* Explicitly add __PRE_RAM__ where it should be added.
[coreboot.git] / util / romcc / romcc.c
1 #undef VERSION_MAJOR
2 #undef VERSION_MINOR
3 #undef RELEASE_DATE
4 #undef VERSION
5 #define VERSION_MAJOR "0"
6 #define VERSION_MINOR "71"
7 #define RELEASE_DATE "03 April 2009"
8 #define VERSION VERSION_MAJOR "." VERSION_MINOR
9
10 #include <stdarg.h>
11 #include <errno.h>
12 #include <stdint.h>
13 #include <stdlib.h>
14 #include <stdio.h>
15 #include <sys/types.h>
16 #include <sys/stat.h>
17 #include <fcntl.h>
18 #include <unistd.h>
19 #include <stdio.h>
20 #include <string.h>
21 #include <limits.h>
22 #include <locale.h>
23 #include <time.h>
24
25 #define MAX_CWD_SIZE 4096
26 #define MAX_ALLOCATION_PASSES 100
27
28 /* NOTE: Before you even start thinking to touch anything 
29  * in this code, set DEBUG_ROMCC_WARNINGS to 1 to get an
30  * insight on the original author's thoughts. We introduced 
31  * this switch as romcc was about the only thing producing
32  * massive warnings in our code..
33  */
34 #define DEBUG_ROMCC_WARNINGS 0
35
36 #define DEBUG_CONSISTENCY 1
37 #define DEBUG_SDP_BLOCKS 0
38 #define DEBUG_TRIPLE_COLOR 0
39
40 #define DEBUG_DISPLAY_USES 1
41 #define DEBUG_DISPLAY_TYPES 1
42 #define DEBUG_REPLACE_CLOSURE_TYPE_HIRES 0
43 #define DEBUG_DECOMPOSE_PRINT_TUPLES 0
44 #define DEBUG_DECOMPOSE_HIRES  0
45 #define DEBUG_INITIALIZER 0
46 #define DEBUG_UPDATE_CLOSURE_TYPE 0
47 #define DEBUG_LOCAL_TRIPLE 0
48 #define DEBUG_BASIC_BLOCKS_VERBOSE 0
49 #define DEBUG_CPS_RENAME_VARIABLES_HIRES 0
50 #define DEBUG_SIMPLIFY_HIRES 0
51 #define DEBUG_SHRINKING 0
52 #define DEBUG_COALESCE_HITCHES 0
53 #define DEBUG_CODE_ELIMINATION 0
54
55 #define DEBUG_EXPLICIT_CLOSURES 0
56
57 #if DEBUG_ROMCC_WARNINGS
58 #warning "FIXME give clear error messages about unused variables"
59 #warning "FIXME properly handle multi dimensional arrays"
60 #warning "FIXME handle multiple register sizes"
61 #endif
62
63 /*  Control flow graph of a loop without goto.
64  * 
65  *        AAA
66  *   +---/
67  *  /
68  * / +--->CCC
69  * | |    / \
70  * | |  DDD EEE    break;
71  * | |    \    \
72  * | |    FFF   \
73  *  \|    / \    \
74  *   |\ GGG HHH   |   continue;
75  *   | \  \   |   |
76  *   |  \ III |  /
77  *   |   \ | /  / 
78  *   |    vvv  /  
79  *   +----BBB /   
80  *         | /
81  *         vv
82  *        JJJ
83  *
84  * 
85  *             AAA
86  *     +-----+  |  +----+
87  *     |      \ | /     |
88  *     |       BBB  +-+ |
89  *     |       / \ /  | |
90  *     |     CCC JJJ / /
91  *     |     / \    / / 
92  *     |   DDD EEE / /  
93  *     |    |   +-/ /
94  *     |   FFF     /    
95  *     |   / \    /     
96  *     | GGG HHH /      
97  *     |  |   +-/
98  *     | III
99  *     +--+ 
100  *
101  * 
102  * DFlocal(X) = { Y <- Succ(X) | idom(Y) != X }
103  * DFup(Z)    = { Y <- DF(Z) | idom(Y) != X }
104  *
105  *
106  * [] == DFlocal(X) U DF(X)
107  * () == DFup(X)
108  *
109  * Dominator graph of the same nodes.
110  *
111  *           AAA     AAA: [ ] ()
112  *          /   \
113  *        BBB    JJJ BBB: [ JJJ ] ( JJJ )  JJJ: [ ] ()
114  *         |
115  *        CCC        CCC: [ ] ( BBB, JJJ )
116  *        / \
117  *     DDD   EEE     DDD: [ ] ( BBB ) EEE: [ JJJ ] ()
118  *      |
119  *     FFF           FFF: [ ] ( BBB )
120  *     / \         
121  *  GGG   HHH        GGG: [ ] ( BBB ) HHH: [ BBB ] ()
122  *   |
123  *  III              III: [ BBB ] ()
124  *
125  *
126  * BBB and JJJ are definitely the dominance frontier.
127  * Where do I place phi functions and how do I make that decision.
128  *   
129  */
130 static void die(char *fmt, ...)
131 {
132         va_list args;
133
134         va_start(args, fmt);
135         vfprintf(stderr, fmt, args);
136         va_end(args);
137         fflush(stdout);
138         fflush(stderr);
139         exit(1);
140 }
141
142 static void *xmalloc(size_t size, const char *name)
143 {
144         void *buf;
145         buf = malloc(size);
146         if (!buf) {
147                 die("Cannot malloc %ld bytes to hold %s: %s\n",
148                         size + 0UL, name, strerror(errno));
149         }
150         return buf;
151 }
152
153 static void *xcmalloc(size_t size, const char *name)
154 {
155         void *buf;
156         buf = xmalloc(size, name);
157         memset(buf, 0, size);
158         return buf;
159 }
160
161 static void *xrealloc(void *ptr, size_t size, const char *name)
162 {
163         void *buf;
164         buf = realloc(ptr, size);
165         if (!buf) {
166                 die("Cannot realloc %ld bytes to hold %s: %s\n",
167                         size + 0UL, name, strerror(errno));
168         }
169         return buf;
170 }
171
172 static void xfree(const void *ptr)
173 {
174         free((void *)ptr);
175 }
176
177 static char *xstrdup(const char *str)
178 {
179         char *new;
180         int len;
181         len = strlen(str);
182         new = xmalloc(len + 1, "xstrdup string");
183         memcpy(new, str, len);
184         new[len] = '\0';
185         return new;
186 }
187
188 static void xchdir(const char *path)
189 {
190         if (chdir(path) != 0) {
191                 die("chdir to `%s' failed: %s\n",
192                         path, strerror(errno));
193         }
194 }
195
196 static int exists(const char *dirname, const char *filename)
197 {
198         char cwd[MAX_CWD_SIZE];
199         int does_exist;
200
201         if (getcwd(cwd, sizeof(cwd)) == 0) {
202                 die("cwd buffer to small");
203         }
204
205         does_exist = 1;
206         if (chdir(dirname) != 0) {
207                 does_exist = 0;
208         }
209         if (does_exist && (access(filename, O_RDONLY) < 0)) {
210                 if ((errno != EACCES) && (errno != EROFS)) {
211                         does_exist = 0;
212                 }
213         }
214         xchdir(cwd);
215         return does_exist;
216 }
217
218
219 static char *slurp_file(const char *dirname, const char *filename, off_t *r_size)
220 {
221         char cwd[MAX_CWD_SIZE];
222         char *buf;
223         off_t size, progress;
224         ssize_t result;
225         FILE* file;
226         
227         if (!filename) {
228                 *r_size = 0;
229                 return 0;
230         }
231         if (getcwd(cwd, sizeof(cwd)) == 0) {
232                 die("cwd buffer to small");
233         }
234         xchdir(dirname);
235         file = fopen(filename, "rb");
236         xchdir(cwd);
237         if (file == NULL) {
238                 die("Cannot open '%s' : %s\n",
239                         filename, strerror(errno));
240         }
241         fseek(file, 0, SEEK_END);
242         size = ftell(file);
243         fseek(file, 0, SEEK_SET);
244         *r_size = size +1;
245         buf = xmalloc(size +2, filename);
246         buf[size] = '\n'; /* Make certain the file is newline terminated */
247         buf[size+1] = '\0'; /* Null terminate the file for good measure */
248         progress = 0;
249         while(progress < size) {
250                 result = fread(buf + progress, 1, size - progress, file);
251                 if (result < 0) {
252                         if ((errno == EINTR) || (errno == EAGAIN))
253                                 continue;
254                         die("read on %s of %ld bytes failed: %s\n",
255                                 filename, (size - progress)+ 0UL, strerror(errno));
256                 }
257                 progress += result;
258         }
259         fclose(file);
260         return buf;
261 }
262
263 /* Types on the destination platform */
264 #if DEBUG_ROMCC_WARNINGS
265 #warning "FIXME this assumes 32bit x86 is the destination"
266 #endif
267 typedef int8_t   schar_t;
268 typedef uint8_t  uchar_t;
269 typedef int8_t   char_t;
270 typedef int16_t  short_t;
271 typedef uint16_t ushort_t;
272 typedef int32_t  int_t;
273 typedef uint32_t uint_t;
274 typedef int32_t  long_t;
275 #define ulong_t uint32_t
276
277 #define SCHAR_T_MIN (-128)
278 #define SCHAR_T_MAX 127
279 #define UCHAR_T_MAX 255
280 #define CHAR_T_MIN  SCHAR_T_MIN
281 #define CHAR_T_MAX  SCHAR_T_MAX
282 #define SHRT_T_MIN  (-32768)
283 #define SHRT_T_MAX  32767
284 #define USHRT_T_MAX 65535
285 #define INT_T_MIN   (-LONG_T_MAX - 1)
286 #define INT_T_MAX   2147483647
287 #define UINT_T_MAX  4294967295U
288 #define LONG_T_MIN  (-LONG_T_MAX - 1)
289 #define LONG_T_MAX  2147483647
290 #define ULONG_T_MAX 4294967295U
291
292 #define SIZEOF_I8    8
293 #define SIZEOF_I16   16
294 #define SIZEOF_I32   32
295 #define SIZEOF_I64   64
296
297 #define SIZEOF_CHAR    8
298 #define SIZEOF_SHORT   16
299 #define SIZEOF_INT     32
300 #define SIZEOF_LONG    (sizeof(long_t)*SIZEOF_CHAR)
301
302
303 #define ALIGNOF_CHAR    8
304 #define ALIGNOF_SHORT   16
305 #define ALIGNOF_INT     32
306 #define ALIGNOF_LONG    (sizeof(long_t)*SIZEOF_CHAR)
307
308 #define REG_SIZEOF_REG     32
309 #define REG_SIZEOF_CHAR    REG_SIZEOF_REG
310 #define REG_SIZEOF_SHORT   REG_SIZEOF_REG
311 #define REG_SIZEOF_INT     REG_SIZEOF_REG
312 #define REG_SIZEOF_LONG    REG_SIZEOF_REG
313
314 #define REG_ALIGNOF_REG     REG_SIZEOF_REG
315 #define REG_ALIGNOF_CHAR    REG_SIZEOF_REG
316 #define REG_ALIGNOF_SHORT   REG_SIZEOF_REG
317 #define REG_ALIGNOF_INT     REG_SIZEOF_REG
318 #define REG_ALIGNOF_LONG    REG_SIZEOF_REG
319
320 /* Additional definitions for clarity.
321  * I currently assume a long is the largest native
322  * machine word and that a pointer fits into it.
323  */
324 #define SIZEOF_WORD     SIZEOF_LONG
325 #define SIZEOF_POINTER  SIZEOF_LONG
326 #define ALIGNOF_WORD    ALIGNOF_LONG
327 #define ALIGNOF_POINTER ALIGNOF_LONG
328 #define REG_SIZEOF_POINTER  REG_SIZEOF_LONG
329 #define REG_ALIGNOF_POINTER REG_ALIGNOF_LONG
330
331 struct file_state {
332         struct file_state *prev;
333         const char *basename;
334         char *dirname;
335         const char *buf;
336         off_t size;
337         const char *pos;
338         int line;
339         const char *line_start;
340         int report_line;
341         const char *report_name;
342         const char *report_dir;
343         int macro      : 1;
344         int trigraphs  : 1;
345         int join_lines : 1;
346 };
347 struct hash_entry;
348 struct token {
349         int tok;
350         struct hash_entry *ident;
351         const char *pos;
352         int str_len;
353         union {
354                 ulong_t integer;
355                 const char *str;
356                 int notmacro;
357         } val;
358 };
359
360 /* I have two classes of types:
361  * Operational types.
362  * Logical types.  (The type the C standard says the operation is of)
363  *
364  * The operational types are:
365  * chars
366  * shorts
367  * ints
368  * longs
369  *
370  * floats
371  * doubles
372  * long doubles
373  *
374  * pointer
375  */
376
377
378 /* Machine model.
379  * No memory is useable by the compiler.
380  * There is no floating point support.
381  * All operations take place in general purpose registers.
382  * There is one type of general purpose register.
383  * Unsigned longs are stored in that general purpose register.
384  */
385
386 /* Operations on general purpose registers.
387  */
388
389 #define OP_SDIVT      0
390 #define OP_UDIVT      1
391 #define OP_SMUL       2
392 #define OP_UMUL       3
393 #define OP_SDIV       4
394 #define OP_UDIV       5
395 #define OP_SMOD       6
396 #define OP_UMOD       7
397 #define OP_ADD        8
398 #define OP_SUB        9
399 #define OP_SL        10
400 #define OP_USR       11
401 #define OP_SSR       12 
402 #define OP_AND       13 
403 #define OP_XOR       14
404 #define OP_OR        15
405 #define OP_POS       16 /* Dummy positive operator don't use it */
406 #define OP_NEG       17
407 #define OP_INVERT    18
408                      
409 #define OP_EQ        20
410 #define OP_NOTEQ     21
411 #define OP_SLESS     22
412 #define OP_ULESS     23
413 #define OP_SMORE     24
414 #define OP_UMORE     25
415 #define OP_SLESSEQ   26
416 #define OP_ULESSEQ   27
417 #define OP_SMOREEQ   28
418 #define OP_UMOREEQ   29
419                      
420 #define OP_LFALSE    30  /* Test if the expression is logically false */
421 #define OP_LTRUE     31  /* Test if the expression is logcially true */
422
423 #define OP_LOAD      32
424 #define OP_STORE     33
425 /* For OP_STORE ->type holds the type
426  * RHS(0) holds the destination address
427  * RHS(1) holds the value to store.
428  */
429
430 #define OP_UEXTRACT  34
431 /* OP_UEXTRACT extracts an unsigned bitfield from a pseudo register
432  * RHS(0) holds the psuedo register to extract from
433  * ->type holds the size of the bitfield.
434  * ->u.bitfield.size holds the size of the bitfield.
435  * ->u.bitfield.offset holds the offset to extract from
436  */
437 #define OP_SEXTRACT  35
438 /* OP_SEXTRACT extracts a signed bitfield from a pseudo register
439  * RHS(0) holds the psuedo register to extract from
440  * ->type holds the size of the bitfield.
441  * ->u.bitfield.size holds the size of the bitfield.
442  * ->u.bitfield.offset holds the offset to extract from
443  */
444 #define OP_DEPOSIT   36
445 /* OP_DEPOSIT replaces a bitfield with a new value.
446  * RHS(0) holds the value to replace a bitifield in.
447  * RHS(1) holds the replacement value
448  * ->u.bitfield.size holds the size of the bitfield.
449  * ->u.bitfield.offset holds the deposit into
450  */
451
452 #define OP_NOOP      37
453
454 #define OP_MIN_CONST 50
455 #define OP_MAX_CONST 58
456 #define IS_CONST_OP(X) (((X) >= OP_MIN_CONST) && ((X) <= OP_MAX_CONST))
457 #define OP_INTCONST  50
458 /* For OP_INTCONST ->type holds the type.
459  * ->u.cval holds the constant value.
460  */
461 #define OP_BLOBCONST 51
462 /* For OP_BLOBCONST ->type holds the layout and size
463  * information.  u.blob holds a pointer to the raw binary
464  * data for the constant initializer.
465  */
466 #define OP_ADDRCONST 52
467 /* For OP_ADDRCONST ->type holds the type.
468  * MISC(0) holds the reference to the static variable.
469  * ->u.cval holds an offset from that value.
470  */
471 #define OP_UNKNOWNVAL 59
472 /* For OP_UNKNOWNAL ->type holds the type.
473  * For some reason we don't know what value this type has.
474  * This allows for variables that have don't have values
475  * assigned yet, or variables whose value we simply do not know.
476  */
477
478 #define OP_WRITE     60 
479 /* OP_WRITE moves one pseudo register to another.
480  * MISC(0) holds the destination pseudo register, which must be an OP_DECL.
481  * RHS(0) holds the psuedo to move.
482  */
483
484 #define OP_READ      61
485 /* OP_READ reads the value of a variable and makes
486  * it available for the pseudo operation.
487  * Useful for things like def-use chains.
488  * RHS(0) holds points to the triple to read from.
489  */
490 #define OP_COPY      62
491 /* OP_COPY makes a copy of the pseudo register or constant in RHS(0).
492  */
493 #define OP_CONVERT   63
494 /* OP_CONVERT makes a copy of the pseudo register or constant in RHS(0).
495  * And then the type is converted appropriately.
496  */
497 #define OP_PIECE     64
498 /* OP_PIECE returns one piece of a instruction that returns a structure.
499  * MISC(0) is the instruction
500  * u.cval is the LHS piece of the instruction to return.
501  */
502 #define OP_ASM       65
503 /* OP_ASM holds a sequence of assembly instructions, the result
504  * of a C asm directive.
505  * RHS(x) holds input value x to the assembly sequence.
506  * LHS(x) holds the output value x from the assembly sequence.
507  * u.blob holds the string of assembly instructions.
508  */
509
510 #define OP_DEREF     66
511 /* OP_DEREF generates an lvalue from a pointer.
512  * RHS(0) holds the pointer value.
513  * OP_DEREF serves as a place holder to indicate all necessary
514  * checks have been done to indicate a value is an lvalue.
515  */
516 #define OP_DOT       67
517 /* OP_DOT references a submember of a structure lvalue.
518  * MISC(0) holds the lvalue.
519  * ->u.field holds the name of the field we want.
520  *
521  * Not seen after structures are flattened.
522  */
523 #define OP_INDEX     68
524 /* OP_INDEX references a submember of a tuple or array lvalue.
525  * MISC(0) holds the lvalue.
526  * ->u.cval holds the index into the lvalue.
527  *
528  * Not seen after structures are flattened.
529  */
530 #define OP_VAL       69
531 /* OP_VAL returns the value of a subexpression of the current expression.
532  * Useful for operators that have side effects.
533  * RHS(0) holds the expression.
534  * MISC(0) holds the subexpression of RHS(0) that is the
535  * value of the expression.
536  *
537  * Not seen outside of expressions.
538  */
539
540 #define OP_TUPLE     70
541 /* OP_TUPLE is an array of triples that are either variable
542  * or values for a structure or an array.  It is used as
543  * a place holder when flattening compound types.
544  * The value represented by an OP_TUPLE is held in N registers.
545  * LHS(0..N-1) refer to those registers.
546  * ->use is a list of statements that use the value.
547  * 
548  * Although OP_TUPLE always has register sized pieces they are not
549  * used until structures are flattened/decomposed into their register
550  * components. 
551  * ???? registers ????
552  */
553
554 #define OP_BITREF    71
555 /* OP_BITREF describes a bitfield as an lvalue.
556  * RHS(0) holds the register value.
557  * ->type holds the type of the bitfield.
558  * ->u.bitfield.size holds the size of the bitfield.
559  * ->u.bitfield.offset holds the offset of the bitfield in the register
560  */
561
562
563 #define OP_FCALL     72
564 /* OP_FCALL performs a procedure call. 
565  * MISC(0) holds a pointer to the OP_LIST of a function
566  * RHS(x) holds argument x of a function
567  * 
568  * Currently not seen outside of expressions.
569  */
570 #define OP_PROG      73
571 /* OP_PROG is an expression that holds a list of statements, or
572  * expressions.  The final expression is the value of the expression.
573  * RHS(0) holds the start of the list.
574  */
575
576 /* statements */
577 #define OP_LIST      80
578 /* OP_LIST Holds a list of statements that compose a function, and a result value.
579  * RHS(0) holds the list of statements.
580  * A list of all functions is maintained.
581  */
582
583 #define OP_BRANCH    81 /* an unconditional branch */
584 /* For branch instructions
585  * TARG(0) holds the branch target.
586  * ->next holds where to branch to if the branch is not taken.
587  * The branch target can only be a label
588  */
589
590 #define OP_CBRANCH   82 /* a conditional branch */
591 /* For conditional branch instructions
592  * RHS(0) holds the branch condition.
593  * TARG(0) holds the branch target.
594  * ->next holds where to branch to if the branch is not taken.
595  * The branch target can only be a label
596  */
597
598 #define OP_CALL      83 /* an uncontional branch that will return */
599 /* For call instructions
600  * MISC(0) holds the OP_RET that returns from the branch
601  * TARG(0) holds the branch target.
602  * ->next holds where to branch to if the branch is not taken.
603  * The branch target can only be a label
604  */
605
606 #define OP_RET       84 /* an uncontinonal branch through a variable back to an OP_CALL */
607 /* For call instructions
608  * RHS(0) holds the variable with the return address
609  * The branch target can only be a label
610  */
611
612 #define OP_LABEL     86
613 /* OP_LABEL is a triple that establishes an target for branches.
614  * ->use is the list of all branches that use this label.
615  */
616
617 #define OP_ADECL     87 
618 /* OP_ADECL is a triple that establishes an lvalue for assignments.
619  * A variable takes N registers to contain.
620  * LHS(0..N-1) refer to an OP_PIECE triple that represents
621  * the Xth register that the variable is stored in.
622  * ->use is a list of statements that use the variable.
623  * 
624  * Although OP_ADECL always has register sized pieces they are not
625  * used until structures are flattened/decomposed into their register
626  * components. 
627  */
628
629 #define OP_SDECL     88
630 /* OP_SDECL is a triple that establishes a variable of static
631  * storage duration.
632  * ->use is a list of statements that use the variable.
633  * MISC(0) holds the initializer expression.
634  */
635
636
637 #define OP_PHI       89
638 /* OP_PHI is a triple used in SSA form code.  
639  * It is used when multiple code paths merge and a variable needs
640  * a single assignment from any of those code paths.
641  * The operation is a cross between OP_DECL and OP_WRITE, which
642  * is what OP_PHI is generated from.
643  * 
644  * RHS(x) points to the value from code path x
645  * The number of RHS entries is the number of control paths into the block
646  * in which OP_PHI resides.  The elements of the array point to point
647  * to the variables OP_PHI is derived from.
648  *
649  * MISC(0) holds a pointer to the orginal OP_DECL node.
650  */
651
652 #if 0
653 /* continuation helpers
654  */
655 #define OP_CPS_BRANCH    90 /* an unconditional branch */
656 /* OP_CPS_BRANCH calls a continuation 
657  * RHS(x) holds argument x of the function
658  * TARG(0) holds OP_CPS_START target
659  */
660 #define OP_CPS_CBRANCH   91  /* a conditional branch */
661 /* OP_CPS_CBRANCH conditionally calls one of two continuations 
662  * RHS(0) holds the branch condition
663  * RHS(x + 1) holds argument x of the function
664  * TARG(0) holds the OP_CPS_START to jump to when true
665  * ->next holds the OP_CPS_START to jump to when false
666  */
667 #define OP_CPS_CALL      92  /* an uncontional branch that will return */
668 /* For OP_CPS_CALL instructions
669  * RHS(x) holds argument x of the function
670  * MISC(0) holds the OP_CPS_RET that returns from the branch
671  * TARG(0) holds the branch target.
672  * ->next holds where the OP_CPS_RET will return to.
673  */
674 #define OP_CPS_RET       93
675 /* OP_CPS_RET conditionally calls one of two continuations 
676  * RHS(0) holds the variable with the return function address
677  * RHS(x + 1) holds argument x of the function
678  * The branch target may be any OP_CPS_START
679  */
680 #define OP_CPS_END       94
681 /* OP_CPS_END is the triple at the end of the program.
682  * For most practical purposes it is a branch.
683  */
684 #define OP_CPS_START     95
685 /* OP_CPS_START is a triple at the start of a continuation
686  * The arguments variables takes N registers to contain.
687  * LHS(0..N-1) refer to an OP_PIECE triple that represents
688  * the Xth register that the arguments are stored in.
689  */
690 #endif
691
692 /* Architecture specific instructions */
693 #define OP_CMP         100
694 #define OP_TEST        101
695 #define OP_SET_EQ      102
696 #define OP_SET_NOTEQ   103
697 #define OP_SET_SLESS   104
698 #define OP_SET_ULESS   105
699 #define OP_SET_SMORE   106
700 #define OP_SET_UMORE   107
701 #define OP_SET_SLESSEQ 108
702 #define OP_SET_ULESSEQ 109
703 #define OP_SET_SMOREEQ 110
704 #define OP_SET_UMOREEQ 111
705
706 #define OP_JMP         112
707 #define OP_JMP_EQ      113
708 #define OP_JMP_NOTEQ   114
709 #define OP_JMP_SLESS   115
710 #define OP_JMP_ULESS   116
711 #define OP_JMP_SMORE   117
712 #define OP_JMP_UMORE   118
713 #define OP_JMP_SLESSEQ 119
714 #define OP_JMP_ULESSEQ 120
715 #define OP_JMP_SMOREEQ 121
716 #define OP_JMP_UMOREEQ 122
717
718 /* Builtin operators that it is just simpler to use the compiler for */
719 #define OP_INB         130
720 #define OP_INW         131
721 #define OP_INL         132
722 #define OP_OUTB        133
723 #define OP_OUTW        134
724 #define OP_OUTL        135
725 #define OP_BSF         136
726 #define OP_BSR         137
727 #define OP_RDMSR       138
728 #define OP_WRMSR       139
729 #define OP_HLT         140
730
731 struct op_info {
732         const char *name;
733         unsigned flags;
734 #define PURE       0x001 /* Triple has no side effects */
735 #define IMPURE     0x002 /* Triple has side effects */
736 #define PURE_BITS(FLAGS) ((FLAGS) & 0x3)
737 #define DEF        0x004 /* Triple is a variable definition */
738 #define BLOCK      0x008 /* Triple stores the current block */
739 #define STRUCTURAL 0x010 /* Triple does not generate a machine instruction */
740 #define BRANCH_BITS(FLAGS) ((FLAGS) & 0xe0 )
741 #define UBRANCH    0x020 /* Triple is an unconditional branch instruction */
742 #define CBRANCH    0x040 /* Triple is a conditional branch instruction */
743 #define RETBRANCH  0x060 /* Triple is a return instruction */
744 #define CALLBRANCH 0x080 /* Triple is a call instruction */
745 #define ENDBRANCH  0x0a0 /* Triple is an end instruction */
746 #define PART       0x100 /* Triple is really part of another triple */
747 #define BITFIELD   0x200 /* Triple manipulates a bitfield */
748         signed char lhs, rhs, misc, targ;
749 };
750
751 #define OP(LHS, RHS, MISC, TARG, FLAGS, NAME) { \
752         .name = (NAME), \
753         .flags = (FLAGS), \
754         .lhs = (LHS), \
755         .rhs = (RHS), \
756         .misc = (MISC), \
757         .targ = (TARG), \
758          }
759 static const struct op_info table_ops[] = {
760 [OP_SDIVT      ] = OP( 2,  2, 0, 0, PURE | BLOCK , "sdivt"),
761 [OP_UDIVT      ] = OP( 2,  2, 0, 0, PURE | BLOCK , "udivt"),
762 [OP_SMUL       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smul"),
763 [OP_UMUL       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umul"),
764 [OP_SDIV       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sdiv"),
765 [OP_UDIV       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "udiv"),
766 [OP_SMOD       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smod"),
767 [OP_UMOD       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umod"),
768 [OP_ADD        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "add"),
769 [OP_SUB        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sub"),
770 [OP_SL         ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sl"),
771 [OP_USR        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "usr"),
772 [OP_SSR        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "ssr"),
773 [OP_AND        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "and"),
774 [OP_XOR        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "xor"),
775 [OP_OR         ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "or"),
776 [OP_POS        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "pos"),
777 [OP_NEG        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "neg"),
778 [OP_INVERT     ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "invert"),
779
780 [OP_EQ         ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "eq"),
781 [OP_NOTEQ      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "noteq"),
782 [OP_SLESS      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sless"),
783 [OP_ULESS      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "uless"),
784 [OP_SMORE      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smore"),
785 [OP_UMORE      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umore"),
786 [OP_SLESSEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "slesseq"),
787 [OP_ULESSEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "ulesseq"),
788 [OP_SMOREEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smoreeq"),
789 [OP_UMOREEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umoreeq"),
790 [OP_LFALSE     ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "lfalse"),
791 [OP_LTRUE      ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "ltrue"),
792
793 [OP_LOAD       ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "load"),
794 [OP_STORE      ] = OP( 0,  2, 0, 0, PURE | BLOCK , "store"),
795
796 [OP_UEXTRACT   ] = OP( 0,  1, 0, 0, PURE | DEF | BITFIELD, "uextract"),
797 [OP_SEXTRACT   ] = OP( 0,  1, 0, 0, PURE | DEF | BITFIELD, "sextract"),
798 [OP_DEPOSIT    ] = OP( 0,  2, 0, 0, PURE | DEF | BITFIELD, "deposit"),
799
800 [OP_NOOP       ] = OP( 0,  0, 0, 0, PURE | BLOCK | STRUCTURAL, "noop"),
801
802 [OP_INTCONST   ] = OP( 0,  0, 0, 0, PURE | DEF, "intconst"),
803 [OP_BLOBCONST  ] = OP( 0,  0, 0, 0, PURE , "blobconst"),
804 [OP_ADDRCONST  ] = OP( 0,  0, 1, 0, PURE | DEF, "addrconst"),
805 [OP_UNKNOWNVAL ] = OP( 0,  0, 0, 0, PURE | DEF, "unknown"),
806
807 #if DEBUG_ROMCC_WARNINGS
808 #warning "FIXME is it correct for OP_WRITE to be a def?  I currently use it as one..."
809 #endif
810 [OP_WRITE      ] = OP( 0,  1, 1, 0, PURE | DEF | BLOCK, "write"),
811 [OP_READ       ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "read"),
812 [OP_COPY       ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "copy"),
813 [OP_CONVERT    ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "convert"),
814 [OP_PIECE      ] = OP( 0,  0, 1, 0, PURE | DEF | STRUCTURAL | PART, "piece"),
815 [OP_ASM        ] = OP(-1, -1, 0, 0, PURE, "asm"),
816 [OP_DEREF      ] = OP( 0,  1, 0, 0, 0 | DEF | BLOCK, "deref"), 
817 [OP_DOT        ] = OP( 0,  0, 1, 0, PURE | DEF | PART, "dot"),
818 [OP_INDEX      ] = OP( 0,  0, 1, 0, PURE | DEF | PART, "index"),
819
820 [OP_VAL        ] = OP( 0,  1, 1, 0, 0 | DEF | BLOCK, "val"),
821 [OP_TUPLE      ] = OP(-1,  0, 0, 0, 0 | PURE | BLOCK | STRUCTURAL, "tuple"),
822 [OP_BITREF     ] = OP( 0,  1, 0, 0, 0 | DEF | PURE | STRUCTURAL | BITFIELD, "bitref"),
823 /* Call is special most it can stand in for anything so it depends on context */
824 [OP_FCALL      ] = OP( 0, -1, 1, 0, 0 | BLOCK | CALLBRANCH, "fcall"),
825 [OP_PROG       ] = OP( 0,  1, 0, 0, 0 | IMPURE | BLOCK | STRUCTURAL, "prog"),
826 /* The sizes of OP_FCALL depends upon context */
827
828 [OP_LIST       ] = OP( 0,  1, 1, 0, 0 | DEF | STRUCTURAL, "list"),
829 [OP_BRANCH     ] = OP( 0,  0, 0, 1, PURE | BLOCK | UBRANCH, "branch"),
830 [OP_CBRANCH    ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "cbranch"),
831 [OP_CALL       ] = OP( 0,  0, 1, 1, PURE | BLOCK | CALLBRANCH, "call"),
832 [OP_RET        ] = OP( 0,  1, 0, 0, PURE | BLOCK | RETBRANCH, "ret"),
833 [OP_LABEL      ] = OP( 0,  0, 0, 0, PURE | BLOCK | STRUCTURAL, "label"),
834 [OP_ADECL      ] = OP( 0,  0, 0, 0, PURE | BLOCK | STRUCTURAL, "adecl"),
835 [OP_SDECL      ] = OP( 0,  0, 1, 0, PURE | BLOCK | STRUCTURAL, "sdecl"),
836 /* The number of RHS elements of OP_PHI depend upon context */
837 [OP_PHI        ] = OP( 0, -1, 1, 0, PURE | DEF | BLOCK, "phi"),
838
839 #if 0
840 [OP_CPS_BRANCH ] = OP( 0, -1, 0, 1, PURE | BLOCK | UBRANCH,     "cps_branch"),
841 [OP_CPS_CBRANCH] = OP( 0, -1, 0, 1, PURE | BLOCK | CBRANCH,     "cps_cbranch"),
842 [OP_CPS_CALL   ] = OP( 0, -1, 1, 1, PURE | BLOCK | CALLBRANCH,  "cps_call"),
843 [OP_CPS_RET    ] = OP( 0, -1, 0, 0, PURE | BLOCK | RETBRANCH,   "cps_ret"),
844 [OP_CPS_END    ] = OP( 0, -1, 0, 0, IMPURE | BLOCK | ENDBRANCH, "cps_end"),
845 [OP_CPS_START  ] = OP( -1, 0, 0, 0, PURE | BLOCK | STRUCTURAL,  "cps_start"),
846 #endif
847
848 [OP_CMP        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK, "cmp"),
849 [OP_TEST       ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "test"),
850 [OP_SET_EQ     ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_eq"),
851 [OP_SET_NOTEQ  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_noteq"),
852 [OP_SET_SLESS  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_sless"),
853 [OP_SET_ULESS  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_uless"),
854 [OP_SET_SMORE  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_smore"),
855 [OP_SET_UMORE  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_umore"),
856 [OP_SET_SLESSEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_slesseq"),
857 [OP_SET_ULESSEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_ulesseq"),
858 [OP_SET_SMOREEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_smoreq"),
859 [OP_SET_UMOREEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_umoreq"),
860 [OP_JMP        ] = OP( 0,  0, 0, 1, PURE | BLOCK | UBRANCH, "jmp"),
861 [OP_JMP_EQ     ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_eq"),
862 [OP_JMP_NOTEQ  ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_noteq"),
863 [OP_JMP_SLESS  ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_sless"),
864 [OP_JMP_ULESS  ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_uless"),
865 [OP_JMP_SMORE  ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_smore"),
866 [OP_JMP_UMORE  ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_umore"),
867 [OP_JMP_SLESSEQ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_slesseq"),
868 [OP_JMP_ULESSEQ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_ulesseq"),
869 [OP_JMP_SMOREEQ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_smoreq"),
870 [OP_JMP_UMOREEQ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_umoreq"),
871
872 [OP_INB        ] = OP( 0,  1, 0, 0, IMPURE | DEF | BLOCK, "__inb"),
873 [OP_INW        ] = OP( 0,  1, 0, 0, IMPURE | DEF | BLOCK, "__inw"),
874 [OP_INL        ] = OP( 0,  1, 0, 0, IMPURE | DEF | BLOCK, "__inl"),
875 [OP_OUTB       ] = OP( 0,  2, 0, 0, IMPURE| BLOCK, "__outb"),
876 [OP_OUTW       ] = OP( 0,  2, 0, 0, IMPURE| BLOCK, "__outw"),
877 [OP_OUTL       ] = OP( 0,  2, 0, 0, IMPURE| BLOCK, "__outl"),
878 [OP_BSF        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "__bsf"),
879 [OP_BSR        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "__bsr"),
880 [OP_RDMSR      ] = OP( 2,  1, 0, 0, IMPURE | BLOCK, "__rdmsr"),
881 [OP_WRMSR      ] = OP( 0,  3, 0, 0, IMPURE | BLOCK, "__wrmsr"),
882 [OP_HLT        ] = OP( 0,  0, 0, 0, IMPURE | BLOCK, "__hlt"),
883 };
884 #undef OP
885 #define OP_MAX      (sizeof(table_ops)/sizeof(table_ops[0]))
886
887 static const char *tops(int index) 
888 {
889         static const char unknown[] = "unknown op";
890         if (index < 0) {
891                 return unknown;
892         }
893         if (index > OP_MAX) {
894                 return unknown;
895         }
896         return table_ops[index].name;
897 }
898
899 struct asm_info;
900 struct triple;
901 struct block;
902 struct triple_set {
903         struct triple_set *next;
904         struct triple *member;
905 };
906
907 #define MAX_LHS  63
908 #define MAX_RHS  127
909 #define MAX_MISC 3
910 #define MAX_TARG 1
911
912 struct occurance {
913         int count;
914         const char *filename;
915         const char *function;
916         int line;
917         int col;
918         struct occurance *parent;
919 };
920 struct bitfield {
921         ulong_t size : 8;
922         ulong_t offset : 24;
923 };
924 struct triple {
925         struct triple *next, *prev;
926         struct triple_set *use;
927         struct type *type;
928         unsigned int op : 8;
929         unsigned int template_id : 7;
930         unsigned int lhs  : 6;
931         unsigned int rhs  : 7;
932         unsigned int misc : 2;
933         unsigned int targ : 1;
934 #define TRIPLE_SIZE(TRIPLE) \
935         ((TRIPLE)->lhs + (TRIPLE)->rhs + (TRIPLE)->misc + (TRIPLE)->targ)
936 #define TRIPLE_LHS_OFF(PTR)  (0)
937 #define TRIPLE_RHS_OFF(PTR)  (TRIPLE_LHS_OFF(PTR) + (PTR)->lhs)
938 #define TRIPLE_MISC_OFF(PTR) (TRIPLE_RHS_OFF(PTR) + (PTR)->rhs)
939 #define TRIPLE_TARG_OFF(PTR) (TRIPLE_MISC_OFF(PTR) + (PTR)->misc)
940 #define LHS(PTR,INDEX) ((PTR)->param[TRIPLE_LHS_OFF(PTR) + (INDEX)])
941 #define RHS(PTR,INDEX) ((PTR)->param[TRIPLE_RHS_OFF(PTR) + (INDEX)])
942 #define TARG(PTR,INDEX) ((PTR)->param[TRIPLE_TARG_OFF(PTR) + (INDEX)])
943 #define MISC(PTR,INDEX) ((PTR)->param[TRIPLE_MISC_OFF(PTR) + (INDEX)])
944         unsigned id; /* A scratch value and finally the register */
945 #define TRIPLE_FLAG_FLATTENED   (1 << 31)
946 #define TRIPLE_FLAG_PRE_SPLIT   (1 << 30)
947 #define TRIPLE_FLAG_POST_SPLIT  (1 << 29)
948 #define TRIPLE_FLAG_VOLATILE    (1 << 28)
949 #define TRIPLE_FLAG_INLINE      (1 << 27) /* ???? */
950 #define TRIPLE_FLAG_LOCAL       (1 << 26)
951
952 #define TRIPLE_FLAG_COPY TRIPLE_FLAG_VOLATILE
953         struct occurance *occurance;
954         union {
955                 ulong_t cval;
956                 struct bitfield bitfield;
957                 struct block  *block;
958                 void *blob;
959                 struct hash_entry *field;
960                 struct asm_info *ainfo;
961                 struct triple *func;
962                 struct symbol *symbol;
963         } u;
964         struct triple *param[2];
965 };
966
967 struct reg_info {
968         unsigned reg;
969         unsigned regcm;
970 };
971 struct ins_template {
972         struct reg_info lhs[MAX_LHS + 1], rhs[MAX_RHS + 1];
973 };
974
975 struct asm_info {
976         struct ins_template tmpl;
977         char *str;
978 };
979
980 struct block_set {
981         struct block_set *next;
982         struct block *member;
983 };
984 struct block {
985         struct block *work_next;
986         struct triple *first, *last;
987         int edge_count;
988         struct block_set *edges;
989         int users;
990         struct block_set *use;
991         struct block_set *idominates;
992         struct block_set *domfrontier;
993         struct block *idom;
994         struct block_set *ipdominates;
995         struct block_set *ipdomfrontier;
996         struct block *ipdom;
997         int vertex;
998         
999 };
1000
1001 struct symbol {
1002         struct symbol *next;
1003         struct hash_entry *ident;
1004         struct triple *def;
1005         struct type *type;
1006         int scope_depth;
1007 };
1008
1009 struct macro_arg {
1010         struct macro_arg *next;
1011         struct hash_entry *ident;
1012 };
1013 struct macro {
1014         struct hash_entry *ident;
1015         const char *buf;
1016         int buf_len;
1017         struct macro_arg *args;
1018         int argc;
1019 };
1020
1021 struct hash_entry {
1022         struct hash_entry *next;
1023         const char *name;
1024         int name_len;
1025         int tok;
1026         struct macro *sym_define;
1027         struct symbol *sym_label;
1028         struct symbol *sym_tag;
1029         struct symbol *sym_ident;
1030 };
1031
1032 #define HASH_TABLE_SIZE 2048
1033
1034 struct compiler_state {
1035         const char *label_prefix;
1036         const char *ofilename;
1037         unsigned long flags;
1038         unsigned long debug;
1039         unsigned long max_allocation_passes;
1040
1041         size_t include_path_count;
1042         const char **include_paths;
1043
1044         size_t define_count;
1045         const char **defines;
1046
1047         size_t undef_count;
1048         const char **undefs;
1049 };
1050 struct arch_state {
1051         unsigned long features;
1052 };
1053 struct basic_blocks {
1054         struct triple *func;
1055         struct triple *first;
1056         struct block *first_block, *last_block;
1057         int last_vertex;
1058 };
1059 #define MAX_PP_IF_DEPTH 63
1060 struct compile_state {
1061         struct compiler_state *compiler;
1062         struct arch_state *arch;
1063         FILE *output;
1064         FILE *errout;
1065         FILE *dbgout;
1066         struct file_state *file;
1067         struct occurance *last_occurance;
1068         const char *function;
1069         int    token_base;
1070         struct token token[6];
1071         struct hash_entry *hash_table[HASH_TABLE_SIZE];
1072         struct hash_entry *i_switch;
1073         struct hash_entry *i_case;
1074         struct hash_entry *i_continue;
1075         struct hash_entry *i_break;
1076         struct hash_entry *i_default;
1077         struct hash_entry *i_return;
1078         /* Additional hash entries for predefined macros */
1079         struct hash_entry *i_defined;
1080         struct hash_entry *i___VA_ARGS__;
1081         struct hash_entry *i___FILE__;
1082         struct hash_entry *i___LINE__;
1083         /* Additional hash entries for predefined identifiers */
1084         struct hash_entry *i___func__;
1085         /* Additional hash entries for attributes */
1086         struct hash_entry *i_noinline;
1087         struct hash_entry *i_always_inline;
1088         int scope_depth;
1089         unsigned char if_bytes[(MAX_PP_IF_DEPTH + CHAR_BIT -1)/CHAR_BIT];
1090         int if_depth;
1091         int eat_depth, eat_targ;
1092         struct file_state *macro_file;
1093         struct triple *functions;
1094         struct triple *main_function;
1095         struct triple *first;
1096         struct triple *global_pool;
1097         struct basic_blocks bb;
1098         int functions_joined;
1099 };
1100
1101 /* visibility global/local */
1102 /* static/auto duration */
1103 /* typedef, register, inline */
1104 #define STOR_SHIFT         0
1105 #define STOR_MASK     0x001f
1106 /* Visibility */
1107 #define STOR_GLOBAL   0x0001
1108 /* Duration */
1109 #define STOR_PERM     0x0002
1110 /* Definition locality */
1111 #define STOR_NONLOCAL 0x0004  /* The definition is not in this translation unit */
1112 /* Storage specifiers */
1113 #define STOR_AUTO     0x0000
1114 #define STOR_STATIC   0x0002
1115 #define STOR_LOCAL    0x0003
1116 #define STOR_EXTERN   0x0007
1117 #define STOR_INLINE   0x0008
1118 #define STOR_REGISTER 0x0010
1119 #define STOR_TYPEDEF  0x0018
1120
1121 #define QUAL_SHIFT         5
1122 #define QUAL_MASK     0x00e0
1123 #define QUAL_NONE     0x0000
1124 #define QUAL_CONST    0x0020
1125 #define QUAL_VOLATILE 0x0040
1126 #define QUAL_RESTRICT 0x0080
1127
1128 #define TYPE_SHIFT         8
1129 #define TYPE_MASK     0x1f00
1130 #define TYPE_INTEGER(TYPE)    ((((TYPE) >= TYPE_CHAR) && ((TYPE) <= TYPE_ULLONG)) || ((TYPE) == TYPE_ENUM) || ((TYPE) == TYPE_BITFIELD))
1131 #define TYPE_ARITHMETIC(TYPE) ((((TYPE) >= TYPE_CHAR) && ((TYPE) <= TYPE_LDOUBLE)) || ((TYPE) == TYPE_ENUM) || ((TYPE) == TYPE_BITFIELD))
1132 #define TYPE_UNSIGNED(TYPE)   ((TYPE) & 0x0100)
1133 #define TYPE_SIGNED(TYPE)     (!TYPE_UNSIGNED(TYPE))
1134 #define TYPE_MKUNSIGNED(TYPE) (((TYPE) & ~0xF000) | 0x0100)
1135 #define TYPE_RANK(TYPE)       ((TYPE) & ~0xF1FF)
1136 #define TYPE_PTR(TYPE)        (((TYPE) & TYPE_MASK) == TYPE_POINTER)
1137 #define TYPE_DEFAULT  0x0000
1138 #define TYPE_VOID     0x0100
1139 #define TYPE_CHAR     0x0200
1140 #define TYPE_UCHAR    0x0300
1141 #define TYPE_SHORT    0x0400
1142 #define TYPE_USHORT   0x0500
1143 #define TYPE_INT      0x0600
1144 #define TYPE_UINT     0x0700
1145 #define TYPE_LONG     0x0800
1146 #define TYPE_ULONG    0x0900
1147 #define TYPE_LLONG    0x0a00 /* long long */
1148 #define TYPE_ULLONG   0x0b00
1149 #define TYPE_FLOAT    0x0c00
1150 #define TYPE_DOUBLE   0x0d00
1151 #define TYPE_LDOUBLE  0x0e00 /* long double */
1152
1153 /* Note: TYPE_ENUM is chosen very carefully so TYPE_RANK works */
1154 #define TYPE_ENUM     0x1600
1155 #define TYPE_LIST     0x1700
1156 /* TYPE_LIST is a basic building block when defining enumerations
1157  * type->field_ident holds the name of this enumeration entry.
1158  * type->right holds the entry in the list.
1159  */
1160
1161 #define TYPE_STRUCT   0x1000
1162 /* For TYPE_STRUCT
1163  * type->left holds the link list of TYPE_PRODUCT entries that
1164  * make up the structure.
1165  * type->elements hold the length of the linked list
1166  */
1167 #define TYPE_UNION    0x1100
1168 /* For TYPE_UNION
1169  * type->left holds the link list of TYPE_OVERLAP entries that
1170  * make up the union.
1171  * type->elements hold the length of the linked list
1172  */
1173 #define TYPE_POINTER  0x1200 
1174 /* For TYPE_POINTER:
1175  * type->left holds the type pointed to.
1176  */
1177 #define TYPE_FUNCTION 0x1300 
1178 /* For TYPE_FUNCTION:
1179  * type->left holds the return type.
1180  * type->right holds the type of the arguments
1181  * type->elements holds the count of the arguments
1182  */
1183 #define TYPE_PRODUCT  0x1400
1184 /* TYPE_PRODUCT is a basic building block when defining structures
1185  * type->left holds the type that appears first in memory.
1186  * type->right holds the type that appears next in memory.
1187  */
1188 #define TYPE_OVERLAP  0x1500
1189 /* TYPE_OVERLAP is a basic building block when defining unions
1190  * type->left and type->right holds to types that overlap
1191  * each other in memory.
1192  */
1193 #define TYPE_ARRAY    0x1800
1194 /* TYPE_ARRAY is a basic building block when definitng arrays.
1195  * type->left holds the type we are an array of.
1196  * type->elements holds the number of elements.
1197  */
1198 #define TYPE_TUPLE    0x1900
1199 /* TYPE_TUPLE is a basic building block when defining 
1200  * positionally reference type conglomerations. (i.e. closures)
1201  * In essence it is a wrapper for TYPE_PRODUCT, like TYPE_STRUCT
1202  * except it has no field names.
1203  * type->left holds the liked list of TYPE_PRODUCT entries that
1204  * make up the closure type.
1205  * type->elements hold the number of elements in the closure.
1206  */
1207 #define TYPE_JOIN     0x1a00
1208 /* TYPE_JOIN is a basic building block when defining 
1209  * positionally reference type conglomerations. (i.e. closures)
1210  * In essence it is a wrapper for TYPE_OVERLAP, like TYPE_UNION
1211  * except it has no field names.
1212  * type->left holds the liked list of TYPE_OVERLAP entries that
1213  * make up the closure type.
1214  * type->elements hold the number of elements in the closure.
1215  */
1216 #define TYPE_BITFIELD 0x1b00
1217 /* TYPE_BITFIED is the type of a bitfield.
1218  * type->left holds the type basic type TYPE_BITFIELD is derived from.
1219  * type->elements holds the number of bits in the bitfield.
1220  */
1221 #define TYPE_UNKNOWN  0x1c00
1222 /* TYPE_UNKNOWN is the type of an unknown value.
1223  * Used on unknown consts and other places where I don't know the type.
1224  */
1225
1226 #define ATTRIB_SHIFT                 16
1227 #define ATTRIB_MASK          0xffff0000
1228 #define ATTRIB_NOINLINE      0x00010000
1229 #define ATTRIB_ALWAYS_INLINE 0x00020000
1230
1231 #define ELEMENT_COUNT_UNSPECIFIED ULONG_T_MAX
1232
1233 struct type {
1234         unsigned int type;
1235         struct type *left, *right;
1236         ulong_t elements;
1237         struct hash_entry *field_ident;
1238         struct hash_entry *type_ident;
1239 };
1240
1241 #define TEMPLATE_BITS      7
1242 #define MAX_TEMPLATES      (1<<TEMPLATE_BITS)
1243 #define MAX_REG_EQUIVS     16
1244 #define MAX_REGC           14
1245 #define MAX_REGISTERS      75
1246 #define REGISTER_BITS      7
1247 #define MAX_VIRT_REGISTERS (1<<REGISTER_BITS)
1248 #define REG_ERROR          0
1249 #define REG_UNSET          1
1250 #define REG_UNNEEDED       2
1251 #define REG_VIRT0          (MAX_REGISTERS + 0)
1252 #define REG_VIRT1          (MAX_REGISTERS + 1)
1253 #define REG_VIRT2          (MAX_REGISTERS + 2)
1254 #define REG_VIRT3          (MAX_REGISTERS + 3)
1255 #define REG_VIRT4          (MAX_REGISTERS + 4)
1256 #define REG_VIRT5          (MAX_REGISTERS + 5)
1257 #define REG_VIRT6          (MAX_REGISTERS + 6)
1258 #define REG_VIRT7          (MAX_REGISTERS + 7)
1259 #define REG_VIRT8          (MAX_REGISTERS + 8)
1260 #define REG_VIRT9          (MAX_REGISTERS + 9)
1261
1262 #if (MAX_REGISTERS + 9) > MAX_VIRT_REGISTERS
1263 #error "MAX_VIRT_REGISTERS to small"
1264 #endif
1265 #if (MAX_REGC + REGISTER_BITS) >= 26
1266 #error "Too many id bits used"
1267 #endif
1268
1269 /* Provision for 8 register classes */
1270 #define REG_SHIFT  0
1271 #define REGC_SHIFT REGISTER_BITS
1272 #define REGC_MASK (((1 << MAX_REGC) - 1) << REGISTER_BITS)
1273 #define REG_MASK (MAX_VIRT_REGISTERS -1)
1274 #define ID_REG(ID)              ((ID) & REG_MASK)
1275 #define SET_REG(ID, REG)        ((ID) = (((ID) & ~REG_MASK) | ((REG) & REG_MASK)))
1276 #define ID_REGCM(ID)            (((ID) & REGC_MASK) >> REGC_SHIFT)
1277 #define SET_REGCM(ID, REGCM)    ((ID) = (((ID) & ~REGC_MASK) | (((REGCM) << REGC_SHIFT) & REGC_MASK)))
1278 #define SET_INFO(ID, INFO)      ((ID) = (((ID) & ~(REG_MASK | REGC_MASK)) | \
1279                 (((INFO).reg) & REG_MASK) | ((((INFO).regcm) << REGC_SHIFT) & REGC_MASK)))
1280
1281 #define ARCH_INPUT_REGS 4
1282 #define ARCH_OUTPUT_REGS 4
1283
1284 static const struct reg_info arch_input_regs[ARCH_INPUT_REGS];
1285 static const struct reg_info arch_output_regs[ARCH_OUTPUT_REGS];
1286 static unsigned arch_reg_regcm(struct compile_state *state, int reg);
1287 static unsigned arch_regcm_normalize(struct compile_state *state, unsigned regcm);
1288 static unsigned arch_regcm_reg_normalize(struct compile_state *state, unsigned regcm);
1289 static void arch_reg_equivs(
1290         struct compile_state *state, unsigned *equiv, int reg);
1291 static int arch_select_free_register(
1292         struct compile_state *state, char *used, int classes);
1293 static unsigned arch_regc_size(struct compile_state *state, int class);
1294 static int arch_regcm_intersect(unsigned regcm1, unsigned regcm2);
1295 static unsigned arch_type_to_regcm(struct compile_state *state, struct type *type);
1296 static const char *arch_reg_str(int reg);
1297 static struct reg_info arch_reg_constraint(
1298         struct compile_state *state, struct type *type, const char *constraint);
1299 static struct reg_info arch_reg_clobber(
1300         struct compile_state *state, const char *clobber);
1301 static struct reg_info arch_reg_lhs(struct compile_state *state, 
1302         struct triple *ins, int index);
1303 static struct reg_info arch_reg_rhs(struct compile_state *state, 
1304         struct triple *ins, int index);
1305 static int arch_reg_size(int reg);
1306 static struct triple *transform_to_arch_instruction(
1307         struct compile_state *state, struct triple *ins);
1308 static struct triple *flatten(
1309         struct compile_state *state, struct triple *first, struct triple *ptr);
1310 static void print_dominators(struct compile_state *state,
1311         FILE *fp, struct basic_blocks *bb);
1312 static void print_dominance_frontiers(struct compile_state *state,
1313         FILE *fp, struct basic_blocks *bb);
1314
1315
1316
1317 #define DEBUG_ABORT_ON_ERROR    0x00000001
1318 #define DEBUG_BASIC_BLOCKS      0x00000002
1319 #define DEBUG_FDOMINATORS       0x00000004
1320 #define DEBUG_RDOMINATORS       0x00000008
1321 #define DEBUG_TRIPLES           0x00000010
1322 #define DEBUG_INTERFERENCE      0x00000020
1323 #define DEBUG_SCC_TRANSFORM     0x00000040
1324 #define DEBUG_SCC_TRANSFORM2    0x00000080
1325 #define DEBUG_REBUILD_SSA_FORM  0x00000100
1326 #define DEBUG_INLINE            0x00000200
1327 #define DEBUG_RANGE_CONFLICTS   0x00000400
1328 #define DEBUG_RANGE_CONFLICTS2  0x00000800
1329 #define DEBUG_COLOR_GRAPH       0x00001000
1330 #define DEBUG_COLOR_GRAPH2      0x00002000
1331 #define DEBUG_COALESCING        0x00004000
1332 #define DEBUG_COALESCING2       0x00008000
1333 #define DEBUG_VERIFICATION      0x00010000
1334 #define DEBUG_CALLS             0x00020000
1335 #define DEBUG_CALLS2            0x00040000
1336 #define DEBUG_TOKENS            0x80000000
1337
1338 #define DEBUG_DEFAULT ( \
1339         DEBUG_ABORT_ON_ERROR | \
1340         DEBUG_BASIC_BLOCKS | \
1341         DEBUG_FDOMINATORS | \
1342         DEBUG_RDOMINATORS | \
1343         DEBUG_TRIPLES | \
1344         0 )
1345
1346 #define DEBUG_ALL ( \
1347         DEBUG_ABORT_ON_ERROR   | \
1348         DEBUG_BASIC_BLOCKS     | \
1349         DEBUG_FDOMINATORS      | \
1350         DEBUG_RDOMINATORS      | \
1351         DEBUG_TRIPLES          | \
1352         DEBUG_INTERFERENCE     | \
1353         DEBUG_SCC_TRANSFORM    | \
1354         DEBUG_SCC_TRANSFORM2   | \
1355         DEBUG_REBUILD_SSA_FORM | \
1356         DEBUG_INLINE           | \
1357         DEBUG_RANGE_CONFLICTS  | \
1358         DEBUG_RANGE_CONFLICTS2 | \
1359         DEBUG_COLOR_GRAPH      | \
1360         DEBUG_COLOR_GRAPH2     | \
1361         DEBUG_COALESCING       | \
1362         DEBUG_COALESCING2      | \
1363         DEBUG_VERIFICATION     | \
1364         DEBUG_CALLS            | \
1365         DEBUG_CALLS2           | \
1366         DEBUG_TOKENS           | \
1367         0 )
1368
1369 #define COMPILER_INLINE_MASK               0x00000007
1370 #define COMPILER_INLINE_ALWAYS             0x00000000
1371 #define COMPILER_INLINE_NEVER              0x00000001
1372 #define COMPILER_INLINE_DEFAULTON          0x00000002
1373 #define COMPILER_INLINE_DEFAULTOFF         0x00000003
1374 #define COMPILER_INLINE_NOPENALTY          0x00000004
1375 #define COMPILER_ELIMINATE_INEFECTUAL_CODE 0x00000008
1376 #define COMPILER_SIMPLIFY                  0x00000010
1377 #define COMPILER_SCC_TRANSFORM             0x00000020
1378 #define COMPILER_SIMPLIFY_OP               0x00000040
1379 #define COMPILER_SIMPLIFY_PHI              0x00000080
1380 #define COMPILER_SIMPLIFY_LABEL            0x00000100
1381 #define COMPILER_SIMPLIFY_BRANCH           0x00000200
1382 #define COMPILER_SIMPLIFY_COPY             0x00000400
1383 #define COMPILER_SIMPLIFY_ARITH            0x00000800
1384 #define COMPILER_SIMPLIFY_SHIFT            0x00001000
1385 #define COMPILER_SIMPLIFY_BITWISE          0x00002000
1386 #define COMPILER_SIMPLIFY_LOGICAL          0x00004000
1387 #define COMPILER_SIMPLIFY_BITFIELD         0x00008000
1388
1389 #define COMPILER_TRIGRAPHS                 0x40000000
1390 #define COMPILER_PP_ONLY                   0x80000000
1391
1392 #define COMPILER_DEFAULT_FLAGS ( \
1393         COMPILER_TRIGRAPHS | \
1394         COMPILER_ELIMINATE_INEFECTUAL_CODE | \
1395         COMPILER_INLINE_DEFAULTON | \
1396         COMPILER_SIMPLIFY_OP | \
1397         COMPILER_SIMPLIFY_PHI | \
1398         COMPILER_SIMPLIFY_LABEL | \
1399         COMPILER_SIMPLIFY_BRANCH | \
1400         COMPILER_SIMPLIFY_COPY | \
1401         COMPILER_SIMPLIFY_ARITH | \
1402         COMPILER_SIMPLIFY_SHIFT | \
1403         COMPILER_SIMPLIFY_BITWISE | \
1404         COMPILER_SIMPLIFY_LOGICAL | \
1405         COMPILER_SIMPLIFY_BITFIELD | \
1406         0 )
1407
1408 #define GLOBAL_SCOPE_DEPTH   1
1409 #define FUNCTION_SCOPE_DEPTH (GLOBAL_SCOPE_DEPTH + 1)
1410
1411 static void compile_file(struct compile_state *old_state, const char *filename, int local);
1412
1413
1414
1415 static void init_compiler_state(struct compiler_state *compiler)
1416 {
1417         memset(compiler, 0, sizeof(*compiler));
1418         compiler->label_prefix = "";
1419         compiler->ofilename = "auto.inc";
1420         compiler->flags = COMPILER_DEFAULT_FLAGS;
1421         compiler->debug = 0;
1422         compiler->max_allocation_passes = MAX_ALLOCATION_PASSES;
1423         compiler->include_path_count = 1;
1424         compiler->include_paths      = xcmalloc(sizeof(char *), "include_paths");
1425         compiler->define_count       = 1;
1426         compiler->defines            = xcmalloc(sizeof(char *), "defines");
1427         compiler->undef_count        = 1;
1428         compiler->undefs             = xcmalloc(sizeof(char *), "undefs");
1429 }
1430
1431 struct compiler_flag {
1432         const char *name;
1433         unsigned long flag;
1434 };
1435
1436 struct compiler_arg {
1437         const char *name;
1438         unsigned long mask;
1439         struct compiler_flag flags[16];
1440 };
1441
1442 static int set_flag(
1443         const struct compiler_flag *ptr, unsigned long *flags,
1444         int act, const char *flag)
1445 {
1446         int result = -1;
1447         for(; ptr->name; ptr++) {
1448                 if (strcmp(ptr->name, flag) == 0) {
1449                         break;
1450                 }
1451         }
1452         if (ptr->name) {
1453                 result = 0;
1454                 *flags &= ~(ptr->flag);
1455                 if (act) {
1456                         *flags |= ptr->flag;
1457                 }
1458         }
1459         return result;
1460 }
1461
1462 static int set_arg(
1463         const struct compiler_arg *ptr, unsigned long *flags, const char *arg)
1464 {
1465         const char *val;
1466         int result = -1;
1467         int len;
1468         val = strchr(arg, '=');
1469         if (val) {
1470                 len = val - arg;
1471                 val++;
1472                 for(; ptr->name; ptr++) {
1473                         if (strncmp(ptr->name, arg, len) == 0) {
1474                                 break;
1475                         }
1476                 }
1477                 if (ptr->name) {
1478                         *flags &= ~ptr->mask;
1479                         result = set_flag(&ptr->flags[0], flags, 1, val);
1480                 }
1481         }
1482         return result;
1483 }
1484         
1485
1486 static void flag_usage(FILE *fp, const struct compiler_flag *ptr, 
1487         const char *prefix, const char *invert_prefix)
1488 {
1489         for(;ptr->name; ptr++) {
1490                 fprintf(fp, "%s%s\n", prefix, ptr->name);
1491                 if (invert_prefix) {
1492                         fprintf(fp, "%s%s\n", invert_prefix, ptr->name);
1493                 }
1494         }
1495 }
1496
1497 static void arg_usage(FILE *fp, const struct compiler_arg *ptr,
1498         const char *prefix)
1499 {
1500         for(;ptr->name; ptr++) {
1501                 const struct compiler_flag *flag;
1502                 for(flag = &ptr->flags[0]; flag->name; flag++) {
1503                         fprintf(fp, "%s%s=%s\n", 
1504                                 prefix, ptr->name, flag->name);
1505                 }
1506         }
1507 }
1508
1509 static int append_string(size_t *max, const char ***vec, const char *str,
1510         const char *name)
1511 {
1512         size_t count;
1513         count = ++(*max);
1514         *vec = xrealloc(*vec, sizeof(char *)*count, "name");
1515         (*vec)[count -1] = 0;
1516         (*vec)[count -2] = str; 
1517         return 0;
1518 }
1519
1520 static void arg_error(char *fmt, ...);
1521 static const char *identifier(const char *str, const char *end);
1522
1523 static int append_include_path(struct compiler_state *compiler, const char *str)
1524 {
1525         int result;
1526         if (!exists(str, ".")) {
1527                 arg_error("Nonexistent include path: `%s'\n",
1528                         str);
1529         }
1530         result = append_string(&compiler->include_path_count,
1531                 &compiler->include_paths, str, "include_paths");
1532         return result;
1533 }
1534
1535 static int append_define(struct compiler_state *compiler, const char *str)
1536 {
1537         const char *end, *rest;
1538         int result;
1539
1540         end = strchr(str, '=');
1541         if (!end) {
1542                 end = str + strlen(str);
1543         }
1544         rest = identifier(str, end);
1545         if (rest != end) {
1546                 int len = end - str - 1;
1547                 arg_error("Invalid name cannot define macro: `%*.*s'\n", 
1548                         len, len, str);
1549         }
1550         result = append_string(&compiler->define_count,
1551                 &compiler->defines, str, "defines");
1552         return result;
1553 }
1554
1555 static int append_undef(struct compiler_state *compiler, const char *str)
1556 {
1557         const char *end, *rest;
1558         int result;
1559
1560         end = str + strlen(str);
1561         rest = identifier(str, end);
1562         if (rest != end) {
1563                 int len = end - str - 1;
1564                 arg_error("Invalid name cannot undefine macro: `%*.*s'\n", 
1565                         len, len, str);
1566         }
1567         result = append_string(&compiler->undef_count,
1568                 &compiler->undefs, str, "undefs");
1569         return result;
1570 }
1571
1572 static const struct compiler_flag romcc_flags[] = {
1573         { "trigraphs",                 COMPILER_TRIGRAPHS },
1574         { "pp-only",                   COMPILER_PP_ONLY },
1575         { "eliminate-inefectual-code", COMPILER_ELIMINATE_INEFECTUAL_CODE },
1576         { "simplify",                  COMPILER_SIMPLIFY },
1577         { "scc-transform",             COMPILER_SCC_TRANSFORM },
1578         { "simplify-op",               COMPILER_SIMPLIFY_OP },
1579         { "simplify-phi",              COMPILER_SIMPLIFY_PHI },
1580         { "simplify-label",            COMPILER_SIMPLIFY_LABEL },
1581         { "simplify-branch",           COMPILER_SIMPLIFY_BRANCH },
1582         { "simplify-copy",             COMPILER_SIMPLIFY_COPY },
1583         { "simplify-arith",            COMPILER_SIMPLIFY_ARITH },
1584         { "simplify-shift",            COMPILER_SIMPLIFY_SHIFT },
1585         { "simplify-bitwise",          COMPILER_SIMPLIFY_BITWISE },
1586         { "simplify-logical",          COMPILER_SIMPLIFY_LOGICAL },
1587         { "simplify-bitfield",         COMPILER_SIMPLIFY_BITFIELD },
1588         { 0, 0 },
1589 };
1590 static const struct compiler_arg romcc_args[] = {
1591         { "inline-policy",             COMPILER_INLINE_MASK,
1592                 {
1593                         { "always",      COMPILER_INLINE_ALWAYS, },
1594                         { "never",       COMPILER_INLINE_NEVER, },
1595                         { "defaulton",   COMPILER_INLINE_DEFAULTON, },
1596                         { "defaultoff",  COMPILER_INLINE_DEFAULTOFF, },
1597                         { "nopenalty",   COMPILER_INLINE_NOPENALTY, },
1598                         { 0, 0 },
1599                 },
1600         },
1601         { 0, 0 },
1602 };
1603 static const struct compiler_flag romcc_opt_flags[] = {
1604         { "-O",  COMPILER_SIMPLIFY },
1605         { "-O2", COMPILER_SIMPLIFY | COMPILER_SCC_TRANSFORM },
1606         { "-E",  COMPILER_PP_ONLY },
1607         { 0, 0, },
1608 };
1609 static const struct compiler_flag romcc_debug_flags[] = {
1610         { "all",                   DEBUG_ALL },
1611         { "abort-on-error",        DEBUG_ABORT_ON_ERROR },
1612         { "basic-blocks",          DEBUG_BASIC_BLOCKS },
1613         { "fdominators",           DEBUG_FDOMINATORS },
1614         { "rdominators",           DEBUG_RDOMINATORS },
1615         { "triples",               DEBUG_TRIPLES },
1616         { "interference",          DEBUG_INTERFERENCE },
1617         { "scc-transform",         DEBUG_SCC_TRANSFORM },
1618         { "scc-transform2",        DEBUG_SCC_TRANSFORM2 },
1619         { "rebuild-ssa-form",      DEBUG_REBUILD_SSA_FORM },
1620         { "inline",                DEBUG_INLINE },
1621         { "live-range-conflicts",  DEBUG_RANGE_CONFLICTS },
1622         { "live-range-conflicts2", DEBUG_RANGE_CONFLICTS2 },
1623         { "color-graph",           DEBUG_COLOR_GRAPH },
1624         { "color-graph2",          DEBUG_COLOR_GRAPH2 },
1625         { "coalescing",            DEBUG_COALESCING },
1626         { "coalescing2",           DEBUG_COALESCING2 },
1627         { "verification",          DEBUG_VERIFICATION },
1628         { "calls",                 DEBUG_CALLS },
1629         { "calls2",                DEBUG_CALLS2 },
1630         { "tokens",                DEBUG_TOKENS },
1631         { 0, 0 },
1632 };
1633
1634 static int compiler_encode_flag(
1635         struct compiler_state *compiler, const char *flag)
1636 {
1637         int act;
1638         int result;
1639
1640         act = 1;
1641         result = -1;
1642         if (strncmp(flag, "no-", 3) == 0) {
1643                 flag += 3;
1644                 act = 0;
1645         }
1646         if (strncmp(flag, "-O", 2) == 0) {
1647                 result = set_flag(romcc_opt_flags, &compiler->flags, act, flag);
1648         }
1649         else if (strncmp(flag, "-E", 2) == 0) {
1650                 result = set_flag(romcc_opt_flags, &compiler->flags, act, flag);
1651         }
1652         else if (strncmp(flag, "-I", 2) == 0) {
1653                 result = append_include_path(compiler, flag + 2);
1654         }
1655         else if (strncmp(flag, "-D", 2) == 0) {
1656                 result = append_define(compiler, flag + 2);
1657         }
1658         else if (strncmp(flag, "-U", 2) == 0) {
1659                 result = append_undef(compiler, flag + 2);
1660         }
1661         else if (act && strncmp(flag, "label-prefix=", 13) == 0) {
1662                 result = 0;
1663                 compiler->label_prefix = flag + 13;
1664         }
1665         else if (act && strncmp(flag, "max-allocation-passes=", 22) == 0) {
1666                 unsigned long max_passes;
1667                 char *end;
1668                 max_passes = strtoul(flag + 22, &end, 10);
1669                 if (end[0] == '\0') {
1670                         result = 0;
1671                         compiler->max_allocation_passes = max_passes;
1672                 }
1673         }
1674         else if (act && strcmp(flag, "debug") == 0) {
1675                 result = 0;
1676                 compiler->debug |= DEBUG_DEFAULT;
1677         }
1678         else if (strncmp(flag, "debug-", 6) == 0) {
1679                 flag += 6;
1680                 result = set_flag(romcc_debug_flags, &compiler->debug, act, flag);
1681         }
1682         else {
1683                 result = set_flag(romcc_flags, &compiler->flags, act, flag);
1684                 if (result < 0) {
1685                         result = set_arg(romcc_args, &compiler->flags, flag);
1686                 }
1687         }
1688         return result;
1689 }
1690
1691 static void compiler_usage(FILE *fp)
1692 {
1693         flag_usage(fp, romcc_opt_flags, "", 0);
1694         flag_usage(fp, romcc_flags, "-f", "-fno-");
1695         arg_usage(fp,  romcc_args, "-f");
1696         flag_usage(fp, romcc_debug_flags, "-fdebug-", "-fno-debug-");
1697         fprintf(fp, "-flabel-prefix=<prefix for assembly language labels>\n");
1698         fprintf(fp, "--label-prefix=<prefix for assembly language labels>\n");
1699         fprintf(fp, "-I<include path>\n");
1700         fprintf(fp, "-D<macro>[=defn]\n");
1701         fprintf(fp, "-U<macro>\n");
1702 }
1703
1704 static void do_cleanup(struct compile_state *state)
1705 {
1706         if (state->output) {
1707                 fclose(state->output);
1708                 unlink(state->compiler->ofilename);
1709                 state->output = 0;
1710         }
1711         if (state->dbgout) {
1712                 fflush(state->dbgout);
1713         }
1714         if (state->errout) {
1715                 fflush(state->errout);
1716         }
1717 }
1718
1719 static struct compile_state *exit_state;
1720 static void exit_cleanup(void)
1721 {
1722         if (exit_state) {
1723                 do_cleanup(exit_state);
1724         }
1725 }
1726
1727 static int get_col(struct file_state *file)
1728 {
1729         int col;
1730         const char *ptr, *end;
1731         ptr = file->line_start;
1732         end = file->pos;
1733         for(col = 0; ptr < end; ptr++) {
1734                 if (*ptr != '\t') {
1735                         col++;
1736                 } 
1737                 else {
1738                         col = (col & ~7) + 8;
1739                 }
1740         }
1741         return col;
1742 }
1743
1744 static void loc(FILE *fp, struct compile_state *state, struct triple *triple)
1745 {
1746         int col;
1747         if (triple && triple->occurance) {
1748                 struct occurance *spot;
1749                 for(spot = triple->occurance; spot; spot = spot->parent) {
1750                         fprintf(fp, "%s:%d.%d: ", 
1751                                 spot->filename, spot->line, spot->col);
1752                 }
1753                 return;
1754         }
1755         if (!state->file) {
1756                 return;
1757         }
1758         col = get_col(state->file);
1759         fprintf(fp, "%s:%d.%d: ", 
1760                 state->file->report_name, state->file->report_line, col);
1761 }
1762
1763 static void __attribute__ ((noreturn)) internal_error(struct compile_state *state, struct triple *ptr, 
1764         const char *fmt, ...)
1765 {
1766         FILE *fp = state->errout;
1767         va_list args;
1768         va_start(args, fmt);
1769         loc(fp, state, ptr);
1770         fputc('\n', fp);
1771         if (ptr) {
1772                 fprintf(fp, "%p %-10s ", ptr, tops(ptr->op));
1773         }
1774         fprintf(fp, "Internal compiler error: ");
1775         vfprintf(fp, fmt, args);
1776         fprintf(fp, "\n");
1777         va_end(args);
1778         do_cleanup(state);
1779         abort();
1780 }
1781
1782
1783 static void internal_warning(struct compile_state *state, struct triple *ptr, 
1784         const char *fmt, ...)
1785 {
1786         FILE *fp = state->errout;
1787         va_list args;
1788         va_start(args, fmt);
1789         loc(fp, state, ptr);
1790         if (ptr) {
1791                 fprintf(fp, "%p %-10s ", ptr, tops(ptr->op));
1792         }
1793         fprintf(fp, "Internal compiler warning: ");
1794         vfprintf(fp, fmt, args);
1795         fprintf(fp, "\n");
1796         va_end(args);
1797 }
1798
1799
1800
1801 static void __attribute__ ((noreturn)) error(struct compile_state *state, struct triple *ptr, 
1802         const char *fmt, ...)
1803 {
1804         FILE *fp = state->errout;
1805         va_list args;
1806         va_start(args, fmt);
1807         loc(fp, state, ptr);
1808         fputc('\n', fp);
1809         if (ptr && (state->compiler->debug & DEBUG_ABORT_ON_ERROR)) {
1810                 fprintf(fp, "%p %-10s ", ptr, tops(ptr->op));
1811         }
1812         vfprintf(fp, fmt, args);
1813         va_end(args);
1814         fprintf(fp, "\n");
1815         do_cleanup(state);
1816         if (state->compiler->debug & DEBUG_ABORT_ON_ERROR) {
1817                 abort();
1818         }
1819         exit(1);
1820 }
1821
1822 static void warning(struct compile_state *state, struct triple *ptr, 
1823         const char *fmt, ...)
1824 {
1825         FILE *fp = state->errout;
1826         va_list args;
1827         va_start(args, fmt);
1828         loc(fp, state, ptr);
1829         fprintf(fp, "warning: "); 
1830         if (ptr && (state->compiler->debug & DEBUG_ABORT_ON_ERROR)) {
1831                 fprintf(fp, "%p %-10s ", ptr, tops(ptr->op));
1832         }
1833         vfprintf(fp, fmt, args);
1834         fprintf(fp, "\n");
1835         va_end(args);
1836 }
1837
1838 #define FINISHME() warning(state, 0, "FINISHME @ %s.%s:%d", __FILE__, __func__, __LINE__)
1839
1840 static void valid_op(struct compile_state *state, int op)
1841 {
1842         char *fmt = "invalid op: %d";
1843         if (op >= OP_MAX) {
1844                 internal_error(state, 0, fmt, op);
1845         }
1846         if (op < 0) {
1847                 internal_error(state, 0, fmt, op);
1848         }
1849 }
1850
1851 static void valid_ins(struct compile_state *state, struct triple *ptr)
1852 {
1853         valid_op(state, ptr->op);
1854 }
1855
1856 #if DEBUG_ROMCC_WARNING
1857 static void valid_param_count(struct compile_state *state, struct triple *ins)
1858 {
1859         int lhs, rhs, misc, targ;
1860         valid_ins(state, ins);
1861         lhs  = table_ops[ins->op].lhs;
1862         rhs  = table_ops[ins->op].rhs;
1863         misc = table_ops[ins->op].misc;
1864         targ = table_ops[ins->op].targ;
1865
1866         if ((lhs >= 0) && (ins->lhs != lhs)) {
1867                 internal_error(state, ins, "Bad lhs count");
1868         }
1869         if ((rhs >= 0) && (ins->rhs != rhs)) {
1870                 internal_error(state, ins, "Bad rhs count");
1871         }
1872         if ((misc >= 0) && (ins->misc != misc)) {
1873                 internal_error(state, ins, "Bad misc count");
1874         }
1875         if ((targ >= 0) && (ins->targ != targ)) {
1876                 internal_error(state, ins, "Bad targ count");
1877         }
1878 }
1879 #endif
1880
1881 static struct type void_type;
1882 static struct type unknown_type;
1883 static void use_triple(struct triple *used, struct triple *user)
1884 {
1885         struct triple_set **ptr, *new;
1886         if (!used)
1887                 return;
1888         if (!user)
1889                 return;
1890         ptr = &used->use;
1891         while(*ptr) {
1892                 if ((*ptr)->member == user) {
1893                         return;
1894                 }
1895                 ptr = &(*ptr)->next;
1896         }
1897         /* Append new to the head of the list, 
1898          * copy_func and rename_block_variables
1899          * depends on this.
1900          */
1901         new = xcmalloc(sizeof(*new), "triple_set");
1902         new->member = user;
1903         new->next   = used->use;
1904         used->use   = new;
1905 }
1906
1907 static void unuse_triple(struct triple *used, struct triple *unuser)
1908 {
1909         struct triple_set *use, **ptr;
1910         if (!used) {
1911                 return;
1912         }
1913         ptr = &used->use;
1914         while(*ptr) {
1915                 use = *ptr;
1916                 if (use->member == unuser) {
1917                         *ptr = use->next;
1918                         xfree(use);
1919                 }
1920                 else {
1921                         ptr = &use->next;
1922                 }
1923         }
1924 }
1925
1926 static void put_occurance(struct occurance *occurance)
1927 {
1928         if (occurance) {
1929                 occurance->count -= 1;
1930                 if (occurance->count <= 0) {
1931                         if (occurance->parent) {
1932                                 put_occurance(occurance->parent);
1933                         }
1934                         xfree(occurance);
1935                 }
1936         }
1937 }
1938
1939 static void get_occurance(struct occurance *occurance)
1940 {
1941         if (occurance) {
1942                 occurance->count += 1;
1943         }
1944 }
1945
1946
1947 static struct occurance *new_occurance(struct compile_state *state)
1948 {
1949         struct occurance *result, *last;
1950         const char *filename;
1951         const char *function;
1952         int line, col;
1953
1954         function = "";
1955         filename = 0;
1956         line = 0;
1957         col  = 0;
1958         if (state->file) {
1959                 filename = state->file->report_name;
1960                 line     = state->file->report_line;
1961                 col      = get_col(state->file);
1962         }
1963         if (state->function) {
1964                 function = state->function;
1965         }
1966         last = state->last_occurance;
1967         if (last &&
1968                 (last->col == col) &&
1969                 (last->line == line) &&
1970                 (last->function == function) &&
1971                 ((last->filename == filename) ||
1972                         (strcmp(last->filename, filename) == 0))) 
1973         {
1974                 get_occurance(last);
1975                 return last;
1976         }
1977         if (last) {
1978                 state->last_occurance = 0;
1979                 put_occurance(last);
1980         }
1981         result = xmalloc(sizeof(*result), "occurance");
1982         result->count    = 2;
1983         result->filename = filename;
1984         result->function = function;
1985         result->line     = line;
1986         result->col      = col;
1987         result->parent   = 0;
1988         state->last_occurance = result;
1989         return result;
1990 }
1991
1992 static struct occurance *inline_occurance(struct compile_state *state,
1993         struct occurance *base, struct occurance *top)
1994 {
1995         struct occurance *result, *last;
1996         if (top->parent) {
1997                 internal_error(state, 0, "inlining an already inlined function?");
1998         }
1999         /* If I have a null base treat it that way */
2000         if ((base->parent == 0) &&
2001                 (base->col == 0) &&
2002                 (base->line == 0) &&
2003                 (base->function[0] == '\0') &&
2004                 (base->filename[0] == '\0')) {
2005                 base = 0;
2006         }
2007         /* See if I can reuse the last occurance I had */
2008         last = state->last_occurance;
2009         if (last &&
2010                 (last->parent   == base) &&
2011                 (last->col      == top->col) &&
2012                 (last->line     == top->line) &&
2013                 (last->function == top->function) &&
2014                 (last->filename == top->filename)) {
2015                 get_occurance(last);
2016                 return last;
2017         }
2018         /* I can't reuse the last occurance so free it */
2019         if (last) {
2020                 state->last_occurance = 0;
2021                 put_occurance(last);
2022         }
2023         /* Generate a new occurance structure */
2024         get_occurance(base);
2025         result = xmalloc(sizeof(*result), "occurance");
2026         result->count    = 2;
2027         result->filename = top->filename;
2028         result->function = top->function;
2029         result->line     = top->line;
2030         result->col      = top->col;
2031         result->parent   = base;
2032         state->last_occurance = result;
2033         return result;
2034 }
2035
2036 static struct occurance dummy_occurance = {
2037         .count    = 2,
2038         .filename = __FILE__,
2039         .function = "",
2040         .line     = __LINE__,
2041         .col      = 0,
2042         .parent   = 0,
2043 };
2044
2045 /* The undef triple is used as a place holder when we are removing pointers
2046  * from a triple.  Having allows certain sanity checks to pass even
2047  * when the original triple that was pointed to is gone.
2048  */
2049 static struct triple unknown_triple = {
2050         .next      = &unknown_triple,
2051         .prev      = &unknown_triple,
2052         .use       = 0,
2053         .op        = OP_UNKNOWNVAL,
2054         .lhs       = 0,
2055         .rhs       = 0,
2056         .misc      = 0,
2057         .targ      = 0,
2058         .type      = &unknown_type,
2059         .id        = -1, /* An invalid id */
2060         .u = { .cval = 0, },
2061         .occurance = &dummy_occurance,
2062         .param = { [0] = 0, [1] = 0, },
2063 };
2064
2065
2066 static size_t registers_of(struct compile_state *state, struct type *type);
2067
2068 static struct triple *alloc_triple(struct compile_state *state, 
2069         int op, struct type *type, int lhs_wanted, int rhs_wanted,
2070         struct occurance *occurance)
2071 {
2072         size_t size, extra_count, min_count;
2073         int lhs, rhs, misc, targ;
2074         struct triple *ret, dummy;
2075         dummy.op = op;
2076         dummy.occurance = occurance;
2077         valid_op(state, op);
2078         lhs = table_ops[op].lhs;
2079         rhs = table_ops[op].rhs;
2080         misc = table_ops[op].misc;
2081         targ = table_ops[op].targ;
2082
2083         switch(op) {
2084         case OP_FCALL:
2085                 rhs = rhs_wanted;
2086                 break;
2087         case OP_PHI:
2088                 rhs = rhs_wanted;
2089                 break;
2090         case OP_ADECL:
2091                 lhs = registers_of(state, type);
2092                 break;
2093         case OP_TUPLE:
2094                 lhs = registers_of(state, type);
2095                 break;
2096         case OP_ASM:
2097                 rhs = rhs_wanted;
2098                 lhs = lhs_wanted;
2099                 break;
2100         }
2101         if ((rhs < 0) || (rhs > MAX_RHS)) {
2102                 internal_error(state, &dummy, "bad rhs count %d", rhs);
2103         }
2104         if ((lhs < 0) || (lhs > MAX_LHS)) {
2105                 internal_error(state, &dummy, "bad lhs count %d", lhs);
2106         }
2107         if ((misc < 0) || (misc > MAX_MISC)) {
2108                 internal_error(state, &dummy, "bad misc count %d", misc);
2109         }
2110         if ((targ < 0) || (targ > MAX_TARG)) {
2111                 internal_error(state, &dummy, "bad targs count %d", targ);
2112         }
2113
2114         min_count = sizeof(ret->param)/sizeof(ret->param[0]);
2115         extra_count = lhs + rhs + misc + targ;
2116         extra_count = (extra_count < min_count)? 0 : extra_count - min_count;
2117
2118         size = sizeof(*ret) + sizeof(ret->param[0]) * extra_count;
2119         ret = xcmalloc(size, "tripple");
2120         ret->op        = op;
2121         ret->lhs       = lhs;
2122         ret->rhs       = rhs;
2123         ret->misc      = misc;
2124         ret->targ      = targ;
2125         ret->type      = type;
2126         ret->next      = ret;
2127         ret->prev      = ret;
2128         ret->occurance = occurance;
2129         /* A simple sanity check */
2130         if ((ret->op != op) ||
2131                 (ret->lhs != lhs) ||
2132                 (ret->rhs != rhs) ||
2133                 (ret->misc != misc) ||
2134                 (ret->targ != targ) ||
2135                 (ret->type != type) ||
2136                 (ret->next != ret) ||
2137                 (ret->prev != ret) ||
2138                 (ret->occurance != occurance)) {
2139                 internal_error(state, ret, "huh?");
2140         }
2141         return ret;
2142 }
2143
2144 struct triple *dup_triple(struct compile_state *state, struct triple *src)
2145 {
2146         struct triple *dup;
2147         int src_lhs, src_rhs, src_size;
2148         src_lhs = src->lhs;
2149         src_rhs = src->rhs;
2150         src_size = TRIPLE_SIZE(src);
2151         get_occurance(src->occurance);
2152         dup = alloc_triple(state, src->op, src->type, src_lhs, src_rhs,
2153                 src->occurance);
2154         memcpy(dup, src, sizeof(*src));
2155         memcpy(dup->param, src->param, src_size * sizeof(src->param[0]));
2156         return dup;
2157 }
2158
2159 static struct triple *copy_triple(struct compile_state *state, struct triple *src)
2160 {
2161         struct triple *copy;
2162         copy = dup_triple(state, src);
2163         copy->use = 0;
2164         copy->next = copy->prev = copy;
2165         return copy;
2166 }
2167
2168 static struct triple *new_triple(struct compile_state *state, 
2169         int op, struct type *type, int lhs, int rhs)
2170 {
2171         struct triple *ret;
2172         struct occurance *occurance;
2173         occurance = new_occurance(state);
2174         ret = alloc_triple(state, op, type, lhs, rhs, occurance);
2175         return ret;
2176 }
2177
2178 static struct triple *build_triple(struct compile_state *state, 
2179         int op, struct type *type, struct triple *left, struct triple *right,
2180         struct occurance *occurance)
2181 {
2182         struct triple *ret;
2183         size_t count;
2184         ret = alloc_triple(state, op, type, -1, -1, occurance);
2185         count = TRIPLE_SIZE(ret);
2186         if (count > 0) {
2187                 ret->param[0] = left;
2188         }
2189         if (count > 1) {
2190                 ret->param[1] = right;
2191         }
2192         return ret;
2193 }
2194
2195 static struct triple *triple(struct compile_state *state, 
2196         int op, struct type *type, struct triple *left, struct triple *right)
2197 {
2198         struct triple *ret;
2199         size_t count;
2200         ret = new_triple(state, op, type, -1, -1);
2201         count = TRIPLE_SIZE(ret);
2202         if (count >= 1) {
2203                 ret->param[0] = left;
2204         }
2205         if (count >= 2) {
2206                 ret->param[1] = right;
2207         }
2208         return ret;
2209 }
2210
2211 static struct triple *branch(struct compile_state *state, 
2212         struct triple *targ, struct triple *test)
2213 {
2214         struct triple *ret;
2215         if (test) {
2216                 ret = new_triple(state, OP_CBRANCH, &void_type, -1, 1);
2217                 RHS(ret, 0) = test;
2218         } else {
2219                 ret = new_triple(state, OP_BRANCH, &void_type, -1, 0);
2220         }
2221         TARG(ret, 0) = targ;
2222         /* record the branch target was used */
2223         if (!targ || (targ->op != OP_LABEL)) {
2224                 internal_error(state, 0, "branch not to label");
2225         }
2226         return ret;
2227 }
2228
2229 static int triple_is_label(struct compile_state *state, struct triple *ins);
2230 static int triple_is_call(struct compile_state *state, struct triple *ins);
2231 static int triple_is_cbranch(struct compile_state *state, struct triple *ins);
2232 static void insert_triple(struct compile_state *state,
2233         struct triple *first, struct triple *ptr)
2234 {
2235         if (ptr) {
2236                 if ((ptr->id & TRIPLE_FLAG_FLATTENED) || (ptr->next != ptr)) {
2237                         internal_error(state, ptr, "expression already used");
2238                 }
2239                 ptr->next       = first;
2240                 ptr->prev       = first->prev;
2241                 ptr->prev->next = ptr;
2242                 ptr->next->prev = ptr;
2243
2244                 if (triple_is_cbranch(state, ptr->prev) ||
2245                         triple_is_call(state, ptr->prev)) {
2246                         unuse_triple(first, ptr->prev);
2247                         use_triple(ptr, ptr->prev);
2248                 }
2249         }
2250 }
2251
2252 static int triple_stores_block(struct compile_state *state, struct triple *ins)
2253 {
2254         /* This function is used to determine if u.block 
2255          * is utilized to store the current block number.
2256          */
2257         int stores_block;
2258         valid_ins(state, ins);
2259         stores_block = (table_ops[ins->op].flags & BLOCK) == BLOCK;
2260         return stores_block;
2261 }
2262
2263 static int triple_is_branch(struct compile_state *state, struct triple *ins);
2264 static struct block *block_of_triple(struct compile_state *state, 
2265         struct triple *ins)
2266 {
2267         struct triple *first;
2268         if (!ins || ins == &unknown_triple) {
2269                 return 0;
2270         }
2271         first = state->first;
2272         while(ins != first && !triple_is_branch(state, ins->prev) &&
2273                 !triple_stores_block(state, ins)) 
2274         { 
2275                 if (ins == ins->prev) {
2276                         internal_error(state, ins, "ins == ins->prev?");
2277                 }
2278                 ins = ins->prev;
2279         }
2280         return triple_stores_block(state, ins)? ins->u.block: 0;
2281 }
2282
2283 static void generate_lhs_pieces(struct compile_state *state, struct triple *ins);
2284 static struct triple *pre_triple(struct compile_state *state,
2285         struct triple *base,
2286         int op, struct type *type, struct triple *left, struct triple *right)
2287 {
2288         struct block *block;
2289         struct triple *ret;
2290         int i;
2291         /* If I am an OP_PIECE jump to the real instruction */
2292         if (base->op == OP_PIECE) {
2293                 base = MISC(base, 0);
2294         }
2295         block = block_of_triple(state, base);
2296         get_occurance(base->occurance);
2297         ret = build_triple(state, op, type, left, right, base->occurance);
2298         generate_lhs_pieces(state, ret);
2299         if (triple_stores_block(state, ret)) {
2300                 ret->u.block = block;
2301         }
2302         insert_triple(state, base, ret);
2303         for(i = 0; i < ret->lhs; i++) {
2304                 struct triple *piece;
2305                 piece = LHS(ret, i);
2306                 insert_triple(state, base, piece);
2307                 use_triple(ret, piece);
2308                 use_triple(piece, ret);
2309         }
2310         if (block && (block->first == base)) {
2311                 block->first = ret;
2312         }
2313         return ret;
2314 }
2315
2316 static struct triple *post_triple(struct compile_state *state,
2317         struct triple *base,
2318         int op, struct type *type, struct triple *left, struct triple *right)
2319 {
2320         struct block *block;
2321         struct triple *ret, *next;
2322         int zlhs, i;
2323         /* If I am an OP_PIECE jump to the real instruction */
2324         if (base->op == OP_PIECE) {
2325                 base = MISC(base, 0);
2326         }
2327         /* If I have a left hand side skip over it */
2328         zlhs = base->lhs;
2329         if (zlhs) {
2330                 base = LHS(base, zlhs - 1);
2331         }
2332
2333         block = block_of_triple(state, base);
2334         get_occurance(base->occurance);
2335         ret = build_triple(state, op, type, left, right, base->occurance);
2336         generate_lhs_pieces(state, ret);
2337         if (triple_stores_block(state, ret)) {
2338                 ret->u.block = block;
2339         }
2340         next = base->next;
2341         insert_triple(state, next, ret);
2342         zlhs = ret->lhs;
2343         for(i = 0; i < zlhs; i++) {
2344                 struct triple *piece;
2345                 piece = LHS(ret, i);
2346                 insert_triple(state, next, piece);
2347                 use_triple(ret, piece);
2348                 use_triple(piece, ret);
2349         }
2350         if (block && (block->last == base)) {
2351                 block->last = ret;
2352                 if (zlhs) {
2353                         block->last = LHS(ret, zlhs - 1);
2354                 }
2355         }
2356         return ret;
2357 }
2358
2359 static struct type *reg_type(
2360         struct compile_state *state, struct type *type, int reg);
2361
2362 static void generate_lhs_piece(
2363         struct compile_state *state, struct triple *ins, int index)
2364 {
2365         struct type *piece_type;
2366         struct triple *piece;
2367         get_occurance(ins->occurance);
2368         piece_type = reg_type(state, ins->type, index * REG_SIZEOF_REG);
2369
2370         if ((piece_type->type & TYPE_MASK) == TYPE_BITFIELD) {
2371                 piece_type = piece_type->left;
2372         }
2373 #if 0
2374 {
2375         static void name_of(FILE *fp, struct type *type);
2376         FILE * fp = state->errout;
2377         fprintf(fp, "piece_type(%d): ", index);
2378         name_of(fp, piece_type);
2379         fprintf(fp, "\n");
2380 }
2381 #endif
2382         piece = alloc_triple(state, OP_PIECE, piece_type, -1, -1, ins->occurance);
2383         piece->u.cval  = index;
2384         LHS(ins, piece->u.cval) = piece;
2385         MISC(piece, 0) = ins;
2386 }
2387
2388 static void generate_lhs_pieces(struct compile_state *state, struct triple *ins)
2389 {
2390         int i, zlhs;
2391         zlhs = ins->lhs;
2392         for(i = 0; i < zlhs; i++) {
2393                 generate_lhs_piece(state, ins, i);
2394         }
2395 }
2396
2397 static struct triple *label(struct compile_state *state)
2398 {
2399         /* Labels don't get a type */
2400         struct triple *result;
2401         result = triple(state, OP_LABEL, &void_type, 0, 0);
2402         return result;
2403 }
2404
2405 static struct triple *mkprog(struct compile_state *state, ...)
2406 {
2407         struct triple *prog, *head, *arg;
2408         va_list args;
2409         int i;
2410
2411         head = label(state);
2412         prog = new_triple(state, OP_PROG, &void_type, -1, -1);
2413         RHS(prog, 0) = head;
2414         va_start(args, state);
2415         i = 0;
2416         while((arg = va_arg(args, struct triple *)) != 0) {
2417                 if (++i >= 100) {
2418                         internal_error(state, 0, "too many arguments to mkprog");
2419                 }
2420                 flatten(state, head, arg);
2421         }
2422         va_end(args);
2423         prog->type = head->prev->type;
2424         return prog;
2425 }
2426 static void name_of(FILE *fp, struct type *type);
2427 static void display_triple(FILE *fp, struct triple *ins)
2428 {
2429         struct occurance *ptr;
2430         const char *reg;
2431         char pre, post, vol;
2432         pre = post = vol = ' ';
2433         if (ins) {
2434                 if (ins->id & TRIPLE_FLAG_PRE_SPLIT) {
2435                         pre = '^';
2436                 }
2437                 if (ins->id & TRIPLE_FLAG_POST_SPLIT) {
2438                         post = ',';
2439                 }
2440                 if (ins->id & TRIPLE_FLAG_VOLATILE) {
2441                         vol = 'v';
2442                 }
2443                 reg = arch_reg_str(ID_REG(ins->id));
2444         }
2445         if (ins == 0) {
2446                 fprintf(fp, "(%p) <nothing> ", ins);
2447         }
2448         else if (ins->op == OP_INTCONST) {
2449                 fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s <0x%08lx>         ",
2450                         ins, pre, post, vol, reg, ins->template_id, tops(ins->op), 
2451                         (unsigned long)(ins->u.cval));
2452         }
2453         else if (ins->op == OP_ADDRCONST) {
2454                 fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s %-10p <0x%08lx>",
2455                         ins, pre, post, vol, reg, ins->template_id, tops(ins->op), 
2456                         MISC(ins, 0), (unsigned long)(ins->u.cval));
2457         }
2458         else if (ins->op == OP_INDEX) {
2459                 fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s %-10p <0x%08lx>",
2460                         ins, pre, post, vol, reg, ins->template_id, tops(ins->op), 
2461                         RHS(ins, 0), (unsigned long)(ins->u.cval));
2462         }
2463         else if (ins->op == OP_PIECE) {
2464                 fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s %-10p <0x%08lx>",
2465                         ins, pre, post, vol, reg, ins->template_id, tops(ins->op), 
2466                         MISC(ins, 0), (unsigned long)(ins->u.cval));
2467         }
2468         else {
2469                 int i, count;
2470                 fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s", 
2471                         ins, pre, post, vol, reg, ins->template_id, tops(ins->op));
2472                 if (table_ops[ins->op].flags & BITFIELD) {
2473                         fprintf(fp, " <%2d-%2d:%2d>", 
2474                                 ins->u.bitfield.offset,
2475                                 ins->u.bitfield.offset + ins->u.bitfield.size,
2476                                 ins->u.bitfield.size);
2477                 }
2478                 count = TRIPLE_SIZE(ins);
2479                 for(i = 0; i < count; i++) {
2480                         fprintf(fp, " %-10p", ins->param[i]);
2481                 }
2482                 for(; i < 2; i++) {
2483                         fprintf(fp, "           ");
2484                 }
2485         }
2486         if (ins) {
2487                 struct triple_set *user;
2488 #if DEBUG_DISPLAY_TYPES
2489                 fprintf(fp, " <");
2490                 name_of(fp, ins->type);
2491                 fprintf(fp, "> ");
2492 #endif
2493 #if DEBUG_DISPLAY_USES
2494                 fprintf(fp, " [");
2495                 for(user = ins->use; user; user = user->next) {
2496                         fprintf(fp, " %-10p", user->member);
2497                 }
2498                 fprintf(fp, " ]");
2499 #endif
2500                 fprintf(fp, " @");
2501                 for(ptr = ins->occurance; ptr; ptr = ptr->parent) {
2502                         fprintf(fp, " %s,%s:%d.%d",
2503                                 ptr->function, 
2504                                 ptr->filename,
2505                                 ptr->line, 
2506                                 ptr->col);
2507                 }
2508                 if (ins->op == OP_ASM) {
2509                         fprintf(fp, "\n\t%s", ins->u.ainfo->str);
2510                 }
2511         }
2512         fprintf(fp, "\n");
2513         fflush(fp);
2514 }
2515
2516 static int equiv_types(struct type *left, struct type *right);
2517 static void display_triple_changes(
2518         FILE *fp, const struct triple *new, const struct triple *orig)
2519 {
2520
2521         int new_count, orig_count;
2522         new_count = TRIPLE_SIZE(new);
2523         orig_count = TRIPLE_SIZE(orig);
2524         if ((new->op != orig->op) ||
2525                 (new_count != orig_count) ||
2526                 (memcmp(orig->param, new->param,        
2527                         orig_count * sizeof(orig->param[0])) != 0) ||
2528                 (memcmp(&orig->u, &new->u, sizeof(orig->u)) != 0)) 
2529         {
2530                 struct occurance *ptr;
2531                 int i, min_count, indent;
2532                 fprintf(fp, "(%p %p)", new, orig);
2533                 if (orig->op == new->op) {
2534                         fprintf(fp, " %-11s", tops(orig->op));
2535                 } else {
2536                         fprintf(fp, " [%-10s %-10s]", 
2537                                 tops(new->op), tops(orig->op));
2538                 }
2539                 min_count = new_count;
2540                 if (min_count > orig_count) {
2541                         min_count = orig_count;
2542                 }
2543                 for(indent = i = 0; i < min_count; i++) {
2544                         if (orig->param[i] == new->param[i]) {
2545                                 fprintf(fp, " %-11p", 
2546                                         orig->param[i]);
2547                                 indent += 12;
2548                         } else {
2549                                 fprintf(fp, " [%-10p %-10p]",
2550                                         new->param[i], 
2551                                         orig->param[i]);
2552                                 indent += 24;
2553                         }
2554                 }
2555                 for(; i < orig_count; i++) {
2556                         fprintf(fp, " [%-9p]", orig->param[i]);
2557                         indent += 12;
2558                 }
2559                 for(; i < new_count; i++) {
2560                         fprintf(fp, " [%-9p]", new->param[i]);
2561                         indent += 12;
2562                 }
2563                 if ((new->op == OP_INTCONST)||
2564                         (new->op == OP_ADDRCONST)) {
2565                         fprintf(fp, " <0x%08lx>", 
2566                                 (unsigned long)(new->u.cval));
2567                         indent += 13;
2568                 }
2569                 for(;indent < 36; indent++) {
2570                         putc(' ', fp);
2571                 }
2572
2573 #if DEBUG_DISPLAY_TYPES
2574                 fprintf(fp, " <");
2575                 name_of(fp, new->type);
2576                 if (!equiv_types(new->type, orig->type)) {
2577                         fprintf(fp, " -- ");
2578                         name_of(fp, orig->type);
2579                 }
2580                 fprintf(fp, "> ");
2581 #endif
2582
2583                 fprintf(fp, " @");
2584                 for(ptr = orig->occurance; ptr; ptr = ptr->parent) {
2585                         fprintf(fp, " %s,%s:%d.%d",
2586                                 ptr->function, 
2587                                 ptr->filename,
2588                                 ptr->line, 
2589                                 ptr->col);
2590                         
2591                 }
2592                 fprintf(fp, "\n");
2593                 fflush(fp);
2594         }
2595 }
2596
2597 static int triple_is_pure(struct compile_state *state, struct triple *ins, unsigned id)
2598 {
2599         /* Does the triple have no side effects.
2600          * I.e. Rexecuting the triple with the same arguments 
2601          * gives the same value.
2602          */
2603         unsigned pure;
2604         valid_ins(state, ins);
2605         pure = PURE_BITS(table_ops[ins->op].flags);
2606         if ((pure != PURE) && (pure != IMPURE)) {
2607                 internal_error(state, 0, "Purity of %s not known",
2608                         tops(ins->op));
2609         }
2610         return (pure == PURE) && !(id & TRIPLE_FLAG_VOLATILE);
2611 }
2612
2613 static int triple_is_branch_type(struct compile_state *state, 
2614         struct triple *ins, unsigned type)
2615 {
2616         /* Is this one of the passed branch types? */
2617         valid_ins(state, ins);
2618         return (BRANCH_BITS(table_ops[ins->op].flags) == type);
2619 }
2620
2621 static int triple_is_branch(struct compile_state *state, struct triple *ins)
2622 {
2623         /* Is this triple a branch instruction? */
2624         valid_ins(state, ins);
2625         return (BRANCH_BITS(table_ops[ins->op].flags) != 0);
2626 }
2627
2628 static int triple_is_cbranch(struct compile_state *state, struct triple *ins)
2629 {
2630         /* Is this triple a conditional branch instruction? */
2631         return triple_is_branch_type(state, ins, CBRANCH);
2632 }
2633
2634 static int triple_is_ubranch(struct compile_state *state, struct triple *ins)
2635 {
2636         /* Is this triple a unconditional branch instruction? */
2637         unsigned type;
2638         valid_ins(state, ins);
2639         type = BRANCH_BITS(table_ops[ins->op].flags);
2640         return (type != 0) && (type != CBRANCH);
2641 }
2642
2643 static int triple_is_call(struct compile_state *state, struct triple *ins)
2644 {
2645         /* Is this triple a call instruction? */
2646         return triple_is_branch_type(state, ins, CALLBRANCH);
2647 }
2648
2649 static int triple_is_ret(struct compile_state *state, struct triple *ins)
2650 {
2651         /* Is this triple a return instruction? */
2652         return triple_is_branch_type(state, ins, RETBRANCH);
2653 }
2654  
2655 #if DEBUG_ROMCC_WARNING
2656 static int triple_is_simple_ubranch(struct compile_state *state, struct triple *ins)
2657 {
2658         /* Is this triple an unconditional branch and not a call or a
2659          * return? */
2660         return triple_is_branch_type(state, ins, UBRANCH);
2661 }
2662 #endif
2663
2664 static int triple_is_end(struct compile_state *state, struct triple *ins)
2665 {
2666         return triple_is_branch_type(state, ins, ENDBRANCH);
2667 }
2668
2669 static int triple_is_label(struct compile_state *state, struct triple *ins)
2670 {
2671         valid_ins(state, ins);
2672         return (ins->op == OP_LABEL);
2673 }
2674
2675 static struct triple *triple_to_block_start(
2676         struct compile_state *state, struct triple *start)
2677 {
2678         while(!triple_is_branch(state, start->prev) &&
2679                 (!triple_is_label(state, start) || !start->use)) {
2680                 start = start->prev;
2681         }
2682         return start;
2683 }
2684
2685 static int triple_is_def(struct compile_state *state, struct triple *ins)
2686 {
2687         /* This function is used to determine which triples need
2688          * a register.
