Use copy_triple only on non-flattened nodes.
[coreboot.git] / util / romcc / romcc.c
1 #undef VERSION_MAJOR
2 #undef VERSION_MINOR
3 #undef RELEASE_DATE
4 #undef VERSION
5 #define VERSION_MAJOR "0"
6 #define VERSION_MINOR "72"
7 #define RELEASE_DATE "10 February 2010"
8 #define VERSION VERSION_MAJOR "." VERSION_MINOR
9
10 #include <stdarg.h>
11 #include <errno.h>
12 #include <stdint.h>
13 #include <stdlib.h>
14 #include <stdio.h>
15 #include <sys/types.h>
16 #include <sys/stat.h>
17 #include <fcntl.h>
18 #include <unistd.h>
19 #include <stdio.h>
20 #include <string.h>
21 #include <limits.h>
22 #include <locale.h>
23 #include <time.h>
24
25 #define MAX_CWD_SIZE 4096
26 #define MAX_ALLOCATION_PASSES 100
27
28 /* NOTE: Before you even start thinking to touch anything 
29  * in this code, set DEBUG_ROMCC_WARNINGS to 1 to get an
30  * insight on the original author's thoughts. We introduced 
31  * this switch as romcc was about the only thing producing
32  * massive warnings in our code..
33  */
34 #define DEBUG_ROMCC_WARNINGS 0
35
36 #define DEBUG_CONSISTENCY 1
37 #define DEBUG_SDP_BLOCKS 0
38 #define DEBUG_TRIPLE_COLOR 0
39
40 #define DEBUG_DISPLAY_USES 1
41 #define DEBUG_DISPLAY_TYPES 1
42 #define DEBUG_REPLACE_CLOSURE_TYPE_HIRES 0
43 #define DEBUG_DECOMPOSE_PRINT_TUPLES 0
44 #define DEBUG_DECOMPOSE_HIRES  0
45 #define DEBUG_INITIALIZER 0
46 #define DEBUG_UPDATE_CLOSURE_TYPE 0
47 #define DEBUG_LOCAL_TRIPLE 0
48 #define DEBUG_BASIC_BLOCKS_VERBOSE 0
49 #define DEBUG_CPS_RENAME_VARIABLES_HIRES 0
50 #define DEBUG_SIMPLIFY_HIRES 0
51 #define DEBUG_SHRINKING 0
52 #define DEBUG_COALESCE_HITCHES 0
53 #define DEBUG_CODE_ELIMINATION 0
54
55 #define DEBUG_EXPLICIT_CLOSURES 0
56
57 #if DEBUG_ROMCC_WARNINGS
58 #warning "FIXME give clear error messages about unused variables"
59 #warning "FIXME properly handle multi dimensional arrays"
60 #warning "FIXME handle multiple register sizes"
61 #endif
62
63 /*  Control flow graph of a loop without goto.
64  * 
65  *        AAA
66  *   +---/
67  *  /
68  * / +--->CCC
69  * | |    / \
70  * | |  DDD EEE    break;
71  * | |    \    \
72  * | |    FFF   \
73  *  \|    / \    \
74  *   |\ GGG HHH   |   continue;
75  *   | \  \   |   |
76  *   |  \ III |  /
77  *   |   \ | /  / 
78  *   |    vvv  /  
79  *   +----BBB /   
80  *         | /
81  *         vv
82  *        JJJ
83  *
84  * 
85  *             AAA
86  *     +-----+  |  +----+
87  *     |      \ | /     |
88  *     |       BBB  +-+ |
89  *     |       / \ /  | |
90  *     |     CCC JJJ / /
91  *     |     / \    / / 
92  *     |   DDD EEE / /  
93  *     |    |   +-/ /
94  *     |   FFF     /    
95  *     |   / \    /     
96  *     | GGG HHH /      
97  *     |  |   +-/
98  *     | III
99  *     +--+ 
100  *
101  * 
102  * DFlocal(X) = { Y <- Succ(X) | idom(Y) != X }
103  * DFup(Z)    = { Y <- DF(Z) | idom(Y) != X }
104  *
105  *
106  * [] == DFlocal(X) U DF(X)
107  * () == DFup(X)
108  *
109  * Dominator graph of the same nodes.
110  *
111  *           AAA     AAA: [ ] ()
112  *          /   \
113  *        BBB    JJJ BBB: [ JJJ ] ( JJJ )  JJJ: [ ] ()
114  *         |
115  *        CCC        CCC: [ ] ( BBB, JJJ )
116  *        / \
117  *     DDD   EEE     DDD: [ ] ( BBB ) EEE: [ JJJ ] ()
118  *      |
119  *     FFF           FFF: [ ] ( BBB )
120  *     / \         
121  *  GGG   HHH        GGG: [ ] ( BBB ) HHH: [ BBB ] ()
122  *   |
123  *  III              III: [ BBB ] ()
124  *
125  *
126  * BBB and JJJ are definitely the dominance frontier.
127  * Where do I place phi functions and how do I make that decision.
128  *   
129  */
130
131 struct filelist {
132         const char *filename;
133         struct filelist *next;
134 };
135
136 struct filelist *include_filelist = NULL;
137
138 static void die(char *fmt, ...)
139 {
140         va_list args;
141
142         va_start(args, fmt);
143         vfprintf(stderr, fmt, args);
144         va_end(args);
145         fflush(stdout);
146         fflush(stderr);
147         exit(1);
148 }
149
150 static void *xmalloc(size_t size, const char *name)
151 {
152         void *buf;
153         buf = malloc(size);
154         if (!buf) {
155                 die("Cannot malloc %ld bytes to hold %s: %s\n",
156                         size + 0UL, name, strerror(errno));
157         }
158         return buf;
159 }
160
161 static void *xcmalloc(size_t size, const char *name)
162 {
163         void *buf;
164         buf = xmalloc(size, name);
165         memset(buf, 0, size);
166         return buf;
167 }
168
169 static void *xrealloc(void *ptr, size_t size, const char *name)
170 {
171         void *buf;
172         buf = realloc(ptr, size);
173         if (!buf) {
174                 die("Cannot realloc %ld bytes to hold %s: %s\n",
175                         size + 0UL, name, strerror(errno));
176         }
177         return buf;
178 }
179
180 static void xfree(const void *ptr)
181 {
182         free((void *)ptr);
183 }
184
185 static char *xstrdup(const char *str)
186 {
187         char *new;
188         int len;
189         len = strlen(str);
190         new = xmalloc(len + 1, "xstrdup string");
191         memcpy(new, str, len);
192         new[len] = '\0';
193         return new;
194 }
195
196 static void xchdir(const char *path)
197 {
198         if (chdir(path) != 0) {
199                 die("chdir to `%s' failed: %s\n",
200                         path, strerror(errno));
201         }
202 }
203
204 static int exists(const char *dirname, const char *filename)
205 {
206         char cwd[MAX_CWD_SIZE];
207         int does_exist;
208
209         if (getcwd(cwd, sizeof(cwd)) == 0) {
210                 die("cwd buffer to small");
211         }
212
213         does_exist = 1;
214         if (chdir(dirname) != 0) {
215                 does_exist = 0;
216         }
217         if (does_exist && (access(filename, O_RDONLY) < 0)) {
218                 if ((errno != EACCES) && (errno != EROFS)) {
219                         does_exist = 0;
220                 }
221         }
222         xchdir(cwd);
223         return does_exist;
224 }
225
226
227 static char *slurp_file(const char *dirname, const char *filename, off_t *r_size)
228 {
229         char cwd[MAX_CWD_SIZE];
230         char *buf;
231         off_t size, progress;
232         ssize_t result;
233         FILE* file;
234         
235         if (!filename) {
236                 *r_size = 0;
237                 return 0;
238         }
239         if (getcwd(cwd, sizeof(cwd)) == 0) {
240                 die("cwd buffer to small");
241         }
242         xchdir(dirname);
243         file = fopen(filename, "rb");
244         xchdir(cwd);
245         if (file == NULL) {
246                 die("Cannot open '%s' : %s\n",
247                         filename, strerror(errno));
248         }
249         fseek(file, 0, SEEK_END);
250         size = ftell(file);
251         fseek(file, 0, SEEK_SET);
252         *r_size = size +1;
253         buf = xmalloc(size +2, filename);
254         buf[size] = '\n'; /* Make certain the file is newline terminated */
255         buf[size+1] = '\0'; /* Null terminate the file for good measure */
256         progress = 0;
257         while(progress < size) {
258                 result = fread(buf + progress, 1, size - progress, file);
259                 if (result < 0) {
260                         if ((errno == EINTR) || (errno == EAGAIN))
261                                 continue;
262                         die("read on %s of %ld bytes failed: %s\n",
263                                 filename, (size - progress)+ 0UL, strerror(errno));
264                 }
265                 progress += result;
266         }
267         fclose(file);
268         return buf;
269 }
270
271 /* Types on the destination platform */
272 #if DEBUG_ROMCC_WARNINGS
273 #warning "FIXME this assumes 32bit x86 is the destination"
274 #endif
275 typedef int8_t   schar_t;
276 typedef uint8_t  uchar_t;
277 typedef int8_t   char_t;
278 typedef int16_t  short_t;
279 typedef uint16_t ushort_t;
280 typedef int32_t  int_t;
281 typedef uint32_t uint_t;
282 typedef int32_t  long_t;
283 #define ulong_t uint32_t
284
285 #define SCHAR_T_MIN (-128)
286 #define SCHAR_T_MAX 127
287 #define UCHAR_T_MAX 255
288 #define CHAR_T_MIN  SCHAR_T_MIN
289 #define CHAR_T_MAX  SCHAR_T_MAX
290 #define SHRT_T_MIN  (-32768)
291 #define SHRT_T_MAX  32767
292 #define USHRT_T_MAX 65535
293 #define INT_T_MIN   (-LONG_T_MAX - 1)
294 #define INT_T_MAX   2147483647
295 #define UINT_T_MAX  4294967295U
296 #define LONG_T_MIN  (-LONG_T_MAX - 1)
297 #define LONG_T_MAX  2147483647
298 #define ULONG_T_MAX 4294967295U
299
300 #define SIZEOF_I8    8
301 #define SIZEOF_I16   16
302 #define SIZEOF_I32   32
303 #define SIZEOF_I64   64
304
305 #define SIZEOF_CHAR    8
306 #define SIZEOF_SHORT   16
307 #define SIZEOF_INT     32
308 #define SIZEOF_LONG    (sizeof(long_t)*SIZEOF_CHAR)
309
310
311 #define ALIGNOF_CHAR    8
312 #define ALIGNOF_SHORT   16
313 #define ALIGNOF_INT     32
314 #define ALIGNOF_LONG    (sizeof(long_t)*SIZEOF_CHAR)
315
316 #define REG_SIZEOF_REG     32
317 #define REG_SIZEOF_CHAR    REG_SIZEOF_REG
318 #define REG_SIZEOF_SHORT   REG_SIZEOF_REG
319 #define REG_SIZEOF_INT     REG_SIZEOF_REG
320 #define REG_SIZEOF_LONG    REG_SIZEOF_REG
321
322 #define REG_ALIGNOF_REG     REG_SIZEOF_REG
323 #define REG_ALIGNOF_CHAR    REG_SIZEOF_REG
324 #define REG_ALIGNOF_SHORT   REG_SIZEOF_REG
325 #define REG_ALIGNOF_INT     REG_SIZEOF_REG
326 #define REG_ALIGNOF_LONG    REG_SIZEOF_REG
327
328 /* Additional definitions for clarity.
329  * I currently assume a long is the largest native
330  * machine word and that a pointer fits into it.
331  */
332 #define SIZEOF_WORD     SIZEOF_LONG
333 #define SIZEOF_POINTER  SIZEOF_LONG
334 #define ALIGNOF_WORD    ALIGNOF_LONG
335 #define ALIGNOF_POINTER ALIGNOF_LONG
336 #define REG_SIZEOF_POINTER  REG_SIZEOF_LONG
337 #define REG_ALIGNOF_POINTER REG_ALIGNOF_LONG
338
339 struct file_state {
340         struct file_state *prev;
341         const char *basename;
342         char *dirname;
343         const char *buf;
344         off_t size;
345         const char *pos;
346         int line;
347         const char *line_start;
348         int report_line;
349         const char *report_name;
350         const char *report_dir;
351         int macro      : 1;
352         int trigraphs  : 1;
353         int join_lines : 1;
354 };
355 struct hash_entry;
356 struct token {
357         int tok;
358         struct hash_entry *ident;
359         const char *pos;
360         int str_len;
361         union {
362                 ulong_t integer;
363                 const char *str;
364                 int notmacro;
365         } val;
366 };
367
368 /* I have two classes of types:
369  * Operational types.
370  * Logical types.  (The type the C standard says the operation is of)
371  *
372  * The operational types are:
373  * chars
374  * shorts
375  * ints
376  * longs
377  *
378  * floats
379  * doubles
380  * long doubles
381  *
382  * pointer
383  */
384
385
386 /* Machine model.
387  * No memory is useable by the compiler.
388  * There is no floating point support.
389  * All operations take place in general purpose registers.
390  * There is one type of general purpose register.
391  * Unsigned longs are stored in that general purpose register.
392  */
393
394 /* Operations on general purpose registers.
395  */
396
397 #define OP_SDIVT      0
398 #define OP_UDIVT      1
399 #define OP_SMUL       2
400 #define OP_UMUL       3
401 #define OP_SDIV       4
402 #define OP_UDIV       5
403 #define OP_SMOD       6
404 #define OP_UMOD       7
405 #define OP_ADD        8
406 #define OP_SUB        9
407 #define OP_SL        10
408 #define OP_USR       11
409 #define OP_SSR       12 
410 #define OP_AND       13 
411 #define OP_XOR       14
412 #define OP_OR        15
413 #define OP_POS       16 /* Dummy positive operator don't use it */
414 #define OP_NEG       17
415 #define OP_INVERT    18
416                      
417 #define OP_EQ        20
418 #define OP_NOTEQ     21
419 #define OP_SLESS     22
420 #define OP_ULESS     23
421 #define OP_SMORE     24
422 #define OP_UMORE     25
423 #define OP_SLESSEQ   26
424 #define OP_ULESSEQ   27
425 #define OP_SMOREEQ   28
426 #define OP_UMOREEQ   29
427                      
428 #define OP_LFALSE    30  /* Test if the expression is logically false */
429 #define OP_LTRUE     31  /* Test if the expression is logcially true */
430
431 #define OP_LOAD      32
432 #define OP_STORE     33
433 /* For OP_STORE ->type holds the type
434  * RHS(0) holds the destination address
435  * RHS(1) holds the value to store.
436  */
437
438 #define OP_UEXTRACT  34
439 /* OP_UEXTRACT extracts an unsigned bitfield from a pseudo register
440  * RHS(0) holds the psuedo register to extract from
441  * ->type holds the size of the bitfield.
442  * ->u.bitfield.size holds the size of the bitfield.
443  * ->u.bitfield.offset holds the offset to extract from
444  */
445 #define OP_SEXTRACT  35
446 /* OP_SEXTRACT extracts a signed bitfield from a pseudo register
447  * RHS(0) holds the psuedo register to extract from
448  * ->type holds the size of the bitfield.
449  * ->u.bitfield.size holds the size of the bitfield.
450  * ->u.bitfield.offset holds the offset to extract from
451  */
452 #define OP_DEPOSIT   36
453 /* OP_DEPOSIT replaces a bitfield with a new value.
454  * RHS(0) holds the value to replace a bitifield in.
455  * RHS(1) holds the replacement value
456  * ->u.bitfield.size holds the size of the bitfield.
457  * ->u.bitfield.offset holds the deposit into
458  */
459
460 #define OP_NOOP      37
461
462 #define OP_MIN_CONST 50
463 #define OP_MAX_CONST 58
464 #define IS_CONST_OP(X) (((X) >= OP_MIN_CONST) && ((X) <= OP_MAX_CONST))
465 #define OP_INTCONST  50
466 /* For OP_INTCONST ->type holds the type.
467  * ->u.cval holds the constant value.
468  */
469 #define OP_BLOBCONST 51
470 /* For OP_BLOBCONST ->type holds the layout and size
471  * information.  u.blob holds a pointer to the raw binary
472  * data for the constant initializer.
473  */
474 #define OP_ADDRCONST 52
475 /* For OP_ADDRCONST ->type holds the type.
476  * MISC(0) holds the reference to the static variable.
477  * ->u.cval holds an offset from that value.
478  */
479 #define OP_UNKNOWNVAL 59
480 /* For OP_UNKNOWNAL ->type holds the type.
481  * For some reason we don't know what value this type has.
482  * This allows for variables that have don't have values
483  * assigned yet, or variables whose value we simply do not know.
484  */
485
486 #define OP_WRITE     60 
487 /* OP_WRITE moves one pseudo register to another.
488  * MISC(0) holds the destination pseudo register, which must be an OP_DECL.
489  * RHS(0) holds the psuedo to move.
490  */
491
492 #define OP_READ      61
493 /* OP_READ reads the value of a variable and makes
494  * it available for the pseudo operation.
495  * Useful for things like def-use chains.
496  * RHS(0) holds points to the triple to read from.
497  */
498 #define OP_COPY      62
499 /* OP_COPY makes a copy of the pseudo register or constant in RHS(0).
500  */
501 #define OP_CONVERT   63
502 /* OP_CONVERT makes a copy of the pseudo register or constant in RHS(0).
503  * And then the type is converted appropriately.
504  */
505 #define OP_PIECE     64
506 /* OP_PIECE returns one piece of a instruction that returns a structure.
507  * MISC(0) is the instruction
508  * u.cval is the LHS piece of the instruction to return.
509  */
510 #define OP_ASM       65
511 /* OP_ASM holds a sequence of assembly instructions, the result
512  * of a C asm directive.
513  * RHS(x) holds input value x to the assembly sequence.
514  * LHS(x) holds the output value x from the assembly sequence.
515  * u.blob holds the string of assembly instructions.
516  */
517
518 #define OP_DEREF     66
519 /* OP_DEREF generates an lvalue from a pointer.
520  * RHS(0) holds the pointer value.
521  * OP_DEREF serves as a place holder to indicate all necessary
522  * checks have been done to indicate a value is an lvalue.
523  */
524 #define OP_DOT       67
525 /* OP_DOT references a submember of a structure lvalue.
526  * MISC(0) holds the lvalue.
527  * ->u.field holds the name of the field we want.
528  *
529  * Not seen after structures are flattened.
530  */
531 #define OP_INDEX     68
532 /* OP_INDEX references a submember of a tuple or array lvalue.
533  * MISC(0) holds the lvalue.
534  * ->u.cval holds the index into the lvalue.
535  *
536  * Not seen after structures are flattened.
537  */
538 #define OP_VAL       69
539 /* OP_VAL returns the value of a subexpression of the current expression.
540  * Useful for operators that have side effects.
541  * RHS(0) holds the expression.
542  * MISC(0) holds the subexpression of RHS(0) that is the
543  * value of the expression.
544  *
545  * Not seen outside of expressions.
546  */
547
548 #define OP_TUPLE     70
549 /* OP_TUPLE is an array of triples that are either variable
550  * or values for a structure or an array.  It is used as
551  * a place holder when flattening compound types.
552  * The value represented by an OP_TUPLE is held in N registers.
553  * LHS(0..N-1) refer to those registers.
554  * ->use is a list of statements that use the value.
555  * 
556  * Although OP_TUPLE always has register sized pieces they are not
557  * used until structures are flattened/decomposed into their register
558  * components. 
559  * ???? registers ????
560  */
561
562 #define OP_BITREF    71
563 /* OP_BITREF describes a bitfield as an lvalue.
564  * RHS(0) holds the register value.
565  * ->type holds the type of the bitfield.
566  * ->u.bitfield.size holds the size of the bitfield.
567  * ->u.bitfield.offset holds the offset of the bitfield in the register
568  */
569
570
571 #define OP_FCALL     72
572 /* OP_FCALL performs a procedure call. 
573  * MISC(0) holds a pointer to the OP_LIST of a function
574  * RHS(x) holds argument x of a function
575  * 
576  * Currently not seen outside of expressions.
577  */
578 #define OP_PROG      73
579 /* OP_PROG is an expression that holds a list of statements, or
580  * expressions.  The final expression is the value of the expression.
581  * RHS(0) holds the start of the list.
582  */
583
584 /* statements */
585 #define OP_LIST      80
586 /* OP_LIST Holds a list of statements that compose a function, and a result value.
587  * RHS(0) holds the list of statements.
588  * A list of all functions is maintained.
589  */
590
591 #define OP_BRANCH    81 /* an unconditional branch */
592 /* For branch instructions
593  * TARG(0) holds the branch target.
594  * ->next holds where to branch to if the branch is not taken.
595  * The branch target can only be a label
596  */
597
598 #define OP_CBRANCH   82 /* a conditional branch */
599 /* For conditional branch instructions
600  * RHS(0) holds the branch condition.
601  * TARG(0) holds the branch target.
602  * ->next holds where to branch to if the branch is not taken.
603  * The branch target can only be a label
604  */
605
606 #define OP_CALL      83 /* an uncontional branch that will return */
607 /* For call instructions
608  * MISC(0) holds the OP_RET that returns from the branch
609  * TARG(0) holds the branch target.
610  * ->next holds where to branch to if the branch is not taken.
611  * The branch target can only be a label
612  */
613
614 #define OP_RET       84 /* an uncontinonal branch through a variable back to an OP_CALL */
615 /* For call instructions
616  * RHS(0) holds the variable with the return address
617  * The branch target can only be a label
618  */
619
620 #define OP_LABEL     86
621 /* OP_LABEL is a triple that establishes an target for branches.
622  * ->use is the list of all branches that use this label.
623  */
624
625 #define OP_ADECL     87 
626 /* OP_ADECL is a triple that establishes an lvalue for assignments.
627  * A variable takes N registers to contain.
628  * LHS(0..N-1) refer to an OP_PIECE triple that represents
629  * the Xth register that the variable is stored in.
630  * ->use is a list of statements that use the variable.
631  * 
632  * Although OP_ADECL always has register sized pieces they are not
633  * used until structures are flattened/decomposed into their register
634  * components. 
635  */
636
637 #define OP_SDECL     88
638 /* OP_SDECL is a triple that establishes a variable of static
639  * storage duration.
640  * ->use is a list of statements that use the variable.
641  * MISC(0) holds the initializer expression.
642  */
643
644
645 #define OP_PHI       89
646 /* OP_PHI is a triple used in SSA form code.  
647  * It is used when multiple code paths merge and a variable needs
648  * a single assignment from any of those code paths.
649  * The operation is a cross between OP_DECL and OP_WRITE, which
650  * is what OP_PHI is generated from.
651  * 
652  * RHS(x) points to the value from code path x
653  * The number of RHS entries is the number of control paths into the block
654  * in which OP_PHI resides.  The elements of the array point to point
655  * to the variables OP_PHI is derived from.
656  *
657  * MISC(0) holds a pointer to the orginal OP_DECL node.
658  */
659
660 #if 0
661 /* continuation helpers
662  */
663 #define OP_CPS_BRANCH    90 /* an unconditional branch */
664 /* OP_CPS_BRANCH calls a continuation 
665  * RHS(x) holds argument x of the function
666  * TARG(0) holds OP_CPS_START target
667  */
668 #define OP_CPS_CBRANCH   91  /* a conditional branch */
669 /* OP_CPS_CBRANCH conditionally calls one of two continuations 
670  * RHS(0) holds the branch condition
671  * RHS(x + 1) holds argument x of the function
672  * TARG(0) holds the OP_CPS_START to jump to when true
673  * ->next holds the OP_CPS_START to jump to when false
674  */
675 #define OP_CPS_CALL      92  /* an uncontional branch that will return */
676 /* For OP_CPS_CALL instructions
677  * RHS(x) holds argument x of the function
678  * MISC(0) holds the OP_CPS_RET that returns from the branch
679  * TARG(0) holds the branch target.
680  * ->next holds where the OP_CPS_RET will return to.
681  */
682 #define OP_CPS_RET       93
683 /* OP_CPS_RET conditionally calls one of two continuations 
684  * RHS(0) holds the variable with the return function address
685  * RHS(x + 1) holds argument x of the function
686  * The branch target may be any OP_CPS_START
687  */
688 #define OP_CPS_END       94
689 /* OP_CPS_END is the triple at the end of the program.
690  * For most practical purposes it is a branch.
691  */
692 #define OP_CPS_START     95
693 /* OP_CPS_START is a triple at the start of a continuation
694  * The arguments variables takes N registers to contain.
695  * LHS(0..N-1) refer to an OP_PIECE triple that represents
696  * the Xth register that the arguments are stored in.
697  */
698 #endif
699
700 /* Architecture specific instructions */
701 #define OP_CMP         100
702 #define OP_TEST        101
703 #define OP_SET_EQ      102
704 #define OP_SET_NOTEQ   103
705 #define OP_SET_SLESS   104
706 #define OP_SET_ULESS   105
707 #define OP_SET_SMORE   106
708 #define OP_SET_UMORE   107
709 #define OP_SET_SLESSEQ 108
710 #define OP_SET_ULESSEQ 109
711 #define OP_SET_SMOREEQ 110
712 #define OP_SET_UMOREEQ 111
713
714 #define OP_JMP         112
715 #define OP_JMP_EQ      113
716 #define OP_JMP_NOTEQ   114
717 #define OP_JMP_SLESS   115
718 #define OP_JMP_ULESS   116
719 #define OP_JMP_SMORE   117
720 #define OP_JMP_UMORE   118
721 #define OP_JMP_SLESSEQ 119
722 #define OP_JMP_ULESSEQ 120
723 #define OP_JMP_SMOREEQ 121
724 #define OP_JMP_UMOREEQ 122
725
726 /* Builtin operators that it is just simpler to use the compiler for */
727 #define OP_INB         130
728 #define OP_INW         131
729 #define OP_INL         132
730 #define OP_OUTB        133
731 #define OP_OUTW        134
732 #define OP_OUTL        135
733 #define OP_BSF         136
734 #define OP_BSR         137
735 #define OP_RDMSR       138
736 #define OP_WRMSR       139
737 #define OP_HLT         140
738
739 struct op_info {
740         const char *name;
741         unsigned flags;
742 #define PURE       0x001 /* Triple has no side effects */
743 #define IMPURE     0x002 /* Triple has side effects */
744 #define PURE_BITS(FLAGS) ((FLAGS) & 0x3)
745 #define DEF        0x004 /* Triple is a variable definition */
746 #define BLOCK      0x008 /* Triple stores the current block */
747 #define STRUCTURAL 0x010 /* Triple does not generate a machine instruction */
748 #define BRANCH_BITS(FLAGS) ((FLAGS) & 0xe0 )
749 #define UBRANCH    0x020 /* Triple is an unconditional branch instruction */
750 #define CBRANCH    0x040 /* Triple is a conditional branch instruction */
751 #define RETBRANCH  0x060 /* Triple is a return instruction */
752 #define CALLBRANCH 0x080 /* Triple is a call instruction */
753 #define ENDBRANCH  0x0a0 /* Triple is an end instruction */
754 #define PART       0x100 /* Triple is really part of another triple */
755 #define BITFIELD   0x200 /* Triple manipulates a bitfield */
756         signed char lhs, rhs, misc, targ;
757 };
758
759 #define OP(LHS, RHS, MISC, TARG, FLAGS, NAME) { \
760         .name = (NAME), \
761         .flags = (FLAGS), \
762         .lhs = (LHS), \
763         .rhs = (RHS), \
764         .misc = (MISC), \
765         .targ = (TARG), \
766          }
767 static const struct op_info table_ops[] = {
768 [OP_SDIVT      ] = OP( 2,  2, 0, 0, PURE | BLOCK , "sdivt"),
769 [OP_UDIVT      ] = OP( 2,  2, 0, 0, PURE | BLOCK , "udivt"),
770 [OP_SMUL       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smul"),
771 [OP_UMUL       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umul"),
772 [OP_SDIV       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sdiv"),
773 [OP_UDIV       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "udiv"),
774 [OP_SMOD       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smod"),
775 [OP_UMOD       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umod"),
776 [OP_ADD        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "add"),
777 [OP_SUB        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sub"),
778 [OP_SL         ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sl"),
779 [OP_USR        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "usr"),
780 [OP_SSR        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "ssr"),
781 [OP_AND        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "and"),
782 [OP_XOR        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "xor"),
783 [OP_OR         ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "or"),
784 [OP_POS        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "pos"),
785 [OP_NEG        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "neg"),
786 [OP_INVERT     ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "invert"),
787
788 [OP_EQ         ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "eq"),
789 [OP_NOTEQ      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "noteq"),
790 [OP_SLESS      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sless"),
791 [OP_ULESS      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "uless"),
792 [OP_SMORE      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smore"),
793 [OP_UMORE      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umore"),
794 [OP_SLESSEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "slesseq"),
795 [OP_ULESSEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "ulesseq"),
796 [OP_SMOREEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smoreeq"),
797 [OP_UMOREEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umoreeq"),
798 [OP_LFALSE     ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "lfalse"),
799 [OP_LTRUE      ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "ltrue"),
800
801 [OP_LOAD       ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "load"),
802 [OP_STORE      ] = OP( 0,  2, 0, 0, PURE | BLOCK , "store"),
803
804 [OP_UEXTRACT   ] = OP( 0,  1, 0, 0, PURE | DEF | BITFIELD, "uextract"),
805 [OP_SEXTRACT   ] = OP( 0,  1, 0, 0, PURE | DEF | BITFIELD, "sextract"),
806 [OP_DEPOSIT    ] = OP( 0,  2, 0, 0, PURE | DEF | BITFIELD, "deposit"),
807
808 [OP_NOOP       ] = OP( 0,  0, 0, 0, PURE | BLOCK | STRUCTURAL, "noop"),
809
810 [OP_INTCONST   ] = OP( 0,  0, 0, 0, PURE | DEF, "intconst"),
811 [OP_BLOBCONST  ] = OP( 0,  0, 0, 0, PURE , "blobconst"),
812 [OP_ADDRCONST  ] = OP( 0,  0, 1, 0, PURE | DEF, "addrconst"),
813 [OP_UNKNOWNVAL ] = OP( 0,  0, 0, 0, PURE | DEF, "unknown"),
814
815 #if DEBUG_ROMCC_WARNINGS
816 #warning "FIXME is it correct for OP_WRITE to be a def?  I currently use it as one..."
817 #endif
818 [OP_WRITE      ] = OP( 0,  1, 1, 0, PURE | DEF | BLOCK, "write"),
819 [OP_READ       ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "read"),
820 [OP_COPY       ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "copy"),
821 [OP_CONVERT    ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "convert"),
822 [OP_PIECE      ] = OP( 0,  0, 1, 0, PURE | DEF | STRUCTURAL | PART, "piece"),
823 [OP_ASM        ] = OP(-1, -1, 0, 0, PURE, "asm"),
824 [OP_DEREF      ] = OP( 0,  1, 0, 0, 0 | DEF | BLOCK, "deref"), 
825 [OP_DOT        ] = OP( 0,  0, 1, 0, PURE | DEF | PART, "dot"),
826 [OP_INDEX      ] = OP( 0,  0, 1, 0, PURE | DEF | PART, "index"),
827
828 [OP_VAL        ] = OP( 0,  1, 1, 0, 0 | DEF | BLOCK, "val"),
829 [OP_TUPLE      ] = OP(-1,  0, 0, 0, 0 | PURE | BLOCK | STRUCTURAL, "tuple"),
830 [OP_BITREF     ] = OP( 0,  1, 0, 0, 0 | DEF | PURE | STRUCTURAL | BITFIELD, "bitref"),
831 /* Call is special most it can stand in for anything so it depends on context */
832 [OP_FCALL      ] = OP( 0, -1, 1, 0, 0 | BLOCK | CALLBRANCH, "fcall"),
833 [OP_PROG       ] = OP( 0,  1, 0, 0, 0 | IMPURE | BLOCK | STRUCTURAL, "prog"),
834 /* The sizes of OP_FCALL depends upon context */
835
836 [OP_LIST       ] = OP( 0,  1, 1, 0, 0 | DEF | STRUCTURAL, "list"),
837 [OP_BRANCH     ] = OP( 0,  0, 0, 1, PURE | BLOCK | UBRANCH, "branch"),
838 [OP_CBRANCH    ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "cbranch"),
839 [OP_CALL       ] = OP( 0,  0, 1, 1, PURE | BLOCK | CALLBRANCH, "call"),
840 [OP_RET        ] = OP( 0,  1, 0, 0, PURE | BLOCK | RETBRANCH, "ret"),
841 [OP_LABEL      ] = OP( 0,  0, 0, 0, PURE | BLOCK | STRUCTURAL, "label"),
842 [OP_ADECL      ] = OP( 0,  0, 0, 0, PURE | BLOCK | STRUCTURAL, "adecl"),
843 [OP_SDECL      ] = OP( 0,  0, 1, 0, PURE | BLOCK | STRUCTURAL, "sdecl"),
844 /* The number of RHS elements of OP_PHI depend upon context */
845 [OP_PHI        ] = OP( 0, -1, 1, 0, PURE | DEF | BLOCK, "phi"),
846
847 #if 0
848 [OP_CPS_BRANCH ] = OP( 0, -1, 0, 1, PURE | BLOCK | UBRANCH,     "cps_branch"),
849 [OP_CPS_CBRANCH] = OP( 0, -1, 0, 1, PURE | BLOCK | CBRANCH,     "cps_cbranch"),
850 [OP_CPS_CALL   ] = OP( 0, -1, 1, 1, PURE | BLOCK | CALLBRANCH,  "cps_call"),
851 [OP_CPS_RET    ] = OP( 0, -1, 0, 0, PURE | BLOCK | RETBRANCH,   "cps_ret"),
852 [OP_CPS_END    ] = OP( 0, -1, 0, 0, IMPURE | BLOCK | ENDBRANCH, "cps_end"),
853 [OP_CPS_START  ] = OP( -1, 0, 0, 0, PURE | BLOCK | STRUCTURAL,  "cps_start"),
854 #endif
855
856 [OP_CMP        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK, "cmp"),
857 [OP_TEST       ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "test"),
858 [OP_SET_EQ     ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_eq"),
859 [OP_SET_NOTEQ  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_noteq"),
860 [OP_SET_SLESS  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_sless"),
861 [OP_SET_ULESS  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_uless"),
862 [OP_SET_SMORE  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_smore"),
863 [OP_SET_UMORE  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_umore"),
864 [OP_SET_SLESSEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_slesseq"),
865 [OP_SET_ULESSEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_ulesseq"),
866 [OP_SET_SMOREEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_smoreq"),
867 [OP_SET_UMOREEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_umoreq"),
868 [OP_JMP        ] = OP( 0,  0, 0, 1, PURE | BLOCK | UBRANCH, "jmp"),
869 [OP_JMP_EQ     ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_eq"),
870 [OP_JMP_NOTEQ  ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_noteq"),
871 [OP_JMP_SLESS  ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_sless"),
872 [OP_JMP_ULESS  ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_uless"),
873 [OP_JMP_SMORE  ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_smore"),
874 [OP_JMP_UMORE  ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_umore"),
875 [OP_JMP_SLESSEQ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_slesseq"),
876 [OP_JMP_ULESSEQ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_ulesseq"),
877 [OP_JMP_SMOREEQ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_smoreq"),
878 [OP_JMP_UMOREEQ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_umoreq"),
879
880 [OP_INB        ] = OP( 0,  1, 0, 0, IMPURE | DEF | BLOCK, "__inb"),
881 [OP_INW        ] = OP( 0,  1, 0, 0, IMPURE | DEF | BLOCK, "__inw"),
882 [OP_INL        ] = OP( 0,  1, 0, 0, IMPURE | DEF | BLOCK, "__inl"),
883 [OP_OUTB       ] = OP( 0,  2, 0, 0, IMPURE| BLOCK, "__outb"),
884 [OP_OUTW       ] = OP( 0,  2, 0, 0, IMPURE| BLOCK, "__outw"),
885 [OP_OUTL       ] = OP( 0,  2, 0, 0, IMPURE| BLOCK, "__outl"),
886 [OP_BSF        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "__bsf"),
887 [OP_BSR        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "__bsr"),
888 [OP_RDMSR      ] = OP( 2,  1, 0, 0, IMPURE | BLOCK, "__rdmsr"),
889 [OP_WRMSR      ] = OP( 0,  3, 0, 0, IMPURE | BLOCK, "__wrmsr"),
890 [OP_HLT        ] = OP( 0,  0, 0, 0, IMPURE | BLOCK, "__hlt"),
891 };
892 #undef OP
893 #define OP_MAX      (sizeof(table_ops)/sizeof(table_ops[0]))
894
895 static const char *tops(int index) 
896 {
897         static const char unknown[] = "unknown op";
898         if (index < 0) {
899                 return unknown;
900         }
901         if (index > OP_MAX) {
902                 return unknown;
903         }
904         return table_ops[index].name;
905 }
906
907 struct asm_info;
908 struct triple;
909 struct block;
910 struct triple_set {
911         struct triple_set *next;
912         struct triple *member;
913 };
914
915 #define MAX_LHS  63
916 #define MAX_RHS  127
917 #define MAX_MISC 3
918 #define MAX_TARG 1
919
920 struct occurance {
921         int count;
922         const char *filename;
923         const char *function;
924         int line;
925         int col;
926         struct occurance *parent;
927 };
928 struct bitfield {
929         ulong_t size : 8;
930         ulong_t offset : 24;
931 };
932 struct triple {
933         struct triple *next, *prev;
934         struct triple_set *use;
935         struct type *type;
936         unsigned int op : 8;
937         unsigned int template_id : 7;
938         unsigned int lhs  : 6;
939         unsigned int rhs  : 7;
940         unsigned int misc : 2;
941         unsigned int targ : 1;
942 #define TRIPLE_SIZE(TRIPLE) \
943         ((TRIPLE)->lhs + (TRIPLE)->rhs + (TRIPLE)->misc + (TRIPLE)->targ)
944 #define TRIPLE_LHS_OFF(PTR)  (0)
945 #define TRIPLE_RHS_OFF(PTR)  (TRIPLE_LHS_OFF(PTR) + (PTR)->lhs)
946 #define TRIPLE_MISC_OFF(PTR) (TRIPLE_RHS_OFF(PTR) + (PTR)->rhs)
947 #define TRIPLE_TARG_OFF(PTR) (TRIPLE_MISC_OFF(PTR) + (PTR)->misc)
948 #define LHS(PTR,INDEX) ((PTR)->param[TRIPLE_LHS_OFF(PTR) + (INDEX)])
949 #define RHS(PTR,INDEX) ((PTR)->param[TRIPLE_RHS_OFF(PTR) + (INDEX)])
950 #define TARG(PTR,INDEX) ((PTR)->param[TRIPLE_TARG_OFF(PTR) + (INDEX)])
951 #define MISC(PTR,INDEX) ((PTR)->param[TRIPLE_MISC_OFF(PTR) + (INDEX)])
952         unsigned id; /* A scratch value and finally the register */
953 #define TRIPLE_FLAG_FLATTENED   (1 << 31)
954 #define TRIPLE_FLAG_PRE_SPLIT   (1 << 30)
955 #define TRIPLE_FLAG_POST_SPLIT  (1 << 29)
956 #define TRIPLE_FLAG_VOLATILE    (1 << 28)
957 #define TRIPLE_FLAG_INLINE      (1 << 27) /* ???? */
958 #define TRIPLE_FLAG_LOCAL       (1 << 26)
959
960 #define TRIPLE_FLAG_COPY TRIPLE_FLAG_VOLATILE
961         struct occurance *occurance;
962         union {
963                 ulong_t cval;
964                 struct bitfield bitfield;
965                 struct block  *block;
966                 void *blob;
967                 struct hash_entry *field;
968                 struct asm_info *ainfo;
969                 struct triple *func;
970                 struct symbol *symbol;
971         } u;
972         struct triple *param[2];
973 };
974
975 struct reg_info {
976         unsigned reg;
977         unsigned regcm;
978 };
979 struct ins_template {
980         struct reg_info lhs[MAX_LHS + 1], rhs[MAX_RHS + 1];
981 };
982
983 struct asm_info {
984         struct ins_template tmpl;
985         char *str;
986 };
987
988 struct block_set {
989         struct block_set *next;
990         struct block *member;
991 };
992 struct block {
993         struct block *work_next;
994         struct triple *first, *last;
995         int edge_count;
996         struct block_set *edges;
997         int users;
998         struct block_set *use;
999         struct block_set *idominates;
1000         struct block_set *domfrontier;
1001         struct block *idom;
1002         struct block_set *ipdominates;
1003         struct block_set *ipdomfrontier;
1004         struct block *ipdom;
1005         int vertex;
1006         
1007 };
1008
1009 struct symbol {
1010         struct symbol *next;
1011         struct hash_entry *ident;
1012         struct triple *def;
1013         struct type *type;
1014         int scope_depth;
1015 };
1016
1017 struct macro_arg {
1018         struct macro_arg *next;
1019         struct hash_entry *ident;
1020 };
1021 struct macro {
1022         struct hash_entry *ident;
1023         const char *buf;
1024         int buf_len;
1025         struct macro_arg *args;
1026         int argc;
1027 };
1028
1029 struct hash_entry {
1030         struct hash_entry *next;
1031         const char *name;
1032         int name_len;
1033         int tok;
1034         struct macro *sym_define;
1035         struct symbol *sym_label;
1036         struct symbol *sym_tag;
1037         struct symbol *sym_ident;
1038 };
1039
1040 #define HASH_TABLE_SIZE 2048
1041
1042 struct compiler_state {
1043         const char *label_prefix;
1044         const char *ofilename;
1045         unsigned long flags;
1046         unsigned long debug;
1047         unsigned long max_allocation_passes;
1048
1049         size_t include_path_count;
1050         const char **include_paths;
1051
1052         size_t define_count;
1053         const char **defines;
1054
1055         size_t undef_count;
1056         const char **undefs;
1057 };
1058 struct arch_state {
1059         unsigned long features;
1060 };
1061 struct basic_blocks {
1062         struct triple *func;
1063         struct triple *first;
1064         struct block *first_block, *last_block;
1065         int last_vertex;
1066 };
1067 #define MAX_PP_IF_DEPTH 63
1068 struct compile_state {
1069         struct compiler_state *compiler;
1070         struct arch_state *arch;
1071         FILE *output;
1072         FILE *errout;
1073         FILE *dbgout;
1074         struct file_state *file;
1075         struct occurance *last_occurance;
1076         const char *function;
1077         int    token_base;
1078         struct token token[6];
1079         struct hash_entry *hash_table[HASH_TABLE_SIZE];
1080         struct hash_entry *i_switch;
1081         struct hash_entry *i_case;
1082         struct hash_entry *i_continue;
1083         struct hash_entry *i_break;
1084         struct hash_entry *i_default;
1085         struct hash_entry *i_return;
1086         struct hash_entry *i_noreturn;
1087         /* Additional hash entries for predefined macros */
1088         struct hash_entry *i_defined;
1089         struct hash_entry *i___VA_ARGS__;
1090         struct hash_entry *i___FILE__;
1091         struct hash_entry *i___LINE__;
1092         /* Additional hash entries for predefined identifiers */
1093         struct hash_entry *i___func__;
1094         /* Additional hash entries for attributes */
1095         struct hash_entry *i_noinline;
1096         struct hash_entry *i_always_inline;
1097         int scope_depth;
1098         unsigned char if_bytes[(MAX_PP_IF_DEPTH + CHAR_BIT -1)/CHAR_BIT];
1099         int if_depth;
1100         int eat_depth, eat_targ;
1101         struct file_state *macro_file;
1102         struct triple *functions;
1103         struct triple *main_function;
1104         struct triple *first;
1105         struct triple *global_pool;
1106         struct basic_blocks bb;
1107         int functions_joined;
1108 };
1109
1110 /* visibility global/local */
1111 /* static/auto duration */
1112 /* typedef, register, inline */
1113 #define STOR_SHIFT         0
1114 #define STOR_MASK     0x001f
1115 /* Visibility */
1116 #define STOR_GLOBAL   0x0001
1117 /* Duration */
1118 #define STOR_PERM     0x0002
1119 /* Definition locality */
1120 #define STOR_NONLOCAL 0x0004  /* The definition is not in this translation unit */
1121 /* Storage specifiers */
1122 #define STOR_AUTO     0x0000
1123 #define STOR_STATIC   0x0002
1124 #define STOR_LOCAL    0x0003
1125 #define STOR_EXTERN   0x0007
1126 #define STOR_INLINE   0x0008
1127 #define STOR_REGISTER 0x0010
1128 #define STOR_TYPEDEF  0x0018
1129
1130 #define QUAL_SHIFT         5
1131 #define QUAL_MASK     0x00e0
1132 #define QUAL_NONE     0x0000
1133 #define QUAL_CONST    0x0020
1134 #define QUAL_VOLATILE 0x0040
1135 #define QUAL_RESTRICT 0x0080
1136
1137 #define TYPE_SHIFT         8
1138 #define TYPE_MASK     0x1f00
1139 #define TYPE_INTEGER(TYPE)    ((((TYPE) >= TYPE_CHAR) && ((TYPE) <= TYPE_ULLONG)) || ((TYPE) == TYPE_ENUM) || ((TYPE) == TYPE_BITFIELD))
1140 #define TYPE_ARITHMETIC(TYPE) ((((TYPE) >= TYPE_CHAR) && ((TYPE) <= TYPE_LDOUBLE)) || ((TYPE) == TYPE_ENUM) || ((TYPE) == TYPE_BITFIELD))
1141 #define TYPE_UNSIGNED(TYPE)   ((TYPE) & 0x0100)
1142 #define TYPE_SIGNED(TYPE)     (!TYPE_UNSIGNED(TYPE))
1143 #define TYPE_MKUNSIGNED(TYPE) (((TYPE) & ~0xF000) | 0x0100)
1144 #define TYPE_RANK(TYPE)       ((TYPE) & ~0xF1FF)
1145 #define TYPE_PTR(TYPE)        (((TYPE) & TYPE_MASK) == TYPE_POINTER)
1146 #define TYPE_DEFAULT  0x0000
1147 #define TYPE_VOID     0x0100
1148 #define TYPE_CHAR     0x0200
1149 #define TYPE_UCHAR    0x0300
1150 #define TYPE_SHORT    0x0400
1151 #define TYPE_USHORT   0x0500
1152 #define TYPE_INT      0x0600
1153 #define TYPE_UINT     0x0700
1154 #define TYPE_LONG     0x0800
1155 #define TYPE_ULONG    0x0900
1156 #define TYPE_LLONG    0x0a00 /* long long */
1157 #define TYPE_ULLONG   0x0b00
1158 #define TYPE_FLOAT    0x0c00
1159 #define TYPE_DOUBLE   0x0d00
1160 #define TYPE_LDOUBLE  0x0e00 /* long double */
1161
1162 /* Note: TYPE_ENUM is chosen very carefully so TYPE_RANK works */
1163 #define TYPE_ENUM     0x1600
1164 #define TYPE_LIST     0x1700
1165 /* TYPE_LIST is a basic building block when defining enumerations
1166  * type->field_ident holds the name of this enumeration entry.
1167  * type->right holds the entry in the list.
1168  */
1169
1170 #define TYPE_STRUCT   0x1000
1171 /* For TYPE_STRUCT
1172  * type->left holds the link list of TYPE_PRODUCT entries that
1173  * make up the structure.
1174  * type->elements hold the length of the linked list
1175  */
1176 #define TYPE_UNION    0x1100
1177 /* For TYPE_UNION
1178  * type->left holds the link list of TYPE_OVERLAP entries that
1179  * make up the union.
1180  * type->elements hold the length of the linked list
1181  */
1182 #define TYPE_POINTER  0x1200 
1183 /* For TYPE_POINTER:
1184  * type->left holds the type pointed to.
1185  */
1186 #define TYPE_FUNCTION 0x1300 
1187 /* For TYPE_FUNCTION:
1188  * type->left holds the return type.
1189  * type->right holds the type of the arguments
1190  * type->elements holds the count of the arguments
1191  */
1192 #define TYPE_PRODUCT  0x1400
1193 /* TYPE_PRODUCT is a basic building block when defining structures
1194  * type->left holds the type that appears first in memory.
1195  * type->right holds the type that appears next in memory.
1196  */
1197 #define TYPE_OVERLAP  0x1500
1198 /* TYPE_OVERLAP is a basic building block when defining unions
1199  * type->left and type->right holds to types that overlap
1200  * each other in memory.
1201  */
1202 #define TYPE_ARRAY    0x1800
1203 /* TYPE_ARRAY is a basic building block when definitng arrays.
1204  * type->left holds the type we are an array of.
1205  * type->elements holds the number of elements.
1206  */
1207 #define TYPE_TUPLE    0x1900
1208 /* TYPE_TUPLE is a basic building block when defining 
1209  * positionally reference type conglomerations. (i.e. closures)
1210  * In essence it is a wrapper for TYPE_PRODUCT, like TYPE_STRUCT
1211  * except it has no field names.
1212  * type->left holds the liked list of TYPE_PRODUCT entries that
1213  * make up the closure type.
1214  * type->elements hold the number of elements in the closure.
1215  */
1216 #define TYPE_JOIN     0x1a00
1217 /* TYPE_JOIN is a basic building block when defining 
1218  * positionally reference type conglomerations. (i.e. closures)
1219  * In essence it is a wrapper for TYPE_OVERLAP, like TYPE_UNION
1220  * except it has no field names.
1221  * type->left holds the liked list of TYPE_OVERLAP entries that
1222  * make up the closure type.
1223  * type->elements hold the number of elements in the closure.
1224  */
1225 #define TYPE_BITFIELD 0x1b00
1226 /* TYPE_BITFIED is the type of a bitfield.
1227  * type->left holds the type basic type TYPE_BITFIELD is derived from.
1228  * type->elements holds the number of bits in the bitfield.
1229  */
1230 #define TYPE_UNKNOWN  0x1c00
1231 /* TYPE_UNKNOWN is the type of an unknown value.
1232  * Used on unknown consts and other places where I don't know the type.
1233  */
1234
1235 #define ATTRIB_SHIFT                 16
1236 #define ATTRIB_MASK          0xffff0000
1237 #define ATTRIB_NOINLINE      0x00010000
1238 #define ATTRIB_ALWAYS_INLINE 0x00020000
1239
1240 #define ELEMENT_COUNT_UNSPECIFIED ULONG_T_MAX
1241
1242 struct type {
1243         unsigned int type;
1244         struct type *left, *right;
1245         ulong_t elements;
1246         struct hash_entry *field_ident;
1247         struct hash_entry *type_ident;
1248 };
1249
1250 #define TEMPLATE_BITS      7
1251 #define MAX_TEMPLATES      (1<<TEMPLATE_BITS)
1252 #define MAX_REG_EQUIVS     16
1253 #define MAX_REGC           14
1254 #define MAX_REGISTERS      75
1255 #define REGISTER_BITS      7
1256 #define MAX_VIRT_REGISTERS (1<<REGISTER_BITS)
1257 #define REG_ERROR          0
1258 #define REG_UNSET          1
1259 #define REG_UNNEEDED       2
1260 #define REG_VIRT0          (MAX_REGISTERS + 0)
1261 #define REG_VIRT1          (MAX_REGISTERS + 1)
1262 #define REG_VIRT2          (MAX_REGISTERS + 2)
1263 #define REG_VIRT3          (MAX_REGISTERS + 3)
1264 #define REG_VIRT4          (MAX_REGISTERS + 4)
1265 #define REG_VIRT5          (MAX_REGISTERS + 5)
1266 #define REG_VIRT6          (MAX_REGISTERS + 6)
1267 #define REG_VIRT7          (MAX_REGISTERS + 7)
1268 #define REG_VIRT8          (MAX_REGISTERS + 8)
1269 #define REG_VIRT9          (MAX_REGISTERS + 9)
1270
1271 #if (MAX_REGISTERS + 9) > MAX_VIRT_REGISTERS
1272 #error "MAX_VIRT_REGISTERS to small"
1273 #endif
1274 #if (MAX_REGC + REGISTER_BITS) >= 26
1275 #error "Too many id bits used"
1276 #endif
1277
1278 /* Provision for 8 register classes */
1279 #define REG_SHIFT  0
1280 #define REGC_SHIFT REGISTER_BITS
1281 #define REGC_MASK (((1 << MAX_REGC) - 1) << REGISTER_BITS)
1282 #define REG_MASK (MAX_VIRT_REGISTERS -1)
1283 #define ID_REG(ID)              ((ID) & REG_MASK)
1284 #define SET_REG(ID, REG)        ((ID) = (((ID) & ~REG_MASK) | ((REG) & REG_MASK)))
1285 #define ID_REGCM(ID)            (((ID) & REGC_MASK) >> REGC_SHIFT)
1286 #define SET_REGCM(ID, REGCM)    ((ID) = (((ID) & ~REGC_MASK) | (((REGCM) << REGC_SHIFT) & REGC_MASK)))
1287 #define SET_INFO(ID, INFO)      ((ID) = (((ID) & ~(REG_MASK | REGC_MASK)) | \
1288                 (((INFO).reg) & REG_MASK) | ((((INFO).regcm) << REGC_SHIFT) & REGC_MASK)))
1289
1290 #define ARCH_INPUT_REGS 4
1291 #define ARCH_OUTPUT_REGS 4
1292
1293 static const struct reg_info arch_input_regs[ARCH_INPUT_REGS];
1294 static const struct reg_info arch_output_regs[ARCH_OUTPUT_REGS];
1295 static unsigned arch_reg_regcm(struct compile_state *state, int reg);
1296 static unsigned arch_regcm_normalize(struct compile_state *state, unsigned regcm);
1297 static unsigned arch_regcm_reg_normalize(struct compile_state *state, unsigned regcm);
1298 static void arch_reg_equivs(
1299         struct compile_state *state, unsigned *equiv, int reg);
1300 static int arch_select_free_register(
1301         struct compile_state *state, char *used, int classes);
1302 static unsigned arch_regc_size(struct compile_state *state, int class);
1303 static int arch_regcm_intersect(unsigned regcm1, unsigned regcm2);
1304 static unsigned arch_type_to_regcm(struct compile_state *state, struct type *type);
1305 static const char *arch_reg_str(int reg);
1306 static struct reg_info arch_reg_constraint(
1307         struct compile_state *state, struct type *type, const char *constraint);
1308 static struct reg_info arch_reg_clobber(
1309         struct compile_state *state, const char *clobber);
1310 static struct reg_info arch_reg_lhs(struct compile_state *state, 
1311         struct triple *ins, int index);
1312 static struct reg_info arch_reg_rhs(struct compile_state *state, 
1313         struct triple *ins, int index);
1314 static int arch_reg_size(int reg);
1315 static struct triple *transform_to_arch_instruction(
1316         struct compile_state *state, struct triple *ins);
1317 static struct triple *flatten(
1318         struct compile_state *state, struct triple *first, struct triple *ptr);
1319 static void print_dominators(struct compile_state *state,
1320         FILE *fp, struct basic_blocks *bb);
1321 static void print_dominance_frontiers(struct compile_state *state,
1322         FILE *fp, struct basic_blocks *bb);
1323
1324
1325
1326 #define DEBUG_ABORT_ON_ERROR    0x00000001
1327 #define DEBUG_BASIC_BLOCKS      0x00000002
1328 #define DEBUG_FDOMINATORS       0x00000004
1329 #define DEBUG_RDOMINATORS       0x00000008
1330 #define DEBUG_TRIPLES           0x00000010
1331 #define DEBUG_INTERFERENCE      0x00000020
1332 #define DEBUG_SCC_TRANSFORM     0x00000040
1333 #define DEBUG_SCC_TRANSFORM2    0x00000080
1334 #define DEBUG_REBUILD_SSA_FORM  0x00000100
1335 #define DEBUG_INLINE            0x00000200
1336 #define DEBUG_RANGE_CONFLICTS   0x00000400
1337 #define DEBUG_RANGE_CONFLICTS2  0x00000800
1338 #define DEBUG_COLOR_GRAPH       0x00001000
1339 #define DEBUG_COLOR_GRAPH2      0x00002000
1340 #define DEBUG_COALESCING        0x00004000
1341 #define DEBUG_COALESCING2       0x00008000
1342 #define DEBUG_VERIFICATION      0x00010000
1343 #define DEBUG_CALLS             0x00020000
1344 #define DEBUG_CALLS2            0x00040000
1345 #define DEBUG_TOKENS            0x80000000
1346
1347 #define DEBUG_DEFAULT ( \
1348         DEBUG_ABORT_ON_ERROR | \
1349         DEBUG_BASIC_BLOCKS | \
1350         DEBUG_FDOMINATORS | \
1351         DEBUG_RDOMINATORS | \
1352         DEBUG_TRIPLES | \
1353         0 )
1354
1355 #define DEBUG_ALL ( \
1356         DEBUG_ABORT_ON_ERROR   | \
1357         DEBUG_BASIC_BLOCKS     | \
1358         DEBUG_FDOMINATORS      | \
1359         DEBUG_RDOMINATORS      | \
1360         DEBUG_TRIPLES          | \
1361         DEBUG_INTERFERENCE     | \
1362         DEBUG_SCC_TRANSFORM    | \
1363         DEBUG_SCC_TRANSFORM2   | \
1364         DEBUG_REBUILD_SSA_FORM | \
1365         DEBUG_INLINE           | \
1366         DEBUG_RANGE_CONFLICTS  | \
1367         DEBUG_RANGE_CONFLICTS2 | \
1368         DEBUG_COLOR_GRAPH      | \
1369         DEBUG_COLOR_GRAPH2     | \
1370         DEBUG_COALESCING       | \
1371         DEBUG_COALESCING2      | \
1372         DEBUG_VERIFICATION     | \
1373         DEBUG_CALLS            | \
1374         DEBUG_CALLS2           | \
1375         DEBUG_TOKENS           | \
1376         0 )
1377
1378 #define COMPILER_INLINE_MASK               0x00000007
1379 #define COMPILER_INLINE_ALWAYS             0x00000000
1380 #define COMPILER_INLINE_NEVER              0x00000001
1381 #define COMPILER_INLINE_DEFAULTON          0x00000002
1382 #define COMPILER_INLINE_DEFAULTOFF         0x00000003
1383 #define COMPILER_INLINE_NOPENALTY          0x00000004
1384 #define COMPILER_ELIMINATE_INEFECTUAL_CODE 0x00000008
1385 #define COMPILER_SIMPLIFY                  0x00000010
1386 #define COMPILER_SCC_TRANSFORM             0x00000020
1387 #define COMPILER_SIMPLIFY_OP               0x00000040
1388 #define COMPILER_SIMPLIFY_PHI              0x00000080
1389 #define COMPILER_SIMPLIFY_LABEL            0x00000100
1390 #define COMPILER_SIMPLIFY_BRANCH           0x00000200
1391 #define COMPILER_SIMPLIFY_COPY             0x00000400
1392 #define COMPILER_SIMPLIFY_ARITH            0x00000800
1393 #define COMPILER_SIMPLIFY_SHIFT            0x00001000
1394 #define COMPILER_SIMPLIFY_BITWISE          0x00002000
1395 #define COMPILER_SIMPLIFY_LOGICAL          0x00004000
1396 #define COMPILER_SIMPLIFY_BITFIELD         0x00008000
1397
1398 #define COMPILER_TRIGRAPHS                 0x40000000
1399 #define COMPILER_PP_ONLY                   0x80000000
1400
1401 #define COMPILER_DEFAULT_FLAGS ( \
1402         COMPILER_TRIGRAPHS | \
1403         COMPILER_ELIMINATE_INEFECTUAL_CODE | \
1404         COMPILER_INLINE_DEFAULTON | \
1405         COMPILER_SIMPLIFY_OP | \
1406         COMPILER_SIMPLIFY_PHI | \
1407         COMPILER_SIMPLIFY_LABEL | \
1408         COMPILER_SIMPLIFY_BRANCH | \
1409         COMPILER_SIMPLIFY_COPY | \
1410         COMPILER_SIMPLIFY_ARITH | \
1411         COMPILER_SIMPLIFY_SHIFT | \
1412         COMPILER_SIMPLIFY_BITWISE | \
1413         COMPILER_SIMPLIFY_LOGICAL | \
1414         COMPILER_SIMPLIFY_BITFIELD | \
1415         0 )
1416
1417 #define GLOBAL_SCOPE_DEPTH   1
1418 #define FUNCTION_SCOPE_DEPTH (GLOBAL_SCOPE_DEPTH + 1)
1419
1420 static void compile_file(struct compile_state *old_state, const char *filename, int local);
1421
1422
1423
1424 static void init_compiler_state(struct compiler_state *compiler)
1425 {
1426         memset(compiler, 0, sizeof(*compiler));
1427         compiler->label_prefix = "";
1428         compiler->ofilename = "auto.inc";
1429         compiler->flags = COMPILER_DEFAULT_FLAGS;
1430         compiler->debug = 0;
1431         compiler->max_allocation_passes = MAX_ALLOCATION_PASSES;
1432         compiler->include_path_count = 1;
1433         compiler->include_paths      = xcmalloc(sizeof(char *), "include_paths");
1434         compiler->define_count       = 1;
1435         compiler->defines            = xcmalloc(sizeof(char *), "defines");
1436         compiler->undef_count        = 1;
1437         compiler->undefs             = xcmalloc(sizeof(char *), "undefs");
1438 }
1439
1440 struct compiler_flag {
1441         const char *name;
1442         unsigned long flag;
1443 };
1444
1445 struct compiler_arg {
1446         const char *name;
1447         unsigned long mask;
1448         struct compiler_flag flags[16];
1449 };
1450
1451 static int set_flag(
1452         const struct compiler_flag *ptr, unsigned long *flags,
1453         int act, const char *flag)
1454 {
1455         int result = -1;
1456         for(; ptr->name; ptr++) {
1457                 if (strcmp(ptr->name, flag) == 0) {
1458                         break;
1459                 }
1460         }
1461         if (ptr->name) {
1462                 result = 0;
1463                 *flags &= ~(ptr->flag);
1464                 if (act) {
1465                         *flags |= ptr->flag;
1466                 }
1467         }
1468         return result;
1469 }
1470
1471 static int set_arg(
1472         const struct compiler_arg *ptr, unsigned long *flags, const char *arg)
1473 {
1474         const char *val;
1475         int result = -1;
1476         int len;
1477         val = strchr(arg, '=');
1478         if (val) {
1479                 len = val - arg;
1480                 val++;
1481                 for(; ptr->name; ptr++) {
1482                         if (strncmp(ptr->name, arg, len) == 0) {
1483                                 break;
1484                         }
1485                 }
1486                 if (ptr->name) {
1487                         *flags &= ~ptr->mask;
1488                         result = set_flag(&ptr->flags[0], flags, 1, val);
1489                 }
1490         }
1491         return result;
1492 }
1493         
1494
1495 static void flag_usage(FILE *fp, const struct compiler_flag *ptr, 
1496         const char *prefix, const char *invert_prefix)
1497 {
1498         for(;ptr->name; ptr++) {
1499                 fprintf(fp, "%s%s\n", prefix, ptr->name);
1500                 if (invert_prefix) {
1501                         fprintf(fp, "%s%s\n", invert_prefix, ptr->name);
1502                 }
1503         }
1504 }
1505
1506 static void arg_usage(FILE *fp, const struct compiler_arg *ptr,
1507         const char *prefix)
1508 {
1509         for(;ptr->name; ptr++) {
1510                 const struct compiler_flag *flag;
1511                 for(flag = &ptr->flags[0]; flag->name; flag++) {
1512                         fprintf(fp, "%s%s=%s\n", 
1513                                 prefix, ptr->name, flag->name);
1514                 }
1515         }
1516 }
1517
1518 static int append_string(size_t *max, const char ***vec, const char *str,
1519         const char *name)
1520 {
1521         size_t count;
1522         count = ++(*max);
1523         *vec = xrealloc(*vec, sizeof(char *)*count, "name");
1524         (*vec)[count -1] = 0;
1525         (*vec)[count -2] = str; 
1526         return 0;
1527 }
1528
1529 static void arg_error(char *fmt, ...);
1530 static const char *identifier(const char *str, const char *end);
1531
1532 static int append_include_path(struct compiler_state *compiler, const char *str)
1533 {
1534         int result;
1535         if (!exists(str, ".")) {
1536                 arg_error("Nonexistent include path: `%s'\n",
1537                         str);
1538         }
1539         result = append_string(&compiler->include_path_count,
1540                 &compiler->include_paths, str, "include_paths");
1541         return result;
1542 }
1543
1544 static int append_define(struct compiler_state *compiler, const char *str)
1545 {
1546         const char *end, *rest;
1547         int result;
1548
1549         end = strchr(str, '=');
1550         if (!end) {
1551                 end = str + strlen(str);
1552         }
1553         rest = identifier(str, end);
1554         if (rest != end) {
1555                 int len = end - str - 1;
1556                 arg_error("Invalid name cannot define macro: `%*.*s'\n", 
1557                         len, len, str);
1558         }
1559         result = append_string(&compiler->define_count,
1560                 &compiler->defines, str, "defines");
1561         return result;
1562 }
1563
1564 static int append_undef(struct compiler_state *compiler, const char *str)
1565 {
1566         const char *end, *rest;
1567         int result;
1568
1569         end = str + strlen(str);
1570         rest = identifier(str, end);
1571         if (rest != end) {
1572                 int len = end - str - 1;
1573                 arg_error("Invalid name cannot undefine macro: `%*.*s'\n", 
1574                         len, len, str);
1575         }
1576         result = append_string(&compiler->undef_count,
1577                 &compiler->undefs, str, "undefs");
1578         return result;
1579 }
1580
1581 static const struct compiler_flag romcc_flags[] = {
1582         { "trigraphs",                 COMPILER_TRIGRAPHS },
1583         { "pp-only",                   COMPILER_PP_ONLY },
1584         { "eliminate-inefectual-code", COMPILER_ELIMINATE_INEFECTUAL_CODE },
1585         { "simplify",                  COMPILER_SIMPLIFY },
1586         { "scc-transform",             COMPILER_SCC_TRANSFORM },
1587         { "simplify-op",               COMPILER_SIMPLIFY_OP },
1588         { "simplify-phi",              COMPILER_SIMPLIFY_PHI },
1589         { "simplify-label",            COMPILER_SIMPLIFY_LABEL },
1590         { "simplify-branch",           COMPILER_SIMPLIFY_BRANCH },
1591         { "simplify-copy",             COMPILER_SIMPLIFY_COPY },
1592         { "simplify-arith",            COMPILER_SIMPLIFY_ARITH },
1593         { "simplify-shift",            COMPILER_SIMPLIFY_SHIFT },
1594         { "simplify-bitwise",          COMPILER_SIMPLIFY_BITWISE },
1595         { "simplify-logical",          COMPILER_SIMPLIFY_LOGICAL },
1596         { "simplify-bitfield",         COMPILER_SIMPLIFY_BITFIELD },
1597         { 0, 0 },
1598 };
1599 static const struct compiler_arg romcc_args[] = {
1600         { "inline-policy",             COMPILER_INLINE_MASK,
1601                 {
1602                         { "always",      COMPILER_INLINE_ALWAYS, },
1603                         { "never",       COMPILER_INLINE_NEVER, },
1604                         { "defaulton",   COMPILER_INLINE_DEFAULTON, },
1605                         { "defaultoff",  COMPILER_INLINE_DEFAULTOFF, },
1606                         { "nopenalty",   COMPILER_INLINE_NOPENALTY, },
1607                         { 0, 0 },
1608                 },
1609         },
1610         { 0, 0 },
1611 };
1612 static const struct compiler_flag romcc_opt_flags[] = {
1613         { "-O",  COMPILER_SIMPLIFY },
1614         { "-O2", COMPILER_SIMPLIFY | COMPILER_SCC_TRANSFORM },
1615         { "-E",  COMPILER_PP_ONLY },
1616         { 0, 0, },
1617 };
1618 static const struct compiler_flag romcc_debug_flags[] = {
1619         { "all",                   DEBUG_ALL },
1620         { "abort-on-error",        DEBUG_ABORT_ON_ERROR },
1621         { "basic-blocks",          DEBUG_BASIC_BLOCKS },
1622         { "fdominators",           DEBUG_FDOMINATORS },
1623         { "rdominators",           DEBUG_RDOMINATORS },
1624         { "triples",               DEBUG_TRIPLES },
1625         { "interference",          DEBUG_INTERFERENCE },
1626         { "scc-transform",         DEBUG_SCC_TRANSFORM },
1627         { "scc-transform2",        DEBUG_SCC_TRANSFORM2 },
1628         { "rebuild-ssa-form",      DEBUG_REBUILD_SSA_FORM },
1629         { "inline",                DEBUG_INLINE },
1630         { "live-range-conflicts",  DEBUG_RANGE_CONFLICTS },
1631         { "live-range-conflicts2", DEBUG_RANGE_CONFLICTS2 },
1632         { "color-graph",           DEBUG_COLOR_GRAPH },
1633         { "color-graph2",          DEBUG_COLOR_GRAPH2 },
1634         { "coalescing",            DEBUG_COALESCING },
1635         { "coalescing2",           DEBUG_COALESCING2 },
1636         { "verification",          DEBUG_VERIFICATION },
1637         { "calls",                 DEBUG_CALLS },
1638         { "calls2",                DEBUG_CALLS2 },
1639         { "tokens",                DEBUG_TOKENS },
1640         { 0, 0 },
1641 };
1642
1643 static int compiler_encode_flag(
1644         struct compiler_state *compiler, const char *flag)
1645 {
1646         int act;
1647         int result;
1648
1649         act = 1;
1650         result = -1;
1651         if (strncmp(flag, "no-", 3) == 0) {
1652                 flag += 3;
1653                 act = 0;
1654         }
1655         if (strncmp(flag, "-O", 2) == 0) {
1656                 result = set_flag(romcc_opt_flags, &compiler->flags, act, flag);
1657         }
1658         else if (strncmp(flag, "-E", 2) == 0) {
1659                 result = set_flag(romcc_opt_flags, &compiler->flags, act, flag);
1660         }
1661         else if (strncmp(flag, "-I", 2) == 0) {
1662                 result = append_include_path(compiler, flag + 2);
1663         }
1664         else if (strncmp(flag, "-D", 2) == 0) {
1665                 result = append_define(compiler, flag + 2);
1666         }
1667         else if (strncmp(flag, "-U", 2) == 0) {
1668                 result = append_undef(compiler, flag + 2);
1669         }
1670         else if (act && strncmp(flag, "label-prefix=", 13) == 0) {
1671                 result = 0;
1672                 compiler->label_prefix = flag + 13;
1673         }
1674         else if (act && strncmp(flag, "max-allocation-passes=", 22) == 0) {
1675                 unsigned long max_passes;
1676                 char *end;
1677                 max_passes = strtoul(flag + 22, &end, 10);
1678                 if (end[0] == '\0') {
1679                         result = 0;
1680                         compiler->max_allocation_passes = max_passes;
1681                 }
1682         }
1683         else if (act && strcmp(flag, "debug") == 0) {
1684                 result = 0;
1685                 compiler->debug |= DEBUG_DEFAULT;
1686         }
1687         else if (strncmp(flag, "debug-", 6) == 0) {
1688                 flag += 6;
1689                 result = set_flag(romcc_debug_flags, &compiler->debug, act, flag);
1690         }
1691         else {
1692                 result = set_flag(romcc_flags, &compiler->flags, act, flag);
1693                 if (result < 0) {
1694                         result = set_arg(romcc_args, &compiler->flags, flag);
1695                 }
1696         }
1697         return result;
1698 }
1699
1700 static void compiler_usage(FILE *fp)
1701 {
1702         flag_usage(fp, romcc_opt_flags, "", 0);
1703         flag_usage(fp, romcc_flags, "-f", "-fno-");
1704         arg_usage(fp,  romcc_args, "-f");
1705         flag_usage(fp, romcc_debug_flags, "-fdebug-", "-fno-debug-");
1706         fprintf(fp, "-flabel-prefix=<prefix for assembly language labels>\n");
1707         fprintf(fp, "--label-prefix=<prefix for assembly language labels>\n");
1708         fprintf(fp, "-I<include path>\n");
1709         fprintf(fp, "-D<macro>[=defn]\n");
1710         fprintf(fp, "-U<macro>\n");
1711 }
1712
1713 static void do_cleanup(struct compile_state *state)
1714 {
1715         if (state->output) {
1716                 fclose(state->output);
1717                 unlink(state->compiler->ofilename);
1718                 state->output = 0;
1719         }
1720         if (state->dbgout) {
1721                 fflush(state->dbgout);
1722         }
1723         if (state->errout) {
1724                 fflush(state->errout);
1725         }
1726 }
1727
1728 static struct compile_state *exit_state;
1729 static void exit_cleanup(void)
1730 {
1731         if (exit_state) {
1732                 do_cleanup(exit_state);
1733         }
1734 }
1735
1736 static int get_col(struct file_state *file)
1737 {
1738         int col;
1739         const char *ptr, *end;
1740         ptr = file->line_start;
1741         end = file->pos;
1742         for(col = 0; ptr < end; ptr++) {
1743                 if (*ptr != '\t') {
1744                         col++;
1745                 } 
1746                 else {
1747                         col = (col & ~7) + 8;
1748                 }
1749         }
1750         return col;
1751 }
1752
1753 static void loc(FILE *fp, struct compile_state *state, struct triple *triple)
1754 {
1755         int col;
1756         if (triple && triple->occurance) {
1757                 struct occurance *spot;
1758                 for(spot = triple->occurance; spot; spot = spot->parent) {
1759                         fprintf(fp, "%s:%d.%d: ", 
1760                                 spot->filename, spot->line, spot->col);
1761                 }
1762                 return;
1763         }
1764         if (!state->file) {
1765                 return;
1766         }
1767         col = get_col(state->file);
1768         fprintf(fp, "%s:%d.%d: ", 
1769                 state->file->report_name, state->file->report_line, col);
1770 }
1771
1772 static void __attribute__ ((noreturn)) internal_error(struct compile_state *state, struct triple *ptr, 
1773         const char *fmt, ...)
