separate build.h and config.h usage (now possible because newconfig is gone)
[coreboot.git] / util / romcc / romcc.c
1 #undef VERSION_MAJOR
2 #undef VERSION_MINOR
3 #undef RELEASE_DATE
4 #undef VERSION
5 #define VERSION_MAJOR "0"
6 #define VERSION_MINOR "72"
7 #define RELEASE_DATE "10 February 2010"
8 #define VERSION VERSION_MAJOR "." VERSION_MINOR
9
10 #include <stdarg.h>
11 #include <errno.h>
12 #include <stdint.h>
13 #include <stdlib.h>
14 #include <stdio.h>
15 #include <sys/types.h>
16 #include <sys/stat.h>
17 #include <fcntl.h>
18 #include <unistd.h>
19 #include <stdio.h>
20 #include <string.h>
21 #include <limits.h>
22 #include <locale.h>
23 #include <time.h>
24
25 #define MAX_CWD_SIZE 4096
26 #define MAX_ALLOCATION_PASSES 100
27
28 /* NOTE: Before you even start thinking to touch anything 
29  * in this code, set DEBUG_ROMCC_WARNINGS to 1 to get an
30  * insight on the original author's thoughts. We introduced 
31  * this switch as romcc was about the only thing producing
32  * massive warnings in our code..
33  */
34 #define DEBUG_ROMCC_WARNINGS 0
35
36 #define DEBUG_CONSISTENCY 1
37 #define DEBUG_SDP_BLOCKS 0
38 #define DEBUG_TRIPLE_COLOR 0
39
40 #define DEBUG_DISPLAY_USES 1
41 #define DEBUG_DISPLAY_TYPES 1
42 #define DEBUG_REPLACE_CLOSURE_TYPE_HIRES 0
43 #define DEBUG_DECOMPOSE_PRINT_TUPLES 0
44 #define DEBUG_DECOMPOSE_HIRES  0
45 #define DEBUG_INITIALIZER 0
46 #define DEBUG_UPDATE_CLOSURE_TYPE 0
47 #define DEBUG_LOCAL_TRIPLE 0
48 #define DEBUG_BASIC_BLOCKS_VERBOSE 0
49 #define DEBUG_CPS_RENAME_VARIABLES_HIRES 0
50 #define DEBUG_SIMPLIFY_HIRES 0
51 #define DEBUG_SHRINKING 0
52 #define DEBUG_COALESCE_HITCHES 0
53 #define DEBUG_CODE_ELIMINATION 0
54
55 #define DEBUG_EXPLICIT_CLOSURES 0
56
57 #if DEBUG_ROMCC_WARNINGS
58 #warning "FIXME give clear error messages about unused variables"
59 #warning "FIXME properly handle multi dimensional arrays"
60 #warning "FIXME handle multiple register sizes"
61 #endif
62
63 /*  Control flow graph of a loop without goto.
64  * 
65  *        AAA
66  *   +---/
67  *  /
68  * / +--->CCC
69  * | |    / \
70  * | |  DDD EEE    break;
71  * | |    \    \
72  * | |    FFF   \
73  *  \|    / \    \
74  *   |\ GGG HHH   |   continue;
75  *   | \  \   |   |
76  *   |  \ III |  /
77  *   |   \ | /  / 
78  *   |    vvv  /  
79  *   +----BBB /   
80  *         | /
81  *         vv
82  *        JJJ
83  *
84  * 
85  *             AAA
86  *     +-----+  |  +----+
87  *     |      \ | /     |
88  *     |       BBB  +-+ |
89  *     |       / \ /  | |
90  *     |     CCC JJJ / /
91  *     |     / \    / / 
92  *     |   DDD EEE / /  
93  *     |    |   +-/ /
94  *     |   FFF     /    
95  *     |   / \    /     
96  *     | GGG HHH /      
97  *     |  |   +-/
98  *     | III
99  *     +--+ 
100  *
101  * 
102  * DFlocal(X) = { Y <- Succ(X) | idom(Y) != X }
103  * DFup(Z)    = { Y <- DF(Z) | idom(Y) != X }
104  *
105  *
106  * [] == DFlocal(X) U DF(X)
107  * () == DFup(X)
108  *
109  * Dominator graph of the same nodes.
110  *
111  *           AAA     AAA: [ ] ()
112  *          /   \
113  *        BBB    JJJ BBB: [ JJJ ] ( JJJ )  JJJ: [ ] ()
114  *         |
115  *        CCC        CCC: [ ] ( BBB, JJJ )
116  *        / \
117  *     DDD   EEE     DDD: [ ] ( BBB ) EEE: [ JJJ ] ()
118  *      |
119  *     FFF           FFF: [ ] ( BBB )
120  *     / \         
121  *  GGG   HHH        GGG: [ ] ( BBB ) HHH: [ BBB ] ()
122  *   |
123  *  III              III: [ BBB ] ()
124  *
125  *
126  * BBB and JJJ are definitely the dominance frontier.
127  * Where do I place phi functions and how do I make that decision.
128  *   
129  */
130
131 struct filelist {
132         const char *filename;
133         struct filelist *next;
134 };
135
136 struct filelist *include_filelist = NULL;
137
138 static void die(char *fmt, ...)
139 {
140         va_list args;
141
142         va_start(args, fmt);
143         vfprintf(stderr, fmt, args);
144         va_end(args);
145         fflush(stdout);
146         fflush(stderr);
147         exit(1);
148 }
149
150 static void *xmalloc(size_t size, const char *name)
151 {
152         void *buf;
153         buf = malloc(size);
154         if (!buf) {
155                 die("Cannot malloc %ld bytes to hold %s: %s\n",
156                         size + 0UL, name, strerror(errno));
157         }
158         return buf;
159 }
160
161 static void *xcmalloc(size_t size, const char *name)
162 {
163         void *buf;
164         buf = xmalloc(size, name);
165         memset(buf, 0, size);
166         return buf;
167 }
168
169 static void *xrealloc(void *ptr, size_t size, const char *name)
170 {
171         void *buf;
172         buf = realloc(ptr, size);
173         if (!buf) {
174                 die("Cannot realloc %ld bytes to hold %s: %s\n",
175                         size + 0UL, name, strerror(errno));
176         }
177         return buf;
178 }
179
180 static void xfree(const void *ptr)
181 {
182         free((void *)ptr);
183 }
184
185 static char *xstrdup(const char *str)
186 {
187         char *new;
188         int len;
189         len = strlen(str);
190         new = xmalloc(len + 1, "xstrdup string");
191         memcpy(new, str, len);
192         new[len] = '\0';
193         return new;
194 }
195
196 static void xchdir(const char *path)
197 {
198         if (chdir(path) != 0) {
199                 die("chdir to `%s' failed: %s\n",
200                         path, strerror(errno));
201         }
202 }
203
204 static int exists(const char *dirname, const char *filename)
205 {
206         char cwd[MAX_CWD_SIZE];
207         int does_exist;
208
209         if (getcwd(cwd, sizeof(cwd)) == 0) {
210                 die("cwd buffer to small");
211         }
212
213         does_exist = 1;
214         if (chdir(dirname) != 0) {
215                 does_exist = 0;
216         }
217         if (does_exist && (access(filename, O_RDONLY) < 0)) {
218                 if ((errno != EACCES) && (errno != EROFS)) {
219                         does_exist = 0;
220                 }
221         }
222         xchdir(cwd);
223         return does_exist;
224 }
225
226
227 static char *slurp_file(const char *dirname, const char *filename, off_t *r_size)
228 {
229         char cwd[MAX_CWD_SIZE];
230         char *buf;
231         off_t size, progress;
232         ssize_t result;
233         FILE* file;
234         
235         if (!filename) {
236                 *r_size = 0;
237                 return 0;
238         }
239         if (getcwd(cwd, sizeof(cwd)) == 0) {
240                 die("cwd buffer to small");
241         }
242         xchdir(dirname);
243         file = fopen(filename, "rb");
244         xchdir(cwd);
245         if (file == NULL) {
246                 die("Cannot open '%s' : %s\n",
247                         filename, strerror(errno));
248         }
249         fseek(file, 0, SEEK_END);
250         size = ftell(file);
251         fseek(file, 0, SEEK_SET);
252         *r_size = size +1;
253         buf = xmalloc(size +2, filename);
254         buf[size] = '\n'; /* Make certain the file is newline terminated */
255         buf[size+1] = '\0'; /* Null terminate the file for good measure */
256         progress = 0;
257         while(progress < size) {
258                 result = fread(buf + progress, 1, size - progress, file);
259                 if (result < 0) {
260                         if ((errno == EINTR) || (errno == EAGAIN))
261                                 continue;
262                         die("read on %s of %ld bytes failed: %s\n",
263                                 filename, (size - progress)+ 0UL, strerror(errno));
264                 }
265                 progress += result;
266         }
267         fclose(file);
268         return buf;
269 }
270
271 /* Types on the destination platform */
272 #if DEBUG_ROMCC_WARNINGS
273 #warning "FIXME this assumes 32bit x86 is the destination"
274 #endif
275 typedef int8_t   schar_t;
276 typedef uint8_t  uchar_t;
277 typedef int8_t   char_t;
278 typedef int16_t  short_t;
279 typedef uint16_t ushort_t;
280 typedef int32_t  int_t;
281 typedef uint32_t uint_t;
282 typedef int32_t  long_t;
283 #define ulong_t uint32_t
284
285 #define SCHAR_T_MIN (-128)
286 #define SCHAR_T_MAX 127
287 #define UCHAR_T_MAX 255
288 #define CHAR_T_MIN  SCHAR_T_MIN
289 #define CHAR_T_MAX  SCHAR_T_MAX
290 #define SHRT_T_MIN  (-32768)
291 #define SHRT_T_MAX  32767
292 #define USHRT_T_MAX 65535
293 #define INT_T_MIN   (-LONG_T_MAX - 1)
294 #define INT_T_MAX   2147483647
295 #define UINT_T_MAX  4294967295U
296 #define LONG_T_MIN  (-LONG_T_MAX - 1)
297 #define LONG_T_MAX  2147483647
298 #define ULONG_T_MAX 4294967295U
299
300 #define SIZEOF_I8    8
301 #define SIZEOF_I16   16
302 #define SIZEOF_I32   32
303 #define SIZEOF_I64   64
304
305 #define SIZEOF_CHAR    8
306 #define SIZEOF_SHORT   16
307 #define SIZEOF_INT     32
308 #define SIZEOF_LONG    (sizeof(long_t)*SIZEOF_CHAR)
309
310
311 #define ALIGNOF_CHAR    8
312 #define ALIGNOF_SHORT   16
313 #define ALIGNOF_INT     32
314 #define ALIGNOF_LONG    (sizeof(long_t)*SIZEOF_CHAR)
315
316 #define REG_SIZEOF_REG     32
317 #define REG_SIZEOF_CHAR    REG_SIZEOF_REG
318 #define REG_SIZEOF_SHORT   REG_SIZEOF_REG
319 #define REG_SIZEOF_INT     REG_SIZEOF_REG
320 #define REG_SIZEOF_LONG    REG_SIZEOF_REG
321
322 #define REG_ALIGNOF_REG     REG_SIZEOF_REG
323 #define REG_ALIGNOF_CHAR    REG_SIZEOF_REG
324 #define REG_ALIGNOF_SHORT   REG_SIZEOF_REG
325 #define REG_ALIGNOF_INT     REG_SIZEOF_REG
326 #define REG_ALIGNOF_LONG    REG_SIZEOF_REG
327
328 /* Additional definitions for clarity.
329  * I currently assume a long is the largest native
330  * machine word and that a pointer fits into it.
331  */
332 #define SIZEOF_WORD     SIZEOF_LONG
333 #define SIZEOF_POINTER  SIZEOF_LONG
334 #define ALIGNOF_WORD    ALIGNOF_LONG
335 #define ALIGNOF_POINTER ALIGNOF_LONG
336 #define REG_SIZEOF_POINTER  REG_SIZEOF_LONG
337 #define REG_ALIGNOF_POINTER REG_ALIGNOF_LONG
338
339 struct file_state {
340         struct file_state *prev;
341         const char *basename;
342         char *dirname;
343         const char *buf;
344         off_t size;
345         const char *pos;
346         int line;
347         const char *line_start;
348         int report_line;
349         const char *report_name;
350         const char *report_dir;
351         int macro      : 1;
352         int trigraphs  : 1;
353         int join_lines : 1;
354 };
355 struct hash_entry;
356 struct token {
357         int tok;
358         struct hash_entry *ident;
359         const char *pos;
360         int str_len;
361         union {
362                 ulong_t integer;
363                 const char *str;
364                 int notmacro;
365         } val;
366 };
367
368 /* I have two classes of types:
369  * Operational types.
370  * Logical types.  (The type the C standard says the operation is of)
371  *
372  * The operational types are:
373  * chars
374  * shorts
375  * ints
376  * longs
377  *
378  * floats
379  * doubles
380  * long doubles
381  *
382  * pointer
383  */
384
385
386 /* Machine model.
387  * No memory is useable by the compiler.
388  * There is no floating point support.
389  * All operations take place in general purpose registers.
390  * There is one type of general purpose register.
391  * Unsigned longs are stored in that general purpose register.
392  */
393
394 /* Operations on general purpose registers.
395  */
396
397 #define OP_SDIVT      0
398 #define OP_UDIVT      1
399 #define OP_SMUL       2
400 #define OP_UMUL       3
401 #define OP_SDIV       4
402 #define OP_UDIV       5
403 #define OP_SMOD       6
404 #define OP_UMOD       7
405 #define OP_ADD        8
406 #define OP_SUB        9
407 #define OP_SL        10
408 #define OP_USR       11
409 #define OP_SSR       12 
410 #define OP_AND       13 
411 #define OP_XOR       14
412 #define OP_OR        15
413 #define OP_POS       16 /* Dummy positive operator don't use it */
414 #define OP_NEG       17
415 #define OP_INVERT    18
416                      
417 #define OP_EQ        20
418 #define OP_NOTEQ     21
419 #define OP_SLESS     22
420 #define OP_ULESS     23
421 #define OP_SMORE     24
422 #define OP_UMORE     25
423 #define OP_SLESSEQ   26
424 #define OP_ULESSEQ   27
425 #define OP_SMOREEQ   28
426 #define OP_UMOREEQ   29
427                      
428 #define OP_LFALSE    30  /* Test if the expression is logically false */
429 #define OP_LTRUE     31  /* Test if the expression is logcially true */
430
431 #define OP_LOAD      32
432 #define OP_STORE     33
433 /* For OP_STORE ->type holds the type
434  * RHS(0) holds the destination address
435  * RHS(1) holds the value to store.
436  */
437
438 #define OP_UEXTRACT  34
439 /* OP_UEXTRACT extracts an unsigned bitfield from a pseudo register
440  * RHS(0) holds the psuedo register to extract from
441  * ->type holds the size of the bitfield.
442  * ->u.bitfield.size holds the size of the bitfield.
443  * ->u.bitfield.offset holds the offset to extract from
444  */
445 #define OP_SEXTRACT  35
446 /* OP_SEXTRACT extracts a signed bitfield from a pseudo register
447  * RHS(0) holds the psuedo register to extract from
448  * ->type holds the size of the bitfield.
449  * ->u.bitfield.size holds the size of the bitfield.
450  * ->u.bitfield.offset holds the offset to extract from
451  */
452 #define OP_DEPOSIT   36
453 /* OP_DEPOSIT replaces a bitfield with a new value.
454  * RHS(0) holds the value to replace a bitifield in.
455  * RHS(1) holds the replacement value
456  * ->u.bitfield.size holds the size of the bitfield.
457  * ->u.bitfield.offset holds the deposit into
458  */
459
460 #define OP_NOOP      37
461
462 #define OP_MIN_CONST 50
463 #define OP_MAX_CONST 58
464 #define IS_CONST_OP(X) (((X) >= OP_MIN_CONST) && ((X) <= OP_MAX_CONST))
465 #define OP_INTCONST  50
466 /* For OP_INTCONST ->type holds the type.
467  * ->u.cval holds the constant value.
468  */
469 #define OP_BLOBCONST 51
470 /* For OP_BLOBCONST ->type holds the layout and size
471  * information.  u.blob holds a pointer to the raw binary
472  * data for the constant initializer.
473  */
474 #define OP_ADDRCONST 52
475 /* For OP_ADDRCONST ->type holds the type.
476  * MISC(0) holds the reference to the static variable.
477  * ->u.cval holds an offset from that value.
478  */
479 #define OP_UNKNOWNVAL 59
480 /* For OP_UNKNOWNAL ->type holds the type.
481  * For some reason we don't know what value this type has.
482  * This allows for variables that have don't have values
483  * assigned yet, or variables whose value we simply do not know.
484  */
485
486 #define OP_WRITE     60 
487 /* OP_WRITE moves one pseudo register to another.
488  * MISC(0) holds the destination pseudo register, which must be an OP_DECL.
489  * RHS(0) holds the psuedo to move.
490  */
491
492 #define OP_READ      61
493 /* OP_READ reads the value of a variable and makes
494  * it available for the pseudo operation.
495  * Useful for things like def-use chains.
496  * RHS(0) holds points to the triple to read from.
497  */
498 #define OP_COPY      62
499 /* OP_COPY makes a copy of the pseudo register or constant in RHS(0).
500  */
501 #define OP_CONVERT   63
502 /* OP_CONVERT makes a copy of the pseudo register or constant in RHS(0).
503  * And then the type is converted appropriately.
504  */
505 #define OP_PIECE     64
506 /* OP_PIECE returns one piece of a instruction that returns a structure.
507  * MISC(0) is the instruction
508  * u.cval is the LHS piece of the instruction to return.
509  */
510 #define OP_ASM       65
511 /* OP_ASM holds a sequence of assembly instructions, the result
512  * of a C asm directive.
513  * RHS(x) holds input value x to the assembly sequence.
514  * LHS(x) holds the output value x from the assembly sequence.
515  * u.blob holds the string of assembly instructions.
516  */
517
518 #define OP_DEREF     66
519 /* OP_DEREF generates an lvalue from a pointer.
520  * RHS(0) holds the pointer value.
521  * OP_DEREF serves as a place holder to indicate all necessary
522  * checks have been done to indicate a value is an lvalue.
523  */
524 #define OP_DOT       67
525 /* OP_DOT references a submember of a structure lvalue.
526  * MISC(0) holds the lvalue.
527  * ->u.field holds the name of the field we want.
528  *
529  * Not seen after structures are flattened.
530  */
531 #define OP_INDEX     68
532 /* OP_INDEX references a submember of a tuple or array lvalue.
533  * MISC(0) holds the lvalue.
534  * ->u.cval holds the index into the lvalue.
535  *
536  * Not seen after structures are flattened.
537  */
538 #define OP_VAL       69
539 /* OP_VAL returns the value of a subexpression of the current expression.
540  * Useful for operators that have side effects.
541  * RHS(0) holds the expression.
542  * MISC(0) holds the subexpression of RHS(0) that is the
543  * value of the expression.
544  *
545  * Not seen outside of expressions.
546  */
547
548 #define OP_TUPLE     70
549 /* OP_TUPLE is an array of triples that are either variable
550  * or values for a structure or an array.  It is used as
551  * a place holder when flattening compound types.
552  * The value represented by an OP_TUPLE is held in N registers.
553  * LHS(0..N-1) refer to those registers.
554  * ->use is a list of statements that use the value.
555  * 
556  * Although OP_TUPLE always has register sized pieces they are not
557  * used until structures are flattened/decomposed into their register
558  * components. 
559  * ???? registers ????
560  */
561
562 #define OP_BITREF    71
563 /* OP_BITREF describes a bitfield as an lvalue.
564  * RHS(0) holds the register value.
565  * ->type holds the type of the bitfield.
566  * ->u.bitfield.size holds the size of the bitfield.
567  * ->u.bitfield.offset holds the offset of the bitfield in the register
568  */
569
570
571 #define OP_FCALL     72
572 /* OP_FCALL performs a procedure call. 
573  * MISC(0) holds a pointer to the OP_LIST of a function
574  * RHS(x) holds argument x of a function
575  * 
576  * Currently not seen outside of expressions.
577  */
578 #define OP_PROG      73
579 /* OP_PROG is an expression that holds a list of statements, or
580  * expressions.  The final expression is the value of the expression.
581  * RHS(0) holds the start of the list.
582  */
583
584 /* statements */
585 #define OP_LIST      80
586 /* OP_LIST Holds a list of statements that compose a function, and a result value.
587  * RHS(0) holds the list of statements.
588  * A list of all functions is maintained.
589  */
590
591 #define OP_BRANCH    81 /* an unconditional branch */
592 /* For branch instructions
593  * TARG(0) holds the branch target.
594  * ->next holds where to branch to if the branch is not taken.
595  * The branch target can only be a label
596  */
597
598 #define OP_CBRANCH   82 /* a conditional branch */
599 /* For conditional branch instructions
600  * RHS(0) holds the branch condition.
601  * TARG(0) holds the branch target.
602  * ->next holds where to branch to if the branch is not taken.
603  * The branch target can only be a label
604  */
605
606 #define OP_CALL      83 /* an uncontional branch that will return */
607 /* For call instructions
608  * MISC(0) holds the OP_RET that returns from the branch
609  * TARG(0) holds the branch target.
610  * ->next holds where to branch to if the branch is not taken.
611  * The branch target can only be a label
612  */
613
614 #define OP_RET       84 /* an uncontinonal branch through a variable back to an OP_CALL */
615 /* For call instructions
616  * RHS(0) holds the variable with the return address
617  * The branch target can only be a label
618  */
619
620 #define OP_LABEL     86
621 /* OP_LABEL is a triple that establishes an target for branches.
622  * ->use is the list of all branches that use this label.
623  */
624
625 #define OP_ADECL     87 
626 /* OP_ADECL is a triple that establishes an lvalue for assignments.
627  * A variable takes N registers to contain.
628  * LHS(0..N-1) refer to an OP_PIECE triple that represents
629  * the Xth register that the variable is stored in.
630  * ->use is a list of statements that use the variable.
631  * 
632  * Although OP_ADECL always has register sized pieces they are not
633  * used until structures are flattened/decomposed into their register
634  * components. 
635  */
636
637 #define OP_SDECL     88
638 /* OP_SDECL is a triple that establishes a variable of static
639  * storage duration.
640  * ->use is a list of statements that use the variable.
641  * MISC(0) holds the initializer expression.
642  */
643
644
645 #define OP_PHI       89
646 /* OP_PHI is a triple used in SSA form code.  
647  * It is used when multiple code paths merge and a variable needs
648  * a single assignment from any of those code paths.
649  * The operation is a cross between OP_DECL and OP_WRITE, which
650  * is what OP_PHI is generated from.
651  * 
652  * RHS(x) points to the value from code path x
653  * The number of RHS entries is the number of control paths into the block
654  * in which OP_PHI resides.  The elements of the array point to point
655  * to the variables OP_PHI is derived from.
656  *
657  * MISC(0) holds a pointer to the orginal OP_DECL node.
658  */
659
660 #if 0
661 /* continuation helpers
662  */
663 #define OP_CPS_BRANCH    90 /* an unconditional branch */
664 /* OP_CPS_BRANCH calls a continuation 
665  * RHS(x) holds argument x of the function
666  * TARG(0) holds OP_CPS_START target
667  */
668 #define OP_CPS_CBRANCH   91  /* a conditional branch */
669 /* OP_CPS_CBRANCH conditionally calls one of two continuations 
670  * RHS(0) holds the branch condition
671  * RHS(x + 1) holds argument x of the function
672  * TARG(0) holds the OP_CPS_START to jump to when true
673  * ->next holds the OP_CPS_START to jump to when false
674  */
675 #define OP_CPS_CALL      92  /* an uncontional branch that will return */
676 /* For OP_CPS_CALL instructions
677  * RHS(x) holds argument x of the function
678  * MISC(0) holds the OP_CPS_RET that returns from the branch
679  * TARG(0) holds the branch target.
680  * ->next holds where the OP_CPS_RET will return to.
681  */
682 #define OP_CPS_RET       93
683 /* OP_CPS_RET conditionally calls one of two continuations 
684  * RHS(0) holds the variable with the return function address
685  * RHS(x + 1) holds argument x of the function
686  * The branch target may be any OP_CPS_START
687  */
688 #define OP_CPS_END       94
689 /* OP_CPS_END is the triple at the end of the program.
690  * For most practical purposes it is a branch.
691  */
692 #define OP_CPS_START     95
693 /* OP_CPS_START is a triple at the start of a continuation
694  * The arguments variables takes N registers to contain.
695  * LHS(0..N-1) refer to an OP_PIECE triple that represents
696  * the Xth register that the arguments are stored in.
697  */
698 #endif
699
700 /* Architecture specific instructions */
701 #define OP_CMP         100
702 #define OP_TEST        101
703 #define OP_SET_EQ      102
704 #define OP_SET_NOTEQ   103
705 #define OP_SET_SLESS   104
706 #define OP_SET_ULESS   105
707 #define OP_SET_SMORE   106
708 #define OP_SET_UMORE   107
709 #define OP_SET_SLESSEQ 108
710 #define OP_SET_ULESSEQ 109
711 #define OP_SET_SMOREEQ 110
712 #define OP_SET_UMOREEQ 111
713
714 #define OP_JMP         112
715 #define OP_JMP_EQ      113
716 #define OP_JMP_NOTEQ   114
717 #define OP_JMP_SLESS   115
718 #define OP_JMP_ULESS   116
719 #define OP_JMP_SMORE   117
720 #define OP_JMP_UMORE   118
721 #define OP_JMP_SLESSEQ 119
722 #define OP_JMP_ULESSEQ 120
723 #define OP_JMP_SMOREEQ 121
724 #define OP_JMP_UMOREEQ 122
725
726 /* Builtin operators that it is just simpler to use the compiler for */
727 #define OP_INB         130
728 #define OP_INW         131
729 #define OP_INL         132
730 #define OP_OUTB        133
731 #define OP_OUTW        134
732 #define OP_OUTL        135
733 #define OP_BSF         136
734 #define OP_BSR         137
735 #define OP_RDMSR       138
736 #define OP_WRMSR       139
737 #define OP_HLT         140
738
739 struct op_info {
740         const char *name;
741         unsigned flags;
742 #define PURE       0x001 /* Triple has no side effects */
743 #define IMPURE     0x002 /* Triple has side effects */
744 #define PURE_BITS(FLAGS) ((FLAGS) & 0x3)
745 #define DEF        0x004 /* Triple is a variable definition */
746 #define BLOCK      0x008 /* Triple stores the current block */
747 #define STRUCTURAL 0x010 /* Triple does not generate a machine instruction */
748 #define BRANCH_BITS(FLAGS) ((FLAGS) & 0xe0 )
749 #define UBRANCH    0x020 /* Triple is an unconditional branch instruction */
750 #define CBRANCH    0x040 /* Triple is a conditional branch instruction */
751 #define RETBRANCH  0x060 /* Triple is a return instruction */
752 #define CALLBRANCH 0x080 /* Triple is a call instruction */
753 #define ENDBRANCH  0x0a0 /* Triple is an end instruction */
754 #define PART       0x100 /* Triple is really part of another triple */
755 #define BITFIELD   0x200 /* Triple manipulates a bitfield */
756         signed char lhs, rhs, misc, targ;
757 };
758
759 #define OP(LHS, RHS, MISC, TARG, FLAGS, NAME) { \
760         .name = (NAME), \
761         .flags = (FLAGS), \
762         .lhs = (LHS), \
763         .rhs = (RHS), \
764         .misc = (MISC), \
765         .targ = (TARG), \
766          }
767 static const struct op_info table_ops[] = {
768 [OP_SDIVT      ] = OP( 2,  2, 0, 0, PURE | BLOCK , "sdivt"),
769 [OP_UDIVT      ] = OP( 2,  2, 0, 0, PURE | BLOCK , "udivt"),
770 [OP_SMUL       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smul"),
771 [OP_UMUL       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umul"),
772 [OP_SDIV       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sdiv"),
773 [OP_UDIV       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "udiv"),
774 [OP_SMOD       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smod"),
775 [OP_UMOD       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umod"),
776 [OP_ADD        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "add"),
777 [OP_SUB        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sub"),
778 [OP_SL         ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sl"),
779 [OP_USR        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "usr"),
780 [OP_SSR        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "ssr"),
781 [OP_AND        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "and"),
782 [OP_XOR        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "xor"),
783 [OP_OR         ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "or"),
784 [OP_POS        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "pos"),
785 [OP_NEG        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "neg"),
786 [OP_INVERT     ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "invert"),
787
788 [OP_EQ         ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "eq"),
789 [OP_NOTEQ      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "noteq"),
790 [OP_SLESS      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sless"),
791 [OP_ULESS      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "uless"),
792 [OP_SMORE      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smore"),
793 [OP_UMORE      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umore"),
794 [OP_SLESSEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "slesseq"),
795 [OP_ULESSEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "ulesseq"),
796 [OP_SMOREEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smoreeq"),
797 [OP_UMOREEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umoreeq"),
798 [OP_LFALSE     ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "lfalse"),
799 [OP_LTRUE      ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "ltrue"),
800
801 [OP_LOAD       ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "load"),
802 [OP_STORE      ] = OP( 0,  2, 0, 0, PURE | BLOCK , "store"),
803
804 [OP_UEXTRACT   ] = OP( 0,  1, 0, 0, PURE | DEF | BITFIELD, "uextract"),
805 [OP_SEXTRACT   ] = OP( 0,  1, 0, 0, PURE | DEF | BITFIELD, "sextract"),
806 [OP_DEPOSIT    ] = OP( 0,  2, 0, 0, PURE | DEF | BITFIELD, "deposit"),
807
808 [OP_NOOP       ] = OP( 0,  0, 0, 0, PURE | BLOCK | STRUCTURAL, "noop"),
809
810 [OP_INTCONST   ] = OP( 0,  0, 0, 0, PURE | DEF, "intconst"),
811 [OP_BLOBCONST  ] = OP( 0,  0, 0, 0, PURE , "blobconst"),
812 [OP_ADDRCONST  ] = OP( 0,  0, 1, 0, PURE | DEF, "addrconst"),
813 [OP_UNKNOWNVAL ] = OP( 0,  0, 0, 0, PURE | DEF, "unknown"),
814
815 #if DEBUG_ROMCC_WARNINGS
816 #warning "FIXME is it correct for OP_WRITE to be a def?  I currently use it as one..."
817 #endif
818 [OP_WRITE      ] = OP( 0,  1, 1, 0, PURE | DEF | BLOCK, "write"),
819 [OP_READ       ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "read"),
820 [OP_COPY       ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "copy"),
821 [OP_CONVERT    ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "convert"),
822 [OP_PIECE      ] = OP( 0,  0, 1, 0, PURE | DEF | STRUCTURAL | PART, "piece"),
823 [OP_ASM        ] = OP(-1, -1, 0, 0, PURE, "asm"),
824 [OP_DEREF      ] = OP( 0,  1, 0, 0, 0 | DEF | BLOCK, "deref"), 
825 [OP_DOT        ] = OP( 0,  0, 1, 0, PURE | DEF | PART, "dot"),
826 [OP_INDEX      ] = OP( 0,  0, 1, 0, PURE | DEF | PART, "index"),
827
828 [OP_VAL        ] = OP( 0,  1, 1, 0, 0 | DEF | BLOCK, "val"),
829 [OP_TUPLE      ] = OP(-1,  0, 0, 0, 0 | PURE | BLOCK | STRUCTURAL, "tuple"),
830 [OP_BITREF     ] = OP( 0,  1, 0, 0, 0 | DEF | PURE | STRUCTURAL | BITFIELD, "bitref"),
831 /* Call is special most it can stand in for anything so it depends on context */
832 [OP_FCALL      ] = OP( 0, -1, 1, 0, 0 | BLOCK | CALLBRANCH, "fcall"),
833 [OP_PROG       ] = OP( 0,  1, 0, 0, 0 | IMPURE | BLOCK | STRUCTURAL, "prog"),
834 /* The sizes of OP_FCALL depends upon context */
835
836 [OP_LIST       ] = OP( 0,  1, 1, 0, 0 | DEF | STRUCTURAL, "list"),
837 [OP_BRANCH     ] = OP( 0,  0, 0, 1, PURE | BLOCK | UBRANCH, "branch"),
838 [OP_CBRANCH    ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "cbranch"),
839 [OP_CALL       ] = OP( 0,  0, 1, 1, PURE | BLOCK | CALLBRANCH, "call"),
840 [OP_RET        ] = OP( 0,  1, 0, 0, PURE | BLOCK | RETBRANCH, "ret"),
841 [OP_LABEL      ] = OP( 0,  0, 0, 0, PURE | BLOCK | STRUCTURAL, "label"),
842 [OP_ADECL      ] = OP( 0,  0, 0, 0, PURE | BLOCK | STRUCTURAL, "adecl"),
843 [OP_SDECL      ] = OP( 0,  0, 1, 0, PURE | BLOCK | STRUCTURAL, "sdecl"),
844 /* The number of RHS elements of OP_PHI depend upon context */
845 [OP_PHI        ] = OP( 0, -1, 1, 0, PURE | DEF | BLOCK, "phi"),
846
847 #if 0
848 [OP_CPS_BRANCH ] = OP( 0, -1, 0, 1, PURE | BLOCK | UBRANCH,     "cps_branch"),
849 [OP_CPS_CBRANCH] = OP( 0, -1, 0, 1, PURE | BLOCK | CBRANCH,     "cps_cbranch"),
850 [OP_CPS_CALL   ] = OP( 0, -1, 1, 1, PURE | BLOCK | CALLBRANCH,  "cps_call"),
851 [OP_CPS_RET    ] = OP( 0, -1, 0, 0, PURE | BLOCK | RETBRANCH,   "cps_ret"),
852 [OP_CPS_END    ] = OP( 0, -1, 0, 0, IMPURE | BLOCK | ENDBRANCH, "cps_end"),
853 [OP_CPS_START  ] = OP( -1, 0, 0, 0, PURE | BLOCK | STRUCTURAL,  "cps_start"),
854 #endif
855
856 [OP_CMP        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK, "cmp"),
857 [OP_TEST       ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "test"),
858 [OP_SET_EQ     ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_eq"),
859 [OP_SET_NOTEQ  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_noteq"),
860 [OP_SET_SLESS  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_sless"),
861 [OP_SET_ULESS  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_uless"),
862 [OP_SET_SMORE  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_smore"),
863 [OP_SET_UMORE  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_umore"),
864 [OP_SET_SLESSEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_slesseq"),
865 [OP_SET_ULESSEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_ulesseq"),
866 [OP_SET_SMOREEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_smoreq"),
867 [OP_SET_UMOREEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_umoreq"),
868 [OP_JMP        ] = OP( 0,  0, 0, 1, PURE | BLOCK | UBRANCH, "jmp"),
869 [OP_JMP_EQ     ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_eq"),
870 [OP_JMP_NOTEQ  ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_noteq"),
871 [OP_JMP_SLESS  ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_sless"),
872 [OP_JMP_ULESS  ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_uless"),
873 [OP_JMP_SMORE  ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_smore"),
874 [OP_JMP_UMORE  ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_umore"),
875 [OP_JMP_SLESSEQ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_slesseq"),
876 [OP_JMP_ULESSEQ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_ulesseq"),
877 [OP_JMP_SMOREEQ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_smoreq"),
878 [OP_JMP_UMOREEQ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_umoreq"),
879
880 [OP_INB        ] = OP( 0,  1, 0, 0, IMPURE | DEF | BLOCK, "__inb"),
881 [OP_INW        ] = OP( 0,  1, 0, 0, IMPURE | DEF | BLOCK, "__inw"),
882 [OP_INL        ] = OP( 0,  1, 0, 0, IMPURE | DEF | BLOCK, "__inl"),
883 [OP_OUTB       ] = OP( 0,  2, 0, 0, IMPURE| BLOCK, "__outb"),
884 [OP_OUTW       ] = OP( 0,  2, 0, 0, IMPURE| BLOCK, "__outw"),
885 [OP_OUTL       ] = OP( 0,  2, 0, 0, IMPURE| BLOCK, "__outl"),
886 [OP_BSF        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "__bsf"),
887 [OP_BSR        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "__bsr"),
888 [OP_RDMSR      ] = OP( 2,  1, 0, 0, IMPURE | BLOCK, "__rdmsr"),
889 [OP_WRMSR      ] = OP( 0,  3, 0, 0, IMPURE | BLOCK, "__wrmsr"),
890 [OP_HLT        ] = OP( 0,  0, 0, 0, IMPURE | BLOCK, "__hlt"),
891 };
892 #undef OP
893 #define OP_MAX      (sizeof(table_ops)/sizeof(table_ops[0]))
894
895 static const char *tops(int index) 
896 {
897         static const char unknown[] = "unknown op";
898         if (index < 0) {
899                 return unknown;
900         }
901         if (index > OP_MAX) {
902                 return unknown;
903         }
904         return table_ops[index].name;
905 }
906
907 struct asm_info;
908 struct triple;
909 struct block;
910 struct triple_set {
911         struct triple_set *next;
912         struct triple *member;
913 };
914
915 #define MAX_LHS  63
916 #define MAX_RHS  127
917 #define MAX_MISC 3
918 #define MAX_TARG 1
919
920 struct occurance {
921         int count;
922         const char *filename;
923         const char *function;
924         int line;
925         int col;
926         struct occurance *parent;
927 };
928 struct bitfield {
929         ulong_t size : 8;
930         ulong_t offset : 24;
931 };
932 struct triple {
933         struct triple *next, *prev;
934         struct triple_set *use;
935         struct type *type;
936         unsigned int op : 8;
937         unsigned int template_id : 7;
938         unsigned int lhs  : 6;
939         unsigned int rhs  : 7;
940         unsigned int misc : 2;
941         unsigned int targ : 1;
942 #define TRIPLE_SIZE(TRIPLE) \
943         ((TRIPLE)->lhs + (TRIPLE)->rhs + (TRIPLE)->misc + (TRIPLE)->targ)
944 #define TRIPLE_LHS_OFF(PTR)  (0)
945 #define TRIPLE_RHS_OFF(PTR)  (TRIPLE_LHS_OFF(PTR) + (PTR)->lhs)
946 #define TRIPLE_MISC_OFF(PTR) (TRIPLE_RHS_OFF(PTR) + (PTR)->rhs)
947 #define TRIPLE_TARG_OFF(PTR) (TRIPLE_MISC_OFF(PTR) + (PTR)->misc)
948 #define LHS(PTR,INDEX) ((PTR)->param[TRIPLE_LHS_OFF(PTR) + (INDEX)])
949 #define RHS(PTR,INDEX) ((PTR)->param[TRIPLE_RHS_OFF(PTR) + (INDEX)])
950 #define TARG(PTR,INDEX) ((PTR)->param[TRIPLE_TARG_OFF(PTR) + (INDEX)])
951 #define MISC(PTR,INDEX) ((PTR)->param[TRIPLE_MISC_OFF(PTR) + (INDEX)])
952         unsigned id; /* A scratch value and finally the register */
953 #define TRIPLE_FLAG_FLATTENED   (1 << 31)
954 #define TRIPLE_FLAG_PRE_SPLIT   (1 << 30)
955 #define TRIPLE_FLAG_POST_SPLIT  (1 << 29)
956 #define TRIPLE_FLAG_VOLATILE    (1 << 28)
957 #define TRIPLE_FLAG_INLINE      (1 << 27) /* ???? */
958 #define TRIPLE_FLAG_LOCAL       (1 << 26)
959
960 #define TRIPLE_FLAG_COPY TRIPLE_FLAG_VOLATILE
961         struct occurance *occurance;
962         union {
963                 ulong_t cval;
964                 struct bitfield bitfield;
965                 struct block  *block;
966                 void *blob;
967                 struct hash_entry *field;
968                 struct asm_info *ainfo;
969                 struct triple *func;
970                 struct symbol *symbol;
971         } u;
972         struct triple *param[2];
973 };
974
975 struct reg_info {
976         unsigned reg;
977         unsigned regcm;
978 };
979 struct ins_template {
980         struct reg_info lhs[MAX_LHS + 1], rhs[MAX_RHS + 1];
981 };
982
983 struct asm_info {
984         struct ins_template tmpl;
985         char *str;
986 };
987
988 struct block_set {
989         struct block_set *next;
990         struct block *member;
991 };
992 struct block {
993         struct block *work_next;
994         struct triple *first, *last;
995         int edge_count;
996         struct block_set *edges;
997         int users;
998         struct block_set *use;
999         struct block_set *idominates;
1000         struct block_set *domfrontier;
1001         struct block *idom;
1002         struct block_set *ipdominates;
1003         struct block_set *ipdomfrontier;
1004         struct block *ipdom;
1005         int vertex;
1006         
1007 };
1008
1009 struct symbol {
1010         struct symbol *next;
1011         struct hash_entry *ident;
1012         struct triple *def;
1013         struct type *type;
1014         int scope_depth;
1015 };
1016
1017 struct macro_arg {
1018         struct macro_arg *next;
1019         struct hash_entry *ident;
1020 };
1021 struct macro {
1022         struct hash_entry *ident;
1023         const char *buf;
1024         int buf_len;
1025         struct macro_arg *args;
1026         int argc;
1027 };
1028
1029 struct hash_entry {
1030         struct hash_entry *next;
1031         const char *name;
1032         int name_len;
1033         int tok;
1034         struct macro *sym_define;
1035         struct symbol *sym_label;
1036         struct symbol *sym_tag;
1037         struct symbol *sym_ident;
1038 };
1039
1040 #define HASH_TABLE_SIZE 2048
1041
1042 struct compiler_state {
1043         const char *label_prefix;
1044         const char *ofilename;
1045         unsigned long flags;
1046         unsigned long debug;
1047         unsigned long max_allocation_passes;
1048
1049         size_t include_path_count;
1050         const char **include_paths;
1051
1052         size_t define_count;
1053         const char **defines;
1054
1055         size_t undef_count;
1056         const char **undefs;
1057 };
1058 struct arch_state {
1059         unsigned long features;
1060 };
1061 struct basic_blocks {
1062         struct triple *func;
1063         struct triple *first;
1064         struct block *first_block, *last_block;
1065         int last_vertex;
1066 };
1067 #define MAX_PP_IF_DEPTH 63
1068 struct compile_state {
1069         struct compiler_state *compiler;
1070         struct arch_state *arch;
1071         FILE *output;
1072         FILE *errout;
1073         FILE *dbgout;
1074         struct file_state *file;
1075         struct occurance *last_occurance;
1076         const char *function;
1077         int    token_base;
1078         struct token token[6];
1079         struct hash_entry *hash_table[HASH_TABLE_SIZE];
1080         struct hash_entry *i_switch;
1081         struct hash_entry *i_case;
1082         struct hash_entry *i_continue;
1083         struct hash_entry *i_break;
1084         struct hash_entry *i_default;
1085         struct hash_entry *i_return;
1086         /* Additional hash entries for predefined macros */
1087         struct hash_entry *i_defined;
1088         struct hash_entry *i___VA_ARGS__;
1089         struct hash_entry *i___FILE__;
1090         struct hash_entry *i___LINE__;
1091         /* Additional hash entries for predefined identifiers */
1092         struct hash_entry *i___func__;
1093         /* Additional hash entries for attributes */
1094         struct hash_entry *i_noinline;
1095         struct hash_entry *i_always_inline;
1096         int scope_depth;
1097         unsigned char if_bytes[(MAX_PP_IF_DEPTH + CHAR_BIT -1)/CHAR_BIT];
1098         int if_depth;
1099         int eat_depth, eat_targ;
1100         struct file_state *macro_file;
1101         struct triple *functions;
1102         struct triple *main_function;
1103         struct triple *first;
1104         struct triple *global_pool;
1105         struct basic_blocks bb;
1106         int functions_joined;
1107 };
1108
1109 /* visibility global/local */
1110 /* static/auto duration */
1111 /* typedef, register, inline */
1112 #define STOR_SHIFT         0
1113 #define STOR_MASK     0x001f
1114 /* Visibility */
1115 #define STOR_GLOBAL   0x0001
1116 /* Duration */
1117 #define STOR_PERM     0x0002
1118 /* Definition locality */
1119 #define STOR_NONLOCAL 0x0004  /* The definition is not in this translation unit */
1120 /* Storage specifiers */
1121 #define STOR_AUTO     0x0000
1122 #define STOR_STATIC   0x0002
1123 #define STOR_LOCAL    0x0003
1124 #define STOR_EXTERN   0x0007
1125 #define STOR_INLINE   0x0008
1126 #define STOR_REGISTER 0x0010
1127 #define STOR_TYPEDEF  0x0018
1128
1129 #define QUAL_SHIFT         5
1130 #define QUAL_MASK     0x00e0
1131 #define QUAL_NONE     0x0000
1132 #define QUAL_CONST    0x0020
1133 #define QUAL_VOLATILE 0x0040
1134 #define QUAL_RESTRICT 0x0080
1135
1136 #define TYPE_SHIFT         8
1137 #define TYPE_MASK     0x1f00
1138 #define TYPE_INTEGER(TYPE)    ((((TYPE) >= TYPE_CHAR) && ((TYPE) <= TYPE_ULLONG)) || ((TYPE) == TYPE_ENUM) || ((TYPE) == TYPE_BITFIELD))
1139 #define TYPE_ARITHMETIC(TYPE) ((((TYPE) >= TYPE_CHAR) && ((TYPE) <= TYPE_LDOUBLE)) || ((TYPE) == TYPE_ENUM) || ((TYPE) == TYPE_BITFIELD))
1140 #define TYPE_UNSIGNED(TYPE)   ((TYPE) & 0x0100)
1141 #define TYPE_SIGNED(TYPE)     (!TYPE_UNSIGNED(TYPE))
1142 #define TYPE_MKUNSIGNED(TYPE) (((TYPE) & ~0xF000) | 0x0100)
1143 #define TYPE_RANK(TYPE)       ((TYPE) & ~0xF1FF)
1144 #define TYPE_PTR(TYPE)        (((TYPE) & TYPE_MASK) == TYPE_POINTER)
1145 #define TYPE_DEFAULT  0x0000
1146 #define TYPE_VOID     0x0100
1147 #define TYPE_CHAR     0x0200
1148 #define TYPE_UCHAR    0x0300
1149 #define TYPE_SHORT    0x0400
1150 #define TYPE_USHORT   0x0500
1151 #define TYPE_INT      0x0600
1152 #define TYPE_UINT     0x0700
1153 #define TYPE_LONG     0x0800
1154 #define TYPE_ULONG    0x0900
1155 #define TYPE_LLONG    0x0a00 /* long long */
1156 #define TYPE_ULLONG   0x0b00
1157 #define TYPE_FLOAT    0x0c00
1158 #define TYPE_DOUBLE   0x0d00
1159 #define TYPE_LDOUBLE  0x0e00 /* long double */
1160
1161 /* Note: TYPE_ENUM is chosen very carefully so TYPE_RANK works */
1162 #define TYPE_ENUM     0x1600
1163 #define TYPE_LIST     0x1700
1164 /* TYPE_LIST is a basic building block when defining enumerations
1165  * type->field_ident holds the name of this enumeration entry.
1166  * type->right holds the entry in the list.
1167  */
1168
1169 #define TYPE_STRUCT   0x1000
1170 /* For TYPE_STRUCT
1171  * type->left holds the link list of TYPE_PRODUCT entries that
1172  * make up the structure.
1173  * type->elements hold the length of the linked list
1174  */
1175 #define TYPE_UNION    0x1100
1176 /* For TYPE_UNION
1177  * type->left holds the link list of TYPE_OVERLAP entries that
1178  * make up the union.
1179  * type->elements hold the length of the linked list
1180  */
1181 #define TYPE_POINTER  0x1200 
1182 /* For TYPE_POINTER:
1183  * type->left holds the type pointed to.
1184  */
1185 #define TYPE_FUNCTION 0x1300 
1186 /* For TYPE_FUNCTION:
1187  * type->left holds the return type.
1188  * type->right holds the type of the arguments
1189  * type->elements holds the count of the arguments
1190  */
1191 #define TYPE_PRODUCT  0x1400
1192 /* TYPE_PRODUCT is a basic building block when defining structures
1193  * type->left holds the type that appears first in memory.
1194  * type->right holds the type that appears next in memory.
1195  */
1196 #define TYPE_OVERLAP  0x1500
1197 /* TYPE_OVERLAP is a basic building block when defining unions
1198  * type->left and type->right holds to types that overlap
1199  * each other in memory.
1200  */
1201 #define TYPE_ARRAY    0x1800
1202 /* TYPE_ARRAY is a basic building block when definitng arrays.
1203  * type->left holds the type we are an array of.
1204  * type->elements holds the number of elements.
1205  */
1206 #define TYPE_TUPLE    0x1900
1207 /* TYPE_TUPLE is a basic building block when defining 
1208  * positionally reference type conglomerations. (i.e. closures)
1209  * In essence it is a wrapper for TYPE_PRODUCT, like TYPE_STRUCT
1210  * except it has no field names.
1211  * type->left holds the liked list of TYPE_PRODUCT entries that
1212  * make up the closure type.
1213  * type->elements hold the number of elements in the closure.
1214  */
1215 #define TYPE_JOIN     0x1a00
1216 /* TYPE_JOIN is a basic building block when defining 
1217  * positionally reference type conglomerations. (i.e. closures)
1218  * In essence it is a wrapper for TYPE_OVERLAP, like TYPE_UNION
1219  * except it has no field names.
1220  * type->left holds the liked list of TYPE_OVERLAP entries that
1221  * make up the closure type.
1222  * type->elements hold the number of elements in the closure.
1223  */
1224 #define TYPE_BITFIELD 0x1b00
1225 /* TYPE_BITFIED is the type of a bitfield.
1226  * type->left holds the type basic type TYPE_BITFIELD is derived from.
1227  * type->elements holds the number of bits in the bitfield.
1228  */
1229 #define TYPE_UNKNOWN  0x1c00
1230 /* TYPE_UNKNOWN is the type of an unknown value.
1231  * Used on unknown consts and other places where I don't know the type.
1232  */
1233
1234 #define ATTRIB_SHIFT                 16
1235 #define ATTRIB_MASK          0xffff0000
1236 #define ATTRIB_NOINLINE      0x00010000
1237 #define ATTRIB_ALWAYS_INLINE 0x00020000
1238
1239 #define ELEMENT_COUNT_UNSPECIFIED ULONG_T_MAX
1240
1241 struct type {
1242         unsigned int type;
1243         struct type *left, *right;
1244         ulong_t elements;
1245         struct hash_entry *field_ident;
1246         struct hash_entry *type_ident;
1247 };
1248
1249 #define TEMPLATE_BITS      7
1250 #define MAX_TEMPLATES      (1<<TEMPLATE_BITS)
1251 #define MAX_REG_EQUIVS     16
1252 #define MAX_REGC           14
1253 #define MAX_REGISTERS      75
1254 #define REGISTER_BITS      7
1255 #define MAX_VIRT_REGISTERS (1<<REGISTER_BITS)
1256 #define REG_ERROR          0
1257 #define REG_UNSET          1
1258 #define REG_UNNEEDED       2
1259 #define REG_VIRT0          (MAX_REGISTERS + 0)
1260 #define REG_VIRT1          (MAX_REGISTERS + 1)
1261 #define REG_VIRT2          (MAX_REGISTERS + 2)
1262 #define REG_VIRT3          (MAX_REGISTERS + 3)
1263 #define REG_VIRT4          (MAX_REGISTERS + 4)
1264 #define REG_VIRT5          (MAX_REGISTERS + 5)
1265 #define REG_VIRT6          (MAX_REGISTERS + 6)
1266 #define REG_VIRT7          (MAX_REGISTERS + 7)
1267 #define REG_VIRT8          (MAX_REGISTERS + 8)
1268 #define REG_VIRT9          (MAX_REGISTERS + 9)
1269
1270 #if (MAX_REGISTERS + 9) > MAX_VIRT_REGISTERS
1271 #error "MAX_VIRT_REGISTERS to small"
1272 #endif
1273 #if (MAX_REGC + REGISTER_BITS) >= 26
1274 #error "Too many id bits used"
1275 #endif
1276
1277 /* Provision for 8 register classes */
1278 #define REG_SHIFT  0
1279 #define REGC_SHIFT REGISTER_BITS
1280 #define REGC_MASK (((1 << MAX_REGC) - 1) << REGISTER_BITS)
1281 #define REG_MASK (MAX_VIRT_REGISTERS -1)
1282 #define ID_REG(ID)              ((ID) & REG_MASK)
1283 #define SET_REG(ID, REG)        ((ID) = (((ID) & ~REG_MASK) | ((REG) & REG_MASK)))
1284 #define ID_REGCM(ID)            (((ID) & REGC_MASK) >> REGC_SHIFT)
1285 #define SET_REGCM(ID, REGCM)    ((ID) = (((ID) & ~REGC_MASK) | (((REGCM) << REGC_SHIFT) & REGC_MASK)))
1286 #define SET_INFO(ID, INFO)      ((ID) = (((ID) & ~(REG_MASK | REGC_MASK)) | \
1287                 (((INFO).reg) & REG_MASK) | ((((INFO).regcm) << REGC_SHIFT) & REGC_MASK)))
1288
1289 #define ARCH_INPUT_REGS 4
1290 #define ARCH_OUTPUT_REGS 4
1291
1292 static const struct reg_info arch_input_regs[ARCH_INPUT_REGS];
1293 static const struct reg_info arch_output_regs[ARCH_OUTPUT_REGS];
1294 static unsigned arch_reg_regcm(struct compile_state *state, int reg);
1295 static unsigned arch_regcm_normalize(struct compile_state *state, unsigned regcm);
1296 static unsigned arch_regcm_reg_normalize(struct compile_state *state, unsigned regcm);
1297 static void arch_reg_equivs(
1298         struct compile_state *state, unsigned *equiv, int reg);
1299 static int arch_select_free_register(
1300         struct compile_state *state, char *used, int classes);
1301 static unsigned arch_regc_size(struct compile_state *state, int class);
1302 static int arch_regcm_intersect(unsigned regcm1, unsigned regcm2);
1303 static unsigned arch_type_to_regcm(struct compile_state *state, struct type *type);
1304 static const char *arch_reg_str(int reg);
1305 static struct reg_info arch_reg_constraint(
1306         struct compile_state *state, struct type *type, const char *constraint);
1307 static struct reg_info arch_reg_clobber(
1308         struct compile_state *state, const char *clobber);
1309 static struct reg_info arch_reg_lhs(struct compile_state *state, 
1310         struct triple *ins, int index);
1311 static struct reg_info arch_reg_rhs(struct compile_state *state, 
1312         struct triple *ins, int index);
1313 static int arch_reg_size(int reg);
1314 static struct triple *transform_to_arch_instruction(
1315         struct compile_state *state, struct triple *ins);
1316 static struct triple *flatten(
1317         struct compile_state *state, struct triple *first, struct triple *ptr);
1318 static void print_dominators(struct compile_state *state,
1319         FILE *fp, struct basic_blocks *bb);
1320 static void print_dominance_frontiers(struct compile_state *state,
1321         FILE *fp, struct basic_blocks *bb);
1322
1323
1324
1325 #define DEBUG_ABORT_ON_ERROR    0x00000001
1326 #define DEBUG_BASIC_BLOCKS      0x00000002
1327 #define DEBUG_FDOMINATORS       0x00000004
1328 #define DEBUG_RDOMINATORS       0x00000008
1329 #define DEBUG_TRIPLES           0x00000010
1330 #define DEBUG_INTERFERENCE      0x00000020
1331 #define DEBUG_SCC_TRANSFORM     0x00000040
1332 #define DEBUG_SCC_TRANSFORM2    0x00000080
1333 #define DEBUG_REBUILD_SSA_FORM  0x00000100
1334 #define DEBUG_INLINE            0x00000200
1335 #define DEBUG_RANGE_CONFLICTS   0x00000400
1336 #define DEBUG_RANGE_CONFLICTS2  0x00000800
1337 #define DEBUG_COLOR_GRAPH       0x00001000
1338 #define DEBUG_COLOR_GRAPH2      0x00002000
1339 #define DEBUG_COALESCING        0x00004000
1340 #define DEBUG_COALESCING2       0x00008000
1341 #define DEBUG_VERIFICATION      0x00010000
1342 #define DEBUG_CALLS             0x00020000
1343 #define DEBUG_CALLS2            0x00040000
1344 #define DEBUG_TOKENS            0x80000000
1345
1346 #define DEBUG_DEFAULT ( \
1347         DEBUG_ABORT_ON_ERROR | \
1348         DEBUG_BASIC_BLOCKS | \
1349         DEBUG_FDOMINATORS | \
1350         DEBUG_RDOMINATORS | \
1351         DEBUG_TRIPLES | \
1352         0 )
1353
1354 #define DEBUG_ALL ( \
1355         DEBUG_ABORT_ON_ERROR   | \
1356         DEBUG_BASIC_BLOCKS     | \
1357         DEBUG_FDOMINATORS      | \
1358         DEBUG_RDOMINATORS      | \
1359         DEBUG_TRIPLES          | \
1360         DEBUG_INTERFERENCE     | \
1361         DEBUG_SCC_TRANSFORM    | \
1362         DEBUG_SCC_TRANSFORM2   | \
1363         DEBUG_REBUILD_SSA_FORM | \
1364         DEBUG_INLINE           | \
1365         DEBUG_RANGE_CONFLICTS  | \
1366         DEBUG_RANGE_CONFLICTS2 | \
1367         DEBUG_COLOR_GRAPH      | \
1368         DEBUG_COLOR_GRAPH2     | \
1369         DEBUG_COALESCING       | \
1370         DEBUG_COALESCING2      | \
1371         DEBUG_VERIFICATION     | \
1372         DEBUG_CALLS            | \
1373         DEBUG_CALLS2           | \
1374         DEBUG_TOKENS           | \
1375         0 )
1376
1377 #define COMPILER_INLINE_MASK               0x00000007
1378 #define COMPILER_INLINE_ALWAYS             0x00000000
1379 #define COMPILER_INLINE_NEVER              0x00000001
1380 #define COMPILER_INLINE_DEFAULTON          0x00000002
1381 #define COMPILER_INLINE_DEFAULTOFF         0x00000003
1382 #define COMPILER_INLINE_NOPENALTY          0x00000004
1383 #define COMPILER_ELIMINATE_INEFECTUAL_CODE 0x00000008
1384 #define COMPILER_SIMPLIFY                  0x00000010
1385 #define COMPILER_SCC_TRANSFORM             0x00000020
1386 #define COMPILER_SIMPLIFY_OP               0x00000040
1387 #define COMPILER_SIMPLIFY_PHI              0x00000080
1388 #define COMPILER_SIMPLIFY_LABEL            0x00000100
1389 #define COMPILER_SIMPLIFY_BRANCH           0x00000200
1390 #define COMPILER_SIMPLIFY_COPY             0x00000400
1391 #define COMPILER_SIMPLIFY_ARITH            0x00000800
1392 #define COMPILER_SIMPLIFY_SHIFT            0x00001000
1393 #define COMPILER_SIMPLIFY_BITWISE          0x00002000
1394 #define COMPILER_SIMPLIFY_LOGICAL          0x00004000
1395 #define COMPILER_SIMPLIFY_BITFIELD         0x00008000
1396
1397 #define COMPILER_TRIGRAPHS                 0x40000000
1398 #define COMPILER_PP_ONLY                   0x80000000
1399
1400 #define COMPILER_DEFAULT_FLAGS ( \
1401         COMPILER_TRIGRAPHS | \
1402         COMPILER_ELIMINATE_INEFECTUAL_CODE | \
1403         COMPILER_INLINE_DEFAULTON | \
1404         COMPILER_SIMPLIFY_OP | \
1405         COMPILER_SIMPLIFY_PHI | \
1406         COMPILER_SIMPLIFY_LABEL | \
1407         COMPILER_SIMPLIFY_BRANCH | \
1408         COMPILER_SIMPLIFY_COPY | \
1409         COMPILER_SIMPLIFY_ARITH | \
1410         COMPILER_SIMPLIFY_SHIFT | \
1411         COMPILER_SIMPLIFY_BITWISE | \
1412         COMPILER_SIMPLIFY_LOGICAL | \
1413         COMPILER_SIMPLIFY_BITFIELD | \
1414         0 )
1415
1416 #define GLOBAL_SCOPE_DEPTH   1
1417 #define FUNCTION_SCOPE_DEPTH (GLOBAL_SCOPE_DEPTH + 1)
1418
1419 static void compile_file(struct compile_state *old_state, const char *filename, int local);
1420
1421
1422
1423 static void init_compiler_state(struct compiler_state *compiler)
1424 {
1425         memset(compiler, 0, sizeof(*compiler));
1426         compiler->label_prefix = "";
1427         compiler->ofilename = "auto.inc";
1428         compiler->flags = COMPILER_DEFAULT_FLAGS;
1429         compiler->debug = 0;
1430         compiler->max_allocation_passes = MAX_ALLOCATION_PASSES;
1431         compiler->include_path_count = 1;
1432         compiler->include_paths      = xcmalloc(sizeof(char *), "include_paths");
1433         compiler->define_count       = 1;
1434         compiler->defines            = xcmalloc(sizeof(char *), "defines");
1435         compiler->undef_count        = 1;
1436         compiler->undefs             = xcmalloc(sizeof(char *), "undefs");
1437 }
1438
1439 struct compiler_flag {
1440         const char *name;
1441         unsigned long flag;
1442 };
1443
1444 struct compiler_arg {
1445         const char *name;
1446         unsigned long mask;
1447         struct compiler_flag flags[16];
1448 };
1449
1450 static int set_flag(
1451         const struct compiler_flag *ptr, unsigned long *flags,
1452         int act, const char *flag)
1453 {
1454         int result = -1;
1455         for(; ptr->name; ptr++) {
1456                 if (strcmp(ptr->name, flag) == 0) {
1457                         break;
1458                 }
1459         }
1460         if (ptr->name) {
1461                 result = 0;
1462                 *flags &= ~(ptr->flag);
1463                 if (act) {
1464                         *flags |= ptr->flag;
1465                 }
1466         }
1467         return result;
1468 }
1469
1470 static int set_arg(
1471         const struct compiler_arg *ptr, unsigned long *flags, const char *arg)
1472 {
1473         const char *val;
1474         int result = -1;
1475         int len;
1476         val = strchr(arg, '=');
1477         if (val) {
1478                 len = val - arg;
1479                 val++;
1480                 for(; ptr->name; ptr++) {
1481                         if (strncmp(ptr->name, arg, len) == 0) {
1482                                 break;
1483                         }
1484                 }
1485                 if (ptr->name) {
1486                         *flags &= ~ptr->mask;
1487                         result = set_flag(&ptr->flags[0], flags, 1, val);
1488                 }
1489         }
1490         return result;
1491 }
1492         
1493
1494 static void flag_usage(FILE *fp, const struct compiler_flag *ptr, 
1495         const char *prefix, const char *invert_prefix)
1496 {
1497         for(;ptr->name; ptr++) {
1498                 fprintf(fp, "%s%s\n", prefix, ptr->name);
1499                 if (invert_prefix) {
1500                         fprintf(fp, "%s%s\n", invert_prefix, ptr->name);
1501                 }
1502         }
1503 }
1504
1505 static void arg_usage(FILE *fp, const struct compiler_arg *ptr,
1506         const char *prefix)
1507 {
1508         for(;ptr->name; ptr++) {
1509                 const struct compiler_flag *flag;
1510                 for(flag = &ptr->flags[0]; flag->name; flag++) {
1511                         fprintf(fp, "%s%s=%s\n", 
1512                                 prefix, ptr->name, flag->name);
1513                 }
1514         }
1515 }
1516
1517 static int append_string(size_t *max, const char ***vec, const char *str,
1518         const char *name)
1519 {
1520         size_t count;
1521         count = ++(*max);
1522         *vec = xrealloc(*vec, sizeof(char *)*count, "name");
1523         (*vec)[count -1] = 0;
1524         (*vec)[count -2] = str; 
1525         return 0;
1526 }
1527
1528 static void arg_error(char *fmt, ...);
1529 static const char *identifier(const char *str, const char *end);
1530
1531 static int append_include_path(struct compiler_state *compiler, const char *str)
1532 {
1533         int result;
1534         if (!exists(str, ".")) {
1535                 arg_error("Nonexistent include path: `%s'\n",
1536                         str);
1537         }
1538         result = append_string(&compiler->include_path_count,
1539                 &compiler->include_paths, str, "include_paths");
1540         return result;
1541 }
1542
1543 static int append_define(struct compiler_state *compiler, const char *str)
1544 {
1545         const char *end, *rest;
1546         int result;
1547
1548         end = strchr(str, '=');
1549         if (!end) {
1550                 end = str + strlen(str);
1551         }
1552         rest = identifier(str, end);
1553         if (rest != end) {
1554                 int len = end - str - 1;
1555                 arg_error("Invalid name cannot define macro: `%*.*s'\n", 
1556                         len, len, str);
1557         }
1558         result = append_string(&compiler->define_count,
1559                 &compiler->defines, str, "defines");
1560         return result;
1561 }
1562
1563 static int append_undef(struct compiler_state *compiler, const char *str)
1564 {
1565         const char *end, *rest;
1566         int result;
1567
1568         end = str + strlen(str);
1569         rest = identifier(str, end);
1570         if (rest != end) {
1571                 int len = end - str - 1;
1572                 arg_error("Invalid name cannot undefine macro: `%*.*s'\n", 
1573                         len, len, str);
1574         }
1575         result = append_string(&compiler->undef_count,
1576                 &compiler->undefs, str, "undefs");
1577         return result;
1578 }
1579
1580 static const struct compiler_flag romcc_flags[] = {
1581         { "trigraphs",                 COMPILER_TRIGRAPHS },
1582         { "pp-only",                   COMPILER_PP_ONLY },
1583         { "eliminate-inefectual-code", COMPILER_ELIMINATE_INEFECTUAL_CODE },
1584         { "simplify",                  COMPILER_SIMPLIFY },
1585         { "scc-transform",             COMPILER_SCC_TRANSFORM },
1586         { "simplify-op",               COMPILER_SIMPLIFY_OP },
1587         { "simplify-phi",              COMPILER_SIMPLIFY_PHI },
1588         { "simplify-label",            COMPILER_SIMPLIFY_LABEL },
1589         { "simplify-branch",           COMPILER_SIMPLIFY_BRANCH },
1590         { "simplify-copy",             COMPILER_SIMPLIFY_COPY },
1591         { "simplify-arith",            COMPILER_SIMPLIFY_ARITH },
1592         { "simplify-shift",            COMPILER_SIMPLIFY_SHIFT },
1593         { "simplify-bitwise",          COMPILER_SIMPLIFY_BITWISE },
1594         { "simplify-logical",          COMPILER_SIMPLIFY_LOGICAL },
1595         { "simplify-bitfield",         COMPILER_SIMPLIFY_BITFIELD },
1596         { 0, 0 },
1597 };
1598 static const struct compiler_arg romcc_args[] = {
1599         { "inline-policy",             COMPILER_INLINE_MASK,
1600                 {
1601                         { "always",      COMPILER_INLINE_ALWAYS, },
1602                         { "never",       COMPILER_INLINE_NEVER, },
1603                         { "defaulton",   COMPILER_INLINE_DEFAULTON, },
1604                         { "defaultoff",  COMPILER_INLINE_DEFAULTOFF, },
1605                         { "nopenalty",   COMPILER_INLINE_NOPENALTY, },
1606                         { 0, 0 },
1607                 },
1608         },
1609         { 0, 0 },
1610 };
1611 static const struct compiler_flag romcc_opt_flags[] = {
1612         { "-O",  COMPILER_SIMPLIFY },
1613         { "-O2", COMPILER_SIMPLIFY | COMPILER_SCC_TRANSFORM },
1614         { "-E",  COMPILER_PP_ONLY },
1615         { 0, 0, },
1616 };
1617 static const struct compiler_flag romcc_debug_flags[] = {
1618         { "all",                   DEBUG_ALL },
1619         { "abort-on-error",        DEBUG_ABORT_ON_ERROR },
1620         { "basic-blocks",          DEBUG_BASIC_BLOCKS },
1621         { "fdominators",           DEBUG_FDOMINATORS },
1622         { "rdominators",           DEBUG_RDOMINATORS },
1623         { "triples",               DEBUG_TRIPLES },
1624         { "interference",          DEBUG_INTERFERENCE },
1625         { "scc-transform",         DEBUG_SCC_TRANSFORM },
1626         { "scc-transform2",        DEBUG_SCC_TRANSFORM2 },
1627         { "rebuild-ssa-form",      DEBUG_REBUILD_SSA_FORM },
1628         { "inline",                DEBUG_INLINE },
1629         { "live-range-conflicts",  DEBUG_RANGE_CONFLICTS },
1630         { "live-range-conflicts2", DEBUG_RANGE_CONFLICTS2 },
1631         { "color-graph",           DEBUG_COLOR_GRAPH },
1632         { "color-graph2",          DEBUG_COLOR_GRAPH2 },
1633         { "coalescing",            DEBUG_COALESCING },
1634         { "coalescing2",           DEBUG_COALESCING2 },
1635         { "verification",          DEBUG_VERIFICATION },
1636         { "calls",                 DEBUG_CALLS },
1637         { "calls2",                DEBUG_CALLS2 },
1638         { "tokens",                DEBUG_TOKENS },
1639         { 0, 0 },
1640 };
1641
1642 static int compiler_encode_flag(
1643         struct compiler_state *compiler, const char *flag)
1644 {
1645         int act;
1646         int result;
1647
1648         act = 1;
1649         result = -1;
1650         if (strncmp(flag, "no-", 3) == 0) {
1651                 flag += 3;
1652                 act = 0;
1653         }
1654         if (strncmp(flag, "-O", 2) == 0) {
1655                 result = set_flag(romcc_opt_flags, &compiler->flags, act, flag);
1656         }
1657         else if (strncmp(flag, "-E", 2) == 0) {
1658                 result = set_flag(romcc_opt_flags, &compiler->flags, act, flag);
1659         }
1660         else if (strncmp(flag, "-I", 2) == 0) {
1661                 result = append_include_path(compiler, flag + 2);
1662         }
1663         else if (strncmp(flag, "-D", 2) == 0) {
1664                 result = append_define(compiler, flag + 2);
1665         }
1666         else if (strncmp(flag, "-U", 2) == 0) {
1667                 result = append_undef(compiler, flag + 2);
1668         }
1669         else if (act && strncmp(flag, "label-prefix=", 13) == 0) {
1670                 result = 0;
1671                 compiler->label_prefix = flag + 13;
1672         }
1673         else if (act && strncmp(flag, "max-allocation-passes=", 22) == 0) {
1674                 unsigned long max_passes;
1675                 char *end;
1676                 max_passes = strtoul(flag + 22, &end, 10);
1677                 if (end[0] == '\0') {
1678                         result = 0;
1679                         compiler->max_allocation_passes = max_passes;
1680                 }
1681         }
1682         else if (act && strcmp(flag, "debug") == 0) {
1683                 result = 0;
1684                 compiler->debug |= DEBUG_DEFAULT;
1685         }
1686         else if (strncmp(flag, "debug-", 6) == 0) {
1687                 flag += 6;
1688                 result = set_flag(romcc_debug_flags, &compiler->debug, act, flag);
1689         }
1690         else {
1691                 result = set_flag(romcc_flags, &compiler->flags, act, flag);
1692                 if (result < 0) {
1693                         result = set_arg(romcc_args, &compiler->flags, flag);
1694                 }
1695         }
1696         return result;
1697 }
1698
1699 static void compiler_usage(FILE *fp)
1700 {
1701         flag_usage(fp, romcc_opt_flags, "", 0);
1702         flag_usage(fp, romcc_flags, "-f", "-fno-");
1703         arg_usage(fp,  romcc_args, "-f");
1704         flag_usage(fp, romcc_debug_flags, "-fdebug-", "-fno-debug-");
1705         fprintf(fp, "-flabel-prefix=<prefix for assembly language labels>\n");
1706         fprintf(fp, "--label-prefix=<prefix for assembly language labels>\n");
1707         fprintf(fp, "-I<include path>\n");
1708         fprintf(fp, "-D<macro>[=defn]\n");
1709         fprintf(fp, "-U<macro>\n");
1710 }
1711
1712 static void do_cleanup(struct compile_state *state)
1713 {
1714         if (state->output) {
1715                 fclose(state->output);
1716                 unlink(state->compiler->ofilename);
1717                 state->output = 0;
1718         }
1719         if (state->dbgout) {
1720                 fflush(state->dbgout);
1721         }
1722         if (state->errout) {
1723                 fflush(state->errout);
1724         }
1725 }
1726
1727 static struct compile_state *exit_state;
1728 static void exit_cleanup(void)
1729 {
1730         if (exit_state) {
1731                 do_cleanup(exit_state);
1732         }
1733 }
1734
1735 static int get_col(struct file_state *file)
1736 {
1737         int col;
1738         const char *ptr, *end;
1739         ptr = file->line_start;
1740         end = file->pos;
1741         for(col = 0; ptr < end; ptr++) {
1742                 if (*ptr != '\t') {
1743                         col++;
1744                 } 
1745                 else {
1746                         col = (col & ~7) + 8;
1747                 }
1748         }
1749         return col;
1750 }
1751
1752 static void loc(FILE *fp, struct compile_state *state, struct triple *triple)
1753 {
1754         int col;
1755         if (triple && triple->occurance) {
1756                 struct occurance *spot;
1757                 for(spot = triple->occurance; spot; spot = spot->parent) {
1758                         fprintf(fp, "%s:%d.%d: ", 
1759                                 spot->filename, spot->line, spot->col);
1760                 }
1761                 return;
1762         }
1763         if (!state->file) {
1764                 return;
1765         }
1766         col = get_col(state->file);
1767         fprintf(fp, "%s:%d.%d: ", 
1768                 state->file->report_name, state->file->report_line, col);
1769 }
1770
1771 static void __attribute__ ((noreturn)) internal_error(struct compile_state *state, struct triple *ptr, 
1772         const char *fmt, ...)
1773 {
1774         FILE *fp = state->errout;
1775         va_list args;
1776         va_start(args, fmt);
1777         loc(fp, state, ptr);
1778         fputc('\n', fp);
1779         if (ptr) {
1780                 fprintf(fp, "%p %-10s ", ptr, tops(ptr->op));
1781         }
1782         fprintf(fp, "Internal compiler error: ");
1783         vfprintf(fp, fmt, args);
1784         fprintf(fp, "\n");
1785         va_end(args);
1786         do_cleanup(state);
1787         abort();
1788 }
1789
1790
1791 static void internal_warning(struct compile_state *state, struct triple *ptr, 
1792         const char *fmt, ...)
1793 {
1794         FILE *fp = state->errout;
1795         va_list args;
1796         va_start(args, fmt);
1797         loc(fp, state, ptr);
1798         if (ptr) {
1799                 fprintf(fp, "%p %-10s ", ptr, tops(ptr->op));
1800         }
1801         fprintf(fp, "Internal compiler warning: ");
1802         vfprintf(fp, fmt, args);
1803         fprintf(fp, "\n");
1804         va_end(args);
1805 }
1806
1807
1808
1809 static void __attribute__ ((noreturn)) error(struct compile_state *state, struct triple *ptr, 
1810         const char *fmt, ...)
1811 {
1812         FILE *fp = state->errout;
1813         va_list args;
1814         va_start(args, fmt);
1815         loc(fp, state, ptr);
1816         fputc('\n', fp);
1817         if (ptr && (state->compiler->debug & DEBUG_ABORT_ON_ERROR)) {
1818                 fprintf(fp, "%p %-10s ", ptr, tops(ptr->op));
1819         }
1820         vfprintf(fp, fmt, args);
1821         va_end(args);
1822         fprintf(fp, "\n");
1823         do_cleanup(state);
1824         if (state->compiler->debug & DEBUG_ABORT_ON_ERROR) {
1825                 abort();
1826         }
1827         exit(1);
1828 }
1829
1830 static void warning(struct compile_state *state, struct triple *ptr, 
1831         const char *fmt, ...)
1832 {
1833         FILE *fp = state->errout;
1834         va_list args;
1835         va_start(args, fmt);
1836         loc(fp, state, ptr);
1837         fprintf(fp, "warning: "); 
1838         if (ptr && (state->compiler->debug & DEBUG_ABORT_ON_ERROR)) {
1839                 fprintf(fp, "%p %-10s ", ptr, tops(ptr->op));
1840         }
1841         vfprintf(fp, fmt, args);
1842         fprintf(fp, "\n");
1843         va_end(args);
1844 }
1845
1846 #define FINISHME() warning(state, 0, "FINISHME @ %s.%s:%d", __FILE__, __func__, __LINE__)
1847
1848 static void valid_op(struct compile_state *state, int op)
1849 {
1850         char *fmt = "invalid op: %d";
1851         if (op >= OP_MAX) {
1852                 internal_error(state, 0, fmt, op);
1853         }
1854         if (op < 0) {
1855                 internal_error(state, 0, fmt, op);
1856         }
1857 }
1858
1859 static void valid_ins(struct compile_state *state, struct triple *ptr)
1860 {
1861         valid_op(state, ptr->op);
1862 }
1863
1864 #if DEBUG_ROMCC_WARNING
1865 static void valid_param_count(struct compile_state *state, struct triple *ins)
1866 {
1867         int lhs, rhs, misc, targ;
1868         valid_ins(state, ins);
1869         lhs  = table_ops[ins->op].lhs;
1870         rhs  = table_ops[ins->op].rhs;
1871         misc = table_ops[ins->op].misc;
1872         targ = table_ops[ins->op].targ;
1873
1874         if ((lhs >= 0) && (ins->lhs != lhs)) {
1875                 internal_error(state, ins, "Bad lhs count");
1876         }
1877         if ((rhs >= 0) && (ins->rhs != rhs)) {
1878                 internal_error(state, ins, "Bad rhs count");
1879         }
1880         if ((misc >= 0) && (ins->misc != misc)) {
1881                 internal_error(state, ins, "Bad misc count");
1882         }
1883         if ((targ >= 0) && (ins->targ != targ)) {
1884                 internal_error(state, ins, "Bad targ count");
1885         }
1886 }
1887 #endif
1888
1889 static struct type void_type;
1890 static struct type unknown_type;
1891 static void use_triple(struct triple *used, struct triple *user)
1892 {
1893         struct triple_set **ptr, *new;
1894         if (!used)
1895                 return;
1896         if (!user)
1897                 return;
1898         ptr = &used->use;
1899         while(*ptr) {
1900                 if ((*ptr)->member == user) {
1901                         return;
1902                 }
1903                 ptr = &(*ptr)->next;
1904         }
1905         /* Append new to the head of the list, 
1906          * copy_func and rename_block_variables
1907          * depends on this.
1908          */
1909         new = xcmalloc(sizeof(*new), "triple_set");
1910         new->member = user;
1911         new->next   = used->use;
1912         used->use   = new;
1913 }
1914
1915 static void unuse_triple(struct triple *used, struct triple *unuser)
1916 {
1917         struct triple_set *use, **ptr;
1918         if (!used) {
1919                 return;
1920         }
1921         ptr = &used->use;
1922         while(*ptr) {
1923                 use = *ptr;
1924                 if (use->member == unuser) {
1925                         *ptr = use->next;
1926                         xfree(use);
1927                 }
1928                 else {
1929                         ptr = &use->next;
1930                 }
1931         }
1932 }
1933
1934 static void put_occurance(struct occurance *occurance)
1935 {
1936         if (occurance) {
1937                 occurance->count -= 1;
1938                 if (occurance->count <= 0) {
1939                         if (occurance->parent) {
1940                                 put_occurance(occurance->parent);
1941                         }
1942                         xfree(occurance);
1943                 }
1944         }
1945 }
1946
1947 static void get_occurance(struct occurance *occurance)
1948 {
1949         if (occurance) {
1950                 occurance->count += 1;
1951         }
1952 }
1953
1954
1955 static struct occurance *new_occurance(struct compile_state *state)
1956 {
1957         struct occurance *result, *last;
1958         const char *filename;
1959         const char *function;
1960         int line, col;
1961
1962         function = "";
1963         filename = 0;
1964         line = 0;
1965         col  = 0;
1966         if (state->file) {
1967                 filename = state->file->report_name;
1968                 line     = state->file->report_line;
1969                 col      = get_col(state->file);
1970         }
1971         if (state->function) {
1972                 function = state->function;
1973         }
1974         last = state->last_occurance;
1975         if (last &&
1976                 (last->col == col) &&
1977                 (last->line == line) &&
1978                 (last->function == function) &&
1979                 ((last->filename == filename) ||
1980                         (strcmp(last->filename, filename) == 0))) 
1981         {
1982                 get_occurance(last);
1983                 return last;
1984         }
1985         if (last) {
1986                 state->last_occurance = 0;
1987                 put_occurance(last);
1988         }
1989         result = xmalloc(sizeof(*result), "occurance");
1990         result->count    = 2;
1991         result->filename = filename;
1992         result->function = function;
1993         result->line     = line;
1994         result->col      = col;
1995         result->parent   = 0;
1996         state->last_occurance = result;
1997         return result;
1998 }
1999
2000 static struct occurance *inline_occurance(struct compile_state *state,
2001         struct occurance *base, struct occurance *top)
2002 {
2003         struct occurance *result, *last;
2004         if (top->parent) {
2005                 internal_error(state, 0, "inlining an already inlined function?");
2006         }
2007         /* If I have a null base treat it that way */
2008         if ((base->parent == 0) &&
2009                 (base->col == 0) &&
2010                 (base->line == 0) &&
2011                 (base->function[0] == '\0') &&
2012                 (base->filename[0] == '\0')) {
2013                 base = 0;
2014         }
2015         /* See if I can reuse the last occurance I had */
2016         last = state->last_occurance;
2017         if (last &&
2018                 (last->parent   == base) &&
2019                 (last->col      == top->col) &&
2020                 (last->line     == top->line) &&
2021                 (last->function == top->function) &&
2022                 (last->filename == top->filename)) {
2023                 get_occurance(last);
2024                 return last;
2025         }
2026         /* I can't reuse the last occurance so free it */
2027         if (last) {
2028                 state->last_occurance = 0;
2029                 put_occurance(last);
2030         }
2031         /* Generate a new occurance structure */
2032         get_occurance(base);
2033         result = xmalloc(sizeof(*result), "occurance");
2034         result->count    = 2;
2035         result->filename = top->filename;
2036         result->function = top->function;
2037         result->line     = top->line;
2038         result->col      = top->col;
2039         result->parent   = base;
2040         state->last_occurance = result;
2041         return result;
2042 }
2043
2044 static struct occurance dummy_occurance = {
2045         .count    = 2,
2046         .filename = __FILE__,
2047         .function = "",
2048         .line     = __LINE__,
2049         .col      = 0,
2050         .parent   = 0,
2051 };
2052
2053 /* The undef triple is used as a place holder when we are removing pointers
2054  * from a triple.  Having allows certain sanity checks to pass even
2055  * when the original triple that was pointed to is gone.
2056  */
2057 static struct triple unknown_triple = {
2058         .next      = &unknown_triple,
2059         .prev      = &unknown_triple,
2060         .use       = 0,
2061         .op        = OP_UNKNOWNVAL,
2062         .lhs       = 0,
2063         .rhs       = 0,
2064         .misc      = 0,
2065         .targ      = 0,
2066         .type      = &unknown_type,
2067         .id        = -1, /* An invalid id */
2068         .u = { .cval = 0, },
2069         .occurance = &dummy_occurance,
2070         .param = { [0] = 0, [1] = 0, },
2071 };
2072
2073
2074 static size_t registers_of(struct compile_state *state, struct type *type);
2075
2076 static struct triple *alloc_triple(struct compile_state *state, 
2077         int op, struct type *type, int lhs_wanted, int rhs_wanted,
2078         struct occurance *occurance)
2079 {
2080         size_t size, extra_count, min_count;
2081         int lhs, rhs, misc, targ;
2082         struct triple *ret, dummy;
2083         dummy.op = op;
2084         dummy.occurance = occurance;
2085         valid_op(state, op);
2086         lhs = table_ops[op].lhs;
2087         rhs = table_ops[op].rhs;
2088         misc = table_ops[op].misc;
2089         targ = table_ops[op].targ;
2090
2091         switch(op) {
2092         case OP_FCALL:
2093                 rhs = rhs_wanted;
2094                 break;
2095         case OP_PHI:
2096                 rhs = rhs_wanted;
2097                 break;
2098         case OP_ADECL:
2099                 lhs = registers_of(state, type);
2100                 break;
2101         case OP_TUPLE:
2102                 lhs = registers_of(state, type);
2103                 break;
2104         case OP_ASM:
2105                 rhs = rhs_wanted;
2106                 lhs = lhs_wanted;
2107                 break;
2108         }
2109         if ((rhs < 0) || (rhs > MAX_RHS)) {
2110                 internal_error(state, &dummy, "bad rhs count %d", rhs);
2111         }
2112         if ((lhs < 0) || (lhs > MAX_LHS)) {
2113                 internal_error(state, &dummy, "bad lhs count %d", lhs);
2114         }
2115         if ((misc < 0) || (misc > MAX_MISC)) {
2116                 internal_error(state, &dummy, "bad misc count %d", misc);
2117         }
2118         if ((targ < 0) || (targ > MAX_TARG)) {
2119                 internal_error(state, &dummy, "bad targs count %d", targ);
2120         }
2121
2122         min_count = sizeof(ret->param)/sizeof(ret->param[0]);
2123         extra_count = lhs + rhs + misc + targ;
2124         extra_count = (extra_count < min_count)? 0 : extra_count - min_count;
2125
2126         size = sizeof(*ret) + sizeof(ret->param[0]) * extra_count;
2127         ret = xcmalloc(size, "tripple");
2128         ret->op        = op;
2129         ret->lhs       = lhs;
2130         ret->rhs       = rhs;
2131         ret->misc      = misc;
2132         ret->targ      = targ;
2133         ret->type      = type;
2134         ret->next      = ret;
2135         ret->prev      = ret;
2136         ret->occurance = occurance;
2137         /* A simple sanity check */
2138         if ((ret->op != op) ||
2139                 (ret->lhs != lhs) ||
2140                 (ret->rhs != rhs) ||
2141                 (ret->misc != misc) ||
2142                 (ret->targ != targ) ||
2143                 (ret->type != type) ||
2144                 (ret->next != ret) ||
2145                 (ret->prev != ret) ||
2146                 (ret->occurance != occurance)) {
2147                 internal_error(state, ret, "huh?");
2148         }
2149         return ret;
2150 }
2151
2152 struct triple *dup_triple(struct compile_state *state, struct triple *src)
2153 {
2154         struct triple *dup;
2155         int src_lhs, src_rhs, src_size;
2156         src_lhs = src->lhs;
2157         src_rhs = src->rhs;
2158         src_size = TRIPLE_SIZE(src);
2159         get_occurance(src->occurance);
2160         dup = alloc_triple(state, src->op, src->type, src_lhs, src_rhs,
2161                 src->occurance);
2162         memcpy(dup, src, sizeof(*src));
2163         memcpy(dup->param, src->param, src_size * sizeof(src->param[0]));
2164         return dup;
2165 }
2166
2167 static struct triple *copy_triple(struct compile_state *state, struct triple *src)
2168 {
2169         struct triple *copy;
2170         copy = dup_triple(state, src);
2171         copy->use = 0;
2172         copy->next = copy->prev = copy;
2173         return copy;
2174 }
2175
2176 static struct triple *new_triple(struct compile_state *state, 
2177         int op, struct type *type, int lhs, int rhs)
2178 {
2179         struct triple *ret;
2180         struct occurance *occurance;
2181         occurance = new_occurance(state);
2182         ret = alloc_triple(state, op, type, lhs, rhs, occurance);
2183         return ret;
2184 }
2185
2186 static struct triple *build_triple(struct compile_state *state, 
2187         int op, struct type *type, struct triple *left, struct triple *right,
2188         struct occurance *occurance)
2189 {
2190         struct triple *ret;
2191         size_t count;
2192         ret = alloc_triple(state, op, type, -1, -1, occurance);
2193         count = TRIPLE_SIZE(ret);
2194         if (count > 0) {
2195                 ret->param[0] = left;
2196         }
2197         if (count > 1) {
2198                 ret->param[1] = right;
2199         }
2200         return ret;
2201 }
2202
2203 static struct triple *triple(struct compile_state *state, 
2204         int op, struct type *type, struct triple *left, struct triple *right)
2205 {
2206         struct triple *ret;
2207         size_t count;
2208         ret = new_triple(state, op, type, -1, -1);
2209         count = TRIPLE_SIZE(ret);
2210         if (count >= 1) {
2211                 ret->param[0] = left;
2212         }
2213         if (count >= 2) {
2214                 ret->param[1] = right;
2215         }
2216         return ret;
2217 }
2218
2219 static struct triple *branch(struct compile_state *state, 
2220         struct triple *targ, struct triple *test)
2221 {
2222         struct triple *ret;
2223         if (test) {
2224                 ret = new_triple(state, OP_CBRANCH, &void_type, -1, 1);
2225                 RHS(ret, 0) = test;
2226         } else {
2227                 ret = new_triple(state, OP_BRANCH, &void_type, -1, 0);
2228         }
2229         TARG(ret, 0) = targ;
2230         /* record the branch target was used */
2231         if (!targ || (targ->op != OP_LABEL)) {
2232                 internal_error(state, 0, "branch not to label");
2233         }
2234         return ret;
2235 }
2236
2237 static int triple_is_label(struct compile_state *state, struct triple *ins);
2238 static int triple_is_call(struct compile_state *state, struct triple *ins);
2239 static int triple_is_cbranch(struct compile_state *state, struct triple *ins);
2240 static void insert_triple(struct compile_state *state,
2241         struct triple *first, struct triple *ptr)
2242 {
2243         if (ptr) {
2244                 if ((ptr->id & TRIPLE_FLAG_FLATTENED) || (ptr->next != ptr)) {
2245                         internal_error(state, ptr, "expression already used");
2246                 }
2247                 ptr->next       = first;
2248                 ptr->prev       = first->prev;
2249                 ptr->prev->next = ptr;
2250                 ptr->next->prev = ptr;
2251
2252                 if (triple_is_cbranch(state, ptr->prev) ||
2253                         triple_is_call(state, ptr->prev)) {
2254                         unuse_triple(first, ptr->prev);
2255                         use_triple(ptr, ptr->prev);
2256                 }
2257         }
2258 }
2259
2260 static int triple_stores_block(struct compile_state *state, struct triple *ins)
2261 {
2262         /* This function is used to determine if u.block 
2263          * is utilized to store the current block number.
2264          */
2265         int stores_block;
2266         valid_ins(state, ins);
2267         stores_block = (table_ops[ins->op].flags & BLOCK) == BLOCK;
2268         return stores_block;
2269 }
2270
2271 static int triple_is_branch(struct compile_state *state, struct triple *ins);
2272 static struct block *block_of_triple(struct compile_state *state, 
2273         struct triple *ins)
2274 {
2275         struct triple *first;
2276         if (!ins || ins == &unknown_triple) {
2277                 return 0;
2278         }
2279         first = state->first;
2280         while(ins != first && !triple_is_branch(state, ins->prev) &&
2281                 !triple_stores_block(state, ins)) 
2282         { 
2283                 if (ins == ins->prev) {
2284                         internal_error(state, ins, "ins == ins->prev?");
2285                 }
2286                 ins = ins->prev;
2287         }
2288         return triple_stores_block(state, ins)? ins->u.block: 0;
2289 }
2290
2291 static void generate_lhs_pieces(struct compile_state *state, struct triple *ins);
2292 static struct triple *pre_triple(struct compile_state *state,
2293         struct triple *base,
2294         int op, struct type *type, struct triple *left, struct triple *right)
2295 {
2296         struct block *block;
2297         struct triple *ret;
2298         int i;
2299         /* If I am an OP_PIECE jump to the real instruction */
2300         if (base->op == OP_PIECE) {
2301                 base = MISC(base, 0);
2302         }
2303         block = block_of_triple(state, base);
2304         get_occurance(base->occurance);
2305         ret = build_triple(state, op, type, left, right, base->occurance);
2306         generate_lhs_pieces(state, ret);
2307         if (triple_stores_block(state, ret)) {
2308                 ret->u.block = block;
2309         }
2310         insert_triple(state, base, ret);
2311         for(i = 0; i < ret->lhs; i++) {
2312                 struct triple *piece;
2313                 piece = LHS(ret, i);
2314                 insert_triple(state, base, piece);
2315                 use_triple(ret, piece);
2316                 use_triple(piece, ret);
2317         }
2318         if (block && (block->first == base)) {
2319                 block->first = ret;
2320         }
2321         return ret;
2322 }
2323
2324 static struct triple *post_triple(struct compile_state *state,
2325         struct triple *base,
2326         int op, struct type *type, struct triple *left, struct triple *right)
2327 {
2328         struct block *block;
2329         struct triple *ret, *next;
2330         int zlhs, i;
2331         /* If I am an OP_PIECE jump to the real instruction */
2332         if (base->op == OP_PIECE) {
2333                 base = MISC(base, 0);
2334         }
2335         /* If I have a left hand side skip over it */
2336         zlhs = base->lhs;
2337         if (zlhs) {
2338                 base = LHS(base, zlhs - 1);
2339         }
2340
2341         block = block_of_triple(state, base);
2342         get_occurance(base->occurance);
2343         ret = build_triple(state, op, type, left, right, base->occurance);
2344         generate_lhs_pieces(state, ret);
2345         if (triple_stores_block(state, ret)) {
2346                 ret->u.block = block;
2347         }
2348         next = base->next;
2349         insert_triple(state, next, ret);
2350         zlhs = ret->lhs;
2351         for(i = 0; i < zlhs; i++) {
2352                 struct triple *piece;
2353                 piece = LHS(ret, i);
2354                 insert_triple(state, next, piece);
2355                 use_triple(ret, piece);
2356                 use_triple(piece, ret);
2357         }
2358         if (block && (block->last == base)) {
2359                 block->last = ret;
2360                 if (zlhs) {
2361                         block->last = LHS(ret, zlhs - 1);
2362                 }
2363         }
2364         return ret;
2365 }
2366
2367 static struct type *reg_type(
2368         struct compile_state *state, struct type *type, int reg);
2369
2370 static void generate_lhs_piece(
2371         struct compile_state *state, struct triple *ins, int index)
2372 {
2373         struct type *piece_type;
2374         struct triple *piece;
2375         get_occurance(ins->occurance);
2376         piece_type = reg_type(state, ins->type, index * REG_SIZEOF_REG);
2377
2378         if ((piece_type->type & TYPE_MASK) == TYPE_BITFIELD) {
2379                 piece_type = piece_type->left;
2380         }
2381 #if 0
2382 {
2383         static void name_of(FILE *fp, struct type *type);
2384         FILE * fp = state->errout;
2385         fprintf(fp, "piece_type(%d): ", index);
2386         name_of(fp, piece_type);
2387         fprintf(fp, "\n");
2388 }
2389 #endif
2390         piece = alloc_triple(state, OP_PIECE, piece_type, -1, -1, ins->occurance);
2391         piece->u.cval  = index;
2392         LHS(ins, piece->u.cval) = piece;
2393         MISC(piece, 0) = ins;
2394 }
2395
2396 static void generate_lhs_pieces(struct compile_state *state, struct triple *ins)
2397 {
2398         int i, zlhs;
2399         zlhs = ins->lhs;
2400         for(i = 0; i < zlhs; i++) {
2401                 generate_lhs_piece(state, ins, i);
2402         }
2403 }
2404
2405 static struct triple *label(struct compile_state *state)
2406 {
2407         /* Labels don't get a type */
2408         struct triple *result;
2409         result = triple(state, OP_LABEL, &void_type, 0, 0);
2410         return result;
2411 }
2412
2413 static struct triple *mkprog(struct compile_state *state, ...)
2414 {
2415         struct triple *prog, *head, *arg;
2416         va_list args;
2417         int i;
2418
2419         head = label(state);
2420         prog = new_triple(state, OP_PROG, &void_type, -1, -1);
2421         RHS(prog, 0) = head;
2422         va_start(args, state);
2423         i = 0;
2424         while((arg = va_arg(args, struct triple *)) != 0) {
2425                 if (++i >= 100) {
2426                         internal_error(state, 0, "too many arguments to mkprog");
2427                 }
2428                 flatten(state, head, arg);
2429         }
2430         va_end(args);
2431         prog->type = head->prev->type;
2432         return prog;
2433 }
2434 static void name_of(FILE *fp, struct type *type);
2435 static void display_triple(FILE *fp, struct triple *ins)
2436 {
2437         struct occurance *ptr;
2438         const char *reg;
2439         char pre, post, vol;
2440         pre = post = vol = ' ';
2441         if (ins) {
2442                 if (ins->id & TRIPLE_FLAG_PRE_SPLIT) {
2443                         pre = '^';
2444                 }
2445                 if (ins->id & TRIPLE_FLAG_POST_SPLIT) {
2446                         post = ',';
2447                 }
2448                 if (ins->id & TRIPLE_FLAG_VOLATILE) {
2449                         vol = 'v';
2450                 }
2451                 reg = arch_reg_str(ID_REG(ins->id));
2452         }
2453         if (ins == 0) {
2454                 fprintf(fp, "(%p) <nothing> ", ins);
2455         }
2456         else if (ins->op == OP_INTCONST) {
2457                 fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s <0x%08lx>         ",
2458                         ins, pre, post, vol, reg, ins->template_id, tops(ins->op), 
2459                         (unsigned long)(ins->u.cval));
2460         }
2461         else if (ins->op == OP_ADDRCONST) {
2462                 fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s %-10p <0x%08lx>",
2463                         ins, pre, post, vol, reg, ins->template_id, tops(ins->op), 
2464                         MISC(ins, 0), (unsigned long)(ins->u.cval));
2465         }
2466         else if (ins->op == OP_INDEX) {
2467                 fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s %-10p <0x%08lx>",
2468                         ins, pre, post, vol, reg, ins->template_id, tops(ins->op), 
2469                         RHS(ins, 0), (unsigned long)(ins->u.cval));
2470         }
2471         else if (ins->op == OP_PIECE) {
2472                 fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s %-10p <0x%08lx>",
2473                         ins, pre, post, vol, reg, ins->template_id, tops(ins->op), 
2474                         MISC(ins, 0), (unsigned long)(ins->u.cval));
2475         }
2476         else {
2477                 int i, count;
2478                 fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s", 
2479                         ins, pre, post, vol, reg, ins->template_id, tops(ins->op));
2480                 if (table_ops[ins->op].flags & BITFIELD) {
2481                         fprintf(fp, " <%2d-%2d:%2d>", 
2482                                 ins->u.bitfield.offset,
2483                                 ins->u.bitfield.offset + ins->u.bitfield.size,
2484                                 ins->u.bitfield.size);
2485                 }
2486                 count = TRIPLE_SIZE(ins);
2487                 for(i = 0; i < count; i++) {
2488                         fprintf(fp, " %-10p", ins->param[i]);
2489                 }
2490                 for(; i < 2; i++) {
2491                         fprintf(fp, "           ");
2492                 }
2493         }
2494         if (ins) {
2495                 struct triple_set *user;
2496 #if DEBUG_DISPLAY_TYPES
2497                 fprintf(fp, " <");
2498                 name_of(fp, ins->type);
2499                 fprintf(fp, "> ");
2500 #endif
2501 #if DEBUG_DISPLAY_USES
2502                 fprintf(fp, " [");
2503                 for(user = ins->use; user; user = user->next) {
2504                         fprintf(fp, " %-10p", user->member);
2505                 }
2506                 fprintf(fp, " ]");
2507 #endif
2508                 fprintf(fp, " @");
2509                 for(ptr = ins->occurance; ptr; ptr = ptr->parent) {
2510                         fprintf(fp, " %s,%s:%d.%d",
2511                                 ptr->function, 
2512                                 ptr->filename,
2513                                 ptr->line, 
2514                                 ptr->col);
2515                 }
2516                 if (ins->op == OP_ASM) {
2517                         fprintf(fp, "\n\t%s", ins->u.ainfo->str);
2518                 }
2519         }
2520         fprintf(fp, "\n");
2521         fflush(fp);
2522 }
2523
2524 static int equiv_types(struct type *left, struct type *right);
2525 static void display_triple_changes(
2526         FILE *fp, const struct triple *new, const struct triple *orig)
2527 {
2528
2529         int new_count, orig_count;
2530         new_count = TRIPLE_SIZE(new);
2531         orig_count = TRIPLE_SIZE(orig);
2532         if ((new->op != orig->op) ||
2533                 (new_count != orig_count) ||
2534                 (memcmp(orig->param, new->param,        
2535                         orig_count * sizeof(orig->param[0])) != 0) ||
2536                 (memcmp(&orig->u, &new->u, sizeof(orig->u)) != 0)) 
2537         {
2538                 struct occurance *ptr;
2539                 int i, min_count, indent;
2540                 fprintf(fp, "(%p %p)", new, orig);
2541                 if (orig->op == new->op) {
2542                         fprintf(fp, " %-11s", tops(orig->op));
2543                 } else {
2544                         fprintf(fp, " [%-10s %-10s]", 
2545                                 tops(new->op), tops(orig->op));
2546                 }
2547                 min_count = new_count;
2548                 if (min_count > orig_count) {
2549                         min_count = orig_count;
2550                 }
2551                 for(indent = i = 0; i < min_count; i++) {
2552                         if (orig->param[i] == new->param[i]) {
2553                                 fprintf(fp, " %-11p", 
2554                                         orig->param[i]);
2555                                 indent += 12;
2556                         } else {
2557                                 fprintf(fp, " [%-10p %-10p]",
2558                                         new->param[i], 
2559                                         orig->param[i]);
2560                                 indent += 24;
2561                         }
2562                 }
2563                 for(; i < orig_count; i++) {
2564                         fprintf(fp, " [%-9p]", orig->param[i]);
2565                         indent += 12;
2566                 }
2567                 for(; i < new_count; i++) {
2568                         fprintf(fp, " [%-9p]", new->param[i]);
2569                         indent += 12;
2570                 }
2571                 if ((new->op == OP_INTCONST)||
2572                         (new->op == OP_ADDRCONST)) {
2573                         fprintf(fp, " <0x%08lx>", 
2574                                 (unsigned long)(new->u.cval));
2575                         indent += 13;
2576                 }
2577                 for(;indent < 36; indent++) {
2578                         putc(' ', fp);
2579                 }
2580
2581 #if DEBUG_DISPLAY_TYPES
2582                 fprintf(fp, " <");
2583                 name_of(fp, new->type);
2584                 if (!equiv_types(new->type, orig->type)) {
2585                         fprintf(fp, " -- ");
2586                         name_of(fp, orig->type);
2587                 }
2588                 fprintf(fp, "> ");
2589 #endif
2590
2591                 fprintf(fp, " @");
2592                 for(ptr = orig->occurance; ptr; ptr = ptr->parent) {
2593                         fprintf(fp, " %s,%s:%d.%d",
2594                                 ptr->function, 
2595                                 ptr->filename,
2596                                 ptr->line, 
2597                                 ptr->col);
2598                         
2599                 }
2600                 fprintf(fp, "\n");
2601                 fflush(fp);
2602         }
2603 }
2604
2605 static int triple_is_pure(struct compile_state *state, struct triple *ins, unsigned id)
2606 {
2607         /* Does the triple have no side effects.
2608          * I.e. Rexecuting the triple with the same arguments 
2609          * gives the same value.
2610          */
2611         unsigned pure;
2612         valid_ins(state, ins);
2613         pure = PURE_BITS(table_ops[ins->op].flags);
2614         if ((pure != PURE) && (pure != IMPURE)) {
2615                 internal_error(state, 0, "Purity of %s not known",
2616                         tops(ins->op));
2617         }
2618         return (pure == PURE) && !(id & TRIPLE_FLAG_VOLATILE);
2619 }
2620
2621 static int triple_is_branch_type(struct compile_state *state, 
2622         struct triple *ins, unsigned type)
2623 {
2624         /* Is this one of the passed branch types? */
2625         valid_ins(state, ins);
2626         return (BRANCH_BITS(table_ops[ins->op].flags) == type);
2627 }
2628
2629 static int triple_is_branch(struct compile_state *state, struct triple *ins)
2630 {
2631         /* Is this triple a branch instruction? */
2632         valid_ins(state, ins);
2633         return (BRANCH_BITS(table_ops[ins->op].flags) != 0);
2634 }
2635
2636 static int triple_is_cbranch(struct compile_state *state, struct triple *ins)
2637 {
2638         /* Is this triple a conditional branch instruction? */
2639         return triple_is_branch_type(state, ins, CBRANCH);
2640 }
2641
2642 static int triple_is_ubranch(struct compile_state *state, struct triple *ins)
2643 {
2644         /* Is this triple a unconditional branch instruction? */
2645         unsigned type;
2646         valid_ins(state, ins);
2647         type = BRANCH_BITS(table_ops[ins->op].flags);
2648         return (type != 0) && (type != CBRANCH);
2649 }
2650
2651 static int triple_is_call(struct compile_state *state, struct triple *ins)
2652 {
2653         /* Is this triple a call instruction? */
2654         return triple_is_branch_type(state, ins, CALLBRANCH);
2655 }
2656
2657 static int triple_is_ret(struct compile_state *state, struct triple *ins)
2658 {
2659         /* Is this triple a return instruction? */
2660         return triple_is_branch_type(state, ins, RETBRANCH);
2661 }
2662  
2663 #if DEBUG_ROMCC_WARNING
2664 static int triple_is_simple_ubranch(struct compile_state *state, struct triple *ins)
2665 {
2666         /* Is this triple an unconditional branch and not a call or a
2667          * return? */
2668         return triple_is_branch_type(state, ins, UBRANCH);
2669 }
2670 #endif
2671
2672 static int triple_is_end(struct compile_state *state, struct triple *ins)
2673 {
2674         return triple_is_branch_type(state, ins, ENDBRANCH);
2675 }
2676
2677 static int triple_is_label(struct compile_state *state, struct triple *ins)
2678 {
2679         valid_ins(state, ins);
2680         return (ins->op == OP_LABEL);
2681 }
2682
2683 static struct triple *triple_to_block_start(
2684         struct compile_state *state, struct triple *start)
2685 {
2686         while(!triple_is_branch(state, start->prev) &&
2687                 (!triple_is_label(state, start) || !start->use)) {
2688                 start = start->prev;
2689         }
2690         return start;
2691 }
2692
2693 static int triple_is_def(struct compile_state *state, struct triple *ins)
2694 {
2695         /* This function is used to determine which triples need
2696          * a register.