2689          */
2690         int is_def;
2691         valid_ins(state, ins);
2692         is_def = (table_ops[ins->op].flags & DEF) == DEF;
2693         if (ins->lhs >= 1) {
2694                 is_def = 0;
2695         }
2696         return is_def;
2697 }
2698
2699 static int triple_is_structural(struct compile_state *state, struct triple *ins)
2700 {
2701         int is_structural;
2702         valid_ins(state, ins);
2703         is_structural = (table_ops[ins->op].flags & STRUCTURAL) == STRUCTURAL;
2704         return is_structural;
2705 }
2706
2707 static int triple_is_part(struct compile_state *state, struct triple *ins)
2708 {
2709         int is_part;
2710         valid_ins(state, ins);
2711         is_part = (table_ops[ins->op].flags & PART) == PART;
2712         return is_part;
2713 }
2714
2715 static int triple_is_auto_var(struct compile_state *state, struct triple *ins)
2716 {
2717         return (ins->op == OP_PIECE) && (MISC(ins, 0)->op == OP_ADECL);
2718 }
2719
2720 static struct triple **triple_iter(struct compile_state *state,
2721         size_t count, struct triple **vector,
2722         struct triple *ins, struct triple **last)
2723 {
2724         struct triple **ret;
2725         ret = 0;
2726         if (count) {
2727                 if (!last) {
2728                         ret = vector;
2729                 }
2730                 else if ((last >= vector) && (last < (vector + count - 1))) {
2731                         ret = last + 1;
2732                 }
2733         }
2734         return ret;
2735         
2736 }
2737
2738 static struct triple **triple_lhs(struct compile_state *state,
2739         struct triple *ins, struct triple **last)
2740 {
2741         return triple_iter(state, ins->lhs, &LHS(ins,0), 
2742                 ins, last);
2743 }
2744
2745 static struct triple **triple_rhs(struct compile_state *state,
2746         struct triple *ins, struct triple **last)
2747 {
2748         return triple_iter(state, ins->rhs, &RHS(ins,0), 
2749                 ins, last);
2750 }
2751
2752 static struct triple **triple_misc(struct compile_state *state,
2753         struct triple *ins, struct triple **last)
2754 {
2755         return triple_iter(state, ins->misc, &MISC(ins,0), 
2756                 ins, last);
2757 }
2758
2759 static struct triple **do_triple_targ(struct compile_state *state,
2760         struct triple *ins, struct triple **last, int call_edges, int next_edges)
2761 {
2762         size_t count;
2763         struct triple **ret, **vector;
2764         int next_is_targ;
2765         ret = 0;
2766         count = ins->targ;
2767         next_is_targ = 0;
2768         if (triple_is_cbranch(state, ins)) {
2769                 next_is_targ = 1;
2770         }
2771         if (!call_edges && triple_is_call(state, ins)) {
2772                 count = 0;
2773         }
2774         if (next_edges && triple_is_call(state, ins)) {
2775                 next_is_targ = 1;
2776         }
2777         vector = &TARG(ins, 0);
2778         if (!ret && next_is_targ) {
2779                 if (!last) {
2780                         ret = &ins->next;
2781                 } else if (last == &ins->next) {
2782                         last = 0;
2783                 }
2784         }
2785         if (!ret && count) {
2786                 if (!last) {
2787                         ret = vector;
2788                 }
2789                 else if ((last >= vector) && (last < (vector + count - 1))) {
2790                         ret = last + 1;
2791                 }
2792                 else if (last == vector + count - 1) {
2793                         last = 0;
2794                 }
2795         }
2796         if (!ret && triple_is_ret(state, ins) && call_edges) {
2797                 struct triple_set *use;
2798                 for(use = ins->use; use; use = use->next) {
2799                         if (!triple_is_call(state, use->member)) {
2800                                 continue;
2801                         }
2802                         if (!last) {
2803                                 ret = &use->member->next;
2804                                 break;
2805                         }
2806                         else if (last == &use->member->next) {
2807                                 last = 0;
2808                         }
2809                 }
2810         }
2811         return ret;
2812 }
2813
2814 static struct triple **triple_targ(struct compile_state *state,
2815         struct triple *ins, struct triple **last)
2816 {
2817         return do_triple_targ(state, ins, last, 1, 1);
2818 }
2819
2820 static struct triple **triple_edge_targ(struct compile_state *state,
2821         struct triple *ins, struct triple **last)
2822 {
2823         return do_triple_targ(state, ins, last, 
2824                 state->functions_joined, !state->functions_joined);
2825 }
2826
2827 static struct triple *after_lhs(struct compile_state *state, struct triple *ins)
2828 {
2829         struct triple *next;
2830         int lhs, i;
2831         lhs = ins->lhs;
2832         next = ins->next;
2833         for(i = 0; i < lhs; i++) {
2834                 struct triple *piece;
2835                 piece = LHS(ins, i);
2836                 if (next != piece) {
2837                         internal_error(state, ins, "malformed lhs on %s",
2838                                 tops(ins->op));
2839                 }
2840                 if (next->op != OP_PIECE) {
2841                         internal_error(state, ins, "bad lhs op %s at %d on %s",
2842                                 tops(next->op), i, tops(ins->op));
2843                 }
2844                 if (next->u.cval != i) {
2845                         internal_error(state, ins, "bad u.cval of %d %d expected",
2846                                 next->u.cval, i);
2847                 }
2848                 next = next->next;
2849         }
2850         return next;
2851 }
2852
2853 /* Function piece accessor functions */
2854 static struct triple *do_farg(struct compile_state *state, 
2855         struct triple *func, unsigned index)
2856 {
2857         struct type *ftype;
2858         struct triple *first, *arg;
2859         unsigned i;
2860
2861         ftype = func->type;
2862         if((index < 0) || (index >= (ftype->elements + 2))) {
2863                 internal_error(state, func, "bad argument index: %d", index);
2864         }
2865         first = RHS(func, 0);
2866         arg = first->next;
2867         for(i = 0; i < index; i++, arg = after_lhs(state, arg)) {
2868                 /* do nothing */
2869         }
2870         if (arg->op != OP_ADECL) {
2871                 internal_error(state, 0, "arg not adecl?");
2872         }
2873         return arg;
2874 }
2875 static struct triple *fresult(struct compile_state *state, struct triple *func)
2876 {
2877         return do_farg(state, func, 0);
2878 }
2879 static struct triple *fretaddr(struct compile_state *state, struct triple *func)
2880 {
2881         return do_farg(state, func, 1);
2882 }
2883 static struct triple *farg(struct compile_state *state, 
2884         struct triple *func, unsigned index)
2885 {
2886         return do_farg(state, func, index + 2);
2887 }
2888
2889
2890 static void display_func(struct compile_state *state, FILE *fp, struct triple *func)
2891 {
2892         struct triple *first, *ins;
2893         fprintf(fp, "display_func %s\n", func->type->type_ident->name);
2894         first = ins = RHS(func, 0);
2895         do {
2896                 if (triple_is_label(state, ins) && ins->use) {
2897                         fprintf(fp, "%p:\n", ins);
2898                 }
2899                 display_triple(fp, ins);
2900
2901                 if (triple_is_branch(state, ins)) {
2902                         fprintf(fp, "\n");
2903                 }
2904                 if (ins->next->prev != ins) {
2905                         internal_error(state, ins->next, "bad prev");
2906                 }
2907                 ins = ins->next;
2908         } while(ins != first);
2909 }
2910
2911 static void verify_use(struct compile_state *state,
2912         struct triple *user, struct triple *used)
2913 {
2914         int size, i;
2915         size = TRIPLE_SIZE(user);
2916         for(i = 0; i < size; i++) {
2917                 if (user->param[i] == used) {
2918                         break;
2919                 }
2920         }
2921         if (triple_is_branch(state, user)) {
2922                 if (user->next == used) {
2923                         i = -1;
2924                 }
2925         }
2926         if (i == size) {
2927                 internal_error(state, user, "%s(%p) does not use %s(%p)",
2928                         tops(user->op), user, tops(used->op), used);
2929         }
2930 }
2931
2932 static int find_rhs_use(struct compile_state *state, 
2933         struct triple *user, struct triple *used)
2934 {
2935         struct triple **param;
2936         int size, i;
2937         verify_use(state, user, used);
2938
2939 #if DEBUG_ROMCC_WARNINGS
2940 #warning "AUDIT ME ->rhs"
2941 #endif
2942         size = user->rhs;
2943         param = &RHS(user, 0);
2944         for(i = 0; i < size; i++) {
2945                 if (param[i] == used) {
2946                         return i;
2947                 }
2948         }
2949         return -1;
2950 }
2951
2952 static void free_triple(struct compile_state *state, struct triple *ptr)
2953 {
2954         size_t size;
2955         size = sizeof(*ptr) - sizeof(ptr->param) +
2956                 (sizeof(ptr->param[0])*TRIPLE_SIZE(ptr));
2957         ptr->prev->next = ptr->next;
2958         ptr->next->prev = ptr->prev;
2959         if (ptr->use) {
2960                 internal_error(state, ptr, "ptr->use != 0");
2961         }
2962         put_occurance(ptr->occurance);
2963         memset(ptr, -1, size);
2964         xfree(ptr);
2965 }
2966
2967 static void release_triple(struct compile_state *state, struct triple *ptr)
2968 {
2969         struct triple_set *set, *next;
2970         struct triple **expr;
2971         struct block *block;
2972         if (ptr == &unknown_triple) {
2973                 return;
2974         }
2975         valid_ins(state, ptr);
2976         /* Make certain the we are not the first or last element of a block */
2977         block = block_of_triple(state, ptr);
2978         if (block) {
2979                 if ((block->last == ptr) && (block->first == ptr)) {
2980                         block->last = block->first = 0;
2981                 }
2982                 else if (block->last == ptr) {
2983                         block->last = ptr->prev;
2984                 }
2985                 else if (block->first == ptr) {
2986                         block->first = ptr->next;
2987                 }
2988         }
2989         /* Remove ptr from use chains where it is the user */
2990         expr = triple_rhs(state, ptr, 0);
2991         for(; expr; expr = triple_rhs(state, ptr, expr)) {
2992                 if (*expr) {
2993                         unuse_triple(*expr, ptr);
2994                 }
2995         }
2996         expr = triple_lhs(state, ptr, 0);
2997         for(; expr; expr = triple_lhs(state, ptr, expr)) {
2998                 if (*expr) {
2999                         unuse_triple(*expr, ptr);
3000                 }
3001         }
3002         expr = triple_misc(state, ptr, 0);
3003         for(; expr; expr = triple_misc(state, ptr, expr)) {
3004                 if (*expr) {
3005                         unuse_triple(*expr, ptr);
3006                 }
3007         }
3008         expr = triple_targ(state, ptr, 0);
3009         for(; expr; expr = triple_targ(state, ptr, expr)) {
3010                 if (*expr){
3011                         unuse_triple(*expr, ptr);
3012                 }
3013         }
3014         /* Reomve ptr from use chains where it is used */
3015         for(set = ptr->use; set; set = next) {
3016                 next = set->next;
3017                 valid_ins(state, set->member);
3018                 expr = triple_rhs(state, set->member, 0);
3019                 for(; expr; expr = triple_rhs(state, set->member, expr)) {
3020                         if (*expr == ptr) {
3021                                 *expr = &unknown_triple;
3022                         }
3023                 }
3024                 expr = triple_lhs(state, set->member, 0);
3025                 for(; expr; expr = triple_lhs(state, set->member, expr)) {
3026                         if (*expr == ptr) {
3027                                 *expr = &unknown_triple;
3028                         }
3029                 }
3030                 expr = triple_misc(state, set->member, 0);
3031                 for(; expr; expr = triple_misc(state, set->member, expr)) {
3032                         if (*expr == ptr) {
3033                                 *expr = &unknown_triple;
3034                         }
3035                 }
3036                 expr = triple_targ(state, set->member, 0);
3037                 for(; expr; expr = triple_targ(state, set->member, expr)) {
3038                         if (*expr == ptr) {
3039                                 *expr = &unknown_triple;
3040                         }
3041                 }
3042                 unuse_triple(ptr, set->member);
3043         }
3044         free_triple(state, ptr);
3045 }
3046
3047 static void print_triples(struct compile_state *state);
3048 static void print_blocks(struct compile_state *state, const char *func, FILE *fp);
3049
3050 #define TOK_UNKNOWN       0
3051 #define TOK_SPACE         1
3052 #define TOK_SEMI          2
3053 #define TOK_LBRACE        3
3054 #define TOK_RBRACE        4
3055 #define TOK_COMMA         5
3056 #define TOK_EQ            6
3057 #define TOK_COLON         7
3058 #define TOK_LBRACKET      8
3059 #define TOK_RBRACKET      9
3060 #define TOK_LPAREN        10
3061 #define TOK_RPAREN        11
3062 #define TOK_STAR          12
3063 #define TOK_DOTS          13
3064 #define TOK_MORE          14
3065 #define TOK_LESS          15
3066 #define TOK_TIMESEQ       16
3067 #define TOK_DIVEQ         17
3068 #define TOK_MODEQ         18
3069 #define TOK_PLUSEQ        19
3070 #define TOK_MINUSEQ       20
3071 #define TOK_SLEQ          21
3072 #define TOK_SREQ          22
3073 #define TOK_ANDEQ         23
3074 #define TOK_XOREQ         24
3075 #define TOK_OREQ          25
3076 #define TOK_EQEQ          26
3077 #define TOK_NOTEQ         27
3078 #define TOK_QUEST         28
3079 #define TOK_LOGOR         29
3080 #define TOK_LOGAND        30
3081 #define TOK_OR            31
3082 #define TOK_AND           32
3083 #define TOK_XOR           33
3084 #define TOK_LESSEQ        34
3085 #define TOK_MOREEQ        35
3086 #define TOK_SL            36
3087 #define TOK_SR            37
3088 #define TOK_PLUS          38
3089 #define TOK_MINUS         39
3090 #define TOK_DIV           40
3091 #define TOK_MOD           41
3092 #define TOK_PLUSPLUS      42
3093 #define TOK_MINUSMINUS    43
3094 #define TOK_BANG          44
3095 #define TOK_ARROW         45
3096 #define TOK_DOT           46
3097 #define TOK_TILDE         47
3098 #define TOK_LIT_STRING    48
3099 #define TOK_LIT_CHAR      49
3100 #define TOK_LIT_INT       50
3101 #define TOK_LIT_FLOAT     51
3102 #define TOK_MACRO         52
3103 #define TOK_CONCATENATE   53
3104
3105 #define TOK_IDENT         54
3106 #define TOK_STRUCT_NAME   55
3107 #define TOK_ENUM_CONST    56
3108 #define TOK_TYPE_NAME     57
3109
3110 #define TOK_AUTO          58
3111 #define TOK_BREAK         59
3112 #define TOK_CASE          60
3113 #define TOK_CHAR          61
3114 #define TOK_CONST         62
3115 #define TOK_CONTINUE      63
3116 #define TOK_DEFAULT       64
3117 #define TOK_DO            65
3118 #define TOK_DOUBLE        66
3119 #define TOK_ELSE          67
3120 #define TOK_ENUM          68
3121 #define TOK_EXTERN        69
3122 #define TOK_FLOAT         70
3123 #define TOK_FOR           71
3124 #define TOK_GOTO          72
3125 #define TOK_IF            73
3126 #define TOK_INLINE        74
3127 #define TOK_INT           75
3128 #define TOK_LONG          76
3129 #define TOK_REGISTER      77
3130 #define TOK_RESTRICT      78
3131 #define TOK_RETURN        79
3132 #define TOK_SHORT         80
3133 #define TOK_SIGNED        81
3134 #define TOK_SIZEOF        82
3135 #define TOK_STATIC        83
3136 #define TOK_STRUCT        84
3137 #define TOK_SWITCH        85
3138 #define TOK_TYPEDEF       86
3139 #define TOK_UNION         87
3140 #define TOK_UNSIGNED      88
3141 #define TOK_VOID          89
3142 #define TOK_VOLATILE      90
3143 #define TOK_WHILE         91
3144 #define TOK_ASM           92
3145 #define TOK_ATTRIBUTE     93
3146 #define TOK_ALIGNOF       94
3147 #define TOK_FIRST_KEYWORD TOK_AUTO
3148 #define TOK_LAST_KEYWORD  TOK_ALIGNOF
3149
3150 #define TOK_MDEFINE       100
3151 #define TOK_MDEFINED      101
3152 #define TOK_MUNDEF        102
3153 #define TOK_MINCLUDE      103
3154 #define TOK_MLINE         104
3155 #define TOK_MERROR        105
3156 #define TOK_MWARNING      106
3157 #define TOK_MPRAGMA       107
3158 #define TOK_MIFDEF        108
3159 #define TOK_MIFNDEF       109
3160 #define TOK_MELIF         110
3161 #define TOK_MENDIF        111
3162
3163 #define TOK_FIRST_MACRO   TOK_MDEFINE
3164 #define TOK_LAST_MACRO    TOK_MENDIF
3165          
3166 #define TOK_MIF           112
3167 #define TOK_MELSE         113
3168 #define TOK_MIDENT        114
3169
3170 #define TOK_EOL           115
3171 #define TOK_EOF           116
3172
3173 static const char *tokens[] = {
3174 [TOK_UNKNOWN     ] = ":unknown:",
3175 [TOK_SPACE       ] = ":space:",
3176 [TOK_SEMI        ] = ";",
3177 [TOK_LBRACE      ] = "{",
3178 [TOK_RBRACE      ] = "}",
3179 [TOK_COMMA       ] = ",",
3180 [TOK_EQ          ] = "=",
3181 [TOK_COLON       ] = ":",
3182 [TOK_LBRACKET    ] = "[",
3183 [TOK_RBRACKET    ] = "]",
3184 [TOK_LPAREN      ] = "(",
3185 [TOK_RPAREN      ] = ")",
3186 [TOK_STAR        ] = "*",
3187 [TOK_DOTS        ] = "...",
3188 [TOK_MORE        ] = ">",
3189 [TOK_LESS        ] = "<",
3190 [TOK_TIMESEQ     ] = "*=",
3191 [TOK_DIVEQ       ] = "/=",
3192 [TOK_MODEQ       ] = "%=",
3193 [TOK_PLUSEQ      ] = "+=",
3194 [TOK_MINUSEQ     ] = "-=",
3195 [TOK_SLEQ        ] = "<<=",
3196 [TOK_SREQ        ] = ">>=",
3197 [TOK_ANDEQ       ] = "&=",
3198 [TOK_XOREQ       ] = "^=",
3199 [TOK_OREQ        ] = "|=",
3200 [TOK_EQEQ        ] = "==",
3201 [TOK_NOTEQ       ] = "!=",
3202 [TOK_QUEST       ] = "?",
3203 [TOK_LOGOR       ] = "||",
3204 [TOK_LOGAND      ] = "&&",
3205 [TOK_OR          ] = "|",
3206 [TOK_AND         ] = "&",
3207 [TOK_XOR         ] = "^",
3208 [TOK_LESSEQ      ] = "<=",
3209 [TOK_MOREEQ      ] = ">=",
3210 [TOK_SL          ] = "<<",
3211 [TOK_SR          ] = ">>",
3212 [TOK_PLUS        ] = "+",
3213 [TOK_MINUS       ] = "-",
3214 [TOK_DIV         ] = "/",
3215 [TOK_MOD         ] = "%",
3216 [TOK_PLUSPLUS    ] = "++",
3217 [TOK_MINUSMINUS  ] = "--",
3218 [TOK_BANG        ] = "!",
3219 [TOK_ARROW       ] = "->",
3220 [TOK_DOT         ] = ".",
3221 [TOK_TILDE       ] = "~",
3222 [TOK_LIT_STRING  ] = ":string:",
3223 [TOK_IDENT       ] = ":ident:",
3224 [TOK_TYPE_NAME   ] = ":typename:",
3225 [TOK_LIT_CHAR    ] = ":char:",
3226 [TOK_LIT_INT     ] = ":integer:",
3227 [TOK_LIT_FLOAT   ] = ":float:",
3228 [TOK_MACRO       ] = "#",
3229 [TOK_CONCATENATE ] = "##",
3230
3231 [TOK_AUTO        ] = "auto",
3232 [TOK_BREAK       ] = "break",
3233 [TOK_CASE        ] = "case",
3234 [TOK_CHAR        ] = "char",
3235 [TOK_CONST       ] = "const",
3236 [TOK_CONTINUE    ] = "continue",
3237 [TOK_DEFAULT     ] = "default",
3238 [TOK_DO          ] = "do",
3239 [TOK_DOUBLE      ] = "double",
3240 [TOK_ELSE        ] = "else",
3241 [TOK_ENUM        ] = "enum",
3242 [TOK_EXTERN      ] = "extern",
3243 [TOK_FLOAT       ] = "float",
3244 [TOK_FOR         ] = "for",
3245 [TOK_GOTO        ] = "goto",
3246 [TOK_IF          ] = "if",
3247 [TOK_INLINE      ] = "inline",
3248 [TOK_INT         ] = "int",
3249 [TOK_LONG        ] = "long",
3250 [TOK_REGISTER    ] = "register",
3251 [TOK_RESTRICT    ] = "restrict",
3252 [TOK_RETURN      ] = "return",
3253 [TOK_SHORT       ] = "short",
3254 [TOK_SIGNED      ] = "signed",
3255 [TOK_SIZEOF      ] = "sizeof",
3256 [TOK_STATIC      ] = "static",
3257 [TOK_STRUCT      ] = "struct",
3258 [TOK_SWITCH      ] = "switch",
3259 [TOK_TYPEDEF     ] = "typedef",
3260 [TOK_UNION       ] = "union",
3261 [TOK_UNSIGNED    ] = "unsigned",
3262 [TOK_VOID        ] = "void",
3263 [TOK_VOLATILE    ] = "volatile",
3264 [TOK_WHILE       ] = "while",
3265 [TOK_ASM         ] = "asm",
3266 [TOK_ATTRIBUTE   ] = "__attribute__",
3267 [TOK_ALIGNOF     ] = "__alignof__",
3268
3269 [TOK_MDEFINE     ] = "#define",
3270 [TOK_MDEFINED    ] = "#defined",
3271 [TOK_MUNDEF      ] = "#undef",
3272 [TOK_MINCLUDE    ] = "#include",
3273 [TOK_MLINE       ] = "#line",
3274 [TOK_MERROR      ] = "#error",
3275 [TOK_MWARNING    ] = "#warning",
3276 [TOK_MPRAGMA     ] = "#pragma",
3277 [TOK_MIFDEF      ] = "#ifdef",
3278 [TOK_MIFNDEF     ] = "#ifndef",
3279 [TOK_MELIF       ] = "#elif",
3280 [TOK_MENDIF      ] = "#endif",
3281
3282 [TOK_MIF         ] = "#if",
3283 [TOK_MELSE       ] = "#else",
3284 [TOK_MIDENT      ] = "#:ident:",
3285 [TOK_EOL         ] = "EOL", 
3286 [TOK_EOF         ] = "EOF",
3287 };
3288
3289 static unsigned int hash(const char *str, int str_len)
3290 {
3291         unsigned int hash;
3292         const char *end;
3293         end = str + str_len;
3294         hash = 0;
3295         for(; str < end; str++) {
3296                 hash = (hash *263) + *str;
3297         }
3298         hash = hash & (HASH_TABLE_SIZE -1);
3299         return hash;
3300 }
3301
3302 static struct hash_entry *lookup(
3303         struct compile_state *state, const char *name, int name_len)
3304 {
3305         struct hash_entry *entry;
3306         unsigned int index;
3307         index = hash(name, name_len);
3308         entry = state->hash_table[index];
3309         while(entry && 
3310                 ((entry->name_len != name_len) ||
3311                         (memcmp(entry->name, name, name_len) != 0))) {
3312                 entry = entry->next;
3313         }
3314         if (!entry) {
3315                 char *new_name;
3316                 /* Get a private copy of the name */
3317                 new_name = xmalloc(name_len + 1, "hash_name");
3318                 memcpy(new_name, name, name_len);
3319                 new_name[name_len] = '\0';
3320
3321                 /* Create a new hash entry */
3322                 entry = xcmalloc(sizeof(*entry), "hash_entry");
3323                 entry->next = state->hash_table[index];
3324                 entry->name = new_name;
3325                 entry->name_len = name_len;
3326
3327                 /* Place the new entry in the hash table */
3328                 state->hash_table[index] = entry;
3329         }
3330         return entry;
3331 }
3332
3333 static void ident_to_keyword(struct compile_state *state, struct token *tk)
3334 {
3335         struct hash_entry *entry;
3336         entry = tk->ident;
3337         if (entry && ((entry->tok == TOK_TYPE_NAME) ||
3338                 (entry->tok == TOK_ENUM_CONST) ||
3339                 ((entry->tok >= TOK_FIRST_KEYWORD) && 
3340                         (entry->tok <= TOK_LAST_KEYWORD)))) {
3341                 tk->tok = entry->tok;
3342         }
3343 }
3344
3345 static void ident_to_macro(struct compile_state *state, struct token *tk)
3346 {
3347         struct hash_entry *entry;
3348         entry = tk->ident;
3349         if (!entry)
3350                 return;
3351         if ((entry->tok >= TOK_FIRST_MACRO) && (entry->tok <= TOK_LAST_MACRO)) {
3352                 tk->tok = entry->tok;
3353         }
3354         else if (entry->tok == TOK_IF) {
3355                 tk->tok = TOK_MIF;
3356         }
3357         else if (entry->tok == TOK_ELSE) {
3358                 tk->tok = TOK_MELSE;
3359         }
3360         else {
3361                 tk->tok = TOK_MIDENT;
3362         }
3363 }
3364
3365 static void hash_keyword(
3366         struct compile_state *state, const char *keyword, int tok)
3367 {
3368         struct hash_entry *entry;
3369         entry = lookup(state, keyword, strlen(keyword));
3370         if (entry && entry->tok != TOK_UNKNOWN) {
3371                 die("keyword %s already hashed", keyword);
3372         }
3373         entry->tok  = tok;
3374 }
3375
3376 static void romcc_symbol(
3377         struct compile_state *state, struct hash_entry *ident,
3378         struct symbol **chain, struct triple *def, struct type *type, int depth)
3379 {
3380         struct symbol *sym;
3381         if (*chain && ((*chain)->scope_depth >= depth)) {
3382                 error(state, 0, "%s already defined", ident->name);
3383         }
3384         sym = xcmalloc(sizeof(*sym), "symbol");
3385         sym->ident = ident;
3386         sym->def   = def;
3387         sym->type  = type;
3388         sym->scope_depth = depth;
3389         sym->next = *chain;
3390         *chain    = sym;
3391 }
3392
3393 static void symbol(
3394         struct compile_state *state, struct hash_entry *ident,
3395         struct symbol **chain, struct triple *def, struct type *type)
3396 {
3397         romcc_symbol(state, ident, chain, def, type, state->scope_depth);
3398 }
3399
3400 static void var_symbol(struct compile_state *state, 
3401         struct hash_entry *ident, struct triple *def)
3402 {
3403         if ((def->type->type & TYPE_MASK) == TYPE_PRODUCT) {
3404                 internal_error(state, 0, "bad var type");
3405         }
3406         symbol(state, ident, &ident->sym_ident, def, def->type);
3407 }
3408
3409 static void label_symbol(struct compile_state *state, 
3410         struct hash_entry *ident, struct triple *label, int depth)
3411 {
3412         romcc_symbol(state, ident, &ident->sym_label, label, &void_type, depth);
3413 }
3414
3415 static void start_scope(struct compile_state *state)
3416 {
3417         state->scope_depth++;
3418 }
3419
3420 static void end_scope_syms(struct compile_state *state,
3421         struct symbol **chain, int depth)
3422 {
3423         struct symbol *sym, *next;
3424         sym = *chain;
3425         while(sym && (sym->scope_depth == depth)) {
3426                 next = sym->next;
3427                 xfree(sym);
3428                 sym = next;
3429         }
3430         *chain = sym;
3431 }
3432
3433 static void end_scope(struct compile_state *state)
3434 {
3435         int i;
3436         int depth;
3437         /* Walk through the hash table and remove all symbols
3438          * in the current scope. 
3439          */
3440         depth = state->scope_depth;
3441         for(i = 0; i < HASH_TABLE_SIZE; i++) {
3442                 struct hash_entry *entry;
3443                 entry = state->hash_table[i];
3444                 while(entry) {
3445                         end_scope_syms(state, &entry->sym_label, depth);
3446                         end_scope_syms(state, &entry->sym_tag,   depth);
3447                         end_scope_syms(state, &entry->sym_ident, depth);
3448                         entry = entry->next;
3449                 }
3450         }
3451         state->scope_depth = depth - 1;
3452 }
3453
3454 static void register_keywords(struct compile_state *state)
3455 {
3456         hash_keyword(state, "auto",          TOK_AUTO);
3457         hash_keyword(state, "break",         TOK_BREAK);
3458         hash_keyword(state, "case",          TOK_CASE);
3459         hash_keyword(state, "char",          TOK_CHAR);
3460         hash_keyword(state, "const",         TOK_CONST);
3461         hash_keyword(state, "continue",      TOK_CONTINUE);
3462         hash_keyword(state, "default",       TOK_DEFAULT);
3463         hash_keyword(state, "do",            TOK_DO);
3464         hash_keyword(state, "double",        TOK_DOUBLE);
3465         hash_keyword(state, "else",          TOK_ELSE);
3466         hash_keyword(state, "enum",          TOK_ENUM);
3467         hash_keyword(state, "extern",        TOK_EXTERN);
3468         hash_keyword(state, "float",         TOK_FLOAT);
3469         hash_keyword(state, "for",           TOK_FOR);
3470         hash_keyword(state, "goto",          TOK_GOTO);
3471         hash_keyword(state, "if",            TOK_IF);
3472         hash_keyword(state, "inline",        TOK_INLINE);
3473         hash_keyword(state, "int",           TOK_INT);
3474         hash_keyword(state, "long",          TOK_LONG);
3475         hash_keyword(state, "register",      TOK_REGISTER);
3476         hash_keyword(state, "restrict",      TOK_RESTRICT);
3477         hash_keyword(state, "return",        TOK_RETURN);
3478         hash_keyword(state, "short",         TOK_SHORT);
3479         hash_keyword(state, "signed",        TOK_SIGNED);
3480         hash_keyword(state, "sizeof",        TOK_SIZEOF);
3481         hash_keyword(state, "static",        TOK_STATIC);
3482         hash_keyword(state, "struct",        TOK_STRUCT);
3483         hash_keyword(state, "switch",        TOK_SWITCH);
3484         hash_keyword(state, "typedef",       TOK_TYPEDEF);
3485         hash_keyword(state, "union",         TOK_UNION);
3486         hash_keyword(state, "unsigned",      TOK_UNSIGNED);
3487         hash_keyword(state, "void",          TOK_VOID);
3488         hash_keyword(state, "volatile",      TOK_VOLATILE);
3489         hash_keyword(state, "__volatile__",  TOK_VOLATILE);
3490         hash_keyword(state, "while",         TOK_WHILE);
3491         hash_keyword(state, "asm",           TOK_ASM);
3492         hash_keyword(state, "__asm__",       TOK_ASM);
3493         hash_keyword(state, "__attribute__", TOK_ATTRIBUTE);
3494         hash_keyword(state, "__alignof__",   TOK_ALIGNOF);
3495 }
3496
3497 static void register_macro_keywords(struct compile_state *state)
3498 {
3499         hash_keyword(state, "define",        TOK_MDEFINE);
3500         hash_keyword(state, "defined",       TOK_MDEFINED);
3501         hash_keyword(state, "undef",         TOK_MUNDEF);
3502         hash_keyword(state, "include",       TOK_MINCLUDE);
3503         hash_keyword(state, "line",          TOK_MLINE);
3504         hash_keyword(state, "error",         TOK_MERROR);
3505         hash_keyword(state, "warning",       TOK_MWARNING);
3506         hash_keyword(state, "pragma",        TOK_MPRAGMA);
3507         hash_keyword(state, "ifdef",         TOK_MIFDEF);
3508         hash_keyword(state, "ifndef",        TOK_MIFNDEF);
3509         hash_keyword(state, "elif",          TOK_MELIF);
3510         hash_keyword(state, "endif",         TOK_MENDIF);
3511 }
3512
3513
3514 static void undef_macro(struct compile_state *state, struct hash_entry *ident)
3515 {
3516         if (ident->sym_define != 0) {
3517                 struct macro *macro;
3518                 struct macro_arg *arg, *anext;
3519                 macro = ident->sym_define;
3520                 ident->sym_define = 0;
3521                 
3522                 /* Free the macro arguments... */
3523                 anext = macro->args;
3524                 while(anext) {
3525                         arg = anext;
3526                         anext = arg->next;
3527                         xfree(arg);
3528                 }
3529
3530                 /* Free the macro buffer */
3531                 xfree(macro->buf);
3532
3533                 /* Now free the macro itself */
3534                 xfree(macro);
3535         }
3536 }
3537
3538 static void do_define_macro(struct compile_state *state, 
3539         struct hash_entry *ident, const char *body, 
3540         int argc, struct macro_arg *args)
3541 {
3542         struct macro *macro;
3543         struct macro_arg *arg;
3544         size_t body_len;
3545
3546         /* Find the length of the body */
3547         body_len = strlen(body);
3548         macro = ident->sym_define;
3549         if (macro != 0) {
3550                 int identical_bodies, identical_args;
3551                 struct macro_arg *oarg;
3552                 /* Explicitly allow identical redfinitions of the same macro */
3553                 identical_bodies = 
3554                         (macro->buf_len == body_len) &&
3555                         (memcmp(macro->buf, body, body_len) == 0);
3556                 identical_args = macro->argc == argc;
3557                 oarg = macro->args;
3558                 arg = args;
3559                 while(identical_args && arg) {
3560                         identical_args = oarg->ident == arg->ident;
3561                         arg = arg->next;
3562                         oarg = oarg->next;
3563                 }
3564                 if (identical_bodies && identical_args) {
3565                         xfree(body);
3566                         return;
3567                 }
3568                 error(state, 0, "macro %s already defined\n", ident->name);
3569         }
3570 #if 0
3571         fprintf(state->errout, "#define %s: `%*.*s'\n",
3572                 ident->name, body_len, body_len, body);
3573 #endif
3574         macro = xmalloc(sizeof(*macro), "macro");
3575         macro->ident   = ident;
3576         macro->buf     = body;
3577         macro->buf_len = body_len;
3578         macro->args    = args;
3579         macro->argc    = argc;
3580
3581         ident->sym_define = macro;
3582 }
3583         
3584 static void define_macro(
3585         struct compile_state *state,
3586         struct hash_entry *ident,
3587         const char *body, int body_len,
3588         int argc, struct macro_arg *args)
3589 {
3590         char *buf;
3591         buf = xmalloc(body_len + 1, "macro buf");
3592         memcpy(buf, body, body_len);
3593         buf[body_len] = '\0';
3594         do_define_macro(state, ident, buf, argc, args);
3595 }
3596
3597 static void register_builtin_macro(struct compile_state *state,
3598         const char *name, const char *value)
3599 {
3600         struct hash_entry *ident;
3601
3602         if (value[0] == '(') {
3603                 internal_error(state, 0, "Builtin macros with arguments not supported");
3604         }
3605         ident = lookup(state, name, strlen(name));
3606         define_macro(state, ident, value, strlen(value), -1, 0);
3607 }
3608
3609 static void register_builtin_macros(struct compile_state *state)
3610 {
3611         char buf[30];
3612         char scratch[30];
3613         time_t now;
3614         struct tm *tm;
3615         now = time(NULL);
3616         tm = localtime(&now);
3617
3618         register_builtin_macro(state, "__ROMCC__", VERSION_MAJOR);
3619         register_builtin_macro(state, "__ROMCC_MINOR__", VERSION_MINOR);
3620         register_builtin_macro(state, "__FILE__", "\"This should be the filename\"");
3621         register_builtin_macro(state, "__LINE__", "54321");
3622
3623         strftime(scratch, sizeof(scratch), "%b %e %Y", tm);
3624         sprintf(buf, "\"%s\"", scratch);
3625         register_builtin_macro(state, "__DATE__", buf);
3626
3627         strftime(scratch, sizeof(scratch), "%H:%M:%S", tm);
3628         sprintf(buf, "\"%s\"", scratch);
3629         register_builtin_macro(state, "__TIME__", buf);
3630
3631         /* I can't be a conforming implementation of C :( */
3632         register_builtin_macro(state, "__STDC__", "0");
3633         /* In particular I don't conform to C99 */
3634         register_builtin_macro(state, "__STDC_VERSION__", "199901L");
3635         
3636 }
3637
3638 static void process_cmdline_macros(struct compile_state *state)
3639 {
3640         const char **macro, *name;
3641         struct hash_entry *ident;
3642         for(macro = state->compiler->defines; (name = *macro); macro++) {
3643                 const char *body;
3644                 size_t name_len;
3645
3646                 name_len = strlen(name);
3647                 body = strchr(name, '=');
3648                 if (!body) {
3649                         body = "\0";
3650                 } else {
3651                         name_len = body - name;
3652                         body++;
3653                 }
3654                 ident = lookup(state, name, name_len);
3655                 define_macro(state, ident, body, strlen(body), -1, 0);
3656         }
3657         for(macro = state->compiler->undefs; (name = *macro); macro++) {
3658                 ident = lookup(state, name, strlen(name));
3659                 undef_macro(state, ident);
3660         }
3661 }
3662
3663 static int spacep(int c)
3664 {
3665         int ret = 0;
3666         switch(c) {
3667         case ' ':
3668         case '\t':
3669         case '\f':
3670         case '\v':
3671         case '\r':
3672                 ret = 1;
3673                 break;
3674         }
3675         return ret;
3676 }
3677
3678 static int digitp(int c)
3679 {
3680         int ret = 0;
3681         switch(c) {
3682         case '0': case '1': case '2': case '3': case '4': 
3683         case '5': case '6': case '7': case '8': case '9':
3684                 ret = 1;
3685                 break;
3686         }
3687         return ret;
3688 }
3689 static int digval(int c)
3690 {
3691         int val = -1;
3692         if ((c >= '0') && (c <= '9')) {
3693                 val = c - '0';
3694         }
3695         return val;
3696 }
3697
3698 static int hexdigitp(int c)
3699 {
3700         int ret = 0;
3701         switch(c) {
3702         case '0': case '1': case '2': case '3': case '4': 
3703         case '5': case '6': case '7': case '8': case '9':
3704         case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
3705         case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
3706                 ret = 1;
3707                 break;
3708         }
3709         return ret;
3710 }
3711 static int hexdigval(int c) 
3712 {
3713         int val = -1;
3714         if ((c >= '0') && (c <= '9')) {
3715                 val = c - '0';
3716         }
3717         else if ((c >= 'A') && (c <= 'F')) {
3718                 val = 10 + (c - 'A');
3719         }
3720         else if ((c >= 'a') && (c <= 'f')) {
3721                 val = 10 + (c - 'a');
3722         }
3723         return val;
3724 }
3725
3726 static int octdigitp(int c)
3727 {
3728         int ret = 0;
3729         switch(c) {
3730         case '0': case '1': case '2': case '3': 
3731         case '4': case '5': case '6': case '7':
3732                 ret = 1;
3733                 break;
3734         }
3735         return ret;
3736 }
3737 static int octdigval(int c)
3738 {
3739         int val = -1;
3740         if ((c >= '0') && (c <= '7')) {
3741                 val = c - '0';
3742         }
3743         return val;
3744 }
3745
3746 static int letterp(int c)
3747 {
3748         int ret = 0;
3749         switch(c) {
3750         case 'a': case 'b': case 'c': case 'd': case 'e':
3751         case 'f': case 'g': case 'h': case 'i': case 'j':
3752         case 'k': case 'l': case 'm': case 'n': case 'o':
3753         case 'p': case 'q': case 'r': case 's': case 't':
3754         case 'u': case 'v': case 'w': case 'x': case 'y':
3755         case 'z':
3756         case 'A': case 'B': case 'C': case 'D': case 'E':
3757         case 'F': case 'G': case 'H': case 'I': case 'J':
3758         case 'K': case 'L': case 'M': case 'N': case 'O':
3759         case 'P': case 'Q': case 'R': case 'S': case 'T':
3760         case 'U': case 'V': case 'W': case 'X': case 'Y':
3761         case 'Z':
3762         case '_':
3763                 ret = 1;
3764                 break;
3765         }
3766         return ret;
3767 }
3768
3769 static const char *identifier(const char *str, const char *end)
3770 {
3771         if (letterp(*str)) {
3772                 for(; str < end; str++) {
3773                         int c;
3774                         c = *str;
3775                         if (!letterp(c) && !digitp(c)) {
3776                                 break;
3777                         }
3778                 }
3779         }
3780         return str;
3781 }
3782
3783 static int char_value(struct compile_state *state,
3784         const signed char **strp, const signed char *end)
3785 {
3786         const signed char *str;
3787         int c;
3788         str = *strp;
3789         c = *str++;
3790         if ((c == '\\') && (str < end)) {
3791                 switch(*str) {
3792                 case 'n':  c = '\n'; str++; break;
3793                 case 't':  c = '\t'; str++; break;
3794                 case 'v':  c = '\v'; str++; break;
3795                 case 'b':  c = '\b'; str++; break;
3796                 case 'r':  c = '\r'; str++; break;
3797                 case 'f':  c = '\f'; str++; break;
3798                 case 'a':  c = '\a'; str++; break;
3799                 case '\\': c = '\\'; str++; break;
3800                 case '?':  c = '?';  str++; break;
3801                 case '\'': c = '\''; str++; break;
3802                 case '"':  c = '"';  str++; break;
3803                 case 'x': 
3804                         c = 0;
3805                         str++;
3806                         while((str < end) && hexdigitp(*str)) {
3807                                 c <<= 4;
3808                                 c += hexdigval(*str);
3809                                 str++;
3810                         }
3811                         break;
3812                 case '0': case '1': case '2': case '3': 
3813                 case '4': case '5': case '6': case '7':
3814                         c = 0;
3815                         while((str < end) && octdigitp(*str)) {
3816                                 c <<= 3;
3817                                 c += octdigval(*str);
3818                                 str++;
3819                         }
3820                         break;
3821                 default:
3822                         error(state, 0, "Invalid character constant");
3823                         break;
3824                 }
3825         }
3826         *strp = str;
3827         return c;
3828 }
3829
3830 static const char *next_char(struct file_state *file, const char *pos, int index)
3831 {
3832         const char *end = file->buf + file->size;
3833         while(pos < end) {
3834                 /* Lookup the character */
3835                 int size = 1;
3836                 int c = *pos;
3837                 /* Is this a trigraph? */
3838                 if (file->trigraphs &&
3839                         (c == '?') && ((end - pos) >= 3) && (pos[1] == '?')) 
3840                 {
3841                         switch(pos[2]) {
3842                         case '=': c = '#'; break;
3843                         case '/': c = '\\'; break;
3844                         case '\'': c = '^'; break;
3845                         case '(': c = '['; break;
3846                         case ')': c = ']'; break;
3847                         case '!': c = '!'; break;
3848                         case '<': c = '{'; break;
3849                         case '>': c = '}'; break;
3850                         case '-': c = '~'; break;
3851                         }
3852                         if (c != '?') {
3853                                 size = 3;
3854                         }
3855                 }
3856                 /* Is this an escaped newline? */
3857                 if (file->join_lines &&
3858                         (c == '\\') && (pos + size < end) && ((pos[1] == '\n') || ((pos[1] == '\r') && (pos[2] == '\n'))))
3859                 {
3860                         int cr_offset = ((pos[1] == '\r') && (pos[2] == '\n'))?1:0;
3861                         /* At the start of a line just eat it */
3862                         if (pos == file->pos) {
3863                                 file->line++;
3864                                 file->report_line++;
3865                                 file->line_start = pos + size + 1 + cr_offset;
3866                         }
3867                         pos += size + 1 + cr_offset;
3868                 }
3869                 /* Do I need to ga any farther? */
3870                 else if (index == 0) {
3871                         break;
3872                 }
3873                 /* Process a normal character */
3874                 else {
3875                         pos += size;
3876                         index -= 1;
3877                 }
3878         }
3879         return pos;
3880 }
3881
3882 static int get_char(struct file_state *file, const char *pos)
3883 {
3884         const char *end = file->buf + file->size;
3885         int c;
3886         c = -1;
3887         pos = next_char(file, pos, 0);
3888         if (pos < end) {
3889                 /* Lookup the character */
3890                 c = *pos;
3891                 /* If it is a trigraph get the trigraph value */
3892                 if (file->trigraphs &&
3893                         (c == '?') && ((end - pos) >= 3) && (pos[1] == '?')) 
3894                 {
3895                         switch(pos[2]) {
3896                         case '=': c = '#'; break;
3897                         case '/': c = '\\'; break;
3898                         case '\'': c = '^'; break;
3899                         case '(': c = '['; break;
3900                         case ')': c = ']'; break;
3901                         case '!': c = '!'; break;
3902                         case '<': c = '{'; break;
3903                         case '>': c = '}'; break;
3904                         case '-': c = '~'; break;
3905                         }
3906                 }
3907         }
3908         return c;
3909 }
3910
3911 static void eat_chars(struct file_state *file, const char *targ)
3912 {
3913         const char *pos = file->pos;
3914         while(pos < targ) {
3915                 /* Do we have a newline? */
3916                 if (pos[0] == '\n') {
3917                         file->line++;
3918                         file->report_line++;
3919                         file->line_start = pos + 1;
3920                 }
3921                 pos++;
3922         }
3923         file->pos = pos;
3924 }
3925
3926
3927 static size_t char_strlen(struct file_state *file, const char *src, const char *end)
3928 {
3929         size_t len;
3930         len = 0;
3931         while(src < end) {
3932                 src = next_char(file, src, 1);
3933                 len++;
3934         }
3935         return len;
3936 }
3937
3938 static void char_strcpy(char *dest, 
3939         struct file_state *file, const char *src, const char *end)
3940 {
3941         while(src < end) {
3942                 int c;
3943                 c = get_char(file, src);
3944                 src = next_char(file, src, 1);
3945                 *dest++ = c;
3946         }
3947 }
3948
3949 static char *char_strdup(struct file_state *file, 
3950         const char *start, const char *end, const char *id)
3951 {
3952         char *str;
3953         size_t str_len;
3954         str_len = char_strlen(file, start, end);
3955         str = xcmalloc(str_len + 1, id);
3956         char_strcpy(str, file, start, end);
3957         str[str_len] = '\0';
3958         return str;
3959 }
3960
3961 static const char *after_digits(struct file_state *file, const char *ptr)
3962 {
3963         while(digitp(get_char(file, ptr))) {
3964                 ptr = next_char(file, ptr, 1);
3965         }
3966         return ptr;
3967 }
3968
3969 static const char *after_octdigits(struct file_state *file, const char *ptr)
3970 {
3971         while(octdigitp(get_char(file, ptr))) {
3972                 ptr = next_char(file, ptr, 1);
3973         }
3974         return ptr;
3975 }
3976
3977 static const char *after_hexdigits(struct file_state *file, const char *ptr)
3978 {
3979         while(hexdigitp(get_char(file, ptr))) {
3980                 ptr = next_char(file, ptr, 1);
3981         }
3982         return ptr;
3983 }
3984
3985 static const char *after_alnums(struct file_state *file, const char *ptr)
3986 {
3987         int c;
3988         c = get_char(file, ptr);
3989         while(letterp(c) || digitp(c)) {
3990                 ptr = next_char(file, ptr, 1);
3991                 c = get_char(file, ptr);
3992         }
3993         return ptr;
3994 }
3995
3996 static void save_string(struct file_state *file,
3997         struct token *tk, const char *start, const char *end, const char *id)
3998 {
3999         char *str;
4000
4001         /* Create a private copy of the string */
4002         str = char_strdup(file, start, end, id);
4003
4004         /* Store the copy in the token */
4005         tk->val.str = str;
4006         tk->str_len = strlen(str);
4007 }
4008
4009 static void raw_next_token(struct compile_state *state, 
4010         struct file_state *file, struct token *tk)
4011 {
4012         const char *token;
4013         int c, c1, c2, c3;
4014         const char *tokp;
4015         int eat;
4016         int tok;
4017
4018         tk->str_len = 0;
4019         tk->ident = 0;
4020         token = tokp = next_char(file, file->pos, 0);
4021         tok = TOK_UNKNOWN;
4022         c  = get_char(file, tokp);
4023         tokp = next_char(file, tokp, 1);
4024         eat = 0;
4025         c1 = get_char(file, tokp);
4026         c2 = get_char(file, next_char(file, tokp, 1));
4027         c3 = get_char(file, next_char(file, tokp, 2));
4028
4029         /* The end of the file */
4030         if (c == -1) {
4031                 tok = TOK_EOF;
4032         }
4033         /* Whitespace */
4034         else if (spacep(c)) {
4035                 tok = TOK_SPACE;
4036                 while (spacep(get_char(file, tokp))) {
4037                         tokp = next_char(file, tokp, 1);
4038                 }
4039         }
4040         /* EOL Comments */
4041         else if ((c == '/') && (c1 == '/')) {
4042                 tok = TOK_SPACE;
4043                 tokp = next_char(file, tokp, 1);
4044                 while((c = get_char(file, tokp)) != -1) {
4045                         /* Advance to the next character only after we verify
4046                          * the current character is not a newline.  
4047                          * EOL is special to the preprocessor so we don't
4048                          * want to loose any.
4049                          */
4050                         if (c == '\n') {
4051                                 break;
4052                         }
4053                         tokp = next_char(file, tokp, 1);
4054                 }
4055         }
4056         /* Comments */
4057         else if ((c == '/') && (c1 == '*')) {
4058                 tokp = next_char(file, tokp, 2);
4059                 c = c2;
4060                 while((c1 = get_char(file, tokp)) != -1) {
4061                         tokp = next_char(file, tokp, 1);
4062                         if ((c == '*') && (c1 == '/')) {
4063                                 tok = TOK_SPACE;
4064                                 break;
4065                         }
4066                         c = c1;
4067                 }
4068                 if (tok == TOK_UNKNOWN) {
4069                         error(state, 0, "unterminated comment");
4070                 }
4071         }
4072         /* string constants */
4073         else if ((c == '"') || ((c == 'L') && (c1 == '"'))) {
4074                 int wchar, multiline;
4075
4076                 wchar = 0;
4077                 multiline = 0;
4078                 if (c == 'L') {
4079                         wchar = 1;
4080                         tokp = next_char(file, tokp, 1);
4081                 }
4082                 while((c = get_char(file, tokp)) != -1) {
4083                         tokp = next_char(file, tokp, 1);
4084                         if (c == '\n') {
4085                                 multiline = 1;
4086                         }
4087                         else if (c == '\\') {
4088                                 tokp = next_char(file, tokp, 1);
4089                         }
4090                         else if (c == '"') {
4091                                 tok = TOK_LIT_STRING;
4092                                 break;
4093                         }
4094                 }
4095                 if (tok == TOK_UNKNOWN) {
4096                         error(state, 0, "unterminated string constant");
4097                 }
4098                 if (multiline) {
4099                         warning(state, 0, "multiline string constant");
4100                 }
4101
4102                 /* Save the string value */
4103                 save_string(file, tk, token, tokp, "literal string");
4104         }
4105         /* character constants */
4106         else if ((c == '\'') || ((c == 'L') && (c1 == '\''))) {
4107                 int wchar, multiline;
4108
4109                 wchar = 0;
4110                 multiline = 0;
4111                 if (c == 'L') {
4112                         wchar = 1;
4113                         tokp = next_char(file, tokp, 1);
4114                 }
4115                 while((c = get_char(file, tokp)) != -1) {
4116                         tokp = next_char(file, tokp, 1);
4117                         if (c == '\n') {
4118                                 multiline = 1;
4119                         }
4120                         else if (c == '\\') {
4121                                 tokp = next_char(file, tokp, 1);
4122                         }
4123                         else if (c == '\'') {
4124                                 tok = TOK_LIT_CHAR;
4125                                 break;
4126                         }
4127                 }
4128                 if (tok == TOK_UNKNOWN) {
4129                         error(state, 0, "unterminated character constant");
4130                 }
4131                 if (multiline) {
4132                         warning(state, 0, "multiline character constant");
4133                 }
4134
4135                 /* Save the character value */
4136                 save_string(file, tk, token, tokp, "literal character");
4137         }
4138         /* integer and floating constants 
4139          * Integer Constants
4140          * {digits}
4141          * 0[Xx]{hexdigits}
4142          * 0{octdigit}+
4143          * 
4144          * Floating constants
4145          * {digits}.{digits}[Ee][+-]?{digits}
4146          * {digits}.{digits}
4147          * {digits}[Ee][+-]?{digits}
4148          * .{digits}[Ee][+-]?{digits}
4149          * .{digits}
4150          */
4151         else if (digitp(c) || ((c == '.') && (digitp(c1)))) {
4152                 const char *next;
4153                 int is_float;
4154                 int cn;
4155                 is_float = 0;
4156                 if (c != '.') {
4157                         next = after_digits(file, tokp);
4158                 }
4159                 else {
4160                         next = token;
4161                 }
4162                 cn = get_char(file, next);
4163                 if (cn == '.') {
4164                         next = next_char(file, next, 1);
4165                         next = after_digits(file, next);
4166                         is_float = 1;
4167                 }
4168                 cn = get_char(file, next);
4169                 if ((cn == 'e') || (cn == 'E')) {
4170                         const char *new;
4171                         next = next_char(file, next, 1);
4172                         cn = get_char(file, next);
4173                         if ((cn == '+') || (cn == '-')) {
4174                                 next = next_char(file, next, 1);
4175                         }
4176                         new = after_digits(file, next);
4177                         is_float |= (new != next);
4178                         next = new;
4179                 }
4180                 if (is_float) {
4181                         tok = TOK_LIT_FLOAT;
4182                         cn = get_char(file, next);
4183                         if ((cn  == 'f') || (cn == 'F') || (cn == 'l') || (cn == 'L')) {
4184                                 next = next_char(file, next, 1);
4185                         }
4186                 }
4187                 if (!is_float && digitp(c)) {
4188                         tok = TOK_LIT_INT;
4189                         if ((c == '0') && ((c1 == 'x') || (c1 == 'X'))) {
4190                                 next = next_char(file, tokp, 1);
4191                                 next = after_hexdigits(file, next);
4192                         }
4193                         else if (c == '0') {
4194                                 next = after_octdigits(file, tokp);
4195                         }
4196                         else {
4197                                 next = after_digits(file, tokp);
4198                         }
4199                         /* crazy integer suffixes */
4200                         cn = get_char(file, next);
4201                         if ((cn == 'u') || (cn == 'U')) {
4202                                 next = next_char(file, next, 1);
4203                                 cn = get_char(file, next);
4204                                 if ((cn == 'l') || (cn == 'L')) {
4205                                         next = next_char(file, next, 1);
4206                                         cn = get_char(file, next);
4207                                 }
4208                                 if ((cn == 'l') || (cn == 'L')) {
4209                                         next = next_char(file, next, 1);
4210                                 }
4211                         }
4212                         else if ((cn == 'l') || (cn == 'L')) {
4213                                 next = next_char(file, next, 1);
4214                                 cn = get_char(file, next);
4215                                 if ((cn == 'l') || (cn == 'L')) {
4216                                         next = next_char(file, next, 1);
4217                                         cn = get_char(file, next);
4218                                 }
4219                                 if ((cn == 'u') || (cn == 'U')) {
4220                                         next = next_char(file, next, 1);
4221                                 }
4222                         }
4223                 }
4224                 tokp = next;
4225
4226                 /* Save the integer/floating point value */
4227                 save_string(file, tk, token, tokp, "literal number");
4228         }
4229         /* identifiers */
4230         else if (letterp(c)) {
4231                 tok = TOK_IDENT;
4232
4233                 /* Find and save the identifier string */
4234                 tokp = after_alnums(file, tokp);
4235                 save_string(file, tk, token, tokp, "identifier");
4236
4237                 /* Look up to see which identifier it is */
4238                 tk->ident = lookup(state, tk->val.str, tk->str_len);
4239
4240                 /* Free the identifier string */
4241                 tk->str_len = 0;
4242                 xfree(tk->val.str);
4243
4244                 /* See if this identifier can be macro expanded */
4245                 tk->val.notmacro = 0;
4246                 c = get_char(file, tokp);
4247                 if (c == '$') {
4248                         tokp = next_char(file, tokp, 1);
4249                         tk->val.notmacro = 1;
4250                 }
4251         }
4252         /* C99 alternate macro characters */
4253         else if ((c == '%') && (c1 == ':') && (c2 == '%') && (c3 == ':')) { 
4254                 eat += 3;
4255                 tok = TOK_CONCATENATE; 
4256         }
4257         else if ((c == '.') && (c1 == '.') && (c2 == '.')) { eat += 2; tok = TOK_DOTS; }
4258         else if ((c == '<') && (c1 == '<') && (c2 == '=')) { eat += 2; tok = TOK_SLEQ; }
4259         else if ((c == '>') && (c1 == '>') && (c2 == '=')) { eat += 2; tok = TOK_SREQ; }
4260         else if ((c == '*') && (c1 == '=')) { eat += 1; tok = TOK_TIMESEQ; }
4261         else if ((c == '/') && (c1 == '=')) { eat += 1; tok = TOK_DIVEQ; }
4262         else if ((c == '%') && (c1 == '=')) { eat += 1; tok = TOK_MODEQ; }
4263         else if ((c == '+') && (c1 == '=')) { eat += 1; tok = TOK_PLUSEQ; }
4264         else if ((c == '-') && (c1 == '=')) { eat += 1; tok = TOK_MINUSEQ; }
4265         else if ((c == '&') && (c1 == '=')) { eat += 1; tok = TOK_ANDEQ; }
4266         else if ((c == '^') && (c1 == '=')) { eat += 1; tok = TOK_XOREQ; }
4267         else if ((c == '|') && (c1 == '=')) { eat += 1; tok = TOK_OREQ; }
4268         else if ((c == '=') && (c1 == '=')) { eat += 1; tok = TOK_EQEQ; }
4269         else if ((c == '!') && (c1 == '=')) { eat += 1; tok = TOK_NOTEQ; }
4270         else if ((c == '|') && (c1 == '|')) { eat += 1; tok = TOK_LOGOR; }
4271         else if ((c == '&') && (c1 == '&')) { eat += 1; tok = TOK_LOGAND; }
4272         else if ((c == '<') && (c1 == '=')) { eat += 1; tok = TOK_LESSEQ; }
4273         else if ((c == '>') && (c1 == '=')) { eat += 1; tok = TOK_MOREEQ; }
4274         else if ((c == '<') && (c1 == '<')) { eat += 1; tok = TOK_SL; }
4275         else if ((c == '>') && (c1 == '>')) { eat += 1; tok = TOK_SR; }
4276         else if ((c == '+') && (c1 == '+')) { eat += 1; tok = TOK_PLUSPLUS; }
4277         else if ((c == '-') && (c1 == '-')) { eat += 1; tok = TOK_MINUSMINUS; }
4278         else if ((c == '-') && (c1 == '>')) { eat += 1; tok = TOK_ARROW; }
4279         else if ((c == '<') && (c1 == ':')) { eat += 1; tok = TOK_LBRACKET; }
4280         else if ((c == ':') && (c1 == '>')) { eat += 1; tok = TOK_RBRACKET; }
4281         else if ((c == '<') && (c1 == '%')) { eat += 1; tok = TOK_LBRACE; }
4282         else if ((c == '%') && (c1 == '>')) { eat += 1; tok = TOK_RBRACE; }
4283         else if ((c == '%') && (c1 == ':')) { eat += 1; tok = TOK_MACRO; }
4284         else if ((c == '#') && (c1 == '#')) { eat += 1; tok = TOK_CONCATENATE; }
4285         else if (c == ';') { tok = TOK_SEMI; }
4286         else if (c == '{') { tok = TOK_LBRACE; }
4287         else if (c == '}') { tok = TOK_RBRACE; }
4288         else if (c == ',') { tok = TOK_COMMA; }
4289         else if (c == '=') { tok = TOK_EQ; }
4290         else if (c == ':') { tok = TOK_COLON; }
4291         else if (c == '[') { tok = TOK_LBRACKET; }
4292         else if (c == ']') { tok = TOK_RBRACKET; }
4293         else if (c == '(') { tok = TOK_LPAREN; }
4294         else if (c == ')') { tok = TOK_RPAREN; }
4295         else if (c == '*') { tok = TOK_STAR; }
4296         else if (c == '>') { tok = TOK_MORE; }
4297         else if (c == '<') { tok = TOK_LESS; }
4298         else if (c == '?') { tok = TOK_QUEST; }
4299         else if (c == '|') { tok = TOK_OR; }
4300         else if (c == '&') { tok = TOK_AND; }
4301         else if (c == '^') { tok = TOK_XOR; }
4302         else if (c == '+') { tok = TOK_PLUS; }
4303         else if (c == '-') { tok = TOK_MINUS; }
4304         else if (c == '/') { tok = TOK_DIV; }
4305         else if (c == '%') { tok = TOK_MOD; }
4306         else if (c == '!') { tok = TOK_BANG; }
4307         else if (c == '.') { tok = TOK_DOT; }
4308         else if (c == '~') { tok = TOK_TILDE; }
4309         else if (c == '#') { tok = TOK_MACRO; }
4310         else if (c == '\n') { tok = TOK_EOL; }
4311
4312         tokp = next_char(file, tokp, eat);
4313         eat_chars(file, tokp);
4314         tk->tok = tok;
4315         tk->pos = token;
4316 }
4317
4318 static void check_tok(struct compile_state *state, struct token *tk, int tok)
4319 {
4320         if (tk->tok != tok) {
4321                 const char *name1, *name2;
4322                 name1 = tokens[tk->tok];
4323                 name2 = "";
4324                 if ((tk->tok == TOK_IDENT) || (tk->tok == TOK_MIDENT)) {
4325                         name2 = tk->ident->name;
4326                 }
4327                 error(state, 0, "\tfound %s %s expected %s",
4328                         name1, name2, tokens[tok]);
4329         }
4330 }
4331
4332 struct macro_arg_value {
4333         struct hash_entry *ident;
4334         char *value;
4335         size_t len;
4336 };
4337 static struct macro_arg_value *read_macro_args(
4338         struct compile_state *state, struct macro *macro, 
4339         struct file_state *file, struct token *tk)
4340 {
4341         struct macro_arg_value *argv;
4342         struct macro_arg *arg;
4343         int paren_depth;
4344         int i;
4345
4346         if (macro->argc == 0) {
4347                 do {
4348                         raw_next_token(state, file, tk);
4349                 } while(tk->tok == TOK_SPACE);
4350                 return NULL;
4351         }
4352         argv = xcmalloc(sizeof(*argv) * macro->argc, "macro args");
4353         for(i = 0, arg = macro->args; arg; arg = arg->next, i++) {
4354                 argv[i].value = 0;
4355                 argv[i].len   = 0;
4356                 argv[i].ident = arg->ident;
4357         }
4358         paren_depth = 0;
4359         i = 0;
4360         
4361         for(;;) {
4362                 const char *start;
4363                 size_t len;
4364                 start = file->pos;
4365                 raw_next_token(state, file, tk);
4366                 
4367                 if (!paren_depth && (tk->tok == TOK_COMMA) &&
4368                         (argv[i].ident != state->i___VA_ARGS__)) 
4369                 {
4370                         i++;
4371                         if (i >= macro->argc) {
4372                                 error(state, 0, "too many args to %s\n",
4373                                         macro->ident->name);
4374                         }
4375                         continue;
4376                 }
4377                 
4378                 if (tk->tok == TOK_LPAREN) {
4379                         paren_depth++;
4380                 }
4381                 
4382                 if (tk->tok == TOK_RPAREN) {
4383                         if (paren_depth == 0) {
4384                                 break;
4385                         }
4386                         paren_depth--;
4387                 }
4388                 if (tk->tok == TOK_EOF) {
4389                         error(state, 0, "End of file encountered while parsing macro arguments");
4390                 }
4391
4392                 len = char_strlen(file, start, file->pos);
4393                 argv[i].value = xrealloc(
4394                         argv[i].value, argv[i].len + len, "macro args");
4395                 char_strcpy((char *)argv[i].value + argv[i].len, file, start, file->pos);
4396                 argv[i].len += len;
4397         }
4398         if (i != macro->argc -1) {
4399                 error(state, 0, "missing %s arg %d\n", 
4400                         macro->ident->name, i +2);
4401         }
4402         return argv;
4403 }
4404
4405
4406 static void free_macro_args(struct macro *macro, struct macro_arg_value *argv)
4407 {
4408         int i;
4409         for(i = 0; i < macro->argc; i++) {
4410                 xfree(argv[i].value);
4411         }
4412         xfree(argv);
4413 }
4414
4415 struct macro_buf {
4416         char *str;
4417         size_t len, pos;
4418 };
4419
4420 static void grow_macro_buf(struct compile_state *state,
4421         const char *id, struct macro_buf *buf,
4422         size_t grow)
4423 {
4424         if ((buf->pos + grow) >= buf->len) {
4425                 buf->str = xrealloc(buf->str, buf->len + grow, id);
4426                 buf->len += grow;
4427         }
4428 }
4429
4430 static void append_macro_text(struct compile_state *state,
4431         const char *id, struct macro_buf *buf,
4432         const char *fstart, size_t flen)
4433 {
4434         grow_macro_buf(state, id, buf, flen);
4435         memcpy(buf->str + buf->pos, fstart, flen);
4436 #if 0
4437         fprintf(state->errout, "append: `%*.*s' `%*.*s'\n",
4438                 buf->pos, buf->pos, buf->str,
4439                 flen, flen, buf->str + buf->pos);
4440 #endif
4441         buf->pos += flen;
4442 }
4443
4444
4445 static void append_macro_chars(struct compile_state *state,
4446         const char *id, struct macro_buf *buf,
4447         struct file_state *file, const char *start, const char *end)
4448 {
4449         size_t flen;
4450         flen = char_strlen(file, start, end);
4451         grow_macro_buf(state, id, buf, flen);
4452         char_strcpy(buf->str + buf->pos, file, start, end);
4453 #if 0
4454         fprintf(state->errout, "append: `%*.*s' `%*.*s'\n",
4455                 buf->pos, buf->pos, buf->str,
4456                 flen, flen, buf->str + buf->pos);
4457 #endif
4458         buf->pos += flen;
4459 }
4460
4461 static int compile_macro(struct compile_state *state, 
4462         struct file_state **filep, struct token *tk);
4463
4464 static void macro_expand_args(struct compile_state *state, 
4465         struct macro *macro, struct macro_arg_value *argv, struct token *tk)
4466 {
4467         int i;
4468         
4469         for(i = 0; i < macro->argc; i++) {
4470                 struct file_state fmacro, *file;
4471                 struct macro_buf buf;
4472
4473                 fmacro.prev        = 0;
4474                 fmacro.basename    = argv[i].ident->name;
4475                 fmacro.dirname     = "";
4476                 fmacro.buf         = (char *)argv[i].value;
4477                 fmacro.size        = argv[i].len;
4478                 fmacro.pos         = fmacro.buf;
4479                 fmacro.line        = 1;
4480                 fmacro.line_start  = fmacro.buf;
4481                 fmacro.report_line = 1;
4482                 fmacro.report_name = fmacro.basename;
4483                 fmacro.report_dir  = fmacro.dirname;
4484                 fmacro.macro       = 1;
4485                 fmacro.trigraphs   = 0;
4486                 fmacro.join_lines  = 0;
4487
4488                 buf.len = argv[i].len;
4489                 buf.str = xmalloc(buf.len, argv[i].ident->name);
4490                 buf.pos = 0;
4491
4492                 file = &fmacro;
4493                 for(;;) {
4494                         raw_next_token(state, file, tk);
4495                         
4496                         /* If we have recursed into another macro body
4497                          * get out of it.
4498                          */
4499                         if (tk->tok == TOK_EOF) {
4500                                 struct file_state *old;
4501                                 old = file;
4502                                 file = file->prev;
4503                                 if (!file) {
4504                                         break;
4505                                 }
4506                                 /* old->basename is used keep it */
4507                                 xfree(old->dirname);
4508                                 xfree(old->buf);
4509                                 xfree(old);
4510                                 continue;
4511                         }
4512                         else if (tk->ident && tk->ident->sym_define) {
4513                                 if (compile_macro(state, &file, tk)) {
4514                                         continue;
4515                                 }
4516                         }
4517
4518                         append_macro_chars(state, macro->ident->name, &buf,
4519                                 file, tk->pos, file->pos);
4520                 }
4521                         
4522                 xfree(argv[i].value);
4523                 argv[i].value = buf.str;
4524                 argv[i].len   = buf.pos;
4525         }
4526         return;
4527 }
4528
4529 static void expand_macro(struct compile_state *state,
4530         struct macro *macro, struct macro_buf *buf,
4531         struct macro_arg_value *argv, struct token *tk)
4532 {
4533         struct file_state fmacro;
4534         const char space[] = " ";
4535         const char *fstart;
4536         size_t flen;
4537         int i, j;
4538
4539         /* Place the macro body in a dummy file */
4540         fmacro.prev        = 0;
4541         fmacro.basename    = macro->ident->name;
4542         fmacro.dirname     = "";
4543         fmacro.buf         = macro->buf;
4544         fmacro.size        = macro->buf_len;
4545         fmacro.pos         = fmacro.buf;
4546         fmacro.line        = 1;
4547         fmacro.line_start  = fmacro.buf;
4548         fmacro.report_line = 1;
4549         fmacro.report_name = fmacro.basename;
4550         fmacro.report_dir  = fmacro.dirname;
4551         fmacro.macro       = 1;
4552         fmacro.trigraphs   = 0;
4553         fmacro.join_lines  = 0;
4554         
4555         /* Allocate a buffer to hold the macro expansion */
4556         buf->len = macro->buf_len + 3;
4557         buf->str = xmalloc(buf->len, macro->ident->name);
4558         buf->pos = 0;
4559         
4560         fstart = fmacro.pos;
4561         raw_next_token(state, &fmacro, tk);
4562         while(tk->tok != TOK_EOF) {
4563                 flen = fmacro.pos - fstart;
4564                 switch(tk->tok) {
4565                 case TOK_IDENT:
4566                         for(i = 0; i < macro->argc; i++) {
4567                                 if (argv[i].ident == tk->ident) {
4568                                         break;
4569                                 }
4570                         }
4571                         if (i >= macro->argc) {
4572                                 break;
4573                         }
4574                         /* Substitute macro parameter */
4575                         fstart = argv[i].value;
4576                         flen   = argv[i].len;
4577                         break;
4578                 case TOK_MACRO:
4579                         if (macro->argc < 0) {
4580                                 break;
4581                         }
4582                         do {
4583                                 raw_next_token(state, &fmacro, tk);
4584                         } while(tk->tok == TOK_SPACE);
4585                         check_tok(state, tk, TOK_IDENT);
4586                         for(i = 0; i < macro->argc; i++) {
4587                                 if (argv[i].ident == tk->ident) {
4588                                         break;
4589                                 }
4590                         }
4591                         if (i >= macro->argc) {
4592                                 error(state, 0, "parameter `%s' not found",
4593                                         tk->ident->name);
4594                         }
4595                         /* Stringize token */
4596                         append_macro_text(state, macro->ident->name, buf, "\"", 1);
4597                         for(j = 0; j < argv[i].len; j++) {
4598                                 char *str = argv[i].value + j;
4599                                 size_t len = 1;
4600                                 if (*str == '\\') {
4601                                         str = "\\";
4602                                         len = 2;
4603                                 } 
4604                                 else if (*str == '"') {
4605                                         str = "\\\"";
4606                                         len = 2;
4607                                 }
4608                                 append_macro_text(state, macro->ident->name, buf, str, len);
4609                         }
4610                         append_macro_text(state, macro->ident->name, buf, "\"", 1);
4611                         fstart = 0;
4612                         flen   = 0;
4613                         break;
4614                 case TOK_CONCATENATE:
4615                         /* Concatenate tokens */
4616                         /* Delete the previous whitespace token */
4617                         if (buf->str[buf->pos - 1] == ' ') {
4618                                 buf->pos -= 1;
4619                         }
4620                         /* Skip the next sequence of whitspace tokens */
4621                         do {
4622                                 fstart = fmacro.pos;
4623                                 raw_next_token(state, &fmacro, tk);
4624                         } while(tk->tok == TOK_SPACE);
4625                         /* Restart at the top of the loop.
4626                          * I need to process the non white space token.
4627                          */
4628                         continue;
4629                         break;
4630                 case TOK_SPACE:
4631                         /* Collapse multiple spaces into one */
4632                         if (buf->str[buf->pos - 1] != ' ') {
4633                                 fstart = space;
4634                                 flen   = 1;
4635                         } else {
4636                                 fstart = 0;
4637                                 flen   = 0;
4638                         }
4639                         break;
4640                 default:
4641                         break;
4642                 }
4643
4644                 append_macro_text(state, macro->ident->name, buf, fstart, flen);
4645                 
4646                 fstart = fmacro.pos;
4647                 raw_next_token(state, &fmacro, tk);
4648         }
4649 }
4650
4651 static void tag_macro_name(struct compile_state *state,
4652         struct macro *macro, struct macro_buf *buf,
4653         struct token *tk)
4654 {
4655         /* Guard all instances of the macro name in the replacement
4656          * text from further macro expansion.
4657          */
4658         struct file_state fmacro;
4659         const char *fstart;
4660         size_t flen;
4661
4662         /* Put the old macro expansion buffer in a file */
4663         fmacro.prev        = 0;
4664         fmacro.basename    = macro->ident->name;
4665         fmacro.dirname     = "";
4666         fmacro.buf         = buf->str;
4667         fmacro.size        = buf->pos;
4668         fmacro.pos         = fmacro.buf;
4669         fmacro.line        = 1;
4670         fmacro.line_start  = fmacro.buf;
4671         fmacro.report_line = 1;
4672         fmacro.report_name = fmacro.basename;
4673         fmacro.report_dir  = fmacro.dirname;
4674         fmacro.macro       = 1;
4675         fmacro.trigraphs   = 0;
4676         fmacro.join_lines  = 0;
4677         
4678         /* Allocate a new macro expansion buffer */
4679         buf->len = macro->buf_len + 3;
4680         buf->str = xmalloc(buf->len, macro->ident->name);
4681         buf->pos = 0;
4682         
4683         fstart = fmacro.pos;
4684         raw_next_token(state, &fmacro, tk);
4685         while(tk->tok != TOK_EOF) {
4686                 flen = fmacro.pos - fstart;
4687                 if ((tk->tok == TOK_IDENT) &&
4688                         (tk->ident == macro->ident) &&
4689                         (tk->val.notmacro == 0)) 
4690                 {
4691                         append_macro_text(state, macro->ident->name, buf, fstart, flen);
4692                         fstart = "$";
4693                         flen   = 1;
4694                 }
4695
4696                 append_macro_text(state, macro->ident->name, buf, fstart, flen);
4697                 
4698                 fstart = fmacro.pos;
4699                 raw_next_token(state, &fmacro, tk);
4700         }
4701         xfree(fmacro.buf);
4702 }
4703
4704 static int compile_macro(struct compile_state *state, 
4705         struct file_state **filep, struct token *tk)
4706 {
4707         struct file_state *file;
4708         struct hash_entry *ident;
4709         struct macro *macro;
4710         struct macro_arg_value *argv;
4711         struct macro_buf buf;
4712
4713 #if 0
4714         fprintf(state->errout, "macro: %s\n", tk->ident->name);
4715 #endif
4716         ident = tk->ident;
4717         macro = ident->sym_define;
4718
4719         /* If this token comes from a macro expansion ignore it */
4720         if (tk->val.notmacro) {
4721                 return 0;
4722         }
4723         /* If I am a function like macro and the identifier is not followed
4724          * by a left parenthesis, do nothing.
4725          */
4726         if ((macro->argc >= 0) && (get_char(*filep, (*filep)->pos) != '(')) {
4727                 return 0;
4728         }
4729
4730         /* Read in the macro arguments */
4731         argv = 0;
4732         if (macro->argc >= 0) {
4733                 raw_next_token(state, *filep, tk);
4734                 check_tok(state, tk, TOK_LPAREN);
4735
4736                 argv = read_macro_args(state, macro, *filep, tk);
4737
4738                 check_tok(state, tk, TOK_RPAREN);
4739         }
4740         /* Macro expand the macro arguments */
4741         macro_expand_args(state, macro, argv, tk);
4742
4743         buf.str = 0;
4744         buf.len = 0;
4745         buf.pos = 0;
4746         if (ident == state->i___FILE__) {
4747                 buf.len = strlen(state->file->basename) + 1 + 2 + 3;
4748                 buf.str = xmalloc(buf.len, ident->name);
4749                 sprintf(buf.str, "\"%s\"", state->file->basename);
4750                 buf.pos = strlen(buf.str);
4751         }
4752         else if (ident == state->i___LINE__) {
4753                 buf.len = 30;
4754                 buf.str = xmalloc(buf.len, ident->name);
4755                 sprintf(buf.str, "%d", state->file->line);
4756                 buf.pos = strlen(buf.str);
4757         }
4758         else {
4759                 expand_macro(state, macro, &buf, argv, tk);
4760         }
4761         /* Tag the macro name with a $ so it will no longer
4762          * be regonized as a canidate for macro expansion.
4763          */
4764         tag_macro_name(state, macro, &buf, tk);
4765
4766 #if 0
4767         fprintf(state->errout, "%s: %d -> `%*.*s'\n",
4768                 ident->name, buf.pos, buf.pos, (int)(buf.pos), buf.str);
4769 #endif
4770
4771         free_macro_args(macro, argv);
4772
4773         file = xmalloc(sizeof(*file), "file_state");
4774         file->prev        = *filep;
4775         file->basename    = xstrdup(ident->name);
4776         file->dirname     = xstrdup("");
4777         file->buf         = buf.str;
4778         file->size        = buf.pos;
4779         file->pos         = file->buf;
4780         file->line        = 1;
4781         file->line_start  = file->pos;
4782         file->report_line = 1;
4783         file->report_name = file->basename;
4784         file->report_dir  = file->dirname;
4785         file->macro       = 1;
4786         file->trigraphs   = 0;
4787         file->join_lines  = 0;
4788         *filep = file;
4789         return 1;
4790 }
4791
4792 static void eat_tokens(struct compile_state *state, int targ_tok)
4793 {
4794         if (state->eat_depth > 0) {
4795                 internal_error(state, 0, "Already eating...");
4796         }
4797         state->eat_depth = state->if_depth;
4798         state->eat_targ = targ_tok;
4799 }
4800 static int if_eat(struct compile_state *state)
4801 {
4802         return state->eat_depth > 0;
4803 }
4804 static int if_value(struct compile_state *state)
4805 {
4806         int index, offset;
4807         index = state->if_depth / CHAR_BIT;
4808         offset = state->if_depth % CHAR_BIT;
4809         return !!(state->if_bytes[index] & (1 << (offset)));
4810 }
4811 static void set_if_value(struct compile_state *state, int value) 
4812 {
4813         int index, offset;
4814         index = state->if_depth / CHAR_BIT;
4815         offset = state->if_depth % CHAR_BIT;
4816
4817         state->if_bytes[index] &= ~(1 << offset);
4818         if (value) {
4819                 state->if_bytes[index] |= (1 << offset);
4820         }
4821 }
4822 static void in_if(struct compile_state *state, const char *name)
4823 {
4824         if (state->if_depth <= 0) {
4825                 error(state, 0, "%s without #if", name);
4826         }
4827 }
4828 static void enter_if(struct compile_state *state)
4829 {
4830         state->if_depth += 1;
4831         if (state->if_depth > MAX_PP_IF_DEPTH) {
4832                 error(state, 0, "#if depth too great");
4833         }
4834 }
4835 static void reenter_if(struct compile_state *state, const char *name)
4836 {
4837         in_if(state, name);
4838         if ((state->eat_depth == state->if_depth) &&
4839                 (state->eat_targ == TOK_MELSE)) {
4840                 state->eat_depth = 0;
4841                 state->eat_targ = 0;
4842         }
4843 }
4844 static void enter_else(struct compile_state *state, const char *name)
4845 {
4846         in_if(state, name);
4847         if ((state->eat_depth == state->if_depth) &&
4848                 (state->eat_targ == TOK_MELSE)) {
4849                 state->eat_depth = 0;
4850                 state->eat_targ = 0;
4851         }
4852 }
4853 static void exit_if(struct compile_state *state, const char *name)
4854 {
4855         in_if(state, name);
4856         if (state->eat_depth == state->if_depth) {
4857                 state->eat_depth = 0;
4858                 state->eat_targ = 0;
4859         }
4860         state->if_depth -= 1;
4861 }
4862
4863 static void raw_token(struct compile_state *state, struct token *tk)
4864 {
4865         struct file_state *file;
4866         int rescan;
4867
4868         file = state->file;
4869         raw_next_token(state, file, tk);
4870         do {
4871                 rescan = 0;
4872                 file = state->file;
4873                 /* Exit out of an include directive or macro call */
4874                 if ((tk->tok == TOK_EOF) && 
4875                         (file != state->macro_file) && file->prev) 
4876                 {
4877                         state->file = file->prev;
4878                         /* file->basename is used keep it */
4879                         xfree(file->dirname);
4880                         xfree(file->buf);
4881                         xfree(file);
4882                         file = 0;
4883                         raw_next_token(state, state->file, tk);
4884                         rescan = 1;
4885                 }
4886         } while(rescan);
4887 }
4888
4889 static void pp_token(struct compile_state *state, struct token *tk)
4890 {
4891         struct file_state *file;
4892         int rescan;
4893
4894         raw_token(state, tk);
4895         do {
4896                 rescan = 0;
4897                 file = state->file;
4898                 if (tk->tok == TOK_SPACE) {
4899                         raw_token(state, tk);
4900                         rescan = 1;
4901                 }
4902                 else if (tk->tok == TOK_IDENT) {
4903                         if (state->token_base == 0) {
4904                                 ident_to_keyword(state, tk);
4905                         } else {
4906                                 ident_to_macro(state, tk);
4907                         }
4908                 }
4909         } while(rescan);
4910 }
4911
4912 static void preprocess(struct compile_state *state, struct token *tk);
4913
4914 static void token(struct compile_state *state, struct token *tk)
4915 {
4916         int rescan;
4917         pp_token(state, tk);
4918         do {
4919                 rescan = 0;
4920                 /* Process a macro directive */
4921                 if (tk->tok == TOK_MACRO) {
4922                         /* Only match preprocessor directives at the start of a line */
4923                         const char *ptr;
4924                         ptr = state->file->line_start;
4925                         while((ptr < tk->pos)
4926                                 && spacep(get_char(state->file, ptr)))
4927                         {
4928                                 ptr = next_char(state->file, ptr, 1);
4929                         }
4930                         if (ptr == tk->pos) {
4931                                 preprocess(state, tk);
4932                                 rescan = 1;
4933                         }
4934                 }
4935                 /* Expand a macro call */
4936                 else if (tk->ident && tk->ident->sym_define) {
4937                         rescan = compile_macro(state, &state->file, tk);
4938                         if (rescan) {
4939                                 pp_token(state, tk);
4940                         }
4941                 }
4942                 /* Eat tokens disabled by the preprocessor 
4943                  * (Unless we are parsing a preprocessor directive 
4944                  */
4945                 else if (if_eat(state) && (state->token_base == 0)) {
4946                         pp_token(state, tk);
4947                         rescan = 1;
4948                 }
4949                 /* Make certain EOL only shows up in preprocessor directives */
4950                 else if ((tk->tok == TOK_EOL) && (state->token_base == 0)) {
4951                         pp_token(state, tk);
4952                         rescan = 1;
4953                 }
4954                 /* Error on unknown tokens */
4955                 else if (tk->tok == TOK_UNKNOWN) {
4956                         error(state, 0, "unknown token");
4957                 }
4958         } while(rescan);
4959 }
4960
4961
4962 static inline struct token *get_token(struct compile_state *state, int offset)
4963 {
4964         int index;
4965         index = state->token_base + offset;
4966         if (index >= sizeof(state->token)/sizeof(state->token[0])) {
4967                 internal_error(state, 0, "token array to small");
4968         }
4969         return &state->token[index];
4970 }
4971
4972 static struct token *do_eat_token(struct compile_state *state, int tok)
4973 {
4974         struct token *tk;
4975         int i;
4976         check_tok(state, get_token(state, 1), tok);
4977         
4978         /* Free the old token value */
4979         tk = get_token(state, 0);
4980         if (tk->str_len) {
4981                 memset((void *)tk->val.str, -1, tk->str_len);
4982                 xfree(tk->val.str);
4983         }
4984         /* Overwrite the old token with newer tokens */
4985         for(i = state->token_base; i < sizeof(state->token)/sizeof(state->token[0]) - 1; i++) {
4986                 state->token[i] = state->token[i + 1];
4987         }
4988         /* Clear the last token */
4989         memset(&state->token[i], 0, sizeof(state->token[i]));
4990         state->token[i].tok = -1;
4991
4992         /* Return the token */
4993         return tk;
4994 }
4995
4996 static int raw_peek(struct compile_state *state)
4997 {
4998         struct token *tk1;
4999         tk1 = get_token(state, 1);
5000         if (tk1->tok == -1) {
5001                 raw_token(state, tk1);
5002         }
5003         return tk1->tok;
5004 }
5005
5006 static struct token *raw_eat(struct compile_state *state, int tok)
5007 {
5008         raw_peek(state);
5009         return do_eat_token(state, tok);
5010 }
5011
5012 static int pp_peek(struct compile_state *state)
5013 {
5014         struct token *tk1;
5015         tk1 = get_token(state, 1);
5016         if (tk1->tok == -1) {
5017                 pp_token(state, tk1);
5018         }
5019         return tk1->tok;
5020 }
5021
5022 static struct token *pp_eat(struct compile_state *state, int tok)
5023 {
5024         pp_peek(state);
5025         return do_eat_token(state, tok);
5026 }
5027
5028 static int peek(struct compile_state *state)
5029 {
5030         struct token *tk1;
5031         tk1 = get_token(state, 1);
5032         if (tk1->tok == -1) {
5033                 token(state, tk1);
5034         }
5035         return tk1->tok;
5036 }
5037
5038 static int peek2(struct compile_state *state)
5039 {
5040         struct token *tk1, *tk2;
5041         tk1 = get_token(state, 1);
5042         tk2 = get_token(state, 2);
5043         if (tk1->tok == -1) {
5044                 token(state, tk1);
5045         }
5046         if (tk2->tok == -1) {
5047                 token(state, tk2);
5048         }
5049         return tk2->tok;
5050 }
5051
5052 static struct token *eat(struct compile_state *state, int tok)
5053 {
5054         peek(state);
5055         return do_eat_token(state, tok);
5056 }
5057
5058 static void compile_file(struct compile_state *state, const char *filename, int local)
5059 {
5060         char cwd[MAX_CWD_SIZE];
5061         const char *subdir, *base;
5062         int subdir_len;
5063         struct file_state *file;
5064         char *basename;
5065         file = xmalloc(sizeof(*file), "file_state");
5066
5067         base = strrchr(filename, '/');
5068         subdir = filename;
5069         if (base != 0) {
5070                 subdir_len = base - filename;
5071                 base++;
5072         }
5073         else {
5074                 base = filename;
5075                 subdir_len = 0;
5076         }
5077         basename = xmalloc(strlen(base) +1, "basename");
5078         strcpy(basename, base);
5079         file->basename = basename;
5080
5081         if (getcwd(cwd, sizeof(cwd)) == 0) {
5082                 die("cwd buffer to small");
5083         }
5084         if ((subdir[0] == '/') || ((subdir[1] == ':') && ((subdir[2] == '/') || (subdir[2] == '\\')))) {
5085                 file->dirname = xmalloc(subdir_len + 1, "dirname");
5086                 memcpy(file->dirname, subdir, subdir_len);
5087                 file->dirname[subdir_len] = '\0';
5088         }
5089         else {
5090                 const char *dir;
5091                 int dirlen;
5092                 const char **path;
5093                 /* Find the appropriate directory... */
5094                 dir = 0;
5095                 if (!state->file && exists(cwd, filename)) {
5096                         dir = cwd;
5097                 }
5098                 if (local && state->file && exists(state->file->dirname, filename)) {
5099                         dir = state->file->dirname;
5100                 }
5101                 for(path = state->compiler->include_paths; !dir && *path; path++) {
5102                         if (exists(*path, filename)) {
5103                                 dir = *path;
5104                         }
5105                 }
5106                 if (!dir) {
5107                         error(state, 0, "Cannot open `%s'\n", filename);
5108                 }
5109                 dirlen = strlen(dir);
5110                 file->dirname = xmalloc(dirlen + 1 + subdir_len + 1, "dirname");
5111                 memcpy(file->dirname, dir, dirlen);
5112                 file->dirname[dirlen] = '/';
5113                 memcpy(file->dirname + dirlen + 1, subdir, subdir_len);
5114                 file->dirname[dirlen + 1 + subdir_len] = '\0';
5115         }
5116         file->buf = slurp_file(file->dirname, file->basename, &file->size);
5117
5118         file->pos = file->buf;
5119         file->line_start = file->pos;
5120         file->line = 1;
5121
5122         file->report_line = 1;
5123         file->report_name = file->basename;
5124         file->report_dir  = file->dirname;
5125         file->macro       = 0;
5126         file->trigraphs   = (state->compiler->flags & COMPILER_TRIGRAPHS)? 1: 0;
5127         file->join_lines  = 1;
5128
5129         file->prev = state->file;
5130         state->file = file;
5131 }
5132
5133 static struct triple *constant_expr(struct compile_state *state);
5134 static void integral(struct compile_state *state, struct triple *def);
5135
5136 static int mcexpr(struct compile_state *state)
5137 {
5138         struct triple *cvalue;
5139         cvalue = constant_expr(state);
5140         integral(state, cvalue);
5141         if (cvalue->op != OP_INTCONST) {
5142                 error(state, 0, "integer constant expected");
5143         }
5144         return cvalue->u.cval != 0;
5145 }
5146
5147 static void preprocess(struct compile_state *state, struct token *current_token)
5148 {
5149         /* Doing much more with the preprocessor would require
5150          * a parser and a major restructuring.
5151          * Postpone that for later.
5152          */
5153         int old_token_base;
5154         int tok;
5155         
5156         state->macro_file = state->file;
5157
5158         old_token_base = state->token_base;
5159         state->token_base = current_token - state->token;
5160
5161         tok = pp_peek(state);
5162         switch(tok) {
5163         case TOK_LIT_INT:
5164         {
5165                 struct token *tk;
5166                 int override_line;
5167                 tk = pp_eat(state, TOK_LIT_INT);
5168                 override_line = strtoul(tk->val.str, 0, 10);
5169                 /* I have a preprocessor  line marker parse it */
5170                 if (pp_peek(state) == TOK_LIT_STRING) {
5171                         const char *token, *base;
5172                         char *name, *dir;
5173                         int name_len, dir_len;
5174                         tk = pp_eat(state, TOK_LIT_STRING);
5175                         name = xmalloc(tk->str_len, "report_name");
5176                         token = tk->val.str + 1;
5177                         base = strrchr(token, '/');
5178                         name_len = tk->str_len -2;
5179                         if (base != 0) {
5180                                 dir_len = base - token;
5181                                 base++;
5182                                 name_len -= base - token;
5183                         } else {
5184                                 dir_len = 0;
5185                                 base = token;
5186                         }
5187                         memcpy(name, base, name_len);
5188                         name[name_len] = '\0';
5189                         dir = xmalloc(dir_len + 1, "report_dir");
5190                         memcpy(dir, token, dir_len);
5191                         dir[dir_len] = '\0';
5192                         state->file->report_line = override_line - 1;
5193                         state->file->report_name = name;
5194                         state->file->report_dir = dir;
5195                         state->file->macro      = 0;
5196                 }
5197                 break;
5198         }
5199         case TOK_MLINE:
5200         {
5201                 struct token *tk;
5202                 pp_eat(state, TOK_MLINE);
5203                 tk = eat(state, TOK_LIT_INT);
5204                 state->file->report_line = strtoul(tk->val.str, 0, 10) -1;
5205                 if (pp_peek(state) == TOK_LIT_STRING) {
5206                         const char *token, *base;
5207                         char *name, *dir;
5208                         int name_len, dir_len;
5209                         tk = pp_eat(state, TOK_LIT_STRING);
5210                         name = xmalloc(tk->str_len, "report_name");
5211                         token = tk->val.str + 1;
5212                         base = strrchr(token, '/');
5213                         name_len = tk->str_len - 2;
5214                         if (base != 0) {
5215                                 dir_len = base - token;
5216                                 base++;
5217                                 name_len -= base - token;
5218                         } else {
5219                                 dir_len = 0;
5220                                 base = token;
5221                         }
5222                         memcpy(name, base, name_len);
5223                         name[name_len] = '\0';
5224                         dir = xmalloc(dir_len + 1, "report_dir");
5225                         memcpy(dir, token, dir_len);
5226                         dir[dir_len] = '\0';
5227                         state->file->report_name = name;
5228                         state->file->report_dir = dir;
5229                         state->file->macro      = 0;
5230                 }
5231                 break;
5232         }
5233         case TOK_MUNDEF:
5234         {
5235                 struct hash_entry *ident;
5236                 pp_eat(state, TOK_MUNDEF);
5237                 if (if_eat(state))  /* quit early when #if'd out */
5238                         break;
5239                 
5240                 ident = pp_eat(state, TOK_MIDENT)->ident;
5241
5242                 undef_macro(state, ident);
5243                 break;
5244         }
5245         case TOK_MPRAGMA:
5246                 pp_eat(state, TOK_MPRAGMA);
5247                 if (if_eat(state))  /* quit early when #if'd out */
5248                         break;
5249                 warning(state, 0, "Ignoring pragma"); 
5250                 break;
5251         case TOK_MELIF:
5252                 pp_eat(state, TOK_MELIF);
5253                 reenter_if(state, "#elif");
5254                 if (if_eat(state))   /* quit early when #if'd out */
5255                         break;
5256                 /* If the #if was taken the #elif just disables the following code */
5257                 if (if_value(state)) {
5258                         eat_tokens(state, TOK_MENDIF);
5259                 }
5260                 /* If the previous #if was not taken see if the #elif enables the 
5261                  * trailing code.
5262                  */
5263                 else {
5264                         set_if_value(state, mcexpr(state));
5265                         if (!if_value(state)) {
5266                                 eat_tokens(state, TOK_MELSE);
5267                         }
5268                 }
5269                 break;
5270         case TOK_MIF:
5271                 pp_eat(state, TOK_MIF);
5272                 enter_if(state);
5273                 if (if_eat(state))  /* quit early when #if'd out */
5274                         break;
5275                 set_if_value(state, mcexpr(state));
5276                 if (!if_value(state)) {
5277                         eat_tokens(state, TOK_MELSE);
5278                 }
5279                 break;
5280         case TOK_MIFNDEF:
5281         {
5282                 struct hash_entry *ident;
5283
5284                 pp_eat(state, TOK_MIFNDEF);
5285                 enter_if(state);
5286                 if (if_eat(state))  /* quit early when #if'd out */
5287                         break;
5288                 ident = pp_eat(state, TOK_MIDENT)->ident;
5289                 set_if_value(state, ident->sym_define == 0);
5290                 if (!if_value(state)) {
5291                         eat_tokens(state, TOK_MELSE);
5292                 }
5293                 break;
5294         }
5295         case TOK_MIFDEF:
5296         {
5297                 struct hash_entry *ident;
5298                 pp_eat(state, TOK_MIFDEF);
5299                 enter_if(state);
5300                 if (if_eat(state))  /* quit early when #if'd out */
5301                         break;
5302                 ident = pp_eat(state, TOK_MIDENT)->ident;
5303                 set_if_value(state, ident->sym_define != 0);
5304                 if (!if_value(state)) {
5305                         eat_tokens(state, TOK_MELSE);
5306                 }
5307                 break;
5308         }
5309         case TOK_MELSE:
5310                 pp_eat(state, TOK_MELSE);
5311                 enter_else(state, "#else");
5312                 if (!if_eat(state) && if_value(state)) {
5313                         eat_tokens(state, TOK_MENDIF);
5314                 }
5315                 break;
5316         case TOK_MENDIF:
5317                 pp_eat(state, TOK_MENDIF);
5318                 exit_if(state, "#endif");
5319                 break;
5320         case TOK_MDEFINE:
5321         {
5322                 struct hash_entry *ident;
5323                 struct macro_arg *args, **larg;
5324                 const char *mstart, *mend;
5325                 int argc;
5326
5327                 pp_eat(state, TOK_MDEFINE);
5328                 if (if_eat(state))  /* quit early when #if'd out */
5329                         break;
5330                 ident = pp_eat(state, TOK_MIDENT)->ident;
5331                 argc = -1;
5332                 args = 0;
5333                 larg = &args;
5334
5335                 /* Parse macro parameters */
5336                 if (raw_peek(state) == TOK_LPAREN) {
5337                         raw_eat(state, TOK_LPAREN);
5338                         argc += 1;
5339
5340                         for(;;) {
5341                                 struct macro_arg *narg, *arg;
5342                                 struct hash_entry *aident;
5343                                 int tok;
5344
5345                                 tok = pp_peek(state);
5346                                 if (!args && (tok == TOK_RPAREN)) {
5347                                         break;
5348                                 }
5349                                 else if (tok == TOK_DOTS) {
5350                                         pp_eat(state, TOK_DOTS);
5351                                         aident = state->i___VA_ARGS__;
5352                                 } 
5353                                 else {
5354                                         aident = pp_eat(state, TOK_MIDENT)->ident;
5355                                 }
5356                                 
5357                                 narg = xcmalloc(sizeof(*arg), "macro arg");
5358                                 narg->ident = aident;
5359
5360                                 /* Verify I don't have a duplicate identifier */
5361                                 for(arg = args; arg; arg = arg->next) {
5362                                         if (arg->ident == narg->ident) {
5363                                                 error(state, 0, "Duplicate macro arg `%s'",
5364                                                         narg->ident->name);
5365                                         }
5366                                 }
5367                                 /* Add the new argument to the end of the list */
5368                                 *larg = narg;
5369                                 larg = &narg->next;
5370                                 argc += 1;
5371
5372                                 if ((aident == state->i___VA_ARGS__) ||
5373                                         (pp_peek(state) != TOK_COMMA)) {
5374                                         break;
5375                                 }
5376                                 pp_eat(state, TOK_COMMA);
5377                         }
5378                         pp_eat(state, TOK_RPAREN);
5379                 }
5380                 /* Remove leading whitespace */
5381                 while(raw_peek(state) == TOK_SPACE) {
5382                         raw_eat(state, TOK_SPACE);
5383                 }
5384
5385                 /* Remember the start of the macro body */
5386                 tok = raw_peek(state);
5387                 mend = mstart = get_token(state, 1)->pos;
5388
5389                 /* Find the end of the macro */
5390                 for(tok = raw_peek(state); tok != TOK_EOL; tok = raw_peek(state)) {
5391                         raw_eat(state, tok);
5392                         /* Remember the end of the last non space token */
5393                         raw_peek(state);
5394                         if (tok != TOK_SPACE) {
5395                                 mend = get_token(state, 1)->pos;
5396                         }
5397                 }
5398                 
5399                 /* Now that I have found the body defined the token */
5400                 do_define_macro(state, ident,
5401                         char_strdup(state->file, mstart, mend, "macro buf"),
5402                         argc, args);
5403                 break;
5404         }
5405         case TOK_MERROR:
5406         {
5407                 const char *start, *end;
5408                 int len;
5409                 
5410                 pp_eat(state, TOK_MERROR);
5411                 /* Find the start of the line */
5412                 raw_peek(state);
5413                 start = get_token(state, 1)->pos;
5414
5415                 /* Find the end of the line */
5416                 while((tok = raw_peek(state)) != TOK_EOL) {
5417                         raw_eat(state, tok);
5418                 }
5419                 end = get_token(state, 1)->pos;
5420                 len = end - start;
5421                 if (!if_eat(state)) {
5422                         error(state, 0, "%*.*s", len, len, start);
5423                 }
5424                 break;
5425         }
5426         case TOK_MWARNING:
5427         {
5428                 const char *start, *end;
5429                 int len;
5430                 
5431                 pp_eat(state, TOK_MWARNING);
5432
5433                 /* Find the start of the line */
5434                 raw_peek(state);
5435                 start = get_token(state, 1)->pos;
5436                  
5437                 /* Find the end of the line */
5438                 while((tok = raw_peek(state)) != TOK_EOL) {
5439                         raw_eat(state, tok);
5440                 }
5441                 end = get_token(state, 1)->pos;
5442                 len = end - start;
5443                 if (!if_eat(state)) {
5444                         warning(state, 0, "%*.*s", len, len, start);
5445                 }
5446                 break;
5447         }
5448         case TOK_MINCLUDE:
5449         {
5450                 char *name;
5451                 int local;
5452                 local = 0;
5453                 name = 0;
5454
5455                 pp_eat(state, TOK_MINCLUDE);
5456                 if (if_eat(state)) {
5457                         /* Find the end of the line */
5458                         while((tok = raw_peek(state)) != TOK_EOL) {
5459                                 raw_eat(state, tok);
5460                         }
5461                         break;
5462                 }
5463                 tok = peek(state);
5464                 if (tok == TOK_LIT_STRING) {
5465                         struct token *tk;
5466                         const char *token;
5467                         int name_len;
5468                         tk = eat(state, TOK_LIT_STRING);
5469                         name = xmalloc(tk->str_len, "include");
5470                         token = tk->val.str +1;
5471                         name_len = tk->str_len -2;
5472                         if (*token == '"') {
5473                                 token++;
5474                                 name_len--;
5475                         }
5476                         memcpy(name, token, name_len);
5477                         name[name_len] = '\0';
5478                         local = 1;
5479                 }
5480                 else if (tok == TOK_LESS) {
5481                         struct macro_buf buf;
5482                         eat(state, TOK_LESS);
5483
5484                         buf.len = 40;
5485                         buf.str = xmalloc(buf.len, "include");
5486                         buf.pos = 0;
5487
5488                         tok = peek(state);
5489                         while((tok != TOK_MORE) &&
5490                                 (tok != TOK_EOL) && (tok != TOK_EOF))
5491                         {
5492                                 struct token *tk;
5493                                 tk = eat(state, tok);
5494                                 append_macro_chars(state, "include", &buf,
5495                                         state->file, tk->pos, state->file->pos);
5496                                 tok = peek(state);
5497                         }
5498                         append_macro_text(state, "include", &buf, "\0", 1);
5499                         if (peek(state) != TOK_MORE) {
5500                                 error(state, 0, "Unterminated include directive");
5501                         }
5502                         eat(state, TOK_MORE);
5503                         local = 0;
5504                         name = buf.str;
5505                 }
5506                 else {
5507                         error(state, 0, "Invalid include directive");
5508                 }
5509                 /* Error if there are any tokens after the include */
5510                 if (pp_peek(state) != TOK_EOL) {
5511                         error(state, 0, "garbage after include directive");
5512                 }
5513                 if (!if_eat(state)) {
5514                         compile_file(state, name, local);
5515                 }
5516                 xfree(name);
5517                 break;
5518         }
5519         case TOK_EOL:
5520                 /* Ignore # without a follwing ident */
5521                 break;
5522         default:
5523         {
5524                 const char *name1, *name2;
5525                 name1 = tokens[tok];
5526                 name2 = "";
5527                 if (tok == TOK_MIDENT) {
5528                         name2 = get_token(state, 1)->ident->name;
5529                 }
5530                 error(state, 0, "Invalid preprocessor directive: %s %s", 
5531                         name1, name2);
5532                 break;
5533         }
5534         }
5535         /* Consume the rest of the macro line */
5536         do {
5537                 tok = pp_peek(state);
5538                 pp_eat(state, tok);
5539         } while((tok != TOK_EOF) && (tok != TOK_EOL));
5540         state->token_base = old_token_base;
5541         state->macro_file = NULL;
5542         return;
5543 }
5544
5545 /* Type helper functions */
5546
5547 static struct type *new_type(
5548         unsigned int type, struct type *left, struct type *right)
5549 {
5550         struct type *result;
5551         result = xmalloc(sizeof(*result), "type");
5552         result->type = type;
5553         result->left = left;
5554         result->right = right;
5555         result->field_ident = 0;
5556         result->type_ident = 0;
5557         result->elements = 0;
5558         return result;
5559 }
5560
5561 static struct type *clone_type(unsigned int specifiers, struct type *old)
5562 {
5563         struct type *result;
5564         result = xmalloc(sizeof(*result), "type");
5565         memcpy(result, old, sizeof(*result));
5566         result->type &= TYPE_MASK;
5567         result->type |= specifiers;
5568         return result;
5569 }
5570
5571 static struct type *dup_type(struct compile_state *state, struct type *orig)
5572 {
5573         struct type *new;
5574         new = xcmalloc(sizeof(*new), "type");
5575         new->type = orig->type;
5576         new->field_ident = orig->field_ident;
5577         new->type_ident  = orig->type_ident;
5578         new->elements    = orig->elements;
5579         if (orig->left) {
5580                 new->left = dup_type(state, orig->left);
5581         }
5582         if (orig->right) {
5583                 new->right = dup_type(state, orig->right);
5584         }
5585         return new;
5586 }
5587
5588
5589 static struct type *invalid_type(struct compile_state *state, struct type *type)
5590 {
5591         struct type *invalid, *member;
5592         invalid = 0;
5593         if (!type) {
5594                 internal_error(state, 0, "type missing?");
5595         }
5596         switch(type->type & TYPE_MASK) {
5597         case TYPE_VOID:
5598         case TYPE_CHAR:         case TYPE_UCHAR:
5599         case TYPE_SHORT:        case TYPE_USHORT:
5600         case TYPE_INT:          case TYPE_UINT:
5601         case TYPE_LONG:         case TYPE_ULONG:
5602         case TYPE_LLONG:        case TYPE_ULLONG:
5603         case TYPE_POINTER:
5604         case TYPE_ENUM:
5605                 break;
5606         case TYPE_BITFIELD:
5607                 invalid = invalid_type(state, type->left);
5608                 break;
5609         case TYPE_ARRAY:
5610                 invalid = invalid_type(state, type->left);
5611                 break;
5612         case TYPE_STRUCT:
5613         case TYPE_TUPLE:
5614                 member = type->left;
5615                 while(member && (invalid == 0) && 
5616                         ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
5617                         invalid = invalid_type(state, member->left);
5618                         member = member->right;
5619                 }
5620                 if (!invalid) {
5621                         invalid = invalid_type(state, member);
5622                 }
5623                 break;
5624         case TYPE_UNION:
5625         case TYPE_JOIN:
5626                 member = type->left;
5627                 while(member && (invalid == 0) &&
5628                         ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
5629                         invalid = invalid_type(state, member->left);
5630                         member = member->right;
5631                 }
5632                 if (!invalid) {
5633                         invalid = invalid_type(state, member);
5634                 }
5635                 break;
5636         default:
5637                 invalid = type;
5638                 break;
5639         }
5640         return invalid;
5641         
5642 }
5643
5644 #define MASK_UCHAR(X)    ((X) & ((ulong_t)0xff))
5645 #define MASK_USHORT(X)   ((X) & (((ulong_t)1 << (SIZEOF_SHORT)) - 1))
5646 static inline ulong_t mask_uint(ulong_t x)
5647 {
5648         if (SIZEOF_INT < SIZEOF_LONG) {
5649                 ulong_t mask = (1ULL << ((ulong_t)(SIZEOF_INT))) -1;
5650                 x &= mask;
5651         }
5652         return x;
5653 }
5654 #define MASK_UINT(X)      (mask_uint(X))
5655 #define MASK_ULONG(X)    (X)
5656
5657 static struct type void_type    = { .type  = TYPE_VOID };
5658 static struct type char_type    = { .type  = TYPE_CHAR };
5659 static struct type uchar_type   = { .type  = TYPE_UCHAR };
5660 #if DEBUG_ROMCC_WARNING
5661 static struct type short_type   = { .type  = TYPE_SHORT };
5662 #endif
5663 static struct type ushort_type  = { .type  = TYPE_USHORT };
5664 static struct type int_type     = { .type  = TYPE_INT };
5665 static struct type uint_type    = { .type  = TYPE_UINT };
5666 static struct type long_type    = { .type  = TYPE_LONG };
5667 static struct type ulong_type   = { .type  = TYPE_ULONG };
5668 static struct type unknown_type = { .type  = TYPE_UNKNOWN };
5669
5670 static struct type void_ptr_type  = {
5671         .type = TYPE_POINTER,
5672         .left = &void_type,
5673 };
5674
5675 #if DEBUG_ROMCC_WARNING
5676 static struct type void_func_type = { 
5677         .type  = TYPE_FUNCTION,
5678         .left  = &void_type,
5679         .right = &void_type,
5680 };
5681 #endif
5682
5683 static size_t bits_to_bytes(size_t size)
5684 {
5685         return (size + SIZEOF_CHAR - 1)/SIZEOF_CHAR;
5686 }
5687
5688 static struct triple *variable(struct compile_state *state, struct type *type)
5689 {
5690         struct triple *result;
5691         if ((type->type & STOR_MASK) != STOR_PERM) {
5692                 result = triple(state, OP_ADECL, type, 0, 0);
5693                 generate_lhs_pieces(state, result);
5694         }
5695         else {
5696                 result = triple(state, OP_SDECL, type, 0, 0);
5697         }
5698         return result;
5699 }
5700
5701 static void stor_of(FILE *fp, struct type *type)
5702 {
5703         switch(type->type & STOR_MASK) {
5704         case STOR_AUTO:
5705                 fprintf(fp, "auto ");
5706                 break;
5707         case STOR_STATIC:
5708                 fprintf(fp, "static ");
5709                 break;
5710         case STOR_LOCAL:
5711                 fprintf(fp, "local ");
5712                 break;
5713         case STOR_EXTERN:
5714                 fprintf(fp, "extern ");
5715                 break;
5716         case STOR_REGISTER:
5717                 fprintf(fp, "register ");
5718                 break;
5719         case STOR_TYPEDEF:
5720                 fprintf(fp, "typedef ");
5721                 break;
5722         case STOR_INLINE | STOR_LOCAL:
5723                 fprintf(fp, "inline ");
5724                 break;
5725         case STOR_INLINE | STOR_STATIC:
5726                 fprintf(fp, "static inline");
5727                 break;
5728         case STOR_INLINE | STOR_EXTERN:
5729                 fprintf(fp, "extern inline");
5730                 break;
5731         default:
5732                 fprintf(fp, "stor:%x", type->type & STOR_MASK);
5733                 break;
5734         }
5735 }
5736 static void qual_of(FILE *fp, struct type *type)
5737 {
5738         if (type->type & QUAL_CONST) {
5739                 fprintf(fp, " const");
5740         }
5741         if (type->type & QUAL_VOLATILE) {
5742                 fprintf(fp, " volatile");
5743         }
5744         if (type->type & QUAL_RESTRICT) {
5745                 fprintf(fp, " restrict");
5746         }
5747 }
5748
5749 static void name_of(FILE *fp, struct type *type)
5750 {
5751         unsigned int base_type;
5752         base_type = type->type & TYPE_MASK;
5753         if ((base_type != TYPE_PRODUCT) && (base_type != TYPE_OVERLAP)) {
5754                 stor_of(fp, type);
5755         }
5756         switch(base_type) {
5757         case TYPE_VOID:
5758                 fprintf(fp, "void");
5759                 qual_of(fp, type);
5760                 break;
5761         case TYPE_CHAR:
5762                 fprintf(fp, "signed char");
5763                 qual_of(fp, type);
5764                 break;
5765         case TYPE_UCHAR:
5766                 fprintf(fp, "unsigned char");
5767                 qual_of(fp, type);
5768                 break;
5769         case TYPE_SHORT:
5770                 fprintf(fp, "signed short");
5771                 qual_of(fp, type);
5772                 break;
5773         case TYPE_USHORT:
5774                 fprintf(fp, "unsigned short");
5775                 qual_of(fp, type);
5776                 break;
5777         case TYPE_INT:
5778                 fprintf(fp, "signed int");
5779                 qual_of(fp, type);
5780                 break;
5781         case TYPE_UINT:
5782                 fprintf(fp, "unsigned int");
5783                 qual_of(fp, type);
5784                 break;
5785         case TYPE_LONG:
5786                 fprintf(fp, "signed long");
5787                 qual_of(fp, type);
5788                 break;
5789         case TYPE_ULONG:
5790                 fprintf(fp, "unsigned long");
5791                 qual_of(fp, type);
5792                 break;
5793         case TYPE_POINTER:
5794                 name_of(fp, type->left);
5795                 fprintf(fp, " * ");
5796                 qual_of(fp, type);
5797                 break;
5798         case TYPE_PRODUCT:
5799                 name_of(fp, type->left);
5800                 fprintf(fp, ", ");
5801                 name_of(fp, type->right);
5802                 break;
5803         case TYPE_OVERLAP:
5804                 name_of(fp, type->left);
5805                 fprintf(fp, ",| ");
5806                 name_of(fp, type->right);
5807                 break;
5808         case TYPE_ENUM:
5809                 fprintf(fp, "enum %s", 
5810                         (type->type_ident)? type->type_ident->name : "");
5811                 qual_of(fp, type);
5812                 break;
5813         case TYPE_STRUCT:
5814                 fprintf(fp, "struct %s { ", 
5815                         (type->type_ident)? type->type_ident->name : "");
5816                 name_of(fp, type->left);
5817                 fprintf(fp, " } ");
5818                 qual_of(fp, type);
5819                 break;
5820         case TYPE_UNION:
5821                 fprintf(fp, "union %s { ", 
5822                         (type->type_ident)? type->type_ident->name : "");
5823                 name_of(fp, type->left);
5824                 fprintf(fp, " } ");
5825                 qual_of(fp, type);
5826                 break;
5827         case TYPE_FUNCTION:
5828                 name_of(fp, type->left);
5829                 fprintf(fp, " (*)(");
5830                 name_of(fp, type->right);
5831                 fprintf(fp, ")");
5832                 break;
5833         case TYPE_ARRAY:
5834                 name_of(fp, type->left);
5835                 fprintf(fp, " [%ld]", (long)(type->elements));
5836                 break;
5837         case TYPE_TUPLE:
5838                 fprintf(fp, "tuple { "); 
5839                 name_of(fp, type->left);
5840                 fprintf(fp, " } ");
5841                 qual_of(fp, type);
5842                 break;
5843         case TYPE_JOIN:
5844                 fprintf(fp, "join { ");
5845                 name_of(fp, type->left);
5846                 fprintf(fp, " } ");
5847                 qual_of(fp, type);
5848                 break;
5849         case TYPE_BITFIELD:
5850                 name_of(fp, type->left);
5851                 fprintf(fp, " : %d ", type->elements);
5852                 qual_of(fp, type);
5853                 break;
5854         case TYPE_UNKNOWN:
5855                 fprintf(fp, "unknown_t");
5856                 break;
5857         default:
5858                 fprintf(fp, "????: %x", base_type);
5859                 break;
5860         }
5861         if (type->field_ident && type->field_ident->name) {
5862                 fprintf(fp, " .%s", type->field_ident->name);
5863         }
5864 }
5865
5866 static size_t align_of(struct compile_state *state, struct type *type)
5867 {
5868         size_t align;
5869         align = 0;
5870         switch(type->type & TYPE_MASK) {
5871         case TYPE_VOID:
5872                 align = 1;
5873                 break;
5874         case TYPE_BITFIELD:
5875                 align = 1;
5876                 break;
5877         case TYPE_CHAR:
5878         case TYPE_UCHAR:
5879                 align = ALIGNOF_CHAR;
5880                 break;
5881         case TYPE_SHORT:
5882         case TYPE_USHORT:
5883                 align = ALIGNOF_SHORT;
5884                 break;
5885         case TYPE_INT:
5886         case TYPE_UINT:
5887         case TYPE_ENUM:
5888                 align = ALIGNOF_INT;
5889                 break;
5890         case TYPE_LONG:
5891         case TYPE_ULONG:
5892                 align = ALIGNOF_LONG;
5893                 break;
5894         case TYPE_POINTER:
5895                 align = ALIGNOF_POINTER;
5896                 break;
5897         case TYPE_PRODUCT:
5898         case TYPE_OVERLAP:
5899         {
5900                 size_t left_align, right_align;
5901                 left_align  = align_of(state, type->left);
5902                 right_align = align_of(state, type->right);
5903                 align = (left_align >= right_align) ? left_align : right_align;
5904                 break;
5905         }
5906         case TYPE_ARRAY:
5907                 align = align_of(state, type->left);
5908                 break;
5909         case TYPE_STRUCT:
5910         case TYPE_TUPLE:
5911         case TYPE_UNION:
5912         case TYPE_JOIN:
5913                 align = align_of(state, type->left);
5914                 break;
5915         default:
5916                 error(state, 0, "alignof not yet defined for type\n");
5917                 break;
5918         }
5919         return align;
5920 }
5921
5922 static size_t reg_align_of(struct compile_state *state, struct type *type)
5923 {
5924         size_t align;
5925         align = 0;
5926         switch(type->type & TYPE_MASK) {
5927         case TYPE_VOID:
5928                 align = 1;
5929                 break;
5930         case TYPE_BITFIELD:
5931                 align = 1;
5932                 break;
5933         case TYPE_CHAR:
5934         case TYPE_UCHAR:
5935                 align = REG_ALIGNOF_CHAR;
5936                 break;
5937         case TYPE_SHORT:
5938         case TYPE_USHORT:
5939                 align = REG_ALIGNOF_SHORT;
5940                 break;
5941         case TYPE_INT:
5942         case TYPE_UINT:
5943         case TYPE_ENUM:
5944                 align = REG_ALIGNOF_INT;
5945                 break;
5946         case TYPE_LONG:
5947         case TYPE_ULONG:
5948                 align = REG_ALIGNOF_LONG;
5949                 break;
5950         case TYPE_POINTER:
5951                 align = REG_ALIGNOF_POINTER;
5952                 break;
5953         case TYPE_PRODUCT:
5954         case TYPE_OVERLAP:
5955         {
5956                 size_t left_align, right_align;
5957                 left_align  = reg_align_of(state, type->left);
5958                 right_align = reg_align_of(state, type->right);
5959                 align = (left_align >= right_align) ? left_align : right_align;
5960                 break;
5961         }
5962         case TYPE_ARRAY:
5963                 align = reg_align_of(state, type->left);
5964                 break;
5965         case TYPE_STRUCT:
5966         case TYPE_UNION:
5967         case TYPE_TUPLE:
5968         case TYPE_JOIN:
5969                 align = reg_align_of(state, type->left);
5970                 break;
5971         default:
5972                 error(state, 0, "alignof not yet defined for type\n");
5973                 break;
5974         }
5975         return align;
5976 }
5977
5978 static size_t align_of_in_bytes(struct compile_state *state, struct type *type)
5979 {
5980         return bits_to_bytes(align_of(state, type));
5981 }
5982 static size_t size_of(struct compile_state *state, struct type *type);
5983 static size_t reg_size_of(struct compile_state *state, struct type *type);
5984
5985 static size_t needed_padding(struct compile_state *state, 
5986         struct type *type, size_t offset)
5987 {
5988         size_t padding, align;
5989         align = align_of(state, type);
5990         /* Align to the next machine word if the bitfield does completely
5991          * fit into the current word.
5992          */
5993         if ((type->type & TYPE_MASK) == TYPE_BITFIELD) {
5994                 size_t size;
5995                 size = size_of(state, type);
5996                 if ((offset + type->elements)/size != offset/size) {
5997                         align = size;
5998                 }
5999         }
6000         padding = 0;
6001         if (offset % align) {
6002                 padding = align - (offset % align);
6003         }
6004         return padding;
6005 }
6006
6007 static size_t reg_needed_padding(struct compile_state *state, 
6008         struct type *type, size_t offset)
6009 {
6010         size_t padding, align;
6011         align = reg_align_of(state, type);
6012         /* Align to the next register word if the bitfield does completely
6013          * fit into the current register.
