22932         },
22933         [TEMPLATE_OUTL_DX] = { 
22934                 .rhs = {
22935                         [0] = { REG_EAX, REGCM_GPR32 },
22936                         [1] = { REG_DX, REGCM_GPR16 },
22937                 },
22938         },
22939         [TEMPLATE_OUTL_IMM] = { 
22940                 .rhs = {
22941                         [0] = { REG_EAX, REGCM_GPR32 }, 
22942                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22943                 },
22944         },
22945         [TEMPLATE_BSF] = {
22946                 .lhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22947                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22948         },
22949         [TEMPLATE_RDMSR] = {
22950                 .lhs = { 
22951                         [0] = { REG_EAX, REGCM_GPR32 },
22952                         [1] = { REG_EDX, REGCM_GPR32 },
22953                 },
22954                 .rhs = { [0] = { REG_ECX, REGCM_GPR32 } },
22955         },
22956         [TEMPLATE_WRMSR] = {
22957                 .rhs = {
22958                         [0] = { REG_ECX, REGCM_GPR32 },
22959                         [1] = { REG_EAX, REGCM_GPR32 },
22960                         [2] = { REG_EDX, REGCM_GPR32 },
22961                 },
22962         },
22963         [TEMPLATE_UMUL8] = {
22964                 .lhs = { [0] = { REG_AX, REGCM_GPR16 } },
22965                 .rhs = { 
22966                         [0] = { REG_AL, REGCM_GPR8_LO },
22967                         [1] = { REG_UNSET, REGCM_GPR8_LO },
22968                 },
22969         },
22970         [TEMPLATE_UMUL16] = {
22971                 .lhs = { [0] = { REG_DXAX, REGCM_DIVIDEND32 } },
22972                 .rhs = { 
22973                         [0] = { REG_AX, REGCM_GPR16 },
22974                         [1] = { REG_UNSET, REGCM_GPR16 },
22975                 },
22976         },
22977         [TEMPLATE_UMUL32] = {
22978                 .lhs = { [0] = { REG_EDXEAX, REGCM_DIVIDEND64 } },
22979                 .rhs = { 
22980                         [0] = { REG_EAX, REGCM_GPR32 },
22981                         [1] = { REG_UNSET, REGCM_GPR32 },
22982                 },
22983         },
22984         [TEMPLATE_DIV8] = {
22985                 .lhs = { 
22986                         [0] = { REG_AL, REGCM_GPR8_LO },
22987                         [1] = { REG_AH, REGCM_GPR8 },
22988                 },
22989                 .rhs = {
22990                         [0] = { REG_AX, REGCM_GPR16 },
22991                         [1] = { REG_UNSET, REGCM_GPR8_LO },
22992                 },
22993         },
22994         [TEMPLATE_DIV16] = {
22995                 .lhs = { 
22996                         [0] = { REG_AX, REGCM_GPR16 },
22997                         [1] = { REG_DX, REGCM_GPR16 },
22998                 },
22999                 .rhs = {
23000                         [0] = { REG_DXAX, REGCM_DIVIDEND32 },
23001                         [1] = { REG_UNSET, REGCM_GPR16 },
23002                 },
23003         },
23004         [TEMPLATE_DIV32] = {
23005                 .lhs = { 
23006                         [0] = { REG_EAX, REGCM_GPR32 },
23007                         [1] = { REG_EDX, REGCM_GPR32 },
23008                 },
23009                 .rhs = {
23010                         [0] = { REG_EDXEAX, REGCM_DIVIDEND64 },
23011                         [1] = { REG_UNSET, REGCM_GPR32 },
23012                 },
23013         },
23014 };
23015
23016 static void fixup_branch(struct compile_state *state,
23017         struct triple *branch, int jmp_op, int cmp_op, struct type *cmp_type,
23018         struct triple *left, struct triple *right)
23019 {
23020         struct triple *test;
23021         if (!left) {
23022                 internal_error(state, branch, "no branch test?");
23023         }
23024         test = pre_triple(state, branch,
23025                 cmp_op, cmp_type, left, right);
23026         test->template_id = TEMPLATE_TEST32; 
23027         if (cmp_op == OP_CMP) {
23028                 test->template_id = TEMPLATE_CMP32_REG;
23029                 if (get_imm32(test, &RHS(test, 1))) {
23030                         test->template_id = TEMPLATE_CMP32_IMM;
23031                 }
23032         }
23033         use_triple(RHS(test, 0), test);
23034         use_triple(RHS(test, 1), test);
23035         unuse_triple(RHS(branch, 0), branch);
23036         RHS(branch, 0) = test;
23037         branch->op = jmp_op;
23038         branch->template_id = TEMPLATE_JMP;
23039         use_triple(RHS(branch, 0), branch);
23040 }
23041
23042 static void fixup_branches(struct compile_state *state,
23043         struct triple *cmp, struct triple *use, int jmp_op)
23044 {
23045         struct triple_set *entry, *next;
23046         for(entry = use->use; entry; entry = next) {
23047                 next = entry->next;
23048                 if (entry->member->op == OP_COPY) {
23049                         fixup_branches(state, cmp, entry->member, jmp_op);
23050                 }
23051                 else if (entry->member->op == OP_CBRANCH) {
23052                         struct triple *branch;
23053                         struct triple *left, *right;
23054                         left = right = 0;
23055                         left = RHS(cmp, 0);
23056                         if (cmp->rhs > 1) {
23057                                 right = RHS(cmp, 1);
23058                         }
23059                         branch = entry->member;
23060                         fixup_branch(state, branch, jmp_op, 
23061                                 cmp->op, cmp->type, left, right);
23062                 }
23063         }
23064 }
23065
23066 static void bool_cmp(struct compile_state *state, 
23067         struct triple *ins, int cmp_op, int jmp_op, int set_op)
23068 {
23069         struct triple_set *entry, *next;
23070         struct triple *set, *convert;
23071
23072         /* Put a barrier up before the cmp which preceeds the
23073          * copy instruction.  If a set actually occurs this gives
23074          * us a chance to move variables in registers out of the way.
23075          */
23076
23077         /* Modify the comparison operator */
23078         ins->op = cmp_op;
23079         ins->template_id = TEMPLATE_TEST32;
23080         if (cmp_op == OP_CMP) {
23081                 ins->template_id = TEMPLATE_CMP32_REG;
23082                 if (get_imm32(ins, &RHS(ins, 1))) {
23083                         ins->template_id =  TEMPLATE_CMP32_IMM;
23084                 }
23085         }
23086         /* Generate the instruction sequence that will transform the
23087          * result of the comparison into a logical value.
23088          */
23089         set = post_triple(state, ins, set_op, &uchar_type, ins, 0);
23090         use_triple(ins, set);
23091         set->template_id = TEMPLATE_SET;
23092
23093         convert = set;
23094         if (!equiv_types(ins->type, set->type)) {
23095                 convert = post_triple(state, set, OP_CONVERT, ins->type, set, 0);
23096                 use_triple(set, convert);
23097                 convert->template_id = TEMPLATE_COPY32_REG;
23098         }
23099
23100         for(entry = ins->use; entry; entry = next) {
23101                 next = entry->next;
23102                 if (entry->member == set) {
23103                         continue;
23104                 }
23105                 replace_rhs_use(state, ins, convert, entry->member);
23106         }
23107         fixup_branches(state, ins, convert, jmp_op);
23108 }
23109
23110 struct reg_info arch_reg_lhs(struct compile_state *state, struct triple *ins, int index)
23111 {
23112         struct ins_template *template;
23113         struct reg_info result;
23114         int zlhs;
23115         if (ins->op == OP_PIECE) {
23116                 index = ins->u.cval;
23117                 ins = MISC(ins, 0);
23118         }
23119         zlhs = ins->lhs;
23120         if (triple_is_def(state, ins)) {
23121                 zlhs = 1;
23122         }
23123         if (index >= zlhs) {
23124                 internal_error(state, ins, "index %d out of range for %s",
23125                         index, tops(ins->op));
23126         }
23127         switch(ins->op) {
23128         case OP_ASM:
23129                 template = &ins->u.ainfo->tmpl;
23130                 break;
23131         default:
23132                 if (ins->template_id > LAST_TEMPLATE) {
23133                         internal_error(state, ins, "bad template number %d", 
23134                                 ins->template_id);
23135                 }
23136                 template = &templates[ins->template_id];
23137                 break;
23138         }
23139         result = template->lhs[index];
23140         result.regcm = arch_regcm_normalize(state, result.regcm);
23141         if (result.reg != REG_UNNEEDED) {
23142                 result.regcm &= ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8);
23143         }
23144         if (result.regcm == 0) {
23145                 internal_error(state, ins, "lhs %d regcm == 0", index);
23146         }
23147         return result;
23148 }
23149
23150 struct reg_info arch_reg_rhs(struct compile_state *state, struct triple *ins, int index)
23151 {
23152         struct reg_info result;
23153         struct ins_template *template;
23154         if ((index > ins->rhs) ||
23155                 (ins->op == OP_PIECE)) {
23156                 internal_error(state, ins, "index %d out of range for %s\n",
23157                         index, tops(ins->op));
23158         }
23159         switch(ins->op) {
23160         case OP_ASM:
23161                 template = &ins->u.ainfo->tmpl;
23162                 break;
23163         case OP_PHI:
23164                 index = 0;
23165                 /* Fall through */
23166         default:
23167                 if (ins->template_id > LAST_TEMPLATE) {
23168                         internal_error(state, ins, "bad template number %d", 
23169                                 ins->template_id);
23170                 }
23171                 template = &templates[ins->template_id];
23172                 break;
23173         }
23174         result = template->rhs[index];
23175         result.regcm = arch_regcm_normalize(state, result.regcm);
23176         if (result.regcm == 0) {
23177                 internal_error(state, ins, "rhs %d regcm == 0", index);
23178         }
23179         return result;
23180 }
23181
23182 static struct triple *mod_div(struct compile_state *state,
23183         struct triple *ins, int div_op, int index)
23184 {
23185         struct triple *div, *piece0, *piece1;
23186         
23187         /* Generate the appropriate division instruction */
23188         div = post_triple(state, ins, div_op, ins->type, 0, 0);
23189         RHS(div, 0) = RHS(ins, 0);
23190         RHS(div, 1) = RHS(ins, 1);
23191         piece0 = LHS(div, 0);
23192         piece1 = LHS(div, 1);
23193         div->template_id  = TEMPLATE_DIV32;
23194         use_triple(RHS(div, 0), div);
23195         use_triple(RHS(div, 1), div);
23196         use_triple(LHS(div, 0), div);
23197         use_triple(LHS(div, 1), div);
23198
23199         /* Replate uses of ins with the appropriate piece of the div */
23200         propogate_use(state, ins, LHS(div, index));
23201         release_triple(state, ins);
23202