2697          */
2698         int is_def;
2699         valid_ins(state, ins);
2700         is_def = (table_ops[ins->op].flags & DEF) == DEF;
2701         if (ins->lhs >= 1) {
2702                 is_def = 0;
2703         }
2704         return is_def;
2705 }
2706
2707 static int triple_is_structural(struct compile_state *state, struct triple *ins)
2708 {
2709         int is_structural;
2710         valid_ins(state, ins);
2711         is_structural = (table_ops[ins->op].flags & STRUCTURAL) == STRUCTURAL;
2712         return is_structural;
2713 }
2714
2715 static int triple_is_part(struct compile_state *state, struct triple *ins)
2716 {
2717         int is_part;
2718         valid_ins(state, ins);
2719         is_part = (table_ops[ins->op].flags & PART) == PART;
2720         return is_part;
2721 }
2722
2723 static int triple_is_auto_var(struct compile_state *state, struct triple *ins)
2724 {
2725         return (ins->op == OP_PIECE) && (MISC(ins, 0)->op == OP_ADECL);
2726 }
2727
2728 static struct triple **triple_iter(struct compile_state *state,
2729         size_t count, struct triple **vector,
2730         struct triple *ins, struct triple **last)
2731 {
2732         struct triple **ret;
2733         ret = 0;
2734         if (count) {
2735                 if (!last) {
2736                         ret = vector;
2737                 }
2738                 else if ((last >= vector) && (last < (vector + count - 1))) {
2739                         ret = last + 1;
2740                 }
2741         }
2742         return ret;
2743         
2744 }
2745
2746 static struct triple **triple_lhs(struct compile_state *state,
2747         struct triple *ins, struct triple **last)
2748 {
2749         return triple_iter(state, ins->lhs, &LHS(ins,0), 
2750                 ins, last);
2751 }
2752
2753 static struct triple **triple_rhs(struct compile_state *state,
2754         struct triple *ins, struct triple **last)
2755 {
2756         return triple_iter(state, ins->rhs, &RHS(ins,0), 
2757                 ins, last);
2758 }
2759
2760 static struct triple **triple_misc(struct compile_state *state,
2761         struct triple *ins, struct triple **last)
2762 {
2763         return triple_iter(state, ins->misc, &MISC(ins,0), 
2764                 ins, last);
2765 }
2766
2767 static struct triple **do_triple_targ(struct compile_state *state,
2768         struct triple *ins, struct triple **last, int call_edges, int next_edges)
2769 {
2770         size_t count;
2771         struct triple **ret, **vector;
2772         int next_is_targ;
2773         ret = 0;
2774         count = ins->targ;
2775         next_is_targ = 0;
2776         if (triple_is_cbranch(state, ins)) {
2777                 next_is_targ = 1;
2778         }
2779         if (!call_edges && triple_is_call(state, ins)) {
2780                 count = 0;
2781         }
2782         if (next_edges && triple_is_call(state, ins)) {
2783                 next_is_targ = 1;
2784         }
2785         vector = &TARG(ins, 0);
2786         if (!ret && next_is_targ) {
2787                 if (!last) {
2788                         ret = &ins->next;
2789                 } else if (last == &ins->next) {
2790                         last = 0;
2791                 }
2792         }
2793         if (!ret && count) {
2794                 if (!last) {
2795                         ret = vector;
2796                 }
2797                 else if ((last >= vector) && (last < (vector + count - 1))) {
2798                         ret = last + 1;
2799                 }
2800                 else if (last == vector + count - 1) {
2801                         last = 0;
2802                 }
2803         }
2804         if (!ret && triple_is_ret(state, ins) && call_edges) {
2805                 struct triple_set *use;
2806                 for(use = ins->use; use; use = use->next) {
2807                         if (!triple_is_call(state, use->member)) {
2808                                 continue;
2809                         }
2810                         if (!last) {
2811                                 ret = &use->member->next;
2812                                 break;
2813                         }
2814                         else if (last == &use->member->next) {
2815                                 last = 0;
2816                         }
2817                 }
2818         }
2819         return ret;
2820 }
2821
2822 static struct triple **triple_targ(struct compile_state *state,
2823         struct triple *ins, struct triple **last)
2824 {
2825         return do_triple_targ(state, ins, last, 1, 1);
2826 }
2827
2828 static struct triple **triple_edge_targ(struct compile_state *state,
2829         struct triple *ins, struct triple **last)
2830 {
2831         return do_triple_targ(state, ins, last, 
2832                 state->functions_joined, !state->functions_joined);
2833 }
2834
2835 static struct triple *after_lhs(struct compile_state *state, struct triple *ins)
2836 {
2837         struct triple *next;
2838         int lhs, i;
2839         lhs = ins->lhs;
2840         next = ins->next;
2841         for(i = 0; i < lhs; i++) {
2842                 struct triple *piece;
2843                 piece = LHS(ins, i);
2844                 if (next != piece) {
2845                         internal_error(state, ins, "malformed lhs on %s",
2846                                 tops(ins->op));
2847                 }
2848                 if (next->op != OP_PIECE) {
2849                         internal_error(state, ins, "bad lhs op %s at %d on %s",
2850                                 tops(next->op), i, tops(ins->op));
2851                 }
2852                 if (next->u.cval != i) {
2853                         internal_error(state, ins, "bad u.cval of %d %d expected",
2854                                 next->u.cval, i);
2855                 }
2856                 next = next->next;
2857         }
2858         return next;
2859 }
2860
2861 /* Function piece accessor functions */
2862 static struct triple *do_farg(struct compile_state *state, 
2863         struct triple *func, unsigned index)
2864 {
2865         struct type *ftype;
2866         struct triple *first, *arg;
2867         unsigned i;
2868
2869         ftype = func->type;
2870         if((index < 0) || (index >= (ftype->elements + 2))) {
2871                 internal_error(state, func, "bad argument index: %d", index);
2872         }
2873         first = RHS(func, 0);
2874         arg = first->next;
2875         for(i = 0; i < index; i++, arg = after_lhs(state, arg)) {
2876                 /* do nothing */
2877         }
2878         if (arg->op != OP_ADECL) {
2879                 internal_error(state, 0, "arg not adecl?");
2880         }
2881         return arg;
2882 }
2883 static struct triple *fresult(struct compile_state *state, struct triple *func)
2884 {
2885         return do_farg(state, func, 0);
2886 }
2887 static struct triple *fretaddr(struct compile_state *state, struct triple *func)
2888 {
2889         return do_farg(state, func, 1);
2890 }
2891 static struct triple *farg(struct compile_state *state, 
2892         struct triple *func, unsigned index)
2893 {
2894         return do_farg(state, func, index + 2);
2895 }
2896
2897
2898 static void display_func(struct compile_state *state, FILE *fp, struct triple *func)
2899 {
2900         struct triple *first, *ins;
2901         fprintf(fp, "display_func %s\n", func->type->type_ident->name);
2902         first = ins = RHS(func, 0);
2903         do {
2904                 if (triple_is_label(state, ins) && ins->use) {
2905                         fprintf(fp, "%p:\n", ins);
2906                 }
2907                 display_triple(fp, ins);
2908
2909                 if (triple_is_branch(state, ins)) {
2910                         fprintf(fp, "\n");
2911                 }
2912                 if (ins->next->prev != ins) {
2913                         internal_error(state, ins->next, "bad prev");
2914                 }
2915                 ins = ins->next;
2916         } while(ins != first);
2917 }
2918
2919 static void verify_use(struct compile_state *state,
2920         struct triple *user, struct triple *used)
2921 {
2922         int size, i;
2923         size = TRIPLE_SIZE(user);
2924         for(i = 0; i < size; i++) {
2925                 if (user->param[i] == used) {
2926                         break;
2927                 }
2928         }
2929         if (triple_is_branch(state, user)) {
2930                 if (user->next == used) {
2931                         i = -1;
2932                 }
2933         }
2934         if (i == size) {
2935                 internal_error(state, user, "%s(%p) does not use %s(%p)",
2936                         tops(user->op), user, tops(used->op), used);
2937         }
2938 }
2939
2940 static int find_rhs_use(struct compile_state *state, 
2941         struct triple *user, struct triple *used)
2942 {
2943         struct triple **param;
2944         int size, i;
2945         verify_use(state, user, used);
2946
2947 #if DEBUG_ROMCC_WARNINGS
2948 #warning "AUDIT ME ->rhs"
2949 #endif
2950         size = user->rhs;
2951         param = &RHS(user, 0);
2952         for(i = 0; i < size; i++) {
2953                 if (param[i] == used) {
2954                         return i;
2955                 }
2956         }
2957         return -1;
2958 }
2959
2960 static void free_triple(struct compile_state *state, struct triple *ptr)
2961 {
2962         size_t size;
2963         size = sizeof(*ptr) - sizeof(ptr->param) +
2964                 (sizeof(ptr->param[0])*TRIPLE_SIZE(ptr));
2965         ptr->prev->next = ptr->next;
2966         ptr->next->prev = ptr->prev;
2967         if (ptr->use) {
2968                 internal_error(state, ptr, "ptr->use != 0");
2969         }
2970         put_occurance(ptr->occurance);
2971         memset(ptr, -1, size);
2972         xfree(ptr);
2973 }
2974
2975 static void release_triple(struct compile_state *state, struct triple *ptr)
2976 {
2977         struct triple_set *set, *next;
2978         struct triple **expr;
2979         struct block *block;
2980         if (ptr == &unknown_triple) {
2981                 return;
2982         }
2983         valid_ins(state, ptr);
2984         /* Make certain the we are not the first or last element of a block */
2985         block = block_of_triple(state, ptr);
2986         if (block) {
2987                 if ((block->last == ptr) && (block->first == ptr)) {
2988                         block->last = block->first = 0;
2989                 }
2990                 else if (block->last == ptr) {
2991                         block->last = ptr->prev;
2992                 }
2993                 else if (block->first == ptr) {
2994                         block->first = ptr->next;
2995                 }
2996         }
2997         /* Remove ptr from use chains where it is the user */
2998         expr = triple_rhs(state, ptr, 0);
2999         for(; expr; expr = triple_rhs(state, ptr, expr)) {
3000                 if (*expr) {
3001                         unuse_triple(*expr, ptr);
3002                 }
3003         }
3004         expr = triple_lhs(state, ptr, 0);
3005         for(; expr; expr = triple_lhs(state, ptr, expr)) {
3006                 if (*expr) {
3007                         unuse_triple(*expr, ptr);
3008                 }
3009         }
3010         expr = triple_misc(state, ptr, 0);
3011         for(; expr; expr = triple_misc(state, ptr, expr)) {
3012                 if (*expr) {
3013                         unuse_triple(*expr, ptr);
3014                 }
3015         }
3016         expr = triple_targ(state, ptr, 0);
3017         for(; expr; expr = triple_targ(state, ptr, expr)) {
3018                 if (*expr){
3019                         unuse_triple(*expr, ptr);
3020                 }
3021         }
3022         /* Reomve ptr from use chains where it is used */
3023         for(set = ptr->use; set; set = next) {
3024                 next = set->next;
3025                 valid_ins(state, set->member);
3026                 expr = triple_rhs(state, set->member, 0);
3027                 for(; expr; expr = triple_rhs(state, set->member, expr)) {
3028                         if (*expr == ptr) {
3029                                 *expr = &unknown_triple;
3030                         }
3031                 }
3032                 expr = triple_lhs(state, set->member, 0);
3033                 for(; expr; expr = triple_lhs(state, set->member, expr)) {
3034                         if (*expr == ptr) {
3035                                 *expr = &unknown_triple;
3036                         }
3037                 }
3038                 expr = triple_misc(state, set->member, 0);
3039                 for(; expr; expr = triple_misc(state, set->member, expr)) {
3040                         if (*expr == ptr) {
3041                                 *expr = &unknown_triple;
3042                         }
3043                 }
3044                 expr = triple_targ(state, set->member, 0);
3045                 for(; expr; expr = triple_targ(state, set->member, expr)) {
3046                         if (*expr == ptr) {
3047                                 *expr = &unknown_triple;
3048                         }
3049                 }
3050                 unuse_triple(ptr, set->member);
3051         }
3052         free_triple(state, ptr);
3053 }
3054
3055 static void print_triples(struct compile_state *state);
3056 static void print_blocks(struct compile_state *state, const char *func, FILE *fp);
3057
3058 #define TOK_UNKNOWN       0
3059 #define TOK_SPACE         1
3060 #define TOK_SEMI          2
3061 #define TOK_LBRACE        3
3062 #define TOK_RBRACE        4
3063 #define TOK_COMMA         5
3064 #define TOK_EQ            6
3065 #define TOK_COLON         7
3066 #define TOK_LBRACKET      8
3067 #define TOK_RBRACKET      9
3068 #define TOK_LPAREN        10
3069 #define TOK_RPAREN        11
3070 #define TOK_STAR          12
3071 #define TOK_DOTS          13
3072 #define TOK_MORE          14
3073 #define TOK_LESS          15
3074 #define TOK_TIMESEQ       16
3075 #define TOK_DIVEQ         17
3076 #define TOK_MODEQ         18
3077 #define TOK_PLUSEQ        19
3078 #define TOK_MINUSEQ       20
3079 #define TOK_SLEQ          21
3080 #define TOK_SREQ          22
3081 #define TOK_ANDEQ         23
3082 #define TOK_XOREQ         24
3083 #define TOK_OREQ          25
3084 #define TOK_EQEQ          26
3085 #define TOK_NOTEQ         27
3086 #define TOK_QUEST         28
3087 #define TOK_LOGOR         29
3088 #define TOK_LOGAND        30
3089 #define TOK_OR            31
3090 #define TOK_AND           32
3091 #define TOK_XOR           33
3092 #define TOK_LESSEQ        34
3093 #define TOK_MOREEQ        35
3094 #define TOK_SL            36
3095 #define TOK_SR            37
3096 #define TOK_PLUS          38
3097 #define TOK_MINUS         39
3098 #define TOK_DIV           40
3099 #define TOK_MOD           41
3100 #define TOK_PLUSPLUS      42
3101 #define TOK_MINUSMINUS    43
3102 #define TOK_BANG          44
3103 #define TOK_ARROW         45
3104 #define TOK_DOT           46
3105 #define TOK_TILDE         47
3106 #define TOK_LIT_STRING    48
3107 #define TOK_LIT_CHAR      49
3108 #define TOK_LIT_INT       50
3109 #define TOK_LIT_FLOAT     51
3110 #define TOK_MACRO         52
3111 #define TOK_CONCATENATE   53
3112
3113 #define TOK_IDENT         54
3114 #define TOK_STRUCT_NAME   55
3115 #define TOK_ENUM_CONST    56
3116 #define TOK_TYPE_NAME     57
3117
3118 #define TOK_AUTO          58
3119 #define TOK_BREAK         59
3120 #define TOK_CASE          60
3121 #define TOK_CHAR          61
3122 #define TOK_CONST         62
3123 #define TOK_CONTINUE      63
3124 #define TOK_DEFAULT       64
3125 #define TOK_DO            65
3126 #define TOK_DOUBLE        66
3127 #define TOK_ELSE          67
3128 #define TOK_ENUM          68
3129 #define TOK_EXTERN        69
3130 #define TOK_FLOAT         70
3131 #define TOK_FOR           71
3132 #define TOK_GOTO          72
3133 #define TOK_IF            73
3134 #define TOK_INLINE        74
3135 #define TOK_INT           75
3136 #define TOK_LONG          76
3137 #define TOK_REGISTER      77
3138 #define TOK_RESTRICT      78
3139 #define TOK_RETURN        79
3140 #define TOK_SHORT         80
3141 #define TOK_SIGNED        81
3142 #define TOK_SIZEOF        82
3143 #define TOK_STATIC        83
3144 #define TOK_STRUCT        84
3145 #define TOK_SWITCH        85
3146 #define TOK_TYPEDEF       86
3147 #define TOK_UNION         87
3148 #define TOK_UNSIGNED      88
3149 #define TOK_VOID          89
3150 #define TOK_VOLATILE      90
3151 #define TOK_WHILE         91
3152 #define TOK_ASM           92
3153 #define TOK_ATTRIBUTE     93
3154 #define TOK_ALIGNOF       94
3155 #define TOK_FIRST_KEYWORD TOK_AUTO
3156 #define TOK_LAST_KEYWORD  TOK_ALIGNOF
3157
3158 #define TOK_MDEFINE       100
3159 #define TOK_MDEFINED      101
3160 #define TOK_MUNDEF        102
3161 #define TOK_MINCLUDE      103
3162 #define TOK_MLINE         104
3163 #define TOK_MERROR        105
3164 #define TOK_MWARNING      106
3165 #define TOK_MPRAGMA       107
3166 #define TOK_MIFDEF        108
3167 #define TOK_MIFNDEF       109
3168 #define TOK_MELIF         110
3169 #define TOK_MENDIF        111
3170
3171 #define TOK_FIRST_MACRO   TOK_MDEFINE
3172 #define TOK_LAST_MACRO    TOK_MENDIF
3173          
3174 #define TOK_MIF           112
3175 #define TOK_MELSE         113
3176 #define TOK_MIDENT        114
3177
3178 #define TOK_EOL           115
3179 #define TOK_EOF           116
3180
3181 static const char *tokens[] = {
3182 [TOK_UNKNOWN     ] = ":unknown:",
3183 [TOK_SPACE       ] = ":space:",
3184 [TOK_SEMI        ] = ";",
3185 [TOK_LBRACE      ] = "{",
3186 [TOK_RBRACE      ] = "}",
3187 [TOK_COMMA       ] = ",",
3188 [TOK_EQ          ] = "=",
3189 [TOK_COLON       ] = ":",
3190 [TOK_LBRACKET    ] = "[",
3191 [TOK_RBRACKET    ] = "]",
3192 [TOK_LPAREN      ] = "(",
3193 [TOK_RPAREN      ] = ")",
3194 [TOK_STAR        ] = "*",
3195 [TOK_DOTS        ] = "...",
3196 [TOK_MORE        ] = ">",
3197 [TOK_LESS        ] = "<",
3198 [TOK_TIMESEQ     ] = "*=",
3199 [TOK_DIVEQ       ] = "/=",
3200 [TOK_MODEQ       ] = "%=",
3201 [TOK_PLUSEQ      ] = "+=",
3202 [TOK_MINUSEQ     ] = "-=",
3203 [TOK_SLEQ        ] = "<<=",
3204 [TOK_SREQ        ] = ">>=",
3205 [TOK_ANDEQ       ] = "&=",
3206 [TOK_XOREQ       ] = "^=",
3207 [TOK_OREQ        ] = "|=",
3208 [TOK_EQEQ        ] = "==",
3209 [TOK_NOTEQ       ] = "!=",
3210 [TOK_QUEST       ] = "?",
3211 [TOK_LOGOR       ] = "||",
3212 [TOK_LOGAND      ] = "&&",
3213 [TOK_OR          ] = "|",
3214 [TOK_AND         ] = "&",
3215 [TOK_XOR         ] = "^",
3216 [TOK_LESSEQ      ] = "<=",
3217 [TOK_MOREEQ      ] = ">=",
3218 [TOK_SL          ] = "<<",
3219 [TOK_SR          ] = ">>",
3220 [TOK_PLUS        ] = "+",
3221 [TOK_MINUS       ] = "-",
3222 [TOK_DIV         ] = "/",
3223 [TOK_MOD         ] = "%",
3224 [TOK_PLUSPLUS    ] = "++",
3225 [TOK_MINUSMINUS  ] = "--",
3226 [TOK_BANG        ] = "!",
3227 [TOK_ARROW       ] = "->",
3228 [TOK_DOT         ] = ".",
3229 [TOK_TILDE       ] = "~",
3230 [TOK_LIT_STRING  ] = ":string:",
3231 [TOK_IDENT       ] = ":ident:",
3232 [TOK_TYPE_NAME   ] = ":typename:",
3233 [TOK_LIT_CHAR    ] = ":char:",
3234 [TOK_LIT_INT     ] = ":integer:",
3235 [TOK_LIT_FLOAT   ] = ":float:",
3236 [TOK_MACRO       ] = "#",
3237 [TOK_CONCATENATE ] = "##",
3238
3239 [TOK_AUTO        ] = "auto",
3240 [TOK_BREAK       ] = "break",
3241 [TOK_CASE        ] = "case",
3242 [TOK_CHAR        ] = "char",
3243 [TOK_CONST       ] = "const",
3244 [TOK_CONTINUE    ] = "continue",
3245 [TOK_DEFAULT     ] = "default",
3246 [TOK_DO          ] = "do",
3247 [TOK_DOUBLE      ] = "double",
3248 [TOK_ELSE        ] = "else",
3249 [TOK_ENUM        ] = "enum",
3250 [TOK_EXTERN      ] = "extern",
3251 [TOK_FLOAT       ] = "float",
3252 [TOK_FOR         ] = "for",
3253 [TOK_GOTO        ] = "goto",
3254 [TOK_IF          ] = "if",
3255 [TOK_INLINE      ] = "inline",
3256 [TOK_INT         ] = "int",
3257 [TOK_LONG        ] = "long",
3258 [TOK_REGISTER    ] = "register",
3259 [TOK_RESTRICT    ] = "restrict",
3260 [TOK_RETURN      ] = "return",
3261 [TOK_SHORT       ] = "short",
3262 [TOK_SIGNED      ] = "signed",
3263 [TOK_SIZEOF      ] = "sizeof",
3264 [TOK_STATIC      ] = "static",
3265 [TOK_STRUCT      ] = "struct",
3266 [TOK_SWITCH      ] = "switch",
3267 [TOK_TYPEDEF     ] = "typedef",
3268 [TOK_UNION       ] = "union",
3269 [TOK_UNSIGNED    ] = "unsigned",
3270 [TOK_VOID        ] = "void",
3271 [TOK_VOLATILE    ] = "volatile",
3272 [TOK_WHILE       ] = "while",
3273 [TOK_ASM         ] = "asm",
3274 [TOK_ATTRIBUTE   ] = "__attribute__",
3275 [TOK_ALIGNOF     ] = "__alignof__",
3276
3277 [TOK_MDEFINE     ] = "#define",
3278 [TOK_MDEFINED    ] = "#defined",
3279 [TOK_MUNDEF      ] = "#undef",
3280 [TOK_MINCLUDE    ] = "#include",
3281 [TOK_MLINE       ] = "#line",
3282 [TOK_MERROR      ] = "#error",
3283 [TOK_MWARNING    ] = "#warning",
3284 [TOK_MPRAGMA     ] = "#pragma",
3285 [TOK_MIFDEF      ] = "#ifdef",
3286 [TOK_MIFNDEF     ] = "#ifndef",
3287 [TOK_MELIF       ] = "#elif",
3288 [TOK_MENDIF      ] = "#endif",
3289
3290 [TOK_MIF         ] = "#if",
3291 [TOK_MELSE       ] = "#else",
3292 [TOK_MIDENT      ] = "#:ident:",
3293 [TOK_EOL         ] = "EOL", 
3294 [TOK_EOF         ] = "EOF",
3295 };
3296
3297 static unsigned int hash(const char *str, int str_len)
3298 {
3299         unsigned int hash;
3300         const char *end;
3301         end = str + str_len;
3302         hash = 0;
3303         for(; str < end; str++) {
3304                 hash = (hash *263) + *str;
3305         }
3306         hash = hash & (HASH_TABLE_SIZE -1);
3307         return hash;
3308 }
3309
3310 static struct hash_entry *lookup(
3311         struct compile_state *state, const char *name, int name_len)
3312 {
3313         struct hash_entry *entry;
3314         unsigned int index;
3315         index = hash(name, name_len);
3316         entry = state->hash_table[index];
3317         while(entry && 
3318                 ((entry->name_len != name_len) ||
3319                         (memcmp(entry->name, name, name_len) != 0))) {
3320                 entry = entry->next;
3321         }
3322         if (!entry) {
3323                 char *new_name;
3324                 /* Get a private copy of the name */
3325                 new_name = xmalloc(name_len + 1, "hash_name");
3326                 memcpy(new_name, name, name_len);
3327                 new_name[name_len] = '\0';
3328
3329                 /* Create a new hash entry */
3330                 entry = xcmalloc(sizeof(*entry), "hash_entry");
3331                 entry->next = state->hash_table[index];
3332                 entry->name = new_name;
3333                 entry->name_len = name_len;
3334
3335                 /* Place the new entry in the hash table */
3336                 state->hash_table[index] = entry;
3337         }
3338         return entry;
3339 }
3340
3341 static void ident_to_keyword(struct compile_state *state, struct token *tk)
3342 {
3343         struct hash_entry *entry;
3344         entry = tk->ident;
3345         if (entry && ((entry->tok == TOK_TYPE_NAME) ||
3346                 (entry->tok == TOK_ENUM_CONST) ||
3347                 ((entry->tok >= TOK_FIRST_KEYWORD) && 
3348                         (entry->tok <= TOK_LAST_KEYWORD)))) {
3349                 tk->tok = entry->tok;
3350         }
3351 }
3352
3353 static void ident_to_macro(struct compile_state *state, struct token *tk)
3354 {
3355         struct hash_entry *entry;
3356         entry = tk->ident;
3357         if (!entry)
3358                 return;
3359         if ((entry->tok >= TOK_FIRST_MACRO) && (entry->tok <= TOK_LAST_MACRO)) {
3360                 tk->tok = entry->tok;
3361         }
3362         else if (entry->tok == TOK_IF) {
3363                 tk->tok = TOK_MIF;
3364         }
3365         else if (entry->tok == TOK_ELSE) {
3366                 tk->tok = TOK_MELSE;
3367         }
3368         else {
3369                 tk->tok = TOK_MIDENT;
3370         }
3371 }
3372
3373 static void hash_keyword(
3374         struct compile_state *state, const char *keyword, int tok)
3375 {
3376         struct hash_entry *entry;
3377         entry = lookup(state, keyword, strlen(keyword));
3378         if (entry && entry->tok != TOK_UNKNOWN) {
3379                 die("keyword %s already hashed", keyword);
3380         }
3381         entry->tok  = tok;
3382 }
3383
3384 static void romcc_symbol(
3385         struct compile_state *state, struct hash_entry *ident,
3386         struct symbol **chain, struct triple *def, struct type *type, int depth)
3387 {
3388         struct symbol *sym;
3389         if (*chain && ((*chain)->scope_depth >= depth)) {
3390                 error(state, 0, "%s already defined", ident->name);
3391         }
3392         sym = xcmalloc(sizeof(*sym), "symbol");
3393         sym->ident = ident;
3394         sym->def   = def;
3395         sym->type  = type;
3396         sym->scope_depth = depth;
3397         sym->next = *chain;
3398         *chain    = sym;
3399 }
3400
3401 static void symbol(
3402         struct compile_state *state, struct hash_entry *ident,
3403         struct symbol **chain, struct triple *def, struct type *type)
3404 {
3405         romcc_symbol(state, ident, chain, def, type, state->scope_depth);
3406 }
3407
3408 static void var_symbol(struct compile_state *state, 
3409         struct hash_entry *ident, struct triple *def)
3410 {
3411         if ((def->type->type & TYPE_MASK) == TYPE_PRODUCT) {
3412                 internal_error(state, 0, "bad var type");
3413         }
3414         symbol(state, ident, &ident->sym_ident, def, def->type);
3415 }
3416
3417 static void label_symbol(struct compile_state *state, 
3418         struct hash_entry *ident, struct triple *label, int depth)
3419 {
3420         romcc_symbol(state, ident, &ident->sym_label, label, &void_type, depth);
3421 }
3422
3423 static void start_scope(struct compile_state *state)
3424 {
3425         state->scope_depth++;
3426 }
3427
3428 static void end_scope_syms(struct compile_state *state,
3429         struct symbol **chain, int depth)
3430 {
3431         struct symbol *sym, *next;
3432         sym = *chain;
3433         while(sym && (sym->scope_depth == depth)) {
3434                 next = sym->next;
3435                 xfree(sym);
3436                 sym = next;
3437         }
3438         *chain = sym;
3439 }
3440
3441 static void end_scope(struct compile_state *state)
3442 {
3443         int i;
3444         int depth;
3445         /* Walk through the hash table and remove all symbols
3446          * in the current scope. 
3447          */
3448         depth = state->scope_depth;
3449         for(i = 0; i < HASH_TABLE_SIZE; i++) {
3450                 struct hash_entry *entry;
3451                 entry = state->hash_table[i];
3452                 while(entry) {
3453                         end_scope_syms(state, &entry->sym_label, depth);
3454                         end_scope_syms(state, &entry->sym_tag,   depth);
3455                         end_scope_syms(state, &entry->sym_ident, depth);
3456                         entry = entry->next;
3457                 }
3458         }
3459         state->scope_depth = depth - 1;
3460 }
3461
3462 static void register_keywords(struct compile_state *state)
3463 {
3464         hash_keyword(state, "auto",          TOK_AUTO);
3465         hash_keyword(state, "break",         TOK_BREAK);
3466         hash_keyword(state, "case",          TOK_CASE);
3467         hash_keyword(state, "char",          TOK_CHAR);
3468         hash_keyword(state, "const",         TOK_CONST);
3469         hash_keyword(state, "continue",      TOK_CONTINUE);
3470         hash_keyword(state, "default",       TOK_DEFAULT);
3471         hash_keyword(state, "do",            TOK_DO);
3472         hash_keyword(state, "double",        TOK_DOUBLE);
3473         hash_keyword(state, "else",          TOK_ELSE);
3474         hash_keyword(state, "enum",          TOK_ENUM);
3475         hash_keyword(state, "extern",        TOK_EXTERN);
3476         hash_keyword(state, "float",         TOK_FLOAT);
3477         hash_keyword(state, "for",           TOK_FOR);
3478         hash_keyword(state, "goto",          TOK_GOTO);
3479         hash_keyword(state, "if",            TOK_IF);
3480         hash_keyword(state, "inline",        TOK_INLINE);
3481         hash_keyword(state, "int",           TOK_INT);
3482         hash_keyword(state, "long",          TOK_LONG);
3483         hash_keyword(state, "register",      TOK_REGISTER);
3484         hash_keyword(state, "restrict",      TOK_RESTRICT);
3485         hash_keyword(state, "return",        TOK_RETURN);
3486         hash_keyword(state, "short",         TOK_SHORT);
3487         hash_keyword(state, "signed",        TOK_SIGNED);
3488         hash_keyword(state, "sizeof",        TOK_SIZEOF);
3489         hash_keyword(state, "static",        TOK_STATIC);
3490         hash_keyword(state, "struct",        TOK_STRUCT);
3491         hash_keyword(state, "switch",        TOK_SWITCH);
3492         hash_keyword(state, "typedef",       TOK_TYPEDEF);
3493         hash_keyword(state, "union",         TOK_UNION);
3494         hash_keyword(state, "unsigned",      TOK_UNSIGNED);
3495         hash_keyword(state, "void",          TOK_VOID);
3496         hash_keyword(state, "volatile",      TOK_VOLATILE);
3497         hash_keyword(state, "__volatile__",  TOK_VOLATILE);
3498         hash_keyword(state, "while",         TOK_WHILE);
3499         hash_keyword(state, "asm",           TOK_ASM);
3500         hash_keyword(state, "__asm__",       TOK_ASM);
3501         hash_keyword(state, "__attribute__", TOK_ATTRIBUTE);
3502         hash_keyword(state, "__alignof__",   TOK_ALIGNOF);
3503 }
3504
3505 static void register_macro_keywords(struct compile_state *state)
3506 {
3507         hash_keyword(state, "define",        TOK_MDEFINE);
3508         hash_keyword(state, "defined",       TOK_MDEFINED);
3509         hash_keyword(state, "undef",         TOK_MUNDEF);
3510         hash_keyword(state, "include",       TOK_MINCLUDE);
3511         hash_keyword(state, "line",          TOK_MLINE);
3512         hash_keyword(state, "error",         TOK_MERROR);
3513         hash_keyword(state, "warning",       TOK_MWARNING);
3514         hash_keyword(state, "pragma",        TOK_MPRAGMA);
3515         hash_keyword(state, "ifdef",         TOK_MIFDEF);
3516         hash_keyword(state, "ifndef",        TOK_MIFNDEF);
3517         hash_keyword(state, "elif",          TOK_MELIF);
3518         hash_keyword(state, "endif",         TOK_MENDIF);
3519 }
3520
3521
3522 static void undef_macro(struct compile_state *state, struct hash_entry *ident)
3523 {
3524         if (ident->sym_define != 0) {
3525                 struct macro *macro;
3526                 struct macro_arg *arg, *anext;
3527                 macro = ident->sym_define;
3528                 ident->sym_define = 0;
3529                 
3530                 /* Free the macro arguments... */
3531                 anext = macro->args;
3532                 while(anext) {
3533                         arg = anext;
3534                         anext = arg->next;
3535                         xfree(arg);
3536                 }
3537
3538                 /* Free the macro buffer */
3539                 xfree(macro->buf);
3540
3541                 /* Now free the macro itself */
3542                 xfree(macro);
3543         }
3544 }
3545
3546 static void do_define_macro(struct compile_state *state, 
3547         struct hash_entry *ident, const char *body, 
3548         int argc, struct macro_arg *args)
3549 {
3550         struct macro *macro;
3551         struct macro_arg *arg;
3552         size_t body_len;
3553
3554         /* Find the length of the body */
3555         body_len = strlen(body);
3556         macro = ident->sym_define;
3557         if (macro != 0) {
3558                 int identical_bodies, identical_args;
3559                 struct macro_arg *oarg;
3560                 /* Explicitly allow identical redfinitions of the same macro */
3561                 identical_bodies = 
3562                         (macro->buf_len == body_len) &&
3563                         (memcmp(macro->buf, body, body_len) == 0);
3564                 identical_args = macro->argc == argc;
3565                 oarg = macro->args;
3566                 arg = args;
3567                 while(identical_args && arg) {
3568                         identical_args = oarg->ident == arg->ident;
3569                         arg = arg->next;
3570                         oarg = oarg->next;
3571                 }
3572                 if (identical_bodies && identical_args) {
3573                         xfree(body);
3574                         return;
3575                 }
3576                 error(state, 0, "macro %s already defined\n", ident->name);
3577         }
3578 #if 0
3579         fprintf(state->errout, "#define %s: `%*.*s'\n",
3580                 ident->name, body_len, body_len, body);
3581 #endif
3582         macro = xmalloc(sizeof(*macro), "macro");
3583         macro->ident   = ident;
3584         macro->buf     = body;
3585         macro->buf_len = body_len;
3586         macro->args    = args;
3587         macro->argc    = argc;
3588
3589         ident->sym_define = macro;
3590 }
3591         
3592 static void define_macro(
3593         struct compile_state *state,
3594         struct hash_entry *ident,
3595         const char *body, int body_len,
3596         int argc, struct macro_arg *args)
3597 {
3598         char *buf;
3599         buf = xmalloc(body_len + 1, "macro buf");
3600         memcpy(buf, body, body_len);
3601         buf[body_len] = '\0';
3602         do_define_macro(state, ident, buf, argc, args);
3603 }
3604
3605 static void register_builtin_macro(struct compile_state *state,
3606         const char *name, const char *value)
3607 {
3608         struct hash_entry *ident;
3609
3610         if (value[0] == '(') {
3611                 internal_error(state, 0, "Builtin macros with arguments not supported");
3612         }
3613         ident = lookup(state, name, strlen(name));
3614         define_macro(state, ident, value, strlen(value), -1, 0);
3615 }
3616
3617 static void register_builtin_macros(struct compile_state *state)
3618 {
3619         char buf[30];
3620         char scratch[30];
3621         time_t now;
3622         struct tm *tm;
3623         now = time(NULL);
3624         tm = localtime(&now);
3625
3626         register_builtin_macro(state, "__ROMCC__", VERSION_MAJOR);
3627         register_builtin_macro(state, "__ROMCC_MINOR__", VERSION_MINOR);
3628         register_builtin_macro(state, "__FILE__", "\"This should be the filename\"");
3629         register_builtin_macro(state, "__LINE__", "54321");
3630
3631         strftime(scratch, sizeof(scratch), "%b %e %Y", tm);
3632         sprintf(buf, "\"%s\"", scratch);
3633         register_builtin_macro(state, "__DATE__", buf);
3634
3635         strftime(scratch, sizeof(scratch), "%H:%M:%S", tm);
3636         sprintf(buf, "\"%s\"", scratch);
3637         register_builtin_macro(state, "__TIME__", buf);
3638
3639         /* I can't be a conforming implementation of C :( */
3640         register_builtin_macro(state, "__STDC__", "0");
3641         /* In particular I don't conform to C99 */
3642         register_builtin_macro(state, "__STDC_VERSION__", "199901L");
3643         
3644 }
3645
3646 static void process_cmdline_macros(struct compile_state *state)
3647 {
3648         const char **macro, *name;
3649         struct hash_entry *ident;
3650         for(macro = state->compiler->defines; (name = *macro); macro++) {
3651                 const char *body;
3652                 size_t name_len;
3653
3654                 name_len = strlen(name);
3655                 body = strchr(name, '=');
3656                 if (!body) {
3657                         body = "\0";
3658                 } else {
3659                         name_len = body - name;
3660                         body++;
3661                 }
3662                 ident = lookup(state, name, name_len);
3663                 define_macro(state, ident, body, strlen(body), -1, 0);
3664         }
3665         for(macro = state->compiler->undefs; (name = *macro); macro++) {
3666                 ident = lookup(state, name, strlen(name));
3667                 undef_macro(state, ident);
3668         }
3669 }
3670
3671 static int spacep(int c)
3672 {
3673         int ret = 0;
3674         switch(c) {
3675         case ' ':
3676         case '\t':
3677         case '\f':
3678         case '\v':
3679         case '\r':
3680                 ret = 1;
3681                 break;
3682         }
3683         return ret;
3684 }
3685
3686 static int digitp(int c)
3687 {
3688         int ret = 0;
3689         switch(c) {
3690         case '0': case '1': case '2': case '3': case '4': 
3691         case '5': case '6': case '7': case '8': case '9':
3692                 ret = 1;
3693                 break;
3694         }
3695         return ret;
3696 }
3697 static int digval(int c)
3698 {
3699         int val = -1;
3700         if ((c >= '0') && (c <= '9')) {
3701                 val = c - '0';
3702         }
3703         return val;
3704 }
3705
3706 static int hexdigitp(int c)
3707 {
3708         int ret = 0;
3709         switch(c) {
3710         case '0': case '1': case '2': case '3': case '4': 
3711         case '5': case '6': case '7': case '8': case '9':
3712         case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
3713         case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
3714                 ret = 1;
3715                 break;
3716         }
3717         return ret;
3718 }
3719 static int hexdigval(int c) 
3720 {
3721         int val = -1;
3722         if ((c >= '0') && (c <= '9')) {
3723                 val = c - '0';
3724         }
3725         else if ((c >= 'A') && (c <= 'F')) {
3726                 val = 10 + (c - 'A');
3727         }
3728         else if ((c >= 'a') && (c <= 'f')) {
3729                 val = 10 + (c - 'a');
3730         }
3731         return val;
3732 }
3733
3734 static int octdigitp(int c)
3735 {
3736         int ret = 0;
3737         switch(c) {
3738         case '0': case '1': case '2': case '3': 
3739         case '4': case '5': case '6': case '7':
3740                 ret = 1;
3741                 break;
3742         }
3743         return ret;
3744 }
3745 static int octdigval(int c)
3746 {
3747         int val = -1;
3748         if ((c >= '0') && (c <= '7')) {
3749                 val = c - '0';
3750         }
3751         return val;
3752 }
3753
3754 static int letterp(int c)
3755 {
3756         int ret = 0;
3757         switch(c) {
3758         case 'a': case 'b': case 'c': case 'd': case 'e':
3759         case 'f': case 'g': case 'h': case 'i': case 'j':
3760         case 'k': case 'l': case 'm': case 'n': case 'o':
3761         case 'p': case 'q': case 'r': case 's': case 't':
3762         case 'u': case 'v': case 'w': case 'x': case 'y':
3763         case 'z':
3764         case 'A': case 'B': case 'C': case 'D': case 'E':
3765         case 'F': case 'G': case 'H': case 'I': case 'J':
3766         case 'K': case 'L': case 'M': case 'N': case 'O':
3767         case 'P': case 'Q': case 'R': case 'S': case 'T':
3768         case 'U': case 'V': case 'W': case 'X': case 'Y':
3769         case 'Z':
3770         case '_':
3771                 ret = 1;
3772                 break;
3773         }
3774         return ret;
3775 }
3776
3777 static const char *identifier(const char *str, const char *end)
3778 {
3779         if (letterp(*str)) {
3780                 for(; str < end; str++) {
3781                         int c;
3782                         c = *str;
3783                         if (!letterp(c) && !digitp(c)) {
3784                                 break;
3785                         }
3786                 }
3787         }
3788         return str;
3789 }
3790
3791 static int char_value(struct compile_state *state,
3792         const signed char **strp, const signed char *end)
3793 {
3794         const signed char *str;
3795         int c;
3796         str = *strp;
3797         c = *str++;
3798         if ((c == '\\') && (str < end)) {
3799                 switch(*str) {
3800                 case 'n':  c = '\n'; str++; break;
3801                 case 't':  c = '\t'; str++; break;
3802                 case 'v':  c = '\v'; str++; break;
3803                 case 'b':  c = '\b'; str++; break;
3804                 case 'r':  c = '\r'; str++; break;
3805                 case 'f':  c = '\f'; str++; break;
3806                 case 'a':  c = '\a'; str++; break;
3807                 case '\\': c = '\\'; str++; break;
3808                 case '?':  c = '?';  str++; break;
3809                 case '\'': c = '\''; str++; break;
3810                 case '"':  c = '"';  str++; break;
3811                 case 'x': 
3812                         c = 0;
3813                         str++;
3814                         while((str < end) && hexdigitp(*str)) {
3815                                 c <<= 4;
3816                                 c += hexdigval(*str);
3817                                 str++;
3818                         }
3819                         break;
3820                 case '0': case '1': case '2': case '3': 
3821                 case '4': case '5': case '6': case '7':
3822                         c = 0;
3823                         while((str < end) && octdigitp(*str)) {
3824                                 c <<= 3;
3825                                 c += octdigval(*str);
3826                                 str++;
3827                         }
3828                         break;
3829                 default:
3830                         error(state, 0, "Invalid character constant");
3831                         break;
3832                 }
3833         }
3834         *strp = str;
3835         return c;
3836 }
3837
3838 static const char *next_char(struct file_state *file, const char *pos, int index)
3839 {
3840         const char *end = file->buf + file->size;
3841         while(pos < end) {
3842                 /* Lookup the character */
3843                 int size = 1;
3844                 int c = *pos;
3845                 /* Is this a trigraph? */
3846                 if (file->trigraphs &&
3847                         (c == '?') && ((end - pos) >= 3) && (pos[1] == '?')) 
3848                 {
3849                         switch(pos[2]) {
3850                         case '=': c = '#'; break;
3851                         case '/': c = '\\'; break;
3852                         case '\'': c = '^'; break;
3853                         case '(': c = '['; break;
3854                         case ')': c = ']'; break;
3855                         case '!': c = '!'; break;
3856                         case '<': c = '{'; break;
3857                         case '>': c = '}'; break;
3858                         case '-': c = '~'; break;
3859                         }
3860                         if (c != '?') {
3861                                 size = 3;
3862                         }
3863                 }
3864                 /* Is this an escaped newline? */
3865                 if (file->join_lines &&
3866                         (c == '\\') && (pos + size < end) && ((pos[1] == '\n') || ((pos[1] == '\r') && (pos[2] == '\n'))))
3867                 {
3868                         int cr_offset = ((pos[1] == '\r') && (pos[2] == '\n'))?1:0;
3869                         /* At the start of a line just eat it */
3870                         if (pos == file->pos) {
3871                                 file->line++;
3872                                 file->report_line++;
3873                                 file->line_start = pos + size + 1 + cr_offset;
3874                         }
3875                         pos += size + 1 + cr_offset;
3876                 }
3877                 /* Do I need to ga any farther? */
3878                 else if (index == 0) {
3879                         break;
3880                 }
3881                 /* Process a normal character */
3882                 else {
3883                         pos += size;
3884                         index -= 1;
3885                 }
3886         }
3887         return pos;
3888 }
3889
3890 static int get_char(struct file_state *file, const char *pos)
3891 {
3892         const char *end = file->buf + file->size;
3893         int c;
3894         c = -1;
3895         pos = next_char(file, pos, 0);
3896         if (pos < end) {
3897                 /* Lookup the character */
3898                 c = *pos;
3899                 /* If it is a trigraph get the trigraph value */
3900                 if (file->trigraphs &&
3901                         (c == '?') && ((end - pos) >= 3) && (pos[1] == '?')) 
3902                 {
3903                         switch(pos[2]) {
3904                         case '=': c = '#'; break;
3905                         case '/': c = '\\'; break;
3906                         case '\'': c = '^'; break;
3907                         case '(': c = '['; break;
3908                         case ')': c = ']'; break;
3909                         case '!': c = '!'; break;
3910                         case '<': c = '{'; break;
3911                         case '>': c = '}'; break;
3912                         case '-': c = '~'; break;
3913                         }
3914                 }
3915         }
3916         return c;
3917 }
3918
3919 static void eat_chars(struct file_state *file, const char *targ)
3920 {
3921         const char *pos = file->pos;
3922         while(pos < targ) {
3923                 /* Do we have a newline? */
3924                 if (pos[0] == '\n') {
3925                         file->line++;
3926                         file->report_line++;
3927                         file->line_start = pos + 1;
3928                 }
3929                 pos++;
3930         }
3931         file->pos = pos;
3932 }
3933
3934
3935 static size_t char_strlen(struct file_state *file, const char *src, const char *end)
3936 {
3937         size_t len;
3938         len = 0;
3939         while(src < end) {
3940                 src = next_char(file, src, 1);
3941                 len++;
3942         }
3943         return len;
3944 }
3945
3946 static void char_strcpy(char *dest, 
3947         struct file_state *file, const char *src, const char *end)
3948 {
3949         while(src < end) {
3950                 int c;
3951                 c = get_char(file, src);
3952                 src = next_char(file, src, 1);
3953                 *dest++ = c;
3954         }
3955 }
3956
3957 static char *char_strdup(struct file_state *file, 
3958         const char *start, const char *end, const char *id)
3959 {
3960         char *str;
3961         size_t str_len;
3962         str_len = char_strlen(file, start, end);
3963         str = xcmalloc(str_len + 1, id);
3964         char_strcpy(str, file, start, end);
3965         str[str_len] = '\0';
3966         return str;
3967 }
3968
3969 static const char *after_digits(struct file_state *file, const char *ptr)
3970 {
3971         while(digitp(get_char(file, ptr))) {
3972                 ptr = next_char(file, ptr, 1);
3973         }
3974         return ptr;
3975 }
3976
3977 static const char *after_octdigits(struct file_state *file, const char *ptr)
3978 {
3979         while(octdigitp(get_char(file, ptr))) {
3980                 ptr = next_char(file, ptr, 1);
3981         }
3982         return ptr;
3983 }
3984
3985 static const char *after_hexdigits(struct file_state *file, const char *ptr)
3986 {
3987         while(hexdigitp(get_char(file, ptr))) {
3988                 ptr = next_char(file, ptr, 1);
3989         }
3990         return ptr;
3991 }
3992
3993 static const char *after_alnums(struct file_state *file, const char *ptr)
3994 {
3995         int c;
3996         c = get_char(file, ptr);
3997         while(letterp(c) || digitp(c)) {
3998                 ptr = next_char(file, ptr, 1);
3999                 c = get_char(file, ptr);
4000         }
4001         return ptr;
4002 }
4003
4004 static void save_string(struct file_state *file,
4005         struct token *tk, const char *start, const char *end, const char *id)
4006 {
4007         char *str;
4008
4009         /* Create a private copy of the string */
4010         str = char_strdup(file, start, end, id);
4011
4012         /* Store the copy in the token */
4013         tk->val.str = str;
4014         tk->str_len = strlen(str);
4015 }
4016
4017 static void raw_next_token(struct compile_state *state, 
4018         struct file_state *file, struct token *tk)
4019 {
4020         const char *token;
4021         int c, c1, c2, c3;
4022         const char *tokp;
4023         int eat;
4024         int tok;
4025
4026         tk->str_len = 0;
4027         tk->ident = 0;
4028         token = tokp = next_char(file, file->pos, 0);
4029         tok = TOK_UNKNOWN;
4030         c  = get_char(file, tokp);
4031         tokp = next_char(file, tokp, 1);
4032         eat = 0;
4033         c1 = get_char(file, tokp);
4034         c2 = get_char(file, next_char(file, tokp, 1));
4035         c3 = get_char(file, next_char(file, tokp, 2));
4036
4037         /* The end of the file */
4038         if (c == -1) {
4039                 tok = TOK_EOF;
4040         }
4041         /* Whitespace */
4042         else if (spacep(c)) {
4043                 tok = TOK_SPACE;
4044                 while (spacep(get_char(file, tokp))) {
4045                         tokp = next_char(file, tokp, 1);
4046                 }
4047         }
4048         /* EOL Comments */
4049         else if ((c == '/') && (c1 == '/')) {
4050                 tok = TOK_SPACE;
4051                 tokp = next_char(file, tokp, 1);
4052                 while((c = get_char(file, tokp)) != -1) {
4053                         /* Advance to the next character only after we verify
4054                          * the current character is not a newline.  
4055                          * EOL is special to the preprocessor so we don't
4056                          * want to loose any.
4057                          */
4058                         if (c == '\n') {
4059                                 break;
4060                         }
4061                         tokp = next_char(file, tokp, 1);
4062                 }
4063         }
4064         /* Comments */
4065         else if ((c == '/') && (c1 == '*')) {
4066                 tokp = next_char(file, tokp, 2);
4067                 c = c2;
4068                 while((c1 = get_char(file, tokp)) != -1) {
4069                         tokp = next_char(file, tokp, 1);
4070                         if ((c == '*') && (c1 == '/')) {
4071                                 tok = TOK_SPACE;
4072                                 break;
4073                         }
4074                         c = c1;
4075                 }
4076                 if (tok == TOK_UNKNOWN) {
4077                         error(state, 0, "unterminated comment");
4078                 }
4079         }
4080         /* string constants */
4081         else if ((c == '"') || ((c == 'L') && (c1 == '"'))) {
4082                 int wchar, multiline;
4083
4084                 wchar = 0;
4085                 multiline = 0;
4086                 if (c == 'L') {
4087                         wchar = 1;
4088                         tokp = next_char(file, tokp, 1);
4089                 }
4090                 while((c = get_char(file, tokp)) != -1) {
4091                         tokp = next_char(file, tokp, 1);
4092                         if (c == '\n') {
4093                                 multiline = 1;
4094                         }
4095                         else if (c == '\\') {
4096                                 tokp = next_char(file, tokp, 1);
4097                         }
4098                         else if (c == '"') {
4099                                 tok = TOK_LIT_STRING;
4100                                 break;
4101                         }
4102                 }
4103                 if (tok == TOK_UNKNOWN) {
4104                         error(state, 0, "unterminated string constant");
4105                 }
4106                 if (multiline) {
4107                         warning(state, 0, "multiline string constant");
4108                 }
4109
4110                 /* Save the string value */
4111                 save_string(file, tk, token, tokp, "literal string");
4112         }
4113         /* character constants */
4114         else if ((c == '\'') || ((c == 'L') && (c1 == '\''))) {
4115                 int wchar, multiline;
4116
4117                 wchar = 0;
4118                 multiline = 0;
4119                 if (c == 'L') {
4120                         wchar = 1;
4121                         tokp = next_char(file, tokp, 1);
4122                 }
4123                 while((c = get_char(file, tokp)) != -1) {
4124                         tokp = next_char(file, tokp, 1);
4125                         if (c == '\n') {
4126                                 multiline = 1;
4127                         }
4128                         else if (c == '\\') {
4129                                 tokp = next_char(file, tokp, 1);
4130                         }
4131                         else if (c == '\'') {
4132                                 tok = TOK_LIT_CHAR;
4133                                 break;
4134                         }
4135                 }
4136                 if (tok == TOK_UNKNOWN) {
4137                         error(state, 0, "unterminated character constant");
4138                 }
4139                 if (multiline) {
4140                         warning(state, 0, "multiline character constant");
4141                 }
4142
4143                 /* Save the character value */
4144                 save_string(file, tk, token, tokp, "literal character");
4145         }
4146         /* integer and floating constants 
4147          * Integer Constants
4148          * {digits}
4149          * 0[Xx]{hexdigits}
4150          * 0{octdigit}+
4151          * 
4152          * Floating constants
4153          * {digits}.{digits}[Ee][+-]?{digits}
4154          * {digits}.{digits}
4155          * {digits}[Ee][+-]?{digits}
4156          * .{digits}[Ee][+-]?{digits}
4157          * .{digits}
4158          */
4159         else if (digitp(c) || ((c == '.') && (digitp(c1)))) {
4160                 const char *next;
4161                 int is_float;
4162                 int cn;
4163                 is_float = 0;
4164                 if (c != '.') {
4165                         next = after_digits(file, tokp);
4166                 }
4167                 else {
4168                         next = token;
4169                 }
4170                 cn = get_char(file, next);
4171                 if (cn == '.') {
4172                         next = next_char(file, next, 1);
4173                         next = after_digits(file, next);
4174                         is_float = 1;
4175                 }
4176                 cn = get_char(file, next);
4177                 if ((cn == 'e') || (cn == 'E')) {
4178                         const char *new;
4179                         next = next_char(file, next, 1);
4180                         cn = get_char(file, next);
4181                         if ((cn == '+') || (cn == '-')) {
4182                                 next = next_char(file, next, 1);
4183                         }
4184                         new = after_digits(file, next);
4185                         is_float |= (new != next);
4186                         next = new;
4187                 }
4188                 if (is_float) {
4189                         tok = TOK_LIT_FLOAT;
4190                         cn = get_char(file, next);
4191                         if ((cn  == 'f') || (cn == 'F') || (cn == 'l') || (cn == 'L')) {
4192                                 next = next_char(file, next, 1);
4193                         }
4194                 }
4195                 if (!is_float && digitp(c)) {
4196                         tok = TOK_LIT_INT;
4197                         if ((c == '0') && ((c1 == 'x') || (c1 == 'X'))) {
4198                                 next = next_char(file, tokp, 1);
4199                                 next = after_hexdigits(file, next);
4200                         }
4201                         else if (c == '0') {
4202                                 next = after_octdigits(file, tokp);
4203                         }
4204                         else {
4205                                 next = after_digits(file, tokp);
4206                         }
4207                         /* crazy integer suffixes */
4208                         cn = get_char(file, next);
4209                         if ((cn == 'u') || (cn == 'U')) {
4210                                 next = next_char(file, next, 1);
4211                                 cn = get_char(file, next);
4212                                 if ((cn == 'l') || (cn == 'L')) {
4213                                         next = next_char(file, next, 1);
4214                                         cn = get_char(file, next);
4215                                 }
4216                                 if ((cn == 'l') || (cn == 'L')) {
4217                                         next = next_char(file, next, 1);
4218                                 }
4219                         }
4220                         else if ((cn == 'l') || (cn == 'L')) {
4221                                 next = next_char(file, next, 1);
4222                                 cn = get_char(file, next);
4223                                 if ((cn == 'l') || (cn == 'L')) {
4224                                         next = next_char(file, next, 1);
4225                                         cn = get_char(file, next);
4226                                 }
4227                                 if ((cn == 'u') || (cn == 'U')) {
4228                                         next = next_char(file, next, 1);
4229                                 }
4230                         }
4231                 }
4232                 tokp = next;
4233
4234                 /* Save the integer/floating point value */
4235                 save_string(file, tk, token, tokp, "literal number");
4236         }
4237         /* identifiers */
4238         else if (letterp(c)) {
4239                 tok = TOK_IDENT;
4240
4241                 /* Find and save the identifier string */
4242                 tokp = after_alnums(file, tokp);
4243                 save_string(file, tk, token, tokp, "identifier");
4244
4245                 /* Look up to see which identifier it is */
4246                 tk->ident = lookup(state, tk->val.str, tk->str_len);
4247
4248                 /* Free the identifier string */
4249                 tk->str_len = 0;
4250                 xfree(tk->val.str);
4251
4252                 /* See if this identifier can be macro expanded */
4253                 tk->val.notmacro = 0;
4254                 c = get_char(file, tokp);
4255                 if (c == '$') {
4256                         tokp = next_char(file, tokp, 1);
4257                         tk->val.notmacro = 1;
4258                 }
4259         }
4260         /* C99 alternate macro characters */
4261         else if ((c == '%') && (c1 == ':') && (c2 == '%') && (c3 == ':')) { 
4262                 eat += 3;
4263                 tok = TOK_CONCATENATE; 
4264         }
4265         else if ((c == '.') && (c1 == '.') && (c2 == '.')) { eat += 2; tok = TOK_DOTS; }
4266         else if ((c == '<') && (c1 == '<') && (c2 == '=')) { eat += 2; tok = TOK_SLEQ; }
4267         else if ((c == '>') && (c1 == '>') && (c2 == '=')) { eat += 2; tok = TOK_SREQ; }
4268         else if ((c == '*') && (c1 == '=')) { eat += 1; tok = TOK_TIMESEQ; }
4269         else if ((c == '/') && (c1 == '=')) { eat += 1; tok = TOK_DIVEQ; }
4270         else if ((c == '%') && (c1 == '=')) { eat += 1; tok = TOK_MODEQ; }
4271         else if ((c == '+') && (c1 == '=')) { eat += 1; tok = TOK_PLUSEQ; }
4272         else if ((c == '-') && (c1 == '=')) { eat += 1; tok = TOK_MINUSEQ; }
4273         else if ((c == '&') && (c1 == '=')) { eat += 1; tok = TOK_ANDEQ; }
4274         else if ((c == '^') && (c1 == '=')) { eat += 1; tok = TOK_XOREQ; }
4275         else if ((c == '|') && (c1 == '=')) { eat += 1; tok = TOK_OREQ; }
4276         else if ((c == '=') && (c1 == '=')) { eat += 1; tok = TOK_EQEQ; }
4277         else if ((c == '!') && (c1 == '=')) { eat += 1; tok = TOK_NOTEQ; }
4278         else if ((c == '|') && (c1 == '|')) { eat += 1; tok = TOK_LOGOR; }
4279         else if ((c == '&') && (c1 == '&')) { eat += 1; tok = TOK_LOGAND; }
4280         else if ((c == '<') && (c1 == '=')) { eat += 1; tok = TOK_LESSEQ; }
4281         else if ((c == '>') && (c1 == '=')) { eat += 1; tok = TOK_MOREEQ; }
4282         else if ((c == '<') && (c1 == '<')) { eat += 1; tok = TOK_SL; }
4283         else if ((c == '>') && (c1 == '>')) { eat += 1; tok = TOK_SR; }
4284         else if ((c == '+') && (c1 == '+')) { eat += 1; tok = TOK_PLUSPLUS; }
4285         else if ((c == '-') && (c1 == '-')) { eat += 1; tok = TOK_MINUSMINUS; }
4286         else if ((c == '-') && (c1 == '>')) { eat += 1; tok = TOK_ARROW; }
4287         else if ((c == '<') && (c1 == ':')) { eat += 1; tok = TOK_LBRACKET; }
4288         else if ((c == ':') && (c1 == '>')) { eat += 1; tok = TOK_RBRACKET; }
4289         else if ((c == '<') && (c1 == '%')) { eat += 1; tok = TOK_LBRACE; }
4290         else if ((c == '%') && (c1 == '>')) { eat += 1; tok = TOK_RBRACE; }
4291         else if ((c == '%') && (c1 == ':')) { eat += 1; tok = TOK_MACRO; }
4292         else if ((c == '#') && (c1 == '#')) { eat += 1; tok = TOK_CONCATENATE; }
4293         else if (c == ';') { tok = TOK_SEMI; }
4294         else if (c == '{') { tok = TOK_LBRACE; }
4295         else if (c == '}') { tok = TOK_RBRACE; }
4296         else if (c == ',') { tok = TOK_COMMA; }
4297         else if (c == '=') { tok = TOK_EQ; }
4298         else if (c == ':') { tok = TOK_COLON; }
4299         else if (c == '[') { tok = TOK_LBRACKET; }
4300         else if (c == ']') { tok = TOK_RBRACKET; }
4301         else if (c == '(') { tok = TOK_LPAREN; }
4302         else if (c == ')') { tok = TOK_RPAREN; }
4303         else if (c == '*') { tok = TOK_STAR; }
4304         else if (c == '>') { tok = TOK_MORE; }
4305         else if (c == '<') { tok = TOK_LESS; }
4306         else if (c == '?') { tok = TOK_QUEST; }
4307         else if (c == '|') { tok = TOK_OR; }
4308         else if (c == '&') { tok = TOK_AND; }
4309         else if (c == '^') { tok = TOK_XOR; }
4310         else if (c == '+') { tok = TOK_PLUS; }
4311         else if (c == '-') { tok = TOK_MINUS; }
4312         else if (c == '/') { tok = TOK_DIV; }
4313         else if (c == '%') { tok = TOK_MOD; }
4314         else if (c == '!') { tok = TOK_BANG; }
4315         else if (c == '.') { tok = TOK_DOT; }
4316         else if (c == '~') { tok = TOK_TILDE; }
4317         else if (c == '#') { tok = TOK_MACRO; }
4318         else if (c == '\n') { tok = TOK_EOL; }
4319
4320         tokp = next_char(file, tokp, eat);
4321         eat_chars(file, tokp);
4322         tk->tok = tok;
4323         tk->pos = token;
4324 }
4325
4326 static void check_tok(struct compile_state *state, struct token *tk, int tok)
4327 {
4328         if (tk->tok != tok) {
4329                 const char *name1, *name2;
4330                 name1 = tokens[tk->tok];
4331                 name2 = "";
4332                 if ((tk->tok == TOK_IDENT) || (tk->tok == TOK_MIDENT)) {
4333                         name2 = tk->ident->name;
4334                 }
4335                 error(state, 0, "\tfound %s %s expected %s",
4336                         name1, name2, tokens[tok]);
4337         }
4338 }
4339
4340 struct macro_arg_value {
4341         struct hash_entry *ident;
4342         char *value;
4343         size_t len;
4344 };
4345 static struct macro_arg_value *read_macro_args(
4346         struct compile_state *state, struct macro *macro, 
4347         struct file_state *file, struct token *tk)
4348 {
4349         struct macro_arg_value *argv;
4350         struct macro_arg *arg;
4351         int paren_depth;
4352         int i;
4353
4354         if (macro->argc == 0) {
4355                 do {
4356                         raw_next_token(state, file, tk);
4357                 } while(tk->tok == TOK_SPACE);
4358                 return NULL;
4359         }
4360         argv = xcmalloc(sizeof(*argv) * macro->argc, "macro args");
4361         for(i = 0, arg = macro->args; arg; arg = arg->next, i++) {
4362                 argv[i].value = 0;
4363                 argv[i].len   = 0;
4364                 argv[i].ident = arg->ident;
4365         }
4366         paren_depth = 0;
4367         i = 0;
4368         
4369         for(;;) {
4370                 const char *start;
4371                 size_t len;
4372                 start = file->pos;
4373                 raw_next_token(state, file, tk);
4374                 
4375                 if (!paren_depth && (tk->tok == TOK_COMMA) &&
4376                         (argv[i].ident != state->i___VA_ARGS__)) 
4377                 {
4378                         i++;
4379                         if (i >= macro->argc) {
4380                                 error(state, 0, "too many args to %s\n",
4381                                         macro->ident->name);
4382                         }
4383                         continue;
4384                 }
4385                 
4386                 if (tk->tok == TOK_LPAREN) {
4387                         paren_depth++;
4388                 }
4389                 
4390                 if (tk->tok == TOK_RPAREN) {
4391                         if (paren_depth == 0) {
4392                                 break;
4393                         }
4394                         paren_depth--;
4395                 }
4396                 if (tk->tok == TOK_EOF) {
4397                         error(state, 0, "End of file encountered while parsing macro arguments");
4398                 }
4399
4400                 len = char_strlen(file, start, file->pos);
4401                 argv[i].value = xrealloc(
4402                         argv[i].value, argv[i].len + len, "macro args");
4403                 char_strcpy((char *)argv[i].value + argv[i].len, file, start, file->pos);
4404                 argv[i].len += len;
4405         }
4406         if (i != macro->argc -1) {
4407                 error(state, 0, "missing %s arg %d\n", 
4408                         macro->ident->name, i +2);
4409         }
4410         return argv;
4411 }
4412
4413
4414 static void free_macro_args(struct macro *macro, struct macro_arg_value *argv)
4415 {
4416         int i;
4417         for(i = 0; i < macro->argc; i++) {
4418                 xfree(argv[i].value);
4419         }
4420         xfree(argv);
4421 }
4422
4423 struct macro_buf {
4424         char *str;
4425         size_t len, pos;
4426 };
4427
4428 static void grow_macro_buf(struct compile_state *state,
4429         const char *id, struct macro_buf *buf,
4430         size_t grow)
4431 {
4432         if ((buf->pos + grow) >= buf->len) {
4433                 buf->str = xrealloc(buf->str, buf->len + grow, id);
4434                 buf->len += grow;
4435         }
4436 }
4437
4438 static void append_macro_text(struct compile_state *state,
4439         const char *id, struct macro_buf *buf,
4440         const char *fstart, size_t flen)
4441 {
4442         grow_macro_buf(state, id, buf, flen);
4443         memcpy(buf->str + buf->pos, fstart, flen);
4444 #if 0
4445         fprintf(state->errout, "append: `%*.*s' `%*.*s'\n",
4446                 buf->pos, buf->pos, buf->str,
4447                 flen, flen, buf->str + buf->pos);
4448 #endif
4449         buf->pos += flen;
4450 }
4451
4452
4453 static void append_macro_chars(struct compile_state *state,
4454         const char *id, struct macro_buf *buf,
4455         struct file_state *file, const char *start, const char *end)
4456 {
4457         size_t flen;
4458         flen = char_strlen(file, start, end);
4459         grow_macro_buf(state, id, buf, flen);
4460         char_strcpy(buf->str + buf->pos, file, start, end);
4461 #if 0
4462         fprintf(state->errout, "append: `%*.*s' `%*.*s'\n",
4463                 buf->pos, buf->pos, buf->str,
4464                 flen, flen, buf->str + buf->pos);
4465 #endif
4466         buf->pos += flen;
4467 }
4468
4469 static int compile_macro(struct compile_state *state, 
4470         struct file_state **filep, struct token *tk);
4471
4472 static void macro_expand_args(struct compile_state *state, 
4473         struct macro *macro, struct macro_arg_value *argv, struct token *tk)
4474 {
4475         int i;
4476         
4477         for(i = 0; i < macro->argc; i++) {
4478                 struct file_state fmacro, *file;
4479                 struct macro_buf buf;
4480
4481                 fmacro.prev        = 0;
4482                 fmacro.basename    = argv[i].ident->name;
4483                 fmacro.dirname     = "";
4484                 fmacro.buf         = (char *)argv[i].value;
4485                 fmacro.size        = argv[i].len;
4486                 fmacro.pos         = fmacro.buf;
4487                 fmacro.line        = 1;
4488                 fmacro.line_start  = fmacro.buf;
4489                 fmacro.report_line = 1;
4490                 fmacro.report_name = fmacro.basename;
4491                 fmacro.report_dir  = fmacro.dirname;
4492                 fmacro.macro       = 1;
4493                 fmacro.trigraphs   = 0;
4494                 fmacro.join_lines  = 0;
4495
4496                 buf.len = argv[i].len;
4497                 buf.str = xmalloc(buf.len, argv[i].ident->name);
4498                 buf.pos = 0;
4499
4500                 file = &fmacro;
4501                 for(;;) {
4502                         raw_next_token(state, file, tk);
4503                         
4504                         /* If we have recursed into another macro body
4505                          * get out of it.
4506                          */
4507                         if (tk->tok == TOK_EOF) {
4508                                 struct file_state *old;
4509                                 old = file;
4510                                 file = file->prev;
4511                                 if (!file) {
4512                                         break;
4513                                 }
4514                                 /* old->basename is used keep it */
4515                                 xfree(old->dirname);
4516                                 xfree(old->buf);
4517                                 xfree(old);
4518                                 continue;
4519                         }
4520                         else if (tk->ident && tk->ident->sym_define) {
4521                                 if (compile_macro(state, &file, tk)) {
4522                                         continue;
4523                                 }
4524                         }
4525
4526                         append_macro_chars(state, macro->ident->name, &buf,
4527                                 file, tk->pos, file->pos);
4528                 }
4529                         
4530                 xfree(argv[i].value);
4531                 argv[i].value = buf.str;
4532                 argv[i].len   = buf.pos;
4533         }
4534         return;
4535 }
4536
4537 static void expand_macro(struct compile_state *state,
4538         struct macro *macro, struct macro_buf *buf,
4539         struct macro_arg_value *argv, struct token *tk)
4540 {
4541         struct file_state fmacro;
4542         const char space[] = " ";
4543         const char *fstart;
4544         size_t flen;
4545         int i, j;
4546
4547         /* Place the macro body in a dummy file */
4548         fmacro.prev        = 0;
4549         fmacro.basename    = macro->ident->name;
4550         fmacro.dirname     = "";
4551         fmacro.buf         = macro->buf;
4552         fmacro.size        = macro->buf_len;
4553         fmacro.pos         = fmacro.buf;
4554         fmacro.line        = 1;
4555         fmacro.line_start  = fmacro.buf;
4556         fmacro.report_line = 1;
4557         fmacro.report_name = fmacro.basename;
4558         fmacro.report_dir  = fmacro.dirname;
4559         fmacro.macro       = 1;
4560         fmacro.trigraphs   = 0;
4561         fmacro.join_lines  = 0;
4562         
4563         /* Allocate a buffer to hold the macro expansion */
4564         buf->len = macro->buf_len + 3;
4565         buf->str = xmalloc(buf->len, macro->ident->name);
4566         buf->pos = 0;
4567         
4568         fstart = fmacro.pos;
4569         raw_next_token(state, &fmacro, tk);
4570         while(tk->tok != TOK_EOF) {
4571                 flen = fmacro.pos - fstart;
4572                 switch(tk->tok) {
4573                 case TOK_IDENT:
4574                         for(i = 0; i < macro->argc; i++) {
4575                                 if (argv[i].ident == tk->ident) {
4576                                         break;
4577                                 }
4578                         }
4579                         if (i >= macro->argc) {
4580                                 break;
4581                         }
4582                         /* Substitute macro parameter */
4583                         fstart = argv[i].value;
4584                         flen   = argv[i].len;
4585                         break;
4586                 case TOK_MACRO:
4587                         if (macro->argc < 0) {
4588                                 break;
4589                         }
4590                         do {
4591                                 raw_next_token(state, &fmacro, tk);
4592                         } while(tk->tok == TOK_SPACE);
4593                         check_tok(state, tk, TOK_IDENT);
4594                         for(i = 0; i < macro->argc; i++) {
4595                                 if (argv[i].ident == tk->ident) {
4596                                         break;
4597                                 }
4598                         }
4599                         if (i >= macro->argc) {
4600                                 error(state, 0, "parameter `%s' not found",
4601                                         tk->ident->name);
4602                         }
4603                         /* Stringize token */
4604                         append_macro_text(state, macro->ident->name, buf, "\"", 1);
4605                         for(j = 0; j < argv[i].len; j++) {
4606                                 char *str = argv[i].value + j;
4607                                 size_t len = 1;
4608                                 if (*str == '\\') {
4609                                         str = "\\";
4610                                         len = 2;
4611                                 } 
4612                                 else if (*str == '"') {
4613                                         str = "\\\"";
4614                                         len = 2;
4615                                 }
4616                                 append_macro_text(state, macro->ident->name, buf, str, len);
4617                         }
4618                         append_macro_text(state, macro->ident->name, buf, "\"", 1);
4619                         fstart = 0;
4620                         flen   = 0;
4621                         break;
4622                 case TOK_CONCATENATE:
4623                         /* Concatenate tokens */
4624                         /* Delete the previous whitespace token */
4625                         if (buf->str[buf->pos - 1] == ' ') {
4626                                 buf->pos -= 1;
4627                         }
4628                         /* Skip the next sequence of whitspace tokens */
4629                         do {
4630                                 fstart = fmacro.pos;
4631                                 raw_next_token(state, &fmacro, tk);
4632                         } while(tk->tok == TOK_SPACE);
4633                         /* Restart at the top of the loop.
4634                          * I need to process the non white space token.
4635                          */
4636                         continue;
4637                         break;
4638                 case TOK_SPACE:
4639                         /* Collapse multiple spaces into one */
4640                         if (buf->str[buf->pos - 1] != ' ') {
4641                                 fstart = space;
4642                                 flen   = 1;
4643                         } else {
4644                                 fstart = 0;
4645                                 flen   = 0;
4646                         }
4647                         break;
4648                 default:
4649                         break;
4650                 }
4651
4652                 append_macro_text(state, macro->ident->name, buf, fstart, flen);
4653                 
4654                 fstart = fmacro.pos;
4655                 raw_next_token(state, &fmacro, tk);
4656         }
4657 }
4658
4659 static void tag_macro_name(struct compile_state *state,
4660         struct macro *macro, struct macro_buf *buf,
4661         struct token *tk)
4662 {
4663         /* Guard all instances of the macro name in the replacement
4664          * text from further macro expansion.
4665          */
4666         struct file_state fmacro;
4667         const char *fstart;
4668         size_t flen;
4669
4670         /* Put the old macro expansion buffer in a file */
4671         fmacro.prev        = 0;
4672         fmacro.basename    = macro->ident->name;
4673         fmacro.dirname     = "";
4674         fmacro.buf         = buf->str;
4675         fmacro.size        = buf->pos;
4676         fmacro.pos         = fmacro.buf;
4677         fmacro.line        = 1;
4678         fmacro.line_start  = fmacro.buf;
4679         fmacro.report_line = 1;
4680         fmacro.report_name = fmacro.basename;
4681         fmacro.report_dir  = fmacro.dirname;
4682         fmacro.macro       = 1;
4683         fmacro.trigraphs   = 0;
4684         fmacro.join_lines  = 0;
4685         
4686         /* Allocate a new macro expansion buffer */
4687         buf->len = macro->buf_len + 3;
4688         buf->str = xmalloc(buf->len, macro->ident->name);
4689         buf->pos = 0;
4690         
4691         fstart = fmacro.pos;
4692         raw_next_token(state, &fmacro, tk);
4693         while(tk->tok != TOK_EOF) {
4694                 flen = fmacro.pos - fstart;
4695                 if ((tk->tok == TOK_IDENT) &&
4696                         (tk->ident == macro->ident) &&
4697                         (tk->val.notmacro == 0)) 
4698                 {
4699                         append_macro_text(state, macro->ident->name, buf, fstart, flen);
4700                         fstart = "$";
4701                         flen   = 1;
4702                 }
4703
4704                 append_macro_text(state, macro->ident->name, buf, fstart, flen);
4705                 
4706                 fstart = fmacro.pos;
4707                 raw_next_token(state, &fmacro, tk);
4708         }
4709         xfree(fmacro.buf);
4710 }
4711
4712 static int compile_macro(struct compile_state *state, 
4713         struct file_state **filep, struct token *tk)
4714 {
4715         struct file_state *file;
4716         struct hash_entry *ident;
4717         struct macro *macro;
4718         struct macro_arg_value *argv;
4719         struct macro_buf buf;
4720
4721 #if 0
4722         fprintf(state->errout, "macro: %s\n", tk->ident->name);
4723 #endif
4724         ident = tk->ident;
4725         macro = ident->sym_define;
4726
4727         /* If this token comes from a macro expansion ignore it */
4728         if (tk->val.notmacro) {
4729                 return 0;
4730         }
4731         /* If I am a function like macro and the identifier is not followed
4732          * by a left parenthesis, do nothing.
4733          */
4734         if ((macro->argc >= 0) && (get_char(*filep, (*filep)->pos) != '(')) {
4735                 return 0;
4736         }
4737
4738         /* Read in the macro arguments */
4739         argv = 0;
4740         if (macro->argc >= 0) {
4741                 raw_next_token(state, *filep, tk);
4742                 check_tok(state, tk, TOK_LPAREN);
4743
4744                 argv = read_macro_args(state, macro, *filep, tk);
4745
4746                 check_tok(state, tk, TOK_RPAREN);
4747         }
4748         /* Macro expand the macro arguments */
4749         macro_expand_args(state, macro, argv, tk);
4750
4751         buf.str = 0;
4752         buf.len = 0;
4753         buf.pos = 0;
4754         if (ident == state->i___FILE__) {
4755                 buf.len = strlen(state->file->basename) + 1 + 2 + 3;
4756                 buf.str = xmalloc(buf.len, ident->name);
4757                 sprintf(buf.str, "\"%s\"", state->file->basename);
4758                 buf.pos = strlen(buf.str);
4759         }
4760         else if (ident == state->i___LINE__) {
4761                 buf.len = 30;
4762                 buf.str = xmalloc(buf.len, ident->name);
4763                 sprintf(buf.str, "%d", state->file->line);
4764                 buf.pos = strlen(buf.str);
4765         }
4766         else {
4767                 expand_macro(state, macro, &buf, argv, tk);
4768         }
4769         /* Tag the macro name with a $ so it will no longer
4770          * be regonized as a canidate for macro expansion.
4771          */
4772         tag_macro_name(state, macro, &buf, tk);
4773
4774 #if 0
4775         fprintf(state->errout, "%s: %d -> `%*.*s'\n",
4776                 ident->name, buf.pos, buf.pos, (int)(buf.pos), buf.str);
4777 #endif
4778
4779         free_macro_args(macro, argv);
4780
4781         file = xmalloc(sizeof(*file), "file_state");
4782         file->prev        = *filep;
4783         file->basename    = xstrdup(ident->name);
4784         file->dirname     = xstrdup("");
4785         file->buf         = buf.str;
4786         file->size        = buf.pos;
4787         file->pos         = file->buf;
4788         file->line        = 1;
4789         file->line_start  = file->pos;
4790         file->report_line = 1;
4791         file->report_name = file->basename;
4792         file->report_dir  = file->dirname;
4793         file->macro       = 1;
4794         file->trigraphs   = 0;
4795         file->join_lines  = 0;
4796         *filep = file;
4797         return 1;
4798 }
4799
4800 static void eat_tokens(struct compile_state *state, int targ_tok)
4801 {
4802         if (state->eat_depth > 0) {
4803                 internal_error(state, 0, "Already eating...");
4804         }
4805         state->eat_depth = state->if_depth;
4806         state->eat_targ = targ_tok;
4807 }
4808 static int if_eat(struct compile_state *state)
4809 {
4810         return state->eat_depth > 0;
4811 }
4812 static int if_value(struct compile_state *state)
4813 {
4814         int index, offset;
4815         index = state->if_depth / CHAR_BIT;
4816         offset = state->if_depth % CHAR_BIT;
4817         return !!(state->if_bytes[index] & (1 << (offset)));
4818 }
4819 static void set_if_value(struct compile_state *state, int value) 
4820 {
4821         int index, offset;
4822         index = state->if_depth / CHAR_BIT;
4823         offset = state->if_depth % CHAR_BIT;
4824
4825         state->if_bytes[index] &= ~(1 << offset);
4826         if (value) {
4827                 state->if_bytes[index] |= (1 << offset);
4828         }
4829 }
4830 static void in_if(struct compile_state *state, const char *name)
4831 {
4832         if (state->if_depth <= 0) {
4833                 error(state, 0, "%s without #if", name);
4834         }
4835 }
4836 static void enter_if(struct compile_state *state)
4837 {
4838         state->if_depth += 1;
4839         if (state->if_depth > MAX_PP_IF_DEPTH) {
4840                 error(state, 0, "#if depth too great");
4841         }
4842 }
4843 static void reenter_if(struct compile_state *state, const char *name)
4844 {
4845         in_if(state, name);
4846         if ((state->eat_depth == state->if_depth) &&
4847                 (state->eat_targ == TOK_MELSE)) {
4848                 state->eat_depth = 0;
4849                 state->eat_targ = 0;
4850         }
4851 }
4852 static void enter_else(struct compile_state *state, const char *name)
4853 {
4854         in_if(state, name);
4855         if ((state->eat_depth == state->if_depth) &&
4856                 (state->eat_targ == TOK_MELSE)) {
4857                 state->eat_depth = 0;
4858                 state->eat_targ = 0;
4859         }
4860 }
4861 static void exit_if(struct compile_state *state, const char *name)
4862 {
4863         in_if(state, name);
4864         if (state->eat_depth == state->if_depth) {
4865                 state->eat_depth = 0;
4866                 state->eat_targ = 0;
4867         }
4868         state->if_depth -= 1;
4869 }
4870
4871 static void raw_token(struct compile_state *state, struct token *tk)
4872 {
4873         struct file_state *file;
4874         int rescan;
4875
4876         file = state->file;
4877         raw_next_token(state, file, tk);
4878         do {
4879                 rescan = 0;
4880                 file = state->file;
4881                 /* Exit out of an include directive or macro call */
4882                 if ((tk->tok == TOK_EOF) && 
4883                         (file != state->macro_file) && file->prev) 
4884                 {
4885                         state->file = file->prev;
4886                         /* file->basename is used keep it */
4887                         xfree(file->dirname);
4888                         xfree(file->buf);
4889                         xfree(file);
4890                         file = 0;
4891                         raw_next_token(state, state->file, tk);
4892                         rescan = 1;
4893                 }
4894         } while(rescan);
4895 }
4896
4897 static void pp_token(struct compile_state *state, struct token *tk)
4898 {
4899         struct file_state *file;
4900         int rescan;
4901
4902         raw_token(state, tk);
4903         do {
4904                 rescan = 0;
4905                 file = state->file;
4906                 if (tk->tok == TOK_SPACE) {
4907                         raw_token(state, tk);
4908                         rescan = 1;
4909                 }
4910                 else if (tk->tok == TOK_IDENT) {
4911                         if (state->token_base == 0) {
4912                                 ident_to_keyword(state, tk);
4913                         } else {
4914                                 ident_to_macro(state, tk);
4915                         }
4916                 }
4917         } while(rescan);
4918 }
4919
4920 static void preprocess(struct compile_state *state, struct token *tk);
4921
4922 static void token(struct compile_state *state, struct token *tk)
4923 {
4924         int rescan;
4925         pp_token(state, tk);
4926         do {
4927                 rescan = 0;
4928                 /* Process a macro directive */
4929                 if (tk->tok == TOK_MACRO) {
4930                         /* Only match preprocessor directives at the start of a line */
4931                         const char *ptr;
4932                         ptr = state->file->line_start;
4933                         while((ptr < tk->pos)
4934                                 && spacep(get_char(state->file, ptr)))
4935                         {
4936                                 ptr = next_char(state->file, ptr, 1);
4937                         }
4938                         if (ptr == tk->pos) {
4939                                 preprocess(state, tk);
4940                                 rescan = 1;
4941                         }
4942                 }
4943                 /* Expand a macro call */
4944                 else if (tk->ident && tk->ident->sym_define) {
4945                         rescan = compile_macro(state, &state->file, tk);
4946                         if (rescan) {
4947                                 pp_token(state, tk);
4948                         }
4949                 }
4950                 /* Eat tokens disabled by the preprocessor 
4951                  * (Unless we are parsing a preprocessor directive 
4952                  */
4953                 else if (if_eat(state) && (state->token_base == 0)) {
4954                         pp_token(state, tk);
4955                         rescan = 1;
4956                 }
4957                 /* Make certain EOL only shows up in preprocessor directives */
4958                 else if ((tk->tok == TOK_EOL) && (state->token_base == 0)) {
4959                         pp_token(state, tk);
4960                         rescan = 1;
4961                 }
4962                 /* Error on unknown tokens */
4963                 else if (tk->tok == TOK_UNKNOWN) {
4964                         error(state, 0, "unknown token");
4965                 }
4966         } while(rescan);
4967 }
4968
4969
4970 static inline struct token *get_token(struct compile_state *state, int offset)
4971 {
4972         int index;
4973         index = state->token_base + offset;
4974         if (index >= sizeof(state->token)/sizeof(state->token[0])) {
4975                 internal_error(state, 0, "token array to small");
4976         }
4977         return &state->token[index];
4978 }
4979
4980 static struct token *do_eat_token(struct compile_state *state, int tok)
4981 {
4982         struct token *tk;
4983         int i;
4984         check_tok(state, get_token(state, 1), tok);
4985         
4986         /* Free the old token value */
4987         tk = get_token(state, 0);
4988         if (tk->str_len) {
4989                 memset((void *)tk->val.str, -1, tk->str_len);
4990                 xfree(tk->val.str);
4991         }
4992         /* Overwrite the old token with newer tokens */
4993         for(i = state->token_base; i < sizeof(state->token)/sizeof(state->token[0]) - 1; i++) {
4994                 state->token[i] = state->token[i + 1];
4995         }
4996         /* Clear the last token */
4997         memset(&state->token[i], 0, sizeof(state->token[i]));
4998         state->token[i].tok = -1;
4999
5000         /* Return the token */
5001         return tk;
5002 }
5003
5004 static int raw_peek(struct compile_state *state)
5005 {
5006         struct token *tk1;
5007         tk1 = get_token(state, 1);
5008         if (tk1->tok == -1) {
5009                 raw_token(state, tk1);
5010         }
5011         return tk1->tok;
5012 }
5013
5014 static struct token *raw_eat(struct compile_state *state, int tok)
5015 {
5016         raw_peek(state);
5017         return do_eat_token(state, tok);
5018 }
5019
5020 static int pp_peek(struct compile_state *state)
5021 {
5022         struct token *tk1;
5023         tk1 = get_token(state, 1);
5024         if (tk1->tok == -1) {
5025                 pp_token(state, tk1);
5026         }
5027         return tk1->tok;
5028 }
5029
5030 static struct token *pp_eat(struct compile_state *state, int tok)
5031 {
5032         pp_peek(state);
5033         return do_eat_token(state, tok);
5034 }
5035
5036 static int peek(struct compile_state *state)
5037 {
5038         struct token *tk1;
5039         tk1 = get_token(state, 1);
5040         if (tk1->tok == -1) {
5041                 token(state, tk1);
5042         }
5043         return tk1->tok;
5044 }
5045
5046 static int peek2(struct compile_state *state)
5047 {
5048         struct token *tk1, *tk2;
5049         tk1 = get_token(state, 1);
5050         tk2 = get_token(state, 2);
5051         if (tk1->tok == -1) {
5052                 token(state, tk1);
5053         }
5054         if (tk2->tok == -1) {
5055                 token(state, tk2);
5056         }
5057         return tk2->tok;
5058 }
5059
5060 static struct token *eat(struct compile_state *state, int tok)
5061 {
5062         peek(state);
5063         return do_eat_token(state, tok);
5064 }
5065
5066 static void compile_file(struct compile_state *state, const char *filename, int local)
5067 {
5068         char cwd[MAX_CWD_SIZE];
5069         const char *subdir, *base;
5070         int subdir_len;
5071         struct file_state *file;
5072         char *basename;
5073         file = xmalloc(sizeof(*file), "file_state");
5074
5075         base = strrchr(filename, '/');
5076         subdir = filename;
5077         if (base != 0) {
5078                 subdir_len = base - filename;
5079                 base++;
5080         }
5081         else {
5082                 base = filename;
5083                 subdir_len = 0;
5084         }
5085         basename = xmalloc(strlen(base) +1, "basename");
5086         strcpy(basename, base);
5087         file->basename = basename;
5088
5089         if (getcwd(cwd, sizeof(cwd)) == 0) {
5090                 die("cwd buffer to small");
5091         }
5092         if ((subdir[0] == '/') || ((subdir[1] == ':') && ((subdir[2] == '/') || (subdir[2] == '\\')))) {
5093                 file->dirname = xmalloc(subdir_len + 1, "dirname");
5094                 memcpy(file->dirname, subdir, subdir_len);
5095                 file->dirname[subdir_len] = '\0';
5096         }
5097         else {
5098                 const char *dir;
5099                 int dirlen;
5100                 const char **path;
5101                 /* Find the appropriate directory... */
5102                 dir = 0;
5103                 if (!state->file && exists(cwd, filename)) {
5104                         dir = cwd;
5105                 }
5106                 if (local && state->file && exists(state->file->dirname, filename)) {
5107                         dir = state->file->dirname;
5108                 }
5109                 for(path = state->compiler->include_paths; !dir && *path; path++) {
5110                         if (exists(*path, filename)) {
5111                                 dir = *path;
5112                         }
5113                 }
5114                 if (!dir) {
5115                         error(state, 0, "Cannot open `%s'\n", filename);
5116                 }
5117                 dirlen = strlen(dir);
5118                 file->dirname = xmalloc(dirlen + 1 + subdir_len + 1, "dirname");
5119                 memcpy(file->dirname, dir, dirlen);
5120                 file->dirname[dirlen] = '/';
5121                 memcpy(file->dirname + dirlen + 1, subdir, subdir_len);
5122                 file->dirname[dirlen + 1 + subdir_len] = '\0';
5123         }
5124         file->buf = slurp_file(file->dirname, file->basename, &file->size);
5125
5126         file->pos = file->buf;
5127         file->line_start = file->pos;
5128         file->line = 1;
5129
5130         file->report_line = 1;
5131         file->report_name = file->basename;
5132         file->report_dir  = file->dirname;
5133         file->macro       = 0;
5134         file->trigraphs   = (state->compiler->flags & COMPILER_TRIGRAPHS)? 1: 0;
5135         file->join_lines  = 1;
5136
5137         file->prev = state->file;
5138         state->file = file;
5139 }
5140
5141 static struct triple *constant_expr(struct compile_state *state);
5142 static void integral(struct compile_state *state, struct triple *def);
5143
5144 static int mcexpr(struct compile_state *state)
5145 {
5146         struct triple *cvalue;
5147         cvalue = constant_expr(state);
5148         integral(state, cvalue);
5149         if (cvalue->op != OP_INTCONST) {
5150                 error(state, 0, "integer constant expected");
5151         }
5152         return cvalue->u.cval != 0;
5153 }
5154
5155 static void preprocess(struct compile_state *state, struct token *current_token)
5156 {
5157         /* Doing much more with the preprocessor would require
5158          * a parser and a major restructuring.
5159          * Postpone that for later.
5160          */
5161         int old_token_base;
5162         int tok;
5163         
5164         state->macro_file = state->file;
5165
5166         old_token_base = state->token_base;
5167         state->token_base = current_token - state->token;
5168
5169         tok = pp_peek(state);
5170         switch(tok) {
5171         case TOK_LIT_INT:
5172         {
5173                 struct token *tk;
5174                 int override_line;
5175                 tk = pp_eat(state, TOK_LIT_INT);
5176                 override_line = strtoul(tk->val.str, 0, 10);
5177                 /* I have a preprocessor  line marker parse it */
5178                 if (pp_peek(state) == TOK_LIT_STRING) {
5179                         const char *token, *base;
5180                         char *name, *dir;
5181                         int name_len, dir_len;
5182                         tk = pp_eat(state, TOK_LIT_STRING);
5183                         name = xmalloc(tk->str_len, "report_name");
5184                         token = tk->val.str + 1;
5185                         base = strrchr(token, '/');
5186                         name_len = tk->str_len -2;
5187                         if (base != 0) {
5188                                 dir_len = base - token;
5189                                 base++;
5190                                 name_len -= base - token;
5191                         } else {
5192                                 dir_len = 0;
5193                                 base = token;
5194                         }
5195                         memcpy(name, base, name_len);
5196                         name[name_len] = '\0';
5197                         dir = xmalloc(dir_len + 1, "report_dir");
5198                         memcpy(dir, token, dir_len);
5199                         dir[dir_len] = '\0';
5200                         state->file->report_line = override_line - 1;
5201                         state->file->report_name = name;
5202                         state->file->report_dir = dir;
5203                         state->file->macro      = 0;
5204                 }
5205                 break;
5206         }
5207         case TOK_MLINE:
5208         {
5209                 struct token *tk;
5210                 pp_eat(state, TOK_MLINE);
5211                 tk = eat(state, TOK_LIT_INT);
5212                 state->file->report_line = strtoul(tk->val.str, 0, 10) -1;
5213                 if (pp_peek(state) == TOK_LIT_STRING) {
5214                         const char *token, *base;
5215                         char *name, *dir;
5216                         int name_len, dir_len;
5217                         tk = pp_eat(state, TOK_LIT_STRING);
5218                         name = xmalloc(tk->str_len, "report_name");
5219                         token = tk->val.str + 1;
5220                         base = strrchr(token, '/');
5221                         name_len = tk->str_len - 2;
5222                         if (base != 0) {
5223                                 dir_len = base - token;
5224                                 base++;
5225                                 name_len -= base - token;
5226                         } else {
5227                                 dir_len = 0;
5228                                 base = token;
5229                         }
5230                         memcpy(name, base, name_len);
5231                         name[name_len] = '\0';
5232                         dir = xmalloc(dir_len + 1, "report_dir");
5233                         memcpy(dir, token, dir_len);
5234                         dir[dir_len] = '\0';
5235                         state->file->report_name = name;
5236                         state->file->report_dir = dir;
5237                         state->file->macro      = 0;
5238                 }
5239                 break;
5240         }
5241         case TOK_MUNDEF:
5242         {
5243                 struct hash_entry *ident;
5244                 pp_eat(state, TOK_MUNDEF);
5245                 if (if_eat(state))  /* quit early when #if'd out */
5246                         break;
5247                 
5248                 ident = pp_eat(state, TOK_MIDENT)->ident;
5249
5250                 undef_macro(state, ident);
5251                 break;
5252         }
5253         case TOK_MPRAGMA:
5254                 pp_eat(state, TOK_MPRAGMA);
5255                 if (if_eat(state))  /* quit early when #if'd out */
5256                         break;
5257                 warning(state, 0, "Ignoring pragma"); 
5258                 break;
5259         case TOK_MELIF:
5260                 pp_eat(state, TOK_MELIF);
5261                 reenter_if(state, "#elif");
5262                 if (if_eat(state))   /* quit early when #if'd out */
5263                         break;
5264                 /* If the #if was taken the #elif just disables the following code */
5265                 if (if_value(state)) {
5266                         eat_tokens(state, TOK_MENDIF);
5267                 }
5268                 /* If the previous #if was not taken see if the #elif enables the 
5269                  * trailing code.
5270                  */
5271                 else {
5272                         set_if_value(state, mcexpr(state));
5273                         if (!if_value(state)) {
5274                                 eat_tokens(state, TOK_MELSE);
5275                         }
5276                 }
5277                 break;
5278         case TOK_MIF:
5279                 pp_eat(state, TOK_MIF);
5280                 enter_if(state);
5281                 if (if_eat(state))  /* quit early when #if'd out */
5282                         break;
5283                 set_if_value(state, mcexpr(state));
5284                 if (!if_value(state)) {
5285                         eat_tokens(state, TOK_MELSE);
5286                 }
5287                 break;
5288         case TOK_MIFNDEF:
5289         {
5290                 struct hash_entry *ident;
5291
5292                 pp_eat(state, TOK_MIFNDEF);
5293                 enter_if(state);
5294                 if (if_eat(state))  /* quit early when #if'd out */
5295                         break;
5296                 ident = pp_eat(state, TOK_MIDENT)->ident;
5297                 set_if_value(state, ident->sym_define == 0);
5298                 if (!if_value(state)) {
5299                         eat_tokens(state, TOK_MELSE);
5300                 }
5301                 break;
5302         }
5303         case TOK_MIFDEF:
5304         {
5305                 struct hash_entry *ident;
5306                 pp_eat(state, TOK_MIFDEF);
5307                 enter_if(state);
5308                 if (if_eat(state))  /* quit early when #if'd out */
5309                         break;
5310                 ident = pp_eat(state, TOK_MIDENT)->ident;
5311                 set_if_value(state, ident->sym_define != 0);
5312                 if (!if_value(state)) {
5313                         eat_tokens(state, TOK_MELSE);
5314                 }
5315                 break;
5316         }
5317         case TOK_MELSE:
5318                 pp_eat(state, TOK_MELSE);
5319                 enter_else(state, "#else");
5320                 if (!if_eat(state) && if_value(state)) {
5321                         eat_tokens(state, TOK_MENDIF);
5322                 }
5323                 break;
5324         case TOK_MENDIF:
5325                 pp_eat(state, TOK_MENDIF);
5326                 exit_if(state, "#endif");
5327                 break;
5328         case TOK_MDEFINE:
5329         {
5330                 struct hash_entry *ident;
5331                 struct macro_arg *args, **larg;
5332                 const char *mstart, *mend;
5333                 int argc;
5334
5335                 pp_eat(state, TOK_MDEFINE);
5336                 if (if_eat(state))  /* quit early when #if'd out */
5337                         break;
5338                 ident = pp_eat(state, TOK_MIDENT)->ident;
5339                 argc = -1;
5340                 args = 0;
5341                 larg = &args;
5342
5343                 /* Parse macro parameters */
5344                 if (raw_peek(state) == TOK_LPAREN) {
5345                         raw_eat(state, TOK_LPAREN);
5346                         argc += 1;
5347
5348                         for(;;) {
5349                                 struct macro_arg *narg, *arg;
5350                                 struct hash_entry *aident;
5351                                 int tok;
5352
5353                                 tok = pp_peek(state);
5354                                 if (!args && (tok == TOK_RPAREN)) {
5355                                         break;
5356                                 }
5357                                 else if (tok == TOK_DOTS) {
5358                                         pp_eat(state, TOK_DOTS);
5359                                         aident = state->i___VA_ARGS__;
5360                                 } 
5361                                 else {
5362                                         aident = pp_eat(state, TOK_MIDENT)->ident;
5363                                 }
5364                                 
5365                                 narg = xcmalloc(sizeof(*arg), "macro arg");
5366                                 narg->ident = aident;
5367
5368                                 /* Verify I don't have a duplicate identifier */
5369                                 for(arg = args; arg; arg = arg->next) {
5370                                         if (arg->ident == narg->ident) {
5371                                                 error(state, 0, "Duplicate macro arg `%s'",
5372                                                         narg->ident->name);
5373                                         }
5374                                 }
5375                                 /* Add the new argument to the end of the list */
5376                                 *larg = narg;
5377                                 larg = &narg->next;
5378                                 argc += 1;
5379
5380                                 if ((aident == state->i___VA_ARGS__) ||
5381                                         (pp_peek(state) != TOK_COMMA)) {
5382                                         break;
5383                                 }
5384                                 pp_eat(state, TOK_COMMA);
5385                         }
5386                         pp_eat(state, TOK_RPAREN);
5387                 }
5388                 /* Remove leading whitespace */
5389                 while(raw_peek(state) == TOK_SPACE) {
5390                         raw_eat(state, TOK_SPACE);
5391                 }
5392
5393                 /* Remember the start of the macro body */
5394                 tok = raw_peek(state);
5395                 mend = mstart = get_token(state, 1)->pos;
5396
5397                 /* Find the end of the macro */
5398                 for(tok = raw_peek(state); tok != TOK_EOL; tok = raw_peek(state)) {
5399                         raw_eat(state, tok);
5400                         /* Remember the end of the last non space token */
5401                         raw_peek(state);
5402                         if (tok != TOK_SPACE) {
5403                                 mend = get_token(state, 1)->pos;
5404                         }
5405                 }
5406                 
5407                 /* Now that I have found the body defined the token */
5408                 do_define_macro(state, ident,
5409                         char_strdup(state->file, mstart, mend, "macro buf"),
5410                         argc, args);
5411                 break;
5412         }
5413         case TOK_MERROR:
5414         {
5415                 const char *start, *end;
5416                 int len;
5417                 
5418                 pp_eat(state, TOK_MERROR);
5419                 /* Find the start of the line */
5420                 raw_peek(state);
5421                 start = get_token(state, 1)->pos;
5422
5423                 /* Find the end of the line */
5424                 while((tok = raw_peek(state)) != TOK_EOL) {
5425                         raw_eat(state, tok);
5426                 }
5427                 end = get_token(state, 1)->pos;
5428                 len = end - start;
5429                 if (!if_eat(state)) {
5430                         error(state, 0, "%*.*s", len, len, start);
5431                 }
5432                 break;
5433         }
5434         case TOK_MWARNING:
5435         {
5436                 const char *start, *end;
5437                 int len;
5438                 
5439                 pp_eat(state, TOK_MWARNING);
5440
5441                 /* Find the start of the line */
5442                 raw_peek(state);
5443                 start = get_token(state, 1)->pos;
5444                  
5445                 /* Find the end of the line */
5446                 while((tok = raw_peek(state)) != TOK_EOL) {
5447                         raw_eat(state, tok);
5448                 }
5449                 end = get_token(state, 1)->pos;
5450                 len = end - start;
5451                 if (!if_eat(state)) {
5452                         warning(state, 0, "%*.*s", len, len, start);
5453                 }
5454                 break;
5455         }
5456         case TOK_MINCLUDE:
5457         {
5458                 char *name;
5459                 int local;
5460                 local = 0;
5461                 name = 0;
5462
5463                 pp_eat(state, TOK_MINCLUDE);
5464                 if (if_eat(state)) {
5465                         /* Find the end of the line */
5466                         while((tok = raw_peek(state)) != TOK_EOL) {
5467                                 raw_eat(state, tok);
5468                         }
5469                         break;
5470                 }
5471                 tok = peek(state);
5472                 if (tok == TOK_LIT_STRING) {
5473                         struct token *tk;
5474                         const char *token;
5475                         int name_len;
5476                         tk = eat(state, TOK_LIT_STRING);
5477                         name = xmalloc(tk->str_len, "include");
5478                         token = tk->val.str +1;
5479                         name_len = tk->str_len -2;
5480                         if (*token == '"') {
5481                                 token++;
5482                                 name_len--;
5483                         }
5484                         memcpy(name, token, name_len);
5485                         name[name_len] = '\0';
5486                         local = 1;
5487                 }
5488                 else if (tok == TOK_LESS) {
5489                         struct macro_buf buf;
5490                         eat(state, TOK_LESS);
5491
5492                         buf.len = 40;
5493                         buf.str = xmalloc(buf.len, "include");
5494                         buf.pos = 0;
5495
5496                         tok = peek(state);
5497                         while((tok != TOK_MORE) &&
5498                                 (tok != TOK_EOL) && (tok != TOK_EOF))
5499                         {
5500                                 struct token *tk;
5501                                 tk = eat(state, tok);
5502                                 append_macro_chars(state, "include", &buf,
5503                                         state->file, tk->pos, state->file->pos);
5504                                 tok = peek(state);
5505                         }
5506                         append_macro_text(state, "include", &buf, "\0", 1);
5507                         if (peek(state) != TOK_MORE) {
5508                                 error(state, 0, "Unterminated include directive");
5509                         }
5510                         eat(state, TOK_MORE);
5511                         local = 0;
5512                         name = buf.str;
5513                 }
5514                 else {
5515                         error(state, 0, "Invalid include directive");
5516                 }
5517                 /* Error if there are any tokens after the include */
5518                 if (pp_peek(state) != TOK_EOL) {
5519                         error(state, 0, "garbage after include directive");
5520                 }
5521                 if (!if_eat(state)) {
5522                         compile_file(state, name, local);
5523                 }
5524                 xfree(name);
5525                 break;
5526         }
5527         case TOK_EOL:
5528                 /* Ignore # without a follwing ident */
5529                 break;
5530         default:
5531         {
5532                 const char *name1, *name2;
5533                 name1 = tokens[tok];
5534                 name2 = "";
5535                 if (tok == TOK_MIDENT) {
5536                         name2 = get_token(state, 1)->ident->name;
5537                 }
5538                 error(state, 0, "Invalid preprocessor directive: %s %s", 
5539                         name1, name2);
5540                 break;
5541         }
5542         }
5543         /* Consume the rest of the macro line */
5544         do {
5545                 tok = pp_peek(state);
5546                 pp_eat(state, tok);
5547         } while((tok != TOK_EOF) && (tok != TOK_EOL));
5548         state->token_base = old_token_base;
5549         state->macro_file = NULL;
5550         return;
5551 }
5552
5553 /* Type helper functions */
5554
5555 static struct type *new_type(
5556         unsigned int type, struct type *left, struct type *right)
5557 {
5558         struct type *result;
5559         result = xmalloc(sizeof(*result), "type");
5560         result->type = type;
5561         result->left = left;
5562         result->right = right;
5563         result->field_ident = 0;
5564         result->type_ident = 0;
5565         result->elements = 0;
5566         return result;
5567 }
5568
5569 static struct type *clone_type(unsigned int specifiers, struct type *old)
5570 {
5571         struct type *result;
5572         result = xmalloc(sizeof(*result), "type");
5573         memcpy(result, old, sizeof(*result));
5574         result->type &= TYPE_MASK;
5575         result->type |= specifiers;
5576         return result;
5577 }
5578
5579 static struct type *dup_type(struct compile_state *state, struct type *orig)
5580 {
5581         struct type *new;
5582         new = xcmalloc(sizeof(*new), "type");
5583         new->type = orig->type;
5584         new->field_ident = orig->field_ident;
5585         new->type_ident  = orig->type_ident;
5586         new->elements    = orig->elements;
5587         if (orig->left) {
5588                 new->left = dup_type(state, orig->left);
5589         }
5590         if (orig->right) {
5591                 new->right = dup_type(state, orig->right);
5592         }
5593         return new;
5594 }
5595
5596
5597 static struct type *invalid_type(struct compile_state *state, struct type *type)
5598 {
5599         struct type *invalid, *member;
5600         invalid = 0;
5601         if (!type) {
5602                 internal_error(state, 0, "type missing?");
5603         }
5604         switch(type->type & TYPE_MASK) {
5605         case TYPE_VOID:
5606         case TYPE_CHAR:         case TYPE_UCHAR:
5607         case TYPE_SHORT:        case TYPE_USHORT:
5608         case TYPE_INT:          case TYPE_UINT:
5609         case TYPE_LONG:         case TYPE_ULONG:
5610         case TYPE_LLONG:        case TYPE_ULLONG:
5611         case TYPE_POINTER:
5612         case TYPE_ENUM:
5613                 break;
5614         case TYPE_BITFIELD:
5615                 invalid = invalid_type(state, type->left);
5616                 break;
5617         case TYPE_ARRAY:
5618                 invalid = invalid_type(state, type->left);
5619                 break;
5620         case TYPE_STRUCT:
5621         case TYPE_TUPLE:
5622                 member = type->left;
5623                 while(member && (invalid == 0) && 
5624                         ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
5625                         invalid = invalid_type(state, member->left);
5626                         member = member->right;
5627                 }
5628                 if (!invalid) {
5629                         invalid = invalid_type(state, member);
5630                 }
5631                 break;
5632         case TYPE_UNION:
5633         case TYPE_JOIN:
5634                 member = type->left;
5635                 while(member && (invalid == 0) &&
5636                         ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
5637                         invalid = invalid_type(state, member->left);
5638                         member = member->right;
5639                 }
5640                 if (!invalid) {
5641                         invalid = invalid_type(state, member);
5642                 }
5643                 break;
5644         default:
5645                 invalid = type;
5646                 break;
5647         }
5648         return invalid;
5649         
5650 }
5651
5652 #define MASK_UCHAR(X)    ((X) & ((ulong_t)0xff))
5653 #define MASK_USHORT(X)   ((X) & (((ulong_t)1 << (SIZEOF_SHORT)) - 1))
5654 static inline ulong_t mask_uint(ulong_t x)
5655 {
5656         if (SIZEOF_INT < SIZEOF_LONG) {
5657                 ulong_t mask = (1ULL << ((ulong_t)(SIZEOF_INT))) -1;
5658                 x &= mask;
5659         }
5660         return x;
5661 }
5662 #define MASK_UINT(X)      (mask_uint(X))
5663 #define MASK_ULONG(X)    (X)
5664
5665 static struct type void_type    = { .type  = TYPE_VOID };
5666 static struct type char_type    = { .type  = TYPE_CHAR };
5667 static struct type uchar_type   = { .type  = TYPE_UCHAR };
5668 #if DEBUG_ROMCC_WARNING
5669 static struct type short_type   = { .type  = TYPE_SHORT };
5670 #endif
5671 static struct type ushort_type  = { .type  = TYPE_USHORT };
5672 static struct type int_type     = { .type  = TYPE_INT };
5673 static struct type uint_type    = { .type  = TYPE_UINT };
5674 static struct type long_type    = { .type  = TYPE_LONG };
5675 static struct type ulong_type   = { .type  = TYPE_ULONG };
5676 static struct type unknown_type = { .type  = TYPE_UNKNOWN };
5677
5678 static struct type void_ptr_type  = {
5679         .type = TYPE_POINTER,
5680         .left = &void_type,
5681 };
5682
5683 #if DEBUG_ROMCC_WARNING
5684 static struct type void_func_type = { 
5685         .type  = TYPE_FUNCTION,
5686         .left  = &void_type,
5687         .right = &void_type,
5688 };
5689 #endif
5690
5691 static size_t bits_to_bytes(size_t size)
5692 {
5693         return (size + SIZEOF_CHAR - 1)/SIZEOF_CHAR;
5694 }
5695
5696 static struct triple *variable(struct compile_state *state, struct type *type)
5697 {
5698         struct triple *result;
5699         if ((type->type & STOR_MASK) != STOR_PERM) {
5700                 result = triple(state, OP_ADECL, type, 0, 0);
5701                 generate_lhs_pieces(state, result);
5702         }
5703         else {
5704                 result = triple(state, OP_SDECL, type, 0, 0);
5705         }
5706         return result;
5707 }
5708
5709 static void stor_of(FILE *fp, struct type *type)
5710 {
5711         switch(type->type & STOR_MASK) {
5712         case STOR_AUTO:
5713                 fprintf(fp, "auto ");
5714                 break;
5715         case STOR_STATIC:
5716                 fprintf(fp, "static ");
5717                 break;
5718         case STOR_LOCAL:
5719                 fprintf(fp, "local ");
5720                 break;
5721         case STOR_EXTERN:
5722                 fprintf(fp, "extern ");
5723                 break;
5724         case STOR_REGISTER:
5725                 fprintf(fp, "register ");
5726                 break;
5727         case STOR_TYPEDEF:
5728                 fprintf(fp, "typedef ");
5729                 break;
5730         case STOR_INLINE | STOR_LOCAL:
5731                 fprintf(fp, "inline ");
5732                 break;
5733         case STOR_INLINE | STOR_STATIC:
5734                 fprintf(fp, "static inline");
5735                 break;
5736         case STOR_INLINE | STOR_EXTERN:
5737                 fprintf(fp, "extern inline");
5738                 break;
5739         default:
5740                 fprintf(fp, "stor:%x", type->type & STOR_MASK);
5741                 break;
5742         }
5743 }
5744 static void qual_of(FILE *fp, struct type *type)
5745 {
5746         if (type->type & QUAL_CONST) {
5747                 fprintf(fp, " const");
5748         }
5749         if (type->type & QUAL_VOLATILE) {
5750                 fprintf(fp, " volatile");
5751         }
5752         if (type->type & QUAL_RESTRICT) {
5753                 fprintf(fp, " restrict");
5754         }
5755 }
5756
5757 static void name_of(FILE *fp, struct type *type)
5758 {
5759         unsigned int base_type;
5760         base_type = type->type & TYPE_MASK;
5761         if ((base_type != TYPE_PRODUCT) && (base_type != TYPE_OVERLAP)) {
5762                 stor_of(fp, type);
5763         }
5764         switch(base_type) {
5765         case TYPE_VOID:
5766                 fprintf(fp, "void");
5767                 qual_of(fp, type);
5768                 break;
5769         case TYPE_CHAR:
5770                 fprintf(fp, "signed char");
5771                 qual_of(fp, type);
5772                 break;
5773         case TYPE_UCHAR:
5774                 fprintf(fp, "unsigned char");
5775                 qual_of(fp, type);
5776                 break;
5777         case TYPE_SHORT:
5778                 fprintf(fp, "signed short");
5779                 qual_of(fp, type);
5780                 break;
5781         case TYPE_USHORT:
5782                 fprintf(fp, "unsigned short");
5783                 qual_of(fp, type);
5784                 break;
5785         case TYPE_INT:
5786                 fprintf(fp, "signed int");
5787                 qual_of(fp, type);
5788                 break;
5789         case TYPE_UINT:
5790                 fprintf(fp, "unsigned int");
5791                 qual_of(fp, type);
5792                 break;
5793         case TYPE_LONG:
5794                 fprintf(fp, "signed long");
5795                 qual_of(fp, type);
5796                 break;
5797         case TYPE_ULONG:
5798                 fprintf(fp, "unsigned long");
5799                 qual_of(fp, type);
5800                 break;
5801         case TYPE_POINTER:
5802                 name_of(fp, type->left);
5803                 fprintf(fp, " * ");
5804                 qual_of(fp, type);
5805                 break;
5806         case TYPE_PRODUCT:
5807                 name_of(fp, type->left);
5808                 fprintf(fp, ", ");
5809                 name_of(fp, type->right);
5810                 break;
5811         case TYPE_OVERLAP:
5812                 name_of(fp, type->left);
5813                 fprintf(fp, ",| ");
5814                 name_of(fp, type->right);
5815                 break;
5816         case TYPE_ENUM:
5817                 fprintf(fp, "enum %s", 
5818                         (type->type_ident)? type->type_ident->name : "");
5819                 qual_of(fp, type);
5820                 break;
5821         case TYPE_STRUCT:
5822                 fprintf(fp, "struct %s { ", 
5823                         (type->type_ident)? type->type_ident->name : "");
5824                 name_of(fp, type->left);
5825                 fprintf(fp, " } ");
5826                 qual_of(fp, type);
5827                 break;
5828         case TYPE_UNION:
5829                 fprintf(fp, "union %s { ", 
5830                         (type->type_ident)? type->type_ident->name : "");
5831                 name_of(fp, type->left);
5832                 fprintf(fp, " } ");
5833                 qual_of(fp, type);
5834                 break;
5835         case TYPE_FUNCTION:
5836                 name_of(fp, type->left);
5837                 fprintf(fp, " (*)(");
5838                 name_of(fp, type->right);
5839                 fprintf(fp, ")");
5840                 break;
5841         case TYPE_ARRAY:
5842                 name_of(fp, type->left);
5843                 fprintf(fp, " [%ld]", (long)(type->elements));
5844                 break;
5845         case TYPE_TUPLE:
5846                 fprintf(fp, "tuple { "); 
5847                 name_of(fp, type->left);
5848                 fprintf(fp, " } ");
5849                 qual_of(fp, type);
5850                 break;
5851         case TYPE_JOIN:
5852                 fprintf(fp, "join { ");
5853                 name_of(fp, type->left);
5854                 fprintf(fp, " } ");
5855                 qual_of(fp, type);
5856                 break;
5857         case TYPE_BITFIELD:
5858                 name_of(fp, type->left);
5859                 fprintf(fp, " : %d ", type->elements);
5860                 qual_of(fp, type);
5861                 break;
5862         case TYPE_UNKNOWN:
5863                 fprintf(fp, "unknown_t");
5864                 break;
5865         default:
5866                 fprintf(fp, "????: %x", base_type);
5867                 break;
5868         }
5869         if (type->field_ident && type->field_ident->name) {
5870                 fprintf(fp, " .%s", type->field_ident->name);
5871         }
5872 }
5873
5874 static size_t align_of(struct compile_state *state, struct type *type)
5875 {
5876         size_t align;
5877         align = 0;
5878         switch(type->type & TYPE_MASK) {
5879         case TYPE_VOID:
5880                 align = 1;
5881                 break;
5882         case TYPE_BITFIELD:
5883                 align = 1;
5884                 break;
5885         case TYPE_CHAR:
5886         case TYPE_UCHAR:
5887                 align = ALIGNOF_CHAR;
5888                 break;
5889         case TYPE_SHORT:
5890         case TYPE_USHORT:
5891                 align = ALIGNOF_SHORT;
5892                 break;
5893         case TYPE_INT:
5894         case TYPE_UINT:
5895         case TYPE_ENUM:
5896                 align = ALIGNOF_INT;
5897                 break;
5898         case TYPE_LONG:
5899         case TYPE_ULONG:
5900                 align = ALIGNOF_LONG;
5901                 break;
5902         case TYPE_POINTER:
5903                 align = ALIGNOF_POINTER;
5904                 break;
5905         case TYPE_PRODUCT:
5906         case TYPE_OVERLAP:
5907         {
5908                 size_t left_align, right_align;
5909                 left_align  = align_of(state, type->left);
5910                 right_align = align_of(state, type->right);
5911                 align = (left_align >= right_align) ? left_align : right_align;
5912                 break;
5913         }
5914         case TYPE_ARRAY:
5915                 align = align_of(state, type->left);
5916                 break;
5917         case TYPE_STRUCT:
5918         case TYPE_TUPLE:
5919         case TYPE_UNION:
5920         case TYPE_JOIN:
5921                 align = align_of(state, type->left);
5922                 break;
5923         default:
5924                 error(state, 0, "alignof not yet defined for type\n");
5925                 break;
5926         }
5927         return align;
5928 }
5929
5930 static size_t reg_align_of(struct compile_state *state, struct type *type)
5931 {
5932         size_t align;
5933         align = 0;
5934         switch(type->type & TYPE_MASK) {
5935         case TYPE_VOID:
5936                 align = 1;
5937                 break;
5938         case TYPE_BITFIELD:
5939                 align = 1;
5940                 break;
5941         case TYPE_CHAR:
5942         case TYPE_UCHAR:
5943                 align = REG_ALIGNOF_CHAR;
5944                 break;
5945         case TYPE_SHORT:
5946         case TYPE_USHORT:
5947                 align = REG_ALIGNOF_SHORT;
5948                 break;
5949         case TYPE_INT:
5950         case TYPE_UINT:
5951         case TYPE_ENUM:
5952                 align = REG_ALIGNOF_INT;
5953                 break;
5954         case TYPE_LONG:
5955         case TYPE_ULONG:
5956                 align = REG_ALIGNOF_LONG;
5957                 break;
5958         case TYPE_POINTER:
5959                 align = REG_ALIGNOF_POINTER;
5960                 break;
5961         case TYPE_PRODUCT:
5962         case TYPE_OVERLAP:
5963         {
5964                 size_t left_align, right_align;
5965                 left_align  = reg_align_of(state, type->left);
5966                 right_align = reg_align_of(state, type->right);
5967                 align = (left_align >= right_align) ? left_align : right_align;
5968                 break;
5969         }
5970         case TYPE_ARRAY:
5971                 align = reg_align_of(state, type->left);
5972                 break;
5973         case TYPE_STRUCT:
5974         case TYPE_UNION:
5975         case TYPE_TUPLE:
5976         case TYPE_JOIN:
5977                 align = reg_align_of(state, type->left);
5978                 break;
5979         default:
5980                 error(state, 0, "alignof not yet defined for type\n");
5981                 break;
5982         }
5983         return align;
5984 }
5985
5986 static size_t align_of_in_bytes(struct compile_state *state, struct type *type)
5987 {
5988         return bits_to_bytes(align_of(state, type));
5989 }
5990 static size_t size_of(struct compile_state *state, struct type *type);
5991 static size_t reg_size_of(struct compile_state *state, struct type *type);
5992
5993 static size_t needed_padding(struct compile_state *state, 
5994         struct type *type, size_t offset)
5995 {
5996         size_t padding, align;
5997         align = align_of(state, type);
5998         /* Align to the next machine word if the bitfield does completely
5999          * fit into the current word.
6000          */
6001         if ((type->type & TYPE_MASK) == TYPE_BITFIELD) {
6002                 size_t size;
6003                 size = size_of(state, type);
6004                 if ((offset + type->elements)/size != offset/size) {
6005                         align = size;
6006                 }
6007         }
6008         padding = 0;
6009         if (offset % align) {
6010                 padding = align - (offset % align);
6011         }
6012         return padding;
6013 }
6014
6015 static size_t reg_needed_padding(struct compile_state *state, 
6016         struct type *type, size_t offset)
6017 {
6018         size_t padding, align;
6019         align = reg_align_of(state, type);
6020         /* Align to the next register word if the bitfield does completely
6021          * fit into the current register.