6014          */
6015         if (((type->type & TYPE_MASK) == TYPE_BITFIELD) &&
6016                 (((offset + type->elements)/REG_SIZEOF_REG) != (offset/REG_SIZEOF_REG))) 
6017         {
6018                 align = REG_SIZEOF_REG;
6019         }
6020         padding = 0;
6021         if (offset % align) {
6022                 padding = align - (offset % align);
6023         }
6024         return padding;
6025 }
6026
6027 static size_t size_of(struct compile_state *state, struct type *type)
6028 {
6029         size_t size;
6030         size = 0;
6031         switch(type->type & TYPE_MASK) {
6032         case TYPE_VOID:
6033                 size = 0;
6034                 break;
6035         case TYPE_BITFIELD:
6036                 size = type->elements;
6037                 break;
6038         case TYPE_CHAR:
6039         case TYPE_UCHAR:
6040                 size = SIZEOF_CHAR;
6041                 break;
6042         case TYPE_SHORT:
6043         case TYPE_USHORT:
6044                 size = SIZEOF_SHORT;
6045                 break;
6046         case TYPE_INT:
6047         case TYPE_UINT:
6048         case TYPE_ENUM:
6049                 size = SIZEOF_INT;
6050                 break;
6051         case TYPE_LONG:
6052         case TYPE_ULONG:
6053                 size = SIZEOF_LONG;
6054                 break;
6055         case TYPE_POINTER:
6056                 size = SIZEOF_POINTER;
6057                 break;
6058         case TYPE_PRODUCT:
6059         {
6060                 size_t pad;
6061                 size = 0;
6062                 while((type->type & TYPE_MASK) == TYPE_PRODUCT) {
6063                         pad = needed_padding(state, type->left, size);
6064                         size = size + pad + size_of(state, type->left);
6065                         type = type->right;
6066                 }
6067                 pad = needed_padding(state, type, size);
6068                 size = size + pad + size_of(state, type);
6069                 break;
6070         }
6071         case TYPE_OVERLAP:
6072         {
6073                 size_t size_left, size_right;
6074                 size_left = size_of(state, type->left);
6075                 size_right = size_of(state, type->right);
6076                 size = (size_left >= size_right)? size_left : size_right;
6077                 break;
6078         }
6079         case TYPE_ARRAY:
6080                 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
6081                         internal_error(state, 0, "Invalid array type");
6082                 } else {
6083                         size = size_of(state, type->left) * type->elements;
6084                 }
6085                 break;
6086         case TYPE_STRUCT:
6087         case TYPE_TUPLE:
6088         {
6089                 size_t pad;
6090                 size = size_of(state, type->left);
6091                 /* Pad structures so their size is a multiples of their alignment */
6092                 pad = needed_padding(state, type, size);
6093                 size = size + pad;
6094                 break;
6095         }
6096         case TYPE_UNION:
6097         case TYPE_JOIN:
6098         {
6099                 size_t pad;
6100                 size = size_of(state, type->left);
6101                 /* Pad unions so their size is a multiple of their alignment */
6102                 pad = needed_padding(state, type, size);
6103                 size = size + pad;
6104                 break;
6105         }
6106         default:
6107                 internal_error(state, 0, "sizeof not yet defined for type");
6108                 break;
6109         }
6110         return size;
6111 }
6112
6113 static size_t reg_size_of(struct compile_state *state, struct type *type)
6114 {
6115         size_t size;
6116         size = 0;
6117         switch(type->type & TYPE_MASK) {
6118         case TYPE_VOID:
6119                 size = 0;
6120                 break;
6121         case TYPE_BITFIELD:
6122                 size = type->elements;
6123                 break;
6124         case TYPE_CHAR:
6125         case TYPE_UCHAR:
6126                 size = REG_SIZEOF_CHAR;
6127                 break;
6128         case TYPE_SHORT:
6129         case TYPE_USHORT:
6130                 size = REG_SIZEOF_SHORT;
6131                 break;
6132         case TYPE_INT:
6133         case TYPE_UINT:
6134         case TYPE_ENUM:
6135                 size = REG_SIZEOF_INT;
6136                 break;
6137         case TYPE_LONG:
6138         case TYPE_ULONG:
6139                 size = REG_SIZEOF_LONG;
6140                 break;
6141         case TYPE_POINTER:
6142                 size = REG_SIZEOF_POINTER;
6143                 break;
6144         case TYPE_PRODUCT:
6145         {
6146                 size_t pad;
6147                 size = 0;
6148                 while((type->type & TYPE_MASK) == TYPE_PRODUCT) {
6149                         pad = reg_needed_padding(state, type->left, size);
6150                         size = size + pad + reg_size_of(state, type->left);
6151                         type = type->right;
6152                 }
6153                 pad = reg_needed_padding(state, type, size);
6154                 size = size + pad + reg_size_of(state, type);
6155                 break;
6156         }
6157         case TYPE_OVERLAP:
6158         {
6159                 size_t size_left, size_right;
6160                 size_left  = reg_size_of(state, type->left);
6161                 size_right = reg_size_of(state, type->right);
6162                 size = (size_left >= size_right)? size_left : size_right;
6163                 break;
6164         }
6165         case TYPE_ARRAY:
6166                 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
6167                         internal_error(state, 0, "Invalid array type");
6168                 } else {
6169                         size = reg_size_of(state, type->left) * type->elements;
6170                 }
6171                 break;
6172         case TYPE_STRUCT:
6173         case TYPE_TUPLE:
6174         {
6175                 size_t pad;
6176                 size = reg_size_of(state, type->left);
6177                 /* Pad structures so their size is a multiples of their alignment */
6178                 pad = reg_needed_padding(state, type, size);
6179                 size = size + pad;
6180                 break;
6181         }
6182         case TYPE_UNION:
6183         case TYPE_JOIN:
6184         {
6185                 size_t pad;
6186                 size = reg_size_of(state, type->left);
6187                 /* Pad unions so their size is a multiple of their alignment */
6188                 pad = reg_needed_padding(state, type, size);
6189                 size = size + pad;
6190                 break;
6191         }
6192         default:
6193                 internal_error(state, 0, "sizeof not yet defined for type");
6194                 break;
6195         }
6196         return size;
6197 }
6198
6199 static size_t registers_of(struct compile_state *state, struct type *type)
6200 {
6201         size_t registers;
6202         registers = reg_size_of(state, type);
6203         registers += REG_SIZEOF_REG - 1;
6204         registers /= REG_SIZEOF_REG;
6205         return registers;
6206 }
6207
6208 static size_t size_of_in_bytes(struct compile_state *state, struct type *type)
6209 {
6210         return bits_to_bytes(size_of(state, type));
6211 }
6212
6213 static size_t field_offset(struct compile_state *state, 
6214         struct type *type, struct hash_entry *field)
6215 {
6216         struct type *member;
6217         size_t size;
6218
6219         size = 0;
6220         member = 0;
6221         if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
6222                 member = type->left;
6223                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6224                         size += needed_padding(state, member->left, size);
6225                         if (member->left->field_ident == field) {
6226                                 member = member->left;
6227                                 break;
6228                         }
6229                         size += size_of(state, member->left);
6230                         member = member->right;
6231                 }
6232                 size += needed_padding(state, member, size);
6233         }
6234         else if ((type->type & TYPE_MASK) == TYPE_UNION) {
6235                 member = type->left;
6236                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6237                         if (member->left->field_ident == field) {
6238                                 member = member->left;
6239                                 break;
6240                         }
6241                         member = member->right;
6242                 }
6243         }
6244         else {
6245                 internal_error(state, 0, "field_offset only works on structures and unions");
6246         }
6247
6248         if (!member || (member->field_ident != field)) {
6249                 error(state, 0, "member %s not present", field->name);
6250         }
6251         return size;
6252 }
6253
6254 static size_t field_reg_offset(struct compile_state *state, 
6255         struct type *type, struct hash_entry *field)
6256 {
6257         struct type *member;
6258         size_t size;
6259
6260         size = 0;
6261         member = 0;
6262         if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
6263                 member = type->left;
6264                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6265                         size += reg_needed_padding(state, member->left, size);
6266                         if (member->left->field_ident == field) {
6267                                 member = member->left;
6268                                 break;
6269                         }
6270                         size += reg_size_of(state, member->left);
6271                         member = member->right;
6272                 }
6273         }
6274         else if ((type->type & TYPE_MASK) == TYPE_UNION) {
6275                 member = type->left;
6276                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6277                         if (member->left->field_ident == field) {
6278                                 member = member->left;
6279                                 break;
6280                         }
6281                         member = member->right;
6282                 }
6283         }
6284         else {
6285                 internal_error(state, 0, "field_reg_offset only works on structures and unions");
6286         }
6287
6288         size += reg_needed_padding(state, member, size);
6289         if (!member || (member->field_ident != field)) {
6290                 error(state, 0, "member %s not present", field->name);
6291         }
6292         return size;
6293 }
6294
6295 static struct type *field_type(struct compile_state *state, 
6296         struct type *type, struct hash_entry *field)
6297 {
6298         struct type *member;
6299
6300         member = 0;
6301         if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
6302                 member = type->left;
6303                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6304                         if (member->left->field_ident == field) {
6305                                 member = member->left;
6306                                 break;
6307                         }
6308                         member = member->right;
6309                 }
6310         }
6311         else if ((type->type & TYPE_MASK) == TYPE_UNION) {
6312                 member = type->left;
6313                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6314                         if (member->left->field_ident == field) {
6315                                 member = member->left;
6316                                 break;
6317                         }
6318                         member = member->right;
6319                 }
6320         }
6321         else {
6322                 internal_error(state, 0, "field_type only works on structures and unions");
6323         }
6324         
6325         if (!member || (member->field_ident != field)) {
6326                 error(state, 0, "member %s not present", field->name);
6327         }
6328         return member;
6329 }
6330
6331 static size_t index_offset(struct compile_state *state, 
6332         struct type *type, ulong_t index)
6333 {
6334         struct type *member;
6335         size_t size;
6336         size = 0;
6337         if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
6338                 size = size_of(state, type->left) * index;
6339         }
6340         else if ((type->type & TYPE_MASK) == TYPE_TUPLE) {
6341                 ulong_t i;
6342                 member = type->left;
6343                 i = 0;
6344                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6345                         size += needed_padding(state, member->left, size);
6346                         if (i == index) {
6347                                 member = member->left;
6348                                 break;
6349                         }
6350                         size += size_of(state, member->left);
6351                         i++;
6352                         member = member->right;
6353                 }
6354                 size += needed_padding(state, member, size);
6355                 if (i != index) {
6356                         internal_error(state, 0, "Missing member index: %u", index);
6357                 }
6358         }
6359         else if ((type->type & TYPE_MASK) == TYPE_JOIN) {
6360                 ulong_t i;
6361                 size = 0;
6362                 member = type->left;
6363                 i = 0;
6364                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6365                         if (i == index) {
6366                                 member = member->left;
6367                                 break;
6368                         }
6369                         i++;
6370                         member = member->right;
6371                 }
6372                 if (i != index) {
6373                         internal_error(state, 0, "Missing member index: %u", index);
6374                 }
6375         }
6376         else {
6377                 internal_error(state, 0, 
6378                         "request for index %u in something not an array, tuple or join",
6379                         index);
6380         }
6381         return size;
6382 }
6383
6384 static size_t index_reg_offset(struct compile_state *state, 
6385         struct type *type, ulong_t index)
6386 {
6387         struct type *member;
6388         size_t size;
6389         size = 0;
6390         if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
6391                 size = reg_size_of(state, type->left) * index;
6392         }
6393         else if ((type->type & TYPE_MASK) == TYPE_TUPLE) {
6394                 ulong_t i;
6395                 member = type->left;
6396                 i = 0;
6397                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6398                         size += reg_needed_padding(state, member->left, size);
6399                         if (i == index) {
6400                                 member = member->left;
6401                                 break;
6402                         }
6403                         size += reg_size_of(state, member->left);
6404                         i++;
6405                         member = member->right;
6406                 }
6407                 size += reg_needed_padding(state, member, size);
6408                 if (i != index) {
6409                         internal_error(state, 0, "Missing member index: %u", index);
6410                 }
6411                 
6412         }
6413         else if ((type->type & TYPE_MASK) == TYPE_JOIN) {
6414                 ulong_t i;
6415                 size = 0;
6416                 member = type->left;
6417                 i = 0;
6418                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6419                         if (i == index) {
6420                                 member = member->left;
6421                                 break;
6422                         }
6423                         i++;
6424                         member = member->right;
6425                 }
6426                 if (i != index) {
6427                         internal_error(state, 0, "Missing member index: %u", index);
6428                 }
6429         }
6430         else {
6431                 internal_error(state, 0, 
6432                         "request for index %u in something not an array, tuple or join",
6433                         index);
6434         }
6435         return size;
6436 }
6437
6438 static struct type *index_type(struct compile_state *state,
6439         struct type *type, ulong_t index)
6440 {
6441         struct type *member;
6442         if (index >= type->elements) {
6443                 internal_error(state, 0, "Invalid element %u requested", index);
6444         }
6445         if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
6446                 member = type->left;
6447         }
6448         else if ((type->type & TYPE_MASK) == TYPE_TUPLE) {
6449                 ulong_t i;
6450                 member = type->left;
6451                 i = 0;
6452                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6453                         if (i == index) {
6454                                 member = member->left;
6455                                 break;
6456                         }
6457                         i++;
6458                         member = member->right;
6459                 }
6460                 if (i != index) {
6461                         internal_error(state, 0, "Missing member index: %u", index);
6462                 }
6463         }
6464         else if ((type->type & TYPE_MASK) == TYPE_JOIN) {
6465                 ulong_t i;
6466                 member = type->left;
6467                 i = 0;
6468                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6469                         if (i == index) {
6470                                 member = member->left;
6471                                 break;
6472                         }
6473                         i++;
6474                         member = member->right;
6475                 }
6476                 if (i != index) {
6477                         internal_error(state, 0, "Missing member index: %u", index);
6478                 }
6479         }
6480         else {
6481                 member = 0;
6482                 internal_error(state, 0, 
6483                         "request for index %u in something not an array, tuple or join",
6484                         index);
6485         }
6486         return member;
6487 }
6488
6489 static struct type *unpack_type(struct compile_state *state, struct type *type)
6490 {
6491         /* If I have a single register compound type not a bit-field
6492          * find the real type.
6493          */
6494         struct type *start_type;
6495         size_t size;
6496         /* Get out early if I need multiple registers for this type */
6497         size = reg_size_of(state, type);
6498         if (size > REG_SIZEOF_REG) {
6499                 return type;
6500         }
6501         /* Get out early if I don't need any registers for this type */
6502         if (size == 0) {
6503                 return &void_type;
6504         }
6505         /* Loop until I have no more layers I can remove */
6506         do {
6507                 start_type = type;
6508                 switch(type->type & TYPE_MASK) {
6509                 case TYPE_ARRAY:
6510                         /* If I have a single element the unpacked type
6511                          * is that element.
6512                          */
6513                         if (type->elements == 1) {
6514                                 type = type->left;
6515                         }
6516                         break;
6517                 case TYPE_STRUCT:
6518                 case TYPE_TUPLE:
6519                         /* If I have a single element the unpacked type
6520                          * is that element.
6521                          */
6522                         if (type->elements == 1) {
6523                                 type = type->left;
6524                         }
6525                         /* If I have multiple elements the unpacked
6526                          * type is the non-void element.
6527                          */
6528                         else {
6529                                 struct type *next, *member;
6530                                 struct type *sub_type;
6531                                 sub_type = 0;
6532                                 next = type->left;
6533                                 while(next) {
6534                                         member = next;
6535                                         next = 0;
6536                                         if ((member->type & TYPE_MASK) == TYPE_PRODUCT) {
6537                                                 next = member->right;
6538                                                 member = member->left;
6539                                         }
6540                                         if (reg_size_of(state, member) > 0) {
6541                                                 if (sub_type) {
6542                                                         internal_error(state, 0, "true compound type in a register");
6543                                                 }
6544                                                 sub_type = member;
6545                                         }
6546                                 }
6547                                 if (sub_type) {
6548                                         type = sub_type;
6549                                 }
6550                         }
6551                         break;
6552
6553                 case TYPE_UNION:
6554                 case TYPE_JOIN:
6555                         /* If I have a single element the unpacked type
6556                          * is that element.
6557                          */
6558                         if (type->elements == 1) {
6559                                 type = type->left;
6560                         }
6561                         /* I can't in general unpack union types */
6562                         break;
6563                 default:
6564                         /* If I'm not a compound type I can't unpack it */
6565                         break;
6566                 }
6567         } while(start_type != type);
6568         switch(type->type & TYPE_MASK) {
6569         case TYPE_STRUCT:
6570         case TYPE_ARRAY:
6571         case TYPE_TUPLE:
6572                 internal_error(state, 0, "irredicible type?");
6573                 break;
6574         }
6575         return type;
6576 }
6577
6578 static int equiv_types(struct type *left, struct type *right);
6579 static int is_compound_type(struct type *type);
6580
6581 static struct type *reg_type(
6582         struct compile_state *state, struct type *type, int reg_offset)
6583 {
6584         struct type *member;
6585         size_t size;
6586 #if 1
6587         struct type *invalid;
6588         invalid = invalid_type(state, type);
6589         if (invalid) {
6590                 fprintf(state->errout, "type: ");
6591                 name_of(state->errout, type);
6592                 fprintf(state->errout, "\n");
6593                 fprintf(state->errout, "invalid: ");
6594                 name_of(state->errout, invalid);
6595                 fprintf(state->errout, "\n");
6596                 internal_error(state, 0, "bad input type?");
6597         }
6598 #endif
6599
6600         size = reg_size_of(state, type);
6601         if (reg_offset > size) {
6602                 member = 0;
6603                 fprintf(state->errout, "type: ");
6604                 name_of(state->errout, type);
6605                 fprintf(state->errout, "\n");
6606                 internal_error(state, 0, "offset outside of type");
6607         }
6608         else {
6609                 switch(type->type & TYPE_MASK) {
6610                         /* Don't do anything with the basic types */
6611                 case TYPE_VOID:
6612                 case TYPE_CHAR:         case TYPE_UCHAR:
6613                 case TYPE_SHORT:        case TYPE_USHORT:
6614                 case TYPE_INT:          case TYPE_UINT:
6615                 case TYPE_LONG:         case TYPE_ULONG:
6616                 case TYPE_LLONG:        case TYPE_ULLONG:
6617                 case TYPE_FLOAT:        case TYPE_DOUBLE:
6618                 case TYPE_LDOUBLE:
6619                 case TYPE_POINTER:
6620                 case TYPE_ENUM:
6621                 case TYPE_BITFIELD:
6622                         member = type;
6623                         break;
6624                 case TYPE_ARRAY:
6625                         member = type->left;
6626                         size = reg_size_of(state, member);
6627                         if (size > REG_SIZEOF_REG) {
6628                                 member = reg_type(state, member, reg_offset % size);
6629                         }
6630                         break;
6631                 case TYPE_STRUCT:
6632                 case TYPE_TUPLE:
6633                 {
6634                         size_t offset;
6635                         offset = 0;
6636                         member = type->left;
6637                         while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6638                                 size = reg_size_of(state, member->left);
6639                                 offset += reg_needed_padding(state, member->left, offset);
6640                                 if ((offset + size) > reg_offset) {
6641                                         member = member->left;
6642                                         break;
6643                                 }
6644                                 offset += size;
6645                                 member = member->right;
6646                         }
6647                         offset += reg_needed_padding(state, member, offset);
6648                         member = reg_type(state, member, reg_offset - offset);
6649                         break;
6650                 }
6651                 case TYPE_UNION:
6652                 case TYPE_JOIN:
6653                 {
6654                         struct type *join, **jnext, *mnext;
6655                         join = new_type(TYPE_JOIN, 0, 0);
6656                         jnext = &join->left;
6657                         mnext = type->left;
6658                         while(mnext) {
6659                                 size_t size;
6660                                 member = mnext;
6661                                 mnext = 0;
6662                                 if ((member->type & TYPE_MASK) == TYPE_OVERLAP) {
6663                                         mnext = member->right;
6664                                         member = member->left;
6665                                 }
6666                                 size = reg_size_of(state, member);
6667                                 if (size > reg_offset) {
6668                                         struct type *part, *hunt;
6669                                         part = reg_type(state, member, reg_offset);
6670                                         /* See if this type is already in the union */
6671                                         hunt = join->left;
6672                                         while(hunt) {
6673                                                 struct type *test = hunt;
6674                                                 hunt = 0;
6675                                                 if ((test->type & TYPE_MASK) == TYPE_OVERLAP) {
6676                                                         hunt = test->right;
6677                                                         test = test->left;
6678                                                 }
6679                                                 if (equiv_types(part, test)) {
6680                                                         goto next;
6681                                                 }
6682                                         }
6683                                         /* Nope add it */
6684                                         if (!*jnext) {
6685                                                 *jnext = part;
6686                                         } else {
6687                                                 *jnext = new_type(TYPE_OVERLAP, *jnext, part);
6688                                                 jnext = &(*jnext)->right;
6689                                         }
6690                                         join->elements++;
6691                                 }
6692                         next:
6693                                 ;
6694                         }
6695                         if (join->elements == 0) {
6696                                 internal_error(state, 0, "No elements?");
6697                         }
6698                         member = join;
6699                         break;
6700                 }
6701                 default:
6702                         member = 0;
6703                         fprintf(state->errout, "type: ");
6704                         name_of(state->errout, type);
6705                         fprintf(state->errout, "\n");
6706                         internal_error(state, 0, "reg_type not yet defined for type");
6707                         
6708                 }
6709         }
6710         /* If I have a single register compound type not a bit-field
6711          * find the real type.
6712          */
6713         member = unpack_type(state, member);
6714                 ;
6715         size  = reg_size_of(state, member);
6716         if (size > REG_SIZEOF_REG) {
6717                 internal_error(state, 0, "Cannot find type of single register");
6718         }
6719 #if 1
6720         invalid = invalid_type(state, member);
6721         if (invalid) {
6722                 fprintf(state->errout, "type: ");
6723                 name_of(state->errout, member);
6724                 fprintf(state->errout, "\n");
6725                 fprintf(state->errout, "invalid: ");
6726                 name_of(state->errout, invalid);
6727                 fprintf(state->errout, "\n");
6728                 internal_error(state, 0, "returning bad type?");
6729         }
6730 #endif
6731         return member;
6732 }
6733
6734 static struct type *next_field(struct compile_state *state,
6735         struct type *type, struct type *prev_member) 
6736 {
6737         struct type *member;
6738         if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
6739                 internal_error(state, 0, "next_field only works on structures");
6740         }
6741         member = type->left;
6742         while((member->type & TYPE_MASK) == TYPE_PRODUCT) {
6743                 if (!prev_member) {
6744                         member = member->left;
6745                         break;
6746                 }
6747                 if (member->left == prev_member) {
6748                         prev_member = 0;
6749                 }
6750                 member = member->right;
6751         }
6752         if (member == prev_member) {
6753                 prev_member = 0;
6754         }
6755         if (prev_member) {
6756                 internal_error(state, 0, "prev_member %s not present", 
6757                         prev_member->field_ident->name);
6758         }
6759         return member;
6760 }
6761
6762 typedef void (*walk_type_fields_cb_t)(struct compile_state *state, struct type *type, 
6763         size_t ret_offset, size_t mem_offset, void *arg);
6764
6765 static void walk_type_fields(struct compile_state *state,
6766         struct type *type, size_t reg_offset, size_t mem_offset,
6767         walk_type_fields_cb_t cb, void *arg);
6768
6769 static void walk_struct_fields(struct compile_state *state,
6770         struct type *type, size_t reg_offset, size_t mem_offset,
6771         walk_type_fields_cb_t cb, void *arg)
6772 {
6773         struct type *tptr;
6774         ulong_t i;
6775         if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
6776                 internal_error(state, 0, "walk_struct_fields only works on structures");
6777         }
6778         tptr = type->left;
6779         for(i = 0; i < type->elements; i++) {
6780                 struct type *mtype;
6781                 mtype = tptr;
6782                 if ((mtype->type & TYPE_MASK) == TYPE_PRODUCT) {
6783                         mtype = mtype->left;
6784                 }
6785                 walk_type_fields(state, mtype, 
6786                         reg_offset + 
6787                         field_reg_offset(state, type, mtype->field_ident),
6788                         mem_offset + 
6789                         field_offset(state, type, mtype->field_ident),
6790                         cb, arg);
6791                 tptr = tptr->right;
6792         }
6793         
6794 }
6795
6796 static void walk_type_fields(struct compile_state *state,
6797         struct type *type, size_t reg_offset, size_t mem_offset,
6798         walk_type_fields_cb_t cb, void *arg)
6799 {
6800         switch(type->type & TYPE_MASK) {
6801         case TYPE_STRUCT:
6802                 walk_struct_fields(state, type, reg_offset, mem_offset, cb, arg);
6803                 break;
6804         case TYPE_CHAR:
6805         case TYPE_UCHAR:
6806         case TYPE_SHORT:
6807         case TYPE_USHORT:
6808         case TYPE_INT:
6809         case TYPE_UINT:
6810         case TYPE_LONG:
6811         case TYPE_ULONG:
6812                 cb(state, type, reg_offset, mem_offset, arg);
6813                 break;
6814         case TYPE_VOID:
6815                 break;
6816         default:
6817                 internal_error(state, 0, "walk_type_fields not yet implemented for type");
6818         }
6819 }
6820
6821 static void arrays_complete(struct compile_state *state, struct type *type)
6822 {
6823         if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
6824                 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
6825                         error(state, 0, "array size not specified");
6826                 }
6827                 arrays_complete(state, type->left);
6828         }
6829 }
6830
6831 static unsigned int get_basic_type(struct type *type)
6832 {
6833         unsigned int basic;
6834         basic = type->type & TYPE_MASK;
6835         /* Convert enums to ints */
6836         if (basic == TYPE_ENUM) {
6837                 basic = TYPE_INT;
6838         }
6839         /* Convert bitfields to standard types */
6840         else if (basic == TYPE_BITFIELD) {
6841                 if (type->elements <= SIZEOF_CHAR) {
6842                         basic = TYPE_CHAR;
6843                 }
6844                 else if (type->elements <= SIZEOF_SHORT) {
6845                         basic = TYPE_SHORT;
6846                 }
6847                 else if (type->elements <= SIZEOF_INT) {
6848                         basic = TYPE_INT;
6849                 }
6850                 else if (type->elements <= SIZEOF_LONG) {
6851                         basic = TYPE_LONG;
6852                 }
6853                 if (!TYPE_SIGNED(type->left->type)) {
6854                         basic += 1;
6855                 }
6856         }
6857         return basic;
6858 }
6859
6860 static unsigned int do_integral_promotion(unsigned int type)
6861 {
6862         if (TYPE_INTEGER(type) && (TYPE_RANK(type) < TYPE_RANK(TYPE_INT))) {
6863                 type = TYPE_INT;
6864         }
6865         return type;
6866 }
6867
6868 static unsigned int do_arithmetic_conversion(
6869         unsigned int left, unsigned int right)
6870 {
6871         if ((left == TYPE_LDOUBLE) || (right == TYPE_LDOUBLE)) {
6872                 return TYPE_LDOUBLE;
6873         }
6874         else if ((left == TYPE_DOUBLE) || (right == TYPE_DOUBLE)) {
6875                 return TYPE_DOUBLE;
6876         }
6877         else if ((left == TYPE_FLOAT) || (right == TYPE_FLOAT)) {
6878                 return TYPE_FLOAT;
6879         }
6880         left = do_integral_promotion(left);
6881         right = do_integral_promotion(right);
6882         /* If both operands have the same size done */
6883         if (left == right) {
6884                 return left;
6885         }
6886         /* If both operands have the same signedness pick the larger */
6887         else if (!!TYPE_UNSIGNED(left) == !!TYPE_UNSIGNED(right)) {
6888                 return (TYPE_RANK(left) >= TYPE_RANK(right)) ? left : right;
6889         }
6890         /* If the signed type can hold everything use it */
6891         else if (TYPE_SIGNED(left) && (TYPE_RANK(left) > TYPE_RANK(right))) {
6892                 return left;
6893         }
6894         else if (TYPE_SIGNED(right) && (TYPE_RANK(right) > TYPE_RANK(left))) {
6895                 return right;
6896         }
6897         /* Convert to the unsigned type with the same rank as the signed type */
6898         else if (TYPE_SIGNED(left)) {
6899                 return TYPE_MKUNSIGNED(left);
6900         }
6901         else {
6902                 return TYPE_MKUNSIGNED(right);
6903         }
6904 }
6905
6906 /* see if two types are the same except for qualifiers */
6907 static int equiv_types(struct type *left, struct type *right)
6908 {
6909         unsigned int type;
6910         /* Error if the basic types do not match */
6911         if ((left->type & TYPE_MASK) != (right->type & TYPE_MASK)) {
6912                 return 0;
6913         }
6914         type = left->type & TYPE_MASK;
6915         /* If the basic types match and it is a void type we are done */
6916         if (type == TYPE_VOID) {
6917                 return 1;
6918         }
6919         /* For bitfields we need to compare the sizes */
6920         else if (type == TYPE_BITFIELD) {
6921                 return (left->elements == right->elements) &&
6922                         (TYPE_SIGNED(left->left->type) == TYPE_SIGNED(right->left->type));
6923         }
6924         /* if the basic types match and it is an arithmetic type we are done */
6925         else if (TYPE_ARITHMETIC(type)) {
6926                 return 1;
6927         }
6928         /* If it is a pointer type recurse and keep testing */
6929         else if (type == TYPE_POINTER) {
6930                 return equiv_types(left->left, right->left);
6931         }
6932         else if (type == TYPE_ARRAY) {
6933                 return (left->elements == right->elements) &&
6934                         equiv_types(left->left, right->left);
6935         }
6936         /* test for struct equality */
6937         else if (type == TYPE_STRUCT) {
6938                 return left->type_ident == right->type_ident;
6939         }
6940         /* test for union equality */
6941         else if (type == TYPE_UNION) {
6942                 return left->type_ident == right->type_ident;
6943         }
6944         /* Test for equivalent functions */
6945         else if (type == TYPE_FUNCTION) {
6946                 return equiv_types(left->left, right->left) &&
6947                         equiv_types(left->right, right->right);
6948         }
6949         /* We only see TYPE_PRODUCT as part of function equivalence matching */
6950         /* We also see TYPE_PRODUCT as part of of tuple equivalence matchin */
6951         else if (type == TYPE_PRODUCT) {
6952                 return equiv_types(left->left, right->left) &&
6953                         equiv_types(left->right, right->right);
6954         }
6955         /* We should see TYPE_OVERLAP when comparing joins */
6956         else if (type == TYPE_OVERLAP) {
6957                 return equiv_types(left->left, right->left) &&
6958                         equiv_types(left->right, right->right);
6959         }
6960         /* Test for equivalence of tuples */
6961         else if (type == TYPE_TUPLE) {
6962                 return (left->elements == right->elements) &&
6963                         equiv_types(left->left, right->left);
6964         }
6965         /* Test for equivalence of joins */
6966         else if (type == TYPE_JOIN) {
6967                 return (left->elements == right->elements) &&
6968                         equiv_types(left->left, right->left);
6969         }
6970         else {
6971                 return 0;
6972         }
6973 }
6974
6975 static int equiv_ptrs(struct type *left, struct type *right)
6976 {
6977         if (((left->type & TYPE_MASK) != TYPE_POINTER) ||
6978                 ((right->type & TYPE_MASK) != TYPE_POINTER)) {
6979                 return 0;
6980         }
6981         return equiv_types(left->left, right->left);
6982 }
6983
6984 static struct type *compatible_types(struct type *left, struct type *right)
6985 {
6986         struct type *result;
6987         unsigned int type, qual_type;
6988         /* Error if the basic types do not match */
6989         if ((left->type & TYPE_MASK) != (right->type & TYPE_MASK)) {
6990                 return 0;
6991         }
6992         type = left->type & TYPE_MASK;
6993         qual_type = (left->type & ~STOR_MASK) | (right->type & ~STOR_MASK);
6994         result = 0;
6995         /* if the basic types match and it is an arithmetic type we are done */
6996         if (TYPE_ARITHMETIC(type)) {
6997                 result = new_type(qual_type, 0, 0);
6998         }
6999         /* If it is a pointer type recurse and keep testing */
7000         else if (type == TYPE_POINTER) {
7001                 result = compatible_types(left->left, right->left);
7002                 if (result) {
7003                         result = new_type(qual_type, result, 0);
7004                 }
7005         }
7006         /* test for struct equality */
7007         else if (type == TYPE_STRUCT) {
7008                 if (left->type_ident == right->type_ident) {
7009                         result = left;
7010                 }
7011         }
7012         /* test for union equality */
7013         else if (type == TYPE_UNION) {
7014                 if (left->type_ident == right->type_ident) {
7015                         result = left;
7016                 }
7017         }
7018         /* Test for equivalent functions */
7019         else if (type == TYPE_FUNCTION) {
7020                 struct type *lf, *rf;
7021                 lf = compatible_types(left->left, right->left);
7022                 rf = compatible_types(left->right, right->right);
7023                 if (lf && rf) {
7024                         result = new_type(qual_type, lf, rf);
7025                 }
7026         }
7027         /* We only see TYPE_PRODUCT as part of function equivalence matching */
7028         else if (type == TYPE_PRODUCT) {
7029                 struct type *lf, *rf;
7030                 lf = compatible_types(left->left, right->left);
7031                 rf = compatible_types(left->right, right->right);
7032                 if (lf && rf) {
7033                         result = new_type(qual_type, lf, rf);
7034                 }
7035         }
7036         else {
7037                 /* Nothing else is compatible */
7038         }
7039         return result;
7040 }
7041
7042 /* See if left is a equivalent to right or right is a union member of left */
7043 static int is_subset_type(struct type *left, struct type *right)
7044 {
7045         if (equiv_types(left, right)) {
7046                 return 1;
7047         }
7048         if ((left->type & TYPE_MASK) == TYPE_JOIN) {
7049                 struct type *member, *mnext;
7050                 mnext = left->left;
7051                 while(mnext) {
7052                         member = mnext;
7053                         mnext = 0;
7054                         if ((member->type & TYPE_MASK) == TYPE_OVERLAP) {
7055                                 mnext = member->right;
7056                                 member = member->left;
7057                         }
7058                         if (is_subset_type( member, right)) {
7059                                 return 1;
7060                         }
7061                 }
7062         }
7063         return 0;
7064 }
7065
7066 static struct type *compatible_ptrs(struct type *left, struct type *right)
7067 {
7068         struct type *result;
7069         if (((left->type & TYPE_MASK) != TYPE_POINTER) ||
7070                 ((right->type & TYPE_MASK) != TYPE_POINTER)) {
7071                 return 0;
7072         }
7073         result = compatible_types(left->left, right->left);
7074         if (result) {
7075                 unsigned int qual_type;
7076                 qual_type = (left->type & ~STOR_MASK) | (right->type & ~STOR_MASK);
7077                 result = new_type(qual_type, result, 0);
7078         }
7079         return result;
7080         
7081 }
7082 static struct triple *integral_promotion(
7083         struct compile_state *state, struct triple *def)
7084 {
7085         struct type *type;
7086         type = def->type;
7087         /* As all operations are carried out in registers
7088          * the values are converted on load I just convert
7089          * logical type of the operand.
7090          */
7091         if (TYPE_INTEGER(type->type)) {
7092                 unsigned int int_type;
7093                 int_type = type->type & ~TYPE_MASK;
7094                 int_type |= do_integral_promotion(get_basic_type(type));
7095                 if (int_type != type->type) {
7096                         if (def->op != OP_LOAD) {
7097                                 def->type = new_type(int_type, 0, 0);
7098                         }
7099                         else {
7100                                 def = triple(state, OP_CONVERT, 
7101                                         new_type(int_type, 0, 0), def, 0);
7102                         }
7103                 }
7104         }
7105         return def;
7106 }
7107
7108
7109 static void arithmetic(struct compile_state *state, struct triple *def)
7110 {
7111         if (!TYPE_ARITHMETIC(def->type->type)) {
7112                 error(state, 0, "arithmetic type expexted");
7113         }
7114 }
7115
7116 static void ptr_arithmetic(struct compile_state *state, struct triple *def)
7117 {
7118         if (!TYPE_PTR(def->type->type) && !TYPE_ARITHMETIC(def->type->type)) {
7119                 error(state, def, "pointer or arithmetic type expected");
7120         }
7121 }
7122
7123 static int is_integral(struct triple *ins)
7124 {
7125         return TYPE_INTEGER(ins->type->type);
7126 }
7127
7128 static void integral(struct compile_state *state, struct triple *def)
7129 {
7130         if (!is_integral(def)) {
7131                 error(state, 0, "integral type expected");
7132         }
7133 }
7134
7135
7136 static void bool(struct compile_state *state, struct triple *def)
7137 {
7138         if (!TYPE_ARITHMETIC(def->type->type) &&
7139                 ((def->type->type & TYPE_MASK) != TYPE_POINTER)) {
7140                 error(state, 0, "arithmetic or pointer type expected");
7141         }
7142 }
7143
7144 static int is_signed(struct type *type)
7145 {
7146         if ((type->type & TYPE_MASK) == TYPE_BITFIELD) {
7147                 type = type->left;
7148         }
7149         return !!TYPE_SIGNED(type->type);
7150 }
7151 static int is_compound_type(struct type *type)
7152 {
7153         int is_compound;
7154         switch((type->type & TYPE_MASK)) {
7155         case TYPE_ARRAY:
7156         case TYPE_STRUCT:
7157         case TYPE_TUPLE:
7158         case TYPE_UNION:
7159         case TYPE_JOIN: 
7160                 is_compound = 1;
7161                 break;
7162         default:
7163                 is_compound = 0;
7164                 break;
7165         }
7166         return is_compound;
7167 }
7168
7169 /* Is this value located in a register otherwise it must be in memory */
7170 static int is_in_reg(struct compile_state *state, struct triple *def)
7171 {
7172         int in_reg;
7173         if (def->op == OP_ADECL) {
7174                 in_reg = 1;
7175         }
7176         else if ((def->op == OP_SDECL) || (def->op == OP_DEREF)) {
7177                 in_reg = 0;
7178         }
7179         else if (triple_is_part(state, def)) {
7180                 in_reg = is_in_reg(state, MISC(def, 0));
7181         }
7182         else {
7183                 internal_error(state, def, "unknown expr storage location");
7184                 in_reg = -1;
7185         }
7186         return in_reg;
7187 }
7188
7189 /* Is this an auto or static variable location? Something that can
7190  * be assigned to.  Otherwise it must must be a pure value, a temporary.
7191  */
7192 static int is_lvalue(struct compile_state *state, struct triple *def)
7193 {
7194         int ret;
7195         ret = 0;
7196         if (!def) {
7197                 return 0;
7198         }
7199         if ((def->op == OP_ADECL) || 
7200                 (def->op == OP_SDECL) || 
7201                 (def->op == OP_DEREF) ||
7202                 (def->op == OP_BLOBCONST) ||
7203                 (def->op == OP_LIST)) {
7204                 ret = 1;
7205         }
7206         else if (triple_is_part(state, def)) {
7207                 ret = is_lvalue(state, MISC(def, 0));
7208         }
7209         return ret;
7210 }
7211
7212 static void clvalue(struct compile_state *state, struct triple *def)
7213 {
7214         if (!def) {
7215                 internal_error(state, def, "nothing where lvalue expected?");
7216         }
7217         if (!is_lvalue(state, def)) { 
7218                 error(state, def, "lvalue expected");
7219         }
7220 }
7221 static void lvalue(struct compile_state *state, struct triple *def)
7222 {
7223         clvalue(state, def);
7224         if (def->type->type & QUAL_CONST) {
7225                 error(state, def, "modifable lvalue expected");
7226         }
7227 }
7228
7229 static int is_pointer(struct triple *def)
7230 {
7231         return (def->type->type & TYPE_MASK) == TYPE_POINTER;
7232 }
7233
7234 static void pointer(struct compile_state *state, struct triple *def)
7235 {
7236         if (!is_pointer(def)) {
7237                 error(state, def, "pointer expected");
7238         }
7239 }
7240
7241 static struct triple *int_const(
7242         struct compile_state *state, struct type *type, ulong_t value)
7243 {
7244         struct triple *result;
7245         switch(type->type & TYPE_MASK) {
7246         case TYPE_CHAR:
7247         case TYPE_INT:   case TYPE_UINT:
7248         case TYPE_LONG:  case TYPE_ULONG:
7249                 break;
7250         default:
7251                 internal_error(state, 0, "constant for unknown type");
7252         }
7253         result = triple(state, OP_INTCONST, type, 0, 0);
7254         result->u.cval = value;
7255         return result;
7256 }
7257
7258
7259 static struct triple *read_expr(struct compile_state *state, struct triple *def);
7260
7261 static struct triple *do_mk_addr_expr(struct compile_state *state, 
7262         struct triple *expr, struct type *type, ulong_t offset)
7263 {
7264         struct triple *result;
7265         struct type *ptr_type;
7266         clvalue(state, expr);
7267
7268         ptr_type = new_type(TYPE_POINTER | (type->type & QUAL_MASK), type, 0);
7269
7270         
7271         result = 0;
7272         if (expr->op == OP_ADECL) {
7273                 error(state, expr, "address of auto variables not supported");
7274         }
7275         else if (expr->op == OP_SDECL) {
7276                 result = triple(state, OP_ADDRCONST, ptr_type, 0, 0);
7277                 MISC(result, 0) = expr;
7278                 result->u.cval = offset;
7279         }
7280         else if (expr->op == OP_DEREF) {
7281                 result = triple(state, OP_ADD, ptr_type,
7282                         RHS(expr, 0),
7283                         int_const(state, &ulong_type, offset));
7284         }
7285         else if (expr->op == OP_BLOBCONST) {
7286                 FINISHME();
7287                 internal_error(state, expr, "not yet implemented");
7288         }
7289         else if (expr->op == OP_LIST) {
7290                 error(state, 0, "Function addresses not supported");
7291         }
7292         else if (triple_is_part(state, expr)) {
7293                 struct triple *part;
7294                 part = expr;
7295                 expr = MISC(expr, 0);
7296                 if (part->op == OP_DOT) {
7297                         offset += bits_to_bytes(
7298                                 field_offset(state, expr->type, part->u.field));
7299                 }
7300                 else if (part->op == OP_INDEX) {
7301                         offset += bits_to_bytes(
7302                                 index_offset(state, expr->type, part->u.cval));
7303                 }
7304                 else {
7305                         internal_error(state, part, "unhandled part type");
7306                 }
7307                 result = do_mk_addr_expr(state, expr, type, offset);
7308         }
7309         if (!result) {
7310                 internal_error(state, expr, "cannot take address of expression");
7311         }
7312         return result;
7313 }
7314
7315 static struct triple *mk_addr_expr(
7316         struct compile_state *state, struct triple *expr, ulong_t offset)
7317 {
7318         return do_mk_addr_expr(state, expr, expr->type, offset);
7319 }
7320
7321 static struct triple *mk_deref_expr(
7322         struct compile_state *state, struct triple *expr)
7323 {
7324         struct type *base_type;
7325         pointer(state, expr);
7326         base_type = expr->type->left;
7327         return triple(state, OP_DEREF, base_type, expr, 0);
7328 }
7329
7330 /* lvalue conversions always apply except when certain operators
7331  * are applied.  So I apply apply it when I know no more
7332  * operators will be applied.
7333  */
7334 static struct triple *lvalue_conversion(struct compile_state *state, struct triple *def)
7335 {
7336         /* Tranform an array to a pointer to the first element */
7337         if ((def->type->type & TYPE_MASK) == TYPE_ARRAY) {
7338                 struct type *type;
7339                 type = new_type(
7340                         TYPE_POINTER | (def->type->type & QUAL_MASK),
7341                         def->type->left, 0);
7342                 if ((def->op == OP_SDECL) || IS_CONST_OP(def->op)) {
7343                         struct triple *addrconst;
7344                         if ((def->op != OP_SDECL) && (def->op != OP_BLOBCONST)) {
7345                                 internal_error(state, def, "bad array constant");
7346                         }
7347                         addrconst = triple(state, OP_ADDRCONST, type, 0, 0);
7348                         MISC(addrconst, 0) = def;
7349                         def = addrconst;
7350                 }
7351                 else {
7352                         def = triple(state, OP_CONVERT, type, def, 0);
7353                 }
7354         }
7355         /* Transform a function to a pointer to it */
7356         else if ((def->type->type & TYPE_MASK) == TYPE_FUNCTION) {
7357                 def = mk_addr_expr(state, def, 0);
7358         }
7359         return def;
7360 }
7361
7362 static struct triple *deref_field(
7363         struct compile_state *state, struct triple *expr, struct hash_entry *field)
7364 {
7365         struct triple *result;
7366         struct type *type, *member;
7367         ulong_t offset;
7368         if (!field) {
7369                 internal_error(state, 0, "No field passed to deref_field");
7370         }
7371         result = 0;
7372         type = expr->type;
7373         if (((type->type & TYPE_MASK) != TYPE_STRUCT) &&
7374                 ((type->type & TYPE_MASK) != TYPE_UNION)) {
7375                 error(state, 0, "request for member %s in something not a struct or union",
7376                         field->name);
7377         }
7378         member = field_type(state, type, field);
7379         if ((type->type & STOR_MASK) == STOR_PERM) {
7380                 /* Do the pointer arithmetic to get a deref the field */
7381                 offset = bits_to_bytes(field_offset(state, type, field));
7382                 result = do_mk_addr_expr(state, expr, member, offset);
7383                 result = mk_deref_expr(state, result);
7384         }
7385         else {
7386                 /* Find the variable for the field I want. */
7387                 result = triple(state, OP_DOT, member, expr, 0);
7388                 result->u.field = field;
7389         }
7390         return result;
7391 }
7392
7393 static struct triple *deref_index(
7394         struct compile_state *state, struct triple *expr, size_t index)
7395 {
7396         struct triple *result;
7397         struct type *type, *member;
7398         ulong_t offset;
7399
7400         result = 0;
7401         type = expr->type;
7402         member = index_type(state, type, index);
7403
7404         if ((type->type & STOR_MASK) == STOR_PERM) {
7405                 offset = bits_to_bytes(index_offset(state, type, index));
7406                 result = do_mk_addr_expr(state, expr, member, offset);
7407                 result = mk_deref_expr(state, result);
7408         }
7409         else {
7410                 result = triple(state, OP_INDEX, member, expr, 0);
7411                 result->u.cval = index;
7412         }
7413         return result;
7414 }
7415
7416 static struct triple *read_expr(struct compile_state *state, struct triple *def)
7417 {
7418         int op;
7419         if  (!def) {
7420                 return 0;
7421         }
7422 #if DEBUG_ROMCC_WARNINGS
7423 #warning "CHECK_ME is this the only place I need to do lvalue conversions?"
7424 #endif
7425         /* Transform lvalues into something we can read */
7426         def = lvalue_conversion(state, def);
7427         if (!is_lvalue(state, def)) {
7428                 return def;
7429         }
7430         if (is_in_reg(state, def)) {
7431                 op = OP_READ;
7432         } else {
7433                 if (def->op == OP_SDECL) {
7434                         def = mk_addr_expr(state, def, 0);
7435                         def = mk_deref_expr(state, def);
7436                 }
7437                 op = OP_LOAD;
7438         }
7439         def = triple(state, op, def->type, def, 0);
7440         if (def->type->type & QUAL_VOLATILE) {
7441                 def->id |= TRIPLE_FLAG_VOLATILE;
7442         }
7443         return def;
7444 }
7445
7446 int is_write_compatible(struct compile_state *state, 
7447         struct type *dest, struct type *rval)
7448 {
7449         int compatible = 0;
7450         /* Both operands have arithmetic type */
7451         if (TYPE_ARITHMETIC(dest->type) && TYPE_ARITHMETIC(rval->type)) {
7452                 compatible = 1;
7453         }
7454         /* One operand is a pointer and the other is a pointer to void */
7455         else if (((dest->type & TYPE_MASK) == TYPE_POINTER) &&
7456                 ((rval->type & TYPE_MASK) == TYPE_POINTER) &&
7457                 (((dest->left->type & TYPE_MASK) == TYPE_VOID) ||
7458                         ((rval->left->type & TYPE_MASK) == TYPE_VOID))) {
7459                 compatible = 1;
7460         }
7461         /* If both types are the same without qualifiers we are good */
7462         else if (equiv_ptrs(dest, rval)) {
7463                 compatible = 1;
7464         }
7465         /* test for struct/union equality  */
7466         else if (equiv_types(dest, rval)) {
7467                 compatible = 1;
7468         }
7469         return compatible;
7470 }
7471
7472 static void write_compatible(struct compile_state *state,
7473         struct type *dest, struct type *rval)
7474 {
7475         if (!is_write_compatible(state, dest, rval)) {
7476                 FILE *fp = state->errout;
7477                 fprintf(fp, "dest: ");
7478                 name_of(fp, dest);
7479                 fprintf(fp,"\nrval: ");
7480                 name_of(fp, rval);
7481                 fprintf(fp, "\n");
7482                 error(state, 0, "Incompatible types in assignment");
7483         }
7484 }
7485
7486 static int is_init_compatible(struct compile_state *state,
7487         struct type *dest, struct type *rval)
7488 {
7489         int compatible = 0;
7490         if (is_write_compatible(state, dest, rval)) {
7491                 compatible = 1;
7492         }
7493         else if (equiv_types(dest, rval)) {
7494                 compatible = 1;
7495         }
7496         return compatible;
7497 }
7498
7499 static struct triple *write_expr(
7500         struct compile_state *state, struct triple *dest, struct triple *rval)
7501 {
7502         struct triple *def;
7503         int op;
7504
7505         def = 0;
7506         if (!rval) {
7507                 internal_error(state, 0, "missing rval");
7508         }
7509
7510         if (rval->op == OP_LIST) {
7511                 internal_error(state, 0, "expression of type OP_LIST?");
7512         }
7513         if (!is_lvalue(state, dest)) {
7514                 internal_error(state, 0, "writing to a non lvalue?");
7515         }
7516         if (dest->type->type & QUAL_CONST) {
7517                 internal_error(state, 0, "modifable lvalue expexted");
7518         }
7519
7520         write_compatible(state, dest->type, rval->type);
7521         if (!equiv_types(dest->type, rval->type)) {
7522                 rval = triple(state, OP_CONVERT, dest->type, rval, 0);
7523         }
7524
7525         /* Now figure out which assignment operator to use */
7526         op = -1;
7527         if (is_in_reg(state, dest)) {
7528                 def = triple(state, OP_WRITE, dest->type, rval, dest);
7529                 if (MISC(def, 0) != dest) {
7530                         internal_error(state, def, "huh?");
7531                 }
7532                 if (RHS(def, 0) != rval) {
7533                         internal_error(state, def, "huh?");
7534                 }
7535         } else {
7536                 def = triple(state, OP_STORE, dest->type, dest, rval);
7537         }
7538         if (def->type->type & QUAL_VOLATILE) {
7539                 def->id |= TRIPLE_FLAG_VOLATILE;
7540         }
7541         return def;
7542 }
7543
7544 static struct triple *init_expr(
7545         struct compile_state *state, struct triple *dest, struct triple *rval)
7546 {
7547         struct triple *def;
7548
7549         def = 0;
7550         if (!rval) {
7551                 internal_error(state, 0, "missing rval");
7552         }
7553         if ((dest->type->type & STOR_MASK) != STOR_PERM) {
7554                 rval = read_expr(state, rval);
7555                 def = write_expr(state, dest, rval);
7556         }
7557         else {
7558                 /* Fill in the array size if necessary */
7559                 if (((dest->type->type & TYPE_MASK) == TYPE_ARRAY) &&
7560                         ((rval->type->type & TYPE_MASK) == TYPE_ARRAY)) {
7561                         if (dest->type->elements == ELEMENT_COUNT_UNSPECIFIED) {
7562                                 dest->type->elements = rval->type->elements;
7563                         }
7564                 }
7565                 if (!equiv_types(dest->type, rval->type)) {
7566                         error(state, 0, "Incompatible types in inializer");
7567                 }
7568                 MISC(dest, 0) = rval;
7569                 insert_triple(state, dest, rval);
7570                 rval->id |= TRIPLE_FLAG_FLATTENED;
7571                 use_triple(MISC(dest, 0), dest);
7572         }
7573         return def;
7574 }
7575
7576 struct type *arithmetic_result(
7577         struct compile_state *state, struct triple *left, struct triple *right)
7578 {
7579         struct type *type;
7580         /* Sanity checks to ensure I am working with arithmetic types */
7581         arithmetic(state, left);
7582         arithmetic(state, right);
7583         type = new_type(
7584                 do_arithmetic_conversion(
7585                         get_basic_type(left->type),
7586                         get_basic_type(right->type)),
7587                 0, 0);
7588         return type;
7589 }
7590
7591 struct type *ptr_arithmetic_result(
7592         struct compile_state *state, struct triple *left, struct triple *right)
7593 {
7594         struct type *type;
7595         /* Sanity checks to ensure I am working with the proper types */
7596         ptr_arithmetic(state, left);
7597         arithmetic(state, right);
7598         if (TYPE_ARITHMETIC(left->type->type) && 
7599                 TYPE_ARITHMETIC(right->type->type)) {
7600                 type = arithmetic_result(state, left, right);
7601         }
7602         else if (TYPE_PTR(left->type->type)) {
7603                 type = left->type;
7604         }
7605         else {
7606                 internal_error(state, 0, "huh?");
7607                 type = 0;
7608         }
7609         return type;
7610 }
7611
7612 /* boolean helper function */
7613
7614 static struct triple *ltrue_expr(struct compile_state *state, 
7615         struct triple *expr)
7616 {
7617         switch(expr->op) {
7618         case OP_LTRUE:   case OP_LFALSE:  case OP_EQ:      case OP_NOTEQ:
7619         case OP_SLESS:   case OP_ULESS:   case OP_SMORE:   case OP_UMORE:
7620         case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
7621                 /* If the expression is already boolean do nothing */
7622                 break;
7623         default:
7624                 expr = triple(state, OP_LTRUE, &int_type, expr, 0);
7625                 break;
7626         }
7627         return expr;
7628 }
7629
7630 static struct triple *lfalse_expr(struct compile_state *state, 
7631         struct triple *expr)
7632 {
7633         return triple(state, OP_LFALSE, &int_type, expr, 0);
7634 }
7635
7636 static struct triple *mkland_expr(
7637         struct compile_state *state,
7638         struct triple *left, struct triple *right)
7639 {
7640         struct triple *def, *val, *var, *jmp, *mid, *end;
7641         struct triple *lstore, *rstore;
7642
7643         /* Generate some intermediate triples */
7644         end = label(state);
7645         var = variable(state, &int_type);
7646         
7647         /* Store the left hand side value */
7648         lstore = write_expr(state, var, left);
7649
7650         /* Jump if the value is false */
7651         jmp =  branch(state, end, 
7652                 lfalse_expr(state, read_expr(state, var)));
7653         mid = label(state);
7654         
7655         /* Store the right hand side value */
7656         rstore = write_expr(state, var, right);
7657
7658         /* An expression for the computed value */
7659         val = read_expr(state, var);
7660
7661         /* Generate the prog for a logical and */
7662         def = mkprog(state, var, lstore, jmp, mid, rstore, end, val, 0UL);
7663         
7664         return def;
7665 }
7666
7667 static struct triple *mklor_expr(
7668         struct compile_state *state,
7669         struct triple *left, struct triple *right)
7670 {
7671         struct triple *def, *val, *var, *jmp, *mid, *end;
7672
7673         /* Generate some intermediate triples */
7674         end = label(state);
7675         var = variable(state, &int_type);
7676         
7677         /* Store the left hand side value */
7678         left = write_expr(state, var, left);
7679         
7680         /* Jump if the value is true */
7681         jmp = branch(state, end, read_expr(state, var));
7682         mid = label(state);
7683         
7684         /* Store the right hand side value */
7685         right = write_expr(state, var, right);
7686                 
7687         /* An expression for the computed value*/
7688         val = read_expr(state, var);
7689
7690         /* Generate the prog for a logical or */
7691         def = mkprog(state, var, left, jmp, mid, right, end, val, 0UL);
7692
7693         return def;
7694 }
7695
7696 static struct triple *mkcond_expr(
7697         struct compile_state *state, 
7698         struct triple *test, struct triple *left, struct triple *right)
7699 {
7700         struct triple *def, *val, *var, *jmp1, *jmp2, *top, *mid, *end;
7701         struct type *result_type;
7702         unsigned int left_type, right_type;
7703         bool(state, test);
7704         left_type = left->type->type;
7705         right_type = right->type->type;
7706         result_type = 0;
7707         /* Both operands have arithmetic type */
7708         if (TYPE_ARITHMETIC(left_type) && TYPE_ARITHMETIC(right_type)) {
7709                 result_type = arithmetic_result(state, left, right);
7710         }
7711         /* Both operands have void type */
7712         else if (((left_type & TYPE_MASK) == TYPE_VOID) &&
7713                 ((right_type & TYPE_MASK) == TYPE_VOID)) {
7714                 result_type = &void_type;
7715         }
7716         /* pointers to the same type... */
7717         else if ((result_type = compatible_ptrs(left->type, right->type))) {
7718                 ;
7719         }
7720         /* Both operands are pointers and left is a pointer to void */
7721         else if (((left_type & TYPE_MASK) == TYPE_POINTER) &&
7722                 ((right_type & TYPE_MASK) == TYPE_POINTER) &&
7723                 ((left->type->left->type & TYPE_MASK) == TYPE_VOID)) {
7724                 result_type = right->type;
7725         }
7726         /* Both operands are pointers and right is a pointer to void */
7727         else if (((left_type & TYPE_MASK) == TYPE_POINTER) &&
7728                 ((right_type & TYPE_MASK) == TYPE_POINTER) &&
7729                 ((right->type->left->type & TYPE_MASK) == TYPE_VOID)) {
7730                 result_type = left->type;
7731         }
7732         if (!result_type) {
7733                 error(state, 0, "Incompatible types in conditional expression");
7734         }
7735         /* Generate some intermediate triples */
7736         mid = label(state);
7737         end = label(state);
7738         var = variable(state, result_type);
7739
7740         /* Branch if the test is false */
7741         jmp1 = branch(state, mid, lfalse_expr(state, read_expr(state, test)));
7742         top = label(state);
7743
7744         /* Store the left hand side value */
7745         left = write_expr(state, var, left);
7746
7747         /* Branch to the end */
7748         jmp2 = branch(state, end, 0);
7749
7750         /* Store the right hand side value */
7751         right = write_expr(state, var, right);
7752         
7753         /* An expression for the computed value */
7754         val = read_expr(state, var);
7755
7756         /* Generate the prog for a conditional expression */
7757         def = mkprog(state, var, jmp1, top, left, jmp2, mid, right, end, val, 0UL);
7758
7759         return def;
7760 }
7761
7762
7763 static int expr_depth(struct compile_state *state, struct triple *ins)
7764 {
7765 #if DEBUG_ROMCC_WARNINGS
7766 #warning "FIXME move optimal ordering of subexpressions into the optimizer"
7767 #endif
7768         int count;
7769         count = 0;
7770         if (!ins || (ins->id & TRIPLE_FLAG_FLATTENED)) {
7771                 count = 0;
7772         }
7773         else if (ins->op == OP_DEREF) {
7774                 count = expr_depth(state, RHS(ins, 0)) - 1;
7775         }
7776         else if (ins->op == OP_VAL) {
7777                 count = expr_depth(state, RHS(ins, 0)) - 1;
7778         }
7779         else if (ins->op == OP_FCALL) {
7780                 /* Don't figure the depth of a call just guess it is huge */
7781                 count = 1000;
7782         }
7783         else {
7784                 struct triple **expr;
7785                 expr = triple_rhs(state, ins, 0);
7786                 for(;expr; expr = triple_rhs(state, ins, expr)) {
7787                         if (*expr) {
7788                                 int depth;
7789                                 depth = expr_depth(state, *expr);
7790                                 if (depth > count) {
7791                                         count = depth;
7792                                 }
7793                         }
7794                 }
7795         }
7796         return count + 1;
7797 }
7798
7799 static struct triple *flatten_generic(
7800         struct compile_state *state, struct triple *first, struct triple *ptr,
7801         int ignored)
7802 {
7803         struct rhs_vector {
7804                 int depth;
7805                 struct triple **ins;
7806         } vector[MAX_RHS];
7807         int i, rhs, lhs;
7808         /* Only operations with just a rhs and a lhs should come here */
7809         rhs = ptr->rhs;
7810         lhs = ptr->lhs;
7811         if (TRIPLE_SIZE(ptr) != lhs + rhs + ignored) {
7812                 internal_error(state, ptr, "unexpected args for: %d %s",
7813                         ptr->op, tops(ptr->op));
7814         }
7815         /* Find the depth of the rhs elements */
7816         for(i = 0; i < rhs; i++) {
7817                 vector[i].ins = &RHS(ptr, i);
7818                 vector[i].depth = expr_depth(state, *vector[i].ins);
7819         }
7820         /* Selection sort the rhs */
7821         for(i = 0; i < rhs; i++) {
7822                 int j, max = i;
7823                 for(j = i + 1; j < rhs; j++ ) {
7824                         if (vector[j].depth > vector[max].depth) {
7825                                 max = j;
7826                         }
7827                 }
7828                 if (max != i) {
7829                         struct rhs_vector tmp;
7830                         tmp = vector[i];
7831                         vector[i] = vector[max];
7832                         vector[max] = tmp;
7833                 }
7834         }
7835         /* Now flatten the rhs elements */
7836         for(i = 0; i < rhs; i++) {
7837                 *vector[i].ins = flatten(state, first, *vector[i].ins);
7838                 use_triple(*vector[i].ins, ptr);
7839         }
7840         if (lhs) {
7841                 insert_triple(state, first, ptr);
7842                 ptr->id |= TRIPLE_FLAG_FLATTENED;
7843                 ptr->id &= ~TRIPLE_FLAG_LOCAL;
7844                 
7845                 /* Now flatten the lhs elements */
7846                 for(i = 0; i < lhs; i++) {
7847                         struct triple **ins = &LHS(ptr, i);
7848                         *ins = flatten(state, first, *ins);
7849                         use_triple(*ins, ptr);
7850                 }
7851         }
7852         return ptr;
7853 }
7854
7855 static struct triple *flatten_prog(
7856         struct compile_state *state, struct triple *first, struct triple *ptr)
7857 {
7858         struct triple *head, *body, *val;
7859         head = RHS(ptr, 0);
7860         RHS(ptr, 0) = 0;
7861         val  = head->prev;
7862         body = head->next;
7863         release_triple(state, head);
7864         release_triple(state, ptr);
7865         val->next        = first;
7866         body->prev       = first->prev;
7867         body->prev->next = body;
7868         val->next->prev  = val;
7869
7870         if (triple_is_cbranch(state, body->prev) ||
7871                 triple_is_call(state, body->prev)) {
7872                 unuse_triple(first, body->prev);
7873                 use_triple(body, body->prev);
7874         }
7875         
7876         if (!(val->id & TRIPLE_FLAG_FLATTENED)) {
7877                 internal_error(state, val, "val not flattened?");
7878         }
7879
7880         return val;
7881 }
7882
7883
7884 static struct triple *flatten_part(
7885         struct compile_state *state, struct triple *first, struct triple *ptr)
7886 {
7887         if (!triple_is_part(state, ptr)) {
7888                 internal_error(state, ptr,  "not a part");
7889         }
7890         if (ptr->rhs || ptr->lhs || ptr->targ || (ptr->misc != 1)) {
7891                 internal_error(state, ptr, "unexpected args for: %d %s",
7892                         ptr->op, tops(ptr->op));
7893         }
7894         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
7895         use_triple(MISC(ptr, 0), ptr);
7896         return flatten_generic(state, first, ptr, 1);
7897 }
7898
7899 static struct triple *flatten(
7900         struct compile_state *state, struct triple *first, struct triple *ptr)
7901 {
7902         struct triple *orig_ptr;
7903         if (!ptr)
7904                 return 0;
7905         do {
7906                 orig_ptr = ptr;
7907                 /* Only flatten triples once */
7908                 if (ptr->id & TRIPLE_FLAG_FLATTENED) {
7909                         return ptr;
7910                 }
7911                 switch(ptr->op) {
7912                 case OP_VAL:
7913                         RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
7914                         return MISC(ptr, 0);
7915                         break;
7916                 case OP_PROG:
7917                         ptr = flatten_prog(state, first, ptr);
7918                         break;
7919                 case OP_FCALL:
7920                         ptr = flatten_generic(state, first, ptr, 1);
7921                         insert_triple(state, first, ptr);
7922                         ptr->id |= TRIPLE_FLAG_FLATTENED;
7923                         ptr->id &= ~TRIPLE_FLAG_LOCAL;
7924                         if (ptr->next != ptr) {
7925                                 use_triple(ptr->next, ptr);
7926                         }
7927                         break;
7928                 case OP_READ:
7929                 case OP_LOAD:
7930                         RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
7931                         use_triple(RHS(ptr, 0), ptr);
7932                         break;
7933                 case OP_WRITE:
7934                         ptr = flatten_generic(state, first, ptr, 1);
7935                         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
7936                         use_triple(MISC(ptr, 0), ptr);
7937                         break;
7938                 case OP_BRANCH:
7939                         use_triple(TARG(ptr, 0), ptr);
7940                         break;
7941                 case OP_CBRANCH:
7942                         RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
7943                         use_triple(RHS(ptr, 0), ptr);
7944                         use_triple(TARG(ptr, 0), ptr);
7945                         insert_triple(state, first, ptr);
7946                         ptr->id |= TRIPLE_FLAG_FLATTENED;
7947                         ptr->id &= ~TRIPLE_FLAG_LOCAL;
7948                         if (ptr->next != ptr) {
7949                                 use_triple(ptr->next, ptr);
7950                         }
7951                         break;
7952                 case OP_CALL:
7953                         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
7954                         use_triple(MISC(ptr, 0), ptr);
7955                         use_triple(TARG(ptr, 0), ptr);
7956                         insert_triple(state, first, ptr);
7957                         ptr->id |= TRIPLE_FLAG_FLATTENED;
7958                         ptr->id &= ~TRIPLE_FLAG_LOCAL;
7959                         if (ptr->next != ptr) {
7960                                 use_triple(ptr->next, ptr);
7961                         }
7962                         break;
7963                 case OP_RET:
7964                         RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
7965                         use_triple(RHS(ptr, 0), ptr);
7966                         break;
7967                 case OP_BLOBCONST:
7968                         insert_triple(state, state->global_pool, ptr);
7969                         ptr->id |= TRIPLE_FLAG_FLATTENED;
7970                         ptr->id &= ~TRIPLE_FLAG_LOCAL;
7971                         ptr = triple(state, OP_SDECL, ptr->type, ptr, 0);
7972                         use_triple(MISC(ptr, 0), ptr);
7973                         break;
7974                 case OP_DEREF:
7975                         /* Since OP_DEREF is just a marker delete it when I flatten it */
7976                         ptr = RHS(ptr, 0);
7977                         RHS(orig_ptr, 0) = 0;
7978                         free_triple(state, orig_ptr);
7979                         break;
7980                 case OP_DOT:
7981                         if (RHS(ptr, 0)->op == OP_DEREF) {
7982                                 struct triple *base, *left;
7983                                 ulong_t offset;
7984                                 base = MISC(ptr, 0);
7985                                 offset = bits_to_bytes(field_offset(state, base->type, ptr->u.field));
7986                                 left = RHS(base, 0);
7987                                 ptr = triple(state, OP_ADD, left->type, 
7988                                         read_expr(state, left),
7989                                         int_const(state, &ulong_type, offset));
7990                                 free_triple(state, base);
7991                         }
7992                         else {
7993                                 ptr = flatten_part(state, first, ptr);
7994                         }
7995                         break;
7996                 case OP_INDEX:
7997                         if (RHS(ptr, 0)->op == OP_DEREF) {
7998                                 struct triple *base, *left;
7999                                 ulong_t offset;
8000                                 base = MISC(ptr, 0);
8001                                 offset = bits_to_bytes(index_offset(state, base->type, ptr->u.cval));
8002                                 left = RHS(base, 0);
8003                                 ptr = triple(state, OP_ADD, left->type,
8004                                         read_expr(state, left),
8005                                         int_const(state, &long_type, offset));
8006                                 free_triple(state, base);
8007                         }
8008                         else {
8009                                 ptr = flatten_part(state, first, ptr);
8010                         }
8011                         break;
8012                 case OP_PIECE:
8013                         ptr = flatten_part(state, first, ptr);
8014                         use_triple(ptr, MISC(ptr, 0));
8015                         break;
8016                 case OP_ADDRCONST:
8017                         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
8018                         use_triple(MISC(ptr, 0), ptr);
8019                         break;
8020                 case OP_SDECL:
8021                         first = state->global_pool;
8022                         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
8023                         use_triple(MISC(ptr, 0), ptr);
8024                         insert_triple(state, first, ptr);
8025                         ptr->id |= TRIPLE_FLAG_FLATTENED;
8026                         ptr->id &= ~TRIPLE_FLAG_LOCAL;
8027                         return ptr;
8028                 case OP_ADECL:
8029                         ptr = flatten_generic(state, first, ptr, 0);
8030                         break;
8031                 default:
8032                         /* Flatten the easy cases we don't override */
8033                         ptr = flatten_generic(state, first, ptr, 0);
8034                         break;
8035                 }
8036         } while(ptr && (ptr != orig_ptr));
8037         if (ptr && !(ptr->id & TRIPLE_FLAG_FLATTENED)) {
8038                 insert_triple(state, first, ptr);
8039                 ptr->id |= TRIPLE_FLAG_FLATTENED;
8040                 ptr->id &= ~TRIPLE_FLAG_LOCAL;
8041         }
8042         return ptr;
8043 }
8044
8045 static void release_expr(struct compile_state *state, struct triple *expr)
8046 {
8047         struct triple *head;
8048         head = label(state);
8049         flatten(state, head, expr);
8050         while(head->next != head) {
8051                 release_triple(state, head->next);
8052         }
8053         free_triple(state, head);
8054 }
8055
8056 static int replace_rhs_use(struct compile_state *state,
8057         struct triple *orig, struct triple *new, struct triple *use)
8058 {
8059         struct triple **expr;
8060         int found;
8061         found = 0;
8062         expr = triple_rhs(state, use, 0);
8063         for(;expr; expr = triple_rhs(state, use, expr)) {
8064                 if (*expr == orig) {
8065                         *expr = new;
8066                         found = 1;
8067                 }
8068         }
8069         if (found) {
8070                 unuse_triple(orig, use);
8071                 use_triple(new, use);
8072         }
8073         return found;
8074 }
8075
8076 static int replace_lhs_use(struct compile_state *state,
8077         struct triple *orig, struct triple *new, struct triple *use)
8078 {
8079         struct triple **expr;
8080         int found;
8081         found = 0;
8082         expr = triple_lhs(state, use, 0);
8083         for(;expr; expr = triple_lhs(state, use, expr)) {
8084                 if (*expr == orig) {
8085                         *expr = new;
8086                         found = 1;
8087                 }
8088         }
8089         if (found) {
8090                 unuse_triple(orig, use);
8091                 use_triple(new, use);
8092         }
8093         return found;
8094 }
8095
8096 static int replace_misc_use(struct compile_state *state,
8097         struct triple *orig, struct triple *new, struct triple *use)
8098 {
8099         struct triple **expr;
8100         int found;
8101         found = 0;
8102         expr = triple_misc(state, use, 0);
8103         for(;expr; expr = triple_misc(state, use, expr)) {
8104                 if (*expr == orig) {
8105                         *expr = new;
8106                         found = 1;
8107                 }
8108         }
8109         if (found) {
8110                 unuse_triple(orig, use);
8111                 use_triple(new, use);
8112         }
8113         return found;
8114 }
8115
8116 static int replace_targ_use(struct compile_state *state,
8117         struct triple *orig, struct triple *new, struct triple *use)
8118 {
8119         struct triple **expr;
8120         int found;
8121         found = 0;
8122         expr = triple_targ(state, use, 0);
8123         for(;expr; expr = triple_targ(state, use, expr)) {
8124                 if (*expr == orig) {
8125                         *expr = new;
8126                         found = 1;
8127                 }
8128         }
8129         if (found) {
8130                 unuse_triple(orig, use);
8131                 use_triple(new, use);
8132         }
8133         return found;
8134 }
8135
8136 static void replace_use(struct compile_state *state,
8137         struct triple *orig, struct triple *new, struct triple *use)
8138 {
8139         int found;
8140         found = 0;
8141         found |= replace_rhs_use(state, orig, new, use);
8142         found |= replace_lhs_use(state, orig, new, use);
8143         found |= replace_misc_use(state, orig, new, use);
8144         found |= replace_targ_use(state, orig, new, use);
8145         if (!found) {
8146                 internal_error(state, use, "use without use");
8147         }
8148 }
8149
8150 static void propogate_use(struct compile_state *state,
8151         struct triple *orig, struct triple *new)
8152 {
8153         struct triple_set *user, *next;
8154         for(user = orig->use; user; user = next) {
8155                 /* Careful replace_use modifies the use chain and
8156                  * removes use.  So we must get a copy of the next
8157                  * entry early.
8158                  */
8159                 next = user->next;
8160                 replace_use(state, orig, new, user->member);
8161         }
8162         if (orig->use) {
8163                 internal_error(state, orig, "used after propogate_use");
8164         }
8165 }
8166
8167 /*
8168  * Code generators
8169  * ===========================
8170  */
8171
8172 static struct triple *mk_cast_expr(
8173         struct compile_state *state, struct type *type, struct triple *expr)
8174 {
8175         struct triple *def;
8176         def = read_expr(state, expr);
8177         def = triple(state, OP_CONVERT, type, def, 0);
8178         return def;
8179 }
8180
8181 static struct triple *mk_add_expr(
8182         struct compile_state *state, struct triple *left, struct triple *right)
8183 {
8184         struct type *result_type;
8185         /* Put pointer operands on the left */
8186         if (is_pointer(right)) {
8187                 struct triple *tmp;
8188                 tmp = left;
8189                 left = right;
8190                 right = tmp;
8191         }
8192         left  = read_expr(state, left);
8193         right = read_expr(state, right);
8194         result_type = ptr_arithmetic_result(state, left, right);
8195         if (is_pointer(left)) {
8196                 struct type *ptr_math;
8197                 int op;
8198                 if (is_signed(right->type)) {
8199                         ptr_math = &long_type;
8200                         op = OP_SMUL;
8201                 } else {
8202                         ptr_math = &ulong_type;
8203                         op = OP_UMUL;
8204                 }
8205                 if (!equiv_types(right->type, ptr_math)) {
8206                         right = mk_cast_expr(state, ptr_math, right);
8207                 }
8208                 right = triple(state, op, ptr_math, right, 
8209                         int_const(state, ptr_math, 
8210                                 size_of_in_bytes(state, left->type->left)));
8211         }
8212         return triple(state, OP_ADD, result_type, left, right);
8213 }
8214
8215 static struct triple *mk_sub_expr(
8216         struct compile_state *state, struct triple *left, struct triple *right)
8217 {
8218         struct type *result_type;
8219         result_type = ptr_arithmetic_result(state, left, right);
8220         left  = read_expr(state, left);
8221         right = read_expr(state, right);
8222         if (is_pointer(left)) {
8223                 struct type *ptr_math;
8224                 int op;
8225                 if (is_signed(right->type)) {
8226                         ptr_math = &long_type;
8227                         op = OP_SMUL;
8228                 } else {
8229                         ptr_math = &ulong_type;
8230                         op = OP_UMUL;
8231                 }
8232                 if (!equiv_types(right->type, ptr_math)) {
8233                         right = mk_cast_expr(state, ptr_math, right);
8234                 }
8235                 right = triple(state, op, ptr_math, right, 
8236                         int_const(state, ptr_math, 
8237                                 size_of_in_bytes(state, left->type->left)));
8238         }
8239         return triple(state, OP_SUB, result_type, left, right);
8240 }
8241
8242 static struct triple *mk_pre_inc_expr(
8243         struct compile_state *state, struct triple *def)
8244 {
8245         struct triple *val;
8246         lvalue(state, def);
8247         val = mk_add_expr(state, def, int_const(state, &int_type, 1));
8248         return triple(state, OP_VAL, def->type,
8249                 write_expr(state, def, val),
8250                 val);
8251 }
8252
8253 static struct triple *mk_pre_dec_expr(
8254         struct compile_state *state, struct triple *def)
8255 {
8256         struct triple *val;
8257         lvalue(state, def);
8258         val = mk_sub_expr(state, def, int_const(state, &int_type, 1));
8259         return triple(state, OP_VAL, def->type,
8260                 write_expr(state, def, val),
8261                 val);
8262 }
8263
8264 static struct triple *mk_post_inc_expr(
8265         struct compile_state *state, struct triple *def)
8266 {
8267         struct triple *val;
8268         lvalue(state, def);
8269         val = read_expr(state, def);
8270         return triple(state, OP_VAL, def->type,
8271                 write_expr(state, def,
8272                         mk_add_expr(state, val, int_const(state, &int_type, 1)))
8273                 , val);
8274 }
8275
8276 static struct triple *mk_post_dec_expr(
8277         struct compile_state *state, struct triple *def)
8278 {
8279         struct triple *val;
8280         lvalue(state, def);
8281         val = read_expr(state, def);
8282         return triple(state, OP_VAL, def->type, 
8283                 write_expr(state, def,
8284                         mk_sub_expr(state, val, int_const(state, &int_type, 1)))
8285                 , val);
8286 }
8287
8288 static struct triple *mk_subscript_expr(
8289         struct compile_state *state, struct triple *left, struct triple *right)
8290 {
8291         left  = read_expr(state, left);
8292         right = read_expr(state, right);
8293         if (!is_pointer(left) && !is_pointer(right)) {
8294                 error(state, left, "subscripted value is not a pointer");
8295         }
8296         return mk_deref_expr(state, mk_add_expr(state, left, right));
8297 }
8298
8299
8300 /*
8301  * Compile time evaluation
8302  * ===========================
8303  */
8304 static int is_const(struct triple *ins)
8305 {
8306         return IS_CONST_OP(ins->op);
8307 }
8308
8309 static int is_simple_const(struct triple *ins)
8310 {
8311         /* Is this a constant that u.cval has the value.
8312          * Or equivalently is this a constant that read_const
8313          * works on.
8314          * So far only OP_INTCONST qualifies.  
8315          */
8316         return (ins->op == OP_INTCONST);
8317 }
8318
8319 static int constants_equal(struct compile_state *state, 
8320         struct triple *left, struct triple *right)
8321 {
8322         int equal;
8323         if ((left->op == OP_UNKNOWNVAL) || (right->op == OP_UNKNOWNVAL)) {
8324                 equal = 0;
8325         }
8326         else if (!is_const(left) || !is_const(right)) {
8327                 equal = 0;
8328         }
8329         else if (left->op != right->op) {
8330                 equal = 0;
8331         }
8332         else if (!equiv_types(left->type, right->type)) {
8333                 equal = 0;
8334         }
8335         else {
8336                 equal = 0;
8337                 switch(left->op) {
8338                 case OP_INTCONST:
8339                         if (left->u.cval == right->u.cval) {
8340                                 equal = 1;
8341                         }
8342                         break;
8343                 case OP_BLOBCONST:
8344                 {
8345                         size_t lsize, rsize, bytes;
8346                         lsize = size_of(state, left->type);
8347                         rsize = size_of(state, right->type);
8348                         if (lsize != rsize) {
8349                                 break;
8350                         }
8351                         bytes = bits_to_bytes(lsize);
8352                         if (memcmp(left->u.blob, right->u.blob, bytes) == 0) {
8353                                 equal = 1;
8354                         }
8355                         break;
8356                 }
8357                 case OP_ADDRCONST:
8358                         if ((MISC(left, 0) == MISC(right, 0)) &&
8359                                 (left->u.cval == right->u.cval)) {
8360                                 equal = 1;
8361                         }
8362                         break;
8363                 default:
8364                         internal_error(state, left, "uknown constant type");
8365                         break;
8366                 }
8367         }
8368         return equal;
8369 }
8370
8371 static int is_zero(struct triple *ins)
8372 {
8373         return is_simple_const(ins) && (ins->u.cval == 0);
8374 }
8375
8376 static int is_one(struct triple *ins)
8377 {
8378         return is_simple_const(ins) && (ins->u.cval == 1);
8379 }
8380
8381 #if DEBUG_ROMCC_WARNING
8382 static long_t bit_count(ulong_t value)
8383 {
8384         int count;
8385         int i;
8386         count = 0;
8387         for(i = (sizeof(ulong_t)*8) -1; i >= 0; i--) {
8388                 ulong_t mask;
8389                 mask = 1;
8390                 mask <<= i;
8391                 if (value & mask) {
8392                         count++;
8393                 }
8394         }
8395         return count;
8396         
8397 }
8398 #endif
8399
8400 static long_t bsr(ulong_t value)
8401 {
8402         int i;
8403         for(i = (sizeof(ulong_t)*8) -1; i >= 0; i--) {
8404                 ulong_t mask;
8405                 mask = 1;
8406                 mask <<= i;
8407                 if (value & mask) {
8408                         return i;
8409                 }
8410         }
8411         return -1;
8412 }
8413
8414 static long_t bsf(ulong_t value)
8415 {
8416         int i;
8417         for(i = 0; i < (sizeof(ulong_t)*8); i++) {
8418                 ulong_t mask;
8419                 mask = 1;
8420                 mask <<= 1;
8421                 if (value & mask) {
8422                         return i;
8423                 }
8424         }
8425         return -1;
8426 }
8427
8428 static long_t ilog2(ulong_t value)
8429 {
8430         return bsr(value);
8431 }
8432
8433 static long_t tlog2(struct triple *ins)
8434 {
8435         return ilog2(ins->u.cval);
8436 }
8437
8438 static int is_pow2(struct triple *ins)
8439 {
8440         ulong_t value, mask;
8441         long_t log;
8442         if (!is_const(ins)) {
8443                 return 0;
8444         }
8445         value = ins->u.cval;
8446         log = ilog2(value);
8447         if (log == -1) {
8448                 return 0;
8449         }
8450         mask = 1;
8451         mask <<= log;
8452         return  ((value & mask) == value);
8453 }
8454
8455 static ulong_t read_const(struct compile_state *state,
8456         struct triple *ins, struct triple *rhs)
8457 {
8458         switch(rhs->type->type &TYPE_MASK) {
8459         case TYPE_CHAR:   
8460         case TYPE_SHORT:
8461         case TYPE_INT:
8462         case TYPE_LONG:
8463         case TYPE_UCHAR:   
8464         case TYPE_USHORT:  
8465         case TYPE_UINT:
8466         case TYPE_ULONG:
8467         case TYPE_POINTER:
8468         case TYPE_BITFIELD:
8469                 break;
8470         default:
8471                 fprintf(state->errout, "type: ");
8472                 name_of(state->errout, rhs->type);
8473                 fprintf(state->errout, "\n");
8474                 internal_warning(state, rhs, "bad type to read_const");
8475                 break;
8476         }
8477         if (!is_simple_const(rhs)) {
8478                 internal_error(state, rhs, "bad op to read_const");
8479         }
8480         return rhs->u.cval;
8481 }
8482
8483 static long_t read_sconst(struct compile_state *state,
8484         struct triple *ins, struct triple *rhs)
8485 {
8486         return (long_t)(rhs->u.cval);
8487 }
8488
8489 int const_ltrue(struct compile_state *state, struct triple *ins, struct triple *rhs)
8490 {
8491         if (!is_const(rhs)) {
8492                 internal_error(state, 0, "non const passed to const_true");
8493         }
8494         return !is_zero(rhs);
8495 }
8496
8497 int const_eq(struct compile_state *state, struct triple *ins,
8498         struct triple *left, struct triple *right)
8499 {
8500         int result;
8501         if (!is_const(left) || !is_const(right)) {
8502                 internal_warning(state, ins, "non const passed to const_eq");
8503                 result = -1;
8504         }
8505         else if (left == right) {
8506                 result = 1;
8507         }
8508         else if (is_simple_const(left) && is_simple_const(right)) {
8509                 ulong_t lval, rval;
8510                 lval = read_const(state, ins, left);
8511                 rval = read_const(state, ins, right);
8512                 result = (lval == rval);
8513         }
8514         else if ((left->op == OP_ADDRCONST) && 
8515                 (right->op == OP_ADDRCONST)) {
8516                 result = (MISC(left, 0) == MISC(right, 0)) &&
8517                         (left->u.cval == right->u.cval);
8518         }
8519         else {
8520                 internal_warning(state, ins, "incomparable constants passed to const_eq");
8521                 result = -1;
8522         }
8523         return result;
8524         
8525 }
8526
8527 int const_ucmp(struct compile_state *state, struct triple *ins,
8528         struct triple *left, struct triple *right)
8529 {
8530         int result;
8531         if (!is_const(left) || !is_const(right)) {
8532                 internal_warning(state, ins, "non const past to const_ucmp");
8533                 result = -2;
8534         }
8535         else if (left == right) {
8536                 result = 0;
8537         }
8538         else if (is_simple_const(left) && is_simple_const(right)) {
8539                 ulong_t lval, rval;
8540                 lval = read_const(state, ins, left);
8541                 rval = read_const(state, ins, right);
8542                 result = 0;
8543                 if (lval > rval) {
8544                         result = 1;
8545                 } else if (rval > lval) {
8546                         result = -1;
8547                 }
8548         }
8549         else if ((left->op == OP_ADDRCONST) && 
8550                 (right->op == OP_ADDRCONST) &&
8551                 (MISC(left, 0) == MISC(right, 0))) {
8552                 result = 0;
8553                 if (left->u.cval > right->u.cval) {
8554                         result = 1;
8555                 } else if (left->u.cval < right->u.cval) {
8556                         result = -1;
8557                 }
8558         }
8559         else {
8560                 internal_warning(state, ins, "incomparable constants passed to const_ucmp");
8561                 result = -2;
8562         }
8563         return result;
8564 }
8565
8566 int const_scmp(struct compile_state *state, struct triple *ins,
8567         struct triple *left, struct triple *right)
8568 {
8569         int result;
8570         if (!is_const(left) || !is_const(right)) {
8571                 internal_warning(state, ins, "non const past to ucmp_const");
8572                 result = -2;
8573         }
8574         else if (left == right) {
8575                 result = 0;
8576         }
8577         else if (is_simple_const(left) && is_simple_const(right)) {
8578                 long_t lval, rval;
8579                 lval = read_sconst(state, ins, left);
8580                 rval = read_sconst(state, ins, right);
8581                 result = 0;
8582                 if (lval > rval) {
8583                         result = 1;
8584                 } else if (rval > lval) {
8585                         result = -1;
8586                 }
8587         }
8588         else {
8589                 internal_warning(state, ins, "incomparable constants passed to const_scmp");
8590                 result = -2;
8591         }
8592         return result;
8593 }
8594
8595 static void unuse_rhs(struct compile_state *state, struct triple *ins)
8596 {
8597         struct triple **expr;
8598         expr = triple_rhs(state, ins, 0);
8599         for(;expr;expr = triple_rhs(state, ins, expr)) {
8600                 if (*expr) {
8601                         unuse_triple(*expr, ins);
8602                         *expr = 0;
8603                 }
8604         }
8605 }
8606
8607 static void unuse_lhs(struct compile_state *state, struct triple *ins)
8608 {
8609         struct triple **expr;
8610         expr = triple_lhs(state, ins, 0);
8611         for(;expr;expr = triple_lhs(state, ins, expr)) {
8612                 unuse_triple(*expr, ins);
8613                 *expr = 0;
8614         }
8615 }
8616
8617 #if DEBUG_ROMCC_WARNING
8618 static void unuse_misc(struct compile_state *state, struct triple *ins)
8619 {
8620         struct triple **expr;
8621         expr = triple_misc(state, ins, 0);
8622         for(;expr;expr = triple_misc(state, ins, expr)) {
8623                 unuse_triple(*expr, ins);
8624                 *expr = 0;
8625         }
8626 }
8627
8628 static void unuse_targ(struct compile_state *state, struct triple *ins)
8629 {
8630         int i;
8631         struct triple **slot;
8632         slot = &TARG(ins, 0);
8633         for(i = 0; i < ins->targ; i++) {
8634                 unuse_triple(slot[i], ins);
8635                 slot[i] = 0;
8636         }
8637 }
8638
8639 static void check_lhs(struct compile_state *state, struct triple *ins)
8640 {
8641         struct triple **expr;
8642         expr = triple_lhs(state, ins, 0);
8643         for(;expr;expr = triple_lhs(state, ins, expr)) {
8644                 internal_error(state, ins, "unexpected lhs");
8645         }
8646         
8647 }
8648 #endif
8649
8650 static void check_misc(struct compile_state *state, struct triple *ins)
8651 {
8652         struct triple **expr;
8653         expr = triple_misc(state, ins, 0);
8654         for(;expr;expr = triple_misc(state, ins, expr)) {
8655                 if (*expr) {
8656                         internal_error(state, ins, "unexpected misc");
8657                 }
8658         }
8659 }
8660
8661 static void check_targ(struct compile_state *state, struct triple *ins)
8662 {
8663         struct triple **expr;
8664         expr = triple_targ(state, ins, 0);
8665         for(;expr;expr = triple_targ(state, ins, expr)) {
8666                 internal_error(state, ins, "unexpected targ");
8667         }
8668 }
8669
8670 static void wipe_ins(struct compile_state *state, struct triple *ins)
8671 {
8672         /* Becareful which instructions you replace the wiped
8673          * instruction with, as there are not enough slots
8674          * in all instructions to hold all others.
8675          */
8676         check_targ(state, ins);
8677         check_misc(state, ins);
8678         unuse_rhs(state, ins);
8679         unuse_lhs(state, ins);
8680         ins->lhs  = 0;
8681         ins->rhs  = 0;
8682         ins->misc = 0;
8683         ins->targ = 0;
8684 }
8685
8686 #if DEBUG_ROMCC_WARNING
8687 static void wipe_branch(struct compile_state *state, struct triple *ins)
8688 {
8689         /* Becareful which instructions you replace the wiped
8690          * instruction with, as there are not enough slots
8691          * in all instructions to hold all others.
8692          */
8693         unuse_rhs(state, ins);
8694         unuse_lhs(state, ins);
8695         unuse_misc(state, ins);
8696         unuse_targ(state, ins);
8697         ins->lhs  = 0;
8698         ins->rhs  = 0;
8699         ins->misc = 0;
8700         ins->targ = 0;
8701 }
8702 #endif
8703
8704 static void mkcopy(struct compile_state *state, 
8705         struct triple *ins, struct triple *rhs)
8706 {
8707         struct block *block;
8708         if (!equiv_types(ins->type, rhs->type)) {
8709                 FILE *fp = state->errout;
8710                 fprintf(fp, "src type: ");
8711                 name_of(fp, rhs->type);
8712                 fprintf(fp, "\ndst type: ");
8713                 name_of(fp, ins->type);
8714                 fprintf(fp, "\n");
8715                 internal_error(state, ins, "mkcopy type mismatch");
8716         }
8717         block = block_of_triple(state, ins);
8718         wipe_ins(state, ins);
8719         ins->op = OP_COPY;
8720         ins->rhs  = 1;
8721         ins->u.block = block;
8722         RHS(ins, 0) = rhs;
8723         use_triple(RHS(ins, 0), ins);
8724 }
8725
8726 static void mkconst(struct compile_state *state, 
8727         struct triple *ins, ulong_t value)
8728 {
8729         if (!is_integral(ins) && !is_pointer(ins)) {
8730                 fprintf(state->errout, "type: ");
8731                 name_of(state->errout, ins->type);
8732                 fprintf(state->errout, "\n");
8733                 internal_error(state, ins, "unknown type to make constant value: %ld",
8734                         value);
8735         }
8736         wipe_ins(state, ins);
8737         ins->op = OP_INTCONST;
8738         ins->u.cval = value;
8739 }
8740
8741 static void mkaddr_const(struct compile_state *state,
8742         struct triple *ins, struct triple *sdecl, ulong_t value)
8743 {
8744         if ((sdecl->op != OP_SDECL) && (sdecl->op != OP_LABEL)) {
8745                 internal_error(state, ins, "bad base for addrconst");
8746         }
8747         wipe_ins(state, ins);
8748         ins->op = OP_ADDRCONST;
8749         ins->misc = 1;
8750         MISC(ins, 0) = sdecl;
8751         ins->u.cval = value;
8752         use_triple(sdecl, ins);
8753 }
8754
8755 #if DEBUG_DECOMPOSE_PRINT_TUPLES
8756 static void print_tuple(struct compile_state *state, 
8757         struct triple *ins, struct triple *tuple)
8758 {
8759         FILE *fp = state->dbgout;
8760         fprintf(fp, "%5s %p tuple: %p ", tops(ins->op), ins, tuple);
8761         name_of(fp, tuple->type);
8762         if (tuple->lhs > 0) {
8763                 fprintf(fp, " lhs: ");
8764                 name_of(fp, LHS(tuple, 0)->type);
8765         }
8766         fprintf(fp, "\n");
8767         
8768 }
8769 #endif
8770
8771 static struct triple *decompose_with_tuple(struct compile_state *state, 
8772         struct triple *ins, struct triple *tuple)
8773 {
8774         struct triple *next;
8775         next = ins->next;
8776         flatten(state, next, tuple);
8777 #if DEBUG_DECOMPOSE_PRINT_TUPLES
8778         print_tuple(state, ins, tuple);
8779 #endif
8780
8781         if (!is_compound_type(tuple->type) && (tuple->lhs > 0)) {
8782                 struct triple *tmp;
8783                 if (tuple->lhs != 1) {
8784                         internal_error(state, tuple, "plain type in multiple registers?");
8785                 }
8786                 tmp = LHS(tuple, 0);
8787                 release_triple(state, tuple);
8788                 tuple = tmp;
8789         }
8790
8791         propogate_use(state, ins, tuple);
8792         release_triple(state, ins);
8793         
8794         return next;
8795 }
8796
8797 static struct triple *decompose_unknownval(struct compile_state *state,
8798         struct triple *ins)
8799 {
8800         struct triple *tuple;
8801         ulong_t i;
8802
8803 #if DEBUG_DECOMPOSE_HIRES
8804         FILE *fp = state->dbgout;
8805         fprintf(fp, "unknown type: ");
8806         name_of(fp, ins->type);
8807         fprintf(fp, "\n");
8808 #endif
8809
8810         get_occurance(ins->occurance);
8811         tuple = alloc_triple(state, OP_TUPLE, ins->type, -1, -1, 
8812                 ins->occurance);
8813
8814         for(i = 0; i < tuple->lhs; i++) {
8815                 struct type *piece_type;
8816                 struct triple *unknown;
8817
8818                 piece_type = reg_type(state, ins->type, i * REG_SIZEOF_REG);
8819                 get_occurance(tuple->occurance);
8820                 unknown = alloc_triple(state, OP_UNKNOWNVAL, piece_type, 0, 0,
8821                         tuple->occurance);
8822                 LHS(tuple, i) = unknown;
8823         }
8824         return decompose_with_tuple(state, ins, tuple);
8825 }
8826
8827
8828 static struct triple *decompose_read(struct compile_state *state, 
8829         struct triple *ins)
8830 {
8831         struct triple *tuple, *lval;
8832         ulong_t i;
8833
8834         lval = RHS(ins, 0);
8835
8836         if (lval->op == OP_PIECE) {
8837                 return ins->next;
8838         }
8839         get_occurance(ins->occurance);
8840         tuple = alloc_triple(state, OP_TUPLE, lval->type, -1, -1,
8841                 ins->occurance);
8842
8843         if ((tuple->lhs != lval->lhs) &&
8844                 (!triple_is_def(state, lval) || (tuple->lhs != 1))) 
8845         {
8846                 internal_error(state, ins, "lhs size inconsistency?");
8847         }
8848         for(i = 0; i < tuple->lhs; i++) {
8849                 struct triple *piece, *read, *bitref;
8850                 if ((i != 0) || !triple_is_def(state, lval)) {
8851                         piece = LHS(lval, i);
8852                 } else {
8853                         piece = lval;
8854                 }
8855
8856                 /* See if the piece is really a bitref */
8857                 bitref = 0;
8858                 if (piece->op == OP_BITREF) {
8859                         bitref = piece;
8860                         piece = RHS(bitref, 0);
8861                 }
8862
8863                 get_occurance(tuple->occurance);
8864                 read = alloc_triple(state, OP_READ, piece->type, -1, -1, 
8865                         tuple->occurance);
8866                 RHS(read, 0) = piece;
8867
8868                 if (bitref) {
8869                         struct triple *extract;
8870                         int op;
8871                         if (is_signed(bitref->type->left)) {
8872                                 op = OP_SEXTRACT;
8873                         } else {
8874                                 op = OP_UEXTRACT;
8875                         }
8876                         get_occurance(tuple->occurance);
8877                         extract = alloc_triple(state, op, bitref->type, -1, -1,
8878                                 tuple->occurance);
8879                         RHS(extract, 0) = read;
8880                         extract->u.bitfield.size   = bitref->u.bitfield.size;
8881                         extract->u.bitfield.offset = bitref->u.bitfield.offset;
8882
8883                         read = extract;
8884                 }
8885
8886                 LHS(tuple, i) = read;
8887         }
8888         return decompose_with_tuple(state, ins, tuple);
8889 }
8890
8891 static struct triple *decompose_write(struct compile_state *state, 
8892         struct triple *ins)
8893 {
8894         struct triple *tuple, *lval, *val;
8895         ulong_t i;
8896         
8897         lval = MISC(ins, 0);
8898         val = RHS(ins, 0);
8899         get_occurance(ins->occurance);
8900         tuple = alloc_triple(state, OP_TUPLE, ins->type, -1, -1,
8901                 ins->occurance);
8902
8903         if ((tuple->lhs != lval->lhs) &&
8904                 (!triple_is_def(state, lval) || tuple->lhs != 1)) 
8905         {
8906                 internal_error(state, ins, "lhs size inconsistency?");
8907         }
8908         for(i = 0; i < tuple->lhs; i++) {
8909                 struct triple *piece, *write, *pval, *bitref;
8910                 if ((i != 0) || !triple_is_def(state, lval)) {
8911                         piece = LHS(lval, i);
8912                 } else {
8913                         piece = lval;
8914                 }
8915                 if ((i == 0) && (tuple->lhs == 1) && (val->lhs == 0)) {
8916                         pval = val;
8917                 }
8918                 else {
8919                         if (i > val->lhs) {
8920                                 internal_error(state, ins, "lhs size inconsistency?");
8921                         }
8922                         pval = LHS(val, i);
8923                 }
8924                 
8925                 /* See if the piece is really a bitref */
8926                 bitref = 0;
8927                 if (piece->op == OP_BITREF) {
8928                         struct triple *read, *deposit;
8929                         bitref = piece;
8930                         piece = RHS(bitref, 0);
8931
8932                         /* Read the destination register */
8933                         get_occurance(tuple->occurance);
8934                         read = alloc_triple(state, OP_READ, piece->type, -1, -1,
8935                                 tuple->occurance);
8936                         RHS(read, 0) = piece;
8937
8938                         /* Deposit the new bitfield value */
8939                         get_occurance(tuple->occurance);
8940                         deposit = alloc_triple(state, OP_DEPOSIT, piece->type, -1, -1,
8941                                 tuple->occurance);
8942                         RHS(deposit, 0) = read;
8943                         RHS(deposit, 1) = pval;
8944                         deposit->u.bitfield.size   = bitref->u.bitfield.size;
8945                         deposit->u.bitfield.offset = bitref->u.bitfield.offset;
8946
8947                         /* Now write the newly generated value */
8948                         pval = deposit;
8949                 }
8950
8951                 get_occurance(tuple->occurance);
8952                 write = alloc_triple(state, OP_WRITE, piece->type, -1, -1, 
8953                         tuple->occurance);
8954                 MISC(write, 0) = piece;
8955                 RHS(write, 0) = pval;
8956                 LHS(tuple, i) = write;
8957         }
8958         return decompose_with_tuple(state, ins, tuple);
8959 }
8960
8961 struct decompose_load_info {
8962         struct occurance *occurance;
8963         struct triple *lval;
8964         struct triple *tuple;
8965 };
8966 static void decompose_load_cb(struct compile_state *state,
8967         struct type *type, size_t reg_offset, size_t mem_offset, void *arg)
8968 {
8969         struct decompose_load_info *info = arg;
8970         struct triple *load;
8971         
8972         if (reg_offset > info->tuple->lhs) {
8973                 internal_error(state, info->tuple, "lhs to small?");
8974         }
8975         get_occurance(info->occurance);
8976         load = alloc_triple(state, OP_LOAD, type, -1, -1, info->occurance);
8977         RHS(load, 0) = mk_addr_expr(state, info->lval, mem_offset);
8978         LHS(info->tuple, reg_offset/REG_SIZEOF_REG) = load;
8979 }
8980
8981 static struct triple *decompose_load(struct compile_state *state, 
8982         struct triple *ins)
8983 {
8984         struct triple *tuple;
8985         struct decompose_load_info info;
8986
8987         if (!is_compound_type(ins->type)) {
8988                 return ins->next;
8989         }
8990         get_occurance(ins->occurance);
8991         tuple = alloc_triple(state, OP_TUPLE, ins->type, -1, -1,
8992                 ins->occurance);
8993
8994         info.occurance = ins->occurance;
8995         info.lval      = RHS(ins, 0);
8996         info.tuple     = tuple;
8997         walk_type_fields(state, ins->type, 0, 0, decompose_load_cb, &info);
8998
8999         return decompose_with_tuple(state, ins, tuple);
9000 }
9001
9002
9003 struct decompose_store_info {
9004         struct occurance *occurance;
9005         struct triple *lval;
9006         struct triple *val;
9007         struct triple *tuple;
9008 };
9009 static void decompose_store_cb(struct compile_state *state,
9010         struct type *type, size_t reg_offset, size_t mem_offset, void *arg)
9011 {
9012         struct decompose_store_info *info = arg;
9013         struct triple *store;
9014         
9015         if (reg_offset > info->tuple->lhs) {
9016                 internal_error(state, info->tuple, "lhs to small?");
9017         }
9018         get_occurance(info->occurance);
9019         store = alloc_triple(state, OP_STORE, type, -1, -1, info->occurance);
9020         RHS(store, 0) = mk_addr_expr(state, info->lval, mem_offset);
9021         RHS(store, 1) = LHS(info->val, reg_offset);
9022         LHS(info->tuple, reg_offset/REG_SIZEOF_REG) = store;
9023 }
9024
9025 static struct triple *decompose_store(struct compile_state *state, 
9026         struct triple *ins)
9027 {
9028         struct triple *tuple;
9029         struct decompose_store_info info;
9030
9031         if (!is_compound_type(ins->type)) {
9032                 return ins->next;
9033         }
9034         get_occurance(ins->occurance);
9035         tuple = alloc_triple(state, OP_TUPLE, ins->type, -1, -1,
9036                 ins->occurance);
9037
9038         info.occurance = ins->occurance;
9039         info.lval      = RHS(ins, 0);
9040         info.val       = RHS(ins, 1);
9041         info.tuple     = tuple;
9042         walk_type_fields(state, ins->type, 0, 0, decompose_store_cb, &info);
9043
9044         return decompose_with_tuple(state, ins, tuple);
9045 }
9046
9047 static struct triple *decompose_dot(struct compile_state *state, 
9048         struct triple *ins)
9049 {
9050         struct triple *tuple, *lval;
9051         struct type *type;
9052         size_t reg_offset;
9053         int i, idx;
9054
9055         lval = MISC(ins, 0);
9056         reg_offset = field_reg_offset(state, lval->type, ins->u.field);
9057         idx  = reg_offset/REG_SIZEOF_REG;
9058         type = field_type(state, lval->type, ins->u.field);
9059 #if DEBUG_DECOMPOSE_HIRES
9060         {
9061                 FILE *fp = state->dbgout;
9062                 fprintf(fp, "field type: ");
9063                 name_of(fp, type);
9064                 fprintf(fp, "\n");
9065         }
9066 #endif
9067
9068         get_occurance(ins->occurance);
9069         tuple = alloc_triple(state, OP_TUPLE, type, -1, -1, 
9070                 ins->occurance);
9071
9072         if (((ins->type->type & TYPE_MASK) == TYPE_BITFIELD) &&
9073                 (tuple->lhs != 1))
9074         {
9075                 internal_error(state, ins, "multi register bitfield?");
9076         }
9077
9078         for(i = 0; i < tuple->lhs; i++, idx++) {
9079                 struct triple *piece;
9080                 if (!triple_is_def(state, lval)) {
9081                         if (idx > lval->lhs) {
9082                                 internal_error(state, ins, "inconsistent lhs count");
9083                         }
9084                         piece = LHS(lval, idx);
9085                 } else {
9086                         if (idx != 0) {
9087                                 internal_error(state, ins, "bad reg_offset into def");
9088                         }
9089                         if (i != 0) {
9090                                 internal_error(state, ins, "bad reg count from def");
9091                         }
9092                         piece = lval;
9093                 }
9094
9095                 /* Remember the offset of the bitfield */
9096                 if ((type->type & TYPE_MASK) == TYPE_BITFIELD) {
9097                         get_occurance(ins->occurance);
9098                         piece = build_triple(state, OP_BITREF, type, piece, 0,
9099                                 ins->occurance);
9100                         piece->u.bitfield.size   = size_of(state, type);
9101                         piece->u.bitfield.offset = reg_offset % REG_SIZEOF_REG;
9102                 }
9103                 else if ((reg_offset % REG_SIZEOF_REG) != 0) {
9104                         internal_error(state, ins, 
9105                                 "request for a nonbitfield sub register?");
9106                 }
9107
9108                 LHS(tuple, i) = piece;
9109         }
9110
9111         return decompose_with_tuple(state, ins, tuple);
9112 }
9113
9114 static struct triple *decompose_index(struct compile_state *state, 
9115         struct triple *ins)
9116 {
9117         struct triple *tuple, *lval;
9118         struct type *type;
9119         int i, idx;
9120
9121         lval = MISC(ins, 0);
9122         idx = index_reg_offset(state, lval->type, ins->u.cval)/REG_SIZEOF_REG;
9123         type = index_type(state, lval->type, ins->u.cval);
9124 #if DEBUG_DECOMPOSE_HIRES
9125 {
9126         FILE *fp = state->dbgout;
9127         fprintf(fp, "index type: ");
9128         name_of(fp, type);
9129         fprintf(fp, "\n");
9130 }
9131 #endif
9132
9133         get_occurance(ins->occurance);
9134         tuple = alloc_triple(state, OP_TUPLE, type, -1, -1, 
9135                 ins->occurance);
9136
9137         for(i = 0; i < tuple->lhs; i++, idx++) {
9138                 struct triple *piece;
9139                 if (!triple_is_def(state, lval)) {
9140                         if (idx > lval->lhs) {
9141                                 internal_error(state, ins, "inconsistent lhs count");
9142                         }
9143                         piece = LHS(lval, idx);
9144                 } else {
9145                         if (idx != 0) {
9146                                 internal_error(state, ins, "bad reg_offset into def");
9147                         }
9148                         if (i != 0) {
9149                                 internal_error(state, ins, "bad reg count from def");
9150                         }
9151                         piece = lval;
9152                 }
9153                 LHS(tuple, i) = piece;
9154         }
9155
9156         return decompose_with_tuple(state, ins, tuple);
9157 }
9158
9159 static void decompose_compound_types(struct compile_state *state)
9160 {
9161         struct triple *ins, *next, *first;
9162         FILE *fp;
9163         fp = state->dbgout;
9164         first = state->first;
9165         ins = first;
9166
9167         /* Pass one expand compound values into pseudo registers.
9168          */
9169         next = first;
9170         do {
9171                 ins = next;
9172                 next = ins->next;
9173                 switch(ins->op) {
9174                 case OP_UNKNOWNVAL:
9175                         next = decompose_unknownval(state, ins);
9176                         break;
9177
9178                 case OP_READ:
9179                         next = decompose_read(state, ins);
9180                         break;
9181
9182                 case OP_WRITE:
9183                         next = decompose_write(state, ins);
9184                         break;
9185
9186
9187                 /* Be very careful with the load/store logic. These
9188                  * operations must convert from the in register layout
9189                  * to the in memory layout, which is nontrivial.
9190                  */
9191                 case OP_LOAD:
9192                         next = decompose_load(state, ins);
9193                         break;
9194                 case OP_STORE:
9195                         next = decompose_store(state, ins);
9196                         break;
9197
9198                 case OP_DOT:
9199                         next = decompose_dot(state, ins);
9200                         break;
9201                 case OP_INDEX:
9202                         next = decompose_index(state, ins);
9203                         break;
9204                         
9205                 }
9206 #if DEBUG_DECOMPOSE_HIRES
9207                 fprintf(fp, "decompose next: %p \n", next);
9208                 fflush(fp);
9209                 fprintf(fp, "next->op: %d %s\n",
9210                         next->op, tops(next->op));
9211                 /* High resolution debugging mode */
9212                 print_triples(state);
9213 #endif
9214         } while (next != first);
9215
9216         /* Pass two remove the tuples.
9217          */
9218         ins = first;
9219         do {
9220                 next = ins->next;
9221                 if (ins->op == OP_TUPLE) {
9222                         if (ins->use) {
9223                                 internal_error(state, ins, "tuple used");
9224                         }
9225                         else {
9226                                 release_triple(state, ins);
9227                         }
9228                 } 
9229                 ins = next;
9230         } while(ins != first);
9231         ins = first;
9232         do {
9233                 next = ins->next;
9234                 if (ins->op == OP_BITREF) {
9235                         if (ins->use) {
9236                                 internal_error(state, ins, "bitref used");
9237                         } 
9238                         else {
9239                                 release_triple(state, ins);
9240                         }
9241                 }
9242                 ins = next;
9243         } while(ins != first);
9244
9245         /* Pass three verify the state and set ->id to 0.