23203         /* Return the address of the next instruction */
23204         return piece1->next;
23205 }
23206
23207 static int noop_adecl(struct triple *adecl)
23208 {
23209         struct triple_set *use;
23210         /* It's a noop if it doesn't specify stoorage */
23211         if (adecl->lhs == 0) {
23212                 return 1;
23213         }
23214         /* Is the adecl used? If not it's a noop */
23215         for(use = adecl->use; use ; use = use->next) {
23216                 if ((use->member->op != OP_PIECE) ||
23217                         (MISC(use->member, 0) != adecl)) {
23218                         return 0;
23219                 }
23220         }
23221         return 1;
23222 }
23223
23224 static struct triple *x86_deposit(struct compile_state *state, struct triple *ins)
23225 {
23226         struct triple *mask, *nmask, *shift;
23227         struct triple *val, *val_mask, *val_shift;
23228         struct triple *targ, *targ_mask;
23229         struct triple *new;
23230         ulong_t the_mask, the_nmask;
23231
23232         targ = RHS(ins, 0);
23233         val = RHS(ins, 1);
23234
23235         /* Get constant for the mask value */
23236         the_mask = 1;
23237         the_mask <<= ins->u.bitfield.size;
23238         the_mask -= 1;
23239         the_mask <<= ins->u.bitfield.offset;
23240         mask = pre_triple(state, ins, OP_INTCONST, &uint_type, 0, 0);
23241         mask->u.cval = the_mask;
23242
23243         /* Get the inverted mask value */
23244         the_nmask = ~the_mask;
23245         nmask = pre_triple(state, ins, OP_INTCONST, &uint_type, 0, 0);
23246         nmask->u.cval = the_nmask;
23247
23248         /* Get constant for the shift value */
23249         shift = pre_triple(state, ins, OP_INTCONST, &uint_type, 0, 0);
23250         shift->u.cval = ins->u.bitfield.offset;
23251
23252         /* Shift and mask the source value */
23253         val_shift = val;
23254         if (shift->u.cval != 0) {
23255                 val_shift = pre_triple(state, ins, OP_SL, val->type, val, shift);
23256                 use_triple(val, val_shift);
23257                 use_triple(shift, val_shift);
23258         }
23259         val_mask = val_shift;
23260         if (is_signed(val->type)) {
23261                 val_mask = pre_triple(state, ins, OP_AND, val->type, val_shift, mask);
23262                 use_triple(val_shift, val_mask);
23263                 use_triple(mask, val_mask);
23264         }
23265
23266         /* Mask the target value */
23267         targ_mask = pre_triple(state, ins, OP_AND, targ->type, targ, nmask);
23268         use_triple(targ, targ_mask);
23269         use_triple(nmask, targ_mask);
23270
23271         /* Now combined them together */
23272         new = pre_triple(state, ins, OP_OR, targ->type, targ_mask, val_mask);
23273         use_triple(targ_mask, new);
23274         use_triple(val_mask, new);
23275
23276         /* Move all of the users over to the new expression */
23277         propogate_use(state, ins, new);
23278
23279         /* Delete the original triple */
23280         release_triple(state, ins);
23281
23282         /* Restart the transformation at mask */
23283         return mask;
23284 }
23285
23286 static struct triple *x86_extract(struct compile_state *state, struct triple *ins)
23287 {
23288         struct triple *mask, *shift;
23289         struct triple *val, *val_mask, *val_shift;
23290         ulong_t the_mask;
23291
23292         val = RHS(ins, 0);
23293
23294         /* Get constant for the mask value */
23295         the_mask = 1;
23296         the_mask <<= ins->u.bitfield.size;
23297         the_mask -= 1;
23298         mask = pre_triple(state, ins, OP_INTCONST, &int_type, 0, 0);
23299         mask->u.cval = the_mask;
23300
23301         /* Get constant for the right shift value */
23302         shift = pre_triple(state, ins, OP_INTCONST, &int_type, 0, 0);
23303         shift->u.cval = ins->u.bitfield.offset;
23304
23305         /* Shift arithmetic right, to correct the sign */
23306         val_shift = val;
23307         if (shift->u.cval != 0) {
23308                 int op;
23309                 if (ins->op == OP_SEXTRACT) {
23310                         op = OP_SSR;
23311                 } else {
23312                         op = OP_USR;
23313                 }
23314                 val_shift = pre_triple(state, ins, op, val->type, val, shift);
23315                 use_triple(val, val_shift);
23316                 use_triple(shift, val_shift);
23317         }
23318
23319         /* Finally mask the value */
23320         val_mask = pre_triple(state, ins, OP_AND, ins->type, val_shift, mask);
23321         use_triple(val_shift, val_mask);
23322         use_triple(mask,      val_mask);
23323
23324         /* Move all of the users over to the new expression */
23325         propogate_use(state, ins, val_mask);
23326
23327         /* Release the original instruction */
23328         release_triple(state, ins);
23329
23330         return mask;
23331
23332 }
23333
23334 static struct triple *transform_to_arch_instruction(
23335         struct compile_state *state, struct triple *ins)
23336 {
23337         /* Transform from generic 3 address instructions
23338          * to archtecture specific instructions.
23339          * And apply architecture specific constraints to instructions.
23340          * Copies are inserted to preserve the register flexibility
23341          * of 3 address instructions.
23342          */
23343         struct triple *next, *value;
23344         size_t size;
23345         next = ins->next;
23346         switch(ins->op) {
23347         case OP_INTCONST:
23348                 ins->template_id = TEMPLATE_INTCONST32;
23349                 if (ins->u.cval < 256) {
23350                         ins->template_id = TEMPLATE_INTCONST8;
23351                 }
23352                 break;
23353         case OP_ADDRCONST:
23354                 ins->template_id = TEMPLATE_INTCONST32;
23355                 break;
23356         case OP_UNKNOWNVAL:
23357                 ins->template_id = TEMPLATE_UNKNOWNVAL;
23358                 break;
23359         case OP_NOOP:
23360         case OP_SDECL:
23361         case OP_BLOBCONST:
23362         case OP_LABEL:
23363                 ins->template_id = TEMPLATE_NOP;
23364                 break;
23365         case OP_COPY:
23366         case OP_CONVERT:
23367                 size = size_of(state, ins->type);
23368                 value = RHS(ins, 0);
23369                 if (is_imm8(value) && (size <= SIZEOF_I8)) {
23370                         ins->template_id = TEMPLATE_COPY_IMM8;
23371                 }
23372                 else if (is_imm16(value) && (size <= SIZEOF_I16)) {
23373                         ins->template_id = TEMPLATE_COPY_IMM16;
23374                 }
23375                 else if (is_imm32(value) && (size <= SIZEOF_I32)) {
23376                         ins->template_id = TEMPLATE_COPY_IMM32;
23377                 }
23378                 else if (is_const(value)) {
23379                         internal_error(state, ins, "bad constant passed to copy");
23380                 }
23381                 else if (size <= SIZEOF_I8) {
23382                         ins->template_id = TEMPLATE_COPY8_REG;
23383                 }
23384                 else if (size <= SIZEOF_I16) {
23385                         ins->template_id = TEMPLATE_COPY16_REG;
23386                 }
23387                 else if (size <= SIZEOF_I32) {
23388                         ins->template_id = TEMPLATE_COPY32_REG;
23389                 }
23390                 else {
23391                         internal_error(state, ins, "bad type passed to copy");
23392                 }
23393                 break;
23394         case OP_PHI:
23395                 size = size_of(state, ins->type);
23396                 if (size <= SIZEOF_I8) {
23397                         ins->template_id = TEMPLATE_PHI8;
23398                 }
23399                 else if (size <= SIZEOF_I16) {
23400                         ins->template_id = TEMPLATE_PHI16;
23401                 }
23402                 else if (size <= SIZEOF_I32) {
23403                         ins->template_id = TEMPLATE_PHI32;
23404                 }
23405                 else {
23406                         internal_error(state, ins, "bad type passed to phi");
23407                 }
23408                 break;
23409         case OP_ADECL:
23410                 /* Adecls should always be treated as dead code and
23411                  * removed.  If we are not optimizing they may linger.
23412                  */
23413                 if (!noop_adecl(ins)) {
23414                         internal_error(state, ins, "adecl remains?");
23415                 }
23416                 ins->template_id = TEMPLATE_NOP;
23417                 next = after_lhs(state, ins);
23418                 break;
23419         case OP_STORE:
23420                 switch(ins->type->type & TYPE_MASK) {
23421                 case TYPE_CHAR:    case TYPE_UCHAR:
23422                         ins->template_id = TEMPLATE_STORE8;
23423                         break;
23424                 case TYPE_SHORT:   case TYPE_USHORT:
23425                         ins->template_id = TEMPLATE_STORE16;
23426                         break;
23427                 case TYPE_INT:     case TYPE_UINT:
23428                 case TYPE_LONG:    case TYPE_ULONG:
23429                 case TYPE_POINTER:
23430                         ins->template_id = TEMPLATE_STORE32;
23431                         break;
23432                 default:
23433                         internal_error(state, ins, "unknown type in store");
23434                         break;
23435                 }
23436                 break;
23437         case OP_LOAD:
23438                 switch(ins->type->type & TYPE_MASK) {
23439                 case TYPE_CHAR:   case TYPE_UCHAR:
23440                 case TYPE_SHORT:  case TYPE_USHORT:
23441                 case TYPE_INT:    case TYPE_UINT:
23442                 case TYPE_LONG:   case TYPE_ULONG:
23443                 case TYPE_POINTER:
23444                         break;
23445                 default:
23446                         internal_error(state, ins, "unknown type in load");
23447                         break;
23448                 }
23449                 ins->template_id = TEMPLATE_LOAD32;
23450                 break;
23451         case OP_ADD:
23452         case OP_SUB:
23453         case OP_AND:
23454         case OP_XOR:
23455         case OP_OR:
23456         case OP_SMUL:
23457                 ins->template_id = TEMPLATE_BINARY32_REG;
23458                 if (get_imm32(ins, &RHS(ins, 1))) {
23459                         ins->template_id = TEMPLATE_BINARY32_IMM;
23460                 }
23461                 break;
23462         case OP_SDIVT:
23463         case OP_UDIVT:
23464                 ins->template_id = TEMPLATE_DIV32;
23465                 next = after_lhs(state, ins);
23466                 break;
23467         case OP_UMUL:
23468                 ins->template_id = TEMPLATE_UMUL32;
23469                 break;
23470         case OP_UDIV:
23471                 next = mod_div(state, ins, OP_UDIVT, 0);
23472                 break;
23473         case OP_SDIV:
23474                 next = mod_div(state, ins, OP_SDIVT, 0);
23475                 break;
23476         case OP_UMOD:
23477                 next = mod_div(state, ins, OP_UDIVT, 1);
23478                 break;
23479         case OP_SMOD:
23480                 next = mod_div(state, ins, OP_SDIVT, 1);
23481                 break;
23482         case OP_SL:
23483         case OP_SSR:
23484         case OP_USR:
23485                 ins->template_id = TEMPLATE_SL32_CL;
23486                 if (get_imm8(ins, &RHS(ins, 1))) {
23487                         ins->template_id = TEMPLATE_SL32_IMM;
23488                 } else if (size_of(state, RHS(ins, 1)->type) > SIZEOF_CHAR) {
23489                         typed_pre_copy(state, &uchar_type, ins, 1);
23490                 }
23491                 break;
23492         case OP_INVERT:
23493         case OP_NEG:
23494                 ins->template_id = TEMPLATE_UNARY32;
23495                 break;
23496         case OP_EQ: 
23497                 bool_cmp(state, ins, OP_CMP, OP_JMP_EQ, OP_SET_EQ); 
23498                 break;
23499         case OP_NOTEQ:
23500                 bool_cmp(state, ins, OP_CMP, OP_JMP_NOTEQ, OP_SET_NOTEQ);
23501                 break;
23502         case OP_SLESS:
23503                 bool_cmp(state, ins, OP_CMP, OP_JMP_SLESS, OP_SET_SLESS);
23504                 break;
23505         case OP_ULESS:
23506                 bool_cmp(state, ins, OP_CMP, OP_JMP_ULESS, OP_SET_ULESS);
23507                 break;
23508         case OP_SMORE:
23509                 bool_cmp(state, ins, OP_CMP, OP_JMP_SMORE, OP_SET_SMORE);
23510                 break;
23511         case OP_UMORE:
23512                 bool_cmp(state, ins, OP_CMP, OP_JMP_UMORE, OP_SET_UMORE);
23513                 break;
23514         case OP_SLESSEQ:
23515                 bool_cmp(state, ins, OP_CMP, OP_JMP_SLESSEQ, OP_SET_SLESSEQ);
23516                 break;
23517         case OP_ULESSEQ:
23518                 bool_cmp(state, ins, OP_CMP, OP_JMP_ULESSEQ, OP_SET_ULESSEQ);
23519                 break;
23520         case OP_SMOREEQ:
23521                 bool_cmp(state, ins, OP_CMP, OP_JMP_SMOREEQ, OP_SET_SMOREEQ);
23522                 break;
23523         case OP_UMOREEQ:
23524                 bool_cmp(state, ins, OP_CMP, OP_JMP_UMOREEQ, OP_SET_UMOREEQ);
23525                 break;
23526         case OP_LTRUE:
23527                 bool_cmp(state, ins, OP_TEST, OP_JMP_NOTEQ, OP_SET_NOTEQ);
23528                 break;
23529         case OP_LFALSE:
23530                 bool_cmp(state, ins, OP_TEST, OP_JMP_EQ, OP_SET_EQ);
23531                 break;
23532         case OP_BRANCH:
23533                 ins->op = OP_JMP;
23534                 ins->template_id = TEMPLATE_NOP;
23535                 break;
23536         case OP_CBRANCH:
23537                 fixup_branch(state, ins, OP_JMP_NOTEQ, OP_TEST, 
23538                         RHS(ins, 0)->type, RHS(ins, 0), 0);
23539                 break;
23540         case OP_CALL:
23541                 ins->template_id = TEMPLATE_NOP;
23542                 break;
23543         case OP_RET:
23544                 ins->template_id = TEMPLATE_RET;
23545                 break;
23546         case OP_INB:
23547         case OP_INW:
23548         case OP_INL:
23549                 switch(ins->op) {
23550                 case OP_INB: ins->template_id = TEMPLATE_INB_DX; break;
23551                 case OP_INW: ins->template_id = TEMPLATE_INW_DX; break;
23552                 case OP_INL: ins->template_id = TEMPLATE_INL_DX; break;
23553                 }
23554                 if (get_imm8(ins, &RHS(ins, 0))) {
23555                         ins->template_id += 1;
23556                 }
23557                 break;
23558         case OP_OUTB:
23559         case OP_OUTW:
23560         case OP_OUTL:
23561                 switch(ins->op) {
23562                 case OP_OUTB: ins->template_id = TEMPLATE_OUTB_DX; break;
23563                 case OP_OUTW: ins->template_id = TEMPLATE_OUTW_DX; break;
23564                 case OP_OUTL: ins->template_id = TEMPLATE_OUTL_DX; break;
23565                 }
23566                 if (get_imm8(ins, &RHS(ins, 1))) {
23567                         ins->template_id += 1;
23568                 }
23569                 break;
23570         case OP_BSF:
23571         case OP_BSR:
23572                 ins->template_id = TEMPLATE_BSF;
23573                 break;
23574         case OP_RDMSR:
23575                 ins->template_id = TEMPLATE_RDMSR;
23576                 next = after_lhs(state, ins);
23577                 break;
23578         case OP_WRMSR:
23579                 ins->template_id = TEMPLATE_WRMSR;
23580                 break;
23581         case OP_HLT:
23582                 ins->template_id = TEMPLATE_NOP;
23583                 break;
23584         case OP_ASM:
23585                 ins->template_id = TEMPLATE_NOP;
23586                 next = after_lhs(state, ins);
23587                 break;
23588                 /* Already transformed instructions */
23589         case OP_TEST:
23590                 ins->template_id = TEMPLATE_TEST32;
23591                 break;
23592         case OP_CMP:
23593                 ins->template_id = TEMPLATE_CMP32_REG;
23594                 if (get_imm32(ins, &RHS(ins, 1))) {
23595                         ins->template_id = TEMPLATE_CMP32_IMM;
23596                 }
23597                 break;
23598         case OP_JMP:
23599                 ins->template_id = TEMPLATE_NOP;
23600                 break;
23601         case OP_JMP_EQ:      case OP_JMP_NOTEQ:
23602         case OP_JMP_SLESS:   case OP_JMP_ULESS:
23603         case OP_JMP_SMORE:   case OP_JMP_UMORE:
23604         case OP_JMP_SLESSEQ: case OP_JMP_ULESSEQ:
23605         case OP_JMP_SMOREEQ: case OP_JMP_UMOREEQ:
23606                 ins->template_id = TEMPLATE_JMP;
23607                 break;
23608         case OP_SET_EQ:      case OP_SET_NOTEQ:
23609         case OP_SET_SLESS:   case OP_SET_ULESS:
23610         case OP_SET_SMORE:   case OP_SET_UMORE:
23611         case OP_SET_SLESSEQ: case OP_SET_ULESSEQ:
23612         case OP_SET_SMOREEQ: case OP_SET_UMOREEQ:
23613                 ins->template_id = TEMPLATE_SET;
23614                 break;
23615         case OP_DEPOSIT:
23616                 next = x86_deposit(state, ins);
23617                 break;
23618         case OP_SEXTRACT:
23619         case OP_UEXTRACT:
23620                 next = x86_extract(state, ins);
23621                 break;
23622                 /* Unhandled instructions */
23623         case OP_PIECE:
23624         default:
23625                 internal_error(state, ins, "unhandled ins: %d %s",
23626                         ins->op, tops(ins->op));
23627                 break;
23628         }
23629         return next;
23630 }
23631
23632 static long next_label(struct compile_state *state)
23633 {
23634         static long label_counter = 1000;
23635         return ++label_counter;
23636 }
23637 static void generate_local_labels(struct compile_state *state)
23638 {
23639         struct triple *first, *label;
23640         first = state->first;
23641         label = first;
23642         do {
23643                 if ((label->op == OP_LABEL) || 
23644                         (label->op == OP_SDECL)) {
23645                         if (label->use) {
23646                                 label->u.cval = next_label(state);
23647                         } else {
23648                                 label->u.cval = 0;
23649                         }
23650                         
23651                 }
23652                 label = label->next;
23653         } while(label != first);
23654 }
23655
23656 static int check_reg(struct compile_state *state, 
23657         struct triple *triple, int classes)
23658 {
23659         unsigned mask;
23660         int reg;
23661         reg = ID_REG(triple->id);
23662         if (reg == REG_UNSET) {
23663                 internal_error(state, triple, "register not set");
23664         }
23665         mask = arch_reg_regcm(state, reg);
23666         if (!(classes & mask)) {
23667                 internal_error(state, triple, "reg %d in wrong class",
23668                         reg);
23669         }
23670         return reg;
23671 }
23672
23673
23674 #if REG_XMM7 != 44
23675 #error "Registers have renumberd fix arch_reg_str"
23676 #endif
23677 static const char *arch_regs[] = {
23678         "%unset",
23679         "%unneeded",
23680         "%eflags",
23681         "%al", "%bl", "%cl", "%dl", "%ah", "%bh", "%ch", "%dh",
23682         "%ax", "%bx", "%cx", "%dx", "%si", "%di", "%bp", "%sp",
23683         "%eax", "%ebx", "%ecx", "%edx", "%esi", "%edi", "%ebp", "%esp",
23684         "%edx:%eax",
23685         "%dx:%ax",
23686         "%mm0", "%mm1", "%mm2", "%mm3", "%mm4", "%mm5", "%mm6", "%mm7",
23687         "%xmm0", "%xmm1", "%xmm2", "%xmm3", 
23688         "%xmm4", "%xmm5", "%xmm6", "%xmm7",
23689 };
23690 static const char *arch_reg_str(int reg)
23691 {
23692         if (!((reg >= REG_EFLAGS) && (reg <= REG_XMM7))) {
23693                 reg = 0;
23694         }
23695         return arch_regs[reg];
23696 }
23697
23698 static const char *reg(struct compile_state *state, struct triple *triple,
23699         int classes)
23700 {
23701         int reg;
23702         reg = check_reg(state, triple, classes);
23703         return arch_reg_str(reg);
23704 }
23705
23706 static int arch_reg_size(int reg)
23707 {
23708         int size;
23709         size = 0;
23710         if (reg == REG_EFLAGS) {
23711                 size = 32;
23712         }
23713         else if ((reg >= REG_AL) && (reg <= REG_DH)) {
23714                 size = 8;
23715         }
23716         else if ((reg >= REG_AX) && (reg <= REG_SP)) {
23717                 size = 16;
23718         }
23719         else if ((reg >= REG_EAX) && (reg <= REG_ESP)) {
23720                 size = 32;
23721         }
23722         else if (reg == REG_EDXEAX) {
23723                 size = 64;
23724         }
23725         else if (reg == REG_DXAX) {
23726                 size = 32;
23727         }
23728         else if ((reg >= REG_MMX0) && (reg <= REG_MMX7)) {
23729                 size = 64;
23730         }
23731         else if ((reg >= REG_XMM0) && (reg <= REG_XMM7)) {
23732                 size = 128;
23733         }
23734         return size;
23735 }
23736
23737 static int reg_size(struct compile_state *state, struct triple *ins)
23738 {
23739         int reg;
23740         reg = ID_REG(ins->id);
23741         if (reg == REG_UNSET) {
23742                 internal_error(state, ins, "register not set");
23743         }
23744         return arch_reg_size(reg);
23745 }
23746         
23747
23748
23749 const char *type_suffix(struct compile_state *state, struct type *type)
23750 {
23751         const char *suffix;
23752         switch(size_of(state, type)) {
23753         case SIZEOF_I8:  suffix = "b"; break;
23754         case SIZEOF_I16: suffix = "w"; break;
23755         case SIZEOF_I32: suffix = "l"; break;
23756         default:
23757                 internal_error(state, 0, "unknown suffix");
23758                 suffix = 0;
23759                 break;
23760         }
23761         return suffix;
23762 }
23763
23764 static void print_const_val(
23765         struct compile_state *state, struct triple *ins, FILE *fp)
23766 {
23767         switch(ins->op) {
23768         case OP_INTCONST:
23769                 fprintf(fp, " $%ld ", 
23770                         (long)(ins->u.cval));
23771                 break;