6022          */
6023         if (((type->type & TYPE_MASK) == TYPE_BITFIELD) &&
6024                 (((offset + type->elements)/REG_SIZEOF_REG) != (offset/REG_SIZEOF_REG))) 
6025         {
6026                 align = REG_SIZEOF_REG;
6027         }
6028         padding = 0;
6029         if (offset % align) {
6030                 padding = align - (offset % align);
6031         }
6032         return padding;
6033 }
6034
6035 static size_t size_of(struct compile_state *state, struct type *type)
6036 {
6037         size_t size;
6038         size = 0;
6039         switch(type->type & TYPE_MASK) {
6040         case TYPE_VOID:
6041                 size = 0;
6042                 break;
6043         case TYPE_BITFIELD:
6044                 size = type->elements;
6045                 break;
6046         case TYPE_CHAR:
6047         case TYPE_UCHAR:
6048                 size = SIZEOF_CHAR;
6049                 break;
6050         case TYPE_SHORT:
6051         case TYPE_USHORT:
6052                 size = SIZEOF_SHORT;
6053                 break;
6054         case TYPE_INT:
6055         case TYPE_UINT:
6056         case TYPE_ENUM:
6057                 size = SIZEOF_INT;
6058                 break;
6059         case TYPE_LONG:
6060         case TYPE_ULONG:
6061                 size = SIZEOF_LONG;
6062                 break;
6063         case TYPE_POINTER:
6064                 size = SIZEOF_POINTER;
6065                 break;
6066         case TYPE_PRODUCT:
6067         {
6068                 size_t pad;
6069                 size = 0;
6070                 while((type->type & TYPE_MASK) == TYPE_PRODUCT) {
6071                         pad = needed_padding(state, type->left, size);
6072                         size = size + pad + size_of(state, type->left);
6073                         type = type->right;
6074                 }
6075                 pad = needed_padding(state, type, size);
6076                 size = size + pad + size_of(state, type);
6077                 break;
6078         }
6079         case TYPE_OVERLAP:
6080         {
6081                 size_t size_left, size_right;
6082                 size_left = size_of(state, type->left);
6083                 size_right = size_of(state, type->right);
6084                 size = (size_left >= size_right)? size_left : size_right;
6085                 break;
6086         }
6087         case TYPE_ARRAY:
6088                 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
6089                         internal_error(state, 0, "Invalid array type");
6090                 } else {
6091                         size = size_of(state, type->left) * type->elements;
6092                 }
6093                 break;
6094         case TYPE_STRUCT:
6095         case TYPE_TUPLE:
6096         {
6097                 size_t pad;
6098                 size = size_of(state, type->left);
6099                 /* Pad structures so their size is a multiples of their alignment */
6100                 pad = needed_padding(state, type, size);
6101                 size = size + pad;
6102                 break;
6103         }
6104         case TYPE_UNION:
6105         case TYPE_JOIN:
6106         {
6107                 size_t pad;
6108                 size = size_of(state, type->left);
6109                 /* Pad unions so their size is a multiple of their alignment */
6110                 pad = needed_padding(state, type, size);
6111                 size = size + pad;
6112                 break;
6113         }
6114         default:
6115                 internal_error(state, 0, "sizeof not yet defined for type");
6116                 break;
6117         }
6118         return size;
6119 }
6120
6121 static size_t reg_size_of(struct compile_state *state, struct type *type)
6122 {
6123         size_t size;
6124         size = 0;
6125         switch(type->type & TYPE_MASK) {
6126         case TYPE_VOID:
6127                 size = 0;
6128                 break;
6129         case TYPE_BITFIELD:
6130                 size = type->elements;
6131                 break;
6132         case TYPE_CHAR:
6133         case TYPE_UCHAR:
6134                 size = REG_SIZEOF_CHAR;
6135                 break;
6136         case TYPE_SHORT:
6137         case TYPE_USHORT:
6138                 size = REG_SIZEOF_SHORT;
6139                 break;
6140         case TYPE_INT:
6141         case TYPE_UINT:
6142         case TYPE_ENUM:
6143                 size = REG_SIZEOF_INT;
6144                 break;
6145         case TYPE_LONG:
6146         case TYPE_ULONG:
6147                 size = REG_SIZEOF_LONG;
6148                 break;
6149         case TYPE_POINTER:
6150                 size = REG_SIZEOF_POINTER;
6151                 break;
6152         case TYPE_PRODUCT:
6153         {
6154                 size_t pad;
6155                 size = 0;
6156                 while((type->type & TYPE_MASK) == TYPE_PRODUCT) {
6157                         pad = reg_needed_padding(state, type->left, size);
6158                         size = size + pad + reg_size_of(state, type->left);
6159                         type = type->right;
6160                 }
6161                 pad = reg_needed_padding(state, type, size);
6162                 size = size + pad + reg_size_of(state, type);
6163                 break;
6164         }
6165         case TYPE_OVERLAP:
6166         {
6167                 size_t size_left, size_right;
6168                 size_left  = reg_size_of(state, type->left);
6169                 size_right = reg_size_of(state, type->right);
6170                 size = (size_left >= size_right)? size_left : size_right;
6171                 break;
6172         }
6173         case TYPE_ARRAY:
6174                 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
6175                         internal_error(state, 0, "Invalid array type");
6176                 } else {
6177                         size = reg_size_of(state, type->left) * type->elements;
6178                 }
6179                 break;
6180         case TYPE_STRUCT:
6181         case TYPE_TUPLE:
6182         {
6183                 size_t pad;
6184                 size = reg_size_of(state, type->left);
6185                 /* Pad structures so their size is a multiples of their alignment */
6186                 pad = reg_needed_padding(state, type, size);
6187                 size = size + pad;
6188                 break;
6189         }
6190         case TYPE_UNION:
6191         case TYPE_JOIN:
6192         {
6193                 size_t pad;
6194                 size = reg_size_of(state, type->left);
6195                 /* Pad unions so their size is a multiple of their alignment */
6196                 pad = reg_needed_padding(state, type, size);
6197                 size = size + pad;
6198                 break;
6199         }
6200         default:
6201                 internal_error(state, 0, "sizeof not yet defined for type");
6202                 break;
6203         }
6204         return size;
6205 }
6206
6207 static size_t registers_of(struct compile_state *state, struct type *type)
6208 {
6209         size_t registers;
6210         registers = reg_size_of(state, type);
6211         registers += REG_SIZEOF_REG - 1;
6212         registers /= REG_SIZEOF_REG;
6213         return registers;
6214 }
6215
6216 static size_t size_of_in_bytes(struct compile_state *state, struct type *type)
6217 {
6218         return bits_to_bytes(size_of(state, type));
6219 }
6220
6221 static size_t field_offset(struct compile_state *state, 
6222         struct type *type, struct hash_entry *field)
6223 {
6224         struct type *member;
6225         size_t size;
6226
6227         size = 0;
6228         member = 0;
6229         if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
6230                 member = type->left;
6231                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6232                         size += needed_padding(state, member->left, size);
6233                         if (member->left->field_ident == field) {
6234                                 member = member->left;
6235                                 break;
6236                         }
6237                         size += size_of(state, member->left);
6238                         member = member->right;
6239                 }
6240                 size += needed_padding(state, member, size);
6241         }
6242         else if ((type->type & TYPE_MASK) == TYPE_UNION) {
6243                 member = type->left;
6244                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6245                         if (member->left->field_ident == field) {
6246                                 member = member->left;
6247                                 break;
6248                         }
6249                         member = member->right;
6250                 }
6251         }
6252         else {
6253                 internal_error(state, 0, "field_offset only works on structures and unions");
6254         }
6255
6256         if (!member || (member->field_ident != field)) {
6257                 error(state, 0, "member %s not present", field->name);
6258         }
6259         return size;
6260 }
6261
6262 static size_t field_reg_offset(struct compile_state *state, 
6263         struct type *type, struct hash_entry *field)
6264 {
6265         struct type *member;
6266         size_t size;
6267
6268         size = 0;
6269         member = 0;
6270         if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
6271                 member = type->left;
6272                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6273                         size += reg_needed_padding(state, member->left, size);
6274                         if (member->left->field_ident == field) {
6275                                 member = member->left;
6276                                 break;
6277                         }
6278                         size += reg_size_of(state, member->left);
6279                         member = member->right;
6280                 }
6281         }
6282         else if ((type->type & TYPE_MASK) == TYPE_UNION) {
6283                 member = type->left;
6284                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6285                         if (member->left->field_ident == field) {
6286                                 member = member->left;
6287                                 break;
6288                         }
6289                         member = member->right;
6290                 }
6291         }
6292         else {
6293                 internal_error(state, 0, "field_reg_offset only works on structures and unions");
6294         }
6295
6296         size += reg_needed_padding(state, member, size);
6297         if (!member || (member->field_ident != field)) {
6298                 error(state, 0, "member %s not present", field->name);
6299         }
6300         return size;
6301 }
6302
6303 static struct type *field_type(struct compile_state *state, 
6304         struct type *type, struct hash_entry *field)
6305 {
6306         struct type *member;
6307
6308         member = 0;
6309         if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
6310                 member = type->left;
6311                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6312                         if (member->left->field_ident == field) {
6313                                 member = member->left;
6314                                 break;
6315                         }
6316                         member = member->right;
6317                 }
6318         }
6319         else if ((type->type & TYPE_MASK) == TYPE_UNION) {
6320                 member = type->left;
6321                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6322                         if (member->left->field_ident == field) {
6323                                 member = member->left;
6324                                 break;
6325                         }
6326                         member = member->right;
6327                 }
6328         }
6329         else {
6330                 internal_error(state, 0, "field_type only works on structures and unions");
6331         }
6332         
6333         if (!member || (member->field_ident != field)) {
6334                 error(state, 0, "member %s not present", field->name);
6335         }
6336         return member;
6337 }
6338
6339 static size_t index_offset(struct compile_state *state, 
6340         struct type *type, ulong_t index)
6341 {
6342         struct type *member;
6343         size_t size;
6344         size = 0;
6345         if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
6346                 size = size_of(state, type->left) * index;
6347         }
6348         else if ((type->type & TYPE_MASK) == TYPE_TUPLE) {
6349                 ulong_t i;
6350                 member = type->left;
6351                 i = 0;
6352                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6353                         size += needed_padding(state, member->left, size);
6354                         if (i == index) {
6355                                 member = member->left;
6356                                 break;
6357                         }
6358                         size += size_of(state, member->left);
6359                         i++;
6360                         member = member->right;
6361                 }
6362                 size += needed_padding(state, member, size);
6363                 if (i != index) {
6364                         internal_error(state, 0, "Missing member index: %u", index);
6365                 }
6366         }
6367         else if ((type->type & TYPE_MASK) == TYPE_JOIN) {
6368                 ulong_t i;
6369                 size = 0;
6370                 member = type->left;
6371                 i = 0;
6372                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6373                         if (i == index) {
6374                                 member = member->left;
6375                                 break;
6376                         }
6377                         i++;
6378                         member = member->right;
6379                 }
6380                 if (i != index) {
6381                         internal_error(state, 0, "Missing member index: %u", index);
6382                 }
6383         }
6384         else {
6385                 internal_error(state, 0, 
6386                         "request for index %u in something not an array, tuple or join",
6387                         index);
6388         }
6389         return size;
6390 }
6391
6392 static size_t index_reg_offset(struct compile_state *state, 
6393         struct type *type, ulong_t index)
6394 {
6395         struct type *member;
6396         size_t size;
6397         size = 0;
6398         if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
6399                 size = reg_size_of(state, type->left) * index;
6400         }
6401         else if ((type->type & TYPE_MASK) == TYPE_TUPLE) {
6402                 ulong_t i;
6403                 member = type->left;
6404                 i = 0;
6405                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6406                         size += reg_needed_padding(state, member->left, size);
6407                         if (i == index) {
6408                                 member = member->left;
6409                                 break;
6410                         }
6411                         size += reg_size_of(state, member->left);
6412                         i++;
6413                         member = member->right;
6414                 }
6415                 size += reg_needed_padding(state, member, size);
6416                 if (i != index) {
6417                         internal_error(state, 0, "Missing member index: %u", index);
6418                 }
6419                 
6420         }
6421         else if ((type->type & TYPE_MASK) == TYPE_JOIN) {
6422                 ulong_t i;
6423                 size = 0;
6424                 member = type->left;
6425                 i = 0;
6426                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6427                         if (i == index) {
6428                                 member = member->left;
6429                                 break;
6430                         }
6431                         i++;
6432                         member = member->right;
6433                 }
6434                 if (i != index) {
6435                         internal_error(state, 0, "Missing member index: %u", index);
6436                 }
6437         }
6438         else {
6439                 internal_error(state, 0, 
6440                         "request for index %u in something not an array, tuple or join",
6441                         index);
6442         }
6443         return size;
6444 }
6445
6446 static struct type *index_type(struct compile_state *state,
6447         struct type *type, ulong_t index)
6448 {
6449         struct type *member;
6450         if (index >= type->elements) {
6451                 internal_error(state, 0, "Invalid element %u requested", index);
6452         }
6453         if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
6454                 member = type->left;
6455         }
6456         else if ((type->type & TYPE_MASK) == TYPE_TUPLE) {
6457                 ulong_t i;
6458                 member = type->left;
6459                 i = 0;
6460                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6461                         if (i == index) {
6462                                 member = member->left;
6463                                 break;
6464                         }
6465                         i++;
6466                         member = member->right;
6467                 }
6468                 if (i != index) {
6469                         internal_error(state, 0, "Missing member index: %u", index);
6470                 }
6471         }
6472         else if ((type->type & TYPE_MASK) == TYPE_JOIN) {
6473                 ulong_t i;
6474                 member = type->left;
6475                 i = 0;
6476                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6477                         if (i == index) {
6478                                 member = member->left;
6479                                 break;
6480                         }
6481                         i++;
6482                         member = member->right;
6483                 }
6484                 if (i != index) {
6485                         internal_error(state, 0, "Missing member index: %u", index);
6486                 }
6487         }
6488         else {
6489                 member = 0;
6490                 internal_error(state, 0, 
6491                         "request for index %u in something not an array, tuple or join",
6492                         index);
6493         }
6494         return member;
6495 }
6496
6497 static struct type *unpack_type(struct compile_state *state, struct type *type)
6498 {
6499         /* If I have a single register compound type not a bit-field
6500          * find the real type.
6501          */
6502         struct type *start_type;
6503         size_t size;
6504         /* Get out early if I need multiple registers for this type */
6505         size = reg_size_of(state, type);
6506         if (size > REG_SIZEOF_REG) {
6507                 return type;
6508         }
6509         /* Get out early if I don't need any registers for this type */
6510         if (size == 0) {
6511                 return &void_type;
6512         }
6513         /* Loop until I have no more layers I can remove */
6514         do {
6515                 start_type = type;
6516                 switch(type->type & TYPE_MASK) {
6517                 case TYPE_ARRAY:
6518                         /* If I have a single element the unpacked type
6519                          * is that element.
6520                          */
6521                         if (type->elements == 1) {
6522                                 type = type->left;
6523                         }
6524                         break;
6525                 case TYPE_STRUCT:
6526                 case TYPE_TUPLE:
6527                         /* If I have a single element the unpacked type
6528                          * is that element.
6529                          */
6530                         if (type->elements == 1) {
6531                                 type = type->left;
6532                         }
6533                         /* If I have multiple elements the unpacked
6534                          * type is the non-void element.
6535                          */
6536                         else {
6537                                 struct type *next, *member;
6538                                 struct type *sub_type;
6539                                 sub_type = 0;
6540                                 next = type->left;
6541                                 while(next) {
6542                                         member = next;
6543                                         next = 0;
6544                                         if ((member->type & TYPE_MASK) == TYPE_PRODUCT) {
6545                                                 next = member->right;
6546                                                 member = member->left;
6547                                         }
6548                                         if (reg_size_of(state, member) > 0) {
6549                                                 if (sub_type) {
6550                                                         internal_error(state, 0, "true compound type in a register");
6551                                                 }
6552                                                 sub_type = member;
6553                                         }
6554                                 }
6555                                 if (sub_type) {
6556                                         type = sub_type;
6557                                 }
6558                         }
6559                         break;
6560
6561                 case TYPE_UNION:
6562                 case TYPE_JOIN:
6563                         /* If I have a single element the unpacked type
6564                          * is that element.
6565                          */
6566                         if (type->elements == 1) {
6567                                 type = type->left;
6568                         }
6569                         /* I can't in general unpack union types */
6570                         break;
6571                 default:
6572                         /* If I'm not a compound type I can't unpack it */
6573                         break;
6574                 }
6575         } while(start_type != type);
6576         switch(type->type & TYPE_MASK) {
6577         case TYPE_STRUCT:
6578         case TYPE_ARRAY:
6579         case TYPE_TUPLE:
6580                 internal_error(state, 0, "irredicible type?");
6581                 break;
6582         }
6583         return type;
6584 }
6585
6586 static int equiv_types(struct type *left, struct type *right);
6587 static int is_compound_type(struct type *type);
6588
6589 static struct type *reg_type(
6590         struct compile_state *state, struct type *type, int reg_offset)
6591 {
6592         struct type *member;
6593         size_t size;
6594 #if 1
6595         struct type *invalid;
6596         invalid = invalid_type(state, type);
6597         if (invalid) {
6598                 fprintf(state->errout, "type: ");
6599                 name_of(state->errout, type);
6600                 fprintf(state->errout, "\n");
6601                 fprintf(state->errout, "invalid: ");
6602                 name_of(state->errout, invalid);
6603                 fprintf(state->errout, "\n");
6604                 internal_error(state, 0, "bad input type?");
6605         }
6606 #endif
6607
6608         size = reg_size_of(state, type);
6609         if (reg_offset > size) {
6610                 member = 0;
6611                 fprintf(state->errout, "type: ");
6612                 name_of(state->errout, type);
6613                 fprintf(state->errout, "\n");
6614                 internal_error(state, 0, "offset outside of type");
6615         }
6616         else {
6617                 switch(type->type & TYPE_MASK) {
6618                         /* Don't do anything with the basic types */
6619                 case TYPE_VOID:
6620                 case TYPE_CHAR:         case TYPE_UCHAR:
6621                 case TYPE_SHORT:        case TYPE_USHORT:
6622                 case TYPE_INT:          case TYPE_UINT:
6623                 case TYPE_LONG:         case TYPE_ULONG:
6624                 case TYPE_LLONG:        case TYPE_ULLONG:
6625                 case TYPE_FLOAT:        case TYPE_DOUBLE:
6626                 case TYPE_LDOUBLE:
6627                 case TYPE_POINTER:
6628                 case TYPE_ENUM:
6629                 case TYPE_BITFIELD:
6630                         member = type;
6631                         break;
6632                 case TYPE_ARRAY:
6633                         member = type->left;
6634                         size = reg_size_of(state, member);
6635                         if (size > REG_SIZEOF_REG) {
6636                                 member = reg_type(state, member, reg_offset % size);
6637                         }
6638                         break;
6639                 case TYPE_STRUCT:
6640                 case TYPE_TUPLE:
6641                 {
6642                         size_t offset;
6643                         offset = 0;
6644                         member = type->left;
6645                         while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6646                                 size = reg_size_of(state, member->left);
6647                                 offset += reg_needed_padding(state, member->left, offset);
6648                                 if ((offset + size) > reg_offset) {
6649                                         member = member->left;
6650                                         break;
6651                                 }
6652                                 offset += size;
6653                                 member = member->right;
6654                         }
6655                         offset += reg_needed_padding(state, member, offset);
6656                         member = reg_type(state, member, reg_offset - offset);
6657                         break;
6658                 }
6659                 case TYPE_UNION:
6660                 case TYPE_JOIN:
6661                 {
6662                         struct type *join, **jnext, *mnext;
6663                         join = new_type(TYPE_JOIN, 0, 0);
6664                         jnext = &join->left;
6665                         mnext = type->left;
6666                         while(mnext) {
6667                                 size_t size;
6668                                 member = mnext;
6669                                 mnext = 0;
6670                                 if ((member->type & TYPE_MASK) == TYPE_OVERLAP) {
6671                                         mnext = member->right;
6672                                         member = member->left;
6673                                 }
6674                                 size = reg_size_of(state, member);
6675                                 if (size > reg_offset) {
6676                                         struct type *part, *hunt;
6677                                         part = reg_type(state, member, reg_offset);
6678                                         /* See if this type is already in the union */
6679                                         hunt = join->left;
6680                                         while(hunt) {
6681                                                 struct type *test = hunt;
6682                                                 hunt = 0;
6683                                                 if ((test->type & TYPE_MASK) == TYPE_OVERLAP) {
6684                                                         hunt = test->right;
6685                                                         test = test->left;
6686                                                 }
6687                                                 if (equiv_types(part, test)) {
6688                                                         goto next;
6689                                                 }
6690                                         }
6691                                         /* Nope add it */
6692                                         if (!*jnext) {
6693                                                 *jnext = part;
6694                                         } else {
6695                                                 *jnext = new_type(TYPE_OVERLAP, *jnext, part);
6696                                                 jnext = &(*jnext)->right;
6697                                         }
6698                                         join->elements++;
6699                                 }
6700                         next:
6701                                 ;
6702                         }
6703                         if (join->elements == 0) {
6704                                 internal_error(state, 0, "No elements?");
6705                         }
6706                         member = join;
6707                         break;
6708                 }
6709                 default:
6710                         member = 0;
6711                         fprintf(state->errout, "type: ");
6712                         name_of(state->errout, type);
6713                         fprintf(state->errout, "\n");
6714                         internal_error(state, 0, "reg_type not yet defined for type");
6715                         
6716                 }
6717         }
6718         /* If I have a single register compound type not a bit-field
6719          * find the real type.
6720          */
6721         member = unpack_type(state, member);
6722                 ;
6723         size  = reg_size_of(state, member);
6724         if (size > REG_SIZEOF_REG) {
6725                 internal_error(state, 0, "Cannot find type of single register");
6726         }
6727 #if 1
6728         invalid = invalid_type(state, member);
6729         if (invalid) {
6730                 fprintf(state->errout, "type: ");
6731                 name_of(state->errout, member);
6732                 fprintf(state->errout, "\n");
6733                 fprintf(state->errout, "invalid: ");
6734                 name_of(state->errout, invalid);
6735                 fprintf(state->errout, "\n");
6736                 internal_error(state, 0, "returning bad type?");
6737         }
6738 #endif
6739         return member;
6740 }
6741
6742 static struct type *next_field(struct compile_state *state,
6743         struct type *type, struct type *prev_member) 
6744 {
6745         struct type *member;
6746         if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
6747                 internal_error(state, 0, "next_field only works on structures");
6748         }
6749         member = type->left;
6750         while((member->type & TYPE_MASK) == TYPE_PRODUCT) {
6751                 if (!prev_member) {
6752                         member = member->left;
6753                         break;
6754                 }
6755                 if (member->left == prev_member) {
6756                         prev_member = 0;
6757                 }
6758                 member = member->right;
6759         }
6760         if (member == prev_member) {
6761                 prev_member = 0;
6762         }
6763         if (prev_member) {
6764                 internal_error(state, 0, "prev_member %s not present", 
6765                         prev_member->field_ident->name);
6766         }
6767         return member;
6768 }
6769
6770 typedef void (*walk_type_fields_cb_t)(struct compile_state *state, struct type *type, 
6771         size_t ret_offset, size_t mem_offset, void *arg);
6772
6773 static void walk_type_fields(struct compile_state *state,
6774         struct type *type, size_t reg_offset, size_t mem_offset,
6775         walk_type_fields_cb_t cb, void *arg);
6776
6777 static void walk_struct_fields(struct compile_state *state,
6778         struct type *type, size_t reg_offset, size_t mem_offset,
6779         walk_type_fields_cb_t cb, void *arg)
6780 {
6781         struct type *tptr;
6782         ulong_t i;
6783         if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
6784                 internal_error(state, 0, "walk_struct_fields only works on structures");
6785         }
6786         tptr = type->left;
6787         for(i = 0; i < type->elements; i++) {
6788                 struct type *mtype;
6789                 mtype = tptr;
6790                 if ((mtype->type & TYPE_MASK) == TYPE_PRODUCT) {
6791                         mtype = mtype->left;
6792                 }
6793                 walk_type_fields(state, mtype, 
6794                         reg_offset + 
6795                         field_reg_offset(state, type, mtype->field_ident),
6796                         mem_offset + 
6797                         field_offset(state, type, mtype->field_ident),
6798                         cb, arg);
6799                 tptr = tptr->right;
6800         }
6801         
6802 }
6803
6804 static void walk_type_fields(struct compile_state *state,
6805         struct type *type, size_t reg_offset, size_t mem_offset,
6806         walk_type_fields_cb_t cb, void *arg)
6807 {
6808         switch(type->type & TYPE_MASK) {
6809         case TYPE_STRUCT:
6810                 walk_struct_fields(state, type, reg_offset, mem_offset, cb, arg);
6811                 break;
6812         case TYPE_CHAR:
6813         case TYPE_UCHAR:
6814         case TYPE_SHORT:
6815         case TYPE_USHORT:
6816         case TYPE_INT:
6817         case TYPE_UINT:
6818         case TYPE_LONG:
6819         case TYPE_ULONG:
6820                 cb(state, type, reg_offset, mem_offset, arg);
6821                 break;
6822         case TYPE_VOID:
6823                 break;
6824         default:
6825                 internal_error(state, 0, "walk_type_fields not yet implemented for type");
6826         }
6827 }
6828
6829 static void arrays_complete(struct compile_state *state, struct type *type)
6830 {
6831         if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
6832                 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
6833                         error(state, 0, "array size not specified");
6834                 }
6835                 arrays_complete(state, type->left);
6836         }
6837 }
6838
6839 static unsigned int get_basic_type(struct type *type)
6840 {
6841         unsigned int basic;
6842         basic = type->type & TYPE_MASK;
6843         /* Convert enums to ints */
6844         if (basic == TYPE_ENUM) {
6845                 basic = TYPE_INT;
6846         }
6847         /* Convert bitfields to standard types */
6848         else if (basic == TYPE_BITFIELD) {
6849                 if (type->elements <= SIZEOF_CHAR) {
6850                         basic = TYPE_CHAR;
6851                 }
6852                 else if (type->elements <= SIZEOF_SHORT) {
6853                         basic = TYPE_SHORT;
6854                 }
6855                 else if (type->elements <= SIZEOF_INT) {
6856                         basic = TYPE_INT;
6857                 }
6858                 else if (type->elements <= SIZEOF_LONG) {
6859                         basic = TYPE_LONG;
6860                 }
6861                 if (!TYPE_SIGNED(type->left->type)) {
6862                         basic += 1;
6863                 }
6864         }
6865         return basic;
6866 }
6867
6868 static unsigned int do_integral_promotion(unsigned int type)
6869 {
6870         if (TYPE_INTEGER(type) && (TYPE_RANK(type) < TYPE_RANK(TYPE_INT))) {
6871                 type = TYPE_INT;
6872         }
6873         return type;
6874 }
6875
6876 static unsigned int do_arithmetic_conversion(
6877         unsigned int left, unsigned int right)
6878 {
6879         if ((left == TYPE_LDOUBLE) || (right == TYPE_LDOUBLE)) {
6880                 return TYPE_LDOUBLE;
6881         }
6882         else if ((left == TYPE_DOUBLE) || (right == TYPE_DOUBLE)) {
6883                 return TYPE_DOUBLE;
6884         }
6885         else if ((left == TYPE_FLOAT) || (right == TYPE_FLOAT)) {
6886                 return TYPE_FLOAT;
6887         }
6888         left = do_integral_promotion(left);
6889         right = do_integral_promotion(right);
6890         /* If both operands have the same size done */
6891         if (left == right) {
6892                 return left;
6893         }
6894         /* If both operands have the same signedness pick the larger */
6895         else if (!!TYPE_UNSIGNED(left) == !!TYPE_UNSIGNED(right)) {
6896                 return (TYPE_RANK(left) >= TYPE_RANK(right)) ? left : right;
6897         }
6898         /* If the signed type can hold everything use it */
6899         else if (TYPE_SIGNED(left) && (TYPE_RANK(left) > TYPE_RANK(right))) {
6900                 return left;
6901         }
6902         else if (TYPE_SIGNED(right) && (TYPE_RANK(right) > TYPE_RANK(left))) {
6903                 return right;
6904         }
6905         /* Convert to the unsigned type with the same rank as the signed type */
6906         else if (TYPE_SIGNED(left)) {
6907                 return TYPE_MKUNSIGNED(left);
6908         }
6909         else {
6910                 return TYPE_MKUNSIGNED(right);
6911         }
6912 }
6913
6914 /* see if two types are the same except for qualifiers */
6915 static int equiv_types(struct type *left, struct type *right)
6916 {
6917         unsigned int type;
6918         /* Error if the basic types do not match */
6919         if ((left->type & TYPE_MASK) != (right->type & TYPE_MASK)) {
6920                 return 0;
6921         }
6922         type = left->type & TYPE_MASK;
6923         /* If the basic types match and it is a void type we are done */
6924         if (type == TYPE_VOID) {
6925                 return 1;
6926         }
6927         /* For bitfields we need to compare the sizes */
6928         else if (type == TYPE_BITFIELD) {
6929                 return (left->elements == right->elements) &&
6930                         (TYPE_SIGNED(left->left->type) == TYPE_SIGNED(right->left->type));
6931         }
6932         /* if the basic types match and it is an arithmetic type we are done */
6933         else if (TYPE_ARITHMETIC(type)) {
6934                 return 1;
6935         }
6936         /* If it is a pointer type recurse and keep testing */
6937         else if (type == TYPE_POINTER) {
6938                 return equiv_types(left->left, right->left);
6939         }
6940         else if (type == TYPE_ARRAY) {
6941                 return (left->elements == right->elements) &&
6942                         equiv_types(left->left, right->left);
6943         }
6944         /* test for struct equality */
6945         else if (type == TYPE_STRUCT) {
6946                 return left->type_ident == right->type_ident;
6947         }
6948         /* test for union equality */
6949         else if (type == TYPE_UNION) {
6950                 return left->type_ident == right->type_ident;
6951         }
6952         /* Test for equivalent functions */
6953         else if (type == TYPE_FUNCTION) {
6954                 return equiv_types(left->left, right->left) &&
6955                         equiv_types(left->right, right->right);
6956         }
6957         /* We only see TYPE_PRODUCT as part of function equivalence matching */
6958         /* We also see TYPE_PRODUCT as part of of tuple equivalence matchin */
6959         else if (type == TYPE_PRODUCT) {
6960                 return equiv_types(left->left, right->left) &&
6961                         equiv_types(left->right, right->right);
6962         }
6963         /* We should see TYPE_OVERLAP when comparing joins */
6964         else if (type == TYPE_OVERLAP) {
6965                 return equiv_types(left->left, right->left) &&
6966                         equiv_types(left->right, right->right);
6967         }
6968         /* Test for equivalence of tuples */
6969         else if (type == TYPE_TUPLE) {
6970                 return (left->elements == right->elements) &&
6971                         equiv_types(left->left, right->left);
6972         }
6973         /* Test for equivalence of joins */
6974         else if (type == TYPE_JOIN) {
6975                 return (left->elements == right->elements) &&
6976                         equiv_types(left->left, right->left);
6977         }
6978         else {
6979                 return 0;
6980         }
6981 }
6982
6983 static int equiv_ptrs(struct type *left, struct type *right)
6984 {
6985         if (((left->type & TYPE_MASK) != TYPE_POINTER) ||
6986                 ((right->type & TYPE_MASK) != TYPE_POINTER)) {
6987                 return 0;
6988         }
6989         return equiv_types(left->left, right->left);
6990 }
6991
6992 static struct type *compatible_types(struct type *left, struct type *right)
6993 {
6994         struct type *result;
6995         unsigned int type, qual_type;
6996         /* Error if the basic types do not match */
6997         if ((left->type & TYPE_MASK) != (right->type & TYPE_MASK)) {
6998                 return 0;
6999         }
7000         type = left->type & TYPE_MASK;
7001         qual_type = (left->type & ~STOR_MASK) | (right->type & ~STOR_MASK);
7002         result = 0;
7003         /* if the basic types match and it is an arithmetic type we are done */
7004         if (TYPE_ARITHMETIC(type)) {
7005                 result = new_type(qual_type, 0, 0);
7006         }
7007         /* If it is a pointer type recurse and keep testing */
7008         else if (type == TYPE_POINTER) {
7009                 result = compatible_types(left->left, right->left);
7010                 if (result) {
7011                         result = new_type(qual_type, result, 0);
7012                 }
7013         }
7014         /* test for struct equality */
7015         else if (type == TYPE_STRUCT) {
7016                 if (left->type_ident == right->type_ident) {
7017                         result = left;
7018                 }
7019         }
7020         /* test for union equality */
7021         else if (type == TYPE_UNION) {
7022                 if (left->type_ident == right->type_ident) {
7023                         result = left;
7024                 }
7025         }
7026         /* Test for equivalent functions */
7027         else if (type == TYPE_FUNCTION) {
7028                 struct type *lf, *rf;
7029                 lf = compatible_types(left->left, right->left);
7030                 rf = compatible_types(left->right, right->right);
7031                 if (lf && rf) {
7032                         result = new_type(qual_type, lf, rf);
7033                 }
7034         }
7035         /* We only see TYPE_PRODUCT as part of function equivalence matching */
7036         else if (type == TYPE_PRODUCT) {
7037                 struct type *lf, *rf;
7038                 lf = compatible_types(left->left, right->left);
7039                 rf = compatible_types(left->right, right->right);
7040                 if (lf && rf) {
7041                         result = new_type(qual_type, lf, rf);
7042                 }
7043         }
7044         else {
7045                 /* Nothing else is compatible */
7046         }
7047         return result;
7048 }
7049
7050 /* See if left is a equivalent to right or right is a union member of left */
7051 static int is_subset_type(struct type *left, struct type *right)
7052 {
7053         if (equiv_types(left, right)) {
7054                 return 1;
7055         }
7056         if ((left->type & TYPE_MASK) == TYPE_JOIN) {
7057                 struct type *member, *mnext;
7058                 mnext = left->left;
7059                 while(mnext) {
7060                         member = mnext;
7061                         mnext = 0;
7062                         if ((member->type & TYPE_MASK) == TYPE_OVERLAP) {
7063                                 mnext = member->right;
7064                                 member = member->left;
7065                         }
7066                         if (is_subset_type( member, right)) {
7067                                 return 1;
7068                         }
7069                 }
7070         }
7071         return 0;
7072 }
7073
7074 static struct type *compatible_ptrs(struct type *left, struct type *right)
7075 {
7076         struct type *result;
7077         if (((left->type & TYPE_MASK) != TYPE_POINTER) ||
7078                 ((right->type & TYPE_MASK) != TYPE_POINTER)) {
7079                 return 0;
7080         }
7081         result = compatible_types(left->left, right->left);
7082         if (result) {
7083                 unsigned int qual_type;
7084                 qual_type = (left->type & ~STOR_MASK) | (right->type & ~STOR_MASK);
7085                 result = new_type(qual_type, result, 0);
7086         }
7087         return result;
7088         
7089 }
7090 static struct triple *integral_promotion(
7091         struct compile_state *state, struct triple *def)
7092 {
7093         struct type *type;
7094         type = def->type;
7095         /* As all operations are carried out in registers
7096          * the values are converted on load I just convert
7097          * logical type of the operand.
7098          */
7099         if (TYPE_INTEGER(type->type)) {
7100                 unsigned int int_type;
7101                 int_type = type->type & ~TYPE_MASK;
7102                 int_type |= do_integral_promotion(get_basic_type(type));
7103                 if (int_type != type->type) {
7104                         if (def->op != OP_LOAD) {
7105                                 def->type = new_type(int_type, 0, 0);
7106                         }
7107                         else {
7108                                 def = triple(state, OP_CONVERT, 
7109                                         new_type(int_type, 0, 0), def, 0);
7110                         }
7111                 }
7112         }
7113         return def;
7114 }
7115
7116
7117 static void arithmetic(struct compile_state *state, struct triple *def)
7118 {
7119         if (!TYPE_ARITHMETIC(def->type->type)) {
7120                 error(state, 0, "arithmetic type expexted");
7121         }
7122 }
7123
7124 static void ptr_arithmetic(struct compile_state *state, struct triple *def)
7125 {
7126         if (!TYPE_PTR(def->type->type) && !TYPE_ARITHMETIC(def->type->type)) {
7127                 error(state, def, "pointer or arithmetic type expected");
7128         }
7129 }
7130
7131 static int is_integral(struct triple *ins)
7132 {
7133         return TYPE_INTEGER(ins->type->type);
7134 }
7135
7136 static void integral(struct compile_state *state, struct triple *def)
7137 {
7138         if (!is_integral(def)) {
7139                 error(state, 0, "integral type expected");
7140         }
7141 }
7142
7143
7144 static void bool(struct compile_state *state, struct triple *def)
7145 {
7146         if (!TYPE_ARITHMETIC(def->type->type) &&
7147                 ((def->type->type & TYPE_MASK) != TYPE_POINTER)) {
7148                 error(state, 0, "arithmetic or pointer type expected");
7149         }
7150 }
7151
7152 static int is_signed(struct type *type)
7153 {
7154         if ((type->type & TYPE_MASK) == TYPE_BITFIELD) {
7155                 type = type->left;
7156         }
7157         return !!TYPE_SIGNED(type->type);
7158 }
7159 static int is_compound_type(struct type *type)
7160 {
7161         int is_compound;
7162         switch((type->type & TYPE_MASK)) {
7163         case TYPE_ARRAY:
7164         case TYPE_STRUCT:
7165         case TYPE_TUPLE:
7166         case TYPE_UNION:
7167         case TYPE_JOIN: 
7168                 is_compound = 1;
7169                 break;
7170         default:
7171                 is_compound = 0;
7172                 break;
7173         }
7174         return is_compound;
7175 }
7176
7177 /* Is this value located in a register otherwise it must be in memory */
7178 static int is_in_reg(struct compile_state *state, struct triple *def)
7179 {
7180         int in_reg;
7181         if (def->op == OP_ADECL) {
7182                 in_reg = 1;
7183         }
7184         else if ((def->op == OP_SDECL) || (def->op == OP_DEREF)) {
7185                 in_reg = 0;
7186         }
7187         else if (triple_is_part(state, def)) {
7188                 in_reg = is_in_reg(state, MISC(def, 0));
7189         }
7190         else {
7191                 internal_error(state, def, "unknown expr storage location");
7192                 in_reg = -1;
7193         }
7194         return in_reg;
7195 }
7196
7197 /* Is this an auto or static variable location? Something that can
7198  * be assigned to.  Otherwise it must must be a pure value, a temporary.
7199  */
7200 static int is_lvalue(struct compile_state *state, struct triple *def)
7201 {
7202         int ret;
7203         ret = 0;
7204         if (!def) {
7205                 return 0;
7206         }
7207         if ((def->op == OP_ADECL) || 
7208                 (def->op == OP_SDECL) || 
7209                 (def->op == OP_DEREF) ||
7210                 (def->op == OP_BLOBCONST) ||
7211                 (def->op == OP_LIST)) {
7212                 ret = 1;
7213         }
7214         else if (triple_is_part(state, def)) {
7215                 ret = is_lvalue(state, MISC(def, 0));
7216         }
7217         return ret;
7218 }
7219
7220 static void clvalue(struct compile_state *state, struct triple *def)
7221 {
7222         if (!def) {
7223                 internal_error(state, def, "nothing where lvalue expected?");
7224         }
7225         if (!is_lvalue(state, def)) { 
7226                 error(state, def, "lvalue expected");
7227         }
7228 }
7229 static void lvalue(struct compile_state *state, struct triple *def)
7230 {
7231         clvalue(state, def);
7232         if (def->type->type & QUAL_CONST) {
7233                 error(state, def, "modifable lvalue expected");
7234         }
7235 }
7236
7237 static int is_pointer(struct triple *def)
7238 {
7239         return (def->type->type & TYPE_MASK) == TYPE_POINTER;
7240 }
7241
7242 static void pointer(struct compile_state *state, struct triple *def)
7243 {
7244         if (!is_pointer(def)) {
7245                 error(state, def, "pointer expected");
7246         }
7247 }
7248
7249 static struct triple *int_const(
7250         struct compile_state *state, struct type *type, ulong_t value)
7251 {
7252         struct triple *result;
7253         switch(type->type & TYPE_MASK) {
7254         case TYPE_CHAR:
7255         case TYPE_INT:   case TYPE_UINT:
7256         case TYPE_LONG:  case TYPE_ULONG:
7257                 break;
7258         default:
7259                 internal_error(state, 0, "constant for unknown type");
7260         }
7261         result = triple(state, OP_INTCONST, type, 0, 0);
7262         result->u.cval = value;
7263         return result;
7264 }
7265
7266
7267 static struct triple *read_expr(struct compile_state *state, struct triple *def);
7268
7269 static struct triple *do_mk_addr_expr(struct compile_state *state, 
7270         struct triple *expr, struct type *type, ulong_t offset)
7271 {
7272         struct triple *result;
7273         struct type *ptr_type;
7274         clvalue(state, expr);
7275
7276         ptr_type = new_type(TYPE_POINTER | (type->type & QUAL_MASK), type, 0);
7277
7278         
7279         result = 0;
7280         if (expr->op == OP_ADECL) {
7281                 error(state, expr, "address of auto variables not supported");
7282         }
7283         else if (expr->op == OP_SDECL) {
7284                 result = triple(state, OP_ADDRCONST, ptr_type, 0, 0);
7285                 MISC(result, 0) = expr;
7286                 result->u.cval = offset;
7287         }
7288         else if (expr->op == OP_DEREF) {
7289                 result = triple(state, OP_ADD, ptr_type,
7290                         RHS(expr, 0),
7291                         int_const(state, &ulong_type, offset));
7292         }
7293         else if (expr->op == OP_BLOBCONST) {
7294                 FINISHME();
7295                 internal_error(state, expr, "not yet implemented");
7296         }
7297         else if (expr->op == OP_LIST) {
7298                 error(state, 0, "Function addresses not supported");
7299         }
7300         else if (triple_is_part(state, expr)) {
7301                 struct triple *part;
7302                 part = expr;
7303                 expr = MISC(expr, 0);
7304                 if (part->op == OP_DOT) {
7305                         offset += bits_to_bytes(
7306                                 field_offset(state, expr->type, part->u.field));
7307                 }
7308                 else if (part->op == OP_INDEX) {
7309                         offset += bits_to_bytes(
7310                                 index_offset(state, expr->type, part->u.cval));
7311                 }
7312                 else {
7313                         internal_error(state, part, "unhandled part type");
7314                 }
7315                 result = do_mk_addr_expr(state, expr, type, offset);
7316         }
7317         if (!result) {
7318                 internal_error(state, expr, "cannot take address of expression");
7319         }
7320         return result;
7321 }
7322
7323 static struct triple *mk_addr_expr(
7324         struct compile_state *state, struct triple *expr, ulong_t offset)
7325 {
7326         return do_mk_addr_expr(state, expr, expr->type, offset);
7327 }
7328
7329 static struct triple *mk_deref_expr(
7330         struct compile_state *state, struct triple *expr)
7331 {
7332         struct type *base_type;
7333         pointer(state, expr);
7334         base_type = expr->type->left;
7335         return triple(state, OP_DEREF, base_type, expr, 0);
7336 }
7337
7338 /* lvalue conversions always apply except when certain operators
7339  * are applied.  So I apply apply it when I know no more
7340  * operators will be applied.
7341  */
7342 static struct triple *lvalue_conversion(struct compile_state *state, struct triple *def)
7343 {
7344         /* Tranform an array to a pointer to the first element */
7345         if ((def->type->type & TYPE_MASK) == TYPE_ARRAY) {
7346                 struct type *type;
7347                 type = new_type(
7348                         TYPE_POINTER | (def->type->type & QUAL_MASK),
7349                         def->type->left, 0);
7350                 if ((def->op == OP_SDECL) || IS_CONST_OP(def->op)) {
7351                         struct triple *addrconst;
7352                         if ((def->op != OP_SDECL) && (def->op != OP_BLOBCONST)) {
7353                                 internal_error(state, def, "bad array constant");
7354                         }
7355                         addrconst = triple(state, OP_ADDRCONST, type, 0, 0);
7356                         MISC(addrconst, 0) = def;
7357                         def = addrconst;
7358                 }
7359                 else {
7360                         def = triple(state, OP_CONVERT, type, def, 0);
7361                 }
7362         }
7363         /* Transform a function to a pointer to it */
7364         else if ((def->type->type & TYPE_MASK) == TYPE_FUNCTION) {
7365                 def = mk_addr_expr(state, def, 0);
7366         }
7367         return def;
7368 }
7369
7370 static struct triple *deref_field(
7371         struct compile_state *state, struct triple *expr, struct hash_entry *field)
7372 {
7373         struct triple *result;
7374         struct type *type, *member;
7375         ulong_t offset;
7376         if (!field) {
7377                 internal_error(state, 0, "No field passed to deref_field");
7378         }
7379         result = 0;
7380         type = expr->type;
7381         if (((type->type & TYPE_MASK) != TYPE_STRUCT) &&
7382                 ((type->type & TYPE_MASK) != TYPE_UNION)) {
7383                 error(state, 0, "request for member %s in something not a struct or union",
7384                         field->name);
7385         }
7386         member = field_type(state, type, field);
7387         if ((type->type & STOR_MASK) == STOR_PERM) {
7388                 /* Do the pointer arithmetic to get a deref the field */
7389                 offset = bits_to_bytes(field_offset(state, type, field));
7390                 result = do_mk_addr_expr(state, expr, member, offset);
7391                 result = mk_deref_expr(state, result);
7392         }
7393         else {
7394                 /* Find the variable for the field I want. */
7395                 result = triple(state, OP_DOT, member, expr, 0);
7396                 result->u.field = field;
7397         }
7398         return result;
7399 }
7400
7401 static struct triple *deref_index(
7402         struct compile_state *state, struct triple *expr, size_t index)
7403 {
7404         struct triple *result;
7405         struct type *type, *member;
7406         ulong_t offset;
7407
7408         result = 0;
7409         type = expr->type;
7410         member = index_type(state, type, index);
7411
7412         if ((type->type & STOR_MASK) == STOR_PERM) {
7413                 offset = bits_to_bytes(index_offset(state, type, index));
7414                 result = do_mk_addr_expr(state, expr, member, offset);
7415                 result = mk_deref_expr(state, result);
7416         }
7417         else {
7418                 result = triple(state, OP_INDEX, member, expr, 0);
7419                 result->u.cval = index;
7420         }
7421         return result;
7422 }
7423
7424 static struct triple *read_expr(struct compile_state *state, struct triple *def)
7425 {
7426         int op;
7427         if  (!def) {
7428                 return 0;
7429         }
7430 #if DEBUG_ROMCC_WARNINGS
7431 #warning "CHECK_ME is this the only place I need to do lvalue conversions?"
7432 #endif
7433         /* Transform lvalues into something we can read */
7434         def = lvalue_conversion(state, def);
7435         if (!is_lvalue(state, def)) {
7436                 return def;
7437         }
7438         if (is_in_reg(state, def)) {
7439                 op = OP_READ;
7440         } else {
7441                 if (def->op == OP_SDECL) {
7442                         def = mk_addr_expr(state, def, 0);
7443                         def = mk_deref_expr(state, def);
7444                 }
7445                 op = OP_LOAD;
7446         }
7447         def = triple(state, op, def->type, def, 0);
7448         if (def->type->type & QUAL_VOLATILE) {
7449                 def->id |= TRIPLE_FLAG_VOLATILE;
7450         }
7451         return def;
7452 }
7453
7454 int is_write_compatible(struct compile_state *state, 
7455         struct type *dest, struct type *rval)
7456 {
7457         int compatible = 0;
7458         /* Both operands have arithmetic type */
7459         if (TYPE_ARITHMETIC(dest->type) && TYPE_ARITHMETIC(rval->type)) {
7460                 compatible = 1;
7461         }
7462         /* One operand is a pointer and the other is a pointer to void */
7463         else if (((dest->type & TYPE_MASK) == TYPE_POINTER) &&
7464                 ((rval->type & TYPE_MASK) == TYPE_POINTER) &&
7465                 (((dest->left->type & TYPE_MASK) == TYPE_VOID) ||
7466                         ((rval->left->type & TYPE_MASK) == TYPE_VOID))) {
7467                 compatible = 1;
7468         }
7469         /* If both types are the same without qualifiers we are good */
7470         else if (equiv_ptrs(dest, rval)) {
7471                 compatible = 1;
7472         }
7473         /* test for struct/union equality  */
7474         else if (equiv_types(dest, rval)) {
7475                 compatible = 1;
7476         }
7477         return compatible;
7478 }
7479
7480 static void write_compatible(struct compile_state *state,
7481         struct type *dest, struct type *rval)
7482 {
7483         if (!is_write_compatible(state, dest, rval)) {
7484                 FILE *fp = state->errout;
7485                 fprintf(fp, "dest: ");
7486                 name_of(fp, dest);
7487                 fprintf(fp,"\nrval: ");
7488                 name_of(fp, rval);
7489                 fprintf(fp, "\n");
7490                 error(state, 0, "Incompatible types in assignment");
7491         }
7492 }
7493
7494 static int is_init_compatible(struct compile_state *state,
7495         struct type *dest, struct type *rval)
7496 {
7497         int compatible = 0;
7498         if (is_write_compatible(state, dest, rval)) {
7499                 compatible = 1;
7500         }
7501         else if (equiv_types(dest, rval)) {
7502                 compatible = 1;
7503         }
7504         return compatible;
7505 }
7506
7507 static struct triple *write_expr(
7508         struct compile_state *state, struct triple *dest, struct triple *rval)
7509 {
7510         struct triple *def;
7511         int op;
7512
7513         def = 0;
7514         if (!rval) {
7515                 internal_error(state, 0, "missing rval");
7516         }
7517
7518         if (rval->op == OP_LIST) {
7519                 internal_error(state, 0, "expression of type OP_LIST?");
7520         }
7521         if (!is_lvalue(state, dest)) {
7522                 internal_error(state, 0, "writing to a non lvalue?");
7523         }
7524         if (dest->type->type & QUAL_CONST) {
7525                 internal_error(state, 0, "modifable lvalue expexted");
7526         }
7527
7528         write_compatible(state, dest->type, rval->type);
7529         if (!equiv_types(dest->type, rval->type)) {
7530                 rval = triple(state, OP_CONVERT, dest->type, rval, 0);
7531         }
7532
7533         /* Now figure out which assignment operator to use */
7534         op = -1;
7535         if (is_in_reg(state, dest)) {
7536                 def = triple(state, OP_WRITE, dest->type, rval, dest);
7537                 if (MISC(def, 0) != dest) {
7538                         internal_error(state, def, "huh?");
7539                 }
7540                 if (RHS(def, 0) != rval) {
7541                         internal_error(state, def, "huh?");
7542                 }
7543         } else {
7544                 def = triple(state, OP_STORE, dest->type, dest, rval);
7545         }
7546         if (def->type->type & QUAL_VOLATILE) {
7547                 def->id |= TRIPLE_FLAG_VOLATILE;
7548         }
7549         return def;
7550 }
7551
7552 static struct triple *init_expr(
7553         struct compile_state *state, struct triple *dest, struct triple *rval)
7554 {
7555         struct triple *def;
7556
7557         def = 0;
7558         if (!rval) {
7559                 internal_error(state, 0, "missing rval");
7560         }
7561         if ((dest->type->type & STOR_MASK) != STOR_PERM) {
7562                 rval = read_expr(state, rval);
7563                 def = write_expr(state, dest, rval);
7564         }
7565         else {
7566                 /* Fill in the array size if necessary */
7567                 if (((dest->type->type & TYPE_MASK) == TYPE_ARRAY) &&
7568                         ((rval->type->type & TYPE_MASK) == TYPE_ARRAY)) {
7569                         if (dest->type->elements == ELEMENT_COUNT_UNSPECIFIED) {
7570                                 dest->type->elements = rval->type->elements;
7571                         }
7572                 }
7573                 if (!equiv_types(dest->type, rval->type)) {
7574                         error(state, 0, "Incompatible types in inializer");
7575                 }
7576                 MISC(dest, 0) = rval;
7577                 insert_triple(state, dest, rval);
7578                 rval->id |= TRIPLE_FLAG_FLATTENED;
7579                 use_triple(MISC(dest, 0), dest);
7580         }
7581         return def;
7582 }
7583
7584 struct type *arithmetic_result(
7585         struct compile_state *state, struct triple *left, struct triple *right)
7586 {
7587         struct type *type;
7588         /* Sanity checks to ensure I am working with arithmetic types */
7589         arithmetic(state, left);
7590         arithmetic(state, right);
7591         type = new_type(
7592                 do_arithmetic_conversion(
7593                         get_basic_type(left->type),
7594                         get_basic_type(right->type)),
7595                 0, 0);
7596         return type;
7597 }
7598
7599 struct type *ptr_arithmetic_result(
7600         struct compile_state *state, struct triple *left, struct triple *right)
7601 {
7602         struct type *type;
7603         /* Sanity checks to ensure I am working with the proper types */
7604         ptr_arithmetic(state, left);
7605         arithmetic(state, right);
7606         if (TYPE_ARITHMETIC(left->type->type) && 
7607                 TYPE_ARITHMETIC(right->type->type)) {
7608                 type = arithmetic_result(state, left, right);
7609         }
7610         else if (TYPE_PTR(left->type->type)) {
7611                 type = left->type;
7612         }
7613         else {
7614                 internal_error(state, 0, "huh?");
7615                 type = 0;
7616         }
7617         return type;
7618 }
7619
7620 /* boolean helper function */
7621
7622 static struct triple *ltrue_expr(struct compile_state *state, 
7623         struct triple *expr)
7624 {
7625         switch(expr->op) {
7626         case OP_LTRUE:   case OP_LFALSE:  case OP_EQ:      case OP_NOTEQ:
7627         case OP_SLESS:   case OP_ULESS:   case OP_SMORE:   case OP_UMORE:
7628         case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
7629                 /* If the expression is already boolean do nothing */
7630                 break;
7631         default:
7632                 expr = triple(state, OP_LTRUE, &int_type, expr, 0);
7633                 break;
7634         }
7635         return expr;
7636 }
7637
7638 static struct triple *lfalse_expr(struct compile_state *state, 
7639         struct triple *expr)
7640 {
7641         return triple(state, OP_LFALSE, &int_type, expr, 0);
7642 }
7643
7644 static struct triple *mkland_expr(
7645         struct compile_state *state,
7646         struct triple *left, struct triple *right)
7647 {
7648         struct triple *def, *val, *var, *jmp, *mid, *end;
7649         struct triple *lstore, *rstore;
7650
7651         /* Generate some intermediate triples */
7652         end = label(state);
7653         var = variable(state, &int_type);
7654         
7655         /* Store the left hand side value */
7656         lstore = write_expr(state, var, left);
7657
7658         /* Jump if the value is false */
7659         jmp =  branch(state, end, 
7660                 lfalse_expr(state, read_expr(state, var)));
7661         mid = label(state);
7662         
7663         /* Store the right hand side value */
7664         rstore = write_expr(state, var, right);
7665
7666         /* An expression for the computed value */
7667         val = read_expr(state, var);
7668
7669         /* Generate the prog for a logical and */
7670         def = mkprog(state, var, lstore, jmp, mid, rstore, end, val, 0UL);
7671         
7672         return def;
7673 }
7674
7675 static struct triple *mklor_expr(
7676         struct compile_state *state,
7677         struct triple *left, struct triple *right)
7678 {
7679         struct triple *def, *val, *var, *jmp, *mid, *end;
7680
7681         /* Generate some intermediate triples */
7682         end = label(state);
7683         var = variable(state, &int_type);
7684         
7685         /* Store the left hand side value */
7686         left = write_expr(state, var, left);
7687         
7688         /* Jump if the value is true */
7689         jmp = branch(state, end, read_expr(state, var));
7690         mid = label(state);
7691         
7692         /* Store the right hand side value */
7693         right = write_expr(state, var, right);
7694                 
7695         /* An expression for the computed value*/
7696         val = read_expr(state, var);
7697
7698         /* Generate the prog for a logical or */
7699         def = mkprog(state, var, left, jmp, mid, right, end, val, 0UL);
7700
7701         return def;
7702 }
7703
7704 static struct triple *mkcond_expr(
7705         struct compile_state *state, 
7706         struct triple *test, struct triple *left, struct triple *right)
7707 {
7708         struct triple *def, *val, *var, *jmp1, *jmp2, *top, *mid, *end;
7709         struct type *result_type;
7710         unsigned int left_type, right_type;
7711         bool(state, test);
7712         left_type = left->type->type;
7713         right_type = right->type->type;
7714         result_type = 0;
7715         /* Both operands have arithmetic type */
7716         if (TYPE_ARITHMETIC(left_type) && TYPE_ARITHMETIC(right_type)) {
7717                 result_type = arithmetic_result(state, left, right);
7718         }
7719         /* Both operands have void type */
7720         else if (((left_type & TYPE_MASK) == TYPE_VOID) &&
7721                 ((right_type & TYPE_MASK) == TYPE_VOID)) {
7722                 result_type = &void_type;
7723         }
7724         /* pointers to the same type... */
7725         else if ((result_type = compatible_ptrs(left->type, right->type))) {
7726                 ;
7727         }
7728         /* Both operands are pointers and left is a pointer to void */
7729         else if (((left_type & TYPE_MASK) == TYPE_POINTER) &&
7730                 ((right_type & TYPE_MASK) == TYPE_POINTER) &&
7731                 ((left->type->left->type & TYPE_MASK) == TYPE_VOID)) {
7732                 result_type = right->type;
7733         }
7734         /* Both operands are pointers and right is a pointer to void */
7735         else if (((left_type & TYPE_MASK) == TYPE_POINTER) &&
7736                 ((right_type & TYPE_MASK) == TYPE_POINTER) &&
7737                 ((right->type->left->type & TYPE_MASK) == TYPE_VOID)) {
7738                 result_type = left->type;
7739         }
7740         if (!result_type) {
7741                 error(state, 0, "Incompatible types in conditional expression");
7742         }
7743         /* Generate some intermediate triples */
7744         mid = label(state);
7745         end = label(state);
7746         var = variable(state, result_type);
7747
7748         /* Branch if the test is false */
7749         jmp1 = branch(state, mid, lfalse_expr(state, read_expr(state, test)));
7750         top = label(state);
7751
7752         /* Store the left hand side value */
7753         left = write_expr(state, var, left);
7754
7755         /* Branch to the end */
7756         jmp2 = branch(state, end, 0);
7757
7758         /* Store the right hand side value */
7759         right = write_expr(state, var, right);
7760         
7761         /* An expression for the computed value */
7762         val = read_expr(state, var);
7763
7764         /* Generate the prog for a conditional expression */
7765         def = mkprog(state, var, jmp1, top, left, jmp2, mid, right, end, val, 0UL);
7766
7767         return def;
7768 }
7769
7770
7771 static int expr_depth(struct compile_state *state, struct triple *ins)
7772 {
7773 #if DEBUG_ROMCC_WARNINGS
7774 #warning "FIXME move optimal ordering of subexpressions into the optimizer"
7775 #endif
7776         int count;
7777         count = 0;
7778         if (!ins || (ins->id & TRIPLE_FLAG_FLATTENED)) {
7779                 count = 0;
7780         }
7781         else if (ins->op == OP_DEREF) {
7782                 count = expr_depth(state, RHS(ins, 0)) - 1;
7783         }
7784         else if (ins->op == OP_VAL) {
7785                 count = expr_depth(state, RHS(ins, 0)) - 1;
7786         }
7787         else if (ins->op == OP_FCALL) {
7788                 /* Don't figure the depth of a call just guess it is huge */
7789                 count = 1000;
7790         }
7791         else {
7792                 struct triple **expr;
7793                 expr = triple_rhs(state, ins, 0);
7794                 for(;expr; expr = triple_rhs(state, ins, expr)) {
7795                         if (*expr) {
7796                                 int depth;
7797                                 depth = expr_depth(state, *expr);
7798                                 if (depth > count) {
7799                                         count = depth;
7800                                 }
7801                         }
7802                 }
7803         }
7804         return count + 1;
7805 }
7806
7807 static struct triple *flatten_generic(
7808         struct compile_state *state, struct triple *first, struct triple *ptr,
7809         int ignored)
7810 {
7811         struct rhs_vector {
7812                 int depth;
7813                 struct triple **ins;
7814         } vector[MAX_RHS];
7815         int i, rhs, lhs;
7816         /* Only operations with just a rhs and a lhs should come here */
7817         rhs = ptr->rhs;
7818         lhs = ptr->lhs;
7819         if (TRIPLE_SIZE(ptr) != lhs + rhs + ignored) {
7820                 internal_error(state, ptr, "unexpected args for: %d %s",
7821                         ptr->op, tops(ptr->op));
7822         }
7823         /* Find the depth of the rhs elements */
7824         for(i = 0; i < rhs; i++) {
7825                 vector[i].ins = &RHS(ptr, i);
7826                 vector[i].depth = expr_depth(state, *vector[i].ins);
7827         }
7828         /* Selection sort the rhs */
7829         for(i = 0; i < rhs; i++) {
7830                 int j, max = i;
7831                 for(j = i + 1; j < rhs; j++ ) {
7832                         if (vector[j].depth > vector[max].depth) {
7833                                 max = j;
7834                         }
7835                 }
7836                 if (max != i) {
7837                         struct rhs_vector tmp;
7838                         tmp = vector[i];
7839                         vector[i] = vector[max];
7840                         vector[max] = tmp;
7841                 }
7842         }
7843         /* Now flatten the rhs elements */
7844         for(i = 0; i < rhs; i++) {
7845                 *vector[i].ins = flatten(state, first, *vector[i].ins);
7846                 use_triple(*vector[i].ins, ptr);
7847         }
7848         if (lhs) {
7849                 insert_triple(state, first, ptr);
7850                 ptr->id |= TRIPLE_FLAG_FLATTENED;
7851                 ptr->id &= ~TRIPLE_FLAG_LOCAL;
7852                 
7853                 /* Now flatten the lhs elements */
7854                 for(i = 0; i < lhs; i++) {
7855                         struct triple **ins = &LHS(ptr, i);
7856                         *ins = flatten(state, first, *ins);
7857                         use_triple(*ins, ptr);
7858                 }
7859         }
7860         return ptr;
7861 }
7862
7863 static struct triple *flatten_prog(
7864         struct compile_state *state, struct triple *first, struct triple *ptr)
7865 {
7866         struct triple *head, *body, *val;
7867         head = RHS(ptr, 0);
7868         RHS(ptr, 0) = 0;
7869         val  = head->prev;
7870         body = head->next;
7871         release_triple(state, head);
7872         release_triple(state, ptr);
7873         val->next        = first;
7874         body->prev       = first->prev;
7875         body->prev->next = body;
7876         val->next->prev  = val;
7877
7878         if (triple_is_cbranch(state, body->prev) ||
7879                 triple_is_call(state, body->prev)) {
7880                 unuse_triple(first, body->prev);
7881                 use_triple(body, body->prev);
7882         }
7883         
7884         if (!(val->id & TRIPLE_FLAG_FLATTENED)) {
7885                 internal_error(state, val, "val not flattened?");
7886         }
7887
7888         return val;
7889 }
7890
7891
7892 static struct triple *flatten_part(
7893         struct compile_state *state, struct triple *first, struct triple *ptr)
7894 {
7895         if (!triple_is_part(state, ptr)) {
7896                 internal_error(state, ptr,  "not a part");
7897         }
7898         if (ptr->rhs || ptr->lhs || ptr->targ || (ptr->misc != 1)) {
7899                 internal_error(state, ptr, "unexpected args for: %d %s",
7900                         ptr->op, tops(ptr->op));
7901         }
7902         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
7903         use_triple(MISC(ptr, 0), ptr);
7904         return flatten_generic(state, first, ptr, 1);
7905 }
7906
7907 static struct triple *flatten(
7908         struct compile_state *state, struct triple *first, struct triple *ptr)
7909 {
7910         struct triple *orig_ptr;
7911         if (!ptr)
7912                 return 0;
7913         do {
7914                 orig_ptr = ptr;
7915                 /* Only flatten triples once */
7916                 if (ptr->id & TRIPLE_FLAG_FLATTENED) {
7917                         return ptr;
7918                 }
7919                 switch(ptr->op) {
7920                 case OP_VAL:
7921                         RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
7922                         return MISC(ptr, 0);
7923                         break;
7924                 case OP_PROG:
7925                         ptr = flatten_prog(state, first, ptr);
7926                         break;
7927                 case OP_FCALL:
7928                         ptr = flatten_generic(state, first, ptr, 1);
7929                         insert_triple(state, first, ptr);
7930                         ptr->id |= TRIPLE_FLAG_FLATTENED;
7931                         ptr->id &= ~TRIPLE_FLAG_LOCAL;
7932                         if (ptr->next != ptr) {
7933                                 use_triple(ptr->next, ptr);
7934                         }
7935                         break;
7936                 case OP_READ:
7937                 case OP_LOAD:
7938                         RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
7939                         use_triple(RHS(ptr, 0), ptr);
7940                         break;
7941                 case OP_WRITE:
7942                         ptr = flatten_generic(state, first, ptr, 1);
7943                         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
7944                         use_triple(MISC(ptr, 0), ptr);
7945                         break;
7946                 case OP_BRANCH:
7947                         use_triple(TARG(ptr, 0), ptr);
7948                         break;
7949                 case OP_CBRANCH:
7950                         RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
7951                         use_triple(RHS(ptr, 0), ptr);
7952                         use_triple(TARG(ptr, 0), ptr);
7953                         insert_triple(state, first, ptr);
7954                         ptr->id |= TRIPLE_FLAG_FLATTENED;
7955                         ptr->id &= ~TRIPLE_FLAG_LOCAL;
7956                         if (ptr->next != ptr) {
7957                                 use_triple(ptr->next, ptr);
7958                         }
7959                         break;
7960                 case OP_CALL:
7961                         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
7962                         use_triple(MISC(ptr, 0), ptr);
7963                         use_triple(TARG(ptr, 0), ptr);
7964                         insert_triple(state, first, ptr);
7965                         ptr->id |= TRIPLE_FLAG_FLATTENED;
7966                         ptr->id &= ~TRIPLE_FLAG_LOCAL;
7967                         if (ptr->next != ptr) {
7968                                 use_triple(ptr->next, ptr);
7969                         }
7970                         break;
7971                 case OP_RET:
7972                         RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
7973                         use_triple(RHS(ptr, 0), ptr);
7974                         break;
7975                 case OP_BLOBCONST:
7976                         insert_triple(state, state->global_pool, ptr);
7977                         ptr->id |= TRIPLE_FLAG_FLATTENED;
7978                         ptr->id &= ~TRIPLE_FLAG_LOCAL;
7979                         ptr = triple(state, OP_SDECL, ptr->type, ptr, 0);
7980                         use_triple(MISC(ptr, 0), ptr);
7981                         break;
7982                 case OP_DEREF:
7983                         /* Since OP_DEREF is just a marker delete it when I flatten it */
7984                         ptr = RHS(ptr, 0);
7985                         RHS(orig_ptr, 0) = 0;
7986                         free_triple(state, orig_ptr);
7987                         break;
7988                 case OP_DOT:
7989                         if (RHS(ptr, 0)->op == OP_DEREF) {
7990                                 struct triple *base, *left;
7991                                 ulong_t offset;
7992                                 base = MISC(ptr, 0);
7993                                 offset = bits_to_bytes(field_offset(state, base->type, ptr->u.field));
7994                                 left = RHS(base, 0);
7995                                 ptr = triple(state, OP_ADD, left->type, 
7996                                         read_expr(state, left),
7997                                         int_const(state, &ulong_type, offset));
7998                                 free_triple(state, base);
7999                         }
8000                         else {
8001                                 ptr = flatten_part(state, first, ptr);
8002                         }
8003                         break;
8004                 case OP_INDEX:
8005                         if (RHS(ptr, 0)->op == OP_DEREF) {
8006                                 struct triple *base, *left;
8007                                 ulong_t offset;
8008                                 base = MISC(ptr, 0);
8009                                 offset = bits_to_bytes(index_offset(state, base->type, ptr->u.cval));
8010                                 left = RHS(base, 0);
8011                                 ptr = triple(state, OP_ADD, left->type,
8012                                         read_expr(state, left),
8013                                         int_const(state, &long_type, offset));
8014                                 free_triple(state, base);
8015                         }
8016                         else {
8017                                 ptr = flatten_part(state, first, ptr);
8018                         }
8019                         break;
8020                 case OP_PIECE:
8021                         ptr = flatten_part(state, first, ptr);
8022                         use_triple(ptr, MISC(ptr, 0));
8023                         break;
8024                 case OP_ADDRCONST:
8025                         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
8026                         use_triple(MISC(ptr, 0), ptr);
8027                         break;
8028                 case OP_SDECL:
8029                         first = state->global_pool;
8030                         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
8031                         use_triple(MISC(ptr, 0), ptr);
8032                         insert_triple(state, first, ptr);
8033                         ptr->id |= TRIPLE_FLAG_FLATTENED;
8034                         ptr->id &= ~TRIPLE_FLAG_LOCAL;
8035                         return ptr;
8036                 case OP_ADECL:
8037                         ptr = flatten_generic(state, first, ptr, 0);
8038                         break;
8039                 default:
8040                         /* Flatten the easy cases we don't override */
8041                         ptr = flatten_generic(state, first, ptr, 0);
8042                         break;
8043                 }
8044         } while(ptr && (ptr != orig_ptr));
8045         if (ptr && !(ptr->id & TRIPLE_FLAG_FLATTENED)) {
8046                 insert_triple(state, first, ptr);
8047                 ptr->id |= TRIPLE_FLAG_FLATTENED;
8048                 ptr->id &= ~TRIPLE_FLAG_LOCAL;
8049         }
8050         return ptr;
8051 }
8052
8053 static void release_expr(struct compile_state *state, struct triple *expr)
8054 {
8055         struct triple *head;
8056         head = label(state);
8057         flatten(state, head, expr);
8058         while(head->next != head) {
8059                 release_triple(state, head->next);
8060         }
8061         free_triple(state, head);
8062 }
8063
8064 static int replace_rhs_use(struct compile_state *state,
8065         struct triple *orig, struct triple *new, struct triple *use)
8066 {
8067         struct triple **expr;
8068         int found;
8069         found = 0;
8070         expr = triple_rhs(state, use, 0);
8071         for(;expr; expr = triple_rhs(state, use, expr)) {
8072                 if (*expr == orig) {
8073                         *expr = new;
8074                         found = 1;
8075                 }
8076         }
8077         if (found) {
8078                 unuse_triple(orig, use);
8079                 use_triple(new, use);
8080         }
8081         return found;
8082 }
8083
8084 static int replace_lhs_use(struct compile_state *state,
8085         struct triple *orig, struct triple *new, struct triple *use)
8086 {
8087         struct triple **expr;
8088         int found;
8089         found = 0;
8090         expr = triple_lhs(state, use, 0);
8091         for(;expr; expr = triple_lhs(state, use, expr)) {
8092                 if (*expr == orig) {
8093                         *expr = new;
8094                         found = 1;
8095                 }
8096         }
8097         if (found) {
8098                 unuse_triple(orig, use);
8099                 use_triple(new, use);
8100         }
8101         return found;
8102 }
8103
8104 static int replace_misc_use(struct compile_state *state,
8105         struct triple *orig, struct triple *new, struct triple *use)
8106 {
8107         struct triple **expr;
8108         int found;
8109         found = 0;
8110         expr = triple_misc(state, use, 0);
8111         for(;expr; expr = triple_misc(state, use, expr)) {
8112                 if (*expr == orig) {
8113                         *expr = new;
8114                         found = 1;
8115                 }
8116         }
8117         if (found) {
8118                 unuse_triple(orig, use);
8119                 use_triple(new, use);
8120         }
8121         return found;
8122 }
8123
8124 static int replace_targ_use(struct compile_state *state,
8125         struct triple *orig, struct triple *new, struct triple *use)
8126 {
8127         struct triple **expr;
8128         int found;
8129         found = 0;
8130         expr = triple_targ(state, use, 0);
8131         for(;expr; expr = triple_targ(state, use, expr)) {
8132                 if (*expr == orig) {
8133                         *expr = new;
8134                         found = 1;
8135                 }
8136         }
8137         if (found) {
8138                 unuse_triple(orig, use);
8139                 use_triple(new, use);
8140         }
8141         return found;
8142 }
8143
8144 static void replace_use(struct compile_state *state,
8145         struct triple *orig, struct triple *new, struct triple *use)
8146 {
8147         int found;
8148         found = 0;
8149         found |= replace_rhs_use(state, orig, new, use);
8150         found |= replace_lhs_use(state, orig, new, use);
8151         found |= replace_misc_use(state, orig, new, use);
8152         found |= replace_targ_use(state, orig, new, use);
8153         if (!found) {
8154                 internal_error(state, use, "use without use");
8155         }
8156 }
8157
8158 static void propogate_use(struct compile_state *state,
8159         struct triple *orig, struct triple *new)
8160 {
8161         struct triple_set *user, *next;
8162         for(user = orig->use; user; user = next) {
8163                 /* Careful replace_use modifies the use chain and
8164                  * removes use.  So we must get a copy of the next
8165                  * entry early.
8166                  */
8167                 next = user->next;
8168                 replace_use(state, orig, new, user->member);
8169         }
8170         if (orig->use) {
8171                 internal_error(state, orig, "used after propogate_use");
8172         }
8173 }
8174
8175 /*
8176  * Code generators
8177  * ===========================
8178  */
8179
8180 static struct triple *mk_cast_expr(
8181         struct compile_state *state, struct type *type, struct triple *expr)
8182 {
8183         struct triple *def;
8184         def = read_expr(state, expr);
8185         def = triple(state, OP_CONVERT, type, def, 0);
8186         return def;
8187 }
8188
8189 static struct triple *mk_add_expr(
8190         struct compile_state *state, struct triple *left, struct triple *right)
8191 {
8192         struct type *result_type;
8193         /* Put pointer operands on the left */
8194         if (is_pointer(right)) {
8195                 struct triple *tmp;
8196                 tmp = left;
8197                 left = right;
8198                 right = tmp;
8199         }
8200         left  = read_expr(state, left);
8201         right = read_expr(state, right);
8202         result_type = ptr_arithmetic_result(state, left, right);
8203         if (is_pointer(left)) {
8204                 struct type *ptr_math;
8205                 int op;
8206                 if (is_signed(right->type)) {
8207                         ptr_math = &long_type;
8208                         op = OP_SMUL;
8209                 } else {
8210                         ptr_math = &ulong_type;
8211                         op = OP_UMUL;
8212                 }
8213                 if (!equiv_types(right->type, ptr_math)) {
8214                         right = mk_cast_expr(state, ptr_math, right);
8215                 }
8216                 right = triple(state, op, ptr_math, right, 
8217                         int_const(state, ptr_math, 
8218                                 size_of_in_bytes(state, left->type->left)));
8219         }
8220         return triple(state, OP_ADD, result_type, left, right);
8221 }
8222
8223 static struct triple *mk_sub_expr(
8224         struct compile_state *state, struct triple *left, struct triple *right)
8225 {
8226         struct type *result_type;
8227         result_type = ptr_arithmetic_result(state, left, right);
8228         left  = read_expr(state, left);
8229         right = read_expr(state, right);
8230         if (is_pointer(left)) {
8231                 struct type *ptr_math;
8232                 int op;
8233                 if (is_signed(right->type)) {
8234                         ptr_math = &long_type;
8235                         op = OP_SMUL;
8236                 } else {
8237                         ptr_math = &ulong_type;
8238                         op = OP_UMUL;
8239                 }
8240                 if (!equiv_types(right->type, ptr_math)) {
8241                         right = mk_cast_expr(state, ptr_math, right);
8242                 }
8243                 right = triple(state, op, ptr_math, right, 
8244                         int_const(state, ptr_math, 
8245                                 size_of_in_bytes(state, left->type->left)));
8246         }
8247         return triple(state, OP_SUB, result_type, left, right);
8248 }
8249
8250 static struct triple *mk_pre_inc_expr(
8251         struct compile_state *state, struct triple *def)
8252 {
8253         struct triple *val;
8254         lvalue(state, def);
8255         val = mk_add_expr(state, def, int_const(state, &int_type, 1));
8256         return triple(state, OP_VAL, def->type,
8257                 write_expr(state, def, val),
8258                 val);
8259 }
8260
8261 static struct triple *mk_pre_dec_expr(
8262         struct compile_state *state, struct triple *def)
8263 {
8264         struct triple *val;
8265         lvalue(state, def);
8266         val = mk_sub_expr(state, def, int_const(state, &int_type, 1));
8267         return triple(state, OP_VAL, def->type,
8268                 write_expr(state, def, val),
8269                 val);
8270 }
8271
8272 static struct triple *mk_post_inc_expr(
8273         struct compile_state *state, struct triple *def)
8274 {
8275         struct triple *val;
8276         lvalue(state, def);
8277         val = read_expr(state, def);
8278         return triple(state, OP_VAL, def->type,
8279                 write_expr(state, def,
8280                         mk_add_expr(state, val, int_const(state, &int_type, 1)))
8281                 , val);
8282 }
8283
8284 static struct triple *mk_post_dec_expr(
8285         struct compile_state *state, struct triple *def)
8286 {
8287         struct triple *val;
8288         lvalue(state, def);
8289         val = read_expr(state, def);
8290         return triple(state, OP_VAL, def->type, 
8291                 write_expr(state, def,
8292                         mk_sub_expr(state, val, int_const(state, &int_type, 1)))
8293                 , val);
8294 }
8295
8296 static struct triple *mk_subscript_expr(
8297         struct compile_state *state, struct triple *left, struct triple *right)
8298 {
8299         left  = read_expr(state, left);
8300         right = read_expr(state, right);
8301         if (!is_pointer(left) && !is_pointer(right)) {
8302                 error(state, left, "subscripted value is not a pointer");
8303         }
8304         return mk_deref_expr(state, mk_add_expr(state, left, right));
8305 }
8306
8307
8308 /*
8309  * Compile time evaluation
8310  * ===========================
8311  */
8312 static int is_const(struct triple *ins)
8313 {
8314         return IS_CONST_OP(ins->op);
8315 }
8316
8317 static int is_simple_const(struct triple *ins)
8318 {
8319         /* Is this a constant that u.cval has the value.
8320          * Or equivalently is this a constant that read_const
8321          * works on.
8322          * So far only OP_INTCONST qualifies.  
8323          */
8324         return (ins->op == OP_INTCONST);
8325 }
8326
8327 static int constants_equal(struct compile_state *state, 
8328         struct triple *left, struct triple *right)
8329 {
8330         int equal;
8331         if ((left->op == OP_UNKNOWNVAL) || (right->op == OP_UNKNOWNVAL)) {
8332                 equal = 0;
8333         }
8334         else if (!is_const(left) || !is_const(right)) {
8335                 equal = 0;
8336         }
8337         else if (left->op != right->op) {
8338                 equal = 0;
8339         }
8340         else if (!equiv_types(left->type, right->type)) {
8341                 equal = 0;
8342         }
8343         else {
8344                 equal = 0;
8345                 switch(left->op) {
8346                 case OP_INTCONST:
8347                         if (left->u.cval == right->u.cval) {
8348                                 equal = 1;
8349                         }
8350                         break;
8351                 case OP_BLOBCONST:
8352                 {
8353                         size_t lsize, rsize, bytes;
8354                         lsize = size_of(state, left->type);
8355                         rsize = size_of(state, right->type);
8356                         if (lsize != rsize) {
8357                                 break;
8358                         }
8359                         bytes = bits_to_bytes(lsize);
8360                         if (memcmp(left->u.blob, right->u.blob, bytes) == 0) {
8361                                 equal = 1;
8362                         }
8363                         break;
8364                 }
8365                 case OP_ADDRCONST:
8366                         if ((MISC(left, 0) == MISC(right, 0)) &&
8367                                 (left->u.cval == right->u.cval)) {
8368                                 equal = 1;
8369                         }
8370                         break;
8371                 default:
8372                         internal_error(state, left, "uknown constant type");
8373                         break;
8374                 }
8375         }
8376         return equal;
8377 }
8378
8379 static int is_zero(struct triple *ins)
8380 {
8381         return is_simple_const(ins) && (ins->u.cval == 0);
8382 }
8383
8384 static int is_one(struct triple *ins)
8385 {
8386         return is_simple_const(ins) && (ins->u.cval == 1);
8387 }
8388
8389 #if DEBUG_ROMCC_WARNING
8390 static long_t bit_count(ulong_t value)
8391 {
8392         int count;
8393         int i;
8394         count = 0;
8395         for(i = (sizeof(ulong_t)*8) -1; i >= 0; i--) {
8396                 ulong_t mask;
8397                 mask = 1;
8398                 mask <<= i;
8399                 if (value & mask) {
8400                         count++;
8401                 }
8402         }
8403         return count;
8404         
8405 }
8406 #endif
8407
8408 static long_t bsr(ulong_t value)
8409 {
8410         int i;
8411         for(i = (sizeof(ulong_t)*8) -1; i >= 0; i--) {
8412                 ulong_t mask;
8413                 mask = 1;
8414                 mask <<= i;
8415                 if (value & mask) {
8416                         return i;
8417                 }
8418         }
8419         return -1;
8420 }
8421
8422 static long_t bsf(ulong_t value)
8423 {
8424         int i;
8425         for(i = 0; i < (sizeof(ulong_t)*8); i++) {
8426                 ulong_t mask;
8427                 mask = 1;
8428                 mask <<= 1;
8429                 if (value & mask) {
8430                         return i;
8431                 }
8432         }
8433         return -1;
8434 }
8435
8436 static long_t ilog2(ulong_t value)
8437 {
8438         return bsr(value);
8439 }
8440
8441 static long_t tlog2(struct triple *ins)
8442 {
8443         return ilog2(ins->u.cval);
8444 }
8445
8446 static int is_pow2(struct triple *ins)
8447 {
8448         ulong_t value, mask;
8449         long_t log;
8450         if (!is_const(ins)) {
8451                 return 0;
8452         }
8453         value = ins->u.cval;
8454         log = ilog2(value);
8455         if (log == -1) {
8456                 return 0;
8457         }
8458         mask = 1;
8459         mask <<= log;
8460         return  ((value & mask) == value);
8461 }
8462
8463 static ulong_t read_const(struct compile_state *state,
8464         struct triple *ins, struct triple *rhs)
8465 {
8466         switch(rhs->type->type &TYPE_MASK) {
8467         case TYPE_CHAR:   
8468         case TYPE_SHORT:
8469         case TYPE_INT:
8470         case TYPE_LONG:
8471         case TYPE_UCHAR:   
8472         case TYPE_USHORT:  
8473         case TYPE_UINT:
8474         case TYPE_ULONG:
8475         case TYPE_POINTER:
8476         case TYPE_BITFIELD:
8477                 break;
8478         default:
8479                 fprintf(state->errout, "type: ");
8480                 name_of(state->errout, rhs->type);
8481                 fprintf(state->errout, "\n");
8482                 internal_warning(state, rhs, "bad type to read_const");
8483                 break;
8484         }
8485         if (!is_simple_const(rhs)) {
8486                 internal_error(state, rhs, "bad op to read_const");
8487         }
8488         return rhs->u.cval;
8489 }
8490
8491 static long_t read_sconst(struct compile_state *state,
8492         struct triple *ins, struct triple *rhs)
8493 {
8494         return (long_t)(rhs->u.cval);
8495 }
8496
8497 int const_ltrue(struct compile_state *state, struct triple *ins, struct triple *rhs)
8498 {
8499         if (!is_const(rhs)) {
8500                 internal_error(state, 0, "non const passed to const_true");
8501         }
8502         return !is_zero(rhs);
8503 }
8504
8505 int const_eq(struct compile_state *state, struct triple *ins,
8506         struct triple *left, struct triple *right)
8507 {
8508         int result;
8509         if (!is_const(left) || !is_const(right)) {
8510                 internal_warning(state, ins, "non const passed to const_eq");
8511                 result = -1;
8512         }
8513         else if (left == right) {
8514                 result = 1;
8515         }
8516         else if (is_simple_const(left) && is_simple_const(right)) {
8517                 ulong_t lval, rval;
8518                 lval = read_const(state, ins, left);
8519                 rval = read_const(state, ins, right);
8520                 result = (lval == rval);
8521         }
8522         else if ((left->op == OP_ADDRCONST) && 
8523                 (right->op == OP_ADDRCONST)) {
8524                 result = (MISC(left, 0) == MISC(right, 0)) &&
8525                         (left->u.cval == right->u.cval);
8526         }
8527         else {
8528                 internal_warning(state, ins, "incomparable constants passed to const_eq");
8529                 result = -1;
8530         }
8531         return result;
8532         
8533 }
8534
8535 int const_ucmp(struct compile_state *state, struct triple *ins,
8536         struct triple *left, struct triple *right)
8537 {
8538         int result;
8539         if (!is_const(left) || !is_const(right)) {
8540                 internal_warning(state, ins, "non const past to const_ucmp");
8541                 result = -2;
8542         }
8543         else if (left == right) {
8544                 result = 0;
8545         }
8546         else if (is_simple_const(left) && is_simple_const(right)) {
8547                 ulong_t lval, rval;
8548                 lval = read_const(state, ins, left);
8549                 rval = read_const(state, ins, right);
8550                 result = 0;
8551                 if (lval > rval) {
8552                         result = 1;
8553                 } else if (rval > lval) {
8554                         result = -1;
8555                 }
8556         }
8557         else if ((left->op == OP_ADDRCONST) && 
8558                 (right->op == OP_ADDRCONST) &&
8559                 (MISC(left, 0) == MISC(right, 0))) {
8560                 result = 0;
8561                 if (left->u.cval > right->u.cval) {
8562                         result = 1;
8563                 } else if (left->u.cval < right->u.cval) {
8564                         result = -1;
8565                 }
8566         }
8567         else {
8568                 internal_warning(state, ins, "incomparable constants passed to const_ucmp");
8569                 result = -2;
8570         }
8571         return result;
8572 }
8573
8574 int const_scmp(struct compile_state *state, struct triple *ins,
8575         struct triple *left, struct triple *right)
8576 {
8577         int result;
8578         if (!is_const(left) || !is_const(right)) {
8579                 internal_warning(state, ins, "non const past to ucmp_const");
8580                 result = -2;
8581         }
8582         else if (left == right) {
8583                 result = 0;
8584         }
8585         else if (is_simple_const(left) && is_simple_const(right)) {
8586                 long_t lval, rval;
8587                 lval = read_sconst(state, ins, left);
8588                 rval = read_sconst(state, ins, right);
8589                 result = 0;
8590                 if (lval > rval) {
8591                         result = 1;
8592                 } else if (rval > lval) {
8593                         result = -1;
8594                 }
8595         }
8596         else {
8597                 internal_warning(state, ins, "incomparable constants passed to const_scmp");
8598                 result = -2;
8599         }
8600         return result;
8601 }
8602
8603 static void unuse_rhs(struct compile_state *state, struct triple *ins)
8604 {
8605         struct triple **expr;
8606         expr = triple_rhs(state, ins, 0);
8607         for(;expr;expr = triple_rhs(state, ins, expr)) {
8608                 if (*expr) {
8609                         unuse_triple(*expr, ins);
8610                         *expr = 0;
8611                 }
8612         }
8613 }
8614
8615 static void unuse_lhs(struct compile_state *state, struct triple *ins)
8616 {
8617         struct triple **expr;
8618         expr = triple_lhs(state, ins, 0);
8619         for(;expr;expr = triple_lhs(state, ins, expr)) {
8620                 unuse_triple(*expr, ins);
8621                 *expr = 0;
8622         }
8623 }
8624
8625 #if DEBUG_ROMCC_WARNING
8626 static void unuse_misc(struct compile_state *state, struct triple *ins)
8627 {
8628         struct triple **expr;
8629         expr = triple_misc(state, ins, 0);
8630         for(;expr;expr = triple_misc(state, ins, expr)) {
8631                 unuse_triple(*expr, ins);
8632                 *expr = 0;
8633         }
8634 }
8635
8636 static void unuse_targ(struct compile_state *state, struct triple *ins)
8637 {
8638         int i;
8639         struct triple **slot;
8640         slot = &TARG(ins, 0);
8641         for(i = 0; i < ins->targ; i++) {
8642                 unuse_triple(slot[i], ins);
8643                 slot[i] = 0;
8644         }
8645 }
8646
8647 static void check_lhs(struct compile_state *state, struct triple *ins)
8648 {
8649         struct triple **expr;
8650         expr = triple_lhs(state, ins, 0);
8651         for(;expr;expr = triple_lhs(state, ins, expr)) {
8652                 internal_error(state, ins, "unexpected lhs");
8653         }
8654         
8655 }
8656 #endif
8657
8658 static void check_misc(struct compile_state *state, struct triple *ins)
8659 {
8660         struct triple **expr;
8661         expr = triple_misc(state, ins, 0);
8662         for(;expr;expr = triple_misc(state, ins, expr)) {
8663                 if (*expr) {
8664                         internal_error(state, ins, "unexpected misc");
8665                 }
8666         }
8667 }
8668
8669 static void check_targ(struct compile_state *state, struct triple *ins)
8670 {
8671         struct triple **expr;
8672         expr = triple_targ(state, ins, 0);
8673         for(;expr;expr = triple_targ(state, ins, expr)) {
8674                 internal_error(state, ins, "unexpected targ");
8675         }
8676 }
8677
8678 static void wipe_ins(struct compile_state *state, struct triple *ins)
8679 {
8680         /* Becareful which instructions you replace the wiped
8681          * instruction with, as there are not enough slots
8682          * in all instructions to hold all others.
8683          */
8684         check_targ(state, ins);
8685         check_misc(state, ins);
8686         unuse_rhs(state, ins);
8687         unuse_lhs(state, ins);
8688         ins->lhs  = 0;
8689         ins->rhs  = 0;
8690         ins->misc = 0;
8691         ins->targ = 0;
8692 }
8693
8694 #if DEBUG_ROMCC_WARNING
8695 static void wipe_branch(struct compile_state *state, struct triple *ins)
8696 {
8697         /* Becareful which instructions you replace the wiped
8698          * instruction with, as there are not enough slots
8699          * in all instructions to hold all others.
8700          */
8701         unuse_rhs(state, ins);
8702         unuse_lhs(state, ins);
8703         unuse_misc(state, ins);
8704         unuse_targ(state, ins);
8705         ins->lhs  = 0;
8706         ins->rhs  = 0;
8707         ins->misc = 0;
8708         ins->targ = 0;
8709 }
8710 #endif
8711
8712 static void mkcopy(struct compile_state *state, 
8713         struct triple *ins, struct triple *rhs)
8714 {
8715         struct block *block;
8716         if (!equiv_types(ins->type, rhs->type)) {
8717                 FILE *fp = state->errout;
8718                 fprintf(fp, "src type: ");
8719                 name_of(fp, rhs->type);
8720                 fprintf(fp, "\ndst type: ");
8721                 name_of(fp, ins->type);
8722                 fprintf(fp, "\n");
8723                 internal_error(state, ins, "mkcopy type mismatch");
8724         }
8725         block = block_of_triple(state, ins);
8726         wipe_ins(state, ins);
8727         ins->op = OP_COPY;
8728         ins->rhs  = 1;
8729         ins->u.block = block;
8730         RHS(ins, 0) = rhs;
8731         use_triple(RHS(ins, 0), ins);
8732 }
8733
8734 static void mkconst(struct compile_state *state, 
8735         struct triple *ins, ulong_t value)
8736 {
8737         if (!is_integral(ins) && !is_pointer(ins)) {
8738                 fprintf(state->errout, "type: ");
8739                 name_of(state->errout, ins->type);
8740                 fprintf(state->errout, "\n");
8741                 internal_error(state, ins, "unknown type to make constant value: %ld",
8742                         value);
8743         }
8744         wipe_ins(state, ins);
8745         ins->op = OP_INTCONST;
8746         ins->u.cval = value;
8747 }
8748
8749 static void mkaddr_const(struct compile_state *state,
8750         struct triple *ins, struct triple *sdecl, ulong_t value)
8751 {
8752         if ((sdecl->op != OP_SDECL) && (sdecl->op != OP_LABEL)) {
8753                 internal_error(state, ins, "bad base for addrconst");
8754         }
8755         wipe_ins(state, ins);
8756         ins->op = OP_ADDRCONST;
8757         ins->misc = 1;
8758         MISC(ins, 0) = sdecl;
8759         ins->u.cval = value;
8760         use_triple(sdecl, ins);
8761 }
8762
8763 #if DEBUG_DECOMPOSE_PRINT_TUPLES
8764 static void print_tuple(struct compile_state *state, 
8765         struct triple *ins, struct triple *tuple)
8766 {
8767         FILE *fp = state->dbgout;
8768         fprintf(fp, "%5s %p tuple: %p ", tops(ins->op), ins, tuple);
8769         name_of(fp, tuple->type);
8770         if (tuple->lhs > 0) {
8771                 fprintf(fp, " lhs: ");
8772                 name_of(fp, LHS(tuple, 0)->type);
8773         }
8774         fprintf(fp, "\n");
8775         
8776 }
8777 #endif
8778
8779 static struct triple *decompose_with_tuple(struct compile_state *state, 
8780         struct triple *ins, struct triple *tuple)
8781 {
8782         struct triple *next;
8783         next = ins->next;
8784         flatten(state, next, tuple);
8785 #if DEBUG_DECOMPOSE_PRINT_TUPLES
8786         print_tuple(state, ins, tuple);
8787 #endif
8788
8789         if (!is_compound_type(tuple->type) && (tuple->lhs > 0)) {
8790                 struct triple *tmp;
8791                 if (tuple->lhs != 1) {
8792                         internal_error(state, tuple, "plain type in multiple registers?");
8793                 }
8794                 tmp = LHS(tuple, 0);
8795                 release_triple(state, tuple);
8796                 tuple = tmp;
8797         }
8798
8799         propogate_use(state, ins, tuple);
8800         release_triple(state, ins);
8801         
8802         return next;
8803 }
8804
8805 static struct triple *decompose_unknownval(struct compile_state *state,
8806         struct triple *ins)
8807 {
8808         struct triple *tuple;
8809         ulong_t i;
8810
8811 #if DEBUG_DECOMPOSE_HIRES
8812         FILE *fp = state->dbgout;
8813         fprintf(fp, "unknown type: ");
8814         name_of(fp, ins->type);
8815         fprintf(fp, "\n");
8816 #endif
8817
8818         get_occurance(ins->occurance);
8819         tuple = alloc_triple(state, OP_TUPLE, ins->type, -1, -1, 
8820                 ins->occurance);
8821
8822         for(i = 0; i < tuple->lhs; i++) {
8823                 struct type *piece_type;
8824                 struct triple *unknown;
8825
8826                 piece_type = reg_type(state, ins->type, i * REG_SIZEOF_REG);
8827                 get_occurance(tuple->occurance);
8828                 unknown = alloc_triple(state, OP_UNKNOWNVAL, piece_type, 0, 0,
8829                         tuple->occurance);
8830                 LHS(tuple, i) = unknown;
8831         }
8832         return decompose_with_tuple(state, ins, tuple);
8833 }
8834
8835
8836 static struct triple *decompose_read(struct compile_state *state, 
8837         struct triple *ins)
8838 {
8839         struct triple *tuple, *lval;
8840         ulong_t i;
8841
8842         lval = RHS(ins, 0);
8843
8844         if (lval->op == OP_PIECE) {
8845                 return ins->next;
8846         }
8847         get_occurance(ins->occurance);
8848         tuple = alloc_triple(state, OP_TUPLE, lval->type, -1, -1,
8849                 ins->occurance);
8850
8851         if ((tuple->lhs != lval->lhs) &&
8852                 (!triple_is_def(state, lval) || (tuple->lhs != 1))) 
8853         {
8854                 internal_error(state, ins, "lhs size inconsistency?");
8855         }
8856         for(i = 0; i < tuple->lhs; i++) {
8857                 struct triple *piece, *read, *bitref;
8858                 if ((i != 0) || !triple_is_def(state, lval)) {
8859                         piece = LHS(lval, i);
8860                 } else {
8861                         piece = lval;
8862                 }
8863
8864                 /* See if the piece is really a bitref */
8865                 bitref = 0;
8866                 if (piece->op == OP_BITREF) {
8867                         bitref = piece;
8868                         piece = RHS(bitref, 0);
8869                 }
8870
8871                 get_occurance(tuple->occurance);
8872                 read = alloc_triple(state, OP_READ, piece->type, -1, -1, 
8873                         tuple->occurance);
8874                 RHS(read, 0) = piece;
8875
8876                 if (bitref) {
8877                         struct triple *extract;
8878                         int op;
8879                         if (is_signed(bitref->type->left)) {
8880                                 op = OP_SEXTRACT;
8881                         } else {
8882                                 op = OP_UEXTRACT;
8883                         }
8884                         get_occurance(tuple->occurance);
8885                         extract = alloc_triple(state, op, bitref->type, -1, -1,
8886                                 tuple->occurance);
8887                         RHS(extract, 0) = read;
8888                         extract->u.bitfield.size   = bitref->u.bitfield.size;
8889                         extract->u.bitfield.offset = bitref->u.bitfield.offset;
8890
8891                         read = extract;
8892                 }
8893
8894                 LHS(tuple, i) = read;
8895         }
8896         return decompose_with_tuple(state, ins, tuple);
8897 }
8898
8899 static struct triple *decompose_write(struct compile_state *state, 
8900         struct triple *ins)
8901 {
8902         struct triple *tuple, *lval, *val;
8903         ulong_t i;
8904         
8905         lval = MISC(ins, 0);
8906         val = RHS(ins, 0);
8907         get_occurance(ins->occurance);
8908         tuple = alloc_triple(state, OP_TUPLE, ins->type, -1, -1,
8909                 ins->occurance);
8910
8911         if ((tuple->lhs != lval->lhs) &&
8912                 (!triple_is_def(state, lval) || tuple->lhs != 1)) 
8913         {
8914                 internal_error(state, ins, "lhs size inconsistency?");
8915         }
8916         for(i = 0; i < tuple->lhs; i++) {
8917                 struct triple *piece, *write, *pval, *bitref;
8918                 if ((i != 0) || !triple_is_def(state, lval)) {
8919                         piece = LHS(lval, i);
8920                 } else {
8921                         piece = lval;
8922                 }
8923                 if ((i == 0) && (tuple->lhs == 1) && (val->lhs == 0)) {
8924                         pval = val;
8925                 }
8926                 else {
8927                         if (i > val->lhs) {
8928                                 internal_error(state, ins, "lhs size inconsistency?");
8929                         }
8930                         pval = LHS(val, i);
8931                 }
8932                 
8933                 /* See if the piece is really a bitref */
8934                 bitref = 0;
8935                 if (piece->op == OP_BITREF) {
8936                         struct triple *read, *deposit;
8937                         bitref = piece;
8938                         piece = RHS(bitref, 0);
8939
8940                         /* Read the destination register */
8941                         get_occurance(tuple->occurance);
8942                         read = alloc_triple(state, OP_READ, piece->type, -1, -1,
8943                                 tuple->occurance);
8944                         RHS(read, 0) = piece;
8945
8946                         /* Deposit the new bitfield value */
8947                         get_occurance(tuple->occurance);
8948                         deposit = alloc_triple(state, OP_DEPOSIT, piece->type, -1, -1,
8949                                 tuple->occurance);
8950                         RHS(deposit, 0) = read;
8951                         RHS(deposit, 1) = pval;
8952                         deposit->u.bitfield.size   = bitref->u.bitfield.size;
8953                         deposit->u.bitfield.offset = bitref->u.bitfield.offset;
8954
8955                         /* Now write the newly generated value */
8956                         pval = deposit;
8957                 }
8958
8959                 get_occurance(tuple->occurance);
8960                 write = alloc_triple(state, OP_WRITE, piece->type, -1, -1, 
8961                         tuple->occurance);
8962                 MISC(write, 0) = piece;
8963                 RHS(write, 0) = pval;
8964                 LHS(tuple, i) = write;
8965         }
8966         return decompose_with_tuple(state, ins, tuple);
8967 }
8968
8969 struct decompose_load_info {
8970         struct occurance *occurance;
8971         struct triple *lval;
8972         struct triple *tuple;
8973 };
8974 static void decompose_load_cb(struct compile_state *state,
8975         struct type *type, size_t reg_offset, size_t mem_offset, void *arg)
8976 {
8977         struct decompose_load_info *info = arg;
8978         struct triple *load;
8979         
8980         if (reg_offset > info->tuple->lhs) {
8981                 internal_error(state, info->tuple, "lhs to small?");
8982         }
8983         get_occurance(info->occurance);
8984         load = alloc_triple(state, OP_LOAD, type, -1, -1, info->occurance);
8985         RHS(load, 0) = mk_addr_expr(state, info->lval, mem_offset);
8986         LHS(info->tuple, reg_offset/REG_SIZEOF_REG) = load;
8987 }
8988
8989 static struct triple *decompose_load(struct compile_state *state, 
8990         struct triple *ins)
8991 {
8992         struct triple *tuple;
8993         struct decompose_load_info info;
8994
8995         if (!is_compound_type(ins->type)) {
8996                 return ins->next;
8997         }
8998         get_occurance(ins->occurance);
8999         tuple = alloc_triple(state, OP_TUPLE, ins->type, -1, -1,
9000                 ins->occurance);
9001
9002         info.occurance = ins->occurance;
9003         info.lval      = RHS(ins, 0);
9004         info.tuple     = tuple;
9005         walk_type_fields(state, ins->type, 0, 0, decompose_load_cb, &info);
9006
9007         return decompose_with_tuple(state, ins, tuple);
9008 }
9009
9010
9011 struct decompose_store_info {
9012         struct occurance *occurance;
9013         struct triple *lval;
9014         struct triple *val;
9015         struct triple *tuple;
9016 };
9017 static void decompose_store_cb(struct compile_state *state,
9018         struct type *type, size_t reg_offset, size_t mem_offset, void *arg)
9019 {
9020         struct decompose_store_info *info = arg;
9021         struct triple *store;
9022         
9023         if (reg_offset > info->tuple->lhs) {
9024                 internal_error(state, info->tuple, "lhs to small?");
9025         }
9026         get_occurance(info->occurance);
9027         store = alloc_triple(state, OP_STORE, type, -1, -1, info->occurance);
9028         RHS(store, 0) = mk_addr_expr(state, info->lval, mem_offset);
9029         RHS(store, 1) = LHS(info->val, reg_offset);
9030         LHS(info->tuple, reg_offset/REG_SIZEOF_REG) = store;
9031 }
9032
9033 static struct triple *decompose_store(struct compile_state *state, 
9034         struct triple *ins)
9035 {
9036         struct triple *tuple;
9037         struct decompose_store_info info;
9038
9039         if (!is_compound_type(ins->type)) {
9040                 return ins->next;
9041         }
9042         get_occurance(ins->occurance);
9043         tuple = alloc_triple(state, OP_TUPLE, ins->type, -1, -1,
9044                 ins->occurance);
9045
9046         info.occurance = ins->occurance;
9047         info.lval      = RHS(ins, 0);
9048         info.val       = RHS(ins, 1);
9049         info.tuple     = tuple;
9050         walk_type_fields(state, ins->type, 0, 0, decompose_store_cb, &info);
9051
9052         return decompose_with_tuple(state, ins, tuple);
9053 }
9054
9055 static struct triple *decompose_dot(struct compile_state *state, 
9056         struct triple *ins)
9057 {
9058         struct triple *tuple, *lval;
9059         struct type *type;
9060         size_t reg_offset;
9061         int i, idx;
9062
9063         lval = MISC(ins, 0);
9064         reg_offset = field_reg_offset(state, lval->type, ins->u.field);
9065         idx  = reg_offset/REG_SIZEOF_REG;
9066         type = field_type(state, lval->type, ins->u.field);
9067 #if DEBUG_DECOMPOSE_HIRES
9068         {
9069                 FILE *fp = state->dbgout;
9070                 fprintf(fp, "field type: ");
9071                 name_of(fp, type);
9072                 fprintf(fp, "\n");
9073         }
9074 #endif
9075
9076         get_occurance(ins->occurance);
9077         tuple = alloc_triple(state, OP_TUPLE, type, -1, -1, 
9078                 ins->occurance);
9079
9080         if (((ins->type->type & TYPE_MASK) == TYPE_BITFIELD) &&
9081                 (tuple->lhs != 1))
9082         {
9083                 internal_error(state, ins, "multi register bitfield?");
9084         }
9085
9086         for(i = 0; i < tuple->lhs; i++, idx++) {
9087                 struct triple *piece;
9088                 if (!triple_is_def(state, lval)) {
9089                         if (idx > lval->lhs) {
9090                                 internal_error(state, ins, "inconsistent lhs count");
9091                         }
9092                         piece = LHS(lval, idx);
9093                 } else {
9094                         if (idx != 0) {
9095                                 internal_error(state, ins, "bad reg_offset into def");
9096                         }
9097                         if (i != 0) {
9098                                 internal_error(state, ins, "bad reg count from def");
9099                         }
9100                         piece = lval;
9101                 }
9102
9103                 /* Remember the offset of the bitfield */
9104                 if ((type->type & TYPE_MASK) == TYPE_BITFIELD) {
9105                         get_occurance(ins->occurance);
9106                         piece = build_triple(state, OP_BITREF, type, piece, 0,
9107                                 ins->occurance);
9108                         piece->u.bitfield.size   = size_of(state, type);
9109                         piece->u.bitfield.offset = reg_offset % REG_SIZEOF_REG;
9110                 }
9111                 else if ((reg_offset % REG_SIZEOF_REG) != 0) {
9112                         internal_error(state, ins, 
9113                                 "request for a nonbitfield sub register?");
9114                 }
9115
9116                 LHS(tuple, i) = piece;
9117         }
9118
9119         return decompose_with_tuple(state, ins, tuple);
9120 }
9121
9122 static struct triple *decompose_index(struct compile_state *state, 
9123         struct triple *ins)
9124 {
9125         struct triple *tuple, *lval;
9126         struct type *type;
9127         int i, idx;
9128
9129         lval = MISC(ins, 0);
9130         idx = index_reg_offset(state, lval->type, ins->u.cval)/REG_SIZEOF_REG;
9131         type = index_type(state, lval->type, ins->u.cval);
9132 #if DEBUG_DECOMPOSE_HIRES
9133 {
9134         FILE *fp = state->dbgout;
9135         fprintf(fp, "index type: ");
9136         name_of(fp, type);
9137         fprintf(fp, "\n");
9138 }
9139 #endif
9140
9141         get_occurance(ins->occurance);
9142         tuple = alloc_triple(state, OP_TUPLE, type, -1, -1, 
9143                 ins->occurance);
9144
9145         for(i = 0; i < tuple->lhs; i++, idx++) {
9146                 struct triple *piece;
9147                 if (!triple_is_def(state, lval)) {
9148                         if (idx > lval->lhs) {
9149                                 internal_error(state, ins, "inconsistent lhs count");
9150                         }
9151                         piece = LHS(lval, idx);
9152                 } else {
9153                         if (idx != 0) {
9154                                 internal_error(state, ins, "bad reg_offset into def");
9155                         }
9156                         if (i != 0) {
9157                                 internal_error(state, ins, "bad reg count from def");
9158                         }
9159                         piece = lval;
9160                 }
9161                 LHS(tuple, i) = piece;
9162         }
9163
9164         return decompose_with_tuple(state, ins, tuple);
9165 }
9166
9167 static void decompose_compound_types(struct compile_state *state)
9168 {
9169         struct triple *ins, *next, *first;
9170         FILE *fp;
9171         fp = state->dbgout;
9172         first = state->first;
9173         ins = first;
9174
9175         /* Pass one expand compound values into pseudo registers.
9176          */
9177         next = first;
9178         do {
9179                 ins = next;
9180                 next = ins->next;
9181                 switch(ins->op) {
9182                 case OP_UNKNOWNVAL:
9183                         next = decompose_unknownval(state, ins);
9184                         break;
9185
9186                 case OP_READ:
9187                         next = decompose_read(state, ins);
9188                         break;
9189
9190                 case OP_WRITE:
9191                         next = decompose_write(state, ins);
9192                         break;
9193
9194
9195                 /* Be very careful with the load/store logic. These
9196                  * operations must convert from the in register layout
9197                  * to the in memory layout, which is nontrivial.
9198                  */
9199                 case OP_LOAD:
9200                         next = decompose_load(state, ins);
9201                         break;
9202                 case OP_STORE:
9203                         next = decompose_store(state, ins);
9204                         break;
9205
9206                 case OP_DOT:
9207                         next = decompose_dot(state, ins);
9208                         break;
9209                 case OP_INDEX:
9210                         next = decompose_index(state, ins);
9211                         break;
9212                         
9213                 }
9214 #if DEBUG_DECOMPOSE_HIRES
9215                 fprintf(fp, "decompose next: %p \n", next);
9216                 fflush(fp);
9217                 fprintf(fp, "next->op: %d %s\n",
9218                         next->op, tops(next->op));
9219                 /* High resolution debugging mode */
9220                 print_triples(state);
9221 #endif
9222         } while (next != first);
9223
9224         /* Pass two remove the tuples.
9225          */
9226         ins = first;
9227         do {
9228                 next = ins->next;
9229                 if (ins->op == OP_TUPLE) {
9230                         if (ins->use) {
9231                                 internal_error(state, ins, "tuple used");
9232                         }
9233                         else {
9234                                 release_triple(state, ins);
9235                         }
9236                 } 
9237                 ins = next;
9238         } while(ins != first);
9239         ins = first;
9240         do {
9241                 next = ins->next;
9242                 if (ins->op == OP_BITREF) {
9243                         if (ins->use) {
9244                                 internal_error(state, ins, "bitref used");
9245                         } 
9246                         else {
9247                                 release_triple(state, ins);
9248                         }
9249                 }
9250                 ins = next;
9251         } while(ins != first);
9252
9253         /* Pass three verify the state and set ->id to 0.