9246          */
9247         next = first;
9248         do {
9249                 ins = next;
9250                 next = ins->next;
9251                 ins->id &= ~TRIPLE_FLAG_FLATTENED;
9252                 if (triple_stores_block(state, ins)) {
9253                         ins->u.block = 0;
9254                 }
9255                 if (triple_is_def(state, ins)) {
9256                         if (reg_size_of(state, ins->type) > REG_SIZEOF_REG) {
9257                                 internal_error(state, ins, "multi register value remains?");
9258                         }
9259                 }
9260                 if (ins->op == OP_DOT) {
9261                         internal_error(state, ins, "OP_DOT remains?");
9262                 }
9263                 if (ins->op == OP_INDEX) {
9264                         internal_error(state, ins, "OP_INDEX remains?");
9265                 }
9266                 if (ins->op == OP_BITREF) {
9267                         internal_error(state, ins, "OP_BITREF remains?");
9268                 }
9269                 if (ins->op == OP_TUPLE) {
9270                         internal_error(state, ins, "OP_TUPLE remains?");
9271                 }
9272         } while(next != first);
9273 }
9274
9275 /* For those operations that cannot be simplified */
9276 static void simplify_noop(struct compile_state *state, struct triple *ins)
9277 {
9278         return;
9279 }
9280
9281 static void simplify_smul(struct compile_state *state, struct triple *ins)
9282 {
9283         if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
9284                 struct triple *tmp;
9285                 tmp = RHS(ins, 0);
9286                 RHS(ins, 0) = RHS(ins, 1);
9287                 RHS(ins, 1) = tmp;
9288         }
9289         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
9290                 long_t left, right;
9291                 left  = read_sconst(state, ins, RHS(ins, 0));
9292                 right = read_sconst(state, ins, RHS(ins, 1));
9293                 mkconst(state, ins, left * right);
9294         }
9295         else if (is_zero(RHS(ins, 1))) {
9296                 mkconst(state, ins, 0);
9297         }
9298         else if (is_one(RHS(ins, 1))) {
9299                 mkcopy(state, ins, RHS(ins, 0));
9300         }
9301         else if (is_pow2(RHS(ins, 1))) {
9302                 struct triple *val;
9303                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
9304                 ins->op = OP_SL;
9305                 insert_triple(state, state->global_pool, val);
9306                 unuse_triple(RHS(ins, 1), ins);
9307                 use_triple(val, ins);
9308                 RHS(ins, 1) = val;
9309         }
9310 }
9311
9312 static void simplify_umul(struct compile_state *state, struct triple *ins)
9313 {
9314         if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
9315                 struct triple *tmp;
9316                 tmp = RHS(ins, 0);
9317                 RHS(ins, 0) = RHS(ins, 1);
9318                 RHS(ins, 1) = tmp;
9319         }
9320         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9321                 ulong_t left, right;
9322                 left  = read_const(state, ins, RHS(ins, 0));
9323                 right = read_const(state, ins, RHS(ins, 1));
9324                 mkconst(state, ins, left * right);
9325         }
9326         else if (is_zero(RHS(ins, 1))) {
9327                 mkconst(state, ins, 0);
9328         }
9329         else if (is_one(RHS(ins, 1))) {
9330                 mkcopy(state, ins, RHS(ins, 0));
9331         }
9332         else if (is_pow2(RHS(ins, 1))) {
9333                 struct triple *val;
9334                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
9335                 ins->op = OP_SL;
9336                 insert_triple(state, state->global_pool, val);
9337                 unuse_triple(RHS(ins, 1), ins);
9338                 use_triple(val, ins);
9339                 RHS(ins, 1) = val;
9340         }
9341 }
9342
9343 static void simplify_sdiv(struct compile_state *state, struct triple *ins)
9344 {
9345         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
9346                 long_t left, right;
9347                 left  = read_sconst(state, ins, RHS(ins, 0));
9348                 right = read_sconst(state, ins, RHS(ins, 1));
9349                 mkconst(state, ins, left / right);
9350         }
9351         else if (is_zero(RHS(ins, 0))) {
9352                 mkconst(state, ins, 0);
9353         }
9354         else if (is_zero(RHS(ins, 1))) {
9355                 error(state, ins, "division by zero");
9356         }
9357         else if (is_one(RHS(ins, 1))) {
9358                 mkcopy(state, ins, RHS(ins, 0));
9359         }
9360         else if (is_pow2(RHS(ins, 1))) {
9361                 struct triple *val;
9362                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
9363                 ins->op = OP_SSR;
9364                 insert_triple(state, state->global_pool, val);
9365                 unuse_triple(RHS(ins, 1), ins);
9366                 use_triple(val, ins);
9367                 RHS(ins, 1) = val;
9368         }
9369 }
9370
9371 static void simplify_udiv(struct compile_state *state, struct triple *ins)
9372 {
9373         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9374                 ulong_t left, right;
9375                 left  = read_const(state, ins, RHS(ins, 0));
9376                 right = read_const(state, ins, RHS(ins, 1));
9377                 mkconst(state, ins, left / right);
9378         }
9379         else if (is_zero(RHS(ins, 0))) {
9380                 mkconst(state, ins, 0);
9381         }
9382         else if (is_zero(RHS(ins, 1))) {
9383                 error(state, ins, "division by zero");
9384         }
9385         else if (is_one(RHS(ins, 1))) {
9386                 mkcopy(state, ins, RHS(ins, 0));
9387         }
9388         else if (is_pow2(RHS(ins, 1))) {
9389                 struct triple *val;
9390                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
9391                 ins->op = OP_USR;
9392                 insert_triple(state, state->global_pool, val);
9393                 unuse_triple(RHS(ins, 1), ins);
9394                 use_triple(val, ins);
9395                 RHS(ins, 1) = val;
9396         }
9397 }
9398
9399 static void simplify_smod(struct compile_state *state, struct triple *ins)
9400 {
9401         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9402                 long_t left, right;
9403                 left  = read_const(state, ins, RHS(ins, 0));
9404                 right = read_const(state, ins, RHS(ins, 1));
9405                 mkconst(state, ins, left % right);
9406         }
9407         else if (is_zero(RHS(ins, 0))) {
9408                 mkconst(state, ins, 0);
9409         }
9410         else if (is_zero(RHS(ins, 1))) {
9411                 error(state, ins, "division by zero");
9412         }
9413         else if (is_one(RHS(ins, 1))) {
9414                 mkconst(state, ins, 0);
9415         }
9416         else if (is_pow2(RHS(ins, 1))) {
9417                 struct triple *val;
9418                 val = int_const(state, ins->type, RHS(ins, 1)->u.cval - 1);
9419                 ins->op = OP_AND;
9420                 insert_triple(state, state->global_pool, val);
9421                 unuse_triple(RHS(ins, 1), ins);
9422                 use_triple(val, ins);
9423                 RHS(ins, 1) = val;
9424         }
9425 }
9426
9427 static void simplify_umod(struct compile_state *state, struct triple *ins)
9428 {
9429         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9430                 ulong_t left, right;
9431                 left  = read_const(state, ins, RHS(ins, 0));
9432                 right = read_const(state, ins, RHS(ins, 1));
9433                 mkconst(state, ins, left % right);
9434         }
9435         else if (is_zero(RHS(ins, 0))) {
9436                 mkconst(state, ins, 0);
9437         }
9438         else if (is_zero(RHS(ins, 1))) {
9439                 error(state, ins, "division by zero");
9440         }
9441         else if (is_one(RHS(ins, 1))) {
9442                 mkconst(state, ins, 0);
9443         }
9444         else if (is_pow2(RHS(ins, 1))) {
9445                 struct triple *val;
9446                 val = int_const(state, ins->type, RHS(ins, 1)->u.cval - 1);
9447                 ins->op = OP_AND;
9448                 insert_triple(state, state->global_pool, val);
9449                 unuse_triple(RHS(ins, 1), ins);
9450                 use_triple(val, ins);
9451                 RHS(ins, 1) = val;
9452         }
9453 }
9454
9455 static void simplify_add(struct compile_state *state, struct triple *ins)
9456 {
9457         /* start with the pointer on the left */
9458         if (is_pointer(RHS(ins, 1))) {
9459                 struct triple *tmp;
9460                 tmp = RHS(ins, 0);
9461                 RHS(ins, 0) = RHS(ins, 1);
9462                 RHS(ins, 1) = tmp;
9463         }
9464         if (is_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9465                 if (RHS(ins, 0)->op == OP_INTCONST) {
9466                         ulong_t left, right;
9467                         left  = read_const(state, ins, RHS(ins, 0));
9468                         right = read_const(state, ins, RHS(ins, 1));
9469                         mkconst(state, ins, left + right);
9470                 }
9471                 else if (RHS(ins, 0)->op == OP_ADDRCONST) {
9472                         struct triple *sdecl;
9473                         ulong_t left, right;
9474                         sdecl = MISC(RHS(ins, 0), 0);
9475                         left  = RHS(ins, 0)->u.cval;
9476                         right = RHS(ins, 1)->u.cval;
9477                         mkaddr_const(state, ins, sdecl, left + right);
9478                 }
9479                 else {
9480                         internal_warning(state, ins, "Optimize me!");
9481                 }
9482         }
9483         else if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
9484                 struct triple *tmp;
9485                 tmp = RHS(ins, 1);
9486                 RHS(ins, 1) = RHS(ins, 0);
9487                 RHS(ins, 0) = tmp;
9488         }
9489 }
9490
9491 static void simplify_sub(struct compile_state *state, struct triple *ins)
9492 {
9493         if (is_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9494                 if (RHS(ins, 0)->op == OP_INTCONST) {
9495                         ulong_t left, right;
9496                         left  = read_const(state, ins, RHS(ins, 0));
9497                         right = read_const(state, ins, RHS(ins, 1));
9498                         mkconst(state, ins, left - right);
9499                 }
9500                 else if (RHS(ins, 0)->op == OP_ADDRCONST) {
9501                         struct triple *sdecl;
9502                         ulong_t left, right;
9503                         sdecl = MISC(RHS(ins, 0), 0);
9504                         left  = RHS(ins, 0)->u.cval;
9505                         right = RHS(ins, 1)->u.cval;
9506                         mkaddr_const(state, ins, sdecl, left - right);
9507                 }
9508                 else {
9509                         internal_warning(state, ins, "Optimize me!");
9510                 }
9511         }
9512 }
9513
9514 static void simplify_sl(struct compile_state *state, struct triple *ins)
9515 {
9516         if (is_simple_const(RHS(ins, 1))) {
9517                 ulong_t right;
9518                 right = read_const(state, ins, RHS(ins, 1));
9519                 if (right >= (size_of(state, ins->type))) {
9520                         warning(state, ins, "left shift count >= width of type");
9521                 }
9522         }
9523         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9524                 ulong_t left, right;
9525                 left  = read_const(state, ins, RHS(ins, 0));
9526                 right = read_const(state, ins, RHS(ins, 1));
9527                 mkconst(state, ins,  left << right);
9528         }
9529 }
9530
9531 static void simplify_usr(struct compile_state *state, struct triple *ins)
9532 {
9533         if (is_simple_const(RHS(ins, 1))) {
9534                 ulong_t right;
9535                 right = read_const(state, ins, RHS(ins, 1));
9536                 if (right >= (size_of(state, ins->type))) {
9537                         warning(state, ins, "right shift count >= width of type");
9538                 }
9539         }
9540         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9541                 ulong_t left, right;
9542                 left  = read_const(state, ins, RHS(ins, 0));
9543                 right = read_const(state, ins, RHS(ins, 1));
9544                 mkconst(state, ins, left >> right);
9545         }
9546 }
9547
9548 static void simplify_ssr(struct compile_state *state, struct triple *ins)
9549 {
9550         if (is_simple_const(RHS(ins, 1))) {
9551                 ulong_t right;
9552                 right = read_const(state, ins, RHS(ins, 1));
9553                 if (right >= (size_of(state, ins->type))) {
9554                         warning(state, ins, "right shift count >= width of type");
9555                 }
9556         }
9557         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9558                 long_t left, right;
9559                 left  = read_sconst(state, ins, RHS(ins, 0));
9560                 right = read_sconst(state, ins, RHS(ins, 1));
9561                 mkconst(state, ins, left >> right);
9562         }
9563 }
9564
9565 static void simplify_and(struct compile_state *state, struct triple *ins)
9566 {
9567         struct triple *left, *right;
9568         left = RHS(ins, 0);
9569         right = RHS(ins, 1);
9570
9571         if (is_simple_const(left) && is_simple_const(right)) {
9572                 ulong_t lval, rval;
9573                 lval = read_const(state, ins, left);
9574                 rval = read_const(state, ins, right);
9575                 mkconst(state, ins, lval & rval);
9576         }
9577         else if (is_zero(right) || is_zero(left)) {
9578                 mkconst(state, ins, 0);
9579         }
9580 }
9581
9582 static void simplify_or(struct compile_state *state, struct triple *ins)
9583 {
9584         struct triple *left, *right;
9585         left = RHS(ins, 0);
9586         right = RHS(ins, 1);
9587
9588         if (is_simple_const(left) && is_simple_const(right)) {
9589                 ulong_t lval, rval;
9590                 lval = read_const(state, ins, left);
9591                 rval = read_const(state, ins, right);
9592                 mkconst(state, ins, lval | rval);
9593         }
9594 #if 0 /* I need to handle type mismatches here... */
9595         else if (is_zero(right)) {
9596                 mkcopy(state, ins, left);
9597         }
9598         else if (is_zero(left)) {
9599                 mkcopy(state, ins, right);
9600         }
9601 #endif
9602 }
9603
9604 static void simplify_xor(struct compile_state *state, struct triple *ins)
9605 {
9606         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9607                 ulong_t left, right;
9608                 left  = read_const(state, ins, RHS(ins, 0));
9609                 right = read_const(state, ins, RHS(ins, 1));
9610                 mkconst(state, ins, left ^ right);
9611         }
9612 }
9613
9614 static void simplify_pos(struct compile_state *state, struct triple *ins)
9615 {
9616         if (is_const(RHS(ins, 0))) {
9617                 mkconst(state, ins, RHS(ins, 0)->u.cval);
9618         }
9619         else {
9620                 mkcopy(state, ins, RHS(ins, 0));
9621         }
9622 }
9623
9624 static void simplify_neg(struct compile_state *state, struct triple *ins)
9625 {
9626         if (is_simple_const(RHS(ins, 0))) {
9627                 ulong_t left;
9628                 left = read_const(state, ins, RHS(ins, 0));
9629                 mkconst(state, ins, -left);
9630         }
9631         else if (RHS(ins, 0)->op == OP_NEG) {
9632                 mkcopy(state, ins, RHS(RHS(ins, 0), 0));
9633         }
9634 }
9635
9636 static void simplify_invert(struct compile_state *state, struct triple *ins)
9637 {
9638         if (is_simple_const(RHS(ins, 0))) {
9639                 ulong_t left;
9640                 left = read_const(state, ins, RHS(ins, 0));
9641                 mkconst(state, ins, ~left);
9642         }
9643 }
9644
9645 static void simplify_eq(struct compile_state *state, struct triple *ins)
9646 {
9647         struct triple *left, *right;
9648         left = RHS(ins, 0);
9649         right = RHS(ins, 1);
9650
9651         if (is_const(left) && is_const(right)) {
9652                 int val;
9653                 val = const_eq(state, ins, left, right);
9654                 if (val >= 0) {
9655                         mkconst(state, ins, val == 1);
9656                 }
9657         }
9658         else if (left == right) {
9659                 mkconst(state, ins, 1);
9660         }
9661 }
9662
9663 static void simplify_noteq(struct compile_state *state, struct triple *ins)
9664 {
9665         struct triple *left, *right;
9666         left = RHS(ins, 0);
9667         right = RHS(ins, 1);
9668
9669         if (is_const(left) && is_const(right)) {
9670                 int val;
9671                 val = const_eq(state, ins, left, right);
9672                 if (val >= 0) {
9673                         mkconst(state, ins, val != 1);
9674                 }
9675         }
9676         if (left == right) {
9677                 mkconst(state, ins, 0);
9678         }
9679 }
9680
9681 static void simplify_sless(struct compile_state *state, struct triple *ins)
9682 {
9683         struct triple *left, *right;
9684         left = RHS(ins, 0);
9685         right = RHS(ins, 1);
9686
9687         if (is_const(left) && is_const(right)) {
9688                 int val;
9689                 val = const_scmp(state, ins, left, right);
9690                 if ((val >= -1) && (val <= 1)) {
9691                         mkconst(state, ins, val < 0);
9692                 }
9693         }
9694         else if (left == right) {
9695                 mkconst(state, ins, 0);
9696         }
9697 }
9698
9699 static void simplify_uless(struct compile_state *state, struct triple *ins)
9700 {
9701         struct triple *left, *right;
9702         left = RHS(ins, 0);
9703         right = RHS(ins, 1);
9704
9705         if (is_const(left) && is_const(right)) {
9706                 int val;
9707                 val = const_ucmp(state, ins, left, right);
9708                 if ((val >= -1) && (val <= 1)) {
9709                         mkconst(state, ins, val < 0);
9710                 }
9711         }
9712         else if (is_zero(right)) {
9713                 mkconst(state, ins, 0);
9714         }
9715         else if (left == right) {
9716                 mkconst(state, ins, 0);
9717         }
9718 }
9719
9720 static void simplify_smore(struct compile_state *state, struct triple *ins)
9721 {
9722         struct triple *left, *right;
9723         left = RHS(ins, 0);
9724         right = RHS(ins, 1);
9725
9726         if (is_const(left) && is_const(right)) {
9727                 int val;
9728                 val = const_scmp(state, ins, left, right);
9729                 if ((val >= -1) && (val <= 1)) {
9730                         mkconst(state, ins, val > 0);
9731                 }
9732         }
9733         else if (left == right) {
9734                 mkconst(state, ins, 0);
9735         }
9736 }
9737
9738 static void simplify_umore(struct compile_state *state, struct triple *ins)
9739 {
9740         struct triple *left, *right;
9741         left = RHS(ins, 0);
9742         right = RHS(ins, 1);
9743
9744         if (is_const(left) && is_const(right)) {
9745                 int val;
9746                 val = const_ucmp(state, ins, left, right);
9747                 if ((val >= -1) && (val <= 1)) {
9748                         mkconst(state, ins, val > 0);
9749                 }
9750         }
9751         else if (is_zero(left)) {
9752                 mkconst(state, ins, 0);
9753         }
9754         else if (left == right) {
9755                 mkconst(state, ins, 0);
9756         }
9757 }
9758
9759
9760 static void simplify_slesseq(struct compile_state *state, struct triple *ins)
9761 {
9762         struct triple *left, *right;
9763         left = RHS(ins, 0);
9764         right = RHS(ins, 1);
9765
9766         if (is_const(left) && is_const(right)) {
9767                 int val;
9768                 val = const_scmp(state, ins, left, right);
9769                 if ((val >= -1) && (val <= 1)) {
9770                         mkconst(state, ins, val <= 0);
9771                 }
9772         }
9773         else if (left == right) {
9774                 mkconst(state, ins, 1);
9775         }
9776 }
9777
9778 static void simplify_ulesseq(struct compile_state *state, struct triple *ins)
9779 {
9780         struct triple *left, *right;
9781         left = RHS(ins, 0);
9782         right = RHS(ins, 1);
9783
9784         if (is_const(left) && is_const(right)) {
9785                 int val;
9786                 val = const_ucmp(state, ins, left, right);
9787                 if ((val >= -1) && (val <= 1)) {
9788                         mkconst(state, ins, val <= 0);
9789                 }
9790         }
9791         else if (is_zero(left)) {
9792                 mkconst(state, ins, 1);
9793         }
9794         else if (left == right) {
9795                 mkconst(state, ins, 1);
9796         }
9797 }
9798
9799 static void simplify_smoreeq(struct compile_state *state, struct triple *ins)
9800 {
9801         struct triple *left, *right;
9802         left = RHS(ins, 0);
9803         right = RHS(ins, 1);
9804
9805         if (is_const(left) && is_const(right)) {
9806                 int val;
9807                 val = const_scmp(state, ins, left, right);
9808                 if ((val >= -1) && (val <= 1)) {
9809                         mkconst(state, ins, val >= 0);
9810                 }
9811         }
9812         else if (left == right) {
9813                 mkconst(state, ins, 1);
9814         }
9815 }
9816
9817 static void simplify_umoreeq(struct compile_state *state, struct triple *ins)
9818 {
9819         struct triple *left, *right;
9820         left = RHS(ins, 0);
9821         right = RHS(ins, 1);
9822
9823         if (is_const(left) && is_const(right)) {
9824                 int val;
9825                 val = const_ucmp(state, ins, left, right);
9826                 if ((val >= -1) && (val <= 1)) {
9827                         mkconst(state, ins, val >= 0);
9828                 }
9829         }
9830         else if (is_zero(right)) {
9831                 mkconst(state, ins, 1);
9832         }
9833         else if (left == right) {
9834                 mkconst(state, ins, 1);
9835         }
9836 }
9837
9838 static void simplify_lfalse(struct compile_state *state, struct triple *ins)
9839 {
9840         struct triple *rhs;
9841         rhs = RHS(ins, 0);
9842
9843         if (is_const(rhs)) {
9844                 mkconst(state, ins, !const_ltrue(state, ins, rhs));
9845         }
9846         /* Otherwise if I am the only user... */
9847         else if ((rhs->use) &&
9848                 (rhs->use->member == ins) && (rhs->use->next == 0)) {
9849                 int need_copy = 1;
9850                 /* Invert a boolean operation */
9851                 switch(rhs->op) {
9852                 case OP_LTRUE:   rhs->op = OP_LFALSE;  break;
9853                 case OP_LFALSE:  rhs->op = OP_LTRUE;   break;
9854                 case OP_EQ:      rhs->op = OP_NOTEQ;   break;
9855                 case OP_NOTEQ:   rhs->op = OP_EQ;      break;
9856                 case OP_SLESS:   rhs->op = OP_SMOREEQ; break;
9857                 case OP_ULESS:   rhs->op = OP_UMOREEQ; break;
9858                 case OP_SMORE:   rhs->op = OP_SLESSEQ; break;
9859                 case OP_UMORE:   rhs->op = OP_ULESSEQ; break;
9860                 case OP_SLESSEQ: rhs->op = OP_SMORE;   break;
9861                 case OP_ULESSEQ: rhs->op = OP_UMORE;   break;
9862                 case OP_SMOREEQ: rhs->op = OP_SLESS;   break;
9863                 case OP_UMOREEQ: rhs->op = OP_ULESS;   break;
9864                 default:
9865                         need_copy = 0;
9866                         break;
9867                 }
9868                 if (need_copy) {
9869                         mkcopy(state, ins, rhs);
9870                 }
9871         }
9872 }
9873
9874 static void simplify_ltrue (struct compile_state *state, struct triple *ins)
9875 {
9876         struct triple *rhs;
9877         rhs = RHS(ins, 0);
9878
9879         if (is_const(rhs)) {
9880                 mkconst(state, ins, const_ltrue(state, ins, rhs));
9881         }
9882         else switch(rhs->op) {
9883         case OP_LTRUE:   case OP_LFALSE:  case OP_EQ:      case OP_NOTEQ:
9884         case OP_SLESS:   case OP_ULESS:   case OP_SMORE:   case OP_UMORE:
9885         case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
9886                 mkcopy(state, ins, rhs);
9887         }
9888
9889 }
9890
9891 static void simplify_load(struct compile_state *state, struct triple *ins)
9892 {
9893         struct triple *addr, *sdecl, *blob;
9894
9895         /* If I am doing a load with a constant pointer from a constant
9896          * table get the value.
9897          */
9898         addr = RHS(ins, 0);
9899         if ((addr->op == OP_ADDRCONST) && (sdecl = MISC(addr, 0)) &&
9900                 (sdecl->op == OP_SDECL) && (blob = MISC(sdecl, 0)) &&
9901                 (blob->op == OP_BLOBCONST)) {
9902                 unsigned char buffer[SIZEOF_WORD];
9903                 size_t reg_size, mem_size;
9904                 const char *src, *end;
9905                 ulong_t val;
9906                 reg_size = reg_size_of(state, ins->type);
9907                 if (reg_size > REG_SIZEOF_REG) {
9908                         internal_error(state, ins, "load size greater than register");
9909                 }
9910                 mem_size = size_of(state, ins->type);
9911                 end = blob->u.blob;
9912                 end += bits_to_bytes(size_of(state, sdecl->type));
9913                 src = blob->u.blob;
9914                 src += addr->u.cval;
9915
9916                 if (src > end) {
9917                         error(state, ins, "Load address out of bounds");
9918                 }
9919
9920                 memset(buffer, 0, sizeof(buffer));
9921                 memcpy(buffer, src, bits_to_bytes(mem_size));
9922
9923                 switch(mem_size) {
9924                 case SIZEOF_I8:  val = *((uint8_t *) buffer); break;
9925                 case SIZEOF_I16: val = *((uint16_t *)buffer); break;
9926                 case SIZEOF_I32: val = *((uint32_t *)buffer); break;
9927                 case SIZEOF_I64: val = *((uint64_t *)buffer); break;
9928                 default:
9929                         internal_error(state, ins, "mem_size: %d not handled",
9930                                 mem_size);
9931                         val = 0;
9932                         break;
9933                 }
9934                 mkconst(state, ins, val);
9935         }
9936 }
9937
9938 static void simplify_uextract(struct compile_state *state, struct triple *ins)
9939 {
9940         if (is_simple_const(RHS(ins, 0))) {
9941                 ulong_t val;
9942                 ulong_t mask;
9943                 val = read_const(state, ins, RHS(ins, 0));
9944                 mask = 1;
9945                 mask <<= ins->u.bitfield.size;
9946                 mask -= 1;
9947                 val >>= ins->u.bitfield.offset;
9948                 val &= mask;
9949                 mkconst(state, ins, val);
9950         }
9951 }
9952
9953 static void simplify_sextract(struct compile_state *state, struct triple *ins)
9954 {
9955         if (is_simple_const(RHS(ins, 0))) {
9956                 ulong_t val;
9957                 ulong_t mask;
9958                 long_t sval;
9959                 val = read_const(state, ins, RHS(ins, 0));
9960                 mask = 1;
9961                 mask <<= ins->u.bitfield.size;
9962                 mask -= 1;
9963                 val >>= ins->u.bitfield.offset;
9964                 val &= mask;
9965                 val <<= (SIZEOF_LONG - ins->u.bitfield.size);
9966                 sval = val;
9967                 sval >>= (SIZEOF_LONG - ins->u.bitfield.size); 
9968                 mkconst(state, ins, sval);
9969         }
9970 }
9971
9972 static void simplify_deposit(struct compile_state *state, struct triple *ins)
9973 {
9974         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9975                 ulong_t targ, val;
9976                 ulong_t mask;
9977                 targ = read_const(state, ins, RHS(ins, 0));
9978                 val  = read_const(state, ins, RHS(ins, 1));
9979                 mask = 1;
9980                 mask <<= ins->u.bitfield.size;
9981                 mask -= 1;
9982                 mask <<= ins->u.bitfield.offset;
9983                 targ &= ~mask;
9984                 val <<= ins->u.bitfield.offset;
9985                 val &= mask;
9986                 targ |= val;
9987                 mkconst(state, ins, targ);
9988         }
9989 }
9990
9991 static void simplify_copy(struct compile_state *state, struct triple *ins)
9992 {
9993         struct triple *right;
9994         right = RHS(ins, 0);
9995         if (is_subset_type(ins->type, right->type)) {
9996                 ins->type = right->type;
9997         }
9998         if (equiv_types(ins->type, right->type)) {
9999                 ins->op = OP_COPY;/* I don't need to convert if the types match */
10000         } else {
10001                 if (ins->op == OP_COPY) {
10002                         internal_error(state, ins, "type mismatch on copy");
10003                 }
10004         }
10005         if (is_const(right) && (right->op == OP_ADDRCONST) && is_pointer(ins)) {
10006                 struct triple *sdecl;
10007                 ulong_t offset;
10008                 sdecl  = MISC(right, 0);
10009                 offset = right->u.cval;
10010                 mkaddr_const(state, ins, sdecl, offset);
10011         }
10012         else if (is_const(right) && is_write_compatible(state, ins->type, right->type)) {
10013                 switch(right->op) {
10014                 case OP_INTCONST:
10015                 {
10016                         ulong_t left;
10017                         left = read_const(state, ins, right);
10018                         /* Ensure I have not overflowed the destination. */
10019                         if (size_of(state, right->type) > size_of(state, ins->type)) {
10020                                 ulong_t mask;
10021                                 mask = 1;
10022                                 mask <<= size_of(state, ins->type);
10023                                 mask -= 1;
10024                                 left &= mask;
10025                         }
10026                         /* Ensure I am properly sign extended */
10027                         if (size_of(state, right->type) < size_of(state, ins->type) &&
10028                                 is_signed(right->type)) {
10029                                 long_t val;
10030                                 int shift;
10031                                 shift = SIZEOF_LONG - size_of(state, right->type);
10032                                 val = left;
10033                                 val <<= shift;
10034                                 val >>= shift;
10035                                 left = val;
10036                         }
10037                         mkconst(state, ins, left);
10038                         break;
10039                 }
10040                 default:
10041                         internal_error(state, ins, "uknown constant");
10042                         break;
10043                 }
10044         }
10045 }
10046
10047 static int phi_present(struct block *block)
10048 {
10049         struct triple *ptr;
10050         if (!block) {
10051                 return 0;
10052         }
10053         ptr = block->first;
10054         do {
10055                 if (ptr->op == OP_PHI) {
10056                         return 1;
10057                 }
10058                 ptr = ptr->next;
10059         } while(ptr != block->last);
10060         return 0;
10061 }
10062
10063 static int phi_dependency(struct block *block)
10064 {
10065         /* A block has a phi dependency if a phi function
10066          * depends on that block to exist, and makes a block
10067          * that is otherwise useless unsafe to remove.
10068          */
10069         if (block) {
10070                 struct block_set *edge;
10071                 for(edge = block->edges; edge; edge = edge->next) {
10072                         if (phi_present(edge->member)) {
10073                                 return 1;
10074                         }
10075                 }
10076         }
10077         return 0;
10078 }
10079
10080 static struct triple *branch_target(struct compile_state *state, struct triple *ins)
10081 {
10082         struct triple *targ;
10083         targ = TARG(ins, 0);
10084         /* During scc_transform temporary triples are allocated that
10085          * loop back onto themselves. If I see one don't advance the
10086          * target.
10087          */
10088         while(triple_is_structural(state, targ) && 
10089                 (targ->next != targ) && (targ->next != state->first)) {
10090                 targ = targ->next;
10091         }
10092         return targ;
10093 }
10094
10095
10096 static void simplify_branch(struct compile_state *state, struct triple *ins)
10097 {
10098         int simplified, loops;
10099         if ((ins->op != OP_BRANCH) && (ins->op != OP_CBRANCH)) {
10100                 internal_error(state, ins, "not branch");
10101         }
10102         if (ins->use != 0) {
10103                 internal_error(state, ins, "branch use");
10104         }
10105         /* The challenge here with simplify branch is that I need to 
10106          * make modifications to the control flow graph as well
10107          * as to the branch instruction itself.  That is handled
10108          * by rebuilding the basic blocks after simplify all is called.
10109          */
10110
10111         /* If we have a branch to an unconditional branch update
10112          * our target.  But watch out for dependencies from phi
10113          * functions.
10114          * Also only do this a limited number of times so
10115          * we don't get into an infinite loop.
10116          */
10117         loops = 0;
10118         do {
10119                 struct triple *targ;
10120                 simplified = 0;
10121                 targ = branch_target(state, ins);
10122                 if ((targ != ins) && (targ->op == OP_BRANCH) && 
10123                         !phi_dependency(targ->u.block))
10124                 {
10125                         unuse_triple(TARG(ins, 0), ins);
10126                         TARG(ins, 0) = TARG(targ, 0);
10127                         use_triple(TARG(ins, 0), ins);
10128                         simplified = 1;
10129                 }
10130         } while(simplified && (++loops < 20));
10131
10132         /* If we have a conditional branch with a constant condition
10133          * make it an unconditional branch.
10134          */
10135         if ((ins->op == OP_CBRANCH) && is_simple_const(RHS(ins, 0))) {
10136                 struct triple *targ;
10137                 ulong_t value;
10138                 value = read_const(state, ins, RHS(ins, 0));
10139                 unuse_triple(RHS(ins, 0), ins);
10140                 targ = TARG(ins, 0);
10141                 ins->rhs  = 0;
10142                 ins->targ = 1;
10143                 ins->op = OP_BRANCH;
10144                 if (value) {
10145                         unuse_triple(ins->next, ins);
10146                         TARG(ins, 0) = targ;
10147                 }
10148                 else {
10149                         unuse_triple(targ, ins);
10150                         TARG(ins, 0) = ins->next;
10151                 }
10152         }
10153
10154         /* If we have a branch to the next instruction,
10155          * make it a noop.
10156          */
10157         if (TARG(ins, 0) == ins->next) {
10158                 unuse_triple(TARG(ins, 0), ins);
10159                 if (ins->op == OP_CBRANCH) {
10160                         unuse_triple(RHS(ins, 0), ins);
10161                         unuse_triple(ins->next, ins);
10162                 }
10163                 ins->lhs = 0;
10164                 ins->rhs = 0;
10165                 ins->misc = 0;
10166                 ins->targ = 0;
10167                 ins->op = OP_NOOP;
10168                 if (ins->use) {
10169                         internal_error(state, ins, "noop use != 0");
10170                 }
10171         }
10172 }
10173
10174 static void simplify_label(struct compile_state *state, struct triple *ins)
10175 {
10176         /* Ignore volatile labels */
10177         if (!triple_is_pure(state, ins, ins->id)) {
10178                 return;
10179         }
10180         if (ins->use == 0) {
10181                 ins->op = OP_NOOP;
10182         }
10183         else if (ins->prev->op == OP_LABEL) {
10184                 /* In general it is not safe to merge one label that
10185                  * imediately follows another.  The problem is that the empty
10186                  * looking block may have phi functions that depend on it.
10187                  */
10188                 if (!phi_dependency(ins->prev->u.block)) {
10189                         struct triple_set *user, *next;
10190                         ins->op = OP_NOOP;
10191                         for(user = ins->use; user; user = next) {
10192                                 struct triple *use, **expr;
10193                                 next = user->next;
10194                                 use = user->member;
10195                                 expr = triple_targ(state, use, 0);
10196                                 for(;expr; expr = triple_targ(state, use, expr)) {
10197                                         if (*expr == ins) {
10198                                                 *expr = ins->prev;
10199                                                 unuse_triple(ins, use);
10200                                                 use_triple(ins->prev, use);
10201                                         }
10202                                         
10203                                 }
10204                         }
10205                         if (ins->use) {
10206                                 internal_error(state, ins, "noop use != 0");
10207                         }
10208                 }
10209         }
10210 }
10211
10212 static void simplify_phi(struct compile_state *state, struct triple *ins)
10213 {
10214         struct triple **slot;
10215         struct triple *value;
10216         int zrhs, i;
10217         ulong_t cvalue;
10218         slot = &RHS(ins, 0);
10219         zrhs = ins->rhs;
10220         if (zrhs == 0) {
10221                 return;
10222         }
10223         /* See if all of the rhs members of a phi have the same value */
10224         if (slot[0] && is_simple_const(slot[0])) {
10225                 cvalue = read_const(state, ins, slot[0]);
10226                 for(i = 1; i < zrhs; i++) {
10227                         if (    !slot[i] ||
10228                                 !is_simple_const(slot[i]) ||
10229                                 !equiv_types(slot[0]->type, slot[i]->type) ||
10230                                 (cvalue != read_const(state, ins, slot[i]))) {
10231                                 break;
10232                         }
10233                 }
10234                 if (i == zrhs) {
10235                         mkconst(state, ins, cvalue);
10236                         return;
10237                 }
10238         }
10239         
10240         /* See if all of rhs members of a phi are the same */
10241         value = slot[0];
10242         for(i = 1; i < zrhs; i++) {
10243                 if (slot[i] != value) {
10244                         break;
10245                 }
10246         }
10247         if (i == zrhs) {
10248                 /* If the phi has a single value just copy it */
10249                 if (!is_subset_type(ins->type, value->type)) {
10250                         internal_error(state, ins, "bad input type to phi");
10251                 }
10252                 /* Make the types match */
10253                 if (!equiv_types(ins->type, value->type)) {
10254                         ins->type = value->type;
10255                 }
10256                 /* Now make the actual copy */
10257                 mkcopy(state, ins, value);
10258                 return;
10259         }
10260 }
10261
10262
10263 static void simplify_bsf(struct compile_state *state, struct triple *ins)
10264 {
10265         if (is_simple_const(RHS(ins, 0))) {
10266                 ulong_t left;
10267                 left = read_const(state, ins, RHS(ins, 0));
10268                 mkconst(state, ins, bsf(left));
10269         }
10270 }
10271
10272 static void simplify_bsr(struct compile_state *state, struct triple *ins)
10273 {
10274         if (is_simple_const(RHS(ins, 0))) {
10275                 ulong_t left;
10276                 left = read_const(state, ins, RHS(ins, 0));
10277                 mkconst(state, ins, bsr(left));
10278         }
10279 }
10280
10281
10282 typedef void (*simplify_t)(struct compile_state *state, struct triple *ins);
10283 static const struct simplify_table {
10284         simplify_t func;
10285         unsigned long flag;
10286 } table_simplify[] = {
10287 #define simplify_sdivt    simplify_noop
10288 #define simplify_udivt    simplify_noop
10289 #define simplify_piece    simplify_noop
10290
10291 [OP_SDIVT      ] = { simplify_sdivt,    COMPILER_SIMPLIFY_ARITH },
10292 [OP_UDIVT      ] = { simplify_udivt,    COMPILER_SIMPLIFY_ARITH },
10293 [OP_SMUL       ] = { simplify_smul,     COMPILER_SIMPLIFY_ARITH },
10294 [OP_UMUL       ] = { simplify_umul,     COMPILER_SIMPLIFY_ARITH },
10295 [OP_SDIV       ] = { simplify_sdiv,     COMPILER_SIMPLIFY_ARITH },
10296 [OP_UDIV       ] = { simplify_udiv,     COMPILER_SIMPLIFY_ARITH },
10297 [OP_SMOD       ] = { simplify_smod,     COMPILER_SIMPLIFY_ARITH },
10298 [OP_UMOD       ] = { simplify_umod,     COMPILER_SIMPLIFY_ARITH },
10299 [OP_ADD        ] = { simplify_add,      COMPILER_SIMPLIFY_ARITH },
10300 [OP_SUB        ] = { simplify_sub,      COMPILER_SIMPLIFY_ARITH },
10301 [OP_SL         ] = { simplify_sl,       COMPILER_SIMPLIFY_SHIFT },
10302 [OP_USR        ] = { simplify_usr,      COMPILER_SIMPLIFY_SHIFT },
10303 [OP_SSR        ] = { simplify_ssr,      COMPILER_SIMPLIFY_SHIFT },
10304 [OP_AND        ] = { simplify_and,      COMPILER_SIMPLIFY_BITWISE },
10305 [OP_XOR        ] = { simplify_xor,      COMPILER_SIMPLIFY_BITWISE },
10306 [OP_OR         ] = { simplify_or,       COMPILER_SIMPLIFY_BITWISE },
10307 [OP_POS        ] = { simplify_pos,      COMPILER_SIMPLIFY_ARITH },
10308 [OP_NEG        ] = { simplify_neg,      COMPILER_SIMPLIFY_ARITH },
10309 [OP_INVERT     ] = { simplify_invert,   COMPILER_SIMPLIFY_BITWISE },
10310
10311 [OP_EQ         ] = { simplify_eq,       COMPILER_SIMPLIFY_LOGICAL },
10312 [OP_NOTEQ      ] = { simplify_noteq,    COMPILER_SIMPLIFY_LOGICAL },
10313 [OP_SLESS      ] = { simplify_sless,    COMPILER_SIMPLIFY_LOGICAL },
10314 [OP_ULESS      ] = { simplify_uless,    COMPILER_SIMPLIFY_LOGICAL },
10315 [OP_SMORE      ] = { simplify_smore,    COMPILER_SIMPLIFY_LOGICAL },
10316 [OP_UMORE      ] = { simplify_umore,    COMPILER_SIMPLIFY_LOGICAL },
10317 [OP_SLESSEQ    ] = { simplify_slesseq,  COMPILER_SIMPLIFY_LOGICAL },
10318 [OP_ULESSEQ    ] = { simplify_ulesseq,  COMPILER_SIMPLIFY_LOGICAL },
10319 [OP_SMOREEQ    ] = { simplify_smoreeq,  COMPILER_SIMPLIFY_LOGICAL },
10320 [OP_UMOREEQ    ] = { simplify_umoreeq,  COMPILER_SIMPLIFY_LOGICAL },
10321 [OP_LFALSE     ] = { simplify_lfalse,   COMPILER_SIMPLIFY_LOGICAL },
10322 [OP_LTRUE      ] = { simplify_ltrue,    COMPILER_SIMPLIFY_LOGICAL },
10323
10324 [OP_LOAD       ] = { simplify_load,     COMPILER_SIMPLIFY_OP },
10325 [OP_STORE      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10326
10327 [OP_UEXTRACT   ] = { simplify_uextract, COMPILER_SIMPLIFY_BITFIELD },
10328 [OP_SEXTRACT   ] = { simplify_sextract, COMPILER_SIMPLIFY_BITFIELD },
10329 [OP_DEPOSIT    ] = { simplify_deposit,  COMPILER_SIMPLIFY_BITFIELD },
10330
10331 [OP_NOOP       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10332
10333 [OP_INTCONST   ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10334 [OP_BLOBCONST  ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10335 [OP_ADDRCONST  ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10336 [OP_UNKNOWNVAL ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10337
10338 [OP_WRITE      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10339 [OP_READ       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10340 [OP_COPY       ] = { simplify_copy,     COMPILER_SIMPLIFY_COPY },
10341 [OP_CONVERT    ] = { simplify_copy,     COMPILER_SIMPLIFY_COPY },
10342 [OP_PIECE      ] = { simplify_piece,    COMPILER_SIMPLIFY_OP },
10343 [OP_ASM        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10344
10345 [OP_DOT        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10346 [OP_INDEX      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10347
10348 [OP_LIST       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10349 [OP_BRANCH     ] = { simplify_branch,   COMPILER_SIMPLIFY_BRANCH },
10350 [OP_CBRANCH    ] = { simplify_branch,   COMPILER_SIMPLIFY_BRANCH },
10351 [OP_CALL       ] = { simplify_noop,     COMPILER_SIMPLIFY_BRANCH },
10352 [OP_RET        ] = { simplify_noop,     COMPILER_SIMPLIFY_BRANCH },
10353 [OP_LABEL      ] = { simplify_label,    COMPILER_SIMPLIFY_LABEL },
10354 [OP_ADECL      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10355 [OP_SDECL      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10356 [OP_PHI        ] = { simplify_phi,      COMPILER_SIMPLIFY_PHI },
10357
10358 [OP_INB        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10359 [OP_INW        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10360 [OP_INL        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10361 [OP_OUTB       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10362 [OP_OUTW       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10363 [OP_OUTL       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10364 [OP_BSF        ] = { simplify_bsf,      COMPILER_SIMPLIFY_OP },
10365 [OP_BSR        ] = { simplify_bsr,      COMPILER_SIMPLIFY_OP },
10366 [OP_RDMSR      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10367 [OP_WRMSR      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },               
10368 [OP_HLT        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10369 };
10370
10371 static inline void debug_simplify(struct compile_state *state, 
10372         simplify_t do_simplify, struct triple *ins)
10373 {
10374 #if DEBUG_SIMPLIFY_HIRES
10375                 if (state->functions_joined && (do_simplify != simplify_noop)) {
10376                         /* High resolution debugging mode */
10377                         fprintf(state->dbgout, "simplifing: ");
10378                         display_triple(state->dbgout, ins);
10379                 }
10380 #endif
10381                 do_simplify(state, ins);
10382 #if DEBUG_SIMPLIFY_HIRES
10383                 if (state->functions_joined && (do_simplify != simplify_noop)) {
10384                         /* High resolution debugging mode */
10385                         fprintf(state->dbgout, "simplified: ");
10386                         display_triple(state->dbgout, ins);
10387                 }
10388 #endif
10389 }
10390 static void simplify(struct compile_state *state, struct triple *ins)
10391 {
10392         int op;
10393         simplify_t do_simplify;
10394         if (ins == &unknown_triple) {
10395                 internal_error(state, ins, "simplifying the unknown triple?");
10396         }
10397         do {
10398                 op = ins->op;
10399                 do_simplify = 0;
10400                 if ((op < 0) || (op > sizeof(table_simplify)/sizeof(table_simplify[0]))) {
10401                         do_simplify = 0;
10402                 }
10403                 else {
10404                         do_simplify = table_simplify[op].func;
10405                 }
10406                 if (do_simplify && 
10407                         !(state->compiler->flags & table_simplify[op].flag)) {
10408                         do_simplify = simplify_noop;
10409                 }
10410                 if (do_simplify && (ins->id & TRIPLE_FLAG_VOLATILE)) {
10411                         do_simplify = simplify_noop;
10412                 }
10413         
10414                 if (!do_simplify) {
10415                         internal_error(state, ins, "cannot simplify op: %d %s",
10416                                 op, tops(op));
10417                         return;
10418                 }
10419                 debug_simplify(state, do_simplify, ins);
10420         } while(ins->op != op);
10421 }
10422
10423 static void rebuild_ssa_form(struct compile_state *state);
10424
10425 static void simplify_all(struct compile_state *state)
10426 {
10427         struct triple *ins, *first;
10428         if (!(state->compiler->flags & COMPILER_SIMPLIFY)) {
10429                 return;
10430         }
10431         first = state->first;
10432         ins = first->prev;
10433         do {
10434                 simplify(state, ins);
10435                 ins = ins->prev;
10436         } while(ins != first->prev);
10437         ins = first;
10438         do {
10439                 simplify(state, ins);
10440                 ins = ins->next;
10441         }while(ins != first);
10442         rebuild_ssa_form(state);
10443
10444         print_blocks(state, __func__, state->dbgout);
10445 }
10446
10447 /*
10448  * Builtins....
10449  * ============================
10450  */
10451
10452 static void register_builtin_function(struct compile_state *state,
10453         const char *name, int op, struct type *rtype, ...)
10454 {
10455         struct type *ftype, *atype, *ctype, *crtype, *param, **next;
10456         struct triple *def, *arg, *result, *work, *last, *first, *retvar, *ret;
10457         struct hash_entry *ident;
10458         struct file_state file;
10459         int parameters;
10460         int name_len;
10461         va_list args;
10462         int i;
10463
10464         /* Dummy file state to get debug handling right */
10465         memset(&file, 0, sizeof(file));
10466         file.basename = "<built-in>";
10467         file.line = 1;
10468         file.report_line = 1;
10469         file.report_name = file.basename;
10470         file.prev = state->file;
10471         state->file = &file;
10472         state->function = name;
10473
10474         /* Find the Parameter count */
10475         valid_op(state, op);
10476         parameters = table_ops[op].rhs;
10477         if (parameters < 0 ) {
10478                 internal_error(state, 0, "Invalid builtin parameter count");
10479         }
10480
10481         /* Find the function type */
10482         ftype = new_type(TYPE_FUNCTION | STOR_INLINE | STOR_STATIC, rtype, 0);
10483         ftype->elements = parameters;
10484         next = &ftype->right;
10485         va_start(args, rtype);
10486         for(i = 0; i < parameters; i++) {
10487                 atype = va_arg(args, struct type *);
10488                 if (!*next) {
10489                         *next = atype;
10490                 } else {
10491                         *next = new_type(TYPE_PRODUCT, *next, atype);
10492                         next = &((*next)->right);
10493                 }
10494         }
10495         if (!*next) {
10496                 *next = &void_type;
10497         }
10498         va_end(args);
10499
10500         /* Get the initial closure type */
10501         ctype = new_type(TYPE_JOIN, &void_type, 0);
10502         ctype->elements = 1;
10503
10504         /* Get the return type */
10505         crtype = new_type(TYPE_TUPLE, new_type(TYPE_PRODUCT, ctype, rtype), 0);
10506         crtype->elements = 2;
10507
10508         /* Generate the needed triples */
10509         def = triple(state, OP_LIST, ftype, 0, 0);
10510         first = label(state);
10511         RHS(def, 0) = first;
10512         result = flatten(state, first, variable(state, crtype));
10513         retvar = flatten(state, first, variable(state, &void_ptr_type));
10514         ret = triple(state, OP_RET, &void_type, read_expr(state, retvar), 0);
10515
10516         /* Now string them together */
10517         param = ftype->right;
10518         for(i = 0; i < parameters; i++) {
10519                 if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
10520                         atype = param->left;
10521                 } else {
10522                         atype = param;
10523                 }
10524                 arg = flatten(state, first, variable(state, atype));
10525                 param = param->right;
10526         }
10527         work = new_triple(state, op, rtype, -1, parameters);
10528         generate_lhs_pieces(state, work);
10529         for(i = 0; i < parameters; i++) {
10530                 RHS(work, i) = read_expr(state, farg(state, def, i));
10531         }
10532         if ((rtype->type & TYPE_MASK) != TYPE_VOID) {
10533                 work = write_expr(state, deref_index(state, result, 1), work);
10534         }
10535         work = flatten(state, first, work);
10536         last = flatten(state, first, label(state));
10537         ret  = flatten(state, first, ret);
10538         name_len = strlen(name);
10539         ident = lookup(state, name, name_len);
10540         ftype->type_ident = ident;
10541         symbol(state, ident, &ident->sym_ident, def, ftype);
10542         
10543         state->file = file.prev;
10544         state->function = 0;
10545         state->main_function = 0;
10546
10547         if (!state->functions) {
10548                 state->functions = def;
10549         } else {
10550                 insert_triple(state, state->functions, def);
10551         }
10552         if (state->compiler->debug & DEBUG_INLINE) {
10553                 FILE *fp = state->dbgout;
10554                 fprintf(fp, "\n");
10555                 loc(fp, state, 0);
10556                 fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
10557                 display_func(state, fp, def);
10558                 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
10559         }
10560 }
10561
10562 static struct type *partial_struct(struct compile_state *state,
10563         const char *field_name, struct type *type, struct type *rest)
10564 {
10565         struct hash_entry *field_ident;
10566         struct type *result;
10567         int field_name_len;
10568
10569         field_name_len = strlen(field_name);
10570         field_ident = lookup(state, field_name, field_name_len);
10571
10572         result = clone_type(0, type);
10573         result->field_ident = field_ident;
10574
10575         if (rest) {
10576                 result = new_type(TYPE_PRODUCT, result, rest);
10577         }
10578         return result;
10579 }
10580
10581 static struct type *register_builtin_type(struct compile_state *state,
10582         const char *name, struct type *type)
10583 {
10584         struct hash_entry *ident;
10585         int name_len;
10586
10587         name_len = strlen(name);
10588         ident = lookup(state, name, name_len);
10589         
10590         if ((type->type & TYPE_MASK) == TYPE_PRODUCT) {
10591                 ulong_t elements = 0;
10592                 struct type *field;
10593                 type = new_type(TYPE_STRUCT, type, 0);
10594                 field = type->left;
10595                 while((field->type & TYPE_MASK) == TYPE_PRODUCT) {
10596                         elements++;
10597                         field = field->right;
10598                 }
10599                 elements++;
10600                 symbol(state, ident, &ident->sym_tag, 0, type);
10601                 type->type_ident = ident;
10602                 type->elements = elements;
10603         }
10604         symbol(state, ident, &ident->sym_ident, 0, type);
10605         ident->tok = TOK_TYPE_NAME;
10606         return type;
10607 }
10608
10609
10610 static void register_builtins(struct compile_state *state)
10611 {
10612         struct type *div_type, *ldiv_type;
10613         struct type *udiv_type, *uldiv_type;
10614         struct type *msr_type;
10615
10616         div_type = register_builtin_type(state, "__builtin_div_t",
10617                 partial_struct(state, "quot", &int_type,
10618                 partial_struct(state, "rem",  &int_type, 0)));
10619         ldiv_type = register_builtin_type(state, "__builtin_ldiv_t",
10620                 partial_struct(state, "quot", &long_type,
10621                 partial_struct(state, "rem",  &long_type, 0)));
10622         udiv_type = register_builtin_type(state, "__builtin_udiv_t",
10623                 partial_struct(state, "quot", &uint_type,
10624                 partial_struct(state, "rem",  &uint_type, 0)));
10625         uldiv_type = register_builtin_type(state, "__builtin_uldiv_t",
10626                 partial_struct(state, "quot", &ulong_type,
10627                 partial_struct(state, "rem",  &ulong_type, 0)));
10628
10629         register_builtin_function(state, "__builtin_div",   OP_SDIVT, div_type,
10630                 &int_type, &int_type);
10631         register_builtin_function(state, "__builtin_ldiv",  OP_SDIVT, ldiv_type,
10632                 &long_type, &long_type);
10633         register_builtin_function(state, "__builtin_udiv",  OP_UDIVT, udiv_type,
10634                 &uint_type, &uint_type);
10635         register_builtin_function(state, "__builtin_uldiv", OP_UDIVT, uldiv_type,
10636                 &ulong_type, &ulong_type);
10637
10638         register_builtin_function(state, "__builtin_inb", OP_INB, &uchar_type, 
10639                 &ushort_type);
10640         register_builtin_function(state, "__builtin_inw", OP_INW, &ushort_type,
10641                 &ushort_type);
10642         register_builtin_function(state, "__builtin_inl", OP_INL, &uint_type,   
10643                 &ushort_type);
10644
10645         register_builtin_function(state, "__builtin_outb", OP_OUTB, &void_type, 
10646                 &uchar_type, &ushort_type);
10647         register_builtin_function(state, "__builtin_outw", OP_OUTW, &void_type, 
10648                 &ushort_type, &ushort_type);
10649         register_builtin_function(state, "__builtin_outl", OP_OUTL, &void_type, 
10650                 &uint_type, &ushort_type);
10651         
10652         register_builtin_function(state, "__builtin_bsf", OP_BSF, &int_type, 
10653                 &int_type);
10654         register_builtin_function(state, "__builtin_bsr", OP_BSR, &int_type, 
10655                 &int_type);
10656
10657         msr_type = register_builtin_type(state, "__builtin_msr_t",
10658                 partial_struct(state, "lo", &ulong_type,
10659                 partial_struct(state, "hi", &ulong_type, 0)));
10660
10661         register_builtin_function(state, "__builtin_rdmsr", OP_RDMSR, msr_type,
10662                 &ulong_type);
10663         register_builtin_function(state, "__builtin_wrmsr", OP_WRMSR, &void_type,
10664                 &ulong_type, &ulong_type, &ulong_type);
10665         
10666         register_builtin_function(state, "__builtin_hlt", OP_HLT, &void_type, 
10667                 &void_type);
10668 }
10669
10670 static struct type *declarator(
10671         struct compile_state *state, struct type *type, 
10672         struct hash_entry **ident, int need_ident);
10673 static void decl(struct compile_state *state, struct triple *first);
10674 static struct type *specifier_qualifier_list(struct compile_state *state);
10675 #if DEBUG_ROMCC_WARNING
10676 static int isdecl_specifier(int tok);
10677 #endif
10678 static struct type *decl_specifiers(struct compile_state *state);
10679 static int istype(int tok);
10680 static struct triple *expr(struct compile_state *state);
10681 static struct triple *assignment_expr(struct compile_state *state);
10682 static struct type *type_name(struct compile_state *state);
10683 static void statement(struct compile_state *state, struct triple *first);
10684
10685 static struct triple *call_expr(
10686         struct compile_state *state, struct triple *func)
10687 {
10688         struct triple *def;
10689         struct type *param, *type;
10690         ulong_t pvals, index;
10691
10692         if ((func->type->type & TYPE_MASK) != TYPE_FUNCTION) {
10693                 error(state, 0, "Called object is not a function");
10694         }
10695         if (func->op != OP_LIST) {
10696                 internal_error(state, 0, "improper function");
10697         }
10698         eat(state, TOK_LPAREN);
10699         /* Find the return type without any specifiers */
10700         type = clone_type(0, func->type->left);
10701         /* Count the number of rhs entries for OP_FCALL */
10702         param = func->type->right;
10703         pvals = 0;
10704         while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
10705                 pvals++;
10706                 param = param->right;
10707         }
10708         if ((param->type & TYPE_MASK) != TYPE_VOID) {
10709                 pvals++;
10710         }
10711         def = new_triple(state, OP_FCALL, type, -1, pvals);
10712         MISC(def, 0) = func;
10713
10714         param = func->type->right;
10715         for(index = 0; index < pvals; index++) {
10716                 struct triple *val;
10717                 struct type *arg_type;
10718                 val = read_expr(state, assignment_expr(state));
10719                 arg_type = param;
10720                 if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
10721                         arg_type = param->left;
10722                 }
10723                 write_compatible(state, arg_type, val->type);
10724                 RHS(def, index) = val;
10725                 if (index != (pvals - 1)) {
10726                         eat(state, TOK_COMMA);
10727                         param = param->right;
10728                 }
10729         }
10730         eat(state, TOK_RPAREN);
10731         return def;
10732 }
10733
10734
10735 static struct triple *character_constant(struct compile_state *state)
10736 {
10737         struct triple *def;
10738         struct token *tk;
10739         const signed char *str, *end;
10740         int c;
10741         int str_len;
10742         tk = eat(state, TOK_LIT_CHAR);
10743         str = (signed char *)tk->val.str + 1;
10744         str_len = tk->str_len - 2;
10745         if (str_len <= 0) {
10746                 error(state, 0, "empty character constant");
10747         }
10748         end = str + str_len;
10749         c = char_value(state, &str, end);
10750         if (str != end) {
10751                 error(state, 0, "multibyte character constant not supported");
10752         }
10753         def = int_const(state, &char_type, (ulong_t)((long_t)c));
10754         return def;
10755 }
10756
10757 static struct triple *string_constant(struct compile_state *state)
10758 {
10759         struct triple *def;
10760         struct token *tk;
10761         struct type *type;
10762         const signed char *str, *end;
10763         signed char *buf, *ptr;
10764         int str_len;
10765
10766         buf = 0;
10767         type = new_type(TYPE_ARRAY, &char_type, 0);
10768         type->elements = 0;
10769         /* The while loop handles string concatenation */
10770         do {
10771                 tk = eat(state, TOK_LIT_STRING);
10772                 str = (signed char *)tk->val.str + 1;
10773                 str_len = tk->str_len - 2;
10774                 if (str_len < 0) {
10775                         error(state, 0, "negative string constant length");
10776                 }
10777                 end = str + str_len;
10778                 ptr = buf;
10779                 buf = xmalloc(type->elements + str_len + 1, "string_constant");
10780                 memcpy(buf, ptr, type->elements);
10781                 ptr = buf + type->elements;
10782                 do {
10783                         *ptr++ = char_value(state, &str, end);
10784                 } while(str < end);
10785                 type->elements = ptr - buf;
10786         } while(peek(state) == TOK_LIT_STRING);
10787         *ptr = '\0';
10788         type->elements += 1;
10789         def = triple(state, OP_BLOBCONST, type, 0, 0);
10790         def->u.blob = buf;
10791
10792         return def;
10793 }
10794
10795
10796 static struct triple *integer_constant(struct compile_state *state)
10797 {
10798         struct triple *def;
10799         unsigned long val;
10800         struct token *tk;
10801         char *end;
10802         int u, l, decimal;
10803         struct type *type;
10804
10805         tk = eat(state, TOK_LIT_INT);
10806         errno = 0;
10807         decimal = (tk->val.str[0] != '0');
10808         val = strtoul(tk->val.str, &end, 0);
10809         if ((val > ULONG_T_MAX) || ((val == ULONG_MAX) && (errno == ERANGE))) {
10810                 error(state, 0, "Integer constant to large");
10811         }
10812         u = l = 0;
10813         if ((*end == 'u') || (*end == 'U')) {
10814                 u = 1;
10815                         end++;
10816         }
10817         if ((*end == 'l') || (*end == 'L')) {
10818                 l = 1;
10819                 end++;
10820         }
10821         if ((*end == 'u') || (*end == 'U')) {
10822                 u = 1;
10823                 end++;
10824         }
10825         if (*end) {
10826                 error(state, 0, "Junk at end of integer constant");
10827         }
10828         if (u && l)  {
10829                 type = &ulong_type;
10830         }
10831         else if (l) {
10832                 type = &long_type;
10833                 if (!decimal && (val > LONG_T_MAX)) {
10834                         type = &ulong_type;
10835                 }
10836         }
10837         else if (u) {
10838                 type = &uint_type;
10839                 if (val > UINT_T_MAX) {
10840                         type = &ulong_type;
10841                 }
10842         }
10843         else {
10844                 type = &int_type;
10845                 if (!decimal && (val > INT_T_MAX) && (val <= UINT_T_MAX)) {
10846                         type = &uint_type;
10847                 }
10848                 else if (!decimal && (val > LONG_T_MAX)) {
10849                         type = &ulong_type;
10850                 }
10851                 else if (val > INT_T_MAX) {
10852                         type = &long_type;
10853                 }
10854         }
10855         def = int_const(state, type, val);
10856         return def;
10857 }
10858
10859 static struct triple *primary_expr(struct compile_state *state)
10860 {
10861         struct triple *def;
10862         int tok;
10863         tok = peek(state);
10864         switch(tok) {
10865         case TOK_IDENT:
10866         {
10867                 struct hash_entry *ident;
10868                 /* Here ident is either:
10869                  * a varable name
10870                  * a function name
10871                  */
10872                 ident = eat(state, TOK_IDENT)->ident;
10873                 if (!ident->sym_ident) {
10874                         error(state, 0, "%s undeclared", ident->name);
10875                 }
10876                 def = ident->sym_ident->def;
10877                 break;
10878         }
10879         case TOK_ENUM_CONST:
10880         {
10881                 struct hash_entry *ident;
10882                 /* Here ident is an enumeration constant */
10883                 ident = eat(state, TOK_ENUM_CONST)->ident;
10884                 if (!ident->sym_ident) {
10885                         error(state, 0, "%s undeclared", ident->name);
10886                 }
10887                 def = ident->sym_ident->def;
10888                 break;
10889         }
10890         case TOK_MIDENT:
10891         {
10892                 struct hash_entry *ident;
10893                 ident = eat(state, TOK_MIDENT)->ident;
10894                 warning(state, 0, "Replacing undefined macro: %s with 0",
10895                         ident->name);
10896                 def = int_const(state, &int_type, 0);
10897                 break;
10898         }
10899         case TOK_LPAREN:
10900                 eat(state, TOK_LPAREN);
10901                 def = expr(state);
10902                 eat(state, TOK_RPAREN);
10903                 break;
10904         case TOK_LIT_INT:
10905                 def = integer_constant(state);
10906                 break;
10907         case TOK_LIT_FLOAT:
10908                 eat(state, TOK_LIT_FLOAT);
10909                 error(state, 0, "Floating point constants not supported");
10910                 def = 0;
10911                 FINISHME();
10912                 break;
10913         case TOK_LIT_CHAR:
10914                 def = character_constant(state);
10915                 break;
10916         case TOK_LIT_STRING:
10917                 def = string_constant(state);
10918                 break;
10919         default:
10920                 def = 0;
10921                 error(state, 0, "Unexpected token: %s\n", tokens[tok]);
10922         }
10923         return def;
10924 }
10925
10926 static struct triple *postfix_expr(struct compile_state *state)
10927 {
10928         struct triple *def;
10929         int postfix;
10930         def = primary_expr(state);
10931         do {
10932                 struct triple *left;
10933                 int tok;
10934                 postfix = 1;
10935                 left = def;
10936                 switch((tok = peek(state))) {
10937                 case TOK_LBRACKET:
10938                         eat(state, TOK_LBRACKET);
10939                         def = mk_subscript_expr(state, left, expr(state));
10940                         eat(state, TOK_RBRACKET);
10941                         break;
10942                 case TOK_LPAREN:
10943                         def = call_expr(state, def);
10944                         break;
10945                 case TOK_DOT:
10946                 {
10947                         struct hash_entry *field;
10948                         eat(state, TOK_DOT);
10949                         field = eat(state, TOK_IDENT)->ident;
10950                         def = deref_field(state, def, field);
10951                         break;
10952                 }
10953                 case TOK_ARROW:
10954                 {
10955                         struct hash_entry *field;
10956                         eat(state, TOK_ARROW);
10957                         field = eat(state, TOK_IDENT)->ident;
10958                         def = mk_deref_expr(state, read_expr(state, def));
10959                         def = deref_field(state, def, field);
10960                         break;
10961                 }
10962                 case TOK_PLUSPLUS:
10963                         eat(state, TOK_PLUSPLUS);
10964                         def = mk_post_inc_expr(state, left);
10965                         break;
10966                 case TOK_MINUSMINUS:
10967                         eat(state, TOK_MINUSMINUS);
10968                         def = mk_post_dec_expr(state, left);
10969                         break;
10970                 default:
10971                         postfix = 0;
10972                         break;
10973                 }
10974         } while(postfix);
10975         return def;
10976 }
10977
10978 static struct triple *cast_expr(struct compile_state *state);
10979
10980 static struct triple *unary_expr(struct compile_state *state)
10981 {
10982         struct triple *def, *right;
10983         int tok;
10984         switch((tok = peek(state))) {
10985         case TOK_PLUSPLUS:
10986                 eat(state, TOK_PLUSPLUS);
10987                 def = mk_pre_inc_expr(state, unary_expr(state));
10988                 break;
10989         case TOK_MINUSMINUS:
10990                 eat(state, TOK_MINUSMINUS);
10991                 def = mk_pre_dec_expr(state, unary_expr(state));
10992                 break;
10993         case TOK_AND:
10994                 eat(state, TOK_AND);
10995                 def = mk_addr_expr(state, cast_expr(state), 0);
10996                 break;
10997         case TOK_STAR:
10998                 eat(state, TOK_STAR);
10999                 def = mk_deref_expr(state, read_expr(state, cast_expr(state)));
11000                 break;
11001         case TOK_PLUS:
11002                 eat(state, TOK_PLUS);
11003                 right = read_expr(state, cast_expr(state));
11004                 arithmetic(state, right);
11005                 def = integral_promotion(state, right);
11006                 break;
11007         case TOK_MINUS:
11008                 eat(state, TOK_MINUS);
11009                 right = read_expr(state, cast_expr(state));
11010                 arithmetic(state, right);
11011                 def = integral_promotion(state, right);
11012                 def = triple(state, OP_NEG, def->type, def, 0);
11013                 break;
11014         case TOK_TILDE:
11015                 eat(state, TOK_TILDE);
11016                 right = read_expr(state, cast_expr(state));
11017                 integral(state, right);
11018                 def = integral_promotion(state, right);
11019                 def = triple(state, OP_INVERT, def->type, def, 0);
11020                 break;
11021         case TOK_BANG:
11022                 eat(state, TOK_BANG);
11023                 right = read_expr(state, cast_expr(state));
11024                 bool(state, right);
11025                 def = lfalse_expr(state, right);
11026                 break;
11027         case TOK_SIZEOF:
11028         {
11029                 struct type *type;
11030                 int tok1, tok2;
11031                 eat(state, TOK_SIZEOF);
11032                 tok1 = peek(state);
11033                 tok2 = peek2(state);
11034                 if ((tok1 == TOK_LPAREN) && istype(tok2)) {
11035                         eat(state, TOK_LPAREN);
11036                         type = type_name(state);
11037                         eat(state, TOK_RPAREN);
11038                 }
11039                 else {
11040                         struct triple *expr;
11041                         expr = unary_expr(state);
11042                         type = expr->type;
11043                         release_expr(state, expr);
11044                 }
11045                 def = int_const(state, &ulong_type, size_of_in_bytes(state, type));
11046                 break;
11047         }
11048         case TOK_ALIGNOF:
11049         {
11050                 struct type *type;
11051                 int tok1, tok2;
11052                 eat(state, TOK_ALIGNOF);
11053                 tok1 = peek(state);
11054                 tok2 = peek2(state);
11055                 if ((tok1 == TOK_LPAREN) && istype(tok2)) {
11056                         eat(state, TOK_LPAREN);
11057                         type = type_name(state);
11058                         eat(state, TOK_RPAREN);
11059                 }
11060                 else {
11061                         struct triple *expr;
11062                         expr = unary_expr(state);
11063                         type = expr->type;
11064                         release_expr(state, expr);
11065                 }
11066                 def = int_const(state, &ulong_type, align_of_in_bytes(state, type));
11067                 break;
11068         }
11069         case TOK_MDEFINED:
11070         {
11071                 /* We only come here if we are called from the preprocessor */
11072                 struct hash_entry *ident;
11073                 int parens;
11074                 eat(state, TOK_MDEFINED);
11075                 parens = 0;
11076                 if (pp_peek(state) == TOK_LPAREN) {
11077                         pp_eat(state, TOK_LPAREN);
11078                         parens = 1;
11079                 }
11080                 ident = pp_eat(state, TOK_MIDENT)->ident;
11081                 if (parens) {
11082                         eat(state, TOK_RPAREN);
11083                 }
11084                 def = int_const(state, &int_type, ident->sym_define != 0);
11085                 break;
11086         }
11087         default:
11088                 def = postfix_expr(state);
11089                 break;
11090         }
11091         return def;
11092 }
11093
11094 static struct triple *cast_expr(struct compile_state *state)
11095 {
11096         struct triple *def;
11097         int tok1, tok2;
11098         tok1 = peek(state);
11099         tok2 = peek2(state);
11100         if ((tok1 == TOK_LPAREN) && istype(tok2)) {
11101                 struct type *type;
11102                 eat(state, TOK_LPAREN);
11103                 type = type_name(state);
11104                 eat(state, TOK_RPAREN);
11105                 def = mk_cast_expr(state, type, cast_expr(state));
11106         }
11107         else {
11108                 def = unary_expr(state);
11109         }
11110         return def;
11111 }
11112
11113 static struct triple *mult_expr(struct compile_state *state)
11114 {
11115         struct triple *def;
11116         int done;
11117         def = cast_expr(state);
11118         do {
11119                 struct triple *left, *right;
11120                 struct type *result_type;
11121                 int tok, op, sign;
11122                 done = 0;
11123                 tok = peek(state);
11124                 switch(tok) {
11125                 case TOK_STAR:
11126                 case TOK_DIV:
11127                 case TOK_MOD:
11128                         left = read_expr(state, def);
11129                         arithmetic(state, left);
11130
11131                         eat(state, tok);
11132
11133                         right = read_expr(state, cast_expr(state));
11134                         arithmetic(state, right);
11135
11136                         result_type = arithmetic_result(state, left, right);
11137                         sign = is_signed(result_type);
11138                         op = -1;
11139                         switch(tok) {
11140                         case TOK_STAR: op = sign? OP_SMUL : OP_UMUL; break;
11141                         case TOK_DIV:  op = sign? OP_SDIV : OP_UDIV; break;
11142                         case TOK_MOD:  op = sign? OP_SMOD : OP_UMOD; break;
11143                         }
11144                         def = triple(state, op, result_type, left, right);
11145                         break;
11146                 default:
11147                         done = 1;
11148                         break;
11149                 }
11150         } while(!done);
11151         return def;
11152 }
11153
11154 static struct triple *add_expr(struct compile_state *state)
11155 {
11156         struct triple *def;
11157         int done;
11158         def = mult_expr(state);
11159         do {
11160                 done = 0;
11161                 switch( peek(state)) {
11162                 case TOK_PLUS:
11163                         eat(state, TOK_PLUS);
11164                         def = mk_add_expr(state, def, mult_expr(state));
11165                         break;
11166                 case TOK_MINUS:
11167                         eat(state, TOK_MINUS);
11168                         def = mk_sub_expr(state, def, mult_expr(state));
11169                         break;
11170                 default:
11171                         done = 1;
11172                         break;
11173                 }
11174         } while(!done);
11175         return def;
11176 }
11177
11178 static struct triple *shift_expr(struct compile_state *state)
11179 {
11180         struct triple *def;
11181         int done;
11182         def = add_expr(state);
11183         do {
11184                 struct triple *left, *right;
11185                 int tok, op;
11186                 done = 0;
11187                 switch((tok = peek(state))) {
11188                 case TOK_SL:
11189                 case TOK_SR:
11190                         left = read_expr(state, def);
11191                         integral(state, left);
11192                         left = integral_promotion(state, left);
11193
11194                         eat(state, tok);
11195
11196                         right = read_expr(state, add_expr(state));
11197                         integral(state, right);
11198                         right = integral_promotion(state, right);
11199                         
11200                         op = (tok == TOK_SL)? OP_SL : 
11201                                 is_signed(left->type)? OP_SSR: OP_USR;
11202
11203                         def = triple(state, op, left->type, left, right);
11204                         break;
11205                 default:
11206                         done = 1;
11207                         break;
11208                 }
11209         } while(!done);
11210         return def;
11211 }
11212
11213 static struct triple *relational_expr(struct compile_state *state)
11214 {
11215 #if DEBUG_ROMCC_WARNINGS
11216 #warning "Extend relational exprs to work on more than arithmetic types"
11217 #endif
11218         struct triple *def;
11219         int done;
11220         def = shift_expr(state);
11221         do {
11222                 struct triple *left, *right;
11223                 struct type *arg_type;
11224                 int tok, op, sign;
11225                 done = 0;
11226                 switch((tok = peek(state))) {
11227                 case TOK_LESS:
11228                 case TOK_MORE:
11229                 case TOK_LESSEQ:
11230                 case TOK_MOREEQ:
11231                         left = read_expr(state, def);
11232                         arithmetic(state, left);
11233
11234                         eat(state, tok);
11235
11236                         right = read_expr(state, shift_expr(state));
11237                         arithmetic(state, right);
11238
11239                         arg_type = arithmetic_result(state, left, right);
11240                         sign = is_signed(arg_type);
11241                         op = -1;
11242                         switch(tok) {
11243                         case TOK_LESS:   op = sign? OP_SLESS : OP_ULESS; break;
11244                         case TOK_MORE:   op = sign? OP_SMORE : OP_UMORE; break;
11245                         case TOK_LESSEQ: op = sign? OP_SLESSEQ : OP_ULESSEQ; break;
11246                         case TOK_MOREEQ: op = sign? OP_SMOREEQ : OP_UMOREEQ; break;
11247                         }
11248                         def = triple(state, op, &int_type, left, right);
11249                         break;
11250                 default:
11251                         done = 1;
11252                         break;
11253                 }
11254         } while(!done);
11255         return def;
11256 }
11257
11258 static struct triple *equality_expr(struct compile_state *state)
11259 {
11260 #if DEBUG_ROMCC_WARNINGS
11261 #warning "Extend equality exprs to work on more than arithmetic types"
11262 #endif
11263         struct triple *def;
11264         int done;
11265         def = relational_expr(state);
11266         do {
11267                 struct triple *left, *right;
11268                 int tok, op;
11269                 done = 0;
11270                 switch((tok = peek(state))) {
11271                 case TOK_EQEQ:
11272                 case TOK_NOTEQ:
11273                         left = read_expr(state, def);
11274                         arithmetic(state, left);
11275                         eat(state, tok);
11276                         right = read_expr(state, relational_expr(state));
11277                         arithmetic(state, right);
11278                         op = (tok == TOK_EQEQ) ? OP_EQ: OP_NOTEQ;
11279                         def = triple(state, op, &int_type, left, right);
11280                         break;
11281                 default:
11282                         done = 1;
11283                         break;
11284                 }
11285         } while(!done);
11286         return def;
11287 }
11288
11289 static struct triple *and_expr(struct compile_state *state)
11290 {
11291         struct triple *def;
11292         def = equality_expr(state);
11293         while(peek(state) == TOK_AND) {
11294                 struct triple *left, *right;
11295                 struct type *result_type;
11296                 left = read_expr(state, def);
11297                 integral(state, left);
11298                 eat(state, TOK_AND);
11299                 right = read_expr(state, equality_expr(state));
11300                 integral(state, right);
11301                 result_type = arithmetic_result(state, left, right);
11302                 def = triple(state, OP_AND, result_type, left, right);
11303         }
11304         return def;
11305 }
11306
11307 static struct triple *xor_expr(struct compile_state *state)
11308 {
11309         struct triple *def;
11310         def = and_expr(state);
11311         while(peek(state) == TOK_XOR) {
11312                 struct triple *left, *right;
11313                 struct type *result_type;
11314                 left = read_expr(state, def);
11315                 integral(state, left);
11316                 eat(state, TOK_XOR);
11317                 right = read_expr(state, and_expr(state));
11318                 integral(state, right);
11319                 result_type = arithmetic_result(state, left, right);
11320                 def = triple(state, OP_XOR, result_type, left, right);
11321         }
11322         return def;
11323 }
11324
11325 static struct triple *or_expr(struct compile_state *state)
11326 {
11327         struct triple *def;
11328         def = xor_expr(state);
11329         while(peek(state) == TOK_OR) {
11330                 struct triple *left, *right;
11331                 struct type *result_type;
11332                 left = read_expr(state, def);
11333                 integral(state, left);
11334                 eat(state, TOK_OR);
11335                 right = read_expr(state, xor_expr(state));
11336                 integral(state, right);
11337                 result_type = arithmetic_result(state, left, right);
11338                 def = triple(state, OP_OR, result_type, left, right);
11339         }
11340         return def;
11341 }
11342
11343 static struct triple *land_expr(struct compile_state *state)
11344 {
11345         struct triple *def;
11346         def = or_expr(state);
11347         while(peek(state) == TOK_LOGAND) {
11348                 struct triple *left, *right;
11349                 left = read_expr(state, def);
11350                 bool(state, left);
11351                 eat(state, TOK_LOGAND);
11352                 right = read_expr(state, or_expr(state));
11353                 bool(state, right);
11354
11355                 def = mkland_expr(state,
11356                         ltrue_expr(state, left),
11357                         ltrue_expr(state, right));
11358         }
11359         return def;
11360 }
11361
11362 static struct triple *lor_expr(struct compile_state *state)
11363 {
11364         struct triple *def;
11365         def = land_expr(state);
11366         while(peek(state) == TOK_LOGOR) {
11367                 struct triple *left, *right;
11368                 left = read_expr(state, def);
11369                 bool(state, left);
11370                 eat(state, TOK_LOGOR);
11371                 right = read_expr(state, land_expr(state));
11372                 bool(state, right);
11373
11374                 def = mklor_expr(state, 
11375                         ltrue_expr(state, left),
11376                         ltrue_expr(state, right));
11377         }
11378         return def;
11379 }
11380
11381 static struct triple *conditional_expr(struct compile_state *state)
11382 {
11383         struct triple *def;
11384         def = lor_expr(state);
11385         if (peek(state) == TOK_QUEST) {
11386                 struct triple *test, *left, *right;
11387                 bool(state, def);
11388                 test = ltrue_expr(state, read_expr(state, def));
11389                 eat(state, TOK_QUEST);
11390                 left = read_expr(state, expr(state));
11391                 eat(state, TOK_COLON);
11392                 right = read_expr(state, conditional_expr(state));
11393
11394                 def = mkcond_expr(state, test, left, right);
11395         }
11396         return def;
11397 }
11398
11399 struct cv_triple {
11400         struct triple *val;
11401         int id;
11402 };
11403
11404 static void set_cv(struct compile_state *state, struct cv_triple *cv,
11405         struct triple *dest, struct triple *val)
11406 {
11407         if (cv[dest->id].val) {
11408                 free_triple(state, cv[dest->id].val);
11409         }
11410         cv[dest->id].val = val;
11411 }
11412 static struct triple *get_cv(struct compile_state *state, struct cv_triple *cv,
11413         struct triple *src)
11414 {
11415         return cv[src->id].val;
11416 }
11417
11418 static struct triple *eval_const_expr(
11419         struct compile_state *state, struct triple *expr)
11420 {
11421         struct triple *def;
11422         if (is_const(expr)) {
11423                 def = expr;
11424         }
11425         else {
11426                 /* If we don't start out as a constant simplify into one */
11427                 struct triple *head, *ptr;
11428                 struct cv_triple *cv;
11429                 int i, count;
11430                 head = label(state); /* dummy initial triple */
11431                 flatten(state, head, expr);
11432                 count = 1;
11433                 for(ptr = head->next; ptr != head; ptr = ptr->next) {
11434                         count++;
11435                 }
11436                 cv = xcmalloc(sizeof(struct cv_triple)*count, "const value vector");
11437                 i = 1;
11438                 for(ptr = head->next; ptr != head; ptr = ptr->next) {
11439                         cv[i].val = 0;
11440                         cv[i].id  = ptr->id;
11441                         ptr->id   = i;
11442                         i++;
11443                 }
11444                 ptr = head->next;
11445                 do {
11446                         valid_ins(state, ptr);
11447                         if ((ptr->op == OP_PHI) || (ptr->op == OP_LIST)) {
11448                                 internal_error(state, ptr, 
11449                                         "unexpected %s in constant expression",
11450                                         tops(ptr->op));
11451                         }
11452                         else if (ptr->op == OP_LIST) {
11453                         }
11454                         else if (triple_is_structural(state, ptr)) {
11455                                 ptr = ptr->next;
11456                         }
11457                         else if (triple_is_ubranch(state, ptr)) {
11458                                 ptr = TARG(ptr, 0);
11459                         }
11460                         else if (triple_is_cbranch(state, ptr)) {
11461                                 struct triple *cond_val;
11462                                 cond_val = get_cv(state, cv, RHS(ptr, 0));
11463                                 if (!cond_val || !is_const(cond_val) || 
11464                                         (cond_val->op != OP_INTCONST)) 
11465                                 {
11466                                         internal_error(state, ptr, "bad branch condition");
11467                                 }
11468                                 if (cond_val->u.cval == 0) {
11469                                         ptr = ptr->next;
11470                                 } else {
11471                                         ptr = TARG(ptr, 0);
11472                                 }
11473                         }
11474                         else if (triple_is_branch(state, ptr)) {
11475                                 error(state, ptr, "bad branch type in constant expression");
11476                         }
11477                         else if (ptr->op == OP_WRITE) {
11478                                 struct triple *val;
11479                                 val = get_cv(state, cv, RHS(ptr, 0));
11480                                 
11481                                 set_cv(state, cv, MISC(ptr, 0), 
11482                                         copy_triple(state, val));
11483                                 set_cv(state, cv, ptr, 
11484                                         copy_triple(state, val));
11485                                 ptr = ptr->next;
11486                         }
11487                         else if (ptr->op == OP_READ) {
11488                                 set_cv(state, cv, ptr, 
11489                                         copy_triple(state, 
11490                                                 get_cv(state, cv, RHS(ptr, 0))));
11491                                 ptr = ptr->next;
11492                         }
11493                         else if (triple_is_pure(state, ptr, cv[ptr->id].id)) {
11494                                 struct triple *val, **rhs;
11495                                 val = copy_triple(state, ptr);
11496                                 rhs = triple_rhs(state, val, 0);
11497                                 for(; rhs; rhs = triple_rhs(state, val, rhs)) {
11498                                         if (!*rhs) {
11499                                                 internal_error(state, ptr, "Missing rhs");
11500                                         }
11501                                         *rhs = get_cv(state, cv, *rhs);
11502                                 }
11503                                 simplify(state, val);
11504                                 set_cv(state, cv, ptr, val);
11505                                 ptr = ptr->next;
11506                         }
11507                         else {
11508                                 error(state, ptr, "impure operation in constant expression");
11509                         }
11510                         
11511                 } while(ptr != head);
11512
11513                 /* Get the result value */
11514                 def = get_cv(state, cv, head->prev);
11515                 cv[head->prev->id].val = 0;
11516
11517                 /* Free the temporary values */
11518                 for(i = 0; i < count; i++) {
11519                         if (cv[i].val) {
11520                                 free_triple(state, cv[i].val);
11521                                 cv[i].val = 0;
11522                         }
11523                 }
11524                 xfree(cv);
11525                 /* Free the intermediate expressions */
11526                 while(head->next != head) {
11527                         release_triple(state, head->next);
11528                 }
11529                 free_triple(state, head);
11530         }
11531         if (!is_const(def)) {
11532                 error(state, expr, "Not a constant expression");
11533         }
11534         return def;
11535 }
11536
11537 static struct triple *constant_expr(struct compile_state *state)
11538 {
11539         return eval_const_expr(state, conditional_expr(state));
11540 }
11541
11542 static struct triple *assignment_expr(struct compile_state *state)
11543 {
11544         struct triple *def, *left, *right;
11545         int tok, op, sign;
11546         /* The C grammer in K&R shows assignment expressions
11547          * only taking unary expressions as input on their
11548          * left hand side.  But specifies the precedence of
11549          * assignemnt as the lowest operator except for comma.
11550          *
11551          * Allowing conditional expressions on the left hand side
11552          * of an assignement results in a grammar that accepts
11553          * a larger set of statements than standard C.   As long
11554          * as the subset of the grammar that is standard C behaves
11555          * correctly this should cause no problems.
11556          * 
11557          * For the extra token strings accepted by the grammar
11558          * none of them should produce a valid lvalue, so they
11559          * should not produce functioning programs.
11560          *
11561          * GCC has this bug as well, so surprises should be minimal.
11562          */
11563         def = conditional_expr(state);
11564         left = def;
11565         switch((tok = peek(state))) {
11566         case TOK_EQ:
11567                 lvalue(state, left);
11568                 eat(state, TOK_EQ);
11569                 def = write_expr(state, left, 
11570                         read_expr(state, assignment_expr(state)));
11571                 break;
11572         case TOK_TIMESEQ:
11573         case TOK_DIVEQ:
11574         case TOK_MODEQ:
11575                 lvalue(state, left);
11576                 arithmetic(state, left);
11577                 eat(state, tok);
11578                 right = read_expr(state, assignment_expr(state));
11579                 arithmetic(state, right);
11580
11581                 sign = is_signed(left->type);
11582                 op = -1;
11583                 switch(tok) {
11584                 case TOK_TIMESEQ: op = sign? OP_SMUL : OP_UMUL; break;
11585                 case TOK_DIVEQ:   op = sign? OP_SDIV : OP_UDIV; break;
11586                 case TOK_MODEQ:   op = sign? OP_SMOD : OP_UMOD; break;
11587                 }
11588                 def = write_expr(state, left,
11589                         triple(state, op, left->type, 
11590                                 read_expr(state, left), right));
11591                 break;
11592         case TOK_PLUSEQ:
11593                 lvalue(state, left);
11594                 eat(state, TOK_PLUSEQ);
11595                 def = write_expr(state, left,
11596                         mk_add_expr(state, left, assignment_expr(state)));
11597                 break;
11598         case TOK_MINUSEQ:
11599                 lvalue(state, left);
11600                 eat(state, TOK_MINUSEQ);
11601                 def = write_expr(state, left,
11602                         mk_sub_expr(state, left, assignment_expr(state)));
11603                 break;
11604         case TOK_SLEQ:
11605         case TOK_SREQ:
11606         case TOK_ANDEQ:
11607         case TOK_XOREQ:
11608         case TOK_OREQ:
11609                 lvalue(state, left);
11610                 integral(state, left);
11611                 eat(state, tok);
11612                 right = read_expr(state, assignment_expr(state));
11613                 integral(state, right);
11614                 right = integral_promotion(state, right);
11615                 sign = is_signed(left->type);
11616                 op = -1;
11617                 switch(tok) {
11618                 case TOK_SLEQ:  op = OP_SL; break;
11619                 case TOK_SREQ:  op = sign? OP_SSR: OP_USR; break;
11620                 case TOK_ANDEQ: op = OP_AND; break;
11621                 case TOK_XOREQ: op = OP_XOR; break;
11622                 case TOK_OREQ:  op = OP_OR; break;
11623                 }
11624                 def = write_expr(state, left,
11625                         triple(state, op, left->type, 
11626                                 read_expr(state, left), right));
11627                 break;
11628         }
11629         return def;
11630 }
11631
11632 static struct triple *expr(struct compile_state *state)
11633 {
11634         struct triple *def;
11635         def = assignment_expr(state);
11636         while(peek(state) == TOK_COMMA) {
11637                 eat(state, TOK_COMMA);
11638                 def = mkprog(state, def, assignment_expr(state), 0UL);
11639         }
11640         return def;
11641 }
11642
11643 static void expr_statement(struct compile_state *state, struct triple *first)
11644 {
11645         if (peek(state) != TOK_SEMI) {
11646                 /* lvalue conversions always apply except when certian operators
11647                  * are applied.  I apply the lvalue conversions here
11648                  * as I know no more operators will be applied.
11649                  */
11650                 flatten(state, first, lvalue_conversion(state, expr(state)));
11651         }
11652         eat(state, TOK_SEMI);
11653 }
11654
11655 static void if_statement(struct compile_state *state, struct triple *first)
11656 {
11657         struct triple *test, *jmp1, *jmp2, *middle, *end;
11658
11659         jmp1 = jmp2 = middle = 0;
11660         eat(state, TOK_IF);
11661         eat(state, TOK_LPAREN);
11662         test = expr(state);
11663         bool(state, test);
11664         /* Cleanup and invert the test */
11665         test = lfalse_expr(state, read_expr(state, test));
11666         eat(state, TOK_RPAREN);
11667         /* Generate the needed pieces */
11668         middle = label(state);
11669         jmp1 = branch(state, middle, test);
11670         /* Thread the pieces together */
11671         flatten(state, first, test);
11672         flatten(state, first, jmp1);
11673         flatten(state, first, label(state));
11674         statement(state, first);
11675         if (peek(state) == TOK_ELSE) {
11676                 eat(state, TOK_ELSE);
11677                 /* Generate the rest of the pieces */
11678                 end = label(state);
11679                 jmp2 = branch(state, end, 0);
11680                 /* Thread them together */
11681                 flatten(state, first, jmp2);
11682                 flatten(state, first, middle);
11683                 statement(state, first);
11684                 flatten(state, first, end);
11685         }
11686         else {
11687                 flatten(state, first, middle);
11688         }
11689 }
11690
11691 static void for_statement(struct compile_state *state, struct triple *first)
11692 {
11693         struct triple *head, *test, *tail, *jmp1, *jmp2, *end;
11694         struct triple *label1, *label2, *label3;
11695         struct hash_entry *ident;
11696
11697         eat(state, TOK_FOR);
11698         eat(state, TOK_LPAREN);
11699         head = test = tail = jmp1 = jmp2 = 0;
11700         if (peek(state) != TOK_SEMI) {
11701                 head = expr(state);
11702         } 
11703         eat(state, TOK_SEMI);
11704         if (peek(state) != TOK_SEMI) {
11705                 test = expr(state);
11706                 bool(state, test);
11707                 test = ltrue_expr(state, read_expr(state, test));
11708         }
11709         eat(state, TOK_SEMI);
11710         if (peek(state) != TOK_RPAREN) {
11711                 tail = expr(state);
11712         }
11713         eat(state, TOK_RPAREN);
11714         /* Generate the needed pieces */
11715         label1 = label(state);
11716         label2 = label(state);
11717         label3 = label(state);
11718         if (test) {
11719                 jmp1 = branch(state, label3, 0);
11720                 jmp2 = branch(state, label1, test);
11721         }
11722         else {
11723                 jmp2 = branch(state, label1, 0);
11724         }
11725         end = label(state);
11726         /* Remember where break and continue go */
11727         start_scope(state);
11728         ident = state->i_break;
11729         symbol(state, ident, &ident->sym_ident, end, end->type);
11730         ident = state->i_continue;
11731         symbol(state, ident, &ident->sym_ident, label2, label2->type);
11732         /* Now include the body */
11733         flatten(state, first, head);
11734         flatten(state, first, jmp1);
11735         flatten(state, first, label1);
11736         statement(state, first);
11737         flatten(state, first, label2);
11738         flatten(state, first, tail);
11739         flatten(state, first, label3);
11740         flatten(state, first, test);
11741         flatten(state, first, jmp2);
11742         flatten(state, first, end);
11743         /* Cleanup the break/continue scope */
11744         end_scope(state);
11745 }
11746
11747 static void while_statement(struct compile_state *state, struct triple *first)
11748 {
11749         struct triple *label1, *test, *label2, *jmp1, *jmp2, *end;
11750         struct hash_entry *ident;
11751         eat(state, TOK_WHILE);
11752         eat(state, TOK_LPAREN);
11753         test = expr(state);
11754         bool(state, test);
11755         test = ltrue_expr(state, read_expr(state, test));
11756         eat(state, TOK_RPAREN);
11757         /* Generate the needed pieces */
11758         label1 = label(state);
11759         label2 = label(state);
11760         jmp1 = branch(state, label2, 0);
11761         jmp2 = branch(state, label1, test);
11762         end = label(state);
11763         /* Remember where break and continue go */
11764         start_scope(state);
11765         ident = state->i_break;
11766         symbol(state, ident, &ident->sym_ident, end, end->type);
11767         ident = state->i_continue;
11768         symbol(state, ident, &ident->sym_ident, label2, label2->type);
11769         /* Thread them together */
11770         flatten(state, first, jmp1);
11771         flatten(state, first, label1);
11772         statement(state, first);
11773         flatten(state, first, label2);
11774         flatten(state, first, test);
11775         flatten(state, first, jmp2);
11776         flatten(state, first, end);
11777         /* Cleanup the break/continue scope */
11778         end_scope(state);
11779 }
11780
11781 static void do_statement(struct compile_state *state, struct triple *first)
11782 {
11783         struct triple *label1, *label2, *test, *end;
11784         struct hash_entry *ident;
11785         eat(state, TOK_DO);
11786         /* Generate the needed pieces */
11787         label1 = label(state);
11788         label2 = label(state);
11789         end = label(state);
11790         /* Remember where break and continue go */
11791         start_scope(state);
11792         ident = state->i_break;
11793         symbol(state, ident, &ident->sym_ident, end, end->type);
11794         ident = state->i_continue;
11795         symbol(state, ident, &ident->sym_ident, label2, label2->type);
11796         /* Now include the body */
11797         flatten(state, first, label1);
11798         statement(state, first);
11799         /* Cleanup the break/continue scope */
11800         end_scope(state);
11801         /* Eat the rest of the loop */
11802         eat(state, TOK_WHILE);
11803         eat(state, TOK_LPAREN);
11804         test = read_expr(state, expr(state));
11805         bool(state, test);
11806         eat(state, TOK_RPAREN);
11807         eat(state, TOK_SEMI);
11808         /* Thread the pieces together */
11809         test = ltrue_expr(state, test);
11810         flatten(state, first, label2);
11811         flatten(state, first, test);
11812         flatten(state, first, branch(state, label1, test));
11813         flatten(state, first, end);
11814 }
11815
11816
11817 static void return_statement(struct compile_state *state, struct triple *first)
11818 {
11819         struct triple *jmp, *mv, *dest, *var, *val;
11820         int last;
11821         eat(state, TOK_RETURN);
11822
11823 #if DEBUG_ROMCC_WARNINGS
11824 #warning "FIXME implement a more general excess branch elimination"
11825 #endif
11826         val = 0;
11827         /* If we have a return value do some more work */
11828         if (peek(state) != TOK_SEMI) {
11829                 val = read_expr(state, expr(state));
11830         }
11831         eat(state, TOK_SEMI);
11832
11833         /* See if this last statement in a function */
11834         last = ((peek(state) == TOK_RBRACE) && 
11835                 (state->scope_depth == GLOBAL_SCOPE_DEPTH +2));
11836
11837         /* Find the return variable */
11838         var = fresult(state, state->main_function);
11839
11840         /* Find the return destination */
11841         dest = state->i_return->sym_ident->def;
11842         mv = jmp = 0;
11843         /* If needed generate a jump instruction */
11844         if (!last) {
11845                 jmp = branch(state, dest, 0);
11846         }
11847         /* If needed generate an assignment instruction */
11848         if (val) {
11849                 mv = write_expr(state, deref_index(state, var, 1), val);
11850         }
11851         /* Now put the code together */
11852         if (mv) {
11853                 flatten(state, first, mv);
11854                 flatten(state, first, jmp);
11855         }
11856         else if (jmp) {
11857                 flatten(state, first, jmp);
11858         }
11859 }
11860
11861 static void break_statement(struct compile_state *state, struct triple *first)
11862 {
11863         struct triple *dest;
11864         eat(state, TOK_BREAK);
11865         eat(state, TOK_SEMI);
11866         if (!state->i_break->sym_ident) {
11867                 error(state, 0, "break statement not within loop or switch");
11868         }
11869         dest = state->i_break->sym_ident->def;
11870         flatten(state, first, branch(state, dest, 0));
11871 }
11872
11873 static void continue_statement(struct compile_state *state, struct triple *first)
11874 {
11875         struct triple *dest;
11876         eat(state, TOK_CONTINUE);
11877         eat(state, TOK_SEMI);
11878         if (!state->i_continue->sym_ident) {
11879                 error(state, 0, "continue statement outside of a loop");
11880         }
11881         dest = state->i_continue->sym_ident->def;
11882         flatten(state, first, branch(state, dest, 0));
11883 }
11884
11885 static void goto_statement(struct compile_state *state, struct triple *first)
11886 {
11887         struct hash_entry *ident;
11888         eat(state, TOK_GOTO);
11889         ident = eat(state, TOK_IDENT)->ident;
11890         if (!ident->sym_label) {
11891                 /* If this is a forward branch allocate the label now,
11892                  * it will be flattend in the appropriate location later.
11893                  */
11894                 struct triple *ins;
11895                 ins = label(state);
11896                 label_symbol(state, ident, ins, FUNCTION_SCOPE_DEPTH);
11897         }
11898         eat(state, TOK_SEMI);
11899
11900         flatten(state, first, branch(state, ident->sym_label->def, 0));
11901 }
11902
11903 static void labeled_statement(struct compile_state *state, struct triple *first)
11904 {
11905         struct triple *ins;
11906         struct hash_entry *ident;
11907
11908         ident = eat(state, TOK_IDENT)->ident;
11909         if (ident->sym_label && ident->sym_label->def) {
11910                 ins = ident->sym_label->def;
11911                 put_occurance(ins->occurance);
11912                 ins->occurance = new_occurance(state);
11913         }
11914         else {
11915                 ins = label(state);
11916                 label_symbol(state, ident, ins, FUNCTION_SCOPE_DEPTH);
11917         }
11918         if (ins->id & TRIPLE_FLAG_FLATTENED) {
11919                 error(state, 0, "label %s already defined", ident->name);
11920         }
11921         flatten(state, first, ins);
11922
11923         eat(state, TOK_COLON);
11924         statement(state, first);
11925 }
11926
11927 static void switch_statement(struct compile_state *state, struct triple *first)
11928 {
11929         struct triple *value, *top, *end, *dbranch;
11930         struct hash_entry *ident;
11931
11932         /* See if we have a valid switch statement */
11933         eat(state, TOK_SWITCH);
11934         eat(state, TOK_LPAREN);
11935         value = expr(state);
11936         integral(state, value);
11937         value = read_expr(state, value);
11938         eat(state, TOK_RPAREN);
11939         /* Generate the needed pieces */
11940         top = label(state);
11941         end = label(state);
11942         dbranch = branch(state, end, 0);
11943         /* Remember where case branches and break goes */
11944         start_scope(state);
11945         ident = state->i_switch;
11946         symbol(state, ident, &ident->sym_ident, value, value->type);
11947         ident = state->i_case;
11948         symbol(state, ident, &ident->sym_ident, top, top->type);
11949         ident = state->i_break;
11950         symbol(state, ident, &ident->sym_ident, end, end->type);
11951         ident = state->i_default;
11952         symbol(state, ident, &ident->sym_ident, dbranch, dbranch->type);
11953         /* Thread them together */
11954         flatten(state, first, value);
11955         flatten(state, first, top);
11956         flatten(state, first, dbranch);
11957         statement(state, first);
11958         flatten(state, first, end);
11959         /* Cleanup the switch scope */
11960         end_scope(state);
11961 }
11962
11963 static void case_statement(struct compile_state *state, struct triple *first)
11964 {
11965         struct triple *cvalue, *dest, *test, *jmp;
11966         struct triple *ptr, *value, *top, *dbranch;
11967
11968         /* See if w have a valid case statement */
11969         eat(state, TOK_CASE);
11970         cvalue = constant_expr(state);
11971         integral(state, cvalue);
11972         if (cvalue->op != OP_INTCONST) {
11973                 error(state, 0, "integer constant expected");
11974         }
11975         eat(state, TOK_COLON);
11976         if (!state->i_case->sym_ident) {
11977                 error(state, 0, "case statement not within a switch");
11978         }
11979
11980         /* Lookup the interesting pieces */
11981         top = state->i_case->sym_ident->def;
11982         value = state->i_switch->sym_ident->def;
11983         dbranch = state->i_default->sym_ident->def;
11984
11985         /* See if this case label has already been used */
11986         for(ptr = top; ptr != dbranch; ptr = ptr->next) {
11987                 if (ptr->op != OP_EQ) {
11988                         continue;
11989                 }
11990                 if (RHS(ptr, 1)->u.cval == cvalue->u.cval) {
11991                         error(state, 0, "duplicate case %d statement",
11992                                 cvalue->u.cval);
11993                 }
11994         }
11995         /* Generate the needed pieces */
11996         dest = label(state);
11997         test = triple(state, OP_EQ, &int_type, value, cvalue);
11998         jmp = branch(state, dest, test);
11999         /* Thread the pieces together */
12000         flatten(state, dbranch, test);
12001         flatten(state, dbranch, jmp);
12002         flatten(state, dbranch, label(state));
12003         flatten(state, first, dest);
12004         statement(state, first);
12005 }
12006
12007 static void default_statement(struct compile_state *state, struct triple *first)
12008 {
12009         struct triple *dest;
12010         struct triple *dbranch, *end;
12011
12012         /* See if we have a valid default statement */
12013         eat(state, TOK_DEFAULT);
12014         eat(state, TOK_COLON);
12015
12016         if (!state->i_case->sym_ident) {
12017                 error(state, 0, "default statement not within a switch");
12018         }
12019
12020         /* Lookup the interesting pieces */
12021         dbranch = state->i_default->sym_ident->def;
12022         end = state->i_break->sym_ident->def;
12023
12024         /* See if a default statement has already happened */
12025         if (TARG(dbranch, 0) != end) {
12026                 error(state, 0, "duplicate default statement");
12027         }
12028
12029         /* Generate the needed pieces */
12030         dest = label(state);
12031
12032         /* Blame the branch on the default statement */
12033         put_occurance(dbranch->occurance);
12034         dbranch->occurance = new_occurance(state);
12035
12036         /* Thread the pieces together */
12037         TARG(dbranch, 0) = dest;
12038         use_triple(dest, dbranch);
12039         flatten(state, first, dest);
12040         statement(state, first);
12041 }
12042
12043 static void asm_statement(struct compile_state *state, struct triple *first)
12044 {
12045         struct asm_info *info;
12046         struct {
12047                 struct triple *constraint;
12048                 struct triple *expr;
12049         } out_param[MAX_LHS], in_param[MAX_RHS], clob_param[MAX_LHS];
12050         struct triple *def, *asm_str;
12051         int out, in, clobbers, more, colons, i;
12052         int flags;
12053
12054         flags = 0;
12055         eat(state, TOK_ASM);
12056         /* For now ignore the qualifiers */
12057         switch(peek(state)) {
12058         case TOK_CONST:
12059                 eat(state, TOK_CONST);
12060                 break;
12061         case TOK_VOLATILE:
12062                 eat(state, TOK_VOLATILE);
12063                 flags |= TRIPLE_FLAG_VOLATILE;
12064                 break;
12065         }
12066         eat(state, TOK_LPAREN);
12067         asm_str = string_constant(state);
12068
12069         colons = 0;
12070         out = in = clobbers = 0;
12071         /* Outputs */
12072         if ((colons == 0) && (peek(state) == TOK_COLON)) {
12073                 eat(state, TOK_COLON);
12074                 colons++;
12075                 more = (peek(state) == TOK_LIT_STRING);
12076                 while(more) {
12077                         struct triple *var;
12078                         struct triple *constraint;
12079                         char *str;
12080                         more = 0;
12081                         if (out > MAX_LHS) {
12082                                 error(state, 0, "Maximum output count exceeded.");
12083                         }
12084                         constraint = string_constant(state);
12085                         str = constraint->u.blob;
12086                         if (str[0] != '=') {
12087                                 error(state, 0, "Output constraint does not start with =");
12088                         }
12089                         constraint->u.blob = str + 1;
12090                         eat(state, TOK_LPAREN);
12091                         var = conditional_expr(state);
12092                         eat(state, TOK_RPAREN);
12093
12094                         lvalue(state, var);
12095                         out_param[out].constraint = constraint;
12096                         out_param[out].expr       = var;
12097                         if (peek(state) == TOK_COMMA) {
12098                                 eat(state, TOK_COMMA);
12099                                 more = 1;
12100                         }
12101                         out++;
12102                 }
12103         }
12104         /* Inputs */
12105         if ((colons == 1) && (peek(state) == TOK_COLON)) {
12106                 eat(state, TOK_COLON);
12107                 colons++;
12108                 more = (peek(state) == TOK_LIT_STRING);
12109                 while(more) {
12110                         struct triple *val;
12111                         struct triple *constraint;
12112                         char *str;
12113                         more = 0;
12114                         if (in > MAX_RHS) {
12115                                 error(state, 0, "Maximum input count exceeded.");
12116                         }
12117                         constraint = string_constant(state);
12118                         str = constraint->u.blob;
12119                         if (digitp(str[0] && str[1] == '\0')) {
12120                                 int val;
12121                                 val = digval(str[0]);
12122                                 if ((val < 0) || (val >= out)) {
12123                                         error(state, 0, "Invalid input constraint %d", val);
12124                                 }
12125                         }
12126                         eat(state, TOK_LPAREN);
12127                         val = conditional_expr(state);
12128                         eat(state, TOK_RPAREN);
12129
12130                         in_param[in].constraint = constraint;
12131                         in_param[in].expr       = val;
12132                         if (peek(state) == TOK_COMMA) {
12133                                 eat(state, TOK_COMMA);
12134                                 more = 1;
12135                         }
12136                         in++;
12137                 }
12138         }
12139
12140         /* Clobber */
12141         if ((colons == 2) && (peek(state) == TOK_COLON)) {
12142                 eat(state, TOK_COLON);
12143                 colons++;
12144                 more = (peek(state) == TOK_LIT_STRING);
12145                 while(more) {
12146                         struct triple *clobber;
12147                         more = 0;
12148                         if ((clobbers + out) > MAX_LHS) {
12149                                 error(state, 0, "Maximum clobber limit exceeded.");
12150                         }
12151                         clobber = string_constant(state);
12152
12153                         clob_param[clobbers].constraint = clobber;
12154                         if (peek(state) == TOK_COMMA) {
12155                                 eat(state, TOK_COMMA);
12156                                 more = 1;
12157                         }
12158                         clobbers++;
12159                 }
12160         }
12161         eat(state, TOK_RPAREN);
12162         eat(state, TOK_SEMI);
12163
12164
12165         info = xcmalloc(sizeof(*info), "asm_info");
12166         info->str = asm_str->u.blob;
12167         free_triple(state, asm_str);
12168
12169         def = new_triple(state, OP_ASM, &void_type, clobbers + out, in);
12170         def->u.ainfo = info;
12171         def->id |= flags;
12172
12173         /* Find the register constraints */
12174         for(i = 0; i < out; i++) {
12175                 struct triple *constraint;
12176                 constraint = out_param[i].constraint;
12177                 info->tmpl.lhs[i] = arch_reg_constraint(state, 
12178                         out_param[i].expr->type, constraint->u.blob);
12179                 free_triple(state, constraint);
12180         }
12181         for(; i - out < clobbers; i++) {
12182                 struct triple *constraint;
12183                 constraint = clob_param[i - out].constraint;
12184                 info->tmpl.lhs[i] = arch_reg_clobber(state, constraint->u.blob);
12185                 free_triple(state, constraint);
12186         }
12187         for(i = 0; i < in; i++) {
12188                 struct triple *constraint;
12189                 const char *str;
12190                 constraint = in_param[i].constraint;
12191                 str = constraint->u.blob;
12192                 if (digitp(str[0]) && str[1] == '\0') {
12193                         struct reg_info cinfo;
12194                         int val;
12195                         val = digval(str[0]);
12196                         cinfo.reg = info->tmpl.lhs[val].reg;
12197                         cinfo.regcm = arch_type_to_regcm(state, in_param[i].expr->type);
12198                         cinfo.regcm &= info->tmpl.lhs[val].regcm;
12199                         if (cinfo.reg == REG_UNSET) {
12200                                 cinfo.reg = REG_VIRT0 + val;
12201                         }
12202                         if (cinfo.regcm == 0) {
12203                                 error(state, 0, "No registers for %d", val);
12204                         }
12205                         info->tmpl.lhs[val] = cinfo;
12206                         info->tmpl.rhs[i]   = cinfo;
12207                                 
12208                 } else {
12209                         info->tmpl.rhs[i] = arch_reg_constraint(state, 
12210                                 in_param[i].expr->type, str);
12211                 }
12212                 free_triple(state, constraint);
12213         }
12214
12215         /* Now build the helper expressions */
12216         for(i = 0; i < in; i++) {
12217                 RHS(def, i) = read_expr(state, in_param[i].expr);
12218         }
12219         flatten(state, first, def);
12220         for(i = 0; i < (out + clobbers); i++) {
12221                 struct type *type;
12222                 struct triple *piece;
12223                 if (i < out) {
12224                         type = out_param[i].expr->type;
12225                 } else {
12226                         size_t size = arch_reg_size(info->tmpl.lhs[i].reg);
12227                         if (size >= SIZEOF_LONG) {
12228                                 type = &ulong_type;
12229                         } 
12230                         else if (size >= SIZEOF_INT) {
12231                                 type = &uint_type;
12232                         }
12233                         else if (size >= SIZEOF_SHORT) {
12234                                 type = &ushort_type;
12235                         }
12236                         else {
12237                                 type = &uchar_type;
12238                         }
12239                 }
12240                 piece = triple(state, OP_PIECE, type, def, 0);
12241                 piece->u.cval = i;
12242                 LHS(def, i) = piece;
12243                 flatten(state, first, piece);
12244         }
12245         /* And write the helpers to their destinations */
12246         for(i = 0; i < out; i++) {
12247                 struct triple *piece;
12248                 piece = LHS(def, i);
12249                 flatten(state, first,
12250                         write_expr(state, out_param[i].expr, piece));
12251         }
12252 }
12253
12254
12255 static int isdecl(int tok)
12256 {
12257         switch(tok) {
12258         case TOK_AUTO:
12259         case TOK_REGISTER:
12260         case TOK_STATIC:
12261         case TOK_EXTERN:
12262         case TOK_TYPEDEF:
12263         case TOK_CONST:
12264         case TOK_RESTRICT:
12265         case TOK_VOLATILE:
12266         case TOK_VOID:
12267         case TOK_CHAR:
12268         case TOK_SHORT:
12269         case TOK_INT:
12270         case TOK_LONG:
12271         case TOK_FLOAT:
12272         case TOK_DOUBLE:
12273         case TOK_SIGNED:
12274         case TOK_UNSIGNED:
12275         case TOK_STRUCT:
12276         case TOK_UNION:
12277         case TOK_ENUM:
12278         case TOK_TYPE_NAME: /* typedef name */
12279                 return 1;
12280         default:
12281                 return 0;
12282         }
12283 }
12284
12285 static void compound_statement(struct compile_state *state, struct triple *first)
12286 {
12287         eat(state, TOK_LBRACE);
12288         start_scope(state);
12289
12290         /* statement-list opt */
12291         while (peek(state) != TOK_RBRACE) {
12292                 statement(state, first);
12293         }
12294         end_scope(state);
12295         eat(state, TOK_RBRACE);
12296 }
12297
12298 static void statement(struct compile_state *state, struct triple *first)
12299 {
12300         int tok;
12301         tok = peek(state);
12302         if (tok == TOK_LBRACE) {
12303                 compound_statement(state, first);
12304         }
12305         else if (tok == TOK_IF) {
12306                 if_statement(state, first); 
12307         }
12308         else if (tok == TOK_FOR) {
12309                 for_statement(state, first);
12310         }
12311         else if (tok == TOK_WHILE) {
12312                 while_statement(state, first);
12313         }
12314         else if (tok == TOK_DO) {
12315                 do_statement(state, first);
12316         }
12317         else if (tok == TOK_RETURN) {
12318                 return_statement(state, first);
12319         }
12320         else if (tok == TOK_BREAK) {
12321                 break_statement(state, first);
12322         }
12323         else if (tok == TOK_CONTINUE) {
12324                 continue_statement(state, first);
12325         }
12326         else if (tok == TOK_GOTO) {
12327                 goto_statement(state, first);
12328         }
12329         else if (tok == TOK_SWITCH) {
12330                 switch_statement(state, first);
12331         }
12332         else if (tok == TOK_ASM) {
12333                 asm_statement(state, first);
12334         }
12335         else if ((tok == TOK_IDENT) && (peek2(state) == TOK_COLON)) {
12336                 labeled_statement(state, first); 
12337         }
12338         else if (tok == TOK_CASE) {
12339                 case_statement(state, first);
12340         }
12341         else if (tok == TOK_DEFAULT) {
12342                 default_statement(state, first);
12343         }
12344         else if (isdecl(tok)) {
12345                 /* This handles C99 intermixing of statements and decls */
12346                 decl(state, first);
12347         }
12348         else {
12349                 expr_statement(state, first);
12350         }
12351 }
12352
12353 static struct type *param_decl(struct compile_state *state)
12354 {
12355         struct type *type;
12356         struct hash_entry *ident;
12357         /* Cheat so the declarator will know we are not global */
12358         start_scope(state); 
12359         ident = 0;
12360         type = decl_specifiers(state);
12361         type = declarator(state, type, &ident, 0);
12362         type->field_ident = ident;
12363         end_scope(state);
12364         return type;
12365 }
12366
12367 static struct type *param_type_list(struct compile_state *state, struct type *type)
12368 {
12369         struct type *ftype, **next;
12370         ftype = new_type(TYPE_FUNCTION | (type->type & STOR_MASK), type, param_decl(state));
12371         next = &ftype->right;
12372         ftype->elements = 1;
12373         while(peek(state) == TOK_COMMA) {
12374                 eat(state, TOK_COMMA);
12375                 if (peek(state) == TOK_DOTS) {
12376                         eat(state, TOK_DOTS);
12377                         error(state, 0, "variadic functions not supported");
12378                 }
12379                 else {
12380                         *next = new_type(TYPE_PRODUCT, *next, param_decl(state));
12381                         next = &((*next)->right);
12382                         ftype->elements++;
12383                 }
12384         }
12385         return ftype;
12386 }
12387
12388 static struct type *type_name(struct compile_state *state)
12389 {
12390         struct type *type;
12391         type = specifier_qualifier_list(state);
12392         /* abstract-declarator (may consume no tokens) */
12393         type = declarator(state, type, 0, 0);
12394         return type;
12395 }
12396
12397 static struct type *direct_declarator(
12398         struct compile_state *state, struct type *type, 
12399         struct hash_entry **pident, int need_ident)
12400 {
12401         struct hash_entry *ident;
12402         struct type *outer;
12403         int op;
12404         outer = 0;
12405         arrays_complete(state, type);
12406         switch(peek(state)) {
12407         case TOK_IDENT:
12408                 ident = eat(state, TOK_IDENT)->ident;
12409                 if (!ident) {
12410                         error(state, 0, "Unexpected identifier found");
12411                 }
12412                 /* The name of what we are declaring */
12413                 *pident = ident;
12414                 break;
12415         case TOK_LPAREN:
12416                 eat(state, TOK_LPAREN);
12417                 outer = declarator(state, type, pident, need_ident);
12418                 eat(state, TOK_RPAREN);
12419                 break;
12420         default:
12421                 if (need_ident) {
12422                         error(state, 0, "Identifier expected");
12423                 }
12424                 break;
12425         }
12426         do {
12427                 op = 1;
12428                 arrays_complete(state, type);
12429                 switch(peek(state)) {
12430                 case TOK_LPAREN:
12431                         eat(state, TOK_LPAREN);
12432                         type = param_type_list(state, type);
12433                         eat(state, TOK_RPAREN);
12434                         break;
12435                 case TOK_LBRACKET:
12436                 {
12437                         unsigned int qualifiers;
12438                         struct triple *value;
12439                         value = 0;
12440                         eat(state, TOK_LBRACKET);
12441                         if (peek(state) != TOK_RBRACKET) {
12442                                 value = constant_expr(state);
12443                                 integral(state, value);
12444                         }
12445                         eat(state, TOK_RBRACKET);
12446
12447                         qualifiers = type->type & (QUAL_MASK | STOR_MASK);
12448                         type = new_type(TYPE_ARRAY | qualifiers, type, 0);
12449                         if (value) {
12450                                 type->elements = value->u.cval;
12451                                 free_triple(state, value);
12452                         } else {
12453                                 type->elements = ELEMENT_COUNT_UNSPECIFIED;
12454                                 op = 0;
12455                         }
12456                 }
12457                         break;
12458                 default:
12459                         op = 0;
12460                         break;
12461                 }
12462         } while(op);
12463         if (outer) {
12464                 struct type *inner;
12465                 arrays_complete(state, type);
12466                 FINISHME();
12467                 for(inner = outer; inner->left; inner = inner->left)
12468                         ;
12469                 inner->left = type;
12470                 type = outer;
12471         }
12472         return type;
12473 }
12474
12475 static struct type *declarator(
12476         struct compile_state *state, struct type *type, 
12477         struct hash_entry **pident, int need_ident)
12478 {
12479         while(peek(state) == TOK_STAR) {
12480                 eat(state, TOK_STAR);
12481                 type = new_type(TYPE_POINTER | (type->type & STOR_MASK), type, 0);
12482         }
12483         type = direct_declarator(state, type, pident, need_ident);
12484         return type;
12485 }
12486
12487 static struct type *typedef_name(
12488         struct compile_state *state, unsigned int specifiers)
12489 {
12490         struct hash_entry *ident;
12491         struct type *type;
12492         ident = eat(state, TOK_TYPE_NAME)->ident;
12493         type = ident->sym_ident->type;
12494         specifiers |= type->type & QUAL_MASK;
12495         if ((specifiers & (STOR_MASK | QUAL_MASK)) != 
12496                 (type->type & (STOR_MASK | QUAL_MASK))) {
12497                 type = clone_type(specifiers, type);
12498         }
12499         return type;
12500 }
12501
12502 static struct type *enum_specifier(
12503         struct compile_state *state, unsigned int spec)
12504 {
12505         struct hash_entry *ident;
12506         ulong_t base;
12507         int tok;
12508         struct type *enum_type;
12509         enum_type = 0;
12510         ident = 0;
12511         eat(state, TOK_ENUM);
12512         tok = peek(state);
12513         if ((tok == TOK_IDENT) || (tok == TOK_ENUM_CONST) || (tok == TOK_TYPE_NAME)) {
12514                 ident = eat(state, tok)->ident;
12515         }
12516         base = 0;
12517         if (!ident || (peek(state) == TOK_LBRACE)) {
12518                 struct type **next;
12519                 eat(state, TOK_LBRACE);
12520                 enum_type = new_type(TYPE_ENUM | spec, 0, 0);
12521                 enum_type->type_ident = ident;
12522                 next = &enum_type->right;
12523                 do {
12524                         struct hash_entry *eident;
12525                         struct triple *value;
12526                         struct type *entry;
12527                         eident = eat(state, TOK_IDENT)->ident;
12528                         if (eident->sym_ident) {
12529                                 error(state, 0, "%s already declared", 
12530                                         eident->name);
12531                         }
12532                         eident->tok = TOK_ENUM_CONST;
12533                         if (peek(state) == TOK_EQ) {
12534                                 struct triple *val;
12535                                 eat(state, TOK_EQ);
12536                                 val = constant_expr(state);
12537                                 integral(state, val);
12538                                 base = val->u.cval;
12539                         }
12540                         value = int_const(state, &int_type, base);
12541                         symbol(state, eident, &eident->sym_ident, value, &int_type);
12542                         entry = new_type(TYPE_LIST, 0, 0);
12543                         entry->field_ident = eident;
12544                         *next = entry;
12545                         next = &entry->right;
12546                         base += 1;
12547                         if (peek(state) == TOK_COMMA) {
12548                                 eat(state, TOK_COMMA);
12549                         }
12550                 } while(peek(state) != TOK_RBRACE);
12551                 eat(state, TOK_RBRACE);
12552                 if (ident) {
12553                         symbol(state, ident, &ident->sym_tag, 0, enum_type);
12554                 }
12555         }
12556         if (ident && ident->sym_tag &&
12557                 ident->sym_tag->type &&
12558                 ((ident->sym_tag->type->type & TYPE_MASK) == TYPE_ENUM)) {
12559                 enum_type = clone_type(spec, ident->sym_tag->type);
12560         }
12561         else if (ident && !enum_type) {
12562                 error(state, 0, "enum %s undeclared", ident->name);
12563         }
12564         return enum_type;
12565 }
12566
12567 static struct type *struct_declarator(
12568         struct compile_state *state, struct type *type, struct hash_entry **ident)
12569 {
12570         if (peek(state) != TOK_COLON) {
12571                 type = declarator(state, type, ident, 1);
12572         }
12573         if (peek(state) == TOK_COLON) {
12574                 struct triple *value;
12575                 eat(state, TOK_COLON);
12576                 value = constant_expr(state);
12577                 if (value->op != OP_INTCONST) {
12578                         error(state, 0, "Invalid constant expression");
12579                 }
12580                 if (value->u.cval > size_of(state, type)) {
12581                         error(state, 0, "bitfield larger than base type");
12582                 }
12583                 if (!TYPE_INTEGER(type->type) || ((type->type & TYPE_MASK) == TYPE_BITFIELD)) {
12584                         error(state, 0, "bitfield base not an integer type");
12585                 }
12586                 type = new_type(TYPE_BITFIELD, type, 0);
12587                 type->elements = value->u.cval;
12588         }
12589         return type;
12590 }
12591
12592 static struct type *struct_or_union_specifier(
12593         struct compile_state *state, unsigned int spec)
12594 {
12595         struct type *struct_type;
12596         struct hash_entry *ident;
12597         unsigned int type_main;
12598         unsigned int type_join;
12599         int tok;
12600         struct_type = 0;
12601         ident = 0;
12602         switch(peek(state)) {
12603         case TOK_STRUCT:
12604                 eat(state, TOK_STRUCT);
12605                 type_main = TYPE_STRUCT;
12606                 type_join = TYPE_PRODUCT;
12607                 break;
12608         case TOK_UNION:
12609                 eat(state, TOK_UNION);
12610                 type_main = TYPE_UNION;
12611                 type_join = TYPE_OVERLAP;
12612                 break;
12613         default:
12614                 eat(state, TOK_STRUCT);
12615                 type_main = TYPE_STRUCT;
12616                 type_join = TYPE_PRODUCT;
12617                 break;
12618         }
12619         tok = peek(state);
12620         if ((tok == TOK_IDENT) || (tok == TOK_ENUM_CONST) || (tok == TOK_TYPE_NAME)) {
12621                 ident = eat(state, tok)->ident;
12622         }
12623         if (!ident || (peek(state) == TOK_LBRACE)) {
12624                 ulong_t elements;
12625                 struct type **next;
12626                 elements = 0;
12627                 eat(state, TOK_LBRACE);
12628                 next = &struct_type;
12629                 do {
12630                         struct type *base_type;
12631                         int done;
12632                         base_type = specifier_qualifier_list(state);
12633                         do {
12634                                 struct type *type;
12635                                 struct hash_entry *fident;
12636                                 done = 1;
12637                                 type = struct_declarator(state, base_type, &fident);
12638                                 elements++;
12639                                 if (peek(state) == TOK_COMMA) {
12640                                         done = 0;
12641                                         eat(state, TOK_COMMA);
12642                                 }
12643                                 type = clone_type(0, type);
12644                                 type->field_ident = fident;
12645                                 if (*next) {
12646                                         *next = new_type(type_join, *next, type);
12647                                         next = &((*next)->right);
12648                                 } else {
12649                                         *next = type;
12650                                 }
12651                         } while(!done);
12652                         eat(state, TOK_SEMI);
12653                 } while(peek(state) != TOK_RBRACE);
12654                 eat(state, TOK_RBRACE);
12655                 struct_type = new_type(type_main | spec, struct_type, 0);
12656                 struct_type->type_ident = ident;
12657                 struct_type->elements = elements;
12658                 if (ident) {
12659                         symbol(state, ident, &ident->sym_tag, 0, struct_type);
12660                 }
12661         }
12662         if (ident && ident->sym_tag && 
12663                 ident->sym_tag->type && 
12664                 ((ident->sym_tag->type->type & TYPE_MASK) == type_main)) {
12665                 struct_type = clone_type(spec, ident->sym_tag->type);
12666         }
12667         else if (ident && !struct_type) {
12668                 error(state, 0, "%s %s undeclared", 
12669                         (type_main == TYPE_STRUCT)?"struct" : "union",
12670                         ident->name);
12671         }
12672         return struct_type;
12673 }
12674
12675 static unsigned int storage_class_specifier_opt(struct compile_state *state)
12676 {
12677         unsigned int specifiers;
12678         switch(peek(state)) {
12679         case TOK_AUTO:
12680                 eat(state, TOK_AUTO);
12681                 specifiers = STOR_AUTO;
12682                 break;
12683         case TOK_REGISTER:
12684                 eat(state, TOK_REGISTER);
12685                 specifiers = STOR_REGISTER;
12686                 break;
12687         case TOK_STATIC:
12688                 eat(state, TOK_STATIC);
12689                 specifiers = STOR_STATIC;
12690                 break;
12691         case TOK_EXTERN:
12692                 eat(state, TOK_EXTERN);
12693                 specifiers = STOR_EXTERN;
12694                 break;
12695         case TOK_TYPEDEF:
12696                 eat(state, TOK_TYPEDEF);
12697                 specifiers = STOR_TYPEDEF;
12698                 break;
12699         default:
12700                 if (state->scope_depth <= GLOBAL_SCOPE_DEPTH) {
12701                         specifiers = STOR_LOCAL;
12702                 }
12703                 else {
12704                         specifiers = STOR_AUTO;
12705                 }
12706         }
12707         return specifiers;
12708 }
12709
12710 static unsigned int function_specifier_opt(struct compile_state *state)
12711 {
12712         /* Ignore the inline keyword */
12713         unsigned int specifiers;
12714         specifiers = 0;
12715         switch(peek(state)) {
12716         case TOK_INLINE:
12717                 eat(state, TOK_INLINE);
12718                 specifiers = STOR_INLINE;
12719         }
12720         return specifiers;
12721 }
12722
12723 static unsigned int attrib(struct compile_state *state, unsigned int attributes)
12724 {
12725         int tok = peek(state);
12726         switch(tok) {
12727         case TOK_COMMA:
12728         case TOK_LPAREN:
12729                 /* The empty attribute ignore it */
12730                 break;
12731         case TOK_IDENT:
12732         case TOK_ENUM_CONST:
12733         case TOK_TYPE_NAME:
12734         {
12735                 struct hash_entry *ident;
12736                 ident = eat(state, TOK_IDENT)->ident;
12737
12738                 if (ident == state->i_noinline) {
12739                         if (attributes & ATTRIB_ALWAYS_INLINE) {
12740                                 error(state, 0, "both always_inline and noinline attribtes");
12741                         }
12742                         attributes |= ATTRIB_NOINLINE;
12743                 }
12744                 else if (ident == state->i_always_inline) {
12745                         if (attributes & ATTRIB_NOINLINE) {
12746                                 error(state, 0, "both noinline and always_inline attribtes");
12747                         }
12748                         attributes |= ATTRIB_ALWAYS_INLINE;
12749                 }
12750                 else {
12751                         error(state, 0, "Unknown attribute:%s", ident->name);
12752                 }
12753                 break;
12754         }
12755         default:
12756                 error(state, 0, "Unexpected token: %s\n", tokens[tok]);
12757                 break;
12758         }
12759         return attributes;
12760 }
12761
12762 static unsigned int attribute_list(struct compile_state *state, unsigned type)
12763 {
12764         type = attrib(state, type);
12765         while(peek(state) == TOK_COMMA) {
12766                 eat(state, TOK_COMMA);
12767                 type = attrib(state, type);
12768         }
12769         return type;
12770 }
12771
12772 static unsigned int attributes_opt(struct compile_state *state, unsigned type)
12773 {
12774         if (peek(state) == TOK_ATTRIBUTE) {
12775                 eat(state, TOK_ATTRIBUTE);
12776                 eat(state, TOK_LPAREN);
12777                 eat(state, TOK_LPAREN);
12778                 type = attribute_list(state, type);
12779                 eat(state, TOK_RPAREN);
12780                 eat(state, TOK_RPAREN);
12781         }
12782         return type;
12783 }
12784
12785 static unsigned int type_qualifiers(struct compile_state *state)
12786 {
12787         unsigned int specifiers;
12788         int done;
12789         done = 0;
12790         specifiers = QUAL_NONE;
12791         do {
12792                 switch(peek(state)) {
12793                 case TOK_CONST:
12794                         eat(state, TOK_CONST);
12795                         specifiers |= QUAL_CONST;
12796                         break;
12797                 case TOK_VOLATILE:
12798                         eat(state, TOK_VOLATILE);
12799                         specifiers |= QUAL_VOLATILE;
12800                         break;
12801                 case TOK_RESTRICT:
12802                         eat(state, TOK_RESTRICT);
12803                         specifiers |= QUAL_RESTRICT;
12804                         break;
12805                 default:
12806                         done = 1;
12807                         break;
12808                 }
12809         } while(!done);
12810         return specifiers;
12811 }
12812
12813 static struct type *type_specifier(
12814         struct compile_state *state, unsigned int spec)
12815 {
12816         struct type *type;
12817         int tok;
12818         type = 0;
12819         switch((tok = peek(state))) {
12820         case TOK_VOID:
12821                 eat(state, TOK_VOID);
12822                 type = new_type(TYPE_VOID | spec, 0, 0);
12823                 break;
12824         case TOK_CHAR:
12825                 eat(state, TOK_CHAR);
12826                 type = new_type(TYPE_CHAR | spec, 0, 0);
12827                 break;
12828         case TOK_SHORT:
12829                 eat(state, TOK_SHORT);
12830                 if (peek(state) == TOK_INT) {
12831                         eat(state, TOK_INT);
12832                 }
12833                 type = new_type(TYPE_SHORT | spec, 0, 0);
12834                 break;
12835         case TOK_INT:
12836                 eat(state, TOK_INT);
12837                 type = new_type(TYPE_INT | spec, 0, 0);
12838                 break;
12839         case TOK_LONG:
12840                 eat(state, TOK_LONG);
12841                 switch(peek(state)) {
12842                 case TOK_LONG:
12843                         eat(state, TOK_LONG);
12844                         error(state, 0, "long long not supported");
12845                         break;
12846                 case TOK_DOUBLE:
12847                         eat(state, TOK_DOUBLE);
12848                         error(state, 0, "long double not supported");
12849                         break;
12850                 case TOK_INT:
12851                         eat(state, TOK_INT);
12852                         type = new_type(TYPE_LONG | spec, 0, 0);
12853                         break;
12854                 default:
12855                         type = new_type(TYPE_LONG | spec, 0, 0);
12856                         break;
12857                 }
12858                 break;
12859         case TOK_FLOAT:
12860                 eat(state, TOK_FLOAT);
12861                 error(state, 0, "type float not supported");
12862                 break;
12863         case TOK_DOUBLE:
12864                 eat(state, TOK_DOUBLE);
12865                 error(state, 0, "type double not supported");
12866                 break;
12867         case TOK_SIGNED:
12868                 eat(state, TOK_SIGNED);
12869                 switch(peek(state)) {
12870                 case TOK_LONG:
12871                         eat(state, TOK_LONG);
12872                         switch(peek(state)) {
12873                         case TOK_LONG:
12874                                 eat(state, TOK_LONG);
12875                                 error(state, 0, "type long long not supported");
12876                                 break;
12877                         case TOK_INT:
12878                                 eat(state, TOK_INT);
12879                                 type = new_type(TYPE_LONG | spec, 0, 0);
12880                                 break;
12881                         default:
12882                                 type = new_type(TYPE_LONG | spec, 0, 0);
12883                                 break;
12884                         }
12885                         break;
12886                 case TOK_INT:
12887                         eat(state, TOK_INT);
12888                         type = new_type(TYPE_INT | spec, 0, 0);
12889                         break;
12890                 case TOK_SHORT:
12891                         eat(state, TOK_SHORT);
12892                         type = new_type(TYPE_SHORT | spec, 0, 0);
12893                         break;
12894                 case TOK_CHAR:
12895                         eat(state, TOK_CHAR);
12896                         type = new_type(TYPE_CHAR | spec, 0, 0);
12897                         break;
12898                 default:
12899                         type = new_type(TYPE_INT | spec, 0, 0);
12900                         break;
12901                 }
12902                 break;
12903         case TOK_UNSIGNED:
12904                 eat(state, TOK_UNSIGNED);
12905                 switch(peek(state)) {
12906                 case TOK_LONG:
12907                         eat(state, TOK_LONG);
12908                         switch(peek(state)) {
12909                         case TOK_LONG:
12910                                 eat(state, TOK_LONG);
12911                                 error(state, 0, "unsigned long long not supported");
12912                                 break;
12913                         case TOK_INT:
12914                                 eat(state, TOK_INT);
12915                                 type = new_type(TYPE_ULONG | spec, 0, 0);
12916                                 break;
12917                         default:
12918                                 type = new_type(TYPE_ULONG | spec, 0, 0);
12919                                 break;
12920                         }
12921                         break;
12922                 case TOK_INT:
12923                         eat(state, TOK_INT);
12924                         type = new_type(TYPE_UINT | spec, 0, 0);
12925                         break;
12926                 case TOK_SHORT:
12927                         eat(state, TOK_SHORT);
12928                         type = new_type(TYPE_USHORT | spec, 0, 0);
12929                         break;
12930                 case TOK_CHAR:
12931                         eat(state, TOK_CHAR);
12932                         type = new_type(TYPE_UCHAR | spec, 0, 0);
12933                         break;
12934                 default:
12935                         type = new_type(TYPE_UINT | spec, 0, 0);
12936                         break;
12937                 }
12938                 break;
12939                 /* struct or union specifier */
12940         case TOK_STRUCT:
12941         case TOK_UNION:
12942                 type = struct_or_union_specifier(state, spec);
12943                 break;
12944                 /* enum-spefifier */
12945         case TOK_ENUM:
12946                 type = enum_specifier(state, spec);
12947                 break;
12948                 /* typedef name */
12949         case TOK_TYPE_NAME:
12950                 type = typedef_name(state, spec);
12951                 break;
12952         default:
12953                 error(state, 0, "bad type specifier %s", 
12954                         tokens[tok]);
12955                 break;
12956         }
12957         return type;
12958 }
12959
12960 static int istype(int tok)
12961 {
12962         switch(tok) {
12963         case TOK_CONST:
12964         case TOK_RESTRICT:
12965         case TOK_VOLATILE:
12966         case TOK_VOID:
12967         case TOK_CHAR:
12968         case TOK_SHORT:
12969         case TOK_INT:
12970         case TOK_LONG:
12971         case TOK_FLOAT:
12972         case TOK_DOUBLE:
12973         case TOK_SIGNED:
12974         case TOK_UNSIGNED:
12975         case TOK_STRUCT:
12976         case TOK_UNION:
12977         case TOK_ENUM:
12978         case TOK_TYPE_NAME:
12979                 return 1;
12980         default:
12981                 return 0;
12982         }
12983 }
12984
12985
12986 static struct type *specifier_qualifier_list(struct compile_state *state)
12987 {
12988         struct type *type;
12989         unsigned int specifiers = 0;
12990
12991         /* type qualifiers */
12992         specifiers |= type_qualifiers(state);
12993
12994         /* type specifier */
12995         type = type_specifier(state, specifiers);
12996
12997         return type;
12998 }
12999
13000 #if DEBUG_ROMCC_WARNING
13001 static int isdecl_specifier(int tok)
13002 {
13003         switch(tok) {
13004                 /* storage class specifier */
13005         case TOK_AUTO:
13006         case TOK_REGISTER:
13007         case TOK_STATIC:
13008         case TOK_EXTERN:
13009         case TOK_TYPEDEF:
13010                 /* type qualifier */
13011         case TOK_CONST:
13012         case TOK_RESTRICT:
13013         case TOK_VOLATILE:
13014                 /* type specifiers */
13015         case TOK_VOID:
13016         case TOK_CHAR:
13017         case TOK_SHORT:
13018         case TOK_INT:
13019         case TOK_LONG:
13020         case TOK_FLOAT:
13021         case TOK_DOUBLE:
13022         case TOK_SIGNED:
13023         case TOK_UNSIGNED:
13024                 /* struct or union specifier */
13025         case TOK_STRUCT:
13026         case TOK_UNION:
13027                 /* enum-spefifier */
13028         case TOK_ENUM:
13029                 /* typedef name */
13030         case TOK_TYPE_NAME:
13031                 /* function specifiers */
13032         case TOK_INLINE:
13033                 return 1;
13034         default:
13035                 return 0;
13036         }
13037 }
13038 #endif
13039
13040 static struct type *decl_specifiers(struct compile_state *state)
13041 {
13042         struct type *type;
13043         unsigned int specifiers;
13044         /* I am overly restrictive in the arragement of specifiers supported.