1774 {
1775         FILE *fp = state->errout;
1776         va_list args;
1777         va_start(args, fmt);
1778         loc(fp, state, ptr);
1779         fputc('\n', fp);
1780         if (ptr) {
1781                 fprintf(fp, "%p %-10s ", ptr, tops(ptr->op));
1782         }
1783         fprintf(fp, "Internal compiler error: ");
1784         vfprintf(fp, fmt, args);
1785         fprintf(fp, "\n");
1786         va_end(args);
1787         do_cleanup(state);
1788         abort();
1789 }
1790
1791
1792 static void internal_warning(struct compile_state *state, struct triple *ptr, 
1793         const char *fmt, ...)
1794 {
1795         FILE *fp = state->errout;
1796         va_list args;
1797         va_start(args, fmt);
1798         loc(fp, state, ptr);
1799         if (ptr) {
1800                 fprintf(fp, "%p %-10s ", ptr, tops(ptr->op));
1801         }
1802         fprintf(fp, "Internal compiler warning: ");
1803         vfprintf(fp, fmt, args);
1804         fprintf(fp, "\n");
1805         va_end(args);
1806 }
1807
1808
1809
1810 static void __attribute__ ((noreturn)) error(struct compile_state *state, struct triple *ptr, 
1811         const char *fmt, ...)
1812 {
1813         FILE *fp = state->errout;
1814         va_list args;
1815         va_start(args, fmt);
1816         loc(fp, state, ptr);
1817         fputc('\n', fp);
1818         if (ptr && (state->compiler->debug & DEBUG_ABORT_ON_ERROR)) {
1819                 fprintf(fp, "%p %-10s ", ptr, tops(ptr->op));
1820         }
1821         vfprintf(fp, fmt, args);
1822         va_end(args);
1823         fprintf(fp, "\n");
1824         do_cleanup(state);
1825         if (state->compiler->debug & DEBUG_ABORT_ON_ERROR) {
1826                 abort();
1827         }
1828         exit(1);
1829 }
1830
1831 static void warning(struct compile_state *state, struct triple *ptr, 
1832         const char *fmt, ...)
1833 {
1834         FILE *fp = state->errout;
1835         va_list args;
1836         va_start(args, fmt);
1837         loc(fp, state, ptr);
1838         fprintf(fp, "warning: "); 
1839         if (ptr && (state->compiler->debug & DEBUG_ABORT_ON_ERROR)) {
1840                 fprintf(fp, "%p %-10s ", ptr, tops(ptr->op));
1841         }
1842         vfprintf(fp, fmt, args);
1843         fprintf(fp, "\n");
1844         va_end(args);
1845 }
1846
1847 #define FINISHME() warning(state, 0, "FINISHME @ %s.%s:%d", __FILE__, __func__, __LINE__)
1848
1849 static void valid_op(struct compile_state *state, int op)
1850 {
1851         char *fmt = "invalid op: %d";
1852         if (op >= OP_MAX) {
1853                 internal_error(state, 0, fmt, op);
1854         }
1855         if (op < 0) {
1856                 internal_error(state, 0, fmt, op);
1857         }
1858 }
1859
1860 static void valid_ins(struct compile_state *state, struct triple *ptr)
1861 {
1862         valid_op(state, ptr->op);
1863 }
1864
1865 #if DEBUG_ROMCC_WARNING
1866 static void valid_param_count(struct compile_state *state, struct triple *ins)
1867 {
1868         int lhs, rhs, misc, targ;
1869         valid_ins(state, ins);
1870         lhs  = table_ops[ins->op].lhs;
1871         rhs  = table_ops[ins->op].rhs;
1872         misc = table_ops[ins->op].misc;
1873         targ = table_ops[ins->op].targ;
1874
1875         if ((lhs >= 0) && (ins->lhs != lhs)) {
1876                 internal_error(state, ins, "Bad lhs count");
1877         }
1878         if ((rhs >= 0) && (ins->rhs != rhs)) {
1879                 internal_error(state, ins, "Bad rhs count");
1880         }
1881         if ((misc >= 0) && (ins->misc != misc)) {
1882                 internal_error(state, ins, "Bad misc count");
1883         }
1884         if ((targ >= 0) && (ins->targ != targ)) {
1885                 internal_error(state, ins, "Bad targ count");
1886         }
1887 }
1888 #endif
1889
1890 static struct type void_type;
1891 static struct type unknown_type;
1892 static void use_triple(struct triple *used, struct triple *user)
1893 {
1894         struct triple_set **ptr, *new;
1895         if (!used)
1896                 return;
1897         if (!user)
1898                 return;
1899         if (used->use == (void*)-1)
1900                 used->use = 0;
1901         if (used->use) {
1902                 ptr = &used->use;
1903                 while(*ptr) {
1904                         if ((*ptr)->member == user) {
1905                                 return;
1906                         }
1907                         ptr = &(*ptr)->next;
1908                 }
1909         }
1910         /* Append new to the head of the list, 
1911          * copy_func and rename_block_variables
1912          * depends on this.
1913          */
1914         new = xcmalloc(sizeof(*new), "triple_set");
1915         new->member = user;
1916         new->next   = used->use;
1917         used->use   = new;
1918 }
1919
1920 static void unuse_triple(struct triple *used, struct triple *unuser)
1921 {
1922         struct triple_set *use, **ptr;
1923         if (!used) {
1924                 return;
1925         }
1926         ptr = &used->use;
1927         while(*ptr) {
1928                 use = *ptr;
1929                 if (use->member == unuser) {
1930                         *ptr = use->next;
1931                         xfree(use);
1932                 }
1933                 else {
1934                         ptr = &use->next;
1935                 }
1936         }
1937 }
1938
1939 static void put_occurance(struct occurance *occurance)
1940 {
1941         if (occurance) {
1942                 occurance->count -= 1;
1943                 if (occurance->count <= 0) {
1944                         if (occurance->parent) {
1945                                 put_occurance(occurance->parent);
1946                         }
1947                         xfree(occurance);
1948                 }
1949         }
1950 }
1951
1952 static void get_occurance(struct occurance *occurance)
1953 {
1954         if (occurance) {
1955                 occurance->count += 1;
1956         }
1957 }
1958
1959
1960 static struct occurance *new_occurance(struct compile_state *state)
1961 {
1962         struct occurance *result, *last;
1963         const char *filename;
1964         const char *function;
1965         int line, col;
1966
1967         function = "";
1968         filename = 0;
1969         line = 0;
1970         col  = 0;
1971         if (state->file) {
1972                 filename = state->file->report_name;
1973                 line     = state->file->report_line;
1974                 col      = get_col(state->file);
1975         }
1976         if (state->function) {
1977                 function = state->function;
1978         }
1979         last = state->last_occurance;
1980         if (last &&
1981                 (last->col == col) &&
1982                 (last->line == line) &&
1983                 (last->function == function) &&
1984                 ((last->filename == filename) ||
1985                         (strcmp(last->filename, filename) == 0))) 
1986         {
1987                 get_occurance(last);
1988                 return last;
1989         }
1990         if (last) {
1991                 state->last_occurance = 0;
1992                 put_occurance(last);
1993         }
1994         result = xmalloc(sizeof(*result), "occurance");
1995         result->count    = 2;
1996         result->filename = filename;
1997         result->function = function;
1998         result->line     = line;
1999         result->col      = col;
2000         result->parent   = 0;
2001         state->last_occurance = result;
2002         return result;
2003 }
2004
2005 static struct occurance *inline_occurance(struct compile_state *state,
2006         struct occurance *base, struct occurance *top)
2007 {
2008         struct occurance *result, *last;
2009         if (top->parent) {
2010                 internal_error(state, 0, "inlining an already inlined function?");
2011         }
2012         /* If I have a null base treat it that way */
2013         if ((base->parent == 0) &&
2014                 (base->col == 0) &&
2015                 (base->line == 0) &&
2016                 (base->function[0] == '\0') &&
2017                 (base->filename[0] == '\0')) {
2018                 base = 0;
2019         }
2020         /* See if I can reuse the last occurance I had */
2021         last = state->last_occurance;
2022         if (last &&
2023                 (last->parent   == base) &&
2024                 (last->col      == top->col) &&
2025                 (last->line     == top->line) &&
2026                 (last->function == top->function) &&
2027                 (last->filename == top->filename)) {
2028                 get_occurance(last);
2029                 return last;
2030         }
2031         /* I can't reuse the last occurance so free it */
2032         if (last) {
2033                 state->last_occurance = 0;
2034                 put_occurance(last);
2035         }
2036         /* Generate a new occurance structure */
2037         get_occurance(base);
2038         result = xmalloc(sizeof(*result), "occurance");
2039         result->count    = 2;
2040         result->filename = top->filename;
2041         result->function = top->function;
2042         result->line     = top->line;
2043         result->col      = top->col;
2044         result->parent   = base;
2045         state->last_occurance = result;
2046         return result;
2047 }
2048
2049 static struct occurance dummy_occurance = {
2050         .count    = 2,
2051         .filename = __FILE__,
2052         .function = "",
2053         .line     = __LINE__,
2054         .col      = 0,
2055         .parent   = 0,
2056 };
2057
2058 /* The undef triple is used as a place holder when we are removing pointers
2059  * from a triple.  Having allows certain sanity checks to pass even
2060  * when the original triple that was pointed to is gone.
2061  */
2062 static struct triple unknown_triple = {
2063         .next      = &unknown_triple,
2064         .prev      = &unknown_triple,
2065         .use       = 0,
2066         .op        = OP_UNKNOWNVAL,
2067         .lhs       = 0,
2068         .rhs       = 0,
2069         .misc      = 0,
2070         .targ      = 0,
2071         .type      = &unknown_type,
2072         .id        = -1, /* An invalid id */
2073         .u = { .cval = 0, },
2074         .occurance = &dummy_occurance,
2075         .param = { [0] = 0, [1] = 0, },
2076 };
2077
2078
2079 static size_t registers_of(struct compile_state *state, struct type *type);
2080
2081 static struct triple *alloc_triple(struct compile_state *state, 
2082         int op, struct type *type, int lhs_wanted, int rhs_wanted,
2083         struct occurance *occurance)
2084 {
2085         size_t size, extra_count, min_count;
2086         int lhs, rhs, misc, targ;
2087         struct triple *ret, dummy;
2088         dummy.op = op;
2089         dummy.occurance = occurance;
2090         valid_op(state, op);
2091         lhs = table_ops[op].lhs;
2092         rhs = table_ops[op].rhs;
2093         misc = table_ops[op].misc;
2094         targ = table_ops[op].targ;
2095
2096         switch(op) {
2097         case OP_FCALL:
2098                 rhs = rhs_wanted;
2099                 break;
2100         case OP_PHI:
2101                 rhs = rhs_wanted;
2102                 break;
2103         case OP_ADECL:
2104                 lhs = registers_of(state, type);
2105                 break;
2106         case OP_TUPLE:
2107                 lhs = registers_of(state, type);
2108                 break;
2109         case OP_ASM:
2110                 rhs = rhs_wanted;
2111                 lhs = lhs_wanted;
2112                 break;
2113         }
2114         if ((rhs < 0) || (rhs > MAX_RHS)) {
2115                 internal_error(state, &dummy, "bad rhs count %d", rhs);
2116         }
2117         if ((lhs < 0) || (lhs > MAX_LHS)) {
2118                 internal_error(state, &dummy, "bad lhs count %d", lhs);
2119         }
2120         if ((misc < 0) || (misc > MAX_MISC)) {
2121                 internal_error(state, &dummy, "bad misc count %d", misc);
2122         }
2123         if ((targ < 0) || (targ > MAX_TARG)) {
2124                 internal_error(state, &dummy, "bad targs count %d", targ);
2125         }
2126
2127         min_count = sizeof(ret->param)/sizeof(ret->param[0]);
2128         extra_count = lhs + rhs + misc + targ;
2129         extra_count = (extra_count < min_count)? 0 : extra_count - min_count;
2130
2131         size = sizeof(*ret) + sizeof(ret->param[0]) * extra_count;
2132         ret = xcmalloc(size, "tripple");
2133         ret->op        = op;
2134         ret->lhs       = lhs;
2135         ret->rhs       = rhs;
2136         ret->misc      = misc;
2137         ret->targ      = targ;
2138         ret->type      = type;
2139         ret->next      = ret;
2140         ret->prev      = ret;
2141         ret->occurance = occurance;
2142         /* A simple sanity check */
2143         if ((ret->op != op) ||
2144                 (ret->lhs != lhs) ||
2145                 (ret->rhs != rhs) ||
2146                 (ret->misc != misc) ||
2147                 (ret->targ != targ) ||
2148                 (ret->type != type) ||
2149                 (ret->next != ret) ||
2150                 (ret->prev != ret) ||
2151                 (ret->occurance != occurance)) {
2152                 internal_error(state, ret, "huh?");
2153         }
2154         return ret;
2155 }
2156
2157 struct triple *dup_triple(struct compile_state *state, struct triple *src)
2158 {
2159         struct triple *dup;
2160         int src_lhs, src_rhs, src_size;
2161         src_lhs = src->lhs;
2162         src_rhs = src->rhs;
2163         src_size = TRIPLE_SIZE(src);
2164         get_occurance(src->occurance);
2165         dup = alloc_triple(state, src->op, src->type, src_lhs, src_rhs,
2166                 src->occurance);
2167         memcpy(dup, src, sizeof(*src));
2168         memcpy(dup->param, src->param, src_size * sizeof(src->param[0]));
2169         return dup;
2170 }
2171
2172 static struct triple *copy_triple(struct compile_state *state, struct triple *src)
2173 {
2174         struct triple *copy;
2175         copy = dup_triple(state, src);
2176         copy->use = 0;
2177         copy->next = copy->prev = copy;
2178         return copy;
2179 }
2180
2181 static struct triple *new_triple(struct compile_state *state, 
2182         int op, struct type *type, int lhs, int rhs)
2183 {
2184         struct triple *ret;
2185         struct occurance *occurance;
2186         occurance = new_occurance(state);
2187         ret = alloc_triple(state, op, type, lhs, rhs, occurance);
2188         return ret;
2189 }
2190
2191 static struct triple *build_triple(struct compile_state *state, 
2192         int op, struct type *type, struct triple *left, struct triple *right,
2193         struct occurance *occurance)
2194 {
2195         struct triple *ret;
2196         size_t count;
2197         ret = alloc_triple(state, op, type, -1, -1, occurance);
2198         count = TRIPLE_SIZE(ret);
2199         if (count > 0) {
2200                 ret->param[0] = left;
2201         }
2202         if (count > 1) {
2203                 ret->param[1] = right;
2204         }
2205         return ret;
2206 }
2207
2208 static struct triple *triple(struct compile_state *state, 
2209         int op, struct type *type, struct triple *left, struct triple *right)
2210 {
2211         struct triple *ret;
2212         size_t count;
2213         ret = new_triple(state, op, type, -1, -1);
2214         count = TRIPLE_SIZE(ret);
2215         if (count >= 1) {
2216                 ret->param[0] = left;
2217         }
2218         if (count >= 2) {
2219                 ret->param[1] = right;
2220         }
2221         return ret;
2222 }
2223
2224 static struct triple *branch(struct compile_state *state, 
2225         struct triple *targ, struct triple *test)
2226 {
2227         struct triple *ret;
2228         if (test) {
2229                 ret = new_triple(state, OP_CBRANCH, &void_type, -1, 1);
2230                 RHS(ret, 0) = test;
2231         } else {
2232                 ret = new_triple(state, OP_BRANCH, &void_type, -1, 0);
2233         }
2234         TARG(ret, 0) = targ;
2235         /* record the branch target was used */
2236         if (!targ || (targ->op != OP_LABEL)) {
2237                 internal_error(state, 0, "branch not to label");
2238         }
2239         return ret;
2240 }
2241
2242 static int triple_is_label(struct compile_state *state, struct triple *ins);
2243 static int triple_is_call(struct compile_state *state, struct triple *ins);
2244 static int triple_is_cbranch(struct compile_state *state, struct triple *ins);
2245 static void insert_triple(struct compile_state *state,
2246         struct triple *first, struct triple *ptr)
2247 {
2248         if (ptr) {
2249                 if ((ptr->id & TRIPLE_FLAG_FLATTENED) || (ptr->next != ptr)) {
2250                         internal_error(state, ptr, "expression already used");
2251                 }
2252                 ptr->next       = first;
2253                 ptr->prev       = first->prev;
2254                 ptr->prev->next = ptr;
2255                 ptr->next->prev = ptr;
2256
2257                 if (triple_is_cbranch(state, ptr->prev) ||
2258                         triple_is_call(state, ptr->prev)) {
2259                         unuse_triple(first, ptr->prev);
2260                         use_triple(ptr, ptr->prev);
2261                 }
2262         }
2263 }
2264
2265 static int triple_stores_block(struct compile_state *state, struct triple *ins)
2266 {
2267         /* This function is used to determine if u.block 
2268          * is utilized to store the current block number.
2269          */
2270         int stores_block;
2271         valid_ins(state, ins);
2272         stores_block = (table_ops[ins->op].flags & BLOCK) == BLOCK;
2273         return stores_block;
2274 }
2275
2276 static int triple_is_branch(struct compile_state *state, struct triple *ins);
2277 static struct block *block_of_triple(struct compile_state *state, 
2278         struct triple *ins)
2279 {
2280         struct triple *first;
2281         if (!ins || ins == &unknown_triple) {
2282                 return 0;
2283         }
2284         first = state->first;
2285         while(ins != first && !triple_is_branch(state, ins->prev) &&
2286                 !triple_stores_block(state, ins)) 
2287         { 
2288                 if (ins == ins->prev) {
2289                         internal_error(state, ins, "ins == ins->prev?");
2290                 }
2291                 ins = ins->prev;
2292         }
2293         return triple_stores_block(state, ins)? ins->u.block: 0;
2294 }
2295
2296 static void generate_lhs_pieces(struct compile_state *state, struct triple *ins);
2297 static struct triple *pre_triple(struct compile_state *state,
2298         struct triple *base,
2299         int op, struct type *type, struct triple *left, struct triple *right)
2300 {
2301         struct block *block;
2302         struct triple *ret;
2303         int i;
2304         /* If I am an OP_PIECE jump to the real instruction */
2305         if (base->op == OP_PIECE) {
2306                 base = MISC(base, 0);
2307         }
2308         block = block_of_triple(state, base);
2309         get_occurance(base->occurance);
2310         ret = build_triple(state, op, type, left, right, base->occurance);
2311         generate_lhs_pieces(state, ret);
2312         if (triple_stores_block(state, ret)) {
2313                 ret->u.block = block;
2314         }
2315         insert_triple(state, base, ret);
2316         for(i = 0; i < ret->lhs; i++) {
2317                 struct triple *piece;
2318                 piece = LHS(ret, i);
2319                 insert_triple(state, base, piece);
2320                 use_triple(ret, piece);
2321                 use_triple(piece, ret);
2322         }
2323         if (block && (block->first == base)) {
2324                 block->first = ret;
2325         }
2326         return ret;
2327 }
2328
2329 static struct triple *post_triple(struct compile_state *state,
2330         struct triple *base,
2331         int op, struct type *type, struct triple *left, struct triple *right)
2332 {
2333         struct block *block;
2334         struct triple *ret, *next;
2335         int zlhs, i;
2336         /* If I am an OP_PIECE jump to the real instruction */
2337         if (base->op == OP_PIECE) {
2338                 base = MISC(base, 0);
2339         }
2340         /* If I have a left hand side skip over it */
2341         zlhs = base->lhs;
2342         if (zlhs) {
2343                 base = LHS(base, zlhs - 1);
2344         }
2345
2346         block = block_of_triple(state, base);
2347         get_occurance(base->occurance);
2348         ret = build_triple(state, op, type, left, right, base->occurance);
2349         generate_lhs_pieces(state, ret);
2350         if (triple_stores_block(state, ret)) {
2351                 ret->u.block = block;
2352         }
2353         next = base->next;
2354         insert_triple(state, next, ret);
2355         zlhs = ret->lhs;
2356         for(i = 0; i < zlhs; i++) {
2357                 struct triple *piece;
2358                 piece = LHS(ret, i);
2359                 insert_triple(state, next, piece);
2360                 use_triple(ret, piece);
2361                 use_triple(piece, ret);
2362         }
2363         if (block && (block->last == base)) {
2364                 block->last = ret;
2365                 if (zlhs) {
2366                         block->last = LHS(ret, zlhs - 1);
2367                 }
2368         }
2369         return ret;
2370 }
2371
2372 static struct type *reg_type(
2373         struct compile_state *state, struct type *type, int reg);
2374
2375 static void generate_lhs_piece(
2376         struct compile_state *state, struct triple *ins, int index)
2377 {
2378         struct type *piece_type;
2379         struct triple *piece;
2380         get_occurance(ins->occurance);
2381         piece_type = reg_type(state, ins->type, index * REG_SIZEOF_REG);
2382
2383         if ((piece_type->type & TYPE_MASK) == TYPE_BITFIELD) {
2384                 piece_type = piece_type->left;
2385         }
2386 #if 0
2387 {
2388         static void name_of(FILE *fp, struct type *type);
2389         FILE * fp = state->errout;
2390         fprintf(fp, "piece_type(%d): ", index);
2391         name_of(fp, piece_type);
2392         fprintf(fp, "\n");
2393 }
2394 #endif
2395         piece = alloc_triple(state, OP_PIECE, piece_type, -1, -1, ins->occurance);
2396         piece->u.cval  = index;
2397         LHS(ins, piece->u.cval) = piece;
2398         MISC(piece, 0) = ins;
2399 }
2400
2401 static void generate_lhs_pieces(struct compile_state *state, struct triple *ins)
2402 {
2403         int i, zlhs;
2404         zlhs = ins->lhs;
2405         for(i = 0; i < zlhs; i++) {
2406                 generate_lhs_piece(state, ins, i);
2407         }
2408 }
2409
2410 static struct triple *label(struct compile_state *state)
2411 {
2412         /* Labels don't get a type */
2413         struct triple *result;
2414         result = triple(state, OP_LABEL, &void_type, 0, 0);
2415         return result;
2416 }
2417
2418 static struct triple *mkprog(struct compile_state *state, ...)
2419 {
2420         struct triple *prog, *head, *arg;
2421         va_list args;
2422         int i;
2423
2424         head = label(state);
2425         prog = new_triple(state, OP_PROG, &void_type, -1, -1);
2426         RHS(prog, 0) = head;
2427         va_start(args, state);
2428         i = 0;
2429         while((arg = va_arg(args, struct triple *)) != 0) {
2430                 if (++i >= 100) {
2431                         internal_error(state, 0, "too many arguments to mkprog");
2432                 }
2433                 flatten(state, head, arg);
2434         }
2435         va_end(args);
2436         prog->type = head->prev->type;
2437         return prog;
2438 }
2439 static void name_of(FILE *fp, struct type *type);
2440 static void display_triple(FILE *fp, struct triple *ins)
2441 {
2442         struct occurance *ptr;
2443         const char *reg;
2444         char pre, post, vol;
2445         pre = post = vol = ' ';
2446         if (ins) {
2447                 if (ins->id & TRIPLE_FLAG_PRE_SPLIT) {
2448                         pre = '^';
2449                 }
2450                 if (ins->id & TRIPLE_FLAG_POST_SPLIT) {
2451                         post = ',';
2452                 }
2453                 if (ins->id & TRIPLE_FLAG_VOLATILE) {
2454                         vol = 'v';
2455                 }
2456                 reg = arch_reg_str(ID_REG(ins->id));
2457         }
2458         if (ins == 0) {
2459                 fprintf(fp, "(%p) <nothing> ", ins);
2460         }
2461         else if (ins->op == OP_INTCONST) {
2462                 fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s <0x%08lx>         ",
2463                         ins, pre, post, vol, reg, ins->template_id, tops(ins->op), 
2464                         (unsigned long)(ins->u.cval));
2465         }
2466         else if (ins->op == OP_ADDRCONST) {
2467                 fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s %-10p <0x%08lx>",
2468                         ins, pre, post, vol, reg, ins->template_id, tops(ins->op), 
2469                         MISC(ins, 0), (unsigned long)(ins->u.cval));
2470         }
2471         else if (ins->op == OP_INDEX) {
2472                 fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s %-10p <0x%08lx>",
2473                         ins, pre, post, vol, reg, ins->template_id, tops(ins->op), 
2474                         RHS(ins, 0), (unsigned long)(ins->u.cval));
2475         }
2476         else if (ins->op == OP_PIECE) {
2477                 fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s %-10p <0x%08lx>",
2478                         ins, pre, post, vol, reg, ins->template_id, tops(ins->op), 
2479                         MISC(ins, 0), (unsigned long)(ins->u.cval));
2480         }
2481         else {
2482                 int i, count;
2483                 fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s", 
2484                         ins, pre, post, vol, reg, ins->template_id, tops(ins->op));
2485                 if (table_ops[ins->op].flags & BITFIELD) {
2486                         fprintf(fp, " <%2d-%2d:%2d>", 
2487                                 ins->u.bitfield.offset,
2488                                 ins->u.bitfield.offset + ins->u.bitfield.size,
2489                                 ins->u.bitfield.size);
2490                 }
2491                 count = TRIPLE_SIZE(ins);
2492                 for(i = 0; i < count; i++) {
2493                         fprintf(fp, " %-10p", ins->param[i]);
2494                 }
2495                 for(; i < 2; i++) {
2496                         fprintf(fp, "           ");
2497                 }
2498         }
2499         if (ins) {
2500                 struct triple_set *user;
2501 #if DEBUG_DISPLAY_TYPES
2502                 fprintf(fp, " <");
2503                 name_of(fp, ins->type);
2504                 fprintf(fp, "> ");
2505 #endif
2506 #if DEBUG_DISPLAY_USES
2507                 fprintf(fp, " [");
2508                 for(user = ins->use; user; user = user->next) {
2509                         fprintf(fp, " %-10p", user->member);
2510                 }
2511                 fprintf(fp, " ]");
2512 #endif
2513                 fprintf(fp, " @");
2514                 for(ptr = ins->occurance; ptr; ptr = ptr->parent) {
2515                         fprintf(fp, " %s,%s:%d.%d",
2516                                 ptr->function, 
2517                                 ptr->filename,
2518                                 ptr->line, 
2519                                 ptr->col);
2520                 }
2521                 if (ins->op == OP_ASM) {
2522                         fprintf(fp, "\n\t%s", ins->u.ainfo->str);
2523                 }
2524         }
2525         fprintf(fp, "\n");
2526         fflush(fp);
2527 }
2528
2529 static int equiv_types(struct type *left, struct type *right);
2530 static void display_triple_changes(
2531         FILE *fp, const struct triple *new, const struct triple *orig)
2532 {
2533
2534         int new_count, orig_count;
2535         new_count = TRIPLE_SIZE(new);
2536         orig_count = TRIPLE_SIZE(orig);
2537         if ((new->op != orig->op) ||
2538                 (new_count != orig_count) ||
2539                 (memcmp(orig->param, new->param,        
2540                         orig_count * sizeof(orig->param[0])) != 0) ||
2541                 (memcmp(&orig->u, &new->u, sizeof(orig->u)) != 0)) 
2542         {
2543                 struct occurance *ptr;
2544                 int i, min_count, indent;
2545                 fprintf(fp, "(%p %p)", new, orig);
2546                 if (orig->op == new->op) {
2547                         fprintf(fp, " %-11s", tops(orig->op));
2548                 } else {
2549                         fprintf(fp, " [%-10s %-10s]", 
2550                                 tops(new->op), tops(orig->op));
2551                 }
2552                 min_count = new_count;
2553                 if (min_count > orig_count) {
2554                         min_count = orig_count;
2555                 }
2556                 for(indent = i = 0; i < min_count; i++) {
2557                         if (orig->param[i] == new->param[i]) {
2558                                 fprintf(fp, " %-11p", 
2559                                         orig->param[i]);
2560                                 indent += 12;
2561                         } else {
2562                                 fprintf(fp, " [%-10p %-10p]",
2563                                         new->param[i], 
2564                                         orig->param[i]);
2565                                 indent += 24;
2566                         }
2567                 }
2568                 for(; i < orig_count; i++) {
2569                         fprintf(fp, " [%-9p]", orig->param[i]);
2570                         indent += 12;
2571                 }
2572                 for(; i < new_count; i++) {
2573                         fprintf(fp, " [%-9p]", new->param[i]);
2574                         indent += 12;
2575                 }
2576                 if ((new->op == OP_INTCONST)||
2577                         (new->op == OP_ADDRCONST)) {
2578                         fprintf(fp, " <0x%08lx>", 
2579                                 (unsigned long)(new->u.cval));
2580                         indent += 13;
2581                 }
2582                 for(;indent < 36; indent++) {
2583                         putc(' ', fp);
2584                 }
2585
2586 #if DEBUG_DISPLAY_TYPES
2587                 fprintf(fp, " <");
2588                 name_of(fp, new->type);
2589                 if (!equiv_types(new->type, orig->type)) {
2590                         fprintf(fp, " -- ");
2591                         name_of(fp, orig->type);
2592                 }
2593                 fprintf(fp, "> ");
2594 #endif
2595
2596                 fprintf(fp, " @");
2597                 for(ptr = orig->occurance; ptr; ptr = ptr->parent) {
2598                         fprintf(fp, " %s,%s:%d.%d",
2599                                 ptr->function, 
2600                                 ptr->filename,
2601                                 ptr->line, 
2602                                 ptr->col);
2603                         
2604                 }
2605                 fprintf(fp, "\n");
2606                 fflush(fp);
2607         }
2608 }
2609
2610 static int triple_is_pure(struct compile_state *state, struct triple *ins, unsigned id)
2611 {
2612         /* Does the triple have no side effects.
2613          * I.e. Rexecuting the triple with the same arguments 
2614          * gives the same value.
2615          */
2616         unsigned pure;
2617         valid_ins(state, ins);
2618         pure = PURE_BITS(table_ops[ins->op].flags);
2619         if ((pure != PURE) && (pure != IMPURE)) {
2620                 internal_error(state, 0, "Purity of %s not known",
2621                         tops(ins->op));
2622         }
2623         return (pure == PURE) && !(id & TRIPLE_FLAG_VOLATILE);
2624 }
2625
2626 static int triple_is_branch_type(struct compile_state *state, 
2627         struct triple *ins, unsigned type)
2628 {
2629         /* Is this one of the passed branch types? */
2630         valid_ins(state, ins);
2631         return (BRANCH_BITS(table_ops[ins->op].flags) == type);
2632 }
2633
2634 static int triple_is_branch(struct compile_state *state, struct triple *ins)
2635 {
2636         /* Is this triple a branch instruction? */
2637         valid_ins(state, ins);
2638         return (BRANCH_BITS(table_ops[ins->op].flags) != 0);
2639 }
2640
2641 static int triple_is_cbranch(struct compile_state *state, struct triple *ins)
2642 {
2643         /* Is this triple a conditional branch instruction? */
2644         return triple_is_branch_type(state, ins, CBRANCH);
2645 }
2646
2647 static int triple_is_ubranch(struct compile_state *state, struct triple *ins)
2648 {
2649         /* Is this triple a unconditional branch instruction? */
2650         unsigned type;
2651         valid_ins(state, ins);
2652         type = BRANCH_BITS(table_ops[ins->op].flags);
2653         return (type != 0) && (type != CBRANCH);
2654 }
2655
2656 static int triple_is_call(struct compile_state *state, struct triple *ins)
2657 {
2658         /* Is this triple a call instruction? */
2659         return triple_is_branch_type(state, ins, CALLBRANCH);
2660 }
2661
2662 static int triple_is_ret(struct compile_state *state, struct triple *ins)
2663 {
2664         /* Is this triple a return instruction? */
2665         return triple_is_branch_type(state, ins, RETBRANCH);
2666 }
2667  
2668 #if DEBUG_ROMCC_WARNING
2669 static int triple_is_simple_ubranch(struct compile_state *state, struct triple *ins)
2670 {
2671         /* Is this triple an unconditional branch and not a call or a
2672          * return? */
2673         return triple_is_branch_type(state, ins, UBRANCH);
2674 }
2675 #endif
2676
2677 static int triple_is_end(struct compile_state *state, struct triple *ins)
2678 {
2679         return triple_is_branch_type(state, ins, ENDBRANCH);
2680 }
2681
2682 static int triple_is_label(struct compile_state *state, struct triple *ins)
2683 {
2684         valid_ins(state, ins);
2685         return (ins->op == OP_LABEL);
2686 }
2687
2688 static struct triple *triple_to_block_start(
2689         struct compile_state *state, struct triple *start)
2690 {
2691         while(!triple_is_branch(state, start->prev) &&
2692                 (!triple_is_label(state, start) || !start->use)) {
2693                 start = start->prev;
2694         }
2695         return start;
2696 }
2697
2698 static int triple_is_def(struct compile_state *state, struct triple *ins)
2699 {
2700         /* This function is used to determine which triples need
2701          * a register.
2702          */
2703         int is_def;
2704         valid_ins(state, ins);
2705         is_def = (table_ops[ins->op].flags & DEF) == DEF;
2706         if (ins->lhs >= 1) {
2707                 is_def = 0;
2708         }
2709         return is_def;
2710 }
2711
2712 static int triple_is_structural(struct compile_state *state, struct triple *ins)
2713 {
2714         int is_structural;
2715         valid_ins(state, ins);
2716         is_structural = (table_ops[ins->op].flags & STRUCTURAL) == STRUCTURAL;
2717         return is_structural;
2718 }
2719
2720 static int triple_is_part(struct compile_state *state, struct triple *ins)
2721 {
2722         int is_part;
2723         valid_ins(state, ins);
2724         is_part = (table_ops[ins->op].flags & PART) == PART;
2725         return is_part;
2726 }
2727
2728 static int triple_is_auto_var(struct compile_state *state, struct triple *ins)
2729 {
2730         return (ins->op == OP_PIECE) && (MISC(ins, 0)->op == OP_ADECL);
2731 }
2732
2733 static struct triple **triple_iter(struct compile_state *state,
2734         size_t count, struct triple **vector,
2735         struct triple *ins, struct triple **last)
2736 {
2737         struct triple **ret;
2738         ret = 0;
2739         if (count) {
2740                 if (!last) {
2741                         ret = vector;
2742                 }
2743                 else if ((last >= vector) && (last < (vector + count - 1))) {
2744                         ret = last + 1;
2745                 }
2746         }
2747         return ret;
2748         
2749 }
2750
2751 static struct triple **triple_lhs(struct compile_state *state,
2752         struct triple *ins, struct triple **last)
2753 {
2754         return triple_iter(state, ins->lhs, &LHS(ins,0), 
2755                 ins, last);
2756 }
2757
2758 static struct triple **triple_rhs(struct compile_state *state,
2759         struct triple *ins, struct triple **last)
2760 {
2761         return triple_iter(state, ins->rhs, &RHS(ins,0), 
2762                 ins, last);
2763 }
2764
2765 static struct triple **triple_misc(struct compile_state *state,
2766         struct triple *ins, struct triple **last)
2767 {
2768         return triple_iter(state, ins->misc, &MISC(ins,0), 
2769                 ins, last);
2770 }
2771
2772 static struct triple **do_triple_targ(struct compile_state *state,
2773         struct triple *ins, struct triple **last, int call_edges, int next_edges)
2774 {
2775         size_t count;
2776         struct triple **ret, **vector;
2777         int next_is_targ;
2778         ret = 0;
2779         count = ins->targ;
2780         next_is_targ = 0;
2781         if (triple_is_cbranch(state, ins)) {
2782                 next_is_targ = 1;
2783         }
2784         if (!call_edges && triple_is_call(state, ins)) {
2785                 count = 0;
2786         }
2787         if (next_edges && triple_is_call(state, ins)) {
2788                 next_is_targ = 1;
2789         }
2790         vector = &TARG(ins, 0);
2791         if (!ret && next_is_targ) {
2792                 if (!last) {
2793                         ret = &ins->next;
2794                 } else if (last == &ins->next) {
2795                         last = 0;
2796                 }
2797         }
2798         if (!ret && count) {
2799                 if (!last) {
2800                         ret = vector;
2801                 }
2802                 else if ((last >= vector) && (last < (vector + count - 1))) {
2803                         ret = last + 1;
2804                 }
2805                 else if (last == vector + count - 1) {
2806                         last = 0;
2807                 }
2808         }
2809         if (!ret && triple_is_ret(state, ins) && call_edges) {
2810                 struct triple_set *use;
2811                 for(use = ins->use; use; use = use->next) {
2812                         if (!triple_is_call(state, use->member)) {
2813                                 continue;
2814                         }
2815                         if (!last) {
2816                                 ret = &use->member->next;
2817                                 break;
2818                         }
2819                         else if (last == &use->member->next) {
2820                                 last = 0;
2821                         }
2822                 }
2823         }
2824         return ret;
2825 }
2826
2827 static struct triple **triple_targ(struct compile_state *state,
2828         struct triple *ins, struct triple **last)
2829 {
2830         return do_triple_targ(state, ins, last, 1, 1);
2831 }
2832
2833 static struct triple **triple_edge_targ(struct compile_state *state,
2834         struct triple *ins, struct triple **last)
2835 {
2836         return do_triple_targ(state, ins, last, 
2837                 state->functions_joined, !state->functions_joined);
2838 }
2839
2840 static struct triple *after_lhs(struct compile_state *state, struct triple *ins)
2841 {
2842         struct triple *next;
2843         int lhs, i;
2844         lhs = ins->lhs;
2845         next = ins->next;
2846         for(i = 0; i < lhs; i++) {
2847                 struct triple *piece;
2848                 piece = LHS(ins, i);
2849                 if (next != piece) {
2850                         internal_error(state, ins, "malformed lhs on %s",
2851                                 tops(ins->op));
2852                 }
2853                 if (next->op != OP_PIECE) {
2854                         internal_error(state, ins, "bad lhs op %s at %d on %s",
2855                                 tops(next->op), i, tops(ins->op));
2856                 }
2857                 if (next->u.cval != i) {
2858                         internal_error(state, ins, "bad u.cval of %d %d expected",
2859                                 next->u.cval, i);
2860                 }
2861                 next = next->next;
2862         }
2863         return next;
2864 }
2865
2866 /* Function piece accessor functions */
2867 static struct triple *do_farg(struct compile_state *state, 
2868         struct triple *func, unsigned index)
2869 {
2870         struct type *ftype;
2871         struct triple *first, *arg;
2872         unsigned i;
2873
2874         ftype = func->type;
2875         if((index < 0) || (index >= (ftype->elements + 2))) {
2876                 internal_error(state, func, "bad argument index: %d", index);
2877         }
2878         first = RHS(func, 0);
2879         arg = first->next;
2880         for(i = 0; i < index; i++, arg = after_lhs(state, arg)) {
2881                 /* do nothing */
2882         }
2883         if (arg->op != OP_ADECL) {
2884                 internal_error(state, 0, "arg not adecl?");
2885         }
2886         return arg;
2887 }
2888 static struct triple *fresult(struct compile_state *state, struct triple *func)
2889 {
2890         return do_farg(state, func, 0);
2891 }
2892 static struct triple *fretaddr(struct compile_state *state, struct triple *func)
2893 {
2894         return do_farg(state, func, 1);
2895 }
2896 static struct triple *farg(struct compile_state *state, 
2897         struct triple *func, unsigned index)
2898 {
2899         return do_farg(state, func, index + 2);
2900 }
2901
2902
2903 static void display_func(struct compile_state *state, FILE *fp, struct triple *func)
2904 {
2905         struct triple *first, *ins;
2906         fprintf(fp, "display_func %s\n", func->type->type_ident->name);
2907         first = ins = RHS(func, 0);
2908         do {
2909                 if (triple_is_label(state, ins) && ins->use) {
2910                         fprintf(fp, "%p:\n", ins);
2911                 }
2912                 display_triple(fp, ins);
2913
2914                 if (triple_is_branch(state, ins)) {
2915                         fprintf(fp, "\n");
2916                 }
2917                 if (ins->next->prev != ins) {
2918                         internal_error(state, ins->next, "bad prev");
2919                 }
2920                 ins = ins->next;
2921         } while(ins != first);
2922 }
2923
2924 static void verify_use(struct compile_state *state,
2925         struct triple *user, struct triple *used)
2926 {
2927         int size, i;
2928         size = TRIPLE_SIZE(user);
2929         for(i = 0; i < size; i++) {
2930                 if (user->param[i] == used) {
2931                         break;
2932                 }
2933         }
2934         if (triple_is_branch(state, user)) {
2935                 if (user->next == used) {
2936                         i = -1;
2937                 }
2938         }
2939         if (i == size) {
2940                 internal_error(state, user, "%s(%p) does not use %s(%p)",
2941                         tops(user->op), user, tops(used->op), used);
2942         }
2943 }
2944
2945 static int find_rhs_use(struct compile_state *state, 
2946         struct triple *user, struct triple *used)
2947 {
2948         struct triple **param;
2949         int size, i;
2950         verify_use(state, user, used);
2951
2952 #if DEBUG_ROMCC_WARNINGS
2953 #warning "AUDIT ME ->rhs"
2954 #endif
2955         size = user->rhs;
2956         param = &RHS(user, 0);
2957         for(i = 0; i < size; i++) {
2958                 if (param[i] == used) {
2959                         return i;
2960                 }
2961         }
2962         return -1;
2963 }
2964
2965 static void free_triple(struct compile_state *state, struct triple *ptr)
2966 {
2967         size_t size;
2968         size = sizeof(*ptr) - sizeof(ptr->param) +
2969                 (sizeof(ptr->param[0])*TRIPLE_SIZE(ptr));
2970         ptr->prev->next = ptr->next;
2971         ptr->next->prev = ptr->prev;
2972         if (ptr->use) {
2973                 internal_error(state, ptr, "ptr->use != 0");
2974         }
2975         put_occurance(ptr->occurance);
2976         memset(ptr, -1, size);
2977         xfree(ptr);
2978 }
2979
2980 static void release_triple(struct compile_state *state, struct triple *ptr)
2981 {
2982         struct triple_set *set, *next;
2983         struct triple **expr;
2984         struct block *block;
2985         if (ptr == &unknown_triple) {
2986                 return;
2987         }
2988         valid_ins(state, ptr);
2989         /* Make certain the we are not the first or last element of a block */
2990         block = block_of_triple(state, ptr);
2991         if (block) {
2992                 if ((block->last == ptr) && (block->first == ptr)) {
2993                         block->last = block->first = 0;
2994                 }
2995                 else if (block->last == ptr) {
2996                         block->last = ptr->prev;
2997                 }
2998                 else if (block->first == ptr) {
2999                         block->first = ptr->next;
3000                 }
3001         }
3002         /* Remove ptr from use chains where it is the user */
3003         expr = triple_rhs(state, ptr, 0);
3004         for(; expr; expr = triple_rhs(state, ptr, expr)) {
3005                 if (*expr) {
3006                         unuse_triple(*expr, ptr);
3007                 }
3008         }
3009         expr = triple_lhs(state, ptr, 0);
3010         for(; expr; expr = triple_lhs(state, ptr, expr)) {
3011                 if (*expr) {
3012                         unuse_triple(*expr, ptr);
3013                 }
3014         }
3015         expr = triple_misc(state, ptr, 0);
3016         for(; expr; expr = triple_misc(state, ptr, expr)) {
3017                 if (*expr) {
3018                         unuse_triple(*expr, ptr);
3019                 }
3020         }
3021         expr = triple_targ(state, ptr, 0);
3022         for(; expr; expr = triple_targ(state, ptr, expr)) {
3023                 if (*expr){
3024                         unuse_triple(*expr, ptr);
3025                 }
3026         }
3027         /* Reomve ptr from use chains where it is used */
3028         for(set = ptr->use; set; set = next) {
3029                 next = set->next;
3030                 valid_ins(state, set->member);
3031                 expr = triple_rhs(state, set->member, 0);
3032                 for(; expr; expr = triple_rhs(state, set->member, expr)) {
3033                         if (*expr == ptr) {
3034                                 *expr = &unknown_triple;
3035                         }
3036                 }
3037                 expr = triple_lhs(state, set->member, 0);
3038                 for(; expr; expr = triple_lhs(state, set->member, expr)) {
3039                         if (*expr == ptr) {
3040                                 *expr = &unknown_triple;
3041                         }
3042                 }
3043                 expr = triple_misc(state, set->member, 0);
3044                 for(; expr; expr = triple_misc(state, set->member, expr)) {
3045                         if (*expr == ptr) {
3046                                 *expr = &unknown_triple;
3047                         }
3048                 }
3049                 expr = triple_targ(state, set->member, 0);
3050                 for(; expr; expr = triple_targ(state, set->member, expr)) {
3051                         if (*expr == ptr) {
3052                                 *expr = &unknown_triple;
3053                         }
3054                 }
3055                 unuse_triple(ptr, set->member);
3056         }
3057         free_triple(state, ptr);
3058 }
3059
3060 static void print_triples(struct compile_state *state);
3061 static void print_blocks(struct compile_state *state, const char *func, FILE *fp);
3062
3063 #define TOK_UNKNOWN       0
3064 #define TOK_SPACE         1
3065 #define TOK_SEMI          2
3066 #define TOK_LBRACE        3
3067 #define TOK_RBRACE        4
3068 #define TOK_COMMA         5
3069 #define TOK_EQ            6
3070 #define TOK_COLON         7
3071 #define TOK_LBRACKET      8
3072 #define TOK_RBRACKET      9
3073 #define TOK_LPAREN        10
3074 #define TOK_RPAREN        11
3075 #define TOK_STAR          12
3076 #define TOK_DOTS          13
3077 #define TOK_MORE          14
3078 #define TOK_LESS          15
3079 #define TOK_TIMESEQ       16
3080 #define TOK_DIVEQ         17
3081 #define TOK_MODEQ         18
3082 #define TOK_PLUSEQ        19
3083 #define TOK_MINUSEQ       20
3084 #define TOK_SLEQ          21
3085 #define TOK_SREQ          22
3086 #define TOK_ANDEQ         23
3087 #define TOK_XOREQ         24
3088 #define TOK_OREQ          25
3089 #define TOK_EQEQ          26
3090 #define TOK_NOTEQ         27
3091 #define TOK_QUEST         28
3092 #define TOK_LOGOR         29
3093 #define TOK_LOGAND        30
3094 #define TOK_OR            31
3095 #define TOK_AND           32
3096 #define TOK_XOR           33
3097 #define TOK_LESSEQ        34
3098 #define TOK_MOREEQ        35
3099 #define TOK_SL            36
3100 #define TOK_SR            37
3101 #define TOK_PLUS          38
3102 #define TOK_MINUS         39
3103 #define TOK_DIV           40
3104 #define TOK_MOD           41
3105 #define TOK_PLUSPLUS      42
3106 #define TOK_MINUSMINUS    43
3107 #define TOK_BANG          44
3108 #define TOK_ARROW         45
3109 #define TOK_DOT           46
3110 #define TOK_TILDE         47
3111 #define TOK_LIT_STRING    48
3112 #define TOK_LIT_CHAR      49
3113 #define TOK_LIT_INT       50
3114 #define TOK_LIT_FLOAT     51
3115 #define TOK_MACRO         52
3116 #define TOK_CONCATENATE   53
3117
3118 #define TOK_IDENT         54
3119 #define TOK_STRUCT_NAME   55
3120 #define TOK_ENUM_CONST    56
3121 #define TOK_TYPE_NAME     57
3122
3123 #define TOK_AUTO          58
3124 #define TOK_BREAK         59
3125 #define TOK_CASE          60
3126 #define TOK_CHAR          61
3127 #define TOK_CONST         62
3128 #define TOK_CONTINUE      63
3129 #define TOK_DEFAULT       64
3130 #define TOK_DO            65
3131 #define TOK_DOUBLE        66
3132 #define TOK_ELSE          67
3133 #define TOK_ENUM          68
3134 #define TOK_EXTERN        69
3135 #define TOK_FLOAT         70
3136 #define TOK_FOR           71
3137 #define TOK_GOTO          72
3138 #define TOK_IF            73
3139 #define TOK_INLINE        74
3140 #define TOK_INT           75
3141 #define TOK_LONG          76
3142 #define TOK_REGISTER      77
3143 #define TOK_RESTRICT      78
3144 #define TOK_RETURN        79
3145 #define TOK_SHORT         80
3146 #define TOK_SIGNED        81
3147 #define TOK_SIZEOF        82
3148 #define TOK_STATIC        83
3149 #define TOK_STRUCT        84
3150 #define TOK_SWITCH        85
3151 #define TOK_TYPEDEF       86
3152 #define TOK_UNION         87
3153 #define TOK_UNSIGNED      88
3154 #define TOK_VOID          89
3155 #define TOK_VOLATILE      90
3156 #define TOK_WHILE         91
3157 #define TOK_ASM           92
3158 #define TOK_ATTRIBUTE     93
3159 #define TOK_ALIGNOF       94
3160 #define TOK_FIRST_KEYWORD TOK_AUTO
3161 #define TOK_LAST_KEYWORD  TOK_ALIGNOF
3162
3163 #define TOK_MDEFINE       100
3164 #define TOK_MDEFINED      101
3165 #define TOK_MUNDEF        102
3166 #define TOK_MINCLUDE      103
3167 #define TOK_MLINE         104
3168 #define TOK_MERROR        105
3169 #define TOK_MWARNING      106
3170 #define TOK_MPRAGMA       107
3171 #define TOK_MIFDEF        108
3172 #define TOK_MIFNDEF       109
3173 #define TOK_MELIF         110
3174 #define TOK_MENDIF        111
3175
3176 #define TOK_FIRST_MACRO   TOK_MDEFINE
3177 #define TOK_LAST_MACRO    TOK_MENDIF
3178          
3179 #define TOK_MIF           112
3180 #define TOK_MELSE         113
3181 #define TOK_MIDENT        114
3182
3183 #define TOK_EOL           115
3184 #define TOK_EOF           116
3185
3186 static const char *tokens[] = {
3187 [TOK_UNKNOWN     ] = ":unknown:",
3188 [TOK_SPACE       ] = ":space:",
3189 [TOK_SEMI        ] = ";",
3190 [TOK_LBRACE      ] = "{",
3191 [TOK_RBRACE      ] = "}",
3192 [TOK_COMMA       ] = ",",
3193 [TOK_EQ          ] = "=",
3194 [TOK_COLON       ] = ":",
3195 [TOK_LBRACKET    ] = "[",
3196 [TOK_RBRACKET    ] = "]",
3197 [TOK_LPAREN      ] = "(",
3198 [TOK_RPAREN      ] = ")",
3199 [TOK_STAR        ] = "*",
3200 [TOK_DOTS        ] = "...",
3201 [TOK_MORE        ] = ">",
3202 [TOK_LESS        ] = "<",
3203 [TOK_TIMESEQ     ] = "*=",
3204 [TOK_DIVEQ       ] = "/=",
3205 [TOK_MODEQ       ] = "%=",
3206 [TOK_PLUSEQ      ] = "+=",
3207 [TOK_MINUSEQ     ] = "-=",
3208 [TOK_SLEQ        ] = "<<=",
3209 [TOK_SREQ        ] = ">>=",
3210 [TOK_ANDEQ       ] = "&=",
3211 [TOK_XOREQ       ] = "^=",
3212 [TOK_OREQ        ] = "|=",
3213 [TOK_EQEQ        ] = "==",
3214 [TOK_NOTEQ       ] = "!=",
3215 [TOK_QUEST       ] = "?",
3216 [TOK_LOGOR       ] = "||",
3217 [TOK_LOGAND      ] = "&&",
3218 [TOK_OR          ] = "|",
3219 [TOK_AND         ] = "&",
3220 [TOK_XOR         ] = "^",
3221 [TOK_LESSEQ      ] = "<=",
3222 [TOK_MOREEQ      ] = ">=",
3223 [TOK_SL          ] = "<<",
3224 [TOK_SR          ] = ">>",
3225 [TOK_PLUS        ] = "+",
3226 [TOK_MINUS       ] = "-",
3227 [TOK_DIV         ] = "/",
3228 [TOK_MOD         ] = "%",
3229 [TOK_PLUSPLUS    ] = "++",
3230 [TOK_MINUSMINUS  ] = "--",
3231 [TOK_BANG        ] = "!",
3232 [TOK_ARROW       ] = "->",
3233 [TOK_DOT         ] = ".",
3234 [TOK_TILDE       ] = "~",
3235 [TOK_LIT_STRING  ] = ":string:",
3236 [TOK_IDENT       ] = ":ident:",
3237 [TOK_TYPE_NAME   ] = ":typename:",
3238 [TOK_LIT_CHAR    ] = ":char:",
3239 [TOK_LIT_INT     ] = ":integer:",
3240 [TOK_LIT_FLOAT   ] = ":float:",
3241 [TOK_MACRO       ] = "#",
3242 [TOK_CONCATENATE ] = "##",
3243
3244 [TOK_AUTO        ] = "auto",
3245 [TOK_BREAK       ] = "break",
3246 [TOK_CASE        ] = "case",
3247 [TOK_CHAR        ] = "char",
3248 [TOK_CONST       ] = "const",
3249 [TOK_CONTINUE    ] = "continue",
3250 [TOK_DEFAULT     ] = "default",
3251 [TOK_DO          ] = "do",
3252 [TOK_DOUBLE      ] = "double",
3253 [TOK_ELSE        ] = "else",
3254 [TOK_ENUM        ] = "enum",
3255 [TOK_EXTERN      ] = "extern",
3256 [TOK_FLOAT       ] = "float",
3257 [TOK_FOR         ] = "for",
3258 [TOK_GOTO        ] = "goto",
3259 [TOK_IF          ] = "if",
3260 [TOK_INLINE      ] = "inline",
3261 [TOK_INT         ] = "int",
3262 [TOK_LONG        ] = "long",
3263 [TOK_REGISTER    ] = "register",
3264 [TOK_RESTRICT    ] = "restrict",
3265 [TOK_RETURN      ] = "return",
3266 [TOK_SHORT       ] = "short",
3267 [TOK_SIGNED      ] = "signed",
3268 [TOK_SIZEOF      ] = "sizeof",
3269 [TOK_STATIC      ] = "static",
3270 [TOK_STRUCT      ] = "struct",
3271 [TOK_SWITCH      ] = "switch",
3272 [TOK_TYPEDEF     ] = "typedef",
3273 [TOK_UNION       ] = "union",
3274 [TOK_UNSIGNED    ] = "unsigned",
3275 [TOK_VOID        ] = "void",
3276 [TOK_VOLATILE    ] = "volatile",
3277 [TOK_WHILE       ] = "while",
3278 [TOK_ASM         ] = "asm",
3279 [TOK_ATTRIBUTE   ] = "__attribute__",
3280 [TOK_ALIGNOF     ] = "__alignof__",
3281
3282 [TOK_MDEFINE     ] = "#define",
3283 [TOK_MDEFINED    ] = "#defined",
3284 [TOK_MUNDEF      ] = "#undef",
3285 [TOK_MINCLUDE    ] = "#include",
3286 [TOK_MLINE       ] = "#line",
3287 [TOK_MERROR      ] = "#error",
3288 [TOK_MWARNING    ] = "#warning",
3289 [TOK_MPRAGMA     ] = "#pragma",
3290 [TOK_MIFDEF      ] = "#ifdef",
3291 [TOK_MIFNDEF     ] = "#ifndef",
3292 [TOK_MELIF       ] = "#elif",
3293 [TOK_MENDIF      ] = "#endif",
3294
3295 [TOK_MIF         ] = "#if",
3296 [TOK_MELSE       ] = "#else",
3297 [TOK_MIDENT      ] = "#:ident:",
3298 [TOK_EOL         ] = "EOL", 
3299 [TOK_EOF         ] = "EOF",
3300 };
3301
3302 static unsigned int hash(const char *str, int str_len)
3303 {
3304         unsigned int hash;
3305         const char *end;
3306         end = str + str_len;
3307         hash = 0;
3308         for(; str < end; str++) {
3309                 hash = (hash *263) + *str;
3310         }
3311         hash = hash & (HASH_TABLE_SIZE -1);
3312         return hash;
3313 }
3314
3315 static struct hash_entry *lookup(
3316         struct compile_state *state, const char *name, int name_len)
3317 {
3318         struct hash_entry *entry;
3319         unsigned int index;
3320         index = hash(name, name_len);
3321         entry = state->hash_table[index];
3322         while(entry && 
3323                 ((entry->name_len != name_len) ||
3324                         (memcmp(entry->name, name, name_len) != 0))) {
3325                 entry = entry->next;
3326         }
3327         if (!entry) {
3328                 char *new_name;
3329                 /* Get a private copy of the name */
3330                 new_name = xmalloc(name_len + 1, "hash_name");
3331                 memcpy(new_name, name, name_len);
3332                 new_name[name_len] = '\0';
3333
3334                 /* Create a new hash entry */
3335                 entry = xcmalloc(sizeof(*entry), "hash_entry");
3336                 entry->next = state->hash_table[index];
3337                 entry->name = new_name;
3338                 entry->name_len = name_len;
3339
3340                 /* Place the new entry in the hash table */
3341                 state->hash_table[index] = entry;
3342         }
3343         return entry;
3344 }
3345
3346 static void ident_to_keyword(struct compile_state *state, struct token *tk)
3347 {
3348         struct hash_entry *entry;
3349         entry = tk->ident;
3350         if (entry && ((entry->tok == TOK_TYPE_NAME) ||
3351                 (entry->tok == TOK_ENUM_CONST) ||
3352                 ((entry->tok >= TOK_FIRST_KEYWORD) && 
3353                         (entry->tok <= TOK_LAST_KEYWORD)))) {
3354                 tk->tok = entry->tok;
3355         }
3356 }
3357
3358 static void ident_to_macro(struct compile_state *state, struct token *tk)
3359 {
3360         struct hash_entry *entry;
3361         entry = tk->ident;
3362         if (!entry)
3363                 return;
3364         if ((entry->tok >= TOK_FIRST_MACRO) && (entry->tok <= TOK_LAST_MACRO)) {
3365                 tk->tok = entry->tok;
3366         }
3367         else if (entry->tok == TOK_IF) {
3368                 tk->tok = TOK_MIF;
3369         }
3370         else if (entry->tok == TOK_ELSE) {
3371                 tk->tok = TOK_MELSE;
3372         }
3373         else {
3374                 tk->tok = TOK_MIDENT;
3375         }
3376 }
3377
3378 static void hash_keyword(
3379         struct compile_state *state, const char *keyword, int tok)
3380 {
3381         struct hash_entry *entry;
3382         entry = lookup(state, keyword, strlen(keyword));
3383         if (entry && entry->tok != TOK_UNKNOWN) {
3384                 die("keyword %s already hashed", keyword);
3385         }
3386         entry->tok  = tok;
3387 }
3388
3389 static void romcc_symbol(
3390         struct compile_state *state, struct hash_entry *ident,
3391         struct symbol **chain, struct triple *def, struct type *type, int depth)
3392 {
3393         struct symbol *sym;
3394         if (*chain && ((*chain)->scope_depth >= depth)) {
3395                 error(state, 0, "%s already defined", ident->name);
3396         }
3397         sym = xcmalloc(sizeof(*sym), "symbol");
3398         sym->ident = ident;
3399         sym->def   = def;
3400         sym->type  = type;
3401         sym->scope_depth = depth;
3402         sym->next = *chain;
3403         *chain    = sym;
3404 }
3405
3406 static void symbol(
3407         struct compile_state *state, struct hash_entry *ident,
3408         struct symbol **chain, struct triple *def, struct type *type)
3409 {
3410         romcc_symbol(state, ident, chain, def, type, state->scope_depth);
3411 }
3412
3413 static void var_symbol(struct compile_state *state, 
3414         struct hash_entry *ident, struct triple *def)
3415 {
3416         if ((def->type->type & TYPE_MASK) == TYPE_PRODUCT) {
3417                 internal_error(state, 0, "bad var type");
3418         }
3419         symbol(state, ident, &ident->sym_ident, def, def->type);
3420 }
3421
3422 static void label_symbol(struct compile_state *state, 
3423         struct hash_entry *ident, struct triple *label, int depth)
3424 {
3425         romcc_symbol(state, ident, &ident->sym_label, label, &void_type, depth);
3426 }
3427
3428 static void start_scope(struct compile_state *state)
3429 {
3430         state->scope_depth++;
3431 }
3432
3433 static void end_scope_syms(struct compile_state *state,
3434         struct symbol **chain, int depth)
3435 {
3436         struct symbol *sym, *next;
3437         sym = *chain;
3438         while(sym && (sym->scope_depth == depth)) {
3439                 next = sym->next;
3440                 xfree(sym);
3441                 sym = next;
3442         }
3443         *chain = sym;
3444 }
3445
3446 static void end_scope(struct compile_state *state)
3447 {
3448         int i;
3449         int depth;
3450         /* Walk through the hash table and remove all symbols
3451          * in the current scope. 