9254          */
9255         next = first;
9256         do {
9257                 ins = next;
9258                 next = ins->next;
9259                 ins->id &= ~TRIPLE_FLAG_FLATTENED;
9260                 if (triple_stores_block(state, ins)) {
9261                         ins->u.block = 0;
9262                 }
9263                 if (triple_is_def(state, ins)) {
9264                         if (reg_size_of(state, ins->type) > REG_SIZEOF_REG) {
9265                                 internal_error(state, ins, "multi register value remains?");
9266                         }
9267                 }
9268                 if (ins->op == OP_DOT) {
9269                         internal_error(state, ins, "OP_DOT remains?");
9270                 }
9271                 if (ins->op == OP_INDEX) {
9272                         internal_error(state, ins, "OP_INDEX remains?");
9273                 }
9274                 if (ins->op == OP_BITREF) {
9275                         internal_error(state, ins, "OP_BITREF remains?");
9276                 }
9277                 if (ins->op == OP_TUPLE) {
9278                         internal_error(state, ins, "OP_TUPLE remains?");
9279                 }
9280         } while(next != first);
9281 }
9282
9283 /* For those operations that cannot be simplified */
9284 static void simplify_noop(struct compile_state *state, struct triple *ins)
9285 {
9286         return;
9287 }
9288
9289 static void simplify_smul(struct compile_state *state, struct triple *ins)
9290 {
9291         if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
9292                 struct triple *tmp;
9293                 tmp = RHS(ins, 0);
9294                 RHS(ins, 0) = RHS(ins, 1);
9295                 RHS(ins, 1) = tmp;
9296         }
9297         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
9298                 long_t left, right;
9299                 left  = read_sconst(state, ins, RHS(ins, 0));
9300                 right = read_sconst(state, ins, RHS(ins, 1));
9301                 mkconst(state, ins, left * right);
9302         }
9303         else if (is_zero(RHS(ins, 1))) {
9304                 mkconst(state, ins, 0);
9305         }
9306         else if (is_one(RHS(ins, 1))) {
9307                 mkcopy(state, ins, RHS(ins, 0));
9308         }
9309         else if (is_pow2(RHS(ins, 1))) {
9310                 struct triple *val;
9311                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
9312                 ins->op = OP_SL;
9313                 insert_triple(state, state->global_pool, val);
9314                 unuse_triple(RHS(ins, 1), ins);
9315                 use_triple(val, ins);
9316                 RHS(ins, 1) = val;
9317         }
9318 }
9319
9320 static void simplify_umul(struct compile_state *state, struct triple *ins)
9321 {
9322         if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
9323                 struct triple *tmp;
9324                 tmp = RHS(ins, 0);
9325                 RHS(ins, 0) = RHS(ins, 1);
9326                 RHS(ins, 1) = tmp;
9327         }
9328         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9329                 ulong_t left, right;
9330                 left  = read_const(state, ins, RHS(ins, 0));
9331                 right = read_const(state, ins, RHS(ins, 1));
9332                 mkconst(state, ins, left * right);
9333         }
9334         else if (is_zero(RHS(ins, 1))) {
9335                 mkconst(state, ins, 0);
9336         }
9337         else if (is_one(RHS(ins, 1))) {
9338                 mkcopy(state, ins, RHS(ins, 0));
9339         }
9340         else if (is_pow2(RHS(ins, 1))) {
9341                 struct triple *val;
9342                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
9343                 ins->op = OP_SL;
9344                 insert_triple(state, state->global_pool, val);
9345                 unuse_triple(RHS(ins, 1), ins);
9346                 use_triple(val, ins);
9347                 RHS(ins, 1) = val;
9348         }
9349 }
9350
9351 static void simplify_sdiv(struct compile_state *state, struct triple *ins)
9352 {
9353         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
9354                 long_t left, right;
9355                 left  = read_sconst(state, ins, RHS(ins, 0));
9356                 right = read_sconst(state, ins, RHS(ins, 1));
9357                 mkconst(state, ins, left / right);
9358         }
9359         else if (is_zero(RHS(ins, 0))) {
9360                 mkconst(state, ins, 0);
9361         }
9362         else if (is_zero(RHS(ins, 1))) {
9363                 error(state, ins, "division by zero");
9364         }
9365         else if (is_one(RHS(ins, 1))) {
9366                 mkcopy(state, ins, RHS(ins, 0));
9367         }
9368         else if (is_pow2(RHS(ins, 1))) {
9369                 struct triple *val;
9370                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
9371                 ins->op = OP_SSR;
9372                 insert_triple(state, state->global_pool, val);
9373                 unuse_triple(RHS(ins, 1), ins);
9374                 use_triple(val, ins);
9375                 RHS(ins, 1) = val;
9376         }
9377 }
9378
9379 static void simplify_udiv(struct compile_state *state, struct triple *ins)
9380 {
9381         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9382                 ulong_t left, right;
9383                 left  = read_const(state, ins, RHS(ins, 0));
9384                 right = read_const(state, ins, RHS(ins, 1));
9385                 mkconst(state, ins, left / right);
9386         }
9387         else if (is_zero(RHS(ins, 0))) {
9388                 mkconst(state, ins, 0);
9389         }
9390         else if (is_zero(RHS(ins, 1))) {
9391                 error(state, ins, "division by zero");
9392         }
9393         else if (is_one(RHS(ins, 1))) {
9394                 mkcopy(state, ins, RHS(ins, 0));
9395         }
9396         else if (is_pow2(RHS(ins, 1))) {
9397                 struct triple *val;
9398                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
9399                 ins->op = OP_USR;
9400                 insert_triple(state, state->global_pool, val);
9401                 unuse_triple(RHS(ins, 1), ins);
9402                 use_triple(val, ins);
9403                 RHS(ins, 1) = val;
9404         }
9405 }
9406
9407 static void simplify_smod(struct compile_state *state, struct triple *ins)
9408 {
9409         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9410                 long_t left, right;
9411                 left  = read_const(state, ins, RHS(ins, 0));
9412                 right = read_const(state, ins, RHS(ins, 1));
9413                 mkconst(state, ins, left % right);
9414         }
9415         else if (is_zero(RHS(ins, 0))) {
9416                 mkconst(state, ins, 0);
9417         }
9418         else if (is_zero(RHS(ins, 1))) {
9419                 error(state, ins, "division by zero");
9420         }
9421         else if (is_one(RHS(ins, 1))) {
9422                 mkconst(state, ins, 0);
9423         }
9424         else if (is_pow2(RHS(ins, 1))) {
9425                 struct triple *val;
9426                 val = int_const(state, ins->type, RHS(ins, 1)->u.cval - 1);
9427                 ins->op = OP_AND;
9428                 insert_triple(state, state->global_pool, val);
9429                 unuse_triple(RHS(ins, 1), ins);
9430                 use_triple(val, ins);
9431                 RHS(ins, 1) = val;
9432         }
9433 }
9434
9435 static void simplify_umod(struct compile_state *state, struct triple *ins)
9436 {
9437         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9438                 ulong_t left, right;
9439                 left  = read_const(state, ins, RHS(ins, 0));
9440                 right = read_const(state, ins, RHS(ins, 1));
9441                 mkconst(state, ins, left % right);
9442         }
9443         else if (is_zero(RHS(ins, 0))) {
9444                 mkconst(state, ins, 0);
9445         }
9446         else if (is_zero(RHS(ins, 1))) {
9447                 error(state, ins, "division by zero");
9448         }
9449         else if (is_one(RHS(ins, 1))) {
9450                 mkconst(state, ins, 0);
9451         }
9452         else if (is_pow2(RHS(ins, 1))) {
9453                 struct triple *val;
9454                 val = int_const(state, ins->type, RHS(ins, 1)->u.cval - 1);
9455                 ins->op = OP_AND;
9456                 insert_triple(state, state->global_pool, val);
9457                 unuse_triple(RHS(ins, 1), ins);
9458                 use_triple(val, ins);
9459                 RHS(ins, 1) = val;
9460         }
9461 }
9462
9463 static void simplify_add(struct compile_state *state, struct triple *ins)
9464 {
9465         /* start with the pointer on the left */
9466         if (is_pointer(RHS(ins, 1))) {
9467                 struct triple *tmp;
9468                 tmp = RHS(ins, 0);
9469                 RHS(ins, 0) = RHS(ins, 1);
9470                 RHS(ins, 1) = tmp;
9471         }
9472         if (is_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9473                 if (RHS(ins, 0)->op == OP_INTCONST) {
9474                         ulong_t left, right;
9475                         left  = read_const(state, ins, RHS(ins, 0));
9476                         right = read_const(state, ins, RHS(ins, 1));
9477                         mkconst(state, ins, left + right);
9478                 }
9479                 else if (RHS(ins, 0)->op == OP_ADDRCONST) {
9480                         struct triple *sdecl;
9481                         ulong_t left, right;
9482                         sdecl = MISC(RHS(ins, 0), 0);
9483                         left  = RHS(ins, 0)->u.cval;
9484                         right = RHS(ins, 1)->u.cval;
9485                         mkaddr_const(state, ins, sdecl, left + right);
9486                 }
9487                 else {
9488                         internal_warning(state, ins, "Optimize me!");
9489                 }
9490         }
9491         else if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
9492                 struct triple *tmp;
9493                 tmp = RHS(ins, 1);
9494                 RHS(ins, 1) = RHS(ins, 0);
9495                 RHS(ins, 0) = tmp;
9496         }
9497 }
9498
9499 static void simplify_sub(struct compile_state *state, struct triple *ins)
9500 {
9501         if (is_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9502                 if (RHS(ins, 0)->op == OP_INTCONST) {
9503                         ulong_t left, right;
9504                         left  = read_const(state, ins, RHS(ins, 0));
9505                         right = read_const(state, ins, RHS(ins, 1));
9506                         mkconst(state, ins, left - right);
9507                 }
9508                 else if (RHS(ins, 0)->op == OP_ADDRCONST) {
9509                         struct triple *sdecl;
9510                         ulong_t left, right;
9511                         sdecl = MISC(RHS(ins, 0), 0);
9512                         left  = RHS(ins, 0)->u.cval;
9513                         right = RHS(ins, 1)->u.cval;
9514                         mkaddr_const(state, ins, sdecl, left - right);
9515                 }
9516                 else {
9517                         internal_warning(state, ins, "Optimize me!");
9518                 }
9519         }
9520 }
9521
9522 static void simplify_sl(struct compile_state *state, struct triple *ins)
9523 {
9524         if (is_simple_const(RHS(ins, 1))) {
9525                 ulong_t right;
9526                 right = read_const(state, ins, RHS(ins, 1));
9527                 if (right >= (size_of(state, ins->type))) {
9528                         warning(state, ins, "left shift count >= width of type");
9529                 }
9530         }
9531         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9532                 ulong_t left, right;
9533                 left  = read_const(state, ins, RHS(ins, 0));
9534                 right = read_const(state, ins, RHS(ins, 1));
9535                 mkconst(state, ins,  left << right);
9536         }
9537 }
9538
9539 static void simplify_usr(struct compile_state *state, struct triple *ins)
9540 {
9541         if (is_simple_const(RHS(ins, 1))) {
9542                 ulong_t right;
9543                 right = read_const(state, ins, RHS(ins, 1));
9544                 if (right >= (size_of(state, ins->type))) {
9545                         warning(state, ins, "right shift count >= width of type");
9546                 }
9547         }
9548         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9549                 ulong_t left, right;
9550                 left  = read_const(state, ins, RHS(ins, 0));
9551                 right = read_const(state, ins, RHS(ins, 1));
9552                 mkconst(state, ins, left >> right);
9553         }
9554 }
9555
9556 static void simplify_ssr(struct compile_state *state, struct triple *ins)
9557 {
9558         if (is_simple_const(RHS(ins, 1))) {
9559                 ulong_t right;
9560                 right = read_const(state, ins, RHS(ins, 1));
9561                 if (right >= (size_of(state, ins->type))) {
9562                         warning(state, ins, "right shift count >= width of type");
9563                 }
9564         }
9565         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9566                 long_t left, right;
9567                 left  = read_sconst(state, ins, RHS(ins, 0));
9568                 right = read_sconst(state, ins, RHS(ins, 1));
9569                 mkconst(state, ins, left >> right);
9570         }
9571 }
9572
9573 static void simplify_and(struct compile_state *state, struct triple *ins)
9574 {
9575         struct triple *left, *right;
9576         left = RHS(ins, 0);
9577         right = RHS(ins, 1);
9578
9579         if (is_simple_const(left) && is_simple_const(right)) {
9580                 ulong_t lval, rval;
9581                 lval = read_const(state, ins, left);
9582                 rval = read_const(state, ins, right);
9583                 mkconst(state, ins, lval & rval);
9584         }
9585         else if (is_zero(right) || is_zero(left)) {
9586                 mkconst(state, ins, 0);
9587         }
9588 }
9589
9590 static void simplify_or(struct compile_state *state, struct triple *ins)
9591 {
9592         struct triple *left, *right;
9593         left = RHS(ins, 0);
9594         right = RHS(ins, 1);
9595
9596         if (is_simple_const(left) && is_simple_const(right)) {
9597                 ulong_t lval, rval;
9598                 lval = read_const(state, ins, left);
9599                 rval = read_const(state, ins, right);
9600                 mkconst(state, ins, lval | rval);
9601         }
9602 #if 0 /* I need to handle type mismatches here... */
9603         else if (is_zero(right)) {
9604                 mkcopy(state, ins, left);
9605         }
9606         else if (is_zero(left)) {
9607                 mkcopy(state, ins, right);
9608         }
9609 #endif
9610 }
9611
9612 static void simplify_xor(struct compile_state *state, struct triple *ins)
9613 {
9614         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9615                 ulong_t left, right;
9616                 left  = read_const(state, ins, RHS(ins, 0));
9617                 right = read_const(state, ins, RHS(ins, 1));
9618                 mkconst(state, ins, left ^ right);
9619         }
9620 }
9621
9622 static void simplify_pos(struct compile_state *state, struct triple *ins)
9623 {
9624         if (is_const(RHS(ins, 0))) {
9625                 mkconst(state, ins, RHS(ins, 0)->u.cval);
9626         }
9627         else {
9628                 mkcopy(state, ins, RHS(ins, 0));
9629         }
9630 }
9631
9632 static void simplify_neg(struct compile_state *state, struct triple *ins)
9633 {
9634         if (is_simple_const(RHS(ins, 0))) {
9635                 ulong_t left;
9636                 left = read_const(state, ins, RHS(ins, 0));
9637                 mkconst(state, ins, -left);
9638         }
9639         else if (RHS(ins, 0)->op == OP_NEG) {
9640                 mkcopy(state, ins, RHS(RHS(ins, 0), 0));
9641         }
9642 }
9643
9644 static void simplify_invert(struct compile_state *state, struct triple *ins)
9645 {
9646         if (is_simple_const(RHS(ins, 0))) {
9647                 ulong_t left;
9648                 left = read_const(state, ins, RHS(ins, 0));
9649                 mkconst(state, ins, ~left);
9650         }
9651 }
9652
9653 static void simplify_eq(struct compile_state *state, struct triple *ins)
9654 {
9655         struct triple *left, *right;
9656         left = RHS(ins, 0);
9657         right = RHS(ins, 1);
9658
9659         if (is_const(left) && is_const(right)) {
9660                 int val;
9661                 val = const_eq(state, ins, left, right);
9662                 if (val >= 0) {
9663                         mkconst(state, ins, val == 1);
9664                 }
9665         }
9666         else if (left == right) {
9667                 mkconst(state, ins, 1);
9668         }
9669 }
9670
9671 static void simplify_noteq(struct compile_state *state, struct triple *ins)
9672 {
9673         struct triple *left, *right;
9674         left = RHS(ins, 0);
9675         right = RHS(ins, 1);
9676
9677         if (is_const(left) && is_const(right)) {
9678                 int val;
9679                 val = const_eq(state, ins, left, right);
9680                 if (val >= 0) {
9681                         mkconst(state, ins, val != 1);
9682                 }
9683         }
9684         if (left == right) {
9685                 mkconst(state, ins, 0);
9686         }
9687 }
9688
9689 static void simplify_sless(struct compile_state *state, struct triple *ins)
9690 {
9691         struct triple *left, *right;
9692         left = RHS(ins, 0);
9693         right = RHS(ins, 1);
9694
9695         if (is_const(left) && is_const(right)) {
9696                 int val;
9697                 val = const_scmp(state, ins, left, right);
9698                 if ((val >= -1) && (val <= 1)) {
9699                         mkconst(state, ins, val < 0);
9700                 }
9701         }
9702         else if (left == right) {
9703                 mkconst(state, ins, 0);
9704         }
9705 }
9706
9707 static void simplify_uless(struct compile_state *state, struct triple *ins)
9708 {
9709         struct triple *left, *right;
9710         left = RHS(ins, 0);
9711         right = RHS(ins, 1);
9712
9713         if (is_const(left) && is_const(right)) {
9714                 int val;
9715                 val = const_ucmp(state, ins, left, right);
9716                 if ((val >= -1) && (val <= 1)) {
9717                         mkconst(state, ins, val < 0);
9718                 }
9719         }
9720         else if (is_zero(right)) {
9721                 mkconst(state, ins, 0);
9722         }
9723         else if (left == right) {
9724                 mkconst(state, ins, 0);
9725         }
9726 }
9727
9728 static void simplify_smore(struct compile_state *state, struct triple *ins)
9729 {
9730         struct triple *left, *right;
9731         left = RHS(ins, 0);
9732         right = RHS(ins, 1);
9733
9734         if (is_const(left) && is_const(right)) {
9735                 int val;
9736                 val = const_scmp(state, ins, left, right);
9737                 if ((val >= -1) && (val <= 1)) {
9738                         mkconst(state, ins, val > 0);
9739                 }
9740         }
9741         else if (left == right) {
9742                 mkconst(state, ins, 0);
9743         }
9744 }
9745
9746 static void simplify_umore(struct compile_state *state, struct triple *ins)
9747 {
9748         struct triple *left, *right;
9749         left = RHS(ins, 0);
9750         right = RHS(ins, 1);
9751
9752         if (is_const(left) && is_const(right)) {
9753                 int val;
9754                 val = const_ucmp(state, ins, left, right);
9755                 if ((val >= -1) && (val <= 1)) {
9756                         mkconst(state, ins, val > 0);
9757                 }
9758         }
9759         else if (is_zero(left)) {
9760                 mkconst(state, ins, 0);
9761         }
9762         else if (left == right) {
9763                 mkconst(state, ins, 0);
9764         }
9765 }
9766
9767
9768 static void simplify_slesseq(struct compile_state *state, struct triple *ins)
9769 {
9770         struct triple *left, *right;
9771         left = RHS(ins, 0);
9772         right = RHS(ins, 1);
9773
9774         if (is_const(left) && is_const(right)) {
9775                 int val;
9776                 val = const_scmp(state, ins, left, right);
9777                 if ((val >= -1) && (val <= 1)) {
9778                         mkconst(state, ins, val <= 0);
9779                 }
9780         }
9781         else if (left == right) {
9782                 mkconst(state, ins, 1);
9783         }
9784 }
9785
9786 static void simplify_ulesseq(struct compile_state *state, struct triple *ins)
9787 {
9788         struct triple *left, *right;
9789         left = RHS(ins, 0);
9790         right = RHS(ins, 1);
9791
9792         if (is_const(left) && is_const(right)) {
9793                 int val;
9794                 val = const_ucmp(state, ins, left, right);
9795                 if ((val >= -1) && (val <= 1)) {
9796                         mkconst(state, ins, val <= 0);
9797                 }
9798         }
9799         else if (is_zero(left)) {
9800                 mkconst(state, ins, 1);
9801         }
9802         else if (left == right) {
9803                 mkconst(state, ins, 1);
9804         }
9805 }
9806
9807 static void simplify_smoreeq(struct compile_state *state, struct triple *ins)
9808 {
9809         struct triple *left, *right;
9810         left = RHS(ins, 0);
9811         right = RHS(ins, 1);
9812
9813         if (is_const(left) && is_const(right)) {
9814                 int val;
9815                 val = const_scmp(state, ins, left, right);
9816                 if ((val >= -1) && (val <= 1)) {
9817                         mkconst(state, ins, val >= 0);
9818                 }
9819         }
9820         else if (left == right) {
9821                 mkconst(state, ins, 1);
9822         }
9823 }
9824
9825 static void simplify_umoreeq(struct compile_state *state, struct triple *ins)
9826 {
9827         struct triple *left, *right;
9828         left = RHS(ins, 0);
9829         right = RHS(ins, 1);
9830
9831         if (is_const(left) && is_const(right)) {
9832                 int val;
9833                 val = const_ucmp(state, ins, left, right);
9834                 if ((val >= -1) && (val <= 1)) {
9835                         mkconst(state, ins, val >= 0);
9836                 }
9837         }
9838         else if (is_zero(right)) {
9839                 mkconst(state, ins, 1);
9840         }
9841         else if (left == right) {
9842                 mkconst(state, ins, 1);
9843         }
9844 }
9845
9846 static void simplify_lfalse(struct compile_state *state, struct triple *ins)
9847 {
9848         struct triple *rhs;
9849         rhs = RHS(ins, 0);
9850
9851         if (is_const(rhs)) {
9852                 mkconst(state, ins, !const_ltrue(state, ins, rhs));
9853         }
9854         /* Otherwise if I am the only user... */
9855         else if ((rhs->use) &&
9856                 (rhs->use->member == ins) && (rhs->use->next == 0)) {
9857                 int need_copy = 1;
9858                 /* Invert a boolean operation */
9859                 switch(rhs->op) {
9860                 case OP_LTRUE:   rhs->op = OP_LFALSE;  break;
9861                 case OP_LFALSE:  rhs->op = OP_LTRUE;   break;
9862                 case OP_EQ:      rhs->op = OP_NOTEQ;   break;
9863                 case OP_NOTEQ:   rhs->op = OP_EQ;      break;
9864                 case OP_SLESS:   rhs->op = OP_SMOREEQ; break;
9865                 case OP_ULESS:   rhs->op = OP_UMOREEQ; break;
9866                 case OP_SMORE:   rhs->op = OP_SLESSEQ; break;
9867                 case OP_UMORE:   rhs->op = OP_ULESSEQ; break;
9868                 case OP_SLESSEQ: rhs->op = OP_SMORE;   break;
9869                 case OP_ULESSEQ: rhs->op = OP_UMORE;   break;
9870                 case OP_SMOREEQ: rhs->op = OP_SLESS;   break;
9871                 case OP_UMOREEQ: rhs->op = OP_ULESS;   break;
9872                 default:
9873                         need_copy = 0;
9874                         break;
9875                 }
9876                 if (need_copy) {
9877                         mkcopy(state, ins, rhs);
9878                 }
9879         }
9880 }
9881
9882 static void simplify_ltrue (struct compile_state *state, struct triple *ins)
9883 {
9884         struct triple *rhs;
9885         rhs = RHS(ins, 0);
9886
9887         if (is_const(rhs)) {
9888                 mkconst(state, ins, const_ltrue(state, ins, rhs));
9889         }
9890         else switch(rhs->op) {
9891         case OP_LTRUE:   case OP_LFALSE:  case OP_EQ:      case OP_NOTEQ:
9892         case OP_SLESS:   case OP_ULESS:   case OP_SMORE:   case OP_UMORE:
9893         case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
9894                 mkcopy(state, ins, rhs);
9895         }
9896
9897 }
9898
9899 static void simplify_load(struct compile_state *state, struct triple *ins)
9900 {
9901         struct triple *addr, *sdecl, *blob;
9902
9903         /* If I am doing a load with a constant pointer from a constant
9904          * table get the value.
9905          */
9906         addr = RHS(ins, 0);
9907         if ((addr->op == OP_ADDRCONST) && (sdecl = MISC(addr, 0)) &&
9908                 (sdecl->op == OP_SDECL) && (blob = MISC(sdecl, 0)) &&
9909                 (blob->op == OP_BLOBCONST)) {
9910                 unsigned char buffer[SIZEOF_WORD];
9911                 size_t reg_size, mem_size;
9912                 const char *src, *end;
9913                 ulong_t val;
9914                 reg_size = reg_size_of(state, ins->type);
9915                 if (reg_size > REG_SIZEOF_REG) {
9916                         internal_error(state, ins, "load size greater than register");
9917                 }
9918                 mem_size = size_of(state, ins->type);
9919                 end = blob->u.blob;
9920                 end += bits_to_bytes(size_of(state, sdecl->type));
9921                 src = blob->u.blob;
9922                 src += addr->u.cval;
9923
9924                 if (src > end) {
9925                         error(state, ins, "Load address out of bounds");
9926                 }
9927
9928                 memset(buffer, 0, sizeof(buffer));
9929                 memcpy(buffer, src, bits_to_bytes(mem_size));
9930
9931                 switch(mem_size) {
9932                 case SIZEOF_I8:  val = *((uint8_t *) buffer); break;
9933                 case SIZEOF_I16: val = *((uint16_t *)buffer); break;
9934                 case SIZEOF_I32: val = *((uint32_t *)buffer); break;
9935                 case SIZEOF_I64: val = *((uint64_t *)buffer); break;
9936                 default:
9937                         internal_error(state, ins, "mem_size: %d not handled",
9938                                 mem_size);
9939                         val = 0;
9940                         break;
9941                 }
9942                 mkconst(state, ins, val);
9943         }
9944 }
9945
9946 static void simplify_uextract(struct compile_state *state, struct triple *ins)
9947 {
9948         if (is_simple_const(RHS(ins, 0))) {
9949                 ulong_t val;
9950                 ulong_t mask;
9951                 val = read_const(state, ins, RHS(ins, 0));
9952                 mask = 1;
9953                 mask <<= ins->u.bitfield.size;
9954                 mask -= 1;
9955                 val >>= ins->u.bitfield.offset;
9956                 val &= mask;
9957                 mkconst(state, ins, val);
9958         }
9959 }
9960
9961 static void simplify_sextract(struct compile_state *state, struct triple *ins)
9962 {
9963         if (is_simple_const(RHS(ins, 0))) {
9964                 ulong_t val;
9965                 ulong_t mask;
9966                 long_t sval;
9967                 val = read_const(state, ins, RHS(ins, 0));
9968                 mask = 1;
9969                 mask <<= ins->u.bitfield.size;
9970                 mask -= 1;
9971                 val >>= ins->u.bitfield.offset;
9972                 val &= mask;
9973                 val <<= (SIZEOF_LONG - ins->u.bitfield.size);
9974                 sval = val;
9975                 sval >>= (SIZEOF_LONG - ins->u.bitfield.size); 
9976                 mkconst(state, ins, sval);
9977         }
9978 }
9979
9980 static void simplify_deposit(struct compile_state *state, struct triple *ins)
9981 {
9982         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9983                 ulong_t targ, val;
9984                 ulong_t mask;
9985                 targ = read_const(state, ins, RHS(ins, 0));
9986                 val  = read_const(state, ins, RHS(ins, 1));
9987                 mask = 1;
9988                 mask <<= ins->u.bitfield.size;
9989                 mask -= 1;
9990                 mask <<= ins->u.bitfield.offset;
9991                 targ &= ~mask;
9992                 val <<= ins->u.bitfield.offset;
9993                 val &= mask;
9994                 targ |= val;
9995                 mkconst(state, ins, targ);
9996         }
9997 }
9998
9999 static void simplify_copy(struct compile_state *state, struct triple *ins)
10000 {
10001         struct triple *right;
10002         right = RHS(ins, 0);
10003         if (is_subset_type(ins->type, right->type)) {
10004                 ins->type = right->type;
10005         }
10006         if (equiv_types(ins->type, right->type)) {
10007                 ins->op = OP_COPY;/* I don't need to convert if the types match */
10008         } else {
10009                 if (ins->op == OP_COPY) {
10010                         internal_error(state, ins, "type mismatch on copy");
10011                 }
10012         }
10013         if (is_const(right) && (right->op == OP_ADDRCONST) && is_pointer(ins)) {
10014                 struct triple *sdecl;
10015                 ulong_t offset;
10016                 sdecl  = MISC(right, 0);
10017                 offset = right->u.cval;
10018                 mkaddr_const(state, ins, sdecl, offset);
10019         }
10020         else if (is_const(right) && is_write_compatible(state, ins->type, right->type)) {
10021                 switch(right->op) {
10022                 case OP_INTCONST:
10023                 {
10024                         ulong_t left;
10025                         left = read_const(state, ins, right);
10026                         /* Ensure I have not overflowed the destination. */
10027                         if (size_of(state, right->type) > size_of(state, ins->type)) {
10028                                 ulong_t mask;
10029                                 mask = 1;
10030                                 mask <<= size_of(state, ins->type);
10031                                 mask -= 1;
10032                                 left &= mask;
10033                         }
10034                         /* Ensure I am properly sign extended */
10035                         if (size_of(state, right->type) < size_of(state, ins->type) &&
10036                                 is_signed(right->type)) {
10037                                 long_t val;
10038                                 int shift;
10039                                 shift = SIZEOF_LONG - size_of(state, right->type);
10040                                 val = left;
10041                                 val <<= shift;
10042                                 val >>= shift;
10043                                 left = val;
10044                         }
10045                         mkconst(state, ins, left);
10046                         break;
10047                 }
10048                 default:
10049                         internal_error(state, ins, "uknown constant");
10050                         break;
10051                 }
10052         }
10053 }
10054
10055 static int phi_present(struct block *block)
10056 {
10057         struct triple *ptr;
10058         if (!block) {
10059                 return 0;
10060         }
10061         ptr = block->first;
10062         do {
10063                 if (ptr->op == OP_PHI) {
10064                         return 1;
10065                 }
10066                 ptr = ptr->next;
10067         } while(ptr != block->last);
10068         return 0;
10069 }
10070
10071 static int phi_dependency(struct block *block)
10072 {
10073         /* A block has a phi dependency if a phi function
10074          * depends on that block to exist, and makes a block
10075          * that is otherwise useless unsafe to remove.
10076          */
10077         if (block) {
10078                 struct block_set *edge;
10079                 for(edge = block->edges; edge; edge = edge->next) {
10080                         if (phi_present(edge->member)) {
10081                                 return 1;
10082                         }
10083                 }
10084         }
10085         return 0;
10086 }
10087
10088 static struct triple *branch_target(struct compile_state *state, struct triple *ins)
10089 {
10090         struct triple *targ;
10091         targ = TARG(ins, 0);
10092         /* During scc_transform temporary triples are allocated that
10093          * loop back onto themselves. If I see one don't advance the
10094          * target.
10095          */
10096         while(triple_is_structural(state, targ) && 
10097                 (targ->next != targ) && (targ->next != state->first)) {
10098                 targ = targ->next;
10099         }
10100         return targ;
10101 }
10102
10103
10104 static void simplify_branch(struct compile_state *state, struct triple *ins)
10105 {
10106         int simplified, loops;
10107         if ((ins->op != OP_BRANCH) && (ins->op != OP_CBRANCH)) {
10108                 internal_error(state, ins, "not branch");
10109         }
10110         if (ins->use != 0) {
10111                 internal_error(state, ins, "branch use");
10112         }
10113         /* The challenge here with simplify branch is that I need to 
10114          * make modifications to the control flow graph as well
10115          * as to the branch instruction itself.  That is handled
10116          * by rebuilding the basic blocks after simplify all is called.
10117          */
10118
10119         /* If we have a branch to an unconditional branch update
10120          * our target.  But watch out for dependencies from phi
10121          * functions.
10122          * Also only do this a limited number of times so
10123          * we don't get into an infinite loop.
10124          */
10125         loops = 0;
10126         do {
10127                 struct triple *targ;
10128                 simplified = 0;
10129                 targ = branch_target(state, ins);
10130                 if ((targ != ins) && (targ->op == OP_BRANCH) && 
10131                         !phi_dependency(targ->u.block))
10132                 {
10133                         unuse_triple(TARG(ins, 0), ins);
10134                         TARG(ins, 0) = TARG(targ, 0);
10135                         use_triple(TARG(ins, 0), ins);
10136                         simplified = 1;
10137                 }
10138         } while(simplified && (++loops < 20));
10139
10140         /* If we have a conditional branch with a constant condition
10141          * make it an unconditional branch.
10142          */
10143         if ((ins->op == OP_CBRANCH) && is_simple_const(RHS(ins, 0))) {
10144                 struct triple *targ;
10145                 ulong_t value;
10146                 value = read_const(state, ins, RHS(ins, 0));
10147                 unuse_triple(RHS(ins, 0), ins);
10148                 targ = TARG(ins, 0);
10149                 ins->rhs  = 0;
10150                 ins->targ = 1;
10151                 ins->op = OP_BRANCH;
10152                 if (value) {
10153                         unuse_triple(ins->next, ins);
10154                         TARG(ins, 0) = targ;
10155                 }
10156                 else {
10157                         unuse_triple(targ, ins);
10158                         TARG(ins, 0) = ins->next;
10159                 }
10160         }
10161
10162         /* If we have a branch to the next instruction,
10163          * make it a noop.
10164          */
10165         if (TARG(ins, 0) == ins->next) {
10166                 unuse_triple(TARG(ins, 0), ins);
10167                 if (ins->op == OP_CBRANCH) {
10168                         unuse_triple(RHS(ins, 0), ins);
10169                         unuse_triple(ins->next, ins);
10170                 }
10171                 ins->lhs = 0;
10172                 ins->rhs = 0;
10173                 ins->misc = 0;
10174                 ins->targ = 0;
10175                 ins->op = OP_NOOP;
10176                 if (ins->use) {
10177                         internal_error(state, ins, "noop use != 0");
10178                 }
10179         }
10180 }
10181
10182 static void simplify_label(struct compile_state *state, struct triple *ins)
10183 {
10184         /* Ignore volatile labels */
10185         if (!triple_is_pure(state, ins, ins->id)) {
10186                 return;
10187         }
10188         if (ins->use == 0) {
10189                 ins->op = OP_NOOP;
10190         }
10191         else if (ins->prev->op == OP_LABEL) {
10192                 /* In general it is not safe to merge one label that
10193                  * imediately follows another.  The problem is that the empty
10194                  * looking block may have phi functions that depend on it.
10195                  */
10196                 if (!phi_dependency(ins->prev->u.block)) {
10197                         struct triple_set *user, *next;
10198                         ins->op = OP_NOOP;
10199                         for(user = ins->use; user; user = next) {
10200                                 struct triple *use, **expr;
10201                                 next = user->next;
10202                                 use = user->member;
10203                                 expr = triple_targ(state, use, 0);
10204                                 for(;expr; expr = triple_targ(state, use, expr)) {
10205                                         if (*expr == ins) {
10206                                                 *expr = ins->prev;
10207                                                 unuse_triple(ins, use);
10208                                                 use_triple(ins->prev, use);
10209                                         }
10210                                         
10211                                 }
10212                         }
10213                         if (ins->use) {
10214                                 internal_error(state, ins, "noop use != 0");
10215                         }
10216                 }
10217         }
10218 }
10219
10220 static void simplify_phi(struct compile_state *state, struct triple *ins)
10221 {
10222         struct triple **slot;
10223         struct triple *value;
10224         int zrhs, i;
10225         ulong_t cvalue;
10226         slot = &RHS(ins, 0);
10227         zrhs = ins->rhs;
10228         if (zrhs == 0) {
10229                 return;
10230         }
10231         /* See if all of the rhs members of a phi have the same value */
10232         if (slot[0] && is_simple_const(slot[0])) {
10233                 cvalue = read_const(state, ins, slot[0]);
10234                 for(i = 1; i < zrhs; i++) {
10235                         if (    !slot[i] ||
10236                                 !is_simple_const(slot[i]) ||
10237                                 !equiv_types(slot[0]->type, slot[i]->type) ||
10238                                 (cvalue != read_const(state, ins, slot[i]))) {
10239                                 break;
10240                         }
10241                 }
10242                 if (i == zrhs) {
10243                         mkconst(state, ins, cvalue);
10244                         return;
10245                 }
10246         }
10247         
10248         /* See if all of rhs members of a phi are the same */
10249         value = slot[0];
10250         for(i = 1; i < zrhs; i++) {
10251                 if (slot[i] != value) {
10252                         break;
10253                 }
10254         }
10255         if (i == zrhs) {
10256                 /* If the phi has a single value just copy it */
10257                 if (!is_subset_type(ins->type, value->type)) {
10258                         internal_error(state, ins, "bad input type to phi");
10259                 }
10260                 /* Make the types match */
10261                 if (!equiv_types(ins->type, value->type)) {
10262                         ins->type = value->type;
10263                 }
10264                 /* Now make the actual copy */
10265                 mkcopy(state, ins, value);
10266                 return;
10267         }
10268 }
10269
10270
10271 static void simplify_bsf(struct compile_state *state, struct triple *ins)
10272 {
10273         if (is_simple_const(RHS(ins, 0))) {
10274                 ulong_t left;
10275                 left = read_const(state, ins, RHS(ins, 0));
10276                 mkconst(state, ins, bsf(left));
10277         }
10278 }
10279
10280 static void simplify_bsr(struct compile_state *state, struct triple *ins)
10281 {
10282         if (is_simple_const(RHS(ins, 0))) {
10283                 ulong_t left;
10284                 left = read_const(state, ins, RHS(ins, 0));
10285                 mkconst(state, ins, bsr(left));
10286         }
10287 }
10288
10289
10290 typedef void (*simplify_t)(struct compile_state *state, struct triple *ins);
10291 static const struct simplify_table {
10292         simplify_t func;
10293         unsigned long flag;
10294 } table_simplify[] = {
10295 #define simplify_sdivt    simplify_noop
10296 #define simplify_udivt    simplify_noop
10297 #define simplify_piece    simplify_noop
10298
10299 [OP_SDIVT      ] = { simplify_sdivt,    COMPILER_SIMPLIFY_ARITH },
10300 [OP_UDIVT      ] = { simplify_udivt,    COMPILER_SIMPLIFY_ARITH },
10301 [OP_SMUL       ] = { simplify_smul,     COMPILER_SIMPLIFY_ARITH },
10302 [OP_UMUL       ] = { simplify_umul,     COMPILER_SIMPLIFY_ARITH },
10303 [OP_SDIV       ] = { simplify_sdiv,     COMPILER_SIMPLIFY_ARITH },
10304 [OP_UDIV       ] = { simplify_udiv,     COMPILER_SIMPLIFY_ARITH },
10305 [OP_SMOD       ] = { simplify_smod,     COMPILER_SIMPLIFY_ARITH },
10306 [OP_UMOD       ] = { simplify_umod,     COMPILER_SIMPLIFY_ARITH },
10307 [OP_ADD        ] = { simplify_add,      COMPILER_SIMPLIFY_ARITH },
10308 [OP_SUB        ] = { simplify_sub,      COMPILER_SIMPLIFY_ARITH },
10309 [OP_SL         ] = { simplify_sl,       COMPILER_SIMPLIFY_SHIFT },
10310 [OP_USR        ] = { simplify_usr,      COMPILER_SIMPLIFY_SHIFT },
10311 [OP_SSR        ] = { simplify_ssr,      COMPILER_SIMPLIFY_SHIFT },
10312 [OP_AND        ] = { simplify_and,      COMPILER_SIMPLIFY_BITWISE },
10313 [OP_XOR        ] = { simplify_xor,      COMPILER_SIMPLIFY_BITWISE },
10314 [OP_OR         ] = { simplify_or,       COMPILER_SIMPLIFY_BITWISE },
10315 [OP_POS        ] = { simplify_pos,      COMPILER_SIMPLIFY_ARITH },
10316 [OP_NEG        ] = { simplify_neg,      COMPILER_SIMPLIFY_ARITH },
10317 [OP_INVERT     ] = { simplify_invert,   COMPILER_SIMPLIFY_BITWISE },
10318
10319 [OP_EQ         ] = { simplify_eq,       COMPILER_SIMPLIFY_LOGICAL },
10320 [OP_NOTEQ      ] = { simplify_noteq,    COMPILER_SIMPLIFY_LOGICAL },
10321 [OP_SLESS      ] = { simplify_sless,    COMPILER_SIMPLIFY_LOGICAL },
10322 [OP_ULESS      ] = { simplify_uless,    COMPILER_SIMPLIFY_LOGICAL },
10323 [OP_SMORE      ] = { simplify_smore,    COMPILER_SIMPLIFY_LOGICAL },
10324 [OP_UMORE      ] = { simplify_umore,    COMPILER_SIMPLIFY_LOGICAL },
10325 [OP_SLESSEQ    ] = { simplify_slesseq,  COMPILER_SIMPLIFY_LOGICAL },
10326 [OP_ULESSEQ    ] = { simplify_ulesseq,  COMPILER_SIMPLIFY_LOGICAL },
10327 [OP_SMOREEQ    ] = { simplify_smoreeq,  COMPILER_SIMPLIFY_LOGICAL },
10328 [OP_UMOREEQ    ] = { simplify_umoreeq,  COMPILER_SIMPLIFY_LOGICAL },
10329 [OP_LFALSE     ] = { simplify_lfalse,   COMPILER_SIMPLIFY_LOGICAL },
10330 [OP_LTRUE      ] = { simplify_ltrue,    COMPILER_SIMPLIFY_LOGICAL },
10331
10332 [OP_LOAD       ] = { simplify_load,     COMPILER_SIMPLIFY_OP },
10333 [OP_STORE      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10334
10335 [OP_UEXTRACT   ] = { simplify_uextract, COMPILER_SIMPLIFY_BITFIELD },
10336 [OP_SEXTRACT   ] = { simplify_sextract, COMPILER_SIMPLIFY_BITFIELD },
10337 [OP_DEPOSIT    ] = { simplify_deposit,  COMPILER_SIMPLIFY_BITFIELD },
10338
10339 [OP_NOOP       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10340
10341 [OP_INTCONST   ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10342 [OP_BLOBCONST  ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10343 [OP_ADDRCONST  ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10344 [OP_UNKNOWNVAL ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10345
10346 [OP_WRITE      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10347 [OP_READ       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10348 [OP_COPY       ] = { simplify_copy,     COMPILER_SIMPLIFY_COPY },
10349 [OP_CONVERT    ] = { simplify_copy,     COMPILER_SIMPLIFY_COPY },
10350 [OP_PIECE      ] = { simplify_piece,    COMPILER_SIMPLIFY_OP },
10351 [OP_ASM        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10352
10353 [OP_DOT        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10354 [OP_INDEX      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10355
10356 [OP_LIST       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10357 [OP_BRANCH     ] = { simplify_branch,   COMPILER_SIMPLIFY_BRANCH },
10358 [OP_CBRANCH    ] = { simplify_branch,   COMPILER_SIMPLIFY_BRANCH },
10359 [OP_CALL       ] = { simplify_noop,     COMPILER_SIMPLIFY_BRANCH },
10360 [OP_RET        ] = { simplify_noop,     COMPILER_SIMPLIFY_BRANCH },
10361 [OP_LABEL      ] = { simplify_label,    COMPILER_SIMPLIFY_LABEL },
10362 [OP_ADECL      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10363 [OP_SDECL      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10364 [OP_PHI        ] = { simplify_phi,      COMPILER_SIMPLIFY_PHI },
10365
10366 [OP_INB        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10367 [OP_INW        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10368 [OP_INL        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10369 [OP_OUTB       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10370 [OP_OUTW       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10371 [OP_OUTL       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10372 [OP_BSF        ] = { simplify_bsf,      COMPILER_SIMPLIFY_OP },
10373 [OP_BSR        ] = { simplify_bsr,      COMPILER_SIMPLIFY_OP },
10374 [OP_RDMSR      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10375 [OP_WRMSR      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },               
10376 [OP_HLT        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10377 };
10378
10379 static inline void debug_simplify(struct compile_state *state, 
10380         simplify_t do_simplify, struct triple *ins)
10381 {
10382 #if DEBUG_SIMPLIFY_HIRES
10383                 if (state->functions_joined && (do_simplify != simplify_noop)) {
10384                         /* High resolution debugging mode */
10385                         fprintf(state->dbgout, "simplifing: ");
10386                         display_triple(state->dbgout, ins);
10387                 }
10388 #endif
10389                 do_simplify(state, ins);
10390 #if DEBUG_SIMPLIFY_HIRES
10391                 if (state->functions_joined && (do_simplify != simplify_noop)) {
10392                         /* High resolution debugging mode */
10393                         fprintf(state->dbgout, "simplified: ");
10394                         display_triple(state->dbgout, ins);
10395                 }
10396 #endif
10397 }
10398 static void simplify(struct compile_state *state, struct triple *ins)
10399 {
10400         int op;
10401         simplify_t do_simplify;
10402         if (ins == &unknown_triple) {
10403                 internal_error(state, ins, "simplifying the unknown triple?");
10404         }
10405         do {
10406                 op = ins->op;
10407                 do_simplify = 0;
10408                 if ((op < 0) || (op > sizeof(table_simplify)/sizeof(table_simplify[0]))) {
10409                         do_simplify = 0;
10410                 }
10411                 else {
10412                         do_simplify = table_simplify[op].func;
10413                 }
10414                 if (do_simplify && 
10415                         !(state->compiler->flags & table_simplify[op].flag)) {
10416                         do_simplify = simplify_noop;
10417                 }
10418                 if (do_simplify && (ins->id & TRIPLE_FLAG_VOLATILE)) {
10419                         do_simplify = simplify_noop;
10420                 }
10421         
10422                 if (!do_simplify) {
10423                         internal_error(state, ins, "cannot simplify op: %d %s",
10424                                 op, tops(op));
10425                         return;
10426                 }
10427                 debug_simplify(state, do_simplify, ins);
10428         } while(ins->op != op);
10429 }
10430
10431 static void rebuild_ssa_form(struct compile_state *state);
10432
10433 static void simplify_all(struct compile_state *state)
10434 {
10435         struct triple *ins, *first;
10436         if (!(state->compiler->flags & COMPILER_SIMPLIFY)) {
10437                 return;
10438         }
10439         first = state->first;
10440         ins = first->prev;
10441         do {
10442                 simplify(state, ins);
10443                 ins = ins->prev;
10444         } while(ins != first->prev);
10445         ins = first;
10446         do {
10447                 simplify(state, ins);
10448                 ins = ins->next;
10449         }while(ins != first);
10450         rebuild_ssa_form(state);
10451
10452         print_blocks(state, __func__, state->dbgout);
10453 }
10454
10455 /*
10456  * Builtins....
10457  * ============================
10458  */
10459
10460 static void register_builtin_function(struct compile_state *state,
10461         const char *name, int op, struct type *rtype, ...)
10462 {
10463         struct type *ftype, *atype, *ctype, *crtype, *param, **next;
10464         struct triple *def, *arg, *result, *work, *last, *first, *retvar, *ret;
10465         struct hash_entry *ident;
10466         struct file_state file;
10467         int parameters;
10468         int name_len;
10469         va_list args;
10470         int i;
10471
10472         /* Dummy file state to get debug handling right */
10473         memset(&file, 0, sizeof(file));
10474         file.basename = "<built-in>";
10475         file.line = 1;
10476         file.report_line = 1;
10477         file.report_name = file.basename;
10478         file.prev = state->file;
10479         state->file = &file;
10480         state->function = name;
10481
10482         /* Find the Parameter count */
10483         valid_op(state, op);
10484         parameters = table_ops[op].rhs;
10485         if (parameters < 0 ) {
10486                 internal_error(state, 0, "Invalid builtin parameter count");
10487         }
10488
10489         /* Find the function type */
10490         ftype = new_type(TYPE_FUNCTION | STOR_INLINE | STOR_STATIC, rtype, 0);
10491         ftype->elements = parameters;
10492         next = &ftype->right;
10493         va_start(args, rtype);
10494         for(i = 0; i < parameters; i++) {
10495                 atype = va_arg(args, struct type *);
10496                 if (!*next) {
10497                         *next = atype;
10498                 } else {
10499                         *next = new_type(TYPE_PRODUCT, *next, atype);
10500                         next = &((*next)->right);
10501                 }
10502         }
10503         if (!*next) {
10504                 *next = &void_type;
10505         }
10506         va_end(args);
10507
10508         /* Get the initial closure type */
10509         ctype = new_type(TYPE_JOIN, &void_type, 0);
10510         ctype->elements = 1;
10511
10512         /* Get the return type */
10513         crtype = new_type(TYPE_TUPLE, new_type(TYPE_PRODUCT, ctype, rtype), 0);
10514         crtype->elements = 2;
10515
10516         /* Generate the needed triples */
10517         def = triple(state, OP_LIST, ftype, 0, 0);
10518         first = label(state);
10519         RHS(def, 0) = first;
10520         result = flatten(state, first, variable(state, crtype));
10521         retvar = flatten(state, first, variable(state, &void_ptr_type));
10522         ret = triple(state, OP_RET, &void_type, read_expr(state, retvar), 0);
10523
10524         /* Now string them together */
10525         param = ftype->right;
10526         for(i = 0; i < parameters; i++) {
10527                 if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
10528                         atype = param->left;
10529                 } else {
10530                         atype = param;
10531                 }
10532                 arg = flatten(state, first, variable(state, atype));
10533                 param = param->right;
10534         }
10535         work = new_triple(state, op, rtype, -1, parameters);
10536         generate_lhs_pieces(state, work);
10537         for(i = 0; i < parameters; i++) {
10538                 RHS(work, i) = read_expr(state, farg(state, def, i));
10539         }
10540         if ((rtype->type & TYPE_MASK) != TYPE_VOID) {
10541                 work = write_expr(state, deref_index(state, result, 1), work);
10542         }
10543         work = flatten(state, first, work);
10544         last = flatten(state, first, label(state));
10545         ret  = flatten(state, first, ret);
10546         name_len = strlen(name);
10547         ident = lookup(state, name, name_len);
10548         ftype->type_ident = ident;
10549         symbol(state, ident, &ident->sym_ident, def, ftype);
10550         
10551         state->file = file.prev;
10552         state->function = 0;
10553         state->main_function = 0;
10554
10555         if (!state->functions) {
10556                 state->functions = def;
10557         } else {
10558                 insert_triple(state, state->functions, def);
10559         }
10560         if (state->compiler->debug & DEBUG_INLINE) {
10561                 FILE *fp = state->dbgout;
10562                 fprintf(fp, "\n");
10563                 loc(fp, state, 0);
10564                 fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
10565                 display_func(state, fp, def);
10566                 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
10567         }
10568 }
10569
10570 static struct type *partial_struct(struct compile_state *state,
10571         const char *field_name, struct type *type, struct type *rest)
10572 {
10573         struct hash_entry *field_ident;
10574         struct type *result;
10575         int field_name_len;
10576
10577         field_name_len = strlen(field_name);
10578         field_ident = lookup(state, field_name, field_name_len);
10579
10580         result = clone_type(0, type);
10581         result->field_ident = field_ident;
10582
10583         if (rest) {
10584                 result = new_type(TYPE_PRODUCT, result, rest);
10585         }
10586         return result;
10587 }
10588
10589 static struct type *register_builtin_type(struct compile_state *state,
10590         const char *name, struct type *type)
10591 {
10592         struct hash_entry *ident;
10593         int name_len;
10594
10595         name_len = strlen(name);
10596         ident = lookup(state, name, name_len);
10597         
10598         if ((type->type & TYPE_MASK) == TYPE_PRODUCT) {
10599                 ulong_t elements = 0;
10600                 struct type *field;
10601                 type = new_type(TYPE_STRUCT, type, 0);
10602                 field = type->left;
10603                 while((field->type & TYPE_MASK) == TYPE_PRODUCT) {
10604                         elements++;
10605                         field = field->right;
10606                 }
10607                 elements++;
10608                 symbol(state, ident, &ident->sym_tag, 0, type);
10609                 type->type_ident = ident;
10610                 type->elements = elements;
10611         }
10612         symbol(state, ident, &ident->sym_ident, 0, type);
10613         ident->tok = TOK_TYPE_NAME;
10614         return type;
10615 }
10616
10617
10618 static void register_builtins(struct compile_state *state)
10619 {
10620         struct type *div_type, *ldiv_type;
10621         struct type *udiv_type, *uldiv_type;
10622         struct type *msr_type;
10623
10624         div_type = register_builtin_type(state, "__builtin_div_t",
10625                 partial_struct(state, "quot", &int_type,
10626                 partial_struct(state, "rem",  &int_type, 0)));
10627         ldiv_type = register_builtin_type(state, "__builtin_ldiv_t",
10628                 partial_struct(state, "quot", &long_type,
10629                 partial_struct(state, "rem",  &long_type, 0)));
10630         udiv_type = register_builtin_type(state, "__builtin_udiv_t",
10631                 partial_struct(state, "quot", &uint_type,
10632                 partial_struct(state, "rem",  &uint_type, 0)));
10633         uldiv_type = register_builtin_type(state, "__builtin_uldiv_t",
10634                 partial_struct(state, "quot", &ulong_type,
10635                 partial_struct(state, "rem",  &ulong_type, 0)));
10636
10637         register_builtin_function(state, "__builtin_div",   OP_SDIVT, div_type,
10638                 &int_type, &int_type);
10639         register_builtin_function(state, "__builtin_ldiv",  OP_SDIVT, ldiv_type,
10640                 &long_type, &long_type);
10641         register_builtin_function(state, "__builtin_udiv",  OP_UDIVT, udiv_type,
10642                 &uint_type, &uint_type);
10643         register_builtin_function(state, "__builtin_uldiv", OP_UDIVT, uldiv_type,
10644                 &ulong_type, &ulong_type);
10645
10646         register_builtin_function(state, "__builtin_inb", OP_INB, &uchar_type, 
10647                 &ushort_type);
10648         register_builtin_function(state, "__builtin_inw", OP_INW, &ushort_type,
10649                 &ushort_type);
10650         register_builtin_function(state, "__builtin_inl", OP_INL, &uint_type,   
10651                 &ushort_type);
10652
10653         register_builtin_function(state, "__builtin_outb", OP_OUTB, &void_type, 
10654                 &uchar_type, &ushort_type);
10655         register_builtin_function(state, "__builtin_outw", OP_OUTW, &void_type, 
10656                 &ushort_type, &ushort_type);
10657         register_builtin_function(state, "__builtin_outl", OP_OUTL, &void_type, 
10658                 &uint_type, &ushort_type);
10659         
10660         register_builtin_function(state, "__builtin_bsf", OP_BSF, &int_type, 
10661                 &int_type);
10662         register_builtin_function(state, "__builtin_bsr", OP_BSR, &int_type, 
10663                 &int_type);
10664
10665         msr_type = register_builtin_type(state, "__builtin_msr_t",
10666                 partial_struct(state, "lo", &ulong_type,
10667                 partial_struct(state, "hi", &ulong_type, 0)));
10668
10669         register_builtin_function(state, "__builtin_rdmsr", OP_RDMSR, msr_type,
10670                 &ulong_type);
10671         register_builtin_function(state, "__builtin_wrmsr", OP_WRMSR, &void_type,
10672                 &ulong_type, &ulong_type, &ulong_type);
10673         
10674         register_builtin_function(state, "__builtin_hlt", OP_HLT, &void_type, 
10675                 &void_type);
10676 }
10677
10678 static struct type *declarator(
10679         struct compile_state *state, struct type *type, 
10680         struct hash_entry **ident, int need_ident);
10681 static void decl(struct compile_state *state, struct triple *first);
10682 static struct type *specifier_qualifier_list(struct compile_state *state);
10683 #if DEBUG_ROMCC_WARNING
10684 static int isdecl_specifier(int tok);
10685 #endif
10686 static struct type *decl_specifiers(struct compile_state *state);
10687 static int istype(int tok);
10688 static struct triple *expr(struct compile_state *state);
10689 static struct triple *assignment_expr(struct compile_state *state);
10690 static struct type *type_name(struct compile_state *state);
10691 static void statement(struct compile_state *state, struct triple *first);
10692
10693 static struct triple *call_expr(
10694         struct compile_state *state, struct triple *func)
10695 {
10696         struct triple *def;
10697         struct type *param, *type;
10698         ulong_t pvals, index;
10699
10700         if ((func->type->type & TYPE_MASK) != TYPE_FUNCTION) {
10701                 error(state, 0, "Called object is not a function");
10702         }
10703         if (func->op != OP_LIST) {
10704                 internal_error(state, 0, "improper function");
10705         }
10706         eat(state, TOK_LPAREN);
10707         /* Find the return type without any specifiers */
10708         type = clone_type(0, func->type->left);
10709         /* Count the number of rhs entries for OP_FCALL */
10710         param = func->type->right;
10711         pvals = 0;
10712         while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
10713                 pvals++;
10714                 param = param->right;
10715         }
10716         if ((param->type & TYPE_MASK) != TYPE_VOID) {
10717                 pvals++;
10718         }
10719         def = new_triple(state, OP_FCALL, type, -1, pvals);
10720         MISC(def, 0) = func;
10721
10722         param = func->type->right;
10723         for(index = 0; index < pvals; index++) {
10724                 struct triple *val;
10725                 struct type *arg_type;
10726                 val = read_expr(state, assignment_expr(state));
10727                 arg_type = param;
10728                 if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
10729                         arg_type = param->left;
10730                 }
10731                 write_compatible(state, arg_type, val->type);
10732                 RHS(def, index) = val;
10733                 if (index != (pvals - 1)) {
10734                         eat(state, TOK_COMMA);
10735                         param = param->right;
10736                 }
10737         }
10738         eat(state, TOK_RPAREN);
10739         return def;
10740 }
10741
10742
10743 static struct triple *character_constant(struct compile_state *state)
10744 {
10745         struct triple *def;
10746         struct token *tk;
10747         const signed char *str, *end;
10748         int c;
10749         int str_len;
10750         tk = eat(state, TOK_LIT_CHAR);
10751         str = (signed char *)tk->val.str + 1;
10752         str_len = tk->str_len - 2;
10753         if (str_len <= 0) {
10754                 error(state, 0, "empty character constant");
10755         }
10756         end = str + str_len;
10757         c = char_value(state, &str, end);
10758         if (str != end) {
10759                 error(state, 0, "multibyte character constant not supported");
10760         }
10761         def = int_const(state, &char_type, (ulong_t)((long_t)c));
10762         return def;
10763 }
10764
10765 static struct triple *string_constant(struct compile_state *state)
10766 {
10767         struct triple *def;
10768         struct token *tk;
10769         struct type *type;
10770         const signed char *str, *end;
10771         signed char *buf, *ptr;
10772         int str_len;
10773
10774         buf = 0;
10775         type = new_type(TYPE_ARRAY, &char_type, 0);
10776         type->elements = 0;
10777         /* The while loop handles string concatenation */
10778         do {
10779                 tk = eat(state, TOK_LIT_STRING);
10780                 str = (signed char *)tk->val.str + 1;
10781                 str_len = tk->str_len - 2;
10782                 if (str_len < 0) {
10783                         error(state, 0, "negative string constant length");
10784                 }
10785                 end = str + str_len;
10786                 ptr = buf;
10787                 buf = xmalloc(type->elements + str_len + 1, "string_constant");
10788                 memcpy(buf, ptr, type->elements);
10789                 ptr = buf + type->elements;
10790                 do {
10791                         *ptr++ = char_value(state, &str, end);
10792                 } while(str < end);
10793                 type->elements = ptr - buf;
10794         } while(peek(state) == TOK_LIT_STRING);
10795         *ptr = '\0';
10796         type->elements += 1;
10797         def = triple(state, OP_BLOBCONST, type, 0, 0);
10798         def->u.blob = buf;
10799
10800         return def;
10801 }
10802
10803
10804 static struct triple *integer_constant(struct compile_state *state)
10805 {
10806         struct triple *def;
10807         unsigned long val;
10808         struct token *tk;
10809         char *end;
10810         int u, l, decimal;
10811         struct type *type;
10812
10813         tk = eat(state, TOK_LIT_INT);
10814         errno = 0;
10815         decimal = (tk->val.str[0] != '0');
10816         val = strtoul(tk->val.str, &end, 0);
10817         if ((val > ULONG_T_MAX) || ((val == ULONG_MAX) && (errno == ERANGE))) {
10818                 error(state, 0, "Integer constant to large");
10819         }
10820         u = l = 0;
10821         if ((*end == 'u') || (*end == 'U')) {
10822                 u = 1;
10823                         end++;
10824         }
10825         if ((*end == 'l') || (*end == 'L')) {
10826                 l = 1;
10827                 end++;
10828         }
10829         if ((*end == 'u') || (*end == 'U')) {
10830                 u = 1;
10831                 end++;
10832         }
10833         if (*end) {
10834                 error(state, 0, "Junk at end of integer constant");
10835         }
10836         if (u && l)  {
10837                 type = &ulong_type;
10838         }
10839         else if (l) {
10840                 type = &long_type;
10841                 if (!decimal && (val > LONG_T_MAX)) {
10842                         type = &ulong_type;
10843                 }
10844         }
10845         else if (u) {
10846                 type = &uint_type;
10847                 if (val > UINT_T_MAX) {
10848                         type = &ulong_type;
10849                 }
10850         }
10851         else {
10852                 type = &int_type;
10853                 if (!decimal && (val > INT_T_MAX) && (val <= UINT_T_MAX)) {
10854                         type = &uint_type;
10855                 }
10856                 else if (!decimal && (val > LONG_T_MAX)) {
10857                         type = &ulong_type;
10858                 }
10859                 else if (val > INT_T_MAX) {
10860                         type = &long_type;
10861                 }
10862         }
10863         def = int_const(state, type, val);
10864         return def;
10865 }
10866
10867 static struct triple *primary_expr(struct compile_state *state)
10868 {
10869         struct triple *def;
10870         int tok;
10871         tok = peek(state);
10872         switch(tok) {
10873         case TOK_IDENT:
10874         {
10875                 struct hash_entry *ident;
10876                 /* Here ident is either:
10877                  * a varable name
10878                  * a function name
10879                  */
10880                 ident = eat(state, TOK_IDENT)->ident;
10881                 if (!ident->sym_ident) {
10882                         error(state, 0, "%s undeclared", ident->name);
10883                 }
10884                 def = ident->sym_ident->def;
10885                 break;
10886         }
10887         case TOK_ENUM_CONST:
10888         {
10889                 struct hash_entry *ident;
10890                 /* Here ident is an enumeration constant */
10891                 ident = eat(state, TOK_ENUM_CONST)->ident;
10892                 if (!ident->sym_ident) {
10893                         error(state, 0, "%s undeclared", ident->name);
10894                 }
10895                 def = ident->sym_ident->def;
10896                 break;
10897         }
10898         case TOK_MIDENT:
10899         {
10900                 struct hash_entry *ident;
10901                 ident = eat(state, TOK_MIDENT)->ident;
10902                 warning(state, 0, "Replacing undefined macro: %s with 0",
10903                         ident->name);
10904                 def = int_const(state, &int_type, 0);
10905                 break;
10906         }
10907         case TOK_LPAREN:
10908                 eat(state, TOK_LPAREN);
10909                 def = expr(state);
10910                 eat(state, TOK_RPAREN);
10911                 break;
10912         case TOK_LIT_INT:
10913                 def = integer_constant(state);
10914                 break;
10915         case TOK_LIT_FLOAT:
10916                 eat(state, TOK_LIT_FLOAT);
10917                 error(state, 0, "Floating point constants not supported");
10918                 def = 0;
10919                 FINISHME();
10920                 break;
10921         case TOK_LIT_CHAR:
10922                 def = character_constant(state);
10923                 break;
10924         case TOK_LIT_STRING:
10925                 def = string_constant(state);
10926                 break;
10927         default:
10928                 def = 0;
10929                 error(state, 0, "Unexpected token: %s\n", tokens[tok]);
10930         }
10931         return def;
10932 }
10933
10934 static struct triple *postfix_expr(struct compile_state *state)
10935 {
10936         struct triple *def;
10937         int postfix;
10938         def = primary_expr(state);
10939         do {
10940                 struct triple *left;
10941                 int tok;
10942                 postfix = 1;
10943                 left = def;
10944                 switch((tok = peek(state))) {
10945                 case TOK_LBRACKET:
10946                         eat(state, TOK_LBRACKET);
10947                         def = mk_subscript_expr(state, left, expr(state));
10948                         eat(state, TOK_RBRACKET);
10949                         break;
10950                 case TOK_LPAREN:
10951                         def = call_expr(state, def);
10952                         break;
10953                 case TOK_DOT:
10954                 {
10955                         struct hash_entry *field;
10956                         eat(state, TOK_DOT);
10957                         field = eat(state, TOK_IDENT)->ident;
10958                         def = deref_field(state, def, field);
10959                         break;
10960                 }
10961                 case TOK_ARROW:
10962                 {
10963                         struct hash_entry *field;
10964                         eat(state, TOK_ARROW);
10965                         field = eat(state, TOK_IDENT)->ident;
10966                         def = mk_deref_expr(state, read_expr(state, def));
10967                         def = deref_field(state, def, field);
10968                         break;
10969                 }
10970                 case TOK_PLUSPLUS:
10971                         eat(state, TOK_PLUSPLUS);
10972                         def = mk_post_inc_expr(state, left);
10973                         break;
10974                 case TOK_MINUSMINUS:
10975                         eat(state, TOK_MINUSMINUS);
10976                         def = mk_post_dec_expr(state, left);
10977                         break;
10978                 default:
10979                         postfix = 0;
10980                         break;
10981                 }
10982         } while(postfix);
10983         return def;
10984 }
10985
10986 static struct triple *cast_expr(struct compile_state *state);
10987
10988 static struct triple *unary_expr(struct compile_state *state)
10989 {
10990         struct triple *def, *right;
10991         int tok;
10992         switch((tok = peek(state))) {
10993         case TOK_PLUSPLUS:
10994                 eat(state, TOK_PLUSPLUS);
10995                 def = mk_pre_inc_expr(state, unary_expr(state));
10996                 break;
10997         case TOK_MINUSMINUS:
10998                 eat(state, TOK_MINUSMINUS);
10999                 def = mk_pre_dec_expr(state, unary_expr(state));
11000                 break;
11001         case TOK_AND:
11002                 eat(state, TOK_AND);
11003                 def = mk_addr_expr(state, cast_expr(state), 0);
11004                 break;
11005         case TOK_STAR:
11006                 eat(state, TOK_STAR);
11007                 def = mk_deref_expr(state, read_expr(state, cast_expr(state)));
11008                 break;
11009         case TOK_PLUS:
11010                 eat(state, TOK_PLUS);
11011                 right = read_expr(state, cast_expr(state));
11012                 arithmetic(state, right);
11013                 def = integral_promotion(state, right);
11014                 break;
11015         case TOK_MINUS:
11016                 eat(state, TOK_MINUS);
11017                 right = read_expr(state, cast_expr(state));
11018                 arithmetic(state, right);
11019                 def = integral_promotion(state, right);
11020                 def = triple(state, OP_NEG, def->type, def, 0);
11021                 break;
11022         case TOK_TILDE:
11023                 eat(state, TOK_TILDE);
11024                 right = read_expr(state, cast_expr(state));
11025                 integral(state, right);
11026                 def = integral_promotion(state, right);
11027                 def = triple(state, OP_INVERT, def->type, def, 0);
11028                 break;
11029         case TOK_BANG:
11030                 eat(state, TOK_BANG);
11031                 right = read_expr(state, cast_expr(state));
11032                 bool(state, right);
11033                 def = lfalse_expr(state, right);
11034                 break;
11035         case TOK_SIZEOF:
11036         {
11037                 struct type *type;
11038                 int tok1, tok2;
11039                 eat(state, TOK_SIZEOF);
11040                 tok1 = peek(state);
11041                 tok2 = peek2(state);
11042                 if ((tok1 == TOK_LPAREN) && istype(tok2)) {
11043                         eat(state, TOK_LPAREN);
11044                         type = type_name(state);
11045                         eat(state, TOK_RPAREN);
11046                 }
11047                 else {
11048                         struct triple *expr;
11049                         expr = unary_expr(state);
11050                         type = expr->type;
11051                         release_expr(state, expr);
11052                 }
11053                 def = int_const(state, &ulong_type, size_of_in_bytes(state, type));
11054                 break;
11055         }
11056         case TOK_ALIGNOF:
11057         {
11058                 struct type *type;
11059                 int tok1, tok2;
11060                 eat(state, TOK_ALIGNOF);
11061                 tok1 = peek(state);
11062                 tok2 = peek2(state);
11063                 if ((tok1 == TOK_LPAREN) && istype(tok2)) {
11064                         eat(state, TOK_LPAREN);
11065                         type = type_name(state);
11066                         eat(state, TOK_RPAREN);
11067                 }
11068                 else {
11069                         struct triple *expr;
11070                         expr = unary_expr(state);
11071                         type = expr->type;
11072                         release_expr(state, expr);
11073                 }
11074                 def = int_const(state, &ulong_type, align_of_in_bytes(state, type));
11075                 break;
11076         }
11077         case TOK_MDEFINED:
11078         {
11079                 /* We only come here if we are called from the preprocessor */
11080                 struct hash_entry *ident;
11081                 int parens;
11082                 eat(state, TOK_MDEFINED);
11083                 parens = 0;
11084                 if (pp_peek(state) == TOK_LPAREN) {
11085                         pp_eat(state, TOK_LPAREN);
11086                         parens = 1;
11087                 }
11088                 ident = pp_eat(state, TOK_MIDENT)->ident;
11089                 if (parens) {
11090                         eat(state, TOK_RPAREN);
11091                 }
11092                 def = int_const(state, &int_type, ident->sym_define != 0);
11093                 break;
11094         }
11095         default:
11096                 def = postfix_expr(state);
11097                 break;
11098         }
11099         return def;
11100 }
11101
11102 static struct triple *cast_expr(struct compile_state *state)
11103 {
11104         struct triple *def;
11105         int tok1, tok2;
11106         tok1 = peek(state);
11107         tok2 = peek2(state);
11108         if ((tok1 == TOK_LPAREN) && istype(tok2)) {
11109                 struct type *type;
11110                 eat(state, TOK_LPAREN);
11111                 type = type_name(state);
11112                 eat(state, TOK_RPAREN);
11113                 def = mk_cast_expr(state, type, cast_expr(state));
11114         }
11115         else {
11116                 def = unary_expr(state);
11117         }
11118         return def;
11119 }
11120
11121 static struct triple *mult_expr(struct compile_state *state)
11122 {
11123         struct triple *def;
11124         int done;
11125         def = cast_expr(state);
11126         do {
11127                 struct triple *left, *right;
11128                 struct type *result_type;
11129                 int tok, op, sign;
11130                 done = 0;
11131                 tok = peek(state);
11132                 switch(tok) {
11133                 case TOK_STAR:
11134                 case TOK_DIV:
11135                 case TOK_MOD:
11136                         left = read_expr(state, def);
11137                         arithmetic(state, left);
11138
11139                         eat(state, tok);
11140
11141                         right = read_expr(state, cast_expr(state));
11142                         arithmetic(state, right);
11143
11144                         result_type = arithmetic_result(state, left, right);
11145                         sign = is_signed(result_type);
11146                         op = -1;
11147                         switch(tok) {
11148                         case TOK_STAR: op = sign? OP_SMUL : OP_UMUL; break;
11149                         case TOK_DIV:  op = sign? OP_SDIV : OP_UDIV; break;
11150                         case TOK_MOD:  op = sign? OP_SMOD : OP_UMOD; break;
11151                         }
11152                         def = triple(state, op, result_type, left, right);
11153                         break;
11154                 default:
11155                         done = 1;
11156                         break;
11157                 }
11158         } while(!done);
11159         return def;
11160 }
11161
11162 static struct triple *add_expr(struct compile_state *state)
11163 {
11164         struct triple *def;
11165         int done;
11166         def = mult_expr(state);
11167         do {
11168                 done = 0;
11169                 switch( peek(state)) {
11170                 case TOK_PLUS:
11171                         eat(state, TOK_PLUS);
11172                         def = mk_add_expr(state, def, mult_expr(state));
11173                         break;
11174                 case TOK_MINUS:
11175                         eat(state, TOK_MINUS);
11176                         def = mk_sub_expr(state, def, mult_expr(state));
11177                         break;
11178                 default:
11179                         done = 1;
11180                         break;
11181                 }
11182         } while(!done);
11183         return def;
11184 }
11185
11186 static struct triple *shift_expr(struct compile_state *state)
11187 {
11188         struct triple *def;
11189         int done;
11190         def = add_expr(state);
11191         do {
11192                 struct triple *left, *right;
11193                 int tok, op;
11194                 done = 0;
11195                 switch((tok = peek(state))) {
11196                 case TOK_SL:
11197                 case TOK_SR:
11198                         left = read_expr(state, def);
11199                         integral(state, left);
11200                         left = integral_promotion(state, left);
11201
11202                         eat(state, tok);
11203
11204                         right = read_expr(state, add_expr(state));
11205                         integral(state, right);
11206                         right = integral_promotion(state, right);
11207                         
11208                         op = (tok == TOK_SL)? OP_SL : 
11209                                 is_signed(left->type)? OP_SSR: OP_USR;
11210
11211                         def = triple(state, op, left->type, left, right);
11212                         break;
11213                 default:
11214                         done = 1;
11215                         break;
11216                 }
11217         } while(!done);
11218         return def;
11219 }
11220
11221 static struct triple *relational_expr(struct compile_state *state)
11222 {
11223 #if DEBUG_ROMCC_WARNINGS
11224 #warning "Extend relational exprs to work on more than arithmetic types"
11225 #endif
11226         struct triple *def;
11227         int done;
11228         def = shift_expr(state);
11229         do {
11230                 struct triple *left, *right;
11231                 struct type *arg_type;
11232                 int tok, op, sign;
11233                 done = 0;
11234                 switch((tok = peek(state))) {
11235                 case TOK_LESS:
11236                 case TOK_MORE:
11237                 case TOK_LESSEQ:
11238                 case TOK_MOREEQ:
11239                         left = read_expr(state, def);
11240                         arithmetic(state, left);
11241
11242                         eat(state, tok);
11243
11244                         right = read_expr(state, shift_expr(state));
11245                         arithmetic(state, right);
11246
11247                         arg_type = arithmetic_result(state, left, right);
11248                         sign = is_signed(arg_type);
11249                         op = -1;
11250                         switch(tok) {
11251                         case TOK_LESS:   op = sign? OP_SLESS : OP_ULESS; break;
11252                         case TOK_MORE:   op = sign? OP_SMORE : OP_UMORE; break;
11253                         case TOK_LESSEQ: op = sign? OP_SLESSEQ : OP_ULESSEQ; break;
11254                         case TOK_MOREEQ: op = sign? OP_SMOREEQ : OP_UMOREEQ; break;
11255                         }
11256                         def = triple(state, op, &int_type, left, right);
11257                         break;
11258                 default:
11259                         done = 1;
11260                         break;
11261                 }
11262         } while(!done);
11263         return def;
11264 }
11265
11266 static struct triple *equality_expr(struct compile_state *state)
11267 {
11268 #if DEBUG_ROMCC_WARNINGS
11269 #warning "Extend equality exprs to work on more than arithmetic types"
11270 #endif
11271         struct triple *def;
11272         int done;
11273         def = relational_expr(state);
11274         do {
11275                 struct triple *left, *right;
11276                 int tok, op;
11277                 done = 0;
11278                 switch((tok = peek(state))) {
11279                 case TOK_EQEQ:
11280                 case TOK_NOTEQ:
11281                         left = read_expr(state, def);
11282                         arithmetic(state, left);
11283                         eat(state, tok);
11284                         right = read_expr(state, relational_expr(state));
11285                         arithmetic(state, right);
11286                         op = (tok == TOK_EQEQ) ? OP_EQ: OP_NOTEQ;
11287                         def = triple(state, op, &int_type, left, right);
11288                         break;
11289                 default:
11290                         done = 1;
11291                         break;
11292                 }
11293         } while(!done);
11294         return def;
11295 }
11296
11297 static struct triple *and_expr(struct compile_state *state)
11298 {
11299         struct triple *def;
11300         def = equality_expr(state);
11301         while(peek(state) == TOK_AND) {
11302                 struct triple *left, *right;
11303                 struct type *result_type;
11304                 left = read_expr(state, def);
11305                 integral(state, left);
11306                 eat(state, TOK_AND);
11307                 right = read_expr(state, equality_expr(state));
11308                 integral(state, right);
11309                 result_type = arithmetic_result(state, left, right);
11310                 def = triple(state, OP_AND, result_type, left, right);
11311         }
11312         return def;
11313 }
11314
11315 static struct triple *xor_expr(struct compile_state *state)
11316 {
11317         struct triple *def;
11318         def = and_expr(state);
11319         while(peek(state) == TOK_XOR) {
11320                 struct triple *left, *right;
11321                 struct type *result_type;
11322                 left = read_expr(state, def);
11323                 integral(state, left);
11324                 eat(state, TOK_XOR);
11325                 right = read_expr(state, and_expr(state));
11326                 integral(state, right);
11327                 result_type = arithmetic_result(state, left, right);
11328                 def = triple(state, OP_XOR, result_type, left, right);
11329         }
11330         return def;
11331 }
11332
11333 static struct triple *or_expr(struct compile_state *state)
11334 {
11335         struct triple *def;
11336         def = xor_expr(state);
11337         while(peek(state) == TOK_OR) {
11338                 struct triple *left, *right;
11339                 struct type *result_type;
11340                 left = read_expr(state, def);
11341                 integral(state, left);
11342                 eat(state, TOK_OR);
11343                 right = read_expr(state, xor_expr(state));
11344                 integral(state, right);
11345                 result_type = arithmetic_result(state, left, right);
11346                 def = triple(state, OP_OR, result_type, left, right);
11347         }
11348         return def;
11349 }
11350
11351 static struct triple *land_expr(struct compile_state *state)
11352 {
11353         struct triple *def;
11354         def = or_expr(state);
11355         while(peek(state) == TOK_LOGAND) {
11356                 struct triple *left, *right;
11357                 left = read_expr(state, def);
11358                 bool(state, left);
11359                 eat(state, TOK_LOGAND);
11360                 right = read_expr(state, or_expr(state));
11361                 bool(state, right);
11362
11363                 def = mkland_expr(state,
11364                         ltrue_expr(state, left),
11365                         ltrue_expr(state, right));
11366         }
11367         return def;
11368 }
11369
11370 static struct triple *lor_expr(struct compile_state *state)
11371 {
11372         struct triple *def;
11373         def = land_expr(state);
11374         while(peek(state) == TOK_LOGOR) {
11375                 struct triple *left, *right;
11376                 left = read_expr(state, def);
11377                 bool(state, left);
11378                 eat(state, TOK_LOGOR);
11379                 right = read_expr(state, land_expr(state));
11380                 bool(state, right);
11381
11382                 def = mklor_expr(state, 
11383                         ltrue_expr(state, left),
11384                         ltrue_expr(state, right));
11385         }
11386         return def;
11387 }
11388
11389 static struct triple *conditional_expr(struct compile_state *state)
11390 {
11391         struct triple *def;
11392         def = lor_expr(state);
11393         if (peek(state) == TOK_QUEST) {
11394                 struct triple *test, *left, *right;
11395                 bool(state, def);
11396                 test = ltrue_expr(state, read_expr(state, def));
11397                 eat(state, TOK_QUEST);
11398                 left = read_expr(state, expr(state));
11399                 eat(state, TOK_COLON);
11400                 right = read_expr(state, conditional_expr(state));
11401
11402                 def = mkcond_expr(state, test, left, right);
11403         }
11404         return def;
11405 }
11406
11407 struct cv_triple {
11408         struct triple *val;
11409         int id;
11410 };
11411
11412 static void set_cv(struct compile_state *state, struct cv_triple *cv,
11413         struct triple *dest, struct triple *val)
11414 {
11415         if (cv[dest->id].val) {
11416                 free_triple(state, cv[dest->id].val);
11417         }
11418         cv[dest->id].val = val;
11419 }
11420 static struct triple *get_cv(struct compile_state *state, struct cv_triple *cv,
11421         struct triple *src)
11422 {
11423         return cv[src->id].val;
11424 }
11425
11426 static struct triple *eval_const_expr(
11427         struct compile_state *state, struct triple *expr)
11428 {
11429         struct triple *def;
11430         if (is_const(expr)) {
11431                 def = expr;
11432         }
11433         else {
11434                 /* If we don't start out as a constant simplify into one */
11435                 struct triple *head, *ptr;
11436                 struct cv_triple *cv;
11437                 int i, count;
11438                 head = label(state); /* dummy initial triple */
11439                 flatten(state, head, expr);
11440                 count = 1;
11441                 for(ptr = head->next; ptr != head; ptr = ptr->next) {
11442                         count++;
11443                 }
11444                 cv = xcmalloc(sizeof(struct cv_triple)*count, "const value vector");
11445                 i = 1;
11446                 for(ptr = head->next; ptr != head; ptr = ptr->next) {
11447                         cv[i].val = 0;
11448                         cv[i].id  = ptr->id;
11449                         ptr->id   = i;
11450                         i++;
11451                 }
11452                 ptr = head->next;
11453                 do {
11454                         valid_ins(state, ptr);
11455                         if ((ptr->op == OP_PHI) || (ptr->op == OP_LIST)) {
11456                                 internal_error(state, ptr, 
11457                                         "unexpected %s in constant expression",
11458                                         tops(ptr->op));
11459                         }
11460                         else if (ptr->op == OP_LIST) {
11461                         }
11462                         else if (triple_is_structural(state, ptr)) {
11463                                 ptr = ptr->next;
11464                         }
11465                         else if (triple_is_ubranch(state, ptr)) {
11466                                 ptr = TARG(ptr, 0);
11467                         }
11468                         else if (triple_is_cbranch(state, ptr)) {
11469                                 struct triple *cond_val;
11470                                 cond_val = get_cv(state, cv, RHS(ptr, 0));
11471                                 if (!cond_val || !is_const(cond_val) || 
11472                                         (cond_val->op != OP_INTCONST)) 
11473                                 {
11474                                         internal_error(state, ptr, "bad branch condition");
11475                                 }
11476                                 if (cond_val->u.cval == 0) {
11477                                         ptr = ptr->next;
11478                                 } else {
11479                                         ptr = TARG(ptr, 0);
11480                                 }
11481                         }
11482                         else if (triple_is_branch(state, ptr)) {
11483                                 error(state, ptr, "bad branch type in constant expression");
11484                         }
11485                         else if (ptr->op == OP_WRITE) {
11486                                 struct triple *val;
11487                                 val = get_cv(state, cv, RHS(ptr, 0));
11488                                 
11489                                 set_cv(state, cv, MISC(ptr, 0), 
11490                                         copy_triple(state, val));
11491                                 set_cv(state, cv, ptr, 
11492                                         copy_triple(state, val));
11493                                 ptr = ptr->next;
11494                         }
11495                         else if (ptr->op == OP_READ) {
11496                                 set_cv(state, cv, ptr, 
11497                                         copy_triple(state, 
11498                                                 get_cv(state, cv, RHS(ptr, 0))));
11499                                 ptr = ptr->next;
11500                         }
11501                         else if (triple_is_pure(state, ptr, cv[ptr->id].id)) {
11502                                 struct triple *val, **rhs;
11503                                 val = copy_triple(state, ptr);
11504                                 rhs = triple_rhs(state, val, 0);
11505                                 for(; rhs; rhs = triple_rhs(state, val, rhs)) {
11506                                         if (!*rhs) {
11507                                                 internal_error(state, ptr, "Missing rhs");
11508                                         }
11509                                         *rhs = get_cv(state, cv, *rhs);
11510                                 }
11511                                 simplify(state, val);
11512                                 set_cv(state, cv, ptr, val);
11513                                 ptr = ptr->next;
11514                         }
11515                         else {
11516                                 error(state, ptr, "impure operation in constant expression");
11517                         }
11518                         
11519                 } while(ptr != head);
11520
11521                 /* Get the result value */
11522                 def = get_cv(state, cv, head->prev);
11523                 cv[head->prev->id].val = 0;
11524
11525                 /* Free the temporary values */
11526                 for(i = 0; i < count; i++) {
11527                         if (cv[i].val) {
11528                                 free_triple(state, cv[i].val);
11529                                 cv[i].val = 0;
11530                         }
11531                 }
11532                 xfree(cv);
11533                 /* Free the intermediate expressions */
11534                 while(head->next != head) {
11535                         release_triple(state, head->next);
11536                 }
11537                 free_triple(state, head);
11538         }
11539         if (!is_const(def)) {
11540                 error(state, expr, "Not a constant expression");
11541         }
11542         return def;
11543 }
11544
11545 static struct triple *constant_expr(struct compile_state *state)
11546 {
11547         return eval_const_expr(state, conditional_expr(state));
11548 }
11549
11550 static struct triple *assignment_expr(struct compile_state *state)
11551 {
11552         struct triple *def, *left, *right;
11553         int tok, op, sign;
11554         /* The C grammer in K&R shows assignment expressions
11555          * only taking unary expressions as input on their
11556          * left hand side.  But specifies the precedence of
11557          * assignemnt as the lowest operator except for comma.
11558          *
11559          * Allowing conditional expressions on the left hand side
11560          * of an assignement results in a grammar that accepts
11561          * a larger set of statements than standard C.   As long
11562          * as the subset of the grammar that is standard C behaves
11563          * correctly this should cause no problems.
11564          * 
11565          * For the extra token strings accepted by the grammar
11566          * none of them should produce a valid lvalue, so they
11567          * should not produce functioning programs.
11568          *
11569          * GCC has this bug as well, so surprises should be minimal.
11570          */
11571         def = conditional_expr(state);
11572         left = def;
11573         switch((tok = peek(state))) {
11574         case TOK_EQ:
11575                 lvalue(state, left);
11576                 eat(state, TOK_EQ);
11577                 def = write_expr(state, left, 
11578                         read_expr(state, assignment_expr(state)));
11579                 break;
11580         case TOK_TIMESEQ:
11581         case TOK_DIVEQ:
11582         case TOK_MODEQ:
11583                 lvalue(state, left);
11584                 arithmetic(state, left);
11585                 eat(state, tok);
11586                 right = read_expr(state, assignment_expr(state));
11587                 arithmetic(state, right);
11588
11589                 sign = is_signed(left->type);
11590                 op = -1;
11591                 switch(tok) {
11592                 case TOK_TIMESEQ: op = sign? OP_SMUL : OP_UMUL; break;
11593                 case TOK_DIVEQ:   op = sign? OP_SDIV : OP_UDIV; break;
11594                 case TOK_MODEQ:   op = sign? OP_SMOD : OP_UMOD; break;
11595                 }
11596                 def = write_expr(state, left,
11597                         triple(state, op, left->type, 
11598                                 read_expr(state, left), right));
11599                 break;
11600         case TOK_PLUSEQ:
11601                 lvalue(state, left);
11602                 eat(state, TOK_PLUSEQ);
11603                 def = write_expr(state, left,
11604                         mk_add_expr(state, left, assignment_expr(state)));
11605                 break;
11606         case TOK_MINUSEQ:
11607                 lvalue(state, left);
11608                 eat(state, TOK_MINUSEQ);
11609                 def = write_expr(state, left,
11610                         mk_sub_expr(state, left, assignment_expr(state)));
11611                 break;
11612         case TOK_SLEQ:
11613         case TOK_SREQ:
11614         case TOK_ANDEQ:
11615         case TOK_XOREQ:
11616         case TOK_OREQ:
11617                 lvalue(state, left);
11618                 integral(state, left);
11619                 eat(state, tok);
11620                 right = read_expr(state, assignment_expr(state));
11621                 integral(state, right);
11622                 right = integral_promotion(state, right);
11623                 sign = is_signed(left->type);
11624                 op = -1;
11625                 switch(tok) {
11626                 case TOK_SLEQ:  op = OP_SL; break;
11627                 case TOK_SREQ:  op = sign? OP_SSR: OP_USR; break;
11628                 case TOK_ANDEQ: op = OP_AND; break;
11629                 case TOK_XOREQ: op = OP_XOR; break;
11630                 case TOK_OREQ:  op = OP_OR; break;
11631                 }
11632                 def = write_expr(state, left,
11633                         triple(state, op, left->type, 
11634                                 read_expr(state, left), right));
11635                 break;
11636         }
11637         return def;
11638 }
11639
11640 static struct triple *expr(struct compile_state *state)
11641 {
11642         struct triple *def;
11643         def = assignment_expr(state);
11644         while(peek(state) == TOK_COMMA) {
11645                 eat(state, TOK_COMMA);
11646                 def = mkprog(state, def, assignment_expr(state), 0UL);
11647         }
11648         return def;
11649 }
11650
11651 static void expr_statement(struct compile_state *state, struct triple *first)
11652 {
11653         if (peek(state) != TOK_SEMI) {
11654                 /* lvalue conversions always apply except when certian operators
11655                  * are applied.  I apply the lvalue conversions here
11656                  * as I know no more operators will be applied.
11657                  */
11658                 flatten(state, first, lvalue_conversion(state, expr(state)));
11659         }
11660         eat(state, TOK_SEMI);
11661 }
11662
11663 static void if_statement(struct compile_state *state, struct triple *first)
11664 {
11665         struct triple *test, *jmp1, *jmp2, *middle, *end;
11666
11667         jmp1 = jmp2 = middle = 0;
11668         eat(state, TOK_IF);
11669         eat(state, TOK_LPAREN);
11670         test = expr(state);
11671         bool(state, test);
11672         /* Cleanup and invert the test */
11673         test = lfalse_expr(state, read_expr(state, test));
11674         eat(state, TOK_RPAREN);
11675         /* Generate the needed pieces */
11676         middle = label(state);
11677         jmp1 = branch(state, middle, test);
11678         /* Thread the pieces together */
11679         flatten(state, first, test);
11680         flatten(state, first, jmp1);
11681         flatten(state, first, label(state));
11682         statement(state, first);
11683         if (peek(state) == TOK_ELSE) {
11684                 eat(state, TOK_ELSE);
11685                 /* Generate the rest of the pieces */
11686                 end = label(state);
11687                 jmp2 = branch(state, end, 0);
11688                 /* Thread them together */
11689                 flatten(state, first, jmp2);
11690                 flatten(state, first, middle);
11691                 statement(state, first);
11692                 flatten(state, first, end);
11693         }
11694         else {
11695                 flatten(state, first, middle);
11696         }
11697 }
11698
11699 static void for_statement(struct compile_state *state, struct triple *first)
11700 {
11701         struct triple *head, *test, *tail, *jmp1, *jmp2, *end;
11702         struct triple *label1, *label2, *label3;
11703         struct hash_entry *ident;
11704
11705         eat(state, TOK_FOR);
11706         eat(state, TOK_LPAREN);
11707         head = test = tail = jmp1 = jmp2 = 0;
11708         if (peek(state) != TOK_SEMI) {
11709                 head = expr(state);
11710         } 
11711         eat(state, TOK_SEMI);
11712         if (peek(state) != TOK_SEMI) {
11713                 test = expr(state);
11714                 bool(state, test);
11715                 test = ltrue_expr(state, read_expr(state, test));
11716         }
11717         eat(state, TOK_SEMI);
11718         if (peek(state) != TOK_RPAREN) {
11719                 tail = expr(state);
11720         }
11721         eat(state, TOK_RPAREN);
11722         /* Generate the needed pieces */
11723         label1 = label(state);
11724         label2 = label(state);
11725         label3 = label(state);
11726         if (test) {
11727                 jmp1 = branch(state, label3, 0);
11728                 jmp2 = branch(state, label1, test);
11729         }
11730         else {
11731                 jmp2 = branch(state, label1, 0);
11732         }
11733         end = label(state);
11734         /* Remember where break and continue go */
11735         start_scope(state);
11736         ident = state->i_break;
11737         symbol(state, ident, &ident->sym_ident, end, end->type);
11738         ident = state->i_continue;
11739         symbol(state, ident, &ident->sym_ident, label2, label2->type);
11740         /* Now include the body */
11741         flatten(state, first, head);
11742         flatten(state, first, jmp1);
11743         flatten(state, first, label1);
11744         statement(state, first);
11745         flatten(state, first, label2);
11746         flatten(state, first, tail);
11747         flatten(state, first, label3);
11748         flatten(state, first, test);
11749         flatten(state, first, jmp2);
11750         flatten(state, first, end);
11751         /* Cleanup the break/continue scope */
11752         end_scope(state);
11753 }
11754
11755 static void while_statement(struct compile_state *state, struct triple *first)
11756 {
11757         struct triple *label1, *test, *label2, *jmp1, *jmp2, *end;
11758         struct hash_entry *ident;
11759         eat(state, TOK_WHILE);
11760         eat(state, TOK_LPAREN);
11761         test = expr(state);
11762         bool(state, test);
11763         test = ltrue_expr(state, read_expr(state, test));
11764         eat(state, TOK_RPAREN);
11765         /* Generate the needed pieces */
11766         label1 = label(state);
11767         label2 = label(state);
11768         jmp1 = branch(state, label2, 0);
11769         jmp2 = branch(state, label1, test);
11770         end = label(state);
11771         /* Remember where break and continue go */
11772         start_scope(state);
11773         ident = state->i_break;
11774         symbol(state, ident, &ident->sym_ident, end, end->type);
11775         ident = state->i_continue;
11776         symbol(state, ident, &ident->sym_ident, label2, label2->type);
11777         /* Thread them together */
11778         flatten(state, first, jmp1);
11779         flatten(state, first, label1);
11780         statement(state, first);
11781         flatten(state, first, label2);
11782         flatten(state, first, test);
11783         flatten(state, first, jmp2);
11784         flatten(state, first, end);
11785         /* Cleanup the break/continue scope */
11786         end_scope(state);
11787 }
11788
11789 static void do_statement(struct compile_state *state, struct triple *first)
11790 {
11791         struct triple *label1, *label2, *test, *end;
11792         struct hash_entry *ident;
11793         eat(state, TOK_DO);
11794         /* Generate the needed pieces */
11795         label1 = label(state);
11796         label2 = label(state);
11797         end = label(state);
11798         /* Remember where break and continue go */
11799         start_scope(state);
11800         ident = state->i_break;
11801         symbol(state, ident, &ident->sym_ident, end, end->type);
11802         ident = state->i_continue;
11803         symbol(state, ident, &ident->sym_ident, label2, label2->type);
11804         /* Now include the body */
11805         flatten(state, first, label1);
11806         statement(state, first);
11807         /* Cleanup the break/continue scope */
11808         end_scope(state);
11809         /* Eat the rest of the loop */
11810         eat(state, TOK_WHILE);
11811         eat(state, TOK_LPAREN);
11812         test = read_expr(state, expr(state));
11813         bool(state, test);
11814         eat(state, TOK_RPAREN);
11815         eat(state, TOK_SEMI);
11816         /* Thread the pieces together */
11817         test = ltrue_expr(state, test);
11818         flatten(state, first, label2);
11819         flatten(state, first, test);
11820         flatten(state, first, branch(state, label1, test));
11821         flatten(state, first, end);
11822 }
11823
11824
11825 static void return_statement(struct compile_state *state, struct triple *first)
11826 {
11827         struct triple *jmp, *mv, *dest, *var, *val;
11828         int last;
11829         eat(state, TOK_RETURN);
11830
11831 #if DEBUG_ROMCC_WARNINGS
11832 #warning "FIXME implement a more general excess branch elimination"
11833 #endif
11834         val = 0;
11835         /* If we have a return value do some more work */
11836         if (peek(state) != TOK_SEMI) {
11837                 val = read_expr(state, expr(state));
11838         }
11839         eat(state, TOK_SEMI);
11840
11841         /* See if this last statement in a function */
11842         last = ((peek(state) == TOK_RBRACE) && 
11843                 (state->scope_depth == GLOBAL_SCOPE_DEPTH +2));
11844
11845         /* Find the return variable */
11846         var = fresult(state, state->main_function);
11847
11848         /* Find the return destination */
11849         dest = state->i_return->sym_ident->def;
11850         mv = jmp = 0;
11851         /* If needed generate a jump instruction */
11852         if (!last) {
11853                 jmp = branch(state, dest, 0);
11854         }
11855         /* If needed generate an assignment instruction */
11856         if (val) {
11857                 mv = write_expr(state, deref_index(state, var, 1), val);
11858         }
11859         /* Now put the code together */
11860         if (mv) {
11861                 flatten(state, first, mv);
11862                 flatten(state, first, jmp);
11863         }
11864         else if (jmp) {
11865                 flatten(state, first, jmp);
11866         }
11867 }
11868
11869 static void break_statement(struct compile_state *state, struct triple *first)
11870 {
11871         struct triple *dest;
11872         eat(state, TOK_BREAK);
11873         eat(state, TOK_SEMI);
11874         if (!state->i_break->sym_ident) {
11875                 error(state, 0, "break statement not within loop or switch");
11876         }
11877         dest = state->i_break->sym_ident->def;
11878         flatten(state, first, branch(state, dest, 0));
11879 }
11880
11881 static void continue_statement(struct compile_state *state, struct triple *first)
11882 {
11883         struct triple *dest;
11884         eat(state, TOK_CONTINUE);
11885         eat(state, TOK_SEMI);
11886         if (!state->i_continue->sym_ident) {
11887                 error(state, 0, "continue statement outside of a loop");
11888         }
11889         dest = state->i_continue->sym_ident->def;
11890         flatten(state, first, branch(state, dest, 0));
11891 }
11892
11893 static void goto_statement(struct compile_state *state, struct triple *first)
11894 {
11895         struct hash_entry *ident;
11896         eat(state, TOK_GOTO);
11897         ident = eat(state, TOK_IDENT)->ident;
11898         if (!ident->sym_label) {
11899                 /* If this is a forward branch allocate the label now,
11900                  * it will be flattend in the appropriate location later.
11901                  */
11902                 struct triple *ins;
11903                 ins = label(state);
11904                 label_symbol(state, ident, ins, FUNCTION_SCOPE_DEPTH);
11905         }
11906         eat(state, TOK_SEMI);
11907
11908         flatten(state, first, branch(state, ident->sym_label->def, 0));
11909 }
11910
11911 static void labeled_statement(struct compile_state *state, struct triple *first)
11912 {
11913         struct triple *ins;
11914         struct hash_entry *ident;
11915
11916         ident = eat(state, TOK_IDENT)->ident;
11917         if (ident->sym_label && ident->sym_label->def) {
11918                 ins = ident->sym_label->def;
11919                 put_occurance(ins->occurance);
11920                 ins->occurance = new_occurance(state);
11921         }
11922         else {
11923                 ins = label(state);
11924                 label_symbol(state, ident, ins, FUNCTION_SCOPE_DEPTH);
11925         }
11926         if (ins->id & TRIPLE_FLAG_FLATTENED) {
11927                 error(state, 0, "label %s already defined", ident->name);
11928         }
11929         flatten(state, first, ins);
11930
11931         eat(state, TOK_COLON);
11932         statement(state, first);
11933 }
11934
11935 static void switch_statement(struct compile_state *state, struct triple *first)
11936 {
11937         struct triple *value, *top, *end, *dbranch;
11938         struct hash_entry *ident;
11939
11940         /* See if we have a valid switch statement */
11941         eat(state, TOK_SWITCH);
11942         eat(state, TOK_LPAREN);
11943         value = expr(state);
11944         integral(state, value);
11945         value = read_expr(state, value);
11946         eat(state, TOK_RPAREN);
11947         /* Generate the needed pieces */
11948         top = label(state);
11949         end = label(state);
11950         dbranch = branch(state, end, 0);
11951         /* Remember where case branches and break goes */
11952         start_scope(state);
11953         ident = state->i_switch;
11954         symbol(state, ident, &ident->sym_ident, value, value->type);
11955         ident = state->i_case;
11956         symbol(state, ident, &ident->sym_ident, top, top->type);
11957         ident = state->i_break;
11958         symbol(state, ident, &ident->sym_ident, end, end->type);
11959         ident = state->i_default;
11960         symbol(state, ident, &ident->sym_ident, dbranch, dbranch->type);
11961         /* Thread them together */
11962         flatten(state, first, value);
11963         flatten(state, first, top);
11964         flatten(state, first, dbranch);
11965         statement(state, first);
11966         flatten(state, first, end);
11967         /* Cleanup the switch scope */
11968         end_scope(state);
11969 }
11970
11971 static void case_statement(struct compile_state *state, struct triple *first)
11972 {
11973         struct triple *cvalue, *dest, *test, *jmp;
11974         struct triple *ptr, *value, *top, *dbranch;
11975
11976         /* See if w have a valid case statement */
11977         eat(state, TOK_CASE);
11978         cvalue = constant_expr(state);
11979         integral(state, cvalue);
11980         if (cvalue->op != OP_INTCONST) {
11981                 error(state, 0, "integer constant expected");
11982         }
11983         eat(state, TOK_COLON);
11984         if (!state->i_case->sym_ident) {
11985                 error(state, 0, "case statement not within a switch");
11986         }
11987
11988         /* Lookup the interesting pieces */
11989         top = state->i_case->sym_ident->def;
11990         value = state->i_switch->sym_ident->def;
11991         dbranch = state->i_default->sym_ident->def;
11992
11993         /* See if this case label has already been used */
11994         for(ptr = top; ptr != dbranch; ptr = ptr->next) {
11995                 if (ptr->op != OP_EQ) {
11996                         continue;
11997                 }
11998                 if (RHS(ptr, 1)->u.cval == cvalue->u.cval) {
11999                         error(state, 0, "duplicate case %d statement",
12000                                 cvalue->u.cval);
12001                 }
12002         }
12003         /* Generate the needed pieces */
12004         dest = label(state);
12005         test = triple(state, OP_EQ, &int_type, value, cvalue);
12006         jmp = branch(state, dest, test);
12007         /* Thread the pieces together */
12008         flatten(state, dbranch, test);
12009         flatten(state, dbranch, jmp);
12010         flatten(state, dbranch, label(state));
12011         flatten(state, first, dest);
12012         statement(state, first);
12013 }
12014
12015 static void default_statement(struct compile_state *state, struct triple *first)
12016 {
12017         struct triple *dest;
12018         struct triple *dbranch, *end;
12019
12020         /* See if we have a valid default statement */
12021         eat(state, TOK_DEFAULT);
12022         eat(state, TOK_COLON);
12023
12024         if (!state->i_case->sym_ident) {
12025                 error(state, 0, "default statement not within a switch");
12026         }
12027
12028         /* Lookup the interesting pieces */
12029         dbranch = state->i_default->sym_ident->def;
12030         end = state->i_break->sym_ident->def;
12031
12032         /* See if a default statement has already happened */
12033         if (TARG(dbranch, 0) != end) {
12034                 error(state, 0, "duplicate default statement");
12035         }
12036
12037         /* Generate the needed pieces */
12038         dest = label(state);
12039
12040         /* Blame the branch on the default statement */
12041         put_occurance(dbranch->occurance);
12042         dbranch->occurance = new_occurance(state);
12043
12044         /* Thread the pieces together */
12045         TARG(dbranch, 0) = dest;
12046         use_triple(dest, dbranch);
12047         flatten(state, first, dest);
12048         statement(state, first);
12049 }
12050
12051 static void asm_statement(struct compile_state *state, struct triple *first)
12052 {
12053         struct asm_info *info;
12054         struct {
12055                 struct triple *constraint;
12056                 struct triple *expr;
12057         } out_param[MAX_LHS], in_param[MAX_RHS], clob_param[MAX_LHS];
12058         struct triple *def, *asm_str;
12059         int out, in, clobbers, more, colons, i;
12060         int flags;
12061
12062         flags = 0;
12063         eat(state, TOK_ASM);
12064         /* For now ignore the qualifiers */
12065         switch(peek(state)) {
12066         case TOK_CONST:
12067                 eat(state, TOK_CONST);
12068                 break;
12069         case TOK_VOLATILE:
12070                 eat(state, TOK_VOLATILE);
12071                 flags |= TRIPLE_FLAG_VOLATILE;
12072                 break;
12073         }
12074         eat(state, TOK_LPAREN);
12075         asm_str = string_constant(state);
12076
12077         colons = 0;
12078         out = in = clobbers = 0;
12079         /* Outputs */
12080         if ((colons == 0) && (peek(state) == TOK_COLON)) {
12081                 eat(state, TOK_COLON);
12082                 colons++;
12083                 more = (peek(state) == TOK_LIT_STRING);
12084                 while(more) {
12085                         struct triple *var;
12086                         struct triple *constraint;
12087                         char *str;
12088                         more = 0;
12089                         if (out > MAX_LHS) {
12090                                 error(state, 0, "Maximum output count exceeded.");
12091                         }
12092                         constraint = string_constant(state);
12093                         str = constraint->u.blob;
12094                         if (str[0] != '=') {
12095                                 error(state, 0, "Output constraint does not start with =");
12096                         }
12097                         constraint->u.blob = str + 1;
12098                         eat(state, TOK_LPAREN);
12099                         var = conditional_expr(state);
12100                         eat(state, TOK_RPAREN);
12101
12102                         lvalue(state, var);
12103                         out_param[out].constraint = constraint;
12104                         out_param[out].expr       = var;
12105                         if (peek(state) == TOK_COMMA) {
12106                                 eat(state, TOK_COMMA);
12107                                 more = 1;
12108                         }
12109                         out++;
12110                 }
12111         }
12112         /* Inputs */
12113         if ((colons == 1) && (peek(state) == TOK_COLON)) {
12114                 eat(state, TOK_COLON);
12115                 colons++;
12116                 more = (peek(state) == TOK_LIT_STRING);
12117                 while(more) {
12118                         struct triple *val;
12119                         struct triple *constraint;
12120                         char *str;
12121                         more = 0;
12122                         if (in > MAX_RHS) {
12123                                 error(state, 0, "Maximum input count exceeded.");
12124                         }
12125                         constraint = string_constant(state);
12126                         str = constraint->u.blob;
12127                         if (digitp(str[0] && str[1] == '\0')) {
12128                                 int val;
12129                                 val = digval(str[0]);
12130                                 if ((val < 0) || (val >= out)) {
12131                                         error(state, 0, "Invalid input constraint %d", val);
12132                                 }
12133                         }
12134                         eat(state, TOK_LPAREN);
12135                         val = conditional_expr(state);
12136                         eat(state, TOK_RPAREN);
12137
12138                         in_param[in].constraint = constraint;
12139                         in_param[in].expr       = val;
12140                         if (peek(state) == TOK_COMMA) {
12141                                 eat(state, TOK_COMMA);
12142                                 more = 1;
12143                         }
12144                         in++;
12145                 }
12146         }
12147
12148         /* Clobber */
12149         if ((colons == 2) && (peek(state) == TOK_COLON)) {
12150                 eat(state, TOK_COLON);
12151                 colons++;
12152                 more = (peek(state) == TOK_LIT_STRING);
12153                 while(more) {
12154                         struct triple *clobber;
12155                         more = 0;
12156                         if ((clobbers + out) > MAX_LHS) {
12157                                 error(state, 0, "Maximum clobber limit exceeded.");
12158                         }
12159                         clobber = string_constant(state);
12160
12161                         clob_param[clobbers].constraint = clobber;
12162                         if (peek(state) == TOK_COMMA) {
12163                                 eat(state, TOK_COMMA);
12164                                 more = 1;
12165                         }
12166                         clobbers++;
12167                 }
12168         }
12169         eat(state, TOK_RPAREN);
12170         eat(state, TOK_SEMI);
12171
12172
12173         info = xcmalloc(sizeof(*info), "asm_info");
12174         info->str = asm_str->u.blob;
12175         free_triple(state, asm_str);
12176
12177         def = new_triple(state, OP_ASM, &void_type, clobbers + out, in);
12178         def->u.ainfo = info;
12179         def->id |= flags;
12180
12181         /* Find the register constraints */
12182         for(i = 0; i < out; i++) {
12183                 struct triple *constraint;
12184                 constraint = out_param[i].constraint;
12185                 info->tmpl.lhs[i] = arch_reg_constraint(state, 
12186                         out_param[i].expr->type, constraint->u.blob);
12187                 free_triple(state, constraint);
12188         }
12189         for(; i - out < clobbers; i++) {
12190                 struct triple *constraint;
12191                 constraint = clob_param[i - out].constraint;
12192                 info->tmpl.lhs[i] = arch_reg_clobber(state, constraint->u.blob);
12193                 free_triple(state, constraint);
12194         }
12195         for(i = 0; i < in; i++) {
12196                 struct triple *constraint;
12197                 const char *str;
12198                 constraint = in_param[i].constraint;
12199                 str = constraint->u.blob;
12200                 if (digitp(str[0]) && str[1] == '\0') {
12201                         struct reg_info cinfo;
12202                         int val;
12203                         val = digval(str[0]);
12204                         cinfo.reg = info->tmpl.lhs[val].reg;
12205                         cinfo.regcm = arch_type_to_regcm(state, in_param[i].expr->type);
12206                         cinfo.regcm &= info->tmpl.lhs[val].regcm;
12207                         if (cinfo.reg == REG_UNSET) {
12208                                 cinfo.reg = REG_VIRT0 + val;
12209                         }
12210                         if (cinfo.regcm == 0) {
12211                                 error(state, 0, "No registers for %d", val);
12212                         }
12213                         info->tmpl.lhs[val] = cinfo;
12214                         info->tmpl.rhs[i]   = cinfo;
12215                                 
12216                 } else {
12217                         info->tmpl.rhs[i] = arch_reg_constraint(state, 
12218                                 in_param[i].expr->type, str);
12219                 }
12220                 free_triple(state, constraint);
12221         }
12222
12223         /* Now build the helper expressions */
12224         for(i = 0; i < in; i++) {
12225                 RHS(def, i) = read_expr(state, in_param[i].expr);
12226         }
12227         flatten(state, first, def);
12228         for(i = 0; i < (out + clobbers); i++) {
12229                 struct type *type;
12230                 struct triple *piece;
12231                 if (i < out) {
12232                         type = out_param[i].expr->type;
12233                 } else {
12234                         size_t size = arch_reg_size(info->tmpl.lhs[i].reg);
12235                         if (size >= SIZEOF_LONG) {
12236                                 type = &ulong_type;
12237                         } 
12238                         else if (size >= SIZEOF_INT) {
12239                                 type = &uint_type;
12240                         }
12241                         else if (size >= SIZEOF_SHORT) {
12242                                 type = &ushort_type;
12243                         }
12244                         else {
12245                                 type = &uchar_type;
12246                         }
12247                 }
12248                 piece = triple(state, OP_PIECE, type, def, 0);
12249                 piece->u.cval = i;
12250                 LHS(def, i) = piece;
12251                 flatten(state, first, piece);
12252         }
12253         /* And write the helpers to their destinations */
12254         for(i = 0; i < out; i++) {
12255                 struct triple *piece;
12256                 piece = LHS(def, i);
12257                 flatten(state, first,
12258                         write_expr(state, out_param[i].expr, piece));
12259         }
12260 }
12261
12262
12263 static int isdecl(int tok)
12264 {
12265         switch(tok) {
12266         case TOK_AUTO:
12267         case TOK_REGISTER:
12268         case TOK_STATIC:
12269         case TOK_EXTERN:
12270         case TOK_TYPEDEF:
12271         case TOK_CONST:
12272         case TOK_RESTRICT:
12273         case TOK_VOLATILE:
12274         case TOK_VOID:
12275         case TOK_CHAR:
12276         case TOK_SHORT:
12277         case TOK_INT:
12278         case TOK_LONG:
12279         case TOK_FLOAT:
12280         case TOK_DOUBLE:
12281         case TOK_SIGNED:
12282         case TOK_UNSIGNED:
12283         case TOK_STRUCT:
12284         case TOK_UNION:
12285         case TOK_ENUM:
12286         case TOK_TYPE_NAME: /* typedef name */
12287                 return 1;
12288         default:
12289                 return 0;
12290         }
12291 }
12292
12293 static void compound_statement(struct compile_state *state, struct triple *first)
12294 {
12295         eat(state, TOK_LBRACE);
12296         start_scope(state);
12297
12298         /* statement-list opt */
12299         while (peek(state) != TOK_RBRACE) {
12300                 statement(state, first);
12301         }
12302         end_scope(state);
12303         eat(state, TOK_RBRACE);
12304 }
12305
12306 static void statement(struct compile_state *state, struct triple *first)
12307 {
12308         int tok;
12309         tok = peek(state);
12310         if (tok == TOK_LBRACE) {
12311                 compound_statement(state, first);
12312         }
12313         else if (tok == TOK_IF) {
12314                 if_statement(state, first); 
12315         }
12316         else if (tok == TOK_FOR) {
12317                 for_statement(state, first);
12318         }
12319         else if (tok == TOK_WHILE) {
12320                 while_statement(state, first);
12321         }
12322         else if (tok == TOK_DO) {
12323                 do_statement(state, first);
12324         }
12325         else if (tok == TOK_RETURN) {
12326                 return_statement(state, first);
12327         }
12328         else if (tok == TOK_BREAK) {
12329                 break_statement(state, first);
12330         }
12331         else if (tok == TOK_CONTINUE) {
12332                 continue_statement(state, first);
12333         }
12334         else if (tok == TOK_GOTO) {
12335                 goto_statement(state, first);
12336         }
12337         else if (tok == TOK_SWITCH) {
12338                 switch_statement(state, first);
12339         }
12340         else if (tok == TOK_ASM) {
12341                 asm_statement(state, first);
12342         }
12343         else if ((tok == TOK_IDENT) && (peek2(state) == TOK_COLON)) {
12344                 labeled_statement(state, first); 
12345         }
12346         else if (tok == TOK_CASE) {
12347                 case_statement(state, first);
12348         }
12349         else if (tok == TOK_DEFAULT) {
12350                 default_statement(state, first);
12351         }
12352         else if (isdecl(tok)) {
12353                 /* This handles C99 intermixing of statements and decls */
12354                 decl(state, first);
12355         }
12356         else {
12357                 expr_statement(state, first);
12358         }
12359 }
12360
12361 static struct type *param_decl(struct compile_state *state)
12362 {
12363         struct type *type;
12364         struct hash_entry *ident;
12365         /* Cheat so the declarator will know we are not global */
12366         start_scope(state); 
12367         ident = 0;
12368         type = decl_specifiers(state);
12369         type = declarator(state, type, &ident, 0);
12370         type->field_ident = ident;
12371         end_scope(state);
12372         return type;
12373 }
12374
12375 static struct type *param_type_list(struct compile_state *state, struct type *type)
12376 {
12377         struct type *ftype, **next;
12378         ftype = new_type(TYPE_FUNCTION | (type->type & STOR_MASK), type, param_decl(state));
12379         next = &ftype->right;
12380         ftype->elements = 1;
12381         while(peek(state) == TOK_COMMA) {
12382                 eat(state, TOK_COMMA);
12383                 if (peek(state) == TOK_DOTS) {
12384                         eat(state, TOK_DOTS);
12385                         error(state, 0, "variadic functions not supported");
12386                 }
12387                 else {
12388                         *next = new_type(TYPE_PRODUCT, *next, param_decl(state));
12389                         next = &((*next)->right);
12390                         ftype->elements++;
12391                 }
12392         }
12393         return ftype;
12394 }
12395
12396 static struct type *type_name(struct compile_state *state)
12397 {
12398         struct type *type;
12399         type = specifier_qualifier_list(state);
12400         /* abstract-declarator (may consume no tokens) */
12401         type = declarator(state, type, 0, 0);
12402         return type;
12403 }
12404
12405 static struct type *direct_declarator(
12406         struct compile_state *state, struct type *type, 
12407         struct hash_entry **pident, int need_ident)
12408 {
12409         struct hash_entry *ident;
12410         struct type *outer;
12411         int op;
12412         outer = 0;
12413         arrays_complete(state, type);
12414         switch(peek(state)) {
12415         case TOK_IDENT:
12416                 ident = eat(state, TOK_IDENT)->ident;
12417                 if (!ident) {
12418                         error(state, 0, "Unexpected identifier found");
12419                 }
12420                 /* The name of what we are declaring */
12421                 *pident = ident;
12422                 break;
12423         case TOK_LPAREN:
12424                 eat(state, TOK_LPAREN);
12425                 outer = declarator(state, type, pident, need_ident);
12426                 eat(state, TOK_RPAREN);
12427                 break;
12428         default:
12429                 if (need_ident) {
12430                         error(state, 0, "Identifier expected");
12431                 }
12432                 break;
12433         }
12434         do {
12435                 op = 1;
12436                 arrays_complete(state, type);
12437                 switch(peek(state)) {
12438                 case TOK_LPAREN:
12439                         eat(state, TOK_LPAREN);
12440                         type = param_type_list(state, type);
12441                         eat(state, TOK_RPAREN);
12442                         break;
12443                 case TOK_LBRACKET:
12444                 {
12445                         unsigned int qualifiers;
12446                         struct triple *value;
12447                         value = 0;
12448                         eat(state, TOK_LBRACKET);
12449                         if (peek(state) != TOK_RBRACKET) {
12450                                 value = constant_expr(state);
12451                                 integral(state, value);
12452                         }
12453                         eat(state, TOK_RBRACKET);
12454
12455                         qualifiers = type->type & (QUAL_MASK | STOR_MASK);
12456                         type = new_type(TYPE_ARRAY | qualifiers, type, 0);
12457                         if (value) {
12458                                 type->elements = value->u.cval;
12459                                 free_triple(state, value);
12460                         } else {
12461                                 type->elements = ELEMENT_COUNT_UNSPECIFIED;
12462                                 op = 0;
12463                         }
12464                 }
12465                         break;
12466                 default:
12467                         op = 0;
12468                         break;
12469                 }
12470         } while(op);
12471         if (outer) {
12472                 struct type *inner;
12473                 arrays_complete(state, type);
12474                 FINISHME();
12475                 for(inner = outer; inner->left; inner = inner->left)
12476                         ;
12477                 inner->left = type;
12478                 type = outer;
12479         }
12480         return type;
12481 }
12482
12483 static struct type *declarator(
12484         struct compile_state *state, struct type *type, 
12485         struct hash_entry **pident, int need_ident)
12486 {
12487         while(peek(state) == TOK_STAR) {
12488                 eat(state, TOK_STAR);
12489                 type = new_type(TYPE_POINTER | (type->type & STOR_MASK), type, 0);
12490         }
12491         type = direct_declarator(state, type, pident, need_ident);
12492         return type;
12493 }
12494
12495 static struct type *typedef_name(
12496         struct compile_state *state, unsigned int specifiers)
12497 {
12498         struct hash_entry *ident;
12499         struct type *type;
12500         ident = eat(state, TOK_TYPE_NAME)->ident;
12501         type = ident->sym_ident->type;
12502         specifiers |= type->type & QUAL_MASK;
12503         if ((specifiers & (STOR_MASK | QUAL_MASK)) != 
12504                 (type->type & (STOR_MASK | QUAL_MASK))) {
12505                 type = clone_type(specifiers, type);
12506         }
12507         return type;
12508 }
12509
12510 static struct type *enum_specifier(
12511         struct compile_state *state, unsigned int spec)
12512 {
12513         struct hash_entry *ident;
12514         ulong_t base;
12515         int tok;
12516         struct type *enum_type;
12517         enum_type = 0;
12518         ident = 0;
12519         eat(state, TOK_ENUM);
12520         tok = peek(state);
12521         if ((tok == TOK_IDENT) || (tok == TOK_ENUM_CONST) || (tok == TOK_TYPE_NAME)) {
12522                 ident = eat(state, tok)->ident;
12523         }
12524         base = 0;
12525         if (!ident || (peek(state) == TOK_LBRACE)) {
12526                 struct type **next;
12527                 eat(state, TOK_LBRACE);
12528                 enum_type = new_type(TYPE_ENUM | spec, 0, 0);
12529                 enum_type->type_ident = ident;
12530                 next = &enum_type->right;
12531                 do {
12532                         struct hash_entry *eident;
12533                         struct triple *value;
12534                         struct type *entry;
12535                         eident = eat(state, TOK_IDENT)->ident;
12536                         if (eident->sym_ident) {
12537                                 error(state, 0, "%s already declared", 
12538                                         eident->name);
12539                         }
12540                         eident->tok = TOK_ENUM_CONST;
12541                         if (peek(state) == TOK_EQ) {
12542                                 struct triple *val;
12543                                 eat(state, TOK_EQ);
12544                                 val = constant_expr(state);
12545                                 integral(state, val);
12546                                 base = val->u.cval;
12547                         }
12548                         value = int_const(state, &int_type, base);
12549                         symbol(state, eident, &eident->sym_ident, value, &int_type);
12550                         entry = new_type(TYPE_LIST, 0, 0);
12551                         entry->field_ident = eident;
12552                         *next = entry;
12553                         next = &entry->right;
12554                         base += 1;
12555                         if (peek(state) == TOK_COMMA) {
12556                                 eat(state, TOK_COMMA);
12557                         }
12558                 } while(peek(state) != TOK_RBRACE);
12559                 eat(state, TOK_RBRACE);
12560                 if (ident) {
12561                         symbol(state, ident, &ident->sym_tag, 0, enum_type);
12562                 }
12563         }
12564         if (ident && ident->sym_tag &&
12565                 ident->sym_tag->type &&
12566                 ((ident->sym_tag->type->type & TYPE_MASK) == TYPE_ENUM)) {
12567                 enum_type = clone_type(spec, ident->sym_tag->type);
12568         }
12569         else if (ident && !enum_type) {
12570                 error(state, 0, "enum %s undeclared", ident->name);
12571         }
12572         return enum_type;
12573 }
12574
12575 static struct type *struct_declarator(
12576         struct compile_state *state, struct type *type, struct hash_entry **ident)
12577 {
12578         if (peek(state) != TOK_COLON) {
12579                 type = declarator(state, type, ident, 1);
12580         }
12581         if (peek(state) == TOK_COLON) {
12582                 struct triple *value;
12583                 eat(state, TOK_COLON);
12584                 value = constant_expr(state);
12585                 if (value->op != OP_INTCONST) {
12586                         error(state, 0, "Invalid constant expression");
12587                 }
12588                 if (value->u.cval > size_of(state, type)) {
12589                         error(state, 0, "bitfield larger than base type");
12590                 }
12591                 if (!TYPE_INTEGER(type->type) || ((type->type & TYPE_MASK) == TYPE_BITFIELD)) {
12592                         error(state, 0, "bitfield base not an integer type");
12593                 }
12594                 type = new_type(TYPE_BITFIELD, type, 0);
12595                 type->elements = value->u.cval;
12596         }
12597         return type;
12598 }
12599
12600 static struct type *struct_or_union_specifier(
12601         struct compile_state *state, unsigned int spec)
12602 {
12603         struct type *struct_type;
12604         struct hash_entry *ident;
12605         unsigned int type_main;
12606         unsigned int type_join;
12607         int tok;
12608         struct_type = 0;
12609         ident = 0;
12610         switch(peek(state)) {
12611         case TOK_STRUCT:
12612                 eat(state, TOK_STRUCT);
12613                 type_main = TYPE_STRUCT;
12614                 type_join = TYPE_PRODUCT;
12615                 break;
12616         case TOK_UNION:
12617                 eat(state, TOK_UNION);
12618                 type_main = TYPE_UNION;
12619                 type_join = TYPE_OVERLAP;
12620                 break;
12621         default:
12622                 eat(state, TOK_STRUCT);
12623                 type_main = TYPE_STRUCT;
12624                 type_join = TYPE_PRODUCT;
12625                 break;
12626         }
12627         tok = peek(state);
12628         if ((tok == TOK_IDENT) || (tok == TOK_ENUM_CONST) || (tok == TOK_TYPE_NAME)) {
12629                 ident = eat(state, tok)->ident;
12630         }
12631         if (!ident || (peek(state) == TOK_LBRACE)) {
12632                 ulong_t elements;
12633                 struct type **next;
12634                 elements = 0;
12635                 eat(state, TOK_LBRACE);
12636                 next = &struct_type;
12637                 do {
12638                         struct type *base_type;
12639                         int done;
12640                         base_type = specifier_qualifier_list(state);
12641                         do {
12642                                 struct type *type;
12643                                 struct hash_entry *fident;
12644                                 done = 1;
12645                                 type = struct_declarator(state, base_type, &fident);
12646                                 elements++;
12647                                 if (peek(state) == TOK_COMMA) {
12648                                         done = 0;
12649                                         eat(state, TOK_COMMA);
12650                                 }
12651                                 type = clone_type(0, type);
12652                                 type->field_ident = fident;
12653                                 if (*next) {
12654                                         *next = new_type(type_join, *next, type);
12655                                         next = &((*next)->right);
12656                                 } else {
12657                                         *next = type;
12658                                 }
12659                         } while(!done);
12660                         eat(state, TOK_SEMI);
12661                 } while(peek(state) != TOK_RBRACE);
12662                 eat(state, TOK_RBRACE);
12663                 struct_type = new_type(type_main | spec, struct_type, 0);
12664                 struct_type->type_ident = ident;
12665                 struct_type->elements = elements;
12666                 if (ident) {
12667                         symbol(state, ident, &ident->sym_tag, 0, struct_type);
12668                 }
12669         }
12670         if (ident && ident->sym_tag && 
12671                 ident->sym_tag->type && 
12672                 ((ident->sym_tag->type->type & TYPE_MASK) == type_main)) {
12673                 struct_type = clone_type(spec, ident->sym_tag->type);
12674         }
12675         else if (ident && !struct_type) {
12676                 error(state, 0, "%s %s undeclared", 
12677                         (type_main == TYPE_STRUCT)?"struct" : "union",
12678                         ident->name);
12679         }
12680         return struct_type;
12681 }
12682
12683 static unsigned int storage_class_specifier_opt(struct compile_state *state)
12684 {
12685         unsigned int specifiers;
12686         switch(peek(state)) {
12687         case TOK_AUTO:
12688                 eat(state, TOK_AUTO);
12689                 specifiers = STOR_AUTO;
12690                 break;
12691         case TOK_REGISTER:
12692                 eat(state, TOK_REGISTER);
12693                 specifiers = STOR_REGISTER;
12694                 break;
12695         case TOK_STATIC:
12696                 eat(state, TOK_STATIC);
12697                 specifiers = STOR_STATIC;
12698                 break;
12699         case TOK_EXTERN:
12700                 eat(state, TOK_EXTERN);
12701                 specifiers = STOR_EXTERN;
12702                 break;
12703         case TOK_TYPEDEF:
12704                 eat(state, TOK_TYPEDEF);
12705                 specifiers = STOR_TYPEDEF;
12706                 break;
12707         default:
12708                 if (state->scope_depth <= GLOBAL_SCOPE_DEPTH) {
12709                         specifiers = STOR_LOCAL;
12710                 }
12711                 else {
12712                         specifiers = STOR_AUTO;
12713                 }
12714         }
12715         return specifiers;
12716 }
12717
12718 static unsigned int function_specifier_opt(struct compile_state *state)
12719 {
12720         /* Ignore the inline keyword */
12721         unsigned int specifiers;
12722         specifiers = 0;
12723         switch(peek(state)) {
12724         case TOK_INLINE:
12725                 eat(state, TOK_INLINE);
12726                 specifiers = STOR_INLINE;
12727         }
12728         return specifiers;
12729 }
12730
12731 static unsigned int attrib(struct compile_state *state, unsigned int attributes)
12732 {
12733         int tok = peek(state);
12734         switch(tok) {
12735         case TOK_COMMA:
12736         case TOK_LPAREN:
12737                 /* The empty attribute ignore it */
12738                 break;
12739         case TOK_IDENT:
12740         case TOK_ENUM_CONST:
12741         case TOK_TYPE_NAME:
12742         {
12743                 struct hash_entry *ident;
12744                 ident = eat(state, TOK_IDENT)->ident;
12745
12746                 if (ident == state->i_noinline) {
12747                         if (attributes & ATTRIB_ALWAYS_INLINE) {
12748                                 error(state, 0, "both always_inline and noinline attribtes");
12749                         }
12750                         attributes |= ATTRIB_NOINLINE;
12751                 }
12752                 else if (ident == state->i_always_inline) {
12753                         if (attributes & ATTRIB_NOINLINE) {
12754                                 error(state, 0, "both noinline and always_inline attribtes");
12755                         }
12756                         attributes |= ATTRIB_ALWAYS_INLINE;
12757                 }
12758                 else {
12759                         error(state, 0, "Unknown attribute:%s", ident->name);
12760                 }
12761                 break;
12762         }
12763         default:
12764                 error(state, 0, "Unexpected token: %s\n", tokens[tok]);
12765                 break;
12766         }
12767         return attributes;
12768 }
12769
12770 static unsigned int attribute_list(struct compile_state *state, unsigned type)
12771 {
12772         type = attrib(state, type);
12773         while(peek(state) == TOK_COMMA) {
12774                 eat(state, TOK_COMMA);
12775                 type = attrib(state, type);
12776         }
12777         return type;
12778 }
12779
12780 static unsigned int attributes_opt(struct compile_state *state, unsigned type)
12781 {
12782         if (peek(state) == TOK_ATTRIBUTE) {
12783                 eat(state, TOK_ATTRIBUTE);
12784                 eat(state, TOK_LPAREN);
12785                 eat(state, TOK_LPAREN);
12786                 type = attribute_list(state, type);
12787                 eat(state, TOK_RPAREN);
12788                 eat(state, TOK_RPAREN);
12789         }
12790         return type;
12791 }
12792
12793 static unsigned int type_qualifiers(struct compile_state *state)
12794 {
12795         unsigned int specifiers;
12796         int done;
12797         done = 0;
12798         specifiers = QUAL_NONE;
12799         do {
12800                 switch(peek(state)) {
12801                 case TOK_CONST:
12802                         eat(state, TOK_CONST);
12803                         specifiers |= QUAL_CONST;
12804                         break;
12805                 case TOK_VOLATILE:
12806                         eat(state, TOK_VOLATILE);
12807                         specifiers |= QUAL_VOLATILE;
12808                         break;
12809                 case TOK_RESTRICT:
12810                         eat(state, TOK_RESTRICT);
12811                         specifiers |= QUAL_RESTRICT;
12812                         break;
12813                 default:
12814                         done = 1;
12815                         break;
12816                 }
12817         } while(!done);
12818         return specifiers;
12819 }
12820
12821 static struct type *type_specifier(
12822         struct compile_state *state, unsigned int spec)
12823 {
12824         struct type *type;
12825         int tok;
12826         type = 0;
12827         switch((tok = peek(state))) {
12828         case TOK_VOID:
12829                 eat(state, TOK_VOID);
12830                 type = new_type(TYPE_VOID | spec, 0, 0);
12831                 break;
12832         case TOK_CHAR:
12833                 eat(state, TOK_CHAR);
12834                 type = new_type(TYPE_CHAR | spec, 0, 0);
12835                 break;
12836         case TOK_SHORT:
12837                 eat(state, TOK_SHORT);
12838                 if (peek(state) == TOK_INT) {
12839                         eat(state, TOK_INT);
12840                 }
12841                 type = new_type(TYPE_SHORT | spec, 0, 0);
12842                 break;
12843         case TOK_INT:
12844                 eat(state, TOK_INT);
12845                 type = new_type(TYPE_INT | spec, 0, 0);
12846                 break;
12847         case TOK_LONG:
12848                 eat(state, TOK_LONG);
12849                 switch(peek(state)) {
12850                 case TOK_LONG:
12851                         eat(state, TOK_LONG);
12852                         error(state, 0, "long long not supported");
12853                         break;
12854                 case TOK_DOUBLE:
12855                         eat(state, TOK_DOUBLE);
12856                         error(state, 0, "long double not supported");
12857                         break;
12858                 case TOK_INT:
12859                         eat(state, TOK_INT);
12860                         type = new_type(TYPE_LONG | spec, 0, 0);
12861                         break;
12862                 default:
12863                         type = new_type(TYPE_LONG | spec, 0, 0);
12864                         break;
12865                 }
12866                 break;
12867         case TOK_FLOAT:
12868                 eat(state, TOK_FLOAT);
12869                 error(state, 0, "type float not supported");
12870                 break;
12871         case TOK_DOUBLE:
12872                 eat(state, TOK_DOUBLE);
12873                 error(state, 0, "type double not supported");
12874                 break;
12875         case TOK_SIGNED:
12876                 eat(state, TOK_SIGNED);
12877                 switch(peek(state)) {
12878                 case TOK_LONG:
12879                         eat(state, TOK_LONG);
12880                         switch(peek(state)) {
12881                         case TOK_LONG:
12882                                 eat(state, TOK_LONG);
12883                                 error(state, 0, "type long long not supported");
12884                                 break;
12885                         case TOK_INT:
12886                                 eat(state, TOK_INT);
12887                                 type = new_type(TYPE_LONG | spec, 0, 0);
12888                                 break;
12889                         default:
12890                                 type = new_type(TYPE_LONG | spec, 0, 0);
12891                                 break;
12892                         }
12893                         break;
12894                 case TOK_INT:
12895                         eat(state, TOK_INT);
12896                         type = new_type(TYPE_INT | spec, 0, 0);
12897                         break;
12898                 case TOK_SHORT:
12899                         eat(state, TOK_SHORT);
12900                         type = new_type(TYPE_SHORT | spec, 0, 0);
12901                         break;
12902                 case TOK_CHAR:
12903                         eat(state, TOK_CHAR);
12904                         type = new_type(TYPE_CHAR | spec, 0, 0);
12905                         break;
12906                 default:
12907                         type = new_type(TYPE_INT | spec, 0, 0);
12908                         break;
12909                 }
12910                 break;
12911         case TOK_UNSIGNED:
12912                 eat(state, TOK_UNSIGNED);
12913                 switch(peek(state)) {
12914                 case TOK_LONG:
12915                         eat(state, TOK_LONG);
12916                         switch(peek(state)) {
12917                         case TOK_LONG:
12918                                 eat(state, TOK_LONG);
12919                                 error(state, 0, "unsigned long long not supported");
12920                                 break;
12921                         case TOK_INT:
12922                                 eat(state, TOK_INT);
12923                                 type = new_type(TYPE_ULONG | spec, 0, 0);
12924                                 break;
12925                         default:
12926                                 type = new_type(TYPE_ULONG | spec, 0, 0);
12927                                 break;
12928                         }
12929                         break;
12930                 case TOK_INT:
12931                         eat(state, TOK_INT);
12932                         type = new_type(TYPE_UINT | spec, 0, 0);
12933                         break;
12934                 case TOK_SHORT:
12935                         eat(state, TOK_SHORT);
12936                         type = new_type(TYPE_USHORT | spec, 0, 0);
12937                         break;
12938                 case TOK_CHAR:
12939                         eat(state, TOK_CHAR);
12940                         type = new_type(TYPE_UCHAR | spec, 0, 0);
12941                         break;
12942                 default:
12943                         type = new_type(TYPE_UINT | spec, 0, 0);
12944                         break;
12945                 }
12946                 break;
12947                 /* struct or union specifier */
12948         case TOK_STRUCT:
12949         case TOK_UNION:
12950                 type = struct_or_union_specifier(state, spec);
12951                 break;
12952                 /* enum-spefifier */
12953         case TOK_ENUM:
12954                 type = enum_specifier(state, spec);
12955                 break;
12956                 /* typedef name */
12957         case TOK_TYPE_NAME:
12958                 type = typedef_name(state, spec);
12959                 break;
12960         default:
12961                 error(state, 0, "bad type specifier %s", 
12962                         tokens[tok]);
12963                 break;
12964         }
12965         return type;
12966 }
12967
12968 static int istype(int tok)
12969 {
12970         switch(tok) {
12971         case TOK_CONST:
12972         case TOK_RESTRICT:
12973         case TOK_VOLATILE:
12974         case TOK_VOID:
12975         case TOK_CHAR:
12976         case TOK_SHORT:
12977         case TOK_INT:
12978         case TOK_LONG:
12979         case TOK_FLOAT:
12980         case TOK_DOUBLE:
12981         case TOK_SIGNED:
12982         case TOK_UNSIGNED:
12983         case TOK_STRUCT:
12984         case TOK_UNION:
12985         case TOK_ENUM:
12986         case TOK_TYPE_NAME:
12987                 return 1;
12988         default:
12989                 return 0;
12990         }
12991 }
12992
12993
12994 static struct type *specifier_qualifier_list(struct compile_state *state)
12995 {
12996         struct type *type;
12997         unsigned int specifiers = 0;
12998
12999         /* type qualifiers */
13000         specifiers |= type_qualifiers(state);
13001
13002         /* type specifier */
13003         type = type_specifier(state, specifiers);
13004
13005         return type;
13006 }
13007
13008 #if DEBUG_ROMCC_WARNING
13009 static int isdecl_specifier(int tok)
13010 {
13011         switch(tok) {
13012                 /* storage class specifier */
13013         case TOK_AUTO:
13014         case TOK_REGISTER:
13015         case TOK_STATIC:
13016         case TOK_EXTERN:
13017         case TOK_TYPEDEF:
13018                 /* type qualifier */
13019         case TOK_CONST:
13020         case TOK_RESTRICT:
13021         case TOK_VOLATILE:
13022                 /* type specifiers */
13023         case TOK_VOID:
13024         case TOK_CHAR:
13025         case TOK_SHORT:
13026         case TOK_INT:
13027         case TOK_LONG:
13028         case TOK_FLOAT:
13029         case TOK_DOUBLE:
13030         case TOK_SIGNED:
13031         case TOK_UNSIGNED:
13032                 /* struct or union specifier */
13033         case TOK_STRUCT:
13034         case TOK_UNION:
13035                 /* enum-spefifier */
13036         case TOK_ENUM:
13037                 /* typedef name */
13038         case TOK_TYPE_NAME:
13039                 /* function specifiers */
13040         case TOK_INLINE:
13041                 return 1;
13042         default:
13043                 return 0;
13044         }
13045 }
13046 #endif
13047
13048 static struct type *decl_specifiers(struct compile_state *state)
13049 {
13050         struct type *type;
13051         unsigned int specifiers;
13052         /* I am overly restrictive in the arragement of specifiers supported.