13045          * C is overly flexible in this department it makes interpreting
13046          * the parse tree difficult.
13047          */
13048         specifiers = 0;
13049
13050         /* storage class specifier */
13051         specifiers |= storage_class_specifier_opt(state);
13052
13053         /* function-specifier */
13054         specifiers |= function_specifier_opt(state);
13055
13056         /* attributes */
13057         specifiers |= attributes_opt(state, 0);
13058
13059         /* type qualifier */
13060         specifiers |= type_qualifiers(state);
13061
13062         /* type specifier */
13063         type = type_specifier(state, specifiers);
13064         return type;
13065 }
13066
13067 struct field_info {
13068         struct type *type;
13069         size_t offset;
13070 };
13071
13072 static struct field_info designator(struct compile_state *state, struct type *type)
13073 {
13074         int tok;
13075         struct field_info info;
13076         info.offset = ~0U;
13077         info.type = 0;
13078         do {
13079                 switch(peek(state)) {
13080                 case TOK_LBRACKET:
13081                 {
13082                         struct triple *value;
13083                         if ((type->type & TYPE_MASK) != TYPE_ARRAY) {
13084                                 error(state, 0, "Array designator not in array initializer");
13085                         }
13086                         eat(state, TOK_LBRACKET);
13087                         value = constant_expr(state);
13088                         eat(state, TOK_RBRACKET);
13089
13090                         info.type = type->left;
13091                         info.offset = value->u.cval * size_of(state, info.type);
13092                         break;
13093                 }
13094                 case TOK_DOT:
13095                 {
13096                         struct hash_entry *field;
13097                         if (((type->type & TYPE_MASK) != TYPE_STRUCT) &&
13098                                 ((type->type & TYPE_MASK) != TYPE_UNION))
13099                         {
13100                                 error(state, 0, "Struct designator not in struct initializer");
13101                         }
13102                         eat(state, TOK_DOT);
13103                         field = eat(state, TOK_IDENT)->ident;
13104                         info.offset = field_offset(state, type, field);
13105                         info.type   = field_type(state, type, field);
13106                         break;
13107                 }
13108                 default:
13109                         error(state, 0, "Invalid designator");
13110                 }
13111                 tok = peek(state);
13112         } while((tok == TOK_LBRACKET) || (tok == TOK_DOT));
13113         eat(state, TOK_EQ);
13114         return info;
13115 }
13116
13117 static struct triple *initializer(
13118         struct compile_state *state, struct type *type)
13119 {
13120         struct triple *result;
13121 #if DEBUG_ROMCC_WARNINGS
13122 #warning "FIXME more consistent initializer handling (where should eval_const_expr go?"
13123 #endif
13124         if (peek(state) != TOK_LBRACE) {
13125                 result = assignment_expr(state);
13126                 if (((type->type & TYPE_MASK) == TYPE_ARRAY) &&
13127                         (type->elements == ELEMENT_COUNT_UNSPECIFIED) &&
13128                         ((result->type->type & TYPE_MASK) == TYPE_ARRAY) &&
13129                         (result->type->elements != ELEMENT_COUNT_UNSPECIFIED) &&
13130                         (equiv_types(type->left, result->type->left))) {
13131                         type->elements = result->type->elements;
13132                 }
13133                 if (is_lvalue(state, result) && 
13134                         ((result->type->type & TYPE_MASK) == TYPE_ARRAY) &&
13135                         (type->type & TYPE_MASK) != TYPE_ARRAY)
13136                 {
13137                         result = lvalue_conversion(state, result);
13138                 }
13139                 if (!is_init_compatible(state, type, result->type)) {
13140                         error(state, 0, "Incompatible types in initializer");
13141                 }
13142                 if (!equiv_types(type, result->type)) {
13143                         result = mk_cast_expr(state, type, result);
13144                 }
13145         }
13146         else {
13147                 int comma;
13148                 size_t max_offset;
13149                 struct field_info info;
13150                 void *buf;
13151                 if (((type->type & TYPE_MASK) != TYPE_ARRAY) &&
13152                         ((type->type & TYPE_MASK) != TYPE_STRUCT)) {
13153                         internal_error(state, 0, "unknown initializer type");
13154                 }
13155                 info.offset = 0;
13156                 info.type = type->left;
13157                 if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
13158                         info.type = next_field(state, type, 0);
13159                 }
13160                 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
13161                         max_offset = 0;
13162                 } else {
13163                         max_offset = size_of(state, type);
13164                 }
13165                 buf = xcmalloc(bits_to_bytes(max_offset), "initializer");
13166                 eat(state, TOK_LBRACE);
13167                 do {
13168                         struct triple *value;
13169                         struct type *value_type;
13170                         size_t value_size;
13171                         void *dest;
13172                         int tok;
13173                         comma = 0;
13174                         tok = peek(state);
13175                         if ((tok == TOK_LBRACKET) || (tok == TOK_DOT)) {
13176                                 info = designator(state, type);
13177                         }
13178                         if ((type->elements != ELEMENT_COUNT_UNSPECIFIED) &&
13179                                 (info.offset >= max_offset)) {
13180                                 error(state, 0, "element beyond bounds");
13181                         }
13182                         value_type = info.type;
13183                         value = eval_const_expr(state, initializer(state, value_type));
13184                         value_size = size_of(state, value_type);
13185                         if (((type->type & TYPE_MASK) == TYPE_ARRAY) &&
13186                                 (type->elements == ELEMENT_COUNT_UNSPECIFIED) &&
13187                                 (max_offset <= info.offset)) {
13188                                 void *old_buf;
13189                                 size_t old_size;
13190                                 old_buf = buf;
13191                                 old_size = max_offset;
13192                                 max_offset = info.offset + value_size;
13193                                 buf = xmalloc(bits_to_bytes(max_offset), "initializer");
13194                                 memcpy(buf, old_buf, bits_to_bytes(old_size));
13195                                 xfree(old_buf);
13196                         }
13197                         dest = ((char *)buf) + bits_to_bytes(info.offset);
13198 #if DEBUG_INITIALIZER
13199                         fprintf(state->errout, "dest = buf + %d max_offset: %d value_size: %d op: %d\n", 
13200                                 dest - buf,
13201                                 bits_to_bytes(max_offset),
13202                                 bits_to_bytes(value_size),
13203                                 value->op);
13204 #endif
13205                         if (value->op == OP_BLOBCONST) {
13206                                 memcpy(dest, value->u.blob, bits_to_bytes(value_size));
13207                         }
13208                         else if ((value->op == OP_INTCONST) && (value_size == SIZEOF_I8)) {
13209 #if DEBUG_INITIALIZER
13210                                 fprintf(state->errout, "byte: %02x\n", value->u.cval & 0xff);
13211 #endif
13212                                 *((uint8_t *)dest) = value->u.cval & 0xff;
13213                         }
13214                         else if ((value->op == OP_INTCONST) && (value_size == SIZEOF_I16)) {
13215                                 *((uint16_t *)dest) = value->u.cval & 0xffff;
13216                         }
13217                         else if ((value->op == OP_INTCONST) && (value_size == SIZEOF_I32)) {
13218                                 *((uint32_t *)dest) = value->u.cval & 0xffffffff;
13219                         }
13220                         else {
13221                                 internal_error(state, 0, "unhandled constant initializer");
13222                         }
13223                         free_triple(state, value);
13224                         if (peek(state) == TOK_COMMA) {
13225                                 eat(state, TOK_COMMA);
13226                                 comma = 1;
13227                         }
13228                         info.offset += value_size;
13229                         if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
13230                                 info.type = next_field(state, type, info.type);
13231                                 info.offset = field_offset(state, type, 
13232                                         info.type->field_ident);
13233                         }
13234                 } while(comma && (peek(state) != TOK_RBRACE));
13235                 if ((type->elements == ELEMENT_COUNT_UNSPECIFIED) &&
13236                         ((type->type & TYPE_MASK) == TYPE_ARRAY)) {
13237                         type->elements = max_offset / size_of(state, type->left);
13238                 }
13239                 eat(state, TOK_RBRACE);
13240                 result = triple(state, OP_BLOBCONST, type, 0, 0);
13241                 result->u.blob = buf;
13242         }
13243         return result;
13244 }
13245
13246 static void resolve_branches(struct compile_state *state, struct triple *first)
13247 {
13248         /* Make a second pass and finish anything outstanding
13249          * with respect to branches.  The only outstanding item
13250          * is to see if there are goto to labels that have not
13251          * been defined and to error about them.
13252          */
13253         int i;
13254         struct triple *ins;
13255         /* Also error on branches that do not use their targets */
13256         ins = first;
13257         do {
13258                 if (!triple_is_ret(state, ins)) {
13259                         struct triple **expr ;
13260                         struct triple_set *set;
13261                         expr = triple_targ(state, ins, 0);
13262                         for(; expr; expr = triple_targ(state, ins, expr)) {
13263                                 struct triple *targ;
13264                                 targ = *expr;
13265                                 for(set = targ?targ->use:0; set; set = set->next) {
13266                                         if (set->member == ins) {
13267                                                 break;
13268                                         }
13269                                 }
13270                                 if (!set) {
13271                                         internal_error(state, ins, "targ not used");
13272                                 }
13273                         }
13274                 }
13275                 ins = ins->next;
13276         } while(ins != first);
13277         /* See if there are goto to labels that have not been defined */
13278         for(i = 0; i < HASH_TABLE_SIZE; i++) {
13279                 struct hash_entry *entry;
13280                 for(entry = state->hash_table[i]; entry; entry = entry->next) {
13281                         struct triple *ins;
13282                         if (!entry->sym_label) {
13283                                 continue;
13284                         }
13285                         ins = entry->sym_label->def;
13286                         if (!(ins->id & TRIPLE_FLAG_FLATTENED)) {
13287                                 error(state, ins, "label `%s' used but not defined",
13288                                         entry->name);
13289                         }
13290                 }
13291         }
13292 }
13293
13294 static struct triple *function_definition(
13295         struct compile_state *state, struct type *type)
13296 {
13297         struct triple *def, *tmp, *first, *end, *retvar, *result, *ret;
13298         struct triple *fname;
13299         struct type *fname_type;
13300         struct hash_entry *ident;
13301         struct type *param, *crtype, *ctype;
13302         int i;
13303         if ((type->type &TYPE_MASK) != TYPE_FUNCTION) {
13304                 error(state, 0, "Invalid function header");
13305         }
13306
13307         /* Verify the function type */
13308         if (((type->right->type & TYPE_MASK) != TYPE_VOID)  &&
13309                 ((type->right->type & TYPE_MASK) != TYPE_PRODUCT) &&
13310                 (type->right->field_ident == 0)) {
13311                 error(state, 0, "Invalid function parameters");
13312         }
13313         param = type->right;
13314         i = 0;
13315         while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
13316                 i++;
13317                 if (!param->left->field_ident) {
13318                         error(state, 0, "No identifier for parameter %d\n", i);
13319                 }
13320                 param = param->right;
13321         }
13322         i++;
13323         if (((param->type & TYPE_MASK) != TYPE_VOID) && !param->field_ident) {
13324                 error(state, 0, "No identifier for paramter %d\n", i);
13325         }
13326         
13327         /* Get a list of statements for this function. */
13328         def = triple(state, OP_LIST, type, 0, 0);
13329
13330         /* Start a new scope for the passed parameters */
13331         start_scope(state);
13332
13333         /* Put a label at the very start of a function */
13334         first = label(state);
13335         RHS(def, 0) = first;
13336
13337         /* Put a label at the very end of a function */
13338         end = label(state);
13339         flatten(state, first, end);
13340         /* Remember where return goes */
13341         ident = state->i_return;
13342         symbol(state, ident, &ident->sym_ident, end, end->type);
13343
13344         /* Get the initial closure type */
13345         ctype = new_type(TYPE_JOIN, &void_type, 0);
13346         ctype->elements = 1;
13347
13348         /* Add a variable for the return value */
13349         crtype = new_type(TYPE_TUPLE, 
13350                 /* Remove all type qualifiers from the return type */
13351                 new_type(TYPE_PRODUCT, ctype, clone_type(0, type->left)), 0);
13352         crtype->elements = 2;
13353         result = flatten(state, end, variable(state, crtype));
13354
13355         /* Allocate a variable for the return address */
13356         retvar = flatten(state, end, variable(state, &void_ptr_type));
13357
13358         /* Add in the return instruction */
13359         ret = triple(state, OP_RET, &void_type, read_expr(state, retvar), 0);
13360         ret = flatten(state, first, ret);
13361
13362         /* Walk through the parameters and create symbol table entries
13363          * for them.
13364          */
13365         param = type->right;
13366         while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
13367                 ident = param->left->field_ident;
13368                 tmp = variable(state, param->left);
13369                 var_symbol(state, ident, tmp);
13370                 flatten(state, end, tmp);
13371                 param = param->right;
13372         }
13373         if ((param->type & TYPE_MASK) != TYPE_VOID) {
13374                 /* And don't forget the last parameter */
13375                 ident = param->field_ident;
13376                 tmp = variable(state, param);
13377                 symbol(state, ident, &ident->sym_ident, tmp, tmp->type);
13378                 flatten(state, end, tmp);
13379         }
13380
13381         /* Add the declaration static const char __func__ [] = "func-name"  */
13382         fname_type = new_type(TYPE_ARRAY, 
13383                 clone_type(QUAL_CONST | STOR_STATIC, &char_type), 0);
13384         fname_type->type |= QUAL_CONST | STOR_STATIC;
13385         fname_type->elements = strlen(state->function) + 1;
13386
13387         fname = triple(state, OP_BLOBCONST, fname_type, 0, 0);
13388         fname->u.blob = (void *)state->function;
13389         fname = flatten(state, end, fname);
13390
13391         ident = state->i___func__;
13392         symbol(state, ident, &ident->sym_ident, fname, fname_type);
13393
13394         /* Remember which function I am compiling.
13395          * Also assume the last defined function is the main function.
13396          */
13397         state->main_function = def;
13398
13399         /* Now get the actual function definition */
13400         compound_statement(state, end);
13401
13402         /* Finish anything unfinished with branches */
13403         resolve_branches(state, first);
13404
13405         /* Remove the parameter scope */
13406         end_scope(state);
13407
13408
13409         /* Remember I have defined a function */
13410         if (!state->functions) {
13411                 state->functions = def;
13412         } else {
13413                 insert_triple(state, state->functions, def);
13414         }
13415         if (state->compiler->debug & DEBUG_INLINE) {
13416                 FILE *fp = state->dbgout;
13417                 fprintf(fp, "\n");
13418                 loc(fp, state, 0);
13419                 fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
13420                 display_func(state, fp, def);
13421                 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
13422         }
13423
13424         return def;
13425 }
13426
13427 static struct triple *do_decl(struct compile_state *state, 
13428         struct type *type, struct hash_entry *ident)
13429 {
13430         struct triple *def;
13431         def = 0;
13432         /* Clean up the storage types used */
13433         switch (type->type & STOR_MASK) {
13434         case STOR_AUTO:
13435         case STOR_STATIC:
13436                 /* These are the good types I am aiming for */
13437                 break;
13438         case STOR_REGISTER:
13439                 type->type &= ~STOR_MASK;
13440                 type->type |= STOR_AUTO;
13441                 break;
13442         case STOR_LOCAL:
13443         case STOR_EXTERN:
13444                 type->type &= ~STOR_MASK;
13445                 type->type |= STOR_STATIC;
13446                 break;
13447         case STOR_TYPEDEF:
13448                 if (!ident) {
13449                         error(state, 0, "typedef without name");
13450                 }
13451                 symbol(state, ident, &ident->sym_ident, 0, type);
13452                 ident->tok = TOK_TYPE_NAME;
13453                 return 0;
13454                 break;
13455         default:
13456                 internal_error(state, 0, "Undefined storage class");
13457         }
13458         if ((type->type & TYPE_MASK) == TYPE_FUNCTION) {
13459                 error(state, 0, "Function prototypes not supported");
13460         }
13461         if (ident && 
13462                 ((type->type & STOR_MASK) == STOR_STATIC) &&
13463                 ((type->type & QUAL_CONST) == 0)) {
13464                 error(state, 0, "non const static variables not supported");
13465         }
13466         if (ident) {
13467                 def = variable(state, type);
13468                 var_symbol(state, ident, def);
13469         }
13470         return def;
13471 }
13472
13473 static void decl(struct compile_state *state, struct triple *first)
13474 {
13475         struct type *base_type, *type;
13476         struct hash_entry *ident;
13477         struct triple *def;
13478         int global;
13479         global = (state->scope_depth <= GLOBAL_SCOPE_DEPTH);
13480         base_type = decl_specifiers(state);
13481         ident = 0;
13482         type = declarator(state, base_type, &ident, 0);
13483         type->type = attributes_opt(state, type->type);
13484         if (global && ident && (peek(state) == TOK_LBRACE)) {
13485                 /* function */
13486                 type->type_ident = ident;
13487                 state->function = ident->name;
13488                 def = function_definition(state, type);
13489                 symbol(state, ident, &ident->sym_ident, def, type);
13490                 state->function = 0;
13491         }
13492         else {
13493                 int done;
13494                 flatten(state, first, do_decl(state, type, ident));
13495                 /* type or variable definition */
13496                 do {
13497                         done = 1;
13498                         if (peek(state) == TOK_EQ) {
13499                                 if (!ident) {
13500                                         error(state, 0, "cannot assign to a type");
13501                                 }
13502                                 eat(state, TOK_EQ);
13503                                 flatten(state, first,
13504                                         init_expr(state, 
13505                                                 ident->sym_ident->def, 
13506                                                 initializer(state, type)));
13507                         }
13508                         arrays_complete(state, type);
13509                         if (peek(state) == TOK_COMMA) {
13510                                 eat(state, TOK_COMMA);
13511                                 ident = 0;
13512                                 type = declarator(state, base_type, &ident, 0);
13513                                 flatten(state, first, do_decl(state, type, ident));
13514                                 done = 0;
13515                         }
13516                 } while(!done);
13517                 eat(state, TOK_SEMI);
13518         }
13519 }
13520
13521 static void decls(struct compile_state *state)
13522 {
13523         struct triple *list;
13524         int tok;
13525         list = label(state);
13526         while(1) {
13527                 tok = peek(state);
13528                 if (tok == TOK_EOF) {
13529                         return;
13530                 }
13531                 if (tok == TOK_SPACE) {
13532                         eat(state, TOK_SPACE);
13533                 }
13534                 decl(state, list);
13535                 if (list->next != list) {
13536                         error(state, 0, "global variables not supported");
13537                 }
13538         }
13539 }
13540
13541 /* 
13542  * Function inlining
13543  */
13544 struct triple_reg_set {
13545         struct triple_reg_set *next;
13546         struct triple *member;
13547         struct triple *new;
13548 };
13549 struct reg_block {
13550         struct block *block;
13551         struct triple_reg_set *in;
13552         struct triple_reg_set *out;
13553         int vertex;
13554 };
13555 static void setup_basic_blocks(struct compile_state *, struct basic_blocks *bb);
13556 static void analyze_basic_blocks(struct compile_state *state, struct basic_blocks *bb);
13557 static void free_basic_blocks(struct compile_state *, struct basic_blocks *bb);
13558 static int tdominates(struct compile_state *state, struct triple *dom, struct triple *sub);
13559 static void walk_blocks(struct compile_state *state, struct basic_blocks *bb,
13560         void (*cb)(struct compile_state *state, struct block *block, void *arg),
13561         void *arg);
13562 static void print_block(
13563         struct compile_state *state, struct block *block, void *arg);
13564 static int do_triple_set(struct triple_reg_set **head, 
13565         struct triple *member, struct triple *new_member);
13566 static void do_triple_unset(struct triple_reg_set **head, struct triple *member);
13567 static struct reg_block *compute_variable_lifetimes(
13568         struct compile_state *state, struct basic_blocks *bb);
13569 static void free_variable_lifetimes(struct compile_state *state, 
13570         struct basic_blocks *bb, struct reg_block *blocks);
13571 #if DEBUG_EXPLICIT_CLOSURES
13572 static void print_live_variables(struct compile_state *state, 
13573         struct basic_blocks *bb, struct reg_block *rb, FILE *fp);
13574 #endif
13575
13576
13577 static struct triple *call(struct compile_state *state,
13578         struct triple *retvar, struct triple *ret_addr, 
13579         struct triple *targ, struct triple *ret)
13580 {
13581         struct triple *call;
13582
13583         if (!retvar || !is_lvalue(state, retvar)) {
13584                 internal_error(state, 0, "writing to a non lvalue?");
13585         }
13586         write_compatible(state, retvar->type, &void_ptr_type);
13587
13588         call = new_triple(state, OP_CALL, &void_type, 1, 0);
13589         TARG(call, 0) = targ;
13590         MISC(call, 0) = ret;
13591         if (!targ || (targ->op != OP_LABEL)) {
13592                 internal_error(state, 0, "call not to a label");
13593         }
13594         if (!ret || (ret->op != OP_RET)) {
13595                 internal_error(state, 0, "call not matched with return");
13596         }
13597         return call;
13598 }
13599
13600 static void walk_functions(struct compile_state *state,
13601         void (*cb)(struct compile_state *state, struct triple *func, void *arg),
13602         void *arg)
13603 {
13604         struct triple *func, *first;
13605         func = first = state->functions;
13606         do {
13607                 cb(state, func, arg);
13608                 func = func->next;
13609         } while(func != first);
13610 }
13611
13612 static void reverse_walk_functions(struct compile_state *state,
13613         void (*cb)(struct compile_state *state, struct triple *func, void *arg),
13614         void *arg)
13615 {
13616         struct triple *func, *first;
13617         func = first = state->functions;
13618         do {
13619                 func = func->prev;
13620                 cb(state, func, arg);
13621         } while(func != first);
13622 }
13623
13624
13625 static void mark_live(struct compile_state *state, struct triple *func, void *arg)
13626 {
13627         struct triple *ptr, *first;
13628         if (func->u.cval == 0) {
13629                 return;
13630         }
13631         ptr = first = RHS(func, 0);
13632         do {
13633                 if (ptr->op == OP_FCALL) {
13634                         struct triple *called_func;
13635                         called_func = MISC(ptr, 0);
13636                         /* Mark the called function as used */
13637                         if (!(func->id & TRIPLE_FLAG_FLATTENED)) {
13638                                 called_func->u.cval++;
13639                         }
13640                         /* Remove the called function from the list */
13641                         called_func->prev->next = called_func->next;
13642                         called_func->next->prev = called_func->prev;
13643
13644                         /* Place the called function before me on the list */
13645                         called_func->next       = func;
13646                         called_func->prev       = func->prev;
13647                         called_func->prev->next = called_func;
13648                         called_func->next->prev = called_func;
13649                 }
13650                 ptr = ptr->next;
13651         } while(ptr != first);
13652         func->id |= TRIPLE_FLAG_FLATTENED;
13653 }
13654
13655 static void mark_live_functions(struct compile_state *state)
13656 {
13657         /* Ensure state->main_function is the last function in 
13658          * the list of functions.
13659          */
13660         if ((state->main_function->next != state->functions) ||
13661                 (state->functions->prev != state->main_function)) {
13662                 internal_error(state, 0, 
13663                         "state->main_function is not at the end of the function list ");
13664         }
13665         state->main_function->u.cval = 1;
13666         reverse_walk_functions(state, mark_live, 0);
13667 }
13668
13669 static int local_triple(struct compile_state *state, 
13670         struct triple *func, struct triple *ins)
13671 {
13672         int local = (ins->id & TRIPLE_FLAG_LOCAL);
13673 #if 0
13674         if (!local) {
13675                 FILE *fp = state->errout;
13676                 fprintf(fp, "global: ");
13677                 display_triple(fp, ins);
13678         }
13679 #endif
13680         return local;
13681 }
13682
13683 struct triple *copy_func(struct compile_state *state, struct triple *ofunc, 
13684         struct occurance *base_occurance)
13685 {
13686         struct triple *nfunc;
13687         struct triple *nfirst, *ofirst;
13688         struct triple *new, *old;
13689
13690         if (state->compiler->debug & DEBUG_INLINE) {
13691                 FILE *fp = state->dbgout;
13692                 fprintf(fp, "\n");
13693                 loc(fp, state, 0);
13694                 fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
13695                 display_func(state, fp, ofunc);
13696                 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
13697         }
13698
13699         /* Make a new copy of the old function */
13700         nfunc = triple(state, OP_LIST, ofunc->type, 0, 0);
13701         nfirst = 0;
13702         ofirst = old = RHS(ofunc, 0);
13703         do {
13704                 struct triple *new;
13705                 struct occurance *occurance;
13706                 int old_lhs, old_rhs;
13707                 old_lhs = old->lhs;
13708                 old_rhs = old->rhs;
13709                 occurance = inline_occurance(state, base_occurance, old->occurance);
13710                 if (ofunc->u.cval && (old->op == OP_FCALL)) {
13711                         MISC(old, 0)->u.cval += 1;
13712                 }
13713                 new = alloc_triple(state, old->op, old->type, old_lhs, old_rhs,
13714                         occurance);
13715                 if (!triple_stores_block(state, new)) {
13716                         memcpy(&new->u, &old->u, sizeof(new->u));
13717                 }
13718                 if (!nfirst) {
13719                         RHS(nfunc, 0) = nfirst = new;
13720                 }
13721                 else {
13722                         insert_triple(state, nfirst, new);
13723                 }
13724                 new->id |= TRIPLE_FLAG_FLATTENED;
13725                 new->id |= old->id & TRIPLE_FLAG_COPY;
13726                 
13727                 /* During the copy remember new as user of old */
13728                 use_triple(old, new);
13729
13730                 /* Remember which instructions are local */
13731                 old->id |= TRIPLE_FLAG_LOCAL;
13732                 old = old->next;
13733         } while(old != ofirst);
13734
13735         /* Make a second pass to fix up any unresolved references */
13736         old = ofirst;
13737         new = nfirst;
13738         do {
13739                 struct triple **oexpr, **nexpr;
13740                 int count, i;
13741                 /* Lookup where the copy is, to join pointers */
13742                 count = TRIPLE_SIZE(old);
13743                 for(i = 0; i < count; i++) {
13744                         oexpr = &old->param[i];
13745                         nexpr = &new->param[i];
13746                         if (*oexpr && !*nexpr) {
13747                                 if (!local_triple(state, ofunc, *oexpr)) {
13748                                         *nexpr = *oexpr;
13749                                 }
13750                                 else if ((*oexpr)->use) {
13751                                         *nexpr = (*oexpr)->use->member;
13752                                 }
13753                                 if (*nexpr == old) {
13754                                         internal_error(state, 0, "new == old?");
13755                                 }
13756                                 use_triple(*nexpr, new);
13757                         }
13758                         if (!*nexpr && *oexpr) {
13759                                 internal_error(state, 0, "Could not copy %d", i);
13760                         }
13761                 }
13762                 old = old->next;
13763                 new = new->next;
13764         } while((old != ofirst) && (new != nfirst));
13765         
13766         /* Make a third pass to cleanup the extra useses */
13767         old = ofirst;
13768         new = nfirst;
13769         do {
13770                 unuse_triple(old, new);
13771                 /* Forget which instructions are local */
13772                 old->id &= ~TRIPLE_FLAG_LOCAL;
13773                 old = old->next;
13774                 new = new->next;
13775         } while ((old != ofirst) && (new != nfirst));
13776         return nfunc;
13777 }
13778
13779 static void expand_inline_call(
13780         struct compile_state *state, struct triple *me, struct triple *fcall)
13781 {
13782         /* Inline the function call */
13783         struct type *ptype;
13784         struct triple *ofunc, *nfunc, *nfirst, *result, *retvar, *ins;
13785         struct triple *end, *nend;
13786         int pvals, i;
13787
13788         /* Find the triples */
13789         ofunc = MISC(fcall, 0);
13790         if (ofunc->op != OP_LIST) {
13791                 internal_error(state, 0, "improper function");
13792         }
13793         nfunc = copy_func(state, ofunc, fcall->occurance);
13794         /* Prepend the parameter reading into the new function list */
13795         ptype = nfunc->type->right;
13796         pvals = fcall->rhs;
13797         for(i = 0; i < pvals; i++) {
13798                 struct type *atype;
13799                 struct triple *arg, *param;
13800                 atype = ptype;
13801                 if ((ptype->type & TYPE_MASK) == TYPE_PRODUCT) {
13802                         atype = ptype->left;
13803                 }
13804                 param = farg(state, nfunc, i);
13805                 if ((param->type->type & TYPE_MASK) != (atype->type & TYPE_MASK)) {
13806                         internal_error(state, fcall, "param %d type mismatch", i);
13807                 }
13808                 arg = RHS(fcall, i);
13809                 flatten(state, fcall, write_expr(state, param, arg));
13810                 ptype = ptype->right;
13811         }
13812         result = 0;
13813         if ((nfunc->type->left->type & TYPE_MASK) != TYPE_VOID) {
13814                 result = read_expr(state, 
13815                         deref_index(state, fresult(state, nfunc), 1));
13816         }
13817         if (state->compiler->debug & DEBUG_INLINE) {
13818                 FILE *fp = state->dbgout;
13819                 fprintf(fp, "\n");
13820                 loc(fp, state, 0);
13821                 fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
13822                 display_func(state, fp, nfunc);
13823                 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
13824         }
13825
13826         /* 
13827          * Get rid of the extra triples 
13828          */
13829         /* Remove the read of the return address */
13830         ins = RHS(nfunc, 0)->prev->prev;
13831         if ((ins->op != OP_READ) || (RHS(ins, 0) != fretaddr(state, nfunc))) {
13832                 internal_error(state, ins, "Not return addres read?");
13833         }
13834         release_triple(state, ins);
13835         /* Remove the return instruction */
13836         ins = RHS(nfunc, 0)->prev;
13837         if (ins->op != OP_RET) {
13838                 internal_error(state, ins, "Not return?");
13839         }
13840         release_triple(state, ins);
13841         /* Remove the retaddres variable */
13842         retvar = fretaddr(state, nfunc);
13843         if ((retvar->lhs != 1) || 
13844                 (retvar->op != OP_ADECL) ||
13845                 (retvar->next->op != OP_PIECE) ||
13846                 (MISC(retvar->next, 0) != retvar)) {
13847                 internal_error(state, retvar, "Not the return address?");
13848         }
13849         release_triple(state, retvar->next);
13850         release_triple(state, retvar);
13851
13852         /* Remove the label at the start of the function */
13853         ins = RHS(nfunc, 0);
13854         if (ins->op != OP_LABEL) {
13855                 internal_error(state, ins, "Not label?");
13856         }
13857         nfirst = ins->next;
13858         free_triple(state, ins);
13859         /* Release the new function header */
13860         RHS(nfunc, 0) = 0;
13861         free_triple(state, nfunc);
13862
13863         /* Append the new function list onto the return list */
13864         end = fcall->prev;
13865         nend = nfirst->prev;
13866         end->next    = nfirst;
13867         nfirst->prev = end;
13868         nend->next   = fcall;
13869         fcall->prev  = nend;
13870
13871         /* Now the result reading code */
13872         if (result) {
13873                 result = flatten(state, fcall, result);
13874                 propogate_use(state, fcall, result);
13875         }
13876
13877         /* Release the original fcall instruction */
13878         release_triple(state, fcall);
13879
13880         return;
13881 }
13882
13883 /*
13884  *
13885  * Type of the result variable.
13886  * 
13887  *                                     result
13888  *                                        |
13889  *                             +----------+------------+
13890  *                             |                       |
13891  *                     union of closures         result_type
13892  *                             |
13893  *          +------------------+---------------+
13894  *          |                                  |
13895  *       closure1                    ...   closuerN
13896  *          |                                  | 
13897  *  +----+--+-+--------+-----+       +----+----+---+-----+
13898  *  |    |    |        |     |       |    |        |     |
13899  * var1 var2 var3 ... varN result   var1 var2 ... varN result
13900  *                           |
13901  *                  +--------+---------+
13902  *                  |                  |
13903  *          union of closures     result_type
13904  *                  |
13905  *            +-----+-------------------+
13906  *            |                         |
13907  *         closure1            ...  closureN
13908  *            |                         |
13909  *  +-----+---+----+----+      +----+---+----+-----+
13910  *  |     |        |    |      |    |        |     |
13911  * var1 var2 ... varN result  var1 var2 ... varN result
13912  */
13913
13914 static int add_closure_type(struct compile_state *state, 
13915         struct triple *func, struct type *closure_type)
13916 {
13917         struct type *type, *ctype, **next;
13918         struct triple *var, *new_var;
13919         int i;
13920
13921 #if 0
13922         FILE *fp = state->errout;
13923         fprintf(fp, "original_type: ");
13924         name_of(fp, fresult(state, func)->type);
13925         fprintf(fp, "\n");
13926 #endif
13927         /* find the original type */
13928         var = fresult(state, func);
13929         type = var->type;
13930         if (type->elements != 2) {
13931                 internal_error(state, var, "bad return type");
13932         }
13933
13934         /* Find the complete closure type and update it */
13935         ctype = type->left->left;
13936         next = &ctype->left;
13937         while(((*next)->type & TYPE_MASK) == TYPE_OVERLAP) {
13938                 next = &(*next)->right;
13939         }
13940         *next = new_type(TYPE_OVERLAP, *next, dup_type(state, closure_type));
13941         ctype->elements += 1;
13942
13943 #if 0
13944         fprintf(fp, "new_type: ");
13945         name_of(fp, type);
13946         fprintf(fp, "\n");
13947         fprintf(fp, "ctype: %p %d bits: %d ", 
13948                 ctype, ctype->elements, reg_size_of(state, ctype));
13949         name_of(fp, ctype);
13950         fprintf(fp, "\n");
13951 #endif
13952         
13953         /* Regenerate the variable with the new type definition */
13954         new_var = pre_triple(state, var, OP_ADECL, type, 0, 0);
13955         new_var->id |= TRIPLE_FLAG_FLATTENED;
13956         for(i = 0; i < new_var->lhs; i++) {
13957                 LHS(new_var, i)->id |= TRIPLE_FLAG_FLATTENED;
13958         }
13959         
13960         /* Point everyone at the new variable */
13961         propogate_use(state, var, new_var);
13962
13963         /* Release the original variable */
13964         for(i = 0; i < var->lhs; i++) {
13965                 release_triple(state, LHS(var, i));
13966         }
13967         release_triple(state, var);
13968         
13969         /* Return the index of the added closure type */
13970         return ctype->elements - 1;
13971 }
13972
13973 static struct triple *closure_expr(struct compile_state *state,
13974         struct triple *func, int closure_idx, int var_idx)
13975 {
13976         return deref_index(state,
13977                 deref_index(state,
13978                         deref_index(state, fresult(state, func), 0),
13979                         closure_idx),
13980                 var_idx);
13981 }
13982
13983
13984 static void insert_triple_set(
13985         struct triple_reg_set **head, struct triple *member)
13986 {
13987         struct triple_reg_set *new;
13988         new = xcmalloc(sizeof(*new), "triple_set");
13989         new->member = member;
13990         new->new    = 0;
13991         new->next   = *head;
13992         *head       = new;
13993 }
13994
13995 static int ordered_triple_set(
13996         struct triple_reg_set **head, struct triple *member)
13997 {
13998         struct triple_reg_set **ptr;
13999         if (!member)
14000                 return 0;
14001         ptr = head;
14002         while(*ptr) {
14003                 if (member == (*ptr)->member) {
14004                         return 0;
14005                 }
14006                 /* keep the list ordered */
14007                 if (member->id < (*ptr)->member->id) {
14008                         break;
14009                 }
14010                 ptr = &(*ptr)->next;
14011         }
14012         insert_triple_set(ptr, member);
14013         return 1;
14014 }
14015
14016
14017 static void free_closure_variables(struct compile_state *state,
14018         struct triple_reg_set **enclose)
14019 {
14020         struct triple_reg_set *entry, *next;
14021         for(entry = *enclose; entry; entry = next) {
14022                 next = entry->next;
14023                 do_triple_unset(enclose, entry->member);
14024         }
14025 }
14026
14027 static int lookup_closure_index(struct compile_state *state,
14028         struct triple *me, struct triple *val)
14029 {
14030         struct triple *first, *ins, *next;
14031         first = RHS(me, 0);
14032         ins = next = first;
14033         do {
14034                 struct triple *result;
14035                 struct triple *index0, *index1, *index2, *read, *write;
14036                 ins = next;
14037                 next = ins->next;
14038                 if (ins->op != OP_CALL) {
14039                         continue;
14040                 }
14041                 /* I am at a previous call point examine it closely */
14042                 if (ins->next->op != OP_LABEL) {
14043                         internal_error(state, ins, "call not followed by label");
14044                 }
14045                 /* Does this call does not enclose any variables? */
14046                 if ((ins->next->next->op != OP_INDEX) ||
14047                         (ins->next->next->u.cval != 0) ||
14048                         (result = MISC(ins->next->next, 0)) ||
14049                         (result->id & TRIPLE_FLAG_LOCAL)) {
14050                         continue;
14051                 }
14052                 index0 = ins->next->next;
14053                 /* The pattern is:
14054                  * 0 index result < 0 >
14055                  * 1 index 0 < ? >
14056                  * 2 index 1 < ? >
14057                  * 3 read  2
14058                  * 4 write 3 var
14059                  */
14060                 for(index0 = ins->next->next;
14061                         (index0->op == OP_INDEX) &&
14062                                 (MISC(index0, 0) == result) &&
14063                                 (index0->u.cval == 0) ; 
14064                         index0 = write->next)
14065                 {
14066                         index1 = index0->next;
14067                         index2 = index1->next;
14068                         read   = index2->next;
14069                         write  = read->next;
14070                         if ((index0->op != OP_INDEX) ||
14071                                 (index1->op != OP_INDEX) ||
14072                                 (index2->op != OP_INDEX) ||
14073                                 (read->op != OP_READ) ||
14074                                 (write->op != OP_WRITE) ||
14075                                 (MISC(index1, 0) != index0) ||
14076                                 (MISC(index2, 0) != index1) ||
14077                                 (RHS(read, 0) != index2) ||
14078                                 (RHS(write, 0) != read)) {
14079                                 internal_error(state, index0, "bad var read");
14080                         }
14081                         if (MISC(write, 0) == val) {
14082                                 return index2->u.cval;
14083                         }
14084                 }
14085         } while(next != first);
14086         return -1;
14087 }
14088
14089 static inline int enclose_triple(struct triple *ins)
14090 {
14091         return (ins && ((ins->type->type & TYPE_MASK) != TYPE_VOID));
14092 }
14093
14094 static void compute_closure_variables(struct compile_state *state,
14095         struct triple *me, struct triple *fcall, struct triple_reg_set **enclose)
14096 {
14097         struct triple_reg_set *set, *vars, **last_var;
14098         struct basic_blocks bb;
14099         struct reg_block *rb;
14100         struct block *block;
14101         struct triple *old_result, *first, *ins;
14102         size_t count, idx;
14103         unsigned long used_indicies;
14104         int i, max_index;
14105 #define MAX_INDICIES (sizeof(used_indicies)*CHAR_BIT)
14106 #define ID_BITS(X) ((X) & (TRIPLE_FLAG_LOCAL -1))
14107         struct { 
14108                 unsigned id;
14109                 int index;
14110         } *info;
14111
14112         
14113         /* Find the basic blocks of this function */
14114         bb.func = me;
14115         bb.first = RHS(me, 0);
14116         old_result = 0;
14117         if (!triple_is_ret(state, bb.first->prev)) {
14118                 bb.func = 0;
14119         } else {
14120                 old_result = fresult(state, me);
14121         }
14122         analyze_basic_blocks(state, &bb);
14123
14124         /* Find which variables are currently alive in a given block */
14125         rb = compute_variable_lifetimes(state, &bb);
14126
14127         /* Find the variables that are currently alive */
14128         block = block_of_triple(state, fcall);
14129         if (!block || (block->vertex <= 0) || (block->vertex > bb.last_vertex)) {
14130                 internal_error(state, fcall, "No reg block? block: %p", block);
14131         }
14132
14133 #if DEBUG_EXPLICIT_CLOSURES
14134         print_live_variables(state, &bb, rb, state->dbgout);
14135         fflush(state->dbgout);
14136 #endif
14137
14138         /* Count the number of triples in the function */
14139         first = RHS(me, 0);
14140         ins = first;
14141         count = 0;
14142         do {
14143                 count++;
14144                 ins = ins->next;
14145         } while(ins != first);
14146
14147         /* Allocate some memory to temorary hold the id info */
14148         info = xcmalloc(sizeof(*info) * (count +1), "info");
14149
14150         /* Mark the local function */
14151         first = RHS(me, 0);
14152         ins = first;
14153         idx = 1;
14154         do {
14155                 info[idx].id = ins->id;
14156                 ins->id = TRIPLE_FLAG_LOCAL | idx;
14157                 idx++;
14158                 ins = ins->next;
14159         } while(ins != first);
14160
14161         /* 
14162          * Build the list of variables to enclose.
14163          *
14164          * A target it to put the same variable in the
14165          * same slot for ever call of a given function.
14166          * After coloring this removes all of the variable
14167          * manipulation code.
14168          *
14169          * The list of variables to enclose is built ordered
14170          * program order because except in corner cases this
14171          * gives me the stability of assignment I need.
14172          *
14173          * To gurantee that stability I lookup the variables
14174          * to see where they have been used before and
14175          * I build my final list with the assigned indicies.
14176          */
14177         vars = 0;
14178         if (enclose_triple(old_result)) {
14179                 ordered_triple_set(&vars, old_result);
14180         }
14181         for(set = rb[block->vertex].out; set; set = set->next) {
14182                 if (!enclose_triple(set->member)) {
14183                         continue;
14184                 }
14185                 if ((set->member == fcall) || (set->member == old_result)) {
14186                         continue;
14187                 }
14188                 if (!local_triple(state, me, set->member)) {
14189                         internal_error(state, set->member, "not local?");
14190                 }
14191                 ordered_triple_set(&vars, set->member);
14192         }
14193
14194         /* Lookup the current indicies of the live varialbe */
14195         used_indicies = 0;
14196         max_index = -1;
14197         for(set = vars; set ; set = set->next) {
14198                 struct triple *ins;
14199                 int index;
14200                 ins = set->member;
14201                 index  = lookup_closure_index(state, me, ins);
14202                 info[ID_BITS(ins->id)].index = index;
14203                 if (index < 0) {
14204                         continue;
14205                 }
14206                 if (index >= MAX_INDICIES) {
14207                         internal_error(state, ins, "index unexpectedly large");
14208                 }
14209                 if (used_indicies & (1 << index)) {
14210                         internal_error(state, ins, "index previously used?");
14211                 }
14212                 /* Remember which indicies have been used */
14213                 used_indicies |= (1 << index);
14214                 if (index > max_index) {
14215                         max_index = index;
14216                 }
14217         }
14218
14219         /* Walk through the live variables and make certain
14220          * everything is assigned an index.
14221          */
14222         for(set = vars; set; set = set->next) {
14223                 struct triple *ins;
14224                 int index;
14225                 ins = set->member;
14226                 index = info[ID_BITS(ins->id)].index;
14227                 if (index >= 0) {
14228                         continue;
14229                 }
14230                 /* Find the lowest unused index value */
14231                 for(index = 0; index < MAX_INDICIES; index++) {
14232                         if (!(used_indicies & (1 << index))) {
14233                                 break;
14234                         }
14235                 }
14236                 if (index == MAX_INDICIES) {
14237                         internal_error(state, ins, "no free indicies?");
14238                 }
14239                 info[ID_BITS(ins->id)].index = index;
14240                 /* Remember which indicies have been used */
14241                 used_indicies |= (1 << index);
14242                 if (index > max_index) {
14243                         max_index = index;
14244                 }
14245         }
14246
14247         /* Build the return list of variables with positions matching
14248          * their indicies.
14249          */
14250         *enclose = 0;
14251         last_var = enclose;
14252         for(i = 0; i <= max_index; i++) {
14253                 struct triple *var;
14254                 var = 0;
14255                 if (used_indicies & (1 << i)) {
14256                         for(set = vars; set; set = set->next) {
14257                                 int index;
14258                                 index = info[ID_BITS(set->member->id)].index;
14259                                 if (index == i) {
14260                                         var = set->member;
14261                                         break;
14262                                 }
14263                         }
14264                         if (!var) {
14265                                 internal_error(state, me, "missing variable");
14266                         }
14267                 }
14268                 insert_triple_set(last_var, var);
14269                 last_var = &(*last_var)->next;
14270         }
14271
14272 #if DEBUG_EXPLICIT_CLOSURES
14273         /* Print out the variables to be enclosed */
14274         loc(state->dbgout, state, fcall);
14275         fprintf(state->dbgout, "Alive: \n");
14276         for(set = *enclose; set; set = set->next) {
14277                 display_triple(state->dbgout, set->member);
14278         }
14279         fflush(state->dbgout);
14280 #endif
14281
14282         /* Clear the marks */
14283         ins = first;
14284         do {
14285                 ins->id = info[ID_BITS(ins->id)].id;
14286                 ins = ins->next;
14287         } while(ins != first);
14288
14289         /* Release the ordered list of live variables */
14290         free_closure_variables(state, &vars);
14291
14292         /* Release the storage of the old ids */
14293         xfree(info);
14294
14295         /* Release the variable lifetime information */
14296         free_variable_lifetimes(state, &bb, rb);
14297
14298         /* Release the basic blocks of this function */
14299         free_basic_blocks(state, &bb);
14300 }
14301
14302 static void expand_function_call(
14303         struct compile_state *state, struct triple *me, struct triple *fcall)
14304 {
14305         /* Generate an ordinary function call */
14306         struct type *closure_type, **closure_next;
14307         struct triple *func, *func_first, *func_last, *retvar;
14308         struct triple *first;
14309         struct type *ptype, *rtype;
14310         struct triple *jmp;
14311         struct triple *ret_addr, *ret_loc, *ret_set;
14312         struct triple_reg_set *enclose, *set;
14313         int closure_idx, pvals, i;
14314
14315 #if DEBUG_EXPLICIT_CLOSURES
14316         FILE *fp = state->dbgout;
14317         fprintf(fp, "\ndisplay_func(me) ptr: %p\n", fcall);
14318         display_func(state, fp, MISC(fcall, 0));
14319         display_func(state, fp, me);
14320         fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
14321 #endif
14322
14323         /* Find the triples */
14324         func = MISC(fcall, 0);
14325         func_first = RHS(func, 0);
14326         retvar = fretaddr(state, func);
14327         func_last  = func_first->prev;
14328         first = fcall->next;
14329
14330         /* Find what I need to enclose */
14331         compute_closure_variables(state, me, fcall, &enclose);
14332
14333         /* Compute the closure type */
14334         closure_type = new_type(TYPE_TUPLE, 0, 0);
14335         closure_type->elements = 0;
14336         closure_next = &closure_type->left;
14337         for(set = enclose; set ; set = set->next) {
14338                 struct type *type;
14339                 type = &void_type;
14340                 if (set->member) {
14341                         type = set->member->type;
14342                 }
14343                 if (!*closure_next) {
14344                         *closure_next = type;
14345                 } else {
14346                         *closure_next = new_type(TYPE_PRODUCT, *closure_next, 
14347                                 type);
14348                         closure_next = &(*closure_next)->right;
14349                 }
14350                 closure_type->elements += 1;
14351         }
14352         if (closure_type->elements == 0) {
14353                 closure_type->type = TYPE_VOID;
14354         }
14355
14356
14357 #if DEBUG_EXPLICIT_CLOSURES
14358         fprintf(state->dbgout, "closure type: ");
14359         name_of(state->dbgout, closure_type);
14360         fprintf(state->dbgout, "\n");
14361 #endif
14362
14363         /* Update the called functions closure variable */
14364         closure_idx = add_closure_type(state, func, closure_type);
14365
14366         /* Generate some needed triples */
14367         ret_loc = label(state);
14368         ret_addr = triple(state, OP_ADDRCONST, &void_ptr_type, ret_loc, 0);
14369
14370         /* Pass the parameters to the new function */
14371         ptype = func->type->right;
14372         pvals = fcall->rhs;
14373         for(i = 0; i < pvals; i++) {
14374                 struct type *atype;
14375                 struct triple *arg, *param;
14376                 atype = ptype;
14377                 if ((ptype->type & TYPE_MASK) == TYPE_PRODUCT) {
14378                         atype = ptype->left;
14379                 }
14380                 param = farg(state, func, i);
14381                 if ((param->type->type & TYPE_MASK) != (atype->type & TYPE_MASK)) {
14382                         internal_error(state, fcall, "param type mismatch");
14383                 }
14384                 arg = RHS(fcall, i);
14385                 flatten(state, first, write_expr(state, param, arg));
14386                 ptype = ptype->right;
14387         }
14388         rtype = func->type->left;
14389
14390         /* Thread the triples together */
14391         ret_loc       = flatten(state, first, ret_loc);
14392
14393         /* Save the active variables in the result variable */
14394         for(i = 0, set = enclose; set ; set = set->next, i++) {
14395                 if (!set->member) {
14396                         continue;
14397                 }
14398                 flatten(state, ret_loc,
14399                         write_expr(state,
14400                                 closure_expr(state, func, closure_idx, i),
14401                                 read_expr(state, set->member)));
14402         }
14403
14404         /* Initialize the return value */
14405         if ((rtype->type & TYPE_MASK) != TYPE_VOID) {
14406                 flatten(state, ret_loc, 
14407                         write_expr(state, 
14408                                 deref_index(state, fresult(state, func), 1),
14409                                 new_triple(state, OP_UNKNOWNVAL, rtype,  0, 0)));
14410         }
14411
14412         ret_addr      = flatten(state, ret_loc, ret_addr);
14413         ret_set       = flatten(state, ret_loc, write_expr(state, retvar, ret_addr));
14414         jmp           = flatten(state, ret_loc, 
14415                 call(state, retvar, ret_addr, func_first, func_last));
14416
14417         /* Find the result */
14418         if ((rtype->type & TYPE_MASK) != TYPE_VOID) {
14419                 struct triple * result;
14420                 result = flatten(state, first, 
14421                         read_expr(state, 
14422                                 deref_index(state, fresult(state, func), 1)));
14423
14424                 propogate_use(state, fcall, result);
14425         }
14426
14427         /* Release the original fcall instruction */
14428         release_triple(state, fcall);
14429
14430         /* Restore the active variables from the result variable */
14431         for(i = 0, set = enclose; set ; set = set->next, i++) {
14432                 struct triple_set *use, *next;
14433                 struct triple *new;
14434                 struct basic_blocks bb;
14435                 if (!set->member || (set->member == fcall)) {
14436                         continue;
14437                 }
14438                 /* Generate an expression for the value */
14439                 new = flatten(state, first,
14440                         read_expr(state, 
14441                                 closure_expr(state, func, closure_idx, i)));
14442
14443
14444                 /* If the original is an lvalue restore the preserved value */
14445                 if (is_lvalue(state, set->member)) {
14446                         flatten(state, first,
14447                                 write_expr(state, set->member, new));
14448                         continue;
14449                 }
14450                 /*
14451                  * If the original is a value update the dominated uses.
14452                  */
14453                 
14454                 /* Analyze the basic blocks so I can see who dominates whom */
14455                 bb.func = me;
14456                 bb.first = RHS(me, 0);
14457                 if (!triple_is_ret(state, bb.first->prev)) {
14458                         bb.func = 0;
14459                 }
14460                 analyze_basic_blocks(state, &bb);
14461                 
14462
14463 #if DEBUG_EXPLICIT_CLOSURES
14464                 fprintf(state->errout, "Updating domindated uses: %p -> %p\n",
14465                         set->member, new);
14466 #endif
14467                 /* If fcall dominates the use update the expression */
14468                 for(use = set->member->use; use; use = next) {
14469                         /* Replace use modifies the use chain and 
14470                          * removes use, so I must take a copy of the
14471                          * next entry early.
14472                          */
14473                         next = use->next;
14474                         if (!tdominates(state, fcall, use->member)) {
14475                                 continue;
14476                         }
14477                         replace_use(state, set->member, new, use->member);
14478                 }
14479
14480                 /* Release the basic blocks, the instructions will be
14481                  * different next time, and flatten/insert_triple does
14482                  * not update the block values so I can't cache the analysis.
14483                  */
14484                 free_basic_blocks(state, &bb);
14485         }
14486
14487         /* Release the closure variable list */
14488         free_closure_variables(state, &enclose);
14489
14490         if (state->compiler->debug & DEBUG_INLINE) {
14491                 FILE *fp = state->dbgout;
14492                 fprintf(fp, "\n");
14493                 loc(fp, state, 0);
14494                 fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
14495                 display_func(state, fp, func);
14496                 display_func(state, fp, me);
14497                 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
14498         }
14499
14500         return;
14501 }
14502
14503 static int do_inline(struct compile_state *state, struct triple *func)
14504 {
14505         int do_inline;
14506         int policy;
14507
14508         policy = state->compiler->flags & COMPILER_INLINE_MASK;
14509         switch(policy) {
14510         case COMPILER_INLINE_ALWAYS:
14511                 do_inline = 1;
14512                 if (func->type->type & ATTRIB_NOINLINE) {
14513                         error(state, func, "noinline with always_inline compiler option");
14514                 }
14515                 break;
14516         case COMPILER_INLINE_NEVER:
14517                 do_inline = 0;
14518                 if (func->type->type & ATTRIB_ALWAYS_INLINE) {
14519                         error(state, func, "always_inline with noinline compiler option");
14520                 }
14521                 break;
14522         case COMPILER_INLINE_DEFAULTON:
14523                 switch(func->type->type & STOR_MASK) {
14524                 case STOR_STATIC | STOR_INLINE:
14525                 case STOR_LOCAL  | STOR_INLINE:
14526                 case STOR_EXTERN | STOR_INLINE:
14527                         do_inline = 1;
14528                         break;
14529                 default:
14530                         do_inline = 1;
14531                         break;
14532                 }
14533                 break;
14534         case COMPILER_INLINE_DEFAULTOFF:
14535                 switch(func->type->type & STOR_MASK) {
14536                 case STOR_STATIC | STOR_INLINE:
14537                 case STOR_LOCAL  | STOR_INLINE:
14538                 case STOR_EXTERN | STOR_INLINE:
14539                         do_inline = 1;
14540                         break;
14541                 default:
14542                         do_inline = 0;
14543                         break;
14544                 }
14545                 break;
14546         case COMPILER_INLINE_NOPENALTY:
14547                 switch(func->type->type & STOR_MASK) {
14548                 case STOR_STATIC | STOR_INLINE:
14549                 case STOR_LOCAL  | STOR_INLINE:
14550                 case STOR_EXTERN | STOR_INLINE:
14551                         do_inline = 1;
14552                         break;
14553                 default:
14554                         do_inline = (func->u.cval == 1);
14555                         break;
14556                 }
14557                 break;
14558         default:
14559                 do_inline = 0;
14560                 internal_error(state, 0, "Unimplemented inline policy");
14561                 break;
14562         }
14563         /* Force inlining */
14564         if (func->type->type & ATTRIB_NOINLINE) {
14565                 do_inline = 0;
14566         }
14567         if (func->type->type & ATTRIB_ALWAYS_INLINE) {
14568                 do_inline = 1;
14569         }
14570         return do_inline;
14571 }
14572
14573 static void inline_function(struct compile_state *state, struct triple *me, void *arg)
14574 {
14575         struct triple *first, *ptr, *next;
14576         /* If the function is not used don't bother */
14577         if (me->u.cval <= 0) {
14578                 return;
14579         }
14580         if (state->compiler->debug & DEBUG_CALLS2) {
14581                 FILE *fp = state->dbgout;
14582                 fprintf(fp, "in: %s\n",
14583                         me->type->type_ident->name);
14584         }
14585
14586         first = RHS(me, 0);
14587         ptr = next = first;
14588         do {
14589                 struct triple *func, *prev;
14590                 ptr = next;
14591                 prev = ptr->prev;
14592                 next = ptr->next;
14593                 if (ptr->op != OP_FCALL) {
14594                         continue;
14595                 }
14596                 func = MISC(ptr, 0);
14597                 /* See if the function should be inlined */
14598                 if (!do_inline(state, func)) {
14599                         /* Put a label after the fcall */
14600                         post_triple(state, ptr, OP_LABEL, &void_type, 0, 0);
14601                         continue;
14602                 }
14603                 if (state->compiler->debug & DEBUG_CALLS) {
14604                         FILE *fp = state->dbgout;
14605                         if (state->compiler->debug & DEBUG_CALLS2) {
14606                                 loc(fp, state, ptr);
14607                         }
14608                         fprintf(fp, "inlining %s\n",
14609                                 func->type->type_ident->name);
14610                         fflush(fp);
14611                 }
14612
14613                 /* Update the function use counts */
14614                 func->u.cval -= 1;
14615
14616                 /* Replace the fcall with the called function */
14617                 expand_inline_call(state, me, ptr);
14618
14619                 next = prev->next;
14620         } while (next != first);
14621
14622         ptr = next = first;
14623         do {
14624                 struct triple *prev, *func;
14625                 ptr = next;
14626                 prev = ptr->prev;
14627                 next = ptr->next;
14628                 if (ptr->op != OP_FCALL) {
14629                         continue;
14630                 }
14631                 func = MISC(ptr, 0);
14632                 if (state->compiler->debug & DEBUG_CALLS) {
14633                         FILE *fp = state->dbgout;
14634                         if (state->compiler->debug & DEBUG_CALLS2) {
14635                                 loc(fp, state, ptr);
14636                         }
14637                         fprintf(fp, "calling %s\n",
14638                                 func->type->type_ident->name);
14639                         fflush(fp);
14640                 }
14641                 /* Replace the fcall with the instruction sequence
14642                  * needed to make the call.
14643                  */
14644                 expand_function_call(state, me, ptr);
14645                 next = prev->next;
14646         } while(next != first);
14647 }
14648
14649 static void inline_functions(struct compile_state *state, struct triple *func)
14650 {
14651         inline_function(state, func, 0);
14652         reverse_walk_functions(state, inline_function, 0);
14653 }
14654
14655 static void insert_function(struct compile_state *state,
14656         struct triple *func, void *arg)
14657 {
14658         struct triple *first, *end, *ffirst, *fend;
14659
14660         if (state->compiler->debug & DEBUG_INLINE) {
14661                 FILE *fp = state->errout;
14662                 fprintf(fp, "%s func count: %d\n", 
14663                         func->type->type_ident->name, func->u.cval);
14664         }
14665         if (func->u.cval == 0) {
14666                 return;
14667         }
14668
14669         /* Find the end points of the lists */
14670         first  = arg;
14671         end    = first->prev;
14672         ffirst = RHS(func, 0);
14673         fend   = ffirst->prev;
14674
14675         /* splice the lists together */
14676         end->next    = ffirst;
14677         ffirst->prev = end;
14678         fend->next   = first;
14679         first->prev  = fend;
14680 }
14681
14682 struct triple *input_asm(struct compile_state *state)
14683 {
14684         struct asm_info *info;
14685         struct triple *def;
14686         int i, out;
14687         
14688         info = xcmalloc(sizeof(*info), "asm_info");
14689         info->str = "";
14690
14691         out = sizeof(arch_input_regs)/sizeof(arch_input_regs[0]);
14692         memcpy(&info->tmpl.lhs, arch_input_regs, sizeof(arch_input_regs));
14693
14694         def = new_triple(state, OP_ASM, &void_type, out, 0);
14695         def->u.ainfo = info;
14696         def->id |= TRIPLE_FLAG_VOLATILE;
14697         
14698         for(i = 0; i < out; i++) {
14699                 struct triple *piece;
14700                 piece = triple(state, OP_PIECE, &int_type, def, 0);
14701                 piece->u.cval = i;
14702                 LHS(def, i) = piece;
14703         }
14704
14705         return def;
14706 }
14707
14708 struct triple *output_asm(struct compile_state *state)
14709 {
14710         struct asm_info *info;
14711         struct triple *def;
14712         int in;
14713         
14714         info = xcmalloc(sizeof(*info), "asm_info");
14715         info->str = "";
14716
14717         in = sizeof(arch_output_regs)/sizeof(arch_output_regs[0]);
14718         memcpy(&info->tmpl.rhs, arch_output_regs, sizeof(arch_output_regs));
14719
14720         def = new_triple(state, OP_ASM, &void_type, 0, in);
14721         def->u.ainfo = info;
14722         def->id |= TRIPLE_FLAG_VOLATILE;
14723         
14724         return def;
14725 }
14726
14727 static void join_functions(struct compile_state *state)
14728 {
14729         struct triple *jmp, *start, *end, *call, *in, *out, *func;
14730         struct file_state file;
14731         struct type *pnext, *param;
14732         struct type *result_type, *args_type;
14733         int idx;
14734
14735         /* Be clear the functions have not been joined yet */
14736         state->functions_joined = 0;
14737
14738         /* Dummy file state to get debug handing right */
14739         memset(&file, 0, sizeof(file));
14740         file.basename = "";
14741         file.line = 0;
14742         file.report_line = 0;
14743         file.report_name = file.basename;
14744         file.prev = state->file;
14745         state->file = &file;
14746         state->function = "";
14747
14748         if (!state->main_function) {
14749                 error(state, 0, "No functions to compile\n");
14750         }
14751
14752         /* The type of arguments */
14753         args_type   = state->main_function->type->right;
14754         /* The return type without any specifiers */
14755         result_type = clone_type(0, state->main_function->type->left);
14756
14757
14758         /* Verify the external arguments */
14759         if (registers_of(state, args_type) > ARCH_INPUT_REGS) {
14760                 error(state, state->main_function, 
14761                         "Too many external input arguments");
14762         }
14763         if (registers_of(state, result_type) > ARCH_OUTPUT_REGS) {
14764                 error(state, state->main_function, 
14765                         "Too many external output arguments");
14766         }
14767
14768         /* Lay down the basic program structure */
14769         end           = label(state);
14770         start         = label(state);
14771         start         = flatten(state, state->first, start);
14772         end           = flatten(state, state->first, end);
14773         in            = input_asm(state);
14774         out           = output_asm(state);
14775         call          = new_triple(state, OP_FCALL, result_type, -1, registers_of(state, args_type));
14776         MISC(call, 0) = state->main_function;
14777         in            = flatten(state, state->first, in);
14778         call          = flatten(state, state->first, call);
14779         out           = flatten(state, state->first, out);
14780
14781
14782         /* Read the external input arguments */
14783         pnext = args_type;
14784         idx = 0;
14785         while(pnext && ((pnext->type & TYPE_MASK) != TYPE_VOID)) {
14786                 struct triple *expr;
14787                 param = pnext;
14788                 pnext = 0;
14789                 if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
14790                         pnext = param->right;
14791                         param = param->left;
14792                 }
14793                 if (registers_of(state, param) != 1) {
14794                         error(state, state->main_function, 
14795                                 "Arg: %d %s requires multiple registers", 
14796                                 idx + 1, param->field_ident->name);
14797                 }
14798                 expr = read_expr(state, LHS(in, idx));
14799                 RHS(call, idx) = expr;
14800                 expr = flatten(state, call, expr);
14801                 use_triple(expr, call);
14802
14803                 idx++;  
14804         }
14805
14806
14807         /* Write the external output arguments */
14808         pnext = result_type;
14809         if ((pnext->type & TYPE_MASK) == TYPE_STRUCT) {
14810                 pnext = result_type->left;
14811         }
14812         for(idx = 0; idx < out->rhs; idx++) {
14813                 struct triple *expr;
14814                 param = pnext;
14815                 pnext = 0;
14816                 if (param && ((param->type & TYPE_MASK) == TYPE_PRODUCT)) {
14817                         pnext = param->right;
14818                         param = param->left;
14819                 }
14820                 if (param && ((param->type & TYPE_MASK) == TYPE_VOID)) {
14821                         param = 0;
14822                 }
14823                 if (param) {
14824                         if (registers_of(state, param) != 1) {
14825                                 error(state, state->main_function,
14826                                         "Result: %d %s requires multiple registers",
14827                                         idx, param->field_ident->name);
14828                         }
14829                         expr = read_expr(state, call);
14830                         if ((result_type->type & TYPE_MASK) == TYPE_STRUCT) {
14831                                 expr = deref_field(state, expr, param->field_ident);
14832                         }
14833                 } else {
14834                         expr = triple(state, OP_UNKNOWNVAL, &int_type, 0, 0);
14835                 }
14836                 flatten(state, out, expr);
14837                 RHS(out, idx) = expr;
14838                 use_triple(expr, out);
14839         }
14840
14841         /* Allocate a dummy containing function */
14842         func = triple(state, OP_LIST, 
14843                 new_type(TYPE_FUNCTION, &void_type, &void_type), 0, 0);
14844         func->type->type_ident = lookup(state, "", 0);
14845         RHS(func, 0) = state->first;
14846         func->u.cval = 1;
14847
14848         /* See which functions are called, and how often */
14849         mark_live_functions(state);
14850         inline_functions(state, func);
14851         walk_functions(state, insert_function, end);
14852
14853         if (start->next != end) {
14854                 jmp = flatten(state, start, branch(state, end, 0));
14855         }
14856
14857         /* OK now the functions have been joined. */
14858         state->functions_joined = 1;
14859
14860         /* Done now cleanup */
14861         state->file = file.prev;
14862         state->function = 0;
14863 }
14864
14865 /*
14866  * Data structurs for optimation.
14867  */
14868
14869
14870 static int do_use_block(
14871         struct block *used, struct block_set **head, struct block *user, 
14872         int front)
14873 {
14874         struct block_set **ptr, *new;
14875         if (!used)
14876                 return 0;
14877         if (!user)
14878                 return 0;
14879         ptr = head;
14880         while(*ptr) {
14881                 if ((*ptr)->member == user) {
14882                         return 0;
14883                 }
14884                 ptr = &(*ptr)->next;
14885         }
14886         new = xcmalloc(sizeof(*new), "block_set");
14887         new->member = user;
14888         if (front) {
14889                 new->next = *head;
14890                 *head = new;
14891         }
14892         else {
14893                 new->next = 0;
14894                 *ptr = new;
14895         }
14896         return 1;
14897 }
14898 static int do_unuse_block(
14899         struct block *used, struct block_set **head, struct block *unuser)
14900 {
14901         struct block_set *use, **ptr;
14902         int count;
14903         count = 0;
14904         ptr = head;
14905         while(*ptr) {
14906                 use = *ptr;
14907                 if (use->member == unuser) {
14908                         *ptr = use->next;
14909                         memset(use, -1, sizeof(*use));
14910                         xfree(use);
14911                         count += 1;
14912                 }
14913                 else {
14914                         ptr = &use->next;
14915                 }
14916         }
14917         return count;
14918 }
14919
14920 static void use_block(struct block *used, struct block *user)
14921 {
14922         int count;
14923         /* Append new to the head of the list, print_block
14924          * depends on this.
14925          */
14926         count = do_use_block(used, &used->use, user, 1); 
14927         used->users += count;
14928 }
14929 static void unuse_block(struct block *used, struct block *unuser)
14930 {
14931         int count;
14932         count = do_unuse_block(used, &used->use, unuser); 
14933         used->users -= count;
14934 }
14935
14936 static void add_block_edge(struct block *block, struct block *edge, int front)
14937 {
14938         int count;
14939         count = do_use_block(block, &block->edges, edge, front);
14940         block->edge_count += count;
14941 }
14942
14943 static void remove_block_edge(struct block *block, struct block *edge)
14944 {
14945         int count;
14946         count = do_unuse_block(block, &block->edges, edge);
14947         block->edge_count -= count;
14948 }
14949
14950 static void idom_block(struct block *idom, struct block *user)
14951 {
14952         do_use_block(idom, &idom->idominates, user, 0);
14953 }
14954
14955 static void unidom_block(struct block *idom, struct block *unuser)
14956 {
14957         do_unuse_block(idom, &idom->idominates, unuser);
14958 }
14959
14960 static void domf_block(struct block *block, struct block *domf)
14961 {
14962         do_use_block(block, &block->domfrontier, domf, 0);
14963 }
14964
14965 static void undomf_block(struct block *block, struct block *undomf)
14966 {
14967         do_unuse_block(block, &block->domfrontier, undomf);
14968 }
14969
14970 static void ipdom_block(struct block *ipdom, struct block *user)
14971 {
14972         do_use_block(ipdom, &ipdom->ipdominates, user, 0);
14973 }
14974
14975 static void unipdom_block(struct block *ipdom, struct block *unuser)
14976 {
14977         do_unuse_block(ipdom, &ipdom->ipdominates, unuser);
14978 }
14979
14980 static void ipdomf_block(struct block *block, struct block *ipdomf)
14981 {
14982         do_use_block(block, &block->ipdomfrontier, ipdomf, 0);
14983 }
14984
14985 static void unipdomf_block(struct block *block, struct block *unipdomf)
14986 {
14987         do_unuse_block(block, &block->ipdomfrontier, unipdomf);
14988 }
14989
14990 static int walk_triples(
14991         struct compile_state *state, 
14992         int (*cb)(struct compile_state *state, struct triple *ptr, void *arg),
14993         void *arg)
14994 {
14995         struct triple *ptr;
14996         int result;
14997         ptr = state->first;
14998         do {
14999                 result = cb(state, ptr, arg);
15000                 if (ptr->next->prev != ptr) {
15001                         internal_error(state, ptr->next, "bad prev");
15002                 }
15003                 ptr = ptr->next;
15004         } while((result == 0) && (ptr != state->first));
15005         return result;
15006 }
15007
15008 #define PRINT_LIST 1
15009 static int do_print_triple(struct compile_state *state, struct triple *ins, void *arg)
15010 {
15011         FILE *fp = arg;
15012         int op;
15013         op = ins->op;
15014         if (op == OP_LIST) {
15015 #if !PRINT_LIST
15016                 return 0;
15017 #endif
15018         }
15019         if ((op == OP_LABEL) && (ins->use)) {
15020                 fprintf(fp, "\n%p:\n", ins);
15021         }
15022         display_triple(fp, ins);
15023
15024         if (triple_is_branch(state, ins) && ins->use && 
15025                 (ins->op != OP_RET) && (ins->op != OP_FCALL)) {
15026                 internal_error(state, ins, "branch used?");
15027         }
15028         if (triple_is_branch(state, ins)) {
15029                 fprintf(fp, "\n");
15030         }
15031         return 0;
15032 }
15033
15034 static void print_triples(struct compile_state *state)
15035 {
15036         if (state->compiler->debug & DEBUG_TRIPLES) {
15037                 FILE *fp = state->dbgout;
15038                 fprintf(fp, "--------------- triples ---------------\n");
15039                 walk_triples(state, do_print_triple, fp);
15040                 fprintf(fp, "\n");
15041         }
15042 }
15043
15044 struct cf_block {
15045         struct block *block;
15046 };
15047 static void find_cf_blocks(struct cf_block *cf, struct block *block)
15048 {
15049         struct block_set *edge;
15050         if (!block || (cf[block->vertex].block == block)) {
15051                 return;
15052         }
15053         cf[block->vertex].block = block;
15054         for(edge = block->edges; edge; edge = edge->next) {
15055                 find_cf_blocks(cf, edge->member);
15056         }
15057 }
15058
15059 static void print_control_flow(struct compile_state *state,
15060         FILE *fp, struct basic_blocks *bb)
15061 {
15062         struct cf_block *cf;
15063         int i;
15064         fprintf(fp, "\ncontrol flow\n");
15065         cf = xcmalloc(sizeof(*cf) * (bb->last_vertex + 1), "cf_block");
15066         find_cf_blocks(cf, bb->first_block);
15067
15068         for(i = 1; i <= bb->last_vertex; i++) {
15069                 struct block *block;
15070                 struct block_set *edge;
15071                 block = cf[i].block;
15072                 if (!block)
15073                         continue;
15074                 fprintf(fp, "(%p) %d:", block, block->vertex);
15075                 for(edge = block->edges; edge; edge = edge->next) {
15076                         fprintf(fp, " %d", edge->member->vertex);
15077                 }
15078                 fprintf(fp, "\n");
15079         }
15080
15081         xfree(cf);
15082 }
15083
15084 static void free_basic_block(struct compile_state *state, struct block *block)
15085 {
15086         struct block_set *edge, *entry;
15087         struct block *child;
15088         if (!block) {
15089                 return;
15090         }
15091         if (block->vertex == -1) {
15092                 return;
15093         }
15094         block->vertex = -1;
15095         for(edge = block->edges; edge; edge = edge->next) {
15096                 if (edge->member) {
15097                         unuse_block(edge->member, block);
15098                 }
15099         }
15100         if (block->idom) {
15101                 unidom_block(block->idom, block);
15102         }
15103         block->idom = 0;
15104         if (block->ipdom) {
15105                 unipdom_block(block->ipdom, block);
15106         }
15107         block->ipdom = 0;
15108         while((entry = block->use)) {
15109                 child = entry->member;
15110                 unuse_block(block, child);
15111                 if (child && (child->vertex != -1)) {
15112                         for(edge = child->edges; edge; edge = edge->next) {
15113                                 edge->member = 0;
15114                         }
15115                 }
15116         }
15117         while((entry = block->idominates)) {
15118                 child = entry->member;
15119                 unidom_block(block, child);
15120                 if (child && (child->vertex != -1)) {
15121                         child->idom = 0;
15122                 }
15123         }
15124         while((entry = block->domfrontier)) {
15125                 child = entry->member;
15126                 undomf_block(block, child);
15127         }
15128         while((entry = block->ipdominates)) {
15129                 child = entry->member;
15130                 unipdom_block(block, child);
15131                 if (child && (child->vertex != -1)) {
15132                         child->ipdom = 0;
15133                 }
15134         }
15135         while((entry = block->ipdomfrontier)) {
15136                 child = entry->member;
15137                 unipdomf_block(block, child);
15138         }
15139         if (block->users != 0) {
15140                 internal_error(state, 0, "block still has users");
15141         }
15142         while((edge = block->edges)) {
15143                 child = edge->member;
15144                 remove_block_edge(block, child);
15145                 
15146                 if (child && (child->vertex != -1)) {
15147                         free_basic_block(state, child);
15148                 }
15149         }
15150         memset(block, -1, sizeof(*block));
15151 #ifndef WIN32
15152         xfree(block);
15153 #endif
15154 }
15155
15156 static void free_basic_blocks(struct compile_state *state, 
15157         struct basic_blocks *bb)
15158 {
15159         struct triple *first, *ins;
15160         free_basic_block(state, bb->first_block);
15161         bb->last_vertex = 0;
15162         bb->first_block = bb->last_block = 0;
15163         first = bb->first;
15164         ins = first;
15165         do {
15166                 if (triple_stores_block(state, ins)) {
15167                         ins->u.block = 0;
15168                 }
15169                 ins = ins->next;
15170         } while(ins != first);
15171         
15172 }
15173
15174 static struct block *basic_block(struct compile_state *state, 
15175         struct basic_blocks *bb, struct triple *first)
15176 {
15177         struct block *block;
15178         struct triple *ptr;
15179         if (!triple_is_label(state, first)) {
15180                 internal_error(state, first, "block does not start with a label");
15181         }
15182         /* See if this basic block has already been setup */
15183         if (first->u.block != 0) {
15184                 return first->u.block;
15185         }
15186         /* Allocate another basic block structure */
15187         bb->last_vertex += 1;
15188         block = xcmalloc(sizeof(*block), "block");
15189         block->first = block->last = first;
15190         block->vertex = bb->last_vertex;
15191         ptr = first;
15192         do {
15193                 if ((ptr != first) && triple_is_label(state, ptr) && (ptr->use)) { 
15194                         break;
15195                 }
15196                 block->last = ptr;
15197                 /* If ptr->u is not used remember where the baic block is */
15198                 if (triple_stores_block(state, ptr)) {
15199                         ptr->u.block = block;
15200                 }
15201                 if (triple_is_branch(state, ptr)) {
15202                         break;
15203                 }
15204                 ptr = ptr->next;
15205         } while (ptr != bb->first);
15206         if ((ptr == bb->first) ||
15207                 ((ptr->next == bb->first) && (
15208                         triple_is_end(state, ptr) || 
15209                         triple_is_ret(state, ptr))))
15210         {
15211                 /* The block has no outflowing edges */
15212         }
15213         else if (triple_is_label(state, ptr)) {
15214                 struct block *next;
15215                 next = basic_block(state, bb, ptr);
15216                 add_block_edge(block, next, 0);
15217                 use_block(next, block);
15218         }
15219         else if (triple_is_branch(state, ptr)) {
15220                 struct triple **expr, *first;
15221                 struct block *child;
15222                 /* Find the branch targets.
15223                  * I special case the first branch as that magically
15224                  * avoids some difficult cases for the register allocator.
15225                  */
15226                 expr = triple_edge_targ(state, ptr, 0);
15227                 if (!expr) {
15228                         internal_error(state, ptr, "branch without targets");
15229                 }
15230                 first = *expr;
15231                 expr = triple_edge_targ(state, ptr, expr);
15232                 for(; expr; expr = triple_edge_targ(state, ptr, expr)) {
15233                         if (!*expr) continue;
15234                         child = basic_block(state, bb, *expr);
15235                         use_block(child, block);
15236                         add_block_edge(block, child, 0);
15237                 }
15238                 if (first) {
15239                         child = basic_block(state, bb, first);
15240                         use_block(child, block);
15241                         add_block_edge(block, child, 1);
15242
15243                         /* Be certain the return block of a call is
15244                          * in a basic block.  When it is not find
15245                          * start of the block, insert a label if
15246                          * necessary and build the basic block.
15247                          * Then add a fake edge from the start block
15248                          * to the return block of the function.
15249                          */
15250                         if (state->functions_joined && triple_is_call(state, ptr)
15251                                 && !block_of_triple(state, MISC(ptr, 0))) {
15252                                 struct block *tail;
15253                                 struct triple *start;
15254                                 start = triple_to_block_start(state, MISC(ptr, 0));
15255                                 if (!triple_is_label(state, start)) {
15256                                         start = pre_triple(state,
15257                                                 start, OP_LABEL, &void_type, 0, 0);
15258                                 }
15259                                 tail = basic_block(state, bb, start);
15260                                 add_block_edge(child, tail, 0);
15261                                 use_block(tail, child);
15262                         }
15263                 }
15264         }
15265         else {
15266                 internal_error(state, 0, "Bad basic block split");
15267         }
15268 #if 0
15269 {
15270         struct block_set *edge;
15271         FILE *fp = state->errout;
15272         fprintf(fp, "basic_block: %10p [%2d] ( %10p - %10p )",
15273                 block, block->vertex, 
15274                 block->first, block->last);
15275         for(edge = block->edges; edge; edge = edge->next) {
15276                 fprintf(fp, " %10p [%2d]",
15277                         edge->member ? edge->member->first : 0,
15278                         edge->member ? edge->member->vertex : -1);
15279         }
15280         fprintf(fp, "\n");
15281 }
15282 #endif
15283         return block;
15284 }
15285
15286
15287 static void walk_blocks(struct compile_state *state, struct basic_blocks *bb,
15288         void (*cb)(struct compile_state *state, struct block *block, void *arg),
15289         void *arg)
15290 {
15291         struct triple *ptr, *first;
15292         struct block *last_block;
15293         last_block = 0;
15294         first = bb->first;
15295         ptr = first;
15296         do {
15297                 if (triple_stores_block(state, ptr)) {
15298                         struct block *block;
15299                         block = ptr->u.block;
15300                         if (block && (block != last_block)) {
15301                                 cb(state, block, arg);
15302                         }
15303                         last_block = block;
15304                 }
15305                 ptr = ptr->next;
15306         } while(ptr != first);
15307 }
15308
15309 static void print_block(
15310         struct compile_state *state, struct block *block, void *arg)
15311 {
15312         struct block_set *user, *edge;
15313         struct triple *ptr;
15314         FILE *fp = arg;
15315
15316         fprintf(fp, "\nblock: %p (%d) ",
15317                 block, 
15318                 block->vertex);
15319
15320         for(edge = block->edges; edge; edge = edge->next) {
15321                 fprintf(fp, " %p<-%p",
15322                         edge->member,
15323                         (edge->member && edge->member->use)?
15324                         edge->member->use->member : 0);
15325         }
15326         fprintf(fp, "\n");
15327         if (block->first->op == OP_LABEL) {
15328                 fprintf(fp, "%p:\n", block->first);
15329         }
15330         for(ptr = block->first; ; ) {
15331                 display_triple(fp, ptr);
15332                 if (ptr == block->last)
15333                         break;
15334                 ptr = ptr->next;
15335                 if (ptr == block->first) {
15336                         internal_error(state, 0, "missing block last?");
15337                 }
15338         }
15339         fprintf(fp, "users %d: ", block->users);
15340         for(user = block->use; user; user = user->next) {
15341                 fprintf(fp, "%p (%d) ", 
15342                         user->member,
15343                         user->member->vertex);
15344         }
15345         fprintf(fp,"\n\n");
15346 }
15347
15348
15349 static void romcc_print_blocks(struct compile_state *state, FILE *fp)
15350 {
15351         fprintf(fp, "--------------- blocks ---------------\n");
15352         walk_blocks(state, &state->bb, print_block, fp);
15353 }
15354 static void print_blocks(struct compile_state *state, const char *func, FILE *fp)
15355 {
15356         if (state->compiler->debug & DEBUG_BASIC_BLOCKS) {
15357                 fprintf(fp, "After %s\n", func);
15358                 romcc_print_blocks(state, fp);
15359                 if (state->compiler->debug & DEBUG_FDOMINATORS) {
15360                         print_dominators(state, fp, &state->bb);
15361                         print_dominance_frontiers(state, fp, &state->bb);
15362                 }
15363                 print_control_flow(state, fp, &state->bb);
15364         }
15365 }
15366
15367 static void prune_nonblock_triples(struct compile_state *state, 
15368         struct basic_blocks *bb)
15369 {
15370         struct block *block;
15371         struct triple *first, *ins, *next;
15372         /* Delete the triples not in a basic block */
15373         block = 0;
15374         first = bb->first;
15375         ins = first;
15376         do {
15377                 next = ins->next;
15378                 if (ins->op == OP_LABEL) {
15379                         block = ins->u.block;
15380                 }
15381                 if (!block) {
15382                         struct triple_set *use;
15383                         for(use = ins->use; use; use = use->next) {
15384                                 struct block *block;
15385                                 block = block_of_triple(state, use->member);
15386                                 if (block != 0) {
15387                                         internal_error(state, ins, "pruning used ins?");
15388                                 }
15389                         }
15390                         release_triple(state, ins);
15391                 }
15392                 if (block && block->last == ins) {
15393                         block = 0;
15394                 }
15395                 ins = next;
15396         } while(ins != first);
15397 }
15398
15399 static void setup_basic_blocks(struct compile_state *state, 
15400         struct basic_blocks *bb)
15401 {
15402         if (!triple_stores_block(state, bb->first)) {
15403                 internal_error(state, 0, "ins will not store block?");
15404         }
15405         /* Initialize the state */
15406         bb->first_block = bb->last_block = 0;
15407         bb->last_vertex = 0;
15408         free_basic_blocks(state, bb);
15409
15410         /* Find the basic blocks */
15411         bb->first_block = basic_block(state, bb, bb->first);
15412
15413         /* Be certain the last instruction of a function, or the
15414          * entire program is in a basic block.  When it is not find 
15415          * the start of the block, insert a label if necessary and build 
15416          * basic block.  Then add a fake edge from the start block
15417          * to the final block.
15418          */
15419         if (!block_of_triple(state, bb->first->prev)) {
15420                 struct triple *start;
15421                 struct block *tail;
15422                 start = triple_to_block_start(state, bb->first->prev);
15423                 if (!triple_is_label(state, start)) {
15424                         start = pre_triple(state,
15425                                 start, OP_LABEL, &void_type, 0, 0);
15426                 }
15427                 tail = basic_block(state, bb, start);
15428                 add_block_edge(bb->first_block, tail, 0);
15429                 use_block(tail, bb->first_block);
15430         }
15431         
15432         /* Find the last basic block.
15433          */
15434         bb->last_block = block_of_triple(state, bb->first->prev);
15435
15436         /* Delete the triples not in a basic block */
15437         prune_nonblock_triples(state, bb);
15438
15439 #if 0
15440         /* If we are debugging print what I have just done */
15441         if (state->compiler->debug & DEBUG_BASIC_BLOCKS) {
15442                 print_blocks(state, state->dbgout);
15443                 print_control_flow(state, bb);
15444         }
15445 #endif
15446 }
15447
15448
15449 struct sdom_block {
15450         struct block *block;
15451         struct sdom_block *sdominates;
15452         struct sdom_block *sdom_next;
15453         struct sdom_block *sdom;
15454         struct sdom_block *label;
15455         struct sdom_block *parent;
15456         struct sdom_block *ancestor;
15457         int vertex;
15458 };
15459
15460
15461 static void unsdom_block(struct sdom_block *block)
15462 {
15463         struct sdom_block **ptr;
15464         if (!block->sdom_next) {
15465                 return;
15466         }
15467         ptr = &block->sdom->sdominates;
15468         while(*ptr) {
15469                 if ((*ptr) == block) {
15470                         *ptr = block->sdom_next;
15471                         return;
15472                 }
15473                 ptr = &(*ptr)->sdom_next;
15474         }
15475 }
15476
15477 static void sdom_block(struct sdom_block *sdom, struct sdom_block *block)
15478 {
15479         unsdom_block(block);
15480         block->sdom = sdom;
15481         block->sdom_next = sdom->sdominates;
15482         sdom->sdominates = block;
15483 }
15484
15485
15486
15487 static int initialize_sdblock(struct sdom_block *sd,
15488         struct block *parent, struct block *block, int vertex)
15489 {
15490         struct block_set *edge;
15491         if (!block || (sd[block->vertex].block == block)) {
15492                 return vertex;
15493         }
15494         vertex += 1;
15495         /* Renumber the blocks in a convinient fashion */
15496         block->vertex = vertex;
15497         sd[vertex].block    = block;
15498         sd[vertex].sdom     = &sd[vertex];
15499         sd[vertex].label    = &sd[vertex];
15500         sd[vertex].parent   = parent? &sd[parent->vertex] : 0;
15501         sd[vertex].ancestor = 0;
15502         sd[vertex].vertex   = vertex;
15503         for(edge = block->edges; edge; edge = edge->next) {
15504                 vertex = initialize_sdblock(sd, block, edge->member, vertex);
15505         }
15506         return vertex;
15507 }
15508
15509 static int initialize_spdblock(
15510         struct compile_state *state, struct sdom_block *sd,
15511         struct block *parent, struct block *block, int vertex)
15512 {
15513         struct block_set *user;
15514         if (!block || (sd[block->vertex].block == block)) {
15515                 return vertex;
15516         }
15517         vertex += 1;
15518         /* Renumber the blocks in a convinient fashion */
15519         block->vertex = vertex;
15520         sd[vertex].block    = block;
15521         sd[vertex].sdom     = &sd[vertex];
15522         sd[vertex].label    = &sd[vertex];
15523         sd[vertex].parent   = parent? &sd[parent->vertex] : 0;
15524         sd[vertex].ancestor = 0;
15525         sd[vertex].vertex   = vertex;
15526         for(user = block->use; user; user = user->next) {
15527                 vertex = initialize_spdblock(state, sd, block, user->member, vertex);
15528         }
15529         return vertex;
15530 }
15531
15532 static int setup_spdblocks(struct compile_state *state, 
15533         struct basic_blocks *bb, struct sdom_block *sd)
15534 {
15535         struct block *block;
15536         int vertex;
15537         /* Setup as many sdpblocks as possible without using fake edges */
15538         vertex = initialize_spdblock(state, sd, 0, bb->last_block, 0);
15539
15540         /* Walk through the graph and find unconnected blocks.  Add a
15541          * fake edge from the unconnected blocks to the end of the
15542          * graph. 
15543          */
15544         block = bb->first_block->last->next->u.block;
15545         for(; block && block != bb->first_block; block = block->last->next->u.block) {
15546                 if (sd[block->vertex].block == block) {
15547                         continue;
15548                 }
15549 #if DEBUG_SDP_BLOCKS
15550                 {
15551                         FILE *fp = state->errout;
15552                         fprintf(fp, "Adding %d\n", vertex +1);
15553                 }
15554 #endif
15555                 add_block_edge(block, bb->last_block, 0);
15556                 use_block(bb->last_block, block);
15557
15558                 vertex = initialize_spdblock(state, sd, bb->last_block, block, vertex);
15559         }
15560         return vertex;
15561 }
15562
15563 static void compress_ancestors(struct sdom_block *v)
15564 {
15565         /* This procedure assumes ancestor(v) != 0 */
15566         /* if (ancestor(ancestor(v)) != 0) {
15567          *      compress(ancestor(ancestor(v)));
15568          *      if (semi(label(ancestor(v))) < semi(label(v))) {
15569          *              label(v) = label(ancestor(v));
15570          *      }
15571          *      ancestor(v) = ancestor(ancestor(v));
15572          * }
15573          */
15574         if (!v->ancestor) {
15575                 return;
15576         }
15577         if (v->ancestor->ancestor) {
15578                 compress_ancestors(v->ancestor->ancestor);
15579                 if (v->ancestor->label->sdom->vertex < v->label->sdom->vertex) {
15580                         v->label = v->ancestor->label;
15581                 }
15582                 v->ancestor = v->ancestor->ancestor;
15583         }
15584 }
15585
15586 static void compute_sdom(struct compile_state *state, 
15587         struct basic_blocks *bb, struct sdom_block *sd)
15588 {
15589         int i;
15590         /* // step 2 
15591          *  for each v <= pred(w) {
15592          *      u = EVAL(v);
15593          *      if (semi[u] < semi[w] { 
15594          *              semi[w] = semi[u]; 
15595          *      } 
15596          * }
15597          * add w to bucket(vertex(semi[w]));
15598          * LINK(parent(w), w);
15599          *
15600          * // step 3
15601          * for each v <= bucket(parent(w)) {
15602          *      delete v from bucket(parent(w));
15603          *      u = EVAL(v);
15604          *      dom(v) = (semi[u] < semi[v]) ? u : parent(w);
15605          * }
15606          */
15607         for(i = bb->last_vertex; i >= 2; i--) {
15608                 struct sdom_block *v, *parent, *next;
15609                 struct block_set *user;
15610                 struct block *block;
15611                 block = sd[i].block;
15612                 parent = sd[i].parent;
15613                 /* Step 2 */
15614                 for(user = block->use; user; user = user->next) {
15615                         struct sdom_block *v, *u;
15616                         v = &sd[user->member->vertex];
15617                         u = !(v->ancestor)? v : (compress_ancestors(v), v->label);
15618                         if (u->sdom->vertex < sd[i].sdom->vertex) {
15619                                 sd[i].sdom = u->sdom;
15620                         }
15621                 }
15622                 sdom_block(sd[i].sdom, &sd[i]);
15623                 sd[i].ancestor = parent;
15624                 /* Step 3 */
15625                 for(v = parent->sdominates; v; v = next) {
15626                         struct sdom_block *u;
15627                         next = v->sdom_next;
15628                         unsdom_block(v);
15629                         u = (!v->ancestor) ? v : (compress_ancestors(v), v->label);
15630                         v->block->idom = (u->sdom->vertex < v->sdom->vertex)? 
15631                                 u->block : parent->block;
15632                 }
15633         }
15634 }
15635
15636 static void compute_spdom(struct compile_state *state, 
15637         struct basic_blocks *bb, struct sdom_block *sd)
15638 {
15639         int i;
15640         /* // step 2 
15641          *  for each v <= pred(w) {
15642          *      u = EVAL(v);
15643          *      if (semi[u] < semi[w] { 
15644          *              semi[w] = semi[u]; 
15645          *      } 
15646          * }
15647          * add w to bucket(vertex(semi[w]));
15648          * LINK(parent(w), w);
15649          *
15650          * // step 3
15651          * for each v <= bucket(parent(w)) {
15652          *      delete v from bucket(parent(w));
15653          *      u = EVAL(v);
15654          *      dom(v) = (semi[u] < semi[v]) ? u : parent(w);
15655          * }
15656          */
15657         for(i = bb->last_vertex; i >= 2; i--) {
15658                 struct sdom_block *u, *v, *parent, *next;
15659                 struct block_set *edge;
15660                 struct block *block;
15661                 block = sd[i].block;
15662                 parent = sd[i].parent;
15663                 /* Step 2 */
15664                 for(edge = block->edges; edge; edge = edge->next) {
15665                         v = &sd[edge->member->vertex];
15666                         u = !(v->ancestor)? v : (compress_ancestors(v), v->label);
15667                         if (u->sdom->vertex < sd[i].sdom->vertex) {
15668                                 sd[i].sdom = u->sdom;
15669                         }
15670                 }
15671                 sdom_block(sd[i].sdom, &sd[i]);
15672                 sd[i].ancestor = parent;
15673                 /* Step 3 */
15674                 for(v = parent->sdominates; v; v = next) {
15675                         struct sdom_block *u;
15676                         next = v->sdom_next;
15677                         unsdom_block(v);
15678                         u = (!v->ancestor) ? v : (compress_ancestors(v), v->label);
15679                         v->block->ipdom = (u->sdom->vertex < v->sdom->vertex)? 
15680                                 u->block : parent->block;
15681                 }
15682         }
15683 }
15684
15685 static void compute_idom(struct compile_state *state, 
15686         struct basic_blocks *bb, struct sdom_block *sd)
15687 {
15688         int i;
15689         for(i = 2; i <= bb->last_vertex; i++) {
15690                 struct block *block;
15691                 block = sd[i].block;
15692                 if (block->idom->vertex != sd[i].sdom->vertex) {
15693                         block->idom = block->idom->idom;
15694                 }
15695                 idom_block(block->idom, block);
15696         }
15697         sd[1].block->idom = 0;
15698 }
15699
15700 static void compute_ipdom(struct compile_state *state, 
15701         struct basic_blocks *bb, struct sdom_block *sd)
15702 {
15703         int i;
15704         for(i = 2; i <= bb->last_vertex; i++) {
15705                 struct block *block;
15706                 block = sd[i].block;
15707                 if (block->ipdom->vertex != sd[i].sdom->vertex) {
15708                         block->ipdom = block->ipdom->ipdom;
15709                 }
15710                 ipdom_block(block->ipdom, block);
15711         }
15712         sd[1].block->ipdom = 0;
15713 }
15714
15715         /* Theorem 1:
15716          *   Every vertex of a flowgraph G = (V, E, r) except r has
15717          *   a unique immediate dominator.  
15718          *   The edges {(idom(w), w) |w <= V - {r}} form a directed tree
15719          *   rooted at r, called the dominator tree of G, such that 
15720          *   v dominates w if and only if v is a proper ancestor of w in
15721          *   the dominator tree.
15722          */
15723         /* Lemma 1:  
15724          *   If v and w are vertices of G such that v <= w,
15725          *   than any path from v to w must contain a common ancestor
15726          *   of v and w in T.
15727          */
15728         /* Lemma 2:  For any vertex w != r, idom(w) -> w */
15729         /* Lemma 3:  For any vertex w != r, sdom(w) -> w */
15730         /* Lemma 4:  For any vertex w != r, idom(w) -> sdom(w) */
15731         /* Theorem 2:
15732          *   Let w != r.  Suppose every u for which sdom(w) -> u -> w satisfies
15733          *   sdom(u) >= sdom(w).  Then idom(w) = sdom(w).
15734          */
15735         /* Theorem 3:
15736          *   Let w != r and let u be a vertex for which sdom(u) is 
15737          *   minimum amoung vertices u satisfying sdom(w) -> u -> w.
15738          *   Then sdom(u) <= sdom(w) and idom(u) = idom(w).
15739          */
15740         /* Lemma 5:  Let vertices v,w satisfy v -> w.
15741          *           Then v -> idom(w) or idom(w) -> idom(v)
15742          */
15743
15744 static void find_immediate_dominators(struct compile_state *state,
15745         struct basic_blocks *bb)
15746 {
15747         struct sdom_block *sd;
15748         /* w->sdom = min{v| there is a path v = v0,v1,...,vk = w such that:
15749          *           vi > w for (1 <= i <= k - 1}
15750          */
15751         /* Theorem 4:
15752          *   For any vertex w != r.
15753          *   sdom(w) = min(
15754          *                 {v|(v,w) <= E  and v < w } U 
15755          *                 {sdom(u) | u > w and there is an edge (v, w) such that u -> v})
15756          */
15757         /* Corollary 1:
15758          *   Let w != r and let u be a vertex for which sdom(u) is 
15759          *   minimum amoung vertices u satisfying sdom(w) -> u -> w.
15760          *   Then:
15761          *                   { sdom(w) if sdom(w) = sdom(u),
15762          *        idom(w) = {
15763          *                   { idom(u) otherwise
15764          */
15765         /* The algorithm consists of the following 4 steps.
15766          * Step 1.  Carry out a depth-first search of the problem graph.  
15767          *    Number the vertices from 1 to N as they are reached during
15768          *    the search.  Initialize the variables used in succeeding steps.
15769          * Step 2.  Compute the semidominators of all vertices by applying
15770          *    theorem 4.   Carry out the computation vertex by vertex in
15771          *    decreasing order by number.
15772          * Step 3.  Implicitly define the immediate dominator of each vertex
15773          *    by applying Corollary 1.
15774          * Step 4.  Explicitly define the immediate dominator of each vertex,
15775          *    carrying out the computation vertex by vertex in increasing order
15776          *    by number.