3452          */
3453         depth = state->scope_depth;
3454         for(i = 0; i < HASH_TABLE_SIZE; i++) {
3455                 struct hash_entry *entry;
3456                 entry = state->hash_table[i];
3457                 while(entry) {
3458                         end_scope_syms(state, &entry->sym_label, depth);
3459                         end_scope_syms(state, &entry->sym_tag,   depth);
3460                         end_scope_syms(state, &entry->sym_ident, depth);
3461                         entry = entry->next;
3462                 }
3463         }
3464         state->scope_depth = depth - 1;
3465 }
3466
3467 static void register_keywords(struct compile_state *state)
3468 {
3469         hash_keyword(state, "auto",          TOK_AUTO);
3470         hash_keyword(state, "break",         TOK_BREAK);
3471         hash_keyword(state, "case",          TOK_CASE);
3472         hash_keyword(state, "char",          TOK_CHAR);
3473         hash_keyword(state, "const",         TOK_CONST);
3474         hash_keyword(state, "continue",      TOK_CONTINUE);
3475         hash_keyword(state, "default",       TOK_DEFAULT);
3476         hash_keyword(state, "do",            TOK_DO);
3477         hash_keyword(state, "double",        TOK_DOUBLE);
3478         hash_keyword(state, "else",          TOK_ELSE);
3479         hash_keyword(state, "enum",          TOK_ENUM);
3480         hash_keyword(state, "extern",        TOK_EXTERN);
3481         hash_keyword(state, "float",         TOK_FLOAT);
3482         hash_keyword(state, "for",           TOK_FOR);
3483         hash_keyword(state, "goto",          TOK_GOTO);
3484         hash_keyword(state, "if",            TOK_IF);
3485         hash_keyword(state, "inline",        TOK_INLINE);
3486         hash_keyword(state, "int",           TOK_INT);
3487         hash_keyword(state, "long",          TOK_LONG);
3488         hash_keyword(state, "register",      TOK_REGISTER);
3489         hash_keyword(state, "restrict",      TOK_RESTRICT);
3490         hash_keyword(state, "return",        TOK_RETURN);
3491         hash_keyword(state, "short",         TOK_SHORT);
3492         hash_keyword(state, "signed",        TOK_SIGNED);
3493         hash_keyword(state, "sizeof",        TOK_SIZEOF);
3494         hash_keyword(state, "static",        TOK_STATIC);
3495         hash_keyword(state, "struct",        TOK_STRUCT);
3496         hash_keyword(state, "switch",        TOK_SWITCH);
3497         hash_keyword(state, "typedef",       TOK_TYPEDEF);
3498         hash_keyword(state, "union",         TOK_UNION);
3499         hash_keyword(state, "unsigned",      TOK_UNSIGNED);
3500         hash_keyword(state, "void",          TOK_VOID);
3501         hash_keyword(state, "volatile",      TOK_VOLATILE);
3502         hash_keyword(state, "__volatile__",  TOK_VOLATILE);
3503         hash_keyword(state, "while",         TOK_WHILE);
3504         hash_keyword(state, "asm",           TOK_ASM);
3505         hash_keyword(state, "__asm__",       TOK_ASM);
3506         hash_keyword(state, "__attribute__", TOK_ATTRIBUTE);
3507         hash_keyword(state, "__alignof__",   TOK_ALIGNOF);
3508 }
3509
3510 static void register_macro_keywords(struct compile_state *state)
3511 {
3512         hash_keyword(state, "define",        TOK_MDEFINE);
3513         hash_keyword(state, "defined",       TOK_MDEFINED);
3514         hash_keyword(state, "undef",         TOK_MUNDEF);
3515         hash_keyword(state, "include",       TOK_MINCLUDE);
3516         hash_keyword(state, "line",          TOK_MLINE);
3517         hash_keyword(state, "error",         TOK_MERROR);
3518         hash_keyword(state, "warning",       TOK_MWARNING);
3519         hash_keyword(state, "pragma",        TOK_MPRAGMA);
3520         hash_keyword(state, "ifdef",         TOK_MIFDEF);
3521         hash_keyword(state, "ifndef",        TOK_MIFNDEF);
3522         hash_keyword(state, "elif",          TOK_MELIF);
3523         hash_keyword(state, "endif",         TOK_MENDIF);
3524 }
3525
3526
3527 static void undef_macro(struct compile_state *state, struct hash_entry *ident)
3528 {
3529         if (ident->sym_define != 0) {
3530                 struct macro *macro;
3531                 struct macro_arg *arg, *anext;
3532                 macro = ident->sym_define;
3533                 ident->sym_define = 0;
3534                 
3535                 /* Free the macro arguments... */
3536                 anext = macro->args;
3537                 while(anext) {
3538                         arg = anext;
3539                         anext = arg->next;
3540                         xfree(arg);
3541                 }
3542
3543                 /* Free the macro buffer */
3544                 xfree(macro->buf);
3545
3546                 /* Now free the macro itself */
3547                 xfree(macro);
3548         }
3549 }
3550
3551 static void do_define_macro(struct compile_state *state, 
3552         struct hash_entry *ident, const char *body, 
3553         int argc, struct macro_arg *args)
3554 {
3555         struct macro *macro;
3556         struct macro_arg *arg;
3557         size_t body_len;
3558
3559         /* Find the length of the body */
3560         body_len = strlen(body);
3561         macro = ident->sym_define;
3562         if (macro != 0) {
3563                 int identical_bodies, identical_args;
3564                 struct macro_arg *oarg;
3565                 /* Explicitly allow identical redfinitions of the same macro */
3566                 identical_bodies = 
3567                         (macro->buf_len == body_len) &&
3568                         (memcmp(macro->buf, body, body_len) == 0);
3569                 identical_args = macro->argc == argc;
3570                 oarg = macro->args;
3571                 arg = args;
3572                 while(identical_args && arg) {
3573                         identical_args = oarg->ident == arg->ident;
3574                         arg = arg->next;
3575                         oarg = oarg->next;
3576                 }
3577                 if (identical_bodies && identical_args) {
3578                         xfree(body);
3579                         return;
3580                 }
3581                 error(state, 0, "macro %s already defined\n", ident->name);
3582         }
3583 #if 0
3584         fprintf(state->errout, "#define %s: `%*.*s'\n",
3585                 ident->name, body_len, body_len, body);
3586 #endif
3587         macro = xmalloc(sizeof(*macro), "macro");
3588         macro->ident   = ident;
3589         macro->buf     = body;
3590         macro->buf_len = body_len;
3591         macro->args    = args;
3592         macro->argc    = argc;
3593
3594         ident->sym_define = macro;
3595 }
3596         
3597 static void define_macro(
3598         struct compile_state *state,
3599         struct hash_entry *ident,
3600         const char *body, int body_len,
3601         int argc, struct macro_arg *args)
3602 {
3603         char *buf;
3604         buf = xmalloc(body_len + 1, "macro buf");
3605         memcpy(buf, body, body_len);
3606         buf[body_len] = '\0';
3607         do_define_macro(state, ident, buf, argc, args);
3608 }
3609
3610 static void register_builtin_macro(struct compile_state *state,
3611         const char *name, const char *value)
3612 {
3613         struct hash_entry *ident;
3614
3615         if (value[0] == '(') {
3616                 internal_error(state, 0, "Builtin macros with arguments not supported");
3617         }
3618         ident = lookup(state, name, strlen(name));
3619         define_macro(state, ident, value, strlen(value), -1, 0);
3620 }
3621
3622 static void register_builtin_macros(struct compile_state *state)
3623 {
3624         char buf[30];
3625         char scratch[30];
3626         time_t now;
3627         struct tm *tm;
3628         now = time(NULL);
3629         tm = localtime(&now);
3630
3631         register_builtin_macro(state, "__ROMCC__", VERSION_MAJOR);
3632         register_builtin_macro(state, "__ROMCC_MINOR__", VERSION_MINOR);
3633         register_builtin_macro(state, "__FILE__", "\"This should be the filename\"");
3634         register_builtin_macro(state, "__LINE__", "54321");
3635
3636         strftime(scratch, sizeof(scratch), "%b %e %Y", tm);
3637         sprintf(buf, "\"%s\"", scratch);
3638         register_builtin_macro(state, "__DATE__", buf);
3639
3640         strftime(scratch, sizeof(scratch), "%H:%M:%S", tm);
3641         sprintf(buf, "\"%s\"", scratch);
3642         register_builtin_macro(state, "__TIME__", buf);
3643
3644         /* I can't be a conforming implementation of C :( */
3645         register_builtin_macro(state, "__STDC__", "0");
3646         /* In particular I don't conform to C99 */
3647         register_builtin_macro(state, "__STDC_VERSION__", "199901L");
3648         
3649 }
3650
3651 static void process_cmdline_macros(struct compile_state *state)
3652 {
3653         const char **macro, *name;
3654         struct hash_entry *ident;
3655         for(macro = state->compiler->defines; (name = *macro); macro++) {
3656                 const char *body;
3657                 size_t name_len;
3658
3659                 name_len = strlen(name);
3660                 body = strchr(name, '=');
3661                 if (!body) {
3662                         body = "\0";
3663                 } else {
3664                         name_len = body - name;
3665                         body++;
3666                 }
3667                 ident = lookup(state, name, name_len);
3668                 define_macro(state, ident, body, strlen(body), -1, 0);
3669         }
3670         for(macro = state->compiler->undefs; (name = *macro); macro++) {
3671                 ident = lookup(state, name, strlen(name));
3672                 undef_macro(state, ident);
3673         }
3674 }
3675
3676 static int spacep(int c)
3677 {
3678         int ret = 0;
3679         switch(c) {
3680         case ' ':
3681         case '\t':
3682         case '\f':
3683         case '\v':
3684         case '\r':
3685                 ret = 1;
3686                 break;
3687         }
3688         return ret;
3689 }
3690
3691 static int digitp(int c)
3692 {
3693         int ret = 0;
3694         switch(c) {
3695         case '0': case '1': case '2': case '3': case '4': 
3696         case '5': case '6': case '7': case '8': case '9':
3697                 ret = 1;
3698                 break;
3699         }
3700         return ret;
3701 }
3702 static int digval(int c)
3703 {
3704         int val = -1;
3705         if ((c >= '0') && (c <= '9')) {
3706                 val = c - '0';
3707         }
3708         return val;
3709 }
3710
3711 static int hexdigitp(int c)
3712 {
3713         int ret = 0;
3714         switch(c) {
3715         case '0': case '1': case '2': case '3': case '4': 
3716         case '5': case '6': case '7': case '8': case '9':
3717         case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
3718         case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
3719                 ret = 1;
3720                 break;
3721         }
3722         return ret;
3723 }
3724 static int hexdigval(int c) 
3725 {
3726         int val = -1;
3727         if ((c >= '0') && (c <= '9')) {
3728                 val = c - '0';
3729         }
3730         else if ((c >= 'A') && (c <= 'F')) {
3731                 val = 10 + (c - 'A');
3732         }
3733         else if ((c >= 'a') && (c <= 'f')) {
3734                 val = 10 + (c - 'a');
3735         }
3736         return val;
3737 }
3738
3739 static int octdigitp(int c)
3740 {
3741         int ret = 0;
3742         switch(c) {
3743         case '0': case '1': case '2': case '3': 
3744         case '4': case '5': case '6': case '7':
3745                 ret = 1;
3746                 break;
3747         }
3748         return ret;
3749 }
3750 static int octdigval(int c)
3751 {
3752         int val = -1;
3753         if ((c >= '0') && (c <= '7')) {
3754                 val = c - '0';
3755         }
3756         return val;
3757 }
3758
3759 static int letterp(int c)
3760 {
3761         int ret = 0;
3762         switch(c) {
3763         case 'a': case 'b': case 'c': case 'd': case 'e':
3764         case 'f': case 'g': case 'h': case 'i': case 'j':
3765         case 'k': case 'l': case 'm': case 'n': case 'o':
3766         case 'p': case 'q': case 'r': case 's': case 't':
3767         case 'u': case 'v': case 'w': case 'x': case 'y':
3768         case 'z':
3769         case 'A': case 'B': case 'C': case 'D': case 'E':
3770         case 'F': case 'G': case 'H': case 'I': case 'J':
3771         case 'K': case 'L': case 'M': case 'N': case 'O':
3772         case 'P': case 'Q': case 'R': case 'S': case 'T':
3773         case 'U': case 'V': case 'W': case 'X': case 'Y':
3774         case 'Z':
3775         case '_':
3776                 ret = 1;
3777                 break;
3778         }
3779         return ret;
3780 }
3781
3782 static const char *identifier(const char *str, const char *end)
3783 {
3784         if (letterp(*str)) {
3785                 for(; str < end; str++) {
3786                         int c;
3787                         c = *str;
3788                         if (!letterp(c) && !digitp(c)) {
3789                                 break;
3790                         }
3791                 }
3792         }
3793         return str;
3794 }
3795
3796 static int char_value(struct compile_state *state,
3797         const signed char **strp, const signed char *end)
3798 {
3799         const signed char *str;
3800         int c;
3801         str = *strp;
3802         c = *str++;
3803         if ((c == '\\') && (str < end)) {
3804                 switch(*str) {
3805                 case 'n':  c = '\n'; str++; break;
3806                 case 't':  c = '\t'; str++; break;
3807                 case 'v':  c = '\v'; str++; break;
3808                 case 'b':  c = '\b'; str++; break;
3809                 case 'r':  c = '\r'; str++; break;
3810                 case 'f':  c = '\f'; str++; break;
3811                 case 'a':  c = '\a'; str++; break;
3812                 case '\\': c = '\\'; str++; break;
3813                 case '?':  c = '?';  str++; break;
3814                 case '\'': c = '\''; str++; break;
3815                 case '"':  c = '"';  str++; break;
3816                 case 'x': 
3817                         c = 0;
3818                         str++;
3819                         while((str < end) && hexdigitp(*str)) {
3820                                 c <<= 4;
3821                                 c += hexdigval(*str);
3822                                 str++;
3823                         }
3824                         break;
3825                 case '0': case '1': case '2': case '3': 
3826                 case '4': case '5': case '6': case '7':
3827                         c = 0;
3828                         while((str < end) && octdigitp(*str)) {
3829                                 c <<= 3;
3830                                 c += octdigval(*str);
3831                                 str++;
3832                         }
3833                         break;
3834                 default:
3835                         error(state, 0, "Invalid character constant");
3836                         break;
3837                 }
3838         }
3839         *strp = str;
3840         return c;
3841 }
3842
3843 static const char *next_char(struct file_state *file, const char *pos, int index)
3844 {
3845         const char *end = file->buf + file->size;
3846         while(pos < end) {
3847                 /* Lookup the character */
3848                 int size = 1;
3849                 int c = *pos;
3850                 /* Is this a trigraph? */
3851                 if (file->trigraphs &&
3852                         (c == '?') && ((end - pos) >= 3) && (pos[1] == '?')) 
3853                 {
3854                         switch(pos[2]) {
3855                         case '=': c = '#'; break;
3856                         case '/': c = '\\'; break;
3857                         case '\'': c = '^'; break;
3858                         case '(': c = '['; break;
3859                         case ')': c = ']'; break;
3860                         case '!': c = '!'; break;
3861                         case '<': c = '{'; break;
3862                         case '>': c = '}'; break;
3863                         case '-': c = '~'; break;
3864                         }
3865                         if (c != '?') {
3866                                 size = 3;
3867                         }
3868                 }
3869                 /* Is this an escaped newline? */
3870                 if (file->join_lines &&
3871                         (c == '\\') && (pos + size < end) && ((pos[1] == '\n') || ((pos[1] == '\r') && (pos[2] == '\n'))))
3872                 {
3873                         int cr_offset = ((pos[1] == '\r') && (pos[2] == '\n'))?1:0;
3874                         /* At the start of a line just eat it */
3875                         if (pos == file->pos) {
3876                                 file->line++;
3877                                 file->report_line++;
3878                                 file->line_start = pos + size + 1 + cr_offset;
3879                         }
3880                         pos += size + 1 + cr_offset;
3881                 }
3882                 /* Do I need to ga any farther? */
3883                 else if (index == 0) {
3884                         break;
3885                 }
3886                 /* Process a normal character */
3887                 else {
3888                         pos += size;
3889                         index -= 1;
3890                 }
3891         }
3892         return pos;
3893 }
3894
3895 static int get_char(struct file_state *file, const char *pos)
3896 {
3897         const char *end = file->buf + file->size;
3898         int c;
3899         c = -1;
3900         pos = next_char(file, pos, 0);
3901         if (pos < end) {
3902                 /* Lookup the character */
3903                 c = *pos;
3904                 /* If it is a trigraph get the trigraph value */
3905                 if (file->trigraphs &&
3906                         (c == '?') && ((end - pos) >= 3) && (pos[1] == '?')) 
3907                 {
3908                         switch(pos[2]) {
3909                         case '=': c = '#'; break;
3910                         case '/': c = '\\'; break;
3911                         case '\'': c = '^'; break;
3912                         case '(': c = '['; break;
3913                         case ')': c = ']'; break;
3914                         case '!': c = '!'; break;
3915                         case '<': c = '{'; break;
3916                         case '>': c = '}'; break;
3917                         case '-': c = '~'; break;
3918                         }
3919                 }
3920         }
3921         return c;
3922 }
3923
3924 static void eat_chars(struct file_state *file, const char *targ)
3925 {
3926         const char *pos = file->pos;
3927         while(pos < targ) {
3928                 /* Do we have a newline? */
3929                 if (pos[0] == '\n') {
3930                         file->line++;
3931                         file->report_line++;
3932                         file->line_start = pos + 1;
3933                 }
3934                 pos++;
3935         }
3936         file->pos = pos;
3937 }
3938
3939
3940 static size_t char_strlen(struct file_state *file, const char *src, const char *end)
3941 {
3942         size_t len;
3943         len = 0;
3944         while(src < end) {
3945                 src = next_char(file, src, 1);
3946                 len++;
3947         }
3948         return len;
3949 }
3950
3951 static void char_strcpy(char *dest, 
3952         struct file_state *file, const char *src, const char *end)
3953 {
3954         while(src < end) {
3955                 int c;
3956                 c = get_char(file, src);
3957                 src = next_char(file, src, 1);
3958                 *dest++ = c;
3959         }
3960 }
3961
3962 static char *char_strdup(struct file_state *file, 
3963         const char *start, const char *end, const char *id)
3964 {
3965         char *str;
3966         size_t str_len;
3967         str_len = char_strlen(file, start, end);
3968         str = xcmalloc(str_len + 1, id);
3969         char_strcpy(str, file, start, end);
3970         str[str_len] = '\0';
3971         return str;
3972 }
3973
3974 static const char *after_digits(struct file_state *file, const char *ptr)
3975 {
3976         while(digitp(get_char(file, ptr))) {
3977                 ptr = next_char(file, ptr, 1);
3978         }
3979         return ptr;
3980 }
3981
3982 static const char *after_octdigits(struct file_state *file, const char *ptr)
3983 {
3984         while(octdigitp(get_char(file, ptr))) {
3985                 ptr = next_char(file, ptr, 1);
3986         }
3987         return ptr;
3988 }
3989
3990 static const char *after_hexdigits(struct file_state *file, const char *ptr)
3991 {
3992         while(hexdigitp(get_char(file, ptr))) {
3993                 ptr = next_char(file, ptr, 1);
3994         }
3995         return ptr;
3996 }
3997
3998 static const char *after_alnums(struct file_state *file, const char *ptr)
3999 {
4000         int c;
4001         c = get_char(file, ptr);
4002         while(letterp(c) || digitp(c)) {
4003                 ptr = next_char(file, ptr, 1);
4004                 c = get_char(file, ptr);
4005         }
4006         return ptr;
4007 }
4008
4009 static void save_string(struct file_state *file,
4010         struct token *tk, const char *start, const char *end, const char *id)
4011 {
4012         char *str;
4013
4014         /* Create a private copy of the string */
4015         str = char_strdup(file, start, end, id);
4016
4017         /* Store the copy in the token */
4018         tk->val.str = str;
4019         tk->str_len = strlen(str);
4020 }
4021
4022 static void raw_next_token(struct compile_state *state, 
4023         struct file_state *file, struct token *tk)
4024 {
4025         const char *token;
4026         int c, c1, c2, c3;
4027         const char *tokp;
4028         int eat;
4029         int tok;
4030
4031         tk->str_len = 0;
4032         tk->ident = 0;
4033         token = tokp = next_char(file, file->pos, 0);
4034         tok = TOK_UNKNOWN;
4035         c  = get_char(file, tokp);
4036         tokp = next_char(file, tokp, 1);
4037         eat = 0;
4038         c1 = get_char(file, tokp);
4039         c2 = get_char(file, next_char(file, tokp, 1));
4040         c3 = get_char(file, next_char(file, tokp, 2));
4041
4042         /* The end of the file */
4043         if (c == -1) {
4044                 tok = TOK_EOF;
4045         }
4046         /* Whitespace */
4047         else if (spacep(c)) {
4048                 tok = TOK_SPACE;
4049                 while (spacep(get_char(file, tokp))) {
4050                         tokp = next_char(file, tokp, 1);
4051                 }
4052         }
4053         /* EOL Comments */
4054         else if ((c == '/') && (c1 == '/')) {
4055                 tok = TOK_SPACE;
4056                 tokp = next_char(file, tokp, 1);
4057                 while((c = get_char(file, tokp)) != -1) {
4058                         /* Advance to the next character only after we verify
4059                          * the current character is not a newline.  
4060                          * EOL is special to the preprocessor so we don't
4061                          * want to loose any.
4062                          */
4063                         if (c == '\n') {
4064                                 break;
4065                         }
4066                         tokp = next_char(file, tokp, 1);
4067                 }
4068         }
4069         /* Comments */
4070         else if ((c == '/') && (c1 == '*')) {
4071                 tokp = next_char(file, tokp, 2);
4072                 c = c2;
4073                 while((c1 = get_char(file, tokp)) != -1) {
4074                         tokp = next_char(file, tokp, 1);
4075                         if ((c == '*') && (c1 == '/')) {
4076                                 tok = TOK_SPACE;
4077                                 break;
4078                         }
4079                         c = c1;
4080                 }
4081                 if (tok == TOK_UNKNOWN) {
4082                         error(state, 0, "unterminated comment");
4083                 }
4084         }
4085         /* string constants */
4086         else if ((c == '"') || ((c == 'L') && (c1 == '"'))) {
4087                 int wchar, multiline;
4088
4089                 wchar = 0;
4090                 multiline = 0;
4091                 if (c == 'L') {
4092                         wchar = 1;
4093                         tokp = next_char(file, tokp, 1);
4094                 }
4095                 while((c = get_char(file, tokp)) != -1) {
4096                         tokp = next_char(file, tokp, 1);
4097                         if (c == '\n') {
4098                                 multiline = 1;
4099                         }
4100                         else if (c == '\\') {
4101                                 tokp = next_char(file, tokp, 1);
4102                         }
4103                         else if (c == '"') {
4104                                 tok = TOK_LIT_STRING;
4105                                 break;
4106                         }
4107                 }
4108                 if (tok == TOK_UNKNOWN) {
4109                         error(state, 0, "unterminated string constant");
4110                 }
4111                 if (multiline) {
4112                         warning(state, 0, "multiline string constant");
4113                 }
4114
4115                 /* Save the string value */
4116                 save_string(file, tk, token, tokp, "literal string");
4117         }
4118         /* character constants */
4119         else if ((c == '\'') || ((c == 'L') && (c1 == '\''))) {
4120                 int wchar, multiline;
4121
4122                 wchar = 0;
4123                 multiline = 0;
4124                 if (c == 'L') {
4125                         wchar = 1;
4126                         tokp = next_char(file, tokp, 1);
4127                 }
4128                 while((c = get_char(file, tokp)) != -1) {
4129                         tokp = next_char(file, tokp, 1);
4130                         if (c == '\n') {
4131                                 multiline = 1;
4132                         }
4133                         else if (c == '\\') {
4134                                 tokp = next_char(file, tokp, 1);
4135                         }
4136                         else if (c == '\'') {
4137                                 tok = TOK_LIT_CHAR;
4138                                 break;
4139                         }
4140                 }
4141                 if (tok == TOK_UNKNOWN) {
4142                         error(state, 0, "unterminated character constant");
4143                 }
4144                 if (multiline) {
4145                         warning(state, 0, "multiline character constant");
4146                 }
4147
4148                 /* Save the character value */
4149                 save_string(file, tk, token, tokp, "literal character");
4150         }
4151         /* integer and floating constants 
4152          * Integer Constants
4153          * {digits}
4154          * 0[Xx]{hexdigits}
4155          * 0{octdigit}+
4156          * 
4157          * Floating constants
4158          * {digits}.{digits}[Ee][+-]?{digits}
4159          * {digits}.{digits}
4160          * {digits}[Ee][+-]?{digits}
4161          * .{digits}[Ee][+-]?{digits}
4162          * .{digits}
4163          */
4164         else if (digitp(c) || ((c == '.') && (digitp(c1)))) {
4165                 const char *next;
4166                 int is_float;
4167                 int cn;
4168                 is_float = 0;
4169                 if (c != '.') {
4170                         next = after_digits(file, tokp);
4171                 }
4172                 else {
4173                         next = token;
4174                 }
4175                 cn = get_char(file, next);
4176                 if (cn == '.') {
4177                         next = next_char(file, next, 1);
4178                         next = after_digits(file, next);
4179                         is_float = 1;
4180                 }
4181                 cn = get_char(file, next);
4182                 if ((cn == 'e') || (cn == 'E')) {
4183                         const char *new;
4184                         next = next_char(file, next, 1);
4185                         cn = get_char(file, next);
4186                         if ((cn == '+') || (cn == '-')) {
4187                                 next = next_char(file, next, 1);
4188                         }
4189                         new = after_digits(file, next);
4190                         is_float |= (new != next);
4191                         next = new;
4192                 }
4193                 if (is_float) {
4194                         tok = TOK_LIT_FLOAT;
4195                         cn = get_char(file, next);
4196                         if ((cn  == 'f') || (cn == 'F') || (cn == 'l') || (cn == 'L')) {
4197                                 next = next_char(file, next, 1);
4198                         }
4199                 }
4200                 if (!is_float && digitp(c)) {
4201                         tok = TOK_LIT_INT;
4202                         if ((c == '0') && ((c1 == 'x') || (c1 == 'X'))) {
4203                                 next = next_char(file, tokp, 1);
4204                                 next = after_hexdigits(file, next);
4205                         }
4206                         else if (c == '0') {
4207                                 next = after_octdigits(file, tokp);
4208                         }
4209                         else {
4210                                 next = after_digits(file, tokp);
4211                         }
4212                         /* crazy integer suffixes */
4213                         cn = get_char(file, next);
4214                         if ((cn == 'u') || (cn == 'U')) {
4215                                 next = next_char(file, next, 1);
4216                                 cn = get_char(file, next);
4217                                 if ((cn == 'l') || (cn == 'L')) {
4218                                         next = next_char(file, next, 1);
4219                                         cn = get_char(file, next);
4220                                 }
4221                                 if ((cn == 'l') || (cn == 'L')) {
4222                                         next = next_char(file, next, 1);
4223                                 }
4224                         }
4225                         else if ((cn == 'l') || (cn == 'L')) {
4226                                 next = next_char(file, next, 1);
4227                                 cn = get_char(file, next);
4228                                 if ((cn == 'l') || (cn == 'L')) {
4229                                         next = next_char(file, next, 1);
4230                                         cn = get_char(file, next);
4231                                 }
4232                                 if ((cn == 'u') || (cn == 'U')) {
4233                                         next = next_char(file, next, 1);
4234                                 }
4235                         }
4236                 }
4237                 tokp = next;
4238
4239                 /* Save the integer/floating point value */
4240                 save_string(file, tk, token, tokp, "literal number");
4241         }
4242         /* identifiers */
4243         else if (letterp(c)) {
4244                 tok = TOK_IDENT;
4245
4246                 /* Find and save the identifier string */
4247                 tokp = after_alnums(file, tokp);
4248                 save_string(file, tk, token, tokp, "identifier");
4249
4250                 /* Look up to see which identifier it is */
4251                 tk->ident = lookup(state, tk->val.str, tk->str_len);
4252
4253                 /* Free the identifier string */
4254                 tk->str_len = 0;
4255                 xfree(tk->val.str);
4256
4257                 /* See if this identifier can be macro expanded */
4258                 tk->val.notmacro = 0;
4259                 c = get_char(file, tokp);
4260                 if (c == '$') {
4261                         tokp = next_char(file, tokp, 1);
4262                         tk->val.notmacro = 1;
4263                 }
4264         }
4265         /* C99 alternate macro characters */
4266         else if ((c == '%') && (c1 == ':') && (c2 == '%') && (c3 == ':')) { 
4267                 eat += 3;
4268                 tok = TOK_CONCATENATE; 
4269         }
4270         else if ((c == '.') && (c1 == '.') && (c2 == '.')) { eat += 2; tok = TOK_DOTS; }
4271         else if ((c == '<') && (c1 == '<') && (c2 == '=')) { eat += 2; tok = TOK_SLEQ; }
4272         else if ((c == '>') && (c1 == '>') && (c2 == '=')) { eat += 2; tok = TOK_SREQ; }
4273         else if ((c == '*') && (c1 == '=')) { eat += 1; tok = TOK_TIMESEQ; }
4274         else if ((c == '/') && (c1 == '=')) { eat += 1; tok = TOK_DIVEQ; }
4275         else if ((c == '%') && (c1 == '=')) { eat += 1; tok = TOK_MODEQ; }
4276         else if ((c == '+') && (c1 == '=')) { eat += 1; tok = TOK_PLUSEQ; }
4277         else if ((c == '-') && (c1 == '=')) { eat += 1; tok = TOK_MINUSEQ; }
4278         else if ((c == '&') && (c1 == '=')) { eat += 1; tok = TOK_ANDEQ; }
4279         else if ((c == '^') && (c1 == '=')) { eat += 1; tok = TOK_XOREQ; }
4280         else if ((c == '|') && (c1 == '=')) { eat += 1; tok = TOK_OREQ; }
4281         else if ((c == '=') && (c1 == '=')) { eat += 1; tok = TOK_EQEQ; }
4282         else if ((c == '!') && (c1 == '=')) { eat += 1; tok = TOK_NOTEQ; }
4283         else if ((c == '|') && (c1 == '|')) { eat += 1; tok = TOK_LOGOR; }
4284         else if ((c == '&') && (c1 == '&')) { eat += 1; tok = TOK_LOGAND; }
4285         else if ((c == '<') && (c1 == '=')) { eat += 1; tok = TOK_LESSEQ; }
4286         else if ((c == '>') && (c1 == '=')) { eat += 1; tok = TOK_MOREEQ; }
4287         else if ((c == '<') && (c1 == '<')) { eat += 1; tok = TOK_SL; }
4288         else if ((c == '>') && (c1 == '>')) { eat += 1; tok = TOK_SR; }
4289         else if ((c == '+') && (c1 == '+')) { eat += 1; tok = TOK_PLUSPLUS; }
4290         else if ((c == '-') && (c1 == '-')) { eat += 1; tok = TOK_MINUSMINUS; }
4291         else if ((c == '-') && (c1 == '>')) { eat += 1; tok = TOK_ARROW; }
4292         else if ((c == '<') && (c1 == ':')) { eat += 1; tok = TOK_LBRACKET; }
4293         else if ((c == ':') && (c1 == '>')) { eat += 1; tok = TOK_RBRACKET; }
4294         else if ((c == '<') && (c1 == '%')) { eat += 1; tok = TOK_LBRACE; }
4295         else if ((c == '%') && (c1 == '>')) { eat += 1; tok = TOK_RBRACE; }
4296         else if ((c == '%') && (c1 == ':')) { eat += 1; tok = TOK_MACRO; }
4297         else if ((c == '#') && (c1 == '#')) { eat += 1; tok = TOK_CONCATENATE; }
4298         else if (c == ';') { tok = TOK_SEMI; }
4299         else if (c == '{') { tok = TOK_LBRACE; }
4300         else if (c == '}') { tok = TOK_RBRACE; }
4301         else if (c == ',') { tok = TOK_COMMA; }
4302         else if (c == '=') { tok = TOK_EQ; }
4303         else if (c == ':') { tok = TOK_COLON; }
4304         else if (c == '[') { tok = TOK_LBRACKET; }
4305         else if (c == ']') { tok = TOK_RBRACKET; }
4306         else if (c == '(') { tok = TOK_LPAREN; }
4307         else if (c == ')') { tok = TOK_RPAREN; }
4308         else if (c == '*') { tok = TOK_STAR; }
4309         else if (c == '>') { tok = TOK_MORE; }
4310         else if (c == '<') { tok = TOK_LESS; }
4311         else if (c == '?') { tok = TOK_QUEST; }
4312         else if (c == '|') { tok = TOK_OR; }
4313         else if (c == '&') { tok = TOK_AND; }
4314         else if (c == '^') { tok = TOK_XOR; }
4315         else if (c == '+') { tok = TOK_PLUS; }
4316         else if (c == '-') { tok = TOK_MINUS; }
4317         else if (c == '/') { tok = TOK_DIV; }
4318         else if (c == '%') { tok = TOK_MOD; }
4319         else if (c == '!') { tok = TOK_BANG; }
4320         else if (c == '.') { tok = TOK_DOT; }
4321         else if (c == '~') { tok = TOK_TILDE; }
4322         else if (c == '#') { tok = TOK_MACRO; }
4323         else if (c == '\n') { tok = TOK_EOL; }
4324
4325         tokp = next_char(file, tokp, eat);
4326         eat_chars(file, tokp);
4327         tk->tok = tok;
4328         tk->pos = token;
4329 }
4330
4331 static void check_tok(struct compile_state *state, struct token *tk, int tok)
4332 {
4333         if (tk->tok != tok) {
4334                 const char *name1, *name2;
4335                 name1 = tokens[tk->tok];
4336                 name2 = "";
4337                 if ((tk->tok == TOK_IDENT) || (tk->tok == TOK_MIDENT)) {
4338                         name2 = tk->ident->name;
4339                 }
4340                 error(state, 0, "\tfound %s %s expected %s",
4341                         name1, name2, tokens[tok]);
4342         }
4343 }
4344
4345 struct macro_arg_value {
4346         struct hash_entry *ident;
4347         char *value;
4348         size_t len;
4349 };
4350 static struct macro_arg_value *read_macro_args(
4351         struct compile_state *state, struct macro *macro, 
4352         struct file_state *file, struct token *tk)
4353 {
4354         struct macro_arg_value *argv;
4355         struct macro_arg *arg;
4356         int paren_depth;
4357         int i;
4358
4359         if (macro->argc == 0) {
4360                 do {
4361                         raw_next_token(state, file, tk);
4362                 } while(tk->tok == TOK_SPACE);
4363                 return NULL;
4364         }
4365         argv = xcmalloc(sizeof(*argv) * macro->argc, "macro args");
4366         for(i = 0, arg = macro->args; arg; arg = arg->next, i++) {
4367                 argv[i].value = 0;
4368                 argv[i].len   = 0;
4369                 argv[i].ident = arg->ident;
4370         }
4371         paren_depth = 0;
4372         i = 0;
4373         
4374         for(;;) {
4375                 const char *start;
4376                 size_t len;
4377                 start = file->pos;
4378                 raw_next_token(state, file, tk);
4379                 
4380                 if (!paren_depth && (tk->tok == TOK_COMMA) &&
4381                         (argv[i].ident != state->i___VA_ARGS__)) 
4382                 {
4383                         i++;
4384                         if (i >= macro->argc) {
4385                                 error(state, 0, "too many args to %s\n",
4386                                         macro->ident->name);
4387                         }
4388                         continue;
4389                 }
4390                 
4391                 if (tk->tok == TOK_LPAREN) {
4392                         paren_depth++;
4393                 }
4394                 
4395                 if (tk->tok == TOK_RPAREN) {
4396                         if (paren_depth == 0) {
4397                                 break;
4398                         }
4399                         paren_depth--;
4400                 }
4401                 if (tk->tok == TOK_EOF) {
4402                         error(state, 0, "End of file encountered while parsing macro arguments");
4403                 }
4404
4405                 len = char_strlen(file, start, file->pos);
4406                 argv[i].value = xrealloc(
4407                         argv[i].value, argv[i].len + len, "macro args");
4408                 char_strcpy((char *)argv[i].value + argv[i].len, file, start, file->pos);
4409                 argv[i].len += len;
4410         }
4411         if (i != macro->argc -1) {
4412                 error(state, 0, "missing %s arg %d\n", 
4413                         macro->ident->name, i +2);
4414         }
4415         return argv;
4416 }
4417
4418
4419 static void free_macro_args(struct macro *macro, struct macro_arg_value *argv)
4420 {
4421         int i;
4422         for(i = 0; i < macro->argc; i++) {
4423                 xfree(argv[i].value);
4424         }
4425         xfree(argv);
4426 }
4427
4428 struct macro_buf {
4429         char *str;
4430         size_t len, pos;
4431 };
4432
4433 static void grow_macro_buf(struct compile_state *state,
4434         const char *id, struct macro_buf *buf,
4435         size_t grow)
4436 {
4437         if ((buf->pos + grow) >= buf->len) {
4438                 buf->str = xrealloc(buf->str, buf->len + grow, id);
4439                 buf->len += grow;
4440         }
4441 }
4442
4443 static void append_macro_text(struct compile_state *state,
4444         const char *id, struct macro_buf *buf,
4445         const char *fstart, size_t flen)
4446 {
4447         grow_macro_buf(state, id, buf, flen);
4448         memcpy(buf->str + buf->pos, fstart, flen);
4449 #if 0
4450         fprintf(state->errout, "append: `%*.*s' `%*.*s'\n",
4451                 buf->pos, buf->pos, buf->str,
4452                 flen, flen, buf->str + buf->pos);
4453 #endif
4454         buf->pos += flen;
4455 }
4456
4457
4458 static void append_macro_chars(struct compile_state *state,
4459         const char *id, struct macro_buf *buf,
4460         struct file_state *file, const char *start, const char *end)
4461 {
4462         size_t flen;
4463         flen = char_strlen(file, start, end);
4464         grow_macro_buf(state, id, buf, flen);
4465         char_strcpy(buf->str + buf->pos, file, start, end);
4466 #if 0
4467         fprintf(state->errout, "append: `%*.*s' `%*.*s'\n",
4468                 buf->pos, buf->pos, buf->str,
4469                 flen, flen, buf->str + buf->pos);
4470 #endif
4471         buf->pos += flen;
4472 }
4473
4474 static int compile_macro(struct compile_state *state, 
4475         struct file_state **filep, struct token *tk);
4476
4477 static void macro_expand_args(struct compile_state *state, 
4478         struct macro *macro, struct macro_arg_value *argv, struct token *tk)
4479 {
4480         int i;
4481         
4482         for(i = 0; i < macro->argc; i++) {
4483                 struct file_state fmacro, *file;
4484                 struct macro_buf buf;
4485
4486                 fmacro.prev        = 0;
4487                 fmacro.basename    = argv[i].ident->name;
4488                 fmacro.dirname     = "";
4489                 fmacro.buf         = (char *)argv[i].value;
4490                 fmacro.size        = argv[i].len;
4491                 fmacro.pos         = fmacro.buf;
4492                 fmacro.line        = 1;
4493                 fmacro.line_start  = fmacro.buf;
4494                 fmacro.report_line = 1;
4495                 fmacro.report_name = fmacro.basename;
4496                 fmacro.report_dir  = fmacro.dirname;
4497                 fmacro.macro       = 1;
4498                 fmacro.trigraphs   = 0;
4499                 fmacro.join_lines  = 0;
4500
4501                 buf.len = argv[i].len;
4502                 buf.str = xmalloc(buf.len, argv[i].ident->name);
4503                 buf.pos = 0;
4504
4505                 file = &fmacro;
4506                 for(;;) {
4507                         raw_next_token(state, file, tk);
4508                         
4509                         /* If we have recursed into another macro body
4510                          * get out of it.
4511                          */
4512                         if (tk->tok == TOK_EOF) {
4513                                 struct file_state *old;
4514                                 old = file;
4515                                 file = file->prev;
4516                                 if (!file) {
4517                                         break;
4518                                 }
4519                                 /* old->basename is used keep it */
4520                                 xfree(old->dirname);
4521                                 xfree(old->buf);
4522                                 xfree(old);
4523                                 continue;
4524                         }
4525                         else if (tk->ident && tk->ident->sym_define) {
4526                                 if (compile_macro(state, &file, tk)) {
4527                                         continue;
4528                                 }
4529                         }
4530
4531                         append_macro_chars(state, macro->ident->name, &buf,
4532                                 file, tk->pos, file->pos);
4533                 }
4534                         
4535                 xfree(argv[i].value);
4536                 argv[i].value = buf.str;
4537                 argv[i].len   = buf.pos;
4538         }
4539         return;
4540 }
4541
4542 static void expand_macro(struct compile_state *state,
4543         struct macro *macro, struct macro_buf *buf,
4544         struct macro_arg_value *argv, struct token *tk)
4545 {
4546         struct file_state fmacro;
4547         const char space[] = " ";
4548         const char *fstart;
4549         size_t flen;
4550         int i, j;
4551
4552         /* Place the macro body in a dummy file */
4553         fmacro.prev        = 0;
4554         fmacro.basename    = macro->ident->name;
4555         fmacro.dirname     = "";
4556         fmacro.buf         = macro->buf;
4557         fmacro.size        = macro->buf_len;
4558         fmacro.pos         = fmacro.buf;
4559         fmacro.line        = 1;
4560         fmacro.line_start  = fmacro.buf;
4561         fmacro.report_line = 1;
4562         fmacro.report_name = fmacro.basename;
4563         fmacro.report_dir  = fmacro.dirname;
4564         fmacro.macro       = 1;
4565         fmacro.trigraphs   = 0;
4566         fmacro.join_lines  = 0;
4567         
4568         /* Allocate a buffer to hold the macro expansion */
4569         buf->len = macro->buf_len + 3;
4570         buf->str = xmalloc(buf->len, macro->ident->name);
4571         buf->pos = 0;
4572         
4573         fstart = fmacro.pos;
4574         raw_next_token(state, &fmacro, tk);
4575         while(tk->tok != TOK_EOF) {
4576                 flen = fmacro.pos - fstart;
4577                 switch(tk->tok) {
4578                 case TOK_IDENT:
4579                         for(i = 0; i < macro->argc; i++) {
4580                                 if (argv[i].ident == tk->ident) {
4581                                         break;
4582                                 }
4583                         }
4584                         if (i >= macro->argc) {
4585                                 break;
4586                         }
4587                         /* Substitute macro parameter */
4588                         fstart = argv[i].value;
4589                         flen   = argv[i].len;
4590                         break;
4591                 case TOK_MACRO:
4592                         if (macro->argc < 0) {
4593                                 break;
4594                         }
4595                         do {
4596                                 raw_next_token(state, &fmacro, tk);
4597                         } while(tk->tok == TOK_SPACE);
4598                         check_tok(state, tk, TOK_IDENT);
4599                         for(i = 0; i < macro->argc; i++) {
4600                                 if (argv[i].ident == tk->ident) {
4601                                         break;
4602                                 }
4603                         }
4604                         if (i >= macro->argc) {
4605                                 error(state, 0, "parameter `%s' not found",
4606                                         tk->ident->name);
4607                         }
4608                         /* Stringize token */
4609                         append_macro_text(state, macro->ident->name, buf, "\"", 1);
4610                         for(j = 0; j < argv[i].len; j++) {
4611                                 char *str = argv[i].value + j;
4612                                 size_t len = 1;
4613                                 if (*str == '\\') {
4614                                         str = "\\";
4615                                         len = 2;
4616                                 } 
4617                                 else if (*str == '"') {
4618                                         str = "\\\"";
4619                                         len = 2;
4620                                 }
4621                                 append_macro_text(state, macro->ident->name, buf, str, len);
4622                         }
4623                         append_macro_text(state, macro->ident->name, buf, "\"", 1);
4624                         fstart = 0;
4625                         flen   = 0;
4626                         break;
4627                 case TOK_CONCATENATE:
4628                         /* Concatenate tokens */
4629                         /* Delete the previous whitespace token */
4630                         if (buf->str[buf->pos - 1] == ' ') {
4631                                 buf->pos -= 1;
4632                         }
4633                         /* Skip the next sequence of whitspace tokens */
4634                         do {
4635                                 fstart = fmacro.pos;
4636                                 raw_next_token(state, &fmacro, tk);
4637                         } while(tk->tok == TOK_SPACE);
4638                         /* Restart at the top of the loop.
4639                          * I need to process the non white space token.
4640                          */
4641                         continue;
4642                         break;
4643                 case TOK_SPACE:
4644                         /* Collapse multiple spaces into one */
4645                         if (buf->str[buf->pos - 1] != ' ') {
4646                                 fstart = space;
4647                                 flen   = 1;
4648                         } else {
4649                                 fstart = 0;
4650                                 flen   = 0;
4651                         }
4652                         break;
4653                 default:
4654                         break;
4655                 }
4656
4657                 append_macro_text(state, macro->ident->name, buf, fstart, flen);
4658                 
4659                 fstart = fmacro.pos;
4660                 raw_next_token(state, &fmacro, tk);
4661         }
4662 }
4663
4664 static void tag_macro_name(struct compile_state *state,
4665         struct macro *macro, struct macro_buf *buf,
4666         struct token *tk)
4667 {
4668         /* Guard all instances of the macro name in the replacement
4669          * text from further macro expansion.
4670          */
4671         struct file_state fmacro;
4672         const char *fstart;
4673         size_t flen;
4674
4675         /* Put the old macro expansion buffer in a file */
4676         fmacro.prev        = 0;
4677         fmacro.basename    = macro->ident->name;
4678         fmacro.dirname     = "";
4679         fmacro.buf         = buf->str;
4680         fmacro.size        = buf->pos;
4681         fmacro.pos         = fmacro.buf;
4682         fmacro.line        = 1;
4683         fmacro.line_start  = fmacro.buf;
4684         fmacro.report_line = 1;
4685         fmacro.report_name = fmacro.basename;
4686         fmacro.report_dir  = fmacro.dirname;
4687         fmacro.macro       = 1;
4688         fmacro.trigraphs   = 0;
4689         fmacro.join_lines  = 0;
4690         
4691         /* Allocate a new macro expansion buffer */
4692         buf->len = macro->buf_len + 3;
4693         buf->str = xmalloc(buf->len, macro->ident->name);
4694         buf->pos = 0;
4695         
4696         fstart = fmacro.pos;
4697         raw_next_token(state, &fmacro, tk);
4698         while(tk->tok != TOK_EOF) {
4699                 flen = fmacro.pos - fstart;
4700                 if ((tk->tok == TOK_IDENT) &&
4701                         (tk->ident == macro->ident) &&
4702                         (tk->val.notmacro == 0)) 
4703                 {
4704                         append_macro_text(state, macro->ident->name, buf, fstart, flen);
4705                         fstart = "$";
4706                         flen   = 1;
4707                 }
4708
4709                 append_macro_text(state, macro->ident->name, buf, fstart, flen);
4710                 
4711                 fstart = fmacro.pos;
4712                 raw_next_token(state, &fmacro, tk);
4713         }
4714         xfree(fmacro.buf);
4715 }
4716
4717 static int compile_macro(struct compile_state *state, 
4718         struct file_state **filep, struct token *tk)
4719 {
4720         struct file_state *file;
4721         struct hash_entry *ident;
4722         struct macro *macro;
4723         struct macro_arg_value *argv;
4724         struct macro_buf buf;
4725
4726 #if 0
4727         fprintf(state->errout, "macro: %s\n", tk->ident->name);
4728 #endif
4729         ident = tk->ident;
4730         macro = ident->sym_define;
4731
4732         /* If this token comes from a macro expansion ignore it */
4733         if (tk->val.notmacro) {
4734                 return 0;
4735         }
4736         /* If I am a function like macro and the identifier is not followed
4737          * by a left parenthesis, do nothing.
4738          */
4739         if ((macro->argc >= 0) && (get_char(*filep, (*filep)->pos) != '(')) {
4740                 return 0;
4741         }
4742
4743         /* Read in the macro arguments */
4744         argv = 0;
4745         if (macro->argc >= 0) {
4746                 raw_next_token(state, *filep, tk);
4747                 check_tok(state, tk, TOK_LPAREN);
4748
4749                 argv = read_macro_args(state, macro, *filep, tk);
4750
4751                 check_tok(state, tk, TOK_RPAREN);
4752         }
4753         /* Macro expand the macro arguments */
4754         macro_expand_args(state, macro, argv, tk);
4755
4756         buf.str = 0;
4757         buf.len = 0;
4758         buf.pos = 0;
4759         if (ident == state->i___FILE__) {
4760                 buf.len = strlen(state->file->basename) + 1 + 2 + 3;
4761                 buf.str = xmalloc(buf.len, ident->name);
4762                 sprintf(buf.str, "\"%s\"", state->file->basename);
4763                 buf.pos = strlen(buf.str);
4764         }
4765         else if (ident == state->i___LINE__) {
4766                 buf.len = 30;
4767                 buf.str = xmalloc(buf.len, ident->name);
4768                 sprintf(buf.str, "%d", state->file->line);
4769                 buf.pos = strlen(buf.str);
4770         }
4771         else {
4772                 expand_macro(state, macro, &buf, argv, tk);
4773         }
4774         /* Tag the macro name with a $ so it will no longer
4775          * be regonized as a canidate for macro expansion.
4776          */
4777         tag_macro_name(state, macro, &buf, tk);
4778
4779 #if 0
4780         fprintf(state->errout, "%s: %d -> `%*.*s'\n",
4781                 ident->name, buf.pos, buf.pos, (int)(buf.pos), buf.str);
4782 #endif
4783
4784         free_macro_args(macro, argv);
4785
4786         file = xmalloc(sizeof(*file), "file_state");
4787         file->prev        = *filep;
4788         file->basename    = xstrdup(ident->name);
4789         file->dirname     = xstrdup("");
4790         file->buf         = buf.str;
4791         file->size        = buf.pos;
4792         file->pos         = file->buf;
4793         file->line        = 1;
4794         file->line_start  = file->pos;
4795         file->report_line = 1;
4796         file->report_name = file->basename;
4797         file->report_dir  = file->dirname;
4798         file->macro       = 1;
4799         file->trigraphs   = 0;
4800         file->join_lines  = 0;
4801         *filep = file;
4802         return 1;
4803 }
4804
4805 static void eat_tokens(struct compile_state *state, int targ_tok)
4806 {
4807         if (state->eat_depth > 0) {
4808                 internal_error(state, 0, "Already eating...");
4809         }
4810         state->eat_depth = state->if_depth;
4811         state->eat_targ = targ_tok;
4812 }
4813 static int if_eat(struct compile_state *state)
4814 {
4815         return state->eat_depth > 0;
4816 }
4817 static int if_value(struct compile_state *state)
4818 {
4819         int index, offset;
4820         index = state->if_depth / CHAR_BIT;
4821         offset = state->if_depth % CHAR_BIT;
4822         return !!(state->if_bytes[index] & (1 << (offset)));
4823 }
4824 static void set_if_value(struct compile_state *state, int value) 
4825 {
4826         int index, offset;
4827         index = state->if_depth / CHAR_BIT;
4828         offset = state->if_depth % CHAR_BIT;
4829
4830         state->if_bytes[index] &= ~(1 << offset);
4831         if (value) {
4832                 state->if_bytes[index] |= (1 << offset);
4833         }
4834 }
4835 static void in_if(struct compile_state *state, const char *name)
4836 {
4837         if (state->if_depth <= 0) {
4838                 error(state, 0, "%s without #if", name);
4839         }
4840 }
4841 static void enter_if(struct compile_state *state)
4842 {
4843         state->if_depth += 1;
4844         if (state->if_depth > MAX_PP_IF_DEPTH) {
4845                 error(state, 0, "#if depth too great");
4846         }
4847 }
4848 static void reenter_if(struct compile_state *state, const char *name)
4849 {
4850         in_if(state, name);
4851         if ((state->eat_depth == state->if_depth) &&
4852                 (state->eat_targ == TOK_MELSE)) {
4853                 state->eat_depth = 0;
4854                 state->eat_targ = 0;
4855         }
4856 }
4857 static void enter_else(struct compile_state *state, const char *name)
4858 {
4859         in_if(state, name);
4860         if ((state->eat_depth == state->if_depth) &&
4861                 (state->eat_targ == TOK_MELSE)) {
4862                 state->eat_depth = 0;
4863                 state->eat_targ = 0;
4864         }
4865 }
4866 static void exit_if(struct compile_state *state, const char *name)
4867 {
4868         in_if(state, name);
4869         if (state->eat_depth == state->if_depth) {
4870                 state->eat_depth = 0;
4871                 state->eat_targ = 0;
4872         }
4873         state->if_depth -= 1;
4874 }
4875
4876 static void raw_token(struct compile_state *state, struct token *tk)
4877 {
4878         struct file_state *file;
4879         int rescan;
4880
4881         file = state->file;
4882         raw_next_token(state, file, tk);
4883         do {
4884                 rescan = 0;
4885                 file = state->file;
4886                 /* Exit out of an include directive or macro call */
4887                 if ((tk->tok == TOK_EOF) && 
4888                         (file != state->macro_file) && file->prev) 
4889                 {
4890                         state->file = file->prev;
4891                         /* file->basename is used keep it */
4892                         xfree(file->dirname);
4893                         xfree(file->buf);
4894                         xfree(file);
4895                         file = 0;
4896                         raw_next_token(state, state->file, tk);
4897                         rescan = 1;
4898                 }
4899         } while(rescan);
4900 }
4901
4902 static void pp_token(struct compile_state *state, struct token *tk)
4903 {
4904         struct file_state *file;
4905         int rescan;
4906
4907         raw_token(state, tk);
4908         do {
4909                 rescan = 0;
4910                 file = state->file;
4911                 if (tk->tok == TOK_SPACE) {
4912                         raw_token(state, tk);
4913                         rescan = 1;
4914                 }
4915                 else if (tk->tok == TOK_IDENT) {
4916                         if (state->token_base == 0) {
4917                                 ident_to_keyword(state, tk);
4918                         } else {
4919                                 ident_to_macro(state, tk);
4920                         }
4921                 }
4922         } while(rescan);
4923 }
4924
4925 static void preprocess(struct compile_state *state, struct token *tk);
4926
4927 static void token(struct compile_state *state, struct token *tk)
4928 {
4929         int rescan;
4930         pp_token(state, tk);
4931         do {
4932                 rescan = 0;
4933                 /* Process a macro directive */
4934                 if (tk->tok == TOK_MACRO) {
4935                         /* Only match preprocessor directives at the start of a line */
4936                         const char *ptr;
4937                         ptr = state->file->line_start;
4938                         while((ptr < tk->pos)
4939                                 && spacep(get_char(state->file, ptr)))
4940                         {
4941                                 ptr = next_char(state->file, ptr, 1);
4942                         }
4943                         if (ptr == tk->pos) {
4944                                 preprocess(state, tk);
4945                                 rescan = 1;
4946                         }
4947                 }
4948                 /* Expand a macro call */
4949                 else if (tk->ident && tk->ident->sym_define) {
4950                         rescan = compile_macro(state, &state->file, tk);
4951                         if (rescan) {
4952                                 pp_token(state, tk);
4953                         }
4954                 }
4955                 /* Eat tokens disabled by the preprocessor 
4956                  * (Unless we are parsing a preprocessor directive 
4957                  */
4958                 else if (if_eat(state) && (state->token_base == 0)) {
4959                         pp_token(state, tk);
4960                         rescan = 1;
4961                 }
4962                 /* Make certain EOL only shows up in preprocessor directives */
4963                 else if ((tk->tok == TOK_EOL) && (state->token_base == 0)) {
4964                         pp_token(state, tk);
4965                         rescan = 1;
4966                 }
4967                 /* Error on unknown tokens */
4968                 else if (tk->tok == TOK_UNKNOWN) {
4969                         error(state, 0, "unknown token");
4970                 }
4971         } while(rescan);
4972 }
4973
4974
4975 static inline struct token *get_token(struct compile_state *state, int offset)
4976 {
4977         int index;
4978         index = state->token_base + offset;
4979         if (index >= sizeof(state->token)/sizeof(state->token[0])) {
4980                 internal_error(state, 0, "token array to small");
4981         }
4982         return &state->token[index];
4983 }
4984
4985 static struct token *do_eat_token(struct compile_state *state, int tok)
4986 {
4987         struct token *tk;
4988         int i;
4989         check_tok(state, get_token(state, 1), tok);
4990         
4991         /* Free the old token value */
4992         tk = get_token(state, 0);
4993         if (tk->str_len) {
4994                 memset((void *)tk->val.str, -1, tk->str_len);
4995                 xfree(tk->val.str);
4996         }
4997         /* Overwrite the old token with newer tokens */
4998         for(i = state->token_base; i < sizeof(state->token)/sizeof(state->token[0]) - 1; i++) {
4999                 state->token[i] = state->token[i + 1];
5000         }
5001         /* Clear the last token */
5002         memset(&state->token[i], 0, sizeof(state->token[i]));
5003         state->token[i].tok = -1;
5004
5005         /* Return the token */
5006         return tk;
5007 }
5008
5009 static int raw_peek(struct compile_state *state)
5010 {
5011         struct token *tk1;
5012         tk1 = get_token(state, 1);
5013         if (tk1->tok == -1) {
5014                 raw_token(state, tk1);
5015         }
5016         return tk1->tok;
5017 }
5018
5019 static struct token *raw_eat(struct compile_state *state, int tok)
5020 {
5021         raw_peek(state);
5022         return do_eat_token(state, tok);
5023 }
5024
5025 static int pp_peek(struct compile_state *state)
5026 {
5027         struct token *tk1;
5028         tk1 = get_token(state, 1);
5029         if (tk1->tok == -1) {
5030                 pp_token(state, tk1);
5031         }
5032         return tk1->tok;
5033 }
5034
5035 static struct token *pp_eat(struct compile_state *state, int tok)
5036 {
5037         pp_peek(state);
5038         return do_eat_token(state, tok);
5039 }
5040
5041 static int peek(struct compile_state *state)
5042 {
5043         struct token *tk1;
5044         tk1 = get_token(state, 1);
5045         if (tk1->tok == -1) {
5046                 token(state, tk1);
5047         }
5048         return tk1->tok;
5049 }
5050
5051 static int peek2(struct compile_state *state)
5052 {
5053         struct token *tk1, *tk2;
5054         tk1 = get_token(state, 1);
5055         tk2 = get_token(state, 2);
5056         if (tk1->tok == -1) {
5057                 token(state, tk1);
5058         }
5059         if (tk2->tok == -1) {
5060                 token(state, tk2);
5061         }
5062         return tk2->tok;
5063 }
5064
5065 static struct token *eat(struct compile_state *state, int tok)
5066 {
5067         peek(state);
5068         return do_eat_token(state, tok);
5069 }
5070
5071 static void compile_file(struct compile_state *state, const char *filename, int local)
5072 {
5073         char cwd[MAX_CWD_SIZE];
5074         const char *subdir, *base;
5075         int subdir_len;
5076         struct file_state *file;
5077         char *basename;
5078         file = xmalloc(sizeof(*file), "file_state");
5079
5080         base = strrchr(filename, '/');
5081         subdir = filename;
5082         if (base != 0) {
5083                 subdir_len = base - filename;
5084                 base++;
5085         }
5086         else {
5087                 base = filename;
5088                 subdir_len = 0;
5089         }
5090         basename = xmalloc(strlen(base) +1, "basename");
5091         strcpy(basename, base);
5092         file->basename = basename;
5093
5094         if (getcwd(cwd, sizeof(cwd)) == 0) {
5095                 die("cwd buffer to small");
5096         }
5097         if ((subdir[0] == '/') || ((subdir[1] == ':') && ((subdir[2] == '/') || (subdir[2] == '\\')))) {
5098                 file->dirname = xmalloc(subdir_len + 1, "dirname");
5099                 memcpy(file->dirname, subdir, subdir_len);
5100                 file->dirname[subdir_len] = '\0';
5101         }
5102         else {
5103                 const char *dir;
5104                 int dirlen;
5105                 const char **path;
5106                 /* Find the appropriate directory... */
5107                 dir = 0;
5108                 if (!state->file && exists(cwd, filename)) {
5109                         dir = cwd;
5110                 }
5111                 if (local && state->file && exists(state->file->dirname, filename)) {
5112                         dir = state->file->dirname;
5113                 }
5114                 for(path = state->compiler->include_paths; !dir && *path; path++) {
5115                         if (exists(*path, filename)) {
5116                                 dir = *path;
5117                         }
5118                 }
5119                 if (!dir) {
5120                         error(state, 0, "Cannot open `%s'\n", filename);
5121                 }
5122                 dirlen = strlen(dir);
5123                 file->dirname = xmalloc(dirlen + 1 + subdir_len + 1, "dirname");
5124                 memcpy(file->dirname, dir, dirlen);
5125                 file->dirname[dirlen] = '/';
5126                 memcpy(file->dirname + dirlen + 1, subdir, subdir_len);
5127                 file->dirname[dirlen + 1 + subdir_len] = '\0';
5128         }
5129         file->buf = slurp_file(file->dirname, file->basename, &file->size);
5130
5131         file->pos = file->buf;
5132         file->line_start = file->pos;
5133         file->line = 1;
5134
5135         file->report_line = 1;
5136         file->report_name = file->basename;
5137         file->report_dir  = file->dirname;
5138         file->macro       = 0;
5139         file->trigraphs   = (state->compiler->flags & COMPILER_TRIGRAPHS)? 1: 0;
5140         file->join_lines  = 1;
5141
5142         file->prev = state->file;
5143         state->file = file;
5144 }
5145
5146 static struct triple *constant_expr(struct compile_state *state);
5147 static void integral(struct compile_state *state, struct triple *def);
5148
5149 static int mcexpr(struct compile_state *state)
5150 {
5151         struct triple *cvalue;
5152         cvalue = constant_expr(state);
5153         integral(state, cvalue);
5154         if (cvalue->op != OP_INTCONST) {
5155                 error(state, 0, "integer constant expected");
5156         }
5157         return cvalue->u.cval != 0;
5158 }
5159
5160 static void preprocess(struct compile_state *state, struct token *current_token)
5161 {
5162         /* Doing much more with the preprocessor would require
5163          * a parser and a major restructuring.