13053          * C is overly flexible in this department it makes interpreting
13054          * the parse tree difficult.
13055          */
13056         specifiers = 0;
13057
13058         /* storage class specifier */
13059         specifiers |= storage_class_specifier_opt(state);
13060
13061         /* function-specifier */
13062         specifiers |= function_specifier_opt(state);
13063
13064         /* attributes */
13065         specifiers |= attributes_opt(state, 0);
13066
13067         /* type qualifier */
13068         specifiers |= type_qualifiers(state);
13069
13070         /* type specifier */
13071         type = type_specifier(state, specifiers);
13072         return type;
13073 }
13074
13075 struct field_info {
13076         struct type *type;
13077         size_t offset;
13078 };
13079
13080 static struct field_info designator(struct compile_state *state, struct type *type)
13081 {
13082         int tok;
13083         struct field_info info;
13084         info.offset = ~0U;
13085         info.type = 0;
13086         do {
13087                 switch(peek(state)) {
13088                 case TOK_LBRACKET:
13089                 {
13090                         struct triple *value;
13091                         if ((type->type & TYPE_MASK) != TYPE_ARRAY) {
13092                                 error(state, 0, "Array designator not in array initializer");
13093                         }
13094                         eat(state, TOK_LBRACKET);
13095                         value = constant_expr(state);
13096                         eat(state, TOK_RBRACKET);
13097
13098                         info.type = type->left;
13099                         info.offset = value->u.cval * size_of(state, info.type);
13100                         break;
13101                 }
13102                 case TOK_DOT:
13103                 {
13104                         struct hash_entry *field;
13105                         if (((type->type & TYPE_MASK) != TYPE_STRUCT) &&
13106                                 ((type->type & TYPE_MASK) != TYPE_UNION))
13107                         {
13108                                 error(state, 0, "Struct designator not in struct initializer");
13109                         }
13110                         eat(state, TOK_DOT);
13111                         field = eat(state, TOK_IDENT)->ident;
13112                         info.offset = field_offset(state, type, field);
13113                         info.type   = field_type(state, type, field);
13114                         break;
13115                 }
13116                 default:
13117                         error(state, 0, "Invalid designator");
13118                 }
13119                 tok = peek(state);
13120         } while((tok == TOK_LBRACKET) || (tok == TOK_DOT));
13121         eat(state, TOK_EQ);
13122         return info;
13123 }
13124
13125 static struct triple *initializer(
13126         struct compile_state *state, struct type *type)
13127 {
13128         struct triple *result;
13129 #if DEBUG_ROMCC_WARNINGS
13130 #warning "FIXME more consistent initializer handling (where should eval_const_expr go?"
13131 #endif
13132         if (peek(state) != TOK_LBRACE) {
13133                 result = assignment_expr(state);
13134                 if (((type->type & TYPE_MASK) == TYPE_ARRAY) &&
13135                         (type->elements == ELEMENT_COUNT_UNSPECIFIED) &&
13136                         ((result->type->type & TYPE_MASK) == TYPE_ARRAY) &&
13137                         (result->type->elements != ELEMENT_COUNT_UNSPECIFIED) &&
13138                         (equiv_types(type->left, result->type->left))) {
13139                         type->elements = result->type->elements;
13140                 }
13141                 if (is_lvalue(state, result) && 
13142                         ((result->type->type & TYPE_MASK) == TYPE_ARRAY) &&
13143                         (type->type & TYPE_MASK) != TYPE_ARRAY)
13144                 {
13145                         result = lvalue_conversion(state, result);
13146                 }
13147                 if (!is_init_compatible(state, type, result->type)) {
13148                         error(state, 0, "Incompatible types in initializer");
13149                 }
13150                 if (!equiv_types(type, result->type)) {
13151                         result = mk_cast_expr(state, type, result);
13152                 }
13153         }
13154         else {
13155                 int comma;
13156                 size_t max_offset;
13157                 struct field_info info;
13158                 void *buf;
13159                 if (((type->type & TYPE_MASK) != TYPE_ARRAY) &&
13160                         ((type->type & TYPE_MASK) != TYPE_STRUCT)) {
13161                         internal_error(state, 0, "unknown initializer type");
13162                 }
13163                 info.offset = 0;
13164                 info.type = type->left;
13165                 if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
13166                         info.type = next_field(state, type, 0);
13167                 }
13168                 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
13169                         max_offset = 0;
13170                 } else {
13171                         max_offset = size_of(state, type);
13172                 }
13173                 buf = xcmalloc(bits_to_bytes(max_offset), "initializer");
13174                 eat(state, TOK_LBRACE);
13175                 do {
13176                         struct triple *value;
13177                         struct type *value_type;
13178                         size_t value_size;
13179                         void *dest;
13180                         int tok;
13181                         comma = 0;
13182                         tok = peek(state);
13183                         if ((tok == TOK_LBRACKET) || (tok == TOK_DOT)) {
13184                                 info = designator(state, type);
13185                         }
13186                         if ((type->elements != ELEMENT_COUNT_UNSPECIFIED) &&
13187                                 (info.offset >= max_offset)) {
13188                                 error(state, 0, "element beyond bounds");
13189                         }
13190                         value_type = info.type;
13191                         value = eval_const_expr(state, initializer(state, value_type));
13192                         value_size = size_of(state, value_type);
13193                         if (((type->type & TYPE_MASK) == TYPE_ARRAY) &&
13194                                 (type->elements == ELEMENT_COUNT_UNSPECIFIED) &&
13195                                 (max_offset <= info.offset)) {
13196                                 void *old_buf;
13197                                 size_t old_size;
13198                                 old_buf = buf;
13199                                 old_size = max_offset;
13200                                 max_offset = info.offset + value_size;
13201                                 buf = xmalloc(bits_to_bytes(max_offset), "initializer");
13202                                 memcpy(buf, old_buf, bits_to_bytes(old_size));
13203                                 xfree(old_buf);
13204                         }
13205                         dest = ((char *)buf) + bits_to_bytes(info.offset);
13206 #if DEBUG_INITIALIZER
13207                         fprintf(state->errout, "dest = buf + %d max_offset: %d value_size: %d op: %d\n", 
13208                                 dest - buf,
13209                                 bits_to_bytes(max_offset),
13210                                 bits_to_bytes(value_size),
13211                                 value->op);
13212 #endif
13213                         if (value->op == OP_BLOBCONST) {
13214                                 memcpy(dest, value->u.blob, bits_to_bytes(value_size));
13215                         }
13216                         else if ((value->op == OP_INTCONST) && (value_size == SIZEOF_I8)) {
13217 #if DEBUG_INITIALIZER
13218                                 fprintf(state->errout, "byte: %02x\n", value->u.cval & 0xff);
13219 #endif
13220                                 *((uint8_t *)dest) = value->u.cval & 0xff;
13221                         }
13222                         else if ((value->op == OP_INTCONST) && (value_size == SIZEOF_I16)) {
13223                                 *((uint16_t *)dest) = value->u.cval & 0xffff;
13224                         }
13225                         else if ((value->op == OP_INTCONST) && (value_size == SIZEOF_I32)) {
13226                                 *((uint32_t *)dest) = value->u.cval & 0xffffffff;
13227                         }
13228                         else {
13229                                 internal_error(state, 0, "unhandled constant initializer");
13230                         }
13231                         free_triple(state, value);
13232                         if (peek(state) == TOK_COMMA) {
13233                                 eat(state, TOK_COMMA);
13234                                 comma = 1;
13235                         }
13236                         info.offset += value_size;
13237                         if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
13238                                 info.type = next_field(state, type, info.type);
13239                                 info.offset = field_offset(state, type, 
13240                                         info.type->field_ident);
13241                         }
13242                 } while(comma && (peek(state) != TOK_RBRACE));
13243                 if ((type->elements == ELEMENT_COUNT_UNSPECIFIED) &&
13244                         ((type->type & TYPE_MASK) == TYPE_ARRAY)) {
13245                         type->elements = max_offset / size_of(state, type->left);
13246                 }
13247                 eat(state, TOK_RBRACE);
13248                 result = triple(state, OP_BLOBCONST, type, 0, 0);
13249                 result->u.blob = buf;
13250         }
13251         return result;
13252 }
13253
13254 static void resolve_branches(struct compile_state *state, struct triple *first)
13255 {
13256         /* Make a second pass and finish anything outstanding
13257          * with respect to branches.  The only outstanding item
13258          * is to see if there are goto to labels that have not
13259          * been defined and to error about them.
13260          */
13261         int i;
13262         struct triple *ins;
13263         /* Also error on branches that do not use their targets */
13264         ins = first;
13265         do {
13266                 if (!triple_is_ret(state, ins)) {
13267                         struct triple **expr ;
13268                         struct triple_set *set;
13269                         expr = triple_targ(state, ins, 0);
13270                         for(; expr; expr = triple_targ(state, ins, expr)) {
13271                                 struct triple *targ;
13272                                 targ = *expr;
13273                                 for(set = targ?targ->use:0; set; set = set->next) {
13274                                         if (set->member == ins) {
13275                                                 break;
13276                                         }
13277                                 }
13278                                 if (!set) {
13279                                         internal_error(state, ins, "targ not used");
13280                                 }
13281                         }
13282                 }
13283                 ins = ins->next;
13284         } while(ins != first);
13285         /* See if there are goto to labels that have not been defined */
13286         for(i = 0; i < HASH_TABLE_SIZE; i++) {
13287                 struct hash_entry *entry;
13288                 for(entry = state->hash_table[i]; entry; entry = entry->next) {
13289                         struct triple *ins;
13290                         if (!entry->sym_label) {
13291                                 continue;
13292                         }
13293                         ins = entry->sym_label->def;
13294                         if (!(ins->id & TRIPLE_FLAG_FLATTENED)) {
13295                                 error(state, ins, "label `%s' used but not defined",
13296                                         entry->name);
13297                         }
13298                 }
13299         }
13300 }
13301
13302 static struct triple *function_definition(
13303         struct compile_state *state, struct type *type)
13304 {
13305         struct triple *def, *tmp, *first, *end, *retvar, *result, *ret;
13306         struct triple *fname;
13307         struct type *fname_type;
13308         struct hash_entry *ident;
13309         struct type *param, *crtype, *ctype;
13310         int i;
13311         if ((type->type &TYPE_MASK) != TYPE_FUNCTION) {
13312                 error(state, 0, "Invalid function header");
13313         }
13314
13315         /* Verify the function type */
13316         if (((type->right->type & TYPE_MASK) != TYPE_VOID)  &&
13317                 ((type->right->type & TYPE_MASK) != TYPE_PRODUCT) &&
13318                 (type->right->field_ident == 0)) {
13319                 error(state, 0, "Invalid function parameters");
13320         }
13321         param = type->right;
13322         i = 0;
13323         while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
13324                 i++;
13325                 if (!param->left->field_ident) {
13326                         error(state, 0, "No identifier for parameter %d\n", i);
13327                 }
13328                 param = param->right;
13329         }
13330         i++;
13331         if (((param->type & TYPE_MASK) != TYPE_VOID) && !param->field_ident) {
13332                 error(state, 0, "No identifier for paramter %d\n", i);
13333         }
13334         
13335         /* Get a list of statements for this function. */
13336         def = triple(state, OP_LIST, type, 0, 0);
13337
13338         /* Start a new scope for the passed parameters */
13339         start_scope(state);
13340
13341         /* Put a label at the very start of a function */
13342         first = label(state);
13343         RHS(def, 0) = first;
13344
13345         /* Put a label at the very end of a function */
13346         end = label(state);
13347         flatten(state, first, end);
13348         /* Remember where return goes */
13349         ident = state->i_return;
13350         symbol(state, ident, &ident->sym_ident, end, end->type);
13351
13352         /* Get the initial closure type */
13353         ctype = new_type(TYPE_JOIN, &void_type, 0);
13354         ctype->elements = 1;
13355
13356         /* Add a variable for the return value */
13357         crtype = new_type(TYPE_TUPLE, 
13358                 /* Remove all type qualifiers from the return type */
13359                 new_type(TYPE_PRODUCT, ctype, clone_type(0, type->left)), 0);
13360         crtype->elements = 2;
13361         result = flatten(state, end, variable(state, crtype));
13362
13363         /* Allocate a variable for the return address */
13364         retvar = flatten(state, end, variable(state, &void_ptr_type));
13365
13366         /* Add in the return instruction */
13367         ret = triple(state, OP_RET, &void_type, read_expr(state, retvar), 0);
13368         ret = flatten(state, first, ret);
13369
13370         /* Walk through the parameters and create symbol table entries
13371          * for them.
13372          */
13373         param = type->right;
13374         while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
13375                 ident = param->left->field_ident;
13376                 tmp = variable(state, param->left);
13377                 var_symbol(state, ident, tmp);
13378                 flatten(state, end, tmp);
13379                 param = param->right;
13380         }
13381         if ((param->type & TYPE_MASK) != TYPE_VOID) {
13382                 /* And don't forget the last parameter */
13383                 ident = param->field_ident;
13384                 tmp = variable(state, param);
13385                 symbol(state, ident, &ident->sym_ident, tmp, tmp->type);
13386                 flatten(state, end, tmp);
13387         }
13388
13389         /* Add the declaration static const char __func__ [] = "func-name"  */
13390         fname_type = new_type(TYPE_ARRAY, 
13391                 clone_type(QUAL_CONST | STOR_STATIC, &char_type), 0);
13392         fname_type->type |= QUAL_CONST | STOR_STATIC;
13393         fname_type->elements = strlen(state->function) + 1;
13394
13395         fname = triple(state, OP_BLOBCONST, fname_type, 0, 0);
13396         fname->u.blob = (void *)state->function;
13397         fname = flatten(state, end, fname);
13398
13399         ident = state->i___func__;
13400         symbol(state, ident, &ident->sym_ident, fname, fname_type);
13401
13402         /* Remember which function I am compiling.
13403          * Also assume the last defined function is the main function.
13404          */
13405         state->main_function = def;
13406
13407         /* Now get the actual function definition */
13408         compound_statement(state, end);
13409
13410         /* Finish anything unfinished with branches */
13411         resolve_branches(state, first);
13412
13413         /* Remove the parameter scope */
13414         end_scope(state);
13415
13416
13417         /* Remember I have defined a function */
13418         if (!state->functions) {
13419                 state->functions = def;
13420         } else {
13421                 insert_triple(state, state->functions, def);
13422         }
13423         if (state->compiler->debug & DEBUG_INLINE) {
13424                 FILE *fp = state->dbgout;
13425                 fprintf(fp, "\n");
13426                 loc(fp, state, 0);
13427                 fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
13428                 display_func(state, fp, def);
13429                 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
13430         }
13431
13432         return def;
13433 }
13434
13435 static struct triple *do_decl(struct compile_state *state, 
13436         struct type *type, struct hash_entry *ident)
13437 {
13438         struct triple *def;
13439         def = 0;
13440         /* Clean up the storage types used */
13441         switch (type->type & STOR_MASK) {
13442         case STOR_AUTO:
13443         case STOR_STATIC:
13444                 /* These are the good types I am aiming for */
13445                 break;
13446         case STOR_REGISTER:
13447                 type->type &= ~STOR_MASK;
13448                 type->type |= STOR_AUTO;
13449                 break;
13450         case STOR_LOCAL:
13451         case STOR_EXTERN:
13452                 type->type &= ~STOR_MASK;
13453                 type->type |= STOR_STATIC;
13454                 break;
13455         case STOR_TYPEDEF:
13456                 if (!ident) {
13457                         error(state, 0, "typedef without name");
13458                 }
13459                 symbol(state, ident, &ident->sym_ident, 0, type);
13460                 ident->tok = TOK_TYPE_NAME;
13461                 return 0;
13462                 break;
13463         default:
13464                 internal_error(state, 0, "Undefined storage class");
13465         }
13466         if ((type->type & TYPE_MASK) == TYPE_FUNCTION) {
13467                 error(state, 0, "Function prototypes not supported");
13468         }
13469         if (ident && 
13470                 ((type->type & STOR_MASK) == STOR_STATIC) &&
13471                 ((type->type & QUAL_CONST) == 0)) {
13472                 error(state, 0, "non const static variables not supported");
13473         }
13474         if (ident) {
13475                 def = variable(state, type);
13476                 var_symbol(state, ident, def);
13477         }
13478         return def;
13479 }
13480
13481 static void decl(struct compile_state *state, struct triple *first)
13482 {
13483         struct type *base_type, *type;
13484         struct hash_entry *ident;
13485         struct triple *def;
13486         int global;
13487         global = (state->scope_depth <= GLOBAL_SCOPE_DEPTH);
13488         base_type = decl_specifiers(state);
13489         ident = 0;
13490         type = declarator(state, base_type, &ident, 0);
13491         type->type = attributes_opt(state, type->type);
13492         if (global && ident && (peek(state) == TOK_LBRACE)) {
13493                 /* function */
13494                 type->type_ident = ident;
13495                 state->function = ident->name;
13496                 def = function_definition(state, type);
13497                 symbol(state, ident, &ident->sym_ident, def, type);
13498                 state->function = 0;
13499         }
13500         else {
13501                 int done;
13502                 flatten(state, first, do_decl(state, type, ident));
13503                 /* type or variable definition */
13504                 do {
13505                         done = 1;
13506                         if (peek(state) == TOK_EQ) {
13507                                 if (!ident) {
13508                                         error(state, 0, "cannot assign to a type");
13509                                 }
13510                                 eat(state, TOK_EQ);
13511                                 flatten(state, first,
13512                                         init_expr(state, 
13513                                                 ident->sym_ident->def, 
13514                                                 initializer(state, type)));
13515                         }
13516                         arrays_complete(state, type);
13517                         if (peek(state) == TOK_COMMA) {
13518                                 eat(state, TOK_COMMA);
13519                                 ident = 0;
13520                                 type = declarator(state, base_type, &ident, 0);
13521                                 flatten(state, first, do_decl(state, type, ident));
13522                                 done = 0;
13523                         }
13524                 } while(!done);
13525                 eat(state, TOK_SEMI);
13526         }
13527 }
13528
13529 static void decls(struct compile_state *state)
13530 {
13531         struct triple *list;
13532         int tok;
13533         list = label(state);
13534         while(1) {
13535                 tok = peek(state);
13536                 if (tok == TOK_EOF) {
13537                         return;
13538                 }
13539                 if (tok == TOK_SPACE) {
13540                         eat(state, TOK_SPACE);
13541                 }
13542                 decl(state, list);
13543                 if (list->next != list) {
13544                         error(state, 0, "global variables not supported");
13545                 }
13546         }
13547 }
13548
13549 /* 
13550  * Function inlining
13551  */
13552 struct triple_reg_set {
13553         struct triple_reg_set *next;
13554         struct triple *member;
13555         struct triple *new;
13556 };
13557 struct reg_block {
13558         struct block *block;
13559         struct triple_reg_set *in;
13560         struct triple_reg_set *out;
13561         int vertex;
13562 };
13563 static void setup_basic_blocks(struct compile_state *, struct basic_blocks *bb);
13564 static void analyze_basic_blocks(struct compile_state *state, struct basic_blocks *bb);
13565 static void free_basic_blocks(struct compile_state *, struct basic_blocks *bb);
13566 static int tdominates(struct compile_state *state, struct triple *dom, struct triple *sub);
13567 static void walk_blocks(struct compile_state *state, struct basic_blocks *bb,
13568         void (*cb)(struct compile_state *state, struct block *block, void *arg),
13569         void *arg);
13570 static void print_block(
13571         struct compile_state *state, struct block *block, void *arg);
13572 static int do_triple_set(struct triple_reg_set **head, 
13573         struct triple *member, struct triple *new_member);
13574 static void do_triple_unset(struct triple_reg_set **head, struct triple *member);
13575 static struct reg_block *compute_variable_lifetimes(
13576         struct compile_state *state, struct basic_blocks *bb);
13577 static void free_variable_lifetimes(struct compile_state *state, 
13578         struct basic_blocks *bb, struct reg_block *blocks);
13579 #if DEBUG_EXPLICIT_CLOSURES
13580 static void print_live_variables(struct compile_state *state, 
13581         struct basic_blocks *bb, struct reg_block *rb, FILE *fp);
13582 #endif
13583
13584
13585 static struct triple *call(struct compile_state *state,
13586         struct triple *retvar, struct triple *ret_addr, 
13587         struct triple *targ, struct triple *ret)
13588 {
13589         struct triple *call;
13590
13591         if (!retvar || !is_lvalue(state, retvar)) {
13592                 internal_error(state, 0, "writing to a non lvalue?");
13593         }
13594         write_compatible(state, retvar->type, &void_ptr_type);
13595
13596         call = new_triple(state, OP_CALL, &void_type, 1, 0);
13597         TARG(call, 0) = targ;
13598         MISC(call, 0) = ret;
13599         if (!targ || (targ->op != OP_LABEL)) {
13600                 internal_error(state, 0, "call not to a label");
13601         }
13602         if (!ret || (ret->op != OP_RET)) {
13603                 internal_error(state, 0, "call not matched with return");
13604         }
13605         return call;
13606 }
13607
13608 static void walk_functions(struct compile_state *state,
13609         void (*cb)(struct compile_state *state, struct triple *func, void *arg),
13610         void *arg)
13611 {
13612         struct triple *func, *first;
13613         func = first = state->functions;
13614         do {
13615                 cb(state, func, arg);
13616                 func = func->next;
13617         } while(func != first);
13618 }
13619
13620 static void reverse_walk_functions(struct compile_state *state,
13621         void (*cb)(struct compile_state *state, struct triple *func, void *arg),
13622         void *arg)
13623 {
13624         struct triple *func, *first;
13625         func = first = state->functions;
13626         do {
13627                 func = func->prev;
13628                 cb(state, func, arg);
13629         } while(func != first);
13630 }
13631
13632
13633 static void mark_live(struct compile_state *state, struct triple *func, void *arg)
13634 {
13635         struct triple *ptr, *first;
13636         if (func->u.cval == 0) {
13637                 return;
13638         }
13639         ptr = first = RHS(func, 0);
13640         do {
13641                 if (ptr->op == OP_FCALL) {
13642                         struct triple *called_func;
13643                         called_func = MISC(ptr, 0);
13644                         /* Mark the called function as used */
13645                         if (!(func->id & TRIPLE_FLAG_FLATTENED)) {
13646                                 called_func->u.cval++;
13647                         }
13648                         /* Remove the called function from the list */
13649                         called_func->prev->next = called_func->next;
13650                         called_func->next->prev = called_func->prev;
13651
13652                         /* Place the called function before me on the list */
13653                         called_func->next       = func;
13654                         called_func->prev       = func->prev;
13655                         called_func->prev->next = called_func;
13656                         called_func->next->prev = called_func;
13657                 }
13658                 ptr = ptr->next;
13659         } while(ptr != first);
13660         func->id |= TRIPLE_FLAG_FLATTENED;
13661 }
13662
13663 static void mark_live_functions(struct compile_state *state)
13664 {
13665         /* Ensure state->main_function is the last function in 
13666          * the list of functions.
13667          */
13668         if ((state->main_function->next != state->functions) ||
13669                 (state->functions->prev != state->main_function)) {
13670                 internal_error(state, 0, 
13671                         "state->main_function is not at the end of the function list ");
13672         }
13673         state->main_function->u.cval = 1;
13674         reverse_walk_functions(state, mark_live, 0);
13675 }
13676
13677 static int local_triple(struct compile_state *state, 
13678         struct triple *func, struct triple *ins)
13679 {
13680         int local = (ins->id & TRIPLE_FLAG_LOCAL);
13681 #if 0
13682         if (!local) {
13683                 FILE *fp = state->errout;
13684                 fprintf(fp, "global: ");
13685                 display_triple(fp, ins);
13686         }
13687 #endif
13688         return local;
13689 }
13690
13691 struct triple *copy_func(struct compile_state *state, struct triple *ofunc, 
13692         struct occurance *base_occurance)
13693 {
13694         struct triple *nfunc;
13695         struct triple *nfirst, *ofirst;
13696         struct triple *new, *old;
13697
13698         if (state->compiler->debug & DEBUG_INLINE) {
13699                 FILE *fp = state->dbgout;
13700                 fprintf(fp, "\n");
13701                 loc(fp, state, 0);
13702                 fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
13703                 display_func(state, fp, ofunc);
13704                 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
13705         }
13706
13707         /* Make a new copy of the old function */
13708         nfunc = triple(state, OP_LIST, ofunc->type, 0, 0);
13709         nfirst = 0;
13710         ofirst = old = RHS(ofunc, 0);
13711         do {
13712                 struct triple *new;
13713                 struct occurance *occurance;
13714                 int old_lhs, old_rhs;
13715                 old_lhs = old->lhs;
13716                 old_rhs = old->rhs;
13717                 occurance = inline_occurance(state, base_occurance, old->occurance);
13718                 if (ofunc->u.cval && (old->op == OP_FCALL)) {
13719                         MISC(old, 0)->u.cval += 1;
13720                 }
13721                 new = alloc_triple(state, old->op, old->type, old_lhs, old_rhs,
13722                         occurance);
13723                 if (!triple_stores_block(state, new)) {
13724                         memcpy(&new->u, &old->u, sizeof(new->u));
13725                 }
13726                 if (!nfirst) {
13727                         RHS(nfunc, 0) = nfirst = new;
13728                 }
13729                 else {
13730                         insert_triple(state, nfirst, new);
13731                 }
13732                 new->id |= TRIPLE_FLAG_FLATTENED;
13733                 new->id |= old->id & TRIPLE_FLAG_COPY;
13734                 
13735                 /* During the copy remember new as user of old */
13736                 use_triple(old, new);
13737
13738                 /* Remember which instructions are local */
13739                 old->id |= TRIPLE_FLAG_LOCAL;
13740                 old = old->next;
13741         } while(old != ofirst);
13742
13743         /* Make a second pass to fix up any unresolved references */
13744         old = ofirst;
13745         new = nfirst;
13746         do {
13747                 struct triple **oexpr, **nexpr;
13748                 int count, i;
13749                 /* Lookup where the copy is, to join pointers */
13750                 count = TRIPLE_SIZE(old);
13751                 for(i = 0; i < count; i++) {
13752                         oexpr = &old->param[i];
13753                         nexpr = &new->param[i];
13754                         if (*oexpr && !*nexpr) {
13755                                 if (!local_triple(state, ofunc, *oexpr)) {
13756                                         *nexpr = *oexpr;
13757                                 }
13758                                 else if ((*oexpr)->use) {
13759                                         *nexpr = (*oexpr)->use->member;
13760                                 }
13761                                 if (*nexpr == old) {
13762                                         internal_error(state, 0, "new == old?");
13763                                 }
13764                                 use_triple(*nexpr, new);
13765                         }
13766                         if (!*nexpr && *oexpr) {
13767                                 internal_error(state, 0, "Could not copy %d", i);
13768                         }
13769                 }
13770                 old = old->next;
13771                 new = new->next;
13772         } while((old != ofirst) && (new != nfirst));
13773         
13774         /* Make a third pass to cleanup the extra useses */
13775         old = ofirst;
13776         new = nfirst;
13777         do {
13778                 unuse_triple(old, new);
13779                 /* Forget which instructions are local */
13780                 old->id &= ~TRIPLE_FLAG_LOCAL;
13781                 old = old->next;
13782                 new = new->next;
13783         } while ((old != ofirst) && (new != nfirst));
13784         return nfunc;
13785 }
13786
13787 static void expand_inline_call(
13788         struct compile_state *state, struct triple *me, struct triple *fcall)
13789 {
13790         /* Inline the function call */
13791         struct type *ptype;
13792         struct triple *ofunc, *nfunc, *nfirst, *result, *retvar, *ins;
13793         struct triple *end, *nend;
13794         int pvals, i;
13795
13796         /* Find the triples */
13797         ofunc = MISC(fcall, 0);
13798         if (ofunc->op != OP_LIST) {
13799                 internal_error(state, 0, "improper function");
13800         }
13801         nfunc = copy_func(state, ofunc, fcall->occurance);
13802         /* Prepend the parameter reading into the new function list */
13803         ptype = nfunc->type->right;
13804         pvals = fcall->rhs;
13805         for(i = 0; i < pvals; i++) {
13806                 struct type *atype;
13807                 struct triple *arg, *param;
13808                 atype = ptype;
13809                 if ((ptype->type & TYPE_MASK) == TYPE_PRODUCT) {
13810                         atype = ptype->left;
13811                 }
13812                 param = farg(state, nfunc, i);
13813                 if ((param->type->type & TYPE_MASK) != (atype->type & TYPE_MASK)) {
13814                         internal_error(state, fcall, "param %d type mismatch", i);
13815                 }
13816                 arg = RHS(fcall, i);
13817                 flatten(state, fcall, write_expr(state, param, arg));
13818                 ptype = ptype->right;
13819         }
13820         result = 0;
13821         if ((nfunc->type->left->type & TYPE_MASK) != TYPE_VOID) {
13822                 result = read_expr(state, 
13823                         deref_index(state, fresult(state, nfunc), 1));
13824         }
13825         if (state->compiler->debug & DEBUG_INLINE) {
13826                 FILE *fp = state->dbgout;
13827                 fprintf(fp, "\n");
13828                 loc(fp, state, 0);
13829                 fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
13830                 display_func(state, fp, nfunc);
13831                 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
13832         }
13833
13834         /* 
13835          * Get rid of the extra triples 
13836          */
13837         /* Remove the read of the return address */
13838         ins = RHS(nfunc, 0)->prev->prev;
13839         if ((ins->op != OP_READ) || (RHS(ins, 0) != fretaddr(state, nfunc))) {
13840                 internal_error(state, ins, "Not return addres read?");
13841         }
13842         release_triple(state, ins);
13843         /* Remove the return instruction */
13844         ins = RHS(nfunc, 0)->prev;
13845         if (ins->op != OP_RET) {
13846                 internal_error(state, ins, "Not return?");
13847         }
13848         release_triple(state, ins);
13849         /* Remove the retaddres variable */
13850         retvar = fretaddr(state, nfunc);
13851         if ((retvar->lhs != 1) || 
13852                 (retvar->op != OP_ADECL) ||
13853                 (retvar->next->op != OP_PIECE) ||
13854                 (MISC(retvar->next, 0) != retvar)) {
13855                 internal_error(state, retvar, "Not the return address?");
13856         }
13857         release_triple(state, retvar->next);
13858         release_triple(state, retvar);
13859
13860         /* Remove the label at the start of the function */
13861         ins = RHS(nfunc, 0);
13862         if (ins->op != OP_LABEL) {
13863                 internal_error(state, ins, "Not label?");
13864         }
13865         nfirst = ins->next;
13866         free_triple(state, ins);
13867         /* Release the new function header */
13868         RHS(nfunc, 0) = 0;
13869         free_triple(state, nfunc);
13870
13871         /* Append the new function list onto the return list */
13872         end = fcall->prev;
13873         nend = nfirst->prev;
13874         end->next    = nfirst;
13875         nfirst->prev = end;
13876         nend->next   = fcall;
13877         fcall->prev  = nend;
13878
13879         /* Now the result reading code */
13880         if (result) {
13881                 result = flatten(state, fcall, result);
13882                 propogate_use(state, fcall, result);
13883         }
13884
13885         /* Release the original fcall instruction */
13886         release_triple(state, fcall);
13887
13888         return;
13889 }
13890
13891 /*
13892  *
13893  * Type of the result variable.
13894  * 
13895  *                                     result
13896  *                                        |
13897  *                             +----------+------------+
13898  *                             |                       |
13899  *                     union of closures         result_type
13900  *                             |
13901  *          +------------------+---------------+
13902  *          |                                  |
13903  *       closure1                    ...   closuerN
13904  *          |                                  | 
13905  *  +----+--+-+--------+-----+       +----+----+---+-----+
13906  *  |    |    |        |     |       |    |        |     |
13907  * var1 var2 var3 ... varN result   var1 var2 ... varN result
13908  *                           |
13909  *                  +--------+---------+
13910  *                  |                  |
13911  *          union of closures     result_type
13912  *                  |
13913  *            +-----+-------------------+
13914  *            |                         |
13915  *         closure1            ...  closureN
13916  *            |                         |
13917  *  +-----+---+----+----+      +----+---+----+-----+
13918  *  |     |        |    |      |    |        |     |
13919  * var1 var2 ... varN result  var1 var2 ... varN result
13920  */
13921
13922 static int add_closure_type(struct compile_state *state, 
13923         struct triple *func, struct type *closure_type)
13924 {
13925         struct type *type, *ctype, **next;
13926         struct triple *var, *new_var;
13927         int i;
13928
13929 #if 0
13930         FILE *fp = state->errout;
13931         fprintf(fp, "original_type: ");
13932         name_of(fp, fresult(state, func)->type);
13933         fprintf(fp, "\n");
13934 #endif
13935         /* find the original type */
13936         var = fresult(state, func);
13937         type = var->type;
13938         if (type->elements != 2) {
13939                 internal_error(state, var, "bad return type");
13940         }
13941
13942         /* Find the complete closure type and update it */
13943         ctype = type->left->left;
13944         next = &ctype->left;
13945         while(((*next)->type & TYPE_MASK) == TYPE_OVERLAP) {
13946                 next = &(*next)->right;
13947         }
13948         *next = new_type(TYPE_OVERLAP, *next, dup_type(state, closure_type));
13949         ctype->elements += 1;
13950
13951 #if 0
13952         fprintf(fp, "new_type: ");
13953         name_of(fp, type);
13954         fprintf(fp, "\n");
13955         fprintf(fp, "ctype: %p %d bits: %d ", 
13956                 ctype, ctype->elements, reg_size_of(state, ctype));
13957         name_of(fp, ctype);
13958         fprintf(fp, "\n");
13959 #endif
13960         
13961         /* Regenerate the variable with the new type definition */
13962         new_var = pre_triple(state, var, OP_ADECL, type, 0, 0);
13963         new_var->id |= TRIPLE_FLAG_FLATTENED;
13964         for(i = 0; i < new_var->lhs; i++) {
13965                 LHS(new_var, i)->id |= TRIPLE_FLAG_FLATTENED;
13966         }
13967         
13968         /* Point everyone at the new variable */
13969         propogate_use(state, var, new_var);
13970
13971         /* Release the original variable */
13972         for(i = 0; i < var->lhs; i++) {
13973                 release_triple(state, LHS(var, i));
13974         }
13975         release_triple(state, var);
13976         
13977         /* Return the index of the added closure type */
13978         return ctype->elements - 1;
13979 }
13980
13981 static struct triple *closure_expr(struct compile_state *state,
13982         struct triple *func, int closure_idx, int var_idx)
13983 {
13984         return deref_index(state,
13985                 deref_index(state,
13986                         deref_index(state, fresult(state, func), 0),
13987                         closure_idx),
13988                 var_idx);
13989 }
13990
13991
13992 static void insert_triple_set(
13993         struct triple_reg_set **head, struct triple *member)
13994 {
13995         struct triple_reg_set *new;
13996         new = xcmalloc(sizeof(*new), "triple_set");
13997         new->member = member;
13998         new->new    = 0;
13999         new->next   = *head;
14000         *head       = new;
14001 }
14002
14003 static int ordered_triple_set(
14004         struct triple_reg_set **head, struct triple *member)
14005 {
14006         struct triple_reg_set **ptr;
14007         if (!member)
14008                 return 0;
14009         ptr = head;
14010         while(*ptr) {
14011                 if (member == (*ptr)->member) {
14012                         return 0;
14013                 }
14014                 /* keep the list ordered */
14015                 if (member->id < (*ptr)->member->id) {
14016                         break;
14017                 }
14018                 ptr = &(*ptr)->next;
14019         }
14020         insert_triple_set(ptr, member);
14021         return 1;
14022 }
14023
14024
14025 static void free_closure_variables(struct compile_state *state,
14026         struct triple_reg_set **enclose)
14027 {
14028         struct triple_reg_set *entry, *next;
14029         for(entry = *enclose; entry; entry = next) {
14030                 next = entry->next;
14031                 do_triple_unset(enclose, entry->member);
14032         }
14033 }
14034
14035 static int lookup_closure_index(struct compile_state *state,
14036         struct triple *me, struct triple *val)
14037 {
14038         struct triple *first, *ins, *next;
14039         first = RHS(me, 0);
14040         ins = next = first;
14041         do {
14042                 struct triple *result;
14043                 struct triple *index0, *index1, *index2, *read, *write;
14044                 ins = next;
14045                 next = ins->next;
14046                 if (ins->op != OP_CALL) {
14047                         continue;
14048                 }
14049                 /* I am at a previous call point examine it closely */
14050                 if (ins->next->op != OP_LABEL) {
14051                         internal_error(state, ins, "call not followed by label");
14052                 }
14053                 /* Does this call does not enclose any variables? */
14054                 if ((ins->next->next->op != OP_INDEX) ||
14055                         (ins->next->next->u.cval != 0) ||
14056                         (result = MISC(ins->next->next, 0)) ||
14057                         (result->id & TRIPLE_FLAG_LOCAL)) {
14058                         continue;
14059                 }
14060                 index0 = ins->next->next;
14061                 /* The pattern is:
14062                  * 0 index result < 0 >
14063                  * 1 index 0 < ? >
14064                  * 2 index 1 < ? >
14065                  * 3 read  2
14066                  * 4 write 3 var
14067                  */
14068                 for(index0 = ins->next->next;
14069                         (index0->op == OP_INDEX) &&
14070                                 (MISC(index0, 0) == result) &&
14071                                 (index0->u.cval == 0) ; 
14072                         index0 = write->next)
14073                 {
14074                         index1 = index0->next;
14075                         index2 = index1->next;
14076                         read   = index2->next;
14077                         write  = read->next;
14078                         if ((index0->op != OP_INDEX) ||
14079                                 (index1->op != OP_INDEX) ||
14080                                 (index2->op != OP_INDEX) ||
14081                                 (read->op != OP_READ) ||
14082                                 (write->op != OP_WRITE) ||
14083                                 (MISC(index1, 0) != index0) ||
14084                                 (MISC(index2, 0) != index1) ||
14085                                 (RHS(read, 0) != index2) ||
14086                                 (RHS(write, 0) != read)) {
14087                                 internal_error(state, index0, "bad var read");
14088                         }
14089                         if (MISC(write, 0) == val) {
14090                                 return index2->u.cval;
14091                         }
14092                 }
14093         } while(next != first);
14094         return -1;
14095 }
14096
14097 static inline int enclose_triple(struct triple *ins)
14098 {
14099         return (ins && ((ins->type->type & TYPE_MASK) != TYPE_VOID));
14100 }
14101
14102 static void compute_closure_variables(struct compile_state *state,
14103         struct triple *me, struct triple *fcall, struct triple_reg_set **enclose)
14104 {
14105         struct triple_reg_set *set, *vars, **last_var;
14106         struct basic_blocks bb;
14107         struct reg_block *rb;
14108         struct block *block;
14109         struct triple *old_result, *first, *ins;
14110         size_t count, idx;
14111         unsigned long used_indicies;
14112         int i, max_index;
14113 #define MAX_INDICIES (sizeof(used_indicies)*CHAR_BIT)
14114 #define ID_BITS(X) ((X) & (TRIPLE_FLAG_LOCAL -1))
14115         struct { 
14116                 unsigned id;
14117                 int index;
14118         } *info;
14119
14120         
14121         /* Find the basic blocks of this function */
14122         bb.func = me;
14123         bb.first = RHS(me, 0);
14124         old_result = 0;
14125         if (!triple_is_ret(state, bb.first->prev)) {
14126                 bb.func = 0;
14127         } else {
14128                 old_result = fresult(state, me);
14129         }
14130         analyze_basic_blocks(state, &bb);
14131
14132         /* Find which variables are currently alive in a given block */
14133         rb = compute_variable_lifetimes(state, &bb);
14134
14135         /* Find the variables that are currently alive */
14136         block = block_of_triple(state, fcall);
14137         if (!block || (block->vertex <= 0) || (block->vertex > bb.last_vertex)) {
14138                 internal_error(state, fcall, "No reg block? block: %p", block);
14139         }
14140
14141 #if DEBUG_EXPLICIT_CLOSURES
14142         print_live_variables(state, &bb, rb, state->dbgout);
14143         fflush(state->dbgout);
14144 #endif
14145
14146         /* Count the number of triples in the function */
14147         first = RHS(me, 0);
14148         ins = first;
14149         count = 0;
14150         do {
14151                 count++;
14152                 ins = ins->next;
14153         } while(ins != first);
14154
14155         /* Allocate some memory to temorary hold the id info */
14156         info = xcmalloc(sizeof(*info) * (count +1), "info");
14157
14158         /* Mark the local function */
14159         first = RHS(me, 0);
14160         ins = first;
14161         idx = 1;
14162         do {
14163                 info[idx].id = ins->id;
14164                 ins->id = TRIPLE_FLAG_LOCAL | idx;
14165                 idx++;
14166                 ins = ins->next;
14167         } while(ins != first);
14168
14169         /* 
14170          * Build the list of variables to enclose.
14171          *
14172          * A target it to put the same variable in the
14173          * same slot for ever call of a given function.
14174          * After coloring this removes all of the variable
14175          * manipulation code.
14176          *
14177          * The list of variables to enclose is built ordered
14178          * program order because except in corner cases this
14179          * gives me the stability of assignment I need.
14180          *
14181          * To gurantee that stability I lookup the variables
14182          * to see where they have been used before and
14183          * I build my final list with the assigned indicies.
14184          */
14185         vars = 0;
14186         if (enclose_triple(old_result)) {
14187                 ordered_triple_set(&vars, old_result);
14188         }
14189         for(set = rb[block->vertex].out; set; set = set->next) {
14190                 if (!enclose_triple(set->member)) {
14191                         continue;
14192                 }
14193                 if ((set->member == fcall) || (set->member == old_result)) {
14194                         continue;
14195                 }
14196                 if (!local_triple(state, me, set->member)) {
14197                         internal_error(state, set->member, "not local?");
14198                 }
14199                 ordered_triple_set(&vars, set->member);
14200         }
14201
14202         /* Lookup the current indicies of the live varialbe */
14203         used_indicies = 0;
14204         max_index = -1;
14205         for(set = vars; set ; set = set->next) {
14206                 struct triple *ins;
14207                 int index;
14208                 ins = set->member;
14209                 index  = lookup_closure_index(state, me, ins);
14210                 info[ID_BITS(ins->id)].index = index;
14211                 if (index < 0) {
14212                         continue;
14213                 }
14214                 if (index >= MAX_INDICIES) {
14215                         internal_error(state, ins, "index unexpectedly large");
14216                 }
14217                 if (used_indicies & (1 << index)) {
14218                         internal_error(state, ins, "index previously used?");
14219                 }
14220                 /* Remember which indicies have been used */
14221                 used_indicies |= (1 << index);
14222                 if (index > max_index) {
14223                         max_index = index;
14224                 }
14225         }
14226
14227         /* Walk through the live variables and make certain
14228          * everything is assigned an index.
14229          */
14230         for(set = vars; set; set = set->next) {
14231                 struct triple *ins;
14232                 int index;
14233                 ins = set->member;
14234                 index = info[ID_BITS(ins->id)].index;
14235                 if (index >= 0) {
14236                         continue;
14237                 }
14238                 /* Find the lowest unused index value */
14239                 for(index = 0; index < MAX_INDICIES; index++) {
14240                         if (!(used_indicies & (1 << index))) {
14241                                 break;
14242                         }
14243                 }
14244                 if (index == MAX_INDICIES) {
14245                         internal_error(state, ins, "no free indicies?");
14246                 }
14247                 info[ID_BITS(ins->id)].index = index;
14248                 /* Remember which indicies have been used */
14249                 used_indicies |= (1 << index);
14250                 if (index > max_index) {
14251                         max_index = index;
14252                 }
14253         }
14254
14255         /* Build the return list of variables with positions matching
14256          * their indicies.
14257          */
14258         *enclose = 0;
14259         last_var = enclose;
14260         for(i = 0; i <= max_index; i++) {
14261                 struct triple *var;
14262                 var = 0;
14263                 if (used_indicies & (1 << i)) {
14264                         for(set = vars; set; set = set->next) {
14265                                 int index;
14266                                 index = info[ID_BITS(set->member->id)].index;
14267                                 if (index == i) {
14268                                         var = set->member;
14269                                         break;
14270                                 }
14271                         }
14272                         if (!var) {
14273                                 internal_error(state, me, "missing variable");
14274                         }
14275                 }
14276                 insert_triple_set(last_var, var);
14277                 last_var = &(*last_var)->next;
14278         }
14279
14280 #if DEBUG_EXPLICIT_CLOSURES
14281         /* Print out the variables to be enclosed */
14282         loc(state->dbgout, state, fcall);
14283         fprintf(state->dbgout, "Alive: \n");
14284         for(set = *enclose; set; set = set->next) {
14285                 display_triple(state->dbgout, set->member);
14286         }
14287         fflush(state->dbgout);
14288 #endif
14289
14290         /* Clear the marks */
14291         ins = first;
14292         do {
14293                 ins->id = info[ID_BITS(ins->id)].id;
14294                 ins = ins->next;
14295         } while(ins != first);
14296
14297         /* Release the ordered list of live variables */
14298         free_closure_variables(state, &vars);
14299
14300         /* Release the storage of the old ids */
14301         xfree(info);
14302
14303         /* Release the variable lifetime information */
14304         free_variable_lifetimes(state, &bb, rb);
14305
14306         /* Release the basic blocks of this function */
14307         free_basic_blocks(state, &bb);
14308 }
14309
14310 static void expand_function_call(
14311         struct compile_state *state, struct triple *me, struct triple *fcall)
14312 {
14313         /* Generate an ordinary function call */
14314         struct type *closure_type, **closure_next;
14315         struct triple *func, *func_first, *func_last, *retvar;
14316         struct triple *first;
14317         struct type *ptype, *rtype;
14318         struct triple *jmp;
14319         struct triple *ret_addr, *ret_loc, *ret_set;
14320         struct triple_reg_set *enclose, *set;
14321         int closure_idx, pvals, i;
14322
14323 #if DEBUG_EXPLICIT_CLOSURES
14324         FILE *fp = state->dbgout;
14325         fprintf(fp, "\ndisplay_func(me) ptr: %p\n", fcall);
14326         display_func(state, fp, MISC(fcall, 0));
14327         display_func(state, fp, me);
14328         fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
14329 #endif
14330
14331         /* Find the triples */
14332         func = MISC(fcall, 0);
14333         func_first = RHS(func, 0);
14334         retvar = fretaddr(state, func);
14335         func_last  = func_first->prev;
14336         first = fcall->next;
14337
14338         /* Find what I need to enclose */
14339         compute_closure_variables(state, me, fcall, &enclose);
14340
14341         /* Compute the closure type */
14342         closure_type = new_type(TYPE_TUPLE, 0, 0);
14343         closure_type->elements = 0;
14344         closure_next = &closure_type->left;
14345         for(set = enclose; set ; set = set->next) {
14346                 struct type *type;
14347                 type = &void_type;
14348                 if (set->member) {
14349                         type = set->member->type;
14350                 }
14351                 if (!*closure_next) {
14352                         *closure_next = type;
14353                 } else {
14354                         *closure_next = new_type(TYPE_PRODUCT, *closure_next, 
14355                                 type);
14356                         closure_next = &(*closure_next)->right;
14357                 }
14358                 closure_type->elements += 1;
14359         }
14360         if (closure_type->elements == 0) {
14361                 closure_type->type = TYPE_VOID;
14362         }
14363
14364
14365 #if DEBUG_EXPLICIT_CLOSURES
14366         fprintf(state->dbgout, "closure type: ");
14367         name_of(state->dbgout, closure_type);
14368         fprintf(state->dbgout, "\n");
14369 #endif
14370
14371         /* Update the called functions closure variable */
14372         closure_idx = add_closure_type(state, func, closure_type);
14373
14374         /* Generate some needed triples */
14375         ret_loc = label(state);
14376         ret_addr = triple(state, OP_ADDRCONST, &void_ptr_type, ret_loc, 0);
14377
14378         /* Pass the parameters to the new function */
14379         ptype = func->type->right;
14380         pvals = fcall->rhs;
14381         for(i = 0; i < pvals; i++) {
14382                 struct type *atype;
14383                 struct triple *arg, *param;
14384                 atype = ptype;
14385                 if ((ptype->type & TYPE_MASK) == TYPE_PRODUCT) {
14386                         atype = ptype->left;
14387                 }
14388                 param = farg(state, func, i);
14389                 if ((param->type->type & TYPE_MASK) != (atype->type & TYPE_MASK)) {
14390                         internal_error(state, fcall, "param type mismatch");
14391                 }
14392                 arg = RHS(fcall, i);
14393                 flatten(state, first, write_expr(state, param, arg));
14394                 ptype = ptype->right;
14395         }
14396         rtype = func->type->left;
14397
14398         /* Thread the triples together */
14399         ret_loc       = flatten(state, first, ret_loc);
14400
14401         /* Save the active variables in the result variable */
14402         for(i = 0, set = enclose; set ; set = set->next, i++) {
14403                 if (!set->member) {
14404                         continue;
14405                 }
14406                 flatten(state, ret_loc,
14407                         write_expr(state,
14408                                 closure_expr(state, func, closure_idx, i),
14409                                 read_expr(state, set->member)));
14410         }
14411
14412         /* Initialize the return value */
14413         if ((rtype->type & TYPE_MASK) != TYPE_VOID) {
14414                 flatten(state, ret_loc, 
14415                         write_expr(state, 
14416                                 deref_index(state, fresult(state, func), 1),
14417                                 new_triple(state, OP_UNKNOWNVAL, rtype,  0, 0)));
14418         }
14419
14420         ret_addr      = flatten(state, ret_loc, ret_addr);
14421         ret_set       = flatten(state, ret_loc, write_expr(state, retvar, ret_addr));
14422         jmp           = flatten(state, ret_loc, 
14423                 call(state, retvar, ret_addr, func_first, func_last));
14424
14425         /* Find the result */
14426         if ((rtype->type & TYPE_MASK) != TYPE_VOID) {
14427                 struct triple * result;
14428                 result = flatten(state, first, 
14429                         read_expr(state, 
14430                                 deref_index(state, fresult(state, func), 1)));
14431
14432                 propogate_use(state, fcall, result);
14433         }
14434
14435         /* Release the original fcall instruction */
14436         release_triple(state, fcall);
14437
14438         /* Restore the active variables from the result variable */
14439         for(i = 0, set = enclose; set ; set = set->next, i++) {
14440                 struct triple_set *use, *next;
14441                 struct triple *new;
14442                 struct basic_blocks bb;
14443                 if (!set->member || (set->member == fcall)) {
14444                         continue;
14445                 }
14446                 /* Generate an expression for the value */
14447                 new = flatten(state, first,
14448                         read_expr(state, 
14449                                 closure_expr(state, func, closure_idx, i)));
14450
14451
14452                 /* If the original is an lvalue restore the preserved value */
14453                 if (is_lvalue(state, set->member)) {
14454                         flatten(state, first,
14455                                 write_expr(state, set->member, new));
14456                         continue;
14457                 }
14458                 /*
14459                  * If the original is a value update the dominated uses.
14460                  */
14461                 
14462                 /* Analyze the basic blocks so I can see who dominates whom */
14463                 bb.func = me;
14464                 bb.first = RHS(me, 0);
14465                 if (!triple_is_ret(state, bb.first->prev)) {
14466                         bb.func = 0;
14467                 }
14468                 analyze_basic_blocks(state, &bb);
14469                 
14470
14471 #if DEBUG_EXPLICIT_CLOSURES
14472                 fprintf(state->errout, "Updating domindated uses: %p -> %p\n",
14473                         set->member, new);
14474 #endif
14475                 /* If fcall dominates the use update the expression */
14476                 for(use = set->member->use; use; use = next) {
14477                         /* Replace use modifies the use chain and 
14478                          * removes use, so I must take a copy of the
14479                          * next entry early.
14480                          */
14481                         next = use->next;
14482                         if (!tdominates(state, fcall, use->member)) {
14483                                 continue;
14484                         }
14485                         replace_use(state, set->member, new, use->member);
14486                 }
14487
14488                 /* Release the basic blocks, the instructions will be
14489                  * different next time, and flatten/insert_triple does
14490                  * not update the block values so I can't cache the analysis.
14491                  */
14492                 free_basic_blocks(state, &bb);
14493         }
14494
14495         /* Release the closure variable list */
14496         free_closure_variables(state, &enclose);
14497
14498         if (state->compiler->debug & DEBUG_INLINE) {
14499                 FILE *fp = state->dbgout;
14500                 fprintf(fp, "\n");
14501                 loc(fp, state, 0);
14502                 fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
14503                 display_func(state, fp, func);
14504                 display_func(state, fp, me);
14505                 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
14506         }
14507
14508         return;
14509 }
14510
14511 static int do_inline(struct compile_state *state, struct triple *func)
14512 {
14513         int do_inline;
14514         int policy;
14515
14516         policy = state->compiler->flags & COMPILER_INLINE_MASK;
14517         switch(policy) {
14518         case COMPILER_INLINE_ALWAYS:
14519                 do_inline = 1;
14520                 if (func->type->type & ATTRIB_NOINLINE) {
14521                         error(state, func, "noinline with always_inline compiler option");
14522                 }
14523                 break;
14524         case COMPILER_INLINE_NEVER:
14525                 do_inline = 0;
14526                 if (func->type->type & ATTRIB_ALWAYS_INLINE) {
14527                         error(state, func, "always_inline with noinline compiler option");
14528                 }
14529                 break;
14530         case COMPILER_INLINE_DEFAULTON:
14531                 switch(func->type->type & STOR_MASK) {
14532                 case STOR_STATIC | STOR_INLINE:
14533                 case STOR_LOCAL  | STOR_INLINE:
14534                 case STOR_EXTERN | STOR_INLINE:
14535                         do_inline = 1;
14536                         break;
14537                 default:
14538                         do_inline = 1;
14539                         break;
14540                 }
14541                 break;
14542         case COMPILER_INLINE_DEFAULTOFF:
14543                 switch(func->type->type & STOR_MASK) {
14544                 case STOR_STATIC | STOR_INLINE:
14545                 case STOR_LOCAL  | STOR_INLINE:
14546                 case STOR_EXTERN | STOR_INLINE:
14547                         do_inline = 1;
14548                         break;
14549                 default:
14550                         do_inline = 0;
14551                         break;
14552                 }
14553                 break;
14554         case COMPILER_INLINE_NOPENALTY:
14555                 switch(func->type->type & STOR_MASK) {
14556                 case STOR_STATIC | STOR_INLINE:
14557                 case STOR_LOCAL  | STOR_INLINE:
14558                 case STOR_EXTERN | STOR_INLINE:
14559                         do_inline = 1;
14560                         break;
14561                 default:
14562                         do_inline = (func->u.cval == 1);
14563                         break;
14564                 }
14565                 break;
14566         default:
14567                 do_inline = 0;
14568                 internal_error(state, 0, "Unimplemented inline policy");
14569                 break;
14570         }
14571         /* Force inlining */
14572         if (func->type->type & ATTRIB_NOINLINE) {
14573                 do_inline = 0;
14574         }
14575         if (func->type->type & ATTRIB_ALWAYS_INLINE) {
14576                 do_inline = 1;
14577         }
14578         return do_inline;
14579 }
14580
14581 static void inline_function(struct compile_state *state, struct triple *me, void *arg)
14582 {
14583         struct triple *first, *ptr, *next;
14584         /* If the function is not used don't bother */
14585         if (me->u.cval <= 0) {
14586                 return;
14587         }
14588         if (state->compiler->debug & DEBUG_CALLS2) {
14589                 FILE *fp = state->dbgout;
14590                 fprintf(fp, "in: %s\n",
14591                         me->type->type_ident->name);
14592         }
14593
14594         first = RHS(me, 0);
14595         ptr = next = first;
14596         do {
14597                 struct triple *func, *prev;
14598                 ptr = next;
14599                 prev = ptr->prev;
14600                 next = ptr->next;
14601                 if (ptr->op != OP_FCALL) {
14602                         continue;
14603                 }
14604                 func = MISC(ptr, 0);
14605                 /* See if the function should be inlined */
14606                 if (!do_inline(state, func)) {
14607                         /* Put a label after the fcall */
14608                         post_triple(state, ptr, OP_LABEL, &void_type, 0, 0);
14609                         continue;
14610                 }
14611                 if (state->compiler->debug & DEBUG_CALLS) {
14612                         FILE *fp = state->dbgout;
14613                         if (state->compiler->debug & DEBUG_CALLS2) {
14614                                 loc(fp, state, ptr);
14615                         }
14616                         fprintf(fp, "inlining %s\n",
14617                                 func->type->type_ident->name);
14618                         fflush(fp);
14619                 }
14620
14621                 /* Update the function use counts */
14622                 func->u.cval -= 1;
14623
14624                 /* Replace the fcall with the called function */
14625                 expand_inline_call(state, me, ptr);
14626
14627                 next = prev->next;
14628         } while (next != first);
14629
14630         ptr = next = first;
14631         do {
14632                 struct triple *prev, *func;
14633                 ptr = next;
14634                 prev = ptr->prev;
14635                 next = ptr->next;
14636                 if (ptr->op != OP_FCALL) {
14637                         continue;
14638                 }
14639                 func = MISC(ptr, 0);
14640                 if (state->compiler->debug & DEBUG_CALLS) {
14641                         FILE *fp = state->dbgout;
14642                         if (state->compiler->debug & DEBUG_CALLS2) {
14643                                 loc(fp, state, ptr);
14644                         }
14645                         fprintf(fp, "calling %s\n",
14646                                 func->type->type_ident->name);
14647                         fflush(fp);
14648                 }
14649                 /* Replace the fcall with the instruction sequence
14650                  * needed to make the call.
14651                  */
14652                 expand_function_call(state, me, ptr);
14653                 next = prev->next;
14654         } while(next != first);
14655 }
14656
14657 static void inline_functions(struct compile_state *state, struct triple *func)
14658 {
14659         inline_function(state, func, 0);
14660         reverse_walk_functions(state, inline_function, 0);
14661 }
14662
14663 static void insert_function(struct compile_state *state,
14664         struct triple *func, void *arg)
14665 {
14666         struct triple *first, *end, *ffirst, *fend;
14667
14668         if (state->compiler->debug & DEBUG_INLINE) {
14669                 FILE *fp = state->errout;
14670                 fprintf(fp, "%s func count: %d\n", 
14671                         func->type->type_ident->name, func->u.cval);
14672         }
14673         if (func->u.cval == 0) {
14674                 return;
14675         }
14676
14677         /* Find the end points of the lists */
14678         first  = arg;
14679         end    = first->prev;
14680         ffirst = RHS(func, 0);
14681         fend   = ffirst->prev;
14682
14683         /* splice the lists together */
14684         end->next    = ffirst;
14685         ffirst->prev = end;
14686         fend->next   = first;
14687         first->prev  = fend;
14688 }
14689
14690 struct triple *input_asm(struct compile_state *state)
14691 {
14692         struct asm_info *info;
14693         struct triple *def;
14694         int i, out;
14695         
14696         info = xcmalloc(sizeof(*info), "asm_info");
14697         info->str = "";
14698
14699         out = sizeof(arch_input_regs)/sizeof(arch_input_regs[0]);
14700         memcpy(&info->tmpl.lhs, arch_input_regs, sizeof(arch_input_regs));
14701
14702         def = new_triple(state, OP_ASM, &void_type, out, 0);
14703         def->u.ainfo = info;
14704         def->id |= TRIPLE_FLAG_VOLATILE;
14705         
14706         for(i = 0; i < out; i++) {
14707                 struct triple *piece;
14708                 piece = triple(state, OP_PIECE, &int_type, def, 0);
14709                 piece->u.cval = i;
14710                 LHS(def, i) = piece;
14711         }
14712
14713         return def;
14714 }
14715
14716 struct triple *output_asm(struct compile_state *state)
14717 {
14718         struct asm_info *info;
14719         struct triple *def;
14720         int in;
14721         
14722         info = xcmalloc(sizeof(*info), "asm_info");
14723         info->str = "";
14724
14725         in = sizeof(arch_output_regs)/sizeof(arch_output_regs[0]);
14726         memcpy(&info->tmpl.rhs, arch_output_regs, sizeof(arch_output_regs));
14727
14728         def = new_triple(state, OP_ASM, &void_type, 0, in);
14729         def->u.ainfo = info;
14730         def->id |= TRIPLE_FLAG_VOLATILE;
14731         
14732         return def;
14733 }
14734
14735 static void join_functions(struct compile_state *state)
14736 {
14737         struct triple *jmp, *start, *end, *call, *in, *out, *func;
14738         struct file_state file;
14739         struct type *pnext, *param;
14740         struct type *result_type, *args_type;
14741         int idx;
14742
14743         /* Be clear the functions have not been joined yet */
14744         state->functions_joined = 0;
14745
14746         /* Dummy file state to get debug handing right */
14747         memset(&file, 0, sizeof(file));
14748         file.basename = "";
14749         file.line = 0;
14750         file.report_line = 0;
14751         file.report_name = file.basename;
14752         file.prev = state->file;
14753         state->file = &file;
14754         state->function = "";
14755
14756         if (!state->main_function) {
14757                 error(state, 0, "No functions to compile\n");
14758         }
14759
14760         /* The type of arguments */
14761         args_type   = state->main_function->type->right;
14762         /* The return type without any specifiers */
14763         result_type = clone_type(0, state->main_function->type->left);
14764
14765
14766         /* Verify the external arguments */
14767         if (registers_of(state, args_type) > ARCH_INPUT_REGS) {
14768                 error(state, state->main_function, 
14769                         "Too many external input arguments");
14770         }
14771         if (registers_of(state, result_type) > ARCH_OUTPUT_REGS) {
14772                 error(state, state->main_function, 
14773                         "Too many external output arguments");
14774         }
14775
14776         /* Lay down the basic program structure */
14777         end           = label(state);
14778         start         = label(state);
14779         start         = flatten(state, state->first, start);
14780         end           = flatten(state, state->first, end);
14781         in            = input_asm(state);
14782         out           = output_asm(state);
14783         call          = new_triple(state, OP_FCALL, result_type, -1, registers_of(state, args_type));
14784         MISC(call, 0) = state->main_function;
14785         in            = flatten(state, state->first, in);
14786         call          = flatten(state, state->first, call);
14787         out           = flatten(state, state->first, out);
14788
14789
14790         /* Read the external input arguments */
14791         pnext = args_type;
14792         idx = 0;
14793         while(pnext && ((pnext->type & TYPE_MASK) != TYPE_VOID)) {
14794                 struct triple *expr;
14795                 param = pnext;
14796                 pnext = 0;
14797                 if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
14798                         pnext = param->right;
14799                         param = param->left;
14800                 }
14801                 if (registers_of(state, param) != 1) {
14802                         error(state, state->main_function, 
14803                                 "Arg: %d %s requires multiple registers", 
14804                                 idx + 1, param->field_ident->name);
14805                 }
14806                 expr = read_expr(state, LHS(in, idx));
14807                 RHS(call, idx) = expr;
14808                 expr = flatten(state, call, expr);
14809                 use_triple(expr, call);
14810
14811                 idx++;  
14812         }
14813
14814
14815         /* Write the external output arguments */
14816         pnext = result_type;
14817         if ((pnext->type & TYPE_MASK) == TYPE_STRUCT) {
14818                 pnext = result_type->left;
14819         }
14820         for(idx = 0; idx < out->rhs; idx++) {
14821                 struct triple *expr;
14822                 param = pnext;
14823                 pnext = 0;
14824                 if (param && ((param->type & TYPE_MASK) == TYPE_PRODUCT)) {
14825                         pnext = param->right;
14826                         param = param->left;
14827                 }
14828                 if (param && ((param->type & TYPE_MASK) == TYPE_VOID)) {
14829                         param = 0;
14830                 }
14831                 if (param) {
14832                         if (registers_of(state, param) != 1) {
14833                                 error(state, state->main_function,
14834                                         "Result: %d %s requires multiple registers",
14835                                         idx, param->field_ident->name);
14836                         }
14837                         expr = read_expr(state, call);
14838                         if ((result_type->type & TYPE_MASK) == TYPE_STRUCT) {
14839                                 expr = deref_field(state, expr, param->field_ident);
14840                         }
14841                 } else {
14842                         expr = triple(state, OP_UNKNOWNVAL, &int_type, 0, 0);
14843                 }
14844                 flatten(state, out, expr);
14845                 RHS(out, idx) = expr;
14846                 use_triple(expr, out);
14847         }
14848
14849         /* Allocate a dummy containing function */
14850         func = triple(state, OP_LIST, 
14851                 new_type(TYPE_FUNCTION, &void_type, &void_type), 0, 0);
14852         func->type->type_ident = lookup(state, "", 0);
14853         RHS(func, 0) = state->first;
14854         func->u.cval = 1;
14855
14856         /* See which functions are called, and how often */
14857         mark_live_functions(state);
14858         inline_functions(state, func);
14859         walk_functions(state, insert_function, end);
14860
14861         if (start->next != end) {
14862                 jmp = flatten(state, start, branch(state, end, 0));
14863         }
14864
14865         /* OK now the functions have been joined. */
14866         state->functions_joined = 1;
14867
14868         /* Done now cleanup */
14869         state->file = file.prev;
14870         state->function = 0;
14871 }
14872
14873 /*
14874  * Data structurs for optimation.
14875  */
14876
14877
14878 static int do_use_block(
14879         struct block *used, struct block_set **head, struct block *user, 
14880         int front)
14881 {
14882         struct block_set **ptr, *new;
14883         if (!used)
14884                 return 0;
14885         if (!user)
14886                 return 0;
14887         ptr = head;
14888         while(*ptr) {
14889                 if ((*ptr)->member == user) {
14890                         return 0;
14891                 }
14892                 ptr = &(*ptr)->next;
14893         }
14894         new = xcmalloc(sizeof(*new), "block_set");
14895         new->member = user;
14896         if (front) {
14897                 new->next = *head;
14898                 *head = new;
14899         }
14900         else {
14901                 new->next = 0;
14902                 *ptr = new;
14903         }
14904         return 1;
14905 }
14906 static int do_unuse_block(
14907         struct block *used, struct block_set **head, struct block *unuser)
14908 {
14909         struct block_set *use, **ptr;
14910         int count;
14911         count = 0;
14912         ptr = head;
14913         while(*ptr) {
14914                 use = *ptr;
14915                 if (use->member == unuser) {
14916                         *ptr = use->next;
14917                         memset(use, -1, sizeof(*use));
14918                         xfree(use);
14919                         count += 1;
14920                 }
14921                 else {
14922                         ptr = &use->next;
14923                 }
14924         }
14925         return count;
14926 }
14927
14928 static void use_block(struct block *used, struct block *user)
14929 {
14930         int count;
14931         /* Append new to the head of the list, print_block
14932          * depends on this.
14933          */
14934         count = do_use_block(used, &used->use, user, 1); 
14935         used->users += count;
14936 }
14937 static void unuse_block(struct block *used, struct block *unuser)
14938 {
14939         int count;
14940         count = do_unuse_block(used, &used->use, unuser); 
14941         used->users -= count;
14942 }
14943
14944 static void add_block_edge(struct block *block, struct block *edge, int front)
14945 {
14946         int count;
14947         count = do_use_block(block, &block->edges, edge, front);
14948         block->edge_count += count;
14949 }
14950
14951 static void remove_block_edge(struct block *block, struct block *edge)
14952 {
14953         int count;
14954         count = do_unuse_block(block, &block->edges, edge);
14955         block->edge_count -= count;
14956 }
14957
14958 static void idom_block(struct block *idom, struct block *user)
14959 {
14960         do_use_block(idom, &idom->idominates, user, 0);
14961 }
14962
14963 static void unidom_block(struct block *idom, struct block *unuser)
14964 {
14965         do_unuse_block(idom, &idom->idominates, unuser);
14966 }
14967
14968 static void domf_block(struct block *block, struct block *domf)
14969 {
14970         do_use_block(block, &block->domfrontier, domf, 0);
14971 }
14972
14973 static void undomf_block(struct block *block, struct block *undomf)
14974 {
14975         do_unuse_block(block, &block->domfrontier, undomf);
14976 }
14977
14978 static void ipdom_block(struct block *ipdom, struct block *user)
14979 {
14980         do_use_block(ipdom, &ipdom->ipdominates, user, 0);
14981 }
14982
14983 static void unipdom_block(struct block *ipdom, struct block *unuser)
14984 {
14985         do_unuse_block(ipdom, &ipdom->ipdominates, unuser);
14986 }
14987
14988 static void ipdomf_block(struct block *block, struct block *ipdomf)
14989 {
14990         do_use_block(block, &block->ipdomfrontier, ipdomf, 0);
14991 }
14992
14993 static void unipdomf_block(struct block *block, struct block *unipdomf)
14994 {
14995         do_unuse_block(block, &block->ipdomfrontier, unipdomf);
14996 }
14997
14998 static int walk_triples(
14999         struct compile_state *state, 
15000         int (*cb)(struct compile_state *state, struct triple *ptr, void *arg),
15001         void *arg)
15002 {
15003         struct triple *ptr;
15004         int result;
15005         ptr = state->first;
15006         do {
15007                 result = cb(state, ptr, arg);
15008                 if (ptr->next->prev != ptr) {
15009                         internal_error(state, ptr->next, "bad prev");
15010                 }
15011                 ptr = ptr->next;
15012         } while((result == 0) && (ptr != state->first));
15013         return result;
15014 }
15015
15016 #define PRINT_LIST 1
15017 static int do_print_triple(struct compile_state *state, struct triple *ins, void *arg)
15018 {
15019         FILE *fp = arg;
15020         int op;
15021         op = ins->op;
15022         if (op == OP_LIST) {
15023 #if !PRINT_LIST
15024                 return 0;
15025 #endif
15026         }
15027         if ((op == OP_LABEL) && (ins->use)) {
15028                 fprintf(fp, "\n%p:\n", ins);
15029         }
15030         display_triple(fp, ins);
15031
15032         if (triple_is_branch(state, ins) && ins->use && 
15033                 (ins->op != OP_RET) && (ins->op != OP_FCALL)) {
15034                 internal_error(state, ins, "branch used?");
15035         }
15036         if (triple_is_branch(state, ins)) {
15037                 fprintf(fp, "\n");
15038         }
15039         return 0;
15040 }
15041
15042 static void print_triples(struct compile_state *state)
15043 {
15044         if (state->compiler->debug & DEBUG_TRIPLES) {
15045                 FILE *fp = state->dbgout;
15046                 fprintf(fp, "--------------- triples ---------------\n");
15047                 walk_triples(state, do_print_triple, fp);
15048                 fprintf(fp, "\n");
15049         }
15050 }
15051
15052 struct cf_block {
15053         struct block *block;
15054 };
15055 static void find_cf_blocks(struct cf_block *cf, struct block *block)
15056 {
15057         struct block_set *edge;
15058         if (!block || (cf[block->vertex].block == block)) {
15059                 return;
15060         }
15061         cf[block->vertex].block = block;
15062         for(edge = block->edges; edge; edge = edge->next) {
15063                 find_cf_blocks(cf, edge->member);
15064         }
15065 }
15066
15067 static void print_control_flow(struct compile_state *state,
15068         FILE *fp, struct basic_blocks *bb)
15069 {
15070         struct cf_block *cf;
15071         int i;
15072         fprintf(fp, "\ncontrol flow\n");
15073         cf = xcmalloc(sizeof(*cf) * (bb->last_vertex + 1), "cf_block");
15074         find_cf_blocks(cf, bb->first_block);
15075
15076         for(i = 1; i <= bb->last_vertex; i++) {
15077                 struct block *block;
15078                 struct block_set *edge;
15079                 block = cf[i].block;
15080                 if (!block)
15081                         continue;
15082                 fprintf(fp, "(%p) %d:", block, block->vertex);
15083                 for(edge = block->edges; edge; edge = edge->next) {
15084                         fprintf(fp, " %d", edge->member->vertex);
15085                 }
15086                 fprintf(fp, "\n");
15087         }
15088
15089         xfree(cf);
15090 }
15091
15092 static void free_basic_block(struct compile_state *state, struct block *block)
15093 {
15094         struct block_set *edge, *entry;
15095         struct block *child;
15096         if (!block) {
15097                 return;
15098         }
15099         if (block->vertex == -1) {
15100                 return;
15101         }
15102         block->vertex = -1;
15103         for(edge = block->edges; edge; edge = edge->next) {
15104                 if (edge->member) {
15105                         unuse_block(edge->member, block);
15106                 }
15107         }
15108         if (block->idom) {
15109                 unidom_block(block->idom, block);
15110         }
15111         block->idom = 0;
15112         if (block->ipdom) {
15113                 unipdom_block(block->ipdom, block);
15114         }
15115         block->ipdom = 0;
15116         while((entry = block->use)) {
15117                 child = entry->member;
15118                 unuse_block(block, child);
15119                 if (child && (child->vertex != -1)) {
15120                         for(edge = child->edges; edge; edge = edge->next) {
15121                                 edge->member = 0;
15122                         }
15123                 }
15124         }
15125         while((entry = block->idominates)) {
15126                 child = entry->member;
15127                 unidom_block(block, child);
15128                 if (child && (child->vertex != -1)) {
15129                         child->idom = 0;
15130                 }
15131         }
15132         while((entry = block->domfrontier)) {
15133                 child = entry->member;
15134                 undomf_block(block, child);
15135         }
15136         while((entry = block->ipdominates)) {
15137                 child = entry->member;
15138                 unipdom_block(block, child);
15139                 if (child && (child->vertex != -1)) {
15140                         child->ipdom = 0;
15141                 }
15142         }
15143         while((entry = block->ipdomfrontier)) {
15144                 child = entry->member;
15145                 unipdomf_block(block, child);
15146         }
15147         if (block->users != 0) {
15148                 internal_error(state, 0, "block still has users");
15149         }
15150         while((edge = block->edges)) {
15151                 child = edge->member;
15152                 remove_block_edge(block, child);
15153                 
15154                 if (child && (child->vertex != -1)) {
15155                         free_basic_block(state, child);
15156                 }
15157         }
15158         memset(block, -1, sizeof(*block));
15159 #ifndef WIN32
15160         xfree(block);
15161 #endif
15162 }
15163
15164 static void free_basic_blocks(struct compile_state *state, 
15165         struct basic_blocks *bb)
15166 {
15167         struct triple *first, *ins;
15168         free_basic_block(state, bb->first_block);
15169         bb->last_vertex = 0;
15170         bb->first_block = bb->last_block = 0;
15171         first = bb->first;
15172         ins = first;
15173         do {
15174                 if (triple_stores_block(state, ins)) {
15175                         ins->u.block = 0;
15176                 }
15177                 ins = ins->next;
15178         } while(ins != first);
15179         
15180 }
15181
15182 static struct block *basic_block(struct compile_state *state, 
15183         struct basic_blocks *bb, struct triple *first)
15184 {
15185         struct block *block;
15186         struct triple *ptr;
15187         if (!triple_is_label(state, first)) {
15188                 internal_error(state, first, "block does not start with a label");
15189         }
15190         /* See if this basic block has already been setup */
15191         if (first->u.block != 0) {
15192                 return first->u.block;
15193         }
15194         /* Allocate another basic block structure */
15195         bb->last_vertex += 1;
15196         block = xcmalloc(sizeof(*block), "block");
15197         block->first = block->last = first;
15198         block->vertex = bb->last_vertex;
15199         ptr = first;
15200         do {
15201                 if ((ptr != first) && triple_is_label(state, ptr) && (ptr->use)) { 
15202                         break;
15203                 }
15204                 block->last = ptr;
15205                 /* If ptr->u is not used remember where the baic block is */
15206                 if (triple_stores_block(state, ptr)) {
15207                         ptr->u.block = block;
15208                 }
15209                 if (triple_is_branch(state, ptr)) {
15210                         break;
15211                 }
15212                 ptr = ptr->next;
15213         } while (ptr != bb->first);
15214         if ((ptr == bb->first) ||
15215                 ((ptr->next == bb->first) && (
15216                         triple_is_end(state, ptr) || 
15217                         triple_is_ret(state, ptr))))
15218         {
15219                 /* The block has no outflowing edges */
15220         }
15221         else if (triple_is_label(state, ptr)) {
15222                 struct block *next;
15223                 next = basic_block(state, bb, ptr);
15224                 add_block_edge(block, next, 0);
15225                 use_block(next, block);
15226         }
15227         else if (triple_is_branch(state, ptr)) {
15228                 struct triple **expr, *first;
15229                 struct block *child;
15230                 /* Find the branch targets.
15231                  * I special case the first branch as that magically
15232                  * avoids some difficult cases for the register allocator.
15233                  */
15234                 expr = triple_edge_targ(state, ptr, 0);
15235                 if (!expr) {
15236                         internal_error(state, ptr, "branch without targets");
15237                 }
15238                 first = *expr;
15239                 expr = triple_edge_targ(state, ptr, expr);
15240                 for(; expr; expr = triple_edge_targ(state, ptr, expr)) {
15241                         if (!*expr) continue;
15242                         child = basic_block(state, bb, *expr);
15243                         use_block(child, block);
15244                         add_block_edge(block, child, 0);
15245                 }
15246                 if (first) {
15247                         child = basic_block(state, bb, first);
15248                         use_block(child, block);
15249                         add_block_edge(block, child, 1);
15250
15251                         /* Be certain the return block of a call is
15252                          * in a basic block.  When it is not find
15253                          * start of the block, insert a label if
15254                          * necessary and build the basic block.
15255                          * Then add a fake edge from the start block
15256                          * to the return block of the function.
15257                          */
15258                         if (state->functions_joined && triple_is_call(state, ptr)
15259                                 && !block_of_triple(state, MISC(ptr, 0))) {
15260                                 struct block *tail;
15261                                 struct triple *start;
15262                                 start = triple_to_block_start(state, MISC(ptr, 0));
15263                                 if (!triple_is_label(state, start)) {
15264                                         start = pre_triple(state,
15265                                                 start, OP_LABEL, &void_type, 0, 0);
15266                                 }
15267                                 tail = basic_block(state, bb, start);
15268                                 add_block_edge(child, tail, 0);
15269                                 use_block(tail, child);
15270                         }
15271                 }
15272         }
15273         else {
15274                 internal_error(state, 0, "Bad basic block split");
15275         }
15276 #if 0
15277 {
15278         struct block_set *edge;
15279         FILE *fp = state->errout;
15280         fprintf(fp, "basic_block: %10p [%2d] ( %10p - %10p )",
15281                 block, block->vertex, 
15282                 block->first, block->last);
15283         for(edge = block->edges; edge; edge = edge->next) {
15284                 fprintf(fp, " %10p [%2d]",
15285                         edge->member ? edge->member->first : 0,
15286                         edge->member ? edge->member->vertex : -1);
15287         }
15288         fprintf(fp, "\n");
15289 }
15290 #endif
15291         return block;
15292 }
15293
15294
15295 static void walk_blocks(struct compile_state *state, struct basic_blocks *bb,
15296         void (*cb)(struct compile_state *state, struct block *block, void *arg),
15297         void *arg)
15298 {
15299         struct triple *ptr, *first;
15300         struct block *last_block;
15301         last_block = 0;
15302         first = bb->first;
15303         ptr = first;
15304         do {
15305                 if (triple_stores_block(state, ptr)) {
15306                         struct block *block;
15307                         block = ptr->u.block;
15308                         if (block && (block != last_block)) {
15309                                 cb(state, block, arg);
15310                         }
15311                         last_block = block;
15312                 }
15313                 ptr = ptr->next;
15314         } while(ptr != first);
15315 }
15316
15317 static void print_block(
15318         struct compile_state *state, struct block *block, void *arg)
15319 {
15320         struct block_set *user, *edge;
15321         struct triple *ptr;
15322         FILE *fp = arg;
15323
15324         fprintf(fp, "\nblock: %p (%d) ",
15325                 block, 
15326                 block->vertex);
15327
15328         for(edge = block->edges; edge; edge = edge->next) {
15329                 fprintf(fp, " %p<-%p",
15330                         edge->member,
15331                         (edge->member && edge->member->use)?
15332                         edge->member->use->member : 0);
15333         }
15334         fprintf(fp, "\n");
15335         if (block->first->op == OP_LABEL) {
15336                 fprintf(fp, "%p:\n", block->first);
15337         }
15338         for(ptr = block->first; ; ) {
15339                 display_triple(fp, ptr);
15340                 if (ptr == block->last)
15341                         break;
15342                 ptr = ptr->next;
15343                 if (ptr == block->first) {
15344                         internal_error(state, 0, "missing block last?");
15345                 }
15346         }
15347         fprintf(fp, "users %d: ", block->users);
15348         for(user = block->use; user; user = user->next) {
15349                 fprintf(fp, "%p (%d) ", 
15350                         user->member,
15351                         user->member->vertex);
15352         }
15353         fprintf(fp,"\n\n");
15354 }
15355
15356
15357 static void romcc_print_blocks(struct compile_state *state, FILE *fp)
15358 {
15359         fprintf(fp, "--------------- blocks ---------------\n");
15360         walk_blocks(state, &state->bb, print_block, fp);
15361 }
15362 static void print_blocks(struct compile_state *state, const char *func, FILE *fp)
15363 {
15364         if (state->compiler->debug & DEBUG_BASIC_BLOCKS) {
15365                 fprintf(fp, "After %s\n", func);
15366                 romcc_print_blocks(state, fp);
15367                 if (state->compiler->debug & DEBUG_FDOMINATORS) {
15368                         print_dominators(state, fp, &state->bb);
15369                         print_dominance_frontiers(state, fp, &state->bb);
15370                 }
15371                 print_control_flow(state, fp, &state->bb);
15372         }
15373 }
15374
15375 static void prune_nonblock_triples(struct compile_state *state, 
15376         struct basic_blocks *bb)
15377 {
15378         struct block *block;
15379         struct triple *first, *ins, *next;
15380         /* Delete the triples not in a basic block */
15381         block = 0;
15382         first = bb->first;
15383         ins = first;
15384         do {
15385                 next = ins->next;
15386                 if (ins->op == OP_LABEL) {
15387                         block = ins->u.block;
15388                 }
15389                 if (!block) {
15390                         struct triple_set *use;
15391                         for(use = ins->use; use; use = use->next) {
15392                                 struct block *block;
15393                                 block = block_of_triple(state, use->member);
15394                                 if (block != 0) {
15395                                         internal_error(state, ins, "pruning used ins?");
15396                                 }
15397                         }
15398                         release_triple(state, ins);
15399                 }
15400                 if (block && block->last == ins) {
15401                         block = 0;
15402                 }
15403                 ins = next;
15404         } while(ins != first);
15405 }
15406
15407 static void setup_basic_blocks(struct compile_state *state, 
15408         struct basic_blocks *bb)
15409 {
15410         if (!triple_stores_block(state, bb->first)) {
15411                 internal_error(state, 0, "ins will not store block?");
15412         }
15413         /* Initialize the state */
15414         bb->first_block = bb->last_block = 0;
15415         bb->last_vertex = 0;
15416         free_basic_blocks(state, bb);
15417
15418         /* Find the basic blocks */
15419         bb->first_block = basic_block(state, bb, bb->first);
15420
15421         /* Be certain the last instruction of a function, or the
15422          * entire program is in a basic block.  When it is not find 
15423          * the start of the block, insert a label if necessary and build 
15424          * basic block.  Then add a fake edge from the start block
15425          * to the final block.
15426          */
15427         if (!block_of_triple(state, bb->first->prev)) {
15428                 struct triple *start;
15429                 struct block *tail;
15430                 start = triple_to_block_start(state, bb->first->prev);
15431                 if (!triple_is_label(state, start)) {
15432                         start = pre_triple(state,
15433                                 start, OP_LABEL, &void_type, 0, 0);
15434                 }
15435                 tail = basic_block(state, bb, start);
15436                 add_block_edge(bb->first_block, tail, 0);
15437                 use_block(tail, bb->first_block);
15438         }
15439         
15440         /* Find the last basic block.
15441          */
15442         bb->last_block = block_of_triple(state, bb->first->prev);
15443
15444         /* Delete the triples not in a basic block */
15445         prune_nonblock_triples(state, bb);
15446
15447 #if 0
15448         /* If we are debugging print what I have just done */
15449         if (state->compiler->debug & DEBUG_BASIC_BLOCKS) {
15450                 print_blocks(state, state->dbgout);
15451                 print_control_flow(state, bb);
15452         }
15453 #endif
15454 }
15455
15456
15457 struct sdom_block {
15458         struct block *block;
15459         struct sdom_block *sdominates;
15460         struct sdom_block *sdom_next;
15461         struct sdom_block *sdom;
15462         struct sdom_block *label;
15463         struct sdom_block *parent;
15464         struct sdom_block *ancestor;
15465         int vertex;
15466 };
15467
15468
15469 static void unsdom_block(struct sdom_block *block)
15470 {
15471         struct sdom_block **ptr;
15472         if (!block->sdom_next) {
15473                 return;
15474         }
15475         ptr = &block->sdom->sdominates;
15476         while(*ptr) {
15477                 if ((*ptr) == block) {
15478                         *ptr = block->sdom_next;
15479                         return;
15480                 }
15481                 ptr = &(*ptr)->sdom_next;
15482         }
15483 }
15484
15485 static void sdom_block(struct sdom_block *sdom, struct sdom_block *block)
15486 {
15487         unsdom_block(block);
15488         block->sdom = sdom;
15489         block->sdom_next = sdom->sdominates;
15490         sdom->sdominates = block;
15491 }
15492
15493
15494
15495 static int initialize_sdblock(struct sdom_block *sd,
15496         struct block *parent, struct block *block, int vertex)
15497 {
15498         struct block_set *edge;
15499         if (!block || (sd[block->vertex].block == block)) {
15500                 return vertex;
15501         }
15502         vertex += 1;
15503         /* Renumber the blocks in a convinient fashion */
15504         block->vertex = vertex;
15505         sd[vertex].block    = block;
15506         sd[vertex].sdom     = &sd[vertex];
15507         sd[vertex].label    = &sd[vertex];
15508         sd[vertex].parent   = parent? &sd[parent->vertex] : 0;
15509         sd[vertex].ancestor = 0;
15510         sd[vertex].vertex   = vertex;
15511         for(edge = block->edges; edge; edge = edge->next) {
15512                 vertex = initialize_sdblock(sd, block, edge->member, vertex);
15513         }
15514         return vertex;
15515 }
15516
15517 static int initialize_spdblock(
15518         struct compile_state *state, struct sdom_block *sd,
15519         struct block *parent, struct block *block, int vertex)
15520 {
15521         struct block_set *user;
15522         if (!block || (sd[block->vertex].block == block)) {
15523                 return vertex;
15524         }
15525         vertex += 1;
15526         /* Renumber the blocks in a convinient fashion */
15527         block->vertex = vertex;
15528         sd[vertex].block    = block;
15529         sd[vertex].sdom     = &sd[vertex];
15530         sd[vertex].label    = &sd[vertex];
15531         sd[vertex].parent   = parent? &sd[parent->vertex] : 0;
15532         sd[vertex].ancestor = 0;
15533         sd[vertex].vertex   = vertex;
15534         for(user = block->use; user; user = user->next) {
15535                 vertex = initialize_spdblock(state, sd, block, user->member, vertex);
15536         }
15537         return vertex;
15538 }
15539
15540 static int setup_spdblocks(struct compile_state *state, 
15541         struct basic_blocks *bb, struct sdom_block *sd)
15542 {
15543         struct block *block;
15544         int vertex;
15545         /* Setup as many sdpblocks as possible without using fake edges */
15546         vertex = initialize_spdblock(state, sd, 0, bb->last_block, 0);
15547
15548         /* Walk through the graph and find unconnected blocks.  Add a
15549          * fake edge from the unconnected blocks to the end of the
15550          * graph. 
15551          */
15552         block = bb->first_block->last->next->u.block;
15553         for(; block && block != bb->first_block; block = block->last->next->u.block) {
15554                 if (sd[block->vertex].block == block) {
15555                         continue;
15556                 }
15557 #if DEBUG_SDP_BLOCKS
15558                 {
15559                         FILE *fp = state->errout;
15560                         fprintf(fp, "Adding %d\n", vertex +1);
15561                 }
15562 #endif
15563                 add_block_edge(block, bb->last_block, 0);
15564                 use_block(bb->last_block, block);
15565
15566                 vertex = initialize_spdblock(state, sd, bb->last_block, block, vertex);
15567         }
15568         return vertex;
15569 }
15570
15571 static void compress_ancestors(struct sdom_block *v)
15572 {
15573         /* This procedure assumes ancestor(v) != 0 */
15574         /* if (ancestor(ancestor(v)) != 0) {
15575          *      compress(ancestor(ancestor(v)));
15576          *      if (semi(label(ancestor(v))) < semi(label(v))) {
15577          *              label(v) = label(ancestor(v));
15578          *      }
15579          *      ancestor(v) = ancestor(ancestor(v));
15580          * }
15581          */
15582         if (!v->ancestor) {
15583                 return;
15584         }
15585         if (v->ancestor->ancestor) {
15586                 compress_ancestors(v->ancestor->ancestor);
15587                 if (v->ancestor->label->sdom->vertex < v->label->sdom->vertex) {
15588                         v->label = v->ancestor->label;
15589                 }
15590                 v->ancestor = v->ancestor->ancestor;
15591         }
15592 }
15593
15594 static void compute_sdom(struct compile_state *state, 
15595         struct basic_blocks *bb, struct sdom_block *sd)
15596 {
15597         int i;
15598         /* // step 2 
15599          *  for each v <= pred(w) {
15600          *      u = EVAL(v);
15601          *      if (semi[u] < semi[w] { 
15602          *              semi[w] = semi[u]; 
15603          *      } 
15604          * }
15605          * add w to bucket(vertex(semi[w]));
15606          * LINK(parent(w), w);
15607          *
15608          * // step 3
15609          * for each v <= bucket(parent(w)) {
15610          *      delete v from bucket(parent(w));
15611          *      u = EVAL(v);
15612          *      dom(v) = (semi[u] < semi[v]) ? u : parent(w);
15613          * }
15614          */
15615         for(i = bb->last_vertex; i >= 2; i--) {
15616                 struct sdom_block *v, *parent, *next;
15617                 struct block_set *user;
15618                 struct block *block;
15619                 block = sd[i].block;
15620                 parent = sd[i].parent;
15621                 /* Step 2 */
15622                 for(user = block->use; user; user = user->next) {
15623                         struct sdom_block *v, *u;
15624                         v = &sd[user->member->vertex];
15625                         u = !(v->ancestor)? v : (compress_ancestors(v), v->label);
15626                         if (u->sdom->vertex < sd[i].sdom->vertex) {
15627                                 sd[i].sdom = u->sdom;
15628                         }
15629                 }
15630                 sdom_block(sd[i].sdom, &sd[i]);
15631                 sd[i].ancestor = parent;
15632                 /* Step 3 */
15633                 for(v = parent->sdominates; v; v = next) {
15634                         struct sdom_block *u;
15635                         next = v->sdom_next;
15636                         unsdom_block(v);
15637                         u = (!v->ancestor) ? v : (compress_ancestors(v), v->label);
15638                         v->block->idom = (u->sdom->vertex < v->sdom->vertex)? 
15639                                 u->block : parent->block;
15640                 }
15641         }
15642 }
15643
15644 static void compute_spdom(struct compile_state *state, 
15645         struct basic_blocks *bb, struct sdom_block *sd)
15646 {
15647         int i;
15648         /* // step 2 
15649          *  for each v <= pred(w) {
15650          *      u = EVAL(v);
15651          *      if (semi[u] < semi[w] { 
15652          *              semi[w] = semi[u]; 
15653          *      } 
15654          * }
15655          * add w to bucket(vertex(semi[w]));
15656          * LINK(parent(w), w);
15657          *
15658          * // step 3
15659          * for each v <= bucket(parent(w)) {
15660          *      delete v from bucket(parent(w));
15661          *      u = EVAL(v);
15662          *      dom(v) = (semi[u] < semi[v]) ? u : parent(w);
15663          * }
15664          */
15665         for(i = bb->last_vertex; i >= 2; i--) {
15666                 struct sdom_block *u, *v, *parent, *next;
15667                 struct block_set *edge;
15668                 struct block *block;
15669                 block = sd[i].block;
15670                 parent = sd[i].parent;
15671                 /* Step 2 */
15672                 for(edge = block->edges; edge; edge = edge->next) {
15673                         v = &sd[edge->member->vertex];
15674                         u = !(v->ancestor)? v : (compress_ancestors(v), v->label);
15675                         if (u->sdom->vertex < sd[i].sdom->vertex) {
15676                                 sd[i].sdom = u->sdom;
15677                         }
15678                 }
15679                 sdom_block(sd[i].sdom, &sd[i]);
15680                 sd[i].ancestor = parent;
15681                 /* Step 3 */
15682                 for(v = parent->sdominates; v; v = next) {
15683                         struct sdom_block *u;
15684                         next = v->sdom_next;
15685                         unsdom_block(v);
15686                         u = (!v->ancestor) ? v : (compress_ancestors(v), v->label);
15687                         v->block->ipdom = (u->sdom->vertex < v->sdom->vertex)? 
15688                                 u->block : parent->block;
15689                 }
15690         }
15691 }
15692
15693 static void compute_idom(struct compile_state *state, 
15694         struct basic_blocks *bb, struct sdom_block *sd)
15695 {
15696         int i;
15697         for(i = 2; i <= bb->last_vertex; i++) {
15698                 struct block *block;
15699                 block = sd[i].block;
15700                 if (block->idom->vertex != sd[i].sdom->vertex) {
15701                         block->idom = block->idom->idom;
15702                 }
15703                 idom_block(block->idom, block);
15704         }
15705         sd[1].block->idom = 0;
15706 }
15707
15708 static void compute_ipdom(struct compile_state *state, 
15709         struct basic_blocks *bb, struct sdom_block *sd)
15710 {
15711         int i;
15712         for(i = 2; i <= bb->last_vertex; i++) {
15713                 struct block *block;
15714                 block = sd[i].block;
15715                 if (block->ipdom->vertex != sd[i].sdom->vertex) {
15716                         block->ipdom = block->ipdom->ipdom;
15717                 }
15718                 ipdom_block(block->ipdom, block);
15719         }
15720         sd[1].block->ipdom = 0;
15721 }
15722
15723         /* Theorem 1:
15724          *   Every vertex of a flowgraph G = (V, E, r) except r has
15725          *   a unique immediate dominator.  
15726          *   The edges {(idom(w), w) |w <= V - {r}} form a directed tree
15727          *   rooted at r, called the dominator tree of G, such that 
15728          *   v dominates w if and only if v is a proper ancestor of w in
15729          *   the dominator tree.
15730          */
15731         /* Lemma 1:  
15732          *   If v and w are vertices of G such that v <= w,
15733          *   than any path from v to w must contain a common ancestor
15734          *   of v and w in T.
15735          */
15736         /* Lemma 2:  For any vertex w != r, idom(w) -> w */
15737         /* Lemma 3:  For any vertex w != r, sdom(w) -> w */
15738         /* Lemma 4:  For any vertex w != r, idom(w) -> sdom(w) */
15739         /* Theorem 2:
15740          *   Let w != r.  Suppose every u for which sdom(w) -> u -> w satisfies
15741          *   sdom(u) >= sdom(w).  Then idom(w) = sdom(w).
15742          */
15743         /* Theorem 3:
15744          *   Let w != r and let u be a vertex for which sdom(u) is 
15745          *   minimum amoung vertices u satisfying sdom(w) -> u -> w.
15746          *   Then sdom(u) <= sdom(w) and idom(u) = idom(w).
15747          */
15748         /* Lemma 5:  Let vertices v,w satisfy v -> w.
15749          *           Then v -> idom(w) or idom(w) -> idom(v)
15750          */
15751
15752 static void find_immediate_dominators(struct compile_state *state,
15753         struct basic_blocks *bb)
15754 {
15755         struct sdom_block *sd;
15756         /* w->sdom = min{v| there is a path v = v0,v1,...,vk = w such that:
15757          *           vi > w for (1 <= i <= k - 1}
15758          */
15759         /* Theorem 4:
15760          *   For any vertex w != r.
15761          *   sdom(w) = min(
15762          *                 {v|(v,w) <= E  and v < w } U 
15763          *                 {sdom(u) | u > w and there is an edge (v, w) such that u -> v})
15764          */
15765         /* Corollary 1:
15766          *   Let w != r and let u be a vertex for which sdom(u) is 
15767          *   minimum amoung vertices u satisfying sdom(w) -> u -> w.
15768          *   Then:
15769          *                   { sdom(w) if sdom(w) = sdom(u),
15770          *        idom(w) = {
15771          *                   { idom(u) otherwise
15772          */
15773         /* The algorithm consists of the following 4 steps.
15774          * Step 1.  Carry out a depth-first search of the problem graph.  
15775          *    Number the vertices from 1 to N as they are reached during
15776          *    the search.  Initialize the variables used in succeeding steps.
15777          * Step 2.  Compute the semidominators of all vertices by applying
15778          *    theorem 4.   Carry out the computation vertex by vertex in
15779          *    decreasing order by number.
15780          * Step 3.  Implicitly define the immediate dominator of each vertex
15781          *    by applying Corollary 1.
15782          * Step 4.  Explicitly define the immediate dominator of each vertex,
15783          *    carrying out the computation vertex by vertex in increasing order
15784          *    by number.