15777          */
15778         /* Step 1 initialize the basic block information */
15779         sd = xcmalloc(sizeof(*sd) * (bb->last_vertex + 1), "sdom_state");
15780         initialize_sdblock(sd, 0, bb->first_block, 0);
15781 #if 0
15782         sd[1].size  = 0;
15783         sd[1].label = 0;
15784         sd[1].sdom  = 0;
15785 #endif
15786         /* Step 2 compute the semidominators */
15787         /* Step 3 implicitly define the immediate dominator of each vertex */
15788         compute_sdom(state, bb, sd);
15789         /* Step 4 explicitly define the immediate dominator of each vertex */
15790         compute_idom(state, bb, sd);
15791         xfree(sd);
15792 }
15793
15794 static void find_post_dominators(struct compile_state *state,
15795         struct basic_blocks *bb)
15796 {
15797         struct sdom_block *sd;
15798         int vertex;
15799         /* Step 1 initialize the basic block information */
15800         sd = xcmalloc(sizeof(*sd) * (bb->last_vertex + 1), "sdom_state");
15801
15802         vertex = setup_spdblocks(state, bb, sd);
15803         if (vertex != bb->last_vertex) {
15804                 internal_error(state, 0, "missing %d blocks",
15805                         bb->last_vertex - vertex);
15806         }
15807
15808         /* Step 2 compute the semidominators */
15809         /* Step 3 implicitly define the immediate dominator of each vertex */
15810         compute_spdom(state, bb, sd);
15811         /* Step 4 explicitly define the immediate dominator of each vertex */
15812         compute_ipdom(state, bb, sd);
15813         xfree(sd);
15814 }
15815
15816
15817
15818 static void find_block_domf(struct compile_state *state, struct block *block)
15819 {
15820         struct block *child;
15821         struct block_set *user, *edge;
15822         if (block->domfrontier != 0) {
15823                 internal_error(state, block->first, "domfrontier present?");
15824         }
15825         for(user = block->idominates; user; user = user->next) {
15826                 child = user->member;
15827                 if (child->idom != block) {
15828                         internal_error(state, block->first, "bad idom");
15829                 }
15830                 find_block_domf(state, child);
15831         }
15832         for(edge = block->edges; edge; edge = edge->next) {
15833                 if (edge->member->idom != block) {
15834                         domf_block(block, edge->member);
15835                 }
15836         }
15837         for(user = block->idominates; user; user = user->next) {
15838                 struct block_set *frontier;
15839                 child = user->member;
15840                 for(frontier = child->domfrontier; frontier; frontier = frontier->next) {
15841                         if (frontier->member->idom != block) {
15842                                 domf_block(block, frontier->member);
15843                         }
15844                 }
15845         }
15846 }
15847
15848 static void find_block_ipdomf(struct compile_state *state, struct block *block)
15849 {
15850         struct block *child;
15851         struct block_set *user;
15852         if (block->ipdomfrontier != 0) {
15853                 internal_error(state, block->first, "ipdomfrontier present?");
15854         }
15855         for(user = block->ipdominates; user; user = user->next) {
15856                 child = user->member;
15857                 if (child->ipdom != block) {
15858                         internal_error(state, block->first, "bad ipdom");
15859                 }
15860                 find_block_ipdomf(state, child);
15861         }
15862         for(user = block->use; user; user = user->next) {
15863                 if (user->member->ipdom != block) {
15864                         ipdomf_block(block, user->member);
15865                 }
15866         }
15867         for(user = block->ipdominates; user; user = user->next) {
15868                 struct block_set *frontier;
15869                 child = user->member;
15870                 for(frontier = child->ipdomfrontier; frontier; frontier = frontier->next) {
15871                         if (frontier->member->ipdom != block) {
15872                                 ipdomf_block(block, frontier->member);
15873                         }
15874                 }
15875         }
15876 }
15877
15878 static void print_dominated(
15879         struct compile_state *state, struct block *block, void *arg)
15880 {
15881         struct block_set *user;
15882         FILE *fp = arg;
15883
15884         fprintf(fp, "%d:", block->vertex);
15885         for(user = block->idominates; user; user = user->next) {
15886                 fprintf(fp, " %d", user->member->vertex);
15887                 if (user->member->idom != block) {
15888                         internal_error(state, user->member->first, "bad idom");
15889                 }
15890         }
15891         fprintf(fp,"\n");
15892 }
15893
15894 static void print_dominated2(
15895         struct compile_state *state, FILE *fp, int depth, struct block *block)
15896 {
15897         struct block_set *user;
15898         struct triple *ins;
15899         struct occurance *ptr, *ptr2;
15900         const char *filename1, *filename2;
15901         int equal_filenames;
15902         int i;
15903         for(i = 0; i < depth; i++) {
15904                 fprintf(fp, "   ");
15905         }
15906         fprintf(fp, "%3d: %p (%p - %p) @", 
15907                 block->vertex, block, block->first, block->last);
15908         ins = block->first;
15909         while(ins != block->last && (ins->occurance->line == 0)) {
15910                 ins = ins->next;
15911         }
15912         ptr = ins->occurance;
15913         ptr2 = block->last->occurance;
15914         filename1 = ptr->filename? ptr->filename : "";
15915         filename2 = ptr2->filename? ptr2->filename : "";
15916         equal_filenames = (strcmp(filename1, filename2) == 0);
15917         if ((ptr == ptr2) || (equal_filenames && ptr->line == ptr2->line)) {
15918                 fprintf(fp, " %s:%d", ptr->filename, ptr->line);
15919         } else if (equal_filenames) {
15920                 fprintf(fp, " %s:(%d - %d)",
15921                         ptr->filename, ptr->line, ptr2->line);
15922         } else {
15923                 fprintf(fp, " (%s:%d - %s:%d)",
15924                         ptr->filename, ptr->line,
15925                         ptr2->filename, ptr2->line);
15926         }
15927         fprintf(fp, "\n");
15928         for(user = block->idominates; user; user = user->next) {
15929                 print_dominated2(state, fp, depth + 1, user->member);
15930         }
15931 }
15932
15933 static void print_dominators(struct compile_state *state, FILE *fp, struct basic_blocks *bb)
15934 {
15935         fprintf(fp, "\ndominates\n");
15936         walk_blocks(state, bb, print_dominated, fp);
15937         fprintf(fp, "dominates\n");
15938         print_dominated2(state, fp, 0, bb->first_block);
15939 }
15940
15941
15942 static int print_frontiers(
15943         struct compile_state *state, FILE *fp, struct block *block, int vertex)
15944 {
15945         struct block_set *user, *edge;
15946
15947         if (!block || (block->vertex != vertex + 1)) {
15948                 return vertex;
15949         }
15950         vertex += 1;
15951
15952         fprintf(fp, "%d:", block->vertex);
15953         for(user = block->domfrontier; user; user = user->next) {
15954                 fprintf(fp, " %d", user->member->vertex);
15955         }
15956         fprintf(fp, "\n");
15957         
15958         for(edge = block->edges; edge; edge = edge->next) {
15959                 vertex = print_frontiers(state, fp, edge->member, vertex);
15960         }
15961         return vertex;
15962 }
15963 static void print_dominance_frontiers(struct compile_state *state,
15964         FILE *fp, struct basic_blocks *bb)
15965 {
15966         fprintf(fp, "\ndominance frontiers\n");
15967         print_frontiers(state, fp, bb->first_block, 0);
15968         
15969 }
15970
15971 static void analyze_idominators(struct compile_state *state, struct basic_blocks *bb)
15972 {
15973         /* Find the immediate dominators */
15974         find_immediate_dominators(state, bb);
15975         /* Find the dominance frontiers */
15976         find_block_domf(state, bb->first_block);
15977         /* If debuging print the print what I have just found */
15978         if (state->compiler->debug & DEBUG_FDOMINATORS) {
15979                 print_dominators(state, state->dbgout, bb);
15980                 print_dominance_frontiers(state, state->dbgout, bb);
15981                 print_control_flow(state, state->dbgout, bb);
15982         }
15983 }
15984
15985
15986 static void print_ipdominated(
15987         struct compile_state *state, struct block *block, void *arg)
15988 {
15989         struct block_set *user;
15990         FILE *fp = arg;
15991
15992         fprintf(fp, "%d:", block->vertex);
15993         for(user = block->ipdominates; user; user = user->next) {
15994                 fprintf(fp, " %d", user->member->vertex);
15995                 if (user->member->ipdom != block) {
15996                         internal_error(state, user->member->first, "bad ipdom");
15997                 }
15998         }
15999         fprintf(fp, "\n");
16000 }
16001
16002 static void print_ipdominators(struct compile_state *state, FILE *fp,
16003         struct basic_blocks *bb)
16004 {
16005         fprintf(fp, "\nipdominates\n");
16006         walk_blocks(state, bb, print_ipdominated, fp);
16007 }
16008
16009 static int print_pfrontiers(
16010         struct compile_state *state, FILE *fp, struct block *block, int vertex)
16011 {
16012         struct block_set *user;
16013
16014         if (!block || (block->vertex != vertex + 1)) {
16015                 return vertex;
16016         }
16017         vertex += 1;
16018
16019         fprintf(fp, "%d:", block->vertex);
16020         for(user = block->ipdomfrontier; user; user = user->next) {
16021                 fprintf(fp, " %d", user->member->vertex);
16022         }
16023         fprintf(fp, "\n");
16024         for(user = block->use; user; user = user->next) {
16025                 vertex = print_pfrontiers(state, fp, user->member, vertex);
16026         }
16027         return vertex;
16028 }
16029 static void print_ipdominance_frontiers(struct compile_state *state,
16030         FILE *fp, struct basic_blocks *bb)
16031 {
16032         fprintf(fp, "\nipdominance frontiers\n");
16033         print_pfrontiers(state, fp, bb->last_block, 0);
16034         
16035 }
16036
16037 static void analyze_ipdominators(struct compile_state *state,
16038         struct basic_blocks *bb)
16039 {
16040         /* Find the post dominators */
16041         find_post_dominators(state, bb);
16042         /* Find the control dependencies (post dominance frontiers) */
16043         find_block_ipdomf(state, bb->last_block);
16044         /* If debuging print the print what I have just found */
16045         if (state->compiler->debug & DEBUG_RDOMINATORS) {
16046                 print_ipdominators(state, state->dbgout, bb);
16047                 print_ipdominance_frontiers(state, state->dbgout, bb);
16048                 print_control_flow(state, state->dbgout, bb);
16049         }
16050 }
16051
16052 static int bdominates(struct compile_state *state,
16053         struct block *dom, struct block *sub)
16054 {
16055         while(sub && (sub != dom)) {
16056                 sub = sub->idom;
16057         }
16058         return sub == dom;
16059 }
16060
16061 static int tdominates(struct compile_state *state,
16062         struct triple *dom, struct triple *sub)
16063 {
16064         struct block *bdom, *bsub;
16065         int result;
16066         bdom = block_of_triple(state, dom);
16067         bsub = block_of_triple(state, sub);
16068         if (bdom != bsub) {
16069                 result = bdominates(state, bdom, bsub);
16070         } 
16071         else {
16072                 struct triple *ins;
16073                 if (!bdom || !bsub) {
16074                         internal_error(state, dom, "huh?");
16075                 }
16076                 ins = sub;
16077                 while((ins != bsub->first) && (ins != dom)) {
16078                         ins = ins->prev;
16079                 }
16080                 result = (ins == dom);
16081         }
16082         return result;
16083 }
16084
16085 static void analyze_basic_blocks(
16086         struct compile_state *state, struct basic_blocks *bb)
16087 {
16088         setup_basic_blocks(state, bb);
16089         analyze_idominators(state, bb);
16090         analyze_ipdominators(state, bb);
16091 }
16092
16093 static void insert_phi_operations(struct compile_state *state)
16094 {
16095         size_t size;
16096         struct triple *first;
16097         int *has_already, *work;
16098         struct block *work_list, **work_list_tail;
16099         int iter;
16100         struct triple *var, *vnext;
16101
16102         size = sizeof(int) * (state->bb.last_vertex + 1);
16103         has_already = xcmalloc(size, "has_already");
16104         work =        xcmalloc(size, "work");
16105         iter = 0;
16106
16107         first = state->first;
16108         for(var = first->next; var != first ; var = vnext) {
16109                 struct block *block;
16110                 struct triple_set *user, *unext;
16111                 vnext = var->next;
16112
16113                 if (!triple_is_auto_var(state, var) || !var->use) {
16114                         continue;
16115                 }
16116                         
16117                 iter += 1;
16118                 work_list = 0;
16119                 work_list_tail = &work_list;
16120                 for(user = var->use; user; user = unext) {
16121                         unext = user->next;
16122                         if (MISC(var, 0) == user->member) {
16123                                 continue;
16124                         }
16125                         if (user->member->op == OP_READ) {
16126                                 continue;
16127                         }
16128                         if (user->member->op != OP_WRITE) {
16129                                 internal_error(state, user->member, 
16130                                         "bad variable access");
16131                         }
16132                         block = user->member->u.block;
16133                         if (!block) {
16134                                 warning(state, user->member, "dead code");
16135                                 release_triple(state, user->member);
16136                                 continue;
16137                         }
16138                         if (work[block->vertex] >= iter) {
16139                                 continue;
16140                         }
16141                         work[block->vertex] = iter;
16142                         *work_list_tail = block;
16143                         block->work_next = 0;
16144                         work_list_tail = &block->work_next;
16145                 }
16146                 for(block = work_list; block; block = block->work_next) {
16147                         struct block_set *df;
16148                         for(df = block->domfrontier; df; df = df->next) {
16149                                 struct triple *phi;
16150                                 struct block *front;
16151                                 int in_edges;
16152                                 front = df->member;
16153
16154                                 if (has_already[front->vertex] >= iter) {
16155                                         continue;
16156                                 }
16157                                 /* Count how many edges flow into this block */
16158                                 in_edges = front->users;
16159                                 /* Insert a phi function for this variable */
16160                                 get_occurance(var->occurance);
16161                                 phi = alloc_triple(
16162                                         state, OP_PHI, var->type, -1, in_edges, 
16163                                         var->occurance);
16164                                 phi->u.block = front;
16165                                 MISC(phi, 0) = var;
16166                                 use_triple(var, phi);
16167 #if 1
16168                                 if (phi->rhs != in_edges) {
16169                                         internal_error(state, phi, "phi->rhs: %d != in_edges: %d",
16170                                                 phi->rhs, in_edges);
16171                                 }
16172 #endif
16173                                 /* Insert the phi functions immediately after the label */
16174                                 insert_triple(state, front->first->next, phi);
16175                                 if (front->first == front->last) {
16176                                         front->last = front->first->next;
16177                                 }
16178                                 has_already[front->vertex] = iter;
16179                                 transform_to_arch_instruction(state, phi);
16180
16181                                 /* If necessary plan to visit the basic block */
16182                                 if (work[front->vertex] >= iter) {
16183                                         continue;
16184                                 }
16185                                 work[front->vertex] = iter;
16186                                 *work_list_tail = front;
16187                                 front->work_next = 0;
16188                                 work_list_tail = &front->work_next;
16189                         }
16190                 }
16191         }
16192         xfree(has_already);
16193         xfree(work);
16194 }
16195
16196
16197 struct stack {
16198         struct triple_set *top;
16199         unsigned orig_id;
16200 };
16201
16202 static int count_auto_vars(struct compile_state *state)
16203 {
16204         struct triple *first, *ins;
16205         int auto_vars = 0;
16206         first = state->first;
16207         ins = first;
16208         do {
16209                 if (triple_is_auto_var(state, ins)) {
16210                         auto_vars += 1;
16211                 }
16212                 ins = ins->next;
16213         } while(ins != first);
16214         return auto_vars;
16215 }
16216
16217 static void number_auto_vars(struct compile_state *state, struct stack *stacks)
16218 {
16219         struct triple *first, *ins;
16220         int auto_vars = 0;
16221         first = state->first;
16222         ins = first;
16223         do {
16224                 if (triple_is_auto_var(state, ins)) {
16225                         auto_vars += 1;
16226                         stacks[auto_vars].orig_id = ins->id;
16227                         ins->id = auto_vars;
16228                 }
16229                 ins = ins->next;
16230         } while(ins != first);
16231 }
16232
16233 static void restore_auto_vars(struct compile_state *state, struct stack *stacks)
16234 {
16235         struct triple *first, *ins;
16236         first = state->first;
16237         ins = first;
16238         do {
16239                 if (triple_is_auto_var(state, ins)) {
16240                         ins->id = stacks[ins->id].orig_id;
16241                 }
16242                 ins = ins->next;
16243         } while(ins != first);
16244 }
16245
16246 static struct triple *peek_triple(struct stack *stacks, struct triple *var)
16247 {
16248         struct triple_set *head;
16249         struct triple *top_val;
16250         top_val = 0;
16251         head = stacks[var->id].top;
16252         if (head) {
16253                 top_val = head->member;
16254         }
16255         return top_val;
16256 }
16257
16258 static void push_triple(struct stack *stacks, struct triple *var, struct triple *val)
16259 {
16260         struct triple_set *new;
16261         /* Append new to the head of the list,
16262          * it's the only sensible behavoir for a stack.
16263          */
16264         new = xcmalloc(sizeof(*new), "triple_set");
16265         new->member = val;
16266         new->next   = stacks[var->id].top;
16267         stacks[var->id].top = new;
16268 }
16269
16270 static void pop_triple(struct stack *stacks, struct triple *var, struct triple *oldval)
16271 {
16272         struct triple_set *set, **ptr;
16273         ptr = &stacks[var->id].top;
16274         while(*ptr) {
16275                 set = *ptr;
16276                 if (set->member == oldval) {
16277                         *ptr = set->next;
16278                         xfree(set);
16279                         /* Only free one occurance from the stack */
16280                         return;
16281                 }
16282                 else {
16283                         ptr = &set->next;
16284                 }
16285         }
16286 }
16287
16288 /*
16289  * C(V)
16290  * S(V)
16291  */
16292 static void fixup_block_phi_variables(
16293         struct compile_state *state, struct stack *stacks, struct block *parent, struct block *block)
16294 {
16295         struct block_set *set;
16296         struct triple *ptr;
16297         int edge;
16298         if (!parent || !block)
16299                 return;
16300         /* Find the edge I am coming in on */
16301         edge = 0;
16302         for(set = block->use; set; set = set->next, edge++) {
16303                 if (set->member == parent) {
16304                         break;
16305                 }
16306         }
16307         if (!set) {
16308                 internal_error(state, 0, "phi input is not on a control predecessor");
16309         }
16310         for(ptr = block->first; ; ptr = ptr->next) {
16311                 if (ptr->op == OP_PHI) {
16312                         struct triple *var, *val, **slot;
16313                         var = MISC(ptr, 0);
16314                         if (!var) {
16315                                 internal_error(state, ptr, "no var???");
16316                         }
16317                         /* Find the current value of the variable */
16318                         val = peek_triple(stacks, var);
16319                         if (val && ((val->op == OP_WRITE) || (val->op == OP_READ))) {
16320                                 internal_error(state, val, "bad value in phi");
16321                         }
16322                         if (edge >= ptr->rhs) {
16323                                 internal_error(state, ptr, "edges > phi rhs");
16324                         }
16325                         slot = &RHS(ptr, edge);
16326                         if ((*slot != 0) && (*slot != val)) {
16327                                 internal_error(state, ptr, "phi already bound on this edge");
16328                         }
16329                         *slot = val;
16330                         use_triple(val, ptr);
16331                 }
16332                 if (ptr == block->last) {
16333                         break;
16334                 }
16335         }
16336 }
16337
16338
16339 static void rename_block_variables(
16340         struct compile_state *state, struct stack *stacks, struct block *block)
16341 {
16342         struct block_set *user, *edge;
16343         struct triple *ptr, *next, *last;
16344         int done;
16345         if (!block)
16346                 return;
16347         last = block->first;
16348         done = 0;
16349         for(ptr = block->first; !done; ptr = next) {
16350                 next = ptr->next;
16351                 if (ptr == block->last) {
16352                         done = 1;
16353                 }
16354                 /* RHS(A) */
16355                 if (ptr->op == OP_READ) {
16356                         struct triple *var, *val;
16357                         var = RHS(ptr, 0);
16358                         if (!triple_is_auto_var(state, var)) {
16359                                 internal_error(state, ptr, "read of non auto var!");
16360                         }
16361                         unuse_triple(var, ptr);
16362                         /* Find the current value of the variable */
16363                         val = peek_triple(stacks, var);
16364                         if (!val) {
16365                                 /* Let the optimizer at variables that are not initially
16366                                  * set.  But give it a bogus value so things seem to
16367                                  * work by accident.  This is useful for bitfields because
16368                                  * setting them always involves a read-modify-write.
16369                                  */
16370                                 if (TYPE_ARITHMETIC(ptr->type->type)) {
16371                                         val = pre_triple(state, ptr, OP_INTCONST, ptr->type, 0, 0);
16372                                         val->u.cval = 0xdeadbeaf;
16373                                 } else {
16374                                         val = pre_triple(state, ptr, OP_UNKNOWNVAL, ptr->type, 0, 0);
16375                                 }
16376                         }
16377                         if (!val) {
16378                                 error(state, ptr, "variable used without being set");
16379                         }
16380                         if ((val->op == OP_WRITE) || (val->op == OP_READ)) {
16381                                 internal_error(state, val, "bad value in read");
16382                         }
16383                         propogate_use(state, ptr, val);
16384                         release_triple(state, ptr);
16385                         continue;
16386                 }
16387                 /* LHS(A) */
16388                 if (ptr->op == OP_WRITE) {
16389                         struct triple *var, *val, *tval;
16390                         var = MISC(ptr, 0);
16391                         if (!triple_is_auto_var(state, var)) {
16392                                 internal_error(state, ptr, "write to non auto var!");
16393                         }
16394                         tval = val = RHS(ptr, 0);
16395                         if ((val->op == OP_WRITE) || (val->op == OP_READ) ||
16396                                 triple_is_auto_var(state, val)) {
16397                                 internal_error(state, ptr, "bad value in write");
16398                         }
16399                         /* Insert a cast if the types differ */
16400                         if (!is_subset_type(ptr->type, val->type)) {
16401                                 if (val->op == OP_INTCONST) {
16402                                         tval = pre_triple(state, ptr, OP_INTCONST, ptr->type, 0, 0);
16403                                         tval->u.cval = val->u.cval;
16404                                 }
16405                                 else {
16406                                         tval = pre_triple(state, ptr, OP_CONVERT, ptr->type, val, 0);
16407                                         use_triple(val, tval);
16408                                 }
16409                                 transform_to_arch_instruction(state, tval);
16410                                 unuse_triple(val, ptr);
16411                                 RHS(ptr, 0) = tval;
16412                                 use_triple(tval, ptr);
16413                         }
16414                         propogate_use(state, ptr, tval);
16415                         unuse_triple(var, ptr);
16416                         /* Push OP_WRITE ptr->right onto a stack of variable uses */
16417                         push_triple(stacks, var, tval);
16418                 }
16419                 if (ptr->op == OP_PHI) {
16420                         struct triple *var;
16421                         var = MISC(ptr, 0);
16422                         if (!triple_is_auto_var(state, var)) {
16423                                 internal_error(state, ptr, "phi references non auto var!");
16424                         }
16425                         /* Push OP_PHI onto a stack of variable uses */
16426                         push_triple(stacks, var, ptr);
16427                 }
16428                 last = ptr;
16429         }
16430         block->last = last;
16431
16432         /* Fixup PHI functions in the cf successors */
16433         for(edge = block->edges; edge; edge = edge->next) {
16434                 fixup_block_phi_variables(state, stacks, block, edge->member);
16435         }
16436         /* rename variables in the dominated nodes */
16437         for(user = block->idominates; user; user = user->next) {
16438                 rename_block_variables(state, stacks, user->member);
16439         }
16440         /* pop the renamed variable stack */
16441         last = block->first;
16442         done = 0;
16443         for(ptr = block->first; !done ; ptr = next) {
16444                 next = ptr->next;
16445                 if (ptr == block->last) {
16446                         done = 1;
16447                 }
16448                 if (ptr->op == OP_WRITE) {
16449                         struct triple *var;
16450                         var = MISC(ptr, 0);
16451                         /* Pop OP_WRITE ptr->right from the stack of variable uses */
16452                         pop_triple(stacks, var, RHS(ptr, 0));
16453                         release_triple(state, ptr);
16454                         continue;
16455                 }
16456                 if (ptr->op == OP_PHI) {
16457                         struct triple *var;
16458                         var = MISC(ptr, 0);
16459                         /* Pop OP_WRITE ptr->right from the stack of variable uses */
16460                         pop_triple(stacks, var, ptr);
16461                 }
16462                 last = ptr;
16463         }
16464         block->last = last;
16465 }
16466
16467 static void rename_variables(struct compile_state *state)
16468 {
16469         struct stack *stacks;
16470         int auto_vars;
16471
16472         /* Allocate stacks for the Variables */
16473         auto_vars = count_auto_vars(state);
16474         stacks = xcmalloc(sizeof(stacks[0])*(auto_vars + 1), "auto var stacks");
16475
16476         /* Give each auto_var a stack */
16477         number_auto_vars(state, stacks);
16478
16479         /* Rename the variables */
16480         rename_block_variables(state, stacks, state->bb.first_block);
16481
16482         /* Remove the stacks from the auto_vars */
16483         restore_auto_vars(state, stacks);
16484         xfree(stacks);
16485 }
16486
16487 static void prune_block_variables(struct compile_state *state,
16488         struct block *block)
16489 {
16490         struct block_set *user;
16491         struct triple *next, *ptr;
16492         int done;
16493
16494         done = 0;
16495         for(ptr = block->first; !done; ptr = next) {
16496                 /* Be extremely careful I am deleting the list
16497                  * as I walk trhough it.
16498                  */
16499                 next = ptr->next;
16500                 if (ptr == block->last) {
16501                         done = 1;
16502                 }
16503                 if (triple_is_auto_var(state, ptr)) {
16504                         struct triple_set *user, *next;
16505                         for(user = ptr->use; user; user = next) {
16506                                 struct triple *use;
16507                                 next = user->next;
16508                                 use = user->member;
16509                                 if (MISC(ptr, 0) == user->member) {
16510                                         continue;
16511                                 }
16512                                 if (use->op != OP_PHI) {
16513                                         internal_error(state, use, "decl still used");
16514                                 }
16515                                 if (MISC(use, 0) != ptr) {
16516                                         internal_error(state, use, "bad phi use of decl");
16517                                 }
16518                                 unuse_triple(ptr, use);
16519                                 MISC(use, 0) = 0;
16520                         }
16521                         if ((ptr->u.cval == 0) && (MISC(ptr, 0)->lhs == 1)) {
16522                                 /* Delete the adecl */
16523                                 release_triple(state, MISC(ptr, 0));
16524                                 /* And the piece */
16525                                 release_triple(state, ptr);
16526                         }
16527                         continue;
16528                 }
16529         }
16530         for(user = block->idominates; user; user = user->next) {
16531                 prune_block_variables(state, user->member);
16532         }
16533 }
16534
16535 struct phi_triple {
16536         struct triple *phi;
16537         unsigned orig_id;
16538         int alive;
16539 };
16540
16541 static void keep_phi(struct compile_state *state, struct phi_triple *live, struct triple *phi)
16542 {
16543         struct triple **slot;
16544         int zrhs, i;
16545         if (live[phi->id].alive) {
16546                 return;
16547         }
16548         live[phi->id].alive = 1;
16549         zrhs = phi->rhs;
16550         slot = &RHS(phi, 0);
16551         for(i = 0; i < zrhs; i++) {
16552                 struct triple *used;
16553                 used = slot[i];
16554                 if (used && (used->op == OP_PHI)) {
16555                         keep_phi(state, live, used);
16556                 }
16557         }
16558 }
16559
16560 static void prune_unused_phis(struct compile_state *state)
16561 {
16562         struct triple *first, *phi;
16563         struct phi_triple *live;
16564         int phis, i;
16565         
16566         /* Find the first instruction */
16567         first = state->first;
16568
16569         /* Count how many phi functions I need to process */
16570         phis = 0;
16571         for(phi = first->next; phi != first; phi = phi->next) {
16572                 if (phi->op == OP_PHI) {
16573                         phis += 1;
16574                 }
16575         }
16576         
16577         /* Mark them all dead */
16578         live = xcmalloc(sizeof(*live) * (phis + 1), "phi_triple");
16579         phis = 0;
16580         for(phi = first->next; phi != first; phi = phi->next) {
16581                 if (phi->op != OP_PHI) {
16582                         continue;
16583                 }
16584                 live[phis].alive   = 0;
16585                 live[phis].orig_id = phi->id;
16586                 live[phis].phi     = phi;
16587                 phi->id = phis;
16588                 phis += 1;
16589         }
16590         
16591         /* Mark phis alive that are used by non phis */
16592         for(i = 0; i < phis; i++) {
16593                 struct triple_set *set;
16594                 for(set = live[i].phi->use; !live[i].alive && set; set = set->next) {
16595                         if (set->member->op != OP_PHI) {
16596                                 keep_phi(state, live, live[i].phi);
16597                                 break;
16598                         }
16599                 }
16600         }
16601
16602         /* Delete the extraneous phis */
16603         for(i = 0; i < phis; i++) {
16604                 struct triple **slot;
16605                 int zrhs, j;
16606                 if (!live[i].alive) {
16607                         release_triple(state, live[i].phi);
16608                         continue;
16609                 }
16610                 phi = live[i].phi;
16611                 slot = &RHS(phi, 0);
16612                 zrhs = phi->rhs;
16613                 for(j = 0; j < zrhs; j++) {
16614                         if(!slot[j]) {
16615                                 struct triple *unknown;
16616                                 get_occurance(phi->occurance);
16617                                 unknown = flatten(state, state->global_pool,
16618                                         alloc_triple(state, OP_UNKNOWNVAL,
16619                                                 phi->type, 0, 0, phi->occurance));
16620                                 slot[j] = unknown;
16621                                 use_triple(unknown, phi);
16622                                 transform_to_arch_instruction(state, unknown);
16623 #if 0                           
16624                                 warning(state, phi, "variable not set at index %d on all paths to use", j);
16625 #endif
16626                         }
16627                 }
16628         }
16629         xfree(live);
16630 }
16631
16632 static void transform_to_ssa_form(struct compile_state *state)
16633 {
16634         insert_phi_operations(state);
16635         rename_variables(state);
16636
16637         prune_block_variables(state, state->bb.first_block);
16638         prune_unused_phis(state);
16639
16640         print_blocks(state, __func__, state->dbgout);
16641 }
16642
16643
16644 static void clear_vertex(
16645         struct compile_state *state, struct block *block, void *arg)
16646 {
16647         /* Clear the current blocks vertex and the vertex of all
16648          * of the current blocks neighbors in case there are malformed
16649          * blocks with now instructions at this point.
16650          */
16651         struct block_set *user, *edge;
16652         block->vertex = 0;
16653         for(edge = block->edges; edge; edge = edge->next) {
16654                 edge->member->vertex = 0;
16655         }
16656         for(user = block->use; user; user = user->next) {
16657                 user->member->vertex = 0;
16658         }
16659 }
16660
16661 static void mark_live_block(
16662         struct compile_state *state, struct block *block, int *next_vertex)
16663 {
16664         /* See if this is a block that has not been marked */
16665         if (block->vertex != 0) {
16666                 return;
16667         }
16668         block->vertex = *next_vertex;
16669         *next_vertex += 1;
16670         if (triple_is_branch(state, block->last)) {
16671                 struct triple **targ;
16672                 targ = triple_edge_targ(state, block->last, 0);
16673                 for(; targ; targ = triple_edge_targ(state, block->last, targ)) {
16674                         if (!*targ) {
16675                                 continue;
16676                         }
16677                         if (!triple_stores_block(state, *targ)) {
16678                                 internal_error(state, 0, "bad targ");
16679                         }
16680                         mark_live_block(state, (*targ)->u.block, next_vertex);
16681                 }
16682                 /* Ensure the last block of a function remains alive */
16683                 if (triple_is_call(state, block->last)) {
16684                         mark_live_block(state, MISC(block->last, 0)->u.block, next_vertex);
16685                 }
16686         }
16687         else if (block->last->next != state->first) {
16688                 struct triple *ins;
16689                 ins = block->last->next;
16690                 if (!triple_stores_block(state, ins)) {
16691                         internal_error(state, 0, "bad block start");
16692                 }
16693                 mark_live_block(state, ins->u.block, next_vertex);
16694         }
16695 }
16696
16697 static void transform_from_ssa_form(struct compile_state *state)
16698 {
16699         /* To get out of ssa form we insert moves on the incoming
16700          * edges to blocks containting phi functions.
16701          */
16702         struct triple *first;
16703         struct triple *phi, *var, *next;
16704         int next_vertex;
16705
16706         /* Walk the control flow to see which blocks remain alive */
16707         walk_blocks(state, &state->bb, clear_vertex, 0);
16708         next_vertex = 1;
16709         mark_live_block(state, state->bb.first_block, &next_vertex);
16710
16711         /* Walk all of the operations to find the phi functions */
16712         first = state->first;
16713         for(phi = first->next; phi != first ; phi = next) {
16714                 struct block_set *set;
16715                 struct block *block;
16716                 struct triple **slot;
16717                 struct triple *var;
16718                 struct triple_set *use, *use_next;
16719                 int edge, writers, readers;
16720                 next = phi->next;
16721                 if (phi->op != OP_PHI) {
16722                         continue;
16723                 }
16724
16725                 block = phi->u.block;
16726                 slot  = &RHS(phi, 0);
16727
16728                 /* If this phi is in a dead block just forget it */
16729                 if (block->vertex == 0) {
16730                         release_triple(state, phi);
16731                         continue;
16732                 }
16733
16734                 /* Forget uses from code in dead blocks */
16735                 for(use = phi->use; use; use = use_next) {
16736                         struct block *ublock;
16737                         struct triple **expr;
16738                         use_next = use->next;
16739                         ublock = block_of_triple(state, use->member);
16740                         if ((use->member == phi) || (ublock->vertex != 0)) {
16741                                 continue;
16742                         }
16743                         expr = triple_rhs(state, use->member, 0);
16744                         for(; expr; expr = triple_rhs(state, use->member, expr)) {
16745                                 if (*expr == phi) {
16746                                         *expr = 0;
16747                                 }
16748                         }
16749                         unuse_triple(phi, use->member);
16750                 }
16751                 /* A variable to replace the phi function */
16752                 if (registers_of(state, phi->type) != 1) {
16753                         internal_error(state, phi, "phi->type does not fit in a single register!");
16754                 }
16755                 var = post_triple(state, phi, OP_ADECL, phi->type, 0, 0);
16756                 var = var->next; /* point at the var */
16757                         
16758                 /* Replaces use of phi with var */
16759                 propogate_use(state, phi, var);
16760
16761                 /* Count the readers */
16762                 readers = 0;
16763                 for(use = var->use; use; use = use->next) {
16764                         if (use->member != MISC(var, 0)) {
16765                                 readers++;
16766                         }
16767                 }
16768
16769                 /* Walk all of the incoming edges/blocks and insert moves.
16770                  */
16771                 writers = 0;
16772                 for(edge = 0, set = block->use; set; set = set->next, edge++) {
16773                         struct block *eblock, *vblock;
16774                         struct triple *move;
16775                         struct triple *val, *base;
16776                         eblock = set->member;
16777                         val = slot[edge];
16778                         slot[edge] = 0;
16779                         unuse_triple(val, phi);
16780                         vblock = block_of_triple(state, val);
16781
16782                         /* If we don't have a value that belongs in an OP_WRITE
16783                          * continue on.
16784                          */
16785                         if (!val || (val == &unknown_triple) || (val == phi)
16786                                 || (vblock && (vblock->vertex == 0))) {
16787                                 continue;
16788                         }
16789                         /* If the value should never occur error */
16790                         if (!vblock) {
16791                                 internal_error(state, val, "no vblock?");
16792                                 continue;
16793                         }
16794
16795                         /* If the value occurs in a dead block see if a replacement
16796                          * block can be found.
16797                          */
16798                         while(eblock && (eblock->vertex == 0)) {
16799                                 eblock = eblock->idom;
16800                         }
16801                         /* If not continue on with the next value. */
16802                         if (!eblock || (eblock->vertex == 0)) {
16803                                 continue;
16804                         }
16805
16806                         /* If we have an empty incoming block ignore it. */
16807                         if (!eblock->first) {
16808                                 internal_error(state, 0, "empty block?");
16809                         }
16810                         
16811                         /* Make certain the write is placed in the edge block... */
16812                         /* Walk through the edge block backwards to find an
16813                          * appropriate location for the OP_WRITE.
16814                          */
16815                         for(base = eblock->last; base != eblock->first; base = base->prev) {
16816                                 struct triple **expr;
16817                                 if (base->op == OP_PIECE) {
16818                                         base = MISC(base, 0);
16819                                 }
16820                                 if ((base == var) || (base == val)) {
16821                                         goto out;
16822                                 }
16823                                 expr = triple_lhs(state, base, 0);
16824                                 for(; expr; expr = triple_lhs(state, base, expr)) {
16825                                         if ((*expr) == val) {
16826                                                 goto out;
16827                                         }
16828                                 }
16829                                 expr = triple_rhs(state, base, 0);
16830                                 for(; expr; expr = triple_rhs(state, base, expr)) {
16831                                         if ((*expr) == var) {
16832                                                 goto out;
16833                                         }
16834                                 }
16835                         }
16836                 out:
16837                         if (triple_is_branch(state, base)) {
16838                                 internal_error(state, base,
16839                                         "Could not insert write to phi");
16840                         }
16841                         move = post_triple(state, base, OP_WRITE, var->type, val, var);
16842                         use_triple(val, move);
16843                         use_triple(var, move);
16844                         writers++;
16845                 }
16846                 if (!writers && readers) {
16847                         internal_error(state, var, "no value written to in use phi?");
16848                 }
16849                 /* If var is not used free it */
16850                 if (!writers) {
16851                         release_triple(state, MISC(var, 0));
16852                         release_triple(state, var);
16853                 }
16854                 /* Release the phi function */
16855                 release_triple(state, phi);
16856         }
16857         
16858         /* Walk all of the operations to find the adecls */
16859         for(var = first->next; var != first ; var = var->next) {
16860                 struct triple_set *use, *use_next;
16861                 if (!triple_is_auto_var(state, var)) {
16862                         continue;
16863                 }
16864
16865                 /* Walk through all of the rhs uses of var and
16866                  * replace them with read of var.
16867                  */
16868                 for(use = var->use; use; use = use_next) {
16869                         struct triple *read, *user;
16870                         struct triple **slot;
16871                         int zrhs, i, used;
16872                         use_next = use->next;
16873                         user = use->member;
16874                         
16875                         /* Generate a read of var */
16876                         read = pre_triple(state, user, OP_READ, var->type, var, 0);
16877                         use_triple(var, read);
16878
16879                         /* Find the rhs uses and see if they need to be replaced */
16880                         used = 0;
16881                         zrhs = user->rhs;
16882                         slot = &RHS(user, 0);
16883                         for(i = 0; i < zrhs; i++) {
16884                                 if (slot[i] == var) {
16885                                         slot[i] = read;
16886                                         used = 1;
16887                                 }
16888                         }
16889                         /* If we did use it cleanup the uses */
16890                         if (used) {
16891                                 unuse_triple(var, user);
16892                                 use_triple(read, user);
16893                         } 
16894                         /* If we didn't use it release the extra triple */
16895                         else {
16896                                 release_triple(state, read);
16897                         }
16898                 }
16899         }
16900 }
16901
16902 #define HI() if (state->compiler->debug & DEBUG_REBUILD_SSA_FORM) { \
16903         FILE *fp = state->dbgout; \
16904         fprintf(fp, "@ %s:%d\n", __FILE__, __LINE__); romcc_print_blocks(state, fp); \
16905         } 
16906
16907 static void rebuild_ssa_form(struct compile_state *state)
16908 {
16909 HI();
16910         transform_from_ssa_form(state);
16911 HI();
16912         state->bb.first = state->first;
16913         free_basic_blocks(state, &state->bb);
16914         analyze_basic_blocks(state, &state->bb);
16915 HI();
16916         insert_phi_operations(state);
16917 HI();
16918         rename_variables(state);
16919 HI();
16920         
16921         prune_block_variables(state, state->bb.first_block);
16922 HI();
16923         prune_unused_phis(state);
16924 HI();
16925 }
16926 #undef HI
16927
16928 /* 
16929  * Register conflict resolution
16930  * =========================================================
16931  */
16932
16933 static struct reg_info find_def_color(
16934         struct compile_state *state, struct triple *def)
16935 {
16936         struct triple_set *set;
16937         struct reg_info info;
16938         info.reg = REG_UNSET;
16939         info.regcm = 0;
16940         if (!triple_is_def(state, def)) {
16941                 return info;
16942         }
16943         info = arch_reg_lhs(state, def, 0);
16944         if (info.reg >= MAX_REGISTERS) {
16945                 info.reg = REG_UNSET;
16946         }
16947         for(set = def->use; set; set = set->next) {
16948                 struct reg_info tinfo;
16949                 int i;
16950                 i = find_rhs_use(state, set->member, def);
16951                 if (i < 0) {
16952                         continue;
16953                 }
16954                 tinfo = arch_reg_rhs(state, set->member, i);
16955                 if (tinfo.reg >= MAX_REGISTERS) {
16956                         tinfo.reg = REG_UNSET;
16957                 }
16958                 if ((tinfo.reg != REG_UNSET) && 
16959                         (info.reg != REG_UNSET) &&
16960                         (tinfo.reg != info.reg)) {
16961                         internal_error(state, def, "register conflict");
16962                 }
16963                 if ((info.regcm & tinfo.regcm) == 0) {
16964                         internal_error(state, def, "regcm conflict %x & %x == 0",
16965                                 info.regcm, tinfo.regcm);
16966                 }
16967                 if (info.reg == REG_UNSET) {
16968                         info.reg = tinfo.reg;
16969                 }
16970                 info.regcm &= tinfo.regcm;
16971         }
16972         if (info.reg >= MAX_REGISTERS) {
16973                 internal_error(state, def, "register out of range");
16974         }
16975         return info;
16976 }
16977
16978 static struct reg_info find_lhs_pre_color(
16979         struct compile_state *state, struct triple *ins, int index)
16980 {
16981         struct reg_info info;
16982         int zlhs, zrhs, i;
16983         zrhs = ins->rhs;
16984         zlhs = ins->lhs;
16985         if (!zlhs && triple_is_def(state, ins)) {
16986                 zlhs = 1;
16987         }
16988         if (index >= zlhs) {
16989                 internal_error(state, ins, "Bad lhs %d", index);
16990         }
16991         info = arch_reg_lhs(state, ins, index);
16992         for(i = 0; i < zrhs; i++) {
16993                 struct reg_info rinfo;
16994                 rinfo = arch_reg_rhs(state, ins, i);
16995                 if ((info.reg == rinfo.reg) &&
16996                         (rinfo.reg >= MAX_REGISTERS)) {
16997                         struct reg_info tinfo;
16998                         tinfo = find_lhs_pre_color(state, RHS(ins, index), 0);
16999                         info.reg = tinfo.reg;
17000                         info.regcm &= tinfo.regcm;
17001                         break;
17002                 }
17003         }
17004         if (info.reg >= MAX_REGISTERS) {
17005                 info.reg = REG_UNSET;
17006         }
17007         return info;
17008 }
17009
17010 static struct reg_info find_rhs_post_color(
17011         struct compile_state *state, struct triple *ins, int index);
17012
17013 static struct reg_info find_lhs_post_color(
17014         struct compile_state *state, struct triple *ins, int index)
17015 {
17016         struct triple_set *set;
17017         struct reg_info info;
17018         struct triple *lhs;
17019 #if DEBUG_TRIPLE_COLOR
17020         fprintf(state->errout, "find_lhs_post_color(%p, %d)\n",
17021                 ins, index);
17022 #endif
17023         if ((index == 0) && triple_is_def(state, ins)) {
17024                 lhs = ins;
17025         }
17026         else if (index < ins->lhs) {
17027                 lhs = LHS(ins, index);
17028         }
17029         else {
17030                 internal_error(state, ins, "Bad lhs %d", index);
17031                 lhs = 0;
17032         }
17033         info = arch_reg_lhs(state, ins, index);
17034         if (info.reg >= MAX_REGISTERS) {
17035                 info.reg = REG_UNSET;
17036         }
17037         for(set = lhs->use; set; set = set->next) {
17038                 struct reg_info rinfo;
17039                 struct triple *user;
17040                 int zrhs, i;
17041                 user = set->member;
17042                 zrhs = user->rhs;
17043                 for(i = 0; i < zrhs; i++) {
17044                         if (RHS(user, i) != lhs) {
17045                                 continue;
17046                         }
17047                         rinfo = find_rhs_post_color(state, user, i);
17048                         if ((info.reg != REG_UNSET) &&
17049                                 (rinfo.reg != REG_UNSET) &&
17050                                 (info.reg != rinfo.reg)) {
17051                                 internal_error(state, ins, "register conflict");
17052                         }
17053                         if ((info.regcm & rinfo.regcm) == 0) {
17054                                 internal_error(state, ins, "regcm conflict %x & %x == 0",
17055                                         info.regcm, rinfo.regcm);
17056                         }
17057                         if (info.reg == REG_UNSET) {
17058                                 info.reg = rinfo.reg;
17059                         }
17060                         info.regcm &= rinfo.regcm;
17061                 }
17062         }
17063 #if DEBUG_TRIPLE_COLOR
17064         fprintf(state->errout, "find_lhs_post_color(%p, %d) -> ( %d, %x)\n",
17065                 ins, index, info.reg, info.regcm);
17066 #endif
17067         return info;
17068 }
17069
17070 static struct reg_info find_rhs_post_color(
17071         struct compile_state *state, struct triple *ins, int index)
17072 {
17073         struct reg_info info, rinfo;
17074         int zlhs, i;
17075 #if DEBUG_TRIPLE_COLOR
17076         fprintf(state->errout, "find_rhs_post_color(%p, %d)\n",
17077                 ins, index);
17078 #endif
17079         rinfo = arch_reg_rhs(state, ins, index);
17080         zlhs = ins->lhs;
17081         if (!zlhs && triple_is_def(state, ins)) {
17082                 zlhs = 1;
17083         }
17084         info = rinfo;
17085         if (info.reg >= MAX_REGISTERS) {
17086                 info.reg = REG_UNSET;
17087         }
17088         for(i = 0; i < zlhs; i++) {
17089                 struct reg_info linfo;
17090                 linfo = arch_reg_lhs(state, ins, i);
17091                 if ((linfo.reg == rinfo.reg) &&
17092                         (linfo.reg >= MAX_REGISTERS)) {
17093                         struct reg_info tinfo;
17094                         tinfo = find_lhs_post_color(state, ins, i);
17095                         if (tinfo.reg >= MAX_REGISTERS) {
17096                                 tinfo.reg = REG_UNSET;
17097                         }
17098                         info.regcm &= linfo.regcm;
17099                         info.regcm &= tinfo.regcm;
17100                         if (info.reg != REG_UNSET) {
17101                                 internal_error(state, ins, "register conflict");
17102                         }
17103                         if (info.regcm == 0) {
17104                                 internal_error(state, ins, "regcm conflict");
17105                         }
17106                         info.reg = tinfo.reg;
17107                 }
17108         }
17109 #if DEBUG_TRIPLE_COLOR
17110         fprintf(state->errout, "find_rhs_post_color(%p, %d) -> ( %d, %x)\n",
17111                 ins, index, info.reg, info.regcm);
17112 #endif
17113         return info;
17114 }
17115
17116 static struct reg_info find_lhs_color(
17117         struct compile_state *state, struct triple *ins, int index)
17118 {
17119         struct reg_info pre, post, info;
17120 #if DEBUG_TRIPLE_COLOR
17121         fprintf(state->errout, "find_lhs_color(%p, %d)\n",
17122                 ins, index);
17123 #endif
17124         pre = find_lhs_pre_color(state, ins, index);
17125         post = find_lhs_post_color(state, ins, index);
17126         if ((pre.reg != post.reg) &&
17127                 (pre.reg != REG_UNSET) &&
17128                 (post.reg != REG_UNSET)) {
17129                 internal_error(state, ins, "register conflict");
17130         }
17131         info.regcm = pre.regcm & post.regcm;
17132         info.reg = pre.reg;
17133         if (info.reg == REG_UNSET) {
17134                 info.reg = post.reg;
17135         }
17136 #if DEBUG_TRIPLE_COLOR
17137         fprintf(state->errout, "find_lhs_color(%p, %d) -> ( %d, %x) ... (%d, %x) (%d, %x)\n",
17138                 ins, index, info.reg, info.regcm,
17139                 pre.reg, pre.regcm, post.reg, post.regcm);
17140 #endif
17141         return info;
17142 }
17143
17144 static struct triple *post_copy(struct compile_state *state, struct triple *ins)
17145 {
17146         struct triple_set *entry, *next;
17147         struct triple *out;
17148         struct reg_info info, rinfo;
17149
17150         info = arch_reg_lhs(state, ins, 0);
17151         out = post_triple(state, ins, OP_COPY, ins->type, ins, 0);
17152         use_triple(RHS(out, 0), out);
17153         /* Get the users of ins to use out instead */
17154         for(entry = ins->use; entry; entry = next) {
17155                 int i;
17156                 next = entry->next;
17157                 if (entry->member == out) {
17158                         continue;
17159                 }
17160                 i = find_rhs_use(state, entry->member, ins);
17161                 if (i < 0) {
17162                         continue;
17163                 }
17164                 rinfo = arch_reg_rhs(state, entry->member, i);
17165                 if ((info.reg == REG_UNNEEDED) && (rinfo.reg == REG_UNNEEDED)) {
17166                         continue;
17167                 }
17168                 replace_rhs_use(state, ins, out, entry->member);
17169         }
17170         transform_to_arch_instruction(state, out);
17171         return out;
17172 }
17173
17174 static struct triple *typed_pre_copy(
17175         struct compile_state *state, struct type *type, struct triple *ins, int index)
17176 {
17177         /* Carefully insert enough operations so that I can
17178          * enter any operation with a GPR32.
17179          */
17180         struct triple *in;
17181         struct triple **expr;
17182         unsigned classes;
17183         struct reg_info info;
17184         int op;
17185         if (ins->op == OP_PHI) {
17186                 internal_error(state, ins, "pre_copy on a phi?");
17187         }
17188         classes = arch_type_to_regcm(state, type);
17189         info = arch_reg_rhs(state, ins, index);
17190         expr = &RHS(ins, index);
17191         if ((info.regcm & classes) == 0) {
17192                 FILE *fp = state->errout;
17193                 fprintf(fp, "src_type: ");
17194                 name_of(fp, ins->type);
17195                 fprintf(fp, "\ndst_type: ");
17196                 name_of(fp, type);
17197                 fprintf(fp, "\n");
17198                 internal_error(state, ins, "pre_copy with no register classes");
17199         }
17200         op = OP_COPY;
17201         if (!equiv_types(type, (*expr)->type)) {
17202                 op = OP_CONVERT;
17203         }
17204         in = pre_triple(state, ins, op, type, *expr, 0);
17205         unuse_triple(*expr, ins);
17206         *expr = in;
17207         use_triple(RHS(in, 0), in);
17208         use_triple(in, ins);
17209         transform_to_arch_instruction(state, in);
17210         return in;
17211         
17212 }
17213 static struct triple *pre_copy(
17214         struct compile_state *state, struct triple *ins, int index)
17215 {
17216         return typed_pre_copy(state, RHS(ins, index)->type, ins, index);
17217 }
17218
17219
17220 static void insert_copies_to_phi(struct compile_state *state)
17221 {
17222         /* To get out of ssa form we insert moves on the incoming
17223          * edges to blocks containting phi functions.
17224          */
17225         struct triple *first;
17226         struct triple *phi;
17227
17228         /* Walk all of the operations to find the phi functions */
17229         first = state->first;
17230         for(phi = first->next; phi != first ; phi = phi->next) {
17231                 struct block_set *set;
17232                 struct block *block;
17233                 struct triple **slot, *copy;
17234                 int edge;
17235                 if (phi->op != OP_PHI) {
17236                         continue;
17237                 }
17238                 phi->id |= TRIPLE_FLAG_POST_SPLIT;
17239                 block = phi->u.block;
17240                 slot  = &RHS(phi, 0);
17241                 /* Phi's that feed into mandatory live range joins
17242                  * cause nasty complications.  Insert a copy of
17243                  * the phi value so I never have to deal with
17244                  * that in the rest of the code.
17245                  */
17246                 copy = post_copy(state, phi);
17247                 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
17248                 /* Walk all of the incoming edges/blocks and insert moves.
17249                  */
17250                 for(edge = 0, set = block->use; set; set = set->next, edge++) {
17251                         struct block *eblock;
17252                         struct triple *move;
17253                         struct triple *val;
17254                         struct triple *ptr;
17255                         eblock = set->member;
17256                         val = slot[edge];
17257
17258                         if (val == phi) {
17259                                 continue;
17260                         }
17261
17262                         get_occurance(val->occurance);
17263                         move = build_triple(state, OP_COPY, val->type, val, 0,
17264                                 val->occurance);
17265                         move->u.block = eblock;
17266                         move->id |= TRIPLE_FLAG_PRE_SPLIT;
17267                         use_triple(val, move);
17268                         
17269                         slot[edge] = move;
17270                         unuse_triple(val, phi);
17271                         use_triple(move, phi);
17272
17273                         /* Walk up the dominator tree until I have found the appropriate block */
17274                         while(eblock && !tdominates(state, val, eblock->last)) {
17275                                 eblock = eblock->idom;
17276                         }
17277                         if (!eblock) {
17278                                 internal_error(state, phi, "Cannot find block dominated by %p",
17279                                         val);
17280                         }
17281
17282                         /* Walk through the block backwards to find
17283                          * an appropriate location for the OP_COPY.
17284                          */
17285                         for(ptr = eblock->last; ptr != eblock->first; ptr = ptr->prev) {
17286                                 struct triple **expr;
17287                                 if (ptr->op == OP_PIECE) {
17288                                         ptr = MISC(ptr, 0);
17289                                 }
17290                                 if ((ptr == phi) || (ptr == val)) {
17291                                         goto out;
17292                                 }
17293                                 expr = triple_lhs(state, ptr, 0);
17294                                 for(;expr; expr = triple_lhs(state, ptr, expr)) {
17295                                         if ((*expr) == val) {
17296                                                 goto out;
17297                                         }
17298                                 }
17299                                 expr = triple_rhs(state, ptr, 0);
17300                                 for(;expr; expr = triple_rhs(state, ptr, expr)) {
17301                                         if ((*expr) == phi) {
17302                                                 goto out;
17303                                         }
17304                                 }
17305                         }
17306                 out:
17307                         if (triple_is_branch(state, ptr)) {
17308                                 internal_error(state, ptr,
17309                                         "Could not insert write to phi");
17310                         }
17311                         insert_triple(state, after_lhs(state, ptr), move);
17312                         if (eblock->last == after_lhs(state, ptr)->prev) {
17313                                 eblock->last = move;
17314                         }
17315                         transform_to_arch_instruction(state, move);
17316                 }
17317         }
17318         print_blocks(state, __func__, state->dbgout);
17319 }
17320
17321 struct triple_reg_set;
17322 struct reg_block;
17323
17324
17325 static int do_triple_set(struct triple_reg_set **head, 
17326         struct triple *member, struct triple *new_member)
17327 {
17328         struct triple_reg_set **ptr, *new;
17329         if (!member)
17330                 return 0;
17331         ptr = head;
17332         while(*ptr) {
17333                 if ((*ptr)->member == member) {
17334                         return 0;
17335                 }
17336                 ptr = &(*ptr)->next;
17337         }
17338         new = xcmalloc(sizeof(*new), "triple_set");
17339         new->member = member;
17340         new->new    = new_member;
17341         new->next   = *head;
17342         *head       = new;
17343         return 1;
17344 }
17345
17346 static void do_triple_unset(struct triple_reg_set **head, struct triple *member)
17347 {
17348         struct triple_reg_set *entry, **ptr;
17349         ptr = head;
17350         while(*ptr) {
17351                 entry = *ptr;
17352                 if (entry->member == member) {
17353                         *ptr = entry->next;
17354                         xfree(entry);
17355                         return;
17356                 }
17357                 else {
17358                         ptr = &entry->next;
17359                 }
17360         }
17361 }
17362
17363 static int in_triple(struct reg_block *rb, struct triple *in)
17364 {
17365         return do_triple_set(&rb->in, in, 0);
17366 }
17367
17368 #if DEBUG_ROMCC_WARNING
17369 static void unin_triple(struct reg_block *rb, struct triple *unin)
17370 {
17371         do_triple_unset(&rb->in, unin);
17372 }
17373 #endif
17374
17375 static int out_triple(struct reg_block *rb, struct triple *out)
17376 {
17377         return do_triple_set(&rb->out, out, 0);
17378 }
17379 #if DEBUG_ROMCC_WARNING
17380 static void unout_triple(struct reg_block *rb, struct triple *unout)
17381 {
17382         do_triple_unset(&rb->out, unout);
17383 }
17384 #endif
17385
17386 static int initialize_regblock(struct reg_block *blocks,
17387         struct block *block, int vertex)
17388 {
17389         struct block_set *user;
17390         if (!block || (blocks[block->vertex].block == block)) {
17391                 return vertex;
17392         }
17393         vertex += 1;
17394         /* Renumber the blocks in a convinient fashion */
17395         block->vertex = vertex;
17396         blocks[vertex].block    = block;
17397         blocks[vertex].vertex   = vertex;
17398         for(user = block->use; user; user = user->next) {
17399                 vertex = initialize_regblock(blocks, user->member, vertex);
17400         }
17401         return vertex;
17402 }
17403
17404 static struct triple *part_to_piece(struct compile_state *state, struct triple *ins)
17405 {
17406 /* Part to piece is a best attempt and it cannot be correct all by
17407  * itself.  If various values are read as different sizes in different
17408  * parts of the code this function cannot work.  Or rather it cannot
17409  * work in conjunction with compute_variable_liftimes.  As the
17410  * analysis will get confused.
17411  */
17412         struct triple *base;
17413         unsigned reg;
17414         if (!is_lvalue(state, ins)) {
17415                 return ins;
17416         }
17417         base = 0;
17418         reg = 0;
17419         while(ins && triple_is_part(state, ins) && (ins->op != OP_PIECE)) {
17420                 base = MISC(ins, 0);
17421                 switch(ins->op) {
17422                 case OP_INDEX:
17423                         reg += index_reg_offset(state, base->type, ins->u.cval)/REG_SIZEOF_REG;
17424                         break;
17425                 case OP_DOT:
17426                         reg += field_reg_offset(state, base->type, ins->u.field)/REG_SIZEOF_REG;
17427                         break;
17428                 default:
17429                         internal_error(state, ins, "unhandled part");
17430                         break;
17431                 }
17432                 ins = base;
17433         }
17434         if (base) {
17435                 if (reg > base->lhs) {
17436                         internal_error(state, base, "part out of range?");
17437                 }
17438                 ins = LHS(base, reg);
17439         }
17440         return ins;
17441 }
17442
17443 static int this_def(struct compile_state *state, 
17444         struct triple *ins, struct triple *other)
17445 {
17446         if (ins == other) {
17447                 return 1;
17448         }
17449         if (ins->op == OP_WRITE) {
17450                 ins = part_to_piece(state, MISC(ins, 0));
17451         }
17452         return ins == other;
17453 }
17454
17455 static int phi_in(struct compile_state *state, struct reg_block *blocks,
17456         struct reg_block *rb, struct block *suc)
17457 {
17458         /* Read the conditional input set of a successor block
17459          * (i.e. the input to the phi nodes) and place it in the
17460          * current blocks output set.
17461          */
17462         struct block_set *set;
17463         struct triple *ptr;
17464         int edge;
17465         int done, change;
17466         change = 0;
17467         /* Find the edge I am coming in on */
17468         for(edge = 0, set = suc->use; set; set = set->next, edge++) {
17469                 if (set->member == rb->block) {
17470                         break;
17471                 }
17472         }
17473         if (!set) {
17474                 internal_error(state, 0, "Not coming on a control edge?");
17475         }
17476         for(done = 0, ptr = suc->first; !done; ptr = ptr->next) {
17477                 struct triple **slot, *expr, *ptr2;
17478                 int out_change, done2;
17479                 done = (ptr == suc->last);
17480                 if (ptr->op != OP_PHI) {
17481                         continue;
17482                 }
17483                 slot = &RHS(ptr, 0);
17484                 expr = slot[edge];
17485                 out_change = out_triple(rb, expr);
17486                 if (!out_change) {
17487                         continue;
17488                 }
17489                 /* If we don't define the variable also plast it
17490                  * in the current blocks input set.
17491                  */
17492                 ptr2 = rb->block->first;
17493                 for(done2 = 0; !done2; ptr2 = ptr2->next) {
17494                         if (this_def(state, ptr2, expr)) {
17495                                 break;
17496                         }
17497                         done2 = (ptr2 == rb->block->last);
17498                 }
17499                 if (!done2) {
17500                         continue;
17501                 }
17502                 change |= in_triple(rb, expr);
17503         }
17504         return change;
17505 }
17506
17507 static int reg_in(struct compile_state *state, struct reg_block *blocks,
17508         struct reg_block *rb, struct block *suc)
17509 {
17510         struct triple_reg_set *in_set;
17511         int change;
17512         change = 0;
17513         /* Read the input set of a successor block
17514          * and place it in the current blocks output set.
17515          */
17516         in_set = blocks[suc->vertex].in;
17517         for(; in_set; in_set = in_set->next) {
17518                 int out_change, done;
17519                 struct triple *first, *last, *ptr;
17520                 out_change = out_triple(rb, in_set->member);
17521                 if (!out_change) {
17522                         continue;
17523                 }
17524                 /* If we don't define the variable also place it
17525                  * in the current blocks input set.
17526                  */
17527                 first = rb->block->first;
17528                 last = rb->block->last;
17529                 done = 0;
17530                 for(ptr = first; !done; ptr = ptr->next) {
17531                         if (this_def(state, ptr, in_set->member)) {
17532                                 break;
17533                         }
17534                         done = (ptr == last);
17535                 }
17536                 if (!done) {
17537                         continue;
17538                 }
17539                 change |= in_triple(rb, in_set->member);
17540         }
17541         change |= phi_in(state, blocks, rb, suc);
17542         return change;
17543 }
17544
17545 static int use_in(struct compile_state *state, struct reg_block *rb)
17546 {
17547         /* Find the variables we use but don't define and add
17548          * it to the current blocks input set.
17549          */
17550 #if DEBUG_ROMCC_WARNINGS
17551 #warning "FIXME is this O(N^2) algorithm bad?"
17552 #endif
17553         struct block *block;
17554         struct triple *ptr;
17555         int done;
17556         int change;
17557         block = rb->block;
17558         change = 0;
17559         for(done = 0, ptr = block->last; !done; ptr = ptr->prev) {
17560                 struct triple **expr;
17561                 done = (ptr == block->first);
17562                 /* The variable a phi function uses depends on the
17563                  * control flow, and is handled in phi_in, not
17564                  * here.
17565                  */
17566                 if (ptr->op == OP_PHI) {
17567                         continue;
17568                 }
17569                 expr = triple_rhs(state, ptr, 0);
17570                 for(;expr; expr = triple_rhs(state, ptr, expr)) {
17571                         struct triple *rhs, *test;
17572                         int tdone;
17573                         rhs = part_to_piece(state, *expr);
17574                         if (!rhs) {
17575                                 continue;
17576                         }
17577
17578                         /* See if rhs is defined in this block.
17579                          * A write counts as a definition.
17580                          */
17581                         for(tdone = 0, test = ptr; !tdone; test = test->prev) {
17582                                 tdone = (test == block->first);
17583                                 if (this_def(state, test, rhs)) {
17584                                         rhs = 0;
17585                                         break;
17586                                 }
17587                         }
17588                         /* If I still have a valid rhs add it to in */
17589                         change |= in_triple(rb, rhs);
17590                 }
17591         }
17592         return change;
17593 }
17594
17595 static struct reg_block *compute_variable_lifetimes(
17596         struct compile_state *state, struct basic_blocks *bb)
17597 {
17598         struct reg_block *blocks;
17599         int change;
17600         blocks = xcmalloc(
17601                 sizeof(*blocks)*(bb->last_vertex + 1), "reg_block");
17602         initialize_regblock(blocks, bb->last_block, 0);
17603         do {
17604                 int i;
17605                 change = 0;
17606                 for(i = 1; i <= bb->last_vertex; i++) {
17607                         struct block_set *edge;
17608                         struct reg_block *rb;
17609                         rb = &blocks[i];
17610                         /* Add the all successor's input set to in */
17611                         for(edge = rb->block->edges; edge; edge = edge->next) {
17612                                 change |= reg_in(state, blocks, rb, edge->member);
17613                         }
17614                         /* Add use to in... */
17615                         change |= use_in(state, rb);
17616                 }
17617         } while(change);
17618         return blocks;
17619 }
17620
17621 static void free_variable_lifetimes(struct compile_state *state, 
17622         struct basic_blocks *bb, struct reg_block *blocks)
17623 {
17624         int i;
17625         /* free in_set && out_set on each block */
17626         for(i = 1; i <= bb->last_vertex; i++) {
17627                 struct triple_reg_set *entry, *next;
17628                 struct reg_block *rb;
17629                 rb = &blocks[i];
17630                 for(entry = rb->in; entry ; entry = next) {
17631                         next = entry->next;
17632                         do_triple_unset(&rb->in, entry->member);
17633                 }
17634                 for(entry = rb->out; entry; entry = next) {
17635                         next = entry->next;
17636                         do_triple_unset(&rb->out, entry->member);
17637                 }
17638         }
17639         xfree(blocks);
17640
17641 }
17642
17643 typedef void (*wvl_cb_t)(
17644         struct compile_state *state, 
17645         struct reg_block *blocks, struct triple_reg_set *live, 
17646         struct reg_block *rb, struct triple *ins, void *arg);
17647
17648 static void walk_variable_lifetimes(struct compile_state *state,
17649         struct basic_blocks *bb, struct reg_block *blocks, 
17650         wvl_cb_t cb, void *arg)
17651 {
17652         int i;
17653         
17654         for(i = 1; i <= state->bb.last_vertex; i++) {
17655                 struct triple_reg_set *live;
17656                 struct triple_reg_set *entry, *next;
17657                 struct triple *ptr, *prev;
17658                 struct reg_block *rb;
17659                 struct block *block;
17660                 int done;
17661
17662                 /* Get the blocks */
17663                 rb = &blocks[i];
17664                 block = rb->block;
17665
17666                 /* Copy out into live */
17667                 live = 0;
17668                 for(entry = rb->out; entry; entry = next) {
17669                         next = entry->next;
17670                         do_triple_set(&live, entry->member, entry->new);
17671                 }
17672                 /* Walk through the basic block calculating live */
17673                 for(done = 0, ptr = block->last; !done; ptr = prev) {
17674                         struct triple **expr;
17675
17676                         prev = ptr->prev;
17677                         done = (ptr == block->first);
17678
17679                         /* Ensure the current definition is in live */
17680                         if (triple_is_def(state, ptr)) {
17681                                 do_triple_set(&live, ptr, 0);
17682                         }
17683
17684                         /* Inform the callback function of what is
17685                          * going on.
17686                          */
17687                          cb(state, blocks, live, rb, ptr, arg);
17688                         
17689                         /* Remove the current definition from live */
17690                         do_triple_unset(&live, ptr);
17691
17692                         /* Add the current uses to live.
17693                          *
17694                          * It is safe to skip phi functions because they do
17695                          * not have any block local uses, and the block
17696                          * output sets already properly account for what
17697                          * control flow depedent uses phi functions do have.
17698                          */
17699                         if (ptr->op == OP_PHI) {
17700                                 continue;
17701                         }
17702                         expr = triple_rhs(state, ptr, 0);
17703                         for(;expr; expr = triple_rhs(state, ptr, expr)) {
17704                                 /* If the triple is not a definition skip it. */
17705                                 if (!*expr || !triple_is_def(state, *expr)) {
17706                                         continue;
17707                                 }
17708                                 do_triple_set(&live, *expr, 0);
17709                         }
17710                 }
17711                 /* Free live */
17712                 for(entry = live; entry; entry = next) {
17713                         next = entry->next;
17714                         do_triple_unset(&live, entry->member);
17715                 }
17716         }
17717 }
17718
17719 struct print_live_variable_info {
17720         struct reg_block *rb;
17721         FILE *fp;
17722 };
17723 #if DEBUG_EXPLICIT_CLOSURES
17724 static void print_live_variables_block(
17725         struct compile_state *state, struct block *block, void *arg)
17726
17727 {
17728         struct print_live_variable_info *info = arg;
17729         struct block_set *edge;
17730         FILE *fp = info->fp;
17731         struct reg_block *rb;
17732         struct triple *ptr;
17733         int phi_present;
17734         int done;
17735         rb = &info->rb[block->vertex];
17736
17737         fprintf(fp, "\nblock: %p (%d),",
17738                 block,  block->vertex);
17739         for(edge = block->edges; edge; edge = edge->next) {
17740                 fprintf(fp, " %p<-%p",
17741                         edge->member, 
17742                         edge->member && edge->member->use?edge->member->use->member : 0);
17743         }
17744         fprintf(fp, "\n");
17745         if (rb->in) {
17746                 struct triple_reg_set *in_set;
17747                 fprintf(fp, "        in:");
17748                 for(in_set = rb->in; in_set; in_set = in_set->next) {
17749                         fprintf(fp, " %-10p", in_set->member);
17750                 }
17751                 fprintf(fp, "\n");
17752         }
17753         phi_present = 0;
17754         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
17755                 done = (ptr == block->last);
17756                 if (ptr->op == OP_PHI) {
17757                         phi_present = 1;
17758                         break;
17759                 }
17760         }
17761         if (phi_present) {
17762                 int edge;
17763                 for(edge = 0; edge < block->users; edge++) {
17764                         fprintf(fp, "     in(%d):", edge);
17765                         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
17766                                 struct triple **slot;
17767                                 done = (ptr == block->last);
17768                                 if (ptr->op != OP_PHI) {
17769                                         continue;
17770                                 }
17771                                 slot = &RHS(ptr, 0);
17772                                 fprintf(fp, " %-10p", slot[edge]);
17773                         }
17774                         fprintf(fp, "\n");
17775                 }
17776         }
17777         if (block->first->op == OP_LABEL) {
17778                 fprintf(fp, "%p:\n", block->first);
17779         }
17780         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
17781                 done = (ptr == block->last);
17782                 display_triple(fp, ptr);
17783         }
17784         if (rb->out) {
17785                 struct triple_reg_set *out_set;
17786                 fprintf(fp, "       out:");
17787                 for(out_set = rb->out; out_set; out_set = out_set->next) {
17788                         fprintf(fp, " %-10p", out_set->member);
17789                 }
17790                 fprintf(fp, "\n");
17791         }
17792         fprintf(fp, "\n");
17793 }
17794
17795 static void print_live_variables(struct compile_state *state, 
17796         struct basic_blocks *bb, struct reg_block *rb, FILE *fp)
17797 {
17798         struct print_live_variable_info info;
17799         info.rb = rb;
17800         info.fp = fp;
17801         fprintf(fp, "\nlive variables by block\n");
17802         walk_blocks(state, bb, print_live_variables_block, &info);
17803
17804 }
17805 #endif
17806
17807 static int count_triples(struct compile_state *state)
17808 {
17809         struct triple *first, *ins;
17810         int triples = 0;
17811         first = state->first;
17812         ins = first;
17813         do {
17814                 triples++;
17815                 ins = ins->next;
17816         } while (ins != first);
17817         return triples;
17818 }
17819
17820
17821 struct dead_triple {
17822         struct triple *triple;
17823         struct dead_triple *work_next;
17824         struct block *block;
17825         int old_id;
17826         int flags;
17827 #define TRIPLE_FLAG_ALIVE 1
17828 #define TRIPLE_FLAG_FREE  1
17829 };
17830
17831 static void print_dead_triples(struct compile_state *state, 
17832         struct dead_triple *dtriple)
17833 {
17834         struct triple *first, *ins;
17835         struct dead_triple *dt;
17836         FILE *fp;
17837         if (!(state->compiler->debug & DEBUG_TRIPLES)) {
17838                 return;
17839         }
17840         fp = state->dbgout;
17841         fprintf(fp, "--------------- dtriples ---------------\n");
17842         first = state->first;
17843         ins = first;
17844         do {
17845                 dt = &dtriple[ins->id];
17846                 if ((ins->op == OP_LABEL) && (ins->use)) {
17847                         fprintf(fp, "\n%p:\n", ins);
17848                 }
17849                 fprintf(fp, "%c", 
17850                         (dt->flags & TRIPLE_FLAG_ALIVE)?' ': '-');
17851                 display_triple(fp, ins);
17852                 if (triple_is_branch(state, ins)) {
17853                         fprintf(fp, "\n");
17854                 }
17855                 ins = ins->next;
17856         } while(ins != first);
17857         fprintf(fp, "\n");
17858 }
17859
17860
17861 static void awaken(
17862         struct compile_state *state,
17863         struct dead_triple *dtriple, struct triple **expr,
17864         struct dead_triple ***work_list_tail)
17865 {
17866         struct triple *triple;
17867         struct dead_triple *dt;
17868         if (!expr) {
17869                 return;
17870         }
17871         triple = *expr;
17872         if (!triple) {
17873                 return;
17874         }
17875         if (triple->id <= 0)  {
17876                 internal_error(state, triple, "bad triple id: %d",
17877                         triple->id);
17878         }
17879         if (triple->op == OP_NOOP) {
17880                 internal_error(state, triple, "awakening noop?");
17881                 return;
17882         }
17883         dt = &dtriple[triple->id];
17884         if (!(dt->flags & TRIPLE_FLAG_ALIVE)) {
17885                 dt->flags |= TRIPLE_FLAG_ALIVE;
17886                 if (!dt->work_next) {
17887                         **work_list_tail = dt;
17888                         *work_list_tail = &dt->work_next;
17889                 }
17890         }
17891 }
17892
17893 static void eliminate_inefectual_code(struct compile_state *state)
17894 {
17895         struct block *block;
17896         struct dead_triple *dtriple, *work_list, **work_list_tail, *dt;
17897         int triples, i;
17898         struct triple *first, *final, *ins;
17899
17900         if (!(state->compiler->flags & COMPILER_ELIMINATE_INEFECTUAL_CODE)) {
17901                 return;
17902         }
17903
17904         /* Setup the work list */
17905         work_list = 0;
17906         work_list_tail = &work_list;
17907
17908         first = state->first;
17909         final = state->first->prev;
17910
17911         /* Count how many triples I have */
17912         triples = count_triples(state);
17913
17914         /* Now put then in an array and mark all of the triples dead */
17915         dtriple = xcmalloc(sizeof(*dtriple) * (triples + 1), "dtriples");
17916         
17917         ins = first;
17918         i = 1;
17919         block = 0;
17920         do {
17921                 dtriple[i].triple = ins;
17922                 dtriple[i].block  = block_of_triple(state, ins);
17923                 dtriple[i].flags  = 0;
17924                 dtriple[i].old_id = ins->id;
17925                 ins->id = i;
17926                 /* See if it is an operation we always keep */
17927                 if (!triple_is_pure(state, ins, dtriple[i].old_id)) {
17928                         awaken(state, dtriple, &ins, &work_list_tail);
17929                 }
17930                 i++;
17931                 ins = ins->next;
17932         } while(ins != first);
17933         while(work_list) {
17934                 struct block *block;
17935                 struct dead_triple *dt;
17936                 struct block_set *user;
17937                 struct triple **expr;
17938                 dt = work_list;
17939                 work_list = dt->work_next;
17940                 if (!work_list) {
17941                         work_list_tail = &work_list;
17942                 }
17943                 /* Make certain the block the current instruction is in lives */
17944                 block = block_of_triple(state, dt->triple);
17945                 awaken(state, dtriple, &block->first, &work_list_tail);
17946                 if (triple_is_branch(state, block->last)) {
17947                         awaken(state, dtriple, &block->last, &work_list_tail);
17948                 } else {
17949                         awaken(state, dtriple, &block->last->next, &work_list_tail);
17950                 }
17951
17952                 /* Wake up the data depencencies of this triple */
17953                 expr = 0;
17954                 do {
17955                         expr = triple_rhs(state, dt->triple, expr);
17956                         awaken(state, dtriple, expr, &work_list_tail);
17957                 } while(expr);
17958                 do {
17959                         expr = triple_lhs(state, dt->triple, expr);
17960                         awaken(state, dtriple, expr, &work_list_tail);
17961                 } while(expr);
17962                 do {
17963                         expr = triple_misc(state, dt->triple, expr);
17964                         awaken(state, dtriple, expr, &work_list_tail);
17965                 } while(expr);
17966                 /* Wake up the forward control dependencies */
17967                 do {
17968                         expr = triple_targ(state, dt->triple, expr);
17969                         awaken(state, dtriple, expr, &work_list_tail);
17970                 } while(expr);
17971                 /* Wake up the reverse control dependencies of this triple */
17972                 for(user = dt->block->ipdomfrontier; user; user = user->next) {
17973                         struct triple *last;
17974                         last = user->member->last;
17975                         while((last->op == OP_NOOP) && (last != user->member->first)) {
17976 #if DEBUG_ROMCC_WARNINGS
17977 #warning "Should we bring the awakening noops back?"
17978 #endif
17979                                 // internal_warning(state, last, "awakening noop?");
17980                                 last = last->prev;
17981                         }
17982                         awaken(state, dtriple, &last, &work_list_tail);
17983                 }
17984         }
17985         print_dead_triples(state, dtriple);
17986         for(dt = &dtriple[1]; dt <= &dtriple[triples]; dt++) {
17987                 if ((dt->triple->op == OP_NOOP) && 
17988                         (dt->flags & TRIPLE_FLAG_ALIVE)) {
17989                         internal_error(state, dt->triple, "noop effective?");
17990                 }
17991                 dt->triple->id = dt->old_id;    /* Restore the color */
17992                 if (!(dt->flags & TRIPLE_FLAG_ALIVE)) {
17993                         release_triple(state, dt->triple);
17994                 }
17995         }
17996         xfree(dtriple);
17997
17998         rebuild_ssa_form(state);
17999
18000         print_blocks(state, __func__, state->dbgout);
18001 }
18002
18003
18004 static void insert_mandatory_copies(struct compile_state *state)
18005 {
18006         struct triple *ins, *first;
18007
18008         /* The object is with a minimum of inserted copies,
18009          * to resolve in fundamental register conflicts between
18010          * register value producers and consumers.
18011          * Theoretically we may be greater than minimal when we
18012          * are inserting copies before instructions but that
18013          * case should be rare.
18014          */
18015         first = state->first;
18016         ins = first;
18017         do {
18018                 struct triple_set *entry, *next;
18019                 struct triple *tmp;
18020                 struct reg_info info;
18021                 unsigned reg, regcm;
18022                 int do_post_copy, do_pre_copy;
18023                 tmp = 0;
18024                 if (!triple_is_def(state, ins)) {
18025                         goto next;
18026                 }
18027                 /* Find the architecture specific color information */
18028                 info = find_lhs_pre_color(state, ins, 0);
18029                 if (info.reg >= MAX_REGISTERS) {
18030                         info.reg = REG_UNSET;
18031                 }
18032
18033                 reg = REG_UNSET;
18034                 regcm = arch_type_to_regcm(state, ins->type);
18035                 do_post_copy = do_pre_copy = 0;
18036
18037                 /* Walk through the uses of ins and check for conflicts */
18038                 for(entry = ins->use; entry; entry = next) {
18039                         struct reg_info rinfo;
18040                         int i;
18041                         next = entry->next;
18042                         i = find_rhs_use(state, entry->member, ins);
18043                         if (i < 0) {
18044                                 continue;
18045                         }
18046                         
18047                         /* Find the users color requirements */
18048                         rinfo = arch_reg_rhs(state, entry->member, i);
18049                         if (rinfo.reg >= MAX_REGISTERS) {
18050                                 rinfo.reg = REG_UNSET;
18051                         }
18052                         
18053                         /* See if I need a pre_copy */
18054                         if (rinfo.reg != REG_UNSET) {
18055                                 if ((reg != REG_UNSET) && (reg != rinfo.reg)) {
18056                                         do_pre_copy = 1;
18057                                 }
18058                                 reg = rinfo.reg;
18059                         }
18060                         regcm &= rinfo.regcm;
18061                         regcm = arch_regcm_normalize(state, regcm);
18062                         if (regcm == 0) {
18063                                 do_pre_copy = 1;
18064                         }
18065                         /* Always use pre_copies for constants.
18066                          * They do not take up any registers until a
18067                          * copy places them in one.
18068                          */
18069                         if ((info.reg == REG_UNNEEDED) && 
18070                                 (rinfo.reg != REG_UNNEEDED)) {
18071                                 do_pre_copy = 1;
18072                         }
18073                 }
18074                 do_post_copy =
18075                         !do_pre_copy &&
18076                         (((info.reg != REG_UNSET) && 
18077                                 (reg != REG_UNSET) &&
18078                                 (info.reg != reg)) ||
18079                         ((info.regcm & regcm) == 0));
18080
18081                 reg = info.reg;
18082                 regcm = info.regcm;
18083                 /* Walk through the uses of ins and do a pre_copy or see if a post_copy is warranted */
18084                 for(entry = ins->use; entry; entry = next) {
18085                         struct reg_info rinfo;
18086                         int i;
18087                         next = entry->next;
18088                         i = find_rhs_use(state, entry->member, ins);
18089                         if (i < 0) {
18090                                 continue;
18091                         }
18092                         
18093                         /* Find the users color requirements */
18094                         rinfo = arch_reg_rhs(state, entry->member, i);
18095                         if (rinfo.reg >= MAX_REGISTERS) {
18096                                 rinfo.reg = REG_UNSET;
18097                         }
18098
18099                         /* Now see if it is time to do the pre_copy */
18100                         if (rinfo.reg != REG_UNSET) {
18101                                 if (((reg != REG_UNSET) && (reg != rinfo.reg)) ||
18102                                         ((regcm & rinfo.regcm) == 0) ||
18103                                         /* Don't let a mandatory coalesce sneak
18104                                          * into a operation that is marked to prevent
18105                                          * coalescing.
18106                                          */
18107                                         ((reg != REG_UNNEEDED) &&
18108                                         ((ins->id & TRIPLE_FLAG_POST_SPLIT) ||
18109                                         (entry->member->id & TRIPLE_FLAG_PRE_SPLIT)))
18110                                         ) {
18111                                         if (do_pre_copy) {
18112                                                 struct triple *user;
18113                                                 user = entry->member;
18114                                                 if (RHS(user, i) != ins) {
18115                                                         internal_error(state, user, "bad rhs");
18116                                                 }
18117                                                 tmp = pre_copy(state, user, i);
18118                                                 tmp->id |= TRIPLE_FLAG_PRE_SPLIT;
18119                                                 continue;
18120                                         } else {
18121                                                 do_post_copy = 1;
18122                                         }
18123                                 }
18124                                 reg = rinfo.reg;
18125                         }
18126                         if ((regcm & rinfo.regcm) == 0) {
18127                                 if (do_pre_copy) {
18128                                         struct triple *user;
18129                                         user = entry->member;
18130                                         if (RHS(user, i) != ins) {
18131                                                 internal_error(state, user, "bad rhs");
18132                                         }
18133                                         tmp = pre_copy(state, user, i);
18134                                         tmp->id |= TRIPLE_FLAG_PRE_SPLIT;
18135                                         continue;
18136                                 } else {
18137                                         do_post_copy = 1;
18138                                 }
18139                         }
18140                         regcm &= rinfo.regcm;
18141                         
18142                 }
18143                 if (do_post_copy) {
18144                         struct reg_info pre, post;
18145                         tmp = post_copy(state, ins);
18146                         tmp->id |= TRIPLE_FLAG_PRE_SPLIT;
18147                         pre = arch_reg_lhs(state, ins, 0);
18148                         post = arch_reg_lhs(state, tmp, 0);
18149                         if ((pre.reg == post.reg) && (pre.regcm == post.regcm)) {
18150                                 internal_error(state, tmp, "useless copy");
18151                         }
18152                 }
18153         next:
18154                 ins = ins->next;
18155         } while(ins != first);
18156
18157         print_blocks(state, __func__, state->dbgout);
18158 }
18159
18160
18161 struct live_range_edge;
18162 struct live_range_def;
18163 struct live_range {
18164         struct live_range_edge *edges;
18165         struct live_range_def *defs;
18166 /* Note. The list pointed to by defs is kept in order.
18167  * That is baring splits in the flow control
18168  * defs dominates defs->next wich dominates defs->next->next
18169  * etc.
18170  */
18171         unsigned color;
18172         unsigned classes;
18173         unsigned degree;
18174         unsigned length;
18175         struct live_range *group_next, **group_prev;
18176 };
18177
18178 struct live_range_edge {
18179         struct live_range_edge *next;
18180         struct live_range *node;
18181 };
18182
18183 struct live_range_def {
18184         struct live_range_def *next;
18185         struct live_range_def *prev;
18186         struct live_range *lr;
18187         struct triple *def;
18188         unsigned orig_id;
18189 };
18190
18191 #define LRE_HASH_SIZE 2048
18192 struct lre_hash {
18193         struct lre_hash *next;
18194         struct live_range *left;
18195         struct live_range *right;
18196 };
18197
18198
18199 struct reg_state {
18200         struct lre_hash *hash[LRE_HASH_SIZE];
18201         struct reg_block *blocks;
18202         struct live_range_def *lrd;
18203         struct live_range *lr;
18204         struct live_range *low, **low_tail;
18205         struct live_range *high, **high_tail;
18206         unsigned defs;
18207         unsigned ranges;
18208         int passes, max_passes;
18209 };
18210
18211
18212 struct print_interference_block_info {
18213         struct reg_state *rstate;
18214         FILE *fp;
18215         int need_edges;
18216 };
18217 static void print_interference_block(
18218         struct compile_state *state, struct block *block, void *arg)
18219
18220 {
18221         struct print_interference_block_info *info = arg;
18222         struct reg_state *rstate = info->rstate;
18223         struct block_set *edge;
18224         FILE *fp = info->fp;
18225         struct reg_block *rb;
18226         struct triple *ptr;
18227         int phi_present;
18228         int done;
18229         rb = &rstate->blocks[block->vertex];
18230
18231         fprintf(fp, "\nblock: %p (%d),",
18232                 block,  block->vertex);
18233         for(edge = block->edges; edge; edge = edge->next) {
18234                 fprintf(fp, " %p<-%p",
18235                         edge->member, 
18236                         edge->member && edge->member->use?edge->member->use->member : 0);
18237         }
18238         fprintf(fp, "\n");
18239         if (rb->in) {
18240                 struct triple_reg_set *in_set;
18241                 fprintf(fp, "        in:");
18242                 for(in_set = rb->in; in_set; in_set = in_set->next) {
18243                         fprintf(fp, " %-10p", in_set->member);
18244                 }
18245                 fprintf(fp, "\n");
18246         }
18247         phi_present = 0;
18248         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
18249                 done = (ptr == block->last);
18250                 if (ptr->op == OP_PHI) {
18251                         phi_present = 1;
18252                         break;
18253                 }
18254         }
18255         if (phi_present) {
18256                 int edge;
18257                 for(edge = 0; edge < block->users; edge++) {
18258                         fprintf(fp, "     in(%d):", edge);
18259                         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
18260                                 struct triple **slot;
18261                                 done = (ptr == block->last);
18262                                 if (ptr->op != OP_PHI) {
18263                                         continue;
18264                                 }
18265                                 slot = &RHS(ptr, 0);
18266                                 fprintf(fp, " %-10p", slot[edge]);
18267                         }
18268                         fprintf(fp, "\n");
18269                 }
18270         }
18271         if (block->first->op == OP_LABEL) {
18272                 fprintf(fp, "%p:\n", block->first);
18273         }
18274         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
18275                 struct live_range *lr;
18276                 unsigned id;
18277                 int op;
18278                 op = ptr->op;
18279                 done = (ptr == block->last);
18280                 lr = rstate->lrd[ptr->id].lr;
18281                 
18282                 id = ptr->id;
18283                 ptr->id = rstate->lrd[id].orig_id;
18284                 SET_REG(ptr->id, lr->color);
18285                 display_triple(fp, ptr);
18286                 ptr->id = id;
18287
18288                 if (triple_is_def(state, ptr) && (lr->defs == 0)) {
18289                         internal_error(state, ptr, "lr has no defs!");
18290                 }
18291                 if (info->need_edges) {
18292                         if (lr->defs) {
18293                                 struct live_range_def *lrd;
18294                                 fprintf(fp, "       range:");
18295                                 lrd = lr->defs;
18296                                 do {
18297                                         fprintf(fp, " %-10p", lrd->def);
18298                                         lrd = lrd->next;
18299                                 } while(lrd != lr->defs);
18300                                 fprintf(fp, "\n");
18301                         }
18302                         if (lr->edges > 0) {
18303                                 struct live_range_edge *edge;
18304                                 fprintf(fp, "       edges:");
18305                                 for(edge = lr->edges; edge; edge = edge->next) {
18306                                         struct live_range_def *lrd;
18307                                         lrd = edge->node->defs;
18308                                         do {
18309                                                 fprintf(fp, " %-10p", lrd->def);
18310                                                 lrd = lrd->next;
18311                                         } while(lrd != edge->node->defs);
18312                                         fprintf(fp, "|");
18313                                 }
18314                                 fprintf(fp, "\n");
18315                         }
18316                 }
18317                 /* Do a bunch of sanity checks */
18318                 valid_ins(state, ptr);
18319                 if ((ptr->id < 0) || (ptr->id > rstate->defs)) {
18320                         internal_error(state, ptr, "Invalid triple id: %d",
18321                                 ptr->id);
18322                 }
18323         }
18324         if (rb->out) {
18325                 struct triple_reg_set *out_set;
18326                 fprintf(fp, "       out:");
18327                 for(out_set = rb->out; out_set; out_set = out_set->next) {
18328                         fprintf(fp, " %-10p", out_set->member);
18329                 }
18330                 fprintf(fp, "\n");
18331         }
18332         fprintf(fp, "\n");
18333 }
18334
18335 static void print_interference_blocks(
18336         struct compile_state *state, struct reg_state *rstate, FILE *fp, int need_edges)
18337 {
18338         struct print_interference_block_info info;
18339         info.rstate = rstate;
18340         info.fp = fp;
18341         info.need_edges = need_edges;
18342         fprintf(fp, "\nlive variables by block\n");
18343         walk_blocks(state, &state->bb, print_interference_block, &info);
18344
18345 }
18346
18347 static unsigned regc_max_size(struct compile_state *state, int classes)
18348 {
18349         unsigned max_size;
18350         int i;
18351         max_size = 0;
18352         for(i = 0; i < MAX_REGC; i++) {
18353                 if (classes & (1 << i)) {
18354                         unsigned size;
18355                         size = arch_regc_size(state, i);
18356                         if (size > max_size) {
18357                                 max_size = size;
18358                         }
18359                 }
18360         }
18361         return max_size;
18362 }
18363
18364 static int reg_is_reg(struct compile_state *state, int reg1, int reg2)
18365 {
18366         unsigned equivs[MAX_REG_EQUIVS];
18367         int i;
18368         if ((reg1 < 0) || (reg1 >= MAX_REGISTERS)) {
18369                 internal_error(state, 0, "invalid register");
18370         }
18371         if ((reg2 < 0) || (reg2 >= MAX_REGISTERS)) {
18372                 internal_error(state, 0, "invalid register");
18373         }
18374         arch_reg_equivs(state, equivs, reg1);
18375         for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
18376                 if (equivs[i] == reg2) {
18377                         return 1;
18378                 }
18379         }
18380         return 0;
18381 }
18382
18383 static void reg_fill_used(struct compile_state *state, char *used, int reg)
18384 {
18385         unsigned equivs[MAX_REG_EQUIVS];
18386         int i;
18387         if (reg == REG_UNNEEDED) {
18388                 return;
18389         }
18390         arch_reg_equivs(state, equivs, reg);
18391         for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
18392                 used[equivs[i]] = 1;
18393         }
18394         return;
18395 }
18396
18397 static void reg_inc_used(struct compile_state *state, char *used, int reg)
18398 {
18399         unsigned equivs[MAX_REG_EQUIVS];
18400         int i;
18401         if (reg == REG_UNNEEDED) {
18402                 return;
18403         }
18404         arch_reg_equivs(state, equivs, reg);
18405         for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
18406                 used[equivs[i]] += 1;
18407         }
18408         return;
18409 }
18410
18411 static unsigned int hash_live_edge(
18412         struct live_range *left, struct live_range *right)
18413 {
18414         unsigned int hash, val;
18415         unsigned long lval, rval;
18416         lval = ((unsigned long)left)/sizeof(struct live_range);
18417         rval = ((unsigned long)right)/sizeof(struct live_range);
18418         hash = 0;
18419         while(lval) {
18420                 val = lval & 0xff;
18421                 lval >>= 8;
18422                 hash = (hash *263) + val;
18423         }
18424         while(rval) {
18425                 val = rval & 0xff;
18426                 rval >>= 8;
18427                 hash = (hash *263) + val;
18428         }
18429         hash = hash & (LRE_HASH_SIZE - 1);
18430         return hash;
18431 }
18432
18433 static struct lre_hash **lre_probe(struct reg_state *rstate,
18434         struct live_range *left, struct live_range *right)
18435 {
18436         struct lre_hash **ptr;
18437         unsigned int index;
18438         /* Ensure left <= right */
18439         if (left > right) {
18440                 struct live_range *tmp;
18441                 tmp = left;
18442                 left = right;
18443                 right = tmp;
18444         }
18445         index = hash_live_edge(left, right);
18446         
18447         ptr = &rstate->hash[index];
18448         while(*ptr) {
18449                 if (((*ptr)->left == left) && ((*ptr)->right == right)) {
18450                         break;
18451                 }
18452                 ptr = &(*ptr)->next;
18453         }
18454         return ptr;
18455 }
18456
18457 static int interfere(struct reg_state *rstate,
18458         struct live_range *left, struct live_range *right)
18459 {
18460         struct lre_hash **ptr;
18461         ptr = lre_probe(rstate, left, right);
18462         return ptr && *ptr;
18463 }
18464
18465 static void add_live_edge(struct reg_state *rstate, 
18466         struct live_range *left, struct live_range *right)
18467 {
18468         /* FIXME the memory allocation overhead is noticeable here... */
18469         struct lre_hash **ptr, *new_hash;
18470         struct live_range_edge *edge;
18471
18472         if (left == right) {
18473                 return;
18474         }
18475         if ((left == &rstate->lr[0]) || (right == &rstate->lr[0])) {
18476                 return;
18477         }
18478         /* Ensure left <= right */
18479         if (left > right) {
18480                 struct live_range *tmp;
18481                 tmp = left;
18482                 left = right;
18483                 right = tmp;
18484         }
18485         ptr = lre_probe(rstate, left, right);
18486         if (*ptr) {
18487                 return;
18488         }
18489 #if 0
18490         fprintf(state->errout, "new_live_edge(%p, %p)\n",
18491                 left, right);
18492 #endif
18493         new_hash = xmalloc(sizeof(*new_hash), "lre_hash");
18494         new_hash->next  = *ptr;
18495         new_hash->left  = left;
18496         new_hash->right = right;
18497         *ptr = new_hash;
18498
18499         edge = xmalloc(sizeof(*edge), "live_range_edge");
18500         edge->next   = left->edges;
18501         edge->node   = right;
18502         left->edges  = edge;
18503         left->degree += 1;
18504         
18505         edge = xmalloc(sizeof(*edge), "live_range_edge");
18506         edge->next    = right->edges;
18507         edge->node    = left;
18508         right->edges  = edge;
18509         right->degree += 1;
18510 }
18511
18512 static void remove_live_edge(struct reg_state *rstate,
18513         struct live_range *left, struct live_range *right)
18514 {
18515         struct live_range_edge *edge, **ptr;
18516         struct lre_hash **hptr, *entry;
18517         hptr = lre_probe(rstate, left, right);
18518         if (!hptr || !*hptr) {
18519                 return;
18520         }
18521         entry = *hptr;
18522         *hptr = entry->next;
18523         xfree(entry);
18524
18525         for(ptr = &left->edges; *ptr; ptr = &(*ptr)->next) {
18526                 edge = *ptr;
18527                 if (edge->node == right) {
18528                         *ptr = edge->next;
18529                         memset(edge, 0, sizeof(*edge));
18530                         xfree(edge);
18531                         right->degree--;
18532                         break;
18533                 }
18534         }
18535         for(ptr = &right->edges; *ptr; ptr = &(*ptr)->next) {
18536                 edge = *ptr;
18537                 if (edge->node == left) {
18538                         *ptr = edge->next;
18539                         memset(edge, 0, sizeof(*edge));
18540                         xfree(edge);
18541                         left->degree--;
18542                         break;
18543                 }
18544         }
18545 }
18546
18547 static void remove_live_edges(struct reg_state *rstate, struct live_range *range)
18548 {
18549         struct live_range_edge *edge, *next;
18550         for(edge = range->edges; edge; edge = next) {
18551                 next = edge->next;
18552                 remove_live_edge(rstate, range, edge->node);
18553         }
18554 }
18555
18556 static void transfer_live_edges(struct reg_state *rstate, 
18557         struct live_range *dest, struct live_range *src)
18558 {
18559         struct live_range_edge *edge, *next;
18560         for(edge = src->edges; edge; edge = next) {
18561                 struct live_range *other;
18562                 next = edge->next;
18563                 other = edge->node;
18564                 remove_live_edge(rstate, src, other);
18565                 add_live_edge(rstate, dest, other);
18566         }
18567 }
18568
18569
18570 /* Interference graph...
18571  * 
18572  * new(n) --- Return a graph with n nodes but no edges.
18573  * add(g,x,y) --- Return a graph including g with an between x and y
18574  * interfere(g, x, y) --- Return true if there exists an edge between the nodes
18575  *                x and y in the graph g
18576  * degree(g, x) --- Return the degree of the node x in the graph g
18577  * neighbors(g, x, f) --- Apply function f to each neighbor of node x in the graph g
18578  *
18579  * Implement with a hash table && a set of adjcency vectors.
18580  * The hash table supports constant time implementations of add and interfere.
18581  * The adjacency vectors support an efficient implementation of neighbors.
18582  */
18583
18584 /* 
18585  *     +---------------------------------------------------+
18586  *     |         +--------------+                          |
18587  *     v         v              |                          |
18588  * renumber -> build graph -> colalesce -> spill_costs -> simplify -> select 
18589  *
18590  * -- In simplify implment optimistic coloring... (No backtracking)
18591  * -- Implement Rematerialization it is the only form of spilling we can perform
18592  *    Essentially this means dropping a constant from a register because
18593  *    we can regenerate it later.
18594  *
18595  * --- Very conservative colalescing (don't colalesce just mark the opportunities)
18596  *     coalesce at phi points...
18597  * --- Bias coloring if at all possible do the coalesing a compile time.
18598  *
18599  *
18600  */
18601
18602 #if DEBUG_ROMCC_WARNING
18603 static void different_colored(
18604         struct compile_state *state, struct reg_state *rstate, 
18605         struct triple *parent, struct triple *ins)
18606 {
18607         struct live_range *lr;
18608         struct triple **expr;
18609         lr = rstate->lrd[ins->id].lr;
18610         expr = triple_rhs(state, ins, 0);
18611         for(;expr; expr = triple_rhs(state, ins, expr)) {
18612                 struct live_range *lr2;
18613                 if (!*expr || (*expr == parent) || (*expr == ins)) {
18614                         continue;
18615                 }
18616                 lr2 = rstate->lrd[(*expr)->id].lr;
18617                 if (lr->color == lr2->color) {
18618                         internal_error(state, ins, "live range too big");
18619                 }
18620         }
18621 }
18622 #endif
18623
18624 static struct live_range *coalesce_ranges(
18625         struct compile_state *state, struct reg_state *rstate,
18626         struct live_range *lr1, struct live_range *lr2)
18627 {
18628         struct live_range_def *head, *mid1, *mid2, *end, *lrd;
18629         unsigned color;
18630         unsigned classes;
18631         if (lr1 == lr2) {
18632                 return lr1;
18633         }
18634         if (!lr1->defs || !lr2->defs) {
18635                 internal_error(state, 0,
18636                         "cannot coalese dead live ranges");
18637         }
18638         if ((lr1->color == REG_UNNEEDED) ||
18639                 (lr2->color == REG_UNNEEDED)) {
18640                 internal_error(state, 0, 
18641                         "cannot coalesce live ranges without a possible color");
18642         }
18643         if ((lr1->color != lr2->color) &&
18644                 (lr1->color != REG_UNSET) &&
18645                 (lr2->color != REG_UNSET)) {
18646                 internal_error(state, lr1->defs->def, 
18647                         "cannot coalesce live ranges of different colors");
18648         }
18649         color = lr1->color;
18650         if (color == REG_UNSET) {
18651                 color = lr2->color;
18652         }
18653         classes = lr1->classes & lr2->classes;
18654         if (!classes) {
18655                 internal_error(state, lr1->defs->def,
18656                         "cannot coalesce live ranges with dissimilar register classes");
18657         }
18658         if (state->compiler->debug & DEBUG_COALESCING) {
18659                 FILE *fp = state->errout;
18660                 fprintf(fp, "coalescing:");
18661                 lrd = lr1->defs;
18662                 do {
18663                         fprintf(fp, " %p", lrd->def);
18664                         lrd = lrd->next;
18665                 } while(lrd != lr1->defs);
18666                 fprintf(fp, " |");
18667                 lrd = lr2->defs;
18668                 do {
18669                         fprintf(fp, " %p", lrd->def);
18670                         lrd = lrd->next;
18671                 } while(lrd != lr2->defs);
18672                 fprintf(fp, "\n");
18673         }
18674         /* If there is a clear dominate live range put it in lr1,
18675          * For purposes of this test phi functions are
18676          * considered dominated by the definitions that feed into
18677          * them. 
18678          */
18679         if ((lr1->defs->prev->def->op == OP_PHI) ||
18680                 ((lr2->defs->prev->def->op != OP_PHI) &&
18681                 tdominates(state, lr2->defs->def, lr1->defs->def))) {
18682                 struct live_range *tmp;
18683                 tmp = lr1;
18684                 lr1 = lr2;
18685                 lr2 = tmp;
18686         }
18687 #if 0
18688         if (lr1->defs->orig_id  & TRIPLE_FLAG_POST_SPLIT) {
18689                 fprintf(state->errout, "lr1 post\n");
18690         }
18691         if (lr1->defs->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
18692                 fprintf(state->errout, "lr1 pre\n");
18693         }
18694         if (lr2->defs->orig_id  & TRIPLE_FLAG_POST_SPLIT) {
18695                 fprintf(state->errout, "lr2 post\n");
18696         }
18697         if (lr2->defs->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
18698                 fprintf(state->errout, "lr2 pre\n");
18699         }
18700 #endif
18701 #if 0
18702         fprintf(state->errout, "coalesce color1(%p): %3d color2(%p) %3d\n",
18703                 lr1->defs->def,
18704                 lr1->color,
18705                 lr2->defs->def,
18706                 lr2->color);
18707 #endif
18708         
18709         /* Append lr2 onto lr1 */
18710 #if DEBUG_ROMCC_WARNINGS
18711 #warning "FIXME should this be a merge instead of a splice?"
18712 #endif
18713         /* This FIXME item applies to the correctness of live_range_end 
18714          * and to the necessity of making multiple passes of coalesce_live_ranges.
18715          * A failure to find some coalesce opportunities in coaleace_live_ranges
18716          * does not impact the correct of the compiler just the efficiency with
18717          * which registers are allocated.
18718          */
18719         head = lr1->defs;
18720         mid1 = lr1->defs->prev;
18721         mid2 = lr2->defs;
18722         end  = lr2->defs->prev;
18723         
18724         head->prev = end;
18725         end->next  = head;
18726
18727         mid1->next = mid2;
18728         mid2->prev = mid1;
18729
18730         /* Fixup the live range in the added live range defs */
18731         lrd = head;
18732         do {
18733                 lrd->lr = lr1;
18734                 lrd = lrd->next;
18735         } while(lrd != head);
18736
18737         /* Mark lr2 as free. */
18738         lr2->defs = 0;
18739         lr2->color = REG_UNNEEDED;
18740         lr2->classes = 0;
18741
18742         if (!lr1->defs) {
18743                 internal_error(state, 0, "lr1->defs == 0 ?");
18744         }
18745
18746         lr1->color   = color;
18747         lr1->classes = classes;
18748
18749         /* Keep the graph in sync by transfering the edges from lr2 to lr1 */
18750         transfer_live_edges(rstate, lr1, lr2);
18751
18752         return lr1;
18753 }
18754
18755 static struct live_range_def *live_range_head(
18756         struct compile_state *state, struct live_range *lr,
18757         struct live_range_def *last)
18758 {
18759         struct live_range_def *result;
18760         result = 0;
18761         if (last == 0) {
18762                 result = lr->defs;
18763         }
18764         else if (!tdominates(state, lr->defs->def, last->next->def)) {
18765                 result = last->next;
18766         }
18767         return result;
18768 }
18769
18770 static struct live_range_def *live_range_end(
18771         struct compile_state *state, struct live_range *lr,
18772         struct live_range_def *last)
18773 {
18774         struct live_range_def *result;
18775         result = 0;
18776         if (last == 0) {
18777                 result = lr->defs->prev;
18778         }
18779         else if (!tdominates(state, last->prev->def, lr->defs->prev->def)) {
18780                 result = last->prev;
18781         }
18782         return result;
18783 }
18784
18785
18786 static void initialize_live_ranges(
18787         struct compile_state *state, struct reg_state *rstate)
18788 {
18789         struct triple *ins, *first;
18790         size_t count, size;
18791         int i, j;
18792
18793         first = state->first;
18794         /* First count how many instructions I have.
18795          */
18796         count = count_triples(state);
18797         /* Potentially I need one live range definitions for each
18798          * instruction.
18799          */
18800         rstate->defs = count;
18801         /* Potentially I need one live range for each instruction
18802          * plus an extra for the dummy live range.
18803          */
18804         rstate->ranges = count + 1;
18805         size = sizeof(rstate->lrd[0]) * rstate->defs;
18806         rstate->lrd = xcmalloc(size, "live_range_def");
18807         size = sizeof(rstate->lr[0]) * rstate->ranges;
18808         rstate->lr  = xcmalloc(size, "live_range");
18809
18810         /* Setup the dummy live range */
18811         rstate->lr[0].classes = 0;
18812         rstate->lr[0].color = REG_UNSET;
18813         rstate->lr[0].defs = 0;
18814         i = j = 0;
18815         ins = first;
18816         do {
18817                 /* If the triple is a variable give it a live range */
18818                 if (triple_is_def(state, ins)) {
18819                         struct reg_info info;
18820                         /* Find the architecture specific color information */
18821                         info = find_def_color(state, ins);
18822                         i++;
18823                         rstate->lr[i].defs    = &rstate->lrd[j];
18824                         rstate->lr[i].color   = info.reg;
18825                         rstate->lr[i].classes = info.regcm;
18826                         rstate->lr[i].degree  = 0;
18827                         rstate->lrd[j].lr = &rstate->lr[i];
18828                 } 
18829                 /* Otherwise give the triple the dummy live range. */
18830                 else {
18831                         rstate->lrd[j].lr = &rstate->lr[0];
18832                 }
18833
18834                 /* Initalize the live_range_def */
18835                 rstate->lrd[j].next    = &rstate->lrd[j];
18836                 rstate->lrd[j].prev    = &rstate->lrd[j];
18837                 rstate->lrd[j].def     = ins;
18838                 rstate->lrd[j].orig_id = ins->id;
18839                 ins->id = j;
18840
18841                 j++;
18842                 ins = ins->next;
18843         } while(ins != first);
18844         rstate->ranges = i;
18845
18846         /* Make a second pass to handle achitecture specific register
18847          * constraints.
18848          */
18849         ins = first;
18850         do {
18851                 int zlhs, zrhs, i, j;
18852                 if (ins->id > rstate->defs) {
18853                         internal_error(state, ins, "bad id");
18854                 }
18855                 
18856                 /* Walk through the template of ins and coalesce live ranges */
18857                 zlhs = ins->lhs;
18858                 if ((zlhs == 0) && triple_is_def(state, ins)) {
18859                         zlhs = 1;
18860                 }
18861                 zrhs = ins->rhs;
18862
18863                 if (state->compiler->debug & DEBUG_COALESCING2) {
18864                         fprintf(state->errout, "mandatory coalesce: %p %d %d\n",
18865                                 ins, zlhs, zrhs);
18866                 }
18867
18868                 for(i = 0; i < zlhs; i++) {
18869                         struct reg_info linfo;
18870                         struct live_range_def *lhs;
18871                         linfo = arch_reg_lhs(state, ins, i);
18872                         if (linfo.reg < MAX_REGISTERS) {
18873                                 continue;
18874                         }
18875                         if (triple_is_def(state, ins)) {
18876                                 lhs = &rstate->lrd[ins->id];
18877                         } else {
18878                                 lhs = &rstate->lrd[LHS(ins, i)->id];
18879                         }
18880
18881                         if (state->compiler->debug & DEBUG_COALESCING2) {
18882                                 fprintf(state->errout, "coalesce lhs(%d): %p %d\n",
18883                                         i, lhs, linfo.reg);
18884                         }
18885
18886                         for(j = 0; j < zrhs; j++) {
18887                                 struct reg_info rinfo;
18888                                 struct live_range_def *rhs;
18889                                 rinfo = arch_reg_rhs(state, ins, j);
18890                                 if (rinfo.reg < MAX_REGISTERS) {
18891                                         continue;
18892                                 }
18893                                 rhs = &rstate->lrd[RHS(ins, j)->id];
18894
18895                                 if (state->compiler->debug & DEBUG_COALESCING2) {
18896                                         fprintf(state->errout, "coalesce rhs(%d): %p %d\n",
18897                                                 j, rhs, rinfo.reg);
18898                                 }
18899
18900                                 if (rinfo.reg == linfo.reg) {
18901                                         coalesce_ranges(state, rstate, 
18902                                                 lhs->lr, rhs->lr);
18903                                 }
18904                         }
18905                 }
18906                 ins = ins->next;
18907         } while(ins != first);
18908 }
18909
18910 static void graph_ins(
18911         struct compile_state *state, 
18912         struct reg_block *blocks, struct triple_reg_set *live, 
18913         struct reg_block *rb, struct triple *ins, void *arg)
18914 {
18915         struct reg_state *rstate = arg;
18916         struct live_range *def;
18917         struct triple_reg_set *entry;
18918
18919         /* If the triple is not a definition
18920          * we do not have a definition to add to
18921          * the interference graph.
18922          */
18923         if (!triple_is_def(state, ins)) {
18924                 return;
18925         }
18926         def = rstate->lrd[ins->id].lr;
18927         
18928         /* Create an edge between ins and everything that is
18929          * alive, unless the live_range cannot share
18930          * a physical register with ins.
18931          */
18932         for(entry = live; entry; entry = entry->next) {
18933                 struct live_range *lr;
18934                 if ((entry->member->id < 0) || (entry->member->id > rstate->defs)) {
18935                         internal_error(state, 0, "bad entry?");
18936                 }
18937                 lr = rstate->lrd[entry->member->id].lr;
18938                 if (def == lr) {
18939                         continue;
18940                 }
18941                 if (!arch_regcm_intersect(def->classes, lr->classes)) {
18942                         continue;
18943                 }
18944                 add_live_edge(rstate, def, lr);
18945         }
18946         return;
18947 }
18948
18949 #if DEBUG_CONSISTENCY > 1
18950 static struct live_range *get_verify_live_range(
18951         struct compile_state *state, struct reg_state *rstate, struct triple *ins)
18952 {
18953         struct live_range *lr;
18954         struct live_range_def *lrd;
18955         int ins_found;
18956         if ((ins->id < 0) || (ins->id > rstate->defs)) {
18957                 internal_error(state, ins, "bad ins?");
18958         }
18959         lr = rstate->lrd[ins->id].lr;
18960         ins_found = 0;
18961         lrd = lr->defs;
18962         do {
18963                 if (lrd->def == ins) {
18964                         ins_found = 1;
18965                 }
18966                 lrd = lrd->next;
18967         } while(lrd != lr->defs);
18968         if (!ins_found) {
18969                 internal_error(state, ins, "ins not in live range");
18970         }
18971         return lr;
18972 }
18973
18974 static void verify_graph_ins(
18975         struct compile_state *state, 
18976         struct reg_block *blocks, struct triple_reg_set *live, 
18977         struct reg_block *rb, struct triple *ins, void *arg)
18978 {
18979         struct reg_state *rstate = arg;
18980         struct triple_reg_set *entry1, *entry2;
18981
18982
18983         /* Compare live against edges and make certain the code is working */
18984         for(entry1 = live; entry1; entry1 = entry1->next) {
18985                 struct live_range *lr1;
18986                 lr1 = get_verify_live_range(state, rstate, entry1->member);
18987                 for(entry2 = live; entry2; entry2 = entry2->next) {
18988                         struct live_range *lr2;
18989                         struct live_range_edge *edge2;
18990                         int lr1_found;
18991                         int lr2_degree;
18992                         if (entry2 == entry1) {
18993                                 continue;
18994                         }
18995                         lr2 = get_verify_live_range(state, rstate, entry2->member);
18996                         if (lr1 == lr2) {
18997                                 internal_error(state, entry2->member, 
18998                                         "live range with 2 values simultaneously alive");
18999                         }
19000                         if (!arch_regcm_intersect(lr1->classes, lr2->classes)) {
19001                                 continue;
19002                         }
19003                         if (!interfere(rstate, lr1, lr2)) {
19004                                 internal_error(state, entry2->member, 
19005                                         "edges don't interfere?");
19006                         }
19007                                 
19008                         lr1_found = 0;
19009                         lr2_degree = 0;
19010                         for(edge2 = lr2->edges; edge2; edge2 = edge2->next) {
19011                                 lr2_degree++;
19012                                 if (edge2->node == lr1) {
19013                                         lr1_found = 1;
19014                                 }
19015                         }
19016                         if (lr2_degree != lr2->degree) {
19017                                 internal_error(state, entry2->member,
19018                                         "computed degree: %d does not match reported degree: %d\n",
19019                                         lr2_degree, lr2->degree);
19020                         }
19021                         if (!lr1_found) {
19022                                 internal_error(state, entry2->member, "missing edge");
19023                         }
19024                 }
19025         }
19026         return;
19027 }
19028 #endif
19029
19030 static void print_interference_ins(
19031         struct compile_state *state, 
19032         struct reg_block *blocks, struct triple_reg_set *live, 
19033         struct reg_block *rb, struct triple *ins, void *arg)
19034 {
19035         struct reg_state *rstate = arg;
19036         struct live_range *lr;
19037         unsigned id;
19038         FILE *fp = state->dbgout;
19039
19040         lr = rstate->lrd[ins->id].lr;
19041         id = ins->id;
19042         ins->id = rstate->lrd[id].orig_id;
19043         SET_REG(ins->id, lr->color);
19044         display_triple(state->dbgout, ins);
19045         ins->id = id;
19046
19047         if (lr->defs) {
19048                 struct live_range_def *lrd;
19049                 fprintf(fp, "       range:");
19050                 lrd = lr->defs;
19051                 do {
19052                         fprintf(fp, " %-10p", lrd->def);
19053                         lrd = lrd->next;
19054                 } while(lrd != lr->defs);
19055                 fprintf(fp, "\n");
19056         }
19057         if (live) {
19058                 struct triple_reg_set *entry;
19059                 fprintf(fp, "        live:");
19060                 for(entry = live; entry; entry = entry->next) {
19061                         fprintf(fp, " %-10p", entry->member);
19062                 }
19063                 fprintf(fp, "\n");
19064         }
19065         if (lr->edges) {
19066                 struct live_range_edge *entry;
19067                 fprintf(fp, "       edges:");
19068                 for(entry = lr->edges; entry; entry = entry->next) {
19069                         struct live_range_def *lrd;
19070                         lrd = entry->node->defs;
19071                         do {
19072                                 fprintf(fp, " %-10p", lrd->def);
19073                                 lrd = lrd->next;
19074                         } while(lrd != entry->node->defs);
19075                         fprintf(fp, "|");
19076                 }
19077                 fprintf(fp, "\n");
19078         }
19079         if (triple_is_branch(state, ins)) {
19080                 fprintf(fp, "\n");
19081         }
19082         return;
19083 }
19084
19085 static int coalesce_live_ranges(
19086         struct compile_state *state, struct reg_state *rstate)
19087 {
19088         /* At the point where a value is moved from one
19089          * register to another that value requires two
19090          * registers, thus increasing register pressure.
19091          * Live range coaleescing reduces the register
19092          * pressure by keeping a value in one register
19093          * longer.
19094          *
19095          * In the case of a phi function all paths leading
19096          * into it must be allocated to the same register
19097          * otherwise the phi function may not be removed.
19098          *
19099          * Forcing a value to stay in a single register
19100          * for an extended period of time does have
19101          * limitations when applied to non homogenous
19102          * register pool.  
19103          *
19104          * The two cases I have identified are:
19105          * 1) Two forced register assignments may
19106          *    collide.
19107          * 2) Registers may go unused because they
19108          *    are only good for storing the value
19109          *    and not manipulating it.
19110          *
19111          * Because of this I need to split live ranges,
19112          * even outside of the context of coalesced live
19113          * ranges.  The need to split live ranges does
19114          * impose some constraints on live range coalescing.
19115          *
19116          * - Live ranges may not be coalesced across phi
19117          *   functions.  This creates a 2 headed live
19118          *   range that cannot be sanely split.
19119          *
19120          * - phi functions (coalesced in initialize_live_ranges) 
19121          *   are handled as pre split live ranges so we will
19122          *   never attempt to split them.
19123          */
19124         int coalesced;
19125         int i;
19126
19127         coalesced = 0;
19128         for(i = 0; i <= rstate->ranges; i++) {
19129                 struct live_range *lr1;
19130                 struct live_range_def *lrd1;
19131                 lr1 = &rstate->lr[i];
19132                 if (!lr1->defs) {
19133                         continue;
19134                 }
19135                 lrd1 = live_range_end(state, lr1, 0);
19136                 for(; lrd1; lrd1 = live_range_end(state, lr1, lrd1)) {
19137                         struct triple_set *set;
19138                         if (lrd1->def->op != OP_COPY) {
19139                                 continue;
19140                         }
19141                         /* Skip copies that are the result of a live range split. */
19142                         if (lrd1->orig_id & TRIPLE_FLAG_POST_SPLIT) {
19143                                 continue;
19144                         }
19145                         for(set = lrd1->def->use; set; set = set->next) {
19146                                 struct live_range_def *lrd2;
19147                                 struct live_range *lr2, *res;
19148
19149                                 lrd2 = &rstate->lrd[set->member->id];
19150
19151                                 /* Don't coalesce with instructions
19152                                  * that are the result of a live range
19153                                  * split.
19154                                  */
19155                                 if (lrd2->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
19156                                         continue;
19157                                 }
19158                                 lr2 = rstate->lrd[set->member->id].lr;
19159                                 if (lr1 == lr2) {
19160                                         continue;
19161                                 }
19162                                 if ((lr1->color != lr2->color) &&
19163                                         (lr1->color != REG_UNSET) &&
19164                                         (lr2->color != REG_UNSET)) {
19165                                         continue;
19166                                 }
19167                                 if ((lr1->classes & lr2->classes) == 0) {
19168                                         continue;
19169                                 }
19170                                 
19171                                 if (interfere(rstate, lr1, lr2)) {
19172                                         continue;
19173                                 }
19174
19175                                 res = coalesce_ranges(state, rstate, lr1, lr2);
19176                                 coalesced += 1;
19177                                 if (res != lr1) {
19178                                         goto next;
19179                                 }
19180                         }
19181                 }
19182         next:
19183                 ;
19184         }
19185         return coalesced;
19186 }
19187
19188
19189 static void fix_coalesce_conflicts(struct compile_state *state,
19190         struct reg_block *blocks, struct triple_reg_set *live,
19191         struct reg_block *rb, struct triple *ins, void *arg)
19192 {
19193         int *conflicts = arg;
19194         int zlhs, zrhs, i, j;
19195
19196         /* See if we have a mandatory coalesce operation between
19197          * a lhs and a rhs value.  If so and the rhs value is also
19198          * alive then this triple needs to be pre copied.  Otherwise
19199          * we would have two definitions in the same live range simultaneously
19200          * alive.
19201          */
19202         zlhs = ins->lhs;
19203         if ((zlhs == 0) && triple_is_def(state, ins)) {
19204                 zlhs = 1;
19205         }
19206         zrhs = ins->rhs;
19207         for(i = 0; i < zlhs; i++) {
19208                 struct reg_info linfo;
19209                 linfo = arch_reg_lhs(state, ins, i);
19210                 if (linfo.reg < MAX_REGISTERS) {
19211                         continue;
19212                 }
19213                 for(j = 0; j < zrhs; j++) {
19214                         struct reg_info rinfo;
19215                         struct triple *rhs;
19216                         struct triple_reg_set *set;
19217                         int found;
19218                         found = 0;
19219                         rinfo = arch_reg_rhs(state, ins, j);
19220                         if (rinfo.reg != linfo.reg) {
19221                                 continue;
19222                         }
19223                         rhs = RHS(ins, j);
19224                         for(set = live; set && !found; set = set->next) {
19225                                 if (set->member == rhs) {
19226                                         found = 1;
19227                                 }
19228                         }
19229                         if (found) {
19230                                 struct triple *copy;
19231                                 copy = pre_copy(state, ins, j);
19232                                 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
19233                                 (*conflicts)++;
19234                         }
19235                 }
19236         }
19237         return;
19238 }
19239
19240 static int correct_coalesce_conflicts(
19241         struct compile_state *state, struct reg_block *blocks)
19242 {
19243         int conflicts;
19244         conflicts = 0;
19245         walk_variable_lifetimes(state, &state->bb, blocks, 
19246                 fix_coalesce_conflicts, &conflicts);
19247         return conflicts;
19248 }
19249
19250 static void replace_set_use(struct compile_state *state,
19251         struct triple_reg_set *head, struct triple *orig, struct triple *new)
19252 {
19253         struct triple_reg_set *set;
19254         for(set = head; set; set = set->next) {
19255                 if (set->member == orig) {
19256                         set->member = new;
19257                 }
19258         }
19259 }
19260
19261 static void replace_block_use(struct compile_state *state, 
19262         struct reg_block *blocks, struct triple *orig, struct triple *new)
19263 {
19264         int i;
19265 #if DEBUG_ROMCC_WARNINGS
19266 #warning "WISHLIST visit just those blocks that need it *"
19267 #endif
19268         for(i = 1; i <= state->bb.last_vertex; i++) {
19269                 struct reg_block *rb;
19270                 rb = &blocks[i];
19271                 replace_set_use(state, rb->in, orig, new);
19272                 replace_set_use(state, rb->out, orig, new);
19273         }
19274 }
19275
19276 static void color_instructions(struct compile_state *state)
19277 {
19278         struct triple *ins, *first;
19279         first = state->first;
19280         ins = first;
19281         do {
19282                 if (triple_is_def(state, ins)) {
19283                         struct reg_info info;
19284                         info = find_lhs_color(state, ins, 0);
19285                         if (info.reg >= MAX_REGISTERS) {
19286                                 info.reg = REG_UNSET;
19287                         }
19288                         SET_INFO(ins->id, info);
19289                 }
19290                 ins = ins->next;
19291         } while(ins != first);
19292 }
19293
19294 static struct reg_info read_lhs_color(
19295         struct compile_state *state, struct triple *ins, int index)
19296 {
19297         struct reg_info info;
19298         if ((index == 0) && triple_is_def(state, ins)) {
19299                 info.reg   = ID_REG(ins->id);
19300                 info.regcm = ID_REGCM(ins->id);
19301         }
19302         else if (index < ins->lhs) {
19303                 info = read_lhs_color(state, LHS(ins, index), 0);
19304         }
19305         else {
19306                 internal_error(state, ins, "Bad lhs %d", index);
19307                 info.reg = REG_UNSET;
19308                 info.regcm = 0;
19309         }
19310         return info;
19311 }
19312
19313 static struct triple *resolve_tangle(
19314         struct compile_state *state, struct triple *tangle)
19315 {
19316         struct reg_info info, uinfo;
19317         struct triple_set *set, *next;
19318         struct triple *copy;
19319
19320 #if DEBUG_ROMCC_WARNINGS
19321 #warning "WISHLIST recalculate all affected instructions colors"
19322 #endif
19323         info = find_lhs_color(state, tangle, 0);
19324         for(set = tangle->use; set; set = next) {
19325                 struct triple *user;
19326                 int i, zrhs;
19327                 next = set->next;
19328                 user = set->member;
19329                 zrhs = user->rhs;
19330                 for(i = 0; i < zrhs; i++) {
19331                         if (RHS(user, i) != tangle) {
19332                                 continue;
19333                         }
19334                         uinfo = find_rhs_post_color(state, user, i);
19335                         if (uinfo.reg == info.reg) {
19336                                 copy = pre_copy(state, user, i);
19337                                 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
19338                                 SET_INFO(copy->id, uinfo);
19339                         }
19340                 }
19341         }
19342         copy = 0;
19343         uinfo = find_lhs_pre_color(state, tangle, 0);
19344         if (uinfo.reg == info.reg) {
19345                 struct reg_info linfo;
19346                 copy = post_copy(state, tangle);
19347                 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
19348                 linfo = find_lhs_color(state, copy, 0);
19349                 SET_INFO(copy->id, linfo);
19350         }
19351         info = find_lhs_color(state, tangle, 0);
19352         SET_INFO(tangle->id, info);
19353         
19354         return copy;
19355 }
19356
19357
19358 static void fix_tangles(struct compile_state *state,
19359         struct reg_block *blocks, struct triple_reg_set *live,
19360         struct reg_block *rb, struct triple *ins, void *arg)
19361 {
19362         int *tangles = arg;
19363         struct triple *tangle;
19364         do {
19365                 char used[MAX_REGISTERS];
19366                 struct triple_reg_set *set;
19367                 tangle = 0;
19368
19369                 /* Find out which registers have multiple uses at this point */
19370                 memset(used, 0, sizeof(used));
19371                 for(set = live; set; set = set->next) {
19372                         struct reg_info info;
19373                         info = read_lhs_color(state, set->member, 0);
19374                         if (info.reg == REG_UNSET) {
19375                                 continue;
19376                         }
19377                         reg_inc_used(state, used, info.reg);
19378                 }
19379                 
19380                 /* Now find the least dominated definition of a register in
19381                  * conflict I have seen so far.