5164          * Postpone that for later.
5165          */
5166         int old_token_base;
5167         int tok;
5168         
5169         state->macro_file = state->file;
5170
5171         old_token_base = state->token_base;
5172         state->token_base = current_token - state->token;
5173
5174         tok = pp_peek(state);
5175         switch(tok) {
5176         case TOK_LIT_INT:
5177         {
5178                 struct token *tk;
5179                 int override_line;
5180                 tk = pp_eat(state, TOK_LIT_INT);
5181                 override_line = strtoul(tk->val.str, 0, 10);
5182                 /* I have a preprocessor  line marker parse it */
5183                 if (pp_peek(state) == TOK_LIT_STRING) {
5184                         const char *token, *base;
5185                         char *name, *dir;
5186                         int name_len, dir_len;
5187                         tk = pp_eat(state, TOK_LIT_STRING);
5188                         name = xmalloc(tk->str_len, "report_name");
5189                         token = tk->val.str + 1;
5190                         base = strrchr(token, '/');
5191                         name_len = tk->str_len -2;
5192                         if (base != 0) {
5193                                 dir_len = base - token;
5194                                 base++;
5195                                 name_len -= base - token;
5196                         } else {
5197                                 dir_len = 0;
5198                                 base = token;
5199                         }
5200                         memcpy(name, base, name_len);
5201                         name[name_len] = '\0';
5202                         dir = xmalloc(dir_len + 1, "report_dir");
5203                         memcpy(dir, token, dir_len);
5204                         dir[dir_len] = '\0';
5205                         state->file->report_line = override_line - 1;
5206                         state->file->report_name = name;
5207                         state->file->report_dir = dir;
5208                         state->file->macro      = 0;
5209                 }
5210                 break;
5211         }
5212         case TOK_MLINE:
5213         {
5214                 struct token *tk;
5215                 pp_eat(state, TOK_MLINE);
5216                 tk = eat(state, TOK_LIT_INT);
5217                 state->file->report_line = strtoul(tk->val.str, 0, 10) -1;
5218                 if (pp_peek(state) == TOK_LIT_STRING) {
5219                         const char *token, *base;
5220                         char *name, *dir;
5221                         int name_len, dir_len;
5222                         tk = pp_eat(state, TOK_LIT_STRING);
5223                         name = xmalloc(tk->str_len, "report_name");
5224                         token = tk->val.str + 1;
5225                         base = strrchr(token, '/');
5226                         name_len = tk->str_len - 2;
5227                         if (base != 0) {
5228                                 dir_len = base - token;
5229                                 base++;
5230                                 name_len -= base - token;
5231                         } else {
5232                                 dir_len = 0;
5233                                 base = token;
5234                         }
5235                         memcpy(name, base, name_len);
5236                         name[name_len] = '\0';
5237                         dir = xmalloc(dir_len + 1, "report_dir");
5238                         memcpy(dir, token, dir_len);
5239                         dir[dir_len] = '\0';
5240                         state->file->report_name = name;
5241                         state->file->report_dir = dir;
5242                         state->file->macro      = 0;
5243                 }
5244                 break;
5245         }
5246         case TOK_MUNDEF:
5247         {
5248                 struct hash_entry *ident;
5249                 pp_eat(state, TOK_MUNDEF);
5250                 if (if_eat(state))  /* quit early when #if'd out */
5251                         break;
5252                 
5253                 ident = pp_eat(state, TOK_MIDENT)->ident;
5254
5255                 undef_macro(state, ident);
5256                 break;
5257         }
5258         case TOK_MPRAGMA:
5259                 pp_eat(state, TOK_MPRAGMA);
5260                 if (if_eat(state))  /* quit early when #if'd out */
5261                         break;
5262                 warning(state, 0, "Ignoring pragma"); 
5263                 break;
5264         case TOK_MELIF:
5265                 pp_eat(state, TOK_MELIF);
5266                 reenter_if(state, "#elif");
5267                 if (if_eat(state))   /* quit early when #if'd out */
5268                         break;
5269                 /* If the #if was taken the #elif just disables the following code */
5270                 if (if_value(state)) {
5271                         eat_tokens(state, TOK_MENDIF);
5272                 }
5273                 /* If the previous #if was not taken see if the #elif enables the 
5274                  * trailing code.
5275                  */
5276                 else {
5277                         set_if_value(state, mcexpr(state));
5278                         if (!if_value(state)) {
5279                                 eat_tokens(state, TOK_MELSE);
5280                         }
5281                 }
5282                 break;
5283         case TOK_MIF:
5284                 pp_eat(state, TOK_MIF);
5285                 enter_if(state);
5286                 if (if_eat(state))  /* quit early when #if'd out */
5287                         break;
5288                 set_if_value(state, mcexpr(state));
5289                 if (!if_value(state)) {
5290                         eat_tokens(state, TOK_MELSE);
5291                 }
5292                 break;
5293         case TOK_MIFNDEF:
5294         {
5295                 struct hash_entry *ident;
5296
5297                 pp_eat(state, TOK_MIFNDEF);
5298                 enter_if(state);
5299                 if (if_eat(state))  /* quit early when #if'd out */
5300                         break;
5301                 ident = pp_eat(state, TOK_MIDENT)->ident;
5302                 set_if_value(state, ident->sym_define == 0);
5303                 if (!if_value(state)) {
5304                         eat_tokens(state, TOK_MELSE);
5305                 }
5306                 break;
5307         }
5308         case TOK_MIFDEF:
5309         {
5310                 struct hash_entry *ident;
5311                 pp_eat(state, TOK_MIFDEF);
5312                 enter_if(state);
5313                 if (if_eat(state))  /* quit early when #if'd out */
5314                         break;
5315                 ident = pp_eat(state, TOK_MIDENT)->ident;
5316                 set_if_value(state, ident->sym_define != 0);
5317                 if (!if_value(state)) {
5318                         eat_tokens(state, TOK_MELSE);
5319                 }
5320                 break;
5321         }
5322         case TOK_MELSE:
5323                 pp_eat(state, TOK_MELSE);
5324                 enter_else(state, "#else");
5325                 if (!if_eat(state) && if_value(state)) {
5326                         eat_tokens(state, TOK_MENDIF);
5327                 }
5328                 break;
5329         case TOK_MENDIF:
5330                 pp_eat(state, TOK_MENDIF);
5331                 exit_if(state, "#endif");
5332                 break;
5333         case TOK_MDEFINE:
5334         {
5335                 struct hash_entry *ident;
5336                 struct macro_arg *args, **larg;
5337                 const char *mstart, *mend;
5338                 int argc;
5339
5340                 pp_eat(state, TOK_MDEFINE);
5341                 if (if_eat(state))  /* quit early when #if'd out */
5342                         break;
5343                 ident = pp_eat(state, TOK_MIDENT)->ident;
5344                 argc = -1;
5345                 args = 0;
5346                 larg = &args;
5347
5348                 /* Parse macro parameters */
5349                 if (raw_peek(state) == TOK_LPAREN) {
5350                         raw_eat(state, TOK_LPAREN);
5351                         argc += 1;
5352
5353                         for(;;) {
5354                                 struct macro_arg *narg, *arg;
5355                                 struct hash_entry *aident;
5356                                 int tok;
5357
5358                                 tok = pp_peek(state);
5359                                 if (!args && (tok == TOK_RPAREN)) {
5360                                         break;
5361                                 }
5362                                 else if (tok == TOK_DOTS) {
5363                                         pp_eat(state, TOK_DOTS);
5364                                         aident = state->i___VA_ARGS__;
5365                                 } 
5366                                 else {
5367                                         aident = pp_eat(state, TOK_MIDENT)->ident;
5368                                 }
5369                                 
5370                                 narg = xcmalloc(sizeof(*arg), "macro arg");
5371                                 narg->ident = aident;
5372
5373                                 /* Verify I don't have a duplicate identifier */
5374                                 for(arg = args; arg; arg = arg->next) {
5375                                         if (arg->ident == narg->ident) {
5376                                                 error(state, 0, "Duplicate macro arg `%s'",
5377                                                         narg->ident->name);
5378                                         }
5379                                 }
5380                                 /* Add the new argument to the end of the list */
5381                                 *larg = narg;
5382                                 larg = &narg->next;
5383                                 argc += 1;
5384
5385                                 if ((aident == state->i___VA_ARGS__) ||
5386                                         (pp_peek(state) != TOK_COMMA)) {
5387                                         break;
5388                                 }
5389                                 pp_eat(state, TOK_COMMA);
5390                         }
5391                         pp_eat(state, TOK_RPAREN);
5392                 }
5393                 /* Remove leading whitespace */
5394                 while(raw_peek(state) == TOK_SPACE) {
5395                         raw_eat(state, TOK_SPACE);
5396                 }
5397
5398                 /* Remember the start of the macro body */
5399                 tok = raw_peek(state);
5400                 mend = mstart = get_token(state, 1)->pos;
5401
5402                 /* Find the end of the macro */
5403                 for(tok = raw_peek(state); tok != TOK_EOL; tok = raw_peek(state)) {
5404                         raw_eat(state, tok);
5405                         /* Remember the end of the last non space token */
5406                         raw_peek(state);
5407                         if (tok != TOK_SPACE) {
5408                                 mend = get_token(state, 1)->pos;
5409                         }
5410                 }
5411                 
5412                 /* Now that I have found the body defined the token */
5413                 do_define_macro(state, ident,
5414                         char_strdup(state->file, mstart, mend, "macro buf"),
5415                         argc, args);
5416                 break;
5417         }
5418         case TOK_MERROR:
5419         {
5420                 const char *start, *end;
5421                 int len;
5422                 
5423                 pp_eat(state, TOK_MERROR);
5424                 /* Find the start of the line */
5425                 raw_peek(state);
5426                 start = get_token(state, 1)->pos;
5427
5428                 /* Find the end of the line */
5429                 while((tok = raw_peek(state)) != TOK_EOL) {
5430                         raw_eat(state, tok);
5431                 }
5432                 end = get_token(state, 1)->pos;
5433                 len = end - start;
5434                 if (!if_eat(state)) {
5435                         error(state, 0, "%*.*s", len, len, start);
5436                 }
5437                 break;
5438         }
5439         case TOK_MWARNING:
5440         {
5441                 const char *start, *end;
5442                 int len;
5443                 
5444                 pp_eat(state, TOK_MWARNING);
5445
5446                 /* Find the start of the line */
5447                 raw_peek(state);
5448                 start = get_token(state, 1)->pos;
5449                  
5450                 /* Find the end of the line */
5451                 while((tok = raw_peek(state)) != TOK_EOL) {
5452                         raw_eat(state, tok);
5453                 }
5454                 end = get_token(state, 1)->pos;
5455                 len = end - start;
5456                 if (!if_eat(state)) {
5457                         warning(state, 0, "%*.*s", len, len, start);
5458                 }
5459                 break;
5460         }
5461         case TOK_MINCLUDE:
5462         {
5463                 char *name;
5464                 int local;
5465                 local = 0;
5466                 name = 0;
5467
5468                 pp_eat(state, TOK_MINCLUDE);
5469                 if (if_eat(state)) {
5470                         /* Find the end of the line */
5471                         while((tok = raw_peek(state)) != TOK_EOL) {
5472                                 raw_eat(state, tok);
5473                         }
5474                         break;
5475                 }
5476                 tok = peek(state);
5477                 if (tok == TOK_LIT_STRING) {
5478                         struct token *tk;
5479                         const char *token;
5480                         int name_len;
5481                         tk = eat(state, TOK_LIT_STRING);
5482                         name = xmalloc(tk->str_len, "include");
5483                         token = tk->val.str +1;
5484                         name_len = tk->str_len -2;
5485                         if (*token == '"') {
5486                                 token++;
5487                                 name_len--;
5488                         }
5489                         memcpy(name, token, name_len);
5490                         name[name_len] = '\0';
5491                         local = 1;
5492                 }
5493                 else if (tok == TOK_LESS) {
5494                         struct macro_buf buf;
5495                         eat(state, TOK_LESS);
5496
5497                         buf.len = 40;
5498                         buf.str = xmalloc(buf.len, "include");
5499                         buf.pos = 0;
5500
5501                         tok = peek(state);
5502                         while((tok != TOK_MORE) &&
5503                                 (tok != TOK_EOL) && (tok != TOK_EOF))
5504                         {
5505                                 struct token *tk;
5506                                 tk = eat(state, tok);
5507                                 append_macro_chars(state, "include", &buf,
5508                                         state->file, tk->pos, state->file->pos);
5509                                 tok = peek(state);
5510                         }
5511                         append_macro_text(state, "include", &buf, "\0", 1);
5512                         if (peek(state) != TOK_MORE) {
5513                                 error(state, 0, "Unterminated include directive");
5514                         }
5515                         eat(state, TOK_MORE);
5516                         local = 0;
5517                         name = buf.str;
5518                 }
5519                 else {
5520                         error(state, 0, "Invalid include directive");
5521                 }
5522                 /* Error if there are any tokens after the include */
5523                 if (pp_peek(state) != TOK_EOL) {
5524                         error(state, 0, "garbage after include directive");
5525                 }
5526                 if (!if_eat(state)) {
5527                         compile_file(state, name, local);
5528                 }
5529                 xfree(name);
5530                 break;
5531         }
5532         case TOK_EOL:
5533                 /* Ignore # without a follwing ident */
5534                 break;
5535         default:
5536         {
5537                 const char *name1, *name2;
5538                 name1 = tokens[tok];
5539                 name2 = "";
5540                 if (tok == TOK_MIDENT) {
5541                         name2 = get_token(state, 1)->ident->name;
5542                 }
5543                 error(state, 0, "Invalid preprocessor directive: %s %s", 
5544                         name1, name2);
5545                 break;
5546         }
5547         }
5548         /* Consume the rest of the macro line */
5549         do {
5550                 tok = pp_peek(state);
5551                 pp_eat(state, tok);
5552         } while((tok != TOK_EOF) && (tok != TOK_EOL));
5553         state->token_base = old_token_base;
5554         state->macro_file = NULL;
5555         return;
5556 }
5557
5558 /* Type helper functions */
5559
5560 static struct type *new_type(
5561         unsigned int type, struct type *left, struct type *right)
5562 {
5563         struct type *result;
5564         result = xmalloc(sizeof(*result), "type");
5565         result->type = type;
5566         result->left = left;
5567         result->right = right;
5568         result->field_ident = 0;
5569         result->type_ident = 0;
5570         result->elements = 0;
5571         return result;
5572 }
5573
5574 static struct type *clone_type(unsigned int specifiers, struct type *old)
5575 {
5576         struct type *result;
5577         result = xmalloc(sizeof(*result), "type");
5578         memcpy(result, old, sizeof(*result));
5579         result->type &= TYPE_MASK;
5580         result->type |= specifiers;
5581         return result;
5582 }
5583
5584 static struct type *dup_type(struct compile_state *state, struct type *orig)
5585 {
5586         struct type *new;
5587         new = xcmalloc(sizeof(*new), "type");
5588         new->type = orig->type;
5589         new->field_ident = orig->field_ident;
5590         new->type_ident  = orig->type_ident;
5591         new->elements    = orig->elements;
5592         if (orig->left) {
5593                 new->left = dup_type(state, orig->left);
5594         }
5595         if (orig->right) {
5596                 new->right = dup_type(state, orig->right);
5597         }
5598         return new;
5599 }
5600
5601
5602 static struct type *invalid_type(struct compile_state *state, struct type *type)
5603 {
5604         struct type *invalid, *member;
5605         invalid = 0;
5606         if (!type) {
5607                 internal_error(state, 0, "type missing?");
5608         }
5609         switch(type->type & TYPE_MASK) {
5610         case TYPE_VOID:
5611         case TYPE_CHAR:         case TYPE_UCHAR:
5612         case TYPE_SHORT:        case TYPE_USHORT:
5613         case TYPE_INT:          case TYPE_UINT:
5614         case TYPE_LONG:         case TYPE_ULONG:
5615         case TYPE_LLONG:        case TYPE_ULLONG:
5616         case TYPE_POINTER:
5617         case TYPE_ENUM:
5618                 break;
5619         case TYPE_BITFIELD:
5620                 invalid = invalid_type(state, type->left);
5621                 break;
5622         case TYPE_ARRAY:
5623                 invalid = invalid_type(state, type->left);
5624                 break;
5625         case TYPE_STRUCT:
5626         case TYPE_TUPLE:
5627                 member = type->left;
5628                 while(member && (invalid == 0) && 
5629                         ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
5630                         invalid = invalid_type(state, member->left);
5631                         member = member->right;
5632                 }
5633                 if (!invalid) {
5634                         invalid = invalid_type(state, member);
5635                 }
5636                 break;
5637         case TYPE_UNION:
5638         case TYPE_JOIN:
5639                 member = type->left;
5640                 while(member && (invalid == 0) &&
5641                         ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
5642                         invalid = invalid_type(state, member->left);
5643                         member = member->right;
5644                 }
5645                 if (!invalid) {
5646                         invalid = invalid_type(state, member);
5647                 }
5648                 break;
5649         default:
5650                 invalid = type;
5651                 break;
5652         }
5653         return invalid;
5654         
5655 }
5656
5657 #define MASK_UCHAR(X)    ((X) & ((ulong_t)0xff))
5658 #define MASK_USHORT(X)   ((X) & (((ulong_t)1 << (SIZEOF_SHORT)) - 1))
5659 static inline ulong_t mask_uint(ulong_t x)
5660 {
5661         if (SIZEOF_INT < SIZEOF_LONG) {
5662                 ulong_t mask = (1ULL << ((ulong_t)(SIZEOF_INT))) -1;
5663                 x &= mask;
5664         }
5665         return x;
5666 }
5667 #define MASK_UINT(X)      (mask_uint(X))
5668 #define MASK_ULONG(X)    (X)
5669
5670 static struct type void_type    = { .type  = TYPE_VOID };
5671 static struct type char_type    = { .type  = TYPE_CHAR };
5672 static struct type uchar_type   = { .type  = TYPE_UCHAR };
5673 #if DEBUG_ROMCC_WARNING
5674 static struct type short_type   = { .type  = TYPE_SHORT };
5675 #endif
5676 static struct type ushort_type  = { .type  = TYPE_USHORT };
5677 static struct type int_type     = { .type  = TYPE_INT };
5678 static struct type uint_type    = { .type  = TYPE_UINT };
5679 static struct type long_type    = { .type  = TYPE_LONG };
5680 static struct type ulong_type   = { .type  = TYPE_ULONG };
5681 static struct type unknown_type = { .type  = TYPE_UNKNOWN };
5682
5683 static struct type void_ptr_type  = {
5684         .type = TYPE_POINTER,
5685         .left = &void_type,
5686 };
5687
5688 #if DEBUG_ROMCC_WARNING
5689 static struct type void_func_type = { 
5690         .type  = TYPE_FUNCTION,
5691         .left  = &void_type,
5692         .right = &void_type,
5693 };
5694 #endif
5695
5696 static size_t bits_to_bytes(size_t size)
5697 {
5698         return (size + SIZEOF_CHAR - 1)/SIZEOF_CHAR;
5699 }
5700
5701 static struct triple *variable(struct compile_state *state, struct type *type)
5702 {
5703         struct triple *result;
5704         if ((type->type & STOR_MASK) != STOR_PERM) {
5705                 result = triple(state, OP_ADECL, type, 0, 0);
5706                 generate_lhs_pieces(state, result);
5707         }
5708         else {
5709                 result = triple(state, OP_SDECL, type, 0, 0);
5710         }
5711         return result;
5712 }
5713
5714 static void stor_of(FILE *fp, struct type *type)
5715 {
5716         switch(type->type & STOR_MASK) {
5717         case STOR_AUTO:
5718                 fprintf(fp, "auto ");
5719                 break;
5720         case STOR_STATIC:
5721                 fprintf(fp, "static ");
5722                 break;
5723         case STOR_LOCAL:
5724                 fprintf(fp, "local ");
5725                 break;
5726         case STOR_EXTERN:
5727                 fprintf(fp, "extern ");
5728                 break;
5729         case STOR_REGISTER:
5730                 fprintf(fp, "register ");
5731                 break;
5732         case STOR_TYPEDEF:
5733                 fprintf(fp, "typedef ");
5734                 break;
5735         case STOR_INLINE | STOR_LOCAL:
5736                 fprintf(fp, "inline ");
5737                 break;
5738         case STOR_INLINE | STOR_STATIC:
5739                 fprintf(fp, "static inline");
5740                 break;
5741         case STOR_INLINE | STOR_EXTERN:
5742                 fprintf(fp, "extern inline");
5743                 break;
5744         default:
5745                 fprintf(fp, "stor:%x", type->type & STOR_MASK);
5746                 break;
5747         }
5748 }
5749 static void qual_of(FILE *fp, struct type *type)
5750 {
5751         if (type->type & QUAL_CONST) {
5752                 fprintf(fp, " const");
5753         }
5754         if (type->type & QUAL_VOLATILE) {
5755                 fprintf(fp, " volatile");
5756         }
5757         if (type->type & QUAL_RESTRICT) {
5758                 fprintf(fp, " restrict");
5759         }
5760 }
5761
5762 static void name_of(FILE *fp, struct type *type)
5763 {
5764         unsigned int base_type;
5765         base_type = type->type & TYPE_MASK;
5766         if ((base_type != TYPE_PRODUCT) && (base_type != TYPE_OVERLAP)) {
5767                 stor_of(fp, type);
5768         }
5769         switch(base_type) {
5770         case TYPE_VOID:
5771                 fprintf(fp, "void");
5772                 qual_of(fp, type);
5773                 break;
5774         case TYPE_CHAR:
5775                 fprintf(fp, "signed char");
5776                 qual_of(fp, type);
5777                 break;
5778         case TYPE_UCHAR:
5779                 fprintf(fp, "unsigned char");
5780                 qual_of(fp, type);
5781                 break;
5782         case TYPE_SHORT:
5783                 fprintf(fp, "signed short");
5784                 qual_of(fp, type);
5785                 break;
5786         case TYPE_USHORT:
5787                 fprintf(fp, "unsigned short");
5788                 qual_of(fp, type);
5789                 break;
5790         case TYPE_INT:
5791                 fprintf(fp, "signed int");
5792                 qual_of(fp, type);
5793                 break;
5794         case TYPE_UINT:
5795                 fprintf(fp, "unsigned int");
5796                 qual_of(fp, type);
5797                 break;
5798         case TYPE_LONG:
5799                 fprintf(fp, "signed long");
5800                 qual_of(fp, type);
5801                 break;
5802         case TYPE_ULONG:
5803                 fprintf(fp, "unsigned long");
5804                 qual_of(fp, type);
5805                 break;
5806         case TYPE_POINTER:
5807                 name_of(fp, type->left);
5808                 fprintf(fp, " * ");
5809                 qual_of(fp, type);
5810                 break;
5811         case TYPE_PRODUCT:
5812                 name_of(fp, type->left);
5813                 fprintf(fp, ", ");
5814                 name_of(fp, type->right);
5815                 break;
5816         case TYPE_OVERLAP:
5817                 name_of(fp, type->left);
5818                 fprintf(fp, ",| ");
5819                 name_of(fp, type->right);
5820                 break;
5821         case TYPE_ENUM:
5822                 fprintf(fp, "enum %s", 
5823                         (type->type_ident)? type->type_ident->name : "");
5824                 qual_of(fp, type);
5825                 break;
5826         case TYPE_STRUCT:
5827                 fprintf(fp, "struct %s { ", 
5828                         (type->type_ident)? type->type_ident->name : "");
5829                 name_of(fp, type->left);
5830                 fprintf(fp, " } ");
5831                 qual_of(fp, type);
5832                 break;
5833         case TYPE_UNION:
5834                 fprintf(fp, "union %s { ", 
5835                         (type->type_ident)? type->type_ident->name : "");
5836                 name_of(fp, type->left);
5837                 fprintf(fp, " } ");
5838                 qual_of(fp, type);
5839                 break;
5840         case TYPE_FUNCTION:
5841                 name_of(fp, type->left);
5842                 fprintf(fp, " (*)(");
5843                 name_of(fp, type->right);
5844                 fprintf(fp, ")");
5845                 break;
5846         case TYPE_ARRAY:
5847                 name_of(fp, type->left);
5848                 fprintf(fp, " [%ld]", (long)(type->elements));
5849                 break;
5850         case TYPE_TUPLE:
5851                 fprintf(fp, "tuple { "); 
5852                 name_of(fp, type->left);
5853                 fprintf(fp, " } ");
5854                 qual_of(fp, type);
5855                 break;
5856         case TYPE_JOIN:
5857                 fprintf(fp, "join { ");
5858                 name_of(fp, type->left);
5859                 fprintf(fp, " } ");
5860                 qual_of(fp, type);
5861                 break;
5862         case TYPE_BITFIELD:
5863                 name_of(fp, type->left);
5864                 fprintf(fp, " : %d ", type->elements);
5865                 qual_of(fp, type);
5866                 break;
5867         case TYPE_UNKNOWN:
5868                 fprintf(fp, "unknown_t");
5869                 break;
5870         default:
5871                 fprintf(fp, "????: %x", base_type);
5872                 break;
5873         }
5874         if (type->field_ident && type->field_ident->name) {
5875                 fprintf(fp, " .%s", type->field_ident->name);
5876         }
5877 }
5878
5879 static size_t align_of(struct compile_state *state, struct type *type)
5880 {
5881         size_t align;
5882         align = 0;
5883         switch(type->type & TYPE_MASK) {
5884         case TYPE_VOID:
5885                 align = 1;
5886                 break;
5887         case TYPE_BITFIELD:
5888                 align = 1;
5889                 break;
5890         case TYPE_CHAR:
5891         case TYPE_UCHAR:
5892                 align = ALIGNOF_CHAR;
5893                 break;
5894         case TYPE_SHORT:
5895         case TYPE_USHORT:
5896                 align = ALIGNOF_SHORT;
5897                 break;
5898         case TYPE_INT:
5899         case TYPE_UINT:
5900         case TYPE_ENUM:
5901                 align = ALIGNOF_INT;
5902                 break;
5903         case TYPE_LONG:
5904         case TYPE_ULONG:
5905                 align = ALIGNOF_LONG;
5906                 break;
5907         case TYPE_POINTER:
5908                 align = ALIGNOF_POINTER;
5909                 break;
5910         case TYPE_PRODUCT:
5911         case TYPE_OVERLAP:
5912         {
5913                 size_t left_align, right_align;
5914                 left_align  = align_of(state, type->left);
5915                 right_align = align_of(state, type->right);
5916                 align = (left_align >= right_align) ? left_align : right_align;
5917                 break;
5918         }
5919         case TYPE_ARRAY:
5920                 align = align_of(state, type->left);
5921                 break;
5922         case TYPE_STRUCT:
5923         case TYPE_TUPLE:
5924         case TYPE_UNION:
5925         case TYPE_JOIN:
5926                 align = align_of(state, type->left);
5927                 break;
5928         default:
5929                 error(state, 0, "alignof not yet defined for type\n");
5930                 break;
5931         }
5932         return align;
5933 }
5934
5935 static size_t reg_align_of(struct compile_state *state, struct type *type)
5936 {
5937         size_t align;
5938         align = 0;
5939         switch(type->type & TYPE_MASK) {
5940         case TYPE_VOID:
5941                 align = 1;
5942                 break;
5943         case TYPE_BITFIELD:
5944                 align = 1;
5945                 break;
5946         case TYPE_CHAR:
5947         case TYPE_UCHAR:
5948                 align = REG_ALIGNOF_CHAR;
5949                 break;
5950         case TYPE_SHORT:
5951         case TYPE_USHORT:
5952                 align = REG_ALIGNOF_SHORT;
5953                 break;
5954         case TYPE_INT:
5955         case TYPE_UINT:
5956         case TYPE_ENUM:
5957                 align = REG_ALIGNOF_INT;
5958                 break;
5959         case TYPE_LONG:
5960         case TYPE_ULONG:
5961                 align = REG_ALIGNOF_LONG;
5962                 break;
5963         case TYPE_POINTER:
5964                 align = REG_ALIGNOF_POINTER;
5965                 break;
5966         case TYPE_PRODUCT:
5967         case TYPE_OVERLAP:
5968         {
5969                 size_t left_align, right_align;
5970                 left_align  = reg_align_of(state, type->left);
5971                 right_align = reg_align_of(state, type->right);
5972                 align = (left_align >= right_align) ? left_align : right_align;
5973                 break;
5974         }
5975         case TYPE_ARRAY:
5976                 align = reg_align_of(state, type->left);
5977                 break;
5978         case TYPE_STRUCT:
5979         case TYPE_UNION:
5980         case TYPE_TUPLE:
5981         case TYPE_JOIN:
5982                 align = reg_align_of(state, type->left);
5983                 break;
5984         default:
5985                 error(state, 0, "alignof not yet defined for type\n");
5986                 break;
5987         }
5988         return align;
5989 }
5990
5991 static size_t align_of_in_bytes(struct compile_state *state, struct type *type)
5992 {
5993         return bits_to_bytes(align_of(state, type));
5994 }
5995 static size_t size_of(struct compile_state *state, struct type *type);
5996 static size_t reg_size_of(struct compile_state *state, struct type *type);
5997
5998 static size_t needed_padding(struct compile_state *state, 
5999         struct type *type, size_t offset)
6000 {
6001         size_t padding, align;
6002         align = align_of(state, type);
6003         /* Align to the next machine word if the bitfield does completely
6004          * fit into the current word.
6005          */
6006         if ((type->type & TYPE_MASK) == TYPE_BITFIELD) {
6007                 size_t size;
6008                 size = size_of(state, type);
6009                 if ((offset + type->elements)/size != offset/size) {
6010                         align = size;
6011                 }
6012         }
6013         padding = 0;
6014         if (offset % align) {
6015                 padding = align - (offset % align);
6016         }
6017         return padding;
6018 }
6019
6020 static size_t reg_needed_padding(struct compile_state *state, 
6021         struct type *type, size_t offset)
6022 {
6023         size_t padding, align;
6024         align = reg_align_of(state, type);
6025         /* Align to the next register word if the bitfield does completely
6026          * fit into the current register.
6027          */
6028         if (((type->type & TYPE_MASK) == TYPE_BITFIELD) &&
6029                 (((offset + type->elements)/REG_SIZEOF_REG) != (offset/REG_SIZEOF_REG))) 
6030         {
6031                 align = REG_SIZEOF_REG;
6032         }
6033         padding = 0;
6034         if (offset % align) {
6035                 padding = align - (offset % align);
6036         }
6037         return padding;
6038 }
6039
6040 static size_t size_of(struct compile_state *state, struct type *type)
6041 {
6042         size_t size;
6043         size = 0;
6044         switch(type->type & TYPE_MASK) {
6045         case TYPE_VOID:
6046                 size = 0;
6047                 break;
6048         case TYPE_BITFIELD:
6049                 size = type->elements;
6050                 break;
6051         case TYPE_CHAR:
6052         case TYPE_UCHAR:
6053                 size = SIZEOF_CHAR;
6054                 break;
6055         case TYPE_SHORT:
6056         case TYPE_USHORT:
6057                 size = SIZEOF_SHORT;
6058                 break;
6059         case TYPE_INT:
6060         case TYPE_UINT:
6061         case TYPE_ENUM:
6062                 size = SIZEOF_INT;
6063                 break;
6064         case TYPE_LONG:
6065         case TYPE_ULONG:
6066                 size = SIZEOF_LONG;
6067                 break;
6068         case TYPE_POINTER:
6069                 size = SIZEOF_POINTER;
6070                 break;
6071         case TYPE_PRODUCT:
6072         {
6073                 size_t pad;
6074                 size = 0;
6075                 while((type->type & TYPE_MASK) == TYPE_PRODUCT) {
6076                         pad = needed_padding(state, type->left, size);
6077                         size = size + pad + size_of(state, type->left);
6078                         type = type->right;
6079                 }
6080                 pad = needed_padding(state, type, size);
6081                 size = size + pad + size_of(state, type);
6082                 break;
6083         }
6084         case TYPE_OVERLAP:
6085         {
6086                 size_t size_left, size_right;
6087                 size_left = size_of(state, type->left);
6088                 size_right = size_of(state, type->right);
6089                 size = (size_left >= size_right)? size_left : size_right;
6090                 break;
6091         }
6092         case TYPE_ARRAY:
6093                 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
6094                         internal_error(state, 0, "Invalid array type");
6095                 } else {
6096                         size = size_of(state, type->left) * type->elements;
6097                 }
6098                 break;
6099         case TYPE_STRUCT:
6100         case TYPE_TUPLE:
6101         {
6102                 size_t pad;
6103                 size = size_of(state, type->left);
6104                 /* Pad structures so their size is a multiples of their alignment */
6105                 pad = needed_padding(state, type, size);
6106                 size = size + pad;
6107                 break;
6108         }
6109         case TYPE_UNION:
6110         case TYPE_JOIN:
6111         {
6112                 size_t pad;
6113                 size = size_of(state, type->left);
6114                 /* Pad unions so their size is a multiple of their alignment */
6115                 pad = needed_padding(state, type, size);
6116                 size = size + pad;
6117                 break;
6118         }
6119         default:
6120                 internal_error(state, 0, "sizeof not yet defined for type");
6121                 break;
6122         }
6123         return size;
6124 }
6125
6126 static size_t reg_size_of(struct compile_state *state, struct type *type)
6127 {
6128         size_t size;
6129         size = 0;
6130         switch(type->type & TYPE_MASK) {
6131         case TYPE_VOID:
6132                 size = 0;
6133                 break;
6134         case TYPE_BITFIELD:
6135                 size = type->elements;
6136                 break;
6137         case TYPE_CHAR:
6138         case TYPE_UCHAR:
6139                 size = REG_SIZEOF_CHAR;
6140                 break;
6141         case TYPE_SHORT:
6142         case TYPE_USHORT:
6143                 size = REG_SIZEOF_SHORT;
6144                 break;
6145         case TYPE_INT:
6146         case TYPE_UINT:
6147         case TYPE_ENUM:
6148                 size = REG_SIZEOF_INT;
6149                 break;
6150         case TYPE_LONG:
6151         case TYPE_ULONG:
6152                 size = REG_SIZEOF_LONG;
6153                 break;
6154         case TYPE_POINTER:
6155                 size = REG_SIZEOF_POINTER;
6156                 break;
6157         case TYPE_PRODUCT:
6158         {
6159                 size_t pad;
6160                 size = 0;
6161                 while((type->type & TYPE_MASK) == TYPE_PRODUCT) {
6162                         pad = reg_needed_padding(state, type->left, size);
6163                         size = size + pad + reg_size_of(state, type->left);
6164                         type = type->right;
6165                 }
6166                 pad = reg_needed_padding(state, type, size);
6167                 size = size + pad + reg_size_of(state, type);
6168                 break;
6169         }
6170         case TYPE_OVERLAP:
6171         {
6172                 size_t size_left, size_right;
6173                 size_left  = reg_size_of(state, type->left);
6174                 size_right = reg_size_of(state, type->right);
6175                 size = (size_left >= size_right)? size_left : size_right;
6176                 break;
6177         }
6178         case TYPE_ARRAY:
6179                 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
6180                         internal_error(state, 0, "Invalid array type");
6181                 } else {
6182                         size = reg_size_of(state, type->left) * type->elements;
6183                 }
6184                 break;
6185         case TYPE_STRUCT:
6186         case TYPE_TUPLE:
6187         {
6188                 size_t pad;
6189                 size = reg_size_of(state, type->left);
6190                 /* Pad structures so their size is a multiples of their alignment */
6191                 pad = reg_needed_padding(state, type, size);
6192                 size = size + pad;
6193                 break;
6194         }
6195         case TYPE_UNION:
6196         case TYPE_JOIN:
6197         {
6198                 size_t pad;
6199                 size = reg_size_of(state, type->left);
6200                 /* Pad unions so their size is a multiple of their alignment */
6201                 pad = reg_needed_padding(state, type, size);
6202                 size = size + pad;
6203                 break;
6204         }
6205         default:
6206                 internal_error(state, 0, "sizeof not yet defined for type");
6207                 break;
6208         }
6209         return size;
6210 }
6211
6212 static size_t registers_of(struct compile_state *state, struct type *type)
6213 {
6214         size_t registers;
6215         registers = reg_size_of(state, type);
6216         registers += REG_SIZEOF_REG - 1;
6217         registers /= REG_SIZEOF_REG;
6218         return registers;
6219 }
6220
6221 static size_t size_of_in_bytes(struct compile_state *state, struct type *type)
6222 {
6223         return bits_to_bytes(size_of(state, type));
6224 }
6225
6226 static size_t field_offset(struct compile_state *state, 
6227         struct type *type, struct hash_entry *field)
6228 {
6229         struct type *member;
6230         size_t size;
6231
6232         size = 0;
6233         member = 0;
6234         if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
6235                 member = type->left;
6236                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6237                         size += needed_padding(state, member->left, size);
6238                         if (member->left->field_ident == field) {
6239                                 member = member->left;
6240                                 break;
6241                         }
6242                         size += size_of(state, member->left);
6243                         member = member->right;
6244                 }
6245                 size += needed_padding(state, member, size);
6246         }
6247         else if ((type->type & TYPE_MASK) == TYPE_UNION) {
6248                 member = type->left;
6249                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6250                         if (member->left->field_ident == field) {
6251                                 member = member->left;
6252                                 break;
6253                         }
6254                         member = member->right;
6255                 }
6256         }
6257         else {
6258                 internal_error(state, 0, "field_offset only works on structures and unions");
6259         }
6260
6261         if (!member || (member->field_ident != field)) {
6262                 error(state, 0, "member %s not present", field->name);
6263         }
6264         return size;
6265 }
6266
6267 static size_t field_reg_offset(struct compile_state *state, 
6268         struct type *type, struct hash_entry *field)
6269 {
6270         struct type *member;
6271         size_t size;
6272
6273         size = 0;
6274         member = 0;
6275         if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
6276                 member = type->left;
6277                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6278                         size += reg_needed_padding(state, member->left, size);
6279                         if (member->left->field_ident == field) {
6280                                 member = member->left;
6281                                 break;
6282                         }
6283                         size += reg_size_of(state, member->left);
6284                         member = member->right;
6285                 }
6286         }
6287         else if ((type->type & TYPE_MASK) == TYPE_UNION) {
6288                 member = type->left;
6289                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6290                         if (member->left->field_ident == field) {
6291                                 member = member->left;
6292                                 break;
6293                         }
6294                         member = member->right;
6295                 }
6296         }
6297         else {
6298                 internal_error(state, 0, "field_reg_offset only works on structures and unions");
6299         }
6300
6301         size += reg_needed_padding(state, member, size);
6302         if (!member || (member->field_ident != field)) {
6303                 error(state, 0, "member %s not present", field->name);
6304         }
6305         return size;
6306 }
6307
6308 static struct type *field_type(struct compile_state *state, 
6309         struct type *type, struct hash_entry *field)
6310 {
6311         struct type *member;
6312
6313         member = 0;
6314         if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
6315                 member = type->left;
6316                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6317                         if (member->left->field_ident == field) {
6318                                 member = member->left;
6319                                 break;
6320                         }
6321                         member = member->right;
6322                 }
6323         }
6324         else if ((type->type & TYPE_MASK) == TYPE_UNION) {
6325                 member = type->left;
6326                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6327                         if (member->left->field_ident == field) {
6328                                 member = member->left;
6329                                 break;
6330                         }
6331                         member = member->right;
6332                 }
6333         }
6334         else {
6335                 internal_error(state, 0, "field_type only works on structures and unions");
6336         }
6337         
6338         if (!member || (member->field_ident != field)) {
6339                 error(state, 0, "member %s not present", field->name);
6340         }
6341         return member;
6342 }
6343
6344 static size_t index_offset(struct compile_state *state, 
6345         struct type *type, ulong_t index)
6346 {
6347         struct type *member;
6348         size_t size;
6349         size = 0;
6350         if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
6351                 size = size_of(state, type->left) * index;
6352         }
6353         else if ((type->type & TYPE_MASK) == TYPE_TUPLE) {
6354                 ulong_t i;
6355                 member = type->left;
6356                 i = 0;
6357                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6358                         size += needed_padding(state, member->left, size);
6359                         if (i == index) {
6360                                 member = member->left;
6361                                 break;
6362                         }
6363                         size += size_of(state, member->left);
6364                         i++;
6365                         member = member->right;
6366                 }
6367                 size += needed_padding(state, member, size);
6368                 if (i != index) {
6369                         internal_error(state, 0, "Missing member index: %u", index);
6370                 }
6371         }
6372         else if ((type->type & TYPE_MASK) == TYPE_JOIN) {
6373                 ulong_t i;
6374                 size = 0;
6375                 member = type->left;
6376                 i = 0;
6377                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6378                         if (i == index) {
6379                                 member = member->left;
6380                                 break;
6381                         }
6382                         i++;
6383                         member = member->right;
6384                 }
6385                 if (i != index) {
6386                         internal_error(state, 0, "Missing member index: %u", index);
6387                 }
6388         }
6389         else {
6390                 internal_error(state, 0, 
6391                         "request for index %u in something not an array, tuple or join",
6392                         index);
6393         }
6394         return size;
6395 }
6396
6397 static size_t index_reg_offset(struct compile_state *state, 
6398         struct type *type, ulong_t index)
6399 {
6400         struct type *member;
6401         size_t size;
6402         size = 0;
6403         if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
6404                 size = reg_size_of(state, type->left) * index;
6405         }
6406         else if ((type->type & TYPE_MASK) == TYPE_TUPLE) {
6407                 ulong_t i;
6408                 member = type->left;
6409                 i = 0;
6410                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6411                         size += reg_needed_padding(state, member->left, size);
6412                         if (i == index) {
6413                                 member = member->left;
6414                                 break;
6415                         }
6416                         size += reg_size_of(state, member->left);
6417                         i++;
6418                         member = member->right;
6419                 }
6420                 size += reg_needed_padding(state, member, size);
6421                 if (i != index) {
6422                         internal_error(state, 0, "Missing member index: %u", index);
6423                 }
6424                 
6425         }
6426         else if ((type->type & TYPE_MASK) == TYPE_JOIN) {
6427                 ulong_t i;
6428                 size = 0;
6429                 member = type->left;
6430                 i = 0;
6431                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6432                         if (i == index) {
6433                                 member = member->left;
6434                                 break;
6435                         }
6436                         i++;
6437                         member = member->right;
6438                 }
6439                 if (i != index) {
6440                         internal_error(state, 0, "Missing member index: %u", index);
6441                 }
6442         }
6443         else {
6444                 internal_error(state, 0, 
6445                         "request for index %u in something not an array, tuple or join",
6446                         index);
6447         }
6448         return size;
6449 }
6450
6451 static struct type *index_type(struct compile_state *state,
6452         struct type *type, ulong_t index)
6453 {
6454         struct type *member;
6455         if (index >= type->elements) {
6456                 internal_error(state, 0, "Invalid element %u requested", index);
6457         }
6458         if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
6459                 member = type->left;
6460         }
6461         else if ((type->type & TYPE_MASK) == TYPE_TUPLE) {
6462                 ulong_t i;
6463                 member = type->left;
6464                 i = 0;
6465                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6466                         if (i == index) {
6467                                 member = member->left;
6468                                 break;
6469                         }
6470                         i++;
6471                         member = member->right;
6472                 }
6473                 if (i != index) {
6474                         internal_error(state, 0, "Missing member index: %u", index);
6475                 }
6476         }
6477         else if ((type->type & TYPE_MASK) == TYPE_JOIN) {
6478                 ulong_t i;
6479                 member = type->left;
6480                 i = 0;
6481                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6482                         if (i == index) {
6483                                 member = member->left;
6484                                 break;
6485                         }
6486                         i++;
6487                         member = member->right;
6488                 }
6489                 if (i != index) {
6490                         internal_error(state, 0, "Missing member index: %u", index);
6491                 }
6492         }
6493         else {
6494                 member = 0;
6495                 internal_error(state, 0, 
6496                         "request for index %u in something not an array, tuple or join",
6497                         index);
6498         }
6499         return member;
6500 }
6501
6502 static struct type *unpack_type(struct compile_state *state, struct type *type)
6503 {
6504         /* If I have a single register compound type not a bit-field
6505          * find the real type.
6506          */
6507         struct type *start_type;
6508         size_t size;
6509         /* Get out early if I need multiple registers for this type */
6510         size = reg_size_of(state, type);
6511         if (size > REG_SIZEOF_REG) {
6512                 return type;
6513         }
6514         /* Get out early if I don't need any registers for this type */
6515         if (size == 0) {
6516                 return &void_type;
6517         }
6518         /* Loop until I have no more layers I can remove */
6519         do {
6520                 start_type = type;
6521                 switch(type->type & TYPE_MASK) {
6522                 case TYPE_ARRAY:
6523                         /* If I have a single element the unpacked type
6524                          * is that element.
6525                          */
6526                         if (type->elements == 1) {
6527                                 type = type->left;
6528                         }
6529                         break;
6530                 case TYPE_STRUCT:
6531                 case TYPE_TUPLE:
6532                         /* If I have a single element the unpacked type
6533                          * is that element.
6534                          */
6535                         if (type->elements == 1) {
6536                                 type = type->left;
6537                         }
6538                         /* If I have multiple elements the unpacked
6539                          * type is the non-void element.
6540                          */
6541                         else {
6542                                 struct type *next, *member;
6543                                 struct type *sub_type;
6544                                 sub_type = 0;
6545                                 next = type->left;
6546                                 while(next) {
6547                                         member = next;
6548                                         next = 0;
6549                                         if ((member->type & TYPE_MASK) == TYPE_PRODUCT) {
6550                                                 next = member->right;
6551                                                 member = member->left;
6552                                         }
6553                                         if (reg_size_of(state, member) > 0) {
6554                                                 if (sub_type) {
6555                                                         internal_error(state, 0, "true compound type in a register");
6556                                                 }
6557                                                 sub_type = member;
6558                                         }
6559                                 }
6560                                 if (sub_type) {
6561                                         type = sub_type;
6562                                 }
6563                         }
6564                         break;
6565
6566                 case TYPE_UNION:
6567                 case TYPE_JOIN:
6568                         /* If I have a single element the unpacked type
6569                          * is that element.
6570                          */
6571                         if (type->elements == 1) {
6572                                 type = type->left;
6573                         }
6574                         /* I can't in general unpack union types */
6575                         break;
6576                 default:
6577                         /* If I'm not a compound type I can't unpack it */
6578                         break;
6579                 }
6580         } while(start_type != type);
6581         switch(type->type & TYPE_MASK) {
6582         case TYPE_STRUCT:
6583         case TYPE_ARRAY:
6584         case TYPE_TUPLE:
6585                 internal_error(state, 0, "irredicible type?");
6586                 break;
6587         }
6588         return type;
6589 }
6590
6591 static int equiv_types(struct type *left, struct type *right);
6592 static int is_compound_type(struct type *type);
6593
6594 static struct type *reg_type(
6595         struct compile_state *state, struct type *type, int reg_offset)
6596 {
6597         struct type *member;
6598         size_t size;
6599 #if 1
6600         struct type *invalid;
6601         invalid = invalid_type(state, type);
6602         if (invalid) {
6603                 fprintf(state->errout, "type: ");
6604                 name_of(state->errout, type);
6605                 fprintf(state->errout, "\n");
6606                 fprintf(state->errout, "invalid: ");
6607                 name_of(state->errout, invalid);
6608                 fprintf(state->errout, "\n");
6609                 internal_error(state, 0, "bad input type?");
6610         }
6611 #endif
6612
6613         size = reg_size_of(state, type);
6614         if (reg_offset > size) {
6615                 member = 0;
6616                 fprintf(state->errout, "type: ");
6617                 name_of(state->errout, type);
6618                 fprintf(state->errout, "\n");
6619                 internal_error(state, 0, "offset outside of type");
6620         }
6621         else {
6622                 switch(type->type & TYPE_MASK) {
6623                         /* Don't do anything with the basic types */
6624                 case TYPE_VOID:
6625                 case TYPE_CHAR:         case TYPE_UCHAR:
6626                 case TYPE_SHORT:        case TYPE_USHORT:
6627                 case TYPE_INT:          case TYPE_UINT:
6628                 case TYPE_LONG:         case TYPE_ULONG:
6629                 case TYPE_LLONG:        case TYPE_ULLONG:
6630                 case TYPE_FLOAT:        case TYPE_DOUBLE:
6631                 case TYPE_LDOUBLE:
6632                 case TYPE_POINTER:
6633                 case TYPE_ENUM:
6634                 case TYPE_BITFIELD:
6635                         member = type;
6636                         break;
6637                 case TYPE_ARRAY:
6638                         member = type->left;
6639                         size = reg_size_of(state, member);
6640                         if (size > REG_SIZEOF_REG) {
6641                                 member = reg_type(state, member, reg_offset % size);
6642                         }
6643                         break;
6644                 case TYPE_STRUCT:
6645                 case TYPE_TUPLE:
6646                 {
6647                         size_t offset;
6648                         offset = 0;
6649                         member = type->left;
6650                         while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6651                                 size = reg_size_of(state, member->left);
6652                                 offset += reg_needed_padding(state, member->left, offset);
6653                                 if ((offset + size) > reg_offset) {
6654                                         member = member->left;
6655                                         break;
6656                                 }
6657                                 offset += size;
6658                                 member = member->right;
6659                         }
6660                         offset += reg_needed_padding(state, member, offset);
6661                         member = reg_type(state, member, reg_offset - offset);
6662                         break;
6663                 }
6664                 case TYPE_UNION:
6665                 case TYPE_JOIN:
6666                 {
6667                         struct type *join, **jnext, *mnext;
6668                         join = new_type(TYPE_JOIN, 0, 0);
6669                         jnext = &join->left;
6670                         mnext = type->left;
6671                         while(mnext) {
6672                                 size_t size;
6673                                 member = mnext;
6674                                 mnext = 0;
6675                                 if ((member->type & TYPE_MASK) == TYPE_OVERLAP) {
6676                                         mnext = member->right;
6677                                         member = member->left;
6678                                 }
6679                                 size = reg_size_of(state, member);
6680                                 if (size > reg_offset) {
6681                                         struct type *part, *hunt;
6682                                         part = reg_type(state, member, reg_offset);
6683                                         /* See if this type is already in the union */
6684                                         hunt = join->left;
6685                                         while(hunt) {
6686                                                 struct type *test = hunt;
6687                                                 hunt = 0;
6688                                                 if ((test->type & TYPE_MASK) == TYPE_OVERLAP) {
6689                                                         hunt = test->right;
6690                                                         test = test->left;
6691                                                 }
6692                                                 if (equiv_types(part, test)) {
6693                                                         goto next;
6694                                                 }
6695                                         }
6696                                         /* Nope add it */
6697                                         if (!*jnext) {
6698                                                 *jnext = part;
6699                                         } else {
6700                                                 *jnext = new_type(TYPE_OVERLAP, *jnext, part);
6701                                                 jnext = &(*jnext)->right;
6702                                         }
6703                                         join->elements++;
6704                                 }
6705                         next:
6706                                 ;
6707                         }
6708                         if (join->elements == 0) {
6709                                 internal_error(state, 0, "No elements?");
6710                         }
6711                         member = join;
6712                         break;
6713                 }
6714                 default:
6715                         member = 0;
6716                         fprintf(state->errout, "type: ");
6717                         name_of(state->errout, type);
6718                         fprintf(state->errout, "\n");
6719                         internal_error(state, 0, "reg_type not yet defined for type");
6720                         
6721                 }
6722         }
6723         /* If I have a single register compound type not a bit-field
6724          * find the real type.
6725          */
6726         member = unpack_type(state, member);
6727                 ;
6728         size  = reg_size_of(state, member);
6729         if (size > REG_SIZEOF_REG) {
6730                 internal_error(state, 0, "Cannot find type of single register");
6731         }
6732 #if 1
6733         invalid = invalid_type(state, member);
6734         if (invalid) {
6735                 fprintf(state->errout, "type: ");
6736                 name_of(state->errout, member);
6737                 fprintf(state->errout, "\n");
6738                 fprintf(state->errout, "invalid: ");
6739                 name_of(state->errout, invalid);
6740                 fprintf(state->errout, "\n");
6741                 internal_error(state, 0, "returning bad type?");
6742         }
6743 #endif
6744         return member;
6745 }
6746
6747 static struct type *next_field(struct compile_state *state,
6748         struct type *type, struct type *prev_member) 
6749 {
6750         struct type *member;
6751         if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
6752                 internal_error(state, 0, "next_field only works on structures");
6753         }
6754         member = type->left;
6755         while((member->type & TYPE_MASK) == TYPE_PRODUCT) {
6756                 if (!prev_member) {
6757                         member = member->left;
6758                         break;
6759                 }
6760                 if (member->left == prev_member) {
6761                         prev_member = 0;
6762                 }
6763                 member = member->right;
6764         }
6765         if (member == prev_member) {
6766                 prev_member = 0;
6767         }
6768         if (prev_member) {
6769                 internal_error(state, 0, "prev_member %s not present", 
6770                         prev_member->field_ident->name);
6771         }
6772         return member;
6773 }
6774
6775 typedef void (*walk_type_fields_cb_t)(struct compile_state *state, struct type *type, 
6776         size_t ret_offset, size_t mem_offset, void *arg);
6777
6778 static void walk_type_fields(struct compile_state *state,
6779         struct type *type, size_t reg_offset, size_t mem_offset,
6780         walk_type_fields_cb_t cb, void *arg);
6781
6782 static void walk_struct_fields(struct compile_state *state,
6783         struct type *type, size_t reg_offset, size_t mem_offset,
6784         walk_type_fields_cb_t cb, void *arg)
6785 {
6786         struct type *tptr;
6787         ulong_t i;
6788         if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
6789                 internal_error(state, 0, "walk_struct_fields only works on structures");
6790         }
6791         tptr = type->left;
6792         for(i = 0; i < type->elements; i++) {
6793                 struct type *mtype;
6794                 mtype = tptr;
6795                 if ((mtype->type & TYPE_MASK) == TYPE_PRODUCT) {
6796                         mtype = mtype->left;
6797                 }
6798                 walk_type_fields(state, mtype, 
6799                         reg_offset + 
6800                         field_reg_offset(state, type, mtype->field_ident),
6801                         mem_offset + 
6802                         field_offset(state, type, mtype->field_ident),
6803                         cb, arg);
6804                 tptr = tptr->right;
6805         }
6806         
6807 }
6808
6809 static void walk_type_fields(struct compile_state *state,
6810         struct type *type, size_t reg_offset, size_t mem_offset,
6811         walk_type_fields_cb_t cb, void *arg)
6812 {
6813         switch(type->type & TYPE_MASK) {
6814         case TYPE_STRUCT:
6815                 walk_struct_fields(state, type, reg_offset, mem_offset, cb, arg);
6816                 break;
6817         case TYPE_CHAR:
6818         case TYPE_UCHAR:
6819         case TYPE_SHORT:
6820         case TYPE_USHORT:
6821         case TYPE_INT:
6822         case TYPE_UINT:
6823         case TYPE_LONG:
6824         case TYPE_ULONG:
6825                 cb(state, type, reg_offset, mem_offset, arg);
6826                 break;
6827         case TYPE_VOID:
6828                 break;
6829         default:
6830                 internal_error(state, 0, "walk_type_fields not yet implemented for type");
6831         }
6832 }
6833
6834 static void arrays_complete(struct compile_state *state, struct type *type)
6835 {
6836         if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
6837                 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
6838                         error(state, 0, "array size not specified");
6839                 }
6840                 arrays_complete(state, type->left);
6841         }
6842 }
6843
6844 static unsigned int get_basic_type(struct type *type)
6845 {
6846         unsigned int basic;
6847         basic = type->type & TYPE_MASK;
6848         /* Convert enums to ints */
6849         if (basic == TYPE_ENUM) {
6850                 basic = TYPE_INT;
6851         }
6852         /* Convert bitfields to standard types */
6853         else if (basic == TYPE_BITFIELD) {
6854                 if (type->elements <= SIZEOF_CHAR) {
6855                         basic = TYPE_CHAR;
6856                 }
6857                 else if (type->elements <= SIZEOF_SHORT) {
6858                         basic = TYPE_SHORT;
6859                 }
6860                 else if (type->elements <= SIZEOF_INT) {
6861                         basic = TYPE_INT;
6862                 }
6863                 else if (type->elements <= SIZEOF_LONG) {
6864                         basic = TYPE_LONG;
6865                 }
6866                 if (!TYPE_SIGNED(type->left->type)) {
6867                         basic += 1;
6868                 }
6869         }
6870         return basic;
6871 }
6872
6873 static unsigned int do_integral_promotion(unsigned int type)
6874 {
6875         if (TYPE_INTEGER(type) && (TYPE_RANK(type) < TYPE_RANK(TYPE_INT))) {
6876                 type = TYPE_INT;
6877         }
6878         return type;
6879 }
6880
6881 static unsigned int do_arithmetic_conversion(
6882         unsigned int left, unsigned int right)
6883 {
6884         if ((left == TYPE_LDOUBLE) || (right == TYPE_LDOUBLE)) {
6885                 return TYPE_LDOUBLE;
6886         }
6887         else if ((left == TYPE_DOUBLE) || (right == TYPE_DOUBLE)) {
6888                 return TYPE_DOUBLE;
6889         }
6890         else if ((left == TYPE_FLOAT) || (right == TYPE_FLOAT)) {
6891                 return TYPE_FLOAT;
6892         }
6893         left = do_integral_promotion(left);
6894         right = do_integral_promotion(right);
6895         /* If both operands have the same size done */
6896         if (left == right) {
6897                 return left;
6898         }
6899         /* If both operands have the same signedness pick the larger */
6900         else if (!!TYPE_UNSIGNED(left) == !!TYPE_UNSIGNED(right)) {
6901                 return (TYPE_RANK(left) >= TYPE_RANK(right)) ? left : right;
6902         }
6903         /* If the signed type can hold everything use it */
6904         else if (TYPE_SIGNED(left) && (TYPE_RANK(left) > TYPE_RANK(right))) {
6905                 return left;
6906         }
6907         else if (TYPE_SIGNED(right) && (TYPE_RANK(right) > TYPE_RANK(left))) {
6908                 return right;
6909         }
6910         /* Convert to the unsigned type with the same rank as the signed type */
6911         else if (TYPE_SIGNED(left)) {
6912                 return TYPE_MKUNSIGNED(left);
6913         }
6914         else {
6915                 return TYPE_MKUNSIGNED(right);
6916         }
6917 }
6918
6919 /* see if two types are the same except for qualifiers */
6920 static int equiv_types(struct type *left, struct type *right)
6921 {
6922         unsigned int type;
6923         /* Error if the basic types do not match */
6924         if ((left->type & TYPE_MASK) != (right->type & TYPE_MASK)) {
6925                 return 0;
6926         }
6927         type = left->type & TYPE_MASK;
6928         /* If the basic types match and it is a void type we are done */
6929         if (type == TYPE_VOID) {
6930                 return 1;
6931         }
6932         /* For bitfields we need to compare the sizes */
6933         else if (type == TYPE_BITFIELD) {
6934                 return (left->elements == right->elements) &&
6935                         (TYPE_SIGNED(left->left->type) == TYPE_SIGNED(right->left->type));
6936         }
6937         /* if the basic types match and it is an arithmetic type we are done */
6938         else if (TYPE_ARITHMETIC(type)) {
6939                 return 1;
6940         }
6941         /* If it is a pointer type recurse and keep testing */
6942         else if (type == TYPE_POINTER) {
6943                 return equiv_types(left->left, right->left);
6944         }
6945         else if (type == TYPE_ARRAY) {
6946                 return (left->elements == right->elements) &&
6947                         equiv_types(left->left, right->left);
6948         }
6949         /* test for struct equality */
6950         else if (type == TYPE_STRUCT) {
6951                 return left->type_ident == right->type_ident;
6952         }
6953         /* test for union equality */
6954         else if (type == TYPE_UNION) {
6955                 return left->type_ident == right->type_ident;
6956         }
6957         /* Test for equivalent functions */
6958         else if (type == TYPE_FUNCTION) {
6959                 return equiv_types(left->left, right->left) &&
6960                         equiv_types(left->right, right->right);
6961         }
6962         /* We only see TYPE_PRODUCT as part of function equivalence matching */
6963         /* We also see TYPE_PRODUCT as part of of tuple equivalence matchin */
6964         else if (type == TYPE_PRODUCT) {
6965                 return equiv_types(left->left, right->left) &&
6966                         equiv_types(left->right, right->right);
6967         }
6968         /* We should see TYPE_OVERLAP when comparing joins */
6969         else if (type == TYPE_OVERLAP) {
6970                 return equiv_types(left->left, right->left) &&
6971                         equiv_types(left->right, right->right);
6972         }
6973         /* Test for equivalence of tuples */
6974         else if (type == TYPE_TUPLE) {
6975                 return (left->elements == right->elements) &&
6976                         equiv_types(left->left, right->left);
6977         }
6978         /* Test for equivalence of joins */
6979         else if (type == TYPE_JOIN) {
6980                 return (left->elements == right->elements) &&
6981                         equiv_types(left->left, right->left);
6982         }
6983         else {
6984                 return 0;
6985         }
6986 }
6987
6988 static int equiv_ptrs(struct type *left, struct type *right)
6989 {
6990         if (((left->type & TYPE_MASK) != TYPE_POINTER) ||
6991                 ((right->type & TYPE_MASK) != TYPE_POINTER)) {
6992                 return 0;
6993         }
6994         return equiv_types(left->left, right->left);
6995 }
6996
6997 static struct type *compatible_types(struct type *left, struct type *right)
6998 {
6999         struct type *result;
7000         unsigned int type, qual_type;
7001         /* Error if the basic types do not match */
7002         if ((left->type & TYPE_MASK) != (right->type & TYPE_MASK)) {
7003                 return 0;
7004         }
7005         type = left->type & TYPE_MASK;
7006         qual_type = (left->type & ~STOR_MASK) | (right->type & ~STOR_MASK);
7007         result = 0;
7008         /* if the basic types match and it is an arithmetic type we are done */
7009         if (TYPE_ARITHMETIC(type)) {
7010                 result = new_type(qual_type, 0, 0);
7011         }
7012         /* If it is a pointer type recurse and keep testing */
7013         else if (type == TYPE_POINTER) {
7014                 result = compatible_types(left->left, right->left);
7015                 if (result) {
7016                         result = new_type(qual_type, result, 0);
7017                 }
7018         }
7019         /* test for struct equality */
7020         else if (type == TYPE_STRUCT) {
7021                 if (left->type_ident == right->type_ident) {
7022                         result = left;
7023                 }
7024         }
7025         /* test for union equality */
7026         else if (type == TYPE_UNION) {
7027                 if (left->type_ident == right->type_ident) {
7028                         result = left;
7029                 }
7030         }
7031         /* Test for equivalent functions */
7032         else if (type == TYPE_FUNCTION) {
7033                 struct type *lf, *rf;
7034                 lf = compatible_types(left->left, right->left);
7035                 rf = compatible_types(left->right, right->right);
7036                 if (lf && rf) {
7037                         result = new_type(qual_type, lf, rf);
7038                 }
7039         }
7040         /* We only see TYPE_PRODUCT as part of function equivalence matching */
7041         else if (type == TYPE_PRODUCT) {
7042                 struct type *lf, *rf;
7043                 lf = compatible_types(left->left, right->left);
7044                 rf = compatible_types(left->right, right->right);
7045                 if (lf && rf) {
7046                         result = new_type(qual_type, lf, rf);
7047                 }
7048         }
7049         else {
7050                 /* Nothing else is compatible */
7051         }
7052         return result;
7053 }
7054
7055 /* See if left is a equivalent to right or right is a union member of left */
7056 static int is_subset_type(struct type *left, struct type *right)
7057 {
7058         if (equiv_types(left, right)) {
7059                 return 1;
7060         }
7061         if ((left->type & TYPE_MASK) == TYPE_JOIN) {
7062                 struct type *member, *mnext;
7063                 mnext = left->left;
7064                 while(mnext) {
7065                         member = mnext;
7066                         mnext = 0;
7067                         if ((member->type & TYPE_MASK) == TYPE_OVERLAP) {
7068                                 mnext = member->right;
7069                                 member = member->left;
7070                         }
7071                         if (is_subset_type( member, right)) {
7072                                 return 1;
7073                         }
7074                 }
7075         }
7076         return 0;
7077 }
7078
7079 static struct type *compatible_ptrs(struct type *left, struct type *right)
7080 {
7081         struct type *result;
7082         if (((left->type & TYPE_MASK) != TYPE_POINTER) ||
7083                 ((right->type & TYPE_MASK) != TYPE_POINTER)) {
7084                 return 0;
7085         }
7086         result = compatible_types(left->left, right->left);
7087         if (result) {
7088                 unsigned int qual_type;
7089                 qual_type = (left->type & ~STOR_MASK) | (right->type & ~STOR_MASK);
7090                 result = new_type(qual_type, result, 0);
7091         }
7092         return result;
7093         
7094 }
7095 static struct triple *integral_promotion(
7096         struct compile_state *state, struct triple *def)
7097 {
7098         struct type *type;
7099         type = def->type;
7100         /* As all operations are carried out in registers
7101          * the values are converted on load I just convert
7102          * logical type of the operand.