15785          */
15786         /* Step 1 initialize the basic block information */
15787         sd = xcmalloc(sizeof(*sd) * (bb->last_vertex + 1), "sdom_state");
15788         initialize_sdblock(sd, 0, bb->first_block, 0);
15789 #if 0
15790         sd[1].size  = 0;
15791         sd[1].label = 0;
15792         sd[1].sdom  = 0;
15793 #endif
15794         /* Step 2 compute the semidominators */
15795         /* Step 3 implicitly define the immediate dominator of each vertex */
15796         compute_sdom(state, bb, sd);
15797         /* Step 4 explicitly define the immediate dominator of each vertex */
15798         compute_idom(state, bb, sd);
15799         xfree(sd);
15800 }
15801
15802 static void find_post_dominators(struct compile_state *state,
15803         struct basic_blocks *bb)
15804 {
15805         struct sdom_block *sd;
15806         int vertex;
15807         /* Step 1 initialize the basic block information */
15808         sd = xcmalloc(sizeof(*sd) * (bb->last_vertex + 1), "sdom_state");
15809
15810         vertex = setup_spdblocks(state, bb, sd);
15811         if (vertex != bb->last_vertex) {
15812                 internal_error(state, 0, "missing %d blocks",
15813                         bb->last_vertex - vertex);
15814         }
15815
15816         /* Step 2 compute the semidominators */
15817         /* Step 3 implicitly define the immediate dominator of each vertex */
15818         compute_spdom(state, bb, sd);
15819         /* Step 4 explicitly define the immediate dominator of each vertex */
15820         compute_ipdom(state, bb, sd);
15821         xfree(sd);
15822 }
15823
15824
15825
15826 static void find_block_domf(struct compile_state *state, struct block *block)
15827 {
15828         struct block *child;
15829         struct block_set *user, *edge;
15830         if (block->domfrontier != 0) {
15831                 internal_error(state, block->first, "domfrontier present?");
15832         }
15833         for(user = block->idominates; user; user = user->next) {
15834                 child = user->member;
15835                 if (child->idom != block) {
15836                         internal_error(state, block->first, "bad idom");
15837                 }
15838                 find_block_domf(state, child);
15839         }
15840         for(edge = block->edges; edge; edge = edge->next) {
15841                 if (edge->member->idom != block) {
15842                         domf_block(block, edge->member);
15843                 }
15844         }
15845         for(user = block->idominates; user; user = user->next) {
15846                 struct block_set *frontier;
15847                 child = user->member;
15848                 for(frontier = child->domfrontier; frontier; frontier = frontier->next) {
15849                         if (frontier->member->idom != block) {
15850                                 domf_block(block, frontier->member);
15851                         }
15852                 }
15853         }
15854 }
15855
15856 static void find_block_ipdomf(struct compile_state *state, struct block *block)
15857 {
15858         struct block *child;
15859         struct block_set *user;
15860         if (block->ipdomfrontier != 0) {
15861                 internal_error(state, block->first, "ipdomfrontier present?");
15862         }
15863         for(user = block->ipdominates; user; user = user->next) {
15864                 child = user->member;
15865                 if (child->ipdom != block) {
15866                         internal_error(state, block->first, "bad ipdom");
15867                 }
15868                 find_block_ipdomf(state, child);
15869         }
15870         for(user = block->use; user; user = user->next) {
15871                 if (user->member->ipdom != block) {
15872                         ipdomf_block(block, user->member);
15873                 }
15874         }
15875         for(user = block->ipdominates; user; user = user->next) {
15876                 struct block_set *frontier;
15877                 child = user->member;
15878                 for(frontier = child->ipdomfrontier; frontier; frontier = frontier->next) {
15879                         if (frontier->member->ipdom != block) {
15880                                 ipdomf_block(block, frontier->member);
15881                         }
15882                 }
15883         }
15884 }
15885
15886 static void print_dominated(
15887         struct compile_state *state, struct block *block, void *arg)
15888 {
15889         struct block_set *user;
15890         FILE *fp = arg;
15891
15892         fprintf(fp, "%d:", block->vertex);
15893         for(user = block->idominates; user; user = user->next) {
15894                 fprintf(fp, " %d", user->member->vertex);
15895                 if (user->member->idom != block) {
15896                         internal_error(state, user->member->first, "bad idom");
15897                 }
15898         }
15899         fprintf(fp,"\n");
15900 }
15901
15902 static void print_dominated2(
15903         struct compile_state *state, FILE *fp, int depth, struct block *block)
15904 {
15905         struct block_set *user;
15906         struct triple *ins;
15907         struct occurance *ptr, *ptr2;
15908         const char *filename1, *filename2;
15909         int equal_filenames;
15910         int i;
15911         for(i = 0; i < depth; i++) {
15912                 fprintf(fp, "   ");
15913         }
15914         fprintf(fp, "%3d: %p (%p - %p) @", 
15915                 block->vertex, block, block->first, block->last);
15916         ins = block->first;
15917         while(ins != block->last && (ins->occurance->line == 0)) {
15918                 ins = ins->next;
15919         }
15920         ptr = ins->occurance;
15921         ptr2 = block->last->occurance;
15922         filename1 = ptr->filename? ptr->filename : "";
15923         filename2 = ptr2->filename? ptr2->filename : "";
15924         equal_filenames = (strcmp(filename1, filename2) == 0);
15925         if ((ptr == ptr2) || (equal_filenames && ptr->line == ptr2->line)) {
15926                 fprintf(fp, " %s:%d", ptr->filename, ptr->line);
15927         } else if (equal_filenames) {
15928                 fprintf(fp, " %s:(%d - %d)",
15929                         ptr->filename, ptr->line, ptr2->line);
15930         } else {
15931                 fprintf(fp, " (%s:%d - %s:%d)",
15932                         ptr->filename, ptr->line,
15933                         ptr2->filename, ptr2->line);
15934         }
15935         fprintf(fp, "\n");
15936         for(user = block->idominates; user; user = user->next) {
15937                 print_dominated2(state, fp, depth + 1, user->member);
15938         }
15939 }
15940
15941 static void print_dominators(struct compile_state *state, FILE *fp, struct basic_blocks *bb)
15942 {
15943         fprintf(fp, "\ndominates\n");
15944         walk_blocks(state, bb, print_dominated, fp);
15945         fprintf(fp, "dominates\n");
15946         print_dominated2(state, fp, 0, bb->first_block);
15947 }
15948
15949
15950 static int print_frontiers(
15951         struct compile_state *state, FILE *fp, struct block *block, int vertex)
15952 {
15953         struct block_set *user, *edge;
15954
15955         if (!block || (block->vertex != vertex + 1)) {
15956                 return vertex;
15957         }
15958         vertex += 1;
15959
15960         fprintf(fp, "%d:", block->vertex);
15961         for(user = block->domfrontier; user; user = user->next) {
15962                 fprintf(fp, " %d", user->member->vertex);
15963         }
15964         fprintf(fp, "\n");
15965         
15966         for(edge = block->edges; edge; edge = edge->next) {
15967                 vertex = print_frontiers(state, fp, edge->member, vertex);
15968         }
15969         return vertex;
15970 }
15971 static void print_dominance_frontiers(struct compile_state *state,
15972         FILE *fp, struct basic_blocks *bb)
15973 {
15974         fprintf(fp, "\ndominance frontiers\n");
15975         print_frontiers(state, fp, bb->first_block, 0);
15976         
15977 }
15978
15979 static void analyze_idominators(struct compile_state *state, struct basic_blocks *bb)
15980 {
15981         /* Find the immediate dominators */
15982         find_immediate_dominators(state, bb);
15983         /* Find the dominance frontiers */
15984         find_block_domf(state, bb->first_block);
15985         /* If debuging print the print what I have just found */
15986         if (state->compiler->debug & DEBUG_FDOMINATORS) {
15987                 print_dominators(state, state->dbgout, bb);
15988                 print_dominance_frontiers(state, state->dbgout, bb);
15989                 print_control_flow(state, state->dbgout, bb);
15990         }
15991 }
15992
15993
15994 static void print_ipdominated(
15995         struct compile_state *state, struct block *block, void *arg)
15996 {
15997         struct block_set *user;
15998         FILE *fp = arg;
15999
16000         fprintf(fp, "%d:", block->vertex);
16001         for(user = block->ipdominates; user; user = user->next) {
16002                 fprintf(fp, " %d", user->member->vertex);
16003                 if (user->member->ipdom != block) {
16004                         internal_error(state, user->member->first, "bad ipdom");
16005                 }
16006         }
16007         fprintf(fp, "\n");
16008 }
16009
16010 static void print_ipdominators(struct compile_state *state, FILE *fp,
16011         struct basic_blocks *bb)
16012 {
16013         fprintf(fp, "\nipdominates\n");
16014         walk_blocks(state, bb, print_ipdominated, fp);
16015 }
16016
16017 static int print_pfrontiers(
16018         struct compile_state *state, FILE *fp, struct block *block, int vertex)
16019 {
16020         struct block_set *user;
16021
16022         if (!block || (block->vertex != vertex + 1)) {
16023                 return vertex;
16024         }
16025         vertex += 1;
16026
16027         fprintf(fp, "%d:", block->vertex);
16028         for(user = block->ipdomfrontier; user; user = user->next) {
16029                 fprintf(fp, " %d", user->member->vertex);
16030         }
16031         fprintf(fp, "\n");
16032         for(user = block->use; user; user = user->next) {
16033                 vertex = print_pfrontiers(state, fp, user->member, vertex);
16034         }
16035         return vertex;
16036 }
16037 static void print_ipdominance_frontiers(struct compile_state *state,
16038         FILE *fp, struct basic_blocks *bb)
16039 {
16040         fprintf(fp, "\nipdominance frontiers\n");
16041         print_pfrontiers(state, fp, bb->last_block, 0);
16042         
16043 }
16044
16045 static void analyze_ipdominators(struct compile_state *state,
16046         struct basic_blocks *bb)
16047 {
16048         /* Find the post dominators */
16049         find_post_dominators(state, bb);
16050         /* Find the control dependencies (post dominance frontiers) */
16051         find_block_ipdomf(state, bb->last_block);
16052         /* If debuging print the print what I have just found */
16053         if (state->compiler->debug & DEBUG_RDOMINATORS) {
16054                 print_ipdominators(state, state->dbgout, bb);
16055                 print_ipdominance_frontiers(state, state->dbgout, bb);
16056                 print_control_flow(state, state->dbgout, bb);
16057         }
16058 }
16059
16060 static int bdominates(struct compile_state *state,
16061         struct block *dom, struct block *sub)
16062 {
16063         while(sub && (sub != dom)) {
16064                 sub = sub->idom;
16065         }
16066         return sub == dom;
16067 }
16068
16069 static int tdominates(struct compile_state *state,
16070         struct triple *dom, struct triple *sub)
16071 {
16072         struct block *bdom, *bsub;
16073         int result;
16074         bdom = block_of_triple(state, dom);
16075         bsub = block_of_triple(state, sub);
16076         if (bdom != bsub) {
16077                 result = bdominates(state, bdom, bsub);
16078         } 
16079         else {
16080                 struct triple *ins;
16081                 if (!bdom || !bsub) {
16082                         internal_error(state, dom, "huh?");
16083                 }
16084                 ins = sub;
16085                 while((ins != bsub->first) && (ins != dom)) {
16086                         ins = ins->prev;
16087                 }
16088                 result = (ins == dom);
16089         }
16090         return result;
16091 }
16092
16093 static void analyze_basic_blocks(
16094         struct compile_state *state, struct basic_blocks *bb)
16095 {
16096         setup_basic_blocks(state, bb);
16097         analyze_idominators(state, bb);
16098         analyze_ipdominators(state, bb);
16099 }
16100
16101 static void insert_phi_operations(struct compile_state *state)
16102 {
16103         size_t size;
16104         struct triple *first;
16105         int *has_already, *work;
16106         struct block *work_list, **work_list_tail;
16107         int iter;
16108         struct triple *var, *vnext;
16109
16110         size = sizeof(int) * (state->bb.last_vertex + 1);
16111         has_already = xcmalloc(size, "has_already");
16112         work =        xcmalloc(size, "work");
16113         iter = 0;
16114
16115         first = state->first;
16116         for(var = first->next; var != first ; var = vnext) {
16117                 struct block *block;
16118                 struct triple_set *user, *unext;
16119                 vnext = var->next;
16120
16121                 if (!triple_is_auto_var(state, var) || !var->use) {
16122                         continue;
16123                 }
16124                         
16125                 iter += 1;
16126                 work_list = 0;
16127                 work_list_tail = &work_list;
16128                 for(user = var->use; user; user = unext) {
16129                         unext = user->next;
16130                         if (MISC(var, 0) == user->member) {
16131                                 continue;
16132                         }
16133                         if (user->member->op == OP_READ) {
16134                                 continue;
16135                         }
16136                         if (user->member->op != OP_WRITE) {
16137                                 internal_error(state, user->member, 
16138                                         "bad variable access");
16139                         }
16140                         block = user->member->u.block;
16141                         if (!block) {
16142                                 warning(state, user->member, "dead code");
16143                                 release_triple(state, user->member);
16144                                 continue;
16145                         }
16146                         if (work[block->vertex] >= iter) {
16147                                 continue;
16148                         }
16149                         work[block->vertex] = iter;
16150                         *work_list_tail = block;
16151                         block->work_next = 0;
16152                         work_list_tail = &block->work_next;
16153                 }
16154                 for(block = work_list; block; block = block->work_next) {
16155                         struct block_set *df;
16156                         for(df = block->domfrontier; df; df = df->next) {
16157                                 struct triple *phi;
16158                                 struct block *front;
16159                                 int in_edges;
16160                                 front = df->member;
16161
16162                                 if (has_already[front->vertex] >= iter) {
16163                                         continue;
16164                                 }
16165                                 /* Count how many edges flow into this block */
16166                                 in_edges = front->users;
16167                                 /* Insert a phi function for this variable */
16168                                 get_occurance(var->occurance);
16169                                 phi = alloc_triple(
16170                                         state, OP_PHI, var->type, -1, in_edges, 
16171                                         var->occurance);
16172                                 phi->u.block = front;
16173                                 MISC(phi, 0) = var;
16174                                 use_triple(var, phi);
16175 #if 1
16176                                 if (phi->rhs != in_edges) {
16177                                         internal_error(state, phi, "phi->rhs: %d != in_edges: %d",
16178                                                 phi->rhs, in_edges);
16179                                 }
16180 #endif
16181                                 /* Insert the phi functions immediately after the label */
16182                                 insert_triple(state, front->first->next, phi);
16183                                 if (front->first == front->last) {
16184                                         front->last = front->first->next;
16185                                 }
16186                                 has_already[front->vertex] = iter;
16187                                 transform_to_arch_instruction(state, phi);
16188
16189                                 /* If necessary plan to visit the basic block */
16190                                 if (work[front->vertex] >= iter) {
16191                                         continue;
16192                                 }
16193                                 work[front->vertex] = iter;
16194                                 *work_list_tail = front;
16195                                 front->work_next = 0;
16196                                 work_list_tail = &front->work_next;
16197                         }
16198                 }
16199         }
16200         xfree(has_already);
16201         xfree(work);
16202 }
16203
16204
16205 struct stack {
16206         struct triple_set *top;
16207         unsigned orig_id;
16208 };
16209
16210 static int count_auto_vars(struct compile_state *state)
16211 {
16212         struct triple *first, *ins;
16213         int auto_vars = 0;
16214         first = state->first;
16215         ins = first;
16216         do {
16217                 if (triple_is_auto_var(state, ins)) {
16218                         auto_vars += 1;
16219                 }
16220                 ins = ins->next;
16221         } while(ins != first);
16222         return auto_vars;
16223 }
16224
16225 static void number_auto_vars(struct compile_state *state, struct stack *stacks)
16226 {
16227         struct triple *first, *ins;
16228         int auto_vars = 0;
16229         first = state->first;
16230         ins = first;
16231         do {
16232                 if (triple_is_auto_var(state, ins)) {
16233                         auto_vars += 1;
16234                         stacks[auto_vars].orig_id = ins->id;
16235                         ins->id = auto_vars;
16236                 }
16237                 ins = ins->next;
16238         } while(ins != first);
16239 }
16240
16241 static void restore_auto_vars(struct compile_state *state, struct stack *stacks)
16242 {
16243         struct triple *first, *ins;
16244         first = state->first;
16245         ins = first;
16246         do {
16247                 if (triple_is_auto_var(state, ins)) {
16248                         ins->id = stacks[ins->id].orig_id;
16249                 }
16250                 ins = ins->next;
16251         } while(ins != first);
16252 }
16253
16254 static struct triple *peek_triple(struct stack *stacks, struct triple *var)
16255 {
16256         struct triple_set *head;
16257         struct triple *top_val;
16258         top_val = 0;
16259         head = stacks[var->id].top;
16260         if (head) {
16261                 top_val = head->member;
16262         }
16263         return top_val;
16264 }
16265
16266 static void push_triple(struct stack *stacks, struct triple *var, struct triple *val)
16267 {
16268         struct triple_set *new;
16269         /* Append new to the head of the list,
16270          * it's the only sensible behavoir for a stack.
16271          */
16272         new = xcmalloc(sizeof(*new), "triple_set");
16273         new->member = val;
16274         new->next   = stacks[var->id].top;
16275         stacks[var->id].top = new;
16276 }
16277
16278 static void pop_triple(struct stack *stacks, struct triple *var, struct triple *oldval)
16279 {
16280         struct triple_set *set, **ptr;
16281         ptr = &stacks[var->id].top;
16282         while(*ptr) {
16283                 set = *ptr;
16284                 if (set->member == oldval) {
16285                         *ptr = set->next;
16286                         xfree(set);
16287                         /* Only free one occurance from the stack */
16288                         return;
16289                 }
16290                 else {
16291                         ptr = &set->next;
16292                 }
16293         }
16294 }
16295
16296 /*
16297  * C(V)
16298  * S(V)
16299  */
16300 static void fixup_block_phi_variables(
16301         struct compile_state *state, struct stack *stacks, struct block *parent, struct block *block)
16302 {
16303         struct block_set *set;
16304         struct triple *ptr;
16305         int edge;
16306         if (!parent || !block)
16307                 return;
16308         /* Find the edge I am coming in on */
16309         edge = 0;
16310         for(set = block->use; set; set = set->next, edge++) {
16311                 if (set->member == parent) {
16312                         break;
16313                 }
16314         }
16315         if (!set) {
16316                 internal_error(state, 0, "phi input is not on a control predecessor");
16317         }
16318         for(ptr = block->first; ; ptr = ptr->next) {
16319                 if (ptr->op == OP_PHI) {
16320                         struct triple *var, *val, **slot;
16321                         var = MISC(ptr, 0);
16322                         if (!var) {
16323                                 internal_error(state, ptr, "no var???");
16324                         }
16325                         /* Find the current value of the variable */
16326                         val = peek_triple(stacks, var);
16327                         if (val && ((val->op == OP_WRITE) || (val->op == OP_READ))) {
16328                                 internal_error(state, val, "bad value in phi");
16329                         }
16330                         if (edge >= ptr->rhs) {
16331                                 internal_error(state, ptr, "edges > phi rhs");
16332                         }
16333                         slot = &RHS(ptr, edge);
16334                         if ((*slot != 0) && (*slot != val)) {
16335                                 internal_error(state, ptr, "phi already bound on this edge");
16336                         }
16337                         *slot = val;
16338                         use_triple(val, ptr);
16339                 }
16340                 if (ptr == block->last) {
16341                         break;
16342                 }
16343         }
16344 }
16345
16346
16347 static void rename_block_variables(
16348         struct compile_state *state, struct stack *stacks, struct block *block)
16349 {
16350         struct block_set *user, *edge;
16351         struct triple *ptr, *next, *last;
16352         int done;
16353         if (!block)
16354                 return;
16355         last = block->first;
16356         done = 0;
16357         for(ptr = block->first; !done; ptr = next) {
16358                 next = ptr->next;
16359                 if (ptr == block->last) {
16360                         done = 1;
16361                 }
16362                 /* RHS(A) */
16363                 if (ptr->op == OP_READ) {
16364                         struct triple *var, *val;
16365                         var = RHS(ptr, 0);
16366                         if (!triple_is_auto_var(state, var)) {
16367                                 internal_error(state, ptr, "read of non auto var!");
16368                         }
16369                         unuse_triple(var, ptr);
16370                         /* Find the current value of the variable */
16371                         val = peek_triple(stacks, var);
16372                         if (!val) {
16373                                 /* Let the optimizer at variables that are not initially
16374                                  * set.  But give it a bogus value so things seem to
16375                                  * work by accident.  This is useful for bitfields because
16376                                  * setting them always involves a read-modify-write.
16377                                  */
16378                                 if (TYPE_ARITHMETIC(ptr->type->type)) {
16379                                         val = pre_triple(state, ptr, OP_INTCONST, ptr->type, 0, 0);
16380                                         val->u.cval = 0xdeadbeaf;
16381                                 } else {
16382                                         val = pre_triple(state, ptr, OP_UNKNOWNVAL, ptr->type, 0, 0);
16383                                 }
16384                         }
16385                         if (!val) {
16386                                 error(state, ptr, "variable used without being set");
16387                         }
16388                         if ((val->op == OP_WRITE) || (val->op == OP_READ)) {
16389                                 internal_error(state, val, "bad value in read");
16390                         }
16391                         propogate_use(state, ptr, val);
16392                         release_triple(state, ptr);
16393                         continue;
16394                 }
16395                 /* LHS(A) */
16396                 if (ptr->op == OP_WRITE) {
16397                         struct triple *var, *val, *tval;
16398                         var = MISC(ptr, 0);
16399                         if (!triple_is_auto_var(state, var)) {
16400                                 internal_error(state, ptr, "write to non auto var!");
16401                         }
16402                         tval = val = RHS(ptr, 0);
16403                         if ((val->op == OP_WRITE) || (val->op == OP_READ) ||
16404                                 triple_is_auto_var(state, val)) {
16405                                 internal_error(state, ptr, "bad value in write");
16406                         }
16407                         /* Insert a cast if the types differ */
16408                         if (!is_subset_type(ptr->type, val->type)) {
16409                                 if (val->op == OP_INTCONST) {
16410                                         tval = pre_triple(state, ptr, OP_INTCONST, ptr->type, 0, 0);
16411                                         tval->u.cval = val->u.cval;
16412                                 }
16413                                 else {
16414                                         tval = pre_triple(state, ptr, OP_CONVERT, ptr->type, val, 0);
16415                                         use_triple(val, tval);
16416                                 }
16417                                 transform_to_arch_instruction(state, tval);
16418                                 unuse_triple(val, ptr);
16419                                 RHS(ptr, 0) = tval;
16420                                 use_triple(tval, ptr);
16421                         }
16422                         propogate_use(state, ptr, tval);
16423                         unuse_triple(var, ptr);
16424                         /* Push OP_WRITE ptr->right onto a stack of variable uses */
16425                         push_triple(stacks, var, tval);
16426                 }
16427                 if (ptr->op == OP_PHI) {
16428                         struct triple *var;
16429                         var = MISC(ptr, 0);
16430                         if (!triple_is_auto_var(state, var)) {
16431                                 internal_error(state, ptr, "phi references non auto var!");
16432                         }
16433                         /* Push OP_PHI onto a stack of variable uses */
16434                         push_triple(stacks, var, ptr);
16435                 }
16436                 last = ptr;
16437         }
16438         block->last = last;
16439
16440         /* Fixup PHI functions in the cf successors */
16441         for(edge = block->edges; edge; edge = edge->next) {
16442                 fixup_block_phi_variables(state, stacks, block, edge->member);
16443         }
16444         /* rename variables in the dominated nodes */
16445         for(user = block->idominates; user; user = user->next) {
16446                 rename_block_variables(state, stacks, user->member);
16447         }
16448         /* pop the renamed variable stack */
16449         last = block->first;
16450         done = 0;
16451         for(ptr = block->first; !done ; ptr = next) {
16452                 next = ptr->next;
16453                 if (ptr == block->last) {
16454                         done = 1;
16455                 }
16456                 if (ptr->op == OP_WRITE) {
16457                         struct triple *var;
16458                         var = MISC(ptr, 0);
16459                         /* Pop OP_WRITE ptr->right from the stack of variable uses */
16460                         pop_triple(stacks, var, RHS(ptr, 0));
16461                         release_triple(state, ptr);
16462                         continue;
16463                 }
16464                 if (ptr->op == OP_PHI) {
16465                         struct triple *var;
16466                         var = MISC(ptr, 0);
16467                         /* Pop OP_WRITE ptr->right from the stack of variable uses */
16468                         pop_triple(stacks, var, ptr);
16469                 }
16470                 last = ptr;
16471         }
16472         block->last = last;
16473 }
16474
16475 static void rename_variables(struct compile_state *state)
16476 {
16477         struct stack *stacks;
16478         int auto_vars;
16479
16480         /* Allocate stacks for the Variables */
16481         auto_vars = count_auto_vars(state);
16482         stacks = xcmalloc(sizeof(stacks[0])*(auto_vars + 1), "auto var stacks");
16483
16484         /* Give each auto_var a stack */
16485         number_auto_vars(state, stacks);
16486
16487         /* Rename the variables */
16488         rename_block_variables(state, stacks, state->bb.first_block);
16489
16490         /* Remove the stacks from the auto_vars */
16491         restore_auto_vars(state, stacks);
16492         xfree(stacks);
16493 }
16494
16495 static void prune_block_variables(struct compile_state *state,
16496         struct block *block)
16497 {
16498         struct block_set *user;
16499         struct triple *next, *ptr;
16500         int done;
16501
16502         done = 0;
16503         for(ptr = block->first; !done; ptr = next) {
16504                 /* Be extremely careful I am deleting the list
16505                  * as I walk trhough it.
16506                  */
16507                 next = ptr->next;
16508                 if (ptr == block->last) {
16509                         done = 1;
16510                 }
16511                 if (triple_is_auto_var(state, ptr)) {
16512                         struct triple_set *user, *next;
16513                         for(user = ptr->use; user; user = next) {
16514                                 struct triple *use;
16515                                 next = user->next;
16516                                 use = user->member;
16517                                 if (MISC(ptr, 0) == user->member) {
16518                                         continue;
16519                                 }
16520                                 if (use->op != OP_PHI) {
16521                                         internal_error(state, use, "decl still used");
16522                                 }
16523                                 if (MISC(use, 0) != ptr) {
16524                                         internal_error(state, use, "bad phi use of decl");
16525                                 }
16526                                 unuse_triple(ptr, use);
16527                                 MISC(use, 0) = 0;
16528                         }
16529                         if ((ptr->u.cval == 0) && (MISC(ptr, 0)->lhs == 1)) {
16530                                 /* Delete the adecl */
16531                                 release_triple(state, MISC(ptr, 0));
16532                                 /* And the piece */
16533                                 release_triple(state, ptr);
16534                         }
16535                         continue;
16536                 }
16537         }
16538         for(user = block->idominates; user; user = user->next) {
16539                 prune_block_variables(state, user->member);
16540         }
16541 }
16542
16543 struct phi_triple {
16544         struct triple *phi;
16545         unsigned orig_id;
16546         int alive;
16547 };
16548
16549 static void keep_phi(struct compile_state *state, struct phi_triple *live, struct triple *phi)
16550 {
16551         struct triple **slot;
16552         int zrhs, i;
16553         if (live[phi->id].alive) {
16554                 return;
16555         }
16556         live[phi->id].alive = 1;
16557         zrhs = phi->rhs;
16558         slot = &RHS(phi, 0);
16559         for(i = 0; i < zrhs; i++) {
16560                 struct triple *used;
16561                 used = slot[i];
16562                 if (used && (used->op == OP_PHI)) {
16563                         keep_phi(state, live, used);
16564                 }
16565         }
16566 }
16567
16568 static void prune_unused_phis(struct compile_state *state)
16569 {
16570         struct triple *first, *phi;
16571         struct phi_triple *live;
16572         int phis, i;
16573         
16574         /* Find the first instruction */
16575         first = state->first;
16576
16577         /* Count how many phi functions I need to process */
16578         phis = 0;
16579         for(phi = first->next; phi != first; phi = phi->next) {
16580                 if (phi->op == OP_PHI) {
16581                         phis += 1;
16582                 }
16583         }
16584         
16585         /* Mark them all dead */
16586         live = xcmalloc(sizeof(*live) * (phis + 1), "phi_triple");
16587         phis = 0;
16588         for(phi = first->next; phi != first; phi = phi->next) {
16589                 if (phi->op != OP_PHI) {
16590                         continue;
16591                 }
16592                 live[phis].alive   = 0;
16593                 live[phis].orig_id = phi->id;
16594                 live[phis].phi     = phi;
16595                 phi->id = phis;
16596                 phis += 1;
16597         }
16598         
16599         /* Mark phis alive that are used by non phis */
16600         for(i = 0; i < phis; i++) {
16601                 struct triple_set *set;
16602                 for(set = live[i].phi->use; !live[i].alive && set; set = set->next) {
16603                         if (set->member->op != OP_PHI) {
16604                                 keep_phi(state, live, live[i].phi);
16605                                 break;
16606                         }
16607                 }
16608         }
16609
16610         /* Delete the extraneous phis */
16611         for(i = 0; i < phis; i++) {
16612                 struct triple **slot;
16613                 int zrhs, j;
16614                 if (!live[i].alive) {
16615                         release_triple(state, live[i].phi);
16616                         continue;
16617                 }
16618                 phi = live[i].phi;
16619                 slot = &RHS(phi, 0);
16620                 zrhs = phi->rhs;
16621                 for(j = 0; j < zrhs; j++) {
16622                         if(!slot[j]) {
16623                                 struct triple *unknown;
16624                                 get_occurance(phi->occurance);
16625                                 unknown = flatten(state, state->global_pool,
16626                                         alloc_triple(state, OP_UNKNOWNVAL,
16627                                                 phi->type, 0, 0, phi->occurance));
16628                                 slot[j] = unknown;
16629                                 use_triple(unknown, phi);
16630                                 transform_to_arch_instruction(state, unknown);
16631 #if 0                           
16632                                 warning(state, phi, "variable not set at index %d on all paths to use", j);
16633 #endif
16634                         }
16635                 }
16636         }
16637         xfree(live);
16638 }
16639
16640 static void transform_to_ssa_form(struct compile_state *state)
16641 {
16642         insert_phi_operations(state);
16643         rename_variables(state);
16644
16645         prune_block_variables(state, state->bb.first_block);
16646         prune_unused_phis(state);
16647
16648         print_blocks(state, __func__, state->dbgout);
16649 }
16650
16651
16652 static void clear_vertex(
16653         struct compile_state *state, struct block *block, void *arg)
16654 {
16655         /* Clear the current blocks vertex and the vertex of all
16656          * of the current blocks neighbors in case there are malformed
16657          * blocks with now instructions at this point.
16658          */
16659         struct block_set *user, *edge;
16660         block->vertex = 0;
16661         for(edge = block->edges; edge; edge = edge->next) {
16662                 edge->member->vertex = 0;
16663         }
16664         for(user = block->use; user; user = user->next) {
16665                 user->member->vertex = 0;
16666         }
16667 }
16668
16669 static void mark_live_block(
16670         struct compile_state *state, struct block *block, int *next_vertex)
16671 {
16672         /* See if this is a block that has not been marked */
16673         if (block->vertex != 0) {
16674                 return;
16675         }
16676         block->vertex = *next_vertex;
16677         *next_vertex += 1;
16678         if (triple_is_branch(state, block->last)) {
16679                 struct triple **targ;
16680                 targ = triple_edge_targ(state, block->last, 0);
16681                 for(; targ; targ = triple_edge_targ(state, block->last, targ)) {
16682                         if (!*targ) {
16683                                 continue;
16684                         }
16685                         if (!triple_stores_block(state, *targ)) {
16686                                 internal_error(state, 0, "bad targ");
16687                         }
16688                         mark_live_block(state, (*targ)->u.block, next_vertex);
16689                 }
16690                 /* Ensure the last block of a function remains alive */
16691                 if (triple_is_call(state, block->last)) {
16692                         mark_live_block(state, MISC(block->last, 0)->u.block, next_vertex);
16693                 }
16694         }
16695         else if (block->last->next != state->first) {
16696                 struct triple *ins;
16697                 ins = block->last->next;
16698                 if (!triple_stores_block(state, ins)) {
16699                         internal_error(state, 0, "bad block start");
16700                 }
16701                 mark_live_block(state, ins->u.block, next_vertex);
16702         }
16703 }
16704
16705 static void transform_from_ssa_form(struct compile_state *state)
16706 {
16707         /* To get out of ssa form we insert moves on the incoming
16708          * edges to blocks containting phi functions.
16709          */
16710         struct triple *first;
16711         struct triple *phi, *var, *next;
16712         int next_vertex;
16713
16714         /* Walk the control flow to see which blocks remain alive */
16715         walk_blocks(state, &state->bb, clear_vertex, 0);
16716         next_vertex = 1;
16717         mark_live_block(state, state->bb.first_block, &next_vertex);
16718
16719         /* Walk all of the operations to find the phi functions */
16720         first = state->first;
16721         for(phi = first->next; phi != first ; phi = next) {
16722                 struct block_set *set;
16723                 struct block *block;
16724                 struct triple **slot;
16725                 struct triple *var;
16726                 struct triple_set *use, *use_next;
16727                 int edge, writers, readers;
16728                 next = phi->next;
16729                 if (phi->op != OP_PHI) {
16730                         continue;
16731                 }
16732
16733                 block = phi->u.block;
16734                 slot  = &RHS(phi, 0);
16735
16736                 /* If this phi is in a dead block just forget it */
16737                 if (block->vertex == 0) {
16738                         release_triple(state, phi);
16739                         continue;
16740                 }
16741
16742                 /* Forget uses from code in dead blocks */
16743                 for(use = phi->use; use; use = use_next) {
16744                         struct block *ublock;
16745                         struct triple **expr;
16746                         use_next = use->next;
16747                         ublock = block_of_triple(state, use->member);
16748                         if ((use->member == phi) || (ublock->vertex != 0)) {
16749                                 continue;
16750                         }
16751                         expr = triple_rhs(state, use->member, 0);
16752                         for(; expr; expr = triple_rhs(state, use->member, expr)) {
16753                                 if (*expr == phi) {
16754                                         *expr = 0;
16755                                 }
16756                         }
16757                         unuse_triple(phi, use->member);
16758                 }
16759                 /* A variable to replace the phi function */
16760                 if (registers_of(state, phi->type) != 1) {
16761                         internal_error(state, phi, "phi->type does not fit in a single register!");
16762                 }
16763                 var = post_triple(state, phi, OP_ADECL, phi->type, 0, 0);
16764                 var = var->next; /* point at the var */
16765                         
16766                 /* Replaces use of phi with var */
16767                 propogate_use(state, phi, var);
16768
16769                 /* Count the readers */
16770                 readers = 0;
16771                 for(use = var->use; use; use = use->next) {
16772                         if (use->member != MISC(var, 0)) {
16773                                 readers++;
16774                         }
16775                 }
16776
16777                 /* Walk all of the incoming edges/blocks and insert moves.
16778                  */
16779                 writers = 0;
16780                 for(edge = 0, set = block->use; set; set = set->next, edge++) {
16781                         struct block *eblock, *vblock;
16782                         struct triple *move;
16783                         struct triple *val, *base;
16784                         eblock = set->member;
16785                         val = slot[edge];
16786                         slot[edge] = 0;
16787                         unuse_triple(val, phi);
16788                         vblock = block_of_triple(state, val);
16789
16790                         /* If we don't have a value that belongs in an OP_WRITE
16791                          * continue on.
16792                          */
16793                         if (!val || (val == &unknown_triple) || (val == phi)
16794                                 || (vblock && (vblock->vertex == 0))) {
16795                                 continue;
16796                         }
16797                         /* If the value should never occur error */
16798                         if (!vblock) {
16799                                 internal_error(state, val, "no vblock?");
16800                                 continue;
16801                         }
16802
16803                         /* If the value occurs in a dead block see if a replacement
16804                          * block can be found.
16805                          */
16806                         while(eblock && (eblock->vertex == 0)) {
16807                                 eblock = eblock->idom;
16808                         }
16809                         /* If not continue on with the next value. */
16810                         if (!eblock || (eblock->vertex == 0)) {
16811                                 continue;
16812                         }
16813
16814                         /* If we have an empty incoming block ignore it. */
16815                         if (!eblock->first) {
16816                                 internal_error(state, 0, "empty block?");
16817                         }
16818                         
16819                         /* Make certain the write is placed in the edge block... */
16820                         /* Walk through the edge block backwards to find an
16821                          * appropriate location for the OP_WRITE.
16822                          */
16823                         for(base = eblock->last; base != eblock->first; base = base->prev) {
16824                                 struct triple **expr;
16825                                 if (base->op == OP_PIECE) {
16826                                         base = MISC(base, 0);
16827                                 }
16828                                 if ((base == var) || (base == val)) {
16829                                         goto out;
16830                                 }
16831                                 expr = triple_lhs(state, base, 0);
16832                                 for(; expr; expr = triple_lhs(state, base, expr)) {
16833                                         if ((*expr) == val) {
16834                                                 goto out;
16835                                         }
16836                                 }
16837                                 expr = triple_rhs(state, base, 0);
16838                                 for(; expr; expr = triple_rhs(state, base, expr)) {
16839                                         if ((*expr) == var) {
16840                                                 goto out;
16841                                         }
16842                                 }
16843                         }
16844                 out:
16845                         if (triple_is_branch(state, base)) {
16846                                 internal_error(state, base,
16847                                         "Could not insert write to phi");
16848                         }
16849                         move = post_triple(state, base, OP_WRITE, var->type, val, var);
16850                         use_triple(val, move);
16851                         use_triple(var, move);
16852                         writers++;
16853                 }
16854                 if (!writers && readers) {
16855                         internal_error(state, var, "no value written to in use phi?");
16856                 }
16857                 /* If var is not used free it */
16858                 if (!writers) {
16859                         release_triple(state, MISC(var, 0));
16860                         release_triple(state, var);
16861                 }
16862                 /* Release the phi function */
16863                 release_triple(state, phi);
16864         }
16865         
16866         /* Walk all of the operations to find the adecls */
16867         for(var = first->next; var != first ; var = var->next) {
16868                 struct triple_set *use, *use_next;
16869                 if (!triple_is_auto_var(state, var)) {
16870                         continue;
16871                 }
16872
16873                 /* Walk through all of the rhs uses of var and
16874                  * replace them with read of var.
16875                  */
16876                 for(use = var->use; use; use = use_next) {
16877                         struct triple *read, *user;
16878                         struct triple **slot;
16879                         int zrhs, i, used;
16880                         use_next = use->next;
16881                         user = use->member;
16882                         
16883                         /* Generate a read of var */
16884                         read = pre_triple(state, user, OP_READ, var->type, var, 0);
16885                         use_triple(var, read);
16886
16887                         /* Find the rhs uses and see if they need to be replaced */
16888                         used = 0;
16889                         zrhs = user->rhs;
16890                         slot = &RHS(user, 0);
16891                         for(i = 0; i < zrhs; i++) {
16892                                 if (slot[i] == var) {
16893                                         slot[i] = read;
16894                                         used = 1;
16895                                 }
16896                         }
16897                         /* If we did use it cleanup the uses */
16898                         if (used) {
16899                                 unuse_triple(var, user);
16900                                 use_triple(read, user);
16901                         } 
16902                         /* If we didn't use it release the extra triple */
16903                         else {
16904                                 release_triple(state, read);
16905                         }
16906                 }
16907         }
16908 }
16909
16910 #define HI() if (state->compiler->debug & DEBUG_REBUILD_SSA_FORM) { \
16911         FILE *fp = state->dbgout; \
16912         fprintf(fp, "@ %s:%d\n", __FILE__, __LINE__); romcc_print_blocks(state, fp); \
16913         } 
16914
16915 static void rebuild_ssa_form(struct compile_state *state)
16916 {
16917 HI();
16918         transform_from_ssa_form(state);
16919 HI();
16920         state->bb.first = state->first;
16921         free_basic_blocks(state, &state->bb);
16922         analyze_basic_blocks(state, &state->bb);
16923 HI();
16924         insert_phi_operations(state);
16925 HI();
16926         rename_variables(state);
16927 HI();
16928         
16929         prune_block_variables(state, state->bb.first_block);
16930 HI();
16931         prune_unused_phis(state);
16932 HI();
16933 }
16934 #undef HI
16935
16936 /* 
16937  * Register conflict resolution
16938  * =========================================================
16939  */
16940
16941 static struct reg_info find_def_color(
16942         struct compile_state *state, struct triple *def)
16943 {
16944         struct triple_set *set;
16945         struct reg_info info;
16946         info.reg = REG_UNSET;
16947         info.regcm = 0;
16948         if (!triple_is_def(state, def)) {
16949                 return info;
16950         }
16951         info = arch_reg_lhs(state, def, 0);
16952         if (info.reg >= MAX_REGISTERS) {
16953                 info.reg = REG_UNSET;
16954         }
16955         for(set = def->use; set; set = set->next) {
16956                 struct reg_info tinfo;
16957                 int i;
16958                 i = find_rhs_use(state, set->member, def);
16959                 if (i < 0) {
16960                         continue;
16961                 }
16962                 tinfo = arch_reg_rhs(state, set->member, i);
16963                 if (tinfo.reg >= MAX_REGISTERS) {
16964                         tinfo.reg = REG_UNSET;
16965                 }
16966                 if ((tinfo.reg != REG_UNSET) && 
16967                         (info.reg != REG_UNSET) &&
16968                         (tinfo.reg != info.reg)) {
16969                         internal_error(state, def, "register conflict");
16970                 }
16971                 if ((info.regcm & tinfo.regcm) == 0) {
16972                         internal_error(state, def, "regcm conflict %x & %x == 0",
16973                                 info.regcm, tinfo.regcm);
16974                 }
16975                 if (info.reg == REG_UNSET) {
16976                         info.reg = tinfo.reg;
16977                 }
16978                 info.regcm &= tinfo.regcm;
16979         }
16980         if (info.reg >= MAX_REGISTERS) {
16981                 internal_error(state, def, "register out of range");
16982         }
16983         return info;
16984 }
16985
16986 static struct reg_info find_lhs_pre_color(
16987         struct compile_state *state, struct triple *ins, int index)
16988 {
16989         struct reg_info info;
16990         int zlhs, zrhs, i;
16991         zrhs = ins->rhs;
16992         zlhs = ins->lhs;
16993         if (!zlhs && triple_is_def(state, ins)) {
16994                 zlhs = 1;
16995         }
16996         if (index >= zlhs) {
16997                 internal_error(state, ins, "Bad lhs %d", index);
16998         }
16999         info = arch_reg_lhs(state, ins, index);
17000         for(i = 0; i < zrhs; i++) {
17001                 struct reg_info rinfo;
17002                 rinfo = arch_reg_rhs(state, ins, i);
17003                 if ((info.reg == rinfo.reg) &&
17004                         (rinfo.reg >= MAX_REGISTERS)) {
17005                         struct reg_info tinfo;
17006                         tinfo = find_lhs_pre_color(state, RHS(ins, index), 0);
17007                         info.reg = tinfo.reg;
17008                         info.regcm &= tinfo.regcm;
17009                         break;
17010                 }
17011         }
17012         if (info.reg >= MAX_REGISTERS) {
17013                 info.reg = REG_UNSET;
17014         }
17015         return info;
17016 }
17017
17018 static struct reg_info find_rhs_post_color(
17019         struct compile_state *state, struct triple *ins, int index);
17020
17021 static struct reg_info find_lhs_post_color(
17022         struct compile_state *state, struct triple *ins, int index)
17023 {
17024         struct triple_set *set;
17025         struct reg_info info;
17026         struct triple *lhs;
17027 #if DEBUG_TRIPLE_COLOR
17028         fprintf(state->errout, "find_lhs_post_color(%p, %d)\n",
17029                 ins, index);
17030 #endif
17031         if ((index == 0) && triple_is_def(state, ins)) {
17032                 lhs = ins;
17033         }
17034         else if (index < ins->lhs) {
17035                 lhs = LHS(ins, index);
17036         }
17037         else {
17038                 internal_error(state, ins, "Bad lhs %d", index);
17039                 lhs = 0;
17040         }
17041         info = arch_reg_lhs(state, ins, index);
17042         if (info.reg >= MAX_REGISTERS) {
17043                 info.reg = REG_UNSET;
17044         }
17045         for(set = lhs->use; set; set = set->next) {
17046                 struct reg_info rinfo;
17047                 struct triple *user;
17048                 int zrhs, i;
17049                 user = set->member;
17050                 zrhs = user->rhs;
17051                 for(i = 0; i < zrhs; i++) {
17052                         if (RHS(user, i) != lhs) {
17053                                 continue;
17054                         }
17055                         rinfo = find_rhs_post_color(state, user, i);
17056                         if ((info.reg != REG_UNSET) &&
17057                                 (rinfo.reg != REG_UNSET) &&
17058                                 (info.reg != rinfo.reg)) {
17059                                 internal_error(state, ins, "register conflict");
17060                         }
17061                         if ((info.regcm & rinfo.regcm) == 0) {
17062                                 internal_error(state, ins, "regcm conflict %x & %x == 0",
17063                                         info.regcm, rinfo.regcm);
17064                         }
17065                         if (info.reg == REG_UNSET) {
17066                                 info.reg = rinfo.reg;
17067                         }
17068                         info.regcm &= rinfo.regcm;
17069                 }
17070         }
17071 #if DEBUG_TRIPLE_COLOR
17072         fprintf(state->errout, "find_lhs_post_color(%p, %d) -> ( %d, %x)\n",
17073                 ins, index, info.reg, info.regcm);
17074 #endif
17075         return info;
17076 }
17077
17078 static struct reg_info find_rhs_post_color(
17079         struct compile_state *state, struct triple *ins, int index)
17080 {
17081         struct reg_info info, rinfo;
17082         int zlhs, i;
17083 #if DEBUG_TRIPLE_COLOR
17084         fprintf(state->errout, "find_rhs_post_color(%p, %d)\n",
17085                 ins, index);
17086 #endif
17087         rinfo = arch_reg_rhs(state, ins, index);
17088         zlhs = ins->lhs;
17089         if (!zlhs && triple_is_def(state, ins)) {
17090                 zlhs = 1;
17091         }
17092         info = rinfo;
17093         if (info.reg >= MAX_REGISTERS) {
17094                 info.reg = REG_UNSET;
17095         }
17096         for(i = 0; i < zlhs; i++) {
17097                 struct reg_info linfo;
17098                 linfo = arch_reg_lhs(state, ins, i);
17099                 if ((linfo.reg == rinfo.reg) &&
17100                         (linfo.reg >= MAX_REGISTERS)) {
17101                         struct reg_info tinfo;
17102                         tinfo = find_lhs_post_color(state, ins, i);
17103                         if (tinfo.reg >= MAX_REGISTERS) {
17104                                 tinfo.reg = REG_UNSET;
17105                         }
17106                         info.regcm &= linfo.regcm;
17107                         info.regcm &= tinfo.regcm;
17108                         if (info.reg != REG_UNSET) {
17109                                 internal_error(state, ins, "register conflict");
17110                         }
17111                         if (info.regcm == 0) {
17112                                 internal_error(state, ins, "regcm conflict");
17113                         }
17114                         info.reg = tinfo.reg;
17115                 }
17116         }
17117 #if DEBUG_TRIPLE_COLOR
17118         fprintf(state->errout, "find_rhs_post_color(%p, %d) -> ( %d, %x)\n",
17119                 ins, index, info.reg, info.regcm);
17120 #endif
17121         return info;
17122 }
17123
17124 static struct reg_info find_lhs_color(
17125         struct compile_state *state, struct triple *ins, int index)
17126 {
17127         struct reg_info pre, post, info;
17128 #if DEBUG_TRIPLE_COLOR
17129         fprintf(state->errout, "find_lhs_color(%p, %d)\n",
17130                 ins, index);
17131 #endif
17132         pre = find_lhs_pre_color(state, ins, index);
17133         post = find_lhs_post_color(state, ins, index);
17134         if ((pre.reg != post.reg) &&
17135                 (pre.reg != REG_UNSET) &&
17136                 (post.reg != REG_UNSET)) {
17137                 internal_error(state, ins, "register conflict");
17138         }
17139         info.regcm = pre.regcm & post.regcm;
17140         info.reg = pre.reg;
17141         if (info.reg == REG_UNSET) {
17142                 info.reg = post.reg;
17143         }
17144 #if DEBUG_TRIPLE_COLOR
17145         fprintf(state->errout, "find_lhs_color(%p, %d) -> ( %d, %x) ... (%d, %x) (%d, %x)\n",
17146                 ins, index, info.reg, info.regcm,
17147                 pre.reg, pre.regcm, post.reg, post.regcm);
17148 #endif
17149         return info;
17150 }
17151
17152 static struct triple *post_copy(struct compile_state *state, struct triple *ins)
17153 {
17154         struct triple_set *entry, *next;
17155         struct triple *out;
17156         struct reg_info info, rinfo;
17157
17158         info = arch_reg_lhs(state, ins, 0);
17159         out = post_triple(state, ins, OP_COPY, ins->type, ins, 0);
17160         use_triple(RHS(out, 0), out);
17161         /* Get the users of ins to use out instead */
17162         for(entry = ins->use; entry; entry = next) {
17163                 int i;
17164                 next = entry->next;
17165                 if (entry->member == out) {
17166                         continue;
17167                 }
17168                 i = find_rhs_use(state, entry->member, ins);
17169                 if (i < 0) {
17170                         continue;
17171                 }
17172                 rinfo = arch_reg_rhs(state, entry->member, i);
17173                 if ((info.reg == REG_UNNEEDED) && (rinfo.reg == REG_UNNEEDED)) {
17174                         continue;
17175                 }
17176                 replace_rhs_use(state, ins, out, entry->member);
17177         }
17178         transform_to_arch_instruction(state, out);
17179         return out;
17180 }
17181
17182 static struct triple *typed_pre_copy(
17183         struct compile_state *state, struct type *type, struct triple *ins, int index)
17184 {
17185         /* Carefully insert enough operations so that I can
17186          * enter any operation with a GPR32.
17187          */
17188         struct triple *in;
17189         struct triple **expr;
17190         unsigned classes;
17191         struct reg_info info;
17192         int op;
17193         if (ins->op == OP_PHI) {
17194                 internal_error(state, ins, "pre_copy on a phi?");
17195         }
17196         classes = arch_type_to_regcm(state, type);
17197         info = arch_reg_rhs(state, ins, index);
17198         expr = &RHS(ins, index);
17199         if ((info.regcm & classes) == 0) {
17200                 FILE *fp = state->errout;
17201                 fprintf(fp, "src_type: ");
17202                 name_of(fp, ins->type);
17203                 fprintf(fp, "\ndst_type: ");
17204                 name_of(fp, type);
17205                 fprintf(fp, "\n");
17206                 internal_error(state, ins, "pre_copy with no register classes");
17207         }
17208         op = OP_COPY;
17209         if (!equiv_types(type, (*expr)->type)) {
17210                 op = OP_CONVERT;
17211         }
17212         in = pre_triple(state, ins, op, type, *expr, 0);
17213         unuse_triple(*expr, ins);
17214         *expr = in;
17215         use_triple(RHS(in, 0), in);
17216         use_triple(in, ins);
17217         transform_to_arch_instruction(state, in);
17218         return in;
17219         
17220 }
17221 static struct triple *pre_copy(
17222         struct compile_state *state, struct triple *ins, int index)
17223 {
17224         return typed_pre_copy(state, RHS(ins, index)->type, ins, index);
17225 }
17226
17227
17228 static void insert_copies_to_phi(struct compile_state *state)
17229 {
17230         /* To get out of ssa form we insert moves on the incoming
17231          * edges to blocks containting phi functions.
17232          */
17233         struct triple *first;
17234         struct triple *phi;
17235
17236         /* Walk all of the operations to find the phi functions */
17237         first = state->first;
17238         for(phi = first->next; phi != first ; phi = phi->next) {
17239                 struct block_set *set;
17240                 struct block *block;
17241                 struct triple **slot, *copy;
17242                 int edge;
17243                 if (phi->op != OP_PHI) {
17244                         continue;
17245                 }
17246                 phi->id |= TRIPLE_FLAG_POST_SPLIT;
17247                 block = phi->u.block;
17248                 slot  = &RHS(phi, 0);
17249                 /* Phi's that feed into mandatory live range joins
17250                  * cause nasty complications.  Insert a copy of
17251                  * the phi value so I never have to deal with
17252                  * that in the rest of the code.
17253                  */
17254                 copy = post_copy(state, phi);
17255                 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
17256                 /* Walk all of the incoming edges/blocks and insert moves.
17257                  */
17258                 for(edge = 0, set = block->use; set; set = set->next, edge++) {
17259                         struct block *eblock;
17260                         struct triple *move;
17261                         struct triple *val;
17262                         struct triple *ptr;
17263                         eblock = set->member;
17264                         val = slot[edge];
17265
17266                         if (val == phi) {
17267                                 continue;
17268                         }
17269
17270                         get_occurance(val->occurance);
17271                         move = build_triple(state, OP_COPY, val->type, val, 0,
17272                                 val->occurance);
17273                         move->u.block = eblock;
17274                         move->id |= TRIPLE_FLAG_PRE_SPLIT;
17275                         use_triple(val, move);
17276                         
17277                         slot[edge] = move;
17278                         unuse_triple(val, phi);
17279                         use_triple(move, phi);
17280
17281                         /* Walk up the dominator tree until I have found the appropriate block */
17282                         while(eblock && !tdominates(state, val, eblock->last)) {
17283                                 eblock = eblock->idom;
17284                         }
17285                         if (!eblock) {
17286                                 internal_error(state, phi, "Cannot find block dominated by %p",
17287                                         val);
17288                         }
17289
17290                         /* Walk through the block backwards to find
17291                          * an appropriate location for the OP_COPY.
17292                          */
17293                         for(ptr = eblock->last; ptr != eblock->first; ptr = ptr->prev) {
17294                                 struct triple **expr;
17295                                 if (ptr->op == OP_PIECE) {
17296                                         ptr = MISC(ptr, 0);
17297                                 }
17298                                 if ((ptr == phi) || (ptr == val)) {
17299                                         goto out;
17300                                 }
17301                                 expr = triple_lhs(state, ptr, 0);
17302                                 for(;expr; expr = triple_lhs(state, ptr, expr)) {
17303                                         if ((*expr) == val) {
17304                                                 goto out;
17305                                         }
17306                                 }
17307                                 expr = triple_rhs(state, ptr, 0);
17308                                 for(;expr; expr = triple_rhs(state, ptr, expr)) {
17309                                         if ((*expr) == phi) {
17310                                                 goto out;
17311                                         }
17312                                 }
17313                         }
17314                 out:
17315                         if (triple_is_branch(state, ptr)) {
17316                                 internal_error(state, ptr,
17317                                         "Could not insert write to phi");
17318                         }
17319                         insert_triple(state, after_lhs(state, ptr), move);
17320                         if (eblock->last == after_lhs(state, ptr)->prev) {
17321                                 eblock->last = move;
17322                         }
17323                         transform_to_arch_instruction(state, move);
17324                 }
17325         }
17326         print_blocks(state, __func__, state->dbgout);
17327 }
17328
17329 struct triple_reg_set;
17330 struct reg_block;
17331
17332
17333 static int do_triple_set(struct triple_reg_set **head, 
17334         struct triple *member, struct triple *new_member)
17335 {
17336         struct triple_reg_set **ptr, *new;
17337         if (!member)
17338                 return 0;
17339         ptr = head;
17340         while(*ptr) {
17341                 if ((*ptr)->member == member) {
17342                         return 0;
17343                 }
17344                 ptr = &(*ptr)->next;
17345         }
17346         new = xcmalloc(sizeof(*new), "triple_set");
17347         new->member = member;
17348         new->new    = new_member;
17349         new->next   = *head;
17350         *head       = new;
17351         return 1;
17352 }
17353
17354 static void do_triple_unset(struct triple_reg_set **head, struct triple *member)
17355 {
17356         struct triple_reg_set *entry, **ptr;
17357         ptr = head;
17358         while(*ptr) {
17359                 entry = *ptr;
17360                 if (entry->member == member) {
17361                         *ptr = entry->next;
17362                         xfree(entry);
17363                         return;
17364                 }
17365                 else {
17366                         ptr = &entry->next;
17367                 }
17368         }
17369 }
17370
17371 static int in_triple(struct reg_block *rb, struct triple *in)
17372 {
17373         return do_triple_set(&rb->in, in, 0);
17374 }
17375
17376 #if DEBUG_ROMCC_WARNING
17377 static void unin_triple(struct reg_block *rb, struct triple *unin)
17378 {
17379         do_triple_unset(&rb->in, unin);
17380 }
17381 #endif
17382
17383 static int out_triple(struct reg_block *rb, struct triple *out)
17384 {
17385         return do_triple_set(&rb->out, out, 0);
17386 }
17387 #if DEBUG_ROMCC_WARNING
17388 static void unout_triple(struct reg_block *rb, struct triple *unout)
17389 {
17390         do_triple_unset(&rb->out, unout);
17391 }
17392 #endif
17393
17394 static int initialize_regblock(struct reg_block *blocks,
17395         struct block *block, int vertex)
17396 {
17397         struct block_set *user;
17398         if (!block || (blocks[block->vertex].block == block)) {
17399                 return vertex;
17400         }
17401         vertex += 1;
17402         /* Renumber the blocks in a convinient fashion */
17403         block->vertex = vertex;
17404         blocks[vertex].block    = block;
17405         blocks[vertex].vertex   = vertex;
17406         for(user = block->use; user; user = user->next) {
17407                 vertex = initialize_regblock(blocks, user->member, vertex);
17408         }
17409         return vertex;
17410 }
17411
17412 static struct triple *part_to_piece(struct compile_state *state, struct triple *ins)
17413 {
17414 /* Part to piece is a best attempt and it cannot be correct all by
17415  * itself.  If various values are read as different sizes in different
17416  * parts of the code this function cannot work.  Or rather it cannot
17417  * work in conjunction with compute_variable_liftimes.  As the
17418  * analysis will get confused.
17419  */
17420         struct triple *base;
17421         unsigned reg;
17422         if (!is_lvalue(state, ins)) {
17423                 return ins;
17424         }
17425         base = 0;
17426         reg = 0;
17427         while(ins && triple_is_part(state, ins) && (ins->op != OP_PIECE)) {
17428                 base = MISC(ins, 0);
17429                 switch(ins->op) {
17430                 case OP_INDEX:
17431                         reg += index_reg_offset(state, base->type, ins->u.cval)/REG_SIZEOF_REG;
17432                         break;
17433                 case OP_DOT:
17434                         reg += field_reg_offset(state, base->type, ins->u.field)/REG_SIZEOF_REG;
17435                         break;
17436                 default:
17437                         internal_error(state, ins, "unhandled part");
17438                         break;
17439                 }
17440                 ins = base;
17441         }
17442         if (base) {
17443                 if (reg > base->lhs) {
17444                         internal_error(state, base, "part out of range?");
17445                 }
17446                 ins = LHS(base, reg);
17447         }
17448         return ins;
17449 }
17450
17451 static int this_def(struct compile_state *state, 
17452         struct triple *ins, struct triple *other)
17453 {
17454         if (ins == other) {
17455                 return 1;
17456         }
17457         if (ins->op == OP_WRITE) {
17458                 ins = part_to_piece(state, MISC(ins, 0));
17459         }
17460         return ins == other;
17461 }
17462
17463 static int phi_in(struct compile_state *state, struct reg_block *blocks,
17464         struct reg_block *rb, struct block *suc)
17465 {
17466         /* Read the conditional input set of a successor block
17467          * (i.e. the input to the phi nodes) and place it in the
17468          * current blocks output set.
17469          */
17470         struct block_set *set;
17471         struct triple *ptr;
17472         int edge;
17473         int done, change;
17474         change = 0;
17475         /* Find the edge I am coming in on */
17476         for(edge = 0, set = suc->use; set; set = set->next, edge++) {
17477                 if (set->member == rb->block) {
17478                         break;
17479                 }
17480         }
17481         if (!set) {
17482                 internal_error(state, 0, "Not coming on a control edge?");
17483         }
17484         for(done = 0, ptr = suc->first; !done; ptr = ptr->next) {
17485                 struct triple **slot, *expr, *ptr2;
17486                 int out_change, done2;
17487                 done = (ptr == suc->last);
17488                 if (ptr->op != OP_PHI) {
17489                         continue;
17490                 }
17491                 slot = &RHS(ptr, 0);
17492                 expr = slot[edge];
17493                 out_change = out_triple(rb, expr);
17494                 if (!out_change) {
17495                         continue;
17496                 }
17497                 /* If we don't define the variable also plast it
17498                  * in the current blocks input set.
17499                  */
17500                 ptr2 = rb->block->first;
17501                 for(done2 = 0; !done2; ptr2 = ptr2->next) {
17502                         if (this_def(state, ptr2, expr)) {
17503                                 break;
17504                         }
17505                         done2 = (ptr2 == rb->block->last);
17506                 }
17507                 if (!done2) {
17508                         continue;
17509                 }
17510                 change |= in_triple(rb, expr);
17511         }
17512         return change;
17513 }
17514
17515 static int reg_in(struct compile_state *state, struct reg_block *blocks,
17516         struct reg_block *rb, struct block *suc)
17517 {
17518         struct triple_reg_set *in_set;
17519         int change;
17520         change = 0;
17521         /* Read the input set of a successor block
17522          * and place it in the current blocks output set.
17523          */
17524         in_set = blocks[suc->vertex].in;
17525         for(; in_set; in_set = in_set->next) {
17526                 int out_change, done;
17527                 struct triple *first, *last, *ptr;
17528                 out_change = out_triple(rb, in_set->member);
17529                 if (!out_change) {
17530                         continue;
17531                 }
17532                 /* If we don't define the variable also place it
17533                  * in the current blocks input set.
17534                  */
17535                 first = rb->block->first;
17536                 last = rb->block->last;
17537                 done = 0;
17538                 for(ptr = first; !done; ptr = ptr->next) {
17539                         if (this_def(state, ptr, in_set->member)) {
17540                                 break;
17541                         }
17542                         done = (ptr == last);
17543                 }
17544                 if (!done) {
17545                         continue;
17546                 }
17547                 change |= in_triple(rb, in_set->member);
17548         }
17549         change |= phi_in(state, blocks, rb, suc);
17550         return change;
17551 }
17552
17553 static int use_in(struct compile_state *state, struct reg_block *rb)
17554 {
17555         /* Find the variables we use but don't define and add
17556          * it to the current blocks input set.
17557          */
17558 #if DEBUG_ROMCC_WARNINGS
17559 #warning "FIXME is this O(N^2) algorithm bad?"
17560 #endif
17561         struct block *block;
17562         struct triple *ptr;
17563         int done;
17564         int change;
17565         block = rb->block;
17566         change = 0;
17567         for(done = 0, ptr = block->last; !done; ptr = ptr->prev) {
17568                 struct triple **expr;
17569                 done = (ptr == block->first);
17570                 /* The variable a phi function uses depends on the
17571                  * control flow, and is handled in phi_in, not
17572                  * here.
17573                  */
17574                 if (ptr->op == OP_PHI) {
17575                         continue;
17576                 }
17577                 expr = triple_rhs(state, ptr, 0);
17578                 for(;expr; expr = triple_rhs(state, ptr, expr)) {
17579                         struct triple *rhs, *test;
17580                         int tdone;
17581                         rhs = part_to_piece(state, *expr);
17582                         if (!rhs) {
17583                                 continue;
17584                         }
17585
17586                         /* See if rhs is defined in this block.
17587                          * A write counts as a definition.
17588                          */
17589                         for(tdone = 0, test = ptr; !tdone; test = test->prev) {
17590                                 tdone = (test == block->first);
17591                                 if (this_def(state, test, rhs)) {
17592                                         rhs = 0;
17593                                         break;
17594                                 }
17595                         }
17596                         /* If I still have a valid rhs add it to in */
17597                         change |= in_triple(rb, rhs);
17598                 }
17599         }
17600         return change;
17601 }
17602
17603 static struct reg_block *compute_variable_lifetimes(
17604         struct compile_state *state, struct basic_blocks *bb)
17605 {
17606         struct reg_block *blocks;
17607         int change;
17608         blocks = xcmalloc(
17609                 sizeof(*blocks)*(bb->last_vertex + 1), "reg_block");
17610         initialize_regblock(blocks, bb->last_block, 0);
17611         do {
17612                 int i;
17613                 change = 0;
17614                 for(i = 1; i <= bb->last_vertex; i++) {
17615                         struct block_set *edge;
17616                         struct reg_block *rb;
17617                         rb = &blocks[i];
17618                         /* Add the all successor's input set to in */
17619                         for(edge = rb->block->edges; edge; edge = edge->next) {
17620                                 change |= reg_in(state, blocks, rb, edge->member);
17621                         }
17622                         /* Add use to in... */
17623                         change |= use_in(state, rb);
17624                 }
17625         } while(change);
17626         return blocks;
17627 }
17628
17629 static void free_variable_lifetimes(struct compile_state *state, 
17630         struct basic_blocks *bb, struct reg_block *blocks)
17631 {
17632         int i;
17633         /* free in_set && out_set on each block */
17634         for(i = 1; i <= bb->last_vertex; i++) {
17635                 struct triple_reg_set *entry, *next;
17636                 struct reg_block *rb;
17637                 rb = &blocks[i];
17638                 for(entry = rb->in; entry ; entry = next) {
17639                         next = entry->next;
17640                         do_triple_unset(&rb->in, entry->member);
17641                 }
17642                 for(entry = rb->out; entry; entry = next) {
17643                         next = entry->next;
17644                         do_triple_unset(&rb->out, entry->member);
17645                 }
17646         }
17647         xfree(blocks);
17648
17649 }
17650
17651 typedef void (*wvl_cb_t)(
17652         struct compile_state *state, 
17653         struct reg_block *blocks, struct triple_reg_set *live, 
17654         struct reg_block *rb, struct triple *ins, void *arg);
17655
17656 static void walk_variable_lifetimes(struct compile_state *state,
17657         struct basic_blocks *bb, struct reg_block *blocks, 
17658         wvl_cb_t cb, void *arg)
17659 {
17660         int i;
17661         
17662         for(i = 1; i <= state->bb.last_vertex; i++) {
17663                 struct triple_reg_set *live;
17664                 struct triple_reg_set *entry, *next;
17665                 struct triple *ptr, *prev;
17666                 struct reg_block *rb;
17667                 struct block *block;
17668                 int done;
17669
17670                 /* Get the blocks */
17671                 rb = &blocks[i];
17672                 block = rb->block;
17673
17674                 /* Copy out into live */
17675                 live = 0;
17676                 for(entry = rb->out; entry; entry = next) {
17677                         next = entry->next;
17678                         do_triple_set(&live, entry->member, entry->new);
17679                 }
17680                 /* Walk through the basic block calculating live */
17681                 for(done = 0, ptr = block->last; !done; ptr = prev) {
17682                         struct triple **expr;
17683
17684                         prev = ptr->prev;
17685                         done = (ptr == block->first);
17686
17687                         /* Ensure the current definition is in live */
17688                         if (triple_is_def(state, ptr)) {
17689                                 do_triple_set(&live, ptr, 0);
17690                         }
17691
17692                         /* Inform the callback function of what is
17693                          * going on.
17694                          */
17695                          cb(state, blocks, live, rb, ptr, arg);
17696                         
17697                         /* Remove the current definition from live */
17698                         do_triple_unset(&live, ptr);
17699
17700                         /* Add the current uses to live.
17701                          *
17702                          * It is safe to skip phi functions because they do
17703                          * not have any block local uses, and the block
17704                          * output sets already properly account for what
17705                          * control flow depedent uses phi functions do have.
17706                          */
17707                         if (ptr->op == OP_PHI) {
17708                                 continue;
17709                         }
17710                         expr = triple_rhs(state, ptr, 0);
17711                         for(;expr; expr = triple_rhs(state, ptr, expr)) {
17712                                 /* If the triple is not a definition skip it. */
17713                                 if (!*expr || !triple_is_def(state, *expr)) {
17714                                         continue;
17715                                 }
17716                                 do_triple_set(&live, *expr, 0);
17717                         }
17718                 }
17719                 /* Free live */
17720                 for(entry = live; entry; entry = next) {
17721                         next = entry->next;
17722                         do_triple_unset(&live, entry->member);
17723                 }
17724         }
17725 }
17726
17727 struct print_live_variable_info {
17728         struct reg_block *rb;
17729         FILE *fp;
17730 };
17731 #if DEBUG_EXPLICIT_CLOSURES
17732 static void print_live_variables_block(
17733         struct compile_state *state, struct block *block, void *arg)
17734
17735 {
17736         struct print_live_variable_info *info = arg;
17737         struct block_set *edge;
17738         FILE *fp = info->fp;
17739         struct reg_block *rb;
17740         struct triple *ptr;
17741         int phi_present;
17742         int done;
17743         rb = &info->rb[block->vertex];
17744
17745         fprintf(fp, "\nblock: %p (%d),",
17746                 block,  block->vertex);
17747         for(edge = block->edges; edge; edge = edge->next) {
17748                 fprintf(fp, " %p<-%p",
17749                         edge->member, 
17750                         edge->member && edge->member->use?edge->member->use->member : 0);
17751         }
17752         fprintf(fp, "\n");
17753         if (rb->in) {
17754                 struct triple_reg_set *in_set;
17755                 fprintf(fp, "        in:");
17756                 for(in_set = rb->in; in_set; in_set = in_set->next) {
17757                         fprintf(fp, " %-10p", in_set->member);
17758                 }
17759                 fprintf(fp, "\n");
17760         }
17761         phi_present = 0;
17762         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
17763                 done = (ptr == block->last);
17764                 if (ptr->op == OP_PHI) {
17765                         phi_present = 1;
17766                         break;
17767                 }
17768         }
17769         if (phi_present) {
17770                 int edge;
17771                 for(edge = 0; edge < block->users; edge++) {
17772                         fprintf(fp, "     in(%d):", edge);
17773                         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
17774                                 struct triple **slot;
17775                                 done = (ptr == block->last);
17776                                 if (ptr->op != OP_PHI) {
17777                                         continue;
17778                                 }
17779                                 slot = &RHS(ptr, 0);
17780                                 fprintf(fp, " %-10p", slot[edge]);
17781                         }
17782                         fprintf(fp, "\n");
17783                 }
17784         }
17785         if (block->first->op == OP_LABEL) {
17786                 fprintf(fp, "%p:\n", block->first);
17787         }
17788         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
17789                 done = (ptr == block->last);
17790                 display_triple(fp, ptr);
17791         }
17792         if (rb->out) {
17793                 struct triple_reg_set *out_set;
17794                 fprintf(fp, "       out:");
17795                 for(out_set = rb->out; out_set; out_set = out_set->next) {
17796                         fprintf(fp, " %-10p", out_set->member);
17797                 }
17798                 fprintf(fp, "\n");
17799         }
17800         fprintf(fp, "\n");
17801 }
17802
17803 static void print_live_variables(struct compile_state *state, 
17804         struct basic_blocks *bb, struct reg_block *rb, FILE *fp)
17805 {
17806         struct print_live_variable_info info;
17807         info.rb = rb;
17808         info.fp = fp;
17809         fprintf(fp, "\nlive variables by block\n");
17810         walk_blocks(state, bb, print_live_variables_block, &info);
17811
17812 }
17813 #endif
17814
17815 static int count_triples(struct compile_state *state)
17816 {
17817         struct triple *first, *ins;
17818         int triples = 0;
17819         first = state->first;
17820         ins = first;
17821         do {
17822                 triples++;
17823                 ins = ins->next;
17824         } while (ins != first);
17825         return triples;
17826 }
17827
17828
17829 struct dead_triple {
17830         struct triple *triple;
17831         struct dead_triple *work_next;
17832         struct block *block;
17833         int old_id;
17834         int flags;
17835 #define TRIPLE_FLAG_ALIVE 1
17836 #define TRIPLE_FLAG_FREE  1
17837 };
17838
17839 static void print_dead_triples(struct compile_state *state, 
17840         struct dead_triple *dtriple)
17841 {
17842         struct triple *first, *ins;
17843         struct dead_triple *dt;
17844         FILE *fp;
17845         if (!(state->compiler->debug & DEBUG_TRIPLES)) {
17846                 return;
17847         }
17848         fp = state->dbgout;
17849         fprintf(fp, "--------------- dtriples ---------------\n");
17850         first = state->first;
17851         ins = first;
17852         do {
17853                 dt = &dtriple[ins->id];
17854                 if ((ins->op == OP_LABEL) && (ins->use)) {
17855                         fprintf(fp, "\n%p:\n", ins);
17856                 }
17857                 fprintf(fp, "%c", 
17858                         (dt->flags & TRIPLE_FLAG_ALIVE)?' ': '-');
17859                 display_triple(fp, ins);
17860                 if (triple_is_branch(state, ins)) {
17861                         fprintf(fp, "\n");
17862                 }
17863                 ins = ins->next;
17864         } while(ins != first);
17865         fprintf(fp, "\n");
17866 }
17867
17868
17869 static void awaken(
17870         struct compile_state *state,
17871         struct dead_triple *dtriple, struct triple **expr,
17872         struct dead_triple ***work_list_tail)
17873 {
17874         struct triple *triple;
17875         struct dead_triple *dt;
17876         if (!expr) {
17877                 return;
17878         }
17879         triple = *expr;
17880         if (!triple) {
17881                 return;
17882         }
17883         if (triple->id <= 0)  {
17884                 internal_error(state, triple, "bad triple id: %d",
17885                         triple->id);
17886         }
17887         if (triple->op == OP_NOOP) {
17888                 internal_error(state, triple, "awakening noop?");
17889                 return;
17890         }
17891         dt = &dtriple[triple->id];
17892         if (!(dt->flags & TRIPLE_FLAG_ALIVE)) {
17893                 dt->flags |= TRIPLE_FLAG_ALIVE;
17894                 if (!dt->work_next) {
17895                         **work_list_tail = dt;
17896                         *work_list_tail = &dt->work_next;
17897                 }
17898         }
17899 }
17900
17901 static void eliminate_inefectual_code(struct compile_state *state)
17902 {
17903         struct block *block;
17904         struct dead_triple *dtriple, *work_list, **work_list_tail, *dt;
17905         int triples, i;
17906         struct triple *first, *final, *ins;
17907
17908         if (!(state->compiler->flags & COMPILER_ELIMINATE_INEFECTUAL_CODE)) {
17909                 return;
17910         }
17911
17912         /* Setup the work list */
17913         work_list = 0;
17914         work_list_tail = &work_list;
17915
17916         first = state->first;
17917         final = state->first->prev;
17918
17919         /* Count how many triples I have */
17920         triples = count_triples(state);
17921
17922         /* Now put then in an array and mark all of the triples dead */
17923         dtriple = xcmalloc(sizeof(*dtriple) * (triples + 1), "dtriples");
17924         
17925         ins = first;
17926         i = 1;
17927         block = 0;
17928         do {
17929                 dtriple[i].triple = ins;
17930                 dtriple[i].block  = block_of_triple(state, ins);
17931                 dtriple[i].flags  = 0;
17932                 dtriple[i].old_id = ins->id;
17933                 ins->id = i;
17934                 /* See if it is an operation we always keep */
17935                 if (!triple_is_pure(state, ins, dtriple[i].old_id)) {
17936                         awaken(state, dtriple, &ins, &work_list_tail);
17937                 }
17938                 i++;
17939                 ins = ins->next;
17940         } while(ins != first);
17941         while(work_list) {
17942                 struct block *block;
17943                 struct dead_triple *dt;
17944                 struct block_set *user;
17945                 struct triple **expr;
17946                 dt = work_list;
17947                 work_list = dt->work_next;
17948                 if (!work_list) {
17949                         work_list_tail = &work_list;
17950                 }
17951                 /* Make certain the block the current instruction is in lives */
17952                 block = block_of_triple(state, dt->triple);
17953                 awaken(state, dtriple, &block->first, &work_list_tail);
17954                 if (triple_is_branch(state, block->last)) {
17955                         awaken(state, dtriple, &block->last, &work_list_tail);
17956                 } else {
17957                         awaken(state, dtriple, &block->last->next, &work_list_tail);
17958                 }
17959
17960                 /* Wake up the data depencencies of this triple */
17961                 expr = 0;
17962                 do {
17963                         expr = triple_rhs(state, dt->triple, expr);
17964                         awaken(state, dtriple, expr, &work_list_tail);
17965                 } while(expr);
17966                 do {
17967                         expr = triple_lhs(state, dt->triple, expr);
17968                         awaken(state, dtriple, expr, &work_list_tail);
17969                 } while(expr);
17970                 do {
17971                         expr = triple_misc(state, dt->triple, expr);
17972                         awaken(state, dtriple, expr, &work_list_tail);
17973                 } while(expr);
17974                 /* Wake up the forward control dependencies */
17975                 do {
17976                         expr = triple_targ(state, dt->triple, expr);
17977                         awaken(state, dtriple, expr, &work_list_tail);
17978                 } while(expr);
17979                 /* Wake up the reverse control dependencies of this triple */
17980                 for(user = dt->block->ipdomfrontier; user; user = user->next) {
17981                         struct triple *last;
17982                         last = user->member->last;
17983                         while((last->op == OP_NOOP) && (last != user->member->first)) {
17984 #if DEBUG_ROMCC_WARNINGS
17985 #warning "Should we bring the awakening noops back?"
17986 #endif
17987                                 // internal_warning(state, last, "awakening noop?");
17988                                 last = last->prev;
17989                         }
17990                         awaken(state, dtriple, &last, &work_list_tail);
17991                 }
17992         }
17993         print_dead_triples(state, dtriple);
17994         for(dt = &dtriple[1]; dt <= &dtriple[triples]; dt++) {
17995                 if ((dt->triple->op == OP_NOOP) && 
17996                         (dt->flags & TRIPLE_FLAG_ALIVE)) {
17997                         internal_error(state, dt->triple, "noop effective?");
17998                 }
17999                 dt->triple->id = dt->old_id;    /* Restore the color */
18000                 if (!(dt->flags & TRIPLE_FLAG_ALIVE)) {
18001                         release_triple(state, dt->triple);
18002                 }
18003         }
18004         xfree(dtriple);
18005
18006         rebuild_ssa_form(state);
18007
18008         print_blocks(state, __func__, state->dbgout);
18009 }
18010
18011
18012 static void insert_mandatory_copies(struct compile_state *state)
18013 {
18014         struct triple *ins, *first;
18015
18016         /* The object is with a minimum of inserted copies,
18017          * to resolve in fundamental register conflicts between
18018          * register value producers and consumers.
18019          * Theoretically we may be greater than minimal when we
18020          * are inserting copies before instructions but that
18021          * case should be rare.
18022          */
18023         first = state->first;
18024         ins = first;
18025         do {
18026                 struct triple_set *entry, *next;
18027                 struct triple *tmp;
18028                 struct reg_info info;
18029                 unsigned reg, regcm;
18030                 int do_post_copy, do_pre_copy;
18031                 tmp = 0;
18032                 if (!triple_is_def(state, ins)) {
18033                         goto next;
18034                 }
18035                 /* Find the architecture specific color information */
18036                 info = find_lhs_pre_color(state, ins, 0);
18037                 if (info.reg >= MAX_REGISTERS) {
18038                         info.reg = REG_UNSET;
18039                 }
18040
18041                 reg = REG_UNSET;
18042                 regcm = arch_type_to_regcm(state, ins->type);
18043                 do_post_copy = do_pre_copy = 0;
18044
18045                 /* Walk through the uses of ins and check for conflicts */
18046                 for(entry = ins->use; entry; entry = next) {
18047                         struct reg_info rinfo;
18048                         int i;
18049                         next = entry->next;
18050                         i = find_rhs_use(state, entry->member, ins);
18051                         if (i < 0) {
18052                                 continue;
18053                         }
18054                         
18055                         /* Find the users color requirements */
18056                         rinfo = arch_reg_rhs(state, entry->member, i);
18057                         if (rinfo.reg >= MAX_REGISTERS) {
18058                                 rinfo.reg = REG_UNSET;
18059                         }
18060                         
18061                         /* See if I need a pre_copy */
18062                         if (rinfo.reg != REG_UNSET) {
18063                                 if ((reg != REG_UNSET) && (reg != rinfo.reg)) {
18064                                         do_pre_copy = 1;
18065                                 }
18066                                 reg = rinfo.reg;
18067                         }
18068                         regcm &= rinfo.regcm;
18069                         regcm = arch_regcm_normalize(state, regcm);
18070                         if (regcm == 0) {
18071                                 do_pre_copy = 1;
18072                         }
18073                         /* Always use pre_copies for constants.
18074                          * They do not take up any registers until a
18075                          * copy places them in one.
18076                          */
18077                         if ((info.reg == REG_UNNEEDED) && 
18078                                 (rinfo.reg != REG_UNNEEDED)) {
18079                                 do_pre_copy = 1;
18080                         }
18081                 }
18082                 do_post_copy =
18083                         !do_pre_copy &&
18084                         (((info.reg != REG_UNSET) && 
18085                                 (reg != REG_UNSET) &&
18086                                 (info.reg != reg)) ||
18087                         ((info.regcm & regcm) == 0));
18088
18089                 reg = info.reg;
18090                 regcm = info.regcm;
18091                 /* Walk through the uses of ins and do a pre_copy or see if a post_copy is warranted */
18092                 for(entry = ins->use; entry; entry = next) {
18093                         struct reg_info rinfo;
18094                         int i;
18095                         next = entry->next;
18096                         i = find_rhs_use(state, entry->member, ins);
18097                         if (i < 0) {
18098                                 continue;
18099                         }
18100                         
18101                         /* Find the users color requirements */
18102                         rinfo = arch_reg_rhs(state, entry->member, i);
18103                         if (rinfo.reg >= MAX_REGISTERS) {
18104                                 rinfo.reg = REG_UNSET;
18105                         }
18106
18107                         /* Now see if it is time to do the pre_copy */
18108                         if (rinfo.reg != REG_UNSET) {
18109                                 if (((reg != REG_UNSET) && (reg != rinfo.reg)) ||
18110                                         ((regcm & rinfo.regcm) == 0) ||
18111                                         /* Don't let a mandatory coalesce sneak
18112                                          * into a operation that is marked to prevent
18113                                          * coalescing.
18114                                          */
18115                                         ((reg != REG_UNNEEDED) &&
18116                                         ((ins->id & TRIPLE_FLAG_POST_SPLIT) ||
18117                                         (entry->member->id & TRIPLE_FLAG_PRE_SPLIT)))
18118                                         ) {
18119                                         if (do_pre_copy) {
18120                                                 struct triple *user;
18121                                                 user = entry->member;
18122                                                 if (RHS(user, i) != ins) {
18123                                                         internal_error(state, user, "bad rhs");
18124                                                 }
18125                                                 tmp = pre_copy(state, user, i);
18126                                                 tmp->id |= TRIPLE_FLAG_PRE_SPLIT;
18127                                                 continue;
18128                                         } else {
18129                                                 do_post_copy = 1;
18130                                         }
18131                                 }
18132                                 reg = rinfo.reg;
18133                         }
18134                         if ((regcm & rinfo.regcm) == 0) {
18135                                 if (do_pre_copy) {
18136                                         struct triple *user;
18137                                         user = entry->member;
18138                                         if (RHS(user, i) != ins) {
18139                                                 internal_error(state, user, "bad rhs");
18140                                         }
18141                                         tmp = pre_copy(state, user, i);
18142                                         tmp->id |= TRIPLE_FLAG_PRE_SPLIT;
18143                                         continue;
18144                                 } else {
18145                                         do_post_copy = 1;
18146                                 }
18147                         }
18148                         regcm &= rinfo.regcm;
18149                         
18150                 }
18151                 if (do_post_copy) {
18152                         struct reg_info pre, post;
18153                         tmp = post_copy(state, ins);
18154                         tmp->id |= TRIPLE_FLAG_PRE_SPLIT;
18155                         pre = arch_reg_lhs(state, ins, 0);
18156                         post = arch_reg_lhs(state, tmp, 0);
18157                         if ((pre.reg == post.reg) && (pre.regcm == post.regcm)) {
18158                                 internal_error(state, tmp, "useless copy");
18159                         }
18160                 }
18161         next:
18162                 ins = ins->next;
18163         } while(ins != first);
18164
18165         print_blocks(state, __func__, state->dbgout);
18166 }
18167
18168
18169 struct live_range_edge;
18170 struct live_range_def;
18171 struct live_range {
18172         struct live_range_edge *edges;
18173         struct live_range_def *defs;
18174 /* Note. The list pointed to by defs is kept in order.
18175  * That is baring splits in the flow control
18176  * defs dominates defs->next wich dominates defs->next->next
18177  * etc.
18178  */
18179         unsigned color;
18180         unsigned classes;
18181         unsigned degree;
18182         unsigned length;
18183         struct live_range *group_next, **group_prev;
18184 };
18185
18186 struct live_range_edge {
18187         struct live_range_edge *next;
18188         struct live_range *node;
18189 };
18190
18191 struct live_range_def {
18192         struct live_range_def *next;
18193         struct live_range_def *prev;
18194         struct live_range *lr;
18195         struct triple *def;
18196         unsigned orig_id;
18197 };
18198
18199 #define LRE_HASH_SIZE 2048
18200 struct lre_hash {
18201         struct lre_hash *next;
18202         struct live_range *left;
18203         struct live_range *right;
18204 };
18205
18206
18207 struct reg_state {
18208         struct lre_hash *hash[LRE_HASH_SIZE];
18209         struct reg_block *blocks;
18210         struct live_range_def *lrd;
18211         struct live_range *lr;
18212         struct live_range *low, **low_tail;
18213         struct live_range *high, **high_tail;
18214         unsigned defs;
18215         unsigned ranges;
18216         int passes, max_passes;
18217 };
18218
18219
18220 struct print_interference_block_info {
18221         struct reg_state *rstate;
18222         FILE *fp;
18223         int need_edges;
18224 };
18225 static void print_interference_block(
18226         struct compile_state *state, struct block *block, void *arg)
18227
18228 {
18229         struct print_interference_block_info *info = arg;
18230         struct reg_state *rstate = info->rstate;
18231         struct block_set *edge;
18232         FILE *fp = info->fp;
18233         struct reg_block *rb;
18234         struct triple *ptr;
18235         int phi_present;
18236         int done;
18237         rb = &rstate->blocks[block->vertex];
18238
18239         fprintf(fp, "\nblock: %p (%d),",
18240                 block,  block->vertex);
18241         for(edge = block->edges; edge; edge = edge->next) {
18242                 fprintf(fp, " %p<-%p",
18243                         edge->member, 
18244                         edge->member && edge->member->use?edge->member->use->member : 0);
18245         }
18246         fprintf(fp, "\n");
18247         if (rb->in) {
18248                 struct triple_reg_set *in_set;
18249                 fprintf(fp, "        in:");
18250                 for(in_set = rb->in; in_set; in_set = in_set->next) {
18251                         fprintf(fp, " %-10p", in_set->member);
18252                 }
18253                 fprintf(fp, "\n");
18254         }
18255         phi_present = 0;
18256         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
18257                 done = (ptr == block->last);
18258                 if (ptr->op == OP_PHI) {
18259                         phi_present = 1;
18260                         break;
18261                 }
18262         }
18263         if (phi_present) {
18264                 int edge;
18265                 for(edge = 0; edge < block->users; edge++) {
18266                         fprintf(fp, "     in(%d):", edge);
18267                         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
18268                                 struct triple **slot;
18269                                 done = (ptr == block->last);
18270                                 if (ptr->op != OP_PHI) {
18271                                         continue;
18272                                 }
18273                                 slot = &RHS(ptr, 0);
18274                                 fprintf(fp, " %-10p", slot[edge]);
18275                         }
18276                         fprintf(fp, "\n");
18277                 }
18278         }
18279         if (block->first->op == OP_LABEL) {
18280                 fprintf(fp, "%p:\n", block->first);
18281         }
18282         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
18283                 struct live_range *lr;
18284                 unsigned id;
18285                 int op;
18286                 op = ptr->op;
18287                 done = (ptr == block->last);
18288                 lr = rstate->lrd[ptr->id].lr;
18289                 
18290                 id = ptr->id;
18291                 ptr->id = rstate->lrd[id].orig_id;
18292                 SET_REG(ptr->id, lr->color);
18293                 display_triple(fp, ptr);
18294                 ptr->id = id;
18295
18296                 if (triple_is_def(state, ptr) && (lr->defs == 0)) {
18297                         internal_error(state, ptr, "lr has no defs!");
18298                 }
18299                 if (info->need_edges) {
18300                         if (lr->defs) {
18301                                 struct live_range_def *lrd;
18302                                 fprintf(fp, "       range:");
18303                                 lrd = lr->defs;
18304                                 do {
18305                                         fprintf(fp, " %-10p", lrd->def);
18306                                         lrd = lrd->next;
18307                                 } while(lrd != lr->defs);
18308                                 fprintf(fp, "\n");
18309                         }
18310                         if (lr->edges > 0) {
18311                                 struct live_range_edge *edge;
18312                                 fprintf(fp, "       edges:");
18313                                 for(edge = lr->edges; edge; edge = edge->next) {
18314                                         struct live_range_def *lrd;
18315                                         lrd = edge->node->defs;
18316                                         do {
18317                                                 fprintf(fp, " %-10p", lrd->def);
18318                                                 lrd = lrd->next;
18319                                         } while(lrd != edge->node->defs);
18320                                         fprintf(fp, "|");
18321                                 }
18322                                 fprintf(fp, "\n");
18323                         }
18324                 }
18325                 /* Do a bunch of sanity checks */
18326                 valid_ins(state, ptr);
18327                 if ((ptr->id < 0) || (ptr->id > rstate->defs)) {
18328                         internal_error(state, ptr, "Invalid triple id: %d",
18329                                 ptr->id);
18330                 }
18331         }
18332         if (rb->out) {
18333                 struct triple_reg_set *out_set;
18334                 fprintf(fp, "       out:");
18335                 for(out_set = rb->out; out_set; out_set = out_set->next) {
18336                         fprintf(fp, " %-10p", out_set->member);
18337                 }
18338                 fprintf(fp, "\n");
18339         }
18340         fprintf(fp, "\n");
18341 }
18342
18343 static void print_interference_blocks(
18344         struct compile_state *state, struct reg_state *rstate, FILE *fp, int need_edges)
18345 {
18346         struct print_interference_block_info info;
18347         info.rstate = rstate;
18348         info.fp = fp;
18349         info.need_edges = need_edges;
18350         fprintf(fp, "\nlive variables by block\n");
18351         walk_blocks(state, &state->bb, print_interference_block, &info);
18352
18353 }
18354
18355 static unsigned regc_max_size(struct compile_state *state, int classes)
18356 {
18357         unsigned max_size;
18358         int i;
18359         max_size = 0;
18360         for(i = 0; i < MAX_REGC; i++) {
18361                 if (classes & (1 << i)) {
18362                         unsigned size;
18363                         size = arch_regc_size(state, i);
18364                         if (size > max_size) {
18365                                 max_size = size;
18366                         }
18367                 }
18368         }
18369         return max_size;
18370 }
18371
18372 static int reg_is_reg(struct compile_state *state, int reg1, int reg2)
18373 {
18374         unsigned equivs[MAX_REG_EQUIVS];
18375         int i;
18376         if ((reg1 < 0) || (reg1 >= MAX_REGISTERS)) {
18377                 internal_error(state, 0, "invalid register");
18378         }
18379         if ((reg2 < 0) || (reg2 >= MAX_REGISTERS)) {
18380                 internal_error(state, 0, "invalid register");
18381         }
18382         arch_reg_equivs(state, equivs, reg1);
18383         for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
18384                 if (equivs[i] == reg2) {
18385                         return 1;
18386                 }
18387         }
18388         return 0;
18389 }
18390
18391 static void reg_fill_used(struct compile_state *state, char *used, int reg)
18392 {
18393         unsigned equivs[MAX_REG_EQUIVS];
18394         int i;
18395         if (reg == REG_UNNEEDED) {
18396                 return;
18397         }
18398         arch_reg_equivs(state, equivs, reg);
18399         for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
18400                 used[equivs[i]] = 1;
18401         }
18402         return;
18403 }
18404
18405 static void reg_inc_used(struct compile_state *state, char *used, int reg)
18406 {
18407         unsigned equivs[MAX_REG_EQUIVS];
18408         int i;
18409         if (reg == REG_UNNEEDED) {
18410                 return;
18411         }
18412         arch_reg_equivs(state, equivs, reg);
18413         for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
18414                 used[equivs[i]] += 1;
18415         }
18416         return;
18417 }
18418
18419 static unsigned int hash_live_edge(
18420         struct live_range *left, struct live_range *right)
18421 {
18422         unsigned int hash, val;
18423         unsigned long lval, rval;
18424         lval = ((unsigned long)left)/sizeof(struct live_range);
18425         rval = ((unsigned long)right)/sizeof(struct live_range);
18426         hash = 0;
18427         while(lval) {
18428                 val = lval & 0xff;
18429                 lval >>= 8;
18430                 hash = (hash *263) + val;
18431         }
18432         while(rval) {
18433                 val = rval & 0xff;
18434                 rval >>= 8;
18435                 hash = (hash *263) + val;
18436         }
18437         hash = hash & (LRE_HASH_SIZE - 1);
18438         return hash;
18439 }
18440
18441 static struct lre_hash **lre_probe(struct reg_state *rstate,
18442         struct live_range *left, struct live_range *right)
18443 {
18444         struct lre_hash **ptr;
18445         unsigned int index;
18446         /* Ensure left <= right */
18447         if (left > right) {
18448                 struct live_range *tmp;
18449                 tmp = left;
18450                 left = right;
18451                 right = tmp;
18452         }
18453         index = hash_live_edge(left, right);
18454         
18455         ptr = &rstate->hash[index];
18456         while(*ptr) {
18457                 if (((*ptr)->left == left) && ((*ptr)->right == right)) {
18458                         break;
18459                 }
18460                 ptr = &(*ptr)->next;
18461         }
18462         return ptr;
18463 }
18464
18465 static int interfere(struct reg_state *rstate,
18466         struct live_range *left, struct live_range *right)
18467 {
18468         struct lre_hash **ptr;
18469         ptr = lre_probe(rstate, left, right);
18470         return ptr && *ptr;
18471 }
18472
18473 static void add_live_edge(struct reg_state *rstate, 
18474         struct live_range *left, struct live_range *right)
18475 {
18476         /* FIXME the memory allocation overhead is noticeable here... */
18477         struct lre_hash **ptr, *new_hash;
18478         struct live_range_edge *edge;
18479
18480         if (left == right) {
18481                 return;
18482         }
18483         if ((left == &rstate->lr[0]) || (right == &rstate->lr[0])) {
18484                 return;
18485         }
18486         /* Ensure left <= right */
18487         if (left > right) {
18488                 struct live_range *tmp;
18489                 tmp = left;
18490                 left = right;
18491                 right = tmp;
18492         }
18493         ptr = lre_probe(rstate, left, right);
18494         if (*ptr) {
18495                 return;
18496         }
18497 #if 0
18498         fprintf(state->errout, "new_live_edge(%p, %p)\n",
18499                 left, right);
18500 #endif
18501         new_hash = xmalloc(sizeof(*new_hash), "lre_hash");
18502         new_hash->next  = *ptr;
18503         new_hash->left  = left;
18504         new_hash->right = right;
18505         *ptr = new_hash;
18506
18507         edge = xmalloc(sizeof(*edge), "live_range_edge");
18508         edge->next   = left->edges;
18509         edge->node   = right;
18510         left->edges  = edge;
18511         left->degree += 1;
18512         
18513         edge = xmalloc(sizeof(*edge), "live_range_edge");
18514         edge->next    = right->edges;
18515         edge->node    = left;
18516         right->edges  = edge;
18517         right->degree += 1;
18518 }
18519
18520 static void remove_live_edge(struct reg_state *rstate,
18521         struct live_range *left, struct live_range *right)
18522 {
18523         struct live_range_edge *edge, **ptr;
18524         struct lre_hash **hptr, *entry;
18525         hptr = lre_probe(rstate, left, right);
18526         if (!hptr || !*hptr) {
18527                 return;
18528         }
18529         entry = *hptr;
18530         *hptr = entry->next;
18531         xfree(entry);
18532
18533         for(ptr = &left->edges; *ptr; ptr = &(*ptr)->next) {
18534                 edge = *ptr;
18535                 if (edge->node == right) {
18536                         *ptr = edge->next;
18537                         memset(edge, 0, sizeof(*edge));
18538                         xfree(edge);
18539                         right->degree--;
18540                         break;
18541                 }
18542         }
18543         for(ptr = &right->edges; *ptr; ptr = &(*ptr)->next) {
18544                 edge = *ptr;
18545                 if (edge->node == left) {
18546                         *ptr = edge->next;
18547                         memset(edge, 0, sizeof(*edge));
18548                         xfree(edge);
18549                         left->degree--;
18550                         break;
18551                 }
18552         }
18553 }
18554
18555 static void remove_live_edges(struct reg_state *rstate, struct live_range *range)
18556 {
18557         struct live_range_edge *edge, *next;
18558         for(edge = range->edges; edge; edge = next) {
18559                 next = edge->next;
18560                 remove_live_edge(rstate, range, edge->node);
18561         }
18562 }
18563
18564 static void transfer_live_edges(struct reg_state *rstate, 
18565         struct live_range *dest, struct live_range *src)
18566 {
18567         struct live_range_edge *edge, *next;
18568         for(edge = src->edges; edge; edge = next) {
18569                 struct live_range *other;
18570                 next = edge->next;
18571                 other = edge->node;
18572                 remove_live_edge(rstate, src, other);
18573                 add_live_edge(rstate, dest, other);
18574         }
18575 }
18576
18577
18578 /* Interference graph...
18579  * 
18580  * new(n) --- Return a graph with n nodes but no edges.
18581  * add(g,x,y) --- Return a graph including g with an between x and y
18582  * interfere(g, x, y) --- Return true if there exists an edge between the nodes
18583  *                x and y in the graph g
18584  * degree(g, x) --- Return the degree of the node x in the graph g
18585  * neighbors(g, x, f) --- Apply function f to each neighbor of node x in the graph g
18586  *
18587  * Implement with a hash table && a set of adjcency vectors.
18588  * The hash table supports constant time implementations of add and interfere.
18589  * The adjacency vectors support an efficient implementation of neighbors.
18590  */
18591
18592 /* 
18593  *     +---------------------------------------------------+
18594  *     |         +--------------+                          |
18595  *     v         v              |                          |
18596  * renumber -> build graph -> colalesce -> spill_costs -> simplify -> select 
18597  *
18598  * -- In simplify implment optimistic coloring... (No backtracking)
18599  * -- Implement Rematerialization it is the only form of spilling we can perform
18600  *    Essentially this means dropping a constant from a register because
18601  *    we can regenerate it later.
18602  *
18603  * --- Very conservative colalescing (don't colalesce just mark the opportunities)
18604  *     coalesce at phi points...
18605  * --- Bias coloring if at all possible do the coalesing a compile time.
18606  *
18607  *
18608  */
18609
18610 #if DEBUG_ROMCC_WARNING
18611 static void different_colored(
18612         struct compile_state *state, struct reg_state *rstate, 
18613         struct triple *parent, struct triple *ins)
18614 {
18615         struct live_range *lr;
18616         struct triple **expr;
18617         lr = rstate->lrd[ins->id].lr;
18618         expr = triple_rhs(state, ins, 0);
18619         for(;expr; expr = triple_rhs(state, ins, expr)) {
18620                 struct live_range *lr2;
18621                 if (!*expr || (*expr == parent) || (*expr == ins)) {
18622                         continue;
18623                 }
18624                 lr2 = rstate->lrd[(*expr)->id].lr;
18625                 if (lr->color == lr2->color) {
18626                         internal_error(state, ins, "live range too big");
18627                 }
18628         }
18629 }
18630 #endif
18631
18632 static struct live_range *coalesce_ranges(
18633         struct compile_state *state, struct reg_state *rstate,
18634         struct live_range *lr1, struct live_range *lr2)
18635 {
18636         struct live_range_def *head, *mid1, *mid2, *end, *lrd;
18637         unsigned color;
18638         unsigned classes;
18639         if (lr1 == lr2) {
18640                 return lr1;
18641         }
18642         if (!lr1->defs || !lr2->defs) {
18643                 internal_error(state, 0,
18644                         "cannot coalese dead live ranges");
18645         }
18646         if ((lr1->color == REG_UNNEEDED) ||
18647                 (lr2->color == REG_UNNEEDED)) {
18648                 internal_error(state, 0, 
18649                         "cannot coalesce live ranges without a possible color");
18650         }
18651         if ((lr1->color != lr2->color) &&
18652                 (lr1->color != REG_UNSET) &&
18653                 (lr2->color != REG_UNSET)) {
18654                 internal_error(state, lr1->defs->def, 
18655                         "cannot coalesce live ranges of different colors");
18656         }
18657         color = lr1->color;
18658         if (color == REG_UNSET) {
18659                 color = lr2->color;
18660         }
18661         classes = lr1->classes & lr2->classes;
18662         if (!classes) {
18663                 internal_error(state, lr1->defs->def,
18664                         "cannot coalesce live ranges with dissimilar register classes");
18665         }
18666         if (state->compiler->debug & DEBUG_COALESCING) {
18667                 FILE *fp = state->errout;
18668                 fprintf(fp, "coalescing:");
18669                 lrd = lr1->defs;
18670                 do {
18671                         fprintf(fp, " %p", lrd->def);
18672                         lrd = lrd->next;
18673                 } while(lrd != lr1->defs);
18674                 fprintf(fp, " |");
18675                 lrd = lr2->defs;
18676                 do {
18677                         fprintf(fp, " %p", lrd->def);
18678                         lrd = lrd->next;
18679                 } while(lrd != lr2->defs);
18680                 fprintf(fp, "\n");
18681         }
18682         /* If there is a clear dominate live range put it in lr1,
18683          * For purposes of this test phi functions are
18684          * considered dominated by the definitions that feed into
18685          * them. 
18686          */
18687         if ((lr1->defs->prev->def->op == OP_PHI) ||
18688                 ((lr2->defs->prev->def->op != OP_PHI) &&
18689                 tdominates(state, lr2->defs->def, lr1->defs->def))) {
18690                 struct live_range *tmp;
18691                 tmp = lr1;
18692                 lr1 = lr2;
18693                 lr2 = tmp;
18694         }
18695 #if 0
18696         if (lr1->defs->orig_id  & TRIPLE_FLAG_POST_SPLIT) {
18697                 fprintf(state->errout, "lr1 post\n");
18698         }
18699         if (lr1->defs->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
18700                 fprintf(state->errout, "lr1 pre\n");
18701         }
18702         if (lr2->defs->orig_id  & TRIPLE_FLAG_POST_SPLIT) {
18703                 fprintf(state->errout, "lr2 post\n");
18704         }
18705         if (lr2->defs->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
18706                 fprintf(state->errout, "lr2 pre\n");
18707         }
18708 #endif
18709 #if 0
18710         fprintf(state->errout, "coalesce color1(%p): %3d color2(%p) %3d\n",
18711                 lr1->defs->def,
18712                 lr1->color,
18713                 lr2->defs->def,
18714                 lr2->color);
18715 #endif
18716         
18717         /* Append lr2 onto lr1 */
18718 #if DEBUG_ROMCC_WARNINGS
18719 #warning "FIXME should this be a merge instead of a splice?"
18720 #endif
18721         /* This FIXME item applies to the correctness of live_range_end 
18722          * and to the necessity of making multiple passes of coalesce_live_ranges.
18723          * A failure to find some coalesce opportunities in coaleace_live_ranges
18724          * does not impact the correct of the compiler just the efficiency with
18725          * which registers are allocated.
18726          */
18727         head = lr1->defs;
18728         mid1 = lr1->defs->prev;
18729         mid2 = lr2->defs;
18730         end  = lr2->defs->prev;
18731         
18732         head->prev = end;
18733         end->next  = head;
18734
18735         mid1->next = mid2;
18736         mid2->prev = mid1;
18737
18738         /* Fixup the live range in the added live range defs */
18739         lrd = head;
18740         do {
18741                 lrd->lr = lr1;
18742                 lrd = lrd->next;
18743         } while(lrd != head);
18744
18745         /* Mark lr2 as free. */
18746         lr2->defs = 0;
18747         lr2->color = REG_UNNEEDED;
18748         lr2->classes = 0;
18749
18750         if (!lr1->defs) {
18751                 internal_error(state, 0, "lr1->defs == 0 ?");
18752         }
18753
18754         lr1->color   = color;
18755         lr1->classes = classes;
18756
18757         /* Keep the graph in sync by transfering the edges from lr2 to lr1 */
18758         transfer_live_edges(rstate, lr1, lr2);
18759
18760         return lr1;
18761 }
18762
18763 static struct live_range_def *live_range_head(
18764         struct compile_state *state, struct live_range *lr,
18765         struct live_range_def *last)
18766 {
18767         struct live_range_def *result;
18768         result = 0;
18769         if (last == 0) {
18770                 result = lr->defs;
18771         }
18772         else if (!tdominates(state, lr->defs->def, last->next->def)) {
18773                 result = last->next;
18774         }
18775         return result;
18776 }
18777
18778 static struct live_range_def *live_range_end(
18779         struct compile_state *state, struct live_range *lr,
18780         struct live_range_def *last)
18781 {
18782         struct live_range_def *result;
18783         result = 0;
18784         if (last == 0) {
18785                 result = lr->defs->prev;
18786         }
18787         else if (!tdominates(state, last->prev->def, lr->defs->prev->def)) {
18788                 result = last->prev;
18789         }
18790         return result;
18791 }
18792
18793
18794 static void initialize_live_ranges(
18795         struct compile_state *state, struct reg_state *rstate)
18796 {
18797         struct triple *ins, *first;
18798         size_t count, size;
18799         int i, j;
18800
18801         first = state->first;
18802         /* First count how many instructions I have.
18803          */
18804         count = count_triples(state);
18805         /* Potentially I need one live range definitions for each
18806          * instruction.
18807          */
18808         rstate->defs = count;
18809         /* Potentially I need one live range for each instruction
18810          * plus an extra for the dummy live range.
18811          */
18812         rstate->ranges = count + 1;
18813         size = sizeof(rstate->lrd[0]) * rstate->defs;
18814         rstate->lrd = xcmalloc(size, "live_range_def");
18815         size = sizeof(rstate->lr[0]) * rstate->ranges;
18816         rstate->lr  = xcmalloc(size, "live_range");
18817
18818         /* Setup the dummy live range */
18819         rstate->lr[0].classes = 0;
18820         rstate->lr[0].color = REG_UNSET;
18821         rstate->lr[0].defs = 0;
18822         i = j = 0;
18823         ins = first;
18824         do {
18825                 /* If the triple is a variable give it a live range */
18826                 if (triple_is_def(state, ins)) {
18827                         struct reg_info info;
18828                         /* Find the architecture specific color information */
18829                         info = find_def_color(state, ins);
18830                         i++;
18831                         rstate->lr[i].defs    = &rstate->lrd[j];
18832                         rstate->lr[i].color   = info.reg;
18833                         rstate->lr[i].classes = info.regcm;
18834                         rstate->lr[i].degree  = 0;
18835                         rstate->lrd[j].lr = &rstate->lr[i];
18836                 } 
18837                 /* Otherwise give the triple the dummy live range. */
18838                 else {
18839                         rstate->lrd[j].lr = &rstate->lr[0];
18840                 }
18841
18842                 /* Initalize the live_range_def */
18843                 rstate->lrd[j].next    = &rstate->lrd[j];
18844                 rstate->lrd[j].prev    = &rstate->lrd[j];
18845                 rstate->lrd[j].def     = ins;
18846                 rstate->lrd[j].orig_id = ins->id;
18847                 ins->id = j;
18848
18849                 j++;
18850                 ins = ins->next;
18851         } while(ins != first);
18852         rstate->ranges = i;
18853
18854         /* Make a second pass to handle achitecture specific register
18855          * constraints.
18856          */
18857         ins = first;
18858         do {
18859                 int zlhs, zrhs, i, j;
18860                 if (ins->id > rstate->defs) {
18861                         internal_error(state, ins, "bad id");
18862                 }
18863                 
18864                 /* Walk through the template of ins and coalesce live ranges */
18865                 zlhs = ins->lhs;
18866                 if ((zlhs == 0) && triple_is_def(state, ins)) {
18867                         zlhs = 1;
18868                 }
18869                 zrhs = ins->rhs;
18870
18871                 if (state->compiler->debug & DEBUG_COALESCING2) {
18872                         fprintf(state->errout, "mandatory coalesce: %p %d %d\n",
18873                                 ins, zlhs, zrhs);
18874                 }
18875
18876                 for(i = 0; i < zlhs; i++) {
18877                         struct reg_info linfo;
18878                         struct live_range_def *lhs;
18879                         linfo = arch_reg_lhs(state, ins, i);
18880                         if (linfo.reg < MAX_REGISTERS) {
18881                                 continue;
18882                         }
18883                         if (triple_is_def(state, ins)) {
18884                                 lhs = &rstate->lrd[ins->id];
18885                         } else {
18886                                 lhs = &rstate->lrd[LHS(ins, i)->id];
18887                         }
18888
18889                         if (state->compiler->debug & DEBUG_COALESCING2) {
18890                                 fprintf(state->errout, "coalesce lhs(%d): %p %d\n",
18891                                         i, lhs, linfo.reg);
18892                         }
18893
18894                         for(j = 0; j < zrhs; j++) {
18895                                 struct reg_info rinfo;
18896                                 struct live_range_def *rhs;
18897                                 rinfo = arch_reg_rhs(state, ins, j);
18898                                 if (rinfo.reg < MAX_REGISTERS) {
18899                                         continue;
18900                                 }
18901                                 rhs = &rstate->lrd[RHS(ins, j)->id];
18902
18903                                 if (state->compiler->debug & DEBUG_COALESCING2) {
18904                                         fprintf(state->errout, "coalesce rhs(%d): %p %d\n",
18905                                                 j, rhs, rinfo.reg);
18906                                 }
18907
18908                                 if (rinfo.reg == linfo.reg) {
18909                                         coalesce_ranges(state, rstate, 
18910                                                 lhs->lr, rhs->lr);
18911                                 }
18912                         }
18913                 }
18914                 ins = ins->next;
18915         } while(ins != first);
18916 }
18917
18918 static void graph_ins(
18919         struct compile_state *state, 
18920         struct reg_block *blocks, struct triple_reg_set *live, 
18921         struct reg_block *rb, struct triple *ins, void *arg)
18922 {
18923         struct reg_state *rstate = arg;
18924         struct live_range *def;
18925         struct triple_reg_set *entry;
18926
18927         /* If the triple is not a definition
18928          * we do not have a definition to add to
18929          * the interference graph.
18930          */
18931         if (!triple_is_def(state, ins)) {
18932                 return;
18933         }
18934         def = rstate->lrd[ins->id].lr;
18935         
18936         /* Create an edge between ins and everything that is
18937          * alive, unless the live_range cannot share
18938          * a physical register with ins.
18939          */
18940         for(entry = live; entry; entry = entry->next) {
18941                 struct live_range *lr;
18942                 if ((entry->member->id < 0) || (entry->member->id > rstate->defs)) {
18943                         internal_error(state, 0, "bad entry?");
18944                 }
18945                 lr = rstate->lrd[entry->member->id].lr;
18946                 if (def == lr) {
18947                         continue;
18948                 }
18949                 if (!arch_regcm_intersect(def->classes, lr->classes)) {
18950                         continue;
18951                 }
18952                 add_live_edge(rstate, def, lr);
18953         }
18954         return;
18955 }
18956
18957 #if DEBUG_CONSISTENCY > 1
18958 static struct live_range *get_verify_live_range(
18959         struct compile_state *state, struct reg_state *rstate, struct triple *ins)
18960 {
18961         struct live_range *lr;
18962         struct live_range_def *lrd;
18963         int ins_found;
18964         if ((ins->id < 0) || (ins->id > rstate->defs)) {
18965                 internal_error(state, ins, "bad ins?");
18966         }
18967         lr = rstate->lrd[ins->id].lr;
18968         ins_found = 0;
18969         lrd = lr->defs;
18970         do {
18971                 if (lrd->def == ins) {
18972                         ins_found = 1;
18973                 }
18974                 lrd = lrd->next;
18975         } while(lrd != lr->defs);
18976         if (!ins_found) {
18977                 internal_error(state, ins, "ins not in live range");
18978         }
18979         return lr;
18980 }
18981
18982 static void verify_graph_ins(
18983         struct compile_state *state, 
18984         struct reg_block *blocks, struct triple_reg_set *live, 
18985         struct reg_block *rb, struct triple *ins, void *arg)
18986 {
18987         struct reg_state *rstate = arg;
18988         struct triple_reg_set *entry1, *entry2;
18989
18990
18991         /* Compare live against edges and make certain the code is working */
18992         for(entry1 = live; entry1; entry1 = entry1->next) {
18993                 struct live_range *lr1;
18994                 lr1 = get_verify_live_range(state, rstate, entry1->member);
18995                 for(entry2 = live; entry2; entry2 = entry2->next) {
18996                         struct live_range *lr2;
18997                         struct live_range_edge *edge2;
18998                         int lr1_found;
18999                         int lr2_degree;
19000                         if (entry2 == entry1) {
19001                                 continue;
19002                         }
19003                         lr2 = get_verify_live_range(state, rstate, entry2->member);
19004                         if (lr1 == lr2) {
19005                                 internal_error(state, entry2->member, 
19006                                         "live range with 2 values simultaneously alive");
19007                         }
19008                         if (!arch_regcm_intersect(lr1->classes, lr2->classes)) {
19009                                 continue;
19010                         }
19011                         if (!interfere(rstate, lr1, lr2)) {
19012                                 internal_error(state, entry2->member, 
19013                                         "edges don't interfere?");
19014                         }
19015                                 
19016                         lr1_found = 0;
19017                         lr2_degree = 0;
19018                         for(edge2 = lr2->edges; edge2; edge2 = edge2->next) {
19019                                 lr2_degree++;
19020                                 if (edge2->node == lr1) {
19021                                         lr1_found = 1;
19022                                 }
19023                         }
19024                         if (lr2_degree != lr2->degree) {
19025                                 internal_error(state, entry2->member,
19026                                         "computed degree: %d does not match reported degree: %d\n",
19027                                         lr2_degree, lr2->degree);
19028                         }
19029                         if (!lr1_found) {
19030                                 internal_error(state, entry2->member, "missing edge");
19031                         }
19032                 }
19033         }
19034         return;
19035 }
19036 #endif
19037
19038 static void print_interference_ins(
19039         struct compile_state *state, 
19040         struct reg_block *blocks, struct triple_reg_set *live, 
19041         struct reg_block *rb, struct triple *ins, void *arg)
19042 {
19043         struct reg_state *rstate = arg;
19044         struct live_range *lr;
19045         unsigned id;
19046         FILE *fp = state->dbgout;
19047
19048         lr = rstate->lrd[ins->id].lr;
19049         id = ins->id;
19050         ins->id = rstate->lrd[id].orig_id;
19051         SET_REG(ins->id, lr->color);
19052         display_triple(state->dbgout, ins);
19053         ins->id = id;
19054
19055         if (lr->defs) {
19056                 struct live_range_def *lrd;
19057                 fprintf(fp, "       range:");
19058                 lrd = lr->defs;
19059                 do {
19060                         fprintf(fp, " %-10p", lrd->def);
19061                         lrd = lrd->next;
19062                 } while(lrd != lr->defs);
19063                 fprintf(fp, "\n");
19064         }
19065         if (live) {
19066                 struct triple_reg_set *entry;
19067                 fprintf(fp, "        live:");
19068                 for(entry = live; entry; entry = entry->next) {
19069                         fprintf(fp, " %-10p", entry->member);
19070                 }
19071                 fprintf(fp, "\n");
19072         }
19073         if (lr->edges) {
19074                 struct live_range_edge *entry;
19075                 fprintf(fp, "       edges:");
19076                 for(entry = lr->edges; entry; entry = entry->next) {
19077                         struct live_range_def *lrd;
19078                         lrd = entry->node->defs;
19079                         do {
19080                                 fprintf(fp, " %-10p", lrd->def);
19081                                 lrd = lrd->next;
19082                         } while(lrd != entry->node->defs);
19083                         fprintf(fp, "|");
19084                 }
19085                 fprintf(fp, "\n");
19086         }
19087         if (triple_is_branch(state, ins)) {
19088                 fprintf(fp, "\n");
19089         }
19090         return;
19091 }
19092
19093 static int coalesce_live_ranges(
19094         struct compile_state *state, struct reg_state *rstate)
19095 {
19096         /* At the point where a value is moved from one
19097          * register to another that value requires two
19098          * registers, thus increasing register pressure.
19099          * Live range coaleescing reduces the register
19100          * pressure by keeping a value in one register
19101          * longer.
19102          *
19103          * In the case of a phi function all paths leading
19104          * into it must be allocated to the same register
19105          * otherwise the phi function may not be removed.
19106          *
19107          * Forcing a value to stay in a single register
19108          * for an extended period of time does have
19109          * limitations when applied to non homogenous
19110          * register pool.  
19111          *
19112          * The two cases I have identified are:
19113          * 1) Two forced register assignments may
19114          *    collide.
19115          * 2) Registers may go unused because they
19116          *    are only good for storing the value
19117          *    and not manipulating it.
19118          *
19119          * Because of this I need to split live ranges,
19120          * even outside of the context of coalesced live
19121          * ranges.  The need to split live ranges does
19122          * impose some constraints on live range coalescing.
19123          *
19124          * - Live ranges may not be coalesced across phi
19125          *   functions.  This creates a 2 headed live
19126          *   range that cannot be sanely split.
19127          *
19128          * - phi functions (coalesced in initialize_live_ranges) 
19129          *   are handled as pre split live ranges so we will
19130          *   never attempt to split them.
19131          */
19132         int coalesced;
19133         int i;
19134
19135         coalesced = 0;
19136         for(i = 0; i <= rstate->ranges; i++) {
19137                 struct live_range *lr1;
19138                 struct live_range_def *lrd1;
19139                 lr1 = &rstate->lr[i];
19140                 if (!lr1->defs) {
19141                         continue;
19142                 }
19143                 lrd1 = live_range_end(state, lr1, 0);
19144                 for(; lrd1; lrd1 = live_range_end(state, lr1, lrd1)) {
19145                         struct triple_set *set;
19146                         if (lrd1->def->op != OP_COPY) {
19147                                 continue;
19148                         }
19149                         /* Skip copies that are the result of a live range split. */
19150                         if (lrd1->orig_id & TRIPLE_FLAG_POST_SPLIT) {
19151                                 continue;
19152                         }
19153                         for(set = lrd1->def->use; set; set = set->next) {
19154                                 struct live_range_def *lrd2;
19155                                 struct live_range *lr2, *res;
19156
19157                                 lrd2 = &rstate->lrd[set->member->id];
19158
19159                                 /* Don't coalesce with instructions
19160                                  * that are the result of a live range
19161                                  * split.
19162                                  */
19163                                 if (lrd2->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
19164                                         continue;
19165                                 }
19166                                 lr2 = rstate->lrd[set->member->id].lr;
19167                                 if (lr1 == lr2) {
19168                                         continue;
19169                                 }
19170                                 if ((lr1->color != lr2->color) &&
19171                                         (lr1->color != REG_UNSET) &&
19172                                         (lr2->color != REG_UNSET)) {
19173                                         continue;
19174                                 }
19175                                 if ((lr1->classes & lr2->classes) == 0) {
19176                                         continue;
19177                                 }
19178                                 
19179                                 if (interfere(rstate, lr1, lr2)) {
19180                                         continue;
19181                                 }
19182
19183                                 res = coalesce_ranges(state, rstate, lr1, lr2);
19184                                 coalesced += 1;
19185                                 if (res != lr1) {
19186                                         goto next;
19187                                 }
19188                         }
19189                 }
19190         next:
19191                 ;
19192         }
19193         return coalesced;
19194 }
19195
19196
19197 static void fix_coalesce_conflicts(struct compile_state *state,
19198         struct reg_block *blocks, struct triple_reg_set *live,
19199         struct reg_block *rb, struct triple *ins, void *arg)
19200 {
19201         int *conflicts = arg;
19202         int zlhs, zrhs, i, j;
19203
19204         /* See if we have a mandatory coalesce operation between
19205          * a lhs and a rhs value.  If so and the rhs value is also
19206          * alive then this triple needs to be pre copied.  Otherwise
19207          * we would have two definitions in the same live range simultaneously
19208          * alive.
19209          */
19210         zlhs = ins->lhs;
19211         if ((zlhs == 0) && triple_is_def(state, ins)) {
19212                 zlhs = 1;
19213         }
19214         zrhs = ins->rhs;
19215         for(i = 0; i < zlhs; i++) {
19216                 struct reg_info linfo;
19217                 linfo = arch_reg_lhs(state, ins, i);
19218                 if (linfo.reg < MAX_REGISTERS) {
19219                         continue;
19220                 }
19221                 for(j = 0; j < zrhs; j++) {
19222                         struct reg_info rinfo;
19223                         struct triple *rhs;
19224                         struct triple_reg_set *set;
19225                         int found;
19226                         found = 0;
19227                         rinfo = arch_reg_rhs(state, ins, j);
19228                         if (rinfo.reg != linfo.reg) {
19229                                 continue;
19230                         }
19231                         rhs = RHS(ins, j);
19232                         for(set = live; set && !found; set = set->next) {
19233                                 if (set->member == rhs) {
19234                                         found = 1;
19235                                 }
19236                         }
19237                         if (found) {
19238                                 struct triple *copy;
19239                                 copy = pre_copy(state, ins, j);
19240                                 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
19241                                 (*conflicts)++;
19242                         }
19243                 }
19244         }
19245         return;
19246 }
19247
19248 static int correct_coalesce_conflicts(
19249         struct compile_state *state, struct reg_block *blocks)
19250 {
19251         int conflicts;
19252         conflicts = 0;
19253         walk_variable_lifetimes(state, &state->bb, blocks, 
19254                 fix_coalesce_conflicts, &conflicts);
19255         return conflicts;
19256 }
19257
19258 static void replace_set_use(struct compile_state *state,
19259         struct triple_reg_set *head, struct triple *orig, struct triple *new)
19260 {
19261         struct triple_reg_set *set;
19262         for(set = head; set; set = set->next) {
19263                 if (set->member == orig) {
19264                         set->member = new;
19265                 }
19266         }
19267 }
19268
19269 static void replace_block_use(struct compile_state *state, 
19270         struct reg_block *blocks, struct triple *orig, struct triple *new)
19271 {
19272         int i;
19273 #if DEBUG_ROMCC_WARNINGS
19274 #warning "WISHLIST visit just those blocks that need it *"
19275 #endif
19276         for(i = 1; i <= state->bb.last_vertex; i++) {
19277                 struct reg_block *rb;
19278                 rb = &blocks[i];
19279                 replace_set_use(state, rb->in, orig, new);
19280                 replace_set_use(state, rb->out, orig, new);
19281         }
19282 }
19283
19284 static void color_instructions(struct compile_state *state)
19285 {
19286         struct triple *ins, *first;
19287         first = state->first;
19288         ins = first;
19289         do {
19290                 if (triple_is_def(state, ins)) {
19291                         struct reg_info info;
19292                         info = find_lhs_color(state, ins, 0);
19293                         if (info.reg >= MAX_REGISTERS) {
19294                                 info.reg = REG_UNSET;
19295                         }
19296                         SET_INFO(ins->id, info);
19297                 }
19298                 ins = ins->next;
19299         } while(ins != first);
19300 }
19301
19302 static struct reg_info read_lhs_color(
19303         struct compile_state *state, struct triple *ins, int index)
19304 {
19305         struct reg_info info;
19306         if ((index == 0) && triple_is_def(state, ins)) {
19307                 info.reg   = ID_REG(ins->id);
19308                 info.regcm = ID_REGCM(ins->id);
19309         }
19310         else if (index < ins->lhs) {
19311                 info = read_lhs_color(state, LHS(ins, index), 0);
19312         }
19313         else {
19314                 internal_error(state, ins, "Bad lhs %d", index);
19315                 info.reg = REG_UNSET;
19316                 info.regcm = 0;
19317         }
19318         return info;
19319 }
19320
19321 static struct triple *resolve_tangle(
19322         struct compile_state *state, struct triple *tangle)
19323 {
19324         struct reg_info info, uinfo;
19325         struct triple_set *set, *next;
19326         struct triple *copy;
19327
19328 #if DEBUG_ROMCC_WARNINGS
19329 #warning "WISHLIST recalculate all affected instructions colors"
19330 #endif
19331         info = find_lhs_color(state, tangle, 0);
19332         for(set = tangle->use; set; set = next) {
19333                 struct triple *user;
19334                 int i, zrhs;
19335                 next = set->next;
19336                 user = set->member;
19337                 zrhs = user->rhs;
19338                 for(i = 0; i < zrhs; i++) {
19339                         if (RHS(user, i) != tangle) {
19340                                 continue;
19341                         }
19342                         uinfo = find_rhs_post_color(state, user, i);
19343                         if (uinfo.reg == info.reg) {
19344                                 copy = pre_copy(state, user, i);
19345                                 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
19346                                 SET_INFO(copy->id, uinfo);
19347                         }
19348                 }
19349         }
19350         copy = 0;
19351         uinfo = find_lhs_pre_color(state, tangle, 0);
19352         if (uinfo.reg == info.reg) {
19353                 struct reg_info linfo;
19354                 copy = post_copy(state, tangle);
19355                 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
19356                 linfo = find_lhs_color(state, copy, 0);
19357                 SET_INFO(copy->id, linfo);
19358         }
19359         info = find_lhs_color(state, tangle, 0);
19360         SET_INFO(tangle->id, info);
19361         
19362         return copy;
19363 }
19364
19365
19366 static void fix_tangles(struct compile_state *state,
19367         struct reg_block *blocks, struct triple_reg_set *live,
19368         struct reg_block *rb, struct triple *ins, void *arg)
19369 {
19370         int *tangles = arg;
19371         struct triple *tangle;
19372         do {
19373                 char used[MAX_REGISTERS];
19374                 struct triple_reg_set *set;
19375                 tangle = 0;
19376
19377                 /* Find out which registers have multiple uses at this point */
19378                 memset(used, 0, sizeof(used));
19379                 for(set = live; set; set = set->next) {
19380                         struct reg_info info;
19381                         info = read_lhs_color(state, set->member, 0);
19382                         if (info.reg == REG_UNSET) {
19383                                 continue;
19384                         }
19385                         reg_inc_used(state, used, info.reg);
19386                 }
19387                 
19388                 /* Now find the least dominated definition of a register in
19389                  * conflict I have seen so far.