19382                  */
19383                 for(set = live; set; set = set->next) {
19384                         struct reg_info info;
19385                         info = read_lhs_color(state, set->member, 0);
19386                         if (used[info.reg] < 2) {
19387                                 continue;
19388                         }
19389                         /* Changing copies that feed into phi functions
19390                          * is incorrect.
19391                          */
19392                         if (set->member->use && 
19393                                 (set->member->use->member->op == OP_PHI)) {
19394                                 continue;
19395                         }
19396                         if (!tangle || tdominates(state, set->member, tangle)) {
19397                                 tangle = set->member;
19398                         }
19399                 }
19400                 /* If I have found a tangle resolve it */
19401                 if (tangle) {
19402                         struct triple *post_copy;
19403                         (*tangles)++;
19404                         post_copy = resolve_tangle(state, tangle);
19405                         if (post_copy) {
19406                                 replace_block_use(state, blocks, tangle, post_copy);
19407                         }
19408                         if (post_copy && (tangle != ins)) {
19409                                 replace_set_use(state, live, tangle, post_copy);
19410                         }
19411                 }
19412         } while(tangle);
19413         return;
19414 }
19415
19416 static int correct_tangles(
19417         struct compile_state *state, struct reg_block *blocks)
19418 {
19419         int tangles;
19420         tangles = 0;
19421         color_instructions(state);
19422         walk_variable_lifetimes(state, &state->bb, blocks, 
19423                 fix_tangles, &tangles);
19424         return tangles;
19425 }
19426
19427
19428 static void ids_from_rstate(struct compile_state *state, struct reg_state *rstate);
19429 static void cleanup_rstate(struct compile_state *state, struct reg_state *rstate);
19430
19431 struct triple *find_constrained_def(
19432         struct compile_state *state, struct live_range *range, struct triple *constrained)
19433 {
19434         struct live_range_def *lrd, *lrd_next;
19435         lrd_next = range->defs;
19436         do {
19437                 struct reg_info info;
19438                 unsigned regcm;
19439
19440                 lrd = lrd_next;
19441                 lrd_next = lrd->next;
19442
19443                 regcm = arch_type_to_regcm(state, lrd->def->type);
19444                 info = find_lhs_color(state, lrd->def, 0);
19445                 regcm      = arch_regcm_reg_normalize(state, regcm);
19446                 info.regcm = arch_regcm_reg_normalize(state, info.regcm);
19447                 /* If the 2 register class masks are equal then
19448                  * the current register class is not constrained.
19449                  */
19450                 if (regcm == info.regcm) {
19451                         continue;
19452                 }
19453                 
19454                 /* If there is just one use.
19455                  * That use cannot accept a larger register class.
19456                  * There are no intervening definitions except
19457                  * definitions that feed into that use.
19458                  * Then a triple is not constrained.
19459                  * FIXME handle this case!
19460                  */
19461 #if DEBUG_ROMCC_WARNINGS
19462 #warning "FIXME ignore cases that cannot be fixed (a definition followed by a use)"
19463 #endif
19464                 
19465
19466                 /* Of the constrained live ranges deal with the
19467                  * least dominated one first.
19468                  */
19469                 if (state->compiler->debug & DEBUG_RANGE_CONFLICTS) {
19470                         fprintf(state->errout, "canidate: %p %-8s regcm: %x %x\n",
19471                                 lrd->def, tops(lrd->def->op), regcm, info.regcm);
19472                 }
19473                 if (!constrained || 
19474                         tdominates(state, lrd->def, constrained))
19475                 {
19476                         constrained = lrd->def;
19477                 }
19478         } while(lrd_next != range->defs);
19479         return constrained;
19480 }
19481
19482 static int split_constrained_ranges(
19483         struct compile_state *state, struct reg_state *rstate, 
19484         struct live_range *range)
19485 {
19486         /* Walk through the edges in conflict and our current live
19487          * range, and find definitions that are more severly constrained
19488          * than they type of data they contain require.
19489          * 
19490          * Then pick one of those ranges and relax the constraints.
19491          */
19492         struct live_range_edge *edge;
19493         struct triple *constrained;
19494
19495         constrained = 0;
19496         for(edge = range->edges; edge; edge = edge->next) {
19497                 constrained = find_constrained_def(state, edge->node, constrained);
19498         }
19499 #if DEBUG_ROMCC_WARNINGS
19500 #warning "FIXME should I call find_constrained_def here only if no previous constrained def was found?"
19501 #endif
19502         if (!constrained) {
19503                 constrained = find_constrained_def(state, range, constrained);
19504         }
19505
19506         if (state->compiler->debug & DEBUG_RANGE_CONFLICTS) {
19507                 fprintf(state->errout, "constrained: ");
19508                 display_triple(state->errout, constrained);
19509         }
19510         if (constrained) {
19511                 ids_from_rstate(state, rstate);
19512                 cleanup_rstate(state, rstate);
19513                 resolve_tangle(state, constrained);
19514         }
19515         return !!constrained;
19516 }
19517         
19518 static int split_ranges(
19519         struct compile_state *state, struct reg_state *rstate,
19520         char *used, struct live_range *range)
19521 {
19522         int split;
19523         if (state->compiler->debug & DEBUG_RANGE_CONFLICTS) {
19524                 fprintf(state->errout, "split_ranges %d %s %p\n", 
19525                         rstate->passes, tops(range->defs->def->op), range->defs->def);
19526         }
19527         if ((range->color == REG_UNNEEDED) ||
19528                 (rstate->passes >= rstate->max_passes)) {
19529                 return 0;
19530         }
19531         split = split_constrained_ranges(state, rstate, range);
19532
19533         /* Ideally I would split the live range that will not be used
19534          * for the longest period of time in hopes that this will 
19535          * (a) allow me to spill a register or
19536          * (b) allow me to place a value in another register.
19537          *
19538          * So far I don't have a test case for this, the resolving
19539          * of mandatory constraints has solved all of my
19540          * know issues.  So I have choosen not to write any
19541          * code until I cat get a better feel for cases where
19542          * it would be useful to have.
19543          *
19544          */
19545 #if DEBUG_ROMCC_WARNINGS
19546 #warning "WISHLIST implement live range splitting..."
19547 #endif
19548         
19549         if (!split && (state->compiler->debug & DEBUG_RANGE_CONFLICTS2)) {
19550                 FILE *fp = state->errout;
19551                 print_interference_blocks(state, rstate, fp, 0);
19552                 print_dominators(state, fp, &state->bb);
19553         }
19554         return split;
19555 }
19556
19557 static FILE *cgdebug_fp(struct compile_state *state)
19558 {
19559         FILE *fp;
19560         fp = 0;
19561         if (!fp && (state->compiler->debug & DEBUG_COLOR_GRAPH2)) {
19562                 fp = state->errout;
19563         }
19564         if (!fp && (state->compiler->debug & DEBUG_COLOR_GRAPH)) {
19565                 fp = state->dbgout;
19566         }
19567         return fp;
19568 }
19569
19570 static void cgdebug_printf(struct compile_state *state, const char *fmt, ...)
19571 {
19572         FILE *fp;
19573         fp = cgdebug_fp(state);
19574         if (fp) {
19575                 va_list args;
19576                 va_start(args, fmt);
19577                 vfprintf(fp, fmt, args);
19578                 va_end(args);
19579         }
19580 }
19581
19582 static void cgdebug_flush(struct compile_state *state)
19583 {
19584         FILE *fp;
19585         fp = cgdebug_fp(state);
19586         if (fp) {
19587                 fflush(fp);
19588         }
19589 }
19590
19591 static void cgdebug_loc(struct compile_state *state, struct triple *ins)
19592 {
19593         FILE *fp;
19594         fp = cgdebug_fp(state);
19595         if (fp) {
19596                 loc(fp, state, ins);
19597         }
19598 }
19599
19600 static int select_free_color(struct compile_state *state, 
19601         struct reg_state *rstate, struct live_range *range)
19602 {
19603         struct triple_set *entry;
19604         struct live_range_def *lrd;
19605         struct live_range_def *phi;
19606         struct live_range_edge *edge;
19607         char used[MAX_REGISTERS];
19608         struct triple **expr;
19609
19610         /* Instead of doing just the trivial color select here I try
19611          * a few extra things because a good color selection will help reduce
19612          * copies.
19613          */
19614
19615         /* Find the registers currently in use */
19616         memset(used, 0, sizeof(used));
19617         for(edge = range->edges; edge; edge = edge->next) {
19618                 if (edge->node->color == REG_UNSET) {
19619                         continue;
19620                 }
19621                 reg_fill_used(state, used, edge->node->color);
19622         }
19623
19624         if (state->compiler->debug & DEBUG_COLOR_GRAPH2) {
19625                 int i;
19626                 i = 0;
19627                 for(edge = range->edges; edge; edge = edge->next) {
19628                         i++;
19629                 }
19630                 cgdebug_printf(state, "\n%s edges: %d", 
19631                         tops(range->defs->def->op), i);
19632                 cgdebug_loc(state, range->defs->def);
19633                 cgdebug_printf(state, "\n");
19634                 for(i = 0; i < MAX_REGISTERS; i++) {
19635                         if (used[i]) {
19636                                 cgdebug_printf(state, "used: %s\n",
19637                                         arch_reg_str(i));
19638                         }
19639                 }
19640         }       
19641
19642         /* If a color is already assigned see if it will work */
19643         if (range->color != REG_UNSET) {
19644                 struct live_range_def *lrd;
19645                 if (!used[range->color]) {
19646                         return 1;
19647                 }
19648                 for(edge = range->edges; edge; edge = edge->next) {
19649                         if (edge->node->color != range->color) {
19650                                 continue;
19651                         }
19652                         warning(state, edge->node->defs->def, "edge: ");
19653                         lrd = edge->node->defs;
19654                         do {
19655                                 warning(state, lrd->def, " %p %s",
19656                                         lrd->def, tops(lrd->def->op));
19657                                 lrd = lrd->next;
19658                         } while(lrd != edge->node->defs);
19659                 }
19660                 lrd = range->defs;
19661                 warning(state, range->defs->def, "def: ");
19662                 do {
19663                         warning(state, lrd->def, " %p %s",
19664                                 lrd->def, tops(lrd->def->op));
19665                         lrd = lrd->next;
19666                 } while(lrd != range->defs);
19667                 internal_error(state, range->defs->def,
19668                         "live range with already used color %s",
19669                         arch_reg_str(range->color));
19670         }
19671
19672         /* If I feed into an expression reuse it's color.
19673          * This should help remove copies in the case of 2 register instructions
19674          * and phi functions.
19675          */
19676         phi = 0;
19677         lrd = live_range_end(state, range, 0);
19678         for(; (range->color == REG_UNSET) && lrd ; lrd = live_range_end(state, range, lrd)) {
19679                 entry = lrd->def->use;
19680                 for(;(range->color == REG_UNSET) && entry; entry = entry->next) {
19681                         struct live_range_def *insd;
19682                         unsigned regcm;
19683                         insd = &rstate->lrd[entry->member->id];
19684                         if (insd->lr->defs == 0) {
19685                                 continue;
19686                         }
19687                         if (!phi && (insd->def->op == OP_PHI) &&
19688                                 !interfere(rstate, range, insd->lr)) {
19689                                 phi = insd;
19690                         }
19691                         if (insd->lr->color == REG_UNSET) {
19692                                 continue;
19693                         }
19694                         regcm = insd->lr->classes;
19695                         if (((regcm & range->classes) == 0) ||
19696                                 (used[insd->lr->color])) {
19697                                 continue;
19698                         }
19699                         if (interfere(rstate, range, insd->lr)) {
19700                                 continue;
19701                         }
19702                         range->color = insd->lr->color;
19703                 }
19704         }
19705         /* If I feed into a phi function reuse it's color or the color
19706          * of something else that feeds into the phi function.
19707          */
19708         if (phi) {
19709                 if (phi->lr->color != REG_UNSET) {
19710                         if (used[phi->lr->color]) {
19711                                 range->color = phi->lr->color;
19712                         }
19713                 }
19714                 else {
19715                         expr = triple_rhs(state, phi->def, 0);
19716                         for(; expr; expr = triple_rhs(state, phi->def, expr)) {
19717                                 struct live_range *lr;
19718                                 unsigned regcm;
19719                                 if (!*expr) {
19720                                         continue;
19721                                 }
19722                                 lr = rstate->lrd[(*expr)->id].lr;
19723                                 if (lr->color == REG_UNSET) {
19724                                         continue;
19725                                 }
19726                                 regcm = lr->classes;
19727                                 if (((regcm & range->classes) == 0) ||
19728                                         (used[lr->color])) {
19729                                         continue;
19730                                 }
19731                                 if (interfere(rstate, range, lr)) {
19732                                         continue;
19733                                 }
19734                                 range->color = lr->color;
19735                         }
19736                 }
19737         }
19738         /* If I don't interfere with a rhs node reuse it's color */
19739         lrd = live_range_head(state, range, 0);
19740         for(; (range->color == REG_UNSET) && lrd ; lrd = live_range_head(state, range, lrd)) {
19741                 expr = triple_rhs(state, lrd->def, 0);
19742                 for(; expr; expr = triple_rhs(state, lrd->def, expr)) {
19743                         struct live_range *lr;
19744                         unsigned regcm;
19745                         if (!*expr) {
19746                                 continue;
19747                         }
19748                         lr = rstate->lrd[(*expr)->id].lr;
19749                         if (lr->color == REG_UNSET) {
19750                                 continue;
19751                         }
19752                         regcm = lr->classes;
19753                         if (((regcm & range->classes) == 0) ||
19754                                 (used[lr->color])) {
19755                                 continue;
19756                         }
19757                         if (interfere(rstate, range, lr)) {
19758                                 continue;
19759                         }
19760                         range->color = lr->color;
19761                         break;
19762                 }
19763         }
19764         /* If I have not opportunitically picked a useful color
19765          * pick the first color that is free.
19766          */
19767         if (range->color == REG_UNSET) {
19768                 range->color = 
19769                         arch_select_free_register(state, used, range->classes);
19770         }
19771         if (range->color == REG_UNSET) {
19772                 struct live_range_def *lrd;
19773                 int i;
19774                 if (split_ranges(state, rstate, used, range)) {
19775                         return 0;
19776                 }
19777                 for(edge = range->edges; edge; edge = edge->next) {
19778                         warning(state, edge->node->defs->def, "edge reg %s",
19779                                 arch_reg_str(edge->node->color));
19780                         lrd = edge->node->defs;
19781                         do {
19782                                 warning(state, lrd->def, " %s %p",
19783                                         tops(lrd->def->op), lrd->def);
19784                                 lrd = lrd->next;
19785                         } while(lrd != edge->node->defs);
19786                 }
19787                 warning(state, range->defs->def, "range: ");
19788                 lrd = range->defs;
19789                 do {
19790                         warning(state, lrd->def, " %s %p",
19791                                 tops(lrd->def->op), lrd->def);
19792                         lrd = lrd->next;
19793                 } while(lrd != range->defs);
19794                         
19795                 warning(state, range->defs->def, "classes: %x",
19796                         range->classes);
19797                 for(i = 0; i < MAX_REGISTERS; i++) {
19798                         if (used[i]) {
19799                                 warning(state, range->defs->def, "used: %s",
19800                                         arch_reg_str(i));
19801                         }
19802                 }
19803                 error(state, range->defs->def, "too few registers");
19804         }
19805         range->classes &= arch_reg_regcm(state, range->color);
19806         if ((range->color == REG_UNSET) || (range->classes == 0)) {
19807                 internal_error(state, range->defs->def, "select_free_color did not?");
19808         }
19809         return 1;
19810 }
19811
19812 static int color_graph(struct compile_state *state, struct reg_state *rstate)
19813 {
19814         int colored;
19815         struct live_range_edge *edge;
19816         struct live_range *range;
19817         if (rstate->low) {
19818                 cgdebug_printf(state, "Lo: ");
19819                 range = rstate->low;
19820                 if (*range->group_prev != range) {
19821                         internal_error(state, 0, "lo: *prev != range?");
19822                 }
19823                 *range->group_prev = range->group_next;
19824                 if (range->group_next) {
19825                         range->group_next->group_prev = range->group_prev;
19826                 }
19827                 if (&range->group_next == rstate->low_tail) {
19828                         rstate->low_tail = range->group_prev;
19829                 }
19830                 if (rstate->low == range) {
19831                         internal_error(state, 0, "low: next != prev?");
19832                 }
19833         }
19834         else if (rstate->high) {
19835                 cgdebug_printf(state, "Hi: ");
19836                 range = rstate->high;
19837                 if (*range->group_prev != range) {
19838                         internal_error(state, 0, "hi: *prev != range?");
19839                 }
19840                 *range->group_prev = range->group_next;
19841                 if (range->group_next) {
19842                         range->group_next->group_prev = range->group_prev;
19843                 }
19844                 if (&range->group_next == rstate->high_tail) {
19845                         rstate->high_tail = range->group_prev;
19846                 }
19847                 if (rstate->high == range) {
19848                         internal_error(state, 0, "high: next != prev?");
19849                 }
19850         }
19851         else {
19852                 return 1;
19853         }
19854         cgdebug_printf(state, " %d\n", range - rstate->lr);
19855         range->group_prev = 0;
19856         for(edge = range->edges; edge; edge = edge->next) {
19857                 struct live_range *node;
19858                 node = edge->node;
19859                 /* Move nodes from the high to the low list */
19860                 if (node->group_prev && (node->color == REG_UNSET) &&
19861                         (node->degree == regc_max_size(state, node->classes))) {
19862                         if (*node->group_prev != node) {
19863                                 internal_error(state, 0, "move: *prev != node?");
19864                         }
19865                         *node->group_prev = node->group_next;
19866                         if (node->group_next) {
19867                                 node->group_next->group_prev = node->group_prev;
19868                         }
19869                         if (&node->group_next == rstate->high_tail) {
19870                                 rstate->high_tail = node->group_prev;
19871                         }
19872                         cgdebug_printf(state, "Moving...%d to low\n", node - rstate->lr);
19873                         node->group_prev  = rstate->low_tail;
19874                         node->group_next  = 0;
19875                         *rstate->low_tail = node;
19876                         rstate->low_tail  = &node->group_next;
19877                         if (*node->group_prev != node) {
19878                                 internal_error(state, 0, "move2: *prev != node?");
19879                         }
19880                 }
19881                 node->degree -= 1;
19882         }
19883         colored = color_graph(state, rstate);
19884         if (colored) {
19885                 cgdebug_printf(state, "Coloring %d @", range - rstate->lr);
19886                 cgdebug_loc(state, range->defs->def);
19887                 cgdebug_flush(state);
19888                 colored = select_free_color(state, rstate, range);
19889                 if (colored) {
19890                         cgdebug_printf(state, " %s\n", arch_reg_str(range->color));
19891                 }
19892         }
19893         return colored;
19894 }
19895
19896 static void verify_colors(struct compile_state *state, struct reg_state *rstate)
19897 {
19898         struct live_range *lr;
19899         struct live_range_edge *edge;
19900         struct triple *ins, *first;
19901         char used[MAX_REGISTERS];
19902         first = state->first;
19903         ins = first;
19904         do {
19905                 if (triple_is_def(state, ins)) {
19906                         if ((ins->id < 0) || (ins->id > rstate->defs)) {
19907                                 internal_error(state, ins, 
19908                                         "triple without a live range def");
19909                         }
19910                         lr = rstate->lrd[ins->id].lr;
19911                         if (lr->color == REG_UNSET) {
19912                                 internal_error(state, ins,
19913                                         "triple without a color");
19914                         }
19915                         /* Find the registers used by the edges */
19916                         memset(used, 0, sizeof(used));
19917                         for(edge = lr->edges; edge; edge = edge->next) {
19918                                 if (edge->node->color == REG_UNSET) {
19919                                         internal_error(state, 0,
19920                                                 "live range without a color");
19921                         }
19922                                 reg_fill_used(state, used, edge->node->color);
19923                         }
19924                         if (used[lr->color]) {
19925                                 internal_error(state, ins,
19926                                         "triple with already used color");
19927                         }
19928                 }
19929                 ins = ins->next;
19930         } while(ins != first);
19931 }
19932
19933 static void color_triples(struct compile_state *state, struct reg_state *rstate)
19934 {
19935         struct live_range_def *lrd;
19936         struct live_range *lr;
19937         struct triple *first, *ins;
19938         first = state->first;
19939         ins = first;
19940         do {
19941                 if ((ins->id < 0) || (ins->id > rstate->defs)) {
19942                         internal_error(state, ins, 
19943                                 "triple without a live range");
19944                 }
19945                 lrd = &rstate->lrd[ins->id];
19946                 lr = lrd->lr;
19947                 ins->id = lrd->orig_id;
19948                 SET_REG(ins->id, lr->color);
19949                 ins = ins->next;
19950         } while (ins != first);
19951 }
19952
19953 static struct live_range *merge_sort_lr(
19954         struct live_range *first, struct live_range *last)
19955 {
19956         struct live_range *mid, *join, **join_tail, *pick;
19957         size_t size;
19958         size = (last - first) + 1;
19959         if (size >= 2) {
19960                 mid = first + size/2;
19961                 first = merge_sort_lr(first, mid -1);
19962                 mid   = merge_sort_lr(mid, last);
19963                 
19964                 join = 0;
19965                 join_tail = &join;
19966                 /* merge the two lists */
19967                 while(first && mid) {
19968                         if ((first->degree < mid->degree) ||
19969                                 ((first->degree == mid->degree) &&
19970                                         (first->length < mid->length))) {
19971                                 pick = first;
19972                                 first = first->group_next;
19973                                 if (first) {
19974                                         first->group_prev = 0;
19975                                 }
19976                         }
19977                         else {
19978                                 pick = mid;
19979                                 mid = mid->group_next;
19980                                 if (mid) {
19981                                         mid->group_prev = 0;
19982                                 }
19983                         }
19984                         pick->group_next = 0;
19985                         pick->group_prev = join_tail;
19986                         *join_tail = pick;
19987                         join_tail = &pick->group_next;
19988                 }
19989                 /* Splice the remaining list */
19990                 pick = (first)? first : mid;
19991                 *join_tail = pick;
19992                 if (pick) { 
19993                         pick->group_prev = join_tail;
19994                 }
19995         }
19996         else {
19997                 if (!first->defs) {
19998                         first = 0;
19999                 }
20000                 join = first;
20001         }
20002         return join;
20003 }
20004
20005 static void ids_from_rstate(struct compile_state *state, 
20006         struct reg_state *rstate)
20007 {
20008         struct triple *ins, *first;
20009         if (!rstate->defs) {
20010                 return;
20011         }
20012         /* Display the graph if desired */
20013         if (state->compiler->debug & DEBUG_INTERFERENCE) {
20014                 FILE *fp = state->dbgout;
20015                 print_interference_blocks(state, rstate, fp, 0);
20016                 print_control_flow(state, fp, &state->bb);
20017                 fflush(fp);
20018         }
20019         first = state->first;
20020         ins = first;
20021         do {
20022                 if (ins->id) {
20023                         struct live_range_def *lrd;
20024                         lrd = &rstate->lrd[ins->id];
20025                         ins->id = lrd->orig_id;
20026                 }
20027                 ins = ins->next;
20028         } while(ins != first);
20029 }
20030
20031 static void cleanup_live_edges(struct reg_state *rstate)
20032 {
20033         int i;
20034         /* Free the edges on each node */
20035         for(i = 1; i <= rstate->ranges; i++) {
20036                 remove_live_edges(rstate, &rstate->lr[i]);
20037         }
20038 }
20039
20040 static void cleanup_rstate(struct compile_state *state, struct reg_state *rstate)
20041 {
20042         cleanup_live_edges(rstate);
20043         xfree(rstate->lrd);
20044         xfree(rstate->lr);
20045
20046         /* Free the variable lifetime information */
20047         if (rstate->blocks) {
20048                 free_variable_lifetimes(state, &state->bb, rstate->blocks);
20049         }
20050         rstate->defs = 0;
20051         rstate->ranges = 0;
20052         rstate->lrd = 0;
20053         rstate->lr = 0;
20054         rstate->blocks = 0;
20055 }
20056
20057 static void verify_consistency(struct compile_state *state);
20058 static void allocate_registers(struct compile_state *state)
20059 {
20060         struct reg_state rstate;
20061         int colored;
20062
20063         /* Clear out the reg_state */
20064         memset(&rstate, 0, sizeof(rstate));
20065         rstate.max_passes = state->compiler->max_allocation_passes;
20066
20067         do {
20068                 struct live_range **point, **next;
20069                 int conflicts;
20070                 int tangles;
20071                 int coalesced;
20072
20073                 if (state->compiler->debug & DEBUG_RANGE_CONFLICTS) {
20074                         FILE *fp = state->errout;
20075                         fprintf(fp, "pass: %d\n", rstate.passes);
20076                         fflush(fp);
20077                 }
20078
20079                 /* Restore ids */
20080                 ids_from_rstate(state, &rstate);
20081
20082                 /* Cleanup the temporary data structures */
20083                 cleanup_rstate(state, &rstate);
20084
20085                 /* Compute the variable lifetimes */
20086                 rstate.blocks = compute_variable_lifetimes(state, &state->bb);
20087
20088                 /* Fix invalid mandatory live range coalesce conflicts */
20089                 conflicts = correct_coalesce_conflicts(state, rstate.blocks);
20090
20091                 /* Fix two simultaneous uses of the same register.
20092                  * In a few pathlogical cases a partial untangle moves
20093                  * the tangle to a part of the graph we won't revisit.
20094                  * So we keep looping until we have no more tangle fixes
20095                  * to apply.
20096                  */
20097                 do {
20098                         tangles = correct_tangles(state, rstate.blocks);
20099                 } while(tangles);
20100
20101                 
20102                 print_blocks(state, "resolve_tangles", state->dbgout);
20103                 verify_consistency(state);
20104                 
20105                 /* Allocate and initialize the live ranges */
20106                 initialize_live_ranges(state, &rstate);
20107
20108                 /* Note currently doing coalescing in a loop appears to 
20109                  * buys me nothing.  The code is left this way in case
20110                  * there is some value in it.  Or if a future bugfix
20111                  * yields some benefit.
20112                  */
20113                 do {
20114                         if (state->compiler->debug & DEBUG_COALESCING) {
20115                                 fprintf(state->errout, "coalescing\n");
20116                         }
20117
20118                         /* Remove any previous live edge calculations */
20119                         cleanup_live_edges(&rstate);
20120
20121                         /* Compute the interference graph */
20122                         walk_variable_lifetimes(
20123                                 state, &state->bb, rstate.blocks, 
20124                                 graph_ins, &rstate);
20125                         
20126                         /* Display the interference graph if desired */
20127                         if (state->compiler->debug & DEBUG_INTERFERENCE) {
20128                                 print_interference_blocks(state, &rstate, state->dbgout, 1);
20129                                 fprintf(state->dbgout, "\nlive variables by instruction\n");
20130                                 walk_variable_lifetimes(
20131                                         state, &state->bb, rstate.blocks, 
20132                                         print_interference_ins, &rstate);
20133                         }
20134                         
20135                         coalesced = coalesce_live_ranges(state, &rstate);
20136
20137                         if (state->compiler->debug & DEBUG_COALESCING) {
20138                                 fprintf(state->errout, "coalesced: %d\n", coalesced);
20139                         }
20140                 } while(coalesced);
20141
20142 #if DEBUG_CONSISTENCY > 1
20143 # if 0
20144                 fprintf(state->errout, "verify_graph_ins...\n");
20145 # endif
20146                 /* Verify the interference graph */
20147                 walk_variable_lifetimes(
20148                         state, &state->bb, rstate.blocks, 
20149                         verify_graph_ins, &rstate);
20150 # if 0
20151                 fprintf(state->errout, "verify_graph_ins done\n");
20152 #endif
20153 #endif
20154                         
20155                 /* Build the groups low and high.  But with the nodes
20156                  * first sorted by degree order.
20157                  */
20158                 rstate.low_tail  = &rstate.low;
20159                 rstate.high_tail = &rstate.high;
20160                 rstate.high = merge_sort_lr(&rstate.lr[1], &rstate.lr[rstate.ranges]);
20161                 if (rstate.high) {
20162                         rstate.high->group_prev = &rstate.high;
20163                 }
20164                 for(point = &rstate.high; *point; point = &(*point)->group_next)
20165                         ;
20166                 rstate.high_tail = point;
20167                 /* Walk through the high list and move everything that needs
20168                  * to be onto low.
20169                  */
20170                 for(point = &rstate.high; *point; point = next) {
20171                         struct live_range *range;
20172                         next = &(*point)->group_next;
20173                         range = *point;
20174                         
20175                         /* If it has a low degree or it already has a color
20176                          * place the node in low.
20177                          */
20178                         if ((range->degree < regc_max_size(state, range->classes)) ||
20179                                 (range->color != REG_UNSET)) {
20180                                 cgdebug_printf(state, "Lo: %5d degree %5d%s\n", 
20181                                         range - rstate.lr, range->degree,
20182                                         (range->color != REG_UNSET) ? " (colored)": "");
20183                                 *range->group_prev = range->group_next;
20184                                 if (range->group_next) {
20185                                         range->group_next->group_prev = range->group_prev;
20186                                 }
20187                                 if (&range->group_next == rstate.high_tail) {
20188                                         rstate.high_tail = range->group_prev;
20189                                 }
20190                                 range->group_prev  = rstate.low_tail;
20191                                 range->group_next  = 0;
20192                                 *rstate.low_tail   = range;
20193                                 rstate.low_tail    = &range->group_next;
20194                                 next = point;
20195                         }
20196                         else {
20197                                 cgdebug_printf(state, "hi: %5d degree %5d%s\n", 
20198                                         range - rstate.lr, range->degree,
20199                                         (range->color != REG_UNSET) ? " (colored)": "");
20200                         }
20201                 }
20202                 /* Color the live_ranges */
20203                 colored = color_graph(state, &rstate);
20204                 rstate.passes++;
20205         } while (!colored);
20206
20207         /* Verify the graph was properly colored */
20208         verify_colors(state, &rstate);
20209
20210         /* Move the colors from the graph to the triples */
20211         color_triples(state, &rstate);
20212
20213         /* Cleanup the temporary data structures */
20214         cleanup_rstate(state, &rstate);
20215
20216         /* Display the new graph */
20217         print_blocks(state, __func__, state->dbgout);
20218 }
20219
20220 /* Sparce Conditional Constant Propogation
20221  * =========================================
20222  */
20223 struct ssa_edge;
20224 struct flow_block;
20225 struct lattice_node {
20226         unsigned old_id;
20227         struct triple *def;
20228         struct ssa_edge *out;
20229         struct flow_block *fblock;
20230         struct triple *val;
20231         /* lattice high   val == def
20232          * lattice const  is_const(val)
20233          * lattice low    other
20234          */
20235 };
20236 struct ssa_edge {
20237         struct lattice_node *src;
20238         struct lattice_node *dst;
20239         struct ssa_edge *work_next;
20240         struct ssa_edge *work_prev;
20241         struct ssa_edge *out_next;
20242 };
20243 struct flow_edge {
20244         struct flow_block *src;
20245         struct flow_block *dst;
20246         struct flow_edge *work_next;
20247         struct flow_edge *work_prev;
20248         struct flow_edge *in_next;
20249         struct flow_edge *out_next;
20250         int executable;
20251 };
20252 #define MAX_FLOW_BLOCK_EDGES 3
20253 struct flow_block {
20254         struct block *block;
20255         struct flow_edge *in;
20256         struct flow_edge *out;
20257         struct flow_edge *edges;
20258 };
20259
20260 struct scc_state {
20261         int ins_count;
20262         struct lattice_node *lattice;
20263         struct ssa_edge     *ssa_edges;
20264         struct flow_block   *flow_blocks;
20265         struct flow_edge    *flow_work_list;
20266         struct ssa_edge     *ssa_work_list;
20267 };
20268
20269
20270 static int is_scc_const(struct compile_state *state, struct triple *ins)
20271 {
20272         return ins && (triple_is_ubranch(state, ins) || is_const(ins));
20273 }
20274
20275 static int is_lattice_hi(struct compile_state *state, struct lattice_node *lnode)
20276 {
20277         return !is_scc_const(state, lnode->val) && (lnode->val == lnode->def);
20278 }
20279
20280 static int is_lattice_const(struct compile_state *state, struct lattice_node *lnode)
20281 {
20282         return is_scc_const(state, lnode->val);
20283 }
20284
20285 static int is_lattice_lo(struct compile_state *state, struct lattice_node *lnode)
20286 {
20287         return (lnode->val != lnode->def) && !is_scc_const(state, lnode->val);
20288 }
20289
20290 static void scc_add_fedge(struct compile_state *state, struct scc_state *scc, 
20291         struct flow_edge *fedge)
20292 {
20293         if (state->compiler->debug & DEBUG_SCC_TRANSFORM2) {
20294                 fprintf(state->errout, "adding fedge: %p (%4d -> %5d)\n",
20295                         fedge,
20296                         fedge->src->block?fedge->src->block->last->id: 0,
20297                         fedge->dst->block?fedge->dst->block->first->id: 0);
20298         }
20299         if ((fedge == scc->flow_work_list) ||
20300                 (fedge->work_next != fedge) ||
20301                 (fedge->work_prev != fedge)) {
20302
20303                 if (state->compiler->debug & DEBUG_SCC_TRANSFORM2) {
20304                         fprintf(state->errout, "dupped fedge: %p\n",
20305                                 fedge);
20306                 }
20307                 return;
20308         }
20309         if (!scc->flow_work_list) {
20310                 scc->flow_work_list = fedge;
20311                 fedge->work_next = fedge->work_prev = fedge;
20312         }
20313         else {
20314                 struct flow_edge *ftail;
20315                 ftail = scc->flow_work_list->work_prev;
20316                 fedge->work_next = ftail->work_next;
20317                 fedge->work_prev = ftail;
20318                 fedge->work_next->work_prev = fedge;
20319                 fedge->work_prev->work_next = fedge;
20320         }
20321 }
20322
20323 static struct flow_edge *scc_next_fedge(
20324         struct compile_state *state, struct scc_state *scc)
20325 {
20326         struct flow_edge *fedge;
20327         fedge = scc->flow_work_list;
20328         if (fedge) {
20329                 fedge->work_next->work_prev = fedge->work_prev;
20330                 fedge->work_prev->work_next = fedge->work_next;
20331                 if (fedge->work_next != fedge) {
20332                         scc->flow_work_list = fedge->work_next;
20333                 } else {
20334                         scc->flow_work_list = 0;
20335                 }
20336                 fedge->work_next = fedge->work_prev = fedge;
20337         }
20338         return fedge;
20339 }
20340
20341 static void scc_add_sedge(struct compile_state *state, struct scc_state *scc,
20342         struct ssa_edge *sedge)
20343 {
20344         if (state->compiler->debug & DEBUG_SCC_TRANSFORM2) {
20345                 fprintf(state->errout, "adding sedge: %5ld (%4d -> %5d)\n",
20346                         (long)(sedge - scc->ssa_edges),
20347                         sedge->src->def->id,
20348                         sedge->dst->def->id);
20349         }
20350         if ((sedge == scc->ssa_work_list) ||
20351                 (sedge->work_next != sedge) ||
20352                 (sedge->work_prev != sedge)) {
20353
20354                 if (state->compiler->debug & DEBUG_SCC_TRANSFORM2) {
20355                         fprintf(state->errout, "dupped sedge: %5ld\n",
20356                                 (long)(sedge - scc->ssa_edges));
20357                 }
20358                 return;
20359         }
20360         if (!scc->ssa_work_list) {
20361                 scc->ssa_work_list = sedge;
20362                 sedge->work_next = sedge->work_prev = sedge;
20363         }
20364         else {
20365                 struct ssa_edge *stail;
20366                 stail = scc->ssa_work_list->work_prev;
20367                 sedge->work_next = stail->work_next;
20368                 sedge->work_prev = stail;
20369                 sedge->work_next->work_prev = sedge;
20370                 sedge->work_prev->work_next = sedge;
20371         }
20372 }
20373
20374 static struct ssa_edge *scc_next_sedge(
20375         struct compile_state *state, struct scc_state *scc)
20376 {
20377         struct ssa_edge *sedge;
20378         sedge = scc->ssa_work_list;
20379         if (sedge) {
20380                 sedge->work_next->work_prev = sedge->work_prev;
20381                 sedge->work_prev->work_next = sedge->work_next;
20382                 if (sedge->work_next != sedge) {
20383                         scc->ssa_work_list = sedge->work_next;
20384                 } else {
20385                         scc->ssa_work_list = 0;
20386                 }
20387                 sedge->work_next = sedge->work_prev = sedge;
20388         }
20389         return sedge;
20390 }
20391
20392 static void initialize_scc_state(
20393         struct compile_state *state, struct scc_state *scc)
20394 {
20395         int ins_count, ssa_edge_count;
20396         int ins_index, ssa_edge_index, fblock_index;
20397         struct triple *first, *ins;
20398         struct block *block;
20399         struct flow_block *fblock;
20400
20401         memset(scc, 0, sizeof(*scc));
20402
20403         /* Inialize pass zero find out how much memory we need */
20404         first = state->first;
20405         ins = first;
20406         ins_count = ssa_edge_count = 0;
20407         do {
20408                 struct triple_set *edge;
20409                 ins_count += 1;
20410                 for(edge = ins->use; edge; edge = edge->next) {
20411                         ssa_edge_count++;
20412                 }
20413                 ins = ins->next;
20414         } while(ins != first);
20415         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20416                 fprintf(state->errout, "ins_count: %d ssa_edge_count: %d vertex_count: %d\n",
20417                         ins_count, ssa_edge_count, state->bb.last_vertex);
20418         }
20419         scc->ins_count   = ins_count;
20420         scc->lattice     = 
20421                 xcmalloc(sizeof(*scc->lattice)*(ins_count + 1), "lattice");
20422         scc->ssa_edges   = 
20423                 xcmalloc(sizeof(*scc->ssa_edges)*(ssa_edge_count + 1), "ssa_edges");
20424         scc->flow_blocks = 
20425                 xcmalloc(sizeof(*scc->flow_blocks)*(state->bb.last_vertex + 1), 
20426                         "flow_blocks");
20427
20428         /* Initialize pass one collect up the nodes */
20429         fblock = 0;
20430         block = 0;
20431         ins_index = ssa_edge_index = fblock_index = 0;
20432         ins = first;
20433         do {
20434                 if ((ins->op == OP_LABEL) && (block != ins->u.block)) {
20435                         block = ins->u.block;
20436                         if (!block) {
20437                                 internal_error(state, ins, "label without block");
20438                         }
20439                         fblock_index += 1;
20440                         block->vertex = fblock_index;
20441                         fblock = &scc->flow_blocks[fblock_index];
20442                         fblock->block = block;
20443                         fblock->edges = xcmalloc(sizeof(*fblock->edges)*block->edge_count,
20444                                 "flow_edges");
20445                 }
20446                 {
20447                         struct lattice_node *lnode;
20448                         ins_index += 1;
20449                         lnode = &scc->lattice[ins_index];
20450                         lnode->def = ins;
20451                         lnode->out = 0;
20452                         lnode->fblock = fblock;
20453                         lnode->val = ins; /* LATTICE HIGH */
20454                         if (lnode->val->op == OP_UNKNOWNVAL) {
20455                                 lnode->val = 0; /* LATTICE LOW by definition */
20456                         }
20457                         lnode->old_id = ins->id;
20458                         ins->id = ins_index;
20459                 }
20460                 ins = ins->next;
20461         } while(ins != first);
20462         /* Initialize pass two collect up the edges */
20463         block = 0;
20464         fblock = 0;
20465         ins = first;
20466         do {
20467                 {
20468                         struct triple_set *edge;
20469                         struct ssa_edge **stail;
20470                         struct lattice_node *lnode;
20471                         lnode = &scc->lattice[ins->id];
20472                         lnode->out = 0;
20473                         stail = &lnode->out;
20474                         for(edge = ins->use; edge; edge = edge->next) {
20475                                 struct ssa_edge *sedge;
20476                                 ssa_edge_index += 1;
20477                                 sedge = &scc->ssa_edges[ssa_edge_index];
20478                                 *stail = sedge;
20479                                 stail = &sedge->out_next;
20480                                 sedge->src = lnode;
20481                                 sedge->dst = &scc->lattice[edge->member->id];
20482                                 sedge->work_next = sedge->work_prev = sedge;
20483                                 sedge->out_next = 0;
20484                         }
20485                 }
20486                 if ((ins->op == OP_LABEL) && (block != ins->u.block)) {
20487                         struct flow_edge *fedge, **ftail;
20488                         struct block_set *bedge;
20489                         block = ins->u.block;
20490                         fblock = &scc->flow_blocks[block->vertex];
20491                         fblock->in = 0;
20492                         fblock->out = 0;
20493                         ftail = &fblock->out;
20494
20495                         fedge = fblock->edges;
20496                         bedge = block->edges;
20497                         for(; bedge; bedge = bedge->next, fedge++) {
20498                                 fedge->dst = &scc->flow_blocks[bedge->member->vertex];
20499                                 if (fedge->dst->block != bedge->member) {
20500                                         internal_error(state, 0, "block mismatch");
20501                                 }
20502                                 *ftail = fedge;
20503                                 ftail = &fedge->out_next;
20504                                 fedge->out_next = 0;
20505                         }
20506                         for(fedge = fblock->out; fedge; fedge = fedge->out_next) {
20507                                 fedge->src = fblock;
20508                                 fedge->work_next = fedge->work_prev = fedge;
20509                                 fedge->executable = 0;
20510                         }
20511                 }
20512                 ins = ins->next;
20513         } while (ins != first);
20514         block = 0;
20515         fblock = 0;
20516         ins = first;
20517         do {
20518                 if ((ins->op  == OP_LABEL) && (block != ins->u.block)) {
20519                         struct flow_edge **ftail;
20520                         struct block_set *bedge;
20521                         block = ins->u.block;
20522                         fblock = &scc->flow_blocks[block->vertex];
20523                         ftail = &fblock->in;
20524                         for(bedge = block->use; bedge; bedge = bedge->next) {
20525                                 struct block *src_block;
20526                                 struct flow_block *sfblock;
20527                                 struct flow_edge *sfedge;
20528                                 src_block = bedge->member;
20529                                 sfblock = &scc->flow_blocks[src_block->vertex];
20530                                 for(sfedge = sfblock->out; sfedge; sfedge = sfedge->out_next) {
20531                                         if (sfedge->dst == fblock) {
20532                                                 break;
20533                                         }
20534                                 }
20535                                 if (!sfedge) {
20536                                         internal_error(state, 0, "edge mismatch");
20537                                 }
20538                                 *ftail = sfedge;
20539                                 ftail = &sfedge->in_next;
20540                                 sfedge->in_next = 0;
20541                         }
20542                 }
20543                 ins = ins->next;
20544         } while(ins != first);
20545         /* Setup a dummy block 0 as a node above the start node */
20546         {
20547                 struct flow_block *fblock, *dst;
20548                 struct flow_edge *fedge;
20549                 fblock = &scc->flow_blocks[0];
20550                 fblock->block = 0;
20551                 fblock->edges = xcmalloc(sizeof(*fblock->edges)*1, "flow_edges");
20552                 fblock->in = 0;
20553                 fblock->out = fblock->edges;
20554                 dst = &scc->flow_blocks[state->bb.first_block->vertex];
20555                 fedge = fblock->edges;
20556                 fedge->src        = fblock;
20557                 fedge->dst        = dst;
20558                 fedge->work_next  = fedge;
20559                 fedge->work_prev  = fedge;
20560                 fedge->in_next    = fedge->dst->in;
20561                 fedge->out_next   = 0;
20562                 fedge->executable = 0;
20563                 fedge->dst->in = fedge;
20564                 
20565                 /* Initialize the work lists */
20566                 scc->flow_work_list = 0;
20567                 scc->ssa_work_list  = 0;
20568                 scc_add_fedge(state, scc, fedge);
20569         }
20570         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20571                 fprintf(state->errout, "ins_index: %d ssa_edge_index: %d fblock_index: %d\n",
20572                         ins_index, ssa_edge_index, fblock_index);
20573         }
20574 }
20575
20576         
20577 static void free_scc_state(
20578         struct compile_state *state, struct scc_state *scc)
20579 {
20580         int i;
20581         for(i = 0; i < state->bb.last_vertex + 1; i++) {
20582                 struct flow_block *fblock;
20583                 fblock = &scc->flow_blocks[i];
20584                 if (fblock->edges) {
20585                         xfree(fblock->edges);
20586                         fblock->edges = 0;
20587                 }
20588         }
20589         xfree(scc->flow_blocks);
20590         xfree(scc->ssa_edges);
20591         xfree(scc->lattice);
20592         
20593 }
20594
20595 static struct lattice_node *triple_to_lattice(
20596         struct compile_state *state, struct scc_state *scc, struct triple *ins)
20597 {
20598         if (ins->id <= 0) {
20599                 internal_error(state, ins, "bad id");
20600         }
20601         return &scc->lattice[ins->id];
20602 }
20603
20604 static struct triple *preserve_lval(
20605         struct compile_state *state, struct lattice_node *lnode)
20606 {
20607         struct triple *old;
20608         /* Preserve the original value */
20609         if (lnode->val) {
20610                 old = dup_triple(state, lnode->val);
20611                 if (lnode->val != lnode->def) {
20612                         xfree(lnode->val);
20613                 }
20614                 lnode->val = 0;
20615         } else {
20616                 old = 0;
20617         }
20618         return old;
20619 }
20620
20621 static int lval_changed(struct compile_state *state, 
20622         struct triple *old, struct lattice_node *lnode)
20623 {
20624         int changed;
20625         /* See if the lattice value has changed */
20626         changed = 1;
20627         if (!old && !lnode->val) {
20628                 changed = 0;
20629         }
20630         if (changed &&
20631                 lnode->val && old &&
20632                 (memcmp(lnode->val->param, old->param,
20633                         TRIPLE_SIZE(lnode->val) * sizeof(lnode->val->param[0])) == 0) &&
20634                 (memcmp(&lnode->val->u, &old->u, sizeof(old->u)) == 0)) {
20635                 changed = 0;
20636         }
20637         if (old) {
20638                 xfree(old);
20639         }
20640         return changed;
20641
20642 }
20643
20644 static void scc_debug_lnode(
20645         struct compile_state *state, struct scc_state *scc,
20646         struct lattice_node *lnode, int changed)
20647 {
20648         if ((state->compiler->debug & DEBUG_SCC_TRANSFORM2) && lnode->val) {
20649                 display_triple_changes(state->errout, lnode->val, lnode->def);
20650         }
20651         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20652                 FILE *fp = state->errout;
20653                 struct triple *val, **expr;
20654                 val = lnode->val? lnode->val : lnode->def;
20655                 fprintf(fp, "%p %s %3d %10s (",
20656                         lnode->def, 
20657                         ((lnode->def->op == OP_PHI)? "phi: ": "expr:"),
20658                         lnode->def->id,
20659                         tops(lnode->def->op));
20660                 expr = triple_rhs(state, lnode->def, 0);
20661                 for(;expr;expr = triple_rhs(state, lnode->def, expr)) {
20662                         if (*expr) {
20663                                 fprintf(fp, " %d", (*expr)->id);
20664                         }
20665                 }
20666                 if (val->op == OP_INTCONST) {
20667                         fprintf(fp, " <0x%08lx>", (unsigned long)(val->u.cval));
20668                 }
20669                 fprintf(fp, " ) -> %s %s\n",
20670                         (is_lattice_hi(state, lnode)? "hi":
20671                                 is_lattice_const(state, lnode)? "const" : "lo"),
20672                         changed? "changed" : ""
20673                         );
20674         }
20675 }
20676
20677 static int compute_lnode_val(struct compile_state *state, struct scc_state *scc,
20678         struct lattice_node *lnode)
20679 {
20680         int changed;
20681         struct triple *old, *scratch;
20682         struct triple **dexpr, **vexpr;
20683         int count, i;
20684         
20685         /* Store the original value */
20686         old = preserve_lval(state, lnode);
20687
20688         /* Reinitialize the value */
20689         lnode->val = scratch = dup_triple(state, lnode->def);
20690         scratch->id = lnode->old_id;
20691         scratch->next     = scratch;
20692         scratch->prev     = scratch;
20693         scratch->use      = 0;
20694
20695         count = TRIPLE_SIZE(scratch);
20696         for(i = 0; i < count; i++) {
20697                 dexpr = &lnode->def->param[i];
20698                 vexpr = &scratch->param[i];
20699                 *vexpr = *dexpr;
20700                 if (((i < TRIPLE_MISC_OFF(scratch)) ||
20701                         (i >= TRIPLE_TARG_OFF(scratch))) &&
20702                         *dexpr) {
20703                         struct lattice_node *tmp;
20704                         tmp = triple_to_lattice(state, scc, *dexpr);
20705                         *vexpr = (tmp->val)? tmp->val : tmp->def;
20706                 }
20707         }
20708         if (triple_is_branch(state, scratch)) {
20709                 scratch->next = lnode->def->next;
20710         }
20711         /* Recompute the value */
20712 #if DEBUG_ROMCC_WARNINGS
20713 #warning "FIXME see if simplify does anything bad"
20714 #endif
20715         /* So far it looks like only the strength reduction
20716          * optimization are things I need to worry about.
20717          */
20718         simplify(state, scratch);
20719         /* Cleanup my value */
20720         if (scratch->use) {
20721                 internal_error(state, lnode->def, "scratch used?");
20722         }
20723         if ((scratch->prev != scratch) ||
20724                 ((scratch->next != scratch) &&
20725                         (!triple_is_branch(state, lnode->def) ||
20726                                 (scratch->next != lnode->def->next)))) {
20727                 internal_error(state, lnode->def, "scratch in list?");
20728         }
20729         /* undo any uses... */
20730         count = TRIPLE_SIZE(scratch);
20731         for(i = 0; i < count; i++) {
20732                 vexpr = &scratch->param[i];
20733                 if (*vexpr) {
20734                         unuse_triple(*vexpr, scratch);
20735                 }
20736         }
20737         if (lnode->val->op == OP_UNKNOWNVAL) {
20738                 lnode->val = 0; /* Lattice low by definition */
20739         }
20740         /* Find the case when I am lattice high */
20741         if (lnode->val && 
20742                 (lnode->val->op == lnode->def->op) &&
20743                 (memcmp(lnode->val->param, lnode->def->param, 
20744                         count * sizeof(lnode->val->param[0])) == 0) &&
20745                 (memcmp(&lnode->val->u, &lnode->def->u, sizeof(lnode->def->u)) == 0)) {
20746                 lnode->val = lnode->def;
20747         }
20748         /* Only allow lattice high when all of my inputs
20749          * are also lattice high.  Occassionally I can
20750          * have constants with a lattice low input, so
20751          * I do not need to check that case.
20752          */
20753         if (is_lattice_hi(state, lnode)) {
20754                 struct lattice_node *tmp;
20755                 int rhs;
20756                 rhs = lnode->val->rhs;
20757                 for(i = 0; i < rhs; i++) {
20758                         tmp = triple_to_lattice(state, scc, RHS(lnode->val, i));
20759                         if (!is_lattice_hi(state, tmp)) {
20760                                 lnode->val = 0;
20761                                 break;
20762                         }
20763                 }
20764         }
20765         /* Find the cases that are always lattice lo */
20766         if (lnode->val && 
20767                 triple_is_def(state, lnode->val) &&
20768                 !triple_is_pure(state, lnode->val, lnode->old_id)) {
20769                 lnode->val = 0;
20770         }
20771         /* See if the lattice value has changed */
20772         changed = lval_changed(state, old, lnode);
20773         /* See if this value should not change */
20774         if ((lnode->val != lnode->def) && 
20775                 ((      !triple_is_def(state, lnode->def)  &&
20776                         !triple_is_cbranch(state, lnode->def)) ||
20777                         (lnode->def->op == OP_PIECE))) {
20778 #if DEBUG_ROMCC_WARNINGS
20779 #warning "FIXME constant propogate through expressions with multiple left hand sides"
20780 #endif
20781                 if (changed) {
20782                         internal_warning(state, lnode->def, "non def changes value?");
20783                 }
20784                 lnode->val = 0;
20785         }
20786
20787         /* See if we need to free the scratch value */
20788         if (lnode->val != scratch) {
20789                 xfree(scratch);
20790         }
20791         
20792         return changed;
20793 }
20794
20795
20796 static void scc_visit_cbranch(struct compile_state *state, struct scc_state *scc,
20797         struct lattice_node *lnode)
20798 {
20799         struct lattice_node *cond;
20800         struct flow_edge *left, *right;
20801         int changed;
20802
20803         /* Update the branch value */
20804         changed = compute_lnode_val(state, scc, lnode);
20805         scc_debug_lnode(state, scc, lnode, changed);
20806
20807         /* This only applies to conditional branches */
20808         if (!triple_is_cbranch(state, lnode->def)) {
20809                 internal_error(state, lnode->def, "not a conditional branch");
20810         }
20811
20812         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20813                 struct flow_edge *fedge;
20814                 FILE *fp = state->errout;
20815                 fprintf(fp, "%s: %d (",
20816                         tops(lnode->def->op),
20817                         lnode->def->id);
20818                 
20819                 for(fedge = lnode->fblock->out; fedge; fedge = fedge->out_next) {
20820                         fprintf(fp, " %d", fedge->dst->block->vertex);
20821                 }
20822                 fprintf(fp, " )");
20823                 if (lnode->def->rhs > 0) {
20824                         fprintf(fp, " <- %d",
20825                                 RHS(lnode->def, 0)->id);
20826                 }
20827                 fprintf(fp, "\n");
20828         }
20829         cond = triple_to_lattice(state, scc, RHS(lnode->def,0));
20830         for(left = cond->fblock->out; left; left = left->out_next) {
20831                 if (left->dst->block->first == lnode->def->next) {
20832                         break;
20833                 }
20834         }
20835         if (!left) {
20836                 internal_error(state, lnode->def, "Cannot find left branch edge");
20837         }
20838         for(right = cond->fblock->out; right; right = right->out_next) {
20839                 if (right->dst->block->first == TARG(lnode->def, 0)) {
20840                         break;
20841                 }
20842         }
20843         if (!right) {
20844                 internal_error(state, lnode->def, "Cannot find right branch edge");
20845         }
20846         /* I should only come here if the controlling expressions value
20847          * has changed, which means it must be either a constant or lo.
20848          */
20849         if (is_lattice_hi(state, cond)) {
20850                 internal_error(state, cond->def, "condition high?");
20851                 return;
20852         }
20853         if (is_lattice_lo(state, cond)) {
20854                 scc_add_fedge(state, scc, left);
20855                 scc_add_fedge(state, scc, right);
20856         }
20857         else if (cond->val->u.cval) {
20858                 scc_add_fedge(state, scc, right);
20859         } else {
20860                 scc_add_fedge(state, scc, left);
20861         }
20862
20863 }
20864
20865
20866 static void scc_add_sedge_dst(struct compile_state *state, 
20867         struct scc_state *scc, struct ssa_edge *sedge)
20868 {
20869         if (triple_is_cbranch(state, sedge->dst->def)) {
20870                 scc_visit_cbranch(state, scc, sedge->dst);
20871         }
20872         else if (triple_is_def(state, sedge->dst->def)) {
20873                 scc_add_sedge(state, scc, sedge);
20874         }
20875 }
20876
20877 static void scc_visit_phi(struct compile_state *state, struct scc_state *scc, 
20878         struct lattice_node *lnode)
20879 {
20880         struct lattice_node *tmp;
20881         struct triple **slot, *old;
20882         struct flow_edge *fedge;
20883         int changed;
20884         int index;
20885         if (lnode->def->op != OP_PHI) {
20886                 internal_error(state, lnode->def, "not phi");
20887         }
20888         /* Store the original value */
20889         old = preserve_lval(state, lnode);
20890
20891         /* default to lattice high */
20892         lnode->val = lnode->def;
20893         slot = &RHS(lnode->def, 0);
20894         index = 0;
20895         for(fedge = lnode->fblock->in; fedge; index++, fedge = fedge->in_next) {
20896                 if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20897                         fprintf(state->errout, "Examining edge: %d vertex: %d executable: %d\n", 
20898                                 index,
20899                                 fedge->dst->block->vertex,
20900                                 fedge->executable
20901                                 );
20902                 }
20903                 if (!fedge->executable) {
20904                         continue;
20905                 }
20906                 if (!slot[index]) {
20907                         internal_error(state, lnode->def, "no phi value");
20908                 }
20909                 tmp = triple_to_lattice(state, scc, slot[index]);
20910                 /* meet(X, lattice low) = lattice low */
20911                 if (is_lattice_lo(state, tmp)) {
20912                         lnode->val = 0;
20913                 }
20914                 /* meet(X, lattice high) = X */
20915                 else if (is_lattice_hi(state, tmp)) {
20916                         lnode->val = lnode->val;
20917                 }
20918                 /* meet(lattice high, X) = X */
20919                 else if (is_lattice_hi(state, lnode)) {
20920                         lnode->val = dup_triple(state, tmp->val);
20921                         /* Only change the type if necessary */
20922                         if (!is_subset_type(lnode->def->type, tmp->val->type)) {
20923                                 lnode->val->type = lnode->def->type;
20924                         }
20925                 }
20926                 /* meet(const, const) = const or lattice low */
20927                 else if (!constants_equal(state, lnode->val, tmp->val)) {
20928                         lnode->val = 0;
20929                 }
20930
20931                 /* meet(lattice low, X) = lattice low */
20932                 if (is_lattice_lo(state, lnode)) {
20933                         lnode->val = 0;
20934                         break;
20935                 }
20936         }
20937         changed = lval_changed(state, old, lnode);
20938         scc_debug_lnode(state, scc, lnode, changed);
20939
20940         /* If the lattice value has changed update the work lists. */
20941         if (changed) {
20942                 struct ssa_edge *sedge;
20943                 for(sedge = lnode->out; sedge; sedge = sedge->out_next) {
20944                         scc_add_sedge_dst(state, scc, sedge);
20945                 }
20946         }
20947 }
20948
20949
20950 static void scc_visit_expr(struct compile_state *state, struct scc_state *scc,
20951         struct lattice_node *lnode)
20952 {
20953         int changed;
20954
20955         if (!triple_is_def(state, lnode->def)) {
20956                 internal_warning(state, lnode->def, "not visiting an expression?");
20957         }
20958         changed = compute_lnode_val(state, scc, lnode);
20959         scc_debug_lnode(state, scc, lnode, changed);
20960
20961         if (changed) {
20962                 struct ssa_edge *sedge;
20963                 for(sedge = lnode->out; sedge; sedge = sedge->out_next) {
20964                         scc_add_sedge_dst(state, scc, sedge);
20965                 }
20966         }
20967 }
20968
20969 static void scc_writeback_values(
20970         struct compile_state *state, struct scc_state *scc)
20971 {
20972         struct triple *first, *ins;
20973         first = state->first;
20974         ins = first;
20975         do {
20976                 struct lattice_node *lnode;
20977                 lnode = triple_to_lattice(state, scc, ins);
20978                 if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20979                         if (is_lattice_hi(state, lnode) &&
20980                                 (lnode->val->op != OP_NOOP))
20981                         {
20982                                 struct flow_edge *fedge;
20983                                 int executable;
20984                                 executable = 0;
20985                                 for(fedge = lnode->fblock->in; 
20986                                     !executable && fedge; fedge = fedge->in_next) {
20987                                         executable |= fedge->executable;
20988                                 }
20989                                 if (executable) {
20990                                         internal_warning(state, lnode->def,
20991                                                 "lattice node %d %s->%s still high?",
20992                                                 ins->id, 
20993                                                 tops(lnode->def->op),
20994                                                 tops(lnode->val->op));
20995                                 }
20996                         }
20997                 }
20998
20999                 /* Restore id */
21000                 ins->id = lnode->old_id;
21001                 if (lnode->val && (lnode->val != ins)) {
21002                         /* See if it something I know how to write back */
21003                         switch(lnode->val->op) {
21004                         case OP_INTCONST:
21005                                 mkconst(state, ins, lnode->val->u.cval);
21006                                 break;
21007                         case OP_ADDRCONST:
21008                                 mkaddr_const(state, ins, 
21009                                         MISC(lnode->val, 0), lnode->val->u.cval);
21010                                 break;
21011                         default:
21012                                 /* By default don't copy the changes,
21013                                  * recompute them in place instead.
21014                                  */
21015                                 simplify(state, ins);
21016                                 break;
21017                         }
21018                         if (is_const(lnode->val) &&
21019                                 !constants_equal(state, lnode->val, ins)) {
21020                                 internal_error(state, 0, "constants not equal");
21021                         }
21022                         /* Free the lattice nodes */
21023                         xfree(lnode->val);
21024                         lnode->val = 0;
21025                 }
21026                 ins = ins->next;
21027         } while(ins != first);
21028 }
21029
21030 static void scc_transform(struct compile_state *state)
21031 {
21032         struct scc_state scc;
21033         if (!(state->compiler->flags & COMPILER_SCC_TRANSFORM)) {
21034                 return;
21035         }
21036
21037         initialize_scc_state(state, &scc);
21038
21039         while(scc.flow_work_list || scc.ssa_work_list) {
21040                 struct flow_edge *fedge;
21041                 struct ssa_edge *sedge;
21042                 struct flow_edge *fptr;
21043                 while((fedge = scc_next_fedge(state, &scc))) {
21044                         struct block *block;
21045                         struct triple *ptr;
21046                         struct flow_block *fblock;
21047                         int reps;
21048                         int done;
21049                         if (fedge->executable) {
21050                                 continue;
21051                         }
21052                         if (!fedge->dst) {
21053                                 internal_error(state, 0, "fedge without dst");
21054                         }
21055                         if (!fedge->src) {
21056                                 internal_error(state, 0, "fedge without src");
21057                         }
21058                         fedge->executable = 1;
21059                         fblock = fedge->dst;
21060                         block = fblock->block;
21061                         reps = 0;
21062                         for(fptr = fblock->in; fptr; fptr = fptr->in_next) {
21063                                 if (fptr->executable) {
21064                                         reps++;
21065                                 }
21066                         }
21067                         
21068                         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
21069                                 fprintf(state->errout, "vertex: %d reps: %d\n", 
21070                                         block->vertex, reps);
21071                         }
21072
21073                         done = 0;
21074                         for(ptr = block->first; !done; ptr = ptr->next) {
21075                                 struct lattice_node *lnode;
21076                                 done = (ptr == block->last);
21077                                 lnode = &scc.lattice[ptr->id];
21078                                 if (ptr->op == OP_PHI) {
21079                                         scc_visit_phi(state, &scc, lnode);
21080                                 }
21081                                 else if ((reps == 1) && triple_is_def(state, ptr))
21082                                 {
21083                                         scc_visit_expr(state, &scc, lnode);
21084                                 }
21085                         }
21086                         /* Add unconditional branch edges */
21087                         if (!triple_is_cbranch(state, fblock->block->last)) {
21088                                 struct flow_edge *out;
21089                                 for(out = fblock->out; out; out = out->out_next) {
21090                                         scc_add_fedge(state, &scc, out);
21091                                 }
21092                         }
21093                 }
21094                 while((sedge = scc_next_sedge(state, &scc))) {
21095                         struct lattice_node *lnode;
21096                         struct flow_block *fblock;
21097                         lnode = sedge->dst;
21098                         fblock = lnode->fblock;
21099
21100                         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
21101                                 fprintf(state->errout, "sedge: %5ld (%5d -> %5d)\n",
21102                                         sedge - scc.ssa_edges,
21103                                         sedge->src->def->id,
21104                                         sedge->dst->def->id);
21105                         }
21106
21107                         if (lnode->def->op == OP_PHI) {
21108                                 scc_visit_phi(state, &scc, lnode);
21109                         }
21110                         else {
21111                                 for(fptr = fblock->in; fptr; fptr = fptr->in_next) {
21112                                         if (fptr->executable) {
21113                                                 break;
21114                                         }
21115                                 }
21116                                 if (fptr) {
21117                                         scc_visit_expr(state, &scc, lnode);
21118                                 }
21119                         }
21120                 }
21121         }
21122         
21123         scc_writeback_values(state, &scc);
21124         free_scc_state(state, &scc);
21125         rebuild_ssa_form(state);
21126         
21127         print_blocks(state, __func__, state->dbgout);
21128 }
21129
21130
21131 static void transform_to_arch_instructions(struct compile_state *state)
21132 {
21133         struct triple *ins, *first;
21134         first = state->first;
21135         ins = first;
21136         do {
21137                 ins = transform_to_arch_instruction(state, ins);
21138         } while(ins != first);
21139         
21140         print_blocks(state, __func__, state->dbgout);
21141 }
21142
21143 #if DEBUG_CONSISTENCY
21144 static void verify_uses(struct compile_state *state)
21145 {
21146         struct triple *first, *ins;
21147         struct triple_set *set;
21148         first = state->first;
21149         ins = first;
21150         do {
21151                 struct triple **expr;
21152                 expr = triple_rhs(state, ins, 0);
21153                 for(; expr; expr = triple_rhs(state, ins, expr)) {
21154                         struct triple *rhs;
21155                         rhs = *expr;
21156                         for(set = rhs?rhs->use:0; set; set = set->next) {
21157                                 if (set->member == ins) {
21158                                         break;
21159                                 }
21160                         }
21161                         if (!set) {
21162                                 internal_error(state, ins, "rhs not used");
21163                         }
21164                 }
21165                 expr = triple_lhs(state, ins, 0);
21166                 for(; expr; expr = triple_lhs(state, ins, expr)) {
21167                         struct triple *lhs;
21168                         lhs = *expr;
21169                         for(set =  lhs?lhs->use:0; set; set = set->next) {
21170                                 if (set->member == ins) {
21171                                         break;
21172                                 }
21173                         }
21174                         if (!set) {
21175                                 internal_error(state, ins, "lhs not used");
21176                         }
21177                 }
21178                 expr = triple_misc(state, ins, 0);
21179                 if (ins->op != OP_PHI) {
21180                         for(; expr; expr = triple_targ(state, ins, expr)) {
21181                                 struct triple *misc;
21182                                 misc = *expr;
21183                                 for(set = misc?misc->use:0; set; set = set->next) {
21184                                         if (set->member == ins) {
21185                                                 break;
21186                                         }
21187                                 }
21188                                 if (!set) {
21189                                         internal_error(state, ins, "misc not used");
21190                                 }
21191                         }
21192                 }
21193                 if (!triple_is_ret(state, ins)) {
21194                         expr = triple_targ(state, ins, 0);
21195                         for(; expr; expr = triple_targ(state, ins, expr)) {
21196                                 struct triple *targ;
21197                                 targ = *expr;
21198                                 for(set = targ?targ->use:0; set; set = set->next) {
21199                                         if (set->member == ins) {
21200                                                 break;
21201                                         }
21202                                 }
21203                                 if (!set) {
21204                                         internal_error(state, ins, "targ not used");
21205                                 }
21206                         }
21207                 }
21208                 ins = ins->next;
21209         } while(ins != first);
21210         
21211 }
21212 static void verify_blocks_present(struct compile_state *state)
21213 {
21214         struct triple *first, *ins;
21215         if (!state->bb.first_block) {
21216                 return;
21217         }
21218         first = state->first;
21219         ins = first;
21220         do {
21221                 valid_ins(state, ins);
21222                 if (triple_stores_block(state, ins)) {
21223                         if (!ins->u.block) {
21224                                 internal_error(state, ins, 
21225                                         "%p not in a block?", ins);
21226                         }
21227                 }
21228                 ins = ins->next;
21229         } while(ins != first);
21230         
21231         
21232 }
21233
21234 static int edge_present(struct compile_state *state, struct block *block, struct triple *edge)
21235 {
21236         struct block_set *bedge;
21237         struct block *targ;
21238         targ = block_of_triple(state, edge);
21239         for(bedge = block->edges; bedge; bedge = bedge->next) {
21240                 if (bedge->member == targ) {
21241                         return 1;
21242                 }
21243         }
21244         return 0;
21245 }
21246
21247 static void verify_blocks(struct compile_state *state)
21248 {
21249         struct triple *ins;
21250         struct block *block;
21251         int blocks;
21252         block = state->bb.first_block;
21253         if (!block) {
21254                 return;
21255         }
21256         blocks = 0;
21257         do {
21258                 int users;
21259                 struct block_set *user, *edge;
21260                 blocks++;
21261                 for(ins = block->first; ins != block->last->next; ins = ins->next) {
21262                         if (triple_stores_block(state, ins) && (ins->u.block != block)) {
21263                                 internal_error(state, ins, "inconsitent block specified");
21264                         }
21265                         valid_ins(state, ins);
21266                 }
21267                 users = 0;
21268                 for(user = block->use; user; user = user->next) {
21269                         users++;
21270                         if (!user->member->first) {
21271                                 internal_error(state, block->first, "user is empty");
21272                         }
21273                         if ((block == state->bb.last_block) &&
21274                                 (user->member == state->bb.first_block)) {
21275                                 continue;
21276                         }
21277                         for(edge = user->member->edges; edge; edge = edge->next) {
21278                                 if (edge->member == block) {
21279                                         break;
21280                                 }
21281                         }
21282                         if (!edge) {
21283                                 internal_error(state, user->member->first,
21284                                         "user does not use block");
21285                         }
21286                 }
21287                 if (triple_is_branch(state, block->last)) {
21288                         struct triple **expr;
21289                         expr = triple_edge_targ(state, block->last, 0);
21290                         for(;expr; expr = triple_edge_targ(state, block->last, expr)) {
21291                                 if (*expr && !edge_present(state, block, *expr)) {
21292                                         internal_error(state, block->last, "no edge to targ");
21293                                 }
21294                         }
21295                 }
21296                 if (!triple_is_ubranch(state, block->last) &&
21297                         (block != state->bb.last_block) &&
21298                         !edge_present(state, block, block->last->next)) {
21299                         internal_error(state, block->last, "no edge to block->last->next");
21300                 }
21301                 for(edge = block->edges; edge; edge = edge->next) {
21302                         for(user = edge->member->use; user; user = user->next) {
21303                                 if (user->member == block) {
21304                                         break;
21305                                 }
21306                         }
21307                         if (!user || user->member != block) {
21308                                 internal_error(state, block->first,
21309                                         "block does not use edge");
21310                         }
21311                         if (!edge->member->first) {
21312                                 internal_error(state, block->first, "edge block is empty");
21313                         }
21314                 }
21315                 if (block->users != users) {
21316                         internal_error(state, block->first, 
21317                                 "computed users %d != stored users %d",
21318                                 users, block->users);
21319                 }
21320                 if (!triple_stores_block(state, block->last->next)) {
21321                         internal_error(state, block->last->next, 
21322                                 "cannot find next block");
21323                 }
21324                 block = block->last->next->u.block;
21325                 if (!block) {
21326                         internal_error(state, block->last->next,
21327                                 "bad next block");
21328                 }
21329         } while(block != state->bb.first_block);
21330         if (blocks != state->bb.last_vertex) {
21331                 internal_error(state, 0, "computed blocks: %d != stored blocks %d",
21332                         blocks, state->bb.last_vertex);
21333         }
21334 }
21335
21336 static void verify_domination(struct compile_state *state)
21337 {
21338         struct triple *first, *ins;
21339         struct triple_set *set;
21340         if (!state->bb.first_block) {
21341                 return;
21342         }
21343         
21344         first = state->first;
21345         ins = first;
21346         do {
21347                 for(set = ins->use; set; set = set->next) {
21348                         struct triple **slot;
21349                         struct triple *use_point;
21350                         int i, zrhs;
21351                         use_point = 0;
21352                         zrhs = set->member->rhs;
21353                         slot = &RHS(set->member, 0);
21354                         /* See if the use is on the right hand side */
21355                         for(i = 0; i < zrhs; i++) {
21356                                 if (slot[i] == ins) {
21357                                         break;
21358                                 }
21359                         }
21360                         if (i < zrhs) {
21361                                 use_point = set->member;
21362                                 if (set->member->op == OP_PHI) {
21363                                         struct block_set *bset;
21364                                         int edge;
21365                                         bset = set->member->u.block->use;
21366                                         for(edge = 0; bset && (edge < i); edge++) {
21367                                                 bset = bset->next;
21368                                         }
21369                                         if (!bset) {
21370                                                 internal_error(state, set->member, 
21371                                                         "no edge for phi rhs %d", i);
21372                                         }
21373                                         use_point = bset->member->last;
21374                                 }
21375                         }
21376                         if (use_point &&
21377                                 !tdominates(state, ins, use_point)) {
21378                                 if (is_const(ins)) {
21379                                         internal_warning(state, ins, 
21380                                         "non dominated rhs use point %p?", use_point);
21381                                 }
21382                                 else {
21383                                         internal_error(state, ins, 
21384                                                 "non dominated rhs use point %p?", use_point);
21385                                 }
21386                         }
21387                 }
21388                 ins = ins->next;
21389         } while(ins != first);
21390 }
21391
21392 static void verify_rhs(struct compile_state *state)
21393 {
21394         struct triple *first, *ins;
21395         first = state->first;
21396         ins = first;
21397         do {
21398                 struct triple **slot;
21399                 int zrhs, i;
21400                 zrhs = ins->rhs;
21401                 slot = &RHS(ins, 0);
21402                 for(i = 0; i < zrhs; i++) {
21403                         if (slot[i] == 0) {
21404                                 internal_error(state, ins,
21405                                         "missing rhs %d on %s",
21406                                         i, tops(ins->op));
21407                         }
21408                         if ((ins->op != OP_PHI) && (slot[i] == ins)) {
21409                                 internal_error(state, ins,
21410                                         "ins == rhs[%d] on %s",
21411                                         i, tops(ins->op));
21412                         }
21413                 }
21414                 ins = ins->next;
21415         } while(ins != first);
21416 }
21417
21418 static void verify_piece(struct compile_state *state)
21419 {
21420         struct triple *first, *ins;
21421         first = state->first;
21422         ins = first;
21423         do {
21424                 struct triple *ptr;
21425                 int lhs, i;
21426                 lhs = ins->lhs;
21427                 for(ptr = ins->next, i = 0; i < lhs; i++, ptr = ptr->next) {
21428                         if (ptr != LHS(ins, i)) {
21429                                 internal_error(state, ins, "malformed lhs on %s",
21430                                         tops(ins->op));
21431                         }
21432                         if (ptr->op != OP_PIECE) {
21433                                 internal_error(state, ins, "bad lhs op %s at %d on %s",
21434                                         tops(ptr->op), i, tops(ins->op));
21435                         }
21436                         if (ptr->u.cval != i) {
21437                                 internal_error(state, ins, "bad u.cval of %d %d expected",
21438                                         ptr->u.cval, i);
21439                         }
21440                 }
21441                 ins = ins->next;
21442         } while(ins != first);
21443 }
21444
21445 static void verify_ins_colors(struct compile_state *state)
21446 {
21447         struct triple *first, *ins;
21448         
21449         first = state->first;
21450         ins = first;
21451         do {
21452                 ins = ins->next;
21453         } while(ins != first);
21454 }
21455
21456 static void verify_unknown(struct compile_state *state)
21457 {
21458         struct triple *first, *ins;
21459         if (    (unknown_triple.next != &unknown_triple) ||
21460                 (unknown_triple.prev != &unknown_triple) ||
21461 #if 0
21462                 (unknown_triple.use != 0) ||
21463 #endif
21464                 (unknown_triple.op != OP_UNKNOWNVAL) ||
21465                 (unknown_triple.lhs != 0) ||
21466                 (unknown_triple.rhs != 0) ||
21467                 (unknown_triple.misc != 0) ||
21468                 (unknown_triple.targ != 0) ||
21469                 (unknown_triple.template_id != 0) ||
21470                 (unknown_triple.id != -1) ||
21471                 (unknown_triple.type != &unknown_type) ||
21472                 (unknown_triple.occurance != &dummy_occurance) ||
21473                 (unknown_triple.param[0] != 0) ||
21474                 (unknown_triple.param[1] != 0)) {
21475                 internal_error(state, &unknown_triple, "unknown_triple corrupted!");
21476         }
21477         if (    (dummy_occurance.count != 2) ||
21478                 (strcmp(dummy_occurance.filename, __FILE__) != 0) ||
21479                 (strcmp(dummy_occurance.function, "") != 0) ||
21480                 (dummy_occurance.col != 0) ||
21481                 (dummy_occurance.parent != 0)) {
21482                 internal_error(state, &unknown_triple, "dummy_occurance corrupted!");
21483         }
21484         if (    (unknown_type.type != TYPE_UNKNOWN)) {
21485                 internal_error(state, &unknown_triple, "unknown_type corrupted!");
21486         }
21487         first = state->first;
21488         ins = first;
21489         do {
21490                 int params, i;
21491                 if (ins == &unknown_triple) {
21492                         internal_error(state, ins, "unknown triple in list");
21493                 }
21494                 params = TRIPLE_SIZE(ins);
21495                 for(i = 0; i < params; i++) {
21496                         if (ins->param[i] == &unknown_triple) {
21497                                 internal_error(state, ins, "unknown triple used!");
21498                         }
21499                 }
21500                 ins = ins->next;
21501         } while(ins != first);
21502 }
21503
21504 static void verify_types(struct compile_state *state)
21505 {
21506         struct triple *first, *ins;
21507         first = state->first;
21508         ins = first;
21509         do {
21510                 struct type *invalid;
21511                 invalid = invalid_type(state, ins->type);
21512                 if (invalid) {
21513                         FILE *fp = state->errout;
21514                         fprintf(fp, "type: ");
21515                         name_of(fp, ins->type);
21516                         fprintf(fp, "\n");
21517                         fprintf(fp, "invalid type: ");
21518                         name_of(fp, invalid);
21519                         fprintf(fp, "\n");
21520                         internal_error(state, ins, "invalid ins type");
21521                 }
21522         } while(ins != first);
21523 }
21524
21525 static void verify_copy(struct compile_state *state)
21526 {
21527         struct triple *first, *ins, *next;
21528         first = state->first;
21529         next = ins = first;
21530         do {
21531                 ins = next;
21532                 next = ins->next;
21533                 if (ins->op != OP_COPY) {
21534                         continue;
21535                 }
21536                 if (!equiv_types(ins->type, RHS(ins, 0)->type)) {
21537                         FILE *fp = state->errout;
21538                         fprintf(fp, "src type: ");
21539                         name_of(fp, RHS(ins, 0)->type);
21540                         fprintf(fp, "\n");
21541                         fprintf(fp, "dst type: ");
21542                         name_of(fp, ins->type);
21543                         fprintf(fp, "\n");
21544                         internal_error(state, ins, "type mismatch in copy");
21545                 }
21546         } while(next != first);
21547 }
21548
21549 static void verify_consistency(struct compile_state *state)
21550 {
21551         verify_unknown(state);
21552         verify_uses(state);
21553         verify_blocks_present(state);
21554         verify_blocks(state);
21555         verify_domination(state);
21556         verify_rhs(state);
21557         verify_piece(state);
21558         verify_ins_colors(state);
21559         verify_types(state);
21560         verify_copy(state);
21561         if (state->compiler->debug & DEBUG_VERIFICATION) {
21562                 fprintf(state->dbgout, "consistency verified\n");
21563         }
21564 }
21565 #else 
21566 static void verify_consistency(struct compile_state *state) {}
21567 #endif /* DEBUG_CONSISTENCY */
21568
21569 static void optimize(struct compile_state *state)
21570 {
21571         /* Join all of the functions into one giant function */
21572         join_functions(state);
21573
21574         /* Dump what the instruction graph intially looks like */
21575         print_triples(state);
21576
21577         /* Replace structures with simpler data types */
21578         decompose_compound_types(state);
21579         print_triples(state);
21580
21581         verify_consistency(state);
21582         /* Analyze the intermediate code */
21583         state->bb.first = state->first;
21584         analyze_basic_blocks(state, &state->bb);
21585
21586         /* Transform the code to ssa form. */
21587         /*
21588          * The transformation to ssa form puts a phi function
21589          * on each of edge of a dominance frontier where that
21590          * phi function might be needed.  At -O2 if we don't
21591          * eleminate the excess phi functions we can get an
21592          * exponential code size growth.  So I kill the extra
21593          * phi functions early and I kill them often.
21594          */
21595         transform_to_ssa_form(state);
21596         verify_consistency(state);
21597
21598         /* Remove dead code */
21599         eliminate_inefectual_code(state);
21600         verify_consistency(state);
21601
21602         /* Do strength reduction and simple constant optimizations */
21603         simplify_all(state);
21604         verify_consistency(state);
21605         /* Propogate constants throughout the code */
21606         scc_transform(state);
21607         verify_consistency(state);
21608 #if DEBUG_ROMCC_WARNINGS
21609 #warning "WISHLIST implement single use constants (least possible register pressure)"
21610 #warning "WISHLIST implement induction variable elimination"
21611 #endif
21612         /* Select architecture instructions and an initial partial
21613          * coloring based on architecture constraints.
21614          */
21615         transform_to_arch_instructions(state);
21616         verify_consistency(state);
21617
21618         /* Remove dead code */
21619         eliminate_inefectual_code(state);
21620         verify_consistency(state);
21621
21622         /* Color all of the variables to see if they will fit in registers */
21623         insert_copies_to_phi(state);
21624         verify_consistency(state);
21625
21626         insert_mandatory_copies(state);
21627         verify_consistency(state);
21628
21629         allocate_registers(state);
21630         verify_consistency(state);
21631
21632         /* Remove the optimization information.
21633          * This is more to check for memory consistency than to free memory.
21634          */
21635         free_basic_blocks(state, &state->bb);
21636 }
21637
21638 static void print_op_asm(struct compile_state *state,
21639         struct triple *ins, FILE *fp)
21640 {
21641         struct asm_info *info;
21642         const char *ptr;
21643         unsigned lhs, rhs, i;
21644         info = ins->u.ainfo;
21645         lhs = ins->lhs;
21646         rhs = ins->rhs;
21647         /* Don't count the clobbers in lhs */
21648         for(i = 0; i < lhs; i++) {
21649                 if (LHS(ins, i)->type == &void_type) {
21650                         break;
21651                 }
21652         }
21653         lhs = i;
21654         fprintf(fp, "#ASM\n");
21655         fputc('\t', fp);
21656         for(ptr = info->str; *ptr; ptr++) {
21657                 char *next;
21658                 unsigned long param;
21659                 struct triple *piece;
21660                 if (*ptr != '%') {
21661                         fputc(*ptr, fp);
21662                         continue;
21663                 }
21664                 ptr++;
21665                 if (*ptr == '%') {
21666                         fputc('%', fp);
21667                         continue;
21668                 }
21669                 param = strtoul(ptr, &next, 10);
21670                 if (ptr == next) {
21671                         error(state, ins, "Invalid asm template");
21672                 }
21673                 if (param >= (lhs + rhs)) {
21674                         error(state, ins, "Invalid param %%%u in asm template",
21675                                 param);
21676                 }
21677                 piece = (param < lhs)? LHS(ins, param) : RHS(ins, param - lhs);
21678                 fprintf(fp, "%s", 
21679                         arch_reg_str(ID_REG(piece->id)));
21680                 ptr = next -1;
21681         }
21682         fprintf(fp, "\n#NOT ASM\n");
21683 }
21684
21685
21686 /* Only use the low x86 byte registers.  This allows me
21687  * allocate the entire register when a byte register is used.
21688  */
21689 #define X86_4_8BIT_GPRS 1
21690
21691 /* x86 featrues */
21692 #define X86_MMX_REGS  (1<<0)
21693 #define X86_XMM_REGS  (1<<1)
21694 #define X86_NOOP_COPY (1<<2)
21695
21696 /* The x86 register classes */
21697 #define REGC_FLAGS       0
21698 #define REGC_GPR8        1
21699 #define REGC_GPR16       2
21700 #define REGC_GPR32       3
21701 #define REGC_DIVIDEND64  4
21702 #define REGC_DIVIDEND32  5
21703 #define REGC_MMX         6
21704 #define REGC_XMM         7
21705 #define REGC_GPR32_8     8
21706 #define REGC_GPR16_8     9
21707 #define REGC_GPR8_LO    10
21708 #define REGC_IMM32      11
21709 #define REGC_IMM16      12
21710 #define REGC_IMM8       13
21711 #define LAST_REGC  REGC_IMM8
21712 #if LAST_REGC >= MAX_REGC
21713 #error "MAX_REGC is to low"
21714 #endif
21715
21716 /* Register class masks */
21717 #define REGCM_FLAGS      (1 << REGC_FLAGS)
21718 #define REGCM_GPR8       (1 << REGC_GPR8)
21719 #define REGCM_GPR16      (1 << REGC_GPR16)
21720 #define REGCM_GPR32      (1 << REGC_GPR32)
21721 #define REGCM_DIVIDEND64 (1 << REGC_DIVIDEND64)
21722 #define REGCM_DIVIDEND32 (1 << REGC_DIVIDEND32)
21723 #define REGCM_MMX        (1 << REGC_MMX)
21724 #define REGCM_XMM        (1 << REGC_XMM)
21725 #define REGCM_GPR32_8    (1 << REGC_GPR32_8)
21726 #define REGCM_GPR16_8    (1 << REGC_GPR16_8)
21727 #define REGCM_GPR8_LO    (1 << REGC_GPR8_LO)
21728 #define REGCM_IMM32      (1 << REGC_IMM32)
21729 #define REGCM_IMM16      (1 << REGC_IMM16)
21730 #define REGCM_IMM8       (1 << REGC_IMM8)
21731 #define REGCM_ALL        ((1 << (LAST_REGC + 1)) - 1)
21732 #define REGCM_IMMALL    (REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)
21733
21734 /* The x86 registers */
21735 #define REG_EFLAGS  2
21736 #define REGC_FLAGS_FIRST REG_EFLAGS
21737 #define REGC_FLAGS_LAST  REG_EFLAGS
21738 #define REG_AL      3
21739 #define REG_BL      4
21740 #define REG_CL      5
21741 #define REG_DL      6
21742 #define REG_AH      7
21743 #define REG_BH      8
21744 #define REG_CH      9
21745 #define REG_DH      10
21746 #define REGC_GPR8_LO_FIRST REG_AL
21747 #define REGC_GPR8_LO_LAST  REG_DL
21748 #define REGC_GPR8_FIRST  REG_AL
21749 #define REGC_GPR8_LAST   REG_DH
21750 #define REG_AX     11
21751 #define REG_BX     12
21752 #define REG_CX     13
21753 #define REG_DX     14
21754 #define REG_SI     15
21755 #define REG_DI     16
21756 #define REG_BP     17
21757 #define REG_SP     18
21758 #define REGC_GPR16_FIRST REG_AX
21759 #define REGC_GPR16_LAST  REG_SP
21760 #define REG_EAX    19
21761 #define REG_EBX    20
21762 #define REG_ECX    21
21763 #define REG_EDX    22
21764 #define REG_ESI    23
21765 #define REG_EDI    24
21766 #define REG_EBP    25
21767 #define REG_ESP    26
21768 #define REGC_GPR32_FIRST REG_EAX
21769 #define REGC_GPR32_LAST  REG_ESP
21770 #define REG_EDXEAX 27
21771 #define REGC_DIVIDEND64_FIRST REG_EDXEAX
21772 #define REGC_DIVIDEND64_LAST  REG_EDXEAX
21773 #define REG_DXAX   28
21774 #define REGC_DIVIDEND32_FIRST REG_DXAX
21775 #define REGC_DIVIDEND32_LAST  REG_DXAX
21776 #define REG_MMX0   29
21777 #define REG_MMX1   30
21778 #define REG_MMX2   31
21779 #define REG_MMX3   32
21780 #define REG_MMX4   33
21781 #define REG_MMX5   34
21782 #define REG_MMX6   35
21783 #define REG_MMX7   36
21784 #define REGC_MMX_FIRST REG_MMX0
21785 #define REGC_MMX_LAST  REG_MMX7
21786 #define REG_XMM0   37
21787 #define REG_XMM1   38
21788 #define REG_XMM2   39
21789 #define REG_XMM3   40
21790 #define REG_XMM4   41
21791 #define REG_XMM5   42
21792 #define REG_XMM6   43
21793 #define REG_XMM7   44
21794 #define REGC_XMM_FIRST REG_XMM0
21795 #define REGC_XMM_LAST  REG_XMM7
21796
21797 #if DEBUG_ROMCC_WARNINGS
21798 #warning "WISHLIST figure out how to use pinsrw and pextrw to better use extended regs"
21799 #endif
21800
21801 #define LAST_REG   REG_XMM7
21802
21803 #define REGC_GPR32_8_FIRST REG_EAX
21804 #define REGC_GPR32_8_LAST  REG_EDX
21805 #define REGC_GPR16_8_FIRST REG_AX
21806 #define REGC_GPR16_8_LAST  REG_DX
21807
21808 #define REGC_IMM8_FIRST    -1
21809 #define REGC_IMM8_LAST     -1
21810 #define REGC_IMM16_FIRST   -2
21811 #define REGC_IMM16_LAST    -1
21812 #define REGC_IMM32_FIRST   -4
21813 #define REGC_IMM32_LAST    -1
21814
21815 #if LAST_REG >= MAX_REGISTERS
21816 #error "MAX_REGISTERS to low"
21817 #endif
21818
21819
21820 static unsigned regc_size[LAST_REGC +1] = {
21821         [REGC_FLAGS]      = REGC_FLAGS_LAST      - REGC_FLAGS_FIRST + 1,
21822         [REGC_GPR8]       = REGC_GPR8_LAST       - REGC_GPR8_FIRST + 1,
21823         [REGC_GPR16]      = REGC_GPR16_LAST      - REGC_GPR16_FIRST + 1,
21824         [REGC_GPR32]      = REGC_GPR32_LAST      - REGC_GPR32_FIRST + 1,
21825         [REGC_DIVIDEND64] = REGC_DIVIDEND64_LAST - REGC_DIVIDEND64_FIRST + 1,
21826         [REGC_DIVIDEND32] = REGC_DIVIDEND32_LAST - REGC_DIVIDEND32_FIRST + 1,
21827         [REGC_MMX]        = REGC_MMX_LAST        - REGC_MMX_FIRST + 1,
21828         [REGC_XMM]        = REGC_XMM_LAST        - REGC_XMM_FIRST + 1,
21829         [REGC_GPR32_8]    = REGC_GPR32_8_LAST    - REGC_GPR32_8_FIRST + 1,
21830         [REGC_GPR16_8]    = REGC_GPR16_8_LAST    - REGC_GPR16_8_FIRST + 1,
21831         [REGC_GPR8_LO]    = REGC_GPR8_LO_LAST    - REGC_GPR8_LO_FIRST + 1,
21832         [REGC_IMM32]      = 0,
21833         [REGC_IMM16]      = 0,
21834         [REGC_IMM8]       = 0,
21835 };
21836
21837 static const struct {
21838         int first, last;
21839 } regcm_bound[LAST_REGC + 1] = {
21840         [REGC_FLAGS]      = { REGC_FLAGS_FIRST,      REGC_FLAGS_LAST },
21841         [REGC_GPR8]       = { REGC_GPR8_FIRST,       REGC_GPR8_LAST },
21842         [REGC_GPR16]      = { REGC_GPR16_FIRST,      REGC_GPR16_LAST },
21843         [REGC_GPR32]      = { REGC_GPR32_FIRST,      REGC_GPR32_LAST },
21844         [REGC_DIVIDEND64] = { REGC_DIVIDEND64_FIRST, REGC_DIVIDEND64_LAST },
21845         [REGC_DIVIDEND32] = { REGC_DIVIDEND32_FIRST, REGC_DIVIDEND32_LAST },
21846         [REGC_MMX]        = { REGC_MMX_FIRST,        REGC_MMX_LAST },
21847         [REGC_XMM]        = { REGC_XMM_FIRST,        REGC_XMM_LAST },
21848         [REGC_GPR32_8]    = { REGC_GPR32_8_FIRST,    REGC_GPR32_8_LAST },
21849         [REGC_GPR16_8]    = { REGC_GPR16_8_FIRST,    REGC_GPR16_8_LAST },
21850         [REGC_GPR8_LO]    = { REGC_GPR8_LO_FIRST,    REGC_GPR8_LO_LAST },
21851         [REGC_IMM32]      = { REGC_IMM32_FIRST,      REGC_IMM32_LAST },
21852         [REGC_IMM16]      = { REGC_IMM16_FIRST,      REGC_IMM16_LAST },
21853         [REGC_IMM8]       = { REGC_IMM8_FIRST,       REGC_IMM8_LAST },
21854 };
21855
21856 #if ARCH_INPUT_REGS != 4
21857 #error ARCH_INPUT_REGS size mismatch
21858 #endif
21859 static const struct reg_info arch_input_regs[ARCH_INPUT_REGS] = {
21860         { .reg = REG_EAX, .regcm = REGCM_GPR32 },
21861         { .reg = REG_EBX, .regcm = REGCM_GPR32 },
21862         { .reg = REG_ECX, .regcm = REGCM_GPR32 },
21863         { .reg = REG_EDX, .regcm = REGCM_GPR32 },
21864 };
21865
21866 #if ARCH_OUTPUT_REGS != 4
21867 #error ARCH_INPUT_REGS size mismatch
21868 #endif
21869 static const struct reg_info arch_output_regs[ARCH_OUTPUT_REGS] = {
21870         { .reg = REG_EAX, .regcm = REGCM_GPR32 },
21871         { .reg = REG_EBX, .regcm = REGCM_GPR32 },
21872         { .reg = REG_ECX, .regcm = REGCM_GPR32 },
21873         { .reg = REG_EDX, .regcm = REGCM_GPR32 },
21874 };
21875
21876 static void init_arch_state(struct arch_state *arch)
21877 {
21878         memset(arch, 0, sizeof(*arch));
21879         arch->features = 0;
21880 }
21881
21882 static const struct compiler_flag arch_flags[] = {
21883         { "mmx",       X86_MMX_REGS },
21884         { "sse",       X86_XMM_REGS },
21885         { "noop-copy", X86_NOOP_COPY },
21886         { 0,     0 },
21887 };
21888 static const struct compiler_flag arch_cpus[] = {
21889         { "i386", 0 },
21890         { "p2",   X86_MMX_REGS },
21891         { "p3",   X86_MMX_REGS | X86_XMM_REGS },
21892         { "p4",   X86_MMX_REGS | X86_XMM_REGS },
21893         { "k7",   X86_MMX_REGS },
21894         { "k8",   X86_MMX_REGS | X86_XMM_REGS },
21895         { "c3",   X86_MMX_REGS },
21896         { "c3-2", X86_MMX_REGS | X86_XMM_REGS }, /* Nehemiah */
21897         {  0,     0 }
21898 };
21899 static int arch_encode_flag(struct arch_state *arch, const char *flag)
21900 {
21901         int result;
21902         int act;
21903
21904         act = 1;
21905         result = -1;
21906         if (strncmp(flag, "no-", 3) == 0) {
21907                 flag += 3;
21908                 act = 0;
21909         }
21910         if (act && strncmp(flag, "cpu=", 4) == 0) {
21911                 flag += 4;
21912                 result = set_flag(arch_cpus, &arch->features, 1, flag);
21913         }
21914         else {
21915                 result = set_flag(arch_flags, &arch->features, act, flag);
21916         }
21917         return result;
21918 }
21919
21920 static void arch_usage(FILE *fp)
21921 {
21922         flag_usage(fp, arch_flags, "-m", "-mno-");
21923         flag_usage(fp, arch_cpus, "-mcpu=", 0);
21924 }
21925
21926 static unsigned arch_regc_size(struct compile_state *state, int class)
21927 {
21928         if ((class < 0) || (class > LAST_REGC)) {
21929                 return 0;
21930         }
21931         return regc_size[class];
21932 }
21933
21934 static int arch_regcm_intersect(unsigned regcm1, unsigned regcm2)
21935 {
21936         /* See if two register classes may have overlapping registers */
21937         unsigned gpr_mask = REGCM_GPR8 | REGCM_GPR8_LO | REGCM_GPR16_8 | REGCM_GPR16 |
21938                 REGCM_GPR32_8 | REGCM_GPR32 | 
21939                 REGCM_DIVIDEND32 | REGCM_DIVIDEND64;
21940
21941         /* Special case for the immediates */
21942         if ((regcm1 & (REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) &&
21943                 ((regcm1 & ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) == 0) &&
21944                 (regcm2 & (REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) &&
21945                 ((regcm2 & ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) == 0)) { 
21946                 return 0;
21947         }
21948         return (regcm1 & regcm2) ||
21949                 ((regcm1 & gpr_mask) && (regcm2 & gpr_mask));
21950 }
21951
21952 static void arch_reg_equivs(
21953         struct compile_state *state, unsigned *equiv, int reg)
21954 {
21955         if ((reg < 0) || (reg > LAST_REG)) {
21956                 internal_error(state, 0, "invalid register");
21957         }
21958         *equiv++ = reg;
21959         switch(reg) {
21960         case REG_AL:
21961 #if X86_4_8BIT_GPRS
21962                 *equiv++ = REG_AH;
21963 #endif
21964                 *equiv++ = REG_AX;
21965                 *equiv++ = REG_EAX;
21966                 *equiv++ = REG_DXAX;
21967                 *equiv++ = REG_EDXEAX;
21968                 break;
21969         case REG_AH:
21970 #if X86_4_8BIT_GPRS
21971                 *equiv++ = REG_AL;
21972 #endif
21973                 *equiv++ = REG_AX;
21974                 *equiv++ = REG_EAX;
21975                 *equiv++ = REG_DXAX;
21976                 *equiv++ = REG_EDXEAX;
21977                 break;
21978         case REG_BL:  
21979 #if X86_4_8BIT_GPRS
21980                 *equiv++ = REG_BH;
21981 #endif
21982                 *equiv++ = REG_BX;
21983                 *equiv++ = REG_EBX;
21984                 break;
21985
21986         case REG_BH:
21987 #if X86_4_8BIT_GPRS
21988                 *equiv++ = REG_BL;
21989 #endif
21990                 *equiv++ = REG_BX;
21991                 *equiv++ = REG_EBX;
21992                 break;
21993         case REG_CL:
21994 #if X86_4_8BIT_GPRS
21995                 *equiv++ = REG_CH;
21996 #endif
21997                 *equiv++ = REG_CX;
21998                 *equiv++ = REG_ECX;
21999                 break;
22000
22001         case REG_CH:
22002 #if X86_4_8BIT_GPRS
22003                 *equiv++ = REG_CL;
22004 #endif
22005                 *equiv++ = REG_CX;
22006                 *equiv++ = REG_ECX;
22007                 break;
22008         case REG_DL:
22009 #if X86_4_8BIT_GPRS
22010                 *equiv++ = REG_DH;
22011 #endif
22012                 *equiv++ = REG_DX;
22013                 *equiv++ = REG_EDX;
22014                 *equiv++ = REG_DXAX;
22015                 *equiv++ = REG_EDXEAX;
22016                 break;
22017         case REG_DH:
22018 #if X86_4_8BIT_GPRS
22019                 *equiv++ = REG_DL;
22020 #endif
22021                 *equiv++ = REG_DX;
22022                 *equiv++ = REG_EDX;
22023                 *equiv++ = REG_DXAX;
22024                 *equiv++ = REG_EDXEAX;
22025                 break;
22026         case REG_AX:
22027                 *equiv++ = REG_AL;
22028                 *equiv++ = REG_AH;
22029                 *equiv++ = REG_EAX;
22030                 *equiv++ = REG_DXAX;
22031                 *equiv++ = REG_EDXEAX;
22032                 break;
22033         case REG_BX:
22034                 *equiv++ = REG_BL;
22035                 *equiv++ = REG_BH;
22036                 *equiv++ = REG_EBX;
22037                 break;
22038         case REG_CX:  
22039                 *equiv++ = REG_CL;
22040                 *equiv++ = REG_CH;
22041                 *equiv++ = REG_ECX;
22042                 break;
22043         case REG_DX:  
22044                 *equiv++ = REG_DL;
22045                 *equiv++ = REG_DH;
22046                 *equiv++ = REG_EDX;
22047                 *equiv++ = REG_DXAX;
22048                 *equiv++ = REG_EDXEAX;
22049                 break;
22050         case REG_SI:  
22051                 *equiv++ = REG_ESI;
22052                 break;
22053         case REG_DI:
22054                 *equiv++ = REG_EDI;
22055                 break;
22056         case REG_BP:
22057                 *equiv++ = REG_EBP;
22058                 break;
22059         case REG_SP:
22060                 *equiv++ = REG_ESP;
22061                 break;
22062         case REG_EAX:
22063                 *equiv++ = REG_AL;
22064                 *equiv++ = REG_AH;
22065                 *equiv++ = REG_AX;
22066                 *equiv++ = REG_DXAX;
22067                 *equiv++ = REG_EDXEAX;
22068                 break;
22069         case REG_EBX:
22070                 *equiv++ = REG_BL;
22071                 *equiv++ = REG_BH;
22072                 *equiv++ = REG_BX;
22073                 break;
22074         case REG_ECX:
22075                 *equiv++ = REG_CL;
22076                 *equiv++ = REG_CH;
22077                 *equiv++ = REG_CX;
22078                 break;
22079         case REG_EDX:
22080                 *equiv++ = REG_DL;
22081                 *equiv++ = REG_DH;
22082                 *equiv++ = REG_DX;
22083                 *equiv++ = REG_DXAX;
22084                 *equiv++ = REG_EDXEAX;
22085                 break;
22086         case REG_ESI: 
22087                 *equiv++ = REG_SI;
22088                 break;
22089         case REG_EDI: 
22090                 *equiv++ = REG_DI;
22091                 break;
22092         case REG_EBP: 
22093                 *equiv++ = REG_BP;
22094                 break;
22095         case REG_ESP: 
22096                 *equiv++ = REG_SP;
22097                 break;
22098         case REG_DXAX: 
22099                 *equiv++ = REG_AL;
22100                 *equiv++ = REG_AH;
22101                 *equiv++ = REG_DL;
22102                 *equiv++ = REG_DH;
22103                 *equiv++ = REG_AX;
22104                 *equiv++ = REG_DX;
22105                 *equiv++ = REG_EAX;
22106                 *equiv++ = REG_EDX;
22107                 *equiv++ = REG_EDXEAX;
22108                 break;
22109         case REG_EDXEAX: 
22110                 *equiv++ = REG_AL;
22111                 *equiv++ = REG_AH;
22112                 *equiv++ = REG_DL;
22113                 *equiv++ = REG_DH;
22114                 *equiv++ = REG_AX;
22115                 *equiv++ = REG_DX;
22116                 *equiv++ = REG_EAX;
22117                 *equiv++ = REG_EDX;
22118                 *equiv++ = REG_DXAX;
22119                 break;
22120         }
22121         *equiv++ = REG_UNSET; 
22122 }
22123
22124 static unsigned arch_avail_mask(struct compile_state *state)
22125 {
22126         unsigned avail_mask;
22127         /* REGCM_GPR8 is not available */
22128         avail_mask = REGCM_GPR8_LO | REGCM_GPR16_8 | REGCM_GPR16 | 
22129                 REGCM_GPR32 | REGCM_GPR32_8 | 
22130                 REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
22131                 REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8 | REGCM_FLAGS;
22132         if (state->arch->features & X86_MMX_REGS) {
22133                 avail_mask |= REGCM_MMX;
22134         }
22135         if (state->arch->features & X86_XMM_REGS) {
22136                 avail_mask |= REGCM_XMM;
22137         }
22138         return avail_mask;
22139 }
22140
22141 static unsigned arch_regcm_normalize(struct compile_state *state, unsigned regcm)
22142 {
22143         unsigned mask, result;
22144         int class, class2;
22145         result = regcm;
22146
22147         for(class = 0, mask = 1; mask; mask <<= 1, class++) {
22148                 if ((result & mask) == 0) {
22149                         continue;
22150                 }
22151                 if (class > LAST_REGC) {
22152                         result &= ~mask;
22153                 }
22154                 for(class2 = 0; class2 <= LAST_REGC; class2++) {
22155                         if ((regcm_bound[class2].first >= regcm_bound[class].first) &&
22156                                 (regcm_bound[class2].last <= regcm_bound[class].last)) {
22157                                 result |= (1 << class2);
22158                         }
22159                 }
22160         }
22161         result &= arch_avail_mask(state);
22162         return result;
22163 }
22164
22165 static unsigned arch_regcm_reg_normalize(struct compile_state *state, unsigned regcm)
22166 {
22167         /* Like arch_regcm_normalize except immediate register classes are excluded */
22168         regcm = arch_regcm_normalize(state, regcm);
22169         /* Remove the immediate register classes */
22170         regcm &= ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8);
22171         return regcm;
22172         
22173 }
22174
22175 static unsigned arch_reg_regcm(struct compile_state *state, int reg)
22176 {
22177         unsigned mask;
22178         int class;
22179         mask = 0;
22180         for(class = 0; class <= LAST_REGC; class++) {
22181                 if ((reg >= regcm_bound[class].first) &&
22182                         (reg <= regcm_bound[class].last)) {
22183                         mask |= (1 << class);
22184                 }
22185         }
22186         if (!mask) {
22187                 internal_error(state, 0, "reg %d not in any class", reg);
22188         }
22189         return mask;
22190 }
22191
22192 static struct reg_info arch_reg_constraint(
22193         struct compile_state *state, struct type *type, const char *constraint)
22194 {
22195         static const struct {
22196                 char class;
22197                 unsigned int mask;
22198                 unsigned int reg;
22199         } constraints[] = {
22200                 { 'r', REGCM_GPR32,   REG_UNSET },
22201                 { 'g', REGCM_GPR32,   REG_UNSET },
22202                 { 'p', REGCM_GPR32,   REG_UNSET },
22203                 { 'q', REGCM_GPR8_LO, REG_UNSET },
22204                 { 'Q', REGCM_GPR32_8, REG_UNSET },
22205                 { 'x', REGCM_XMM,     REG_UNSET },
22206                 { 'y', REGCM_MMX,     REG_UNSET },
22207                 { 'a', REGCM_GPR32,   REG_EAX },
22208                 { 'b', REGCM_GPR32,   REG_EBX },
22209                 { 'c', REGCM_GPR32,   REG_ECX },
22210                 { 'd', REGCM_GPR32,   REG_EDX },
22211                 { 'D', REGCM_GPR32,   REG_EDI },
22212                 { 'S', REGCM_GPR32,   REG_ESI },
22213                 { '\0', 0, REG_UNSET },
22214         };
22215         unsigned int regcm;
22216         unsigned int mask, reg;
22217         struct reg_info result;
22218         const char *ptr;
22219         regcm = arch_type_to_regcm(state, type);
22220         reg = REG_UNSET;
22221         mask = 0;
22222         for(ptr = constraint; *ptr; ptr++) {
22223                 int i;
22224                 if (*ptr ==  ' ') {
22225                         continue;
22226                 }
22227                 for(i = 0; constraints[i].class != '\0'; i++) {
22228                         if (constraints[i].class == *ptr) {
22229                                 break;
22230                         }
22231                 }
22232                 if (constraints[i].class == '\0') {
22233                         error(state, 0, "invalid register constraint ``%c''", *ptr);
22234                         break;
22235                 }
22236                 if ((constraints[i].mask & regcm) == 0) {
22237                         error(state, 0, "invalid register class %c specified",
22238                                 *ptr);
22239                 }
22240                 mask |= constraints[i].mask;
22241                 if (constraints[i].reg != REG_UNSET) {
22242                         if ((reg != REG_UNSET) && (reg != constraints[i].reg)) {
22243                                 error(state, 0, "Only one register may be specified");
22244                         }
22245                         reg = constraints[i].reg;
22246                 }
22247         }
22248         result.reg = reg;
22249         result.regcm = mask;
22250         return result;
22251 }
22252
22253 static struct reg_info arch_reg_clobber(
22254         struct compile_state *state, const char *clobber)
22255 {
22256         struct reg_info result;
22257         if (strcmp(clobber, "memory") == 0) {
22258                 result.reg = REG_UNSET;
22259                 result.regcm = 0;
22260         }
22261         else if (strcmp(clobber, "eax") == 0) {
22262                 result.reg = REG_EAX;
22263                 result.regcm = REGCM_GPR32;
22264         }
22265         else if (strcmp(clobber, "ebx") == 0) {
22266                 result.reg = REG_EBX;
22267                 result.regcm = REGCM_GPR32;
22268         }
22269         else if (strcmp(clobber, "ecx") == 0) {
22270                 result.reg = REG_ECX;
22271                 result.regcm = REGCM_GPR32;
22272         }
22273         else if (strcmp(clobber, "edx") == 0) {
22274                 result.reg = REG_EDX;
22275                 result.regcm = REGCM_GPR32;
22276         }
22277         else if (strcmp(clobber, "esi") == 0) {
22278                 result.reg = REG_ESI;
22279                 result.regcm = REGCM_GPR32;
22280         }
22281         else if (strcmp(clobber, "edi") == 0) {
22282                 result.reg = REG_EDI;
22283                 result.regcm = REGCM_GPR32;
22284         }
22285         else if (strcmp(clobber, "ebp") == 0) {
22286                 result.reg = REG_EBP;
22287                 result.regcm = REGCM_GPR32;
22288         }
22289         else if (strcmp(clobber, "esp") == 0) {
22290                 result.reg = REG_ESP;
22291                 result.regcm = REGCM_GPR32;
22292         }
22293         else if (strcmp(clobber, "cc") == 0) {
22294                 result.reg = REG_EFLAGS;
22295                 result.regcm = REGCM_FLAGS;
22296         }
22297         else if ((strncmp(clobber, "xmm", 3) == 0)  &&
22298                 octdigitp(clobber[3]) && (clobber[4] == '\0')) {
22299                 result.reg = REG_XMM0 + octdigval(clobber[3]);
22300                 result.regcm = REGCM_XMM;
22301         }
22302         else if ((strncmp(clobber, "mm", 2) == 0) &&
22303                 octdigitp(clobber[3]) && (clobber[4] == '\0')) {
22304                 result.reg = REG_MMX0 + octdigval(clobber[3]);
22305                 result.regcm = REGCM_MMX;
22306         }
22307         else {
22308                 error(state, 0, "unknown register name `%s' in asm",
22309                         clobber);
22310                 result.reg = REG_UNSET;
22311                 result.regcm = 0;
22312         }
22313         return result;
22314 }
22315
22316 static int do_select_reg(struct compile_state *state, 
22317         char *used, int reg, unsigned classes)
22318 {
22319         unsigned mask;
22320         if (used[reg]) {
22321                 return REG_UNSET;
22322         }
22323         mask = arch_reg_regcm(state, reg);
22324         return (classes & mask) ? reg : REG_UNSET;
22325 }
22326
22327 static int arch_select_free_register(
22328         struct compile_state *state, char *used, int classes)
22329 {
22330         /* Live ranges with the most neighbors are colored first.
22331          *
22332          * Generally it does not matter which colors are given
22333          * as the register allocator attempts to color live ranges
22334          * in an order where you are guaranteed not to run out of colors.
22335          *
22336          * Occasionally the register allocator cannot find an order
22337          * of register selection that will find a free color.  To
22338          * increase the odds the register allocator will work when
22339          * it guesses first give out registers from register classes
22340          * least likely to run out of registers.