7103          */
7104         if (TYPE_INTEGER(type->type)) {
7105                 unsigned int int_type;
7106                 int_type = type->type & ~TYPE_MASK;
7107                 int_type |= do_integral_promotion(get_basic_type(type));
7108                 if (int_type != type->type) {
7109                         if (def->op != OP_LOAD) {
7110                                 def->type = new_type(int_type, 0, 0);
7111                         }
7112                         else {
7113                                 def = triple(state, OP_CONVERT, 
7114                                         new_type(int_type, 0, 0), def, 0);
7115                         }
7116                 }
7117         }
7118         return def;
7119 }
7120
7121
7122 static void arithmetic(struct compile_state *state, struct triple *def)
7123 {
7124         if (!TYPE_ARITHMETIC(def->type->type)) {
7125                 error(state, 0, "arithmetic type expexted");
7126         }
7127 }
7128
7129 static void ptr_arithmetic(struct compile_state *state, struct triple *def)
7130 {
7131         if (!TYPE_PTR(def->type->type) && !TYPE_ARITHMETIC(def->type->type)) {
7132                 error(state, def, "pointer or arithmetic type expected");
7133         }
7134 }
7135
7136 static int is_integral(struct triple *ins)
7137 {
7138         return TYPE_INTEGER(ins->type->type);
7139 }
7140
7141 static void integral(struct compile_state *state, struct triple *def)
7142 {
7143         if (!is_integral(def)) {
7144                 error(state, 0, "integral type expected");
7145         }
7146 }
7147
7148
7149 static void bool(struct compile_state *state, struct triple *def)
7150 {
7151         if (!TYPE_ARITHMETIC(def->type->type) &&
7152                 ((def->type->type & TYPE_MASK) != TYPE_POINTER)) {
7153                 error(state, 0, "arithmetic or pointer type expected");
7154         }
7155 }
7156
7157 static int is_signed(struct type *type)
7158 {
7159         if ((type->type & TYPE_MASK) == TYPE_BITFIELD) {
7160                 type = type->left;
7161         }
7162         return !!TYPE_SIGNED(type->type);
7163 }
7164 static int is_compound_type(struct type *type)
7165 {
7166         int is_compound;
7167         switch((type->type & TYPE_MASK)) {
7168         case TYPE_ARRAY:
7169         case TYPE_STRUCT:
7170         case TYPE_TUPLE:
7171         case TYPE_UNION:
7172         case TYPE_JOIN: 
7173                 is_compound = 1;
7174                 break;
7175         default:
7176                 is_compound = 0;
7177                 break;
7178         }
7179         return is_compound;
7180 }
7181
7182 /* Is this value located in a register otherwise it must be in memory */
7183 static int is_in_reg(struct compile_state *state, struct triple *def)
7184 {
7185         int in_reg;
7186         if (def->op == OP_ADECL) {
7187                 in_reg = 1;
7188         }
7189         else if ((def->op == OP_SDECL) || (def->op == OP_DEREF)) {
7190                 in_reg = 0;
7191         }
7192         else if (triple_is_part(state, def)) {
7193                 in_reg = is_in_reg(state, MISC(def, 0));
7194         }
7195         else {
7196                 internal_error(state, def, "unknown expr storage location");
7197                 in_reg = -1;
7198         }
7199         return in_reg;
7200 }
7201
7202 /* Is this an auto or static variable location? Something that can
7203  * be assigned to.  Otherwise it must must be a pure value, a temporary.
7204  */
7205 static int is_lvalue(struct compile_state *state, struct triple *def)
7206 {
7207         int ret;
7208         ret = 0;
7209         if (!def) {
7210                 return 0;
7211         }
7212         if ((def->op == OP_ADECL) || 
7213                 (def->op == OP_SDECL) || 
7214                 (def->op == OP_DEREF) ||
7215                 (def->op == OP_BLOBCONST) ||
7216                 (def->op == OP_LIST)) {
7217                 ret = 1;
7218         }
7219         else if (triple_is_part(state, def)) {
7220                 ret = is_lvalue(state, MISC(def, 0));
7221         }
7222         return ret;
7223 }
7224
7225 static void clvalue(struct compile_state *state, struct triple *def)
7226 {
7227         if (!def) {
7228                 internal_error(state, def, "nothing where lvalue expected?");
7229         }
7230         if (!is_lvalue(state, def)) { 
7231                 error(state, def, "lvalue expected");
7232         }
7233 }
7234 static void lvalue(struct compile_state *state, struct triple *def)
7235 {
7236         clvalue(state, def);
7237         if (def->type->type & QUAL_CONST) {
7238                 error(state, def, "modifable lvalue expected");
7239         }
7240 }
7241
7242 static int is_pointer(struct triple *def)
7243 {
7244         return (def->type->type & TYPE_MASK) == TYPE_POINTER;
7245 }
7246
7247 static void pointer(struct compile_state *state, struct triple *def)
7248 {
7249         if (!is_pointer(def)) {
7250                 error(state, def, "pointer expected");
7251         }
7252 }
7253
7254 static struct triple *int_const(
7255         struct compile_state *state, struct type *type, ulong_t value)
7256 {
7257         struct triple *result;
7258         switch(type->type & TYPE_MASK) {
7259         case TYPE_CHAR:
7260         case TYPE_INT:   case TYPE_UINT:
7261         case TYPE_LONG:  case TYPE_ULONG:
7262                 break;
7263         default:
7264                 internal_error(state, 0, "constant for unknown type");
7265         }
7266         result = triple(state, OP_INTCONST, type, 0, 0);
7267         result->u.cval = value;
7268         return result;
7269 }
7270
7271
7272 static struct triple *read_expr(struct compile_state *state, struct triple *def);
7273
7274 static struct triple *do_mk_addr_expr(struct compile_state *state, 
7275         struct triple *expr, struct type *type, ulong_t offset)
7276 {
7277         struct triple *result;
7278         struct type *ptr_type;
7279         clvalue(state, expr);
7280
7281         ptr_type = new_type(TYPE_POINTER | (type->type & QUAL_MASK), type, 0);
7282
7283         
7284         result = 0;
7285         if (expr->op == OP_ADECL) {
7286                 error(state, expr, "address of auto variables not supported");
7287         }
7288         else if (expr->op == OP_SDECL) {
7289                 result = triple(state, OP_ADDRCONST, ptr_type, 0, 0);
7290                 MISC(result, 0) = expr;
7291                 result->u.cval = offset;
7292         }
7293         else if (expr->op == OP_DEREF) {
7294                 result = triple(state, OP_ADD, ptr_type,
7295                         RHS(expr, 0),
7296                         int_const(state, &ulong_type, offset));
7297         }
7298         else if (expr->op == OP_BLOBCONST) {
7299                 FINISHME();
7300                 internal_error(state, expr, "not yet implemented");
7301         }
7302         else if (expr->op == OP_LIST) {
7303                 error(state, 0, "Function addresses not supported");
7304         }
7305         else if (triple_is_part(state, expr)) {
7306                 struct triple *part;
7307                 part = expr;
7308                 expr = MISC(expr, 0);
7309                 if (part->op == OP_DOT) {
7310                         offset += bits_to_bytes(
7311                                 field_offset(state, expr->type, part->u.field));
7312                 }
7313                 else if (part->op == OP_INDEX) {
7314                         offset += bits_to_bytes(
7315                                 index_offset(state, expr->type, part->u.cval));
7316                 }
7317                 else {
7318                         internal_error(state, part, "unhandled part type");
7319                 }
7320                 result = do_mk_addr_expr(state, expr, type, offset);
7321         }
7322         if (!result) {
7323                 internal_error(state, expr, "cannot take address of expression");
7324         }
7325         return result;
7326 }
7327
7328 static struct triple *mk_addr_expr(
7329         struct compile_state *state, struct triple *expr, ulong_t offset)
7330 {
7331         return do_mk_addr_expr(state, expr, expr->type, offset);
7332 }
7333
7334 static struct triple *mk_deref_expr(
7335         struct compile_state *state, struct triple *expr)
7336 {
7337         struct type *base_type;
7338         pointer(state, expr);
7339         base_type = expr->type->left;
7340         return triple(state, OP_DEREF, base_type, expr, 0);
7341 }
7342
7343 /* lvalue conversions always apply except when certain operators
7344  * are applied.  So I apply apply it when I know no more
7345  * operators will be applied.
7346  */
7347 static struct triple *lvalue_conversion(struct compile_state *state, struct triple *def)
7348 {
7349         /* Tranform an array to a pointer to the first element */
7350         if ((def->type->type & TYPE_MASK) == TYPE_ARRAY) {
7351                 struct type *type;
7352                 type = new_type(
7353                         TYPE_POINTER | (def->type->type & QUAL_MASK),
7354                         def->type->left, 0);
7355                 if ((def->op == OP_SDECL) || IS_CONST_OP(def->op)) {
7356                         struct triple *addrconst;
7357                         if ((def->op != OP_SDECL) && (def->op != OP_BLOBCONST)) {
7358                                 internal_error(state, def, "bad array constant");
7359                         }
7360                         addrconst = triple(state, OP_ADDRCONST, type, 0, 0);
7361                         MISC(addrconst, 0) = def;
7362                         def = addrconst;
7363                 }
7364                 else {
7365                         def = triple(state, OP_CONVERT, type, def, 0);
7366                 }
7367         }
7368         /* Transform a function to a pointer to it */
7369         else if ((def->type->type & TYPE_MASK) == TYPE_FUNCTION) {
7370                 def = mk_addr_expr(state, def, 0);
7371         }
7372         return def;
7373 }
7374
7375 static struct triple *deref_field(
7376         struct compile_state *state, struct triple *expr, struct hash_entry *field)
7377 {
7378         struct triple *result;
7379         struct type *type, *member;
7380         ulong_t offset;
7381         if (!field) {
7382                 internal_error(state, 0, "No field passed to deref_field");
7383         }
7384         result = 0;
7385         type = expr->type;
7386         if (((type->type & TYPE_MASK) != TYPE_STRUCT) &&
7387                 ((type->type & TYPE_MASK) != TYPE_UNION)) {
7388                 error(state, 0, "request for member %s in something not a struct or union",
7389                         field->name);
7390         }
7391         member = field_type(state, type, field);
7392         if ((type->type & STOR_MASK) == STOR_PERM) {
7393                 /* Do the pointer arithmetic to get a deref the field */
7394                 offset = bits_to_bytes(field_offset(state, type, field));
7395                 result = do_mk_addr_expr(state, expr, member, offset);
7396                 result = mk_deref_expr(state, result);
7397         }
7398         else {
7399                 /* Find the variable for the field I want. */
7400                 result = triple(state, OP_DOT, member, expr, 0);
7401                 result->u.field = field;
7402         }
7403         return result;
7404 }
7405
7406 static struct triple *deref_index(
7407         struct compile_state *state, struct triple *expr, size_t index)
7408 {
7409         struct triple *result;
7410         struct type *type, *member;
7411         ulong_t offset;
7412
7413         result = 0;
7414         type = expr->type;
7415         member = index_type(state, type, index);
7416
7417         if ((type->type & STOR_MASK) == STOR_PERM) {
7418                 offset = bits_to_bytes(index_offset(state, type, index));
7419                 result = do_mk_addr_expr(state, expr, member, offset);
7420                 result = mk_deref_expr(state, result);
7421         }
7422         else {
7423                 result = triple(state, OP_INDEX, member, expr, 0);
7424                 result->u.cval = index;
7425         }
7426         return result;
7427 }
7428
7429 static struct triple *read_expr(struct compile_state *state, struct triple *def)
7430 {
7431         int op;
7432         if  (!def) {
7433                 return 0;
7434         }
7435 #if DEBUG_ROMCC_WARNINGS
7436 #warning "CHECK_ME is this the only place I need to do lvalue conversions?"
7437 #endif
7438         /* Transform lvalues into something we can read */
7439         def = lvalue_conversion(state, def);
7440         if (!is_lvalue(state, def)) {
7441                 return def;
7442         }
7443         if (is_in_reg(state, def)) {
7444                 op = OP_READ;
7445         } else {
7446                 if (def->op == OP_SDECL) {
7447                         def = mk_addr_expr(state, def, 0);
7448                         def = mk_deref_expr(state, def);
7449                 }
7450                 op = OP_LOAD;
7451         }
7452         def = triple(state, op, def->type, def, 0);
7453         if (def->type->type & QUAL_VOLATILE) {
7454                 def->id |= TRIPLE_FLAG_VOLATILE;
7455         }
7456         return def;
7457 }
7458
7459 int is_write_compatible(struct compile_state *state, 
7460         struct type *dest, struct type *rval)
7461 {
7462         int compatible = 0;
7463         /* Both operands have arithmetic type */
7464         if (TYPE_ARITHMETIC(dest->type) && TYPE_ARITHMETIC(rval->type)) {
7465                 compatible = 1;
7466         }
7467         /* One operand is a pointer and the other is a pointer to void */
7468         else if (((dest->type & TYPE_MASK) == TYPE_POINTER) &&
7469                 ((rval->type & TYPE_MASK) == TYPE_POINTER) &&
7470                 (((dest->left->type & TYPE_MASK) == TYPE_VOID) ||
7471                         ((rval->left->type & TYPE_MASK) == TYPE_VOID))) {
7472                 compatible = 1;
7473         }
7474         /* If both types are the same without qualifiers we are good */
7475         else if (equiv_ptrs(dest, rval)) {
7476                 compatible = 1;
7477         }
7478         /* test for struct/union equality  */
7479         else if (equiv_types(dest, rval)) {
7480                 compatible = 1;
7481         }
7482         return compatible;
7483 }
7484
7485 static void write_compatible(struct compile_state *state,
7486         struct type *dest, struct type *rval)
7487 {
7488         if (!is_write_compatible(state, dest, rval)) {
7489                 FILE *fp = state->errout;
7490                 fprintf(fp, "dest: ");
7491                 name_of(fp, dest);
7492                 fprintf(fp,"\nrval: ");
7493                 name_of(fp, rval);
7494                 fprintf(fp, "\n");
7495                 error(state, 0, "Incompatible types in assignment");
7496         }
7497 }
7498
7499 static int is_init_compatible(struct compile_state *state,
7500         struct type *dest, struct type *rval)
7501 {
7502         int compatible = 0;
7503         if (is_write_compatible(state, dest, rval)) {
7504                 compatible = 1;
7505         }
7506         else if (equiv_types(dest, rval)) {
7507                 compatible = 1;
7508         }
7509         return compatible;
7510 }
7511
7512 static struct triple *write_expr(
7513         struct compile_state *state, struct triple *dest, struct triple *rval)
7514 {
7515         struct triple *def;
7516         int op;
7517
7518         def = 0;
7519         if (!rval) {
7520                 internal_error(state, 0, "missing rval");
7521         }
7522
7523         if (rval->op == OP_LIST) {
7524                 internal_error(state, 0, "expression of type OP_LIST?");
7525         }
7526         if (!is_lvalue(state, dest)) {
7527                 internal_error(state, 0, "writing to a non lvalue?");
7528         }
7529         if (dest->type->type & QUAL_CONST) {
7530                 internal_error(state, 0, "modifable lvalue expexted");
7531         }
7532
7533         write_compatible(state, dest->type, rval->type);
7534         if (!equiv_types(dest->type, rval->type)) {
7535                 rval = triple(state, OP_CONVERT, dest->type, rval, 0);
7536         }
7537
7538         /* Now figure out which assignment operator to use */
7539         op = -1;
7540         if (is_in_reg(state, dest)) {
7541                 def = triple(state, OP_WRITE, dest->type, rval, dest);
7542                 if (MISC(def, 0) != dest) {
7543                         internal_error(state, def, "huh?");
7544                 }
7545                 if (RHS(def, 0) != rval) {
7546                         internal_error(state, def, "huh?");
7547                 }
7548         } else {
7549                 def = triple(state, OP_STORE, dest->type, dest, rval);
7550         }
7551         if (def->type->type & QUAL_VOLATILE) {
7552                 def->id |= TRIPLE_FLAG_VOLATILE;
7553         }
7554         return def;
7555 }
7556
7557 static struct triple *init_expr(
7558         struct compile_state *state, struct triple *dest, struct triple *rval)
7559 {
7560         struct triple *def;
7561
7562         def = 0;
7563         if (!rval) {
7564                 internal_error(state, 0, "missing rval");
7565         }
7566         if ((dest->type->type & STOR_MASK) != STOR_PERM) {
7567                 rval = read_expr(state, rval);
7568                 def = write_expr(state, dest, rval);
7569         }
7570         else {
7571                 /* Fill in the array size if necessary */
7572                 if (((dest->type->type & TYPE_MASK) == TYPE_ARRAY) &&
7573                         ((rval->type->type & TYPE_MASK) == TYPE_ARRAY)) {
7574                         if (dest->type->elements == ELEMENT_COUNT_UNSPECIFIED) {
7575                                 dest->type->elements = rval->type->elements;
7576                         }
7577                 }
7578                 if (!equiv_types(dest->type, rval->type)) {
7579                         error(state, 0, "Incompatible types in inializer");
7580                 }
7581                 MISC(dest, 0) = rval;
7582                 insert_triple(state, dest, rval);
7583                 rval->id |= TRIPLE_FLAG_FLATTENED;
7584                 use_triple(MISC(dest, 0), dest);
7585         }
7586         return def;
7587 }
7588
7589 struct type *arithmetic_result(
7590         struct compile_state *state, struct triple *left, struct triple *right)
7591 {
7592         struct type *type;
7593         /* Sanity checks to ensure I am working with arithmetic types */
7594         arithmetic(state, left);
7595         arithmetic(state, right);
7596         type = new_type(
7597                 do_arithmetic_conversion(
7598                         get_basic_type(left->type),
7599                         get_basic_type(right->type)),
7600                 0, 0);
7601         return type;
7602 }
7603
7604 struct type *ptr_arithmetic_result(
7605         struct compile_state *state, struct triple *left, struct triple *right)
7606 {
7607         struct type *type;
7608         /* Sanity checks to ensure I am working with the proper types */
7609         ptr_arithmetic(state, left);
7610         arithmetic(state, right);
7611         if (TYPE_ARITHMETIC(left->type->type) && 
7612                 TYPE_ARITHMETIC(right->type->type)) {
7613                 type = arithmetic_result(state, left, right);
7614         }
7615         else if (TYPE_PTR(left->type->type)) {
7616                 type = left->type;
7617         }
7618         else {
7619                 internal_error(state, 0, "huh?");
7620                 type = 0;
7621         }
7622         return type;
7623 }
7624
7625 /* boolean helper function */
7626
7627 static struct triple *ltrue_expr(struct compile_state *state, 
7628         struct triple *expr)
7629 {
7630         switch(expr->op) {
7631         case OP_LTRUE:   case OP_LFALSE:  case OP_EQ:      case OP_NOTEQ:
7632         case OP_SLESS:   case OP_ULESS:   case OP_SMORE:   case OP_UMORE:
7633         case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
7634                 /* If the expression is already boolean do nothing */
7635                 break;
7636         default:
7637                 expr = triple(state, OP_LTRUE, &int_type, expr, 0);
7638                 break;
7639         }
7640         return expr;
7641 }
7642
7643 static struct triple *lfalse_expr(struct compile_state *state, 
7644         struct triple *expr)
7645 {
7646         return triple(state, OP_LFALSE, &int_type, expr, 0);
7647 }
7648
7649 static struct triple *mkland_expr(
7650         struct compile_state *state,
7651         struct triple *left, struct triple *right)
7652 {
7653         struct triple *def, *val, *var, *jmp, *mid, *end;
7654         struct triple *lstore, *rstore;
7655
7656         /* Generate some intermediate triples */
7657         end = label(state);
7658         var = variable(state, &int_type);
7659         
7660         /* Store the left hand side value */
7661         lstore = write_expr(state, var, left);
7662
7663         /* Jump if the value is false */
7664         jmp =  branch(state, end, 
7665                 lfalse_expr(state, read_expr(state, var)));
7666         mid = label(state);
7667         
7668         /* Store the right hand side value */
7669         rstore = write_expr(state, var, right);
7670
7671         /* An expression for the computed value */
7672         val = read_expr(state, var);
7673
7674         /* Generate the prog for a logical and */
7675         def = mkprog(state, var, lstore, jmp, mid, rstore, end, val, 0UL);
7676         
7677         return def;
7678 }
7679
7680 static struct triple *mklor_expr(
7681         struct compile_state *state,
7682         struct triple *left, struct triple *right)
7683 {
7684         struct triple *def, *val, *var, *jmp, *mid, *end;
7685
7686         /* Generate some intermediate triples */
7687         end = label(state);
7688         var = variable(state, &int_type);
7689         
7690         /* Store the left hand side value */
7691         left = write_expr(state, var, left);
7692         
7693         /* Jump if the value is true */
7694         jmp = branch(state, end, read_expr(state, var));
7695         mid = label(state);
7696         
7697         /* Store the right hand side value */
7698         right = write_expr(state, var, right);
7699                 
7700         /* An expression for the computed value*/
7701         val = read_expr(state, var);
7702
7703         /* Generate the prog for a logical or */
7704         def = mkprog(state, var, left, jmp, mid, right, end, val, 0UL);
7705
7706         return def;
7707 }
7708
7709 static struct triple *mkcond_expr(
7710         struct compile_state *state, 
7711         struct triple *test, struct triple *left, struct triple *right)
7712 {
7713         struct triple *def, *val, *var, *jmp1, *jmp2, *top, *mid, *end;
7714         struct type *result_type;
7715         unsigned int left_type, right_type;
7716         bool(state, test);
7717         left_type = left->type->type;
7718         right_type = right->type->type;
7719         result_type = 0;
7720         /* Both operands have arithmetic type */
7721         if (TYPE_ARITHMETIC(left_type) && TYPE_ARITHMETIC(right_type)) {
7722                 result_type = arithmetic_result(state, left, right);
7723         }
7724         /* Both operands have void type */
7725         else if (((left_type & TYPE_MASK) == TYPE_VOID) &&
7726                 ((right_type & TYPE_MASK) == TYPE_VOID)) {
7727                 result_type = &void_type;
7728         }
7729         /* pointers to the same type... */
7730         else if ((result_type = compatible_ptrs(left->type, right->type))) {
7731                 ;
7732         }
7733         /* Both operands are pointers and left is a pointer to void */
7734         else if (((left_type & TYPE_MASK) == TYPE_POINTER) &&
7735                 ((right_type & TYPE_MASK) == TYPE_POINTER) &&
7736                 ((left->type->left->type & TYPE_MASK) == TYPE_VOID)) {
7737                 result_type = right->type;
7738         }
7739         /* Both operands are pointers and right is a pointer to void */
7740         else if (((left_type & TYPE_MASK) == TYPE_POINTER) &&
7741                 ((right_type & TYPE_MASK) == TYPE_POINTER) &&
7742                 ((right->type->left->type & TYPE_MASK) == TYPE_VOID)) {
7743                 result_type = left->type;
7744         }
7745         if (!result_type) {
7746                 error(state, 0, "Incompatible types in conditional expression");
7747         }
7748         /* Generate some intermediate triples */
7749         mid = label(state);
7750         end = label(state);
7751         var = variable(state, result_type);
7752
7753         /* Branch if the test is false */
7754         jmp1 = branch(state, mid, lfalse_expr(state, read_expr(state, test)));
7755         top = label(state);
7756
7757         /* Store the left hand side value */
7758         left = write_expr(state, var, left);
7759
7760         /* Branch to the end */
7761         jmp2 = branch(state, end, 0);
7762
7763         /* Store the right hand side value */
7764         right = write_expr(state, var, right);
7765         
7766         /* An expression for the computed value */
7767         val = read_expr(state, var);
7768
7769         /* Generate the prog for a conditional expression */
7770         def = mkprog(state, var, jmp1, top, left, jmp2, mid, right, end, val, 0UL);
7771
7772         return def;
7773 }
7774
7775
7776 static int expr_depth(struct compile_state *state, struct triple *ins)
7777 {
7778 #if DEBUG_ROMCC_WARNINGS
7779 #warning "FIXME move optimal ordering of subexpressions into the optimizer"
7780 #endif
7781         int count;
7782         count = 0;
7783         if (!ins || (ins->id & TRIPLE_FLAG_FLATTENED)) {
7784                 count = 0;
7785         }
7786         else if (ins->op == OP_DEREF) {
7787                 count = expr_depth(state, RHS(ins, 0)) - 1;
7788         }
7789         else if (ins->op == OP_VAL) {
7790                 count = expr_depth(state, RHS(ins, 0)) - 1;
7791         }
7792         else if (ins->op == OP_FCALL) {
7793                 /* Don't figure the depth of a call just guess it is huge */
7794                 count = 1000;
7795         }
7796         else {
7797                 struct triple **expr;
7798                 expr = triple_rhs(state, ins, 0);
7799                 for(;expr; expr = triple_rhs(state, ins, expr)) {
7800                         if (*expr) {
7801                                 int depth;
7802                                 depth = expr_depth(state, *expr);
7803                                 if (depth > count) {
7804                                         count = depth;
7805                                 }
7806                         }
7807                 }
7808         }
7809         return count + 1;
7810 }
7811
7812 static struct triple *flatten_generic(
7813         struct compile_state *state, struct triple *first, struct triple *ptr,
7814         int ignored)
7815 {
7816         struct rhs_vector {
7817                 int depth;
7818                 struct triple **ins;
7819         } vector[MAX_RHS];
7820         int i, rhs, lhs;
7821         /* Only operations with just a rhs and a lhs should come here */
7822         rhs = ptr->rhs;
7823         lhs = ptr->lhs;
7824         if (TRIPLE_SIZE(ptr) != lhs + rhs + ignored) {
7825                 internal_error(state, ptr, "unexpected args for: %d %s",
7826                         ptr->op, tops(ptr->op));
7827         }
7828         /* Find the depth of the rhs elements */
7829         for(i = 0; i < rhs; i++) {
7830                 vector[i].ins = &RHS(ptr, i);
7831                 vector[i].depth = expr_depth(state, *vector[i].ins);
7832         }
7833         /* Selection sort the rhs */
7834         for(i = 0; i < rhs; i++) {
7835                 int j, max = i;
7836                 for(j = i + 1; j < rhs; j++ ) {
7837                         if (vector[j].depth > vector[max].depth) {
7838                                 max = j;
7839                         }
7840                 }
7841                 if (max != i) {
7842                         struct rhs_vector tmp;
7843                         tmp = vector[i];
7844                         vector[i] = vector[max];
7845                         vector[max] = tmp;
7846                 }
7847         }
7848         /* Now flatten the rhs elements */
7849         for(i = 0; i < rhs; i++) {
7850                 *vector[i].ins = flatten(state, first, *vector[i].ins);
7851                 use_triple(*vector[i].ins, ptr);
7852         }
7853         if (lhs) {
7854                 insert_triple(state, first, ptr);
7855                 ptr->id |= TRIPLE_FLAG_FLATTENED;
7856                 ptr->id &= ~TRIPLE_FLAG_LOCAL;
7857                 
7858                 /* Now flatten the lhs elements */
7859                 for(i = 0; i < lhs; i++) {
7860                         struct triple **ins = &LHS(ptr, i);
7861                         *ins = flatten(state, first, *ins);
7862                         use_triple(*ins, ptr);
7863                 }
7864         }
7865         return ptr;
7866 }
7867
7868 static struct triple *flatten_prog(
7869         struct compile_state *state, struct triple *first, struct triple *ptr)
7870 {
7871         struct triple *head, *body, *val;
7872         head = RHS(ptr, 0);
7873         RHS(ptr, 0) = 0;
7874         val  = head->prev;
7875         body = head->next;
7876         release_triple(state, head);
7877         release_triple(state, ptr);
7878         val->next        = first;
7879         body->prev       = first->prev;
7880         body->prev->next = body;
7881         val->next->prev  = val;
7882
7883         if (triple_is_cbranch(state, body->prev) ||
7884                 triple_is_call(state, body->prev)) {
7885                 unuse_triple(first, body->prev);
7886                 use_triple(body, body->prev);
7887         }
7888         
7889         if (!(val->id & TRIPLE_FLAG_FLATTENED)) {
7890                 internal_error(state, val, "val not flattened?");
7891         }
7892
7893         return val;
7894 }
7895
7896
7897 static struct triple *flatten_part(
7898         struct compile_state *state, struct triple *first, struct triple *ptr)
7899 {
7900         if (!triple_is_part(state, ptr)) {
7901                 internal_error(state, ptr,  "not a part");
7902         }
7903         if (ptr->rhs || ptr->lhs || ptr->targ || (ptr->misc != 1)) {
7904                 internal_error(state, ptr, "unexpected args for: %d %s",
7905                         ptr->op, tops(ptr->op));
7906         }
7907         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
7908         use_triple(MISC(ptr, 0), ptr);
7909         return flatten_generic(state, first, ptr, 1);
7910 }
7911
7912 static struct triple *flatten(
7913         struct compile_state *state, struct triple *first, struct triple *ptr)
7914 {
7915         struct triple *orig_ptr;
7916         if (!ptr)
7917                 return 0;
7918         do {
7919                 orig_ptr = ptr;
7920                 /* Only flatten triples once */
7921                 if (ptr->id & TRIPLE_FLAG_FLATTENED) {
7922                         return ptr;
7923                 }
7924                 switch(ptr->op) {
7925                 case OP_VAL:
7926                         RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
7927                         return MISC(ptr, 0);
7928                         break;
7929                 case OP_PROG:
7930                         ptr = flatten_prog(state, first, ptr);
7931                         break;
7932                 case OP_FCALL:
7933                         ptr = flatten_generic(state, first, ptr, 1);
7934                         insert_triple(state, first, ptr);
7935                         ptr->id |= TRIPLE_FLAG_FLATTENED;
7936                         ptr->id &= ~TRIPLE_FLAG_LOCAL;
7937                         if (ptr->next != ptr) {
7938                                 use_triple(ptr->next, ptr);
7939                         }
7940                         break;
7941                 case OP_READ:
7942                 case OP_LOAD:
7943                         RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
7944                         use_triple(RHS(ptr, 0), ptr);
7945                         break;
7946                 case OP_WRITE:
7947                         ptr = flatten_generic(state, first, ptr, 1);
7948                         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
7949                         use_triple(MISC(ptr, 0), ptr);
7950                         break;
7951                 case OP_BRANCH:
7952                         use_triple(TARG(ptr, 0), ptr);
7953                         break;
7954                 case OP_CBRANCH:
7955                         RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
7956                         use_triple(RHS(ptr, 0), ptr);
7957                         use_triple(TARG(ptr, 0), ptr);
7958                         insert_triple(state, first, ptr);
7959                         ptr->id |= TRIPLE_FLAG_FLATTENED;
7960                         ptr->id &= ~TRIPLE_FLAG_LOCAL;
7961                         if (ptr->next != ptr) {
7962                                 use_triple(ptr->next, ptr);
7963                         }
7964                         break;
7965                 case OP_CALL:
7966                         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
7967                         use_triple(MISC(ptr, 0), ptr);
7968                         use_triple(TARG(ptr, 0), ptr);
7969                         insert_triple(state, first, ptr);
7970                         ptr->id |= TRIPLE_FLAG_FLATTENED;
7971                         ptr->id &= ~TRIPLE_FLAG_LOCAL;
7972                         if (ptr->next != ptr) {
7973                                 use_triple(ptr->next, ptr);
7974                         }
7975                         break;
7976                 case OP_RET:
7977                         RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
7978                         use_triple(RHS(ptr, 0), ptr);
7979                         break;
7980                 case OP_BLOBCONST:
7981                         insert_triple(state, state->global_pool, ptr);
7982                         ptr->id |= TRIPLE_FLAG_FLATTENED;
7983                         ptr->id &= ~TRIPLE_FLAG_LOCAL;
7984                         ptr = triple(state, OP_SDECL, ptr->type, ptr, 0);
7985                         use_triple(MISC(ptr, 0), ptr);
7986                         break;
7987                 case OP_DEREF:
7988                         /* Since OP_DEREF is just a marker delete it when I flatten it */
7989                         ptr = RHS(ptr, 0);
7990                         RHS(orig_ptr, 0) = 0;
7991                         free_triple(state, orig_ptr);
7992                         break;
7993                 case OP_DOT:
7994                         if (RHS(ptr, 0)->op == OP_DEREF) {
7995                                 struct triple *base, *left;
7996                                 ulong_t offset;
7997                                 base = MISC(ptr, 0);
7998                                 offset = bits_to_bytes(field_offset(state, base->type, ptr->u.field));
7999                                 left = RHS(base, 0);
8000                                 ptr = triple(state, OP_ADD, left->type, 
8001                                         read_expr(state, left),
8002                                         int_const(state, &ulong_type, offset));
8003                                 free_triple(state, base);
8004                         }
8005                         else {
8006                                 ptr = flatten_part(state, first, ptr);
8007                         }
8008                         break;
8009                 case OP_INDEX:
8010                         if (RHS(ptr, 0)->op == OP_DEREF) {
8011                                 struct triple *base, *left;
8012                                 ulong_t offset;
8013                                 base = MISC(ptr, 0);
8014                                 offset = bits_to_bytes(index_offset(state, base->type, ptr->u.cval));
8015                                 left = RHS(base, 0);
8016                                 ptr = triple(state, OP_ADD, left->type,
8017                                         read_expr(state, left),
8018                                         int_const(state, &long_type, offset));
8019                                 free_triple(state, base);
8020                         }
8021                         else {
8022                                 ptr = flatten_part(state, first, ptr);
8023                         }
8024                         break;
8025                 case OP_PIECE:
8026                         ptr = flatten_part(state, first, ptr);
8027                         use_triple(ptr, MISC(ptr, 0));
8028                         break;
8029                 case OP_ADDRCONST:
8030                         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
8031                         use_triple(MISC(ptr, 0), ptr);
8032                         break;
8033                 case OP_SDECL:
8034                         first = state->global_pool;
8035                         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
8036                         use_triple(MISC(ptr, 0), ptr);
8037                         insert_triple(state, first, ptr);
8038                         ptr->id |= TRIPLE_FLAG_FLATTENED;
8039                         ptr->id &= ~TRIPLE_FLAG_LOCAL;
8040                         return ptr;
8041                 case OP_ADECL:
8042                         ptr = flatten_generic(state, first, ptr, 0);
8043                         break;
8044                 default:
8045                         /* Flatten the easy cases we don't override */
8046                         ptr = flatten_generic(state, first, ptr, 0);
8047                         break;
8048                 }
8049         } while(ptr && (ptr != orig_ptr));
8050         if (ptr && !(ptr->id & TRIPLE_FLAG_FLATTENED)) {
8051                 insert_triple(state, first, ptr);
8052                 ptr->id |= TRIPLE_FLAG_FLATTENED;
8053                 ptr->id &= ~TRIPLE_FLAG_LOCAL;
8054         }
8055         return ptr;
8056 }
8057
8058 static void release_expr(struct compile_state *state, struct triple *expr)
8059 {
8060         struct triple *head;
8061         head = label(state);
8062         flatten(state, head, expr);
8063         while(head->next != head) {
8064                 release_triple(state, head->next);
8065         }
8066         free_triple(state, head);
8067 }
8068
8069 static int replace_rhs_use(struct compile_state *state,
8070         struct triple *orig, struct triple *new, struct triple *use)
8071 {
8072         struct triple **expr;
8073         int found;
8074         found = 0;
8075         expr = triple_rhs(state, use, 0);
8076         for(;expr; expr = triple_rhs(state, use, expr)) {
8077                 if (*expr == orig) {
8078                         *expr = new;
8079                         found = 1;
8080                 }
8081         }
8082         if (found) {
8083                 unuse_triple(orig, use);
8084                 use_triple(new, use);
8085         }
8086         return found;
8087 }
8088
8089 static int replace_lhs_use(struct compile_state *state,
8090         struct triple *orig, struct triple *new, struct triple *use)
8091 {
8092         struct triple **expr;
8093         int found;
8094         found = 0;
8095         expr = triple_lhs(state, use, 0);
8096         for(;expr; expr = triple_lhs(state, use, expr)) {
8097                 if (*expr == orig) {
8098                         *expr = new;
8099                         found = 1;
8100                 }
8101         }
8102         if (found) {
8103                 unuse_triple(orig, use);
8104                 use_triple(new, use);
8105         }
8106         return found;
8107 }
8108
8109 static int replace_misc_use(struct compile_state *state,
8110         struct triple *orig, struct triple *new, struct triple *use)
8111 {
8112         struct triple **expr;
8113         int found;
8114         found = 0;
8115         expr = triple_misc(state, use, 0);
8116         for(;expr; expr = triple_misc(state, use, expr)) {
8117                 if (*expr == orig) {
8118                         *expr = new;
8119                         found = 1;
8120                 }
8121         }
8122         if (found) {
8123                 unuse_triple(orig, use);
8124                 use_triple(new, use);
8125         }
8126         return found;
8127 }
8128
8129 static int replace_targ_use(struct compile_state *state,
8130         struct triple *orig, struct triple *new, struct triple *use)
8131 {
8132         struct triple **expr;
8133         int found;
8134         found = 0;
8135         expr = triple_targ(state, use, 0);
8136         for(;expr; expr = triple_targ(state, use, expr)) {
8137                 if (*expr == orig) {
8138                         *expr = new;
8139                         found = 1;
8140                 }
8141         }
8142         if (found) {
8143                 unuse_triple(orig, use);
8144                 use_triple(new, use);
8145         }
8146         return found;
8147 }
8148
8149 static void replace_use(struct compile_state *state,
8150         struct triple *orig, struct triple *new, struct triple *use)
8151 {
8152         int found;
8153         found = 0;
8154         found |= replace_rhs_use(state, orig, new, use);
8155         found |= replace_lhs_use(state, orig, new, use);
8156         found |= replace_misc_use(state, orig, new, use);
8157         found |= replace_targ_use(state, orig, new, use);
8158         if (!found) {
8159                 internal_error(state, use, "use without use");
8160         }
8161 }
8162
8163 static void propogate_use(struct compile_state *state,
8164         struct triple *orig, struct triple *new)
8165 {
8166         struct triple_set *user, *next;
8167         for(user = orig->use; user; user = next) {
8168                 /* Careful replace_use modifies the use chain and
8169                  * removes use.  So we must get a copy of the next
8170                  * entry early.
8171                  */
8172                 next = user->next;
8173                 replace_use(state, orig, new, user->member);
8174         }
8175         if (orig->use) {
8176                 internal_error(state, orig, "used after propogate_use");
8177         }
8178 }
8179
8180 /*
8181  * Code generators
8182  * ===========================
8183  */
8184
8185 static struct triple *mk_cast_expr(
8186         struct compile_state *state, struct type *type, struct triple *expr)
8187 {
8188         struct triple *def;
8189         def = read_expr(state, expr);
8190         def = triple(state, OP_CONVERT, type, def, 0);
8191         return def;
8192 }
8193
8194 static struct triple *mk_add_expr(
8195         struct compile_state *state, struct triple *left, struct triple *right)
8196 {
8197         struct type *result_type;
8198         /* Put pointer operands on the left */
8199         if (is_pointer(right)) {
8200                 struct triple *tmp;
8201                 tmp = left;
8202                 left = right;
8203                 right = tmp;
8204         }
8205         left  = read_expr(state, left);
8206         right = read_expr(state, right);
8207         result_type = ptr_arithmetic_result(state, left, right);
8208         if (is_pointer(left)) {
8209                 struct type *ptr_math;
8210                 int op;
8211                 if (is_signed(right->type)) {
8212                         ptr_math = &long_type;
8213                         op = OP_SMUL;
8214                 } else {
8215                         ptr_math = &ulong_type;
8216                         op = OP_UMUL;
8217                 }
8218                 if (!equiv_types(right->type, ptr_math)) {
8219                         right = mk_cast_expr(state, ptr_math, right);
8220                 }
8221                 right = triple(state, op, ptr_math, right, 
8222                         int_const(state, ptr_math, 
8223                                 size_of_in_bytes(state, left->type->left)));
8224         }
8225         return triple(state, OP_ADD, result_type, left, right);
8226 }
8227
8228 static struct triple *mk_sub_expr(
8229         struct compile_state *state, struct triple *left, struct triple *right)
8230 {
8231         struct type *result_type;
8232         result_type = ptr_arithmetic_result(state, left, right);
8233         left  = read_expr(state, left);
8234         right = read_expr(state, right);
8235         if (is_pointer(left)) {
8236                 struct type *ptr_math;
8237                 int op;
8238                 if (is_signed(right->type)) {
8239                         ptr_math = &long_type;
8240                         op = OP_SMUL;
8241                 } else {
8242                         ptr_math = &ulong_type;
8243                         op = OP_UMUL;
8244                 }
8245                 if (!equiv_types(right->type, ptr_math)) {
8246                         right = mk_cast_expr(state, ptr_math, right);
8247                 }
8248                 right = triple(state, op, ptr_math, right, 
8249                         int_const(state, ptr_math, 
8250                                 size_of_in_bytes(state, left->type->left)));
8251         }
8252         return triple(state, OP_SUB, result_type, left, right);
8253 }
8254
8255 static struct triple *mk_pre_inc_expr(
8256         struct compile_state *state, struct triple *def)
8257 {
8258         struct triple *val;
8259         lvalue(state, def);
8260         val = mk_add_expr(state, def, int_const(state, &int_type, 1));
8261         return triple(state, OP_VAL, def->type,
8262                 write_expr(state, def, val),
8263                 val);
8264 }
8265
8266 static struct triple *mk_pre_dec_expr(
8267         struct compile_state *state, struct triple *def)
8268 {
8269         struct triple *val;
8270         lvalue(state, def);
8271         val = mk_sub_expr(state, def, int_const(state, &int_type, 1));
8272         return triple(state, OP_VAL, def->type,
8273                 write_expr(state, def, val),
8274                 val);
8275 }
8276
8277 static struct triple *mk_post_inc_expr(
8278         struct compile_state *state, struct triple *def)
8279 {
8280         struct triple *val;
8281         lvalue(state, def);
8282         val = read_expr(state, def);
8283         return triple(state, OP_VAL, def->type,
8284                 write_expr(state, def,
8285                         mk_add_expr(state, val, int_const(state, &int_type, 1)))
8286                 , val);
8287 }
8288
8289 static struct triple *mk_post_dec_expr(
8290         struct compile_state *state, struct triple *def)
8291 {
8292         struct triple *val;
8293         lvalue(state, def);
8294         val = read_expr(state, def);
8295         return triple(state, OP_VAL, def->type, 
8296                 write_expr(state, def,
8297                         mk_sub_expr(state, val, int_const(state, &int_type, 1)))
8298                 , val);
8299 }
8300
8301 static struct triple *mk_subscript_expr(
8302         struct compile_state *state, struct triple *left, struct triple *right)
8303 {
8304         left  = read_expr(state, left);
8305         right = read_expr(state, right);
8306         if (!is_pointer(left) && !is_pointer(right)) {
8307                 error(state, left, "subscripted value is not a pointer");
8308         }
8309         return mk_deref_expr(state, mk_add_expr(state, left, right));
8310 }
8311
8312
8313 /*
8314  * Compile time evaluation
8315  * ===========================
8316  */
8317 static int is_const(struct triple *ins)
8318 {
8319         return IS_CONST_OP(ins->op);
8320 }
8321
8322 static int is_simple_const(struct triple *ins)
8323 {
8324         /* Is this a constant that u.cval has the value.
8325          * Or equivalently is this a constant that read_const
8326          * works on.
8327          * So far only OP_INTCONST qualifies.  
8328          */
8329         return (ins->op == OP_INTCONST);
8330 }
8331
8332 static int constants_equal(struct compile_state *state, 
8333         struct triple *left, struct triple *right)
8334 {
8335         int equal;
8336         if ((left->op == OP_UNKNOWNVAL) || (right->op == OP_UNKNOWNVAL)) {
8337                 equal = 0;
8338         }
8339         else if (!is_const(left) || !is_const(right)) {
8340                 equal = 0;
8341         }
8342         else if (left->op != right->op) {
8343                 equal = 0;
8344         }
8345         else if (!equiv_types(left->type, right->type)) {
8346                 equal = 0;
8347         }
8348         else {
8349                 equal = 0;
8350                 switch(left->op) {
8351                 case OP_INTCONST:
8352                         if (left->u.cval == right->u.cval) {
8353                                 equal = 1;
8354                         }
8355                         break;
8356                 case OP_BLOBCONST:
8357                 {
8358                         size_t lsize, rsize, bytes;
8359                         lsize = size_of(state, left->type);
8360                         rsize = size_of(state, right->type);
8361                         if (lsize != rsize) {
8362                                 break;
8363                         }
8364                         bytes = bits_to_bytes(lsize);
8365                         if (memcmp(left->u.blob, right->u.blob, bytes) == 0) {
8366                                 equal = 1;
8367                         }
8368                         break;
8369                 }
8370                 case OP_ADDRCONST:
8371                         if ((MISC(left, 0) == MISC(right, 0)) &&
8372                                 (left->u.cval == right->u.cval)) {
8373                                 equal = 1;
8374                         }
8375                         break;
8376                 default:
8377                         internal_error(state, left, "uknown constant type");
8378                         break;
8379                 }
8380         }
8381         return equal;
8382 }
8383
8384 static int is_zero(struct triple *ins)
8385 {
8386         return is_simple_const(ins) && (ins->u.cval == 0);
8387 }
8388
8389 static int is_one(struct triple *ins)
8390 {
8391         return is_simple_const(ins) && (ins->u.cval == 1);
8392 }
8393
8394 #if DEBUG_ROMCC_WARNING
8395 static long_t bit_count(ulong_t value)
8396 {
8397         int count;
8398         int i;
8399         count = 0;
8400         for(i = (sizeof(ulong_t)*8) -1; i >= 0; i--) {
8401                 ulong_t mask;
8402                 mask = 1;
8403                 mask <<= i;
8404                 if (value & mask) {
8405                         count++;
8406                 }
8407         }
8408         return count;
8409         
8410 }
8411 #endif
8412
8413 static long_t bsr(ulong_t value)
8414 {
8415         int i;
8416         for(i = (sizeof(ulong_t)*8) -1; i >= 0; i--) {
8417                 ulong_t mask;
8418                 mask = 1;
8419                 mask <<= i;
8420                 if (value & mask) {
8421                         return i;
8422                 }
8423         }
8424         return -1;
8425 }
8426
8427 static long_t bsf(ulong_t value)
8428 {
8429         int i;
8430         for(i = 0; i < (sizeof(ulong_t)*8); i++) {
8431                 ulong_t mask;
8432                 mask = 1;
8433                 mask <<= 1;
8434                 if (value & mask) {
8435                         return i;
8436                 }
8437         }
8438         return -1;
8439 }
8440
8441 static long_t ilog2(ulong_t value)
8442 {
8443         return bsr(value);
8444 }
8445
8446 static long_t tlog2(struct triple *ins)
8447 {
8448         return ilog2(ins->u.cval);
8449 }
8450
8451 static int is_pow2(struct triple *ins)
8452 {
8453         ulong_t value, mask;
8454         long_t log;
8455         if (!is_const(ins)) {
8456                 return 0;
8457         }
8458         value = ins->u.cval;
8459         log = ilog2(value);
8460         if (log == -1) {
8461                 return 0;
8462         }
8463         mask = 1;
8464         mask <<= log;
8465         return  ((value & mask) == value);
8466 }
8467
8468 static ulong_t read_const(struct compile_state *state,
8469         struct triple *ins, struct triple *rhs)
8470 {
8471         switch(rhs->type->type &TYPE_MASK) {
8472         case TYPE_CHAR:   
8473         case TYPE_SHORT:
8474         case TYPE_INT:
8475         case TYPE_LONG:
8476         case TYPE_UCHAR:   
8477         case TYPE_USHORT:  
8478         case TYPE_UINT:
8479         case TYPE_ULONG:
8480         case TYPE_POINTER:
8481         case TYPE_BITFIELD:
8482                 break;
8483         default:
8484                 fprintf(state->errout, "type: ");
8485                 name_of(state->errout, rhs->type);
8486                 fprintf(state->errout, "\n");
8487                 internal_warning(state, rhs, "bad type to read_const");
8488                 break;
8489         }
8490         if (!is_simple_const(rhs)) {
8491                 internal_error(state, rhs, "bad op to read_const");
8492         }
8493         return rhs->u.cval;
8494 }
8495
8496 static long_t read_sconst(struct compile_state *state,
8497         struct triple *ins, struct triple *rhs)
8498 {
8499         return (long_t)(rhs->u.cval);
8500 }
8501
8502 int const_ltrue(struct compile_state *state, struct triple *ins, struct triple *rhs)
8503 {
8504         if (!is_const(rhs)) {
8505                 internal_error(state, 0, "non const passed to const_true");
8506         }
8507         return !is_zero(rhs);
8508 }
8509
8510 int const_eq(struct compile_state *state, struct triple *ins,
8511         struct triple *left, struct triple *right)
8512 {
8513         int result;
8514         if (!is_const(left) || !is_const(right)) {
8515                 internal_warning(state, ins, "non const passed to const_eq");
8516                 result = -1;
8517         }
8518         else if (left == right) {
8519                 result = 1;
8520         }
8521         else if (is_simple_const(left) && is_simple_const(right)) {
8522                 ulong_t lval, rval;
8523                 lval = read_const(state, ins, left);
8524                 rval = read_const(state, ins, right);
8525                 result = (lval == rval);
8526         }
8527         else if ((left->op == OP_ADDRCONST) && 
8528                 (right->op == OP_ADDRCONST)) {
8529                 result = (MISC(left, 0) == MISC(right, 0)) &&
8530                         (left->u.cval == right->u.cval);
8531         }
8532         else {
8533                 internal_warning(state, ins, "incomparable constants passed to const_eq");
8534                 result = -1;
8535         }
8536         return result;
8537         
8538 }
8539
8540 int const_ucmp(struct compile_state *state, struct triple *ins,
8541         struct triple *left, struct triple *right)
8542 {
8543         int result;
8544         if (!is_const(left) || !is_const(right)) {
8545                 internal_warning(state, ins, "non const past to const_ucmp");
8546                 result = -2;
8547         }
8548         else if (left == right) {
8549                 result = 0;
8550         }
8551         else if (is_simple_const(left) && is_simple_const(right)) {
8552                 ulong_t lval, rval;
8553                 lval = read_const(state, ins, left);
8554                 rval = read_const(state, ins, right);
8555                 result = 0;
8556                 if (lval > rval) {
8557                         result = 1;
8558                 } else if (rval > lval) {
8559                         result = -1;
8560                 }
8561         }
8562         else if ((left->op == OP_ADDRCONST) && 
8563                 (right->op == OP_ADDRCONST) &&
8564                 (MISC(left, 0) == MISC(right, 0))) {
8565                 result = 0;
8566                 if (left->u.cval > right->u.cval) {
8567                         result = 1;
8568                 } else if (left->u.cval < right->u.cval) {
8569                         result = -1;
8570                 }
8571         }
8572         else {
8573                 internal_warning(state, ins, "incomparable constants passed to const_ucmp");
8574                 result = -2;
8575         }
8576         return result;
8577 }
8578
8579 int const_scmp(struct compile_state *state, struct triple *ins,
8580         struct triple *left, struct triple *right)
8581 {
8582         int result;
8583         if (!is_const(left) || !is_const(right)) {
8584                 internal_warning(state, ins, "non const past to ucmp_const");
8585                 result = -2;
8586         }
8587         else if (left == right) {
8588                 result = 0;
8589         }
8590         else if (is_simple_const(left) && is_simple_const(right)) {
8591                 long_t lval, rval;
8592                 lval = read_sconst(state, ins, left);
8593                 rval = read_sconst(state, ins, right);
8594                 result = 0;
8595                 if (lval > rval) {
8596                         result = 1;
8597                 } else if (rval > lval) {
8598                         result = -1;
8599                 }
8600         }
8601         else {
8602                 internal_warning(state, ins, "incomparable constants passed to const_scmp");
8603                 result = -2;
8604         }
8605         return result;
8606 }
8607
8608 static void unuse_rhs(struct compile_state *state, struct triple *ins)
8609 {
8610         struct triple **expr;
8611         expr = triple_rhs(state, ins, 0);
8612         for(;expr;expr = triple_rhs(state, ins, expr)) {
8613                 if (*expr) {
8614                         unuse_triple(*expr, ins);
8615                         *expr = 0;
8616                 }
8617         }
8618 }
8619
8620 static void unuse_lhs(struct compile_state *state, struct triple *ins)
8621 {
8622         struct triple **expr;
8623         expr = triple_lhs(state, ins, 0);
8624         for(;expr;expr = triple_lhs(state, ins, expr)) {
8625                 unuse_triple(*expr, ins);
8626                 *expr = 0;
8627         }
8628 }
8629
8630 #if DEBUG_ROMCC_WARNING
8631 static void unuse_misc(struct compile_state *state, struct triple *ins)
8632 {
8633         struct triple **expr;
8634         expr = triple_misc(state, ins, 0);
8635         for(;expr;expr = triple_misc(state, ins, expr)) {
8636                 unuse_triple(*expr, ins);
8637                 *expr = 0;
8638         }
8639 }
8640
8641 static void unuse_targ(struct compile_state *state, struct triple *ins)
8642 {
8643         int i;
8644         struct triple **slot;
8645         slot = &TARG(ins, 0);
8646         for(i = 0; i < ins->targ; i++) {
8647                 unuse_triple(slot[i], ins);
8648                 slot[i] = 0;
8649         }
8650 }
8651
8652 static void check_lhs(struct compile_state *state, struct triple *ins)
8653 {
8654         struct triple **expr;
8655         expr = triple_lhs(state, ins, 0);
8656         for(;expr;expr = triple_lhs(state, ins, expr)) {
8657                 internal_error(state, ins, "unexpected lhs");
8658         }
8659         
8660 }
8661 #endif
8662
8663 static void check_misc(struct compile_state *state, struct triple *ins)
8664 {
8665         struct triple **expr;
8666         expr = triple_misc(state, ins, 0);
8667         for(;expr;expr = triple_misc(state, ins, expr)) {
8668                 if (*expr) {
8669                         internal_error(state, ins, "unexpected misc");
8670                 }
8671         }
8672 }
8673
8674 static void check_targ(struct compile_state *state, struct triple *ins)
8675 {
8676         struct triple **expr;
8677         expr = triple_targ(state, ins, 0);
8678         for(;expr;expr = triple_targ(state, ins, expr)) {
8679                 internal_error(state, ins, "unexpected targ");
8680         }
8681 }
8682
8683 static void wipe_ins(struct compile_state *state, struct triple *ins)
8684 {
8685         /* Becareful which instructions you replace the wiped
8686          * instruction with, as there are not enough slots
8687          * in all instructions to hold all others.
8688          */
8689         check_targ(state, ins);
8690         check_misc(state, ins);
8691         unuse_rhs(state, ins);
8692         unuse_lhs(state, ins);
8693         ins->lhs  = 0;
8694         ins->rhs  = 0;
8695         ins->misc = 0;
8696         ins->targ = 0;
8697 }
8698
8699 #if DEBUG_ROMCC_WARNING
8700 static void wipe_branch(struct compile_state *state, struct triple *ins)
8701 {
8702         /* Becareful which instructions you replace the wiped
8703          * instruction with, as there are not enough slots
8704          * in all instructions to hold all others.