19390                  */
19391                 for(set = live; set; set = set->next) {
19392                         struct reg_info info;
19393                         info = read_lhs_color(state, set->member, 0);
19394                         if (used[info.reg] < 2) {
19395                                 continue;
19396                         }
19397                         /* Changing copies that feed into phi functions
19398                          * is incorrect.
19399                          */
19400                         if (set->member->use && 
19401                                 (set->member->use->member->op == OP_PHI)) {
19402                                 continue;
19403                         }
19404                         if (!tangle || tdominates(state, set->member, tangle)) {
19405                                 tangle = set->member;
19406                         }
19407                 }
19408                 /* If I have found a tangle resolve it */
19409                 if (tangle) {
19410                         struct triple *post_copy;
19411                         (*tangles)++;
19412                         post_copy = resolve_tangle(state, tangle);
19413                         if (post_copy) {
19414                                 replace_block_use(state, blocks, tangle, post_copy);
19415                         }
19416                         if (post_copy && (tangle != ins)) {
19417                                 replace_set_use(state, live, tangle, post_copy);
19418                         }
19419                 }
19420         } while(tangle);
19421         return;
19422 }
19423
19424 static int correct_tangles(
19425         struct compile_state *state, struct reg_block *blocks)
19426 {
19427         int tangles;
19428         tangles = 0;
19429         color_instructions(state);
19430         walk_variable_lifetimes(state, &state->bb, blocks, 
19431                 fix_tangles, &tangles);
19432         return tangles;
19433 }
19434
19435
19436 static void ids_from_rstate(struct compile_state *state, struct reg_state *rstate);
19437 static void cleanup_rstate(struct compile_state *state, struct reg_state *rstate);
19438
19439 struct triple *find_constrained_def(
19440         struct compile_state *state, struct live_range *range, struct triple *constrained)
19441 {
19442         struct live_range_def *lrd, *lrd_next;
19443         lrd_next = range->defs;
19444         do {
19445                 struct reg_info info;
19446                 unsigned regcm;
19447
19448                 lrd = lrd_next;
19449                 lrd_next = lrd->next;
19450
19451                 regcm = arch_type_to_regcm(state, lrd->def->type);
19452                 info = find_lhs_color(state, lrd->def, 0);
19453                 regcm      = arch_regcm_reg_normalize(state, regcm);
19454                 info.regcm = arch_regcm_reg_normalize(state, info.regcm);
19455                 /* If the 2 register class masks are equal then
19456                  * the current register class is not constrained.
19457                  */
19458                 if (regcm == info.regcm) {
19459                         continue;
19460                 }
19461                 
19462                 /* If there is just one use.
19463                  * That use cannot accept a larger register class.
19464                  * There are no intervening definitions except
19465                  * definitions that feed into that use.
19466                  * Then a triple is not constrained.
19467                  * FIXME handle this case!
19468                  */
19469 #if DEBUG_ROMCC_WARNINGS
19470 #warning "FIXME ignore cases that cannot be fixed (a definition followed by a use)"
19471 #endif
19472                 
19473
19474                 /* Of the constrained live ranges deal with the
19475                  * least dominated one first.
19476                  */
19477                 if (state->compiler->debug & DEBUG_RANGE_CONFLICTS) {
19478                         fprintf(state->errout, "canidate: %p %-8s regcm: %x %x\n",
19479                                 lrd->def, tops(lrd->def->op), regcm, info.regcm);
19480                 }
19481                 if (!constrained || 
19482                         tdominates(state, lrd->def, constrained))
19483                 {
19484                         constrained = lrd->def;
19485                 }
19486         } while(lrd_next != range->defs);
19487         return constrained;
19488 }
19489
19490 static int split_constrained_ranges(
19491         struct compile_state *state, struct reg_state *rstate, 
19492         struct live_range *range)
19493 {
19494         /* Walk through the edges in conflict and our current live
19495          * range, and find definitions that are more severly constrained
19496          * than they type of data they contain require.
19497          * 
19498          * Then pick one of those ranges and relax the constraints.
19499          */
19500         struct live_range_edge *edge;
19501         struct triple *constrained;
19502
19503         constrained = 0;
19504         for(edge = range->edges; edge; edge = edge->next) {
19505                 constrained = find_constrained_def(state, edge->node, constrained);
19506         }
19507 #if DEBUG_ROMCC_WARNINGS
19508 #warning "FIXME should I call find_constrained_def here only if no previous constrained def was found?"
19509 #endif
19510         if (!constrained) {
19511                 constrained = find_constrained_def(state, range, constrained);
19512         }
19513
19514         if (state->compiler->debug & DEBUG_RANGE_CONFLICTS) {
19515                 fprintf(state->errout, "constrained: ");
19516                 display_triple(state->errout, constrained);
19517         }
19518         if (constrained) {
19519                 ids_from_rstate(state, rstate);
19520                 cleanup_rstate(state, rstate);
19521                 resolve_tangle(state, constrained);
19522         }
19523         return !!constrained;
19524 }
19525         
19526 static int split_ranges(
19527         struct compile_state *state, struct reg_state *rstate,
19528         char *used, struct live_range *range)
19529 {
19530         int split;
19531         if (state->compiler->debug & DEBUG_RANGE_CONFLICTS) {
19532                 fprintf(state->errout, "split_ranges %d %s %p\n", 
19533                         rstate->passes, tops(range->defs->def->op), range->defs->def);
19534         }
19535         if ((range->color == REG_UNNEEDED) ||
19536                 (rstate->passes >= rstate->max_passes)) {
19537                 return 0;
19538         }
19539         split = split_constrained_ranges(state, rstate, range);
19540
19541         /* Ideally I would split the live range that will not be used
19542          * for the longest period of time in hopes that this will 
19543          * (a) allow me to spill a register or
19544          * (b) allow me to place a value in another register.
19545          *
19546          * So far I don't have a test case for this, the resolving
19547          * of mandatory constraints has solved all of my
19548          * know issues.  So I have choosen not to write any
19549          * code until I cat get a better feel for cases where
19550          * it would be useful to have.
19551          *
19552          */
19553 #if DEBUG_ROMCC_WARNINGS
19554 #warning "WISHLIST implement live range splitting..."
19555 #endif
19556         
19557         if (!split && (state->compiler->debug & DEBUG_RANGE_CONFLICTS2)) {
19558                 FILE *fp = state->errout;
19559                 print_interference_blocks(state, rstate, fp, 0);
19560                 print_dominators(state, fp, &state->bb);
19561         }
19562         return split;
19563 }
19564
19565 static FILE *cgdebug_fp(struct compile_state *state)
19566 {
19567         FILE *fp;
19568         fp = 0;
19569         if (!fp && (state->compiler->debug & DEBUG_COLOR_GRAPH2)) {
19570                 fp = state->errout;
19571         }
19572         if (!fp && (state->compiler->debug & DEBUG_COLOR_GRAPH)) {
19573                 fp = state->dbgout;
19574         }
19575         return fp;
19576 }
19577
19578 static void cgdebug_printf(struct compile_state *state, const char *fmt, ...)
19579 {
19580         FILE *fp;
19581         fp = cgdebug_fp(state);
19582         if (fp) {
19583                 va_list args;
19584                 va_start(args, fmt);
19585                 vfprintf(fp, fmt, args);
19586                 va_end(args);
19587         }
19588 }
19589
19590 static void cgdebug_flush(struct compile_state *state)
19591 {
19592         FILE *fp;
19593         fp = cgdebug_fp(state);
19594         if (fp) {
19595                 fflush(fp);
19596         }
19597 }
19598
19599 static void cgdebug_loc(struct compile_state *state, struct triple *ins)
19600 {
19601         FILE *fp;
19602         fp = cgdebug_fp(state);
19603         if (fp) {
19604                 loc(fp, state, ins);
19605         }
19606 }
19607
19608 static int select_free_color(struct compile_state *state, 
19609         struct reg_state *rstate, struct live_range *range)
19610 {
19611         struct triple_set *entry;
19612         struct live_range_def *lrd;
19613         struct live_range_def *phi;
19614         struct live_range_edge *edge;
19615         char used[MAX_REGISTERS];
19616         struct triple **expr;
19617
19618         /* Instead of doing just the trivial color select here I try
19619          * a few extra things because a good color selection will help reduce
19620          * copies.
19621          */
19622
19623         /* Find the registers currently in use */
19624         memset(used, 0, sizeof(used));
19625         for(edge = range->edges; edge; edge = edge->next) {
19626                 if (edge->node->color == REG_UNSET) {
19627                         continue;
19628                 }
19629                 reg_fill_used(state, used, edge->node->color);
19630         }
19631
19632         if (state->compiler->debug & DEBUG_COLOR_GRAPH2) {
19633                 int i;
19634                 i = 0;
19635                 for(edge = range->edges; edge; edge = edge->next) {
19636                         i++;
19637                 }
19638                 cgdebug_printf(state, "\n%s edges: %d", 
19639                         tops(range->defs->def->op), i);
19640                 cgdebug_loc(state, range->defs->def);
19641                 cgdebug_printf(state, "\n");
19642                 for(i = 0; i < MAX_REGISTERS; i++) {
19643                         if (used[i]) {
19644                                 cgdebug_printf(state, "used: %s\n",
19645                                         arch_reg_str(i));
19646                         }
19647                 }
19648         }       
19649
19650         /* If a color is already assigned see if it will work */
19651         if (range->color != REG_UNSET) {
19652                 struct live_range_def *lrd;
19653                 if (!used[range->color]) {
19654                         return 1;
19655                 }
19656                 for(edge = range->edges; edge; edge = edge->next) {
19657                         if (edge->node->color != range->color) {
19658                                 continue;
19659                         }
19660                         warning(state, edge->node->defs->def, "edge: ");
19661                         lrd = edge->node->defs;
19662                         do {
19663                                 warning(state, lrd->def, " %p %s",
19664                                         lrd->def, tops(lrd->def->op));
19665                                 lrd = lrd->next;
19666                         } while(lrd != edge->node->defs);
19667                 }
19668                 lrd = range->defs;
19669                 warning(state, range->defs->def, "def: ");
19670                 do {
19671                         warning(state, lrd->def, " %p %s",
19672                                 lrd->def, tops(lrd->def->op));
19673                         lrd = lrd->next;
19674                 } while(lrd != range->defs);
19675                 internal_error(state, range->defs->def,
19676                         "live range with already used color %s",
19677                         arch_reg_str(range->color));
19678         }
19679
19680         /* If I feed into an expression reuse it's color.
19681          * This should help remove copies in the case of 2 register instructions
19682          * and phi functions.
19683          */
19684         phi = 0;
19685         lrd = live_range_end(state, range, 0);
19686         for(; (range->color == REG_UNSET) && lrd ; lrd = live_range_end(state, range, lrd)) {
19687                 entry = lrd->def->use;
19688                 for(;(range->color == REG_UNSET) && entry; entry = entry->next) {
19689                         struct live_range_def *insd;
19690                         unsigned regcm;
19691                         insd = &rstate->lrd[entry->member->id];
19692                         if (insd->lr->defs == 0) {
19693                                 continue;
19694                         }
19695                         if (!phi && (insd->def->op == OP_PHI) &&
19696                                 !interfere(rstate, range, insd->lr)) {
19697                                 phi = insd;
19698                         }
19699                         if (insd->lr->color == REG_UNSET) {
19700                                 continue;
19701                         }
19702                         regcm = insd->lr->classes;
19703                         if (((regcm & range->classes) == 0) ||
19704                                 (used[insd->lr->color])) {
19705                                 continue;
19706                         }
19707                         if (interfere(rstate, range, insd->lr)) {
19708                                 continue;
19709                         }
19710                         range->color = insd->lr->color;
19711                 }
19712         }
19713         /* If I feed into a phi function reuse it's color or the color
19714          * of something else that feeds into the phi function.
19715          */
19716         if (phi) {
19717                 if (phi->lr->color != REG_UNSET) {
19718                         if (used[phi->lr->color]) {
19719                                 range->color = phi->lr->color;
19720                         }
19721                 }
19722                 else {
19723                         expr = triple_rhs(state, phi->def, 0);
19724                         for(; expr; expr = triple_rhs(state, phi->def, expr)) {
19725                                 struct live_range *lr;
19726                                 unsigned regcm;
19727                                 if (!*expr) {
19728                                         continue;
19729                                 }
19730                                 lr = rstate->lrd[(*expr)->id].lr;
19731                                 if (lr->color == REG_UNSET) {
19732                                         continue;
19733                                 }
19734                                 regcm = lr->classes;
19735                                 if (((regcm & range->classes) == 0) ||
19736                                         (used[lr->color])) {
19737                                         continue;
19738                                 }
19739                                 if (interfere(rstate, range, lr)) {
19740                                         continue;
19741                                 }
19742                                 range->color = lr->color;
19743                         }
19744                 }
19745         }
19746         /* If I don't interfere with a rhs node reuse it's color */
19747         lrd = live_range_head(state, range, 0);
19748         for(; (range->color == REG_UNSET) && lrd ; lrd = live_range_head(state, range, lrd)) {
19749                 expr = triple_rhs(state, lrd->def, 0);
19750                 for(; expr; expr = triple_rhs(state, lrd->def, expr)) {
19751                         struct live_range *lr;
19752                         unsigned regcm;
19753                         if (!*expr) {
19754                                 continue;
19755                         }
19756                         lr = rstate->lrd[(*expr)->id].lr;
19757                         if (lr->color == REG_UNSET) {
19758                                 continue;
19759                         }
19760                         regcm = lr->classes;
19761                         if (((regcm & range->classes) == 0) ||
19762                                 (used[lr->color])) {
19763                                 continue;
19764                         }
19765                         if (interfere(rstate, range, lr)) {
19766                                 continue;
19767                         }
19768                         range->color = lr->color;
19769                         break;
19770                 }
19771         }
19772         /* If I have not opportunitically picked a useful color
19773          * pick the first color that is free.
19774          */
19775         if (range->color == REG_UNSET) {
19776                 range->color = 
19777                         arch_select_free_register(state, used, range->classes);
19778         }
19779         if (range->color == REG_UNSET) {
19780                 struct live_range_def *lrd;
19781                 int i;
19782                 if (split_ranges(state, rstate, used, range)) {
19783                         return 0;
19784                 }
19785                 for(edge = range->edges; edge; edge = edge->next) {
19786                         warning(state, edge->node->defs->def, "edge reg %s",
19787                                 arch_reg_str(edge->node->color));
19788                         lrd = edge->node->defs;
19789                         do {
19790                                 warning(state, lrd->def, " %s %p",
19791                                         tops(lrd->def->op), lrd->def);
19792                                 lrd = lrd->next;
19793                         } while(lrd != edge->node->defs);
19794                 }
19795                 warning(state, range->defs->def, "range: ");
19796                 lrd = range->defs;
19797                 do {
19798                         warning(state, lrd->def, " %s %p",
19799                                 tops(lrd->def->op), lrd->def);
19800                         lrd = lrd->next;
19801                 } while(lrd != range->defs);
19802                         
19803                 warning(state, range->defs->def, "classes: %x",
19804                         range->classes);
19805                 for(i = 0; i < MAX_REGISTERS; i++) {
19806                         if (used[i]) {
19807                                 warning(state, range->defs->def, "used: %s",
19808                                         arch_reg_str(i));
19809                         }
19810                 }
19811                 error(state, range->defs->def, "too few registers");
19812         }
19813         range->classes &= arch_reg_regcm(state, range->color);
19814         if ((range->color == REG_UNSET) || (range->classes == 0)) {
19815                 internal_error(state, range->defs->def, "select_free_color did not?");
19816         }
19817         return 1;
19818 }
19819
19820 static int color_graph(struct compile_state *state, struct reg_state *rstate)
19821 {
19822         int colored;
19823         struct live_range_edge *edge;
19824         struct live_range *range;
19825         if (rstate->low) {
19826                 cgdebug_printf(state, "Lo: ");
19827                 range = rstate->low;
19828                 if (*range->group_prev != range) {
19829                         internal_error(state, 0, "lo: *prev != range?");
19830                 }
19831                 *range->group_prev = range->group_next;
19832                 if (range->group_next) {
19833                         range->group_next->group_prev = range->group_prev;
19834                 }
19835                 if (&range->group_next == rstate->low_tail) {
19836                         rstate->low_tail = range->group_prev;
19837                 }
19838                 if (rstate->low == range) {
19839                         internal_error(state, 0, "low: next != prev?");
19840                 }
19841         }
19842         else if (rstate->high) {
19843                 cgdebug_printf(state, "Hi: ");
19844                 range = rstate->high;
19845                 if (*range->group_prev != range) {
19846                         internal_error(state, 0, "hi: *prev != range?");
19847                 }
19848                 *range->group_prev = range->group_next;
19849                 if (range->group_next) {
19850                         range->group_next->group_prev = range->group_prev;
19851                 }
19852                 if (&range->group_next == rstate->high_tail) {
19853                         rstate->high_tail = range->group_prev;
19854                 }
19855                 if (rstate->high == range) {
19856                         internal_error(state, 0, "high: next != prev?");
19857                 }
19858         }
19859         else {
19860                 return 1;
19861         }
19862         cgdebug_printf(state, " %d\n", range - rstate->lr);
19863         range->group_prev = 0;
19864         for(edge = range->edges; edge; edge = edge->next) {
19865                 struct live_range *node;
19866                 node = edge->node;
19867                 /* Move nodes from the high to the low list */
19868                 if (node->group_prev && (node->color == REG_UNSET) &&
19869                         (node->degree == regc_max_size(state, node->classes))) {
19870                         if (*node->group_prev != node) {
19871                                 internal_error(state, 0, "move: *prev != node?");
19872                         }
19873                         *node->group_prev = node->group_next;
19874                         if (node->group_next) {
19875                                 node->group_next->group_prev = node->group_prev;
19876                         }
19877                         if (&node->group_next == rstate->high_tail) {
19878                                 rstate->high_tail = node->group_prev;
19879                         }
19880                         cgdebug_printf(state, "Moving...%d to low\n", node - rstate->lr);
19881                         node->group_prev  = rstate->low_tail;
19882                         node->group_next  = 0;
19883                         *rstate->low_tail = node;
19884                         rstate->low_tail  = &node->group_next;
19885                         if (*node->group_prev != node) {
19886                                 internal_error(state, 0, "move2: *prev != node?");
19887                         }
19888                 }
19889                 node->degree -= 1;
19890         }
19891         colored = color_graph(state, rstate);
19892         if (colored) {
19893                 cgdebug_printf(state, "Coloring %d @", range - rstate->lr);
19894                 cgdebug_loc(state, range->defs->def);
19895                 cgdebug_flush(state);
19896                 colored = select_free_color(state, rstate, range);
19897                 if (colored) {
19898                         cgdebug_printf(state, " %s\n", arch_reg_str(range->color));
19899                 }
19900         }
19901         return colored;
19902 }
19903
19904 static void verify_colors(struct compile_state *state, struct reg_state *rstate)
19905 {
19906         struct live_range *lr;
19907         struct live_range_edge *edge;
19908         struct triple *ins, *first;
19909         char used[MAX_REGISTERS];
19910         first = state->first;
19911         ins = first;
19912         do {
19913                 if (triple_is_def(state, ins)) {
19914                         if ((ins->id < 0) || (ins->id > rstate->defs)) {
19915                                 internal_error(state, ins, 
19916                                         "triple without a live range def");
19917                         }
19918                         lr = rstate->lrd[ins->id].lr;
19919                         if (lr->color == REG_UNSET) {
19920                                 internal_error(state, ins,
19921                                         "triple without a color");
19922                         }
19923                         /* Find the registers used by the edges */
19924                         memset(used, 0, sizeof(used));
19925                         for(edge = lr->edges; edge; edge = edge->next) {
19926                                 if (edge->node->color == REG_UNSET) {
19927                                         internal_error(state, 0,
19928                                                 "live range without a color");
19929                         }
19930                                 reg_fill_used(state, used, edge->node->color);
19931                         }
19932                         if (used[lr->color]) {
19933                                 internal_error(state, ins,
19934                                         "triple with already used color");
19935                         }
19936                 }
19937                 ins = ins->next;
19938         } while(ins != first);
19939 }
19940
19941 static void color_triples(struct compile_state *state, struct reg_state *rstate)
19942 {
19943         struct live_range_def *lrd;
19944         struct live_range *lr;
19945         struct triple *first, *ins;
19946         first = state->first;
19947         ins = first;
19948         do {
19949                 if ((ins->id < 0) || (ins->id > rstate->defs)) {
19950                         internal_error(state, ins, 
19951                                 "triple without a live range");
19952                 }
19953                 lrd = &rstate->lrd[ins->id];
19954                 lr = lrd->lr;
19955                 ins->id = lrd->orig_id;
19956                 SET_REG(ins->id, lr->color);
19957                 ins = ins->next;
19958         } while (ins != first);
19959 }
19960
19961 static struct live_range *merge_sort_lr(
19962         struct live_range *first, struct live_range *last)
19963 {
19964         struct live_range *mid, *join, **join_tail, *pick;
19965         size_t size;
19966         size = (last - first) + 1;
19967         if (size >= 2) {
19968                 mid = first + size/2;
19969                 first = merge_sort_lr(first, mid -1);
19970                 mid   = merge_sort_lr(mid, last);
19971                 
19972                 join = 0;
19973                 join_tail = &join;
19974                 /* merge the two lists */
19975                 while(first && mid) {
19976                         if ((first->degree < mid->degree) ||
19977                                 ((first->degree == mid->degree) &&
19978                                         (first->length < mid->length))) {
19979                                 pick = first;
19980                                 first = first->group_next;
19981                                 if (first) {
19982                                         first->group_prev = 0;
19983                                 }
19984                         }
19985                         else {
19986                                 pick = mid;
19987                                 mid = mid->group_next;
19988                                 if (mid) {
19989                                         mid->group_prev = 0;
19990                                 }
19991                         }
19992                         pick->group_next = 0;
19993                         pick->group_prev = join_tail;
19994                         *join_tail = pick;
19995                         join_tail = &pick->group_next;
19996                 }
19997                 /* Splice the remaining list */
19998                 pick = (first)? first : mid;
19999                 *join_tail = pick;
20000                 if (pick) { 
20001                         pick->group_prev = join_tail;
20002                 }
20003         }
20004         else {
20005                 if (!first->defs) {
20006                         first = 0;
20007                 }
20008                 join = first;
20009         }
20010         return join;
20011 }
20012
20013 static void ids_from_rstate(struct compile_state *state, 
20014         struct reg_state *rstate)
20015 {
20016         struct triple *ins, *first;
20017         if (!rstate->defs) {
20018                 return;
20019         }
20020         /* Display the graph if desired */
20021         if (state->compiler->debug & DEBUG_INTERFERENCE) {
20022                 FILE *fp = state->dbgout;
20023                 print_interference_blocks(state, rstate, fp, 0);
20024                 print_control_flow(state, fp, &state->bb);
20025                 fflush(fp);
20026         }
20027         first = state->first;
20028         ins = first;
20029         do {
20030                 if (ins->id) {
20031                         struct live_range_def *lrd;
20032                         lrd = &rstate->lrd[ins->id];
20033                         ins->id = lrd->orig_id;
20034                 }
20035                 ins = ins->next;
20036         } while(ins != first);
20037 }
20038
20039 static void cleanup_live_edges(struct reg_state *rstate)
20040 {
20041         int i;
20042         /* Free the edges on each node */
20043         for(i = 1; i <= rstate->ranges; i++) {
20044                 remove_live_edges(rstate, &rstate->lr[i]);
20045         }
20046 }
20047
20048 static void cleanup_rstate(struct compile_state *state, struct reg_state *rstate)
20049 {
20050         cleanup_live_edges(rstate);
20051         xfree(rstate->lrd);
20052         xfree(rstate->lr);
20053
20054         /* Free the variable lifetime information */
20055         if (rstate->blocks) {
20056                 free_variable_lifetimes(state, &state->bb, rstate->blocks);
20057         }
20058         rstate->defs = 0;
20059         rstate->ranges = 0;
20060         rstate->lrd = 0;
20061         rstate->lr = 0;
20062         rstate->blocks = 0;
20063 }
20064
20065 static void verify_consistency(struct compile_state *state);
20066 static void allocate_registers(struct compile_state *state)
20067 {
20068         struct reg_state rstate;
20069         int colored;
20070
20071         /* Clear out the reg_state */
20072         memset(&rstate, 0, sizeof(rstate));
20073         rstate.max_passes = state->compiler->max_allocation_passes;
20074
20075         do {
20076                 struct live_range **point, **next;
20077                 int conflicts;
20078                 int tangles;
20079                 int coalesced;
20080
20081                 if (state->compiler->debug & DEBUG_RANGE_CONFLICTS) {
20082                         FILE *fp = state->errout;
20083                         fprintf(fp, "pass: %d\n", rstate.passes);
20084                         fflush(fp);
20085                 }
20086
20087                 /* Restore ids */
20088                 ids_from_rstate(state, &rstate);
20089
20090                 /* Cleanup the temporary data structures */
20091                 cleanup_rstate(state, &rstate);
20092
20093                 /* Compute the variable lifetimes */
20094                 rstate.blocks = compute_variable_lifetimes(state, &state->bb);
20095
20096                 /* Fix invalid mandatory live range coalesce conflicts */
20097                 conflicts = correct_coalesce_conflicts(state, rstate.blocks);
20098
20099                 /* Fix two simultaneous uses of the same register.
20100                  * In a few pathlogical cases a partial untangle moves
20101                  * the tangle to a part of the graph we won't revisit.
20102                  * So we keep looping until we have no more tangle fixes
20103                  * to apply.
20104                  */
20105                 do {
20106                         tangles = correct_tangles(state, rstate.blocks);
20107                 } while(tangles);
20108
20109                 
20110                 print_blocks(state, "resolve_tangles", state->dbgout);
20111                 verify_consistency(state);
20112                 
20113                 /* Allocate and initialize the live ranges */
20114                 initialize_live_ranges(state, &rstate);
20115
20116                 /* Note currently doing coalescing in a loop appears to 
20117                  * buys me nothing.  The code is left this way in case
20118                  * there is some value in it.  Or if a future bugfix
20119                  * yields some benefit.
20120                  */
20121                 do {
20122                         if (state->compiler->debug & DEBUG_COALESCING) {
20123                                 fprintf(state->errout, "coalescing\n");
20124                         }
20125
20126                         /* Remove any previous live edge calculations */
20127                         cleanup_live_edges(&rstate);
20128
20129                         /* Compute the interference graph */
20130                         walk_variable_lifetimes(
20131                                 state, &state->bb, rstate.blocks, 
20132                                 graph_ins, &rstate);
20133                         
20134                         /* Display the interference graph if desired */
20135                         if (state->compiler->debug & DEBUG_INTERFERENCE) {
20136                                 print_interference_blocks(state, &rstate, state->dbgout, 1);
20137                                 fprintf(state->dbgout, "\nlive variables by instruction\n");
20138                                 walk_variable_lifetimes(
20139                                         state, &state->bb, rstate.blocks, 
20140                                         print_interference_ins, &rstate);
20141                         }
20142                         
20143                         coalesced = coalesce_live_ranges(state, &rstate);
20144
20145                         if (state->compiler->debug & DEBUG_COALESCING) {
20146                                 fprintf(state->errout, "coalesced: %d\n", coalesced);
20147                         }
20148                 } while(coalesced);
20149
20150 #if DEBUG_CONSISTENCY > 1
20151 # if 0
20152                 fprintf(state->errout, "verify_graph_ins...\n");
20153 # endif
20154                 /* Verify the interference graph */
20155                 walk_variable_lifetimes(
20156                         state, &state->bb, rstate.blocks, 
20157                         verify_graph_ins, &rstate);
20158 # if 0
20159                 fprintf(state->errout, "verify_graph_ins done\n");
20160 #endif
20161 #endif
20162                         
20163                 /* Build the groups low and high.  But with the nodes
20164                  * first sorted by degree order.
20165                  */
20166                 rstate.low_tail  = &rstate.low;
20167                 rstate.high_tail = &rstate.high;
20168                 rstate.high = merge_sort_lr(&rstate.lr[1], &rstate.lr[rstate.ranges]);
20169                 if (rstate.high) {
20170                         rstate.high->group_prev = &rstate.high;
20171                 }
20172                 for(point = &rstate.high; *point; point = &(*point)->group_next)
20173                         ;
20174                 rstate.high_tail = point;
20175                 /* Walk through the high list and move everything that needs
20176                  * to be onto low.
20177                  */
20178                 for(point = &rstate.high; *point; point = next) {
20179                         struct live_range *range;
20180                         next = &(*point)->group_next;
20181                         range = *point;
20182                         
20183                         /* If it has a low degree or it already has a color
20184                          * place the node in low.
20185                          */
20186                         if ((range->degree < regc_max_size(state, range->classes)) ||
20187                                 (range->color != REG_UNSET)) {
20188                                 cgdebug_printf(state, "Lo: %5d degree %5d%s\n", 
20189                                         range - rstate.lr, range->degree,
20190                                         (range->color != REG_UNSET) ? " (colored)": "");
20191                                 *range->group_prev = range->group_next;
20192                                 if (range->group_next) {
20193                                         range->group_next->group_prev = range->group_prev;
20194                                 }
20195                                 if (&range->group_next == rstate.high_tail) {
20196                                         rstate.high_tail = range->group_prev;
20197                                 }
20198                                 range->group_prev  = rstate.low_tail;
20199                                 range->group_next  = 0;
20200                                 *rstate.low_tail   = range;
20201                                 rstate.low_tail    = &range->group_next;
20202                                 next = point;
20203                         }
20204                         else {
20205                                 cgdebug_printf(state, "hi: %5d degree %5d%s\n", 
20206                                         range - rstate.lr, range->degree,
20207                                         (range->color != REG_UNSET) ? " (colored)": "");
20208                         }
20209                 }
20210                 /* Color the live_ranges */
20211                 colored = color_graph(state, &rstate);
20212                 rstate.passes++;
20213         } while (!colored);
20214
20215         /* Verify the graph was properly colored */
20216         verify_colors(state, &rstate);
20217
20218         /* Move the colors from the graph to the triples */
20219         color_triples(state, &rstate);
20220
20221         /* Cleanup the temporary data structures */
20222         cleanup_rstate(state, &rstate);
20223
20224         /* Display the new graph */
20225         print_blocks(state, __func__, state->dbgout);
20226 }
20227
20228 /* Sparce Conditional Constant Propogation
20229  * =========================================
20230  */
20231 struct ssa_edge;
20232 struct flow_block;
20233 struct lattice_node {
20234         unsigned old_id;
20235         struct triple *def;
20236         struct ssa_edge *out;
20237         struct flow_block *fblock;
20238         struct triple *val;
20239         /* lattice high   val == def
20240          * lattice const  is_const(val)
20241          * lattice low    other
20242          */
20243 };
20244 struct ssa_edge {
20245         struct lattice_node *src;
20246         struct lattice_node *dst;
20247         struct ssa_edge *work_next;
20248         struct ssa_edge *work_prev;
20249         struct ssa_edge *out_next;
20250 };
20251 struct flow_edge {
20252         struct flow_block *src;
20253         struct flow_block *dst;
20254         struct flow_edge *work_next;
20255         struct flow_edge *work_prev;
20256         struct flow_edge *in_next;
20257         struct flow_edge *out_next;
20258         int executable;
20259 };
20260 #define MAX_FLOW_BLOCK_EDGES 3
20261 struct flow_block {
20262         struct block *block;
20263         struct flow_edge *in;
20264         struct flow_edge *out;
20265         struct flow_edge *edges;
20266 };
20267
20268 struct scc_state {
20269         int ins_count;
20270         struct lattice_node *lattice;
20271         struct ssa_edge     *ssa_edges;
20272         struct flow_block   *flow_blocks;
20273         struct flow_edge    *flow_work_list;
20274         struct ssa_edge     *ssa_work_list;
20275 };
20276
20277
20278 static int is_scc_const(struct compile_state *state, struct triple *ins)
20279 {
20280         return ins && (triple_is_ubranch(state, ins) || is_const(ins));
20281 }
20282
20283 static int is_lattice_hi(struct compile_state *state, struct lattice_node *lnode)
20284 {
20285         return !is_scc_const(state, lnode->val) && (lnode->val == lnode->def);
20286 }
20287
20288 static int is_lattice_const(struct compile_state *state, struct lattice_node *lnode)
20289 {
20290         return is_scc_const(state, lnode->val);
20291 }
20292
20293 static int is_lattice_lo(struct compile_state *state, struct lattice_node *lnode)
20294 {
20295         return (lnode->val != lnode->def) && !is_scc_const(state, lnode->val);
20296 }
20297
20298 static void scc_add_fedge(struct compile_state *state, struct scc_state *scc, 
20299         struct flow_edge *fedge)
20300 {
20301         if (state->compiler->debug & DEBUG_SCC_TRANSFORM2) {
20302                 fprintf(state->errout, "adding fedge: %p (%4d -> %5d)\n",
20303                         fedge,
20304                         fedge->src->block?fedge->src->block->last->id: 0,
20305                         fedge->dst->block?fedge->dst->block->first->id: 0);
20306         }
20307         if ((fedge == scc->flow_work_list) ||
20308                 (fedge->work_next != fedge) ||
20309                 (fedge->work_prev != fedge)) {
20310
20311                 if (state->compiler->debug & DEBUG_SCC_TRANSFORM2) {
20312                         fprintf(state->errout, "dupped fedge: %p\n",
20313                                 fedge);
20314                 }
20315                 return;
20316         }
20317         if (!scc->flow_work_list) {
20318                 scc->flow_work_list = fedge;
20319                 fedge->work_next = fedge->work_prev = fedge;
20320         }
20321         else {
20322                 struct flow_edge *ftail;
20323                 ftail = scc->flow_work_list->work_prev;
20324                 fedge->work_next = ftail->work_next;
20325                 fedge->work_prev = ftail;
20326                 fedge->work_next->work_prev = fedge;
20327                 fedge->work_prev->work_next = fedge;
20328         }
20329 }
20330
20331 static struct flow_edge *scc_next_fedge(
20332         struct compile_state *state, struct scc_state *scc)
20333 {
20334         struct flow_edge *fedge;
20335         fedge = scc->flow_work_list;
20336         if (fedge) {
20337                 fedge->work_next->work_prev = fedge->work_prev;
20338                 fedge->work_prev->work_next = fedge->work_next;
20339                 if (fedge->work_next != fedge) {
20340                         scc->flow_work_list = fedge->work_next;
20341                 } else {
20342                         scc->flow_work_list = 0;
20343                 }
20344                 fedge->work_next = fedge->work_prev = fedge;
20345         }
20346         return fedge;
20347 }
20348
20349 static void scc_add_sedge(struct compile_state *state, struct scc_state *scc,
20350         struct ssa_edge *sedge)
20351 {
20352         if (state->compiler->debug & DEBUG_SCC_TRANSFORM2) {
20353                 fprintf(state->errout, "adding sedge: %5ld (%4d -> %5d)\n",
20354                         (long)(sedge - scc->ssa_edges),
20355                         sedge->src->def->id,
20356                         sedge->dst->def->id);
20357         }
20358         if ((sedge == scc->ssa_work_list) ||
20359                 (sedge->work_next != sedge) ||
20360                 (sedge->work_prev != sedge)) {
20361
20362                 if (state->compiler->debug & DEBUG_SCC_TRANSFORM2) {
20363                         fprintf(state->errout, "dupped sedge: %5ld\n",
20364                                 (long)(sedge - scc->ssa_edges));
20365                 }
20366                 return;
20367         }
20368         if (!scc->ssa_work_list) {
20369                 scc->ssa_work_list = sedge;
20370                 sedge->work_next = sedge->work_prev = sedge;
20371         }
20372         else {
20373                 struct ssa_edge *stail;
20374                 stail = scc->ssa_work_list->work_prev;
20375                 sedge->work_next = stail->work_next;
20376                 sedge->work_prev = stail;
20377                 sedge->work_next->work_prev = sedge;
20378                 sedge->work_prev->work_next = sedge;
20379         }
20380 }
20381
20382 static struct ssa_edge *scc_next_sedge(
20383         struct compile_state *state, struct scc_state *scc)
20384 {
20385         struct ssa_edge *sedge;
20386         sedge = scc->ssa_work_list;
20387         if (sedge) {
20388                 sedge->work_next->work_prev = sedge->work_prev;
20389                 sedge->work_prev->work_next = sedge->work_next;
20390                 if (sedge->work_next != sedge) {
20391                         scc->ssa_work_list = sedge->work_next;
20392                 } else {
20393                         scc->ssa_work_list = 0;
20394                 }
20395                 sedge->work_next = sedge->work_prev = sedge;
20396         }
20397         return sedge;
20398 }
20399
20400 static void initialize_scc_state(
20401         struct compile_state *state, struct scc_state *scc)
20402 {
20403         int ins_count, ssa_edge_count;
20404         int ins_index, ssa_edge_index, fblock_index;
20405         struct triple *first, *ins;
20406         struct block *block;
20407         struct flow_block *fblock;
20408
20409         memset(scc, 0, sizeof(*scc));
20410
20411         /* Inialize pass zero find out how much memory we need */
20412         first = state->first;
20413         ins = first;
20414         ins_count = ssa_edge_count = 0;
20415         do {
20416                 struct triple_set *edge;
20417                 ins_count += 1;
20418                 for(edge = ins->use; edge; edge = edge->next) {
20419                         ssa_edge_count++;
20420                 }
20421                 ins = ins->next;
20422         } while(ins != first);
20423         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20424                 fprintf(state->errout, "ins_count: %d ssa_edge_count: %d vertex_count: %d\n",
20425                         ins_count, ssa_edge_count, state->bb.last_vertex);
20426         }
20427         scc->ins_count   = ins_count;
20428         scc->lattice     = 
20429                 xcmalloc(sizeof(*scc->lattice)*(ins_count + 1), "lattice");
20430         scc->ssa_edges   = 
20431                 xcmalloc(sizeof(*scc->ssa_edges)*(ssa_edge_count + 1), "ssa_edges");
20432         scc->flow_blocks = 
20433                 xcmalloc(sizeof(*scc->flow_blocks)*(state->bb.last_vertex + 1), 
20434                         "flow_blocks");
20435
20436         /* Initialize pass one collect up the nodes */
20437         fblock = 0;
20438         block = 0;
20439         ins_index = ssa_edge_index = fblock_index = 0;
20440         ins = first;
20441         do {
20442                 if ((ins->op == OP_LABEL) && (block != ins->u.block)) {
20443                         block = ins->u.block;
20444                         if (!block) {
20445                                 internal_error(state, ins, "label without block");
20446                         }
20447                         fblock_index += 1;
20448                         block->vertex = fblock_index;
20449                         fblock = &scc->flow_blocks[fblock_index];
20450                         fblock->block = block;
20451                         fblock->edges = xcmalloc(sizeof(*fblock->edges)*block->edge_count,
20452                                 "flow_edges");
20453                 }
20454                 {
20455                         struct lattice_node *lnode;
20456                         ins_index += 1;
20457                         lnode = &scc->lattice[ins_index];
20458                         lnode->def = ins;
20459                         lnode->out = 0;
20460                         lnode->fblock = fblock;
20461                         lnode->val = ins; /* LATTICE HIGH */
20462                         if (lnode->val->op == OP_UNKNOWNVAL) {
20463                                 lnode->val = 0; /* LATTICE LOW by definition */
20464                         }
20465                         lnode->old_id = ins->id;
20466                         ins->id = ins_index;
20467                 }
20468                 ins = ins->next;
20469         } while(ins != first);
20470         /* Initialize pass two collect up the edges */
20471         block = 0;
20472         fblock = 0;
20473         ins = first;
20474         do {
20475                 {
20476                         struct triple_set *edge;
20477                         struct ssa_edge **stail;
20478                         struct lattice_node *lnode;
20479                         lnode = &scc->lattice[ins->id];
20480                         lnode->out = 0;
20481                         stail = &lnode->out;
20482                         for(edge = ins->use; edge; edge = edge->next) {
20483                                 struct ssa_edge *sedge;
20484                                 ssa_edge_index += 1;
20485                                 sedge = &scc->ssa_edges[ssa_edge_index];
20486                                 *stail = sedge;
20487                                 stail = &sedge->out_next;
20488                                 sedge->src = lnode;
20489                                 sedge->dst = &scc->lattice[edge->member->id];
20490                                 sedge->work_next = sedge->work_prev = sedge;
20491                                 sedge->out_next = 0;
20492                         }
20493                 }
20494                 if ((ins->op == OP_LABEL) && (block != ins->u.block)) {
20495                         struct flow_edge *fedge, **ftail;
20496                         struct block_set *bedge;
20497                         block = ins->u.block;
20498                         fblock = &scc->flow_blocks[block->vertex];
20499                         fblock->in = 0;
20500                         fblock->out = 0;
20501                         ftail = &fblock->out;
20502
20503                         fedge = fblock->edges;
20504                         bedge = block->edges;
20505                         for(; bedge; bedge = bedge->next, fedge++) {
20506                                 fedge->dst = &scc->flow_blocks[bedge->member->vertex];
20507                                 if (fedge->dst->block != bedge->member) {
20508                                         internal_error(state, 0, "block mismatch");
20509                                 }
20510                                 *ftail = fedge;
20511                                 ftail = &fedge->out_next;
20512                                 fedge->out_next = 0;
20513                         }
20514                         for(fedge = fblock->out; fedge; fedge = fedge->out_next) {
20515                                 fedge->src = fblock;
20516                                 fedge->work_next = fedge->work_prev = fedge;
20517                                 fedge->executable = 0;
20518                         }
20519                 }
20520                 ins = ins->next;
20521         } while (ins != first);
20522         block = 0;
20523         fblock = 0;
20524         ins = first;
20525         do {
20526                 if ((ins->op  == OP_LABEL) && (block != ins->u.block)) {
20527                         struct flow_edge **ftail;
20528                         struct block_set *bedge;
20529                         block = ins->u.block;
20530                         fblock = &scc->flow_blocks[block->vertex];
20531                         ftail = &fblock->in;
20532                         for(bedge = block->use; bedge; bedge = bedge->next) {
20533                                 struct block *src_block;
20534                                 struct flow_block *sfblock;
20535                                 struct flow_edge *sfedge;
20536                                 src_block = bedge->member;
20537                                 sfblock = &scc->flow_blocks[src_block->vertex];
20538                                 for(sfedge = sfblock->out; sfedge; sfedge = sfedge->out_next) {
20539                                         if (sfedge->dst == fblock) {
20540                                                 break;
20541                                         }
20542                                 }
20543                                 if (!sfedge) {
20544                                         internal_error(state, 0, "edge mismatch");
20545                                 }
20546                                 *ftail = sfedge;
20547                                 ftail = &sfedge->in_next;
20548                                 sfedge->in_next = 0;
20549                         }
20550                 }
20551                 ins = ins->next;
20552         } while(ins != first);
20553         /* Setup a dummy block 0 as a node above the start node */
20554         {
20555                 struct flow_block *fblock, *dst;
20556                 struct flow_edge *fedge;
20557                 fblock = &scc->flow_blocks[0];
20558                 fblock->block = 0;
20559                 fblock->edges = xcmalloc(sizeof(*fblock->edges)*1, "flow_edges");
20560                 fblock->in = 0;
20561                 fblock->out = fblock->edges;
20562                 dst = &scc->flow_blocks[state->bb.first_block->vertex];
20563                 fedge = fblock->edges;
20564                 fedge->src        = fblock;
20565                 fedge->dst        = dst;
20566                 fedge->work_next  = fedge;
20567                 fedge->work_prev  = fedge;
20568                 fedge->in_next    = fedge->dst->in;
20569                 fedge->out_next   = 0;
20570                 fedge->executable = 0;
20571                 fedge->dst->in = fedge;
20572                 
20573                 /* Initialize the work lists */
20574                 scc->flow_work_list = 0;
20575                 scc->ssa_work_list  = 0;
20576                 scc_add_fedge(state, scc, fedge);
20577         }
20578         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20579                 fprintf(state->errout, "ins_index: %d ssa_edge_index: %d fblock_index: %d\n",
20580                         ins_index, ssa_edge_index, fblock_index);
20581         }
20582 }
20583
20584         
20585 static void free_scc_state(
20586         struct compile_state *state, struct scc_state *scc)
20587 {
20588         int i;
20589         for(i = 0; i < state->bb.last_vertex + 1; i++) {
20590                 struct flow_block *fblock;
20591                 fblock = &scc->flow_blocks[i];
20592                 if (fblock->edges) {
20593                         xfree(fblock->edges);
20594                         fblock->edges = 0;
20595                 }
20596         }
20597         xfree(scc->flow_blocks);
20598         xfree(scc->ssa_edges);
20599         xfree(scc->lattice);
20600         
20601 }
20602
20603 static struct lattice_node *triple_to_lattice(
20604         struct compile_state *state, struct scc_state *scc, struct triple *ins)
20605 {
20606         if (ins->id <= 0) {
20607                 internal_error(state, ins, "bad id");
20608         }
20609         return &scc->lattice[ins->id];
20610 }
20611
20612 static struct triple *preserve_lval(
20613         struct compile_state *state, struct lattice_node *lnode)
20614 {
20615         struct triple *old;
20616         /* Preserve the original value */
20617         if (lnode->val) {
20618                 old = dup_triple(state, lnode->val);
20619                 if (lnode->val != lnode->def) {
20620                         xfree(lnode->val);
20621                 }
20622                 lnode->val = 0;
20623         } else {
20624                 old = 0;
20625         }
20626         return old;
20627 }
20628
20629 static int lval_changed(struct compile_state *state, 
20630         struct triple *old, struct lattice_node *lnode)
20631 {
20632         int changed;
20633         /* See if the lattice value has changed */
20634         changed = 1;
20635         if (!old && !lnode->val) {
20636                 changed = 0;
20637         }
20638         if (changed &&
20639                 lnode->val && old &&
20640                 (memcmp(lnode->val->param, old->param,
20641                         TRIPLE_SIZE(lnode->val) * sizeof(lnode->val->param[0])) == 0) &&
20642                 (memcmp(&lnode->val->u, &old->u, sizeof(old->u)) == 0)) {
20643                 changed = 0;
20644         }
20645         if (old) {
20646                 xfree(old);
20647         }
20648         return changed;
20649
20650 }
20651
20652 static void scc_debug_lnode(
20653         struct compile_state *state, struct scc_state *scc,
20654         struct lattice_node *lnode, int changed)
20655 {
20656         if ((state->compiler->debug & DEBUG_SCC_TRANSFORM2) && lnode->val) {
20657                 display_triple_changes(state->errout, lnode->val, lnode->def);
20658         }
20659         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20660                 FILE *fp = state->errout;
20661                 struct triple *val, **expr;
20662                 val = lnode->val? lnode->val : lnode->def;
20663                 fprintf(fp, "%p %s %3d %10s (",
20664                         lnode->def, 
20665                         ((lnode->def->op == OP_PHI)? "phi: ": "expr:"),
20666                         lnode->def->id,
20667                         tops(lnode->def->op));
20668                 expr = triple_rhs(state, lnode->def, 0);
20669                 for(;expr;expr = triple_rhs(state, lnode->def, expr)) {
20670                         if (*expr) {
20671                                 fprintf(fp, " %d", (*expr)->id);
20672                         }
20673                 }
20674                 if (val->op == OP_INTCONST) {
20675                         fprintf(fp, " <0x%08lx>", (unsigned long)(val->u.cval));
20676                 }
20677                 fprintf(fp, " ) -> %s %s\n",
20678                         (is_lattice_hi(state, lnode)? "hi":
20679                                 is_lattice_const(state, lnode)? "const" : "lo"),
20680                         changed? "changed" : ""
20681                         );
20682         }
20683 }
20684
20685 static int compute_lnode_val(struct compile_state *state, struct scc_state *scc,
20686         struct lattice_node *lnode)
20687 {
20688         int changed;
20689         struct triple *old, *scratch;
20690         struct triple **dexpr, **vexpr;
20691         int count, i;
20692         
20693         /* Store the original value */
20694         old = preserve_lval(state, lnode);
20695
20696         /* Reinitialize the value */
20697         lnode->val = scratch = dup_triple(state, lnode->def);
20698         scratch->id = lnode->old_id;
20699         scratch->next     = scratch;
20700         scratch->prev     = scratch;
20701         scratch->use      = 0;
20702
20703         count = TRIPLE_SIZE(scratch);
20704         for(i = 0; i < count; i++) {
20705                 dexpr = &lnode->def->param[i];
20706                 vexpr = &scratch->param[i];
20707                 *vexpr = *dexpr;
20708                 if (((i < TRIPLE_MISC_OFF(scratch)) ||
20709                         (i >= TRIPLE_TARG_OFF(scratch))) &&
20710                         *dexpr) {
20711                         struct lattice_node *tmp;
20712                         tmp = triple_to_lattice(state, scc, *dexpr);
20713                         *vexpr = (tmp->val)? tmp->val : tmp->def;
20714                 }
20715         }
20716         if (triple_is_branch(state, scratch)) {
20717                 scratch->next = lnode->def->next;
20718         }
20719         /* Recompute the value */
20720 #if DEBUG_ROMCC_WARNINGS
20721 #warning "FIXME see if simplify does anything bad"
20722 #endif
20723         /* So far it looks like only the strength reduction
20724          * optimization are things I need to worry about.
20725          */
20726         simplify(state, scratch);
20727         /* Cleanup my value */
20728         if (scratch->use) {
20729                 internal_error(state, lnode->def, "scratch used?");
20730         }
20731         if ((scratch->prev != scratch) ||
20732                 ((scratch->next != scratch) &&
20733                         (!triple_is_branch(state, lnode->def) ||
20734                                 (scratch->next != lnode->def->next)))) {
20735                 internal_error(state, lnode->def, "scratch in list?");
20736         }
20737         /* undo any uses... */
20738         count = TRIPLE_SIZE(scratch);
20739         for(i = 0; i < count; i++) {
20740                 vexpr = &scratch->param[i];
20741                 if (*vexpr) {
20742                         unuse_triple(*vexpr, scratch);
20743                 }
20744         }
20745         if (lnode->val->op == OP_UNKNOWNVAL) {
20746                 lnode->val = 0; /* Lattice low by definition */
20747         }
20748         /* Find the case when I am lattice high */
20749         if (lnode->val && 
20750                 (lnode->val->op == lnode->def->op) &&
20751                 (memcmp(lnode->val->param, lnode->def->param, 
20752                         count * sizeof(lnode->val->param[0])) == 0) &&
20753                 (memcmp(&lnode->val->u, &lnode->def->u, sizeof(lnode->def->u)) == 0)) {
20754                 lnode->val = lnode->def;
20755         }
20756         /* Only allow lattice high when all of my inputs
20757          * are also lattice high.  Occassionally I can
20758          * have constants with a lattice low input, so
20759          * I do not need to check that case.
20760          */
20761         if (is_lattice_hi(state, lnode)) {
20762                 struct lattice_node *tmp;
20763                 int rhs;
20764                 rhs = lnode->val->rhs;
20765                 for(i = 0; i < rhs; i++) {
20766                         tmp = triple_to_lattice(state, scc, RHS(lnode->val, i));
20767                         if (!is_lattice_hi(state, tmp)) {
20768                                 lnode->val = 0;
20769                                 break;
20770                         }
20771                 }
20772         }
20773         /* Find the cases that are always lattice lo */
20774         if (lnode->val && 
20775                 triple_is_def(state, lnode->val) &&
20776                 !triple_is_pure(state, lnode->val, lnode->old_id)) {
20777                 lnode->val = 0;
20778         }
20779         /* See if the lattice value has changed */
20780         changed = lval_changed(state, old, lnode);
20781         /* See if this value should not change */
20782         if ((lnode->val != lnode->def) && 
20783                 ((      !triple_is_def(state, lnode->def)  &&
20784                         !triple_is_cbranch(state, lnode->def)) ||
20785                         (lnode->def->op == OP_PIECE))) {
20786 #if DEBUG_ROMCC_WARNINGS
20787 #warning "FIXME constant propogate through expressions with multiple left hand sides"
20788 #endif
20789                 if (changed) {
20790                         internal_warning(state, lnode->def, "non def changes value?");
20791                 }
20792                 lnode->val = 0;
20793         }
20794
20795         /* See if we need to free the scratch value */
20796         if (lnode->val != scratch) {
20797                 xfree(scratch);
20798         }
20799         
20800         return changed;
20801 }
20802
20803
20804 static void scc_visit_cbranch(struct compile_state *state, struct scc_state *scc,
20805         struct lattice_node *lnode)
20806 {
20807         struct lattice_node *cond;
20808         struct flow_edge *left, *right;
20809         int changed;
20810
20811         /* Update the branch value */
20812         changed = compute_lnode_val(state, scc, lnode);
20813         scc_debug_lnode(state, scc, lnode, changed);
20814
20815         /* This only applies to conditional branches */
20816         if (!triple_is_cbranch(state, lnode->def)) {
20817                 internal_error(state, lnode->def, "not a conditional branch");
20818         }
20819
20820         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20821                 struct flow_edge *fedge;
20822                 FILE *fp = state->errout;
20823                 fprintf(fp, "%s: %d (",
20824                         tops(lnode->def->op),
20825                         lnode->def->id);
20826                 
20827                 for(fedge = lnode->fblock->out; fedge; fedge = fedge->out_next) {
20828                         fprintf(fp, " %d", fedge->dst->block->vertex);
20829                 }
20830                 fprintf(fp, " )");
20831                 if (lnode->def->rhs > 0) {
20832                         fprintf(fp, " <- %d",
20833                                 RHS(lnode->def, 0)->id);
20834                 }
20835                 fprintf(fp, "\n");
20836         }
20837         cond = triple_to_lattice(state, scc, RHS(lnode->def,0));
20838         for(left = cond->fblock->out; left; left = left->out_next) {
20839                 if (left->dst->block->first == lnode->def->next) {
20840                         break;
20841                 }
20842         }
20843         if (!left) {
20844                 internal_error(state, lnode->def, "Cannot find left branch edge");
20845         }
20846         for(right = cond->fblock->out; right; right = right->out_next) {
20847                 if (right->dst->block->first == TARG(lnode->def, 0)) {
20848                         break;
20849                 }
20850         }
20851         if (!right) {
20852                 internal_error(state, lnode->def, "Cannot find right branch edge");
20853         }
20854         /* I should only come here if the controlling expressions value
20855          * has changed, which means it must be either a constant or lo.
20856          */
20857         if (is_lattice_hi(state, cond)) {
20858                 internal_error(state, cond->def, "condition high?");
20859                 return;
20860         }
20861         if (is_lattice_lo(state, cond)) {
20862                 scc_add_fedge(state, scc, left);
20863                 scc_add_fedge(state, scc, right);
20864         }
20865         else if (cond->val->u.cval) {
20866                 scc_add_fedge(state, scc, right);
20867         } else {
20868                 scc_add_fedge(state, scc, left);
20869         }
20870
20871 }
20872
20873
20874 static void scc_add_sedge_dst(struct compile_state *state, 
20875         struct scc_state *scc, struct ssa_edge *sedge)
20876 {
20877         if (triple_is_cbranch(state, sedge->dst->def)) {
20878                 scc_visit_cbranch(state, scc, sedge->dst);
20879         }
20880         else if (triple_is_def(state, sedge->dst->def)) {
20881                 scc_add_sedge(state, scc, sedge);
20882         }
20883 }
20884
20885 static void scc_visit_phi(struct compile_state *state, struct scc_state *scc, 
20886         struct lattice_node *lnode)
20887 {
20888         struct lattice_node *tmp;
20889         struct triple **slot, *old;
20890         struct flow_edge *fedge;
20891         int changed;
20892         int index;
20893         if (lnode->def->op != OP_PHI) {
20894                 internal_error(state, lnode->def, "not phi");
20895         }
20896         /* Store the original value */
20897         old = preserve_lval(state, lnode);
20898
20899         /* default to lattice high */
20900         lnode->val = lnode->def;
20901         slot = &RHS(lnode->def, 0);
20902         index = 0;
20903         for(fedge = lnode->fblock->in; fedge; index++, fedge = fedge->in_next) {
20904                 if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20905                         fprintf(state->errout, "Examining edge: %d vertex: %d executable: %d\n", 
20906                                 index,
20907                                 fedge->dst->block->vertex,
20908                                 fedge->executable
20909                                 );
20910                 }
20911                 if (!fedge->executable) {
20912                         continue;
20913                 }
20914                 if (!slot[index]) {
20915                         internal_error(state, lnode->def, "no phi value");
20916                 }
20917                 tmp = triple_to_lattice(state, scc, slot[index]);
20918                 /* meet(X, lattice low) = lattice low */
20919                 if (is_lattice_lo(state, tmp)) {
20920                         lnode->val = 0;
20921                 }
20922                 /* meet(X, lattice high) = X */
20923                 else if (is_lattice_hi(state, tmp)) {
20924                         lnode->val = lnode->val;
20925                 }
20926                 /* meet(lattice high, X) = X */
20927                 else if (is_lattice_hi(state, lnode)) {
20928                         lnode->val = dup_triple(state, tmp->val);
20929                         /* Only change the type if necessary */
20930                         if (!is_subset_type(lnode->def->type, tmp->val->type)) {
20931                                 lnode->val->type = lnode->def->type;
20932                         }
20933                 }
20934                 /* meet(const, const) = const or lattice low */
20935                 else if (!constants_equal(state, lnode->val, tmp->val)) {
20936                         lnode->val = 0;
20937                 }
20938
20939                 /* meet(lattice low, X) = lattice low */
20940                 if (is_lattice_lo(state, lnode)) {
20941                         lnode->val = 0;
20942                         break;
20943                 }
20944         }
20945         changed = lval_changed(state, old, lnode);
20946         scc_debug_lnode(state, scc, lnode, changed);
20947
20948         /* If the lattice value has changed update the work lists. */
20949         if (changed) {
20950                 struct ssa_edge *sedge;
20951                 for(sedge = lnode->out; sedge; sedge = sedge->out_next) {
20952                         scc_add_sedge_dst(state, scc, sedge);
20953                 }
20954         }
20955 }
20956
20957
20958 static void scc_visit_expr(struct compile_state *state, struct scc_state *scc,
20959         struct lattice_node *lnode)
20960 {
20961         int changed;
20962
20963         if (!triple_is_def(state, lnode->def)) {
20964                 internal_warning(state, lnode->def, "not visiting an expression?");
20965         }
20966         changed = compute_lnode_val(state, scc, lnode);
20967         scc_debug_lnode(state, scc, lnode, changed);
20968
20969         if (changed) {
20970                 struct ssa_edge *sedge;
20971                 for(sedge = lnode->out; sedge; sedge = sedge->out_next) {
20972                         scc_add_sedge_dst(state, scc, sedge);
20973                 }
20974         }
20975 }
20976
20977 static void scc_writeback_values(
20978         struct compile_state *state, struct scc_state *scc)
20979 {
20980         struct triple *first, *ins;
20981         first = state->first;
20982         ins = first;
20983         do {
20984                 struct lattice_node *lnode;
20985                 lnode = triple_to_lattice(state, scc, ins);
20986                 if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20987                         if (is_lattice_hi(state, lnode) &&
20988                                 (lnode->val->op != OP_NOOP))
20989                         {
20990                                 struct flow_edge *fedge;
20991                                 int executable;
20992                                 executable = 0;
20993                                 for(fedge = lnode->fblock->in; 
20994                                     !executable && fedge; fedge = fedge->in_next) {
20995                                         executable |= fedge->executable;
20996                                 }
20997                                 if (executable) {
20998                                         internal_warning(state, lnode->def,
20999                                                 "lattice node %d %s->%s still high?",
21000                                                 ins->id, 
21001                                                 tops(lnode->def->op),
21002                                                 tops(lnode->val->op));
21003                                 }
21004                         }
21005                 }
21006
21007                 /* Restore id */
21008                 ins->id = lnode->old_id;
21009                 if (lnode->val && (lnode->val != ins)) {
21010                         /* See if it something I know how to write back */
21011                         switch(lnode->val->op) {
21012                         case OP_INTCONST:
21013                                 mkconst(state, ins, lnode->val->u.cval);
21014                                 break;
21015                         case OP_ADDRCONST:
21016                                 mkaddr_const(state, ins, 
21017                                         MISC(lnode->val, 0), lnode->val->u.cval);
21018                                 break;
21019                         default:
21020                                 /* By default don't copy the changes,
21021                                  * recompute them in place instead.
21022                                  */
21023                                 simplify(state, ins);
21024                                 break;
21025                         }
21026                         if (is_const(lnode->val) &&
21027                                 !constants_equal(state, lnode->val, ins)) {
21028                                 internal_error(state, 0, "constants not equal");
21029                         }
21030                         /* Free the lattice nodes */
21031                         xfree(lnode->val);
21032                         lnode->val = 0;
21033                 }
21034                 ins = ins->next;
21035         } while(ins != first);
21036 }
21037
21038 static void scc_transform(struct compile_state *state)
21039 {
21040         struct scc_state scc;
21041         if (!(state->compiler->flags & COMPILER_SCC_TRANSFORM)) {
21042                 return;
21043         }
21044
21045         initialize_scc_state(state, &scc);
21046
21047         while(scc.flow_work_list || scc.ssa_work_list) {
21048                 struct flow_edge *fedge;
21049                 struct ssa_edge *sedge;
21050                 struct flow_edge *fptr;
21051                 while((fedge = scc_next_fedge(state, &scc))) {
21052                         struct block *block;
21053                         struct triple *ptr;
21054                         struct flow_block *fblock;
21055                         int reps;
21056                         int done;
21057                         if (fedge->executable) {
21058                                 continue;
21059                         }
21060                         if (!fedge->dst) {
21061                                 internal_error(state, 0, "fedge without dst");
21062                         }
21063                         if (!fedge->src) {
21064                                 internal_error(state, 0, "fedge without src");
21065                         }
21066                         fedge->executable = 1;
21067                         fblock = fedge->dst;
21068                         block = fblock->block;
21069                         reps = 0;
21070                         for(fptr = fblock->in; fptr; fptr = fptr->in_next) {
21071                                 if (fptr->executable) {
21072                                         reps++;
21073                                 }
21074                         }
21075                         
21076                         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
21077                                 fprintf(state->errout, "vertex: %d reps: %d\n", 
21078                                         block->vertex, reps);
21079                         }
21080
21081                         done = 0;
21082                         for(ptr = block->first; !done; ptr = ptr->next) {
21083                                 struct lattice_node *lnode;
21084                                 done = (ptr == block->last);
21085                                 lnode = &scc.lattice[ptr->id];
21086                                 if (ptr->op == OP_PHI) {
21087                                         scc_visit_phi(state, &scc, lnode);
21088                                 }
21089                                 else if ((reps == 1) && triple_is_def(state, ptr))
21090                                 {
21091                                         scc_visit_expr(state, &scc, lnode);
21092                                 }
21093                         }
21094                         /* Add unconditional branch edges */
21095                         if (!triple_is_cbranch(state, fblock->block->last)) {
21096                                 struct flow_edge *out;
21097                                 for(out = fblock->out; out; out = out->out_next) {
21098                                         scc_add_fedge(state, &scc, out);
21099                                 }
21100                         }
21101                 }
21102                 while((sedge = scc_next_sedge(state, &scc))) {
21103                         struct lattice_node *lnode;
21104                         struct flow_block *fblock;
21105                         lnode = sedge->dst;
21106                         fblock = lnode->fblock;
21107
21108                         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
21109                                 fprintf(state->errout, "sedge: %5ld (%5d -> %5d)\n",
21110                                         sedge - scc.ssa_edges,
21111                                         sedge->src->def->id,
21112                                         sedge->dst->def->id);
21113                         }
21114
21115                         if (lnode->def->op == OP_PHI) {
21116                                 scc_visit_phi(state, &scc, lnode);
21117                         }
21118                         else {
21119                                 for(fptr = fblock->in; fptr; fptr = fptr->in_next) {
21120                                         if (fptr->executable) {
21121                                                 break;
21122                                         }
21123                                 }
21124                                 if (fptr) {
21125                                         scc_visit_expr(state, &scc, lnode);
21126                                 }
21127                         }
21128                 }
21129         }
21130         
21131         scc_writeback_values(state, &scc);
21132         free_scc_state(state, &scc);
21133         rebuild_ssa_form(state);
21134         
21135         print_blocks(state, __func__, state->dbgout);
21136 }
21137
21138
21139 static void transform_to_arch_instructions(struct compile_state *state)
21140 {
21141         struct triple *ins, *first;
21142         first = state->first;
21143         ins = first;
21144         do {
21145                 ins = transform_to_arch_instruction(state, ins);
21146         } while(ins != first);
21147         
21148         print_blocks(state, __func__, state->dbgout);
21149 }
21150
21151 #if DEBUG_CONSISTENCY
21152 static void verify_uses(struct compile_state *state)
21153 {
21154         struct triple *first, *ins;
21155         struct triple_set *set;
21156         first = state->first;
21157         ins = first;
21158         do {
21159                 struct triple **expr;
21160                 expr = triple_rhs(state, ins, 0);
21161                 for(; expr; expr = triple_rhs(state, ins, expr)) {
21162                         struct triple *rhs;
21163                         rhs = *expr;
21164                         for(set = rhs?rhs->use:0; set; set = set->next) {
21165                                 if (set->member == ins) {
21166                                         break;
21167                                 }
21168                         }
21169                         if (!set) {
21170                                 internal_error(state, ins, "rhs not used");
21171                         }
21172                 }
21173                 expr = triple_lhs(state, ins, 0);
21174                 for(; expr; expr = triple_lhs(state, ins, expr)) {
21175                         struct triple *lhs;
21176                         lhs = *expr;
21177                         for(set =  lhs?lhs->use:0; set; set = set->next) {
21178                                 if (set->member == ins) {
21179                                         break;
21180                                 }
21181                         }
21182                         if (!set) {
21183                                 internal_error(state, ins, "lhs not used");
21184                         }
21185                 }
21186                 expr = triple_misc(state, ins, 0);
21187                 if (ins->op != OP_PHI) {
21188                         for(; expr; expr = triple_targ(state, ins, expr)) {
21189                                 struct triple *misc;
21190                                 misc = *expr;
21191                                 for(set = misc?misc->use:0; set; set = set->next) {
21192                                         if (set->member == ins) {
21193                                                 break;
21194                                         }
21195                                 }
21196                                 if (!set) {
21197                                         internal_error(state, ins, "misc not used");
21198                                 }
21199                         }
21200                 }
21201                 if (!triple_is_ret(state, ins)) {
21202                         expr = triple_targ(state, ins, 0);
21203                         for(; expr; expr = triple_targ(state, ins, expr)) {
21204                                 struct triple *targ;
21205                                 targ = *expr;
21206                                 for(set = targ?targ->use:0; set; set = set->next) {
21207                                         if (set->member == ins) {
21208                                                 break;
21209                                         }
21210                                 }
21211                                 if (!set) {
21212                                         internal_error(state, ins, "targ not used");
21213                                 }
21214                         }
21215                 }
21216                 ins = ins->next;
21217         } while(ins != first);
21218         
21219 }
21220 static void verify_blocks_present(struct compile_state *state)
21221 {
21222         struct triple *first, *ins;
21223         if (!state->bb.first_block) {
21224                 return;
21225         }
21226         first = state->first;
21227         ins = first;
21228         do {
21229                 valid_ins(state, ins);
21230                 if (triple_stores_block(state, ins)) {
21231                         if (!ins->u.block) {
21232                                 internal_error(state, ins, 
21233                                         "%p not in a block?", ins);
21234                         }
21235                 }
21236                 ins = ins->next;
21237         } while(ins != first);
21238         
21239         
21240 }
21241
21242 static int edge_present(struct compile_state *state, struct block *block, struct triple *edge)
21243 {
21244         struct block_set *bedge;
21245         struct block *targ;
21246         targ = block_of_triple(state, edge);
21247         for(bedge = block->edges; bedge; bedge = bedge->next) {
21248                 if (bedge->member == targ) {
21249                         return 1;
21250                 }
21251         }
21252         return 0;
21253 }
21254
21255 static void verify_blocks(struct compile_state *state)
21256 {
21257         struct triple *ins;
21258         struct block *block;
21259         int blocks;
21260         block = state->bb.first_block;
21261         if (!block) {
21262                 return;
21263         }
21264         blocks = 0;
21265         do {
21266                 int users;
21267                 struct block_set *user, *edge;
21268                 blocks++;
21269                 for(ins = block->first; ins != block->last->next; ins = ins->next) {
21270                         if (triple_stores_block(state, ins) && (ins->u.block != block)) {
21271                                 internal_error(state, ins, "inconsitent block specified");
21272                         }
21273                         valid_ins(state, ins);
21274                 }
21275                 users = 0;
21276                 for(user = block->use; user; user = user->next) {
21277                         users++;
21278                         if (!user->member->first) {
21279                                 internal_error(state, block->first, "user is empty");
21280                         }
21281                         if ((block == state->bb.last_block) &&
21282                                 (user->member == state->bb.first_block)) {
21283                                 continue;
21284                         }
21285                         for(edge = user->member->edges; edge; edge = edge->next) {
21286                                 if (edge->member == block) {
21287                                         break;
21288                                 }
21289                         }
21290                         if (!edge) {
21291                                 internal_error(state, user->member->first,
21292                                         "user does not use block");
21293                         }
21294                 }
21295                 if (triple_is_branch(state, block->last)) {
21296                         struct triple **expr;
21297                         expr = triple_edge_targ(state, block->last, 0);
21298                         for(;expr; expr = triple_edge_targ(state, block->last, expr)) {
21299                                 if (*expr && !edge_present(state, block, *expr)) {
21300                                         internal_error(state, block->last, "no edge to targ");
21301                                 }
21302                         }
21303                 }
21304                 if (!triple_is_ubranch(state, block->last) &&
21305                         (block != state->bb.last_block) &&
21306                         !edge_present(state, block, block->last->next)) {
21307                         internal_error(state, block->last, "no edge to block->last->next");
21308                 }
21309                 for(edge = block->edges; edge; edge = edge->next) {
21310                         for(user = edge->member->use; user; user = user->next) {
21311                                 if (user->member == block) {
21312                                         break;
21313                                 }
21314                         }
21315                         if (!user || user->member != block) {
21316                                 internal_error(state, block->first,
21317                                         "block does not use edge");
21318                         }
21319                         if (!edge->member->first) {
21320                                 internal_error(state, block->first, "edge block is empty");
21321                         }
21322                 }
21323                 if (block->users != users) {
21324                         internal_error(state, block->first, 
21325                                 "computed users %d != stored users %d",
21326                                 users, block->users);
21327                 }
21328                 if (!triple_stores_block(state, block->last->next)) {
21329                         internal_error(state, block->last->next, 
21330                                 "cannot find next block");
21331                 }
21332                 block = block->last->next->u.block;
21333                 if (!block) {
21334                         internal_error(state, block->last->next,
21335                                 "bad next block");
21336                 }
21337         } while(block != state->bb.first_block);
21338         if (blocks != state->bb.last_vertex) {
21339                 internal_error(state, 0, "computed blocks: %d != stored blocks %d",
21340                         blocks, state->bb.last_vertex);
21341         }
21342 }
21343
21344 static void verify_domination(struct compile_state *state)
21345 {
21346         struct triple *first, *ins;
21347         struct triple_set *set;
21348         if (!state->bb.first_block) {
21349                 return;
21350         }
21351         
21352         first = state->first;
21353         ins = first;
21354         do {
21355                 for(set = ins->use; set; set = set->next) {
21356                         struct triple **slot;
21357                         struct triple *use_point;
21358                         int i, zrhs;
21359                         use_point = 0;
21360                         zrhs = set->member->rhs;
21361                         slot = &RHS(set->member, 0);
21362                         /* See if the use is on the right hand side */
21363                         for(i = 0; i < zrhs; i++) {
21364                                 if (slot[i] == ins) {
21365                                         break;
21366                                 }
21367                         }
21368                         if (i < zrhs) {
21369                                 use_point = set->member;
21370                                 if (set->member->op == OP_PHI) {
21371                                         struct block_set *bset;
21372                                         int edge;
21373                                         bset = set->member->u.block->use;
21374                                         for(edge = 0; bset && (edge < i); edge++) {
21375                                                 bset = bset->next;
21376                                         }
21377                                         if (!bset) {
21378                                                 internal_error(state, set->member, 
21379                                                         "no edge for phi rhs %d", i);
21380                                         }
21381                                         use_point = bset->member->last;
21382                                 }
21383                         }
21384                         if (use_point &&
21385                                 !tdominates(state, ins, use_point)) {
21386                                 if (is_const(ins)) {
21387                                         internal_warning(state, ins, 
21388                                         "non dominated rhs use point %p?", use_point);
21389                                 }
21390                                 else {
21391                                         internal_error(state, ins, 
21392                                                 "non dominated rhs use point %p?", use_point);
21393                                 }
21394                         }
21395                 }
21396                 ins = ins->next;
21397         } while(ins != first);
21398 }
21399
21400 static void verify_rhs(struct compile_state *state)
21401 {
21402         struct triple *first, *ins;
21403         first = state->first;
21404         ins = first;
21405         do {
21406                 struct triple **slot;
21407                 int zrhs, i;
21408                 zrhs = ins->rhs;
21409                 slot = &RHS(ins, 0);
21410                 for(i = 0; i < zrhs; i++) {
21411                         if (slot[i] == 0) {
21412                                 internal_error(state, ins,
21413                                         "missing rhs %d on %s",
21414                                         i, tops(ins->op));
21415                         }
21416                         if ((ins->op != OP_PHI) && (slot[i] == ins)) {
21417                                 internal_error(state, ins,
21418                                         "ins == rhs[%d] on %s",
21419                                         i, tops(ins->op));
21420                         }
21421                 }
21422                 ins = ins->next;
21423         } while(ins != first);
21424 }
21425
21426 static void verify_piece(struct compile_state *state)
21427 {
21428         struct triple *first, *ins;
21429         first = state->first;
21430         ins = first;
21431         do {
21432                 struct triple *ptr;
21433                 int lhs, i;
21434                 lhs = ins->lhs;
21435                 for(ptr = ins->next, i = 0; i < lhs; i++, ptr = ptr->next) {
21436                         if (ptr != LHS(ins, i)) {
21437                                 internal_error(state, ins, "malformed lhs on %s",
21438                                         tops(ins->op));
21439                         }
21440                         if (ptr->op != OP_PIECE) {
21441                                 internal_error(state, ins, "bad lhs op %s at %d on %s",
21442                                         tops(ptr->op), i, tops(ins->op));
21443                         }
21444                         if (ptr->u.cval != i) {
21445                                 internal_error(state, ins, "bad u.cval of %d %d expected",
21446                                         ptr->u.cval, i);
21447                         }
21448                 }
21449                 ins = ins->next;
21450         } while(ins != first);
21451 }
21452
21453 static void verify_ins_colors(struct compile_state *state)
21454 {
21455         struct triple *first, *ins;
21456         
21457         first = state->first;
21458         ins = first;
21459         do {
21460                 ins = ins->next;
21461         } while(ins != first);
21462 }
21463
21464 static void verify_unknown(struct compile_state *state)
21465 {
21466         struct triple *first, *ins;
21467         if (    (unknown_triple.next != &unknown_triple) ||
21468                 (unknown_triple.prev != &unknown_triple) ||
21469 #if 0
21470                 (unknown_triple.use != 0) ||
21471 #endif
21472                 (unknown_triple.op != OP_UNKNOWNVAL) ||
21473                 (unknown_triple.lhs != 0) ||
21474                 (unknown_triple.rhs != 0) ||
21475                 (unknown_triple.misc != 0) ||
21476                 (unknown_triple.targ != 0) ||
21477                 (unknown_triple.template_id != 0) ||
21478                 (unknown_triple.id != -1) ||
21479                 (unknown_triple.type != &unknown_type) ||
21480                 (unknown_triple.occurance != &dummy_occurance) ||
21481                 (unknown_triple.param[0] != 0) ||
21482                 (unknown_triple.param[1] != 0)) {
21483                 internal_error(state, &unknown_triple, "unknown_triple corrupted!");
21484         }
21485         if (    (dummy_occurance.count != 2) ||
21486                 (strcmp(dummy_occurance.filename, __FILE__) != 0) ||
21487                 (strcmp(dummy_occurance.function, "") != 0) ||
21488                 (dummy_occurance.col != 0) ||
21489                 (dummy_occurance.parent != 0)) {
21490                 internal_error(state, &unknown_triple, "dummy_occurance corrupted!");
21491         }
21492         if (    (unknown_type.type != TYPE_UNKNOWN)) {
21493                 internal_error(state, &unknown_triple, "unknown_type corrupted!");
21494         }
21495         first = state->first;
21496         ins = first;
21497         do {
21498                 int params, i;
21499                 if (ins == &unknown_triple) {
21500                         internal_error(state, ins, "unknown triple in list");
21501                 }
21502                 params = TRIPLE_SIZE(ins);
21503                 for(i = 0; i < params; i++) {
21504                         if (ins->param[i] == &unknown_triple) {
21505                                 internal_error(state, ins, "unknown triple used!");
21506                         }
21507                 }
21508                 ins = ins->next;
21509         } while(ins != first);
21510 }
21511
21512 static void verify_types(struct compile_state *state)
21513 {
21514         struct triple *first, *ins;
21515         first = state->first;
21516         ins = first;
21517         do {
21518                 struct type *invalid;
21519                 invalid = invalid_type(state, ins->type);
21520                 if (invalid) {
21521                         FILE *fp = state->errout;
21522                         fprintf(fp, "type: ");
21523                         name_of(fp, ins->type);
21524                         fprintf(fp, "\n");
21525                         fprintf(fp, "invalid type: ");
21526                         name_of(fp, invalid);
21527                         fprintf(fp, "\n");
21528                         internal_error(state, ins, "invalid ins type");
21529                 }
21530         } while(ins != first);
21531 }
21532
21533 static void verify_copy(struct compile_state *state)
21534 {
21535         struct triple *first, *ins, *next;
21536         first = state->first;
21537         next = ins = first;
21538         do {
21539                 ins = next;
21540                 next = ins->next;
21541                 if (ins->op != OP_COPY) {
21542                         continue;
21543                 }
21544                 if (!equiv_types(ins->type, RHS(ins, 0)->type)) {
21545                         FILE *fp = state->errout;
21546                         fprintf(fp, "src type: ");
21547                         name_of(fp, RHS(ins, 0)->type);
21548                         fprintf(fp, "\n");
21549                         fprintf(fp, "dst type: ");
21550                         name_of(fp, ins->type);
21551                         fprintf(fp, "\n");
21552                         internal_error(state, ins, "type mismatch in copy");
21553                 }
21554         } while(next != first);
21555 }
21556
21557 static void verify_consistency(struct compile_state *state)
21558 {
21559         verify_unknown(state);
21560         verify_uses(state);
21561         verify_blocks_present(state);
21562         verify_blocks(state);
21563         verify_domination(state);
21564         verify_rhs(state);
21565         verify_piece(state);
21566         verify_ins_colors(state);
21567         verify_types(state);
21568         verify_copy(state);
21569         if (state->compiler->debug & DEBUG_VERIFICATION) {
21570                 fprintf(state->dbgout, "consistency verified\n");
21571         }
21572 }
21573 #else 
21574 static void verify_consistency(struct compile_state *state) {}
21575 #endif /* DEBUG_CONSISTENCY */
21576
21577 static void optimize(struct compile_state *state)
21578 {
21579         /* Join all of the functions into one giant function */
21580         join_functions(state);
21581
21582         /* Dump what the instruction graph intially looks like */
21583         print_triples(state);
21584
21585         /* Replace structures with simpler data types */
21586         decompose_compound_types(state);
21587         print_triples(state);
21588
21589         verify_consistency(state);
21590         /* Analyze the intermediate code */
21591         state->bb.first = state->first;
21592         analyze_basic_blocks(state, &state->bb);
21593
21594         /* Transform the code to ssa form. */
21595         /*
21596          * The transformation to ssa form puts a phi function
21597          * on each of edge of a dominance frontier where that
21598          * phi function might be needed.  At -O2 if we don't
21599          * eleminate the excess phi functions we can get an
21600          * exponential code size growth.  So I kill the extra
21601          * phi functions early and I kill them often.
21602          */
21603         transform_to_ssa_form(state);
21604         verify_consistency(state);
21605
21606         /* Remove dead code */
21607         eliminate_inefectual_code(state);
21608         verify_consistency(state);
21609
21610         /* Do strength reduction and simple constant optimizations */
21611         simplify_all(state);
21612         verify_consistency(state);
21613         /* Propogate constants throughout the code */
21614         scc_transform(state);
21615         verify_consistency(state);
21616 #if DEBUG_ROMCC_WARNINGS
21617 #warning "WISHLIST implement single use constants (least possible register pressure)"
21618 #warning "WISHLIST implement induction variable elimination"
21619 #endif
21620         /* Select architecture instructions and an initial partial
21621          * coloring based on architecture constraints.
21622          */
21623         transform_to_arch_instructions(state);
21624         verify_consistency(state);
21625
21626         /* Remove dead code */
21627         eliminate_inefectual_code(state);
21628         verify_consistency(state);
21629
21630         /* Color all of the variables to see if they will fit in registers */
21631         insert_copies_to_phi(state);
21632         verify_consistency(state);
21633
21634         insert_mandatory_copies(state);
21635         verify_consistency(state);
21636
21637         allocate_registers(state);
21638         verify_consistency(state);
21639
21640         /* Remove the optimization information.
21641          * This is more to check for memory consistency than to free memory.
21642          */
21643         free_basic_blocks(state, &state->bb);
21644 }
21645
21646 static void print_op_asm(struct compile_state *state,
21647         struct triple *ins, FILE *fp)
21648 {
21649         struct asm_info *info;
21650         const char *ptr;
21651         unsigned lhs, rhs, i;
21652         info = ins->u.ainfo;
21653         lhs = ins->lhs;
21654         rhs = ins->rhs;
21655         /* Don't count the clobbers in lhs */
21656         for(i = 0; i < lhs; i++) {
21657                 if (LHS(ins, i)->type == &void_type) {
21658                         break;
21659                 }
21660         }
21661         lhs = i;
21662         fprintf(fp, "#ASM\n");
21663         fputc('\t', fp);
21664         for(ptr = info->str; *ptr; ptr++) {
21665                 char *next;
21666                 unsigned long param;
21667                 struct triple *piece;
21668                 if (*ptr != '%') {
21669                         fputc(*ptr, fp);
21670                         continue;
21671                 }
21672                 ptr++;
21673                 if (*ptr == '%') {
21674                         fputc('%', fp);
21675                         continue;
21676                 }
21677                 param = strtoul(ptr, &next, 10);
21678                 if (ptr == next) {
21679                         error(state, ins, "Invalid asm template");
21680                 }
21681                 if (param >= (lhs + rhs)) {
21682                         error(state, ins, "Invalid param %%%u in asm template",
21683                                 param);
21684                 }
21685                 piece = (param < lhs)? LHS(ins, param) : RHS(ins, param - lhs);
21686                 fprintf(fp, "%s", 
21687                         arch_reg_str(ID_REG(piece->id)));
21688                 ptr = next -1;
21689         }
21690         fprintf(fp, "\n#NOT ASM\n");
21691 }
21692
21693
21694 /* Only use the low x86 byte registers.  This allows me
21695  * allocate the entire register when a byte register is used.
21696  */
21697 #define X86_4_8BIT_GPRS 1
21698
21699 /* x86 featrues */
21700 #define X86_MMX_REGS  (1<<0)
21701 #define X86_XMM_REGS  (1<<1)
21702 #define X86_NOOP_COPY (1<<2)
21703
21704 /* The x86 register classes */
21705 #define REGC_FLAGS       0
21706 #define REGC_GPR8        1
21707 #define REGC_GPR16       2
21708 #define REGC_GPR32       3
21709 #define REGC_DIVIDEND64  4
21710 #define REGC_DIVIDEND32  5
21711 #define REGC_MMX         6
21712 #define REGC_XMM         7
21713 #define REGC_GPR32_8     8
21714 #define REGC_GPR16_8     9
21715 #define REGC_GPR8_LO    10
21716 #define REGC_IMM32      11
21717 #define REGC_IMM16      12
21718 #define REGC_IMM8       13
21719 #define LAST_REGC  REGC_IMM8
21720 #if LAST_REGC >= MAX_REGC
21721 #error "MAX_REGC is to low"
21722 #endif
21723
21724 /* Register class masks */
21725 #define REGCM_FLAGS      (1 << REGC_FLAGS)
21726 #define REGCM_GPR8       (1 << REGC_GPR8)
21727 #define REGCM_GPR16      (1 << REGC_GPR16)
21728 #define REGCM_GPR32      (1 << REGC_GPR32)
21729 #define REGCM_DIVIDEND64 (1 << REGC_DIVIDEND64)
21730 #define REGCM_DIVIDEND32 (1 << REGC_DIVIDEND32)
21731 #define REGCM_MMX        (1 << REGC_MMX)
21732 #define REGCM_XMM        (1 << REGC_XMM)
21733 #define REGCM_GPR32_8    (1 << REGC_GPR32_8)
21734 #define REGCM_GPR16_8    (1 << REGC_GPR16_8)
21735 #define REGCM_GPR8_LO    (1 << REGC_GPR8_LO)
21736 #define REGCM_IMM32      (1 << REGC_IMM32)
21737 #define REGCM_IMM16      (1 << REGC_IMM16)
21738 #define REGCM_IMM8       (1 << REGC_IMM8)
21739 #define REGCM_ALL        ((1 << (LAST_REGC + 1)) - 1)
21740 #define REGCM_IMMALL    (REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)
21741
21742 /* The x86 registers */
21743 #define REG_EFLAGS  2
21744 #define REGC_FLAGS_FIRST REG_EFLAGS
21745 #define REGC_FLAGS_LAST  REG_EFLAGS
21746 #define REG_AL      3
21747 #define REG_BL      4
21748 #define REG_CL      5
21749 #define REG_DL      6
21750 #define REG_AH      7
21751 #define REG_BH      8
21752 #define REG_CH      9
21753 #define REG_DH      10
21754 #define REGC_GPR8_LO_FIRST REG_AL
21755 #define REGC_GPR8_LO_LAST  REG_DL
21756 #define REGC_GPR8_FIRST  REG_AL
21757 #define REGC_GPR8_LAST   REG_DH
21758 #define REG_AX     11
21759 #define REG_BX     12
21760 #define REG_CX     13
21761 #define REG_DX     14
21762 #define REG_SI     15
21763 #define REG_DI     16
21764 #define REG_BP     17
21765 #define REG_SP     18
21766 #define REGC_GPR16_FIRST REG_AX
21767 #define REGC_GPR16_LAST  REG_SP
21768 #define REG_EAX    19
21769 #define REG_EBX    20
21770 #define REG_ECX    21
21771 #define REG_EDX    22
21772 #define REG_ESI    23
21773 #define REG_EDI    24
21774 #define REG_EBP    25
21775 #define REG_ESP    26
21776 #define REGC_GPR32_FIRST REG_EAX
21777 #define REGC_GPR32_LAST  REG_ESP
21778 #define REG_EDXEAX 27
21779 #define REGC_DIVIDEND64_FIRST REG_EDXEAX
21780 #define REGC_DIVIDEND64_LAST  REG_EDXEAX
21781 #define REG_DXAX   28
21782 #define REGC_DIVIDEND32_FIRST REG_DXAX
21783 #define REGC_DIVIDEND32_LAST  REG_DXAX
21784 #define REG_MMX0   29
21785 #define REG_MMX1   30
21786 #define REG_MMX2   31
21787 #define REG_MMX3   32
21788 #define REG_MMX4   33
21789 #define REG_MMX5   34
21790 #define REG_MMX6   35
21791 #define REG_MMX7   36
21792 #define REGC_MMX_FIRST REG_MMX0
21793 #define REGC_MMX_LAST  REG_MMX7
21794 #define REG_XMM0   37
21795 #define REG_XMM1   38
21796 #define REG_XMM2   39
21797 #define REG_XMM3   40
21798 #define REG_XMM4   41
21799 #define REG_XMM5   42
21800 #define REG_XMM6   43
21801 #define REG_XMM7   44
21802 #define REGC_XMM_FIRST REG_XMM0
21803 #define REGC_XMM_LAST  REG_XMM7
21804
21805 #if DEBUG_ROMCC_WARNINGS
21806 #warning "WISHLIST figure out how to use pinsrw and pextrw to better use extended regs"
21807 #endif
21808
21809 #define LAST_REG   REG_XMM7
21810
21811 #define REGC_GPR32_8_FIRST REG_EAX
21812 #define REGC_GPR32_8_LAST  REG_EDX
21813 #define REGC_GPR16_8_FIRST REG_AX
21814 #define REGC_GPR16_8_LAST  REG_DX
21815
21816 #define REGC_IMM8_FIRST    -1
21817 #define REGC_IMM8_LAST     -1
21818 #define REGC_IMM16_FIRST   -2
21819 #define REGC_IMM16_LAST    -1
21820 #define REGC_IMM32_FIRST   -4
21821 #define REGC_IMM32_LAST    -1
21822
21823 #if LAST_REG >= MAX_REGISTERS
21824 #error "MAX_REGISTERS to low"
21825 #endif
21826
21827
21828 static unsigned regc_size[LAST_REGC +1] = {
21829         [REGC_FLAGS]      = REGC_FLAGS_LAST      - REGC_FLAGS_FIRST + 1,
21830         [REGC_GPR8]       = REGC_GPR8_LAST       - REGC_GPR8_FIRST + 1,
21831         [REGC_GPR16]      = REGC_GPR16_LAST      - REGC_GPR16_FIRST + 1,
21832         [REGC_GPR32]      = REGC_GPR32_LAST      - REGC_GPR32_FIRST + 1,
21833         [REGC_DIVIDEND64] = REGC_DIVIDEND64_LAST - REGC_DIVIDEND64_FIRST + 1,
21834         [REGC_DIVIDEND32] = REGC_DIVIDEND32_LAST - REGC_DIVIDEND32_FIRST + 1,
21835         [REGC_MMX]        = REGC_MMX_LAST        - REGC_MMX_FIRST + 1,
21836         [REGC_XMM]        = REGC_XMM_LAST        - REGC_XMM_FIRST + 1,
21837         [REGC_GPR32_8]    = REGC_GPR32_8_LAST    - REGC_GPR32_8_FIRST + 1,
21838         [REGC_GPR16_8]    = REGC_GPR16_8_LAST    - REGC_GPR16_8_FIRST + 1,
21839         [REGC_GPR8_LO]    = REGC_GPR8_LO_LAST    - REGC_GPR8_LO_FIRST + 1,
21840         [REGC_IMM32]      = 0,
21841         [REGC_IMM16]      = 0,
21842         [REGC_IMM8]       = 0,
21843 };
21844
21845 static const struct {
21846         int first, last;
21847 } regcm_bound[LAST_REGC + 1] = {
21848         [REGC_FLAGS]      = { REGC_FLAGS_FIRST,      REGC_FLAGS_LAST },
21849         [REGC_GPR8]       = { REGC_GPR8_FIRST,       REGC_GPR8_LAST },
21850         [REGC_GPR16]      = { REGC_GPR16_FIRST,      REGC_GPR16_LAST },
21851         [REGC_GPR32]      = { REGC_GPR32_FIRST,      REGC_GPR32_LAST },
21852         [REGC_DIVIDEND64] = { REGC_DIVIDEND64_FIRST, REGC_DIVIDEND64_LAST },
21853         [REGC_DIVIDEND32] = { REGC_DIVIDEND32_FIRST, REGC_DIVIDEND32_LAST },
21854         [REGC_MMX]        = { REGC_MMX_FIRST,        REGC_MMX_LAST },
21855         [REGC_XMM]        = { REGC_XMM_FIRST,        REGC_XMM_LAST },
21856         [REGC_GPR32_8]    = { REGC_GPR32_8_FIRST,    REGC_GPR32_8_LAST },
21857         [REGC_GPR16_8]    = { REGC_GPR16_8_FIRST,    REGC_GPR16_8_LAST },
21858         [REGC_GPR8_LO]    = { REGC_GPR8_LO_FIRST,    REGC_GPR8_LO_LAST },
21859         [REGC_IMM32]      = { REGC_IMM32_FIRST,      REGC_IMM32_LAST },
21860         [REGC_IMM16]      = { REGC_IMM16_FIRST,      REGC_IMM16_LAST },
21861         [REGC_IMM8]       = { REGC_IMM8_FIRST,       REGC_IMM8_LAST },
21862 };
21863
21864 #if ARCH_INPUT_REGS != 4
21865 #error ARCH_INPUT_REGS size mismatch
21866 #endif
21867 static const struct reg_info arch_input_regs[ARCH_INPUT_REGS] = {
21868         { .reg = REG_EAX, .regcm = REGCM_GPR32 },
21869         { .reg = REG_EBX, .regcm = REGCM_GPR32 },
21870         { .reg = REG_ECX, .regcm = REGCM_GPR32 },
21871         { .reg = REG_EDX, .regcm = REGCM_GPR32 },
21872 };
21873
21874 #if ARCH_OUTPUT_REGS != 4
21875 #error ARCH_INPUT_REGS size mismatch
21876 #endif
21877 static const struct reg_info arch_output_regs[ARCH_OUTPUT_REGS] = {
21878         { .reg = REG_EAX, .regcm = REGCM_GPR32 },
21879         { .reg = REG_EBX, .regcm = REGCM_GPR32 },
21880         { .reg = REG_ECX, .regcm = REGCM_GPR32 },
21881         { .reg = REG_EDX, .regcm = REGCM_GPR32 },
21882 };
21883
21884 static void init_arch_state(struct arch_state *arch)
21885 {
21886         memset(arch, 0, sizeof(*arch));
21887         arch->features = 0;
21888 }
21889
21890 static const struct compiler_flag arch_flags[] = {
21891         { "mmx",       X86_MMX_REGS },
21892         { "sse",       X86_XMM_REGS },
21893         { "noop-copy", X86_NOOP_COPY },
21894         { 0,     0 },
21895 };
21896 static const struct compiler_flag arch_cpus[] = {
21897         { "i386", 0 },
21898         { "p2",   X86_MMX_REGS },
21899         { "p3",   X86_MMX_REGS | X86_XMM_REGS },
21900         { "p4",   X86_MMX_REGS | X86_XMM_REGS },
21901         { "k7",   X86_MMX_REGS },
21902         { "k8",   X86_MMX_REGS | X86_XMM_REGS },
21903         { "c3",   X86_MMX_REGS },
21904         { "c3-2", X86_MMX_REGS | X86_XMM_REGS }, /* Nehemiah */
21905         {  0,     0 }
21906 };
21907 static int arch_encode_flag(struct arch_state *arch, const char *flag)
21908 {
21909         int result;
21910         int act;
21911
21912         act = 1;
21913         result = -1;
21914         if (strncmp(flag, "no-", 3) == 0) {
21915                 flag += 3;
21916                 act = 0;
21917         }
21918         if (act && strncmp(flag, "cpu=", 4) == 0) {
21919                 flag += 4;
21920                 result = set_flag(arch_cpus, &arch->features, 1, flag);
21921         }
21922         else {
21923                 result = set_flag(arch_flags, &arch->features, act, flag);
21924         }
21925         return result;
21926 }
21927
21928 static void arch_usage(FILE *fp)
21929 {
21930         flag_usage(fp, arch_flags, "-m", "-mno-");
21931         flag_usage(fp, arch_cpus, "-mcpu=", 0);
21932 }
21933
21934 static unsigned arch_regc_size(struct compile_state *state, int class)
21935 {
21936         if ((class < 0) || (class > LAST_REGC)) {
21937                 return 0;
21938         }
21939         return regc_size[class];
21940 }
21941
21942 static int arch_regcm_intersect(unsigned regcm1, unsigned regcm2)
21943 {
21944         /* See if two register classes may have overlapping registers */
21945         unsigned gpr_mask = REGCM_GPR8 | REGCM_GPR8_LO | REGCM_GPR16_8 | REGCM_GPR16 |
21946                 REGCM_GPR32_8 | REGCM_GPR32 | 
21947                 REGCM_DIVIDEND32 | REGCM_DIVIDEND64;
21948
21949         /* Special case for the immediates */
21950         if ((regcm1 & (REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) &&
21951                 ((regcm1 & ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) == 0) &&
21952                 (regcm2 & (REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) &&
21953                 ((regcm2 & ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) == 0)) { 
21954                 return 0;
21955         }
21956         return (regcm1 & regcm2) ||
21957                 ((regcm1 & gpr_mask) && (regcm2 & gpr_mask));
21958 }
21959
21960 static void arch_reg_equivs(
21961         struct compile_state *state, unsigned *equiv, int reg)
21962 {
21963         if ((reg < 0) || (reg > LAST_REG)) {
21964                 internal_error(state, 0, "invalid register");
21965         }
21966         *equiv++ = reg;
21967         switch(reg) {
21968         case REG_AL:
21969 #if X86_4_8BIT_GPRS
21970                 *equiv++ = REG_AH;
21971 #endif
21972                 *equiv++ = REG_AX;
21973                 *equiv++ = REG_EAX;
21974                 *equiv++ = REG_DXAX;
21975                 *equiv++ = REG_EDXEAX;
21976                 break;
21977         case REG_AH:
21978 #if X86_4_8BIT_GPRS
21979                 *equiv++ = REG_AL;
21980 #endif
21981                 *equiv++ = REG_AX;
21982                 *equiv++ = REG_EAX;
21983                 *equiv++ = REG_DXAX;
21984                 *equiv++ = REG_EDXEAX;
21985                 break;
21986         case REG_BL:  
21987 #if X86_4_8BIT_GPRS
21988                 *equiv++ = REG_BH;
21989 #endif
21990                 *equiv++ = REG_BX;
21991                 *equiv++ = REG_EBX;
21992                 break;
21993
21994         case REG_BH:
21995 #if X86_4_8BIT_GPRS
21996                 *equiv++ = REG_BL;
21997 #endif
21998                 *equiv++ = REG_BX;
21999                 *equiv++ = REG_EBX;
22000                 break;
22001         case REG_CL:
22002 #if X86_4_8BIT_GPRS
22003                 *equiv++ = REG_CH;
22004 #endif
22005                 *equiv++ = REG_CX;
22006                 *equiv++ = REG_ECX;
22007                 break;
22008
22009         case REG_CH:
22010 #if X86_4_8BIT_GPRS
22011                 *equiv++ = REG_CL;
22012 #endif
22013                 *equiv++ = REG_CX;
22014                 *equiv++ = REG_ECX;
22015                 break;
22016         case REG_DL:
22017 #if X86_4_8BIT_GPRS
22018                 *equiv++ = REG_DH;
22019 #endif
22020                 *equiv++ = REG_DX;
22021                 *equiv++ = REG_EDX;
22022                 *equiv++ = REG_DXAX;
22023                 *equiv++ = REG_EDXEAX;
22024                 break;
22025         case REG_DH:
22026 #if X86_4_8BIT_GPRS
22027                 *equiv++ = REG_DL;
22028 #endif
22029                 *equiv++ = REG_DX;
22030                 *equiv++ = REG_EDX;
22031                 *equiv++ = REG_DXAX;
22032                 *equiv++ = REG_EDXEAX;
22033                 break;
22034         case REG_AX:
22035                 *equiv++ = REG_AL;
22036                 *equiv++ = REG_AH;
22037                 *equiv++ = REG_EAX;
22038                 *equiv++ = REG_DXAX;
22039                 *equiv++ = REG_EDXEAX;
22040                 break;
22041         case REG_BX:
22042                 *equiv++ = REG_BL;
22043                 *equiv++ = REG_BH;
22044                 *equiv++ = REG_EBX;
22045                 break;
22046         case REG_CX:  
22047                 *equiv++ = REG_CL;
22048                 *equiv++ = REG_CH;
22049                 *equiv++ = REG_ECX;
22050                 break;
22051         case REG_DX:  
22052                 *equiv++ = REG_DL;
22053                 *equiv++ = REG_DH;
22054                 *equiv++ = REG_EDX;
22055                 *equiv++ = REG_DXAX;
22056                 *equiv++ = REG_EDXEAX;
22057                 break;
22058         case REG_SI:  
22059                 *equiv++ = REG_ESI;
22060                 break;
22061         case REG_DI:
22062                 *equiv++ = REG_EDI;
22063                 break;
22064         case REG_BP:
22065                 *equiv++ = REG_EBP;
22066                 break;
22067         case REG_SP:
22068                 *equiv++ = REG_ESP;
22069                 break;
22070         case REG_EAX:
22071                 *equiv++ = REG_AL;
22072                 *equiv++ = REG_AH;
22073                 *equiv++ = REG_AX;
22074                 *equiv++ = REG_DXAX;
22075                 *equiv++ = REG_EDXEAX;
22076                 break;
22077         case REG_EBX:
22078                 *equiv++ = REG_BL;
22079                 *equiv++ = REG_BH;
22080                 *equiv++ = REG_BX;
22081                 break;
22082         case REG_ECX:
22083                 *equiv++ = REG_CL;
22084                 *equiv++ = REG_CH;
22085                 *equiv++ = REG_CX;
22086                 break;
22087         case REG_EDX:
22088                 *equiv++ = REG_DL;
22089                 *equiv++ = REG_DH;
22090                 *equiv++ = REG_DX;
22091                 *equiv++ = REG_DXAX;
22092                 *equiv++ = REG_EDXEAX;
22093                 break;
22094         case REG_ESI: 
22095                 *equiv++ = REG_SI;
22096                 break;
22097         case REG_EDI: 
22098                 *equiv++ = REG_DI;
22099                 break;
22100         case REG_EBP: 
22101                 *equiv++ = REG_BP;
22102                 break;
22103         case REG_ESP: 
22104                 *equiv++ = REG_SP;
22105                 break;
22106         case REG_DXAX: 
22107                 *equiv++ = REG_AL;
22108                 *equiv++ = REG_AH;
22109                 *equiv++ = REG_DL;
22110                 *equiv++ = REG_DH;
22111                 *equiv++ = REG_AX;
22112                 *equiv++ = REG_DX;
22113                 *equiv++ = REG_EAX;
22114                 *equiv++ = REG_EDX;
22115                 *equiv++ = REG_EDXEAX;
22116                 break;
22117         case REG_EDXEAX: 
22118                 *equiv++ = REG_AL;
22119                 *equiv++ = REG_AH;
22120                 *equiv++ = REG_DL;
22121                 *equiv++ = REG_DH;
22122                 *equiv++ = REG_AX;
22123                 *equiv++ = REG_DX;
22124                 *equiv++ = REG_EAX;
22125                 *equiv++ = REG_EDX;
22126                 *equiv++ = REG_DXAX;
22127                 break;
22128         }
22129         *equiv++ = REG_UNSET; 
22130 }
22131
22132 static unsigned arch_avail_mask(struct compile_state *state)
22133 {
22134         unsigned avail_mask;
22135         /* REGCM_GPR8 is not available */
22136         avail_mask = REGCM_GPR8_LO | REGCM_GPR16_8 | REGCM_GPR16 | 
22137                 REGCM_GPR32 | REGCM_GPR32_8 | 
22138                 REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
22139                 REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8 | REGCM_FLAGS;
22140         if (state->arch->features & X86_MMX_REGS) {
22141                 avail_mask |= REGCM_MMX;
22142         }
22143         if (state->arch->features & X86_XMM_REGS) {
22144                 avail_mask |= REGCM_XMM;
22145         }
22146         return avail_mask;
22147 }
22148
22149 static unsigned arch_regcm_normalize(struct compile_state *state, unsigned regcm)
22150 {
22151         unsigned mask, result;
22152         int class, class2;
22153         result = regcm;
22154
22155         for(class = 0, mask = 1; mask; mask <<= 1, class++) {
22156                 if ((result & mask) == 0) {
22157                         continue;
22158                 }
22159                 if (class > LAST_REGC) {
22160                         result &= ~mask;
22161                 }
22162                 for(class2 = 0; class2 <= LAST_REGC; class2++) {
22163                         if ((regcm_bound[class2].first >= regcm_bound[class].first) &&
22164                                 (regcm_bound[class2].last <= regcm_bound[class].last)) {
22165                                 result |= (1 << class2);
22166                         }
22167                 }
22168         }
22169         result &= arch_avail_mask(state);
22170         return result;
22171 }
22172
22173 static unsigned arch_regcm_reg_normalize(struct compile_state *state, unsigned regcm)
22174 {
22175         /* Like arch_regcm_normalize except immediate register classes are excluded */
22176         regcm = arch_regcm_normalize(state, regcm);
22177         /* Remove the immediate register classes */
22178         regcm &= ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8);
22179         return regcm;
22180         
22181 }
22182
22183 static unsigned arch_reg_regcm(struct compile_state *state, int reg)
22184 {
22185         unsigned mask;
22186         int class;
22187         mask = 0;
22188         for(class = 0; class <= LAST_REGC; class++) {
22189                 if ((reg >= regcm_bound[class].first) &&
22190                         (reg <= regcm_bound[class].last)) {
22191                         mask |= (1 << class);
22192                 }
22193         }
22194         if (!mask) {
22195                 internal_error(state, 0, "reg %d not in any class", reg);
22196         }
22197         return mask;
22198 }
22199
22200 static struct reg_info arch_reg_constraint(
22201         struct compile_state *state, struct type *type, const char *constraint)
22202 {
22203         static const struct {
22204                 char class;
22205                 unsigned int mask;
22206                 unsigned int reg;
22207         } constraints[] = {
22208                 { 'r', REGCM_GPR32,   REG_UNSET },
22209                 { 'g', REGCM_GPR32,   REG_UNSET },
22210                 { 'p', REGCM_GPR32,   REG_UNSET },
22211                 { 'q', REGCM_GPR8_LO, REG_UNSET },
22212                 { 'Q', REGCM_GPR32_8, REG_UNSET },
22213                 { 'x', REGCM_XMM,     REG_UNSET },
22214                 { 'y', REGCM_MMX,     REG_UNSET },
22215                 { 'a', REGCM_GPR32,   REG_EAX },
22216                 { 'b', REGCM_GPR32,   REG_EBX },
22217                 { 'c', REGCM_GPR32,   REG_ECX },
22218                 { 'd', REGCM_GPR32,   REG_EDX },
22219                 { 'D', REGCM_GPR32,   REG_EDI },
22220                 { 'S', REGCM_GPR32,   REG_ESI },
22221                 { '\0', 0, REG_UNSET },
22222         };
22223         unsigned int regcm;
22224         unsigned int mask, reg;
22225         struct reg_info result;
22226         const char *ptr;
22227         regcm = arch_type_to_regcm(state, type);
22228         reg = REG_UNSET;
22229         mask = 0;
22230         for(ptr = constraint; *ptr; ptr++) {
22231                 int i;
22232                 if (*ptr ==  ' ') {
22233                         continue;
22234                 }
22235                 for(i = 0; constraints[i].class != '\0'; i++) {
22236                         if (constraints[i].class == *ptr) {
22237                                 break;
22238                         }
22239                 }
22240                 if (constraints[i].class == '\0') {
22241                         error(state, 0, "invalid register constraint ``%c''", *ptr);
22242                         break;
22243                 }
22244                 if ((constraints[i].mask & regcm) == 0) {
22245                         error(state, 0, "invalid register class %c specified",
22246                                 *ptr);
22247                 }
22248                 mask |= constraints[i].mask;
22249                 if (constraints[i].reg != REG_UNSET) {
22250                         if ((reg != REG_UNSET) && (reg != constraints[i].reg)) {
22251                                 error(state, 0, "Only one register may be specified");
22252                         }
22253                         reg = constraints[i].reg;
22254                 }
22255         }
22256         result.reg = reg;
22257         result.regcm = mask;
22258         return result;
22259 }
22260
22261 static struct reg_info arch_reg_clobber(
22262         struct compile_state *state, const char *clobber)
22263 {
22264         struct reg_info result;
22265         if (strcmp(clobber, "memory") == 0) {
22266                 result.reg = REG_UNSET;
22267                 result.regcm = 0;
22268         }
22269         else if (strcmp(clobber, "eax") == 0) {
22270                 result.reg = REG_EAX;
22271                 result.regcm = REGCM_GPR32;
22272         }
22273         else if (strcmp(clobber, "ebx") == 0) {
22274                 result.reg = REG_EBX;
22275                 result.regcm = REGCM_GPR32;
22276         }
22277         else if (strcmp(clobber, "ecx") == 0) {
22278                 result.reg = REG_ECX;
22279                 result.regcm = REGCM_GPR32;
22280         }
22281         else if (strcmp(clobber, "edx") == 0) {
22282                 result.reg = REG_EDX;
22283                 result.regcm = REGCM_GPR32;
22284         }
22285         else if (strcmp(clobber, "esi") == 0) {
22286                 result.reg = REG_ESI;
22287                 result.regcm = REGCM_GPR32;
22288         }
22289         else if (strcmp(clobber, "edi") == 0) {
22290                 result.reg = REG_EDI;
22291                 result.regcm = REGCM_GPR32;
22292         }
22293         else if (strcmp(clobber, "ebp") == 0) {
22294                 result.reg = REG_EBP;
22295                 result.regcm = REGCM_GPR32;
22296         }
22297         else if (strcmp(clobber, "esp") == 0) {
22298                 result.reg = REG_ESP;
22299                 result.regcm = REGCM_GPR32;
22300         }
22301         else if (strcmp(clobber, "cc") == 0) {
22302                 result.reg = REG_EFLAGS;
22303                 result.regcm = REGCM_FLAGS;
22304         }
22305         else if ((strncmp(clobber, "xmm", 3) == 0)  &&
22306                 octdigitp(clobber[3]) && (clobber[4] == '\0')) {
22307                 result.reg = REG_XMM0 + octdigval(clobber[3]);
22308                 result.regcm = REGCM_XMM;
22309         }
22310         else if ((strncmp(clobber, "mm", 2) == 0) &&
22311                 octdigitp(clobber[3]) && (clobber[4] == '\0')) {
22312                 result.reg = REG_MMX0 + octdigval(clobber[3]);
22313                 result.regcm = REGCM_MMX;
22314         }
22315         else {
22316                 error(state, 0, "unknown register name `%s' in asm",
22317                         clobber);
22318                 result.reg = REG_UNSET;
22319                 result.regcm = 0;
22320         }
22321         return result;
22322 }
22323
22324 static int do_select_reg(struct compile_state *state, 
22325         char *used, int reg, unsigned classes)
22326 {
22327         unsigned mask;
22328         if (used[reg]) {
22329                 return REG_UNSET;
22330         }
22331         mask = arch_reg_regcm(state, reg);
22332         return (classes & mask) ? reg : REG_UNSET;
22333 }
22334
22335 static int arch_select_free_register(
22336         struct compile_state *state, char *used, int classes)
22337 {
22338         /* Live ranges with the most neighbors are colored first.
22339          *
22340          * Generally it does not matter which colors are given
22341          * as the register allocator attempts to color live ranges
22342          * in an order where you are guaranteed not to run out of colors.
22343          *
22344          * Occasionally the register allocator cannot find an order
22345          * of register selection that will find a free color.  To
22346          * increase the odds the register allocator will work when
22347          * it guesses first give out registers from register classes
22348          * least likely to run out of registers.