22341          * 
22342          */
22343         int i, reg;
22344         reg = REG_UNSET;
22345         for(i = REGC_XMM_FIRST; (reg == REG_UNSET) && (i <= REGC_XMM_LAST); i++) {
22346                 reg = do_select_reg(state, used, i, classes);
22347         }
22348         for(i = REGC_MMX_FIRST; (reg == REG_UNSET) && (i <= REGC_MMX_LAST); i++) {
22349                 reg = do_select_reg(state, used, i, classes);
22350         }
22351         for(i = REGC_GPR32_LAST; (reg == REG_UNSET) && (i >= REGC_GPR32_FIRST); i--) {
22352                 reg = do_select_reg(state, used, i, classes);
22353         }
22354         for(i = REGC_GPR16_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR16_LAST); i++) {
22355                 reg = do_select_reg(state, used, i, classes);
22356         }
22357         for(i = REGC_GPR8_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR8_LAST); i++) {
22358                 reg = do_select_reg(state, used, i, classes);
22359         }
22360         for(i = REGC_GPR8_LO_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR8_LO_LAST); i++) {
22361                 reg = do_select_reg(state, used, i, classes);
22362         }
22363         for(i = REGC_DIVIDEND32_FIRST; (reg == REG_UNSET) && (i <= REGC_DIVIDEND32_LAST); i++) {
22364                 reg = do_select_reg(state, used, i, classes);
22365         }
22366         for(i = REGC_DIVIDEND64_FIRST; (reg == REG_UNSET) && (i <= REGC_DIVIDEND64_LAST); i++) {
22367                 reg = do_select_reg(state, used, i, classes);
22368         }
22369         for(i = REGC_FLAGS_FIRST; (reg == REG_UNSET) && (i <= REGC_FLAGS_LAST); i++) {
22370                 reg = do_select_reg(state, used, i, classes);
22371         }
22372         return reg;
22373 }
22374
22375
22376 static unsigned arch_type_to_regcm(struct compile_state *state, struct type *type) 
22377 {
22378
22379 #if DEBUG_ROMCC_WARNINGS
22380 #warning "FIXME force types smaller (if legal) before I get here"
22381 #endif
22382         unsigned mask;
22383         mask = 0;
22384         switch(type->type & TYPE_MASK) {
22385         case TYPE_ARRAY:
22386         case TYPE_VOID: 
22387                 mask = 0; 
22388                 break;
22389         case TYPE_CHAR:
22390         case TYPE_UCHAR:
22391                 mask = REGCM_GPR8 | REGCM_GPR8_LO |
22392                         REGCM_GPR16 | REGCM_GPR16_8 | 
22393                         REGCM_GPR32 | REGCM_GPR32_8 |
22394                         REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
22395                         REGCM_MMX | REGCM_XMM |
22396                         REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8;
22397                 break;
22398         case TYPE_SHORT:
22399         case TYPE_USHORT:
22400                 mask =  REGCM_GPR16 | REGCM_GPR16_8 |
22401                         REGCM_GPR32 | REGCM_GPR32_8 |
22402                         REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
22403                         REGCM_MMX | REGCM_XMM |
22404                         REGCM_IMM32 | REGCM_IMM16;
22405                 break;
22406         case TYPE_ENUM:
22407         case TYPE_INT:
22408         case TYPE_UINT:
22409         case TYPE_LONG:
22410         case TYPE_ULONG:
22411         case TYPE_POINTER:
22412                 mask =  REGCM_GPR32 | REGCM_GPR32_8 |
22413                         REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
22414                         REGCM_MMX | REGCM_XMM |
22415                         REGCM_IMM32;
22416                 break;
22417         case TYPE_JOIN:
22418         case TYPE_UNION:
22419                 mask = arch_type_to_regcm(state, type->left);
22420                 break;
22421         case TYPE_OVERLAP:
22422                 mask = arch_type_to_regcm(state, type->left) &
22423                         arch_type_to_regcm(state, type->right);
22424                 break;
22425         case TYPE_BITFIELD:
22426                 mask = arch_type_to_regcm(state, type->left);
22427                 break;
22428         default:
22429                 fprintf(state->errout, "type: ");
22430                 name_of(state->errout, type);
22431                 fprintf(state->errout, "\n");
22432                 internal_error(state, 0, "no register class for type");
22433                 break;
22434         }
22435         mask = arch_regcm_normalize(state, mask);
22436         return mask;
22437 }
22438
22439 static int is_imm32(struct triple *imm)
22440 {
22441         return ((imm->op == OP_INTCONST) && (imm->u.cval <= 0xffffffffUL)) ||
22442                 (imm->op == OP_ADDRCONST);
22443         
22444 }
22445 static int is_imm16(struct triple *imm)
22446 {
22447         return ((imm->op == OP_INTCONST) && (imm->u.cval <= 0xffff));
22448 }
22449 static int is_imm8(struct triple *imm)
22450 {
22451         return ((imm->op == OP_INTCONST) && (imm->u.cval <= 0xff));
22452 }
22453
22454 static int get_imm32(struct triple *ins, struct triple **expr)
22455 {
22456         struct triple *imm;
22457         imm = *expr;
22458         while(imm->op == OP_COPY) {
22459                 imm = RHS(imm, 0);
22460         }
22461         if (!is_imm32(imm)) {
22462                 return 0;
22463         }
22464         unuse_triple(*expr, ins);
22465         use_triple(imm, ins);
22466         *expr = imm;
22467         return 1;
22468 }
22469
22470 static int get_imm8(struct triple *ins, struct triple **expr)
22471 {
22472         struct triple *imm;
22473         imm = *expr;
22474         while(imm->op == OP_COPY) {
22475                 imm = RHS(imm, 0);
22476         }
22477         if (!is_imm8(imm)) {
22478                 return 0;
22479         }
22480         unuse_triple(*expr, ins);
22481         use_triple(imm, ins);
22482         *expr = imm;
22483         return 1;
22484 }
22485
22486 #define TEMPLATE_NOP           0
22487 #define TEMPLATE_INTCONST8     1
22488 #define TEMPLATE_INTCONST32    2
22489 #define TEMPLATE_UNKNOWNVAL    3
22490 #define TEMPLATE_COPY8_REG     5
22491 #define TEMPLATE_COPY16_REG    6
22492 #define TEMPLATE_COPY32_REG    7
22493 #define TEMPLATE_COPY_IMM8     8
22494 #define TEMPLATE_COPY_IMM16    9
22495 #define TEMPLATE_COPY_IMM32   10
22496 #define TEMPLATE_PHI8         11
22497 #define TEMPLATE_PHI16        12
22498 #define TEMPLATE_PHI32        13
22499 #define TEMPLATE_STORE8       14
22500 #define TEMPLATE_STORE16      15
22501 #define TEMPLATE_STORE32      16
22502 #define TEMPLATE_LOAD8        17
22503 #define TEMPLATE_LOAD16       18
22504 #define TEMPLATE_LOAD32       19
22505 #define TEMPLATE_BINARY8_REG  20
22506 #define TEMPLATE_BINARY16_REG 21
22507 #define TEMPLATE_BINARY32_REG 22
22508 #define TEMPLATE_BINARY8_IMM  23
22509 #define TEMPLATE_BINARY16_IMM 24
22510 #define TEMPLATE_BINARY32_IMM 25
22511 #define TEMPLATE_SL8_CL       26
22512 #define TEMPLATE_SL16_CL      27
22513 #define TEMPLATE_SL32_CL      28
22514 #define TEMPLATE_SL8_IMM      29
22515 #define TEMPLATE_SL16_IMM     30
22516 #define TEMPLATE_SL32_IMM     31
22517 #define TEMPLATE_UNARY8       32
22518 #define TEMPLATE_UNARY16      33
22519 #define TEMPLATE_UNARY32      34
22520 #define TEMPLATE_CMP8_REG     35
22521 #define TEMPLATE_CMP16_REG    36
22522 #define TEMPLATE_CMP32_REG    37
22523 #define TEMPLATE_CMP8_IMM     38
22524 #define TEMPLATE_CMP16_IMM    39
22525 #define TEMPLATE_CMP32_IMM    40
22526 #define TEMPLATE_TEST8        41
22527 #define TEMPLATE_TEST16       42
22528 #define TEMPLATE_TEST32       43
22529 #define TEMPLATE_SET          44
22530 #define TEMPLATE_JMP          45
22531 #define TEMPLATE_RET          46
22532 #define TEMPLATE_INB_DX       47
22533 #define TEMPLATE_INB_IMM      48
22534 #define TEMPLATE_INW_DX       49
22535 #define TEMPLATE_INW_IMM      50
22536 #define TEMPLATE_INL_DX       51
22537 #define TEMPLATE_INL_IMM      52
22538 #define TEMPLATE_OUTB_DX      53
22539 #define TEMPLATE_OUTB_IMM     54
22540 #define TEMPLATE_OUTW_DX      55
22541 #define TEMPLATE_OUTW_IMM     56
22542 #define TEMPLATE_OUTL_DX      57
22543 #define TEMPLATE_OUTL_IMM     58
22544 #define TEMPLATE_BSF          59
22545 #define TEMPLATE_RDMSR        60
22546 #define TEMPLATE_WRMSR        61
22547 #define TEMPLATE_UMUL8        62
22548 #define TEMPLATE_UMUL16       63
22549 #define TEMPLATE_UMUL32       64
22550 #define TEMPLATE_DIV8         65
22551 #define TEMPLATE_DIV16        66
22552 #define TEMPLATE_DIV32        67
22553 #define LAST_TEMPLATE       TEMPLATE_DIV32
22554 #if LAST_TEMPLATE >= MAX_TEMPLATES
22555 #error "MAX_TEMPLATES to low"
22556 #endif
22557
22558 #define COPY8_REGCM     (REGCM_DIVIDEND64 | REGCM_DIVIDEND32 | REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO | REGCM_MMX | REGCM_XMM)
22559 #define COPY16_REGCM    (REGCM_DIVIDEND64 | REGCM_DIVIDEND32 | REGCM_GPR32 | REGCM_GPR16 | REGCM_MMX | REGCM_XMM)  
22560 #define COPY32_REGCM    (REGCM_DIVIDEND64 | REGCM_DIVIDEND32 | REGCM_GPR32 | REGCM_MMX | REGCM_XMM)
22561
22562
22563 static struct ins_template templates[] = {
22564         [TEMPLATE_NOP]      = {
22565                 .lhs = { 
22566                         [ 0] = { REG_UNNEEDED, REGCM_IMMALL },
22567                         [ 1] = { REG_UNNEEDED, REGCM_IMMALL },
22568                         [ 2] = { REG_UNNEEDED, REGCM_IMMALL },
22569                         [ 3] = { REG_UNNEEDED, REGCM_IMMALL },
22570                         [ 4] = { REG_UNNEEDED, REGCM_IMMALL },
22571                         [ 5] = { REG_UNNEEDED, REGCM_IMMALL },
22572                         [ 6] = { REG_UNNEEDED, REGCM_IMMALL },
22573                         [ 7] = { REG_UNNEEDED, REGCM_IMMALL },
22574                         [ 8] = { REG_UNNEEDED, REGCM_IMMALL },
22575                         [ 9] = { REG_UNNEEDED, REGCM_IMMALL },
22576                         [10] = { REG_UNNEEDED, REGCM_IMMALL },
22577                         [11] = { REG_UNNEEDED, REGCM_IMMALL },
22578                         [12] = { REG_UNNEEDED, REGCM_IMMALL },
22579                         [13] = { REG_UNNEEDED, REGCM_IMMALL },
22580                         [14] = { REG_UNNEEDED, REGCM_IMMALL },
22581                         [15] = { REG_UNNEEDED, REGCM_IMMALL },
22582                         [16] = { REG_UNNEEDED, REGCM_IMMALL },
22583                         [17] = { REG_UNNEEDED, REGCM_IMMALL },
22584                         [18] = { REG_UNNEEDED, REGCM_IMMALL },
22585                         [19] = { REG_UNNEEDED, REGCM_IMMALL },
22586                         [20] = { REG_UNNEEDED, REGCM_IMMALL },
22587                         [21] = { REG_UNNEEDED, REGCM_IMMALL },
22588                         [22] = { REG_UNNEEDED, REGCM_IMMALL },
22589                         [23] = { REG_UNNEEDED, REGCM_IMMALL },
22590                         [24] = { REG_UNNEEDED, REGCM_IMMALL },
22591                         [25] = { REG_UNNEEDED, REGCM_IMMALL },
22592                         [26] = { REG_UNNEEDED, REGCM_IMMALL },
22593                         [27] = { REG_UNNEEDED, REGCM_IMMALL },
22594                         [28] = { REG_UNNEEDED, REGCM_IMMALL },
22595                         [29] = { REG_UNNEEDED, REGCM_IMMALL },
22596                         [30] = { REG_UNNEEDED, REGCM_IMMALL },
22597                         [31] = { REG_UNNEEDED, REGCM_IMMALL },
22598                         [32] = { REG_UNNEEDED, REGCM_IMMALL },
22599                         [33] = { REG_UNNEEDED, REGCM_IMMALL },
22600                         [34] = { REG_UNNEEDED, REGCM_IMMALL },
22601                         [35] = { REG_UNNEEDED, REGCM_IMMALL },
22602                         [36] = { REG_UNNEEDED, REGCM_IMMALL },
22603                         [37] = { REG_UNNEEDED, REGCM_IMMALL },
22604                         [38] = { REG_UNNEEDED, REGCM_IMMALL },
22605                         [39] = { REG_UNNEEDED, REGCM_IMMALL },
22606                         [40] = { REG_UNNEEDED, REGCM_IMMALL },
22607                         [41] = { REG_UNNEEDED, REGCM_IMMALL },
22608                         [42] = { REG_UNNEEDED, REGCM_IMMALL },
22609                         [43] = { REG_UNNEEDED, REGCM_IMMALL },
22610                         [44] = { REG_UNNEEDED, REGCM_IMMALL },
22611                         [45] = { REG_UNNEEDED, REGCM_IMMALL },
22612                         [46] = { REG_UNNEEDED, REGCM_IMMALL },
22613                         [47] = { REG_UNNEEDED, REGCM_IMMALL },
22614                         [48] = { REG_UNNEEDED, REGCM_IMMALL },
22615                         [49] = { REG_UNNEEDED, REGCM_IMMALL },
22616                         [50] = { REG_UNNEEDED, REGCM_IMMALL },
22617                         [51] = { REG_UNNEEDED, REGCM_IMMALL },
22618                         [52] = { REG_UNNEEDED, REGCM_IMMALL },
22619                         [53] = { REG_UNNEEDED, REGCM_IMMALL },
22620                         [54] = { REG_UNNEEDED, REGCM_IMMALL },
22621                         [55] = { REG_UNNEEDED, REGCM_IMMALL },
22622                         [56] = { REG_UNNEEDED, REGCM_IMMALL },
22623                         [57] = { REG_UNNEEDED, REGCM_IMMALL },
22624                         [58] = { REG_UNNEEDED, REGCM_IMMALL },
22625                         [59] = { REG_UNNEEDED, REGCM_IMMALL },
22626                         [60] = { REG_UNNEEDED, REGCM_IMMALL },
22627                         [61] = { REG_UNNEEDED, REGCM_IMMALL },
22628                         [62] = { REG_UNNEEDED, REGCM_IMMALL },
22629                         [63] = { REG_UNNEEDED, REGCM_IMMALL },
22630                 },
22631         },
22632         [TEMPLATE_INTCONST8] = { 
22633                 .lhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
22634         },
22635         [TEMPLATE_INTCONST32] = { 
22636                 .lhs = { [0] = { REG_UNNEEDED, REGCM_IMM32 } },
22637         },
22638         [TEMPLATE_UNKNOWNVAL] = {
22639                 .lhs = { [0] = { REG_UNSET, COPY32_REGCM } },
22640         },
22641         [TEMPLATE_COPY8_REG] = {
22642                 .lhs = { [0] = { REG_UNSET, COPY8_REGCM } },
22643                 .rhs = { [0] = { REG_UNSET, COPY8_REGCM }  },
22644         },
22645         [TEMPLATE_COPY16_REG] = {
22646                 .lhs = { [0] = { REG_UNSET, COPY16_REGCM } },
22647                 .rhs = { [0] = { REG_UNSET, COPY16_REGCM }  },
22648         },
22649         [TEMPLATE_COPY32_REG] = {
22650                 .lhs = { [0] = { REG_UNSET, COPY32_REGCM } },
22651                 .rhs = { [0] = { REG_UNSET, COPY32_REGCM }  },
22652         },
22653         [TEMPLATE_COPY_IMM8] = {
22654                 .lhs = { [0] = { REG_UNSET, COPY8_REGCM } },
22655                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
22656         },
22657         [TEMPLATE_COPY_IMM16] = {
22658                 .lhs = { [0] = { REG_UNSET, COPY16_REGCM } },
22659                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM16 | REGCM_IMM8 } },
22660         },
22661         [TEMPLATE_COPY_IMM32] = {
22662                 .lhs = { [0] = { REG_UNSET, COPY32_REGCM } },
22663                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8 } },
22664         },
22665         [TEMPLATE_PHI8] = { 
22666                 .lhs = { [0] = { REG_VIRT0, COPY8_REGCM } },
22667                 .rhs = { [0] = { REG_VIRT0, COPY8_REGCM } },
22668         },
22669         [TEMPLATE_PHI16] = { 
22670                 .lhs = { [0] = { REG_VIRT0, COPY16_REGCM } },
22671                 .rhs = { [0] = { REG_VIRT0, COPY16_REGCM } }, 
22672         },
22673         [TEMPLATE_PHI32] = { 
22674                 .lhs = { [0] = { REG_VIRT0, COPY32_REGCM } },
22675                 .rhs = { [0] = { REG_VIRT0, COPY32_REGCM } }, 
22676         },
22677         [TEMPLATE_STORE8] = {
22678                 .rhs = { 
22679                         [0] = { REG_UNSET, REGCM_GPR32 },
22680                         [1] = { REG_UNSET, REGCM_GPR8_LO },
22681                 },
22682         },
22683         [TEMPLATE_STORE16] = {
22684                 .rhs = { 
22685                         [0] = { REG_UNSET, REGCM_GPR32 },
22686                         [1] = { REG_UNSET, REGCM_GPR16 },
22687                 },
22688         },
22689         [TEMPLATE_STORE32] = {
22690                 .rhs = { 
22691                         [0] = { REG_UNSET, REGCM_GPR32 },
22692                         [1] = { REG_UNSET, REGCM_GPR32 },
22693                 },
22694         },
22695         [TEMPLATE_LOAD8] = {
22696                 .lhs = { [0] = { REG_UNSET, REGCM_GPR8_LO } },
22697                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22698         },
22699         [TEMPLATE_LOAD16] = {
22700                 .lhs = { [0] = { REG_UNSET, REGCM_GPR16 } },
22701                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22702         },
22703         [TEMPLATE_LOAD32] = {
22704                 .lhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22705                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22706         },
22707         [TEMPLATE_BINARY8_REG] = {
22708                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22709                 .rhs = { 
22710                         [0] = { REG_VIRT0, REGCM_GPR8_LO },
22711                         [1] = { REG_UNSET, REGCM_GPR8_LO },
22712                 },
22713         },
22714         [TEMPLATE_BINARY16_REG] = {
22715                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22716                 .rhs = { 
22717                         [0] = { REG_VIRT0, REGCM_GPR16 },
22718                         [1] = { REG_UNSET, REGCM_GPR16 },
22719                 },
22720         },
22721         [TEMPLATE_BINARY32_REG] = {
22722                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22723                 .rhs = { 
22724                         [0] = { REG_VIRT0, REGCM_GPR32 },
22725                         [1] = { REG_UNSET, REGCM_GPR32 },
22726                 },
22727         },
22728         [TEMPLATE_BINARY8_IMM] = {
22729                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22730                 .rhs = { 
22731                         [0] = { REG_VIRT0,    REGCM_GPR8_LO },
22732                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22733                 },
22734         },
22735         [TEMPLATE_BINARY16_IMM] = {
22736                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22737                 .rhs = { 
22738                         [0] = { REG_VIRT0,    REGCM_GPR16 },
22739                         [1] = { REG_UNNEEDED, REGCM_IMM16 },
22740                 },
22741         },
22742         [TEMPLATE_BINARY32_IMM] = {
22743                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22744                 .rhs = { 
22745                         [0] = { REG_VIRT0,    REGCM_GPR32 },
22746                         [1] = { REG_UNNEEDED, REGCM_IMM32 },
22747                 },
22748         },
22749         [TEMPLATE_SL8_CL] = {
22750                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22751                 .rhs = { 
22752                         [0] = { REG_VIRT0, REGCM_GPR8_LO },
22753                         [1] = { REG_CL, REGCM_GPR8_LO },
22754                 },
22755         },
22756         [TEMPLATE_SL16_CL] = {
22757                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22758                 .rhs = { 
22759                         [0] = { REG_VIRT0, REGCM_GPR16 },
22760                         [1] = { REG_CL, REGCM_GPR8_LO },
22761                 },
22762         },
22763         [TEMPLATE_SL32_CL] = {
22764                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22765                 .rhs = { 
22766                         [0] = { REG_VIRT0, REGCM_GPR32 },
22767                         [1] = { REG_CL, REGCM_GPR8_LO },
22768                 },
22769         },
22770         [TEMPLATE_SL8_IMM] = {
22771                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22772                 .rhs = { 
22773                         [0] = { REG_VIRT0,    REGCM_GPR8_LO },
22774                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22775                 },
22776         },
22777         [TEMPLATE_SL16_IMM] = {
22778                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22779                 .rhs = { 
22780                         [0] = { REG_VIRT0,    REGCM_GPR16 },
22781                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22782                 },
22783         },
22784         [TEMPLATE_SL32_IMM] = {
22785                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22786                 .rhs = { 
22787                         [0] = { REG_VIRT0,    REGCM_GPR32 },
22788                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22789                 },
22790         },
22791         [TEMPLATE_UNARY8] = {
22792                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22793                 .rhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22794         },
22795         [TEMPLATE_UNARY16] = {
22796                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22797                 .rhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22798         },
22799         [TEMPLATE_UNARY32] = {
22800                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22801                 .rhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22802         },
22803         [TEMPLATE_CMP8_REG] = {
22804                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22805                 .rhs = {
22806                         [0] = { REG_UNSET, REGCM_GPR8_LO },
22807                         [1] = { REG_UNSET, REGCM_GPR8_LO },
22808                 },
22809         },
22810         [TEMPLATE_CMP16_REG] = {
22811                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22812                 .rhs = {
22813                         [0] = { REG_UNSET, REGCM_GPR16 },
22814                         [1] = { REG_UNSET, REGCM_GPR16 },
22815                 },
22816         },
22817         [TEMPLATE_CMP32_REG] = {
22818                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22819                 .rhs = {
22820                         [0] = { REG_UNSET, REGCM_GPR32 },
22821                         [1] = { REG_UNSET, REGCM_GPR32 },
22822                 },
22823         },
22824         [TEMPLATE_CMP8_IMM] = {
22825                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22826                 .rhs = {
22827                         [0] = { REG_UNSET, REGCM_GPR8_LO },
22828                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22829                 },
22830         },
22831         [TEMPLATE_CMP16_IMM] = {
22832                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22833                 .rhs = {
22834                         [0] = { REG_UNSET, REGCM_GPR16 },
22835                         [1] = { REG_UNNEEDED, REGCM_IMM16 },
22836                 },
22837         },
22838         [TEMPLATE_CMP32_IMM] = {
22839                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22840                 .rhs = {
22841                         [0] = { REG_UNSET, REGCM_GPR32 },
22842                         [1] = { REG_UNNEEDED, REGCM_IMM32 },
22843                 },
22844         },
22845         [TEMPLATE_TEST8] = {
22846                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22847                 .rhs = { [0] = { REG_UNSET, REGCM_GPR8_LO } },
22848         },
22849         [TEMPLATE_TEST16] = {
22850                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22851                 .rhs = { [0] = { REG_UNSET, REGCM_GPR16 } },
22852         },
22853         [TEMPLATE_TEST32] = {
22854                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22855                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22856         },
22857         [TEMPLATE_SET] = {
22858                 .lhs = { [0] = { REG_UNSET, REGCM_GPR8_LO } },
22859                 .rhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22860         },
22861         [TEMPLATE_JMP] = {
22862                 .rhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22863         },
22864         [TEMPLATE_RET] = {
22865                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22866         },
22867         [TEMPLATE_INB_DX] = {
22868                 .lhs = { [0] = { REG_AL,  REGCM_GPR8_LO } },  
22869                 .rhs = { [0] = { REG_DX, REGCM_GPR16 } },
22870         },
22871         [TEMPLATE_INB_IMM] = {
22872                 .lhs = { [0] = { REG_AL,  REGCM_GPR8_LO } },  
22873                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
22874         },
22875         [TEMPLATE_INW_DX]  = { 
22876                 .lhs = { [0] = { REG_AX,  REGCM_GPR16 } }, 
22877                 .rhs = { [0] = { REG_DX, REGCM_GPR16 } },
22878         },
22879         [TEMPLATE_INW_IMM] = { 
22880                 .lhs = { [0] = { REG_AX,  REGCM_GPR16 } }, 
22881                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
22882         },
22883         [TEMPLATE_INL_DX]  = {
22884                 .lhs = { [0] = { REG_EAX, REGCM_GPR32 } },
22885                 .rhs = { [0] = { REG_DX, REGCM_GPR16 } },
22886         },
22887         [TEMPLATE_INL_IMM] = {
22888                 .lhs = { [0] = { REG_EAX, REGCM_GPR32 } },
22889                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
22890         },
22891         [TEMPLATE_OUTB_DX] = { 
22892                 .rhs = {
22893                         [0] = { REG_AL,  REGCM_GPR8_LO },
22894                         [1] = { REG_DX, REGCM_GPR16 },
22895                 },
22896         },
22897         [TEMPLATE_OUTB_IMM] = { 
22898                 .rhs = {
22899                         [0] = { REG_AL,  REGCM_GPR8_LO },  
22900                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22901                 },
22902         },
22903         [TEMPLATE_OUTW_DX] = { 
22904                 .rhs = {
22905                         [0] = { REG_AX,  REGCM_GPR16 },
22906                         [1] = { REG_DX, REGCM_GPR16 },
22907                 },
22908         },
22909         [TEMPLATE_OUTW_IMM] = {
22910                 .rhs = {
22911                         [0] = { REG_AX,  REGCM_GPR16 }, 
22912                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22913                 },
22914         },
22915         [TEMPLATE_OUTL_DX] = { 
22916                 .rhs = {
22917                         [0] = { REG_EAX, REGCM_GPR32 },
22918                         [1] = { REG_DX, REGCM_GPR16 },
22919                 },
22920         },
22921         [TEMPLATE_OUTL_IMM] = { 
22922                 .rhs = {
22923                         [0] = { REG_EAX, REGCM_GPR32 }, 
22924                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22925                 },
22926         },
22927         [TEMPLATE_BSF] = {
22928                 .lhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22929                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22930         },
22931         [TEMPLATE_RDMSR] = {
22932                 .lhs = { 
22933                         [0] = { REG_EAX, REGCM_GPR32 },
22934                         [1] = { REG_EDX, REGCM_GPR32 },
22935                 },
22936                 .rhs = { [0] = { REG_ECX, REGCM_GPR32 } },
22937         },
22938         [TEMPLATE_WRMSR] = {
22939                 .rhs = {
22940                         [0] = { REG_ECX, REGCM_GPR32 },
22941                         [1] = { REG_EAX, REGCM_GPR32 },
22942                         [2] = { REG_EDX, REGCM_GPR32 },
22943                 },
22944         },
22945         [TEMPLATE_UMUL8] = {
22946                 .lhs = { [0] = { REG_AX, REGCM_GPR16 } },
22947                 .rhs = { 
22948                         [0] = { REG_AL, REGCM_GPR8_LO },
22949                         [1] = { REG_UNSET, REGCM_GPR8_LO },
22950                 },
22951         },
22952         [TEMPLATE_UMUL16] = {
22953                 .lhs = { [0] = { REG_DXAX, REGCM_DIVIDEND32 } },
22954                 .rhs = { 
22955                         [0] = { REG_AX, REGCM_GPR16 },
22956                         [1] = { REG_UNSET, REGCM_GPR16 },
22957                 },
22958         },
22959         [TEMPLATE_UMUL32] = {
22960                 .lhs = { [0] = { REG_EDXEAX, REGCM_DIVIDEND64 } },
22961                 .rhs = { 
22962                         [0] = { REG_EAX, REGCM_GPR32 },
22963                         [1] = { REG_UNSET, REGCM_GPR32 },
22964                 },
22965         },
22966         [TEMPLATE_DIV8] = {
22967                 .lhs = { 
22968                         [0] = { REG_AL, REGCM_GPR8_LO },
22969                         [1] = { REG_AH, REGCM_GPR8 },
22970                 },
22971                 .rhs = {
22972                         [0] = { REG_AX, REGCM_GPR16 },
22973                         [1] = { REG_UNSET, REGCM_GPR8_LO },
22974                 },
22975         },
22976         [TEMPLATE_DIV16] = {
22977                 .lhs = { 
22978                         [0] = { REG_AX, REGCM_GPR16 },
22979                         [1] = { REG_DX, REGCM_GPR16 },
22980                 },
22981                 .rhs = {
22982                         [0] = { REG_DXAX, REGCM_DIVIDEND32 },
22983                         [1] = { REG_UNSET, REGCM_GPR16 },
22984                 },
22985         },
22986         [TEMPLATE_DIV32] = {
22987                 .lhs = { 
22988                         [0] = { REG_EAX, REGCM_GPR32 },
22989                         [1] = { REG_EDX, REGCM_GPR32 },
22990                 },
22991                 .rhs = {
22992                         [0] = { REG_EDXEAX, REGCM_DIVIDEND64 },
22993                         [1] = { REG_UNSET, REGCM_GPR32 },
22994                 },
22995         },
22996 };
22997
22998 static void fixup_branch(struct compile_state *state,
22999         struct triple *branch, int jmp_op, int cmp_op, struct type *cmp_type,
23000         struct triple *left, struct triple *right)
23001 {
23002         struct triple *test;
23003         if (!left) {
23004                 internal_error(state, branch, "no branch test?");
23005         }
23006         test = pre_triple(state, branch,
23007                 cmp_op, cmp_type, left, right);
23008         test->template_id = TEMPLATE_TEST32; 
23009         if (cmp_op == OP_CMP) {
23010                 test->template_id = TEMPLATE_CMP32_REG;
23011                 if (get_imm32(test, &RHS(test, 1))) {
23012                         test->template_id = TEMPLATE_CMP32_IMM;
23013                 }
23014         }
23015         use_triple(RHS(test, 0), test);
23016         use_triple(RHS(test, 1), test);
23017         unuse_triple(RHS(branch, 0), branch);
23018         RHS(branch, 0) = test;
23019         branch->op = jmp_op;
23020         branch->template_id = TEMPLATE_JMP;
23021         use_triple(RHS(branch, 0), branch);
23022 }
23023
23024 static void fixup_branches(struct compile_state *state,
23025         struct triple *cmp, struct triple *use, int jmp_op)
23026 {
23027         struct triple_set *entry, *next;
23028         for(entry = use->use; entry; entry = next) {
23029                 next = entry->next;
23030                 if (entry->member->op == OP_COPY) {
23031                         fixup_branches(state, cmp, entry->member, jmp_op);
23032                 }
23033                 else if (entry->member->op == OP_CBRANCH) {
23034                         struct triple *branch;
23035                         struct triple *left, *right;
23036                         left = right = 0;
23037                         left = RHS(cmp, 0);
23038                         if (cmp->rhs > 1) {
23039                                 right = RHS(cmp, 1);
23040                         }
23041                         branch = entry->member;
23042                         fixup_branch(state, branch, jmp_op, 
23043                                 cmp->op, cmp->type, left, right);
23044                 }
23045         }
23046 }
23047
23048 static void bool_cmp(struct compile_state *state, 
23049         struct triple *ins, int cmp_op, int jmp_op, int set_op)
23050 {
23051         struct triple_set *entry, *next;
23052         struct triple *set, *convert;
23053
23054         /* Put a barrier up before the cmp which preceeds the
23055          * copy instruction.  If a set actually occurs this gives
23056          * us a chance to move variables in registers out of the way.
23057          */
23058
23059         /* Modify the comparison operator */
23060         ins->op = cmp_op;
23061         ins->template_id = TEMPLATE_TEST32;
23062         if (cmp_op == OP_CMP) {
23063                 ins->template_id = TEMPLATE_CMP32_REG;
23064                 if (get_imm32(ins, &RHS(ins, 1))) {
23065                         ins->template_id =  TEMPLATE_CMP32_IMM;
23066                 }
23067         }
23068         /* Generate the instruction sequence that will transform the
23069          * result of the comparison into a logical value.
23070          */
23071         set = post_triple(state, ins, set_op, &uchar_type, ins, 0);
23072         use_triple(ins, set);
23073         set->template_id = TEMPLATE_SET;
23074
23075         convert = set;
23076         if (!equiv_types(ins->type, set->type)) {
23077                 convert = post_triple(state, set, OP_CONVERT, ins->type, set, 0);
23078                 use_triple(set, convert);
23079                 convert->template_id = TEMPLATE_COPY32_REG;
23080         }
23081
23082         for(entry = ins->use; entry; entry = next) {
23083                 next = entry->next;
23084                 if (entry->member == set) {
23085                         continue;
23086                 }
23087                 replace_rhs_use(state, ins, convert, entry->member);
23088         }
23089         fixup_branches(state, ins, convert, jmp_op);
23090 }
23091
23092 struct reg_info arch_reg_lhs(struct compile_state *state, struct triple *ins, int index)
23093 {
23094         struct ins_template *template;
23095         struct reg_info result;
23096         int zlhs;
23097         if (ins->op == OP_PIECE) {
23098                 index = ins->u.cval;
23099                 ins = MISC(ins, 0);
23100         }
23101         zlhs = ins->lhs;
23102         if (triple_is_def(state, ins)) {
23103                 zlhs = 1;
23104         }
23105         if (index >= zlhs) {
23106                 internal_error(state, ins, "index %d out of range for %s",
23107                         index, tops(ins->op));
23108         }
23109         switch(ins->op) {
23110         case OP_ASM:
23111                 template = &ins->u.ainfo->tmpl;
23112                 break;
23113         default:
23114                 if (ins->template_id > LAST_TEMPLATE) {
23115                         internal_error(state, ins, "bad template number %d", 
23116                                 ins->template_id);
23117                 }
23118                 template = &templates[ins->template_id];
23119                 break;
23120         }
23121         result = template->lhs[index];
23122         result.regcm = arch_regcm_normalize(state, result.regcm);
23123         if (result.reg != REG_UNNEEDED) {
23124                 result.regcm &= ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8);
23125         }
23126         if (result.regcm == 0) {
23127                 internal_error(state, ins, "lhs %d regcm == 0", index);
23128         }
23129         return result;
23130 }
23131
23132 struct reg_info arch_reg_rhs(struct compile_state *state, struct triple *ins, int index)
23133 {
23134         struct reg_info result;
23135         struct ins_template *template;
23136         if ((index > ins->rhs) ||
23137                 (ins->op == OP_PIECE)) {
23138                 internal_error(state, ins, "index %d out of range for %s\n",
23139                         index, tops(ins->op));
23140         }
23141         switch(ins->op) {
23142         case OP_ASM:
23143                 template = &ins->u.ainfo->tmpl;
23144                 break;
23145         case OP_PHI:
23146                 index = 0;
23147                 /* Fall through */
23148         default:
23149                 if (ins->template_id > LAST_TEMPLATE) {
23150                         internal_error(state, ins, "bad template number %d", 
23151                                 ins->template_id);
23152                 }
23153                 template = &templates[ins->template_id];
23154                 break;
23155         }
23156         result = template->rhs[index];
23157         result.regcm = arch_regcm_normalize(state, result.regcm);
23158         if (result.regcm == 0) {
23159                 internal_error(state, ins, "rhs %d regcm == 0", index);
23160         }
23161         return result;
23162 }
23163
23164 static struct triple *mod_div(struct compile_state *state,
23165         struct triple *ins, int div_op, int index)
23166 {
23167         struct triple *div, *piece0, *piece1;
23168         
23169         /* Generate the appropriate division instruction */
23170         div = post_triple(state, ins, div_op, ins->type, 0, 0);
23171         RHS(div, 0) = RHS(ins, 0);
23172         RHS(div, 1) = RHS(ins, 1);
23173         piece0 = LHS(div, 0);
23174         piece1 = LHS(div, 1);
23175         div->template_id  = TEMPLATE_DIV32;
23176         use_triple(RHS(div, 0), div);
23177         use_triple(RHS(div, 1), div);
23178         use_triple(LHS(div, 0), div);
23179         use_triple(LHS(div, 1), div);
23180
23181         /* Replate uses of ins with the appropriate piece of the div */
23182         propogate_use(state, ins, LHS(div, index));
23183         release_triple(state, ins);
23184
23185         /* Return the address of the next instruction */
23186         return piece1->next;
23187 }
23188
23189 static int noop_adecl(struct triple *adecl)
23190 {
23191         struct triple_set *use;
23192         /* It's a noop if it doesn't specify stoorage */
23193         if (adecl->lhs == 0) {
23194                 return 1;
23195         }
23196         /* Is the adecl used? If not it's a noop */
23197         for(use = adecl->use; use ; use = use->next) {
23198                 if ((use->member->op != OP_PIECE) ||
23199                         (MISC(use->member, 0) != adecl)) {
23200                         return 0;
23201                 }
23202         }
23203         return 1;
23204 }
23205
23206 static struct triple *x86_deposit(struct compile_state *state, struct triple *ins)
23207 {
23208         struct triple *mask, *nmask, *shift;
23209         struct triple *val, *val_mask, *val_shift;
23210         struct triple *targ, *targ_mask;
23211         struct triple *new;
23212         ulong_t the_mask, the_nmask;
23213
23214         targ = RHS(ins, 0);
23215         val = RHS(ins, 1);
23216
23217         /* Get constant for the mask value */
23218         the_mask = 1;
23219         the_mask <<= ins->u.bitfield.size;
23220         the_mask -= 1;
23221         the_mask <<= ins->u.bitfield.offset;
23222         mask = pre_triple(state, ins, OP_INTCONST, &uint_type, 0, 0);
23223         mask->u.cval = the_mask;
23224
23225         /* Get the inverted mask value */
23226         the_nmask = ~the_mask;
23227         nmask = pre_triple(state, ins, OP_INTCONST, &uint_type, 0, 0);
23228         nmask->u.cval = the_nmask;
23229
23230         /* Get constant for the shift value */
23231         shift = pre_triple(state, ins, OP_INTCONST, &uint_type, 0, 0);
23232         shift->u.cval = ins->u.bitfield.offset;
23233
23234         /* Shift and mask the source value */
23235         val_shift = val;
23236         if (shift->u.cval != 0) {
23237                 val_shift = pre_triple(state, ins, OP_SL, val->type, val, shift);
23238                 use_triple(val, val_shift);
23239                 use_triple(shift, val_shift);
23240         }
23241         val_mask = val_shift;
23242         if (is_signed(val->type)) {
23243                 val_mask = pre_triple(state, ins, OP_AND, val->type, val_shift, mask);
23244                 use_triple(val_shift, val_mask);
23245                 use_triple(mask, val_mask);
23246         }
23247
23248         /* Mask the target value */
23249         targ_mask = pre_triple(state, ins, OP_AND, targ->type, targ, nmask);
23250         use_triple(targ, targ_mask);
23251         use_triple(nmask, targ_mask);
23252
23253         /* Now combined them together */
23254         new = pre_triple(state, ins, OP_OR, targ->type, targ_mask, val_mask);
23255         use_triple(targ_mask, new);
23256         use_triple(val_mask, new);
23257
23258         /* Move all of the users over to the new expression */
23259         propogate_use(state, ins, new);
23260
23261         /* Delete the original triple */
23262         release_triple(state, ins);
23263
23264         /* Restart the transformation at mask */
23265         return mask;
23266 }
23267
23268 static struct triple *x86_extract(struct compile_state *state, struct triple *ins)
23269 {
23270         struct triple *mask, *shift;
23271         struct triple *val, *val_mask, *val_shift;
23272         ulong_t the_mask;
23273
23274         val = RHS(ins, 0);
23275
23276         /* Get constant for the mask value */
23277         the_mask = 1;
23278         the_mask <<= ins->u.bitfield.size;
23279         the_mask -= 1;
23280         mask = pre_triple(state, ins, OP_INTCONST, &int_type, 0, 0);
23281         mask->u.cval = the_mask;
23282
23283         /* Get constant for the right shift value */
23284         shift = pre_triple(state, ins, OP_INTCONST, &int_type, 0, 0);
23285         shift->u.cval = ins->u.bitfield.offset;
23286
23287         /* Shift arithmetic right, to correct the sign */
23288         val_shift = val;
23289         if (shift->u.cval != 0) {
23290                 int op;
23291                 if (ins->op == OP_SEXTRACT) {
23292                         op = OP_SSR;
23293                 } else {
23294                         op = OP_USR;
23295                 }
23296                 val_shift = pre_triple(state, ins, op, val->type, val, shift);
23297                 use_triple(val, val_shift);
23298                 use_triple(shift, val_shift);
23299         }
23300
23301         /* Finally mask the value */
23302         val_mask = pre_triple(state, ins, OP_AND, ins->type, val_shift, mask);
23303         use_triple(val_shift, val_mask);
23304         use_triple(mask,      val_mask);
23305
23306         /* Move all of the users over to the new expression */
23307         propogate_use(state, ins, val_mask);
23308
23309         /* Release the original instruction */
23310         release_triple(state, ins);
23311
23312         return mask;
23313
23314 }
23315
23316 static struct triple *transform_to_arch_instruction(
23317         struct compile_state *state, struct triple *ins)
23318 {
23319         /* Transform from generic 3 address instructions
23320          * to archtecture specific instructions.
23321          * And apply architecture specific constraints to instructions.
23322          * Copies are inserted to preserve the register flexibility
23323          * of 3 address instructions.
23324          */
23325         struct triple *next, *value;
23326         size_t size;
23327         next = ins->next;
23328         switch(ins->op) {
23329         case OP_INTCONST:
23330                 ins->template_id = TEMPLATE_INTCONST32;
23331                 if (ins->u.cval < 256) {
23332                         ins->template_id = TEMPLATE_INTCONST8;
23333                 }
23334                 break;
23335         case OP_ADDRCONST:
23336                 ins->template_id = TEMPLATE_INTCONST32;
23337                 break;
23338         case OP_UNKNOWNVAL:
23339                 ins->template_id = TEMPLATE_UNKNOWNVAL;
23340                 break;
23341         case OP_NOOP:
23342         case OP_SDECL:
23343         case OP_BLOBCONST:
23344         case OP_LABEL:
23345                 ins->template_id = TEMPLATE_NOP;
23346                 break;
23347         case OP_COPY:
23348         case OP_CONVERT:
23349                 size = size_of(state, ins->type);
23350                 value = RHS(ins, 0);
23351                 if (is_imm8(value) && (size <= SIZEOF_I8)) {
23352                         ins->template_id = TEMPLATE_COPY_IMM8;
23353                 }
23354                 else if (is_imm16(value) && (size <= SIZEOF_I16)) {
23355                         ins->template_id = TEMPLATE_COPY_IMM16;
23356                 }
23357                 else if (is_imm32(value) && (size <= SIZEOF_I32)) {
23358                         ins->template_id = TEMPLATE_COPY_IMM32;
23359                 }
23360                 else if (is_const(value)) {
23361                         internal_error(state, ins, "bad constant passed to copy");
23362                 }
23363                 else if (size <= SIZEOF_I8) {
23364                         ins->template_id = TEMPLATE_COPY8_REG;
23365                 }
23366                 else if (size <= SIZEOF_I16) {
23367                         ins->template_id = TEMPLATE_COPY16_REG;
23368                 }
23369                 else if (size <= SIZEOF_I32) {
23370                         ins->template_id = TEMPLATE_COPY32_REG;
23371                 }
23372                 else {
23373                         internal_error(state, ins, "bad type passed to copy");
23374                 }
23375                 break;
23376         case OP_PHI:
23377                 size = size_of(state, ins->type);
23378                 if (size <= SIZEOF_I8) {
23379                         ins->template_id = TEMPLATE_PHI8;
23380                 }
23381                 else if (size <= SIZEOF_I16) {
23382                         ins->template_id = TEMPLATE_PHI16;
23383                 }
23384                 else if (size <= SIZEOF_I32) {
23385                         ins->template_id = TEMPLATE_PHI32;
23386                 }
23387                 else {
23388                         internal_error(state, ins, "bad type passed to phi");
23389                 }
23390                 break;
23391         case OP_ADECL:
23392                 /* Adecls should always be treated as dead code and
23393                  * removed.  If we are not optimizing they may linger.
23394                  */
23395                 if (!noop_adecl(ins)) {
23396                         internal_error(state, ins, "adecl remains?");
23397                 }
23398                 ins->template_id = TEMPLATE_NOP;
23399                 next = after_lhs(state, ins);
23400                 break;
23401         case OP_STORE:
23402                 switch(ins->type->type & TYPE_MASK) {
23403                 case TYPE_CHAR:    case TYPE_UCHAR:
23404                         ins->template_id = TEMPLATE_STORE8;
23405                         break;
23406                 case TYPE_SHORT:   case TYPE_USHORT:
23407                         ins->template_id = TEMPLATE_STORE16;
23408                         break;
23409                 case TYPE_INT:     case TYPE_UINT:
23410                 case TYPE_LONG:    case TYPE_ULONG:
23411                 case TYPE_POINTER:
23412                         ins->template_id = TEMPLATE_STORE32;
23413                         break;
23414                 default:
23415                         internal_error(state, ins, "unknown type in store");
23416                         break;
23417                 }
23418                 break;
23419         case OP_LOAD:
23420                 switch(ins->type->type & TYPE_MASK) {
23421                 case TYPE_CHAR:   case TYPE_UCHAR:
23422                 case TYPE_SHORT:  case TYPE_USHORT:
23423                 case TYPE_INT:    case TYPE_UINT:
23424                 case TYPE_LONG:   case TYPE_ULONG:
23425                 case TYPE_POINTER:
23426                         break;
23427                 default:
23428                         internal_error(state, ins, "unknown type in load");
23429                         break;
23430                 }
23431                 ins->template_id = TEMPLATE_LOAD32;
23432                 break;
23433         case OP_ADD:
23434         case OP_SUB:
23435         case OP_AND:
23436         case OP_XOR:
23437         case OP_OR:
23438         case OP_SMUL:
23439                 ins->template_id = TEMPLATE_BINARY32_REG;
23440                 if (get_imm32(ins, &RHS(ins, 1))) {
23441                         ins->template_id = TEMPLATE_BINARY32_IMM;
23442                 }
23443                 break;
23444         case OP_SDIVT:
23445         case OP_UDIVT:
23446                 ins->template_id = TEMPLATE_DIV32;
23447                 next = after_lhs(state, ins);
23448                 break;
23449         case OP_UMUL:
23450                 ins->template_id = TEMPLATE_UMUL32;
23451                 break;
23452         case OP_UDIV:
23453                 next = mod_div(state, ins, OP_UDIVT, 0);
23454                 break;
23455         case OP_SDIV:
23456                 next = mod_div(state, ins, OP_SDIVT, 0);
23457                 break;
23458         case OP_UMOD:
23459                 next = mod_div(state, ins, OP_UDIVT, 1);
23460                 break;
23461         case OP_SMOD:
23462                 next = mod_div(state, ins, OP_SDIVT, 1);
23463                 break;
23464         case OP_SL:
23465         case OP_SSR:
23466         case OP_USR:
23467                 ins->template_id = TEMPLATE_SL32_CL;
23468                 if (get_imm8(ins, &RHS(ins, 1))) {
23469                         ins->template_id = TEMPLATE_SL32_IMM;
23470                 } else if (size_of(state, RHS(ins, 1)->type) > SIZEOF_CHAR) {
23471                         typed_pre_copy(state, &uchar_type, ins, 1);
23472                 }
23473                 break;
23474         case OP_INVERT:
23475         case OP_NEG:
23476                 ins->template_id = TEMPLATE_UNARY32;
23477                 break;
23478         case OP_EQ: 
23479                 bool_cmp(state, ins, OP_CMP, OP_JMP_EQ, OP_SET_EQ); 
23480                 break;
23481         case OP_NOTEQ:
23482                 bool_cmp(state, ins, OP_CMP, OP_JMP_NOTEQ, OP_SET_NOTEQ);
23483                 break;
23484         case OP_SLESS:
23485                 bool_cmp(state, ins, OP_CMP, OP_JMP_SLESS, OP_SET_SLESS);
23486                 break;
23487         case OP_ULESS:
23488                 bool_cmp(state, ins, OP_CMP, OP_JMP_ULESS, OP_SET_ULESS);
23489                 break;
23490         case OP_SMORE:
23491                 bool_cmp(state, ins, OP_CMP, OP_JMP_SMORE, OP_SET_SMORE);
23492                 break;
23493         case OP_UMORE:
23494                 bool_cmp(state, ins, OP_CMP, OP_JMP_UMORE, OP_SET_UMORE);
23495                 break;
23496         case OP_SLESSEQ:
23497                 bool_cmp(state, ins, OP_CMP, OP_JMP_SLESSEQ, OP_SET_SLESSEQ);
23498                 break;
23499         case OP_ULESSEQ:
23500                 bool_cmp(state, ins, OP_CMP, OP_JMP_ULESSEQ, OP_SET_ULESSEQ);
23501                 break;
23502         case OP_SMOREEQ:
23503                 bool_cmp(state, ins, OP_CMP, OP_JMP_SMOREEQ, OP_SET_SMOREEQ);
23504                 break;
23505         case OP_UMOREEQ:
23506                 bool_cmp(state, ins, OP_CMP, OP_JMP_UMOREEQ, OP_SET_UMOREEQ);
23507                 break;
23508         case OP_LTRUE:
23509                 bool_cmp(state, ins, OP_TEST, OP_JMP_NOTEQ, OP_SET_NOTEQ);
23510                 break;
23511         case OP_LFALSE:
23512                 bool_cmp(state, ins, OP_TEST, OP_JMP_EQ, OP_SET_EQ);
23513                 break;
23514         case OP_BRANCH:
23515                 ins->op = OP_JMP;
23516                 ins->template_id = TEMPLATE_NOP;
23517                 break;
23518         case OP_CBRANCH:
23519                 fixup_branch(state, ins, OP_JMP_NOTEQ, OP_TEST, 
23520                         RHS(ins, 0)->type, RHS(ins, 0), 0);
23521                 break;
23522         case OP_CALL:
23523                 ins->template_id = TEMPLATE_NOP;
23524                 break;
23525         case OP_RET:
23526                 ins->template_id = TEMPLATE_RET;
23527                 break;
23528         case OP_INB:
23529         case OP_INW:
23530         case OP_INL:
23531                 switch(ins->op) {
23532                 case OP_INB: ins->template_id = TEMPLATE_INB_DX; break;
23533                 case OP_INW: ins->template_id = TEMPLATE_INW_DX; break;
23534                 case OP_INL: ins->template_id = TEMPLATE_INL_DX; break;
23535                 }
23536                 if (get_imm8(ins, &RHS(ins, 0))) {
23537                         ins->template_id += 1;
23538                 }
23539                 break;
23540         case OP_OUTB:
23541         case OP_OUTW:
23542         case OP_OUTL:
23543                 switch(ins->op) {
23544                 case OP_OUTB: ins->template_id = TEMPLATE_OUTB_DX; break;
23545                 case OP_OUTW: ins->template_id = TEMPLATE_OUTW_DX; break;
23546                 case OP_OUTL: ins->template_id = TEMPLATE_OUTL_DX; break;
23547                 }
23548                 if (get_imm8(ins, &RHS(ins, 1))) {
23549                         ins->template_id += 1;
23550                 }
23551                 break;
23552         case OP_BSF:
23553         case OP_BSR:
23554                 ins->template_id = TEMPLATE_BSF;
23555                 break;
23556         case OP_RDMSR:
23557                 ins->template_id = TEMPLATE_RDMSR;
23558                 next = after_lhs(state, ins);
23559                 break;
23560         case OP_WRMSR:
23561                 ins->template_id = TEMPLATE_WRMSR;
23562                 break;
23563         case OP_HLT:
23564                 ins->template_id = TEMPLATE_NOP;
23565                 break;
23566         case OP_ASM:
23567                 ins->template_id = TEMPLATE_NOP;
23568                 next = after_lhs(state, ins);
23569                 break;
23570                 /* Already transformed instructions */
23571         case OP_TEST:
23572                 ins->template_id = TEMPLATE_TEST32;
23573                 break;
23574         case OP_CMP:
23575                 ins->template_id = TEMPLATE_CMP32_REG;
23576                 if (get_imm32(ins, &RHS(ins, 1))) {
23577                         ins->template_id = TEMPLATE_CMP32_IMM;
23578                 }
23579                 break;
23580         case OP_JMP:
23581                 ins->template_id = TEMPLATE_NOP;
23582                 break;
23583         case OP_JMP_EQ:      case OP_JMP_NOTEQ:
23584         case OP_JMP_SLESS:   case OP_JMP_ULESS:
23585         case OP_JMP_SMORE:   case OP_JMP_UMORE:
23586         case OP_JMP_SLESSEQ: case OP_JMP_ULESSEQ:
23587         case OP_JMP_SMOREEQ: case OP_JMP_UMOREEQ:
23588                 ins->template_id = TEMPLATE_JMP;
23589                 break;
23590         case OP_SET_EQ:      case OP_SET_NOTEQ:
23591         case OP_SET_SLESS:   case OP_SET_ULESS:
23592         case OP_SET_SMORE:   case OP_SET_UMORE:
23593         case OP_SET_SLESSEQ: case OP_SET_ULESSEQ:
23594         case OP_SET_SMOREEQ: case OP_SET_UMOREEQ:
23595                 ins->template_id = TEMPLATE_SET;
23596                 break;
23597         case OP_DEPOSIT:
23598                 next = x86_deposit(state, ins);
23599                 break;
23600         case OP_SEXTRACT:
23601         case OP_UEXTRACT:
23602                 next = x86_extract(state, ins);
23603                 break;
23604                 /* Unhandled instructions */
23605         case OP_PIECE:
23606         default:
23607                 internal_error(state, ins, "unhandled ins: %d %s",
23608                         ins->op, tops(ins->op));
23609                 break;
23610         }
23611         return next;
23612 }
23613
23614 static long next_label(struct compile_state *state)
23615 {
23616         static long label_counter = 1000;
23617         return ++label_counter;
23618 }
23619 static void generate_local_labels(struct compile_state *state)
23620 {
23621         struct triple *first, *label;
23622         first = state->first;
23623         label = first;
23624         do {
23625                 if ((label->op == OP_LABEL) || 
23626                         (label->op == OP_SDECL)) {
23627                         if (label->use) {
23628                                 label->u.cval = next_label(state);
23629                         } else {
23630                                 label->u.cval = 0;
23631                         }
23632                         
23633                 }
23634                 label = label->next;
23635         } while(label != first);
23636 }
23637
23638 static int check_reg(struct compile_state *state, 
23639         struct triple *triple, int classes)
23640 {
23641         unsigned mask;
23642         int reg;
23643         reg = ID_REG(triple->id);
23644         if (reg == REG_UNSET) {
23645                 internal_error(state, triple, "register not set");
23646         }
23647         mask = arch_reg_regcm(state, reg);
23648         if (!(classes & mask)) {
23649                 internal_error(state, triple, "reg %d in wrong class",
23650                         reg);
23651         }
23652         return reg;
23653 }
23654
23655
23656 #if REG_XMM7 != 44
23657 #error "Registers have renumberd fix arch_reg_str"
23658 #endif
23659 static const char *arch_regs[] = {
23660         "%unset",
23661         "%unneeded",
23662         "%eflags",
23663         "%al", "%bl", "%cl", "%dl", "%ah", "%bh", "%ch", "%dh",
23664         "%ax", "%bx", "%cx", "%dx", "%si", "%di", "%bp", "%sp",
23665         "%eax", "%ebx", "%ecx", "%edx", "%esi", "%edi", "%ebp", "%esp",
23666         "%edx:%eax",
23667         "%dx:%ax",
23668         "%mm0", "%mm1", "%mm2", "%mm3", "%mm4", "%mm5", "%mm6", "%mm7",
23669         "%xmm0", "%xmm1", "%xmm2", "%xmm3", 
23670         "%xmm4", "%xmm5", "%xmm6", "%xmm7",
23671 };
23672 static const char *arch_reg_str(int reg)
23673 {
23674         if (!((reg >= REG_EFLAGS) && (reg <= REG_XMM7))) {
23675                 reg = 0;
23676         }
23677         return arch_regs[reg];
23678 }
23679
23680 static const char *reg(struct compile_state *state, struct triple *triple,
23681         int classes)
23682 {
23683         int reg;
23684         reg = check_reg(state, triple, classes);
23685         return arch_reg_str(reg);
23686 }
23687
23688 static int arch_reg_size(int reg)
23689 {
23690         int size;
23691         size = 0;
23692         if (reg == REG_EFLAGS) {
23693                 size = 32;
23694         }
23695         else if ((reg >= REG_AL) && (reg <= REG_DH)) {
23696                 size = 8;
23697         }
23698         else if ((reg >= REG_AX) && (reg <= REG_SP)) {
23699                 size = 16;
23700         }
23701         else if ((reg >= REG_EAX) && (reg <= REG_ESP)) {
23702                 size = 32;
23703         }
23704         else if (reg == REG_EDXEAX) {
23705                 size = 64;
23706         }
23707         else if (reg == REG_DXAX) {
23708                 size = 32;
23709         }
23710         else if ((reg >= REG_MMX0) && (reg <= REG_MMX7)) {
23711                 size = 64;
23712         }
23713         else if ((reg >= REG_XMM0) && (reg <= REG_XMM7)) {
23714                 size = 128;
23715         }
23716         return size;
23717 }
23718
23719 static int reg_size(struct compile_state *state, struct triple *ins)
23720 {
23721         int reg;
23722         reg = ID_REG(ins->id);
23723         if (reg == REG_UNSET) {
23724                 internal_error(state, ins, "register not set");
23725         }
23726         return arch_reg_size(reg);
23727 }
23728         
23729
23730
23731 const char *type_suffix(struct compile_state *state, struct type *type)
23732 {
23733         const char *suffix;
23734         switch(size_of(state, type)) {
23735         case SIZEOF_I8:  suffix = "b"; break;
23736         case SIZEOF_I16: suffix = "w"; break;
23737         case SIZEOF_I32: suffix = "l"; break;
23738         default:
23739                 internal_error(state, 0, "unknown suffix");
23740                 suffix = 0;
23741                 break;
23742         }
23743         return suffix;
23744 }
23745
23746 static void print_const_val(
23747         struct compile_state *state, struct triple *ins, FILE *fp)
23748 {
23749         switch(ins->op) {
23750         case OP_INTCONST:
23751                 fprintf(fp, " $%ld ", 
23752                         (long)(ins->u.cval));
23753                 break;
23754         case OP_ADDRCONST:
23755                 if ((MISC(ins, 0)->op != OP_SDECL) &&
23756                         (MISC(ins, 0)->op != OP_LABEL))
23757                 {
23758                         internal_error(state, ins, "bad base for addrconst");
23759                 }
23760                 if (MISC(ins, 0)->u.cval <= 0) {
23761                         internal_error(state, ins, "unlabeled constant");
23762                 }
23763                 fprintf(fp, " $L%s%lu+%lu ",
23764                         state->compiler->label_prefix, 
23765                         (unsigned long)(MISC(ins, 0)->u.cval),
23766                         (unsigned long)(ins->u.cval));
23767                 break;
23768         default:
23769                 internal_error(state, ins, "unknown constant type");
23770                 break;
23771         }
23772 }
23773
23774 static void print_const(struct compile_state *state,
23775         struct triple *ins, FILE *fp)
23776 {
23777         switch(ins->op) {
23778         case OP_INTCONST:
23779                 switch(ins->type->type & TYPE_MASK) {
23780                 case TYPE_CHAR:
23781                 case TYPE_UCHAR:
23782                         fprintf(fp, ".byte 0x%02lx\n", 
23783                                 (unsigned long)(ins->u.cval));
23784                         break;
23785                 case TYPE_SHORT:
23786                 case TYPE_USHORT:
23787                         fprintf(fp, ".short 0x%04lx\n", 
23788                                 (unsigned long)(ins->u.cval));
23789                         break;
23790                 case TYPE_INT:
23791                 case TYPE_UINT:
23792                 case TYPE_LONG:
23793                 case TYPE_ULONG:
23794                 case TYPE_POINTER:
23795                         fprintf(fp, ".int %lu\n", 
23796                                 (unsigned long)(ins->u.cval));
23797                         break;
23798                 default:
23799                         fprintf(state->errout, "type: ");
23800                         name_of(state->errout, ins->type);
23801                         fprintf(state->errout, "\n");
23802                         internal_error(state, ins, "Unknown constant type. Val: %lu",
23803                                 (unsigned long)(ins->u.cval));
23804                 }
23805                 
23806                 break;
23807         case OP_ADDRCONST:
23808                 if ((MISC(ins, 0)->op != OP_SDECL) &&
23809                         (MISC(ins, 0)->op != OP_LABEL)) {
23810                         internal_error(state, ins, "bad base for addrconst");
23811                 }
23812                 if (MISC(ins, 0)->u.cval <= 0) {
23813                         internal_error(state, ins, "unlabeled constant");
23814                 }
23815                 fprintf(fp, ".int L%s%lu+%lu\n",
23816                         state->compiler->label_prefix,
23817                         (unsigned long)(MISC(ins, 0)->u.cval),
23818                         (unsigned long)(ins->u.cval));
23819                 break;
23820         case OP_BLOBCONST:
23821         {
23822                 unsigned char *blob;
23823                 size_t size, i;
23824                 size = size_of_in_bytes(state, ins->type);
23825                 blob = ins->u.blob;
23826                 for(i = 0; i < size; i++) {
23827                         fprintf(fp, ".byte 0x%02x\n",
23828                                 blob[i]);
23829                 }
23830                 break;
23831         }
23832         default:
23833                 internal_error(state, ins, "Unknown constant type");
23834                 break;
23835         }
23836 }
23837
23838 #define TEXT_SECTION ".rom.text"
23839 #define DATA_SECTION ".rom.data"
23840
23841 static long get_const_pool_ref(
23842         struct compile_state *state, struct triple *ins, size_t size, FILE *fp)
23843 {
23844         size_t fill_bytes;
23845         long ref;
23846         ref = next_label(state);
23847         fprintf(fp, ".section \"" DATA_SECTION "\"\n");
23848         fprintf(fp, ".balign %ld\n", (long int)align_of_in_bytes(state, ins->type));
23849         fprintf(fp, "L%s%lu:\n", state->compiler->label_prefix, ref);
23850         print_const(state, ins, fp);
23851         fill_bytes = bits_to_bytes(size - size_of(state, ins->type));
23852         if (fill_bytes) {
23853                 fprintf(fp, ".fill %ld, 1, 0\n", (long int)fill_bytes);
23854         }
23855         fprintf(fp, ".section \"" TEXT_SECTION "\"\n");
23856         return ref;
23857 }
23858
23859 static long get_mask_pool_ref(
23860         struct compile_state *state, struct triple *ins, unsigned long mask, FILE *fp)
23861 {
23862         long ref;
23863         if (mask == 0xff) {
23864                 ref = 1;
23865         }
23866         else if (mask == 0xffff) {
23867                 ref = 2;
23868         }
23869         else {
23870                 ref = 0;
23871                 internal_error(state, ins, "unhandled mask value");
23872         }
23873         return ref;
23874 }
23875
23876 static void print_binary_op(struct compile_state *state,
23877         const char *op, struct triple *ins, FILE *fp) 
23878 {
23879         unsigned mask;
23880         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
23881         if (ID_REG(RHS(ins, 0)->id) != ID_REG(ins->id)) {
23882                 internal_error(state, ins, "invalid register assignment");
23883         }
23884         if (is_const(RHS(ins, 1))) {
23885                 fprintf(fp, "\t%s ", op);
23886                 print_const_val(state, RHS(ins, 1), fp);
23887                 fprintf(fp, ", %s\n",
23888                         reg(state, RHS(ins, 0), mask));
23889         }
23890         else {
23891                 unsigned lmask, rmask;
23892                 int lreg, rreg;
23893                 lreg = check_reg(state, RHS(ins, 0), mask);
23894                 rreg = check_reg(state, RHS(ins, 1), mask);
23895                 lmask = arch_reg_regcm(state, lreg);
23896                 rmask = arch_reg_regcm(state, rreg);
23897                 mask = lmask & rmask;
23898                 fprintf(fp, "\t%s %s, %s\n",
23899                         op,
23900                         reg(state, RHS(ins, 1), mask),
23901                         reg(state, RHS(ins, 0), mask));
23902         }
23903 }
23904 static void print_unary_op(struct compile_state *state, 
23905         const char *op, struct triple *ins, FILE *fp)
23906 {
23907         unsigned mask;
23908         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
23909         fprintf(fp, "\t%s %s\n",
23910                 op,
23911                 reg(state, RHS(ins, 0), mask));
23912 }
23913
23914 static void print_op_shift(struct compile_state *state,
23915         const char *op, struct triple *ins, FILE *fp)
23916 {
23917         unsigned mask;
23918         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
23919         if (ID_REG(RHS(ins, 0)->id) != ID_REG(ins->id)) {
23920                 internal_error(state, ins, "invalid register assignment");
23921         }
23922         if (is_const(RHS(ins, 1))) {
23923                 fprintf(fp, "\t%s ", op);
23924                 print_const_val(state, RHS(ins, 1), fp);
23925                 fprintf(fp, ", %s\n",
23926                         reg(state, RHS(ins, 0), mask));
23927         }
23928         else {
23929                 fprintf(fp, "\t%s %s, %s\n",
23930                         op,
23931                         reg(state, RHS(ins, 1), REGCM_GPR8_LO),
23932                         reg(state, RHS(ins, 0), mask));
23933         }
23934 }
23935
23936 static void print_op_in(struct compile_state *state, struct triple *ins, FILE *fp)
23937 {
23938         const char *op;
23939         int mask;
23940         int dreg;
23941         mask = 0;
23942         switch(ins->op) {
23943         case OP_INB: op = "inb", mask = REGCM_GPR8_LO; break;
23944         case OP_INW: op = "inw", mask = REGCM_GPR16; break;
23945         case OP_INL: op = "inl", mask = REGCM_GPR32; break;
23946         default:
23947                 internal_error(state, ins, "not an in operation");
23948                 op = 0;
23949                 break;
23950         }
23951         dreg = check_reg(state, ins, mask);
23952         if (!reg_is_reg(state, dreg, REG_EAX)) {
23953                 internal_error(state, ins, "dst != %%eax");
23954         }
23955         if (is_const(RHS(ins, 0))) {
23956                 fprintf(fp, "\t%s ", op);
23957                 print_const_val(state, RHS(ins, 0), fp);
23958                 fprintf(fp, ", %s\n",
23959                         reg(state, ins, mask));
23960         }
23961         else {
23962                 int addr_reg;
23963                 addr_reg = check_reg(state, RHS(ins, 0), REGCM_GPR16);
23964                 if (!reg_is_reg(state, addr_reg, REG_DX)) {
23965                         internal_error(state, ins, "src != %%dx");
23966                 }
23967                 fprintf(fp, "\t%s %s, %s\n",
23968                         op, 
23969                         reg(state, RHS(ins, 0), REGCM_GPR16),
23970                         reg(state, ins, mask));
23971         }
23972 }
23973
23974 static void print_op_out(struct compile_state *state, struct triple *ins, FILE *fp)
23975 {
23976         const char *op;
23977         int mask;
23978         int lreg;
23979         mask = 0;
23980         switch(ins->op) {
23981         case OP_OUTB: op = "outb", mask = REGCM_GPR8_LO; break;
23982         case OP_OUTW: op = "outw", mask = REGCM_GPR16; break;
23983         case OP_OUTL: op = "outl", mask = REGCM_GPR32; break;
23984         default:
23985                 internal_error(state, ins, "not an out operation");
23986                 op = 0;
23987                 break;
23988         }
23989         lreg = check_reg(state, RHS(ins, 0), mask);
23990         if (!reg_is_reg(state, lreg, REG_EAX)) {
23991                 internal_error(state, ins, "src != %%eax");
23992         }
23993         if (is_const(RHS(ins, 1))) {
23994                 fprintf(fp, "\t%s %s,", 
23995                         op, reg(state, RHS(ins, 0), mask));
23996                 print_const_val(state, RHS(ins, 1), fp);
23997                 fprintf(fp, "\n");
23998         }
23999         else {
24000                 int addr_reg;
24001                 addr_reg = check_reg(state, RHS(ins, 1), REGCM_GPR16);
24002                 if (!reg_is_reg(state, addr_reg, REG_DX)) {
24003                         internal_error(state, ins, "dst != %%dx");
24004                 }
24005                 fprintf(fp, "\t%s %s, %s\n",
24006                         op, 
24007                         reg(state, RHS(ins, 0), mask),
24008                         reg(state, RHS(ins, 1), REGCM_GPR16));
24009         }
24010 }
24011
24012 static void print_op_move(struct compile_state *state,
24013         struct triple *ins, FILE *fp)
24014 {
24015         /* op_move is complex because there are many types
24016          * of registers we can move between.
24017          * Because OP_COPY will be introduced in arbitrary locations
24018          * OP_COPY must not affect flags.
24019          * OP_CONVERT can change the flags and it is the only operation
24020          * where it is expected the types in the registers can change.
24021          */
24022         int omit_copy = 1; /* Is it o.k. to omit a noop copy? */
24023         struct triple *dst, *src;
24024         if (state->arch->features & X86_NOOP_COPY) {
24025                 omit_copy = 0;
24026         }
24027         if ((ins->op == OP_COPY) || (ins->op == OP_CONVERT)) {
24028                 src = RHS(ins, 0);
24029                 dst = ins;
24030         }
24031         else {
24032                 internal_error(state, ins, "unknown move operation");
24033                 src = dst = 0;
24034         }
24035         if (reg_size(state, dst) < size_of(state, dst->type)) {
24036                 internal_error(state, ins, "Invalid destination register");
24037         }
24038         if (!equiv_types(src->type, dst->type) && (dst->op == OP_COPY)) {
24039                 fprintf(state->errout, "src type: ");
24040                 name_of(state->errout, src->type);
24041                 fprintf(state->errout, "\n");
24042                 fprintf(state->errout, "dst type: ");
24043                 name_of(state->errout, dst->type);
24044                 fprintf(state->errout, "\n");
24045                 internal_error(state, ins, "Type mismatch for OP_COPY");
24046         }
24047
24048         if (!is_const(src)) {
24049                 int src_reg, dst_reg;
24050                 int src_regcm, dst_regcm;
24051                 src_reg   = ID_REG(src->id);
24052                 dst_reg   = ID_REG(dst->id);
24053                 src_regcm = arch_reg_regcm(state, src_reg);
24054                 dst_regcm = arch_reg_regcm(state, dst_reg);
24055                 /* If the class is the same just move the register */
24056                 if (src_regcm & dst_regcm & 
24057                         (REGCM_GPR8_LO | REGCM_GPR16 | REGCM_GPR32)) {
24058                         if ((src_reg != dst_reg) || !omit_copy) {
24059                                 fprintf(fp, "\tmov %s, %s\n",
24060                                         reg(state, src, src_regcm),
24061                                         reg(state, dst, dst_regcm));
24062                         }
24063                 }
24064                 /* Move 32bit to 16bit */
24065                 else if ((src_regcm & REGCM_GPR32) &&
24066                         (dst_regcm & REGCM_GPR16)) {
24067                         src_reg = (src_reg - REGC_GPR32_FIRST) + REGC_GPR16_FIRST;
24068                         if ((src_reg != dst_reg) || !omit_copy) {
24069                                 fprintf(fp, "\tmovw %s, %s\n",
24070                                         arch_reg_str(src_reg), 
24071                                         arch_reg_str(dst_reg));
24072                         }
24073                 }
24074                 /* Move from 32bit gprs to 16bit gprs */
24075                 else if ((src_regcm & REGCM_GPR32) &&
24076                         (dst_regcm & REGCM_GPR16)) {
24077                         dst_reg = (dst_reg - REGC_GPR16_FIRST) + REGC_GPR32_FIRST;
24078                         if ((src_reg != dst_reg) || !omit_copy) {
24079                                 fprintf(fp, "\tmov %s, %s\n",
24080                                         arch_reg_str(src_reg),
24081                                         arch_reg_str(dst_reg));
24082                         }
24083                 }
24084                 /* Move 32bit to 8bit */
24085                 else if ((src_regcm & REGCM_GPR32_8) &&
24086                         (dst_regcm & REGCM_GPR8_LO))
24087                 {
24088                         src_reg = (src_reg - REGC_GPR32_8_FIRST) + REGC_GPR8_FIRST;
24089                         if ((src_reg != dst_reg) || !omit_copy) {
24090                                 fprintf(fp, "\tmovb %s, %s\n",
24091                                         arch_reg_str(src_reg),
24092                                         arch_reg_str(dst_reg));
24093                         }
24094                 }
24095                 /* Move 16bit to 8bit */
24096                 else if ((src_regcm & REGCM_GPR16_8) &&
24097                         (dst_regcm & REGCM_GPR8_LO))
24098                 {
24099                         src_reg = (src_reg - REGC_GPR16_8_FIRST) + REGC_GPR8_FIRST;
24100                         if ((src_reg != dst_reg) || !omit_copy) {
24101                                 fprintf(fp, "\tmovb %s, %s\n",
24102                                         arch_reg_str(src_reg),
24103                                         arch_reg_str(dst_reg));
24104                         }
24105                 }
24106                 /* Move 8/16bit to 16/32bit */
24107                 else if ((src_regcm & (REGCM_GPR8_LO | REGCM_GPR16)) && 
24108                         (dst_regcm & (REGCM_GPR16 | REGCM_GPR32))) {
24109                         const char *op;
24110                         op = is_signed(src->type)? "movsx": "movzx";
24111                         fprintf(fp, "\t%s %s, %s\n",
24112                                 op,
24113                                 reg(state, src, src_regcm),
24114                                 reg(state, dst, dst_regcm));
24115                 }
24116                 /* Move between sse registers */
24117                 else if ((src_regcm & dst_regcm & REGCM_XMM)) {
24118                         if ((src_reg != dst_reg) || !omit_copy) {
24119                                 fprintf(fp, "\tmovdqa %s, %s\n",
24120                                         reg(state, src, src_regcm),
24121                                         reg(state, dst, dst_regcm));
24122                         }
24123                 }
24124                 /* Move between mmx registers */
24125                 else if ((src_regcm & dst_regcm & REGCM_MMX)) {
24126                         if ((src_reg != dst_reg) || !omit_copy) {
24127                                 fprintf(fp, "\tmovq %s, %s\n",
24128                                         reg(state, src, src_regcm),
24129                                         reg(state, dst, dst_regcm));
24130                         }
24131                 }
24132                 /* Move from sse to mmx registers */
24133                 else if ((src_regcm & REGCM_XMM) && (dst_regcm & REGCM_MMX)) {
24134                         fprintf(fp, "\tmovdq2q %s, %s\n",
24135                                 reg(state, src, src_regcm),
24136                                 reg(state, dst, dst_regcm));
24137                 }
24138                 /* Move from mmx to sse registers */
24139                 else if ((src_regcm & REGCM_MMX) && (dst_regcm & REGCM_XMM)) {
24140                         fprintf(fp, "\tmovq2dq %s, %s\n",
24141                                 reg(state, src, src_regcm),
24142                                 reg(state, dst, dst_regcm));
24143                 }
24144                 /* Move between 32bit gprs & mmx/sse registers */
24145                 else if ((src_regcm & (REGCM_GPR32 | REGCM_MMX | REGCM_XMM)) &&
24146                         (dst_regcm & (REGCM_GPR32 | REGCM_MMX | REGCM_XMM))) {
24147                         fprintf(fp, "\tmovd %s, %s\n",
24148                                 reg(state, src, src_regcm),
24149                                 reg(state, dst, dst_regcm));
24150                 }
24151                 /* Move from 16bit gprs &  mmx/sse registers */
24152                 else if ((src_regcm & REGCM_GPR16) &&
24153                         (dst_regcm & (REGCM_MMX | REGCM_XMM))) {
24154                         const char *op;
24155                         int mid_reg;
24156                         op = is_signed(src->type)? "movsx":"movzx";
24157                         mid_reg = (src_reg - REGC_GPR16_FIRST) + REGC_GPR32_FIRST;
24158                         fprintf(fp, "\t%s %s, %s\n\tmovd %s, %s\n",
24159                                 op,
24160                                 arch_reg_str(src_reg),
24161                                 arch_reg_str(mid_reg),
24162                                 arch_reg_str(mid_reg),
24163                                 arch_reg_str(dst_reg));
24164                 }
24165                 /* Move from mmx/sse registers to 16bit gprs */
24166                 else if ((src_regcm & (REGCM_MMX | REGCM_XMM)) &&
24167                         (dst_regcm & REGCM_GPR16)) {
24168                         dst_reg = (dst_reg - REGC_GPR16_FIRST) + REGC_GPR32_FIRST;
24169                         fprintf(fp, "\tmovd %s, %s\n",
24170                                 arch_reg_str(src_reg),
24171                                 arch_reg_str(dst_reg));
24172                 }
24173                 /* Move from gpr to 64bit dividend */
24174                 else if ((src_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO))  &&
24175                         (dst_regcm & REGCM_DIVIDEND64)) {
24176                         const char *extend;
24177                         extend = is_signed(src->type)? "cltd":"movl $0, %edx";
24178                         fprintf(fp, "\tmov %s, %%eax\n\t%s\n",
24179                                 arch_reg_str(src_reg), 
24180                                 extend);
24181                 }
24182                 /* Move from 64bit gpr to gpr */
24183                 else if ((src_regcm & REGCM_DIVIDEND64) &&
24184                         (dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO))) {
24185                         if (dst_regcm & REGCM_GPR32) {
24186                                 src_reg = REG_EAX;
24187                         } 
24188                         else if (dst_regcm & REGCM_GPR16) {
24189                                 src_reg = REG_AX;
24190                         }
24191                         else if (dst_regcm & REGCM_GPR8_LO) {
24192                                 src_reg = REG_AL;
24193                         }
24194                         fprintf(fp, "\tmov %s, %s\n",
24195                                 arch_reg_str(src_reg),
24196                                 arch_reg_str(dst_reg));
24197                 }
24198                 /* Move from mmx/sse registers to 64bit gpr */
24199                 else if ((src_regcm & (REGCM_MMX | REGCM_XMM)) &&
24200                         (dst_regcm & REGCM_DIVIDEND64)) {
24201                         const char *extend;
24202                         extend = is_signed(src->type)? "cltd": "movl $0, %edx";
24203                         fprintf(fp, "\tmovd %s, %%eax\n\t%s\n",
24204                                 arch_reg_str(src_reg),
24205                                 extend);
24206                 }
24207                 /* Move from 64bit gpr to mmx/sse register */
24208                 else if ((src_regcm & REGCM_DIVIDEND64) &&
24209                         (dst_regcm & (REGCM_XMM | REGCM_MMX))) {
24210                         fprintf(fp, "\tmovd %%eax, %s\n",
24211                                 arch_reg_str(dst_reg));
24212                 }
24213 #if X86_4_8BIT_GPRS
24214                 /* Move from 8bit gprs to  mmx/sse registers */
24215                 else if ((src_regcm & REGCM_GPR8_LO) && (src_reg <= REG_DL) &&
24216                         (dst_regcm & (REGCM_MMX | REGCM_XMM))) {
24217                         const char *op;
24218                         int mid_reg;
24219                         op = is_signed(src->type)? "movsx":"movzx";
24220                         mid_reg = (src_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
24221                         fprintf(fp, "\t%s %s, %s\n\tmovd %s, %s\n",
24222                                 op,
24223                                 reg(state, src, src_regcm),
24224                                 arch_reg_str(mid_reg),
24225                                 arch_reg_str(mid_reg),
24226                                 reg(state, dst, dst_regcm));
24227                 }
24228                 /* Move from mmx/sse registers and 8bit gprs */
24229                 else if ((src_regcm & (REGCM_MMX | REGCM_XMM)) &&
24230                         (dst_regcm & REGCM_GPR8_LO) && (dst_reg <= REG_DL)) {
24231                         int mid_reg;
24232                         mid_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
24233                         fprintf(fp, "\tmovd %s, %s\n",
24234                                 reg(state, src, src_regcm),
24235                                 arch_reg_str(mid_reg));
24236                 }
24237                 /* Move from 32bit gprs to 8bit gprs */
24238                 else if ((src_regcm & REGCM_GPR32) &&
24239                         (dst_regcm & REGCM_GPR8_LO)) {
24240                         dst_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
24241                         if ((src_reg != dst_reg) || !omit_copy) {
24242                                 fprintf(fp, "\tmov %s, %s\n",
24243                                         arch_reg_str(src_reg),
24244                                         arch_reg_str(dst_reg));
24245                         }
24246                 }
24247                 /* Move from 16bit gprs to 8bit gprs */
24248                 else if ((src_regcm & REGCM_GPR16) &&
24249                         (dst_regcm & REGCM_GPR8_LO)) {
24250                         dst_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR16_FIRST;
24251                         if ((src_reg != dst_reg) || !omit_copy) {
24252                                 fprintf(fp, "\tmov %s, %s\n",
24253                                         arch_reg_str(src_reg),
24254                                         arch_reg_str(dst_reg));
24255                         }
24256                 }
24257 #endif /* X86_4_8BIT_GPRS */
24258                 /* Move from %eax:%edx to %eax:%edx */
24259                 else if ((src_regcm & REGCM_DIVIDEND64) &&
24260                         (dst_regcm & REGCM_DIVIDEND64) &&
24261                         (src_reg == dst_reg)) {
24262                         if (!omit_copy) {
24263                                 fprintf(fp, "\t/*mov %s, %s*/\n",
24264                                         arch_reg_str(src_reg),
24265                                         arch_reg_str(dst_reg));
24266                         }
24267                 }
24268                 else {
24269                         if ((src_regcm & ~REGCM_FLAGS) == 0) {
24270                                 internal_error(state, ins, "attempt to copy from %%eflags!");
24271                         }
24272                         internal_error(state, ins, "unknown copy type");
24273                 }
24274         }
24275         else {
24276                 size_t dst_size;
24277                 int dst_reg;
24278                 int dst_regcm;
24279                 dst_size = size_of(state, dst->type);
24280                 dst_reg = ID_REG(dst->id);
24281                 dst_regcm = arch_reg_regcm(state, dst_reg);
24282                 if (dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO)) {
24283                         fprintf(fp, "\tmov ");
24284                         print_const_val(state, src, fp);
24285                         fprintf(fp, ", %s\n",
24286                                 reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO));
24287                 }
24288                 else if (dst_regcm & REGCM_DIVIDEND64) {
24289                         if (dst_size > SIZEOF_I32) {
24290                                 internal_error(state, ins, "%dbit constant...", dst_size);
24291                         }
24292                         fprintf(fp, "\tmov $0, %%edx\n");
24293                         fprintf(fp, "\tmov ");
24294                         print_const_val(state, src, fp);
24295                         fprintf(fp, ", %%eax\n");
24296                 }
24297                 else if (dst_regcm & REGCM_DIVIDEND32) {
24298                         if (dst_size > SIZEOF_I16) {
24299                                 internal_error(state, ins, "%dbit constant...", dst_size);
24300                         }
24301                         fprintf(fp, "\tmov $0, %%dx\n");
24302                         fprintf(fp, "\tmov ");
24303                         print_const_val(state, src, fp);
24304                         fprintf(fp, ", %%ax");
24305                 }
24306                 else if (dst_regcm & (REGCM_XMM | REGCM_MMX)) {
24307                         long ref;
24308                         if (dst_size > SIZEOF_I32) {
24309                                 internal_error(state, ins, "%d bit constant...", dst_size);
24310                         }
24311                         ref = get_const_pool_ref(state, src, SIZEOF_I32, fp);
24312                         fprintf(fp, "\tmovd L%s%lu, %s\n",
24313                                 state->compiler->label_prefix, ref,
24314                                 reg(state, dst, (REGCM_XMM | REGCM_MMX)));
24315                 }
24316                 else {
24317                         internal_error(state, ins, "unknown copy immediate type");
24318                 }
24319         }
24320         /* Leave now if this is not a type conversion */
24321         if (ins->op != OP_CONVERT) {
24322                 return;
24323         }
24324         /* Now make certain I have not logically overflowed the destination */
24325         if ((size_of(state, src->type) > size_of(state, dst->type)) &&
24326                 (size_of(state, dst->type) < reg_size(state, dst)))
24327         {
24328                 unsigned long mask;
24329                 int dst_reg;
24330                 int dst_regcm;
24331                 if (size_of(state, dst->type) >= 32) {
24332                         fprintf(state->errout, "dst type: ");
24333                         name_of(state->errout, dst->type);
24334                         fprintf(state->errout, "\n");
24335                         internal_error(state, dst, "unhandled dst type size");
24336                 }
24337                 mask = 1;
24338                 mask <<= size_of(state, dst->type);
24339                 mask -= 1;
24340
24341                 dst_reg = ID_REG(dst->id);
24342                 dst_regcm = arch_reg_regcm(state, dst_reg);
24343
24344                 if (dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO)) {
24345                         fprintf(fp, "\tand $0x%lx, %s\n",
24346                                 mask, reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO));
24347                 }
24348                 else if (dst_regcm & REGCM_MMX) {
24349                         long ref;
24350                         ref = get_mask_pool_ref(state, dst, mask, fp);
24351                         fprintf(fp, "\tpand L%s%lu, %s\n",
24352                                 state->compiler->label_prefix, ref,
24353                                 reg(state, dst, REGCM_MMX));
24354                 }
24355                 else if (dst_regcm & REGCM_XMM) {
24356                         long ref;
24357                         ref = get_mask_pool_ref(state, dst, mask, fp);
24358                         fprintf(fp, "\tpand L%s%lu, %s\n",
24359                                 state->compiler->label_prefix, ref,
24360                                 reg(state, dst, REGCM_XMM));
24361                 }
24362                 else {
24363                         fprintf(state->errout, "dst type: ");
24364                         name_of(state->errout, dst->type);
24365                         fprintf(state->errout, "\n");
24366                         fprintf(state->errout, "dst: %s\n", reg(state, dst, REGCM_ALL));
24367                         internal_error(state, dst, "failed to trunc value: mask %lx", mask);
24368                 }
24369         }
24370         /* Make certain I am properly sign extended */
24371         if ((size_of(state, src->type) < size_of(state, dst->type)) &&
24372                 (is_signed(src->type)))
24373         {
24374                 int bits, reg_bits, shift_bits;
24375                 int dst_reg;
24376                 int dst_regcm;
24377
24378                 bits = size_of(state, src->type);
24379                 reg_bits = reg_size(state, dst);
24380                 if (reg_bits > 32) {
24381                         reg_bits = 32;
24382                 }
24383                 shift_bits = reg_bits - size_of(state, src->type);
24384                 dst_reg = ID_REG(dst->id);
24385                 dst_regcm = arch_reg_regcm(state, dst_reg);
24386
24387                 if (shift_bits < 0) {
24388                         internal_error(state, dst, "negative shift?");
24389                 }
24390
24391                 if (dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO)) {
24392                         fprintf(fp, "\tshl $%d, %s\n", 
24393                                 shift_bits, 
24394                                 reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO));
24395                         fprintf(fp, "\tsar $%d, %s\n", 
24396                                 shift_bits, 
24397                                 reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO));
24398                 }
24399                 else if (dst_regcm & (REGCM_MMX | REGCM_XMM)) {
24400                         fprintf(fp, "\tpslld $%d, %s\n",
24401                                 shift_bits, 
24402                                 reg(state, dst, REGCM_MMX | REGCM_XMM));
24403                         fprintf(fp, "\tpsrad $%d, %s\n",
24404                                 shift_bits, 
24405                                 reg(state, dst, REGCM_MMX | REGCM_XMM));
24406                 }
24407                 else {
24408                         fprintf(state->errout, "dst type: ");
24409                         name_of(state->errout, dst->type);
24410                         fprintf(state->errout, "\n");
24411                         fprintf(state->errout, "dst: %s\n", reg(state, dst, REGCM_ALL));
24412                         internal_error(state, dst, "failed to signed extend value");
24413                 }
24414         }
24415 }
24416
24417 static void print_op_load(struct compile_state *state,
24418         struct triple *ins, FILE *fp)
24419 {
24420         struct triple *dst, *src;
24421         const char *op;
24422         dst = ins;
24423         src = RHS(ins, 0);
24424         if (is_const(src) || is_const(dst)) {
24425                 internal_error(state, ins, "unknown load operation");
24426         }
24427         switch(ins->type->type & TYPE_MASK) {
24428         case TYPE_CHAR:   op = "movsbl"; break;
24429         case TYPE_UCHAR:  op = "movzbl"; break;
24430         case TYPE_SHORT:  op = "movswl"; break;
24431         case TYPE_USHORT: op = "movzwl"; break;
24432         case TYPE_INT:    case TYPE_UINT:
24433         case TYPE_LONG:   case TYPE_ULONG:
24434         case TYPE_POINTER:
24435                 op = "movl"; 
24436                 break;
24437         default:
24438                 internal_error(state, ins, "unknown type in load");
24439                 op = "<invalid opcode>";
24440                 break;
24441         }
24442         fprintf(fp, "\t%s (%s), %s\n",
24443                 op, 
24444                 reg(state, src, REGCM_GPR32),
24445                 reg(state, dst, REGCM_GPR32));
24446 }
24447
24448
24449 static void print_op_store(struct compile_state *state,
24450         struct triple *ins, FILE *fp)
24451 {
24452         struct triple *dst, *src;
24453         dst = RHS(ins, 0);
24454         src = RHS(ins, 1);
24455         if (is_const(src) && (src->op == OP_INTCONST)) {
24456                 long_t value;
24457                 value = (long_t)(src->u.cval);
24458                 fprintf(fp, "\tmov%s $%ld, (%s)\n",
24459                         type_suffix(state, src->type),
24460                         (long)(value),
24461                         reg(state, dst, REGCM_GPR32));
24462         }
24463         else if (is_const(dst) && (dst->op == OP_INTCONST)) {
24464                 fprintf(fp, "\tmov%s %s, 0x%08lx\n",
24465                         type_suffix(state, src->type),
24466                         reg(state, src, REGCM_GPR8_LO | REGCM_GPR16 | REGCM_GPR32),
24467                         (unsigned long)(dst->u.cval));
24468         }
24469         else {
24470                 if (is_const(src) || is_const(dst)) {
24471                         internal_error(state, ins, "unknown store operation");
24472                 }
24473                 fprintf(fp, "\tmov%s %s, (%s)\n",
24474                         type_suffix(state, src->type),
24475                         reg(state, src, REGCM_GPR8_LO | REGCM_GPR16 | REGCM_GPR32),
24476                         reg(state, dst, REGCM_GPR32));
24477         }
24478         
24479         
24480 }
24481
24482 static void print_op_smul(struct compile_state *state,
24483         struct triple *ins, FILE *fp)
24484 {
24485         if (!is_const(RHS(ins, 1))) {
24486                 fprintf(fp, "\timul %s, %s\n",
24487                         reg(state, RHS(ins, 1), REGCM_GPR32),
24488                         reg(state, RHS(ins, 0), REGCM_GPR32));
24489         }
24490         else {
24491                 fprintf(fp, "\timul ");
24492                 print_const_val(state, RHS(ins, 1), fp);
24493                 fprintf(fp, ", %s\n", reg(state, RHS(ins, 0), REGCM_GPR32));
24494         }
24495 }
24496
24497 static void print_op_cmp(struct compile_state *state,
24498         struct triple *ins, FILE *fp)
24499 {
24500         unsigned mask;
24501         int dreg;
24502         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
24503         dreg = check_reg(state, ins, REGCM_FLAGS);
24504         if (!reg_is_reg(state, dreg, REG_EFLAGS)) {
24505                 internal_error(state, ins, "bad dest register for cmp");
24506         }
24507         if (is_const(RHS(ins, 1))) {
24508                 fprintf(fp, "\tcmp ");
24509                 print_const_val(state, RHS(ins, 1), fp);
24510                 fprintf(fp, ", %s\n", reg(state, RHS(ins, 0), mask));
24511         }
24512         else {
24513                 unsigned lmask, rmask;
24514                 int lreg, rreg;
24515                 lreg = check_reg(state, RHS(ins, 0), mask);
24516                 rreg = check_reg(state, RHS(ins, 1), mask);
24517                 lmask = arch_reg_regcm(state, lreg);
24518                 rmask = arch_reg_regcm(state, rreg);
24519                 mask = lmask & rmask;
24520                 fprintf(fp, "\tcmp %s, %s\n",
24521                         reg(state, RHS(ins, 1), mask),
24522                         reg(state, RHS(ins, 0), mask));
24523         }
24524 }
24525
24526 static void print_op_test(struct compile_state *state,
24527         struct triple *ins, FILE *fp)
24528 {
24529         unsigned mask;
24530         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
24531         fprintf(fp, "\ttest %s, %s\n",
24532                 reg(state, RHS(ins, 0), mask),
24533                 reg(state, RHS(ins, 0), mask));
24534 }
24535
24536 static void print_op_branch(struct compile_state *state,
24537         struct triple *branch, FILE *fp)
24538 {
24539         const char *bop = "j";
24540         if ((branch->op == OP_JMP) || (branch->op == OP_CALL)) {
24541                 if (branch->rhs != 0) {
24542                         internal_error(state, branch, "jmp with condition?");
24543                 }
24544                 bop = "jmp";
24545         }
24546         else {
24547                 struct triple *ptr;
24548                 if (branch->rhs != 1) {
24549                         internal_error(state, branch, "jmpcc without condition?");
24550                 }
24551                 check_reg(state, RHS(branch, 0), REGCM_FLAGS);
24552                 if ((RHS(branch, 0)->op != OP_CMP) &&
24553                         (RHS(branch, 0)->op != OP_TEST)) {
24554                         internal_error(state, branch, "bad branch test");
24555                 }
24556 #if DEBUG_ROMCC_WARNINGS
24557 #warning "FIXME I have observed instructions between the test and branch instructions"
24558 #endif
24559                 ptr = RHS(branch, 0);
24560                 for(ptr = RHS(branch, 0)->next; ptr != branch; ptr = ptr->next) {
24561                         if (ptr->op != OP_COPY) {
24562                                 internal_error(state, branch, "branch does not follow test");
24563                         }
24564                 }
24565                 switch(branch->op) {
24566                 case OP_JMP_EQ:       bop = "jz";  break;
24567                 case OP_JMP_NOTEQ:    bop = "jnz"; break;
24568                 case OP_JMP_SLESS:    bop = "jl";  break;
24569                 case OP_JMP_ULESS:    bop = "jb";  break;
24570                 case OP_JMP_SMORE:    bop = "jg";  break;
24571                 case OP_JMP_UMORE:    bop = "ja";  break;
24572                 case OP_JMP_SLESSEQ:  bop = "jle"; break;
24573                 case OP_JMP_ULESSEQ:  bop = "jbe"; break;
24574                 case OP_JMP_SMOREEQ:  bop = "jge"; break;
24575                 case OP_JMP_UMOREEQ:  bop = "jae"; break;
24576                 default:
24577                         internal_error(state, branch, "Invalid branch op");
24578                         break;
24579                 }
24580                 
24581         }
24582 #if 1
24583         if (branch->op == OP_CALL) {
24584                 fprintf(fp, "\t/* call */\n");
24585         }
24586 #endif
24587         fprintf(fp, "\t%s L%s%lu\n",
24588                 bop, 
24589                 state->compiler->label_prefix,
24590                 (unsigned long)(TARG(branch, 0)->u.cval));
24591 }
24592
24593 static void print_op_ret(struct compile_state *state,
24594         struct triple *branch, FILE *fp)
24595 {
24596         fprintf(fp, "\tjmp *%s\n",
24597                 reg(state, RHS(branch, 0), REGCM_GPR32));
24598 }
24599
24600 static void print_op_set(struct compile_state *state,
24601         struct triple *set, FILE *fp)
24602 {
24603         const char *sop = "set";
24604         if (set->rhs != 1) {
24605                 internal_error(state, set, "setcc without condition?");
24606         }
24607         check_reg(state, RHS(set, 0), REGCM_FLAGS);
24608         if ((RHS(set, 0)->op != OP_CMP) &&
24609                 (RHS(set, 0)->op != OP_TEST)) {
24610                 internal_error(state, set, "bad set test");
24611         }
24612         if (RHS(set, 0)->next != set) {
24613                 internal_error(state, set, "set does not follow test");
24614         }
24615         switch(set->op) {
24616         case OP_SET_EQ:       sop = "setz";  break;
24617         case OP_SET_NOTEQ:    sop = "setnz"; break;
24618         case OP_SET_SLESS:    sop = "setl";  break;
24619         case OP_SET_ULESS:    sop = "setb";  break;
24620         case OP_SET_SMORE:    sop = "setg";  break;
24621         case OP_SET_UMORE:    sop = "seta";  break;
24622         case OP_SET_SLESSEQ:  sop = "setle"; break;
24623         case OP_SET_ULESSEQ:  sop = "setbe"; break;
24624         case OP_SET_SMOREEQ:  sop = "setge"; break;
24625         case OP_SET_UMOREEQ:  sop = "setae"; break;
24626         default:
24627                 internal_error(state, set, "Invalid set op");
24628                 break;
24629         }
24630         fprintf(fp, "\t%s %s\n",
24631                 sop, reg(state, set, REGCM_GPR8_LO));
24632 }
24633
24634 static void print_op_bit_scan(struct compile_state *state, 
24635         struct triple *ins, FILE *fp) 
24636 {
24637         const char *op;
24638         switch(ins->op) {
24639         case OP_BSF: op = "bsf"; break;
24640         case OP_BSR: op = "bsr"; break;
24641         default: 
24642                 internal_error(state, ins, "unknown bit scan");
24643                 op = 0;
24644                 break;
24645         }
24646         fprintf(fp, 
24647                 "\t%s %s, %s\n"
24648                 "\tjnz 1f\n"
24649                 "\tmovl $-1, %s\n"
24650                 "1:\n",
24651                 op,
24652                 reg(state, RHS(ins, 0), REGCM_GPR32),
24653                 reg(state, ins, REGCM_GPR32),
24654                 reg(state, ins, REGCM_GPR32));
24655 }
24656
24657
24658 static void print_sdecl(struct compile_state *state,
24659         struct triple *ins, FILE *fp)
24660 {
24661         fprintf(fp, ".section \"" DATA_SECTION "\"\n");
24662         fprintf(fp, ".balign %ld\n", (long int)align_of_in_bytes(state, ins->type));
24663         fprintf(fp, "L%s%lu:\n", 
24664                 state->compiler->label_prefix, (unsigned long)(ins->u.cval));
24665         print_const(state, MISC(ins, 0), fp);
24666         fprintf(fp, ".section \"" TEXT_SECTION "\"\n");
24667                 
24668 }
24669
24670 static void print_instruction(struct compile_state *state,
24671         struct triple *ins, FILE *fp)
24672 {
24673         /* Assumption: after I have exted the register allocator
24674          * everything is in a valid register. 
24675          */
24676         switch(ins->op) {
24677         case OP_ASM:
24678                 print_op_asm(state, ins, fp);
24679                 break;
24680         case OP_ADD:    print_binary_op(state, "add", ins, fp); break;
24681         case OP_SUB:    print_binary_op(state, "sub", ins, fp); break;
24682         case OP_AND:    print_binary_op(state, "and", ins, fp); break;
24683         case OP_XOR:    print_binary_op(state, "xor", ins, fp); break;
24684         case OP_OR:     print_binary_op(state, "or",  ins, fp); break;
24685         case OP_SL:     print_op_shift(state, "shl", ins, fp); break;
24686         case OP_USR:    print_op_shift(state, "shr", ins, fp); break;
24687         case OP_SSR:    print_op_shift(state, "sar", ins, fp); break;
24688         case OP_POS:    break;
24689         case OP_NEG:    print_unary_op(state, "neg", ins, fp); break;
24690         case OP_INVERT: print_unary_op(state, "not", ins, fp); break;
24691         case OP_NOOP:
24692         case OP_INTCONST:
24693         case OP_ADDRCONST:
24694         case OP_BLOBCONST:
24695                 /* Don't generate anything here for constants */
24696         case OP_PHI:
24697                 /* Don't generate anything for variable declarations. */
24698                 break;
24699         case OP_UNKNOWNVAL:
24700                 fprintf(fp, " /* unknown %s */\n",
24701                         reg(state, ins, REGCM_ALL));
24702                 break;
24703         case OP_SDECL:
24704                 print_sdecl(state, ins, fp);
24705                 break;
24706         case OP_COPY:   
24707         case OP_CONVERT:
24708                 print_op_move(state, ins, fp);
24709                 break;
24710         case OP_LOAD:
24711                 print_op_load(state, ins, fp);
24712                 break;
24713         case OP_STORE:
24714                 print_op_store(state, ins, fp);
24715                 break;
24716         case OP_SMUL:
24717                 print_op_smul(state, ins, fp);
24718                 break;
24719         case OP_CMP:    print_op_cmp(state, ins, fp); break;
24720         case OP_TEST:   print_op_test(state, ins, fp); break;
24721         case OP_JMP:
24722         case OP_JMP_EQ:      case OP_JMP_NOTEQ:
24723         case OP_JMP_SLESS:   case OP_JMP_ULESS:
24724         case OP_JMP_SMORE:   case OP_JMP_UMORE:
24725         case OP_JMP_SLESSEQ: case OP_JMP_ULESSEQ:
24726         case OP_JMP_SMOREEQ: case OP_JMP_UMOREEQ:
24727         case OP_CALL:
24728                 print_op_branch(state, ins, fp);
24729                 break;
24730         case OP_RET:
24731                 print_op_ret(state, ins, fp);
24732                 break;
24733         case OP_SET_EQ:      case OP_SET_NOTEQ:
24734         case OP_SET_SLESS:   case OP_SET_ULESS:
24735         case OP_SET_SMORE:   case OP_SET_UMORE:
24736         case OP_SET_SLESSEQ: case OP_SET_ULESSEQ:
24737         case OP_SET_SMOREEQ: case OP_SET_UMOREEQ:
24738                 print_op_set(state, ins, fp);
24739                 break;
24740         case OP_INB:  case OP_INW:  case OP_INL:
24741                 print_op_in(state, ins, fp); 
24742                 break;
24743         case OP_OUTB: case OP_OUTW: case OP_OUTL:
24744                 print_op_out(state, ins, fp); 
24745                 break;
24746         case OP_BSF:
24747         case OP_BSR:
24748                 print_op_bit_scan(state, ins, fp);
24749                 break;
24750         case OP_RDMSR:
24751                 after_lhs(state, ins);
24752                 fprintf(fp, "\trdmsr\n");
24753                 break;
24754         case OP_WRMSR:
24755                 fprintf(fp, "\twrmsr\n");
24756                 break;
24757         case OP_HLT:
24758                 fprintf(fp, "\thlt\n");
24759                 break;
24760         case OP_SDIVT:
24761                 fprintf(fp, "\tidiv %s\n", reg(state, RHS(ins, 1), REGCM_GPR32));
24762                 break;
24763         case OP_UDIVT:
24764                 fprintf(fp, "\tdiv %s\n", reg(state, RHS(ins, 1), REGCM_GPR32));
24765                 break;
24766         case OP_UMUL:
24767                 fprintf(fp, "\tmul %s\n", reg(state, RHS(ins, 1), REGCM_GPR32));
24768                 break;
24769         case OP_LABEL:
24770                 if (!ins->use) {
24771                         return;
24772                 }
24773                 fprintf(fp, "L%s%lu:\n", 
24774                         state->compiler->label_prefix, (unsigned long)(ins->u.cval));
24775                 break;
24776         case OP_ADECL:
24777                 /* Ignore adecls with no registers error otherwise */
24778                 if (!noop_adecl(ins)) {
24779                         internal_error(state, ins, "adecl remains?");
24780                 }
24781                 break;
24782                 /* Ignore OP_PIECE */
24783         case OP_PIECE:
24784                 break;
24785                 /* Operations that should never get here */
24786         case OP_SDIV: case OP_UDIV:
24787         case OP_SMOD: case OP_UMOD:
24788         case OP_LTRUE:   case OP_LFALSE:  case OP_EQ:      case OP_NOTEQ:
24789         case OP_SLESS:   case OP_ULESS:   case OP_SMORE:   case OP_UMORE:
24790         case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
24791         default:
24792                 internal_error(state, ins, "unknown op: %d %s",
24793                         ins->op, tops(ins->op));
24794                 break;
24795         }
24796 }
24797
24798 static void print_instructions(struct compile_state *state)
24799 {
24800         struct triple *first, *ins;
24801         int print_location;
24802         struct occurance *last_occurance;
24803         FILE *fp;
24804         int max_inline_depth;
24805         max_inline_depth = 0;
24806         print_location = 1;
24807         last_occurance = 0;
24808         fp = state->output;
24809         /* Masks for common sizes */
24810         fprintf(fp, ".section \"" DATA_SECTION "\"\n");
24811         fprintf(fp, ".balign 16\n");
24812         fprintf(fp, "L%s1:\n", state->compiler->label_prefix);
24813         fprintf(fp, ".int 0xff, 0, 0, 0\n");
24814         fprintf(fp, "L%s2:\n", state->compiler->label_prefix);
24815         fprintf(fp, ".int 0xffff, 0, 0, 0\n");
24816         fprintf(fp, ".section \"" TEXT_SECTION "\"\n");
24817         first = state->first;
24818         ins = first;
24819         do {
24820                 if (print_location && 
24821                         last_occurance != ins->occurance) {
24822                         if (!ins->occurance->parent) {
24823                                 fprintf(fp, "\t/* %s,%s:%d.%d */\n",
24824                                         ins->occurance->function?ins->occurance->function:"(null)",
24825                                         ins->occurance->filename?ins->occurance->filename:"(null)",
24826                                         ins->occurance->line,
24827                                         ins->occurance->col);
24828                         }
24829                         else {
24830                                 struct occurance *ptr;
24831                                 int inline_depth;
24832                                 fprintf(fp, "\t/*\n");
24833                                 inline_depth = 0;
24834                                 for(ptr = ins->occurance; ptr; ptr = ptr->parent) {
24835                                         inline_depth++;
24836                                         fprintf(fp, "\t * %s,%s:%d.%d\n",
24837                                                 ptr->function,
24838                                                 ptr->filename,
24839                                                 ptr->line,
24840                                                 ptr->col);
24841                                 }
24842                                 fprintf(fp, "\t */\n");
24843                                 if (inline_depth > max_inline_depth) {
24844                                         max_inline_depth = inline_depth;
24845                                 }
24846                         }
24847                         if (last_occurance) {
24848                                 put_occurance(last_occurance);
24849                         }
24850                         get_occurance(ins->occurance);
24851                         last_occurance = ins->occurance;
24852                 }
24853
24854                 print_instruction(state, ins, fp);
24855                 ins = ins->next;
24856         } while(ins != first);
24857         if (print_location) {
24858                 fprintf(fp, "/* max inline depth %d */\n",
24859                         max_inline_depth);
24860         }
24861 }
24862
24863 static void generate_code(struct compile_state *state)
24864 {
24865         generate_local_labels(state);
24866         print_instructions(state);
24867         
24868 }
24869
24870 static void print_preprocessed_tokens(struct compile_state *state)
24871 {
24872         int tok;
24873         FILE *fp;
24874         int line;
24875         const char *filename;
24876         fp = state->output;
24877         filename = 0;
24878         line = 0;
24879         for(;;) {
24880                 struct file_state *file;
24881                 struct token *tk;
24882                 const char *token_str;
24883                 tok = peek(state);
24884                 if (tok == TOK_EOF) {
24885                         break;
24886                 }
24887                 tk = eat(state, tok);
24888                 token_str = 
24889                         tk->ident ? tk->ident->name :
24890                         tk->str_len ? tk->val.str :
24891                         tokens[tk->tok];
24892
24893                 file = state->file;
24894                 while(file->macro && file->prev) {
24895                         file = file->prev;
24896                 }
24897                 if (!file->macro && 
24898                         ((file->line != line) || (file->basename != filename))) 
24899                 {
24900                         int i, col;
24901                         if ((file->basename == filename) &&
24902                                 (line < file->line)) {
24903                                 while(line < file->line) {
24904                                         fprintf(fp, "\n");
24905                                         line++;
24906                                 }
24907                         }
24908                         else {
24909                                 fprintf(fp, "\n#line %d \"%s\"\n",
24910                                         file->line, file->basename);
24911                         }
24912                         line = file->line;
24913                         filename = file->basename;
24914                         col = get_col(file) - strlen(token_str);
24915                         for(i = 0; i < col; i++) {
24916                                 fprintf(fp, " ");
24917                         }
24918                 }
24919                 
24920                 fprintf(fp, "%s ", token_str);
24921                 
24922                 if (state->compiler->debug & DEBUG_TOKENS) {
24923                         loc(state->dbgout, state, 0);
24924                         fprintf(state->dbgout, "%s <- `%s'\n",
24925                                 tokens[tok], token_str);
24926                 }
24927         }
24928 }
24929
24930 static void compile(const char *filename, const char *includefile,
24931         struct compiler_state *compiler, struct arch_state *arch)
24932 {
24933         int i;
24934         struct compile_state state;
24935         struct triple *ptr;
24936         memset(&state, 0, sizeof(state));
24937         state.compiler = compiler;
24938         state.arch     = arch;
24939         state.file = 0;
24940         for(i = 0; i < sizeof(state.token)/sizeof(state.token[0]); i++) {
24941                 memset(&state.token[i], 0, sizeof(state.token[i]));
24942                 state.token[i].tok = -1;
24943         }
24944         /* Remember the output descriptors */
24945         state.errout = stderr;
24946         state.dbgout = stdout;
24947         /* Remember the output filename */
24948         state.output    = fopen(state.compiler->ofilename, "w");
24949         if (!state.output) {
24950                 error(&state, 0, "Cannot open output file %s\n",
24951                         state.compiler->ofilename);
24952         }
24953         /* Make certain a good cleanup happens */
24954         exit_state = &state;
24955         atexit(exit_cleanup);
24956
24957         /* Prep the preprocessor */
24958         state.if_depth = 0;
24959         memset(state.if_bytes, 0, sizeof(state.if_bytes));
24960         /* register the C keywords */
24961         register_keywords(&state);
24962         /* register the keywords the macro preprocessor knows */
24963         register_macro_keywords(&state);
24964         /* generate some builtin macros */
24965         register_builtin_macros(&state);
24966         /* Memorize where some special keywords are. */
24967         state.i_switch        = lookup(&state, "switch", 6);
24968         state.i_case          = lookup(&state, "case", 4);
24969         state.i_continue      = lookup(&state, "continue", 8);
24970         state.i_break         = lookup(&state, "break", 5);
24971         state.i_default       = lookup(&state, "default", 7);
24972         state.i_return        = lookup(&state, "return", 6);
24973         /* Memorize where predefined macros are. */
24974         state.i___VA_ARGS__   = lookup(&state, "__VA_ARGS__", 11);
24975         state.i___FILE__      = lookup(&state, "__FILE__", 8);
24976         state.i___LINE__      = lookup(&state, "__LINE__", 8);
24977         /* Memorize where predefined identifiers are. */
24978         state.i___func__      = lookup(&state, "__func__", 8);
24979         /* Memorize where some attribute keywords are. */
24980         state.i_noinline      = lookup(&state, "noinline", 8);
24981         state.i_always_inline = lookup(&state, "always_inline", 13);
24982
24983         /* Process the command line macros */
24984         process_cmdline_macros(&state);
24985
24986         /* Allocate beginning bounding labels for the function list */
24987         state.first = label(&state);
24988         state.first->id |= TRIPLE_FLAG_VOLATILE;
24989         use_triple(state.first, state.first);
24990         ptr = label(&state);
24991         ptr->id |= TRIPLE_FLAG_VOLATILE;
24992         use_triple(ptr, ptr);
24993         flatten(&state, state.first, ptr);
24994
24995         /* Allocate a label for the pool of global variables */
24996         state.global_pool = label(&state);
24997         state.global_pool->id |= TRIPLE_FLAG_VOLATILE;
24998         flatten(&state, state.first, state.global_pool);
24999
25000         /* Enter the globl definition scope */
25001         start_scope(&state);
25002         register_builtins(&state);
25003
25004         compile_file(&state, filename, 1);
25005         if (includefile)
25006                 compile_file(&state, includefile, 1);
25007
25008         /* Stop if all we want is preprocessor output */
25009         if (state.compiler->flags & COMPILER_PP_ONLY) {
25010                 print_preprocessed_tokens(&state);
25011                 return;
25012         }
25013
25014         decls(&state);
25015
25016         /* Exit the global definition scope */
25017         end_scope(&state);
25018
25019         /* Now that basic compilation has happened 
25020          * optimize the intermediate code 
25021          */
25022         optimize(&state);
25023
25024         generate_code(&state);
25025         if (state.compiler->debug) {
25026                 fprintf(state.errout, "done\n");
25027         }
25028         exit_state = 0;
25029 }
25030
25031 static void version(FILE *fp)
25032 {
25033         fprintf(fp, "romcc " VERSION " released " RELEASE_DATE "\n");
25034 }
25035
25036 static void usage(void)
25037 {
25038         FILE *fp = stdout;
25039         version(fp);
25040         fprintf(fp,
25041                 "\nUsage: romcc [options] <source>.c\n"
25042                 "Compile a C source file generating a binary that does not implicilty use RAM\n"
25043                 "Options: \n"
25044                 "-o <output file name>\n"
25045                 "-f<option>            Specify a generic compiler option\n"
25046                 "-m<option>            Specify a arch dependent option\n"
25047                 "--                    Specify this is the last option\n"
25048                 "\nGeneric compiler options:\n"
25049         );
25050         compiler_usage(fp);
25051         fprintf(fp,
25052                 "\nArchitecture compiler options:\n"
25053         );
25054         arch_usage(fp);
25055         fprintf(fp,
25056                 "\n"
25057         );
25058 }
25059
25060 static void arg_error(char *fmt, ...)
25061 {
25062         va_list args;
25063         va_start(args, fmt);
25064         vfprintf(stderr, fmt, args);
25065         va_end(args);
25066         usage();
25067         exit(1);
25068 }
25069
25070 int main(int argc, char **argv)
25071 {
25072         const char *filename;
25073         const char *includefile = NULL;
25074         struct compiler_state compiler;
25075         struct arch_state arch;
25076         int all_opts;
25077         
25078         
25079         /* I don't want any surprises */
25080         setlocale(LC_ALL, "C");
25081
25082         init_compiler_state(&compiler);
25083         init_arch_state(&arch);
25084         filename = 0;
25085         all_opts = 0;
25086         while(argc > 1) {
25087                 if (!all_opts && (strcmp(argv[1], "-o") == 0) && (argc > 2)) {
25088                         compiler.ofilename = argv[2];
25089                         argv += 2;
25090                         argc -= 2;
25091                 }
25092                 else if (!all_opts && argv[1][0] == '-') {
25093                         int result;
25094                         result = -1;
25095                         if (strcmp(argv[1], "--") == 0) {
25096                                 result = 0;
25097                                 all_opts = 1;
25098                         }
25099                         else if (strncmp(argv[1], "-E", 2) == 0) {
25100                                 result = compiler_encode_flag(&compiler, argv[1]);
25101                         }
25102                         else if (strncmp(argv[1], "-O", 2) == 0) {
25103                                 result = compiler_encode_flag(&compiler, argv[1]);
25104                         }
25105                         else if (strncmp(argv[1], "-I", 2) == 0) {
25106                                 result = compiler_encode_flag(&compiler, argv[1]);
25107                         }
25108                         else if (strncmp(argv[1], "-D", 2) == 0) {
25109                                 result = compiler_encode_flag(&compiler, argv[1]);
25110                         }
25111                         else if (strncmp(argv[1], "-U", 2) == 0) {
25112                                 result = compiler_encode_flag(&compiler, argv[1]);
25113                         }
25114                         else if (strncmp(argv[1], "--label-prefix=", 15) == 0) {
25115                                 result = compiler_encode_flag(&compiler, argv[1]+2);
25116                         }
25117                         else if (strncmp(argv[1], "-f", 2) == 0) {
25118                                 result = compiler_encode_flag(&compiler, argv[1]+2);
25119                         }
25120                         else if (strncmp(argv[1], "-m", 2) == 0) {
25121                                 result = arch_encode_flag(&arch, argv[1]+2);
25122                         }
25123                         else if (strncmp(argv[1], "-include", 10) == 0) {
25124                                 if (includefile) {
25125                                         arg_error("Only one -include option may be specified.\n");
25126                                 } else {
25127                                         argv++;
25128                                         argc--;
25129                                         includefile = argv[1];
25130                                         result = 0;
25131                                 }
25132                         }
25133                         if (result < 0) {
25134                                 arg_error("Invalid option specified: %s\n",
25135                                         argv[1]);
25136                         }
25137                         argv++;
25138                         argc--;
25139                 }
25140                 else {
25141                         if (filename) {
25142                                 arg_error("Only one filename may be specified\n");
25143                         }
25144                         filename = argv[1];
25145                         argv++;
25146                         argc--;
25147                 }
25148         }
25149         if (!filename) {
25150                 arg_error("No filename specified\n");
25151         }
25152         compile(filename, includefile, &compiler, &arch);
25153
25154         return 0;
25155 }