8705          */
8706         unuse_rhs(state, ins);
8707         unuse_lhs(state, ins);
8708         unuse_misc(state, ins);
8709         unuse_targ(state, ins);
8710         ins->lhs  = 0;
8711         ins->rhs  = 0;
8712         ins->misc = 0;
8713         ins->targ = 0;
8714 }
8715 #endif
8716
8717 static void mkcopy(struct compile_state *state, 
8718         struct triple *ins, struct triple *rhs)
8719 {
8720         struct block *block;
8721         if (!equiv_types(ins->type, rhs->type)) {
8722                 FILE *fp = state->errout;
8723                 fprintf(fp, "src type: ");
8724                 name_of(fp, rhs->type);
8725                 fprintf(fp, "\ndst type: ");
8726                 name_of(fp, ins->type);
8727                 fprintf(fp, "\n");
8728                 internal_error(state, ins, "mkcopy type mismatch");
8729         }
8730         block = block_of_triple(state, ins);
8731         wipe_ins(state, ins);
8732         ins->op = OP_COPY;
8733         ins->rhs  = 1;
8734         ins->u.block = block;
8735         RHS(ins, 0) = rhs;
8736         use_triple(RHS(ins, 0), ins);
8737 }
8738
8739 static void mkconst(struct compile_state *state, 
8740         struct triple *ins, ulong_t value)
8741 {
8742         if (!is_integral(ins) && !is_pointer(ins)) {
8743                 fprintf(state->errout, "type: ");
8744                 name_of(state->errout, ins->type);
8745                 fprintf(state->errout, "\n");
8746                 internal_error(state, ins, "unknown type to make constant value: %ld",
8747                         value);
8748         }
8749         wipe_ins(state, ins);
8750         ins->op = OP_INTCONST;
8751         ins->u.cval = value;
8752 }
8753
8754 static void mkaddr_const(struct compile_state *state,
8755         struct triple *ins, struct triple *sdecl, ulong_t value)
8756 {
8757         if ((sdecl->op != OP_SDECL) && (sdecl->op != OP_LABEL)) {
8758                 internal_error(state, ins, "bad base for addrconst");
8759         }
8760         wipe_ins(state, ins);
8761         ins->op = OP_ADDRCONST;
8762         ins->misc = 1;
8763         MISC(ins, 0) = sdecl;
8764         ins->u.cval = value;
8765         use_triple(sdecl, ins);
8766 }
8767
8768 #if DEBUG_DECOMPOSE_PRINT_TUPLES
8769 static void print_tuple(struct compile_state *state, 
8770         struct triple *ins, struct triple *tuple)
8771 {
8772         FILE *fp = state->dbgout;
8773         fprintf(fp, "%5s %p tuple: %p ", tops(ins->op), ins, tuple);
8774         name_of(fp, tuple->type);
8775         if (tuple->lhs > 0) {
8776                 fprintf(fp, " lhs: ");
8777                 name_of(fp, LHS(tuple, 0)->type);
8778         }
8779         fprintf(fp, "\n");
8780         
8781 }
8782 #endif
8783
8784 static struct triple *decompose_with_tuple(struct compile_state *state, 
8785         struct triple *ins, struct triple *tuple)
8786 {
8787         struct triple *next;
8788         next = ins->next;
8789         flatten(state, next, tuple);
8790 #if DEBUG_DECOMPOSE_PRINT_TUPLES
8791         print_tuple(state, ins, tuple);
8792 #endif
8793
8794         if (!is_compound_type(tuple->type) && (tuple->lhs > 0)) {
8795                 struct triple *tmp;
8796                 if (tuple->lhs != 1) {
8797                         internal_error(state, tuple, "plain type in multiple registers?");
8798                 }
8799                 tmp = LHS(tuple, 0);
8800                 release_triple(state, tuple);
8801                 tuple = tmp;
8802         }
8803
8804         propogate_use(state, ins, tuple);
8805         release_triple(state, ins);
8806         
8807         return next;
8808 }
8809
8810 static struct triple *decompose_unknownval(struct compile_state *state,
8811         struct triple *ins)
8812 {
8813         struct triple *tuple;
8814         ulong_t i;
8815
8816 #if DEBUG_DECOMPOSE_HIRES
8817         FILE *fp = state->dbgout;
8818         fprintf(fp, "unknown type: ");
8819         name_of(fp, ins->type);
8820         fprintf(fp, "\n");
8821 #endif
8822
8823         get_occurance(ins->occurance);
8824         tuple = alloc_triple(state, OP_TUPLE, ins->type, -1, -1, 
8825                 ins->occurance);
8826
8827         for(i = 0; i < tuple->lhs; i++) {
8828                 struct type *piece_type;
8829                 struct triple *unknown;
8830
8831                 piece_type = reg_type(state, ins->type, i * REG_SIZEOF_REG);
8832                 get_occurance(tuple->occurance);
8833                 unknown = alloc_triple(state, OP_UNKNOWNVAL, piece_type, 0, 0,
8834                         tuple->occurance);
8835                 LHS(tuple, i) = unknown;
8836         }
8837         return decompose_with_tuple(state, ins, tuple);
8838 }
8839
8840
8841 static struct triple *decompose_read(struct compile_state *state, 
8842         struct triple *ins)
8843 {
8844         struct triple *tuple, *lval;
8845         ulong_t i;
8846
8847         lval = RHS(ins, 0);
8848
8849         if (lval->op == OP_PIECE) {
8850                 return ins->next;
8851         }
8852         get_occurance(ins->occurance);
8853         tuple = alloc_triple(state, OP_TUPLE, lval->type, -1, -1,
8854                 ins->occurance);
8855
8856         if ((tuple->lhs != lval->lhs) &&
8857                 (!triple_is_def(state, lval) || (tuple->lhs != 1))) 
8858         {
8859                 internal_error(state, ins, "lhs size inconsistency?");
8860         }
8861         for(i = 0; i < tuple->lhs; i++) {
8862                 struct triple *piece, *read, *bitref;
8863                 if ((i != 0) || !triple_is_def(state, lval)) {
8864                         piece = LHS(lval, i);
8865                 } else {
8866                         piece = lval;
8867                 }
8868
8869                 /* See if the piece is really a bitref */
8870                 bitref = 0;
8871                 if (piece->op == OP_BITREF) {
8872                         bitref = piece;
8873                         piece = RHS(bitref, 0);
8874                 }
8875
8876                 get_occurance(tuple->occurance);
8877                 read = alloc_triple(state, OP_READ, piece->type, -1, -1, 
8878                         tuple->occurance);
8879                 RHS(read, 0) = piece;
8880
8881                 if (bitref) {
8882                         struct triple *extract;
8883                         int op;
8884                         if (is_signed(bitref->type->left)) {
8885                                 op = OP_SEXTRACT;
8886                         } else {
8887                                 op = OP_UEXTRACT;
8888                         }
8889                         get_occurance(tuple->occurance);
8890                         extract = alloc_triple(state, op, bitref->type, -1, -1,
8891                                 tuple->occurance);
8892                         RHS(extract, 0) = read;
8893                         extract->u.bitfield.size   = bitref->u.bitfield.size;
8894                         extract->u.bitfield.offset = bitref->u.bitfield.offset;
8895
8896                         read = extract;
8897                 }
8898
8899                 LHS(tuple, i) = read;
8900         }
8901         return decompose_with_tuple(state, ins, tuple);
8902 }
8903
8904 static struct triple *decompose_write(struct compile_state *state, 
8905         struct triple *ins)
8906 {
8907         struct triple *tuple, *lval, *val;
8908         ulong_t i;
8909         
8910         lval = MISC(ins, 0);
8911         val = RHS(ins, 0);
8912         get_occurance(ins->occurance);
8913         tuple = alloc_triple(state, OP_TUPLE, ins->type, -1, -1,
8914                 ins->occurance);
8915
8916         if ((tuple->lhs != lval->lhs) &&
8917                 (!triple_is_def(state, lval) || tuple->lhs != 1)) 
8918         {
8919                 internal_error(state, ins, "lhs size inconsistency?");
8920         }
8921         for(i = 0; i < tuple->lhs; i++) {
8922                 struct triple *piece, *write, *pval, *bitref;
8923                 if ((i != 0) || !triple_is_def(state, lval)) {
8924                         piece = LHS(lval, i);
8925                 } else {
8926                         piece = lval;
8927                 }
8928                 if ((i == 0) && (tuple->lhs == 1) && (val->lhs == 0)) {
8929                         pval = val;
8930                 }
8931                 else {
8932                         if (i > val->lhs) {
8933                                 internal_error(state, ins, "lhs size inconsistency?");
8934                         }
8935                         pval = LHS(val, i);
8936                 }
8937                 
8938                 /* See if the piece is really a bitref */
8939                 bitref = 0;
8940                 if (piece->op == OP_BITREF) {
8941                         struct triple *read, *deposit;
8942                         bitref = piece;
8943                         piece = RHS(bitref, 0);
8944
8945                         /* Read the destination register */
8946                         get_occurance(tuple->occurance);
8947                         read = alloc_triple(state, OP_READ, piece->type, -1, -1,
8948                                 tuple->occurance);
8949                         RHS(read, 0) = piece;
8950
8951                         /* Deposit the new bitfield value */
8952                         get_occurance(tuple->occurance);
8953                         deposit = alloc_triple(state, OP_DEPOSIT, piece->type, -1, -1,
8954                                 tuple->occurance);
8955                         RHS(deposit, 0) = read;
8956                         RHS(deposit, 1) = pval;
8957                         deposit->u.bitfield.size   = bitref->u.bitfield.size;
8958                         deposit->u.bitfield.offset = bitref->u.bitfield.offset;
8959
8960                         /* Now write the newly generated value */
8961                         pval = deposit;
8962                 }
8963
8964                 get_occurance(tuple->occurance);
8965                 write = alloc_triple(state, OP_WRITE, piece->type, -1, -1, 
8966                         tuple->occurance);
8967                 MISC(write, 0) = piece;
8968                 RHS(write, 0) = pval;
8969                 LHS(tuple, i) = write;
8970         }
8971         return decompose_with_tuple(state, ins, tuple);
8972 }
8973
8974 struct decompose_load_info {
8975         struct occurance *occurance;
8976         struct triple *lval;
8977         struct triple *tuple;
8978 };
8979 static void decompose_load_cb(struct compile_state *state,
8980         struct type *type, size_t reg_offset, size_t mem_offset, void *arg)
8981 {
8982         struct decompose_load_info *info = arg;
8983         struct triple *load;
8984         
8985         if (reg_offset > info->tuple->lhs) {
8986                 internal_error(state, info->tuple, "lhs to small?");
8987         }
8988         get_occurance(info->occurance);
8989         load = alloc_triple(state, OP_LOAD, type, -1, -1, info->occurance);
8990         RHS(load, 0) = mk_addr_expr(state, info->lval, mem_offset);
8991         LHS(info->tuple, reg_offset/REG_SIZEOF_REG) = load;
8992 }
8993
8994 static struct triple *decompose_load(struct compile_state *state, 
8995         struct triple *ins)
8996 {
8997         struct triple *tuple;
8998         struct decompose_load_info info;
8999
9000         if (!is_compound_type(ins->type)) {
9001                 return ins->next;
9002         }
9003         get_occurance(ins->occurance);
9004         tuple = alloc_triple(state, OP_TUPLE, ins->type, -1, -1,
9005                 ins->occurance);
9006
9007         info.occurance = ins->occurance;
9008         info.lval      = RHS(ins, 0);
9009         info.tuple     = tuple;
9010         walk_type_fields(state, ins->type, 0, 0, decompose_load_cb, &info);
9011
9012         return decompose_with_tuple(state, ins, tuple);
9013 }
9014
9015
9016 struct decompose_store_info {
9017         struct occurance *occurance;
9018         struct triple *lval;
9019         struct triple *val;
9020         struct triple *tuple;
9021 };
9022 static void decompose_store_cb(struct compile_state *state,
9023         struct type *type, size_t reg_offset, size_t mem_offset, void *arg)
9024 {
9025         struct decompose_store_info *info = arg;
9026         struct triple *store;
9027         
9028         if (reg_offset > info->tuple->lhs) {
9029                 internal_error(state, info->tuple, "lhs to small?");
9030         }
9031         get_occurance(info->occurance);
9032         store = alloc_triple(state, OP_STORE, type, -1, -1, info->occurance);
9033         RHS(store, 0) = mk_addr_expr(state, info->lval, mem_offset);
9034         RHS(store, 1) = LHS(info->val, reg_offset);
9035         LHS(info->tuple, reg_offset/REG_SIZEOF_REG) = store;
9036 }
9037
9038 static struct triple *decompose_store(struct compile_state *state, 
9039         struct triple *ins)
9040 {
9041         struct triple *tuple;
9042         struct decompose_store_info info;
9043
9044         if (!is_compound_type(ins->type)) {
9045                 return ins->next;
9046         }
9047         get_occurance(ins->occurance);
9048         tuple = alloc_triple(state, OP_TUPLE, ins->type, -1, -1,
9049                 ins->occurance);
9050
9051         info.occurance = ins->occurance;
9052         info.lval      = RHS(ins, 0);
9053         info.val       = RHS(ins, 1);
9054         info.tuple     = tuple;
9055         walk_type_fields(state, ins->type, 0, 0, decompose_store_cb, &info);
9056
9057         return decompose_with_tuple(state, ins, tuple);
9058 }
9059
9060 static struct triple *decompose_dot(struct compile_state *state, 
9061         struct triple *ins)
9062 {
9063         struct triple *tuple, *lval;
9064         struct type *type;
9065         size_t reg_offset;
9066         int i, idx;
9067
9068         lval = MISC(ins, 0);
9069         reg_offset = field_reg_offset(state, lval->type, ins->u.field);
9070         idx  = reg_offset/REG_SIZEOF_REG;
9071         type = field_type(state, lval->type, ins->u.field);
9072 #if DEBUG_DECOMPOSE_HIRES
9073         {
9074                 FILE *fp = state->dbgout;
9075                 fprintf(fp, "field type: ");
9076                 name_of(fp, type);
9077                 fprintf(fp, "\n");
9078         }
9079 #endif
9080
9081         get_occurance(ins->occurance);
9082         tuple = alloc_triple(state, OP_TUPLE, type, -1, -1, 
9083                 ins->occurance);
9084
9085         if (((ins->type->type & TYPE_MASK) == TYPE_BITFIELD) &&
9086                 (tuple->lhs != 1))
9087         {
9088                 internal_error(state, ins, "multi register bitfield?");
9089         }
9090
9091         for(i = 0; i < tuple->lhs; i++, idx++) {
9092                 struct triple *piece;
9093                 if (!triple_is_def(state, lval)) {
9094                         if (idx > lval->lhs) {
9095                                 internal_error(state, ins, "inconsistent lhs count");
9096                         }
9097                         piece = LHS(lval, idx);
9098                 } else {
9099                         if (idx != 0) {
9100                                 internal_error(state, ins, "bad reg_offset into def");
9101                         }
9102                         if (i != 0) {
9103                                 internal_error(state, ins, "bad reg count from def");
9104                         }
9105                         piece = lval;
9106                 }
9107
9108                 /* Remember the offset of the bitfield */
9109                 if ((type->type & TYPE_MASK) == TYPE_BITFIELD) {
9110                         get_occurance(ins->occurance);
9111                         piece = build_triple(state, OP_BITREF, type, piece, 0,
9112                                 ins->occurance);
9113                         piece->u.bitfield.size   = size_of(state, type);
9114                         piece->u.bitfield.offset = reg_offset % REG_SIZEOF_REG;
9115                 }
9116                 else if ((reg_offset % REG_SIZEOF_REG) != 0) {
9117                         internal_error(state, ins, 
9118                                 "request for a nonbitfield sub register?");
9119                 }
9120
9121                 LHS(tuple, i) = piece;
9122         }
9123
9124         return decompose_with_tuple(state, ins, tuple);
9125 }
9126
9127 static struct triple *decompose_index(struct compile_state *state, 
9128         struct triple *ins)
9129 {
9130         struct triple *tuple, *lval;
9131         struct type *type;
9132         int i, idx;
9133
9134         lval = MISC(ins, 0);
9135         idx = index_reg_offset(state, lval->type, ins->u.cval)/REG_SIZEOF_REG;
9136         type = index_type(state, lval->type, ins->u.cval);
9137 #if DEBUG_DECOMPOSE_HIRES
9138 {
9139         FILE *fp = state->dbgout;
9140         fprintf(fp, "index type: ");
9141         name_of(fp, type);
9142         fprintf(fp, "\n");
9143 }
9144 #endif
9145
9146         get_occurance(ins->occurance);
9147         tuple = alloc_triple(state, OP_TUPLE, type, -1, -1, 
9148                 ins->occurance);
9149
9150         for(i = 0; i < tuple->lhs; i++, idx++) {
9151                 struct triple *piece;
9152                 if (!triple_is_def(state, lval)) {
9153                         if (idx > lval->lhs) {
9154                                 internal_error(state, ins, "inconsistent lhs count");
9155                         }
9156                         piece = LHS(lval, idx);
9157                 } else {
9158                         if (idx != 0) {
9159                                 internal_error(state, ins, "bad reg_offset into def");
9160                         }
9161                         if (i != 0) {
9162                                 internal_error(state, ins, "bad reg count from def");
9163                         }
9164                         piece = lval;
9165                 }
9166                 LHS(tuple, i) = piece;
9167         }
9168
9169         return decompose_with_tuple(state, ins, tuple);
9170 }
9171
9172 static void decompose_compound_types(struct compile_state *state)
9173 {
9174         struct triple *ins, *next, *first;
9175         FILE *fp;
9176         fp = state->dbgout;
9177         first = state->first;
9178         ins = first;
9179
9180         /* Pass one expand compound values into pseudo registers.
9181          */
9182         next = first;
9183         do {
9184                 ins = next;
9185                 next = ins->next;
9186                 switch(ins->op) {
9187                 case OP_UNKNOWNVAL:
9188                         next = decompose_unknownval(state, ins);
9189                         break;
9190
9191                 case OP_READ:
9192                         next = decompose_read(state, ins);
9193                         break;
9194
9195                 case OP_WRITE:
9196                         next = decompose_write(state, ins);
9197                         break;
9198
9199
9200                 /* Be very careful with the load/store logic. These
9201                  * operations must convert from the in register layout
9202                  * to the in memory layout, which is nontrivial.
9203                  */
9204                 case OP_LOAD:
9205                         next = decompose_load(state, ins);
9206                         break;
9207                 case OP_STORE:
9208                         next = decompose_store(state, ins);
9209                         break;
9210
9211                 case OP_DOT:
9212                         next = decompose_dot(state, ins);
9213                         break;
9214                 case OP_INDEX:
9215                         next = decompose_index(state, ins);
9216                         break;
9217                         
9218                 }
9219 #if DEBUG_DECOMPOSE_HIRES
9220                 fprintf(fp, "decompose next: %p \n", next);
9221                 fflush(fp);
9222                 fprintf(fp, "next->op: %d %s\n",
9223                         next->op, tops(next->op));
9224                 /* High resolution debugging mode */
9225                 print_triples(state);
9226 #endif
9227         } while (next != first);
9228
9229         /* Pass two remove the tuples.
9230          */
9231         ins = first;
9232         do {
9233                 next = ins->next;
9234                 if (ins->op == OP_TUPLE) {
9235                         if (ins->use) {
9236                                 internal_error(state, ins, "tuple used");
9237                         }
9238                         else {
9239                                 release_triple(state, ins);
9240                         }
9241                 } 
9242                 ins = next;
9243         } while(ins != first);
9244         ins = first;
9245         do {
9246                 next = ins->next;
9247                 if (ins->op == OP_BITREF) {
9248                         if (ins->use) {
9249                                 internal_error(state, ins, "bitref used");
9250                         } 
9251                         else {
9252                                 release_triple(state, ins);
9253                         }
9254                 }
9255                 ins = next;
9256         } while(ins != first);
9257
9258         /* Pass three verify the state and set ->id to 0.
9259          */
9260         next = first;
9261         do {
9262                 ins = next;
9263                 next = ins->next;
9264                 ins->id &= ~TRIPLE_FLAG_FLATTENED;
9265                 if (triple_stores_block(state, ins)) {
9266                         ins->u.block = 0;
9267                 }
9268                 if (triple_is_def(state, ins)) {
9269                         if (reg_size_of(state, ins->type) > REG_SIZEOF_REG) {
9270                                 internal_error(state, ins, "multi register value remains?");
9271                         }
9272                 }
9273                 if (ins->op == OP_DOT) {
9274                         internal_error(state, ins, "OP_DOT remains?");
9275                 }
9276                 if (ins->op == OP_INDEX) {
9277                         internal_error(state, ins, "OP_INDEX remains?");
9278                 }
9279                 if (ins->op == OP_BITREF) {
9280                         internal_error(state, ins, "OP_BITREF remains?");
9281                 }
9282                 if (ins->op == OP_TUPLE) {
9283                         internal_error(state, ins, "OP_TUPLE remains?");
9284                 }
9285         } while(next != first);
9286 }
9287
9288 /* For those operations that cannot be simplified */
9289 static void simplify_noop(struct compile_state *state, struct triple *ins)
9290 {
9291         return;
9292 }
9293
9294 static void simplify_smul(struct compile_state *state, struct triple *ins)
9295 {
9296         if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
9297                 struct triple *tmp;
9298                 tmp = RHS(ins, 0);
9299                 RHS(ins, 0) = RHS(ins, 1);
9300                 RHS(ins, 1) = tmp;
9301         }
9302         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
9303                 long_t left, right;
9304                 left  = read_sconst(state, ins, RHS(ins, 0));
9305                 right = read_sconst(state, ins, RHS(ins, 1));
9306                 mkconst(state, ins, left * right);
9307         }
9308         else if (is_zero(RHS(ins, 1))) {
9309                 mkconst(state, ins, 0);
9310         }
9311         else if (is_one(RHS(ins, 1))) {
9312                 mkcopy(state, ins, RHS(ins, 0));
9313         }
9314         else if (is_pow2(RHS(ins, 1))) {
9315                 struct triple *val;
9316                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
9317                 ins->op = OP_SL;
9318                 insert_triple(state, state->global_pool, val);
9319                 unuse_triple(RHS(ins, 1), ins);
9320                 use_triple(val, ins);
9321                 RHS(ins, 1) = val;
9322         }
9323 }
9324
9325 static void simplify_umul(struct compile_state *state, struct triple *ins)
9326 {
9327         if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
9328                 struct triple *tmp;
9329                 tmp = RHS(ins, 0);
9330                 RHS(ins, 0) = RHS(ins, 1);
9331                 RHS(ins, 1) = tmp;
9332         }
9333         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9334                 ulong_t left, right;
9335                 left  = read_const(state, ins, RHS(ins, 0));
9336                 right = read_const(state, ins, RHS(ins, 1));
9337                 mkconst(state, ins, left * right);
9338         }
9339         else if (is_zero(RHS(ins, 1))) {
9340                 mkconst(state, ins, 0);
9341         }
9342         else if (is_one(RHS(ins, 1))) {
9343                 mkcopy(state, ins, RHS(ins, 0));
9344         }
9345         else if (is_pow2(RHS(ins, 1))) {
9346                 struct triple *val;
9347                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
9348                 ins->op = OP_SL;
9349                 insert_triple(state, state->global_pool, val);
9350                 unuse_triple(RHS(ins, 1), ins);
9351                 use_triple(val, ins);
9352                 RHS(ins, 1) = val;
9353         }
9354 }
9355
9356 static void simplify_sdiv(struct compile_state *state, struct triple *ins)
9357 {
9358         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
9359                 long_t left, right;
9360                 left  = read_sconst(state, ins, RHS(ins, 0));
9361                 right = read_sconst(state, ins, RHS(ins, 1));
9362                 mkconst(state, ins, left / right);
9363         }
9364         else if (is_zero(RHS(ins, 0))) {
9365                 mkconst(state, ins, 0);
9366         }
9367         else if (is_zero(RHS(ins, 1))) {
9368                 error(state, ins, "division by zero");
9369         }
9370         else if (is_one(RHS(ins, 1))) {
9371                 mkcopy(state, ins, RHS(ins, 0));
9372         }
9373         else if (is_pow2(RHS(ins, 1))) {
9374                 struct triple *val;
9375                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
9376                 ins->op = OP_SSR;
9377                 insert_triple(state, state->global_pool, val);
9378                 unuse_triple(RHS(ins, 1), ins);
9379                 use_triple(val, ins);
9380                 RHS(ins, 1) = val;
9381         }
9382 }
9383
9384 static void simplify_udiv(struct compile_state *state, struct triple *ins)
9385 {
9386         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9387                 ulong_t left, right;
9388                 left  = read_const(state, ins, RHS(ins, 0));
9389                 right = read_const(state, ins, RHS(ins, 1));
9390                 mkconst(state, ins, left / right);
9391         }
9392         else if (is_zero(RHS(ins, 0))) {
9393                 mkconst(state, ins, 0);
9394         }
9395         else if (is_zero(RHS(ins, 1))) {
9396                 error(state, ins, "division by zero");
9397         }
9398         else if (is_one(RHS(ins, 1))) {
9399                 mkcopy(state, ins, RHS(ins, 0));
9400         }
9401         else if (is_pow2(RHS(ins, 1))) {
9402                 struct triple *val;
9403                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
9404                 ins->op = OP_USR;
9405                 insert_triple(state, state->global_pool, val);
9406                 unuse_triple(RHS(ins, 1), ins);
9407                 use_triple(val, ins);
9408                 RHS(ins, 1) = val;
9409         }
9410 }
9411
9412 static void simplify_smod(struct compile_state *state, struct triple *ins)
9413 {
9414         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9415                 long_t left, right;
9416                 left  = read_const(state, ins, RHS(ins, 0));
9417                 right = read_const(state, ins, RHS(ins, 1));
9418                 mkconst(state, ins, left % right);
9419         }
9420         else if (is_zero(RHS(ins, 0))) {
9421                 mkconst(state, ins, 0);
9422         }
9423         else if (is_zero(RHS(ins, 1))) {
9424                 error(state, ins, "division by zero");
9425         }
9426         else if (is_one(RHS(ins, 1))) {
9427                 mkconst(state, ins, 0);
9428         }
9429         else if (is_pow2(RHS(ins, 1))) {
9430                 struct triple *val;
9431                 val = int_const(state, ins->type, RHS(ins, 1)->u.cval - 1);
9432                 ins->op = OP_AND;
9433                 insert_triple(state, state->global_pool, val);
9434                 unuse_triple(RHS(ins, 1), ins);
9435                 use_triple(val, ins);
9436                 RHS(ins, 1) = val;
9437         }
9438 }
9439
9440 static void simplify_umod(struct compile_state *state, struct triple *ins)
9441 {
9442         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9443                 ulong_t left, right;
9444                 left  = read_const(state, ins, RHS(ins, 0));
9445                 right = read_const(state, ins, RHS(ins, 1));
9446                 mkconst(state, ins, left % right);
9447         }
9448         else if (is_zero(RHS(ins, 0))) {
9449                 mkconst(state, ins, 0);
9450         }
9451         else if (is_zero(RHS(ins, 1))) {
9452                 error(state, ins, "division by zero");
9453         }
9454         else if (is_one(RHS(ins, 1))) {
9455                 mkconst(state, ins, 0);
9456         }
9457         else if (is_pow2(RHS(ins, 1))) {
9458                 struct triple *val;
9459                 val = int_const(state, ins->type, RHS(ins, 1)->u.cval - 1);
9460                 ins->op = OP_AND;
9461                 insert_triple(state, state->global_pool, val);
9462                 unuse_triple(RHS(ins, 1), ins);
9463                 use_triple(val, ins);
9464                 RHS(ins, 1) = val;
9465         }
9466 }
9467
9468 static void simplify_add(struct compile_state *state, struct triple *ins)
9469 {
9470         /* start with the pointer on the left */
9471         if (is_pointer(RHS(ins, 1))) {
9472                 struct triple *tmp;
9473                 tmp = RHS(ins, 0);
9474                 RHS(ins, 0) = RHS(ins, 1);
9475                 RHS(ins, 1) = tmp;
9476         }
9477         if (is_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9478                 if (RHS(ins, 0)->op == OP_INTCONST) {
9479                         ulong_t left, right;
9480                         left  = read_const(state, ins, RHS(ins, 0));
9481                         right = read_const(state, ins, RHS(ins, 1));
9482                         mkconst(state, ins, left + right);
9483                 }
9484                 else if (RHS(ins, 0)->op == OP_ADDRCONST) {
9485                         struct triple *sdecl;
9486                         ulong_t left, right;
9487                         sdecl = MISC(RHS(ins, 0), 0);
9488                         left  = RHS(ins, 0)->u.cval;
9489                         right = RHS(ins, 1)->u.cval;
9490                         mkaddr_const(state, ins, sdecl, left + right);
9491                 }
9492                 else {
9493                         internal_warning(state, ins, "Optimize me!");
9494                 }
9495         }
9496         else if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
9497                 struct triple *tmp;
9498                 tmp = RHS(ins, 1);
9499                 RHS(ins, 1) = RHS(ins, 0);
9500                 RHS(ins, 0) = tmp;
9501         }
9502 }
9503
9504 static void simplify_sub(struct compile_state *state, struct triple *ins)
9505 {
9506         if (is_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9507                 if (RHS(ins, 0)->op == OP_INTCONST) {
9508                         ulong_t left, right;
9509                         left  = read_const(state, ins, RHS(ins, 0));
9510                         right = read_const(state, ins, RHS(ins, 1));
9511                         mkconst(state, ins, left - right);
9512                 }
9513                 else if (RHS(ins, 0)->op == OP_ADDRCONST) {
9514                         struct triple *sdecl;
9515                         ulong_t left, right;
9516                         sdecl = MISC(RHS(ins, 0), 0);
9517                         left  = RHS(ins, 0)->u.cval;
9518                         right = RHS(ins, 1)->u.cval;
9519                         mkaddr_const(state, ins, sdecl, left - right);
9520                 }
9521                 else {
9522                         internal_warning(state, ins, "Optimize me!");
9523                 }
9524         }
9525 }
9526
9527 static void simplify_sl(struct compile_state *state, struct triple *ins)
9528 {
9529         if (is_simple_const(RHS(ins, 1))) {
9530                 ulong_t right;
9531                 right = read_const(state, ins, RHS(ins, 1));
9532                 if (right >= (size_of(state, ins->type))) {
9533                         warning(state, ins, "left shift count >= width of type");
9534                 }
9535         }
9536         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9537                 ulong_t left, right;
9538                 left  = read_const(state, ins, RHS(ins, 0));
9539                 right = read_const(state, ins, RHS(ins, 1));
9540                 mkconst(state, ins,  left << right);
9541         }
9542 }
9543
9544 static void simplify_usr(struct compile_state *state, struct triple *ins)
9545 {
9546         if (is_simple_const(RHS(ins, 1))) {
9547                 ulong_t right;
9548                 right = read_const(state, ins, RHS(ins, 1));
9549                 if (right >= (size_of(state, ins->type))) {
9550                         warning(state, ins, "right shift count >= width of type");
9551                 }
9552         }
9553         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9554                 ulong_t left, right;
9555                 left  = read_const(state, ins, RHS(ins, 0));
9556                 right = read_const(state, ins, RHS(ins, 1));
9557                 mkconst(state, ins, left >> right);
9558         }
9559 }
9560
9561 static void simplify_ssr(struct compile_state *state, struct triple *ins)
9562 {
9563         if (is_simple_const(RHS(ins, 1))) {
9564                 ulong_t right;
9565                 right = read_const(state, ins, RHS(ins, 1));
9566                 if (right >= (size_of(state, ins->type))) {
9567                         warning(state, ins, "right shift count >= width of type");
9568                 }
9569         }
9570         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9571                 long_t left, right;
9572                 left  = read_sconst(state, ins, RHS(ins, 0));
9573                 right = read_sconst(state, ins, RHS(ins, 1));
9574                 mkconst(state, ins, left >> right);
9575         }
9576 }
9577
9578 static void simplify_and(struct compile_state *state, struct triple *ins)
9579 {
9580         struct triple *left, *right;
9581         left = RHS(ins, 0);
9582         right = RHS(ins, 1);
9583
9584         if (is_simple_const(left) && is_simple_const(right)) {
9585                 ulong_t lval, rval;
9586                 lval = read_const(state, ins, left);
9587                 rval = read_const(state, ins, right);
9588                 mkconst(state, ins, lval & rval);
9589         }
9590         else if (is_zero(right) || is_zero(left)) {
9591                 mkconst(state, ins, 0);
9592         }
9593 }
9594
9595 static void simplify_or(struct compile_state *state, struct triple *ins)
9596 {
9597         struct triple *left, *right;
9598         left = RHS(ins, 0);
9599         right = RHS(ins, 1);
9600
9601         if (is_simple_const(left) && is_simple_const(right)) {
9602                 ulong_t lval, rval;
9603                 lval = read_const(state, ins, left);
9604                 rval = read_const(state, ins, right);
9605                 mkconst(state, ins, lval | rval);
9606         }
9607 #if 0 /* I need to handle type mismatches here... */
9608         else if (is_zero(right)) {
9609                 mkcopy(state, ins, left);
9610         }
9611         else if (is_zero(left)) {
9612                 mkcopy(state, ins, right);
9613         }
9614 #endif
9615 }
9616
9617 static void simplify_xor(struct compile_state *state, struct triple *ins)
9618 {
9619         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9620                 ulong_t left, right;
9621                 left  = read_const(state, ins, RHS(ins, 0));
9622                 right = read_const(state, ins, RHS(ins, 1));
9623                 mkconst(state, ins, left ^ right);
9624         }
9625 }
9626
9627 static void simplify_pos(struct compile_state *state, struct triple *ins)
9628 {
9629         if (is_const(RHS(ins, 0))) {
9630                 mkconst(state, ins, RHS(ins, 0)->u.cval);
9631         }
9632         else {
9633                 mkcopy(state, ins, RHS(ins, 0));
9634         }
9635 }
9636
9637 static void simplify_neg(struct compile_state *state, struct triple *ins)
9638 {
9639         if (is_simple_const(RHS(ins, 0))) {
9640                 ulong_t left;
9641                 left = read_const(state, ins, RHS(ins, 0));
9642                 mkconst(state, ins, -left);
9643         }
9644         else if (RHS(ins, 0)->op == OP_NEG) {
9645                 mkcopy(state, ins, RHS(RHS(ins, 0), 0));
9646         }
9647 }
9648
9649 static void simplify_invert(struct compile_state *state, struct triple *ins)
9650 {
9651         if (is_simple_const(RHS(ins, 0))) {
9652                 ulong_t left;
9653                 left = read_const(state, ins, RHS(ins, 0));
9654                 mkconst(state, ins, ~left);
9655         }
9656 }
9657
9658 static void simplify_eq(struct compile_state *state, struct triple *ins)
9659 {
9660         struct triple *left, *right;
9661         left = RHS(ins, 0);
9662         right = RHS(ins, 1);
9663
9664         if (is_const(left) && is_const(right)) {
9665                 int val;
9666                 val = const_eq(state, ins, left, right);
9667                 if (val >= 0) {
9668                         mkconst(state, ins, val == 1);
9669                 }
9670         }
9671         else if (left == right) {
9672                 mkconst(state, ins, 1);
9673         }
9674 }
9675
9676 static void simplify_noteq(struct compile_state *state, struct triple *ins)
9677 {
9678         struct triple *left, *right;
9679         left = RHS(ins, 0);
9680         right = RHS(ins, 1);
9681
9682         if (is_const(left) && is_const(right)) {
9683                 int val;
9684                 val = const_eq(state, ins, left, right);
9685                 if (val >= 0) {
9686                         mkconst(state, ins, val != 1);
9687                 }
9688         }
9689         if (left == right) {
9690                 mkconst(state, ins, 0);
9691         }
9692 }
9693
9694 static void simplify_sless(struct compile_state *state, struct triple *ins)
9695 {
9696         struct triple *left, *right;
9697         left = RHS(ins, 0);
9698         right = RHS(ins, 1);
9699
9700         if (is_const(left) && is_const(right)) {
9701                 int val;
9702                 val = const_scmp(state, ins, left, right);
9703                 if ((val >= -1) && (val <= 1)) {
9704                         mkconst(state, ins, val < 0);
9705                 }
9706         }
9707         else if (left == right) {
9708                 mkconst(state, ins, 0);
9709         }
9710 }
9711
9712 static void simplify_uless(struct compile_state *state, struct triple *ins)
9713 {
9714         struct triple *left, *right;
9715         left = RHS(ins, 0);
9716         right = RHS(ins, 1);
9717
9718         if (is_const(left) && is_const(right)) {
9719                 int val;
9720                 val = const_ucmp(state, ins, left, right);
9721                 if ((val >= -1) && (val <= 1)) {
9722                         mkconst(state, ins, val < 0);
9723                 }
9724         }
9725         else if (is_zero(right)) {
9726                 mkconst(state, ins, 0);
9727         }
9728         else if (left == right) {
9729                 mkconst(state, ins, 0);
9730         }
9731 }
9732
9733 static void simplify_smore(struct compile_state *state, struct triple *ins)
9734 {
9735         struct triple *left, *right;
9736         left = RHS(ins, 0);
9737         right = RHS(ins, 1);
9738
9739         if (is_const(left) && is_const(right)) {
9740                 int val;
9741                 val = const_scmp(state, ins, left, right);
9742                 if ((val >= -1) && (val <= 1)) {
9743                         mkconst(state, ins, val > 0);
9744                 }
9745         }
9746         else if (left == right) {
9747                 mkconst(state, ins, 0);
9748         }
9749 }
9750
9751 static void simplify_umore(struct compile_state *state, struct triple *ins)
9752 {
9753         struct triple *left, *right;
9754         left = RHS(ins, 0);
9755         right = RHS(ins, 1);
9756
9757         if (is_const(left) && is_const(right)) {
9758                 int val;
9759                 val = const_ucmp(state, ins, left, right);
9760                 if ((val >= -1) && (val <= 1)) {
9761                         mkconst(state, ins, val > 0);
9762                 }
9763         }
9764         else if (is_zero(left)) {
9765                 mkconst(state, ins, 0);
9766         }
9767         else if (left == right) {
9768                 mkconst(state, ins, 0);
9769         }
9770 }
9771
9772
9773 static void simplify_slesseq(struct compile_state *state, struct triple *ins)
9774 {
9775         struct triple *left, *right;
9776         left = RHS(ins, 0);
9777         right = RHS(ins, 1);
9778
9779         if (is_const(left) && is_const(right)) {
9780                 int val;
9781                 val = const_scmp(state, ins, left, right);
9782                 if ((val >= -1) && (val <= 1)) {
9783                         mkconst(state, ins, val <= 0);
9784                 }
9785         }
9786         else if (left == right) {
9787                 mkconst(state, ins, 1);
9788         }
9789 }
9790
9791 static void simplify_ulesseq(struct compile_state *state, struct triple *ins)
9792 {
9793         struct triple *left, *right;
9794         left = RHS(ins, 0);
9795         right = RHS(ins, 1);
9796
9797         if (is_const(left) && is_const(right)) {
9798                 int val;
9799                 val = const_ucmp(state, ins, left, right);
9800                 if ((val >= -1) && (val <= 1)) {
9801                         mkconst(state, ins, val <= 0);
9802                 }
9803         }
9804         else if (is_zero(left)) {
9805                 mkconst(state, ins, 1);
9806         }
9807         else if (left == right) {
9808                 mkconst(state, ins, 1);
9809         }
9810 }
9811
9812 static void simplify_smoreeq(struct compile_state *state, struct triple *ins)
9813 {
9814         struct triple *left, *right;
9815         left = RHS(ins, 0);
9816         right = RHS(ins, 1);
9817
9818         if (is_const(left) && is_const(right)) {
9819                 int val;
9820                 val = const_scmp(state, ins, left, right);
9821                 if ((val >= -1) && (val <= 1)) {
9822                         mkconst(state, ins, val >= 0);
9823                 }
9824         }
9825         else if (left == right) {
9826                 mkconst(state, ins, 1);
9827         }
9828 }
9829
9830 static void simplify_umoreeq(struct compile_state *state, struct triple *ins)
9831 {
9832         struct triple *left, *right;
9833         left = RHS(ins, 0);
9834         right = RHS(ins, 1);
9835
9836         if (is_const(left) && is_const(right)) {
9837                 int val;
9838                 val = const_ucmp(state, ins, left, right);
9839                 if ((val >= -1) && (val <= 1)) {
9840                         mkconst(state, ins, val >= 0);
9841                 }
9842         }
9843         else if (is_zero(right)) {
9844                 mkconst(state, ins, 1);
9845         }
9846         else if (left == right) {
9847                 mkconst(state, ins, 1);
9848         }
9849 }
9850
9851 static void simplify_lfalse(struct compile_state *state, struct triple *ins)
9852 {
9853         struct triple *rhs;
9854         rhs = RHS(ins, 0);
9855
9856         if (is_const(rhs)) {
9857                 mkconst(state, ins, !const_ltrue(state, ins, rhs));
9858         }
9859         /* Otherwise if I am the only user... */
9860         else if ((rhs->use) &&
9861                 (rhs->use->member == ins) && (rhs->use->next == 0)) {
9862                 int need_copy = 1;
9863                 /* Invert a boolean operation */
9864                 switch(rhs->op) {
9865                 case OP_LTRUE:   rhs->op = OP_LFALSE;  break;
9866                 case OP_LFALSE:  rhs->op = OP_LTRUE;   break;
9867                 case OP_EQ:      rhs->op = OP_NOTEQ;   break;
9868                 case OP_NOTEQ:   rhs->op = OP_EQ;      break;
9869                 case OP_SLESS:   rhs->op = OP_SMOREEQ; break;
9870                 case OP_ULESS:   rhs->op = OP_UMOREEQ; break;
9871                 case OP_SMORE:   rhs->op = OP_SLESSEQ; break;
9872                 case OP_UMORE:   rhs->op = OP_ULESSEQ; break;
9873                 case OP_SLESSEQ: rhs->op = OP_SMORE;   break;
9874                 case OP_ULESSEQ: rhs->op = OP_UMORE;   break;
9875                 case OP_SMOREEQ: rhs->op = OP_SLESS;   break;
9876                 case OP_UMOREEQ: rhs->op = OP_ULESS;   break;
9877                 default:
9878                         need_copy = 0;
9879                         break;
9880                 }
9881                 if (need_copy) {
9882                         mkcopy(state, ins, rhs);
9883                 }
9884         }
9885 }
9886
9887 static void simplify_ltrue (struct compile_state *state, struct triple *ins)
9888 {
9889         struct triple *rhs;
9890         rhs = RHS(ins, 0);
9891
9892         if (is_const(rhs)) {
9893                 mkconst(state, ins, const_ltrue(state, ins, rhs));
9894         }
9895         else switch(rhs->op) {
9896         case OP_LTRUE:   case OP_LFALSE:  case OP_EQ:      case OP_NOTEQ:
9897         case OP_SLESS:   case OP_ULESS:   case OP_SMORE:   case OP_UMORE:
9898         case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
9899                 mkcopy(state, ins, rhs);
9900         }
9901
9902 }
9903
9904 static void simplify_load(struct compile_state *state, struct triple *ins)
9905 {
9906         struct triple *addr, *sdecl, *blob;
9907
9908         /* If I am doing a load with a constant pointer from a constant
9909          * table get the value.
9910          */
9911         addr = RHS(ins, 0);
9912         if ((addr->op == OP_ADDRCONST) && (sdecl = MISC(addr, 0)) &&
9913                 (sdecl->op == OP_SDECL) && (blob = MISC(sdecl, 0)) &&
9914                 (blob->op == OP_BLOBCONST)) {
9915                 unsigned char buffer[SIZEOF_WORD];
9916                 size_t reg_size, mem_size;
9917                 const char *src, *end;
9918                 ulong_t val;
9919                 reg_size = reg_size_of(state, ins->type);
9920                 if (reg_size > REG_SIZEOF_REG) {
9921                         internal_error(state, ins, "load size greater than register");
9922                 }
9923                 mem_size = size_of(state, ins->type);
9924                 end = blob->u.blob;
9925                 end += bits_to_bytes(size_of(state, sdecl->type));
9926                 src = blob->u.blob;
9927                 src += addr->u.cval;
9928
9929                 if (src > end) {
9930                         error(state, ins, "Load address out of bounds");
9931                 }
9932
9933                 memset(buffer, 0, sizeof(buffer));
9934                 memcpy(buffer, src, bits_to_bytes(mem_size));
9935
9936                 switch(mem_size) {
9937                 case SIZEOF_I8:  val = *((uint8_t *) buffer); break;
9938                 case SIZEOF_I16: val = *((uint16_t *)buffer); break;
9939                 case SIZEOF_I32: val = *((uint32_t *)buffer); break;
9940                 case SIZEOF_I64: val = *((uint64_t *)buffer); break;
9941                 default:
9942                         internal_error(state, ins, "mem_size: %d not handled",
9943                                 mem_size);
9944                         val = 0;
9945                         break;
9946                 }
9947                 mkconst(state, ins, val);
9948         }
9949 }
9950
9951 static void simplify_uextract(struct compile_state *state, struct triple *ins)
9952 {
9953         if (is_simple_const(RHS(ins, 0))) {
9954                 ulong_t val;
9955                 ulong_t mask;
9956                 val = read_const(state, ins, RHS(ins, 0));
9957                 mask = 1;
9958                 mask <<= ins->u.bitfield.size;
9959                 mask -= 1;
9960                 val >>= ins->u.bitfield.offset;
9961                 val &= mask;
9962                 mkconst(state, ins, val);
9963         }
9964 }
9965
9966 static void simplify_sextract(struct compile_state *state, struct triple *ins)
9967 {
9968         if (is_simple_const(RHS(ins, 0))) {
9969                 ulong_t val;
9970                 ulong_t mask;
9971                 long_t sval;
9972                 val = read_const(state, ins, RHS(ins, 0));
9973                 mask = 1;
9974                 mask <<= ins->u.bitfield.size;
9975                 mask -= 1;
9976                 val >>= ins->u.bitfield.offset;
9977                 val &= mask;
9978                 val <<= (SIZEOF_LONG - ins->u.bitfield.size);
9979                 sval = val;
9980                 sval >>= (SIZEOF_LONG - ins->u.bitfield.size); 
9981                 mkconst(state, ins, sval);
9982         }
9983 }
9984
9985 static void simplify_deposit(struct compile_state *state, struct triple *ins)
9986 {
9987         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9988                 ulong_t targ, val;
9989                 ulong_t mask;
9990                 targ = read_const(state, ins, RHS(ins, 0));
9991                 val  = read_const(state, ins, RHS(ins, 1));
9992                 mask = 1;
9993                 mask <<= ins->u.bitfield.size;
9994                 mask -= 1;
9995                 mask <<= ins->u.bitfield.offset;
9996                 targ &= ~mask;
9997                 val <<= ins->u.bitfield.offset;
9998                 val &= mask;
9999                 targ |= val;
10000                 mkconst(state, ins, targ);
10001         }
10002 }
10003
10004 static void simplify_copy(struct compile_state *state, struct triple *ins)
10005 {
10006         struct triple *right;
10007         right = RHS(ins, 0);
10008         if (is_subset_type(ins->type, right->type)) {
10009                 ins->type = right->type;
10010         }
10011         if (equiv_types(ins->type, right->type)) {
10012                 ins->op = OP_COPY;/* I don't need to convert if the types match */
10013         } else {
10014                 if (ins->op == OP_COPY) {
10015                         internal_error(state, ins, "type mismatch on copy");
10016                 }
10017         }
10018         if (is_const(right) && (right->op == OP_ADDRCONST) && is_pointer(ins)) {
10019                 struct triple *sdecl;
10020                 ulong_t offset;
10021                 sdecl  = MISC(right, 0);
10022                 offset = right->u.cval;
10023                 mkaddr_const(state, ins, sdecl, offset);
10024         }
10025         else if (is_const(right) && is_write_compatible(state, ins->type, right->type)) {
10026                 switch(right->op) {
10027                 case OP_INTCONST:
10028                 {
10029                         ulong_t left;
10030                         left = read_const(state, ins, right);
10031                         /* Ensure I have not overflowed the destination. */
10032                         if (size_of(state, right->type) > size_of(state, ins->type)) {
10033                                 ulong_t mask;
10034                                 mask = 1;
10035                                 mask <<= size_of(state, ins->type);
10036                                 mask -= 1;
10037                                 left &= mask;
10038                         }
10039                         /* Ensure I am properly sign extended */
10040                         if (size_of(state, right->type) < size_of(state, ins->type) &&
10041                                 is_signed(right->type)) {
10042                                 long_t val;
10043                                 int shift;
10044                                 shift = SIZEOF_LONG - size_of(state, right->type);
10045                                 val = left;
10046                                 val <<= shift;
10047                                 val >>= shift;
10048                                 left = val;
10049                         }
10050                         mkconst(state, ins, left);
10051                         break;
10052                 }
10053                 default:
10054                         internal_error(state, ins, "uknown constant");
10055                         break;
10056                 }
10057         }
10058 }
10059
10060 static int phi_present(struct block *block)
10061 {
10062         struct triple *ptr;
10063         if (!block) {
10064                 return 0;
10065         }
10066         ptr = block->first;
10067         do {
10068                 if (ptr->op == OP_PHI) {
10069                         return 1;
10070                 }
10071                 ptr = ptr->next;
10072         } while(ptr != block->last);
10073         return 0;
10074 }
10075
10076 static int phi_dependency(struct block *block)
10077 {
10078         /* A block has a phi dependency if a phi function
10079          * depends on that block to exist, and makes a block
10080          * that is otherwise useless unsafe to remove.
10081          */
10082         if (block) {
10083                 struct block_set *edge;
10084                 for(edge = block->edges; edge; edge = edge->next) {
10085                         if (phi_present(edge->member)) {
10086                                 return 1;
10087                         }
10088                 }
10089         }
10090         return 0;
10091 }
10092
10093 static struct triple *branch_target(struct compile_state *state, struct triple *ins)
10094 {
10095         struct triple *targ;
10096         targ = TARG(ins, 0);
10097         /* During scc_transform temporary triples are allocated that
10098          * loop back onto themselves. If I see one don't advance the
10099          * target.
10100          */
10101         while(triple_is_structural(state, targ) && 
10102                 (targ->next != targ) && (targ->next != state->first)) {
10103                 targ = targ->next;
10104         }
10105         return targ;
10106 }
10107
10108
10109 static void simplify_branch(struct compile_state *state, struct triple *ins)
10110 {
10111         int simplified, loops;
10112         if ((ins->op != OP_BRANCH) && (ins->op != OP_CBRANCH)) {
10113                 internal_error(state, ins, "not branch");
10114         }
10115         if (ins->use != 0) {
10116                 internal_error(state, ins, "branch use");
10117         }
10118         /* The challenge here with simplify branch is that I need to 
10119          * make modifications to the control flow graph as well
10120          * as to the branch instruction itself.  That is handled
10121          * by rebuilding the basic blocks after simplify all is called.
10122          */
10123
10124         /* If we have a branch to an unconditional branch update
10125          * our target.  But watch out for dependencies from phi
10126          * functions.
10127          * Also only do this a limited number of times so
10128          * we don't get into an infinite loop.
10129          */
10130         loops = 0;
10131         do {
10132                 struct triple *targ;
10133                 simplified = 0;
10134                 targ = branch_target(state, ins);
10135                 if ((targ != ins) && (targ->op == OP_BRANCH) && 
10136                         !phi_dependency(targ->u.block))
10137                 {
10138                         unuse_triple(TARG(ins, 0), ins);
10139                         TARG(ins, 0) = TARG(targ, 0);
10140                         use_triple(TARG(ins, 0), ins);
10141                         simplified = 1;
10142                 }
10143         } while(simplified && (++loops < 20));
10144
10145         /* If we have a conditional branch with a constant condition
10146          * make it an unconditional branch.
10147          */
10148         if ((ins->op == OP_CBRANCH) && is_simple_const(RHS(ins, 0))) {
10149                 struct triple *targ;
10150                 ulong_t value;
10151                 value = read_const(state, ins, RHS(ins, 0));
10152                 unuse_triple(RHS(ins, 0), ins);
10153                 targ = TARG(ins, 0);
10154                 ins->rhs  = 0;
10155                 ins->targ = 1;
10156                 ins->op = OP_BRANCH;
10157                 if (value) {
10158                         unuse_triple(ins->next, ins);
10159                         TARG(ins, 0) = targ;
10160                 }
10161                 else {
10162                         unuse_triple(targ, ins);
10163                         TARG(ins, 0) = ins->next;
10164                 }
10165         }
10166
10167         /* If we have a branch to the next instruction,
10168          * make it a noop.
10169          */
10170         if (TARG(ins, 0) == ins->next) {
10171                 unuse_triple(TARG(ins, 0), ins);
10172                 if (ins->op == OP_CBRANCH) {
10173                         unuse_triple(RHS(ins, 0), ins);
10174                         unuse_triple(ins->next, ins);
10175                 }
10176                 ins->lhs = 0;
10177                 ins->rhs = 0;
10178                 ins->misc = 0;
10179                 ins->targ = 0;
10180                 ins->op = OP_NOOP;
10181                 if (ins->use) {
10182                         internal_error(state, ins, "noop use != 0");
10183                 }
10184         }
10185 }
10186
10187 static void simplify_label(struct compile_state *state, struct triple *ins)
10188 {
10189         /* Ignore volatile labels */
10190         if (!triple_is_pure(state, ins, ins->id)) {
10191                 return;
10192         }
10193         if (ins->use == 0) {
10194                 ins->op = OP_NOOP;
10195         }
10196         else if (ins->prev->op == OP_LABEL) {
10197                 /* In general it is not safe to merge one label that
10198                  * imediately follows another.  The problem is that the empty
10199                  * looking block may have phi functions that depend on it.
10200                  */
10201                 if (!phi_dependency(ins->prev->u.block)) {
10202                         struct triple_set *user, *next;
10203                         ins->op = OP_NOOP;
10204                         for(user = ins->use; user; user = next) {
10205                                 struct triple *use, **expr;
10206                                 next = user->next;
10207                                 use = user->member;
10208                                 expr = triple_targ(state, use, 0);
10209                                 for(;expr; expr = triple_targ(state, use, expr)) {
10210                                         if (*expr == ins) {
10211                                                 *expr = ins->prev;
10212                                                 unuse_triple(ins, use);
10213                                                 use_triple(ins->prev, use);
10214                                         }
10215                                         
10216                                 }
10217                         }
10218                         if (ins->use) {
10219                                 internal_error(state, ins, "noop use != 0");
10220                         }
10221                 }
10222         }
10223 }
10224
10225 static void simplify_phi(struct compile_state *state, struct triple *ins)
10226 {
10227         struct triple **slot;
10228         struct triple *value;
10229         int zrhs, i;
10230         ulong_t cvalue;
10231         slot = &RHS(ins, 0);
10232         zrhs = ins->rhs;
10233         if (zrhs == 0) {
10234                 return;
10235         }
10236         /* See if all of the rhs members of a phi have the same value */
10237         if (slot[0] && is_simple_const(slot[0])) {
10238                 cvalue = read_const(state, ins, slot[0]);
10239                 for(i = 1; i < zrhs; i++) {
10240                         if (    !slot[i] ||
10241                                 !is_simple_const(slot[i]) ||
10242                                 !equiv_types(slot[0]->type, slot[i]->type) ||
10243                                 (cvalue != read_const(state, ins, slot[i]))) {
10244                                 break;
10245                         }
10246                 }
10247                 if (i == zrhs) {
10248                         mkconst(state, ins, cvalue);
10249                         return;
10250                 }
10251         }
10252         
10253         /* See if all of rhs members of a phi are the same */
10254         value = slot[0];
10255         for(i = 1; i < zrhs; i++) {
10256                 if (slot[i] != value) {
10257                         break;
10258                 }
10259         }
10260         if (i == zrhs) {
10261                 /* If the phi has a single value just copy it */
10262                 if (!is_subset_type(ins->type, value->type)) {
10263                         internal_error(state, ins, "bad input type to phi");
10264                 }
10265                 /* Make the types match */
10266                 if (!equiv_types(ins->type, value->type)) {
10267                         ins->type = value->type;
10268                 }
10269                 /* Now make the actual copy */
10270                 mkcopy(state, ins, value);
10271                 return;
10272         }
10273 }
10274
10275
10276 static void simplify_bsf(struct compile_state *state, struct triple *ins)
10277 {
10278         if (is_simple_const(RHS(ins, 0))) {
10279                 ulong_t left;
10280                 left = read_const(state, ins, RHS(ins, 0));
10281                 mkconst(state, ins, bsf(left));
10282         }
10283 }
10284
10285 static void simplify_bsr(struct compile_state *state, struct triple *ins)
10286 {
10287         if (is_simple_const(RHS(ins, 0))) {
10288                 ulong_t left;
10289                 left = read_const(state, ins, RHS(ins, 0));
10290                 mkconst(state, ins, bsr(left));
10291         }
10292 }
10293
10294
10295 typedef void (*simplify_t)(struct compile_state *state, struct triple *ins);
10296 static const struct simplify_table {
10297         simplify_t func;
10298         unsigned long flag;
10299 } table_simplify[] = {
10300 #define simplify_sdivt    simplify_noop
10301 #define simplify_udivt    simplify_noop
10302 #define simplify_piece    simplify_noop
10303
10304 [OP_SDIVT      ] = { simplify_sdivt,    COMPILER_SIMPLIFY_ARITH },
10305 [OP_UDIVT      ] = { simplify_udivt,    COMPILER_SIMPLIFY_ARITH },
10306 [OP_SMUL       ] = { simplify_smul,     COMPILER_SIMPLIFY_ARITH },
10307 [OP_UMUL       ] = { simplify_umul,     COMPILER_SIMPLIFY_ARITH },
10308 [OP_SDIV       ] = { simplify_sdiv,     COMPILER_SIMPLIFY_ARITH },
10309 [OP_UDIV       ] = { simplify_udiv,     COMPILER_SIMPLIFY_ARITH },
10310 [OP_SMOD       ] = { simplify_smod,     COMPILER_SIMPLIFY_ARITH },
10311 [OP_UMOD       ] = { simplify_umod,     COMPILER_SIMPLIFY_ARITH },
10312 [OP_ADD        ] = { simplify_add,      COMPILER_SIMPLIFY_ARITH },
10313 [OP_SUB        ] = { simplify_sub,      COMPILER_SIMPLIFY_ARITH },
10314 [OP_SL         ] = { simplify_sl,       COMPILER_SIMPLIFY_SHIFT },
10315 [OP_USR        ] = { simplify_usr,      COMPILER_SIMPLIFY_SHIFT },
10316 [OP_SSR        ] = { simplify_ssr,      COMPILER_SIMPLIFY_SHIFT },
10317 [OP_AND        ] = { simplify_and,      COMPILER_SIMPLIFY_BITWISE },
10318 [OP_XOR        ] = { simplify_xor,      COMPILER_SIMPLIFY_BITWISE },
10319 [OP_OR         ] = { simplify_or,       COMPILER_SIMPLIFY_BITWISE },
10320 [OP_POS        ] = { simplify_pos,      COMPILER_SIMPLIFY_ARITH },
10321 [OP_NEG        ] = { simplify_neg,      COMPILER_SIMPLIFY_ARITH },
10322 [OP_INVERT     ] = { simplify_invert,   COMPILER_SIMPLIFY_BITWISE },
10323
10324 [OP_EQ         ] = { simplify_eq,       COMPILER_SIMPLIFY_LOGICAL },
10325 [OP_NOTEQ      ] = { simplify_noteq,    COMPILER_SIMPLIFY_LOGICAL },
10326 [OP_SLESS      ] = { simplify_sless,    COMPILER_SIMPLIFY_LOGICAL },
10327 [OP_ULESS      ] = { simplify_uless,    COMPILER_SIMPLIFY_LOGICAL },
10328 [OP_SMORE      ] = { simplify_smore,    COMPILER_SIMPLIFY_LOGICAL },
10329 [OP_UMORE      ] = { simplify_umore,    COMPILER_SIMPLIFY_LOGICAL },
10330 [OP_SLESSEQ    ] = { simplify_slesseq,  COMPILER_SIMPLIFY_LOGICAL },
10331 [OP_ULESSEQ    ] = { simplify_ulesseq,  COMPILER_SIMPLIFY_LOGICAL },
10332 [OP_SMOREEQ    ] = { simplify_smoreeq,  COMPILER_SIMPLIFY_LOGICAL },
10333 [OP_UMOREEQ    ] = { simplify_umoreeq,  COMPILER_SIMPLIFY_LOGICAL },
10334 [OP_LFALSE     ] = { simplify_lfalse,   COMPILER_SIMPLIFY_LOGICAL },
10335 [OP_LTRUE      ] = { simplify_ltrue,    COMPILER_SIMPLIFY_LOGICAL },
10336
10337 [OP_LOAD       ] = { simplify_load,     COMPILER_SIMPLIFY_OP },
10338 [OP_STORE      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10339
10340 [OP_UEXTRACT   ] = { simplify_uextract, COMPILER_SIMPLIFY_BITFIELD },
10341 [OP_SEXTRACT   ] = { simplify_sextract, COMPILER_SIMPLIFY_BITFIELD },
10342 [OP_DEPOSIT    ] = { simplify_deposit,  COMPILER_SIMPLIFY_BITFIELD },
10343
10344 [OP_NOOP       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10345
10346 [OP_INTCONST   ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10347 [OP_BLOBCONST  ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10348 [OP_ADDRCONST  ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10349 [OP_UNKNOWNVAL ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10350
10351 [OP_WRITE      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10352 [OP_READ       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10353 [OP_COPY       ] = { simplify_copy,     COMPILER_SIMPLIFY_COPY },
10354 [OP_CONVERT    ] = { simplify_copy,     COMPILER_SIMPLIFY_COPY },
10355 [OP_PIECE      ] = { simplify_piece,    COMPILER_SIMPLIFY_OP },
10356 [OP_ASM        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10357
10358 [OP_DOT        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10359 [OP_INDEX      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10360
10361 [OP_LIST       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10362 [OP_BRANCH     ] = { simplify_branch,   COMPILER_SIMPLIFY_BRANCH },
10363 [OP_CBRANCH    ] = { simplify_branch,   COMPILER_SIMPLIFY_BRANCH },
10364 [OP_CALL       ] = { simplify_noop,     COMPILER_SIMPLIFY_BRANCH },
10365 [OP_RET        ] = { simplify_noop,     COMPILER_SIMPLIFY_BRANCH },
10366 [OP_LABEL      ] = { simplify_label,    COMPILER_SIMPLIFY_LABEL },
10367 [OP_ADECL      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10368 [OP_SDECL      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10369 [OP_PHI        ] = { simplify_phi,      COMPILER_SIMPLIFY_PHI },
10370
10371 [OP_INB        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10372 [OP_INW        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10373 [OP_INL        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10374 [OP_OUTB       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10375 [OP_OUTW       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10376 [OP_OUTL       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10377 [OP_BSF        ] = { simplify_bsf,      COMPILER_SIMPLIFY_OP },
10378 [OP_BSR        ] = { simplify_bsr,      COMPILER_SIMPLIFY_OP },
10379 [OP_RDMSR      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10380 [OP_WRMSR      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },               
10381 [OP_HLT        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10382 };
10383
10384 static inline void debug_simplify(struct compile_state *state, 
10385         simplify_t do_simplify, struct triple *ins)
10386 {
10387 #if DEBUG_SIMPLIFY_HIRES
10388                 if (state->functions_joined && (do_simplify != simplify_noop)) {
10389                         /* High resolution debugging mode */
10390                         fprintf(state->dbgout, "simplifing: ");
10391                         display_triple(state->dbgout, ins);
10392                 }
10393 #endif
10394                 do_simplify(state, ins);
10395 #if DEBUG_SIMPLIFY_HIRES
10396                 if (state->functions_joined && (do_simplify != simplify_noop)) {
10397                         /* High resolution debugging mode */
10398                         fprintf(state->dbgout, "simplified: ");
10399                         display_triple(state->dbgout, ins);
10400                 }
10401 #endif
10402 }
10403 static void simplify(struct compile_state *state, struct triple *ins)
10404 {
10405         int op;
10406         simplify_t do_simplify;
10407         if (ins == &unknown_triple) {
10408                 internal_error(state, ins, "simplifying the unknown triple?");
10409         }
10410         do {
10411                 op = ins->op;
10412                 do_simplify = 0;
10413                 if ((op < 0) || (op > sizeof(table_simplify)/sizeof(table_simplify[0]))) {
10414                         do_simplify = 0;
10415                 }
10416                 else {
10417                         do_simplify = table_simplify[op].func;
10418                 }
10419                 if (do_simplify && 
10420                         !(state->compiler->flags & table_simplify[op].flag)) {
10421                         do_simplify = simplify_noop;
10422                 }
10423                 if (do_simplify && (ins->id & TRIPLE_FLAG_VOLATILE)) {
10424                         do_simplify = simplify_noop;
10425                 }
10426         
10427                 if (!do_simplify) {
10428                         internal_error(state, ins, "cannot simplify op: %d %s",
10429                                 op, tops(op));
10430                         return;
10431                 }
10432                 debug_simplify(state, do_simplify, ins);
10433         } while(ins->op != op);
10434 }
10435
10436 static void rebuild_ssa_form(struct compile_state *state);
10437
10438 static void simplify_all(struct compile_state *state)
10439 {
10440         struct triple *ins, *first;
10441         if (!(state->compiler->flags & COMPILER_SIMPLIFY)) {
10442                 return;
10443         }
10444         first = state->first;
10445         ins = first->prev;
10446         do {
10447                 simplify(state, ins);
10448                 ins = ins->prev;
10449         } while(ins != first->prev);
10450         ins = first;
10451         do {
10452                 simplify(state, ins);
10453                 ins = ins->next;
10454         }while(ins != first);
10455         rebuild_ssa_form(state);
10456
10457         print_blocks(state, __func__, state->dbgout);
10458 }
10459
10460 /*
10461  * Builtins....
10462  * ============================
10463  */
10464
10465 static void register_builtin_function(struct compile_state *state,
10466         const char *name, int op, struct type *rtype, ...)