23772         case OP_ADDRCONST:
23773                 if ((MISC(ins, 0)->op != OP_SDECL) &&
23774                         (MISC(ins, 0)->op != OP_LABEL))
23775                 {
23776                         internal_error(state, ins, "bad base for addrconst");
23777                 }
23778                 if (MISC(ins, 0)->u.cval <= 0) {
23779                         internal_error(state, ins, "unlabeled constant");
23780                 }
23781                 fprintf(fp, " $L%s%lu+%lu ",
23782                         state->compiler->label_prefix, 
23783                         (unsigned long)(MISC(ins, 0)->u.cval),
23784                         (unsigned long)(ins->u.cval));
23785                 break;
23786         default:
23787                 internal_error(state, ins, "unknown constant type");
23788                 break;
23789         }
23790 }
23791
23792 static void print_const(struct compile_state *state,
23793         struct triple *ins, FILE *fp)
23794 {
23795         switch(ins->op) {
23796         case OP_INTCONST:
23797                 switch(ins->type->type & TYPE_MASK) {
23798                 case TYPE_CHAR:
23799                 case TYPE_UCHAR:
23800                         fprintf(fp, ".byte 0x%02lx\n", 
23801                                 (unsigned long)(ins->u.cval));
23802                         break;
23803                 case TYPE_SHORT:
23804                 case TYPE_USHORT:
23805                         fprintf(fp, ".short 0x%04lx\n", 
23806                                 (unsigned long)(ins->u.cval));
23807                         break;
23808                 case TYPE_INT:
23809                 case TYPE_UINT:
23810                 case TYPE_LONG:
23811                 case TYPE_ULONG:
23812                 case TYPE_POINTER:
23813                         fprintf(fp, ".int %lu\n", 
23814                                 (unsigned long)(ins->u.cval));
23815                         break;
23816                 default:
23817                         fprintf(state->errout, "type: ");
23818                         name_of(state->errout, ins->type);
23819                         fprintf(state->errout, "\n");
23820                         internal_error(state, ins, "Unknown constant type. Val: %lu",
23821                                 (unsigned long)(ins->u.cval));
23822                 }
23823                 
23824                 break;
23825         case OP_ADDRCONST:
23826                 if ((MISC(ins, 0)->op != OP_SDECL) &&
23827                         (MISC(ins, 0)->op != OP_LABEL)) {
23828                         internal_error(state, ins, "bad base for addrconst");
23829                 }
23830                 if (MISC(ins, 0)->u.cval <= 0) {
23831                         internal_error(state, ins, "unlabeled constant");
23832                 }
23833                 fprintf(fp, ".int L%s%lu+%lu\n",
23834                         state->compiler->label_prefix,
23835                         (unsigned long)(MISC(ins, 0)->u.cval),
23836                         (unsigned long)(ins->u.cval));
23837                 break;
23838         case OP_BLOBCONST:
23839         {
23840                 unsigned char *blob;
23841                 size_t size, i;
23842                 size = size_of_in_bytes(state, ins->type);
23843                 blob = ins->u.blob;
23844                 for(i = 0; i < size; i++) {
23845                         fprintf(fp, ".byte 0x%02x\n",
23846                                 blob[i]);
23847                 }
23848                 break;
23849         }
23850         default:
23851                 internal_error(state, ins, "Unknown constant type");
23852                 break;
23853         }
23854 }
23855
23856 #define TEXT_SECTION ".rom.text"
23857 #define DATA_SECTION ".rom.data"
23858
23859 static long get_const_pool_ref(
23860         struct compile_state *state, struct triple *ins, size_t size, FILE *fp)
23861 {
23862         size_t fill_bytes;
23863         long ref;
23864         ref = next_label(state);
23865         fprintf(fp, ".section \"" DATA_SECTION "\"\n");
23866         fprintf(fp, ".balign %ld\n", (long int)align_of_in_bytes(state, ins->type));
23867         fprintf(fp, "L%s%lu:\n", state->compiler->label_prefix, ref);
23868         print_const(state, ins, fp);
23869         fill_bytes = bits_to_bytes(size - size_of(state, ins->type));
23870         if (fill_bytes) {
23871                 fprintf(fp, ".fill %ld, 1, 0\n", (long int)fill_bytes);
23872         }
23873         fprintf(fp, ".section \"" TEXT_SECTION "\"\n");
23874         return ref;
23875 }
23876
23877 static long get_mask_pool_ref(
23878         struct compile_state *state, struct triple *ins, unsigned long mask, FILE *fp)
23879 {
23880         long ref;
23881         if (mask == 0xff) {
23882                 ref = 1;
23883         }
23884         else if (mask == 0xffff) {
23885                 ref = 2;
23886         }
23887         else {
23888                 ref = 0;
23889                 internal_error(state, ins, "unhandled mask value");
23890         }
23891         return ref;
23892 }
23893
23894 static void print_binary_op(struct compile_state *state,
23895         const char *op, struct triple *ins, FILE *fp) 
23896 {
23897         unsigned mask;
23898         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
23899         if (ID_REG(RHS(ins, 0)->id) != ID_REG(ins->id)) {
23900                 internal_error(state, ins, "invalid register assignment");
23901         }
23902         if (is_const(RHS(ins, 1))) {
23903                 fprintf(fp, "\t%s ", op);
23904                 print_const_val(state, RHS(ins, 1), fp);
23905                 fprintf(fp, ", %s\n",
23906                         reg(state, RHS(ins, 0), mask));
23907         }
23908         else {
23909                 unsigned lmask, rmask;
23910                 int lreg, rreg;
23911                 lreg = check_reg(state, RHS(ins, 0), mask);
23912                 rreg = check_reg(state, RHS(ins, 1), mask);
23913                 lmask = arch_reg_regcm(state, lreg);
23914                 rmask = arch_reg_regcm(state, rreg);
23915                 mask = lmask & rmask;
23916                 fprintf(fp, "\t%s %s, %s\n",
23917                         op,
23918                         reg(state, RHS(ins, 1), mask),
23919                         reg(state, RHS(ins, 0), mask));
23920         }
23921 }
23922 static void print_unary_op(struct compile_state *state, 
23923         const char *op, struct triple *ins, FILE *fp)
23924 {
23925         unsigned mask;
23926         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
23927         fprintf(fp, "\t%s %s\n",
23928                 op,
23929                 reg(state, RHS(ins, 0), mask));
23930 }
23931
23932 static void print_op_shift(struct compile_state *state,
23933         const char *op, struct triple *ins, FILE *fp)
23934 {
23935         unsigned mask;
23936         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
23937         if (ID_REG(RHS(ins, 0)->id) != ID_REG(ins->id)) {
23938                 internal_error(state, ins, "invalid register assignment");
23939         }
23940         if (is_const(RHS(ins, 1))) {
23941                 fprintf(fp, "\t%s ", op);
23942                 print_const_val(state, RHS(ins, 1), fp);
23943                 fprintf(fp, ", %s\n",
23944                         reg(state, RHS(ins, 0), mask));
23945         }
23946         else {
23947                 fprintf(fp, "\t%s %s, %s\n",
23948                         op,
23949                         reg(state, RHS(ins, 1), REGCM_GPR8_LO),
23950                         reg(state, RHS(ins, 0), mask));
23951         }
23952 }
23953
23954 static void print_op_in(struct compile_state *state, struct triple *ins, FILE *fp)
23955 {
23956         const char *op;
23957         int mask;
23958         int dreg;
23959         mask = 0;
23960         switch(ins->op) {
23961         case OP_INB: op = "inb", mask = REGCM_GPR8_LO; break;
23962         case OP_INW: op = "inw", mask = REGCM_GPR16; break;
23963         case OP_INL: op = "inl", mask = REGCM_GPR32; break;
23964         default:
23965                 internal_error(state, ins, "not an in operation");
23966                 op = 0;
23967                 break;
23968         }
23969         dreg = check_reg(state, ins, mask);
23970         if (!reg_is_reg(state, dreg, REG_EAX)) {
23971                 internal_error(state, ins, "dst != %%eax");
23972         }
23973         if (is_const(RHS(ins, 0))) {
23974                 fprintf(fp, "\t%s ", op);
23975                 print_const_val(state, RHS(ins, 0), fp);
23976                 fprintf(fp, ", %s\n",
23977                         reg(state, ins, mask));
23978         }
23979         else {
23980                 int addr_reg;
23981                 addr_reg = check_reg(state, RHS(ins, 0), REGCM_GPR16);
23982                 if (!reg_is_reg(state, addr_reg, REG_DX)) {
23983                         internal_error(state, ins, "src != %%dx");
23984                 }
23985                 fprintf(fp, "\t%s %s, %s\n",
23986                         op, 
23987                         reg(state, RHS(ins, 0), REGCM_GPR16),
23988                         reg(state, ins, mask));
23989         }
23990 }
23991
23992 static void print_op_out(struct compile_state *state, struct triple *ins, FILE *fp)
23993 {
23994         const char *op;
23995         int mask;
23996         int lreg;
23997         mask = 0;
23998         switch(ins->op) {
23999         case OP_OUTB: op = "outb", mask = REGCM_GPR8_LO; break;
24000         case OP_OUTW: op = "outw", mask = REGCM_GPR16; break;
24001         case OP_OUTL: op = "outl", mask = REGCM_GPR32; break;
24002         default:
24003                 internal_error(state, ins, "not an out operation");
24004                 op = 0;
24005                 break;
24006         }
24007         lreg = check_reg(state, RHS(ins, 0), mask);
24008         if (!reg_is_reg(state, lreg, REG_EAX)) {
24009                 internal_error(state, ins, "src != %%eax");
24010         }
24011         if (is_const(RHS(ins, 1))) {
24012                 fprintf(fp, "\t%s %s,", 
24013                         op, reg(state, RHS(ins, 0), mask));
24014                 print_const_val(state, RHS(ins, 1), fp);
24015                 fprintf(fp, "\n");
24016         }
24017         else {
24018                 int addr_reg;
24019                 addr_reg = check_reg(state, RHS(ins, 1), REGCM_GPR16);
24020                 if (!reg_is_reg(state, addr_reg, REG_DX)) {
24021                         internal_error(state, ins, "dst != %%dx");
24022                 }
24023                 fprintf(fp, "\t%s %s, %s\n",
24024                         op, 
24025                         reg(state, RHS(ins, 0), mask),
24026                         reg(state, RHS(ins, 1), REGCM_GPR16));
24027         }
24028 }
24029
24030 static void print_op_move(struct compile_state *state,
24031         struct triple *ins, FILE *fp)
24032 {
24033         /* op_move is complex because there are many types
24034          * of registers we can move between.
24035          * Because OP_COPY will be introduced in arbitrary locations
24036          * OP_COPY must not affect flags.
24037          * OP_CONVERT can change the flags and it is the only operation
24038          * where it is expected the types in the registers can change.