22349          * 
22350          */
22351         int i, reg;
22352         reg = REG_UNSET;
22353         for(i = REGC_XMM_FIRST; (reg == REG_UNSET) && (i <= REGC_XMM_LAST); i++) {
22354                 reg = do_select_reg(state, used, i, classes);
22355         }
22356         for(i = REGC_MMX_FIRST; (reg == REG_UNSET) && (i <= REGC_MMX_LAST); i++) {
22357                 reg = do_select_reg(state, used, i, classes);
22358         }
22359         for(i = REGC_GPR32_LAST; (reg == REG_UNSET) && (i >= REGC_GPR32_FIRST); i--) {
22360                 reg = do_select_reg(state, used, i, classes);
22361         }
22362         for(i = REGC_GPR16_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR16_LAST); i++) {
22363                 reg = do_select_reg(state, used, i, classes);
22364         }
22365         for(i = REGC_GPR8_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR8_LAST); i++) {
22366                 reg = do_select_reg(state, used, i, classes);
22367         }
22368         for(i = REGC_GPR8_LO_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR8_LO_LAST); i++) {
22369                 reg = do_select_reg(state, used, i, classes);
22370         }
22371         for(i = REGC_DIVIDEND32_FIRST; (reg == REG_UNSET) && (i <= REGC_DIVIDEND32_LAST); i++) {
22372                 reg = do_select_reg(state, used, i, classes);
22373         }
22374         for(i = REGC_DIVIDEND64_FIRST; (reg == REG_UNSET) && (i <= REGC_DIVIDEND64_LAST); i++) {
22375                 reg = do_select_reg(state, used, i, classes);
22376         }
22377         for(i = REGC_FLAGS_FIRST; (reg == REG_UNSET) && (i <= REGC_FLAGS_LAST); i++) {
22378                 reg = do_select_reg(state, used, i, classes);
22379         }
22380         return reg;
22381 }
22382
22383
22384 static unsigned arch_type_to_regcm(struct compile_state *state, struct type *type) 
22385 {
22386
22387 #if DEBUG_ROMCC_WARNINGS
22388 #warning "FIXME force types smaller (if legal) before I get here"
22389 #endif
22390         unsigned mask;
22391         mask = 0;
22392         switch(type->type & TYPE_MASK) {
22393         case TYPE_ARRAY:
22394         case TYPE_VOID: 
22395                 mask = 0; 
22396                 break;
22397         case TYPE_CHAR:
22398         case TYPE_UCHAR:
22399                 mask = REGCM_GPR8 | REGCM_GPR8_LO |
22400                         REGCM_GPR16 | REGCM_GPR16_8 | 
22401                         REGCM_GPR32 | REGCM_GPR32_8 |
22402                         REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
22403                         REGCM_MMX | REGCM_XMM |
22404                         REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8;
22405                 break;
22406         case TYPE_SHORT:
22407         case TYPE_USHORT:
22408                 mask =  REGCM_GPR16 | REGCM_GPR16_8 |
22409                         REGCM_GPR32 | REGCM_GPR32_8 |
22410                         REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
22411                         REGCM_MMX | REGCM_XMM |
22412                         REGCM_IMM32 | REGCM_IMM16;
22413                 break;
22414         case TYPE_ENUM:
22415         case TYPE_INT:
22416         case TYPE_UINT:
22417         case TYPE_LONG:
22418         case TYPE_ULONG:
22419         case TYPE_POINTER:
22420                 mask =  REGCM_GPR32 | REGCM_GPR32_8 |
22421                         REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
22422                         REGCM_MMX | REGCM_XMM |
22423                         REGCM_IMM32;
22424                 break;
22425         case TYPE_JOIN:
22426         case TYPE_UNION:
22427                 mask = arch_type_to_regcm(state, type->left);
22428                 break;
22429         case TYPE_OVERLAP:
22430                 mask = arch_type_to_regcm(state, type->left) &
22431                         arch_type_to_regcm(state, type->right);
22432                 break;
22433         case TYPE_BITFIELD:
22434                 mask = arch_type_to_regcm(state, type->left);
22435                 break;
22436         default:
22437                 fprintf(state->errout, "type: ");
22438                 name_of(state->errout, type);
22439                 fprintf(state->errout, "\n");
22440                 internal_error(state, 0, "no register class for type");
22441                 break;
22442         }
22443         mask = arch_regcm_normalize(state, mask);
22444         return mask;
22445 }
22446
22447 static int is_imm32(struct triple *imm)
22448 {
22449         return ((imm->op == OP_INTCONST) && (imm->u.cval <= 0xffffffffUL)) ||
22450                 (imm->op == OP_ADDRCONST);
22451         
22452 }
22453 static int is_imm16(struct triple *imm)
22454 {
22455         return ((imm->op == OP_INTCONST) && (imm->u.cval <= 0xffff));
22456 }
22457 static int is_imm8(struct triple *imm)
22458 {
22459         return ((imm->op == OP_INTCONST) && (imm->u.cval <= 0xff));
22460 }
22461
22462 static int get_imm32(struct triple *ins, struct triple **expr)
22463 {
22464         struct triple *imm;
22465         imm = *expr;
22466         while(imm->op == OP_COPY) {
22467                 imm = RHS(imm, 0);
22468         }
22469         if (!is_imm32(imm)) {
22470                 return 0;
22471         }
22472         unuse_triple(*expr, ins);
22473         use_triple(imm, ins);
22474         *expr = imm;
22475         return 1;
22476 }
22477
22478 static int get_imm8(struct triple *ins, struct triple **expr)
22479 {
22480         struct triple *imm;
22481         imm = *expr;
22482         while(imm->op == OP_COPY) {
22483                 imm = RHS(imm, 0);
22484         }
22485         if (!is_imm8(imm)) {
22486                 return 0;
22487         }
22488         unuse_triple(*expr, ins);
22489         use_triple(imm, ins);
22490         *expr = imm;
22491         return 1;
22492 }
22493
22494 #define TEMPLATE_NOP           0
22495 #define TEMPLATE_INTCONST8     1
22496 #define TEMPLATE_INTCONST32    2
22497 #define TEMPLATE_UNKNOWNVAL    3
22498 #define TEMPLATE_COPY8_REG     5
22499 #define TEMPLATE_COPY16_REG    6
22500 #define TEMPLATE_COPY32_REG    7
22501 #define TEMPLATE_COPY_IMM8     8
22502 #define TEMPLATE_COPY_IMM16    9
22503 #define TEMPLATE_COPY_IMM32   10
22504 #define TEMPLATE_PHI8         11
22505 #define TEMPLATE_PHI16        12
22506 #define TEMPLATE_PHI32        13
22507 #define TEMPLATE_STORE8       14
22508 #define TEMPLATE_STORE16      15
22509 #define TEMPLATE_STORE32      16
22510 #define TEMPLATE_LOAD8        17
22511 #define TEMPLATE_LOAD16       18
22512 #define TEMPLATE_LOAD32       19
22513 #define TEMPLATE_BINARY8_REG  20
22514 #define TEMPLATE_BINARY16_REG 21
22515 #define TEMPLATE_BINARY32_REG 22
22516 #define TEMPLATE_BINARY8_IMM  23
22517 #define TEMPLATE_BINARY16_IMM 24
22518 #define TEMPLATE_BINARY32_IMM 25
22519 #define TEMPLATE_SL8_CL       26
22520 #define TEMPLATE_SL16_CL      27
22521 #define TEMPLATE_SL32_CL      28
22522 #define TEMPLATE_SL8_IMM      29
22523 #define TEMPLATE_SL16_IMM     30
22524 #define TEMPLATE_SL32_IMM     31
22525 #define TEMPLATE_UNARY8       32
22526 #define TEMPLATE_UNARY16      33
22527 #define TEMPLATE_UNARY32      34
22528 #define TEMPLATE_CMP8_REG     35
22529 #define TEMPLATE_CMP16_REG    36
22530 #define TEMPLATE_CMP32_REG    37
22531 #define TEMPLATE_CMP8_IMM     38
22532 #define TEMPLATE_CMP16_IMM    39
22533 #define TEMPLATE_CMP32_IMM    40
22534 #define TEMPLATE_TEST8        41
22535 #define TEMPLATE_TEST16       42
22536 #define TEMPLATE_TEST32       43
22537 #define TEMPLATE_SET          44
22538 #define TEMPLATE_JMP          45
22539 #define TEMPLATE_RET          46
22540 #define TEMPLATE_INB_DX       47
22541 #define TEMPLATE_INB_IMM      48
22542 #define TEMPLATE_INW_DX       49
22543 #define TEMPLATE_INW_IMM      50
22544 #define TEMPLATE_INL_DX       51
22545 #define TEMPLATE_INL_IMM      52
22546 #define TEMPLATE_OUTB_DX      53
22547 #define TEMPLATE_OUTB_IMM     54
22548 #define TEMPLATE_OUTW_DX      55
22549 #define TEMPLATE_OUTW_IMM     56
22550 #define TEMPLATE_OUTL_DX      57
22551 #define TEMPLATE_OUTL_IMM     58
22552 #define TEMPLATE_BSF          59
22553 #define TEMPLATE_RDMSR        60
22554 #define TEMPLATE_WRMSR        61
22555 #define TEMPLATE_UMUL8        62
22556 #define TEMPLATE_UMUL16       63
22557 #define TEMPLATE_UMUL32       64
22558 #define TEMPLATE_DIV8         65
22559 #define TEMPLATE_DIV16        66
22560 #define TEMPLATE_DIV32        67
22561 #define LAST_TEMPLATE       TEMPLATE_DIV32
22562 #if LAST_TEMPLATE >= MAX_TEMPLATES
22563 #error "MAX_TEMPLATES to low"
22564 #endif
22565
22566 #define COPY8_REGCM     (REGCM_DIVIDEND64 | REGCM_DIVIDEND32 | REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO | REGCM_MMX | REGCM_XMM)
22567 #define COPY16_REGCM    (REGCM_DIVIDEND64 | REGCM_DIVIDEND32 | REGCM_GPR32 | REGCM_GPR16 | REGCM_MMX | REGCM_XMM)  
22568 #define COPY32_REGCM    (REGCM_DIVIDEND64 | REGCM_DIVIDEND32 | REGCM_GPR32 | REGCM_MMX | REGCM_XMM)
22569
22570
22571 static struct ins_template templates[] = {
22572         [TEMPLATE_NOP]      = {
22573                 .lhs = { 
22574                         [ 0] = { REG_UNNEEDED, REGCM_IMMALL },
22575                         [ 1] = { REG_UNNEEDED, REGCM_IMMALL },
22576                         [ 2] = { REG_UNNEEDED, REGCM_IMMALL },
22577                         [ 3] = { REG_UNNEEDED, REGCM_IMMALL },
22578                         [ 4] = { REG_UNNEEDED, REGCM_IMMALL },
22579                         [ 5] = { REG_UNNEEDED, REGCM_IMMALL },
22580                         [ 6] = { REG_UNNEEDED, REGCM_IMMALL },
22581                         [ 7] = { REG_UNNEEDED, REGCM_IMMALL },
22582                         [ 8] = { REG_UNNEEDED, REGCM_IMMALL },
22583                         [ 9] = { REG_UNNEEDED, REGCM_IMMALL },
22584                         [10] = { REG_UNNEEDED, REGCM_IMMALL },
22585                         [11] = { REG_UNNEEDED, REGCM_IMMALL },
22586                         [12] = { REG_UNNEEDED, REGCM_IMMALL },
22587                         [13] = { REG_UNNEEDED, REGCM_IMMALL },
22588                         [14] = { REG_UNNEEDED, REGCM_IMMALL },
22589                         [15] = { REG_UNNEEDED, REGCM_IMMALL },
22590                         [16] = { REG_UNNEEDED, REGCM_IMMALL },
22591                         [17] = { REG_UNNEEDED, REGCM_IMMALL },
22592                         [18] = { REG_UNNEEDED, REGCM_IMMALL },
22593                         [19] = { REG_UNNEEDED, REGCM_IMMALL },
22594                         [20] = { REG_UNNEEDED, REGCM_IMMALL },
22595                         [21] = { REG_UNNEEDED, REGCM_IMMALL },
22596                         [22] = { REG_UNNEEDED, REGCM_IMMALL },
22597                         [23] = { REG_UNNEEDED, REGCM_IMMALL },
22598                         [24] = { REG_UNNEEDED, REGCM_IMMALL },
22599                         [25] = { REG_UNNEEDED, REGCM_IMMALL },
22600                         [26] = { REG_UNNEEDED, REGCM_IMMALL },
22601                         [27] = { REG_UNNEEDED, REGCM_IMMALL },
22602                         [28] = { REG_UNNEEDED, REGCM_IMMALL },
22603                         [29] = { REG_UNNEEDED, REGCM_IMMALL },
22604                         [30] = { REG_UNNEEDED, REGCM_IMMALL },
22605                         [31] = { REG_UNNEEDED, REGCM_IMMALL },
22606                         [32] = { REG_UNNEEDED, REGCM_IMMALL },
22607                         [33] = { REG_UNNEEDED, REGCM_IMMALL },
22608                         [34] = { REG_UNNEEDED, REGCM_IMMALL },
22609                         [35] = { REG_UNNEEDED, REGCM_IMMALL },
22610                         [36] = { REG_UNNEEDED, REGCM_IMMALL },
22611                         [37] = { REG_UNNEEDED, REGCM_IMMALL },
22612                         [38] = { REG_UNNEEDED, REGCM_IMMALL },
22613                         [39] = { REG_UNNEEDED, REGCM_IMMALL },
22614                         [40] = { REG_UNNEEDED, REGCM_IMMALL },
22615                         [41] = { REG_UNNEEDED, REGCM_IMMALL },
22616                         [42] = { REG_UNNEEDED, REGCM_IMMALL },
22617                         [43] = { REG_UNNEEDED, REGCM_IMMALL },
22618                         [44] = { REG_UNNEEDED, REGCM_IMMALL },
22619                         [45] = { REG_UNNEEDED, REGCM_IMMALL },
22620                         [46] = { REG_UNNEEDED, REGCM_IMMALL },
22621                         [47] = { REG_UNNEEDED, REGCM_IMMALL },
22622                         [48] = { REG_UNNEEDED, REGCM_IMMALL },
22623                         [49] = { REG_UNNEEDED, REGCM_IMMALL },
22624                         [50] = { REG_UNNEEDED, REGCM_IMMALL },
22625                         [51] = { REG_UNNEEDED, REGCM_IMMALL },
22626                         [52] = { REG_UNNEEDED, REGCM_IMMALL },
22627                         [53] = { REG_UNNEEDED, REGCM_IMMALL },
22628                         [54] = { REG_UNNEEDED, REGCM_IMMALL },
22629                         [55] = { REG_UNNEEDED, REGCM_IMMALL },
22630                         [56] = { REG_UNNEEDED, REGCM_IMMALL },
22631                         [57] = { REG_UNNEEDED, REGCM_IMMALL },
22632                         [58] = { REG_UNNEEDED, REGCM_IMMALL },
22633                         [59] = { REG_UNNEEDED, REGCM_IMMALL },
22634                         [60] = { REG_UNNEEDED, REGCM_IMMALL },
22635                         [61] = { REG_UNNEEDED, REGCM_IMMALL },
22636                         [62] = { REG_UNNEEDED, REGCM_IMMALL },
22637                         [63] = { REG_UNNEEDED, REGCM_IMMALL },
22638                 },
22639         },
22640         [TEMPLATE_INTCONST8] = { 
22641                 .lhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
22642         },
22643         [TEMPLATE_INTCONST32] = { 
22644                 .lhs = { [0] = { REG_UNNEEDED, REGCM_IMM32 } },
22645         },
22646         [TEMPLATE_UNKNOWNVAL] = {
22647                 .lhs = { [0] = { REG_UNSET, COPY32_REGCM } },
22648         },
22649         [TEMPLATE_COPY8_REG] = {
22650                 .lhs = { [0] = { REG_UNSET, COPY8_REGCM } },
22651                 .rhs = { [0] = { REG_UNSET, COPY8_REGCM }  },
22652         },
22653         [TEMPLATE_COPY16_REG] = {
22654                 .lhs = { [0] = { REG_UNSET, COPY16_REGCM } },
22655                 .rhs = { [0] = { REG_UNSET, COPY16_REGCM }  },
22656         },
22657         [TEMPLATE_COPY32_REG] = {
22658                 .lhs = { [0] = { REG_UNSET, COPY32_REGCM } },
22659                 .rhs = { [0] = { REG_UNSET, COPY32_REGCM }  },
22660         },
22661         [TEMPLATE_COPY_IMM8] = {
22662                 .lhs = { [0] = { REG_UNSET, COPY8_REGCM } },
22663                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
22664         },
22665         [TEMPLATE_COPY_IMM16] = {
22666                 .lhs = { [0] = { REG_UNSET, COPY16_REGCM } },
22667                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM16 | REGCM_IMM8 } },
22668         },
22669         [TEMPLATE_COPY_IMM32] = {
22670                 .lhs = { [0] = { REG_UNSET, COPY32_REGCM } },
22671                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8 } },
22672         },
22673         [TEMPLATE_PHI8] = { 
22674                 .lhs = { [0] = { REG_VIRT0, COPY8_REGCM } },
22675                 .rhs = { [0] = { REG_VIRT0, COPY8_REGCM } },
22676         },
22677         [TEMPLATE_PHI16] = { 
22678                 .lhs = { [0] = { REG_VIRT0, COPY16_REGCM } },
22679                 .rhs = { [0] = { REG_VIRT0, COPY16_REGCM } }, 
22680         },
22681         [TEMPLATE_PHI32] = { 
22682                 .lhs = { [0] = { REG_VIRT0, COPY32_REGCM } },
22683                 .rhs = { [0] = { REG_VIRT0, COPY32_REGCM } }, 
22684         },
22685         [TEMPLATE_STORE8] = {
22686                 .rhs = { 
22687                         [0] = { REG_UNSET, REGCM_GPR32 },
22688                         [1] = { REG_UNSET, REGCM_GPR8_LO },
22689                 },
22690         },
22691         [TEMPLATE_STORE16] = {
22692                 .rhs = { 
22693                         [0] = { REG_UNSET, REGCM_GPR32 },
22694                         [1] = { REG_UNSET, REGCM_GPR16 },
22695                 },
22696         },
22697         [TEMPLATE_STORE32] = {
22698                 .rhs = { 
22699                         [0] = { REG_UNSET, REGCM_GPR32 },
22700                         [1] = { REG_UNSET, REGCM_GPR32 },
22701                 },
22702         },
22703         [TEMPLATE_LOAD8] = {
22704                 .lhs = { [0] = { REG_UNSET, REGCM_GPR8_LO } },
22705                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22706         },
22707         [TEMPLATE_LOAD16] = {
22708                 .lhs = { [0] = { REG_UNSET, REGCM_GPR16 } },
22709                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22710         },
22711         [TEMPLATE_LOAD32] = {
22712                 .lhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22713                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22714         },
22715         [TEMPLATE_BINARY8_REG] = {
22716                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22717                 .rhs = { 
22718                         [0] = { REG_VIRT0, REGCM_GPR8_LO },
22719                         [1] = { REG_UNSET, REGCM_GPR8_LO },
22720                 },
22721         },
22722         [TEMPLATE_BINARY16_REG] = {
22723                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22724                 .rhs = { 
22725                         [0] = { REG_VIRT0, REGCM_GPR16 },
22726                         [1] = { REG_UNSET, REGCM_GPR16 },
22727                 },
22728         },
22729         [TEMPLATE_BINARY32_REG] = {
22730                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22731                 .rhs = { 
22732                         [0] = { REG_VIRT0, REGCM_GPR32 },
22733                         [1] = { REG_UNSET, REGCM_GPR32 },
22734                 },
22735         },
22736         [TEMPLATE_BINARY8_IMM] = {
22737                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22738                 .rhs = { 
22739                         [0] = { REG_VIRT0,    REGCM_GPR8_LO },
22740                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22741                 },
22742         },
22743         [TEMPLATE_BINARY16_IMM] = {
22744                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22745                 .rhs = { 
22746                         [0] = { REG_VIRT0,    REGCM_GPR16 },
22747                         [1] = { REG_UNNEEDED, REGCM_IMM16 },
22748                 },
22749         },
22750         [TEMPLATE_BINARY32_IMM] = {
22751                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22752                 .rhs = { 
22753                         [0] = { REG_VIRT0,    REGCM_GPR32 },
22754                         [1] = { REG_UNNEEDED, REGCM_IMM32 },
22755                 },
22756         },
22757         [TEMPLATE_SL8_CL] = {
22758                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22759                 .rhs = { 
22760                         [0] = { REG_VIRT0, REGCM_GPR8_LO },
22761                         [1] = { REG_CL, REGCM_GPR8_LO },
22762                 },
22763         },
22764         [TEMPLATE_SL16_CL] = {
22765                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22766                 .rhs = { 
22767                         [0] = { REG_VIRT0, REGCM_GPR16 },
22768                         [1] = { REG_CL, REGCM_GPR8_LO },
22769                 },
22770         },
22771         [TEMPLATE_SL32_CL] = {
22772                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22773                 .rhs = { 
22774                         [0] = { REG_VIRT0, REGCM_GPR32 },
22775                         [1] = { REG_CL, REGCM_GPR8_LO },
22776                 },
22777         },
22778         [TEMPLATE_SL8_IMM] = {
22779                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22780                 .rhs = { 
22781                         [0] = { REG_VIRT0,    REGCM_GPR8_LO },
22782                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22783                 },
22784         },
22785         [TEMPLATE_SL16_IMM] = {
22786                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22787                 .rhs = { 
22788                         [0] = { REG_VIRT0,    REGCM_GPR16 },
22789                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22790                 },
22791         },
22792         [TEMPLATE_SL32_IMM] = {
22793                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22794                 .rhs = { 
22795                         [0] = { REG_VIRT0,    REGCM_GPR32 },
22796                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22797                 },
22798         },
22799         [TEMPLATE_UNARY8] = {
22800                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22801                 .rhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22802         },
22803         [TEMPLATE_UNARY16] = {
22804                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22805                 .rhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22806         },
22807         [TEMPLATE_UNARY32] = {
22808                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22809                 .rhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22810         },
22811         [TEMPLATE_CMP8_REG] = {
22812                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22813                 .rhs = {
22814                         [0] = { REG_UNSET, REGCM_GPR8_LO },
22815                         [1] = { REG_UNSET, REGCM_GPR8_LO },
22816                 },
22817         },
22818         [TEMPLATE_CMP16_REG] = {
22819                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22820                 .rhs = {
22821                         [0] = { REG_UNSET, REGCM_GPR16 },
22822                         [1] = { REG_UNSET, REGCM_GPR16 },
22823                 },
22824         },
22825         [TEMPLATE_CMP32_REG] = {
22826                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22827                 .rhs = {
22828                         [0] = { REG_UNSET, REGCM_GPR32 },
22829                         [1] = { REG_UNSET, REGCM_GPR32 },
22830                 },
22831         },
22832         [TEMPLATE_CMP8_IMM] = {
22833                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22834                 .rhs = {
22835                         [0] = { REG_UNSET, REGCM_GPR8_LO },
22836                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22837                 },
22838         },
22839         [TEMPLATE_CMP16_IMM] = {
22840                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22841                 .rhs = {
22842                         [0] = { REG_UNSET, REGCM_GPR16 },
22843                         [1] = { REG_UNNEEDED, REGCM_IMM16 },
22844                 },
22845         },
22846         [TEMPLATE_CMP32_IMM] = {
22847                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22848                 .rhs = {
22849                         [0] = { REG_UNSET, REGCM_GPR32 },
22850                         [1] = { REG_UNNEEDED, REGCM_IMM32 },
22851                 },
22852         },
22853         [TEMPLATE_TEST8] = {
22854                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22855                 .rhs = { [0] = { REG_UNSET, REGCM_GPR8_LO } },
22856         },
22857         [TEMPLATE_TEST16] = {
22858                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22859                 .rhs = { [0] = { REG_UNSET, REGCM_GPR16 } },
22860         },
22861         [TEMPLATE_TEST32] = {
22862                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22863                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22864         },
22865         [TEMPLATE_SET] = {
22866                 .lhs = { [0] = { REG_UNSET, REGCM_GPR8_LO } },
22867                 .rhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22868         },
22869         [TEMPLATE_JMP] = {
22870                 .rhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22871         },
22872         [TEMPLATE_RET] = {
22873                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22874         },
22875         [TEMPLATE_INB_DX] = {
22876                 .lhs = { [0] = { REG_AL,  REGCM_GPR8_LO } },  
22877                 .rhs = { [0] = { REG_DX, REGCM_GPR16 } },
22878         },
22879         [TEMPLATE_INB_IMM] = {
22880                 .lhs = { [0] = { REG_AL,  REGCM_GPR8_LO } },  
22881                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
22882         },
22883         [TEMPLATE_INW_DX]  = { 
22884                 .lhs = { [0] = { REG_AX,  REGCM_GPR16 } }, 
22885                 .rhs = { [0] = { REG_DX, REGCM_GPR16 } },
22886         },
22887         [TEMPLATE_INW_IMM] = { 
22888                 .lhs = { [0] = { REG_AX,  REGCM_GPR16 } }, 
22889                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
22890         },
22891         [TEMPLATE_INL_DX]  = {
22892                 .lhs = { [0] = { REG_EAX, REGCM_GPR32 } },
22893                 .rhs = { [0] = { REG_DX, REGCM_GPR16 } },
22894         },
22895         [TEMPLATE_INL_IMM] = {
22896                 .lhs = { [0] = { REG_EAX, REGCM_GPR32 } },
22897                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
22898         },
22899         [TEMPLATE_OUTB_DX] = { 
22900                 .rhs = {
22901                         [0] = { REG_AL,  REGCM_GPR8_LO },
22902                         [1] = { REG_DX, REGCM_GPR16 },
22903                 },
22904         },
22905         [TEMPLATE_OUTB_IMM] = { 
22906                 .rhs = {
22907                         [0] = { REG_AL,  REGCM_GPR8_LO },  
22908                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22909                 },
22910         },
22911         [TEMPLATE_OUTW_DX] = { 
22912                 .rhs = {
22913                         [0] = { REG_AX,  REGCM_GPR16 },
22914                         [1] = { REG_DX, REGCM_GPR16 },
22915                 },
22916         },
22917         [TEMPLATE_OUTW_IMM] = {
22918                 .rhs = {
22919                         [0] = { REG_AX,  REGCM_GPR16 }, 
22920                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22921                 },
22922         },
22923         [TEMPLATE_OUTL_DX] = { 
22924                 .rhs = {
22925                         [0] = { REG_EAX, REGCM_GPR32 },
22926                         [1] = { REG_DX, REGCM_GPR16 },
22927                 },
22928         },
22929         [TEMPLATE_OUTL_IMM] = { 
22930                 .rhs = {
22931                         [0] = { REG_EAX, REGCM_GPR32 }, 
22932                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22933                 },
22934         },
22935         [TEMPLATE_BSF] = {
22936                 .lhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22937                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22938         },
22939         [TEMPLATE_RDMSR] = {
22940                 .lhs = { 
22941                         [0] = { REG_EAX, REGCM_GPR32 },
22942                         [1] = { REG_EDX, REGCM_GPR32 },
22943                 },
22944                 .rhs = { [0] = { REG_ECX, REGCM_GPR32 } },
22945         },
22946         [TEMPLATE_WRMSR] = {
22947                 .rhs = {
22948                         [0] = { REG_ECX, REGCM_GPR32 },
22949                         [1] = { REG_EAX, REGCM_GPR32 },
22950                         [2] = { REG_EDX, REGCM_GPR32 },
22951                 },
22952         },
22953         [TEMPLATE_UMUL8] = {
22954                 .lhs = { [0] = { REG_AX, REGCM_GPR16 } },
22955                 .rhs = { 
22956                         [0] = { REG_AL, REGCM_GPR8_LO },
22957                         [1] = { REG_UNSET, REGCM_GPR8_LO },
22958                 },
22959         },
22960         [TEMPLATE_UMUL16] = {
22961                 .lhs = { [0] = { REG_DXAX, REGCM_DIVIDEND32 } },
22962                 .rhs = { 
22963                         [0] = { REG_AX, REGCM_GPR16 },
22964                         [1] = { REG_UNSET, REGCM_GPR16 },
22965                 },
22966         },
22967         [TEMPLATE_UMUL32] = {
22968                 .lhs = { [0] = { REG_EDXEAX, REGCM_DIVIDEND64 } },
22969                 .rhs = { 
22970                         [0] = { REG_EAX, REGCM_GPR32 },
22971                         [1] = { REG_UNSET, REGCM_GPR32 },
22972                 },
22973         },
22974         [TEMPLATE_DIV8] = {
22975                 .lhs = { 
22976                         [0] = { REG_AL, REGCM_GPR8_LO },
22977                         [1] = { REG_AH, REGCM_GPR8 },
22978                 },
22979                 .rhs = {
22980                         [0] = { REG_AX, REGCM_GPR16 },
22981                         [1] = { REG_UNSET, REGCM_GPR8_LO },
22982                 },
22983         },
22984         [TEMPLATE_DIV16] = {
22985                 .lhs = { 
22986                         [0] = { REG_AX, REGCM_GPR16 },
22987                         [1] = { REG_DX, REGCM_GPR16 },
22988                 },
22989                 .rhs = {
22990                         [0] = { REG_DXAX, REGCM_DIVIDEND32 },
22991                         [1] = { REG_UNSET, REGCM_GPR16 },
22992                 },
22993         },
22994         [TEMPLATE_DIV32] = {
22995                 .lhs = { 
22996                         [0] = { REG_EAX, REGCM_GPR32 },
22997                         [1] = { REG_EDX, REGCM_GPR32 },
22998                 },
22999                 .rhs = {
23000                         [0] = { REG_EDXEAX, REGCM_DIVIDEND64 },
23001                         [1] = { REG_UNSET, REGCM_GPR32 },
23002                 },
23003         },
23004 };
23005
23006 static void fixup_branch(struct compile_state *state,
23007         struct triple *branch, int jmp_op, int cmp_op, struct type *cmp_type,
23008         struct triple *left, struct triple *right)
23009 {
23010         struct triple *test;
23011         if (!left) {
23012                 internal_error(state, branch, "no branch test?");
23013         }
23014         test = pre_triple(state, branch,
23015                 cmp_op, cmp_type, left, right);
23016         test->template_id = TEMPLATE_TEST32; 
23017         if (cmp_op == OP_CMP) {
23018                 test->template_id = TEMPLATE_CMP32_REG;
23019                 if (get_imm32(test, &RHS(test, 1))) {
23020                         test->template_id = TEMPLATE_CMP32_IMM;
23021                 }
23022         }
23023         use_triple(RHS(test, 0), test);
23024         use_triple(RHS(test, 1), test);
23025         unuse_triple(RHS(branch, 0), branch);
23026         RHS(branch, 0) = test;
23027         branch->op = jmp_op;
23028         branch->template_id = TEMPLATE_JMP;
23029         use_triple(RHS(branch, 0), branch);
23030 }
23031
23032 static void fixup_branches(struct compile_state *state,
23033         struct triple *cmp, struct triple *use, int jmp_op)
23034 {
23035         struct triple_set *entry, *next;
23036         for(entry = use->use; entry; entry = next) {
23037                 next = entry->next;
23038                 if (entry->member->op == OP_COPY) {
23039                         fixup_branches(state, cmp, entry->member, jmp_op);
23040                 }
23041                 else if (entry->member->op == OP_CBRANCH) {
23042                         struct triple *branch;
23043                         struct triple *left, *right;
23044                         left = right = 0;
23045                         left = RHS(cmp, 0);
23046                         if (cmp->rhs > 1) {
23047                                 right = RHS(cmp, 1);
23048                         }
23049                         branch = entry->member;
23050                         fixup_branch(state, branch, jmp_op, 
23051                                 cmp->op, cmp->type, left, right);
23052                 }
23053         }
23054 }
23055
23056 static void bool_cmp(struct compile_state *state, 
23057         struct triple *ins, int cmp_op, int jmp_op, int set_op)
23058 {
23059         struct triple_set *entry, *next;
23060         struct triple *set, *convert;
23061
23062         /* Put a barrier up before the cmp which preceeds the
23063          * copy instruction.  If a set actually occurs this gives
23064          * us a chance to move variables in registers out of the way.
23065          */
23066
23067         /* Modify the comparison operator */
23068         ins->op = cmp_op;
23069         ins->template_id = TEMPLATE_TEST32;
23070         if (cmp_op == OP_CMP) {
23071                 ins->template_id = TEMPLATE_CMP32_REG;
23072                 if (get_imm32(ins, &RHS(ins, 1))) {
23073                         ins->template_id =  TEMPLATE_CMP32_IMM;
23074                 }
23075         }
23076         /* Generate the instruction sequence that will transform the
23077          * result of the comparison into a logical value.
23078          */
23079         set = post_triple(state, ins, set_op, &uchar_type, ins, 0);
23080         use_triple(ins, set);
23081         set->template_id = TEMPLATE_SET;
23082
23083         convert = set;
23084         if (!equiv_types(ins->type, set->type)) {
23085                 convert = post_triple(state, set, OP_CONVERT, ins->type, set, 0);
23086                 use_triple(set, convert);
23087                 convert->template_id = TEMPLATE_COPY32_REG;
23088         }
23089
23090         for(entry = ins->use; entry; entry = next) {
23091                 next = entry->next;
23092                 if (entry->member == set) {
23093                         continue;
23094                 }
23095                 replace_rhs_use(state, ins, convert, entry->member);
23096         }
23097         fixup_branches(state, ins, convert, jmp_op);
23098 }
23099
23100 struct reg_info arch_reg_lhs(struct compile_state *state, struct triple *ins, int index)
23101 {
23102         struct ins_template *template;
23103         struct reg_info result;
23104         int zlhs;
23105         if (ins->op == OP_PIECE) {
23106                 index = ins->u.cval;
23107                 ins = MISC(ins, 0);
23108         }
23109         zlhs = ins->lhs;
23110         if (triple_is_def(state, ins)) {
23111                 zlhs = 1;
23112         }
23113         if (index >= zlhs) {
23114                 internal_error(state, ins, "index %d out of range for %s",
23115                         index, tops(ins->op));
23116         }
23117         switch(ins->op) {
23118         case OP_ASM:
23119                 template = &ins->u.ainfo->tmpl;
23120                 break;
23121         default:
23122                 if (ins->template_id > LAST_TEMPLATE) {
23123                         internal_error(state, ins, "bad template number %d", 
23124                                 ins->template_id);
23125                 }
23126                 template = &templates[ins->template_id];
23127                 break;
23128         }
23129         result = template->lhs[index];
23130         result.regcm = arch_regcm_normalize(state, result.regcm);
23131         if (result.reg != REG_UNNEEDED) {
23132                 result.regcm &= ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8);
23133         }
23134         if (result.regcm == 0) {
23135                 internal_error(state, ins, "lhs %d regcm == 0", index);
23136         }
23137         return result;
23138 }
23139
23140 struct reg_info arch_reg_rhs(struct compile_state *state, struct triple *ins, int index)
23141 {
23142         struct reg_info result;
23143         struct ins_template *template;
23144         if ((index > ins->rhs) ||
23145                 (ins->op == OP_PIECE)) {
23146                 internal_error(state, ins, "index %d out of range for %s\n",
23147                         index, tops(ins->op));
23148         }
23149         switch(ins->op) {
23150         case OP_ASM:
23151                 template = &ins->u.ainfo->tmpl;
23152                 break;
23153         case OP_PHI:
23154                 index = 0;
23155                 /* Fall through */
23156         default:
23157                 if (ins->template_id > LAST_TEMPLATE) {
23158                         internal_error(state, ins, "bad template number %d", 
23159                                 ins->template_id);
23160                 }
23161                 template = &templates[ins->template_id];
23162                 break;
23163         }
23164         result = template->rhs[index];
23165         result.regcm = arch_regcm_normalize(state, result.regcm);
23166         if (result.regcm == 0) {
23167                 internal_error(state, ins, "rhs %d regcm == 0", index);
23168         }
23169         return result;
23170 }
23171
23172 static struct triple *mod_div(struct compile_state *state,
23173         struct triple *ins, int div_op, int index)
23174 {
23175         struct triple *div, *piece0, *piece1;
23176         
23177         /* Generate the appropriate division instruction */
23178         div = post_triple(state, ins, div_op, ins->type, 0, 0);
23179         RHS(div, 0) = RHS(ins, 0);
23180         RHS(div, 1) = RHS(ins, 1);
23181         piece0 = LHS(div, 0);
23182         piece1 = LHS(div, 1);
23183         div->template_id  = TEMPLATE_DIV32;
23184         use_triple(RHS(div, 0), div);
23185         use_triple(RHS(div, 1), div);
23186         use_triple(LHS(div, 0), div);
23187         use_triple(LHS(div, 1), div);
23188
23189         /* Replate uses of ins with the appropriate piece of the div */
23190         propogate_use(state, ins, LHS(div, index));
23191         release_triple(state, ins);
23192
23193         /* Return the address of the next instruction */
23194         return piece1->next;
23195 }
23196
23197 static int noop_adecl(struct triple *adecl)
23198 {
23199         struct triple_set *use;
23200         /* It's a noop if it doesn't specify stoorage */
23201         if (adecl->lhs == 0) {
23202                 return 1;
23203         }
23204         /* Is the adecl used? If not it's a noop */
23205         for(use = adecl->use; use ; use = use->next) {
23206                 if ((use->member->op != OP_PIECE) ||
23207                         (MISC(use->member, 0) != adecl)) {
23208                         return 0;
23209                 }
23210         }
23211         return 1;
23212 }
23213
23214 static struct triple *x86_deposit(struct compile_state *state, struct triple *ins)
23215 {
23216         struct triple *mask, *nmask, *shift;
23217         struct triple *val, *val_mask, *val_shift;
23218         struct triple *targ, *targ_mask;
23219         struct triple *new;
23220         ulong_t the_mask, the_nmask;
23221
23222         targ = RHS(ins, 0);
23223         val = RHS(ins, 1);
23224
23225         /* Get constant for the mask value */
23226         the_mask = 1;
23227         the_mask <<= ins->u.bitfield.size;
23228         the_mask -= 1;
23229         the_mask <<= ins->u.bitfield.offset;
23230         mask = pre_triple(state, ins, OP_INTCONST, &uint_type, 0, 0);
23231         mask->u.cval = the_mask;
23232
23233         /* Get the inverted mask value */
23234         the_nmask = ~the_mask;
23235         nmask = pre_triple(state, ins, OP_INTCONST, &uint_type, 0, 0);
23236         nmask->u.cval = the_nmask;
23237
23238         /* Get constant for the shift value */
23239         shift = pre_triple(state, ins, OP_INTCONST, &uint_type, 0, 0);
23240         shift->u.cval = ins->u.bitfield.offset;
23241
23242         /* Shift and mask the source value */
23243         val_shift = val;
23244         if (shift->u.cval != 0) {
23245                 val_shift = pre_triple(state, ins, OP_SL, val->type, val, shift);
23246                 use_triple(val, val_shift);
23247                 use_triple(shift, val_shift);
23248         }
23249         val_mask = val_shift;
23250         if (is_signed(val->type)) {
23251                 val_mask = pre_triple(state, ins, OP_AND, val->type, val_shift, mask);
23252                 use_triple(val_shift, val_mask);
23253                 use_triple(mask, val_mask);
23254         }
23255
23256         /* Mask the target value */
23257         targ_mask = pre_triple(state, ins, OP_AND, targ->type, targ, nmask);
23258         use_triple(targ, targ_mask);
23259         use_triple(nmask, targ_mask);
23260
23261         /* Now combined them together */
23262         new = pre_triple(state, ins, OP_OR, targ->type, targ_mask, val_mask);
23263         use_triple(targ_mask, new);
23264         use_triple(val_mask, new);
23265
23266         /* Move all of the users over to the new expression */
23267         propogate_use(state, ins, new);
23268
23269         /* Delete the original triple */
23270         release_triple(state, ins);
23271
23272         /* Restart the transformation at mask */
23273         return mask;
23274 }
23275
23276 static struct triple *x86_extract(struct compile_state *state, struct triple *ins)
23277 {
23278         struct triple *mask, *shift;
23279         struct triple *val, *val_mask, *val_shift;
23280         ulong_t the_mask;
23281
23282         val = RHS(ins, 0);
23283
23284         /* Get constant for the mask value */
23285         the_mask = 1;
23286         the_mask <<= ins->u.bitfield.size;
23287         the_mask -= 1;
23288         mask = pre_triple(state, ins, OP_INTCONST, &int_type, 0, 0);
23289         mask->u.cval = the_mask;
23290
23291         /* Get constant for the right shift value */
23292         shift = pre_triple(state, ins, OP_INTCONST, &int_type, 0, 0);
23293         shift->u.cval = ins->u.bitfield.offset;
23294
23295         /* Shift arithmetic right, to correct the sign */
23296         val_shift = val;
23297         if (shift->u.cval != 0) {
23298                 int op;
23299                 if (ins->op == OP_SEXTRACT) {
23300                         op = OP_SSR;
23301                 } else {
23302                         op = OP_USR;
23303                 }
23304                 val_shift = pre_triple(state, ins, op, val->type, val, shift);
23305                 use_triple(val, val_shift);
23306                 use_triple(shift, val_shift);
23307         }
23308
23309         /* Finally mask the value */
23310         val_mask = pre_triple(state, ins, OP_AND, ins->type, val_shift, mask);
23311         use_triple(val_shift, val_mask);
23312         use_triple(mask,      val_mask);
23313
23314         /* Move all of the users over to the new expression */
23315         propogate_use(state, ins, val_mask);
23316
23317         /* Release the original instruction */
23318         release_triple(state, ins);
23319
23320         return mask;
23321
23322 }
23323
23324 static struct triple *transform_to_arch_instruction(
23325         struct compile_state *state, struct triple *ins)
23326 {
23327         /* Transform from generic 3 address instructions
23328          * to archtecture specific instructions.
23329          * And apply architecture specific constraints to instructions.
23330          * Copies are inserted to preserve the register flexibility
23331          * of 3 address instructions.
23332          */
23333         struct triple *next, *value;
23334         size_t size;
23335         next = ins->next;
23336         switch(ins->op) {
23337         case OP_INTCONST:
23338                 ins->template_id = TEMPLATE_INTCONST32;
23339                 if (ins->u.cval < 256) {
23340                         ins->template_id = TEMPLATE_INTCONST8;
23341                 }
23342                 break;
23343         case OP_ADDRCONST:
23344                 ins->template_id = TEMPLATE_INTCONST32;
23345                 break;
23346         case OP_UNKNOWNVAL:
23347                 ins->template_id = TEMPLATE_UNKNOWNVAL;
23348                 break;
23349         case OP_NOOP:
23350         case OP_SDECL:
23351         case OP_BLOBCONST:
23352         case OP_LABEL:
23353                 ins->template_id = TEMPLATE_NOP;
23354                 break;
23355         case OP_COPY:
23356         case OP_CONVERT:
23357                 size = size_of(state, ins->type);
23358                 value = RHS(ins, 0);
23359                 if (is_imm8(value) && (size <= SIZEOF_I8)) {
23360                         ins->template_id = TEMPLATE_COPY_IMM8;
23361                 }
23362                 else if (is_imm16(value) && (size <= SIZEOF_I16)) {
23363                         ins->template_id = TEMPLATE_COPY_IMM16;
23364                 }
23365                 else if (is_imm32(value) && (size <= SIZEOF_I32)) {
23366                         ins->template_id = TEMPLATE_COPY_IMM32;
23367                 }
23368                 else if (is_const(value)) {
23369                         internal_error(state, ins, "bad constant passed to copy");
23370                 }
23371                 else if (size <= SIZEOF_I8) {
23372                         ins->template_id = TEMPLATE_COPY8_REG;
23373                 }
23374                 else if (size <= SIZEOF_I16) {
23375                         ins->template_id = TEMPLATE_COPY16_REG;
23376                 }
23377                 else if (size <= SIZEOF_I32) {
23378                         ins->template_id = TEMPLATE_COPY32_REG;
23379                 }
23380                 else {
23381                         internal_error(state, ins, "bad type passed to copy");
23382                 }
23383                 break;
23384         case OP_PHI:
23385                 size = size_of(state, ins->type);
23386                 if (size <= SIZEOF_I8) {
23387                         ins->template_id = TEMPLATE_PHI8;
23388                 }
23389                 else if (size <= SIZEOF_I16) {
23390                         ins->template_id = TEMPLATE_PHI16;
23391                 }
23392                 else if (size <= SIZEOF_I32) {
23393                         ins->template_id = TEMPLATE_PHI32;
23394                 }
23395                 else {
23396                         internal_error(state, ins, "bad type passed to phi");
23397                 }
23398                 break;
23399         case OP_ADECL:
23400                 /* Adecls should always be treated as dead code and
23401                  * removed.  If we are not optimizing they may linger.
23402                  */
23403                 if (!noop_adecl(ins)) {
23404                         internal_error(state, ins, "adecl remains?");
23405                 }
23406                 ins->template_id = TEMPLATE_NOP;
23407                 next = after_lhs(state, ins);
23408                 break;
23409         case OP_STORE:
23410                 switch(ins->type->type & TYPE_MASK) {
23411                 case TYPE_CHAR:    case TYPE_UCHAR:
23412                         ins->template_id = TEMPLATE_STORE8;
23413                         break;
23414                 case TYPE_SHORT:   case TYPE_USHORT:
23415                         ins->template_id = TEMPLATE_STORE16;
23416                         break;
23417                 case TYPE_INT:     case TYPE_UINT:
23418                 case TYPE_LONG:    case TYPE_ULONG:
23419                 case TYPE_POINTER:
23420                         ins->template_id = TEMPLATE_STORE32;
23421                         break;
23422                 default:
23423                         internal_error(state, ins, "unknown type in store");
23424                         break;
23425                 }
23426                 break;
23427         case OP_LOAD:
23428                 switch(ins->type->type & TYPE_MASK) {
23429                 case TYPE_CHAR:   case TYPE_UCHAR:
23430                 case TYPE_SHORT:  case TYPE_USHORT:
23431                 case TYPE_INT:    case TYPE_UINT:
23432                 case TYPE_LONG:   case TYPE_ULONG:
23433                 case TYPE_POINTER:
23434                         break;
23435                 default:
23436                         internal_error(state, ins, "unknown type in load");
23437                         break;
23438                 }
23439                 ins->template_id = TEMPLATE_LOAD32;
23440                 break;
23441         case OP_ADD:
23442         case OP_SUB:
23443         case OP_AND:
23444         case OP_XOR:
23445         case OP_OR:
23446         case OP_SMUL:
23447                 ins->template_id = TEMPLATE_BINARY32_REG;
23448                 if (get_imm32(ins, &RHS(ins, 1))) {
23449                         ins->template_id = TEMPLATE_BINARY32_IMM;
23450                 }
23451                 break;
23452         case OP_SDIVT:
23453         case OP_UDIVT:
23454                 ins->template_id = TEMPLATE_DIV32;
23455                 next = after_lhs(state, ins);
23456                 break;
23457         case OP_UMUL:
23458                 ins->template_id = TEMPLATE_UMUL32;
23459                 break;
23460         case OP_UDIV:
23461                 next = mod_div(state, ins, OP_UDIVT, 0);
23462                 break;
23463         case OP_SDIV:
23464                 next = mod_div(state, ins, OP_SDIVT, 0);
23465                 break;
23466         case OP_UMOD:
23467                 next = mod_div(state, ins, OP_UDIVT, 1);
23468                 break;
23469         case OP_SMOD:
23470                 next = mod_div(state, ins, OP_SDIVT, 1);
23471                 break;
23472         case OP_SL:
23473         case OP_SSR:
23474         case OP_USR:
23475                 ins->template_id = TEMPLATE_SL32_CL;
23476                 if (get_imm8(ins, &RHS(ins, 1))) {
23477                         ins->template_id = TEMPLATE_SL32_IMM;
23478                 } else if (size_of(state, RHS(ins, 1)->type) > SIZEOF_CHAR) {
23479                         typed_pre_copy(state, &uchar_type, ins, 1);
23480                 }
23481                 break;
23482         case OP_INVERT:
23483         case OP_NEG:
23484                 ins->template_id = TEMPLATE_UNARY32;
23485                 break;
23486         case OP_EQ: 
23487                 bool_cmp(state, ins, OP_CMP, OP_JMP_EQ, OP_SET_EQ); 
23488                 break;
23489         case OP_NOTEQ:
23490                 bool_cmp(state, ins, OP_CMP, OP_JMP_NOTEQ, OP_SET_NOTEQ);
23491                 break;
23492         case OP_SLESS:
23493                 bool_cmp(state, ins, OP_CMP, OP_JMP_SLESS, OP_SET_SLESS);
23494                 break;
23495         case OP_ULESS:
23496                 bool_cmp(state, ins, OP_CMP, OP_JMP_ULESS, OP_SET_ULESS);
23497                 break;
23498         case OP_SMORE:
23499                 bool_cmp(state, ins, OP_CMP, OP_JMP_SMORE, OP_SET_SMORE);
23500                 break;
23501         case OP_UMORE:
23502                 bool_cmp(state, ins, OP_CMP, OP_JMP_UMORE, OP_SET_UMORE);
23503                 break;
23504         case OP_SLESSEQ:
23505                 bool_cmp(state, ins, OP_CMP, OP_JMP_SLESSEQ, OP_SET_SLESSEQ);
23506                 break;
23507         case OP_ULESSEQ:
23508                 bool_cmp(state, ins, OP_CMP, OP_JMP_ULESSEQ, OP_SET_ULESSEQ);
23509                 break;
23510         case OP_SMOREEQ:
23511                 bool_cmp(state, ins, OP_CMP, OP_JMP_SMOREEQ, OP_SET_SMOREEQ);
23512                 break;
23513         case OP_UMOREEQ:
23514                 bool_cmp(state, ins, OP_CMP, OP_JMP_UMOREEQ, OP_SET_UMOREEQ);
23515                 break;
23516         case OP_LTRUE:
23517                 bool_cmp(state, ins, OP_TEST, OP_JMP_NOTEQ, OP_SET_NOTEQ);
23518                 break;
23519         case OP_LFALSE:
23520                 bool_cmp(state, ins, OP_TEST, OP_JMP_EQ, OP_SET_EQ);
23521                 break;
23522         case OP_BRANCH:
23523                 ins->op = OP_JMP;
23524                 ins->template_id = TEMPLATE_NOP;
23525                 break;
23526         case OP_CBRANCH:
23527                 fixup_branch(state, ins, OP_JMP_NOTEQ, OP_TEST, 
23528                         RHS(ins, 0)->type, RHS(ins, 0), 0);
23529                 break;
23530         case OP_CALL:
23531                 ins->template_id = TEMPLATE_NOP;
23532                 break;
23533         case OP_RET:
23534                 ins->template_id = TEMPLATE_RET;
23535                 break;
23536         case OP_INB:
23537         case OP_INW:
23538         case OP_INL:
23539                 switch(ins->op) {
23540                 case OP_INB: ins->template_id = TEMPLATE_INB_DX; break;
23541                 case OP_INW: ins->template_id = TEMPLATE_INW_DX; break;
23542                 case OP_INL: ins->template_id = TEMPLATE_INL_DX; break;
23543                 }
23544                 if (get_imm8(ins, &RHS(ins, 0))) {
23545                         ins->template_id += 1;
23546                 }
23547                 break;
23548         case OP_OUTB:
23549         case OP_OUTW:
23550         case OP_OUTL:
23551                 switch(ins->op) {
23552                 case OP_OUTB: ins->template_id = TEMPLATE_OUTB_DX; break;
23553                 case OP_OUTW: ins->template_id = TEMPLATE_OUTW_DX; break;
23554                 case OP_OUTL: ins->template_id = TEMPLATE_OUTL_DX; break;
23555                 }
23556                 if (get_imm8(ins, &RHS(ins, 1))) {
23557                         ins->template_id += 1;
23558                 }
23559                 break;
23560         case OP_BSF:
23561         case OP_BSR:
23562                 ins->template_id = TEMPLATE_BSF;
23563                 break;
23564         case OP_RDMSR:
23565                 ins->template_id = TEMPLATE_RDMSR;
23566                 next = after_lhs(state, ins);
23567                 break;
23568         case OP_WRMSR:
23569                 ins->template_id = TEMPLATE_WRMSR;
23570                 break;
23571         case OP_HLT:
23572                 ins->template_id = TEMPLATE_NOP;
23573                 break;
23574         case OP_ASM:
23575                 ins->template_id = TEMPLATE_NOP;
23576                 next = after_lhs(state, ins);
23577                 break;
23578                 /* Already transformed instructions */
23579         case OP_TEST:
23580                 ins->template_id = TEMPLATE_TEST32;
23581                 break;
23582         case OP_CMP:
23583                 ins->template_id = TEMPLATE_CMP32_REG;
23584                 if (get_imm32(ins, &RHS(ins, 1))) {
23585                         ins->template_id = TEMPLATE_CMP32_IMM;
23586                 }
23587                 break;
23588         case OP_JMP:
23589                 ins->template_id = TEMPLATE_NOP;
23590                 break;
23591         case OP_JMP_EQ:      case OP_JMP_NOTEQ:
23592         case OP_JMP_SLESS:   case OP_JMP_ULESS:
23593         case OP_JMP_SMORE:   case OP_JMP_UMORE:
23594         case OP_JMP_SLESSEQ: case OP_JMP_ULESSEQ:
23595         case OP_JMP_SMOREEQ: case OP_JMP_UMOREEQ:
23596                 ins->template_id = TEMPLATE_JMP;
23597                 break;
23598         case OP_SET_EQ:      case OP_SET_NOTEQ:
23599         case OP_SET_SLESS:   case OP_SET_ULESS:
23600         case OP_SET_SMORE:   case OP_SET_UMORE:
23601         case OP_SET_SLESSEQ: case OP_SET_ULESSEQ:
23602         case OP_SET_SMOREEQ: case OP_SET_UMOREEQ:
23603                 ins->template_id = TEMPLATE_SET;
23604                 break;
23605         case OP_DEPOSIT:
23606                 next = x86_deposit(state, ins);
23607                 break;
23608         case OP_SEXTRACT:
23609         case OP_UEXTRACT:
23610                 next = x86_extract(state, ins);
23611                 break;
23612                 /* Unhandled instructions */
23613         case OP_PIECE:
23614         default:
23615                 internal_error(state, ins, "unhandled ins: %d %s",
23616                         ins->op, tops(ins->op));
23617                 break;
23618         }
23619         return next;
23620 }
23621
23622 static long next_label(struct compile_state *state)
23623 {
23624         static long label_counter = 1000;
23625         return ++label_counter;
23626 }
23627 static void generate_local_labels(struct compile_state *state)
23628 {
23629         struct triple *first, *label;
23630         first = state->first;
23631         label = first;
23632         do {
23633                 if ((label->op == OP_LABEL) || 
23634                         (label->op == OP_SDECL)) {
23635                         if (label->use) {
23636                                 label->u.cval = next_label(state);
23637                         } else {
23638                                 label->u.cval = 0;
23639                         }
23640                         
23641                 }
23642                 label = label->next;
23643         } while(label != first);
23644 }
23645
23646 static int check_reg(struct compile_state *state, 
23647         struct triple *triple, int classes)
23648 {
23649         unsigned mask;
23650         int reg;
23651         reg = ID_REG(triple->id);
23652         if (reg == REG_UNSET) {
23653                 internal_error(state, triple, "register not set");
23654         }
23655         mask = arch_reg_regcm(state, reg);
23656         if (!(classes & mask)) {
23657                 internal_error(state, triple, "reg %d in wrong class",
23658                         reg);
23659         }
23660         return reg;
23661 }
23662
23663
23664 #if REG_XMM7 != 44
23665 #error "Registers have renumberd fix arch_reg_str"
23666 #endif
23667 static const char *arch_regs[] = {
23668         "%unset",
23669         "%unneeded",
23670         "%eflags",
23671         "%al", "%bl", "%cl", "%dl", "%ah", "%bh", "%ch", "%dh",
23672         "%ax", "%bx", "%cx", "%dx", "%si", "%di", "%bp", "%sp",
23673         "%eax", "%ebx", "%ecx", "%edx", "%esi", "%edi", "%ebp", "%esp",
23674         "%edx:%eax",
23675         "%dx:%ax",
23676         "%mm0", "%mm1", "%mm2", "%mm3", "%mm4", "%mm5", "%mm6", "%mm7",
23677         "%xmm0", "%xmm1", "%xmm2", "%xmm3", 
23678         "%xmm4", "%xmm5", "%xmm6", "%xmm7",
23679 };
23680 static const char *arch_reg_str(int reg)
23681 {
23682         if (!((reg >= REG_EFLAGS) && (reg <= REG_XMM7))) {
23683                 reg = 0;
23684         }
23685         return arch_regs[reg];
23686 }
23687
23688 static const char *reg(struct compile_state *state, struct triple *triple,
23689         int classes)
23690 {
23691         int reg;
23692         reg = check_reg(state, triple, classes);
23693         return arch_reg_str(reg);
23694 }
23695
23696 static int arch_reg_size(int reg)
23697 {
23698         int size;
23699         size = 0;
23700         if (reg == REG_EFLAGS) {
23701                 size = 32;
23702         }
23703         else if ((reg >= REG_AL) && (reg <= REG_DH)) {
23704                 size = 8;
23705         }
23706         else if ((reg >= REG_AX) && (reg <= REG_SP)) {
23707                 size = 16;
23708         }
23709         else if ((reg >= REG_EAX) && (reg <= REG_ESP)) {
23710                 size = 32;
23711         }
23712         else if (reg == REG_EDXEAX) {
23713                 size = 64;
23714         }
23715         else if (reg == REG_DXAX) {
23716                 size = 32;
23717         }
23718         else if ((reg >= REG_MMX0) && (reg <= REG_MMX7)) {
23719                 size = 64;
23720         }
23721         else if ((reg >= REG_XMM0) && (reg <= REG_XMM7)) {
23722                 size = 128;
23723         }
23724         return size;
23725 }
23726
23727 static int reg_size(struct compile_state *state, struct triple *ins)
23728 {
23729         int reg;
23730         reg = ID_REG(ins->id);
23731         if (reg == REG_UNSET) {
23732                 internal_error(state, ins, "register not set");
23733         }
23734         return arch_reg_size(reg);
23735 }
23736         
23737
23738
23739 const char *type_suffix(struct compile_state *state, struct type *type)
23740 {
23741         const char *suffix;
23742         switch(size_of(state, type)) {
23743         case SIZEOF_I8:  suffix = "b"; break;
23744         case SIZEOF_I16: suffix = "w"; break;
23745         case SIZEOF_I32: suffix = "l"; break;
23746         default:
23747                 internal_error(state, 0, "unknown suffix");
23748                 suffix = 0;
23749                 break;
23750         }
23751         return suffix;
23752 }
23753
23754 static void print_const_val(
23755         struct compile_state *state, struct triple *ins, FILE *fp)
23756 {
23757         switch(ins->op) {
23758         case OP_INTCONST:
23759                 fprintf(fp, " $%ld ", 
23760                         (long)(ins->u.cval));
23761                 break;
23762         case OP_ADDRCONST:
23763                 if ((MISC(ins, 0)->op != OP_SDECL) &&
23764                         (MISC(ins, 0)->op != OP_LABEL))
23765                 {
23766                         internal_error(state, ins, "bad base for addrconst");
23767                 }
23768                 if (MISC(ins, 0)->u.cval <= 0) {
23769                         internal_error(state, ins, "unlabeled constant");
23770                 }
23771                 fprintf(fp, " $L%s%lu+%lu ",
23772                         state->compiler->label_prefix, 
23773                         (unsigned long)(MISC(ins, 0)->u.cval),
23774                         (unsigned long)(ins->u.cval));
23775                 break;
23776         default:
23777                 internal_error(state, ins, "unknown constant type");
23778                 break;
23779         }
23780 }
23781
23782 static void print_const(struct compile_state *state,
23783         struct triple *ins, FILE *fp)
23784 {
23785         switch(ins->op) {
23786         case OP_INTCONST:
23787                 switch(ins->type->type & TYPE_MASK) {
23788                 case TYPE_CHAR:
23789                 case TYPE_UCHAR:
23790                         fprintf(fp, ".byte 0x%02lx\n", 
23791                                 (unsigned long)(ins->u.cval));
23792                         break;
23793                 case TYPE_SHORT:
23794                 case TYPE_USHORT:
23795                         fprintf(fp, ".short 0x%04lx\n", 
23796                                 (unsigned long)(ins->u.cval));
23797                         break;
23798                 case TYPE_INT:
23799                 case TYPE_UINT:
23800                 case TYPE_LONG:
23801                 case TYPE_ULONG:
23802                 case TYPE_POINTER:
23803                         fprintf(fp, ".int %lu\n", 
23804                                 (unsigned long)(ins->u.cval));
23805                         break;
23806                 default:
23807                         fprintf(state->errout, "type: ");
23808                         name_of(state->errout, ins->type);
23809                         fprintf(state->errout, "\n");
23810                         internal_error(state, ins, "Unknown constant type. Val: %lu",
23811                                 (unsigned long)(ins->u.cval));
23812                 }
23813                 
23814                 break;
23815         case OP_ADDRCONST:
23816                 if ((MISC(ins, 0)->op != OP_SDECL) &&
23817                         (MISC(ins, 0)->op != OP_LABEL)) {
23818                         internal_error(state, ins, "bad base for addrconst");
23819                 }
23820                 if (MISC(ins, 0)->u.cval <= 0) {
23821                         internal_error(state, ins, "unlabeled constant");
23822                 }
23823                 fprintf(fp, ".int L%s%lu+%lu\n",
23824                         state->compiler->label_prefix,
23825                         (unsigned long)(MISC(ins, 0)->u.cval),
23826                         (unsigned long)(ins->u.cval));
23827                 break;
23828         case OP_BLOBCONST:
23829         {
23830                 unsigned char *blob;
23831                 size_t size, i;
23832                 size = size_of_in_bytes(state, ins->type);
23833                 blob = ins->u.blob;
23834                 for(i = 0; i < size; i++) {
23835                         fprintf(fp, ".byte 0x%02x\n",
23836                                 blob[i]);
23837                 }
23838                 break;
23839         }
23840         default:
23841                 internal_error(state, ins, "Unknown constant type");
23842                 break;
23843         }
23844 }
23845
23846 #define TEXT_SECTION ".rom.text"
23847 #define DATA_SECTION ".rom.data"
23848
23849 static long get_const_pool_ref(
23850         struct compile_state *state, struct triple *ins, size_t size, FILE *fp)
23851 {
23852         size_t fill_bytes;
23853         long ref;
23854         ref = next_label(state);
23855         fprintf(fp, ".section \"" DATA_SECTION "\"\n");
23856         fprintf(fp, ".balign %ld\n", (long int)align_of_in_bytes(state, ins->type));
23857         fprintf(fp, "L%s%lu:\n", state->compiler->label_prefix, ref);
23858         print_const(state, ins, fp);
23859         fill_bytes = bits_to_bytes(size - size_of(state, ins->type));
23860         if (fill_bytes) {
23861                 fprintf(fp, ".fill %ld, 1, 0\n", (long int)fill_bytes);
23862         }
23863         fprintf(fp, ".section \"" TEXT_SECTION "\"\n");
23864         return ref;
23865 }
23866
23867 static long get_mask_pool_ref(
23868         struct compile_state *state, struct triple *ins, unsigned long mask, FILE *fp)
23869 {
23870         long ref;
23871         if (mask == 0xff) {
23872                 ref = 1;
23873         }
23874         else if (mask == 0xffff) {
23875                 ref = 2;
23876         }
23877         else {
23878                 ref = 0;
23879                 internal_error(state, ins, "unhandled mask value");
23880         }
23881         return ref;
23882 }
23883
23884 static void print_binary_op(struct compile_state *state,
23885         const char *op, struct triple *ins, FILE *fp) 
23886 {
23887         unsigned mask;
23888         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
23889         if (ID_REG(RHS(ins, 0)->id) != ID_REG(ins->id)) {
23890                 internal_error(state, ins, "invalid register assignment");
23891         }
23892         if (is_const(RHS(ins, 1))) {
23893                 fprintf(fp, "\t%s ", op);
23894                 print_const_val(state, RHS(ins, 1), fp);
23895                 fprintf(fp, ", %s\n",
23896                         reg(state, RHS(ins, 0), mask));
23897         }
23898         else {
23899                 unsigned lmask, rmask;
23900                 int lreg, rreg;
23901                 lreg = check_reg(state, RHS(ins, 0), mask);
23902                 rreg = check_reg(state, RHS(ins, 1), mask);
23903                 lmask = arch_reg_regcm(state, lreg);
23904                 rmask = arch_reg_regcm(state, rreg);
23905                 mask = lmask & rmask;
23906                 fprintf(fp, "\t%s %s, %s\n",
23907                         op,
23908                         reg(state, RHS(ins, 1), mask),
23909                         reg(state, RHS(ins, 0), mask));
23910         }
23911 }
23912 static void print_unary_op(struct compile_state *state, 
23913         const char *op, struct triple *ins, FILE *fp)
23914 {
23915         unsigned mask;
23916         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
23917         fprintf(fp, "\t%s %s\n",
23918                 op,
23919                 reg(state, RHS(ins, 0), mask));
23920 }
23921
23922 static void print_op_shift(struct compile_state *state,
23923         const char *op, struct triple *ins, FILE *fp)
23924 {
23925         unsigned mask;
23926         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
23927         if (ID_REG(RHS(ins, 0)->id) != ID_REG(ins->id)) {
23928                 internal_error(state, ins, "invalid register assignment");
23929         }
23930         if (is_const(RHS(ins, 1))) {
23931                 fprintf(fp, "\t%s ", op);
23932                 print_const_val(state, RHS(ins, 1), fp);
23933                 fprintf(fp, ", %s\n",
23934                         reg(state, RHS(ins, 0), mask));
23935         }
23936         else {
23937                 fprintf(fp, "\t%s %s, %s\n",
23938                         op,
23939                         reg(state, RHS(ins, 1), REGCM_GPR8_LO),
23940                         reg(state, RHS(ins, 0), mask));
23941         }
23942 }
23943
23944 static void print_op_in(struct compile_state *state, struct triple *ins, FILE *fp)
23945 {
23946         const char *op;
23947         int mask;
23948         int dreg;
23949         mask = 0;
23950         switch(ins->op) {
23951         case OP_INB: op = "inb", mask = REGCM_GPR8_LO; break;
23952         case OP_INW: op = "inw", mask = REGCM_GPR16; break;
23953         case OP_INL: op = "inl", mask = REGCM_GPR32; break;
23954         default:
23955                 internal_error(state, ins, "not an in operation");
23956                 op = 0;
23957                 break;
23958         }
23959         dreg = check_reg(state, ins, mask);
23960         if (!reg_is_reg(state, dreg, REG_EAX)) {
23961                 internal_error(state, ins, "dst != %%eax");
23962         }
23963         if (is_const(RHS(ins, 0))) {
23964                 fprintf(fp, "\t%s ", op);
23965                 print_const_val(state, RHS(ins, 0), fp);
23966                 fprintf(fp, ", %s\n",
23967                         reg(state, ins, mask));
23968         }
23969         else {
23970                 int addr_reg;
23971                 addr_reg = check_reg(state, RHS(ins, 0), REGCM_GPR16);
23972                 if (!reg_is_reg(state, addr_reg, REG_DX)) {
23973                         internal_error(state, ins, "src != %%dx");
23974                 }
23975                 fprintf(fp, "\t%s %s, %s\n",
23976                         op, 
23977                         reg(state, RHS(ins, 0), REGCM_GPR16),
23978                         reg(state, ins, mask));
23979         }
23980 }
23981
23982 static void print_op_out(struct compile_state *state, struct triple *ins, FILE *fp)
23983 {
23984         const char *op;
23985         int mask;
23986         int lreg;
23987         mask = 0;
23988         switch(ins->op) {
23989         case OP_OUTB: op = "outb", mask = REGCM_GPR8_LO; break;
23990         case OP_OUTW: op = "outw", mask = REGCM_GPR16; break;
23991         case OP_OUTL: op = "outl", mask = REGCM_GPR32; break;
23992         default:
23993                 internal_error(state, ins, "not an out operation");
23994                 op = 0;
23995                 break;
23996         }
23997         lreg = check_reg(state, RHS(ins, 0), mask);
23998         if (!reg_is_reg(state, lreg, REG_EAX)) {
23999                 internal_error(state, ins, "src != %%eax");
24000         }
24001         if (is_const(RHS(ins, 1))) {
24002                 fprintf(fp, "\t%s %s,", 
24003                         op, reg(state, RHS(ins, 0), mask));
24004                 print_const_val(state, RHS(ins, 1), fp);
24005                 fprintf(fp, "\n");
24006         }
24007         else {
24008                 int addr_reg;
24009                 addr_reg = check_reg(state, RHS(ins, 1), REGCM_GPR16);
24010                 if (!reg_is_reg(state, addr_reg, REG_DX)) {
24011                         internal_error(state, ins, "dst != %%dx");
24012                 }
24013                 fprintf(fp, "\t%s %s, %s\n",
24014                         op, 
24015                         reg(state, RHS(ins, 0), mask),
24016                         reg(state, RHS(ins, 1), REGCM_GPR16));
24017         }
24018 }
24019
24020 static void print_op_move(struct compile_state *state,
24021         struct triple *ins, FILE *fp)
24022 {
24023         /* op_move is complex because there are many types
24024          * of registers we can move between.
24025          * Because OP_COPY will be introduced in arbitrary locations
24026          * OP_COPY must not affect flags.
24027          * OP_CONVERT can change the flags and it is the only operation
24028          * where it is expected the types in the registers can change.
24029          */
24030         int omit_copy = 1; /* Is it o.k. to omit a noop copy? */
24031         struct triple *dst, *src;
24032         if (state->arch->features & X86_NOOP_COPY) {
24033                 omit_copy = 0;
24034         }
24035         if ((ins->op == OP_COPY) || (ins->op == OP_CONVERT)) {
24036                 src = RHS(ins, 0);
24037                 dst = ins;
24038         }
24039         else {
24040                 internal_error(state, ins, "unknown move operation");
24041                 src = dst = 0;
24042         }
24043         if (reg_size(state, dst) < size_of(state, dst->type)) {
24044                 internal_error(state, ins, "Invalid destination register");
24045         }
24046         if (!equiv_types(src->type, dst->type) && (dst->op == OP_COPY)) {
24047                 fprintf(state->errout, "src type: ");
24048                 name_of(state->errout, src->type);
24049                 fprintf(state->errout, "\n");
24050                 fprintf(state->errout, "dst type: ");
24051                 name_of(state->errout, dst->type);
24052                 fprintf(state->errout, "\n");
24053                 internal_error(state, ins, "Type mismatch for OP_COPY");
24054         }
24055
24056         if (!is_const(src)) {
24057                 int src_reg, dst_reg;
24058                 int src_regcm, dst_regcm;
24059                 src_reg   = ID_REG(src->id);
24060                 dst_reg   = ID_REG(dst->id);
24061                 src_regcm = arch_reg_regcm(state, src_reg);
24062                 dst_regcm = arch_reg_regcm(state, dst_reg);
24063                 /* If the class is the same just move the register */
24064                 if (src_regcm & dst_regcm & 
24065                         (REGCM_GPR8_LO | REGCM_GPR16 | REGCM_GPR32)) {
24066                         if ((src_reg != dst_reg) || !omit_copy) {
24067                                 fprintf(fp, "\tmov %s, %s\n",
24068                                         reg(state, src, src_regcm),
24069                                         reg(state, dst, dst_regcm));
24070                         }
24071                 }
24072                 /* Move 32bit to 16bit */
24073                 else if ((src_regcm & REGCM_GPR32) &&
24074                         (dst_regcm & REGCM_GPR16)) {
24075                         src_reg = (src_reg - REGC_GPR32_FIRST) + REGC_GPR16_FIRST;
24076                         if ((src_reg != dst_reg) || !omit_copy) {
24077                                 fprintf(fp, "\tmovw %s, %s\n",
24078                                         arch_reg_str(src_reg), 
24079                                         arch_reg_str(dst_reg));
24080                         }
24081                 }
24082                 /* Move from 32bit gprs to 16bit gprs */
24083                 else if ((src_regcm & REGCM_GPR32) &&
24084                         (dst_regcm & REGCM_GPR16)) {
24085                         dst_reg = (dst_reg - REGC_GPR16_FIRST) + REGC_GPR32_FIRST;
24086                         if ((src_reg != dst_reg) || !omit_copy) {
24087                                 fprintf(fp, "\tmov %s, %s\n",
24088                                         arch_reg_str(src_reg),
24089                                         arch_reg_str(dst_reg));
24090                         }
24091                 }
24092                 /* Move 32bit to 8bit */
24093                 else if ((src_regcm & REGCM_GPR32_8) &&
24094                         (dst_regcm & REGCM_GPR8_LO))
24095                 {
24096                         src_reg = (src_reg - REGC_GPR32_8_FIRST) + REGC_GPR8_FIRST;
24097                         if ((src_reg != dst_reg) || !omit_copy) {
24098                                 fprintf(fp, "\tmovb %s, %s\n",
24099                                         arch_reg_str(src_reg),
24100                                         arch_reg_str(dst_reg));
24101                         }
24102                 }
24103                 /* Move 16bit to 8bit */
24104                 else if ((src_regcm & REGCM_GPR16_8) &&
24105                         (dst_regcm & REGCM_GPR8_LO))
24106                 {
24107                         src_reg = (src_reg - REGC_GPR16_8_FIRST) + REGC_GPR8_FIRST;
24108                         if ((src_reg != dst_reg) || !omit_copy) {
24109                                 fprintf(fp, "\tmovb %s, %s\n",
24110                                         arch_reg_str(src_reg),
24111                                         arch_reg_str(dst_reg));
24112                         }
24113                 }
24114                 /* Move 8/16bit to 16/32bit */
24115                 else if ((src_regcm & (REGCM_GPR8_LO | REGCM_GPR16)) && 
24116                         (dst_regcm & (REGCM_GPR16 | REGCM_GPR32))) {
24117                         const char *op;
24118                         op = is_signed(src->type)? "movsx": "movzx";
24119                         fprintf(fp, "\t%s %s, %s\n",
24120                                 op,
24121                                 reg(state, src, src_regcm),
24122                                 reg(state, dst, dst_regcm));
24123                 }
24124                 /* Move between sse registers */
24125                 else if ((src_regcm & dst_regcm & REGCM_XMM)) {
24126                         if ((src_reg != dst_reg) || !omit_copy) {
24127                                 fprintf(fp, "\tmovdqa %s, %s\n",
24128                                         reg(state, src, src_regcm),
24129                                         reg(state, dst, dst_regcm));
24130                         }
24131                 }
24132                 /* Move between mmx registers */
24133                 else if ((src_regcm & dst_regcm & REGCM_MMX)) {
24134                         if ((src_reg != dst_reg) || !omit_copy) {
24135                                 fprintf(fp, "\tmovq %s, %s\n",
24136                                         reg(state, src, src_regcm),
24137                                         reg(state, dst, dst_regcm));
24138                         }
24139                 }
24140                 /* Move from sse to mmx registers */
24141                 else if ((src_regcm & REGCM_XMM) && (dst_regcm & REGCM_MMX)) {
24142                         fprintf(fp, "\tmovdq2q %s, %s\n",
24143                                 reg(state, src, src_regcm),
24144                                 reg(state, dst, dst_regcm));
24145                 }
24146                 /* Move from mmx to sse registers */
24147                 else if ((src_regcm & REGCM_MMX) && (dst_regcm & REGCM_XMM)) {
24148                         fprintf(fp, "\tmovq2dq %s, %s\n",
24149                                 reg(state, src, src_regcm),
24150                                 reg(state, dst, dst_regcm));
24151                 }
24152                 /* Move between 32bit gprs & mmx/sse registers */
24153                 else if ((src_regcm & (REGCM_GPR32 | REGCM_MMX | REGCM_XMM)) &&
24154                         (dst_regcm & (REGCM_GPR32 | REGCM_MMX | REGCM_XMM))) {
24155                         fprintf(fp, "\tmovd %s, %s\n",
24156                                 reg(state, src, src_regcm),
24157                                 reg(state, dst, dst_regcm));
24158                 }
24159                 /* Move from 16bit gprs &  mmx/sse registers */
24160                 else if ((src_regcm & REGCM_GPR16) &&
24161                         (dst_regcm & (REGCM_MMX | REGCM_XMM))) {
24162                         const char *op;
24163                         int mid_reg;
24164                         op = is_signed(src->type)? "movsx":"movzx";
24165                         mid_reg = (src_reg - REGC_GPR16_FIRST) + REGC_GPR32_FIRST;
24166                         fprintf(fp, "\t%s %s, %s\n\tmovd %s, %s\n",
24167                                 op,
24168                                 arch_reg_str(src_reg),
24169                                 arch_reg_str(mid_reg),
24170                                 arch_reg_str(mid_reg),
24171                                 arch_reg_str(dst_reg));
24172                 }
24173                 /* Move from mmx/sse registers to 16bit gprs */
24174                 else if ((src_regcm & (REGCM_MMX | REGCM_XMM)) &&
24175                         (dst_regcm & REGCM_GPR16)) {
24176                         dst_reg = (dst_reg - REGC_GPR16_FIRST) + REGC_GPR32_FIRST;
24177                         fprintf(fp, "\tmovd %s, %s\n",
24178                                 arch_reg_str(src_reg),
24179                                 arch_reg_str(dst_reg));
24180                 }
24181                 /* Move from gpr to 64bit dividend */
24182                 else if ((src_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO))  &&
24183                         (dst_regcm & REGCM_DIVIDEND64)) {
24184                         const char *extend;
24185                         extend = is_signed(src->type)? "cltd":"movl $0, %edx";
24186                         fprintf(fp, "\tmov %s, %%eax\n\t%s\n",
24187                                 arch_reg_str(src_reg), 
24188                                 extend);
24189                 }
24190                 /* Move from 64bit gpr to gpr */
24191                 else if ((src_regcm & REGCM_DIVIDEND64) &&
24192                         (dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO))) {
24193                         if (dst_regcm & REGCM_GPR32) {
24194                                 src_reg = REG_EAX;
24195                         } 
24196                         else if (dst_regcm & REGCM_GPR16) {
24197                                 src_reg = REG_AX;
24198                         }
24199                         else if (dst_regcm & REGCM_GPR8_LO) {
24200                                 src_reg = REG_AL;
24201                         }
24202                         fprintf(fp, "\tmov %s, %s\n",
24203                                 arch_reg_str(src_reg),
24204                                 arch_reg_str(dst_reg));
24205                 }
24206                 /* Move from mmx/sse registers to 64bit gpr */
24207                 else if ((src_regcm & (REGCM_MMX | REGCM_XMM)) &&
24208                         (dst_regcm & REGCM_DIVIDEND64)) {
24209                         const char *extend;
24210                         extend = is_signed(src->type)? "cltd": "movl $0, %edx";
24211                         fprintf(fp, "\tmovd %s, %%eax\n\t%s\n",
24212                                 arch_reg_str(src_reg),
24213                                 extend);
24214                 }
24215                 /* Move from 64bit gpr to mmx/sse register */
24216                 else if ((src_regcm & REGCM_DIVIDEND64) &&
24217                         (dst_regcm & (REGCM_XMM | REGCM_MMX))) {
24218                         fprintf(fp, "\tmovd %%eax, %s\n",
24219                                 arch_reg_str(dst_reg));
24220                 }
24221 #if X86_4_8BIT_GPRS
24222                 /* Move from 8bit gprs to  mmx/sse registers */
24223                 else if ((src_regcm & REGCM_GPR8_LO) && (src_reg <= REG_DL) &&
24224                         (dst_regcm & (REGCM_MMX | REGCM_XMM))) {
24225                         const char *op;
24226                         int mid_reg;
24227                         op = is_signed(src->type)? "movsx":"movzx";
24228                         mid_reg = (src_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
24229                         fprintf(fp, "\t%s %s, %s\n\tmovd %s, %s\n",
24230                                 op,
24231                                 reg(state, src, src_regcm),
24232                                 arch_reg_str(mid_reg),
24233                                 arch_reg_str(mid_reg),
24234                                 reg(state, dst, dst_regcm));
24235                 }
24236                 /* Move from mmx/sse registers and 8bit gprs */
24237                 else if ((src_regcm & (REGCM_MMX | REGCM_XMM)) &&
24238                         (dst_regcm & REGCM_GPR8_LO) && (dst_reg <= REG_DL)) {
24239                         int mid_reg;
24240                         mid_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
24241                         fprintf(fp, "\tmovd %s, %s\n",
24242                                 reg(state, src, src_regcm),
24243                                 arch_reg_str(mid_reg));
24244                 }
24245                 /* Move from 32bit gprs to 8bit gprs */
24246                 else if ((src_regcm & REGCM_GPR32) &&
24247                         (dst_regcm & REGCM_GPR8_LO)) {
24248                         dst_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
24249                         if ((src_reg != dst_reg) || !omit_copy) {
24250                                 fprintf(fp, "\tmov %s, %s\n",
24251                                         arch_reg_str(src_reg),
24252                                         arch_reg_str(dst_reg));
24253                         }
24254                 }
24255                 /* Move from 16bit gprs to 8bit gprs */
24256                 else if ((src_regcm & REGCM_GPR16) &&
24257                         (dst_regcm & REGCM_GPR8_LO)) {
24258                         dst_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR16_FIRST;
24259                         if ((src_reg != dst_reg) || !omit_copy) {
24260                                 fprintf(fp, "\tmov %s, %s\n",
24261                                         arch_reg_str(src_reg),
24262                                         arch_reg_str(dst_reg));
24263                         }
24264                 }
24265 #endif /* X86_4_8BIT_GPRS */
24266                 /* Move from %eax:%edx to %eax:%edx */
24267                 else if ((src_regcm & REGCM_DIVIDEND64) &&
24268                         (dst_regcm & REGCM_DIVIDEND64) &&
24269                         (src_reg == dst_reg)) {
24270                         if (!omit_copy) {
24271                                 fprintf(fp, "\t/*mov %s, %s*/\n",
24272                                         arch_reg_str(src_reg),
24273                                         arch_reg_str(dst_reg));
24274                         }
24275                 }
24276                 else {
24277                         if ((src_regcm & ~REGCM_FLAGS) == 0) {
24278                                 internal_error(state, ins, "attempt to copy from %%eflags!");
24279                         }
24280                         internal_error(state, ins, "unknown copy type");
24281                 }
24282         }
24283         else {
24284                 size_t dst_size;
24285                 int dst_reg;
24286                 int dst_regcm;
24287                 dst_size = size_of(state, dst->type);
24288                 dst_reg = ID_REG(dst->id);
24289                 dst_regcm = arch_reg_regcm(state, dst_reg);
24290                 if (dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO)) {
24291                         fprintf(fp, "\tmov ");
24292                         print_const_val(state, src, fp);
24293                         fprintf(fp, ", %s\n",
24294                                 reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO));
24295                 }
24296                 else if (dst_regcm & REGCM_DIVIDEND64) {
24297                         if (dst_size > SIZEOF_I32) {
24298                                 internal_error(state, ins, "%dbit constant...", dst_size);
24299                         }
24300                         fprintf(fp, "\tmov $0, %%edx\n");
24301                         fprintf(fp, "\tmov ");
24302                         print_const_val(state, src, fp);
24303                         fprintf(fp, ", %%eax\n");
24304                 }
24305                 else if (dst_regcm & REGCM_DIVIDEND32) {
24306                         if (dst_size > SIZEOF_I16) {
24307                                 internal_error(state, ins, "%dbit constant...", dst_size);
24308                         }
24309                         fprintf(fp, "\tmov $0, %%dx\n");
24310                         fprintf(fp, "\tmov ");
24311                         print_const_val(state, src, fp);
24312                         fprintf(fp, ", %%ax");
24313                 }
24314                 else if (dst_regcm & (REGCM_XMM | REGCM_MMX)) {
24315                         long ref;
24316                         if (dst_size > SIZEOF_I32) {
24317                                 internal_error(state, ins, "%d bit constant...", dst_size);
24318                         }
24319                         ref = get_const_pool_ref(state, src, SIZEOF_I32, fp);
24320                         fprintf(fp, "\tmovd L%s%lu, %s\n",
24321                                 state->compiler->label_prefix, ref,
24322                                 reg(state, dst, (REGCM_XMM | REGCM_MMX)));
24323                 }
24324                 else {
24325                         internal_error(state, ins, "unknown copy immediate type");
24326                 }
24327         }
24328         /* Leave now if this is not a type conversion */
24329         if (ins->op != OP_CONVERT) {
24330                 return;
24331         }
24332         /* Now make certain I have not logically overflowed the destination */
24333         if ((size_of(state, src->type) > size_of(state, dst->type)) &&
24334                 (size_of(state, dst->type) < reg_size(state, dst)))
24335         {
24336                 unsigned long mask;
24337                 int dst_reg;
24338                 int dst_regcm;
24339                 if (size_of(state, dst->type) >= 32) {
24340                         fprintf(state->errout, "dst type: ");
24341                         name_of(state->errout, dst->type);
24342                         fprintf(state->errout, "\n");
24343                         internal_error(state, dst, "unhandled dst type size");
24344                 }
24345                 mask = 1;
24346                 mask <<= size_of(state, dst->type);
24347                 mask -= 1;
24348
24349                 dst_reg = ID_REG(dst->id);
24350                 dst_regcm = arch_reg_regcm(state, dst_reg);
24351
24352                 if (dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO)) {
24353                         fprintf(fp, "\tand $0x%lx, %s\n",
24354                                 mask, reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO));
24355                 }
24356                 else if (dst_regcm & REGCM_MMX) {
24357                         long ref;
24358                         ref = get_mask_pool_ref(state, dst, mask, fp);
24359                         fprintf(fp, "\tpand L%s%lu, %s\n",
24360                                 state->compiler->label_prefix, ref,
24361                                 reg(state, dst, REGCM_MMX));
24362                 }
24363                 else if (dst_regcm & REGCM_XMM) {
24364                         long ref;
24365                         ref = get_mask_pool_ref(state, dst, mask, fp);
24366                         fprintf(fp, "\tpand L%s%lu, %s\n",
24367                                 state->compiler->label_prefix, ref,
24368                                 reg(state, dst, REGCM_XMM));
24369                 }
24370                 else {
24371                         fprintf(state->errout, "dst type: ");
24372                         name_of(state->errout, dst->type);
24373                         fprintf(state->errout, "\n");
24374                         fprintf(state->errout, "dst: %s\n", reg(state, dst, REGCM_ALL));
24375                         internal_error(state, dst, "failed to trunc value: mask %lx", mask);
24376                 }
24377         }
24378         /* Make certain I am properly sign extended */
24379         if ((size_of(state, src->type) < size_of(state, dst->type)) &&
24380                 (is_signed(src->type)))
24381         {
24382                 int bits, reg_bits, shift_bits;
24383                 int dst_reg;
24384                 int dst_regcm;
24385
24386                 bits = size_of(state, src->type);
24387                 reg_bits = reg_size(state, dst);
24388                 if (reg_bits > 32) {
24389                         reg_bits = 32;
24390                 }
24391                 shift_bits = reg_bits - size_of(state, src->type);
24392                 dst_reg = ID_REG(dst->id);
24393                 dst_regcm = arch_reg_regcm(state, dst_reg);
24394
24395                 if (shift_bits < 0) {
24396                         internal_error(state, dst, "negative shift?");
24397                 }
24398
24399                 if (dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO)) {
24400                         fprintf(fp, "\tshl $%d, %s\n", 
24401                                 shift_bits, 
24402                                 reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO));
24403                         fprintf(fp, "\tsar $%d, %s\n", 
24404                                 shift_bits, 
24405                                 reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO));
24406                 }
24407                 else if (dst_regcm & (REGCM_MMX | REGCM_XMM)) {
24408                         fprintf(fp, "\tpslld $%d, %s\n",
24409                                 shift_bits, 
24410                                 reg(state, dst, REGCM_MMX | REGCM_XMM));
24411                         fprintf(fp, "\tpsrad $%d, %s\n",
24412                                 shift_bits, 
24413                                 reg(state, dst, REGCM_MMX | REGCM_XMM));
24414                 }
24415                 else {
24416                         fprintf(state->errout, "dst type: ");
24417                         name_of(state->errout, dst->type);
24418                         fprintf(state->errout, "\n");
24419                         fprintf(state->errout, "dst: %s\n", reg(state, dst, REGCM_ALL));
24420                         internal_error(state, dst, "failed to signed extend value");
24421                 }
24422         }
24423 }
24424
24425 static void print_op_load(struct compile_state *state,
24426         struct triple *ins, FILE *fp)
24427 {
24428         struct triple *dst, *src;
24429         const char *op;
24430         dst = ins;
24431         src = RHS(ins, 0);
24432         if (is_const(src) || is_const(dst)) {
24433                 internal_error(state, ins, "unknown load operation");
24434         }
24435         switch(ins->type->type & TYPE_MASK) {
24436         case TYPE_CHAR:   op = "movsbl"; break;
24437         case TYPE_UCHAR:  op = "movzbl"; break;
24438         case TYPE_SHORT:  op = "movswl"; break;
24439         case TYPE_USHORT: op = "movzwl"; break;
24440         case TYPE_INT:    case TYPE_UINT:
24441         case TYPE_LONG:   case TYPE_ULONG:
24442         case TYPE_POINTER:
24443                 op = "movl"; 
24444                 break;
24445         default:
24446                 internal_error(state, ins, "unknown type in load");
24447                 op = "<invalid opcode>";
24448                 break;
24449         }
24450         fprintf(fp, "\t%s (%s), %s\n",
24451                 op, 
24452                 reg(state, src, REGCM_GPR32),
24453                 reg(state, dst, REGCM_GPR32));
24454 }
24455
24456
24457 static void print_op_store(struct compile_state *state,
24458         struct triple *ins, FILE *fp)
24459 {
24460         struct triple *dst, *src;
24461         dst = RHS(ins, 0);
24462         src = RHS(ins, 1);
24463         if (is_const(src) && (src->op == OP_INTCONST)) {
24464                 long_t value;
24465                 value = (long_t)(src->u.cval);
24466                 fprintf(fp, "\tmov%s $%ld, (%s)\n",
24467                         type_suffix(state, src->type),
24468                         (long)(value),
24469                         reg(state, dst, REGCM_GPR32));
24470         }
24471         else if (is_const(dst) && (dst->op == OP_INTCONST)) {
24472                 fprintf(fp, "\tmov%s %s, 0x%08lx\n",
24473                         type_suffix(state, src->type),
24474                         reg(state, src, REGCM_GPR8_LO | REGCM_GPR16 | REGCM_GPR32),
24475                         (unsigned long)(dst->u.cval));
24476         }
24477         else {
24478                 if (is_const(src) || is_const(dst)) {
24479                         internal_error(state, ins, "unknown store operation");
24480                 }
24481                 fprintf(fp, "\tmov%s %s, (%s)\n",
24482                         type_suffix(state, src->type),
24483                         reg(state, src, REGCM_GPR8_LO | REGCM_GPR16 | REGCM_GPR32),
24484                         reg(state, dst, REGCM_GPR32));
24485         }
24486         
24487         
24488 }
24489
24490 static void print_op_smul(struct compile_state *state,
24491         struct triple *ins, FILE *fp)
24492 {
24493         if (!is_const(RHS(ins, 1))) {
24494                 fprintf(fp, "\timul %s, %s\n",
24495                         reg(state, RHS(ins, 1), REGCM_GPR32),
24496                         reg(state, RHS(ins, 0), REGCM_GPR32));
24497         }
24498         else {
24499                 fprintf(fp, "\timul ");
24500                 print_const_val(state, RHS(ins, 1), fp);
24501                 fprintf(fp, ", %s\n", reg(state, RHS(ins, 0), REGCM_GPR32));
24502         }
24503 }
24504
24505 static void print_op_cmp(struct compile_state *state,
24506         struct triple *ins, FILE *fp)
24507 {
24508         unsigned mask;
24509         int dreg;
24510         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
24511         dreg = check_reg(state, ins, REGCM_FLAGS);
24512         if (!reg_is_reg(state, dreg, REG_EFLAGS)) {
24513                 internal_error(state, ins, "bad dest register for cmp");
24514         }
24515         if (is_const(RHS(ins, 1))) {
24516                 fprintf(fp, "\tcmp ");
24517                 print_const_val(state, RHS(ins, 1), fp);
24518                 fprintf(fp, ", %s\n", reg(state, RHS(ins, 0), mask));
24519         }
24520         else {
24521                 unsigned lmask, rmask;
24522                 int lreg, rreg;
24523                 lreg = check_reg(state, RHS(ins, 0), mask);
24524                 rreg = check_reg(state, RHS(ins, 1), mask);
24525                 lmask = arch_reg_regcm(state, lreg);
24526                 rmask = arch_reg_regcm(state, rreg);
24527                 mask = lmask & rmask;
24528                 fprintf(fp, "\tcmp %s, %s\n",
24529                         reg(state, RHS(ins, 1), mask),
24530                         reg(state, RHS(ins, 0), mask));
24531         }
24532 }
24533
24534 static void print_op_test(struct compile_state *state,
24535         struct triple *ins, FILE *fp)
24536 {
24537         unsigned mask;
24538         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
24539         fprintf(fp, "\ttest %s, %s\n",
24540                 reg(state, RHS(ins, 0), mask),
24541                 reg(state, RHS(ins, 0), mask));
24542 }
24543
24544 static void print_op_branch(struct compile_state *state,
24545         struct triple *branch, FILE *fp)
24546 {
24547         const char *bop = "j";
24548         if ((branch->op == OP_JMP) || (branch->op == OP_CALL)) {
24549                 if (branch->rhs != 0) {
24550                         internal_error(state, branch, "jmp with condition?");
24551                 }
24552                 bop = "jmp";
24553         }
24554         else {
24555                 struct triple *ptr;
24556                 if (branch->rhs != 1) {
24557                         internal_error(state, branch, "jmpcc without condition?");
24558                 }
24559                 check_reg(state, RHS(branch, 0), REGCM_FLAGS);
24560                 if ((RHS(branch, 0)->op != OP_CMP) &&
24561                         (RHS(branch, 0)->op != OP_TEST)) {
24562                         internal_error(state, branch, "bad branch test");
24563                 }
24564 #if DEBUG_ROMCC_WARNINGS
24565 #warning "FIXME I have observed instructions between the test and branch instructions"
24566 #endif
24567                 ptr = RHS(branch, 0);
24568                 for(ptr = RHS(branch, 0)->next; ptr != branch; ptr = ptr->next) {
24569                         if (ptr->op != OP_COPY) {
24570                                 internal_error(state, branch, "branch does not follow test");
24571                         }
24572                 }
24573                 switch(branch->op) {
24574                 case OP_JMP_EQ:       bop = "jz";  break;
24575                 case OP_JMP_NOTEQ:    bop = "jnz"; break;
24576                 case OP_JMP_SLESS:    bop = "jl";  break;
24577                 case OP_JMP_ULESS:    bop = "jb";  break;
24578                 case OP_JMP_SMORE:    bop = "jg";  break;
24579                 case OP_JMP_UMORE:    bop = "ja";  break;
24580                 case OP_JMP_SLESSEQ:  bop = "jle"; break;
24581                 case OP_JMP_ULESSEQ:  bop = "jbe"; break;
24582                 case OP_JMP_SMOREEQ:  bop = "jge"; break;
24583                 case OP_JMP_UMOREEQ:  bop = "jae"; break;
24584                 default:
24585                         internal_error(state, branch, "Invalid branch op");
24586                         break;
24587                 }
24588                 
24589         }
24590 #if 1
24591         if (branch->op == OP_CALL) {
24592                 fprintf(fp, "\t/* call */\n");
24593         }
24594 #endif
24595         fprintf(fp, "\t%s L%s%lu\n",
24596                 bop, 
24597                 state->compiler->label_prefix,
24598                 (unsigned long)(TARG(branch, 0)->u.cval));
24599 }
24600
24601 static void print_op_ret(struct compile_state *state,
24602         struct triple *branch, FILE *fp)
24603 {
24604         fprintf(fp, "\tjmp *%s\n",
24605                 reg(state, RHS(branch, 0), REGCM_GPR32));
24606 }
24607
24608 static void print_op_set(struct compile_state *state,
24609         struct triple *set, FILE *fp)
24610 {
24611         const char *sop = "set";
24612         if (set->rhs != 1) {
24613                 internal_error(state, set, "setcc without condition?");
24614         }
24615         check_reg(state, RHS(set, 0), REGCM_FLAGS);
24616         if ((RHS(set, 0)->op != OP_CMP) &&
24617                 (RHS(set, 0)->op != OP_TEST)) {
24618                 internal_error(state, set, "bad set test");
24619         }
24620         if (RHS(set, 0)->next != set) {
24621                 internal_error(state, set, "set does not follow test");
24622         }
24623         switch(set->op) {
24624         case OP_SET_EQ:       sop = "setz";  break;
24625         case OP_SET_NOTEQ:    sop = "setnz"; break;
24626         case OP_SET_SLESS:    sop = "setl";  break;
24627         case OP_SET_ULESS:    sop = "setb";  break;
24628         case OP_SET_SMORE:    sop = "setg";  break;
24629         case OP_SET_UMORE:    sop = "seta";  break;
24630         case OP_SET_SLESSEQ:  sop = "setle"; break;
24631         case OP_SET_ULESSEQ:  sop = "setbe"; break;
24632         case OP_SET_SMOREEQ:  sop = "setge"; break;
24633         case OP_SET_UMOREEQ:  sop = "setae"; break;
24634         default:
24635                 internal_error(state, set, "Invalid set op");
24636                 break;
24637         }
24638         fprintf(fp, "\t%s %s\n",
24639                 sop, reg(state, set, REGCM_GPR8_LO));
24640 }
24641
24642 static void print_op_bit_scan(struct compile_state *state, 
24643         struct triple *ins, FILE *fp) 
24644 {
24645         const char *op;
24646         switch(ins->op) {
24647         case OP_BSF: op = "bsf"; break;
24648         case OP_BSR: op = "bsr"; break;
24649         default: 
24650                 internal_error(state, ins, "unknown bit scan");
24651                 op = 0;
24652                 break;
24653         }
24654         fprintf(fp, 
24655                 "\t%s %s, %s\n"
24656                 "\tjnz 1f\n"
24657                 "\tmovl $-1, %s\n"
24658                 "1:\n",
24659                 op,
24660                 reg(state, RHS(ins, 0), REGCM_GPR32),
24661                 reg(state, ins, REGCM_GPR32),
24662                 reg(state, ins, REGCM_GPR32));
24663 }
24664
24665
24666 static void print_sdecl(struct compile_state *state,
24667         struct triple *ins, FILE *fp)
24668 {
24669         fprintf(fp, ".section \"" DATA_SECTION "\"\n");
24670         fprintf(fp, ".balign %ld\n", (long int)align_of_in_bytes(state, ins->type));
24671         fprintf(fp, "L%s%lu:\n", 
24672                 state->compiler->label_prefix, (unsigned long)(ins->u.cval));
24673         print_const(state, MISC(ins, 0), fp);
24674         fprintf(fp, ".section \"" TEXT_SECTION "\"\n");
24675                 
24676 }
24677
24678 static void print_instruction(struct compile_state *state,
24679         struct triple *ins, FILE *fp)
24680 {
24681         /* Assumption: after I have exted the register allocator
24682          * everything is in a valid register. 
24683          */
24684         switch(ins->op) {
24685         case OP_ASM:
24686                 print_op_asm(state, ins, fp);
24687                 break;
24688         case OP_ADD:    print_binary_op(state, "add", ins, fp); break;
24689         case OP_SUB:    print_binary_op(state, "sub", ins, fp); break;
24690         case OP_AND:    print_binary_op(state, "and", ins, fp); break;
24691         case OP_XOR:    print_binary_op(state, "xor", ins, fp); break;
24692         case OP_OR:     print_binary_op(state, "or",  ins, fp); break;
24693         case OP_SL:     print_op_shift(state, "shl", ins, fp); break;
24694         case OP_USR:    print_op_shift(state, "shr", ins, fp); break;
24695         case OP_SSR:    print_op_shift(state, "sar", ins, fp); break;
24696         case OP_POS:    break;
24697         case OP_NEG:    print_unary_op(state, "neg", ins, fp); break;
24698         case OP_INVERT: print_unary_op(state, "not", ins, fp); break;
24699         case OP_NOOP:
24700         case OP_INTCONST:
24701         case OP_ADDRCONST:
24702         case OP_BLOBCONST:
24703                 /* Don't generate anything here for constants */
24704         case OP_PHI:
24705                 /* Don't generate anything for variable declarations. */
24706                 break;
24707         case OP_UNKNOWNVAL:
24708                 fprintf(fp, " /* unknown %s */\n",
24709                         reg(state, ins, REGCM_ALL));
24710                 break;
24711         case OP_SDECL:
24712                 print_sdecl(state, ins, fp);
24713                 break;
24714         case OP_COPY:   
24715         case OP_CONVERT:
24716                 print_op_move(state, ins, fp);
24717                 break;
24718         case OP_LOAD:
24719                 print_op_load(state, ins, fp);
24720                 break;
24721         case OP_STORE:
24722                 print_op_store(state, ins, fp);
24723                 break;
24724         case OP_SMUL:
24725                 print_op_smul(state, ins, fp);
24726                 break;
24727         case OP_CMP:    print_op_cmp(state, ins, fp); break;
24728         case OP_TEST:   print_op_test(state, ins, fp); break;
24729         case OP_JMP:
24730         case OP_JMP_EQ:      case OP_JMP_NOTEQ:
24731         case OP_JMP_SLESS:   case OP_JMP_ULESS:
24732         case OP_JMP_SMORE:   case OP_JMP_UMORE:
24733         case OP_JMP_SLESSEQ: case OP_JMP_ULESSEQ:
24734         case OP_JMP_SMOREEQ: case OP_JMP_UMOREEQ:
24735         case OP_CALL:
24736                 print_op_branch(state, ins, fp);
24737                 break;
24738         case OP_RET:
24739                 print_op_ret(state, ins, fp);
24740                 break;
24741         case OP_SET_EQ:      case OP_SET_NOTEQ:
24742         case OP_SET_SLESS:   case OP_SET_ULESS:
24743         case OP_SET_SMORE:   case OP_SET_UMORE:
24744         case OP_SET_SLESSEQ: case OP_SET_ULESSEQ:
24745         case OP_SET_SMOREEQ: case OP_SET_UMOREEQ:
24746                 print_op_set(state, ins, fp);
24747                 break;
24748         case OP_INB:  case OP_INW:  case OP_INL:
24749                 print_op_in(state, ins, fp); 
24750                 break;
24751         case OP_OUTB: case OP_OUTW: case OP_OUTL:
24752                 print_op_out(state, ins, fp); 
24753                 break;
24754         case OP_BSF:
24755         case OP_BSR:
24756                 print_op_bit_scan(state, ins, fp);
24757                 break;
24758         case OP_RDMSR:
24759                 after_lhs(state, ins);
24760                 fprintf(fp, "\trdmsr\n");
24761                 break;
24762         case OP_WRMSR:
24763                 fprintf(fp, "\twrmsr\n");
24764                 break;
24765         case OP_HLT:
24766                 fprintf(fp, "\thlt\n");
24767                 break;
24768         case OP_SDIVT:
24769                 fprintf(fp, "\tidiv %s\n", reg(state, RHS(ins, 1), REGCM_GPR32));
24770                 break;
24771         case OP_UDIVT:
24772                 fprintf(fp, "\tdiv %s\n", reg(state, RHS(ins, 1), REGCM_GPR32));
24773                 break;
24774         case OP_UMUL:
24775                 fprintf(fp, "\tmul %s\n", reg(state, RHS(ins, 1), REGCM_GPR32));
24776                 break;
24777         case OP_LABEL:
24778                 if (!ins->use) {
24779                         return;
24780                 }
24781                 fprintf(fp, "L%s%lu:\n", 
24782                         state->compiler->label_prefix, (unsigned long)(ins->u.cval));
24783                 break;
24784         case OP_ADECL:
24785                 /* Ignore adecls with no registers error otherwise */
24786                 if (!noop_adecl(ins)) {
24787                         internal_error(state, ins, "adecl remains?");
24788                 }
24789                 break;
24790                 /* Ignore OP_PIECE */
24791         case OP_PIECE:
24792                 break;
24793                 /* Operations that should never get here */
24794         case OP_SDIV: case OP_UDIV:
24795         case OP_SMOD: case OP_UMOD:
24796         case OP_LTRUE:   case OP_LFALSE:  case OP_EQ:      case OP_NOTEQ:
24797         case OP_SLESS:   case OP_ULESS:   case OP_SMORE:   case OP_UMORE:
24798         case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
24799         default:
24800                 internal_error(state, ins, "unknown op: %d %s",
24801                         ins->op, tops(ins->op));
24802                 break;
24803         }
24804 }
24805
24806 static void print_instructions(struct compile_state *state)
24807 {
24808         struct triple *first, *ins;
24809         int print_location;
24810         struct occurance *last_occurance;
24811         FILE *fp;
24812         int max_inline_depth;
24813         max_inline_depth = 0;
24814         print_location = 1;
24815         last_occurance = 0;
24816         fp = state->output;
24817         /* Masks for common sizes */
24818         fprintf(fp, ".section \"" DATA_SECTION "\"\n");
24819         fprintf(fp, ".balign 16\n");
24820         fprintf(fp, "L%s1:\n", state->compiler->label_prefix);
24821         fprintf(fp, ".int 0xff, 0, 0, 0\n");
24822         fprintf(fp, "L%s2:\n", state->compiler->label_prefix);
24823         fprintf(fp, ".int 0xffff, 0, 0, 0\n");
24824         fprintf(fp, ".section \"" TEXT_SECTION "\"\n");
24825         first = state->first;
24826         ins = first;
24827         do {
24828                 if (print_location && 
24829                         last_occurance != ins->occurance) {
24830                         if (!ins->occurance->parent) {
24831                                 fprintf(fp, "\t/* %s,%s:%d.%d */\n",
24832                                         ins->occurance->function?ins->occurance->function:"(null)",
24833                                         ins->occurance->filename?ins->occurance->filename:"(null)",
24834                                         ins->occurance->line,
24835                                         ins->occurance->col);
24836                         }
24837                         else {
24838                                 struct occurance *ptr;
24839                                 int inline_depth;
24840                                 fprintf(fp, "\t/*\n");
24841                                 inline_depth = 0;
24842                                 for(ptr = ins->occurance; ptr; ptr = ptr->parent) {
24843                                         inline_depth++;
24844                                         fprintf(fp, "\t * %s,%s:%d.%d\n",
24845                                                 ptr->function,
24846                                                 ptr->filename,
24847                                                 ptr->line,
24848                                                 ptr->col);
24849                                 }
24850                                 fprintf(fp, "\t */\n");
24851                                 if (inline_depth > max_inline_depth) {
24852                                         max_inline_depth = inline_depth;
24853                                 }
24854                         }
24855                         if (last_occurance) {
24856                                 put_occurance(last_occurance);
24857                         }
24858                         get_occurance(ins->occurance);
24859                         last_occurance = ins->occurance;
24860                 }
24861
24862                 print_instruction(state, ins, fp);
24863                 ins = ins->next;
24864         } while(ins != first);
24865         if (print_location) {
24866                 fprintf(fp, "/* max inline depth %d */\n",
24867                         max_inline_depth);
24868         }
24869 }
24870
24871 static void generate_code(struct compile_state *state)
24872 {
24873         generate_local_labels(state);
24874         print_instructions(state);
24875         
24876 }
24877
24878 static void print_preprocessed_tokens(struct compile_state *state)
24879 {
24880         int tok;
24881         FILE *fp;
24882         int line;
24883         const char *filename;
24884         fp = state->output;
24885         filename = 0;
24886         line = 0;
24887         for(;;) {
24888                 struct file_state *file;
24889                 struct token *tk;
24890                 const char *token_str;
24891                 tok = peek(state);
24892                 if (tok == TOK_EOF) {
24893                         break;
24894                 }
24895                 tk = eat(state, tok);
24896                 token_str = 
24897                         tk->ident ? tk->ident->name :
24898                         tk->str_len ? tk->val.str :
24899                         tokens[tk->tok];
24900
24901                 file = state->file;
24902                 while(file->macro && file->prev) {
24903                         file = file->prev;
24904                 }
24905                 if (!file->macro && 
24906                         ((file->line != line) || (file->basename != filename))) 
24907                 {
24908                         int i, col;
24909                         if ((file->basename == filename) &&
24910                                 (line < file->line)) {
24911                                 while(line < file->line) {
24912                                         fprintf(fp, "\n");
24913                                         line++;
24914                                 }
24915                         }
24916                         else {
24917                                 fprintf(fp, "\n#line %d \"%s\"\n",
24918                                         file->line, file->basename);
24919                         }
24920                         line = file->line;
24921                         filename = file->basename;
24922                         col = get_col(file) - strlen(token_str);
24923                         for(i = 0; i < col; i++) {
24924                                 fprintf(fp, " ");
24925                         }
24926                 }
24927                 
24928                 fprintf(fp, "%s ", token_str);
24929                 
24930                 if (state->compiler->debug & DEBUG_TOKENS) {
24931                         loc(state->dbgout, state, 0);
24932                         fprintf(state->dbgout, "%s <- `%s'\n",
24933                                 tokens[tok], token_str);
24934                 }
24935         }
24936 }
24937
24938 static void compile(const char *filename,
24939         struct compiler_state *compiler, struct arch_state *arch)
24940 {
24941         int i;
24942         struct compile_state state;
24943         struct triple *ptr;
24944         struct filelist *includes = include_filelist;
24945         memset(&state, 0, sizeof(state));
24946         state.compiler = compiler;
24947         state.arch     = arch;
24948         state.file = 0;
24949         for(i = 0; i < sizeof(state.token)/sizeof(state.token[0]); i++) {
24950                 memset(&state.token[i], 0, sizeof(state.token[i]));
24951                 state.token[i].tok = -1;
24952         }
24953         /* Remember the output descriptors */
24954         state.errout = stderr;
24955         state.dbgout = stdout;
24956         /* Remember the output filename */
24957         state.output    = fopen(state.compiler->ofilename, "w");
24958         if (!state.output) {
24959                 error(&state, 0, "Cannot open output file %s\n",
24960                         state.compiler->ofilename);
24961         }
24962         /* Make certain a good cleanup happens */
24963         exit_state = &state;
24964         atexit(exit_cleanup);
24965
24966         /* Prep the preprocessor */
24967         state.if_depth = 0;
24968         memset(state.if_bytes, 0, sizeof(state.if_bytes));
24969         /* register the C keywords */
24970         register_keywords(&state);
24971         /* register the keywords the macro preprocessor knows */
24972         register_macro_keywords(&state);
24973         /* generate some builtin macros */
24974         register_builtin_macros(&state);
24975         /* Memorize where some special keywords are. */
24976         state.i_switch        = lookup(&state, "switch", 6);
24977         state.i_case          = lookup(&state, "case", 4);
24978         state.i_continue      = lookup(&state, "continue", 8);
24979         state.i_break         = lookup(&state, "break", 5);
24980         state.i_default       = lookup(&state, "default", 7);
24981         state.i_return        = lookup(&state, "return", 6);
24982         /* Memorize where predefined macros are. */
24983         state.i___VA_ARGS__   = lookup(&state, "__VA_ARGS__", 11);
24984         state.i___FILE__      = lookup(&state, "__FILE__", 8);
24985         state.i___LINE__      = lookup(&state, "__LINE__", 8);
24986         /* Memorize where predefined identifiers are. */
24987         state.i___func__      = lookup(&state, "__func__", 8);
24988         /* Memorize where some attribute keywords are. */
24989         state.i_noinline      = lookup(&state, "noinline", 8);
24990         state.i_always_inline = lookup(&state, "always_inline", 13);
24991
24992         /* Process the command line macros */
24993         process_cmdline_macros(&state);
24994
24995         /* Allocate beginning bounding labels for the function list */
24996         state.first = label(&state);
24997         state.first->id |= TRIPLE_FLAG_VOLATILE;
24998         use_triple(state.first, state.first);
24999         ptr = label(&state);
25000         ptr->id |= TRIPLE_FLAG_VOLATILE;
25001         use_triple(ptr, ptr);
25002         flatten(&state, state.first, ptr);
25003
25004         /* Allocate a label for the pool of global variables */
25005         state.global_pool = label(&state);
25006         state.global_pool->id |= TRIPLE_FLAG_VOLATILE;
25007         flatten(&state, state.first, state.global_pool);
25008
25009         /* Enter the globl definition scope */
25010         start_scope(&state);
25011         register_builtins(&state);
25012
25013         compile_file(&state, filename, 1);
25014         
25015         while (includes) {
25016                 compile_file(&state, includes->filename, 1);
25017                 includes=includes->next;
25018         }
25019
25020         /* Stop if all we want is preprocessor output */
25021         if (state.compiler->flags & COMPILER_PP_ONLY) {
25022                 print_preprocessed_tokens(&state);
25023                 return;
25024         }
25025
25026         decls(&state);
25027
25028         /* Exit the global definition scope */
25029         end_scope(&state);
25030
25031         /* Now that basic compilation has happened 
25032          * optimize the intermediate code 
25033          */
25034         optimize(&state);
25035
25036         generate_code(&state);
25037         if (state.compiler->debug) {
25038                 fprintf(state.errout, "done\n");
25039         }
25040         exit_state = 0;
25041 }
25042
25043 static void version(FILE *fp)
25044 {
25045         fprintf(fp, "romcc " VERSION " released " RELEASE_DATE "\n");
25046 }
25047
25048 static void usage(void)
25049 {
25050         FILE *fp = stdout;
25051         version(fp);
25052         fprintf(fp,
25053                 "\nUsage: romcc [options] <source>.c\n"
25054                 "Compile a C source file generating a binary that does not implicilty use RAM\n"
25055                 "Options: \n"
25056                 "-o <output file name>\n"
25057                 "-f<option>            Specify a generic compiler option\n"
25058                 "-m<option>            Specify a arch dependent option\n"
25059                 "--                    Specify this is the last option\n"
25060                 "\nGeneric compiler options:\n"
25061         );
25062         compiler_usage(fp);
25063         fprintf(fp,
25064                 "\nArchitecture compiler options:\n"
25065         );
25066         arch_usage(fp);
25067         fprintf(fp,
25068                 "\n"
25069         );
25070 }
25071
25072 static void arg_error(char *fmt, ...)
25073 {
25074         va_list args;
25075         va_start(args, fmt);
25076         vfprintf(stderr, fmt, args);
25077         va_end(args);
25078         usage();
25079         exit(1);
25080 }
25081
25082 int main(int argc, char **argv)
25083 {
25084         const char *filename;
25085         struct compiler_state compiler;
25086         struct arch_state arch;
25087         int all_opts;
25088         
25089         
25090         /* I don't want any surprises */
25091         setlocale(LC_ALL, "C");
25092
25093         init_compiler_state(&compiler);
25094         init_arch_state(&arch);
25095         filename = 0;
25096         all_opts = 0;
25097         while(argc > 1) {
25098                 if (!all_opts && (strcmp(argv[1], "-o") == 0) && (argc > 2)) {
25099                         compiler.ofilename = argv[2];
25100                         argv += 2;
25101                         argc -= 2;
25102                 }
25103                 else if (!all_opts && argv[1][0] == '-') {
25104                         int result;
25105                         result = -1;
25106                         if (strcmp(argv[1], "--") == 0) {
25107                                 result = 0;
25108                                 all_opts = 1;
25109                         }
25110                         else if (strncmp(argv[1], "-E", 2) == 0) {
25111                                 result = compiler_encode_flag(&compiler, argv[1]);
25112                         }
25113                         else if (strncmp(argv[1], "-O", 2) == 0) {
25114                                 result = compiler_encode_flag(&compiler, argv[1]);
25115                         }
25116                         else if (strncmp(argv[1], "-I", 2) == 0) {
25117                                 result = compiler_encode_flag(&compiler, argv[1]);
25118                         }
25119                         else if (strncmp(argv[1], "-D", 2) == 0) {
25120                                 result = compiler_encode_flag(&compiler, argv[1]);
25121                         }
25122                         else if (strncmp(argv[1], "-U", 2) == 0) {
25123                                 result = compiler_encode_flag(&compiler, argv[1]);
25124                         }
25125                         else if (strncmp(argv[1], "--label-prefix=", 15) == 0) {
25126                                 result = compiler_encode_flag(&compiler, argv[1]+2);
25127                         }
25128                         else if (strncmp(argv[1], "-f", 2) == 0) {
25129                                 result = compiler_encode_flag(&compiler, argv[1]+2);
25130                         }
25131                         else if (strncmp(argv[1], "-m", 2) == 0) {
25132                                 result = arch_encode_flag(&arch, argv[1]+2);
25133                         }
25134                         else if (strncmp(argv[1], "-include", 10) == 0) {
25135                                 struct filelist *old_head = include_filelist;
25136                                 include_filelist = malloc(sizeof(struct filelist));
25137                                 if (!include_filelist) {
25138                                         die("Out of memory.\n");
25139                                 }
25140                                 argv++;
25141                                 argc--;
25142                                 include_filelist->filename = argv[1];
25143                                 include_filelist->next = old_head;
25144                                 result = 0;
25145                         }
25146                         if (result < 0) {
25147                                 arg_error("Invalid option specified: %s\n",
25148                                         argv[1]);
25149                         }
25150                         argv++;
25151                         argc--;
25152                 }
25153                 else {
25154                         if (filename) {
25155                                 arg_error("Only one filename may be specified\n");
25156                         }
25157                         filename = argv[1];
25158                         argv++;
25159                         argc--;
25160                 }
25161         }
25162         if (!filename) {
25163                 arg_error("No filename specified\n");
25164         }
25165         compile(filename, &compiler, &arch);
25166
25167         return 0;
25168 }