10467 {
10468         struct type *ftype, *atype, *ctype, *crtype, *param, **next;
10469         struct triple *def, *arg, *result, *work, *last, *first, *retvar, *ret;
10470         struct hash_entry *ident;
10471         struct file_state file;
10472         int parameters;
10473         int name_len;
10474         va_list args;
10475         int i;
10476
10477         /* Dummy file state to get debug handling right */
10478         memset(&file, 0, sizeof(file));
10479         file.basename = "<built-in>";
10480         file.line = 1;
10481         file.report_line = 1;
10482         file.report_name = file.basename;
10483         file.prev = state->file;
10484         state->file = &file;
10485         state->function = name;
10486
10487         /* Find the Parameter count */
10488         valid_op(state, op);
10489         parameters = table_ops[op].rhs;
10490         if (parameters < 0 ) {
10491                 internal_error(state, 0, "Invalid builtin parameter count");
10492         }
10493
10494         /* Find the function type */
10495         ftype = new_type(TYPE_FUNCTION | STOR_INLINE | STOR_STATIC, rtype, 0);
10496         ftype->elements = parameters;
10497         next = &ftype->right;
10498         va_start(args, rtype);
10499         for(i = 0; i < parameters; i++) {
10500                 atype = va_arg(args, struct type *);
10501                 if (!*next) {
10502                         *next = atype;
10503                 } else {
10504                         *next = new_type(TYPE_PRODUCT, *next, atype);
10505                         next = &((*next)->right);
10506                 }
10507         }
10508         if (!*next) {
10509                 *next = &void_type;
10510         }
10511         va_end(args);
10512
10513         /* Get the initial closure type */
10514         ctype = new_type(TYPE_JOIN, &void_type, 0);
10515         ctype->elements = 1;
10516
10517         /* Get the return type */
10518         crtype = new_type(TYPE_TUPLE, new_type(TYPE_PRODUCT, ctype, rtype), 0);
10519         crtype->elements = 2;
10520
10521         /* Generate the needed triples */
10522         def = triple(state, OP_LIST, ftype, 0, 0);
10523         first = label(state);
10524         RHS(def, 0) = first;
10525         result = flatten(state, first, variable(state, crtype));
10526         retvar = flatten(state, first, variable(state, &void_ptr_type));
10527         ret = triple(state, OP_RET, &void_type, read_expr(state, retvar), 0);
10528
10529         /* Now string them together */
10530         param = ftype->right;
10531         for(i = 0; i < parameters; i++) {
10532                 if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
10533                         atype = param->left;
10534                 } else {
10535                         atype = param;
10536                 }
10537                 arg = flatten(state, first, variable(state, atype));
10538                 param = param->right;
10539         }
10540         work = new_triple(state, op, rtype, -1, parameters);
10541         generate_lhs_pieces(state, work);
10542         for(i = 0; i < parameters; i++) {
10543                 RHS(work, i) = read_expr(state, farg(state, def, i));
10544         }
10545         if ((rtype->type & TYPE_MASK) != TYPE_VOID) {
10546                 work = write_expr(state, deref_index(state, result, 1), work);
10547         }
10548         work = flatten(state, first, work);
10549         last = flatten(state, first, label(state));
10550         ret  = flatten(state, first, ret);
10551         name_len = strlen(name);
10552         ident = lookup(state, name, name_len);
10553         ftype->type_ident = ident;
10554         symbol(state, ident, &ident->sym_ident, def, ftype);
10555         
10556         state->file = file.prev;
10557         state->function = 0;
10558         state->main_function = 0;
10559
10560         if (!state->functions) {
10561                 state->functions = def;
10562         } else {
10563                 insert_triple(state, state->functions, def);
10564         }
10565         if (state->compiler->debug & DEBUG_INLINE) {
10566                 FILE *fp = state->dbgout;
10567                 fprintf(fp, "\n");
10568                 loc(fp, state, 0);
10569                 fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
10570                 display_func(state, fp, def);
10571                 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
10572         }
10573 }
10574
10575 static struct type *partial_struct(struct compile_state *state,
10576         const char *field_name, struct type *type, struct type *rest)
10577 {
10578         struct hash_entry *field_ident;
10579         struct type *result;
10580         int field_name_len;
10581
10582         field_name_len = strlen(field_name);
10583         field_ident = lookup(state, field_name, field_name_len);
10584
10585         result = clone_type(0, type);
10586         result->field_ident = field_ident;
10587
10588         if (rest) {
10589                 result = new_type(TYPE_PRODUCT, result, rest);
10590         }
10591         return result;
10592 }
10593
10594 static struct type *register_builtin_type(struct compile_state *state,
10595         const char *name, struct type *type)
10596 {
10597         struct hash_entry *ident;
10598         int name_len;
10599
10600         name_len = strlen(name);
10601         ident = lookup(state, name, name_len);
10602         
10603         if ((type->type & TYPE_MASK) == TYPE_PRODUCT) {
10604                 ulong_t elements = 0;
10605                 struct type *field;
10606                 type = new_type(TYPE_STRUCT, type, 0);
10607                 field = type->left;
10608                 while((field->type & TYPE_MASK) == TYPE_PRODUCT) {
10609                         elements++;
10610                         field = field->right;
10611                 }
10612                 elements++;
10613                 symbol(state, ident, &ident->sym_tag, 0, type);
10614                 type->type_ident = ident;
10615                 type->elements = elements;
10616         }
10617         symbol(state, ident, &ident->sym_ident, 0, type);
10618         ident->tok = TOK_TYPE_NAME;
10619         return type;
10620 }
10621
10622
10623 static void register_builtins(struct compile_state *state)
10624 {
10625         struct type *div_type, *ldiv_type;
10626         struct type *udiv_type, *uldiv_type;
10627         struct type *msr_type;
10628
10629         div_type = register_builtin_type(state, "__builtin_div_t",
10630                 partial_struct(state, "quot", &int_type,
10631                 partial_struct(state, "rem",  &int_type, 0)));
10632         ldiv_type = register_builtin_type(state, "__builtin_ldiv_t",
10633                 partial_struct(state, "quot", &long_type,
10634                 partial_struct(state, "rem",  &long_type, 0)));
10635         udiv_type = register_builtin_type(state, "__builtin_udiv_t",
10636                 partial_struct(state, "quot", &uint_type,
10637                 partial_struct(state, "rem",  &uint_type, 0)));
10638         uldiv_type = register_builtin_type(state, "__builtin_uldiv_t",
10639                 partial_struct(state, "quot", &ulong_type,
10640                 partial_struct(state, "rem",  &ulong_type, 0)));
10641
10642         register_builtin_function(state, "__builtin_div",   OP_SDIVT, div_type,
10643                 &int_type, &int_type);
10644         register_builtin_function(state, "__builtin_ldiv",  OP_SDIVT, ldiv_type,
10645                 &long_type, &long_type);
10646         register_builtin_function(state, "__builtin_udiv",  OP_UDIVT, udiv_type,
10647                 &uint_type, &uint_type);
10648         register_builtin_function(state, "__builtin_uldiv", OP_UDIVT, uldiv_type,
10649                 &ulong_type, &ulong_type);
10650
10651         register_builtin_function(state, "__builtin_inb", OP_INB, &uchar_type, 
10652                 &ushort_type);
10653         register_builtin_function(state, "__builtin_inw", OP_INW, &ushort_type,
10654                 &ushort_type);
10655         register_builtin_function(state, "__builtin_inl", OP_INL, &uint_type,   
10656                 &ushort_type);
10657
10658         register_builtin_function(state, "__builtin_outb", OP_OUTB, &void_type, 
10659                 &uchar_type, &ushort_type);
10660         register_builtin_function(state, "__builtin_outw", OP_OUTW, &void_type, 
10661                 &ushort_type, &ushort_type);
10662         register_builtin_function(state, "__builtin_outl", OP_OUTL, &void_type, 
10663                 &uint_type, &ushort_type);
10664         
10665         register_builtin_function(state, "__builtin_bsf", OP_BSF, &int_type, 
10666                 &int_type);
10667         register_builtin_function(state, "__builtin_bsr", OP_BSR, &int_type, 
10668                 &int_type);
10669
10670         msr_type = register_builtin_type(state, "__builtin_msr_t",
10671                 partial_struct(state, "lo", &ulong_type,
10672                 partial_struct(state, "hi", &ulong_type, 0)));
10673
10674         register_builtin_function(state, "__builtin_rdmsr", OP_RDMSR, msr_type,
10675                 &ulong_type);
10676         register_builtin_function(state, "__builtin_wrmsr", OP_WRMSR, &void_type,
10677                 &ulong_type, &ulong_type, &ulong_type);
10678         
10679         register_builtin_function(state, "__builtin_hlt", OP_HLT, &void_type, 
10680                 &void_type);
10681 }
10682
10683 static struct type *declarator(
10684         struct compile_state *state, struct type *type, 
10685         struct hash_entry **ident, int need_ident);
10686 static void decl(struct compile_state *state, struct triple *first);
10687 static struct type *specifier_qualifier_list(struct compile_state *state);
10688 #if DEBUG_ROMCC_WARNING
10689 static int isdecl_specifier(int tok);
10690 #endif
10691 static struct type *decl_specifiers(struct compile_state *state);
10692 static int istype(int tok);
10693 static struct triple *expr(struct compile_state *state);
10694 static struct triple *assignment_expr(struct compile_state *state);
10695 static struct type *type_name(struct compile_state *state);
10696 static void statement(struct compile_state *state, struct triple *first);
10697
10698 static struct triple *call_expr(
10699         struct compile_state *state, struct triple *func)
10700 {
10701         struct triple *def;
10702         struct type *param, *type;
10703         ulong_t pvals, index;
10704
10705         if ((func->type->type & TYPE_MASK) != TYPE_FUNCTION) {
10706                 error(state, 0, "Called object is not a function");
10707         }
10708         if (func->op != OP_LIST) {
10709                 internal_error(state, 0, "improper function");
10710         }
10711         eat(state, TOK_LPAREN);
10712         /* Find the return type without any specifiers */
10713         type = clone_type(0, func->type->left);
10714         /* Count the number of rhs entries for OP_FCALL */
10715         param = func->type->right;
10716         pvals = 0;
10717         while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
10718                 pvals++;
10719                 param = param->right;
10720         }
10721         if ((param->type & TYPE_MASK) != TYPE_VOID) {
10722                 pvals++;
10723         }
10724         def = new_triple(state, OP_FCALL, type, -1, pvals);
10725         MISC(def, 0) = func;
10726
10727         param = func->type->right;
10728         for(index = 0; index < pvals; index++) {
10729                 struct triple *val;
10730                 struct type *arg_type;
10731                 val = read_expr(state, assignment_expr(state));
10732                 arg_type = param;
10733                 if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
10734                         arg_type = param->left;
10735                 }
10736                 write_compatible(state, arg_type, val->type);
10737                 RHS(def, index) = val;
10738                 if (index != (pvals - 1)) {
10739                         eat(state, TOK_COMMA);
10740                         param = param->right;
10741                 }
10742         }
10743         eat(state, TOK_RPAREN);
10744         return def;
10745 }
10746
10747
10748 static struct triple *character_constant(struct compile_state *state)
10749 {
10750         struct triple *def;
10751         struct token *tk;
10752         const signed char *str, *end;
10753         int c;
10754         int str_len;
10755         tk = eat(state, TOK_LIT_CHAR);
10756         str = (signed char *)tk->val.str + 1;
10757         str_len = tk->str_len - 2;
10758         if (str_len <= 0) {
10759                 error(state, 0, "empty character constant");
10760         }
10761         end = str + str_len;
10762         c = char_value(state, &str, end);
10763         if (str != end) {
10764                 error(state, 0, "multibyte character constant not supported");
10765         }
10766         def = int_const(state, &char_type, (ulong_t)((long_t)c));
10767         return def;
10768 }
10769
10770 static struct triple *string_constant(struct compile_state *state)
10771 {
10772         struct triple *def;
10773         struct token *tk;
10774         struct type *type;
10775         const signed char *str, *end;
10776         signed char *buf, *ptr;
10777         int str_len;
10778
10779         buf = 0;
10780         type = new_type(TYPE_ARRAY, &char_type, 0);
10781         type->elements = 0;
10782         /* The while loop handles string concatenation */
10783         do {
10784                 tk = eat(state, TOK_LIT_STRING);
10785                 str = (signed char *)tk->val.str + 1;
10786                 str_len = tk->str_len - 2;
10787                 if (str_len < 0) {
10788                         error(state, 0, "negative string constant length");
10789                 }
10790                 /* ignore empty string tokens */
10791                 if ('"' == *str && 0 == str[1])
10792                         continue;
10793                 end = str + str_len;
10794                 ptr = buf;
10795                 buf = xmalloc(type->elements + str_len + 1, "string_constant");
10796                 memcpy(buf, ptr, type->elements);
10797                 ptr = buf + type->elements;
10798                 do {
10799                         *ptr++ = char_value(state, &str, end);
10800                 } while(str < end);
10801                 type->elements = ptr - buf;
10802         } while(peek(state) == TOK_LIT_STRING);
10803         *ptr = '\0';
10804         type->elements += 1;
10805         def = triple(state, OP_BLOBCONST, type, 0, 0);
10806         def->u.blob = buf;
10807
10808         return def;
10809 }
10810
10811
10812 static struct triple *integer_constant(struct compile_state *state)
10813 {
10814         struct triple *def;
10815         unsigned long val;
10816         struct token *tk;
10817         char *end;
10818         int u, l, decimal;
10819         struct type *type;
10820
10821         tk = eat(state, TOK_LIT_INT);
10822         errno = 0;
10823         decimal = (tk->val.str[0] != '0');
10824         val = strtoul(tk->val.str, &end, 0);
10825         if ((val > ULONG_T_MAX) || ((val == ULONG_MAX) && (errno == ERANGE))) {
10826                 error(state, 0, "Integer constant to large");
10827         }
10828         u = l = 0;
10829         if ((*end == 'u') || (*end == 'U')) {
10830                 u = 1;
10831                         end++;
10832         }
10833         if ((*end == 'l') || (*end == 'L')) {
10834                 l = 1;
10835                 end++;
10836         }
10837         if ((*end == 'u') || (*end == 'U')) {
10838                 u = 1;
10839                 end++;
10840         }
10841         if (*end) {
10842                 error(state, 0, "Junk at end of integer constant");
10843         }
10844         if (u && l)  {
10845                 type = &ulong_type;
10846         }
10847         else if (l) {
10848                 type = &long_type;
10849                 if (!decimal && (val > LONG_T_MAX)) {
10850                         type = &ulong_type;
10851                 }
10852         }
10853         else if (u) {
10854                 type = &uint_type;
10855                 if (val > UINT_T_MAX) {
10856                         type = &ulong_type;
10857                 }
10858         }
10859         else {
10860                 type = &int_type;
10861                 if (!decimal && (val > INT_T_MAX) && (val <= UINT_T_MAX)) {
10862                         type = &uint_type;
10863                 }
10864                 else if (!decimal && (val > LONG_T_MAX)) {
10865                         type = &ulong_type;
10866                 }
10867                 else if (val > INT_T_MAX) {
10868                         type = &long_type;
10869                 }
10870         }
10871         def = int_const(state, type, val);
10872         return def;
10873 }
10874
10875 static struct triple *primary_expr(struct compile_state *state)
10876 {
10877         struct triple *def;
10878         int tok;
10879         tok = peek(state);
10880         switch(tok) {
10881         case TOK_IDENT:
10882         {
10883                 struct hash_entry *ident;
10884                 /* Here ident is either:
10885                  * a varable name
10886                  * a function name
10887                  */
10888                 ident = eat(state, TOK_IDENT)->ident;
10889                 if (!ident->sym_ident) {
10890                         error(state, 0, "%s undeclared", ident->name);
10891                 }
10892                 def = ident->sym_ident->def;
10893                 break;
10894         }
10895         case TOK_ENUM_CONST:
10896         {
10897                 struct hash_entry *ident;
10898                 /* Here ident is an enumeration constant */
10899                 ident = eat(state, TOK_ENUM_CONST)->ident;
10900                 if (!ident->sym_ident) {
10901                         error(state, 0, "%s undeclared", ident->name);
10902                 }
10903                 def = ident->sym_ident->def;
10904                 break;
10905         }
10906         case TOK_MIDENT:
10907         {
10908                 struct hash_entry *ident;
10909                 ident = eat(state, TOK_MIDENT)->ident;
10910                 warning(state, 0, "Replacing undefined macro: %s with 0",
10911                         ident->name);
10912                 def = int_const(state, &int_type, 0);
10913                 break;
10914         }
10915         case TOK_LPAREN:
10916                 eat(state, TOK_LPAREN);
10917                 def = expr(state);
10918                 eat(state, TOK_RPAREN);
10919                 break;
10920         case TOK_LIT_INT:
10921                 def = integer_constant(state);
10922                 break;
10923         case TOK_LIT_FLOAT:
10924                 eat(state, TOK_LIT_FLOAT);
10925                 error(state, 0, "Floating point constants not supported");
10926                 def = 0;
10927                 FINISHME();
10928                 break;
10929         case TOK_LIT_CHAR:
10930                 def = character_constant(state);
10931                 break;
10932         case TOK_LIT_STRING:
10933                 def = string_constant(state);
10934                 break;
10935         default:
10936                 def = 0;
10937                 error(state, 0, "Unexpected token: %s\n", tokens[tok]);
10938         }
10939         return def;
10940 }
10941
10942 static struct triple *postfix_expr(struct compile_state *state)
10943 {
10944         struct triple *def;
10945         int postfix;
10946         def = primary_expr(state);
10947         do {
10948                 struct triple *left;
10949                 int tok;
10950                 postfix = 1;
10951                 left = def;
10952                 switch((tok = peek(state))) {
10953                 case TOK_LBRACKET:
10954                         eat(state, TOK_LBRACKET);
10955                         def = mk_subscript_expr(state, left, expr(state));
10956                         eat(state, TOK_RBRACKET);
10957                         break;
10958                 case TOK_LPAREN:
10959                         def = call_expr(state, def);
10960                         break;
10961                 case TOK_DOT:
10962                 {
10963                         struct hash_entry *field;
10964                         eat(state, TOK_DOT);
10965                         field = eat(state, TOK_IDENT)->ident;
10966                         def = deref_field(state, def, field);
10967                         break;
10968                 }
10969                 case TOK_ARROW:
10970                 {
10971                         struct hash_entry *field;
10972                         eat(state, TOK_ARROW);
10973                         field = eat(state, TOK_IDENT)->ident;
10974                         def = mk_deref_expr(state, read_expr(state, def));
10975                         def = deref_field(state, def, field);
10976                         break;
10977                 }
10978                 case TOK_PLUSPLUS:
10979                         eat(state, TOK_PLUSPLUS);
10980                         def = mk_post_inc_expr(state, left);
10981                         break;
10982                 case TOK_MINUSMINUS:
10983                         eat(state, TOK_MINUSMINUS);
10984                         def = mk_post_dec_expr(state, left);
10985                         break;
10986                 default:
10987                         postfix = 0;
10988                         break;
10989                 }
10990         } while(postfix);
10991         return def;
10992 }
10993
10994 static struct triple *cast_expr(struct compile_state *state);
10995
10996 static struct triple *unary_expr(struct compile_state *state)
10997 {
10998         struct triple *def, *right;
10999         int tok;
11000         switch((tok = peek(state))) {
11001         case TOK_PLUSPLUS:
11002                 eat(state, TOK_PLUSPLUS);
11003                 def = mk_pre_inc_expr(state, unary_expr(state));
11004                 break;
11005         case TOK_MINUSMINUS:
11006                 eat(state, TOK_MINUSMINUS);
11007                 def = mk_pre_dec_expr(state, unary_expr(state));
11008                 break;
11009         case TOK_AND:
11010                 eat(state, TOK_AND);
11011                 def = mk_addr_expr(state, cast_expr(state), 0);
11012                 break;
11013         case TOK_STAR:
11014                 eat(state, TOK_STAR);
11015                 def = mk_deref_expr(state, read_expr(state, cast_expr(state)));
11016                 break;
11017         case TOK_PLUS:
11018                 eat(state, TOK_PLUS);
11019                 right = read_expr(state, cast_expr(state));
11020                 arithmetic(state, right);
11021                 def = integral_promotion(state, right);
11022                 break;
11023         case TOK_MINUS:
11024                 eat(state, TOK_MINUS);
11025                 right = read_expr(state, cast_expr(state));
11026                 arithmetic(state, right);
11027                 def = integral_promotion(state, right);
11028                 def = triple(state, OP_NEG, def->type, def, 0);
11029                 break;
11030         case TOK_TILDE:
11031                 eat(state, TOK_TILDE);
11032                 right = read_expr(state, cast_expr(state));
11033                 integral(state, right);
11034                 def = integral_promotion(state, right);
11035                 def = triple(state, OP_INVERT, def->type, def, 0);
11036                 break;
11037         case TOK_BANG:
11038                 eat(state, TOK_BANG);
11039                 right = read_expr(state, cast_expr(state));
11040                 bool(state, right);
11041                 def = lfalse_expr(state, right);
11042                 break;
11043         case TOK_SIZEOF:
11044         {
11045                 struct type *type;
11046                 int tok1, tok2;
11047                 eat(state, TOK_SIZEOF);
11048                 tok1 = peek(state);
11049                 tok2 = peek2(state);
11050                 if ((tok1 == TOK_LPAREN) && istype(tok2)) {
11051                         eat(state, TOK_LPAREN);
11052                         type = type_name(state);
11053                         eat(state, TOK_RPAREN);
11054                 }
11055                 else {
11056                         struct triple *expr;
11057                         expr = unary_expr(state);
11058                         type = expr->type;
11059                         release_expr(state, expr);
11060                 }
11061                 def = int_const(state, &ulong_type, size_of_in_bytes(state, type));
11062                 break;
11063         }
11064         case TOK_ALIGNOF:
11065         {
11066                 struct type *type;
11067                 int tok1, tok2;
11068                 eat(state, TOK_ALIGNOF);
11069                 tok1 = peek(state);
11070                 tok2 = peek2(state);
11071                 if ((tok1 == TOK_LPAREN) && istype(tok2)) {
11072                         eat(state, TOK_LPAREN);
11073                         type = type_name(state);
11074                         eat(state, TOK_RPAREN);
11075                 }
11076                 else {
11077                         struct triple *expr;
11078                         expr = unary_expr(state);
11079                         type = expr->type;
11080                         release_expr(state, expr);
11081                 }
11082                 def = int_const(state, &ulong_type, align_of_in_bytes(state, type));
11083                 break;
11084         }
11085         case TOK_MDEFINED:
11086         {
11087                 /* We only come here if we are called from the preprocessor */
11088                 struct hash_entry *ident;
11089                 int parens;
11090                 eat(state, TOK_MDEFINED);
11091                 parens = 0;
11092                 if (pp_peek(state) == TOK_LPAREN) {
11093                         pp_eat(state, TOK_LPAREN);
11094                         parens = 1;
11095                 }
11096                 ident = pp_eat(state, TOK_MIDENT)->ident;
11097                 if (parens) {
11098                         eat(state, TOK_RPAREN);
11099                 }
11100                 def = int_const(state, &int_type, ident->sym_define != 0);
11101                 break;
11102         }
11103         default:
11104                 def = postfix_expr(state);
11105                 break;
11106         }
11107         return def;
11108 }
11109
11110 static struct triple *cast_expr(struct compile_state *state)
11111 {
11112         struct triple *def;
11113         int tok1, tok2;
11114         tok1 = peek(state);
11115         tok2 = peek2(state);
11116         if ((tok1 == TOK_LPAREN) && istype(tok2)) {
11117                 struct type *type;
11118                 eat(state, TOK_LPAREN);
11119                 type = type_name(state);
11120                 eat(state, TOK_RPAREN);
11121                 def = mk_cast_expr(state, type, cast_expr(state));
11122         }
11123         else {
11124                 def = unary_expr(state);
11125         }
11126         return def;
11127 }
11128
11129 static struct triple *mult_expr(struct compile_state *state)
11130 {
11131         struct triple *def;
11132         int done;
11133         def = cast_expr(state);
11134         do {
11135                 struct triple *left, *right;
11136                 struct type *result_type;
11137                 int tok, op, sign;
11138                 done = 0;
11139                 tok = peek(state);
11140                 switch(tok) {
11141                 case TOK_STAR:
11142                 case TOK_DIV:
11143                 case TOK_MOD:
11144                         left = read_expr(state, def);
11145                         arithmetic(state, left);
11146
11147                         eat(state, tok);
11148
11149                         right = read_expr(state, cast_expr(state));
11150                         arithmetic(state, right);
11151
11152                         result_type = arithmetic_result(state, left, right);
11153                         sign = is_signed(result_type);
11154                         op = -1;
11155                         switch(tok) {
11156                         case TOK_STAR: op = sign? OP_SMUL : OP_UMUL; break;
11157                         case TOK_DIV:  op = sign? OP_SDIV : OP_UDIV; break;
11158                         case TOK_MOD:  op = sign? OP_SMOD : OP_UMOD; break;
11159                         }
11160                         def = triple(state, op, result_type, left, right);
11161                         break;
11162                 default:
11163                         done = 1;
11164                         break;
11165                 }
11166         } while(!done);
11167         return def;
11168 }
11169
11170 static struct triple *add_expr(struct compile_state *state)
11171 {
11172         struct triple *def;
11173         int done;
11174         def = mult_expr(state);
11175         do {
11176                 done = 0;
11177                 switch( peek(state)) {
11178                 case TOK_PLUS:
11179                         eat(state, TOK_PLUS);
11180                         def = mk_add_expr(state, def, mult_expr(state));
11181                         break;
11182                 case TOK_MINUS:
11183                         eat(state, TOK_MINUS);
11184                         def = mk_sub_expr(state, def, mult_expr(state));
11185                         break;
11186                 default:
11187                         done = 1;
11188                         break;
11189                 }
11190         } while(!done);
11191         return def;
11192 }
11193
11194 static struct triple *shift_expr(struct compile_state *state)
11195 {
11196         struct triple *def;
11197         int done;
11198         def = add_expr(state);
11199         do {
11200                 struct triple *left, *right;
11201                 int tok, op;
11202                 done = 0;
11203                 switch((tok = peek(state))) {
11204                 case TOK_SL:
11205                 case TOK_SR:
11206                         left = read_expr(state, def);
11207                         integral(state, left);
11208                         left = integral_promotion(state, left);
11209
11210                         eat(state, tok);
11211
11212                         right = read_expr(state, add_expr(state));
11213                         integral(state, right);
11214                         right = integral_promotion(state, right);
11215                         
11216                         op = (tok == TOK_SL)? OP_SL : 
11217                                 is_signed(left->type)? OP_SSR: OP_USR;
11218
11219                         def = triple(state, op, left->type, left, right);
11220                         break;
11221                 default:
11222                         done = 1;
11223                         break;
11224                 }
11225         } while(!done);
11226         return def;
11227 }
11228
11229 static struct triple *relational_expr(struct compile_state *state)
11230 {
11231 #if DEBUG_ROMCC_WARNINGS
11232 #warning "Extend relational exprs to work on more than arithmetic types"
11233 #endif
11234         struct triple *def;
11235         int done;
11236         def = shift_expr(state);
11237         do {
11238                 struct triple *left, *right;
11239                 struct type *arg_type;
11240                 int tok, op, sign;
11241                 done = 0;
11242                 switch((tok = peek(state))) {
11243                 case TOK_LESS:
11244                 case TOK_MORE:
11245                 case TOK_LESSEQ:
11246                 case TOK_MOREEQ:
11247                         left = read_expr(state, def);
11248                         arithmetic(state, left);
11249
11250                         eat(state, tok);
11251
11252                         right = read_expr(state, shift_expr(state));
11253                         arithmetic(state, right);
11254
11255                         arg_type = arithmetic_result(state, left, right);
11256                         sign = is_signed(arg_type);
11257                         op = -1;
11258                         switch(tok) {
11259                         case TOK_LESS:   op = sign? OP_SLESS : OP_ULESS; break;
11260                         case TOK_MORE:   op = sign? OP_SMORE : OP_UMORE; break;
11261                         case TOK_LESSEQ: op = sign? OP_SLESSEQ : OP_ULESSEQ; break;
11262                         case TOK_MOREEQ: op = sign? OP_SMOREEQ : OP_UMOREEQ; break;
11263                         }
11264                         def = triple(state, op, &int_type, left, right);
11265                         break;
11266                 default:
11267                         done = 1;
11268                         break;
11269                 }
11270         } while(!done);
11271         return def;
11272 }
11273
11274 static struct triple *equality_expr(struct compile_state *state)
11275 {
11276 #if DEBUG_ROMCC_WARNINGS
11277 #warning "Extend equality exprs to work on more than arithmetic types"
11278 #endif
11279         struct triple *def;
11280         int done;
11281         def = relational_expr(state);
11282         do {
11283                 struct triple *left, *right;
11284                 int tok, op;
11285                 done = 0;
11286                 switch((tok = peek(state))) {
11287                 case TOK_EQEQ:
11288                 case TOK_NOTEQ:
11289                         left = read_expr(state, def);
11290                         arithmetic(state, left);
11291                         eat(state, tok);
11292                         right = read_expr(state, relational_expr(state));
11293                         arithmetic(state, right);
11294                         op = (tok == TOK_EQEQ) ? OP_EQ: OP_NOTEQ;
11295                         def = triple(state, op, &int_type, left, right);
11296                         break;
11297                 default:
11298                         done = 1;
11299                         break;
11300                 }
11301         } while(!done);
11302         return def;
11303 }
11304
11305 static struct triple *and_expr(struct compile_state *state)
11306 {
11307         struct triple *def;
11308         def = equality_expr(state);
11309         while(peek(state) == TOK_AND) {
11310                 struct triple *left, *right;
11311                 struct type *result_type;
11312                 left = read_expr(state, def);
11313                 integral(state, left);
11314                 eat(state, TOK_AND);
11315                 right = read_expr(state, equality_expr(state));
11316                 integral(state, right);
11317                 result_type = arithmetic_result(state, left, right);
11318                 def = triple(state, OP_AND, result_type, left, right);
11319         }
11320         return def;
11321 }
11322
11323 static struct triple *xor_expr(struct compile_state *state)
11324 {
11325         struct triple *def;
11326         def = and_expr(state);
11327         while(peek(state) == TOK_XOR) {
11328                 struct triple *left, *right;
11329                 struct type *result_type;
11330                 left = read_expr(state, def);
11331                 integral(state, left);
11332                 eat(state, TOK_XOR);
11333                 right = read_expr(state, and_expr(state));
11334                 integral(state, right);
11335                 result_type = arithmetic_result(state, left, right);
11336                 def = triple(state, OP_XOR, result_type, left, right);
11337         }
11338         return def;
11339 }
11340
11341 static struct triple *or_expr(struct compile_state *state)
11342 {
11343         struct triple *def;
11344         def = xor_expr(state);
11345         while(peek(state) == TOK_OR) {
11346                 struct triple *left, *right;
11347                 struct type *result_type;
11348                 left = read_expr(state, def);
11349                 integral(state, left);
11350                 eat(state, TOK_OR);
11351                 right = read_expr(state, xor_expr(state));
11352                 integral(state, right);
11353                 result_type = arithmetic_result(state, left, right);
11354                 def = triple(state, OP_OR, result_type, left, right);
11355         }
11356         return def;
11357 }
11358
11359 static struct triple *land_expr(struct compile_state *state)
11360 {
11361         struct triple *def;
11362         def = or_expr(state);
11363         while(peek(state) == TOK_LOGAND) {
11364                 struct triple *left, *right;
11365                 left = read_expr(state, def);
11366                 bool(state, left);
11367                 eat(state, TOK_LOGAND);
11368                 right = read_expr(state, or_expr(state));
11369                 bool(state, right);
11370
11371                 def = mkland_expr(state,
11372                         ltrue_expr(state, left),
11373                         ltrue_expr(state, right));
11374         }
11375         return def;
11376 }
11377
11378 static struct triple *lor_expr(struct compile_state *state)
11379 {
11380         struct triple *def;
11381         def = land_expr(state);
11382         while(peek(state) == TOK_LOGOR) {
11383                 struct triple *left, *right;
11384                 left = read_expr(state, def);
11385                 bool(state, left);
11386                 eat(state, TOK_LOGOR);
11387                 right = read_expr(state, land_expr(state));
11388                 bool(state, right);
11389
11390                 def = mklor_expr(state, 
11391                         ltrue_expr(state, left),
11392                         ltrue_expr(state, right));
11393         }
11394         return def;
11395 }
11396
11397 static struct triple *conditional_expr(struct compile_state *state)
11398 {
11399         struct triple *def;
11400         def = lor_expr(state);
11401         if (peek(state) == TOK_QUEST) {
11402                 struct triple *test, *left, *right;
11403                 bool(state, def);
11404                 test = ltrue_expr(state, read_expr(state, def));
11405                 eat(state, TOK_QUEST);
11406                 left = read_expr(state, expr(state));
11407                 eat(state, TOK_COLON);
11408                 right = read_expr(state, conditional_expr(state));
11409
11410                 def = mkcond_expr(state, test, left, right);
11411         }
11412         return def;
11413 }
11414
11415 struct cv_triple {
11416         struct triple *val;
11417         int id;
11418 };
11419
11420 static void set_cv(struct compile_state *state, struct cv_triple *cv,
11421         struct triple *dest, struct triple *val)
11422 {
11423         if (cv[dest->id].val) {
11424                 free_triple(state, cv[dest->id].val);
11425         }
11426         cv[dest->id].val = val;
11427 }
11428 static struct triple *get_cv(struct compile_state *state, struct cv_triple *cv,
11429         struct triple *src)
11430 {
11431         return cv[src->id].val;
11432 }
11433
11434 static struct triple *eval_const_expr(
11435         struct compile_state *state, struct triple *expr)
11436 {
11437         struct triple *def;
11438         if (is_const(expr)) {
11439                 def = expr;
11440         }
11441         else {
11442                 /* If we don't start out as a constant simplify into one */
11443                 struct triple *head, *ptr;
11444                 struct cv_triple *cv;
11445                 int i, count;
11446                 head = label(state); /* dummy initial triple */
11447                 flatten(state, head, expr);
11448                 count = 1;
11449                 for(ptr = head->next; ptr != head; ptr = ptr->next) {
11450                         count++;
11451                 }
11452                 cv = xcmalloc(sizeof(struct cv_triple)*count, "const value vector");
11453                 i = 1;
11454                 for(ptr = head->next; ptr != head; ptr = ptr->next) {
11455                         cv[i].val = 0;
11456                         cv[i].id  = ptr->id;
11457                         ptr->id   = i;
11458                         i++;
11459                 }
11460                 ptr = head->next;
11461                 do {
11462                         valid_ins(state, ptr);
11463                         if ((ptr->op == OP_PHI) || (ptr->op == OP_LIST)) {
11464                                 internal_error(state, ptr, 
11465                                         "unexpected %s in constant expression",
11466                                         tops(ptr->op));
11467                         }
11468                         else if (ptr->op == OP_LIST) {
11469                         }
11470                         else if (triple_is_structural(state, ptr)) {
11471                                 ptr = ptr->next;
11472                         }
11473                         else if (triple_is_ubranch(state, ptr)) {
11474                                 ptr = TARG(ptr, 0);
11475                         }
11476                         else if (triple_is_cbranch(state, ptr)) {
11477                                 struct triple *cond_val;
11478                                 cond_val = get_cv(state, cv, RHS(ptr, 0));
11479                                 if (!cond_val || !is_const(cond_val) || 
11480                                         (cond_val->op != OP_INTCONST)) 
11481                                 {
11482                                         internal_error(state, ptr, "bad branch condition");
11483                                 }
11484                                 if (cond_val->u.cval == 0) {
11485                                         ptr = ptr->next;
11486                                 } else {
11487                                         ptr = TARG(ptr, 0);
11488                                 }
11489                         }
11490                         else if (triple_is_branch(state, ptr)) {
11491                                 error(state, ptr, "bad branch type in constant expression");
11492                         }
11493                         else if (ptr->op == OP_WRITE) {
11494                                 struct triple *val;
11495                                 val = get_cv(state, cv, RHS(ptr, 0));
11496                                 
11497                                 set_cv(state, cv, MISC(ptr, 0), 
11498                                         copy_triple(state, val));
11499                                 set_cv(state, cv, ptr, 
11500                                         copy_triple(state, val));
11501                                 ptr = ptr->next;
11502                         }
11503                         else if (ptr->op == OP_READ) {
11504                                 set_cv(state, cv, ptr, 
11505                                         copy_triple(state, 
11506                                                 get_cv(state, cv, RHS(ptr, 0))));
11507                                 ptr = ptr->next;
11508                         }
11509                         else if (triple_is_pure(state, ptr, cv[ptr->id].id)) {
11510                                 struct triple *val, **rhs;
11511                                 val = copy_triple(state, ptr);
11512                                 rhs = triple_rhs(state, val, 0);
11513                                 for(; rhs; rhs = triple_rhs(state, val, rhs)) {
11514                                         if (!*rhs) {
11515                                                 internal_error(state, ptr, "Missing rhs");
11516                                         }
11517                                         *rhs = get_cv(state, cv, *rhs);
11518                                 }
11519                                 simplify(state, val);
11520                                 set_cv(state, cv, ptr, val);
11521                                 ptr = ptr->next;
11522                         }
11523                         else {
11524                                 error(state, ptr, "impure operation in constant expression");
11525                         }
11526                         
11527                 } while(ptr != head);
11528
11529                 /* Get the result value */
11530                 def = get_cv(state, cv, head->prev);
11531                 cv[head->prev->id].val = 0;
11532
11533                 /* Free the temporary values */
11534                 for(i = 0; i < count; i++) {
11535                         if (cv[i].val) {
11536                                 free_triple(state, cv[i].val);
11537                                 cv[i].val = 0;
11538                         }
11539                 }
11540                 xfree(cv);
11541                 /* Free the intermediate expressions */
11542                 while(head->next != head) {
11543                         release_triple(state, head->next);
11544                 }
11545                 free_triple(state, head);
11546         }
11547         if (!is_const(def)) {
11548                 error(state, expr, "Not a constant expression");
11549         }
11550         return def;
11551 }
11552
11553 static struct triple *constant_expr(struct compile_state *state)
11554 {
11555         return eval_const_expr(state, conditional_expr(state));
11556 }
11557
11558 static struct triple *assignment_expr(struct compile_state *state)
11559 {
11560         struct triple *def, *left, *left2, *right;
11561         int tok, op, sign;
11562         /* The C grammer in K&R shows assignment expressions
11563          * only taking unary expressions as input on their
11564          * left hand side.  But specifies the precedence of
11565          * assignemnt as the lowest operator except for comma.
11566          *
11567          * Allowing conditional expressions on the left hand side
11568          * of an assignement results in a grammar that accepts
11569          * a larger set of statements than standard C.   As long
11570          * as the subset of the grammar that is standard C behaves
11571          * correctly this should cause no problems.
11572          * 
11573          * For the extra token strings accepted by the grammar
11574          * none of them should produce a valid lvalue, so they
11575          * should not produce functioning programs.
11576          *
11577          * GCC has this bug as well, so surprises should be minimal.
11578          */
11579         def = conditional_expr(state);
11580         left = def;
11581         left2 = left;
11582         if (!(left2->id & TRIPLE_FLAG_FLATTENED))
11583                 left2 = copy_triple(state, left2);
11584         switch((tok = peek(state))) {
11585         case TOK_EQ:
11586                 lvalue(state, left);
11587                 eat(state, TOK_EQ);
11588                 def = write_expr(state, left, 
11589                         read_expr(state, assignment_expr(state)));
11590                 break;
11591         case TOK_TIMESEQ:
11592         case TOK_DIVEQ:
11593         case TOK_MODEQ:
11594                 lvalue(state, left);
11595                 arithmetic(state, left);
11596                 eat(state, tok);
11597                 right = read_expr(state, assignment_expr(state));
11598                 arithmetic(state, right);
11599
11600                 sign = is_signed(left->type);
11601                 op = -1;
11602                 switch(tok) {
11603                 case TOK_TIMESEQ: op = sign? OP_SMUL : OP_UMUL; break;
11604                 case TOK_DIVEQ:   op = sign? OP_SDIV : OP_UDIV; break;
11605                 case TOK_MODEQ:   op = sign? OP_SMOD : OP_UMOD; break;
11606                 }
11607                 def = write_expr(state, left,
11608                         triple(state, op, left->type, 
11609                                 read_expr(state, left2), right));
11610                 break;
11611         case TOK_PLUSEQ:
11612                 lvalue(state, left);
11613                 eat(state, TOK_PLUSEQ);
11614                 def = write_expr(state, left,
11615                         mk_add_expr(state, left2, assignment_expr(state)));
11616                 break;
11617         case TOK_MINUSEQ:
11618                 lvalue(state, left);
11619                 eat(state, TOK_MINUSEQ);
11620                 def = write_expr(state, left,
11621                         mk_sub_expr(state, left2, assignment_expr(state)));
11622                 break;
11623         case TOK_SLEQ:
11624         case TOK_SREQ:
11625         case TOK_ANDEQ:
11626         case TOK_XOREQ:
11627         case TOK_OREQ:
11628                 lvalue(state, left);
11629                 integral(state, left);
11630                 eat(state, tok);
11631                 right = read_expr(state, assignment_expr(state));
11632                 integral(state, right);
11633                 right = integral_promotion(state, right);
11634                 sign = is_signed(left->type);
11635                 op = -1;
11636                 switch(tok) {
11637                 case TOK_SLEQ:  op = OP_SL; break;
11638                 case TOK_SREQ:  op = sign? OP_SSR: OP_USR; break;
11639                 case TOK_ANDEQ: op = OP_AND; break;
11640                 case TOK_XOREQ: op = OP_XOR; break;
11641                 case TOK_OREQ:  op = OP_OR; break;
11642                 }
11643                 def = write_expr(state, left,
11644                         triple(state, op, left->type, 
11645                                 read_expr(state, left2), right));
11646                 break;
11647         }
11648         return def;
11649 }
11650
11651 static struct triple *expr(struct compile_state *state)
11652 {
11653         struct triple *def;
11654         def = assignment_expr(state);
11655         while(peek(state) == TOK_COMMA) {
11656                 eat(state, TOK_COMMA);
11657                 def = mkprog(state, def, assignment_expr(state), 0UL);
11658         }
11659         return def;
11660 }
11661
11662 static void expr_statement(struct compile_state *state, struct triple *first)
11663 {
11664         if (peek(state) != TOK_SEMI) {
11665                 /* lvalue conversions always apply except when certian operators
11666                  * are applied.  I apply the lvalue conversions here
11667                  * as I know no more operators will be applied.
11668                  */
11669                 flatten(state, first, lvalue_conversion(state, expr(state)));
11670         }
11671         eat(state, TOK_SEMI);
11672 }
11673
11674 static void if_statement(struct compile_state *state, struct triple *first)
11675 {
11676         struct triple *test, *jmp1, *jmp2, *middle, *end;
11677
11678         jmp1 = jmp2 = middle = 0;
11679         eat(state, TOK_IF);
11680         eat(state, TOK_LPAREN);
11681         test = expr(state);
11682         bool(state, test);
11683         /* Cleanup and invert the test */
11684         test = lfalse_expr(state, read_expr(state, test));
11685         eat(state, TOK_RPAREN);
11686         /* Generate the needed pieces */
11687         middle = label(state);
11688         jmp1 = branch(state, middle, test);
11689         /* Thread the pieces together */
11690         flatten(state, first, test);
11691         flatten(state, first, jmp1);
11692         flatten(state, first, label(state));
11693         statement(state, first);
11694         if (peek(state) == TOK_ELSE) {
11695                 eat(state, TOK_ELSE);
11696                 /* Generate the rest of the pieces */
11697                 end = label(state);
11698                 jmp2 = branch(state, end, 0);
11699                 /* Thread them together */
11700                 flatten(state, first, jmp2);
11701                 flatten(state, first, middle);
11702                 statement(state, first);
11703                 flatten(state, first, end);
11704         }
11705         else {
11706                 flatten(state, first, middle);
11707         }
11708 }
11709
11710 static void for_statement(struct compile_state *state, struct triple *first)
11711 {
11712         struct triple *head, *test, *tail, *jmp1, *jmp2, *end;
11713         struct triple *label1, *label2, *label3;
11714         struct hash_entry *ident;
11715
11716         eat(state, TOK_FOR);
11717         eat(state, TOK_LPAREN);
11718         head = test = tail = jmp1 = jmp2 = 0;
11719         if (peek(state) != TOK_SEMI) {
11720                 head = expr(state);
11721         } 
11722         eat(state, TOK_SEMI);
11723         if (peek(state) != TOK_SEMI) {
11724                 test = expr(state);
11725                 bool(state, test);
11726                 test = ltrue_expr(state, read_expr(state, test));
11727         }
11728         eat(state, TOK_SEMI);
11729         if (peek(state) != TOK_RPAREN) {
11730                 tail = expr(state);
11731         }
11732         eat(state, TOK_RPAREN);
11733         /* Generate the needed pieces */
11734         label1 = label(state);
11735         label2 = label(state);
11736         label3 = label(state);
11737         if (test) {
11738                 jmp1 = branch(state, label3, 0);
11739                 jmp2 = branch(state, label1, test);
11740         }
11741         else {
11742                 jmp2 = branch(state, label1, 0);
11743         }
11744         end = label(state);
11745         /* Remember where break and continue go */
11746         start_scope(state);
11747         ident = state->i_break;
11748         symbol(state, ident, &ident->sym_ident, end, end->type);
11749         ident = state->i_continue;
11750         symbol(state, ident, &ident->sym_ident, label2, label2->type);
11751         /* Now include the body */
11752         flatten(state, first, head);
11753         flatten(state, first, jmp1);
11754         flatten(state, first, label1);
11755         statement(state, first);
11756         flatten(state, first, label2);
11757         flatten(state, first, tail);
11758         flatten(state, first, label3);
11759         flatten(state, first, test);
11760         flatten(state, first, jmp2);
11761         flatten(state, first, end);
11762         /* Cleanup the break/continue scope */
11763         end_scope(state);
11764 }
11765
11766 static void while_statement(struct compile_state *state, struct triple *first)
11767 {
11768         struct triple *label1, *test, *label2, *jmp1, *jmp2, *end;
11769         struct hash_entry *ident;
11770         eat(state, TOK_WHILE);
11771         eat(state, TOK_LPAREN);
11772         test = expr(state);
11773         bool(state, test);
11774         test = ltrue_expr(state, read_expr(state, test));
11775         eat(state, TOK_RPAREN);
11776         /* Generate the needed pieces */
11777         label1 = label(state);
11778         label2 = label(state);
11779         jmp1 = branch(state, label2, 0);
11780         jmp2 = branch(state, label1, test);
11781         end = label(state);
11782         /* Remember where break and continue go */
11783         start_scope(state);
11784         ident = state->i_break;
11785         symbol(state, ident, &ident->sym_ident, end, end->type);
11786         ident = state->i_continue;
11787         symbol(state, ident, &ident->sym_ident, label2, label2->type);
11788         /* Thread them together */
11789         flatten(state, first, jmp1);
11790         flatten(state, first, label1);
11791         statement(state, first);
11792         flatten(state, first, label2);
11793         flatten(state, first, test);
11794         flatten(state, first, jmp2);
11795         flatten(state, first, end);
11796         /* Cleanup the break/continue scope */
11797         end_scope(state);
11798 }
11799
11800 static void do_statement(struct compile_state *state, struct triple *first)
11801 {
11802         struct triple *label1, *label2, *test, *end;
11803         struct hash_entry *ident;
11804         eat(state, TOK_DO);
11805         /* Generate the needed pieces */
11806         label1 = label(state);
11807         label2 = label(state);
11808         end = label(state);
11809         /* Remember where break and continue go */
11810         start_scope(state);
11811         ident = state->i_break;
11812         symbol(state, ident, &ident->sym_ident, end, end->type);
11813         ident = state->i_continue;
11814         symbol(state, ident, &ident->sym_ident, label2, label2->type);
11815         /* Now include the body */
11816         flatten(state, first, label1);
11817         statement(state, first);
11818         /* Cleanup the break/continue scope */
11819         end_scope(state);
11820         /* Eat the rest of the loop */
11821         eat(state, TOK_WHILE);
11822         eat(state, TOK_LPAREN);
11823         test = read_expr(state, expr(state));
11824         bool(state, test);
11825         eat(state, TOK_RPAREN);
11826         eat(state, TOK_SEMI);
11827         /* Thread the pieces together */
11828         test = ltrue_expr(state, test);
11829         flatten(state, first, label2);
11830         flatten(state, first, test);
11831         flatten(state, first, branch(state, label1, test));
11832         flatten(state, first, end);
11833 }
11834
11835
11836 static void return_statement(struct compile_state *state, struct triple *first)
11837 {
11838         struct triple *jmp, *mv, *dest, *var, *val;
11839         int last;
11840         eat(state, TOK_RETURN);
11841
11842 #if DEBUG_ROMCC_WARNINGS
11843 #warning "FIXME implement a more general excess branch elimination"
11844 #endif
11845         val = 0;
11846         /* If we have a return value do some more work */
11847         if (peek(state) != TOK_SEMI) {
11848                 val = read_expr(state, expr(state));
11849         }
11850         eat(state, TOK_SEMI);
11851
11852         /* See if this last statement in a function */
11853         last = ((peek(state) == TOK_RBRACE) && 
11854                 (state->scope_depth == GLOBAL_SCOPE_DEPTH +2));
11855
11856         /* Find the return variable */
11857         var = fresult(state, state->main_function);
11858
11859         /* Find the return destination */
11860         dest = state->i_return->sym_ident->def;
11861         mv = jmp = 0;
11862         /* If needed generate a jump instruction */
11863         if (!last) {
11864                 jmp = branch(state, dest, 0);
11865         }
11866         /* If needed generate an assignment instruction */
11867         if (val) {
11868                 mv = write_expr(state, deref_index(state, var, 1), val);
11869         }
11870         /* Now put the code together */
11871         if (mv) {
11872                 flatten(state, first, mv);
11873                 flatten(state, first, jmp);
11874         }
11875         else if (jmp) {
11876                 flatten(state, first, jmp);
11877         }
11878 }
11879
11880 static void break_statement(struct compile_state *state, struct triple *first)
11881 {
11882         struct triple *dest;
11883         eat(state, TOK_BREAK);
11884         eat(state, TOK_SEMI);
11885         if (!state->i_break->sym_ident) {
11886                 error(state, 0, "break statement not within loop or switch");
11887         }
11888         dest = state->i_break->sym_ident->def;
11889         flatten(state, first, branch(state, dest, 0));
11890 }
11891
11892 static void continue_statement(struct compile_state *state, struct triple *first)
11893 {
11894         struct triple *dest;
11895         eat(state, TOK_CONTINUE);
11896         eat(state, TOK_SEMI);
11897         if (!state->i_continue->sym_ident) {
11898                 error(state, 0, "continue statement outside of a loop");
11899         }
11900         dest = state->i_continue->sym_ident->def;
11901         flatten(state, first, branch(state, dest, 0));
11902 }
11903
11904 static void goto_statement(struct compile_state *state, struct triple *first)
11905 {
11906         struct hash_entry *ident;
11907         eat(state, TOK_GOTO);
11908         ident = eat(state, TOK_IDENT)->ident;
11909         if (!ident->sym_label) {
11910                 /* If this is a forward branch allocate the label now,
11911                  * it will be flattend in the appropriate location later.
11912                  */
11913                 struct triple *ins;
11914                 ins = label(state);
11915                 label_symbol(state, ident, ins, FUNCTION_SCOPE_DEPTH);
11916         }
11917         eat(state, TOK_SEMI);
11918
11919         flatten(state, first, branch(state, ident->sym_label->def, 0));
11920 }
11921
11922 static void labeled_statement(struct compile_state *state, struct triple *first)
11923 {
11924         struct triple *ins;
11925         struct hash_entry *ident;
11926
11927         ident = eat(state, TOK_IDENT)->ident;
11928         if (ident->sym_label && ident->sym_label->def) {
11929                 ins = ident->sym_label->def;
11930                 put_occurance(ins->occurance);
11931                 ins->occurance = new_occurance(state);
11932         }
11933         else {
11934                 ins = label(state);
11935                 label_symbol(state, ident, ins, FUNCTION_SCOPE_DEPTH);
11936         }
11937         if (ins->id & TRIPLE_FLAG_FLATTENED) {
11938                 error(state, 0, "label %s already defined", ident->name);
11939         }
11940         flatten(state, first, ins);
11941
11942         eat(state, TOK_COLON);
11943         statement(state, first);
11944 }
11945
11946 static void switch_statement(struct compile_state *state, struct triple *first)
11947 {
11948         struct triple *value, *top, *end, *dbranch;
11949         struct hash_entry *ident;
11950
11951         /* See if we have a valid switch statement */
11952         eat(state, TOK_SWITCH);
11953         eat(state, TOK_LPAREN);
11954         value = expr(state);
11955         integral(state, value);
11956         value = read_expr(state, value);
11957         eat(state, TOK_RPAREN);
11958         /* Generate the needed pieces */
11959         top = label(state);
11960         end = label(state);
11961         dbranch = branch(state, end, 0);
11962         /* Remember where case branches and break goes */
11963         start_scope(state);
11964         ident = state->i_switch;
11965         symbol(state, ident, &ident->sym_ident, value, value->type);
11966         ident = state->i_case;
11967         symbol(state, ident, &ident->sym_ident, top, top->type);
11968         ident = state->i_break;
11969         symbol(state, ident, &ident->sym_ident, end, end->type);
11970         ident = state->i_default;
11971         symbol(state, ident, &ident->sym_ident, dbranch, dbranch->type);
11972         /* Thread them together */
11973         flatten(state, first, value);
11974         flatten(state, first, top);
11975         flatten(state, first, dbranch);
11976         statement(state, first);
11977         flatten(state, first, end);
11978         /* Cleanup the switch scope */
11979         end_scope(state);
11980 }
11981
11982 static void case_statement(struct compile_state *state, struct triple *first)
11983 {
11984         struct triple *cvalue, *dest, *test, *jmp;
11985         struct triple *ptr, *value, *top, *dbranch;
11986
11987         /* See if w have a valid case statement */
11988         eat(state, TOK_CASE);
11989         cvalue = constant_expr(state);
11990         integral(state, cvalue);
11991         if (cvalue->op != OP_INTCONST) {
11992                 error(state, 0, "integer constant expected");
11993         }
11994         eat(state, TOK_COLON);
11995         if (!state->i_case->sym_ident) {
11996                 error(state, 0, "case statement not within a switch");
11997         }
11998
11999         /* Lookup the interesting pieces */
12000         top = state->i_case->sym_ident->def;
12001         value = state->i_switch->sym_ident->def;
12002         dbranch = state->i_default->sym_ident->def;
12003
12004         /* See if this case label has already been used */
12005         for(ptr = top; ptr != dbranch; ptr = ptr->next) {
12006                 if (ptr->op != OP_EQ) {
12007                         continue;
12008                 }
12009                 if (RHS(ptr, 1)->u.cval == cvalue->u.cval) {
12010                         error(state, 0, "duplicate case %d statement",
12011                                 cvalue->u.cval);
12012                 }
12013         }
12014         /* Generate the needed pieces */
12015         dest = label(state);
12016         test = triple(state, OP_EQ, &int_type, value, cvalue);
12017         jmp = branch(state, dest, test);
12018         /* Thread the pieces together */
12019         flatten(state, dbranch, test);
12020         flatten(state, dbranch, jmp);
12021         flatten(state, dbranch, label(state));
12022         flatten(state, first, dest);
12023         statement(state, first);
12024 }
12025
12026 static void default_statement(struct compile_state *state, struct triple *first)
12027 {
12028         struct triple *dest;
12029         struct triple *dbranch, *end;
12030
12031         /* See if we have a valid default statement */
12032         eat(state, TOK_DEFAULT);
12033         eat(state, TOK_COLON);
12034
12035         if (!state->i_case->sym_ident) {
12036                 error(state, 0, "default statement not within a switch");
12037         }
12038
12039         /* Lookup the interesting pieces */
12040         dbranch = state->i_default->sym_ident->def;
12041         end = state->i_break->sym_ident->def;
12042
12043         /* See if a default statement has already happened */
12044         if (TARG(dbranch, 0) != end) {
12045                 error(state, 0, "duplicate default statement");
12046         }
12047
12048         /* Generate the needed pieces */
12049         dest = label(state);
12050
12051         /* Blame the branch on the default statement */
12052         put_occurance(dbranch->occurance);
12053         dbranch->occurance = new_occurance(state);
12054
12055         /* Thread the pieces together */
12056         TARG(dbranch, 0) = dest;
12057         use_triple(dest, dbranch);
12058         flatten(state, first, dest);
12059         statement(state, first);
12060 }
12061
12062 static void asm_statement(struct compile_state *state, struct triple *first)
12063 {
12064         struct asm_info *info;
12065         struct {
12066                 struct triple *constraint;
12067                 struct triple *expr;
12068         } out_param[MAX_LHS], in_param[MAX_RHS], clob_param[MAX_LHS];
12069         struct triple *def, *asm_str;
12070         int out, in, clobbers, more, colons, i;
12071         int flags;
12072
12073         flags = 0;
12074         eat(state, TOK_ASM);
12075         /* For now ignore the qualifiers */
12076         switch(peek(state)) {
12077         case TOK_CONST:
12078                 eat(state, TOK_CONST);
12079                 break;
12080         case TOK_VOLATILE:
12081                 eat(state, TOK_VOLATILE);
12082                 flags |= TRIPLE_FLAG_VOLATILE;
12083                 break;
12084         }
12085         eat(state, TOK_LPAREN);
12086         asm_str = string_constant(state);
12087
12088         colons = 0;
12089         out = in = clobbers = 0;
12090         /* Outputs */
12091         if ((colons == 0) && (peek(state) == TOK_COLON)) {
12092                 eat(state, TOK_COLON);
12093                 colons++;
12094                 more = (peek(state) == TOK_LIT_STRING);
12095                 while(more) {
12096                         struct triple *var;
12097                         struct triple *constraint;
12098                         char *str;
12099                         more = 0;
12100                         if (out > MAX_LHS) {
12101                                 error(state, 0, "Maximum output count exceeded.");
12102                         }
12103                         constraint = string_constant(state);
12104                         str = constraint->u.blob;
12105                         if (str[0] != '=') {
12106                                 error(state, 0, "Output constraint does not start with =");
12107                         }
12108                         constraint->u.blob = str + 1;
12109                         eat(state, TOK_LPAREN);
12110                         var = conditional_expr(state);
12111                         eat(state, TOK_RPAREN);
12112
12113                         lvalue(state, var);
12114                         out_param[out].constraint = constraint;
12115                         out_param[out].expr       = var;
12116                         if (peek(state) == TOK_COMMA) {
12117                                 eat(state, TOK_COMMA);
12118                                 more = 1;
12119                         }
12120                         out++;
12121                 }
12122         }
12123         /* Inputs */
12124         if ((colons == 1) && (peek(state) == TOK_COLON)) {
12125                 eat(state, TOK_COLON);
12126                 colons++;
12127                 more = (peek(state) == TOK_LIT_STRING);
12128                 while(more) {
12129                         struct triple *val;
12130                         struct triple *constraint;
12131                         char *str;
12132                         more = 0;
12133                         if (in > MAX_RHS) {
12134                                 error(state, 0, "Maximum input count exceeded.");
12135                         }
12136                         constraint = string_constant(state);
12137                         str = constraint->u.blob;
12138                         if (digitp(str[0] && str[1] == '\0')) {
12139                                 int val;
12140                                 val = digval(str[0]);
12141                                 if ((val < 0) || (val >= out)) {
12142                                         error(state, 0, "Invalid input constraint %d", val);
12143                                 }
12144                         }
12145                         eat(state, TOK_LPAREN);
12146                         val = conditional_expr(state);
12147                         eat(state, TOK_RPAREN);
12148
12149                         in_param[in].constraint = constraint;
12150                         in_param[in].expr       = val;
12151                         if (peek(state) == TOK_COMMA) {
12152                                 eat(state, TOK_COMMA);
12153                                 more = 1;
12154                         }
12155                         in++;
12156                 }
12157         }
12158
12159         /* Clobber */
12160         if ((colons == 2) && (peek(state) == TOK_COLON)) {
12161                 eat(state, TOK_COLON);
12162                 colons++;
12163                 more = (peek(state) == TOK_LIT_STRING);
12164                 while(more) {
12165                         struct triple *clobber;
12166                         more = 0;
12167                         if ((clobbers + out) > MAX_LHS) {
12168                                 error(state, 0, "Maximum clobber limit exceeded.");
12169                         }
12170                         clobber = string_constant(state);
12171
12172                         clob_param[clobbers].constraint = clobber;
12173                         if (peek(state) == TOK_COMMA) {
12174                                 eat(state, TOK_COMMA);
12175                                 more = 1;
12176                         }
12177                         clobbers++;
12178                 }
12179         }
12180         eat(state, TOK_RPAREN);
12181         eat(state, TOK_SEMI);
12182
12183
12184         info = xcmalloc(sizeof(*info), "asm_info");
12185         info->str = asm_str->u.blob;
12186         free_triple(state, asm_str);
12187
12188         def = new_triple(state, OP_ASM, &void_type, clobbers + out, in);
12189         def->u.ainfo = info;
12190         def->id |= flags;
12191
12192         /* Find the register constraints */
12193         for(i = 0; i < out; i++) {
12194                 struct triple *constraint;
12195                 constraint = out_param[i].constraint;
12196                 info->tmpl.lhs[i] = arch_reg_constraint(state, 
12197                         out_param[i].expr->type, constraint->u.blob);
12198                 free_triple(state, constraint);
12199         }
12200         for(; i - out < clobbers; i++) {
12201                 struct triple *constraint;
12202                 constraint = clob_param[i - out].constraint;
12203                 info->tmpl.lhs[i] = arch_reg_clobber(state, constraint->u.blob);
12204                 free_triple(state, constraint);
12205         }
12206         for(i = 0; i < in; i++) {
12207                 struct triple *constraint;
12208                 const char *str;
12209                 constraint = in_param[i].constraint;
12210                 str = constraint->u.blob;
12211                 if (digitp(str[0]) && str[1] == '\0') {
12212                         struct reg_info cinfo;
12213                         int val;
12214                         val = digval(str[0]);
12215                         cinfo.reg = info->tmpl.lhs[val].reg;
12216                         cinfo.regcm = arch_type_to_regcm(state, in_param[i].expr->type);
12217                         cinfo.regcm &= info->tmpl.lhs[val].regcm;
12218                         if (cinfo.reg == REG_UNSET) {
12219                                 cinfo.reg = REG_VIRT0 + val;
12220                         }
12221                         if (cinfo.regcm == 0) {
12222                                 error(state, 0, "No registers for %d", val);
12223                         }
12224                         info->tmpl.lhs[val] = cinfo;
12225                         info->tmpl.rhs[i]   = cinfo;
12226                                 
12227                 } else {
12228                         info->tmpl.rhs[i] = arch_reg_constraint(state, 
12229                                 in_param[i].expr->type, str);
12230                 }
12231                 free_triple(state, constraint);
12232         }
12233
12234         /* Now build the helper expressions */
12235         for(i = 0; i < in; i++) {
12236                 RHS(def, i) = read_expr(state, in_param[i].expr);
12237         }
12238         flatten(state, first, def);
12239         for(i = 0; i < (out + clobbers); i++) {
12240                 struct type *type;
12241                 struct triple *piece;
12242                 if (i < out) {
12243                         type = out_param[i].expr->type;
12244                 } else {
12245                         size_t size = arch_reg_size(info->tmpl.lhs[i].reg);
12246                         if (size >= SIZEOF_LONG) {
12247                                 type = &ulong_type;
12248                         } 
12249                         else if (size >= SIZEOF_INT) {
12250                                 type = &uint_type;
12251                         }
12252                         else if (size >= SIZEOF_SHORT) {
12253                                 type = &ushort_type;
12254                         }
12255                         else {
12256                                 type = &uchar_type;
12257                         }
12258                 }
12259                 piece = triple(state, OP_PIECE, type, def, 0);
12260                 piece->u.cval = i;
12261                 LHS(def, i) = piece;
12262                 flatten(state, first, piece);
12263         }
12264         /* And write the helpers to their destinations */
12265         for(i = 0; i < out; i++) {
12266                 struct triple *piece;
12267                 piece = LHS(def, i);
12268                 flatten(state, first,
12269                         write_expr(state, out_param[i].expr, piece));
12270         }
12271 }
12272
12273
12274 static int isdecl(int tok)
12275 {
12276         switch(tok) {
12277         case TOK_AUTO:
12278         case TOK_REGISTER:
12279         case TOK_STATIC:
12280         case TOK_EXTERN:
12281         case TOK_TYPEDEF:
12282         case TOK_CONST:
12283         case TOK_RESTRICT:
12284         case TOK_VOLATILE:
12285         case TOK_VOID:
12286         case TOK_CHAR:
12287         case TOK_SHORT:
12288         case TOK_INT:
12289         case TOK_LONG:
12290         case TOK_FLOAT:
12291         case TOK_DOUBLE:
12292         case TOK_SIGNED:
12293         case TOK_UNSIGNED:
12294         case TOK_STRUCT:
12295         case TOK_UNION:
12296         case TOK_ENUM:
12297         case TOK_TYPE_NAME: /* typedef name */
12298                 return 1;
12299         default:
12300                 return 0;
12301         }
12302 }
12303
12304 static void compound_statement(struct compile_state *state, struct triple *first)
12305 {
12306         eat(state, TOK_LBRACE);
12307         start_scope(state);
12308
12309         /* statement-list opt */
12310         while (peek(state) != TOK_RBRACE) {
12311                 statement(state, first);
12312         }
12313         end_scope(state);
12314         eat(state, TOK_RBRACE);
12315 }
12316
12317 static void statement(struct compile_state *state, struct triple *first)
12318 {
12319         int tok;
12320         tok = peek(state);
12321         if (tok == TOK_LBRACE) {
12322                 compound_statement(state, first);
12323         }
12324         else if (tok == TOK_IF) {
12325                 if_statement(state, first); 
12326         }
12327         else if (tok == TOK_FOR) {
12328                 for_statement(state, first);
12329         }
12330         else if (tok == TOK_WHILE) {
12331                 while_statement(state, first);
12332         }
12333         else if (tok == TOK_DO) {
12334                 do_statement(state, first);
12335         }
12336         else if (tok == TOK_RETURN) {
12337                 return_statement(state, first);
12338         }
12339         else if (tok == TOK_BREAK) {
12340                 break_statement(state, first);
12341         }
12342         else if (tok == TOK_CONTINUE) {
12343                 continue_statement(state, first);
12344         }
12345         else if (tok == TOK_GOTO) {
12346                 goto_statement(state, first);
12347         }
12348         else if (tok == TOK_SWITCH) {
12349                 switch_statement(state, first);
12350         }
12351         else if (tok == TOK_ASM) {
12352                 asm_statement(state, first);
12353         }
12354         else if ((tok == TOK_IDENT) && (peek2(state) == TOK_COLON)) {
12355                 labeled_statement(state, first); 
12356         }
12357         else if (tok == TOK_CASE) {
12358                 case_statement(state, first);
12359         }
12360         else if (tok == TOK_DEFAULT) {
12361                 default_statement(state, first);
12362         }
12363         else if (isdecl(tok)) {
12364                 /* This handles C99 intermixing of statements and decls */
12365                 decl(state, first);
12366         }
12367         else {
12368                 expr_statement(state, first);
12369         }
12370 }
12371
12372 static struct type *param_decl(struct compile_state *state)
12373 {
12374         struct type *type;
12375         struct hash_entry *ident;
12376         /* Cheat so the declarator will know we are not global */
12377         start_scope(state); 
12378         ident = 0;
12379         type = decl_specifiers(state);
12380         type = declarator(state, type, &ident, 0);
12381         type->field_ident = ident;
12382         end_scope(state);
12383         return type;
12384 }
12385
12386 static struct type *param_type_list(struct compile_state *state, struct type *type)
12387 {
12388         struct type *ftype, **next;
12389         ftype = new_type(TYPE_FUNCTION | (type->type & STOR_MASK), type, param_decl(state));
12390         next = &ftype->right;
12391         ftype->elements = 1;
12392         while(peek(state) == TOK_COMMA) {
12393                 eat(state, TOK_COMMA);
12394                 if (peek(state) == TOK_DOTS) {
12395                         eat(state, TOK_DOTS);
12396                         error(state, 0, "variadic functions not supported");
12397                 }
12398                 else {
12399                         *next = new_type(TYPE_PRODUCT, *next, param_decl(state));
12400                         next = &((*next)->right);
12401                         ftype->elements++;
12402                 }
12403         }
12404         return ftype;
12405 }
12406
12407 static struct type *type_name(struct compile_state *state)
12408 {
12409         struct type *type;
12410         type = specifier_qualifier_list(state);
12411         /* abstract-declarator (may consume no tokens) */
12412         type = declarator(state, type, 0, 0);
12413         return type;
12414 }
12415
12416 static struct type *direct_declarator(
12417         struct compile_state *state, struct type *type, 
12418         struct hash_entry **pident, int need_ident)
12419 {
12420         struct hash_entry *ident;
12421         struct type *outer;
12422         int op;
12423         outer = 0;
12424         arrays_complete(state, type);
12425         switch(peek(state)) {
12426         case TOK_IDENT:
12427                 ident = eat(state, TOK_IDENT)->ident;
12428                 if (!ident) {
12429                         error(state, 0, "Unexpected identifier found");
12430                 }
12431                 /* The name of what we are declaring */
12432                 *pident = ident;
12433                 break;
12434         case TOK_LPAREN:
12435                 eat(state, TOK_LPAREN);
12436                 outer = declarator(state, type, pident, need_ident);
12437                 eat(state, TOK_RPAREN);
12438                 break;
12439         default:
12440                 if (need_ident) {
12441                         error(state, 0, "Identifier expected");
12442                 }
12443                 break;
12444         }
12445         do {
12446                 op = 1;
12447                 arrays_complete(state, type);
12448                 switch(peek(state)) {
12449                 case TOK_LPAREN:
12450                         eat(state, TOK_LPAREN);
12451                         type = param_type_list(state, type);
12452                         eat(state, TOK_RPAREN);
12453                         break;
12454                 case TOK_LBRACKET:
12455                 {
12456                         unsigned int qualifiers;
12457                         struct triple *value;
12458                         value = 0;
12459                         eat(state, TOK_LBRACKET);
12460                         if (peek(state) != TOK_RBRACKET) {
12461                                 value = constant_expr(state);
12462                                 integral(state, value);
12463                         }
12464                         eat(state, TOK_RBRACKET);
12465
12466                         qualifiers = type->type & (QUAL_MASK | STOR_MASK);
12467                         type = new_type(TYPE_ARRAY | qualifiers, type, 0);
12468                         if (value) {
12469                                 type->elements = value->u.cval;
12470                                 free_triple(state, value);
12471                         } else {
12472                                 type->elements = ELEMENT_COUNT_UNSPECIFIED;
12473                                 op = 0;
12474                         }
12475                 }
12476                         break;
12477                 default:
12478                         op = 0;
12479                         break;
12480                 }
12481         } while(op);
12482         if (outer) {
12483                 struct type *inner;
12484                 arrays_complete(state, type);
12485                 FINISHME();
12486                 for(inner = outer; inner->left; inner = inner->left)
12487                         ;
12488                 inner->left = type;
12489                 type = outer;
12490         }
12491         return type;
12492 }
12493
12494 static struct type *declarator(
12495         struct compile_state *state, struct type *type, 
12496         struct hash_entry **pident, int need_ident)
12497 {
12498         while(peek(state) == TOK_STAR) {
12499                 eat(state, TOK_STAR);
12500                 type = new_type(TYPE_POINTER | (type->type & STOR_MASK), type, 0);
12501         }
12502         type = direct_declarator(state, type, pident, need_ident);
12503         return type;
12504 }
12505
12506 static struct type *typedef_name(
12507         struct compile_state *state, unsigned int specifiers)
12508 {
12509         struct hash_entry *ident;
12510         struct type *type;
12511         ident = eat(state, TOK_TYPE_NAME)->ident;
12512         type = ident->sym_ident->type;
12513         specifiers |= type->type & QUAL_MASK;
12514         if ((specifiers & (STOR_MASK | QUAL_MASK)) != 
12515                 (type->type & (STOR_MASK | QUAL_MASK))) {
12516                 type = clone_type(specifiers, type);
12517         }
12518         return type;
12519 }
12520
12521 static struct type *enum_specifier(
12522         struct compile_state *state, unsigned int spec)
12523 {
12524         struct hash_entry *ident;
12525         ulong_t base;
12526         int tok;
12527         struct type *enum_type;
12528         enum_type = 0;
12529         ident = 0;
12530         eat(state, TOK_ENUM);
12531         tok = peek(state);
12532         if ((tok == TOK_IDENT) || (tok == TOK_ENUM_CONST) || (tok == TOK_TYPE_NAME)) {
12533                 ident = eat(state, tok)->ident;
12534         }
12535         base = 0;
12536         if (!ident || (peek(state) == TOK_LBRACE)) {
12537                 struct type **next;
12538                 eat(state, TOK_LBRACE);
12539                 enum_type = new_type(TYPE_ENUM | spec, 0, 0);
12540                 enum_type->type_ident = ident;
12541                 next = &enum_type->right;
12542                 do {
12543                         struct hash_entry *eident;
12544                         struct triple *value;
12545                         struct type *entry;
12546                         eident = eat(state, TOK_IDENT)->ident;
12547                         if (eident->sym_ident) {
12548                                 error(state, 0, "%s already declared", 
12549                                         eident->name);
12550                         }
12551                         eident->tok = TOK_ENUM_CONST;
12552                         if (peek(state) == TOK_EQ) {
12553                                 struct triple *val;
12554                                 eat(state, TOK_EQ);
12555                                 val = constant_expr(state);
12556                                 integral(state, val);
12557                                 base = val->u.cval;
12558                         }
12559                         value = int_const(state, &int_type, base);
12560                         symbol(state, eident, &eident->sym_ident, value, &int_type);
12561                         entry = new_type(TYPE_LIST, 0, 0);
12562                         entry->field_ident = eident;
12563                         *next = entry;
12564                         next = &entry->right;
12565                         base += 1;
12566                         if (peek(state) == TOK_COMMA) {
12567                                 eat(state, TOK_COMMA);
12568                         }
12569                 } while(peek(state) != TOK_RBRACE);
12570                 eat(state, TOK_RBRACE);
12571                 if (ident) {
12572                         symbol(state, ident, &ident->sym_tag, 0, enum_type);
12573                 }
12574         }
12575         if (ident && ident->sym_tag &&
12576                 ident->sym_tag->type &&
12577                 ((ident->sym_tag->type->type & TYPE_MASK) == TYPE_ENUM)) {
12578                 enum_type = clone_type(spec, ident->sym_tag->type);
12579         }
12580         else if (ident && !enum_type) {
12581                 error(state, 0, "enum %s undeclared", ident->name);
12582         }
12583         return enum_type;
12584 }
12585
12586 static struct type *struct_declarator(
12587         struct compile_state *state, struct type *type, struct hash_entry **ident)
12588 {
12589         if (peek(state) != TOK_COLON) {
12590                 type = declarator(state, type, ident, 1);
12591         }
12592         if (peek(state) == TOK_COLON) {
12593                 struct triple *value;
12594                 eat(state, TOK_COLON);
12595                 value = constant_expr(state);
12596                 if (value->op != OP_INTCONST) {
12597                         error(state, 0, "Invalid constant expression");
12598                 }
12599                 if (value->u.cval > size_of(state, type)) {
12600                         error(state, 0, "bitfield larger than base type");
12601                 }
12602                 if (!TYPE_INTEGER(type->type) || ((type->type & TYPE_MASK) == TYPE_BITFIELD)) {
12603                         error(state, 0, "bitfield base not an integer type");
12604                 }
12605                 type = new_type(TYPE_BITFIELD, type, 0);
12606                 type->elements = value->u.cval;
12607         }
12608         return type;
12609 }
12610
12611 static struct type *struct_or_union_specifier(
12612         struct compile_state *state, unsigned int spec)
12613 {
12614         struct type *struct_type;
12615         struct hash_entry *ident;
12616         unsigned int type_main;
12617         unsigned int type_join;
12618         int tok;
12619         struct_type = 0;
12620         ident = 0;
12621         switch(peek(state)) {
12622         case TOK_STRUCT:
12623                 eat(state, TOK_STRUCT);
12624                 type_main = TYPE_STRUCT;
12625                 type_join = TYPE_PRODUCT;
12626                 break;
12627         case TOK_UNION:
12628                 eat(state, TOK_UNION);
12629                 type_main = TYPE_UNION;
12630                 type_join = TYPE_OVERLAP;
12631                 break;
12632         default:
12633                 eat(state, TOK_STRUCT);
12634                 type_main = TYPE_STRUCT;
12635                 type_join = TYPE_PRODUCT;
12636                 break;
12637         }
12638         tok = peek(state);
12639         if ((tok == TOK_IDENT) || (tok == TOK_ENUM_CONST) || (tok == TOK_TYPE_NAME)) {
12640                 ident = eat(state, tok)->ident;
12641         }
12642         if (!ident || (peek(state) == TOK_LBRACE)) {
12643                 ulong_t elements;
12644                 struct type **next;
12645                 elements = 0;
12646                 eat(state, TOK_LBRACE);
12647                 next = &struct_type;
12648                 do {
12649                         struct type *base_type;
12650                         int done;
12651                         base_type = specifier_qualifier_list(state);
12652                         do {
12653                                 struct type *type;
12654                                 struct hash_entry *fident;
12655                                 done = 1;
12656                                 type = struct_declarator(state, base_type, &fident);
12657                                 elements++;
12658                                 if (peek(state) == TOK_COMMA) {
12659                                         done = 0;
12660                                         eat(state, TOK_COMMA);
12661                                 }
12662                                 type = clone_type(0, type);
12663                                 type->field_ident = fident;
12664                                 if (*next) {
12665                                         *next = new_type(type_join, *next, type);
12666                                         next = &((*next)->right);
12667                                 } else {
12668                                         *next = type;
12669                                 }
12670                         } while(!done);
12671                         eat(state, TOK_SEMI);
12672                 } while(peek(state) != TOK_RBRACE);
12673                 eat(state, TOK_RBRACE);
12674                 struct_type = new_type(type_main | spec, struct_type, 0);
12675                 struct_type->type_ident = ident;
12676                 struct_type->elements = elements;
12677                 if (ident) {
12678                         symbol(state, ident, &ident->sym_tag, 0, struct_type);
12679                 }
12680         }
12681         if (ident && ident->sym_tag && 
12682                 ident->sym_tag->type && 
12683                 ((ident->sym_tag->type->type & TYPE_MASK) == type_main)) {
12684                 struct_type = clone_type(spec, ident->sym_tag->type);
12685         }
12686         else if (ident && !struct_type) {
12687                 error(state, 0, "%s %s undeclared", 
12688                         (type_main == TYPE_STRUCT)?"struct" : "union",
12689                         ident->name);
12690         }
12691         return struct_type;
12692 }
12693
12694 static unsigned int storage_class_specifier_opt(struct compile_state *state)
12695 {
12696         unsigned int specifiers;
12697         switch(peek(state)) {
12698         case TOK_AUTO:
12699                 eat(state, TOK_AUTO);
12700                 specifiers = STOR_AUTO;
12701                 break;
12702         case TOK_REGISTER:
12703                 eat(state, TOK_REGISTER);
12704                 specifiers = STOR_REGISTER;
12705                 break;
12706         case TOK_STATIC:
12707                 eat(state, TOK_STATIC);
12708                 specifiers = STOR_STATIC;
12709                 break;
12710         case TOK_EXTERN:
12711                 eat(state, TOK_EXTERN);
12712                 specifiers = STOR_EXTERN;
12713                 break;
12714         case TOK_TYPEDEF:
12715                 eat(state, TOK_TYPEDEF);
12716                 specifiers = STOR_TYPEDEF;
12717                 break;
12718         default:
12719                 if (state->scope_depth <= GLOBAL_SCOPE_DEPTH) {
12720                         specifiers = STOR_LOCAL;
12721                 }
12722                 else {
12723                         specifiers = STOR_AUTO;
12724                 }
12725         }
12726         return specifiers;
12727 }
12728
12729 static unsigned int function_specifier_opt(struct compile_state *state)
12730 {
12731         /* Ignore the inline keyword */
12732         unsigned int specifiers;
12733         specifiers = 0;
12734         switch(peek(state)) {
12735         case TOK_INLINE:
12736                 eat(state, TOK_INLINE);
12737                 specifiers = STOR_INLINE;
12738         }
12739         return specifiers;
12740 }
12741
12742 static unsigned int attrib(struct compile_state *state, unsigned int attributes)
12743 {
12744         int tok = peek(state);
12745         switch(tok) {
12746         case TOK_COMMA:
12747         case TOK_LPAREN:
12748                 /* The empty attribute ignore it */
12749                 break;
12750         case TOK_IDENT:
12751         case TOK_ENUM_CONST:
12752         case TOK_TYPE_NAME:
12753         {
12754                 struct hash_entry *ident;
12755                 ident = eat(state, TOK_IDENT)->ident;
12756
12757                 if (ident == state->i_noinline) {
12758                         if (attributes & ATTRIB_ALWAYS_INLINE) {
12759                                 error(state, 0, "both always_inline and noinline attribtes");
12760                         }
12761                         attributes |= ATTRIB_NOINLINE;
12762                 }
12763                 else if (ident == state->i_always_inline) {
12764                         if (attributes & ATTRIB_NOINLINE) {
12765                                 error(state, 0, "both noinline and always_inline attribtes");
12766                         }
12767                         attributes |= ATTRIB_ALWAYS_INLINE;
12768                 }
12769                 else if (ident == state->i_noreturn) {
12770                         // attribute((noreturn)) does nothing (yet?)