24039          */
24040         int omit_copy = 1; /* Is it o.k. to omit a noop copy? */
24041         struct triple *dst, *src;
24042         if (state->arch->features & X86_NOOP_COPY) {
24043                 omit_copy = 0;
24044         }
24045         if ((ins->op == OP_COPY) || (ins->op == OP_CONVERT)) {
24046                 src = RHS(ins, 0);
24047                 dst = ins;
24048         }
24049         else {
24050                 internal_error(state, ins, "unknown move operation");
24051                 src = dst = 0;
24052         }
24053         if (reg_size(state, dst) < size_of(state, dst->type)) {
24054                 internal_error(state, ins, "Invalid destination register");
24055         }
24056         if (!equiv_types(src->type, dst->type) && (dst->op == OP_COPY)) {
24057                 fprintf(state->errout, "src type: ");
24058                 name_of(state->errout, src->type);
24059                 fprintf(state->errout, "\n");
24060                 fprintf(state->errout, "dst type: ");
24061                 name_of(state->errout, dst->type);
24062                 fprintf(state->errout, "\n");
24063                 internal_error(state, ins, "Type mismatch for OP_COPY");
24064         }
24065
24066         if (!is_const(src)) {
24067                 int src_reg, dst_reg;
24068                 int src_regcm, dst_regcm;
24069                 src_reg   = ID_REG(src->id);
24070                 dst_reg   = ID_REG(dst->id);
24071                 src_regcm = arch_reg_regcm(state, src_reg);
24072                 dst_regcm = arch_reg_regcm(state, dst_reg);
24073                 /* If the class is the same just move the register */
24074                 if (src_regcm & dst_regcm & 
24075                         (REGCM_GPR8_LO | REGCM_GPR16 | REGCM_GPR32)) {
24076                         if ((src_reg != dst_reg) || !omit_copy) {
24077                                 fprintf(fp, "\tmov %s, %s\n",
24078                                         reg(state, src, src_regcm),
24079                                         reg(state, dst, dst_regcm));
24080                         }
24081                 }
24082                 /* Move 32bit to 16bit */
24083                 else if ((src_regcm & REGCM_GPR32) &&
24084                         (dst_regcm & REGCM_GPR16)) {
24085                         src_reg = (src_reg - REGC_GPR32_FIRST) + REGC_GPR16_FIRST;
24086                         if ((src_reg != dst_reg) || !omit_copy) {
24087                                 fprintf(fp, "\tmovw %s, %s\n",
24088                                         arch_reg_str(src_reg), 
24089                                         arch_reg_str(dst_reg));
24090                         }
24091                 }
24092                 /* Move from 32bit gprs to 16bit gprs */
24093                 else if ((src_regcm & REGCM_GPR32) &&
24094                         (dst_regcm & REGCM_GPR16)) {
24095                         dst_reg = (dst_reg - REGC_GPR16_FIRST) + REGC_GPR32_FIRST;
24096                         if ((src_reg != dst_reg) || !omit_copy) {
24097                                 fprintf(fp, "\tmov %s, %s\n",
24098                                         arch_reg_str(src_reg),
24099                                         arch_reg_str(dst_reg));
24100                         }
24101                 }
24102                 /* Move 32bit to 8bit */
24103                 else if ((src_regcm & REGCM_GPR32_8) &&
24104                         (dst_regcm & REGCM_GPR8_LO))
24105                 {
24106                         src_reg = (src_reg - REGC_GPR32_8_FIRST) + REGC_GPR8_FIRST;
24107                         if ((src_reg != dst_reg) || !omit_copy) {
24108                                 fprintf(fp, "\tmovb %s, %s\n",
24109                                         arch_reg_str(src_reg),
24110                                         arch_reg_str(dst_reg));
24111                         }
24112                 }
24113                 /* Move 16bit to 8bit */
24114                 else if ((src_regcm & REGCM_GPR16_8) &&
24115                         (dst_regcm & REGCM_GPR8_LO))
24116                 {
24117                         src_reg = (src_reg - REGC_GPR16_8_FIRST) + REGC_GPR8_FIRST;
24118                         if ((src_reg != dst_reg) || !omit_copy) {
24119                                 fprintf(fp, "\tmovb %s, %s\n",
24120                                         arch_reg_str(src_reg),
24121                                         arch_reg_str(dst_reg));
24122                         }
24123                 }
24124                 /* Move 8/16bit to 16/32bit */
24125                 else if ((src_regcm & (REGCM_GPR8_LO | REGCM_GPR16)) && 
24126                         (dst_regcm & (REGCM_GPR16 | REGCM_GPR32))) {
24127                         const char *op;
24128                         op = is_signed(src->type)? "movsx": "movzx";
24129                         fprintf(fp, "\t%s %s, %s\n",
24130                                 op,
24131                                 reg(state, src, src_regcm),
24132                                 reg(state, dst, dst_regcm));
24133                 }
24134                 /* Move between sse registers */
24135                 else if ((src_regcm & dst_regcm & REGCM_XMM)) {
24136                         if ((src_reg != dst_reg) || !omit_copy) {
24137                                 fprintf(fp, "\tmovdqa %s, %s\n",
24138                                         reg(state, src, src_regcm),
24139                                         reg(state, dst, dst_regcm));
24140                         }
24141                 }
24142                 /* Move between mmx registers */
24143                 else if ((src_regcm & dst_regcm & REGCM_MMX)) {
24144                         if ((src_reg != dst_reg) || !omit_copy) {
24145                                 fprintf(fp, "\tmovq %s, %s\n",
24146                                         reg(state, src, src_regcm),
24147                                         reg(state, dst, dst_regcm));
24148                         }
24149                 }
24150                 /* Move from sse to mmx registers */
24151                 else if ((src_regcm & REGCM_XMM) && (dst_regcm & REGCM_MMX)) {
24152                         fprintf(fp, "\tmovdq2q %s, %s\n",
24153                                 reg(state, src, src_regcm),
24154                                 reg(state, dst, dst_regcm));
24155                 }
24156                 /* Move from mmx to sse registers */
24157                 else if ((src_regcm & REGCM_MMX) && (dst_regcm & REGCM_XMM)) {
24158                         fprintf(fp, "\tmovq2dq %s, %s\n",
24159                                 reg(state, src, src_regcm),
24160                                 reg(state, dst, dst_regcm));
24161                 }
24162                 /* Move between 32bit gprs & mmx/sse registers */
24163                 else if ((src_regcm & (REGCM_GPR32 | REGCM_MMX | REGCM_XMM)) &&
24164                         (dst_regcm & (REGCM_GPR32 | REGCM_MMX | REGCM_XMM))) {
24165                         fprintf(fp, "\tmovd %s, %s\n",
24166                                 reg(state, src, src_regcm),
24167                                 reg(state, dst, dst_regcm));
24168                 }
24169                 /* Move from 16bit gprs &  mmx/sse registers */
24170                 else if ((src_regcm & REGCM_GPR16) &&
24171                         (dst_regcm & (REGCM_MMX | REGCM_XMM))) {
24172                         const char *op;
24173                         int mid_reg;
24174                         op = is_signed(src->type)? "movsx":"movzx";
24175                         mid_reg = (src_reg - REGC_GPR16_FIRST) + REGC_GPR32_FIRST;
24176                         fprintf(fp, "\t%s %s, %s\n\tmovd %s, %s\n",
24177                                 op,
24178                                 arch_reg_str(src_reg),
24179                                 arch_reg_str(mid_reg),
24180                                 arch_reg_str(mid_reg),
24181                                 arch_reg_str(dst_reg));
24182                 }
24183                 /* Move from mmx/sse registers to 16bit gprs */
24184                 else if ((src_regcm & (REGCM_MMX | REGCM_XMM)) &&
24185                         (dst_regcm & REGCM_GPR16)) {
24186                         dst_reg = (dst_reg - REGC_GPR16_FIRST) + REGC_GPR32_FIRST;
24187                         fprintf(fp, "\tmovd %s, %s\n",
24188                                 arch_reg_str(src_reg),
24189                                 arch_reg_str(dst_reg));
24190                 }
24191                 /* Move from gpr to 64bit dividend */
24192                 else if ((src_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO))  &&
24193                         (dst_regcm & REGCM_DIVIDEND64)) {
24194                         const char *extend;
24195                         extend = is_signed(src->type)? "cltd":"movl $0, %edx";
24196                         fprintf(fp, "\tmov %s, %%eax\n\t%s\n",
24197                                 arch_reg_str(src_reg), 
24198                                 extend);
24199                 }
24200                 /* Move from 64bit gpr to gpr */
24201                 else if ((src_regcm & REGCM_DIVIDEND64) &&
24202                         (dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO))) {
24203                         if (dst_regcm & REGCM_GPR32) {
24204                                 src_reg = REG_EAX;
24205                         } 
24206                         else if (dst_regcm & REGCM_GPR16) {
24207                                 src_reg = REG_AX;
24208                         }
24209                         else if (dst_regcm & REGCM_GPR8_LO) {
24210                                 src_reg = REG_AL;
24211                         }
24212                         fprintf(fp, "\tmov %s, %s\n",
24213                                 arch_reg_str(src_reg),
24214                                 arch_reg_str(dst_reg));
24215                 }
24216                 /* Move from mmx/sse registers to 64bit gpr */
24217                 else if ((src_regcm & (REGCM_MMX | REGCM_XMM)) &&
24218                         (dst_regcm & REGCM_DIVIDEND64)) {
24219                         const char *extend;
24220                         extend = is_signed(src->type)? "cltd": "movl $0, %edx";
24221                         fprintf(fp, "\tmovd %s, %%eax\n\t%s\n",
24222                                 arch_reg_str(src_reg),
24223                                 extend);
24224                 }
24225                 /* Move from 64bit gpr to mmx/sse register */
24226                 else if ((src_regcm & REGCM_DIVIDEND64) &&
24227                         (dst_regcm & (REGCM_XMM | REGCM_MMX))) {
24228                         fprintf(fp, "\tmovd %%eax, %s\n",
24229                                 arch_reg_str(dst_reg));
24230                 }
24231 #if X86_4_8BIT_GPRS
24232                 /* Move from 8bit gprs to  mmx/sse registers */
24233                 else if ((src_regcm & REGCM_GPR8_LO) && (src_reg <= REG_DL) &&
24234                         (dst_regcm & (REGCM_MMX | REGCM_XMM))) {
24235                         const char *op;
24236                         int mid_reg;
24237                         op = is_signed(src->type)? "movsx":"movzx";
24238                         mid_reg = (src_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
24239                         fprintf(fp, "\t%s %s, %s\n\tmovd %s, %s\n",
24240                                 op,
24241                                 reg(state, src, src_regcm),
24242                                 arch_reg_str(mid_reg),
24243                                 arch_reg_str(mid_reg),
24244                                 reg(state, dst, dst_regcm));
24245                 }
24246                 /* Move from mmx/sse registers and 8bit gprs */
24247                 else if ((src_regcm & (REGCM_MMX | REGCM_XMM)) &&
24248                         (dst_regcm & REGCM_GPR8_LO) && (dst_reg <= REG_DL)) {
24249                         int mid_reg;
24250                         mid_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
24251                         fprintf(fp, "\tmovd %s, %s\n",
24252                                 reg(state, src, src_regcm),
24253                                 arch_reg_str(mid_reg));
24254                 }
24255                 /* Move from 32bit gprs to 8bit gprs */
24256                 else if ((src_regcm & REGCM_GPR32) &&
24257                         (dst_regcm & REGCM_GPR8_LO)) {
24258                         dst_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
24259                         if ((src_reg != dst_reg) || !omit_copy) {
24260                                 fprintf(fp, "\tmov %s, %s\n",
24261                                         arch_reg_str(src_reg),
24262                                         arch_reg_str(dst_reg));
24263                         }
24264                 }
24265                 /* Move from 16bit gprs to 8bit gprs */
24266                 else if ((src_regcm & REGCM_GPR16) &&
24267                         (dst_regcm & REGCM_GPR8_LO)) {
24268                         dst_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR16_FIRST;
24269                         if ((src_reg != dst_reg) || !omit_copy) {
24270                                 fprintf(fp, "\tmov %s, %s\n",
24271                                         arch_reg_str(src_reg),
24272                                         arch_reg_str(dst_reg));
24273                         }
24274                 }
24275 #endif /* X86_4_8BIT_GPRS */
24276                 /* Move from %eax:%edx to %eax:%edx */
24277                 else if ((src_regcm & REGCM_DIVIDEND64) &&
24278                         (dst_regcm & REGCM_DIVIDEND64) &&
24279                         (src_reg == dst_reg)) {
24280                         if (!omit_copy) {
24281                                 fprintf(fp, "\t/*mov %s, %s*/\n",
24282                                         arch_reg_str(src_reg),
24283                                         arch_reg_str(dst_reg));
24284                         }
24285                 }
24286                 else {
24287                         if ((src_regcm & ~REGCM_FLAGS) == 0) {
24288                                 internal_error(state, ins, "attempt to copy from %%eflags!");
24289                         }
24290                         internal_error(state, ins, "unknown copy type");
24291                 }
24292         }
24293         else {
24294                 size_t dst_size;
24295                 int dst_reg;
24296                 int dst_regcm;
24297                 dst_size = size_of(state, dst->type);
24298                 dst_reg = ID_REG(dst->id);
24299                 dst_regcm = arch_reg_regcm(state, dst_reg);
24300                 if (dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO)) {
24301                         fprintf(fp, "\tmov ");
24302                         print_const_val(state, src, fp);
24303                         fprintf(fp, ", %s\n",
24304                                 reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO));
24305                 }
24306                 else if (dst_regcm & REGCM_DIVIDEND64) {
24307                         if (dst_size > SIZEOF_I32) {
24308                                 internal_error(state, ins, "%dbit constant...", dst_size);
24309                         }
24310                         fprintf(fp, "\tmov $0, %%edx\n");
24311                         fprintf(fp, "\tmov ");
24312                         print_const_val(state, src, fp);
24313                         fprintf(fp, ", %%eax\n");
24314                 }
24315                 else if (dst_regcm & REGCM_DIVIDEND32) {
24316                         if (dst_size > SIZEOF_I16) {
24317                                 internal_error(state, ins, "%dbit constant...", dst_size);
24318                         }
24319                         fprintf(fp, "\tmov $0, %%dx\n");
24320                         fprintf(fp, "\tmov ");
24321                         print_const_val(state, src, fp);
24322                         fprintf(fp, ", %%ax");
24323                 }
24324                 else if (dst_regcm & (REGCM_XMM | REGCM_MMX)) {
24325                         long ref;
24326                         if (dst_size > SIZEOF_I32) {
24327                                 internal_error(state, ins, "%d bit constant...", dst_size);
24328                         }
24329                         ref = get_const_pool_ref(state, src, SIZEOF_I32, fp);
24330                         fprintf(fp, "\tmovd L%s%lu, %s\n",
24331                                 state->compiler->label_prefix, ref,
24332                                 reg(state, dst, (REGCM_XMM | REGCM_MMX)));
24333                 }
24334                 else {
24335                         internal_error(state, ins, "unknown copy immediate type");
24336                 }
24337         }
24338         /* Leave now if this is not a type conversion */
24339         if (ins->op != OP_CONVERT) {
24340                 return;
24341         }
24342         /* Now make certain I have not logically overflowed the destination */
24343         if ((size_of(state, src->type) > size_of(state, dst->type)) &&
24344                 (size_of(state, dst->type) < reg_size(state, dst)))
24345         {
24346                 unsigned long mask;
24347                 int dst_reg;
24348                 int dst_regcm;
24349                 if (size_of(state, dst->type) >= 32) {
24350                         fprintf(state->errout, "dst type: ");
24351                         name_of(state->errout, dst->type);
24352                         fprintf(state->errout, "\n");
24353                         internal_error(state, dst, "unhandled dst type size");
24354                 }
24355                 mask = 1;
24356                 mask <<= size_of(state, dst->type);
24357                 mask -= 1;
24358
24359                 dst_reg = ID_REG(dst->id);
24360                 dst_regcm = arch_reg_regcm(state, dst_reg);
24361
24362                 if (dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO)) {
24363                         fprintf(fp, "\tand $0x%lx, %s\n",
24364                                 mask, reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO));
24365                 }
24366                 else if (dst_regcm & REGCM_MMX) {
24367                         long ref;
24368                         ref = get_mask_pool_ref(state, dst, mask, fp);
24369                         fprintf(fp, "\tpand L%s%lu, %s\n",
24370                                 state->compiler->label_prefix, ref,
24371                                 reg(state, dst, REGCM_MMX));
24372                 }
24373                 else if (dst_regcm & REGCM_XMM) {
24374                         long ref;
24375                         ref = get_mask_pool_ref(state, dst, mask, fp);
24376                         fprintf(fp, "\tpand L%s%lu, %s\n",
24377                                 state->compiler->label_prefix, ref,
24378                                 reg(state, dst, REGCM_XMM));
24379                 }
24380                 else {
24381                         fprintf(state->errout, "dst type: ");
24382                         name_of(state->errout, dst->type);
24383                         fprintf(state->errout, "\n");
24384                         fprintf(state->errout, "dst: %s\n", reg(state, dst, REGCM_ALL));
24385                         internal_error(state, dst, "failed to trunc value: mask %lx", mask);
24386                 }
24387         }
24388         /* Make certain I am properly sign extended */
24389         if ((size_of(state, src->type) < size_of(state, dst->type)) &&
24390                 (is_signed(src->type)))
24391         {
24392                 int bits, reg_bits, shift_bits;
24393                 int dst_reg;
24394                 int dst_regcm;
24395
24396                 bits = size_of(state, src->type);
24397                 reg_bits = reg_size(state, dst);
24398                 if (reg_bits > 32) {
24399                         reg_bits = 32;
24400                 }
24401                 shift_bits = reg_bits - size_of(state, src->type);
24402                 dst_reg = ID_REG(dst->id);
24403                 dst_regcm = arch_reg_regcm(state, dst_reg);
24404
24405                 if (shift_bits < 0) {
24406                         internal_error(state, dst, "negative shift?");
24407                 }
24408
24409                 if (dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO)) {
24410                         fprintf(fp, "\tshl $%d, %s\n", 
24411                                 shift_bits, 
24412                                 reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO));
24413                         fprintf(fp, "\tsar $%d, %s\n", 
24414                                 shift_bits, 
24415                                 reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO));
24416                 }
24417                 else if (dst_regcm & (REGCM_MMX | REGCM_XMM)) {
24418                         fprintf(fp, "\tpslld $%d, %s\n",
24419                                 shift_bits, 
24420                                 reg(state, dst, REGCM_MMX | REGCM_XMM));
24421                         fprintf(fp, "\tpsrad $%d, %s\n",
24422                                 shift_bits, 
24423                                 reg(state, dst, REGCM_MMX | REGCM_XMM));
24424                 }
24425                 else {
24426                         fprintf(state->errout, "dst type: ");
24427                         name_of(state->errout, dst->type);
24428                         fprintf(state->errout, "\n");
24429                         fprintf(state->errout, "dst: %s\n", reg(state, dst, REGCM_ALL));
24430                         internal_error(state, dst, "failed to signed extend value");
24431                 }
24432         }
24433 }
24434
24435 static void print_op_load(struct compile_state *state,
24436         struct triple *ins, FILE *fp)
24437 {
24438         struct triple *dst, *src;
24439         const char *op;
24440         dst = ins;
24441         src = RHS(ins, 0);
24442         if (is_const(src) || is_const(dst)) {
24443                 internal_error(state, ins, "unknown load operation");
24444         }
24445         switch(ins->type->type & TYPE_MASK) {
24446         case TYPE_CHAR:   op = "movsbl"; break;
24447         case TYPE_UCHAR:  op = "movzbl"; break;
24448         case TYPE_SHORT:  op = "movswl"; break;
24449         case TYPE_USHORT: op = "movzwl"; break;
24450         case TYPE_INT:    case TYPE_UINT:
24451         case TYPE_LONG:   case TYPE_ULONG:
24452         case TYPE_POINTER:
24453                 op = "movl"; 
24454                 break;
24455         default:
24456                 internal_error(state, ins, "unknown type in load");
24457                 op = "<invalid opcode>";
24458                 break;
24459         }
24460         fprintf(fp, "\t%s (%s), %s\n",
24461                 op, 
24462                 reg(state, src, REGCM_GPR32),
24463                 reg(state, dst, REGCM_GPR32));
24464 }
24465
24466
24467 static void print_op_store(struct compile_state *state,
24468         struct triple *ins, FILE *fp)
24469 {
24470         struct triple *dst, *src;
24471         dst = RHS(ins, 0);
24472         src = RHS(ins, 1);
24473         if (is_const(src) && (src->op == OP_INTCONST)) {
24474                 long_t value;
24475                 value = (long_t)(src->u.cval);
24476                 fprintf(fp, "\tmov%s $%ld, (%s)\n",
24477                         type_suffix(state, src->type),
24478                         (long)(value),
24479                         reg(state, dst, REGCM_GPR32));
24480         }
24481         else if (is_const(dst) && (dst->op == OP_INTCONST)) {
24482                 fprintf(fp, "\tmov%s %s, 0x%08lx\n",
24483                         type_suffix(state, src->type),
24484                         reg(state, src, REGCM_GPR8_LO | REGCM_GPR16 | REGCM_GPR32),
24485                         (unsigned long)(dst->u.cval));
24486         }
24487         else {
24488                 if (is_const(src) || is_const(dst)) {
24489                         internal_error(state, ins, "unknown store operation");
24490                 }
24491                 fprintf(fp, "\tmov%s %s, (%s)\n",
24492                         type_suffix(state, src->type),
24493                         reg(state, src, REGCM_GPR8_LO | REGCM_GPR16 | REGCM_GPR32),
24494                         reg(state, dst, REGCM_GPR32));
24495         }
24496         
24497         
24498 }
24499
24500 static void print_op_smul(struct compile_state *state,
24501         struct triple *ins, FILE *fp)
24502 {
24503         if (!is_const(RHS(ins, 1))) {
24504                 fprintf(fp, "\timul %s, %s\n",
24505                         reg(state, RHS(ins, 1), REGCM_GPR32),
24506                         reg(state, RHS(ins, 0), REGCM_GPR32));
24507         }
24508         else {
24509                 fprintf(fp, "\timul ");
24510                 print_const_val(state, RHS(ins, 1), fp);
24511                 fprintf(fp, ", %s\n", reg(state, RHS(ins, 0), REGCM_GPR32));
24512         }
24513 }
24514
24515 static void print_op_cmp(struct compile_state *state,
24516         struct triple *ins, FILE *fp)
24517 {
24518         unsigned mask;
24519         int dreg;
24520         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
24521         dreg = check_reg(state, ins, REGCM_FLAGS);
24522         if (!reg_is_reg(state, dreg, REG_EFLAGS)) {
24523                 internal_error(state, ins, "bad dest register for cmp");
24524         }
24525         if (is_const(RHS(ins, 1))) {
24526                 fprintf(fp, "\tcmp ");
24527                 print_const_val(state, RHS(ins, 1), fp);
24528                 fprintf(fp, ", %s\n", reg(state, RHS(ins, 0), mask));
24529         }
24530         else {
24531                 unsigned lmask, rmask;
24532                 int lreg, rreg;
24533                 lreg = check_reg(state, RHS(ins, 0), mask);
24534                 rreg = check_reg(state, RHS(ins, 1), mask);
24535                 lmask = arch_reg_regcm(state, lreg);
24536                 rmask = arch_reg_regcm(state, rreg);
24537                 mask = lmask & rmask;
24538                 fprintf(fp, "\tcmp %s, %s\n",
24539                         reg(state, RHS(ins, 1), mask),
24540                         reg(state, RHS(ins, 0), mask));
24541         }
24542 }
24543
24544 static void print_op_test(struct compile_state *state,
24545         struct triple *ins, FILE *fp)
24546 {
24547         unsigned mask;
24548         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
24549         fprintf(fp, "\ttest %s, %s\n",
24550                 reg(state, RHS(ins, 0), mask),
24551                 reg(state, RHS(ins, 0), mask));
24552 }
24553
24554 static void print_op_branch(struct compile_state *state,
24555         struct triple *branch, FILE *fp)
24556 {
24557         const char *bop = "j";
24558         if ((branch->op == OP_JMP) || (branch->op == OP_CALL)) {
24559                 if (branch->rhs != 0) {
24560                         internal_error(state, branch, "jmp with condition?");
24561                 }
24562                 bop = "jmp";
24563         }
24564         else {
24565                 struct triple *ptr;
24566                 if (branch->rhs != 1) {
24567                         internal_error(state, branch, "jmpcc without condition?");
24568                 }
24569                 check_reg(state, RHS(branch, 0), REGCM_FLAGS);
24570                 if ((RHS(branch, 0)->op != OP_CMP) &&
24571                         (RHS(branch, 0)->op != OP_TEST)) {
24572                         internal_error(state, branch, "bad branch test");
24573                 }
24574 #if DEBUG_ROMCC_WARNINGS
24575 #warning "FIXME I have observed instructions between the test and branch instructions"
24576 #endif
24577                 ptr = RHS(branch, 0);
24578                 for(ptr = RHS(branch, 0)->next; ptr != branch; ptr = ptr->next) {
24579                         if (ptr->op != OP_COPY) {
24580                                 internal_error(state, branch, "branch does not follow test");
24581                         }
24582                 }
24583                 switch(branch->op) {
24584                 case OP_JMP_EQ:       bop = "jz";  break;
24585                 case OP_JMP_NOTEQ:    bop = "jnz"; break;
24586                 case OP_JMP_SLESS:    bop = "jl";  break;
24587                 case OP_JMP_ULESS:    bop = "jb";  break;
24588                 case OP_JMP_SMORE:    bop = "jg";  break;
24589                 case OP_JMP_UMORE:    bop = "ja";  break;
24590                 case OP_JMP_SLESSEQ:  bop = "jle"; break;
24591                 case OP_JMP_ULESSEQ:  bop = "jbe"; break;
24592                 case OP_JMP_SMOREEQ:  bop = "jge"; break;
24593                 case OP_JMP_UMOREEQ:  bop = "jae"; break;
24594                 default:
24595                         internal_error(state, branch, "Invalid branch op");
24596                         break;
24597                 }
24598                 
24599         }
24600 #if 1
24601         if (branch->op == OP_CALL) {
24602                 fprintf(fp, "\t/* call */\n");
24603         }
24604 #endif
24605         fprintf(fp, "\t%s L%s%lu\n",
24606                 bop, 
24607                 state->compiler->label_prefix,
24608                 (unsigned long)(TARG(branch, 0)->u.cval));
24609 }
24610
24611 static void print_op_ret(struct compile_state *state,
24612         struct triple *branch, FILE *fp)
24613 {
24614         fprintf(fp, "\tjmp *%s\n",
24615                 reg(state, RHS(branch, 0), REGCM_GPR32));
24616 }
24617
24618 static void print_op_set(struct compile_state *state,
24619         struct triple *set, FILE *fp)
24620 {
24621         const char *sop = "set";
24622         if (set->rhs != 1) {
24623                 internal_error(state, set, "setcc without condition?");
24624         }
24625         check_reg(state, RHS(set, 0), REGCM_FLAGS);
24626         if ((RHS(set, 0)->op != OP_CMP) &&
24627                 (RHS(set, 0)->op != OP_TEST)) {
24628                 internal_error(state, set, "bad set test");
24629         }
24630         if (RHS(set, 0)->next != set) {
24631                 internal_error(state, set, "set does not follow test");
24632         }
24633         switch(set->op) {
24634         case OP_SET_EQ:       sop = "setz";  break;
24635         case OP_SET_NOTEQ:    sop = "setnz"; break;
24636         case OP_SET_SLESS:    sop = "setl";  break;
24637         case OP_SET_ULESS:    sop = "setb";  break;
24638         case OP_SET_SMORE:    sop = "setg";  break;
24639         case OP_SET_UMORE:    sop = "seta";  break;
24640         case OP_SET_SLESSEQ:  sop = "setle"; break;
24641         case OP_SET_ULESSEQ:  sop = "setbe"; break;
24642         case OP_SET_SMOREEQ:  sop = "setge"; break;
24643         case OP_SET_UMOREEQ:  sop = "setae"; break;
24644         default:
24645                 internal_error(state, set, "Invalid set op");
24646                 break;
24647         }
24648         fprintf(fp, "\t%s %s\n",
24649                 sop, reg(state, set, REGCM_GPR8_LO));
24650 }
24651
24652 static void print_op_bit_scan(struct compile_state *state, 
24653         struct triple *ins, FILE *fp) 
24654 {
24655         const char *op;
24656         switch(ins->op) {
24657         case OP_BSF: op = "bsf"; break;
24658         case OP_BSR: op = "bsr"; break;
24659         default: 
24660                 internal_error(state, ins, "unknown bit scan");
24661                 op = 0;
24662                 break;
24663         }
24664         fprintf(fp, 
24665                 "\t%s %s, %s\n"
24666                 "\tjnz 1f\n"
24667                 "\tmovl $-1, %s\n"
24668                 "1:\n",
24669                 op,
24670                 reg(state, RHS(ins, 0), REGCM_GPR32),
24671                 reg(state, ins, REGCM_GPR32),
24672                 reg(state, ins, REGCM_GPR32));
24673 }
24674
24675
24676 static void print_sdecl(struct compile_state *state,
24677         struct triple *ins, FILE *fp)
24678 {
24679         fprintf(fp, ".section \"" DATA_SECTION "\"\n");
24680         fprintf(fp, ".balign %ld\n", (long int)align_of_in_bytes(state, ins->type));
24681         fprintf(fp, "L%s%lu:\n", 
24682                 state->compiler->label_prefix, (unsigned long)(ins->u.cval));
24683         print_const(state, MISC(ins, 0), fp);
24684         fprintf(fp, ".section \"" TEXT_SECTION "\"\n");
24685                 
24686 }
24687
24688 static void print_instruction(struct compile_state *state,
24689         struct triple *ins, FILE *fp)
24690 {
24691         /* Assumption: after I have exted the register allocator
24692          * everything is in a valid register. 
24693          */
24694         switch(ins->op) {
24695         case OP_ASM:
24696                 print_op_asm(state, ins, fp);
24697                 break;
24698         case OP_ADD:    print_binary_op(state, "add", ins, fp); break;
24699         case OP_SUB:    print_binary_op(state, "sub", ins, fp); break;
24700         case OP_AND:    print_binary_op(state, "and", ins, fp); break;
24701         case OP_XOR:    print_binary_op(state, "xor", ins, fp); break;
24702         case OP_OR:     print_binary_op(state, "or",  ins, fp); break;
24703         case OP_SL:     print_op_shift(state, "shl", ins, fp); break;
24704         case OP_USR:    print_op_shift(state, "shr", ins, fp); break;
24705         case OP_SSR:    print_op_shift(state, "sar", ins, fp); break;
24706         case OP_POS:    break;
24707         case OP_NEG:    print_unary_op(state, "neg", ins, fp); break;
24708         case OP_INVERT: print_unary_op(state, "not", ins, fp); break;
24709         case OP_NOOP:
24710         case OP_INTCONST:
24711         case OP_ADDRCONST:
24712         case OP_BLOBCONST:
24713                 /* Don't generate anything here for constants */
24714         case OP_PHI:
24715                 /* Don't generate anything for variable declarations. */
24716                 break;
24717         case OP_UNKNOWNVAL:
24718                 fprintf(fp, " /* unknown %s */\n",
24719                         reg(state, ins, REGCM_ALL));
24720                 break;
24721         case OP_SDECL:
24722                 print_sdecl(state, ins, fp);
24723                 break;
24724         case OP_COPY:   
24725         case OP_CONVERT:
24726                 print_op_move(state, ins, fp);
24727                 break;
24728         case OP_LOAD:
24729                 print_op_load(state, ins, fp);
24730                 break;
24731         case OP_STORE:
24732                 print_op_store(state, ins, fp);
24733                 break;
24734         case OP_SMUL:
24735                 print_op_smul(state, ins, fp);
24736                 break;
24737         case OP_CMP:    print_op_cmp(state, ins, fp); break;
24738         case OP_TEST:   print_op_test(state, ins, fp); break;
24739         case OP_JMP:
24740         case OP_JMP_EQ:      case OP_JMP_NOTEQ:
24741         case OP_JMP_SLESS:   case OP_JMP_ULESS:
24742         case OP_JMP_SMORE:   case OP_JMP_UMORE:
24743         case OP_JMP_SLESSEQ: case OP_JMP_ULESSEQ:
24744         case OP_JMP_SMOREEQ: case OP_JMP_UMOREEQ:
24745         case OP_CALL:
24746                 print_op_branch(state, ins, fp);
24747                 break;
24748         case OP_RET:
24749                 print_op_ret(state, ins, fp);
24750                 break;
24751         case OP_SET_EQ:      case OP_SET_NOTEQ:
24752         case OP_SET_SLESS:   case OP_SET_ULESS:
24753         case OP_SET_SMORE:   case OP_SET_UMORE:
24754         case OP_SET_SLESSEQ: case OP_SET_ULESSEQ:
24755         case OP_SET_SMOREEQ: case OP_SET_UMOREEQ:
24756                 print_op_set(state, ins, fp);
24757                 break;
24758         case OP_INB:  case OP_INW:  case OP_INL:
24759                 print_op_in(state, ins, fp); 
24760                 break;
24761         case OP_OUTB: case OP_OUTW: case OP_OUTL:
24762                 print_op_out(state, ins, fp); 
24763                 break;
24764         case OP_BSF:
24765         case OP_BSR:
24766                 print_op_bit_scan(state, ins, fp);
24767                 break;
24768         case OP_RDMSR:
24769                 after_lhs(state, ins);
24770                 fprintf(fp, "\trdmsr\n");
24771                 break;
24772         case OP_WRMSR:
24773                 fprintf(fp, "\twrmsr\n");
24774                 break;
24775         case OP_HLT:
24776                 fprintf(fp, "\thlt\n");
24777                 break;
24778         case OP_SDIVT:
24779                 fprintf(fp, "\tidiv %s\n", reg(state, RHS(ins, 1), REGCM_GPR32));
24780                 break;
24781         case OP_UDIVT:
24782                 fprintf(fp, "\tdiv %s\n", reg(state, RHS(ins, 1), REGCM_GPR32));
24783                 break;
24784         case OP_UMUL:
24785                 fprintf(fp, "\tmul %s\n", reg(state, RHS(ins, 1), REGCM_GPR32));
24786                 break;
24787         case OP_LABEL:
24788                 if (!ins->use) {
24789                         return;
24790                 }
24791                 fprintf(fp, "L%s%lu:\n", 
24792                         state->compiler->label_prefix, (unsigned long)(ins->u.cval));
24793                 break;
24794         case OP_ADECL:
24795                 /* Ignore adecls with no registers error otherwise */
24796                 if (!noop_adecl(ins)) {
24797                         internal_error(state, ins, "adecl remains?");
24798                 }
24799                 break;
24800                 /* Ignore OP_PIECE */
24801         case OP_PIECE:
24802                 break;
24803                 /* Operations that should never get here */
24804         case OP_SDIV: case OP_UDIV:
24805         case OP_SMOD: case OP_UMOD:
24806         case OP_LTRUE:   case OP_LFALSE:  case OP_EQ:      case OP_NOTEQ:
24807         case OP_SLESS:   case OP_ULESS:   case OP_SMORE:   case OP_UMORE:
24808         case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
24809         default:
24810                 internal_error(state, ins, "unknown op: %d %s",
24811                         ins->op, tops(ins->op));
24812                 break;
24813         }
24814 }
24815
24816 static void print_instructions(struct compile_state *state)
24817 {
24818         struct triple *first, *ins;
24819         int print_location;
24820         struct occurance *last_occurance;
24821         FILE *fp;
24822         int max_inline_depth;
24823         max_inline_depth = 0;
24824         print_location = 1;
24825         last_occurance = 0;
24826         fp = state->output;
24827         /* Masks for common sizes */
24828         fprintf(fp, ".section \"" DATA_SECTION "\"\n");
24829         fprintf(fp, ".balign 16\n");
24830         fprintf(fp, "L%s1:\n", state->compiler->label_prefix);
24831         fprintf(fp, ".int 0xff, 0, 0, 0\n");
24832         fprintf(fp, "L%s2:\n", state->compiler->label_prefix);
24833         fprintf(fp, ".int 0xffff, 0, 0, 0\n");
24834         fprintf(fp, ".section \"" TEXT_SECTION "\"\n");
24835         first = state->first;
24836         ins = first;
24837         do {
24838                 if (print_location && 
24839                         last_occurance != ins->occurance) {
24840                         if (!ins->occurance->parent) {
24841                                 fprintf(fp, "\t/* %s,%s:%d.%d */\n",
24842                                         ins->occurance->function?ins->occurance->function:"(null)",
24843                                         ins->occurance->filename?ins->occurance->filename:"(null)",
24844                                         ins->occurance->line,
24845                                         ins->occurance->col);
24846                         }
24847                         else {
24848                                 struct occurance *ptr;
24849                                 int inline_depth;
24850                                 fprintf(fp, "\t/*\n");
24851                                 inline_depth = 0;
24852                                 for(ptr = ins->occurance; ptr; ptr = ptr->parent) {
24853                                         inline_depth++;
24854                                         fprintf(fp, "\t * %s,%s:%d.%d\n",
24855                                                 ptr->function,
24856                                                 ptr->filename,
24857                                                 ptr->line,
24858                                                 ptr->col);
24859                                 }
24860                                 fprintf(fp, "\t */\n");
24861                                 if (inline_depth > max_inline_depth) {
24862                                         max_inline_depth = inline_depth;
24863                                 }
24864                         }
24865                         if (last_occurance) {
24866                                 put_occurance(last_occurance);
24867                         }
24868                         get_occurance(ins->occurance);
24869                         last_occurance = ins->occurance;
24870                 }
24871
24872                 print_instruction(state, ins, fp);
24873                 ins = ins->next;
24874         } while(ins != first);
24875         if (print_location) {
24876                 fprintf(fp, "/* max inline depth %d */\n",
24877                         max_inline_depth);
24878         }
24879 }
24880
24881 static void generate_code(struct compile_state *state)
24882 {
24883         generate_local_labels(state);
24884         print_instructions(state);
24885         
24886 }
24887
24888 static void print_preprocessed_tokens(struct compile_state *state)
24889 {
24890         int tok;
24891         FILE *fp;
24892         int line;
24893         const char *filename;
24894         fp = state->output;
24895         filename = 0;
24896         line = 0;
24897         for(;;) {
24898                 struct file_state *file;
24899                 struct token *tk;
24900                 const char *token_str;
24901                 tok = peek(state);
24902                 if (tok == TOK_EOF) {
24903                         break;
24904                 }
24905                 tk = eat(state, tok);
24906                 token_str = 
24907                         tk->ident ? tk->ident->name :
24908                         tk->str_len ? tk->val.str :
24909                         tokens[tk->tok];
24910
24911                 file = state->file;
24912                 while(file->macro && file->prev) {
24913                         file = file->prev;
24914                 }
24915                 if (!file->macro && 
24916                         ((file->line != line) || (file->basename != filename))) 
24917                 {
24918                         int i, col;
24919                         if ((file->basename == filename) &&
24920                                 (line < file->line)) {
24921                                 while(line < file->line) {
24922                                         fprintf(fp, "\n");
24923                                         line++;
24924                                 }
24925                         }
24926                         else {
24927                                 fprintf(fp, "\n#line %d \"%s\"\n",
24928                                         file->line, file->basename);
24929                         }
24930                         line = file->line;
24931                         filename = file->basename;
24932                         col = get_col(file) - strlen(token_str);
24933                         for(i = 0; i < col; i++) {
24934                                 fprintf(fp, " ");
24935                         }
24936                 }
24937                 
24938                 fprintf(fp, "%s ", token_str);
24939                 
24940                 if (state->compiler->debug & DEBUG_TOKENS) {
24941                         loc(state->dbgout, state, 0);
24942                         fprintf(state->dbgout, "%s <- `%s'\n",
24943                                 tokens[tok], token_str);
24944                 }
24945         }
24946 }
24947
24948 static void compile(const char *filename,
24949         struct compiler_state *compiler, struct arch_state *arch)
24950 {
24951         int i;
24952         struct compile_state state;
24953         struct triple *ptr;
24954         struct filelist *includes = include_filelist;
24955         memset(&state, 0, sizeof(state));
24956         state.compiler = compiler;
24957         state.arch     = arch;
24958         state.file = 0;
24959         for(i = 0; i < sizeof(state.token)/sizeof(state.token[0]); i++) {
24960                 memset(&state.token[i], 0, sizeof(state.token[i]));
24961                 state.token[i].tok = -1;
24962         }
24963         /* Remember the output descriptors */
24964         state.errout = stderr;
24965         state.dbgout = stdout;
24966         /* Remember the output filename */
24967         state.output    = fopen(state.compiler->ofilename, "w");
24968         if (!state.output) {
24969                 error(&state, 0, "Cannot open output file %s\n",
24970                         state.compiler->ofilename);
24971         }
24972         /* Make certain a good cleanup happens */
24973         exit_state = &state;
24974         atexit(exit_cleanup);
24975
24976         /* Prep the preprocessor */
24977         state.if_depth = 0;
24978         memset(state.if_bytes, 0, sizeof(state.if_bytes));
24979         /* register the C keywords */
24980         register_keywords(&state);
24981         /* register the keywords the macro preprocessor knows */
24982         register_macro_keywords(&state);
24983         /* generate some builtin macros */
24984         register_builtin_macros(&state);
24985         /* Memorize where some special keywords are. */
24986         state.i_switch        = lookup(&state, "switch", 6);
24987         state.i_case          = lookup(&state, "case", 4);
24988         state.i_continue      = lookup(&state, "continue", 8);
24989         state.i_break         = lookup(&state, "break", 5);
24990         state.i_default       = lookup(&state, "default", 7);
24991         state.i_return        = lookup(&state, "return", 6);
24992         /* Memorize where predefined macros are. */
24993         state.i___VA_ARGS__   = lookup(&state, "__VA_ARGS__", 11);
24994         state.i___FILE__      = lookup(&state, "__FILE__", 8);
24995         state.i___LINE__      = lookup(&state, "__LINE__", 8);
24996         /* Memorize where predefined identifiers are. */
24997         state.i___func__      = lookup(&state, "__func__", 8);
24998         /* Memorize where some attribute keywords are. */
24999         state.i_noinline      = lookup(&state, "noinline", 8);
25000         state.i_always_inline = lookup(&state, "always_inline", 13);
25001         state.i_noreturn      = lookup(&state, "noreturn", 8);
25002
25003         /* Process the command line macros */
25004         process_cmdline_macros(&state);
25005
25006         /* Allocate beginning bounding labels for the function list */
25007         state.first = label(&state);
25008         state.first->id |= TRIPLE_FLAG_VOLATILE;
25009         use_triple(state.first, state.first);
25010         ptr = label(&state);
25011         ptr->id |= TRIPLE_FLAG_VOLATILE;
25012         use_triple(ptr, ptr);
25013         flatten(&state, state.first, ptr);
25014
25015         /* Allocate a label for the pool of global variables */
25016         state.global_pool = label(&state);
25017         state.global_pool->id |= TRIPLE_FLAG_VOLATILE;
25018         flatten(&state, state.first, state.global_pool);
25019
25020         /* Enter the globl definition scope */
25021         start_scope(&state);
25022         register_builtins(&state);
25023
25024         compile_file(&state, filename, 1);
25025         
25026         while (includes) {
25027                 compile_file(&state, includes->filename, 1);
25028                 includes=includes->next;
25029         }
25030
25031         /* Stop if all we want is preprocessor output */
25032         if (state.compiler->flags & COMPILER_PP_ONLY) {
25033                 print_preprocessed_tokens(&state);
25034                 return;
25035         }
25036
25037         decls(&state);
25038
25039         /* Exit the global definition scope */
25040         end_scope(&state);
25041
25042         /* Now that basic compilation has happened 
25043          * optimize the intermediate code 
25044          */
25045         optimize(&state);
25046
25047         generate_code(&state);
25048         if (state.compiler->debug) {
25049                 fprintf(state.errout, "done\n");
25050         }
25051         exit_state = 0;
25052 }
25053
25054 static void version(FILE *fp)
25055 {
25056         fprintf(fp, "romcc " VERSION " released " RELEASE_DATE "\n");
25057 }
25058
25059 static void usage(void)
25060 {
25061         FILE *fp = stdout;
25062         version(fp);
25063         fprintf(fp,
25064                 "\nUsage: romcc [options] <source>.c\n"
25065                 "Compile a C source file generating a binary that does not implicilty use RAM\n"
25066                 "Options: \n"
25067                 "-o <output file name>\n"
25068                 "-f<option>            Specify a generic compiler option\n"
25069                 "-m<option>            Specify a arch dependent option\n"
25070                 "--                    Specify this is the last option\n"
25071                 "\nGeneric compiler options:\n"
25072         );
25073         compiler_usage(fp);
25074         fprintf(fp,
25075                 "\nArchitecture compiler options:\n"
25076         );
25077         arch_usage(fp);
25078         fprintf(fp,
25079                 "\n"
25080         );
25081 }
25082
25083 static void arg_error(char *fmt, ...)
25084 {
25085         va_list args;
25086         va_start(args, fmt);
25087         vfprintf(stderr, fmt, args);
25088         va_end(args);
25089         usage();
25090         exit(1);
25091 }
25092
25093 int main(int argc, char **argv)
25094 {
25095         const char *filename;
25096         struct compiler_state compiler;
25097         struct arch_state arch;
25098         int all_opts;
25099         
25100         
25101         /* I don't want any surprises */
25102         setlocale(LC_ALL, "C");
25103
25104         init_compiler_state(&compiler);
25105         init_arch_state(&arch);
25106         filename = 0;
25107         all_opts = 0;
25108         while(argc > 1) {
25109                 if (!all_opts && (strcmp(argv[1], "-o") == 0) && (argc > 2)) {
25110                         compiler.ofilename = argv[2];
25111                         argv += 2;
25112                         argc -= 2;
25113                 }
25114                 else if (!all_opts && argv[1][0] == '-') {
25115                         int result;
25116                         result = -1;
25117                         if (strcmp(argv[1], "--") == 0) {
25118                                 result = 0;
25119                                 all_opts = 1;
25120                         }
25121                         else if (strncmp(argv[1], "-E", 2) == 0) {
25122                                 result = compiler_encode_flag(&compiler, argv[1]);
25123                         }
25124                         else if (strncmp(argv[1], "-O", 2) == 0) {
25125                                 result = compiler_encode_flag(&compiler, argv[1]);
25126                         }
25127                         else if (strncmp(argv[1], "-I", 2) == 0) {
25128                                 result = compiler_encode_flag(&compiler, argv[1]);
25129                         }
25130                         else if (strncmp(argv[1], "-D", 2) == 0) {
25131                                 result = compiler_encode_flag(&compiler, argv[1]);
25132                         }
25133                         else if (strncmp(argv[1], "-U", 2) == 0) {
25134                                 result = compiler_encode_flag(&compiler, argv[1]);
25135                         }
25136                         else if (strncmp(argv[1], "--label-prefix=", 15) == 0) {
25137                                 result = compiler_encode_flag(&compiler, argv[1]+2);
25138                         }
25139                         else if (strncmp(argv[1], "-f", 2) == 0) {
25140                                 result = compiler_encode_flag(&compiler, argv[1]+2);
25141                         }
25142                         else if (strncmp(argv[1], "-m", 2) == 0) {
25143                                 result = arch_encode_flag(&arch, argv[1]+2);
25144                         }
25145                         else if (strncmp(argv[1], "-include", 10) == 0) {
25146                                 struct filelist *old_head = include_filelist;
25147                                 include_filelist = malloc(sizeof(struct filelist));
25148                                 if (!include_filelist) {
25149                                         die("Out of memory.\n");
25150                                 }
25151                                 argv++;
25152                                 argc--;
25153                                 include_filelist->filename = argv[1];
25154                                 include_filelist->next = old_head;
25155                                 result = 0;
25156                         }
25157                         if (result < 0) {
25158                                 arg_error("Invalid option specified: %s\n",
25159                                         argv[1]);
25160                         }
25161                         argv++;
25162                         argc--;
25163                 }
25164                 else {
25165                         if (filename) {
25166                                 arg_error("Only one filename may be specified\n");
25167                         }
25168                         filename = argv[1];
25169                         argv++;
25170                         argc--;
25171                 }
25172         }
25173         if (!filename) {
25174                 arg_error("No filename specified\n");
25175         }
25176         compile(filename, &compiler, &arch);
25177
25178         return 0;
25179 }