12771                 }
12772                 else {
12773                         error(state, 0, "Unknown attribute:%s", ident->name);
12774                 }
12775                 break;
12776         }
12777         default:
12778                 error(state, 0, "Unexpected token: %s\n", tokens[tok]);
12779                 break;
12780         }
12781         return attributes;
12782 }
12783
12784 static unsigned int attribute_list(struct compile_state *state, unsigned type)
12785 {
12786         type = attrib(state, type);
12787         while(peek(state) == TOK_COMMA) {
12788                 eat(state, TOK_COMMA);
12789                 type = attrib(state, type);
12790         }
12791         return type;
12792 }
12793
12794 static unsigned int attributes_opt(struct compile_state *state, unsigned type)
12795 {
12796         if (peek(state) == TOK_ATTRIBUTE) {
12797                 eat(state, TOK_ATTRIBUTE);
12798                 eat(state, TOK_LPAREN);
12799                 eat(state, TOK_LPAREN);
12800                 type = attribute_list(state, type);
12801                 eat(state, TOK_RPAREN);
12802                 eat(state, TOK_RPAREN);
12803         }
12804         return type;
12805 }
12806
12807 static unsigned int type_qualifiers(struct compile_state *state)
12808 {
12809         unsigned int specifiers;
12810         int done;
12811         done = 0;
12812         specifiers = QUAL_NONE;
12813         do {
12814                 switch(peek(state)) {
12815                 case TOK_CONST:
12816                         eat(state, TOK_CONST);
12817                         specifiers |= QUAL_CONST;
12818                         break;
12819                 case TOK_VOLATILE:
12820                         eat(state, TOK_VOLATILE);
12821                         specifiers |= QUAL_VOLATILE;
12822                         break;
12823                 case TOK_RESTRICT:
12824                         eat(state, TOK_RESTRICT);
12825                         specifiers |= QUAL_RESTRICT;
12826                         break;
12827                 default:
12828                         done = 1;
12829                         break;
12830                 }
12831         } while(!done);
12832         return specifiers;
12833 }
12834
12835 static struct type *type_specifier(
12836         struct compile_state *state, unsigned int spec)
12837 {
12838         struct type *type;
12839         int tok;
12840         type = 0;
12841         switch((tok = peek(state))) {
12842         case TOK_VOID:
12843                 eat(state, TOK_VOID);
12844                 type = new_type(TYPE_VOID | spec, 0, 0);
12845                 break;
12846         case TOK_CHAR:
12847                 eat(state, TOK_CHAR);
12848                 type = new_type(TYPE_CHAR | spec, 0, 0);
12849                 break;
12850         case TOK_SHORT:
12851                 eat(state, TOK_SHORT);
12852                 if (peek(state) == TOK_INT) {
12853                         eat(state, TOK_INT);
12854                 }
12855                 type = new_type(TYPE_SHORT | spec, 0, 0);
12856                 break;
12857         case TOK_INT:
12858                 eat(state, TOK_INT);
12859                 type = new_type(TYPE_INT | spec, 0, 0);
12860                 break;
12861         case TOK_LONG:
12862                 eat(state, TOK_LONG);
12863                 switch(peek(state)) {
12864                 case TOK_LONG:
12865                         eat(state, TOK_LONG);
12866                         error(state, 0, "long long not supported");
12867                         break;
12868                 case TOK_DOUBLE:
12869                         eat(state, TOK_DOUBLE);
12870                         error(state, 0, "long double not supported");
12871                         break;
12872                 case TOK_INT:
12873                         eat(state, TOK_INT);
12874                         type = new_type(TYPE_LONG | spec, 0, 0);
12875                         break;
12876                 default:
12877                         type = new_type(TYPE_LONG | spec, 0, 0);
12878                         break;
12879                 }
12880                 break;
12881         case TOK_FLOAT:
12882                 eat(state, TOK_FLOAT);
12883                 error(state, 0, "type float not supported");
12884                 break;
12885         case TOK_DOUBLE:
12886                 eat(state, TOK_DOUBLE);
12887                 error(state, 0, "type double not supported");
12888                 break;
12889         case TOK_SIGNED:
12890                 eat(state, TOK_SIGNED);
12891                 switch(peek(state)) {
12892                 case TOK_LONG:
12893                         eat(state, TOK_LONG);
12894                         switch(peek(state)) {
12895                         case TOK_LONG:
12896                                 eat(state, TOK_LONG);
12897                                 error(state, 0, "type long long not supported");
12898                                 break;
12899                         case TOK_INT:
12900                                 eat(state, TOK_INT);
12901                                 type = new_type(TYPE_LONG | spec, 0, 0);
12902                                 break;
12903                         default:
12904                                 type = new_type(TYPE_LONG | spec, 0, 0);
12905                                 break;
12906                         }
12907                         break;
12908                 case TOK_INT:
12909                         eat(state, TOK_INT);
12910                         type = new_type(TYPE_INT | spec, 0, 0);
12911                         break;
12912                 case TOK_SHORT:
12913                         eat(state, TOK_SHORT);
12914                         type = new_type(TYPE_SHORT | spec, 0, 0);
12915                         break;
12916                 case TOK_CHAR:
12917                         eat(state, TOK_CHAR);
12918                         type = new_type(TYPE_CHAR | spec, 0, 0);
12919                         break;
12920                 default:
12921                         type = new_type(TYPE_INT | spec, 0, 0);
12922                         break;
12923                 }
12924                 break;
12925         case TOK_UNSIGNED:
12926                 eat(state, TOK_UNSIGNED);
12927                 switch(peek(state)) {
12928                 case TOK_LONG:
12929                         eat(state, TOK_LONG);
12930                         switch(peek(state)) {
12931                         case TOK_LONG:
12932                                 eat(state, TOK_LONG);
12933                                 error(state, 0, "unsigned long long not supported");
12934                                 break;
12935                         case TOK_INT:
12936                                 eat(state, TOK_INT);
12937                                 type = new_type(TYPE_ULONG | spec, 0, 0);
12938                                 break;
12939                         default:
12940                                 type = new_type(TYPE_ULONG | spec, 0, 0);
12941                                 break;
12942                         }
12943                         break;
12944                 case TOK_INT:
12945                         eat(state, TOK_INT);
12946                         type = new_type(TYPE_UINT | spec, 0, 0);
12947                         break;
12948                 case TOK_SHORT:
12949                         eat(state, TOK_SHORT);
12950                         type = new_type(TYPE_USHORT | spec, 0, 0);
12951                         break;
12952                 case TOK_CHAR:
12953                         eat(state, TOK_CHAR);
12954                         type = new_type(TYPE_UCHAR | spec, 0, 0);
12955                         break;
12956                 default:
12957                         type = new_type(TYPE_UINT | spec, 0, 0);
12958                         break;
12959                 }
12960                 break;
12961                 /* struct or union specifier */
12962         case TOK_STRUCT:
12963         case TOK_UNION:
12964                 type = struct_or_union_specifier(state, spec);
12965                 break;
12966                 /* enum-spefifier */
12967         case TOK_ENUM:
12968                 type = enum_specifier(state, spec);
12969                 break;
12970                 /* typedef name */
12971         case TOK_TYPE_NAME:
12972                 type = typedef_name(state, spec);
12973                 break;
12974         default:
12975                 error(state, 0, "bad type specifier %s", 
12976                         tokens[tok]);
12977                 break;
12978         }
12979         return type;
12980 }
12981
12982 static int istype(int tok)
12983 {
12984         switch(tok) {
12985         case TOK_CONST:
12986         case TOK_RESTRICT:
12987         case TOK_VOLATILE:
12988         case TOK_VOID:
12989         case TOK_CHAR:
12990         case TOK_SHORT:
12991         case TOK_INT:
12992         case TOK_LONG:
12993         case TOK_FLOAT:
12994         case TOK_DOUBLE:
12995         case TOK_SIGNED:
12996         case TOK_UNSIGNED:
12997         case TOK_STRUCT:
12998         case TOK_UNION:
12999         case TOK_ENUM:
13000         case TOK_TYPE_NAME:
13001                 return 1;
13002         default:
13003                 return 0;
13004         }
13005 }
13006
13007
13008 static struct type *specifier_qualifier_list(struct compile_state *state)
13009 {
13010         struct type *type;
13011         unsigned int specifiers = 0;
13012
13013         /* type qualifiers */
13014         specifiers |= type_qualifiers(state);
13015
13016         /* type specifier */
13017         type = type_specifier(state, specifiers);
13018
13019         return type;
13020 }
13021
13022 #if DEBUG_ROMCC_WARNING
13023 static int isdecl_specifier(int tok)
13024 {
13025         switch(tok) {
13026                 /* storage class specifier */
13027         case TOK_AUTO:
13028         case TOK_REGISTER:
13029         case TOK_STATIC:
13030         case TOK_EXTERN:
13031         case TOK_TYPEDEF:
13032                 /* type qualifier */
13033         case TOK_CONST:
13034         case TOK_RESTRICT:
13035         case TOK_VOLATILE:
13036                 /* type specifiers */
13037         case TOK_VOID:
13038         case TOK_CHAR:
13039         case TOK_SHORT:
13040         case TOK_INT:
13041         case TOK_LONG:
13042         case TOK_FLOAT:
13043         case TOK_DOUBLE:
13044         case TOK_SIGNED:
13045         case TOK_UNSIGNED:
13046                 /* struct or union specifier */
13047         case TOK_STRUCT:
13048         case TOK_UNION:
13049                 /* enum-spefifier */
13050         case TOK_ENUM:
13051                 /* typedef name */
13052         case TOK_TYPE_NAME:
13053                 /* function specifiers */
13054         case TOK_INLINE:
13055                 return 1;
13056         default:
13057                 return 0;
13058         }
13059 }
13060 #endif
13061
13062 static struct type *decl_specifiers(struct compile_state *state)
13063 {
13064         struct type *type;
13065         unsigned int specifiers;
13066         /* I am overly restrictive in the arragement of specifiers supported.
13067          * C is overly flexible in this department it makes interpreting
13068          * the parse tree difficult.
13069          */
13070         specifiers = 0;
13071
13072         /* storage class specifier */
13073         specifiers |= storage_class_specifier_opt(state);
13074
13075         /* function-specifier */
13076         specifiers |= function_specifier_opt(state);
13077
13078         /* attributes */
13079         specifiers |= attributes_opt(state, 0);
13080
13081         /* type qualifier */
13082         specifiers |= type_qualifiers(state);
13083
13084         /* type specifier */
13085         type = type_specifier(state, specifiers);
13086         return type;
13087 }
13088
13089 struct field_info {
13090         struct type *type;
13091         size_t offset;
13092 };
13093
13094 static struct field_info designator(struct compile_state *state, struct type *type)
13095 {
13096         int tok;
13097         struct field_info info;
13098         info.offset = ~0U;
13099         info.type = 0;
13100         do {
13101                 switch(peek(state)) {
13102                 case TOK_LBRACKET:
13103                 {
13104                         struct triple *value;
13105                         if ((type->type & TYPE_MASK) != TYPE_ARRAY) {
13106                                 error(state, 0, "Array designator not in array initializer");
13107                         }
13108                         eat(state, TOK_LBRACKET);
13109                         value = constant_expr(state);
13110                         eat(state, TOK_RBRACKET);
13111
13112                         info.type = type->left;
13113                         info.offset = value->u.cval * size_of(state, info.type);
13114                         break;
13115                 }
13116                 case TOK_DOT:
13117                 {
13118                         struct hash_entry *field;
13119                         if (((type->type & TYPE_MASK) != TYPE_STRUCT) &&
13120                                 ((type->type & TYPE_MASK) != TYPE_UNION))
13121                         {
13122                                 error(state, 0, "Struct designator not in struct initializer");
13123                         }
13124                         eat(state, TOK_DOT);
13125                         field = eat(state, TOK_IDENT)->ident;
13126                         info.offset = field_offset(state, type, field);
13127                         info.type   = field_type(state, type, field);
13128                         break;
13129                 }
13130                 default:
13131                         error(state, 0, "Invalid designator");
13132                 }
13133                 tok = peek(state);
13134         } while((tok == TOK_LBRACKET) || (tok == TOK_DOT));
13135         eat(state, TOK_EQ);
13136         return info;
13137 }
13138
13139 static struct triple *initializer(
13140         struct compile_state *state, struct type *type)
13141 {
13142         struct triple *result;
13143 #if DEBUG_ROMCC_WARNINGS
13144 #warning "FIXME more consistent initializer handling (where should eval_const_expr go?"
13145 #endif
13146         if (peek(state) != TOK_LBRACE) {
13147                 result = assignment_expr(state);
13148                 if (((type->type & TYPE_MASK) == TYPE_ARRAY) &&
13149                         (type->elements == ELEMENT_COUNT_UNSPECIFIED) &&
13150                         ((result->type->type & TYPE_MASK) == TYPE_ARRAY) &&
13151                         (result->type->elements != ELEMENT_COUNT_UNSPECIFIED) &&
13152                         (equiv_types(type->left, result->type->left))) {
13153                         type->elements = result->type->elements;
13154                 }
13155                 if (is_lvalue(state, result) && 
13156                         ((result->type->type & TYPE_MASK) == TYPE_ARRAY) &&
13157                         (type->type & TYPE_MASK) != TYPE_ARRAY)
13158                 {
13159                         result = lvalue_conversion(state, result);
13160                 }
13161                 if (!is_init_compatible(state, type, result->type)) {
13162                         error(state, 0, "Incompatible types in initializer");
13163                 }
13164                 if (!equiv_types(type, result->type)) {
13165                         result = mk_cast_expr(state, type, result);
13166                 }
13167         }
13168         else {
13169                 int comma;
13170                 size_t max_offset;
13171                 struct field_info info;
13172                 void *buf;
13173                 if (((type->type & TYPE_MASK) != TYPE_ARRAY) &&
13174                         ((type->type & TYPE_MASK) != TYPE_STRUCT)) {
13175                         internal_error(state, 0, "unknown initializer type");
13176                 }
13177                 info.offset = 0;
13178                 info.type = type->left;
13179                 if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
13180                         info.type = next_field(state, type, 0);
13181                 }
13182                 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
13183                         max_offset = 0;
13184                 } else {
13185                         max_offset = size_of(state, type);
13186                 }
13187                 buf = xcmalloc(bits_to_bytes(max_offset), "initializer");
13188                 eat(state, TOK_LBRACE);
13189                 do {
13190                         struct triple *value;
13191                         struct type *value_type;
13192                         size_t value_size;
13193                         void *dest;
13194                         int tok;
13195                         comma = 0;
13196                         tok = peek(state);
13197                         if ((tok == TOK_LBRACKET) || (tok == TOK_DOT)) {
13198                                 info = designator(state, type);
13199                         }
13200                         if ((type->elements != ELEMENT_COUNT_UNSPECIFIED) &&
13201                                 (info.offset >= max_offset)) {
13202                                 error(state, 0, "element beyond bounds");
13203                         }
13204                         value_type = info.type;
13205                         value = eval_const_expr(state, initializer(state, value_type));
13206                         value_size = size_of(state, value_type);
13207                         if (((type->type & TYPE_MASK) == TYPE_ARRAY) &&
13208                                 (type->elements == ELEMENT_COUNT_UNSPECIFIED) &&
13209                                 (max_offset <= info.offset)) {
13210                                 void *old_buf;
13211                                 size_t old_size;
13212                                 old_buf = buf;
13213                                 old_size = max_offset;
13214                                 max_offset = info.offset + value_size;
13215                                 buf = xmalloc(bits_to_bytes(max_offset), "initializer");
13216                                 memcpy(buf, old_buf, bits_to_bytes(old_size));
13217                                 xfree(old_buf);
13218                         }
13219                         dest = ((char *)buf) + bits_to_bytes(info.offset);
13220 #if DEBUG_INITIALIZER
13221                         fprintf(state->errout, "dest = buf + %d max_offset: %d value_size: %d op: %d\n", 
13222                                 dest - buf,
13223                                 bits_to_bytes(max_offset),
13224                                 bits_to_bytes(value_size),
13225                                 value->op);
13226 #endif
13227                         if (value->op == OP_BLOBCONST) {
13228                                 memcpy(dest, value->u.blob, bits_to_bytes(value_size));
13229                         }
13230                         else if ((value->op == OP_INTCONST) && (value_size == SIZEOF_I8)) {
13231 #if DEBUG_INITIALIZER
13232                                 fprintf(state->errout, "byte: %02x\n", value->u.cval & 0xff);
13233 #endif
13234                                 *((uint8_t *)dest) = value->u.cval & 0xff;
13235                         }
13236                         else if ((value->op == OP_INTCONST) && (value_size == SIZEOF_I16)) {
13237                                 *((uint16_t *)dest) = value->u.cval & 0xffff;
13238                         }
13239                         else if ((value->op == OP_INTCONST) && (value_size == SIZEOF_I32)) {
13240                                 *((uint32_t *)dest) = value->u.cval & 0xffffffff;
13241                         }
13242                         else {
13243                                 internal_error(state, 0, "unhandled constant initializer");
13244                         }
13245                         free_triple(state, value);
13246                         if (peek(state) == TOK_COMMA) {
13247                                 eat(state, TOK_COMMA);
13248                                 comma = 1;
13249                         }
13250                         info.offset += value_size;
13251                         if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
13252                                 info.type = next_field(state, type, info.type);
13253                                 info.offset = field_offset(state, type, 
13254                                         info.type->field_ident);
13255                         }
13256                 } while(comma && (peek(state) != TOK_RBRACE));
13257                 if ((type->elements == ELEMENT_COUNT_UNSPECIFIED) &&
13258                         ((type->type & TYPE_MASK) == TYPE_ARRAY)) {
13259                         type->elements = max_offset / size_of(state, type->left);
13260                 }
13261                 eat(state, TOK_RBRACE);
13262                 result = triple(state, OP_BLOBCONST, type, 0, 0);
13263                 result->u.blob = buf;
13264         }
13265         return result;
13266 }
13267
13268 static void resolve_branches(struct compile_state *state, struct triple *first)
13269 {
13270         /* Make a second pass and finish anything outstanding
13271          * with respect to branches.  The only outstanding item
13272          * is to see if there are goto to labels that have not
13273          * been defined and to error about them.
13274          */
13275         int i;
13276         struct triple *ins;
13277         /* Also error on branches that do not use their targets */
13278         ins = first;
13279         do {
13280                 if (!triple_is_ret(state, ins)) {
13281                         struct triple **expr ;
13282                         struct triple_set *set;
13283                         expr = triple_targ(state, ins, 0);
13284                         for(; expr; expr = triple_targ(state, ins, expr)) {
13285                                 struct triple *targ;
13286                                 targ = *expr;
13287                                 for(set = targ?targ->use:0; set; set = set->next) {
13288                                         if (set->member == ins) {
13289                                                 break;
13290                                         }
13291                                 }
13292                                 if (!set) {
13293                                         internal_error(state, ins, "targ not used");
13294                                 }
13295                         }
13296                 }
13297                 ins = ins->next;
13298         } while(ins != first);
13299         /* See if there are goto to labels that have not been defined */
13300         for(i = 0; i < HASH_TABLE_SIZE; i++) {
13301                 struct hash_entry *entry;
13302                 for(entry = state->hash_table[i]; entry; entry = entry->next) {
13303                         struct triple *ins;
13304                         if (!entry->sym_label) {
13305                                 continue;
13306                         }
13307                         ins = entry->sym_label->def;
13308                         if (!(ins->id & TRIPLE_FLAG_FLATTENED)) {
13309                                 error(state, ins, "label `%s' used but not defined",
13310                                         entry->name);
13311                         }
13312                 }
13313         }
13314 }
13315
13316 static struct triple *function_definition(
13317         struct compile_state *state, struct type *type)
13318 {
13319         struct triple *def, *tmp, *first, *end, *retvar, *result, *ret;
13320         struct triple *fname;
13321         struct type *fname_type;
13322         struct hash_entry *ident;
13323         struct type *param, *crtype, *ctype;
13324         int i;
13325         if ((type->type &TYPE_MASK) != TYPE_FUNCTION) {
13326                 error(state, 0, "Invalid function header");
13327         }
13328
13329         /* Verify the function type */
13330         if (((type->right->type & TYPE_MASK) != TYPE_VOID)  &&
13331                 ((type->right->type & TYPE_MASK) != TYPE_PRODUCT) &&
13332                 (type->right->field_ident == 0)) {
13333                 error(state, 0, "Invalid function parameters");
13334         }
13335         param = type->right;
13336         i = 0;
13337         while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
13338                 i++;
13339                 if (!param->left->field_ident) {
13340                         error(state, 0, "No identifier for parameter %d\n", i);
13341                 }
13342                 param = param->right;
13343         }
13344         i++;
13345         if (((param->type & TYPE_MASK) != TYPE_VOID) && !param->field_ident) {
13346                 error(state, 0, "No identifier for paramter %d\n", i);
13347         }
13348         
13349         /* Get a list of statements for this function. */
13350         def = triple(state, OP_LIST, type, 0, 0);
13351
13352         /* Start a new scope for the passed parameters */
13353         start_scope(state);
13354
13355         /* Put a label at the very start of a function */
13356         first = label(state);
13357         RHS(def, 0) = first;
13358
13359         /* Put a label at the very end of a function */
13360         end = label(state);
13361         flatten(state, first, end);
13362         /* Remember where return goes */
13363         ident = state->i_return;
13364         symbol(state, ident, &ident->sym_ident, end, end->type);
13365
13366         /* Get the initial closure type */
13367         ctype = new_type(TYPE_JOIN, &void_type, 0);
13368         ctype->elements = 1;
13369
13370         /* Add a variable for the return value */
13371         crtype = new_type(TYPE_TUPLE, 
13372                 /* Remove all type qualifiers from the return type */
13373                 new_type(TYPE_PRODUCT, ctype, clone_type(0, type->left)), 0);
13374         crtype->elements = 2;
13375         result = flatten(state, end, variable(state, crtype));
13376
13377         /* Allocate a variable for the return address */
13378         retvar = flatten(state, end, variable(state, &void_ptr_type));
13379
13380         /* Add in the return instruction */
13381         ret = triple(state, OP_RET, &void_type, read_expr(state, retvar), 0);
13382         ret = flatten(state, first, ret);
13383
13384         /* Walk through the parameters and create symbol table entries
13385          * for them.
13386          */
13387         param = type->right;
13388         while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
13389                 ident = param->left->field_ident;
13390                 tmp = variable(state, param->left);
13391                 var_symbol(state, ident, tmp);
13392                 flatten(state, end, tmp);
13393                 param = param->right;
13394         }
13395         if ((param->type & TYPE_MASK) != TYPE_VOID) {
13396                 /* And don't forget the last parameter */
13397                 ident = param->field_ident;
13398                 tmp = variable(state, param);
13399                 symbol(state, ident, &ident->sym_ident, tmp, tmp->type);
13400                 flatten(state, end, tmp);
13401         }
13402
13403         /* Add the declaration static const char __func__ [] = "func-name"  */
13404         fname_type = new_type(TYPE_ARRAY, 
13405                 clone_type(QUAL_CONST | STOR_STATIC, &char_type), 0);
13406         fname_type->type |= QUAL_CONST | STOR_STATIC;
13407         fname_type->elements = strlen(state->function) + 1;
13408
13409         fname = triple(state, OP_BLOBCONST, fname_type, 0, 0);
13410         fname->u.blob = (void *)state->function;
13411         fname = flatten(state, end, fname);
13412
13413         ident = state->i___func__;
13414         symbol(state, ident, &ident->sym_ident, fname, fname_type);
13415
13416         /* Remember which function I am compiling.
13417          * Also assume the last defined function is the main function.
13418          */
13419         state->main_function = def;
13420
13421         /* Now get the actual function definition */
13422         compound_statement(state, end);
13423
13424         /* Finish anything unfinished with branches */
13425         resolve_branches(state, first);
13426
13427         /* Remove the parameter scope */
13428         end_scope(state);
13429
13430
13431         /* Remember I have defined a function */
13432         if (!state->functions) {
13433                 state->functions = def;
13434         } else {
13435                 insert_triple(state, state->functions, def);
13436         }
13437         if (state->compiler->debug & DEBUG_INLINE) {
13438                 FILE *fp = state->dbgout;
13439                 fprintf(fp, "\n");
13440                 loc(fp, state, 0);
13441                 fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
13442                 display_func(state, fp, def);
13443                 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
13444         }
13445
13446         return def;
13447 }
13448
13449 static struct triple *do_decl(struct compile_state *state, 
13450         struct type *type, struct hash_entry *ident)
13451 {
13452         struct triple *def;
13453         def = 0;
13454         /* Clean up the storage types used */
13455         switch (type->type & STOR_MASK) {
13456         case STOR_AUTO:
13457         case STOR_STATIC:
13458                 /* These are the good types I am aiming for */
13459                 break;
13460         case STOR_REGISTER:
13461                 type->type &= ~STOR_MASK;
13462                 type->type |= STOR_AUTO;
13463                 break;
13464         case STOR_LOCAL:
13465         case STOR_EXTERN:
13466                 type->type &= ~STOR_MASK;
13467                 type->type |= STOR_STATIC;
13468                 break;
13469         case STOR_TYPEDEF:
13470                 if (!ident) {
13471                         error(state, 0, "typedef without name");
13472                 }
13473                 symbol(state, ident, &ident->sym_ident, 0, type);
13474                 ident->tok = TOK_TYPE_NAME;
13475                 return 0;
13476                 break;
13477         default:
13478                 internal_error(state, 0, "Undefined storage class");
13479         }
13480         if ((type->type & TYPE_MASK) == TYPE_FUNCTION) {
13481                 error(state, 0, "Function prototypes not supported");
13482         }
13483         if (ident && 
13484                 ((type->type & STOR_MASK) == STOR_STATIC) &&
13485                 ((type->type & QUAL_CONST) == 0)) {
13486                 error(state, 0, "non const static variables not supported");
13487         }
13488         if (ident) {
13489                 def = variable(state, type);
13490                 var_symbol(state, ident, def);
13491         }
13492         return def;
13493 }
13494
13495 static void decl(struct compile_state *state, struct triple *first)
13496 {
13497         struct type *base_type, *type;
13498         struct hash_entry *ident;
13499         struct triple *def;
13500         int global;
13501         global = (state->scope_depth <= GLOBAL_SCOPE_DEPTH);
13502         base_type = decl_specifiers(state);
13503         ident = 0;
13504         type = declarator(state, base_type, &ident, 0);
13505         type->type = attributes_opt(state, type->type);
13506         if (global && ident && (peek(state) == TOK_LBRACE)) {
13507                 /* function */
13508                 type->type_ident = ident;
13509                 state->function = ident->name;
13510                 def = function_definition(state, type);
13511                 symbol(state, ident, &ident->sym_ident, def, type);
13512                 state->function = 0;
13513         }
13514         else {
13515                 int done;
13516                 flatten(state, first, do_decl(state, type, ident));
13517                 /* type or variable definition */
13518                 do {
13519                         done = 1;
13520                         if (peek(state) == TOK_EQ) {
13521                                 if (!ident) {
13522                                         error(state, 0, "cannot assign to a type");
13523                                 }
13524                                 eat(state, TOK_EQ);
13525                                 flatten(state, first,
13526                                         init_expr(state, 
13527                                                 ident->sym_ident->def, 
13528                                                 initializer(state, type)));
13529                         }
13530                         arrays_complete(state, type);
13531                         if (peek(state) == TOK_COMMA) {
13532                                 eat(state, TOK_COMMA);
13533                                 ident = 0;
13534                                 type = declarator(state, base_type, &ident, 0);
13535                                 flatten(state, first, do_decl(state, type, ident));
13536                                 done = 0;
13537                         }
13538                 } while(!done);
13539                 eat(state, TOK_SEMI);
13540         }
13541 }
13542
13543 static void decls(struct compile_state *state)
13544 {
13545         struct triple *list;
13546         int tok;
13547         list = label(state);
13548         while(1) {
13549                 tok = peek(state);
13550                 if (tok == TOK_EOF) {
13551                         return;
13552                 }
13553                 if (tok == TOK_SPACE) {
13554                         eat(state, TOK_SPACE);
13555                 }
13556                 decl(state, list);
13557                 if (list->next != list) {
13558                         error(state, 0, "global variables not supported");
13559                 }
13560         }
13561 }
13562
13563 /* 
13564  * Function inlining
13565  */
13566 struct triple_reg_set {
13567         struct triple_reg_set *next;
13568         struct triple *member;
13569         struct triple *new;
13570 };
13571 struct reg_block {
13572         struct block *block;
13573         struct triple_reg_set *in;
13574         struct triple_reg_set *out;
13575         int vertex;
13576 };
13577 static void setup_basic_blocks(struct compile_state *, struct basic_blocks *bb);
13578 static void analyze_basic_blocks(struct compile_state *state, struct basic_blocks *bb);
13579 static void free_basic_blocks(struct compile_state *, struct basic_blocks *bb);
13580 static int tdominates(struct compile_state *state, struct triple *dom, struct triple *sub);
13581 static void walk_blocks(struct compile_state *state, struct basic_blocks *bb,
13582         void (*cb)(struct compile_state *state, struct block *block, void *arg),
13583         void *arg);
13584 static void print_block(
13585         struct compile_state *state, struct block *block, void *arg);
13586 static int do_triple_set(struct triple_reg_set **head, 
13587         struct triple *member, struct triple *new_member);
13588 static void do_triple_unset(struct triple_reg_set **head, struct triple *member);
13589 static struct reg_block *compute_variable_lifetimes(
13590         struct compile_state *state, struct basic_blocks *bb);
13591 static void free_variable_lifetimes(struct compile_state *state, 
13592         struct basic_blocks *bb, struct reg_block *blocks);
13593 #if DEBUG_EXPLICIT_CLOSURES
13594 static void print_live_variables(struct compile_state *state, 
13595         struct basic_blocks *bb, struct reg_block *rb, FILE *fp);
13596 #endif
13597
13598
13599 static struct triple *call(struct compile_state *state,
13600         struct triple *retvar, struct triple *ret_addr, 
13601         struct triple *targ, struct triple *ret)
13602 {
13603         struct triple *call;
13604
13605         if (!retvar || !is_lvalue(state, retvar)) {
13606                 internal_error(state, 0, "writing to a non lvalue?");
13607         }
13608         write_compatible(state, retvar->type, &void_ptr_type);
13609
13610         call = new_triple(state, OP_CALL, &void_type, 1, 0);
13611         TARG(call, 0) = targ;
13612         MISC(call, 0) = ret;
13613         if (!targ || (targ->op != OP_LABEL)) {
13614                 internal_error(state, 0, "call not to a label");
13615         }
13616         if (!ret || (ret->op != OP_RET)) {
13617                 internal_error(state, 0, "call not matched with return");
13618         }
13619         return call;
13620 }
13621
13622 static void walk_functions(struct compile_state *state,
13623         void (*cb)(struct compile_state *state, struct triple *func, void *arg),
13624         void *arg)
13625 {
13626         struct triple *func, *first;
13627         func = first = state->functions;
13628         do {
13629                 cb(state, func, arg);
13630                 func = func->next;
13631         } while(func != first);
13632 }
13633
13634 static void reverse_walk_functions(struct compile_state *state,
13635         void (*cb)(struct compile_state *state, struct triple *func, void *arg),
13636         void *arg)
13637 {
13638         struct triple *func, *first;
13639         func = first = state->functions;
13640         do {
13641                 func = func->prev;
13642                 cb(state, func, arg);
13643         } while(func != first);
13644 }
13645
13646
13647 static void mark_live(struct compile_state *state, struct triple *func, void *arg)
13648 {
13649         struct triple *ptr, *first;
13650         if (func->u.cval == 0) {
13651                 return;
13652         }
13653         ptr = first = RHS(func, 0);
13654         do {
13655                 if (ptr->op == OP_FCALL) {
13656                         struct triple *called_func;
13657                         called_func = MISC(ptr, 0);
13658                         /* Mark the called function as used */
13659                         if (!(func->id & TRIPLE_FLAG_FLATTENED)) {
13660                                 called_func->u.cval++;
13661                         }
13662                         /* Remove the called function from the list */
13663                         called_func->prev->next = called_func->next;
13664                         called_func->next->prev = called_func->prev;
13665
13666                         /* Place the called function before me on the list */
13667                         called_func->next       = func;
13668                         called_func->prev       = func->prev;
13669                         called_func->prev->next = called_func;
13670                         called_func->next->prev = called_func;
13671                 }
13672                 ptr = ptr->next;
13673         } while(ptr != first);
13674         func->id |= TRIPLE_FLAG_FLATTENED;
13675 }
13676
13677 static void mark_live_functions(struct compile_state *state)
13678 {
13679         /* Ensure state->main_function is the last function in 
13680          * the list of functions.
13681          */
13682         if ((state->main_function->next != state->functions) ||
13683                 (state->functions->prev != state->main_function)) {
13684                 internal_error(state, 0, 
13685                         "state->main_function is not at the end of the function list ");
13686         }
13687         state->main_function->u.cval = 1;
13688         reverse_walk_functions(state, mark_live, 0);
13689 }
13690
13691 static int local_triple(struct compile_state *state, 
13692         struct triple *func, struct triple *ins)
13693 {
13694         int local = (ins->id & TRIPLE_FLAG_LOCAL);
13695 #if 0
13696         if (!local) {
13697                 FILE *fp = state->errout;
13698                 fprintf(fp, "global: ");
13699                 display_triple(fp, ins);
13700         }
13701 #endif
13702         return local;
13703 }
13704
13705 struct triple *copy_func(struct compile_state *state, struct triple *ofunc, 
13706         struct occurance *base_occurance)
13707 {
13708         struct triple *nfunc;
13709         struct triple *nfirst, *ofirst;
13710         struct triple *new, *old;
13711
13712         if (state->compiler->debug & DEBUG_INLINE) {
13713                 FILE *fp = state->dbgout;
13714                 fprintf(fp, "\n");
13715                 loc(fp, state, 0);
13716                 fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
13717                 display_func(state, fp, ofunc);
13718                 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
13719         }
13720
13721         /* Make a new copy of the old function */
13722         nfunc = triple(state, OP_LIST, ofunc->type, 0, 0);
13723         nfirst = 0;
13724         ofirst = old = RHS(ofunc, 0);
13725         do {
13726                 struct triple *new;
13727                 struct occurance *occurance;
13728                 int old_lhs, old_rhs;
13729                 old_lhs = old->lhs;
13730                 old_rhs = old->rhs;
13731                 occurance = inline_occurance(state, base_occurance, old->occurance);
13732                 if (ofunc->u.cval && (old->op == OP_FCALL)) {
13733                         MISC(old, 0)->u.cval += 1;
13734                 }
13735                 new = alloc_triple(state, old->op, old->type, old_lhs, old_rhs,
13736                         occurance);
13737                 if (!triple_stores_block(state, new)) {
13738                         memcpy(&new->u, &old->u, sizeof(new->u));
13739                 }
13740                 if (!nfirst) {
13741                         RHS(nfunc, 0) = nfirst = new;
13742                 }
13743                 else {
13744                         insert_triple(state, nfirst, new);
13745                 }
13746                 new->id |= TRIPLE_FLAG_FLATTENED;
13747                 new->id |= old->id & TRIPLE_FLAG_COPY;
13748                 
13749                 /* During the copy remember new as user of old */
13750                 use_triple(old, new);
13751
13752                 /* Remember which instructions are local */
13753                 old->id |= TRIPLE_FLAG_LOCAL;
13754                 old = old->next;
13755         } while(old != ofirst);
13756
13757         /* Make a second pass to fix up any unresolved references */
13758         old = ofirst;
13759         new = nfirst;
13760         do {
13761                 struct triple **oexpr, **nexpr;
13762                 int count, i;
13763                 /* Lookup where the copy is, to join pointers */
13764                 count = TRIPLE_SIZE(old);
13765                 for(i = 0; i < count; i++) {
13766                         oexpr = &old->param[i];
13767                         nexpr = &new->param[i];
13768                         if (*oexpr && !*nexpr) {
13769                                 if (!local_triple(state, ofunc, *oexpr)) {
13770                                         *nexpr = *oexpr;
13771                                 }
13772                                 else if ((*oexpr)->use) {
13773                                         *nexpr = (*oexpr)->use->member;
13774                                 }
13775                                 if (*nexpr == old) {
13776                                         internal_error(state, 0, "new == old?");
13777                                 }
13778                                 use_triple(*nexpr, new);
13779                         }
13780                         if (!*nexpr && *oexpr) {
13781                                 internal_error(state, 0, "Could not copy %d", i);
13782                         }
13783                 }
13784                 old = old->next;
13785                 new = new->next;
13786         } while((old != ofirst) && (new != nfirst));
13787         
13788         /* Make a third pass to cleanup the extra useses */
13789         old = ofirst;
13790         new = nfirst;
13791         do {
13792                 unuse_triple(old, new);
13793                 /* Forget which instructions are local */
13794                 old->id &= ~TRIPLE_FLAG_LOCAL;
13795                 old = old->next;
13796                 new = new->next;
13797         } while ((old != ofirst) && (new != nfirst));
13798         return nfunc;
13799 }
13800
13801 static void expand_inline_call(
13802         struct compile_state *state, struct triple *me, struct triple *fcall)
13803 {
13804         /* Inline the function call */
13805         struct type *ptype;
13806         struct triple *ofunc, *nfunc, *nfirst, *result, *retvar, *ins;
13807         struct triple *end, *nend;
13808         int pvals, i;
13809
13810         /* Find the triples */
13811         ofunc = MISC(fcall, 0);
13812         if (ofunc->op != OP_LIST) {
13813                 internal_error(state, 0, "improper function");
13814         }
13815         nfunc = copy_func(state, ofunc, fcall->occurance);
13816         /* Prepend the parameter reading into the new function list */
13817         ptype = nfunc->type->right;
13818         pvals = fcall->rhs;
13819         for(i = 0; i < pvals; i++) {
13820                 struct type *atype;
13821                 struct triple *arg, *param;
13822                 atype = ptype;
13823                 if ((ptype->type & TYPE_MASK) == TYPE_PRODUCT) {
13824                         atype = ptype->left;
13825                 }
13826                 param = farg(state, nfunc, i);
13827                 if ((param->type->type & TYPE_MASK) != (atype->type & TYPE_MASK)) {
13828                         internal_error(state, fcall, "param %d type mismatch", i);
13829                 }
13830                 arg = RHS(fcall, i);
13831                 flatten(state, fcall, write_expr(state, param, arg));
13832                 ptype = ptype->right;
13833         }
13834         result = 0;
13835         if ((nfunc->type->left->type & TYPE_MASK) != TYPE_VOID) {
13836                 result = read_expr(state, 
13837                         deref_index(state, fresult(state, nfunc), 1));
13838         }
13839         if (state->compiler->debug & DEBUG_INLINE) {
13840                 FILE *fp = state->dbgout;
13841                 fprintf(fp, "\n");
13842                 loc(fp, state, 0);
13843                 fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
13844                 display_func(state, fp, nfunc);
13845                 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
13846         }
13847
13848         /* 
13849          * Get rid of the extra triples 
13850          */
13851         /* Remove the read of the return address */
13852         ins = RHS(nfunc, 0)->prev->prev;
13853         if ((ins->op != OP_READ) || (RHS(ins, 0) != fretaddr(state, nfunc))) {
13854                 internal_error(state, ins, "Not return addres read?");
13855         }
13856         release_triple(state, ins);
13857         /* Remove the return instruction */
13858         ins = RHS(nfunc, 0)->prev;
13859         if (ins->op != OP_RET) {
13860                 internal_error(state, ins, "Not return?");
13861         }
13862         release_triple(state, ins);
13863         /* Remove the retaddres variable */
13864         retvar = fretaddr(state, nfunc);
13865         if ((retvar->lhs != 1) || 
13866                 (retvar->op != OP_ADECL) ||
13867                 (retvar->next->op != OP_PIECE) ||
13868                 (MISC(retvar->next, 0) != retvar)) {
13869                 internal_error(state, retvar, "Not the return address?");
13870         }
13871         release_triple(state, retvar->next);
13872         release_triple(state, retvar);
13873
13874         /* Remove the label at the start of the function */
13875         ins = RHS(nfunc, 0);
13876         if (ins->op != OP_LABEL) {
13877                 internal_error(state, ins, "Not label?");
13878         }
13879         nfirst = ins->next;
13880         free_triple(state, ins);
13881         /* Release the new function header */
13882         RHS(nfunc, 0) = 0;
13883         free_triple(state, nfunc);
13884
13885         /* Append the new function list onto the return list */
13886         end = fcall->prev;
13887         nend = nfirst->prev;
13888         end->next    = nfirst;
13889         nfirst->prev = end;
13890         nend->next   = fcall;
13891         fcall->prev  = nend;
13892
13893         /* Now the result reading code */
13894         if (result) {
13895                 result = flatten(state, fcall, result);
13896                 propogate_use(state, fcall, result);
13897         }
13898
13899         /* Release the original fcall instruction */
13900         release_triple(state, fcall);
13901
13902         return;
13903 }
13904
13905 /*
13906  *
13907  * Type of the result variable.
13908  * 
13909  *                                     result
13910  *                                        |
13911  *                             +----------+------------+
13912  *                             |                       |
13913  *                     union of closures         result_type
13914  *                             |
13915  *          +------------------+---------------+
13916  *          |                                  |
13917  *       closure1                    ...   closuerN
13918  *          |                                  | 
13919  *  +----+--+-+--------+-----+       +----+----+---+-----+
13920  *  |    |    |        |     |       |    |        |     |
13921  * var1 var2 var3 ... varN result   var1 var2 ... varN result
13922  *                           |
13923  *                  +--------+---------+
13924  *                  |                  |
13925  *          union of closures     result_type
13926  *                  |
13927  *            +-----+-------------------+
13928  *            |                         |
13929  *         closure1            ...  closureN
13930  *            |                         |
13931  *  +-----+---+----+----+      +----+---+----+-----+
13932  *  |     |        |    |      |    |        |     |
13933  * var1 var2 ... varN result  var1 var2 ... varN result
13934  */
13935
13936 static int add_closure_type(struct compile_state *state, 
13937         struct triple *func, struct type *closure_type)
13938 {
13939         struct type *type, *ctype, **next;
13940         struct triple *var, *new_var;
13941         int i;
13942
13943 #if 0
13944         FILE *fp = state->errout;
13945         fprintf(fp, "original_type: ");
13946         name_of(fp, fresult(state, func)->type);
13947         fprintf(fp, "\n");
13948 #endif
13949         /* find the original type */
13950         var = fresult(state, func);
13951         type = var->type;
13952         if (type->elements != 2) {
13953                 internal_error(state, var, "bad return type");
13954         }
13955
13956         /* Find the complete closure type and update it */
13957         ctype = type->left->left;
13958         next = &ctype->left;
13959         while(((*next)->type & TYPE_MASK) == TYPE_OVERLAP) {
13960                 next = &(*next)->right;
13961         }
13962         *next = new_type(TYPE_OVERLAP, *next, dup_type(state, closure_type));
13963         ctype->elements += 1;
13964
13965 #if 0
13966         fprintf(fp, "new_type: ");
13967         name_of(fp, type);
13968         fprintf(fp, "\n");
13969         fprintf(fp, "ctype: %p %d bits: %d ", 
13970                 ctype, ctype->elements, reg_size_of(state, ctype));
13971         name_of(fp, ctype);
13972         fprintf(fp, "\n");
13973 #endif
13974         
13975         /* Regenerate the variable with the new type definition */
13976         new_var = pre_triple(state, var, OP_ADECL, type, 0, 0);
13977         new_var->id |= TRIPLE_FLAG_FLATTENED;
13978         for(i = 0; i < new_var->lhs; i++) {
13979                 LHS(new_var, i)->id |= TRIPLE_FLAG_FLATTENED;
13980         }
13981         
13982         /* Point everyone at the new variable */
13983         propogate_use(state, var, new_var);
13984
13985         /* Release the original variable */
13986         for(i = 0; i < var->lhs; i++) {
13987                 release_triple(state, LHS(var, i));
13988         }
13989         release_triple(state, var);
13990         
13991         /* Return the index of the added closure type */
13992         return ctype->elements - 1;
13993 }
13994
13995 static struct triple *closure_expr(struct compile_state *state,
13996         struct triple *func, int closure_idx, int var_idx)
13997 {
13998         return deref_index(state,
13999                 deref_index(state,
14000                         deref_index(state, fresult(state, func), 0),
14001                         closure_idx),
14002                 var_idx);
14003 }
14004
14005
14006 static void insert_triple_set(
14007         struct triple_reg_set **head, struct triple *member)
14008 {
14009         struct triple_reg_set *new;
14010         new = xcmalloc(sizeof(*new), "triple_set");
14011         new->member = member;
14012         new->new    = 0;
14013         new->next   = *head;
14014         *head       = new;
14015 }
14016
14017 static int ordered_triple_set(
14018         struct triple_reg_set **head, struct triple *member)
14019 {
14020         struct triple_reg_set **ptr;
14021         if (!member)
14022                 return 0;
14023         ptr = head;
14024         while(*ptr) {
14025                 if (member == (*ptr)->member) {
14026                         return 0;
14027                 }
14028                 /* keep the list ordered */
14029                 if (member->id < (*ptr)->member->id) {
14030                         break;
14031                 }
14032                 ptr = &(*ptr)->next;
14033         }
14034         insert_triple_set(ptr, member);
14035         return 1;
14036 }
14037
14038
14039 static void free_closure_variables(struct compile_state *state,
14040         struct triple_reg_set **enclose)
14041 {
14042         struct triple_reg_set *entry, *next;
14043         for(entry = *enclose; entry; entry = next) {
14044                 next = entry->next;
14045                 do_triple_unset(enclose, entry->member);
14046         }
14047 }
14048
14049 static int lookup_closure_index(struct compile_state *state,
14050         struct triple *me, struct triple *val)
14051 {
14052         struct triple *first, *ins, *next;
14053         first = RHS(me, 0);
14054         ins = next = first;
14055         do {
14056                 struct triple *result;
14057                 struct triple *index0, *index1, *index2, *read, *write;
14058                 ins = next;
14059                 next = ins->next;
14060                 if (ins->op != OP_CALL) {
14061                         continue;
14062                 }
14063                 /* I am at a previous call point examine it closely */
14064                 if (ins->next->op != OP_LABEL) {
14065                         internal_error(state, ins, "call not followed by label");
14066                 }
14067                 /* Does this call does not enclose any variables? */
14068                 if ((ins->next->next->op != OP_INDEX) ||
14069                         (ins->next->next->u.cval != 0) ||
14070                         (result = MISC(ins->next->next, 0)) ||
14071                         (result->id & TRIPLE_FLAG_LOCAL)) {
14072                         continue;
14073                 }
14074                 index0 = ins->next->next;
14075                 /* The pattern is:
14076                  * 0 index result < 0 >
14077                  * 1 index 0 < ? >
14078                  * 2 index 1 < ? >
14079                  * 3 read  2
14080                  * 4 write 3 var
14081                  */
14082                 for(index0 = ins->next->next;
14083                         (index0->op == OP_INDEX) &&
14084                                 (MISC(index0, 0) == result) &&
14085                                 (index0->u.cval == 0) ; 
14086                         index0 = write->next)
14087                 {
14088                         index1 = index0->next;
14089                         index2 = index1->next;
14090                         read   = index2->next;
14091                         write  = read->next;
14092                         if ((index0->op != OP_INDEX) ||
14093                                 (index1->op != OP_INDEX) ||
14094                                 (index2->op != OP_INDEX) ||
14095                                 (read->op != OP_READ) ||
14096                                 (write->op != OP_WRITE) ||
14097                                 (MISC(index1, 0) != index0) ||
14098                                 (MISC(index2, 0) != index1) ||
14099                                 (RHS(read, 0) != index2) ||
14100                                 (RHS(write, 0) != read)) {
14101                                 internal_error(state, index0, "bad var read");
14102                         }
14103                         if (MISC(write, 0) == val) {
14104                                 return index2->u.cval;
14105                         }
14106                 }
14107         } while(next != first);
14108         return -1;
14109 }
14110
14111 static inline int enclose_triple(struct triple *ins)
14112 {
14113         return (ins && ((ins->type->type & TYPE_MASK) != TYPE_VOID));
14114 }
14115
14116 static void compute_closure_variables(struct compile_state *state,
14117         struct triple *me, struct triple *fcall, struct triple_reg_set **enclose)
14118 {
14119         struct triple_reg_set *set, *vars, **last_var;
14120         struct basic_blocks bb;
14121         struct reg_block *rb;
14122         struct block *block;
14123         struct triple *old_result, *first, *ins;
14124         size_t count, idx;
14125         unsigned long used_indicies;
14126         int i, max_index;
14127 #define MAX_INDICIES (sizeof(used_indicies)*CHAR_BIT)
14128 #define ID_BITS(X) ((X) & (TRIPLE_FLAG_LOCAL -1))
14129         struct { 
14130                 unsigned id;
14131                 int index;
14132         } *info;
14133
14134         
14135         /* Find the basic blocks of this function */
14136         bb.func = me;
14137         bb.first = RHS(me, 0);
14138         old_result = 0;
14139         if (!triple_is_ret(state, bb.first->prev)) {
14140                 bb.func = 0;
14141         } else {
14142                 old_result = fresult(state, me);
14143         }
14144         analyze_basic_blocks(state, &bb);
14145
14146         /* Find which variables are currently alive in a given block */
14147         rb = compute_variable_lifetimes(state, &bb);
14148
14149         /* Find the variables that are currently alive */
14150         block = block_of_triple(state, fcall);
14151         if (!block || (block->vertex <= 0) || (block->vertex > bb.last_vertex)) {
14152                 internal_error(state, fcall, "No reg block? block: %p", block);
14153         }
14154
14155 #if DEBUG_EXPLICIT_CLOSURES
14156         print_live_variables(state, &bb, rb, state->dbgout);
14157         fflush(state->dbgout);
14158 #endif
14159
14160         /* Count the number of triples in the function */
14161         first = RHS(me, 0);
14162         ins = first;
14163         count = 0;
14164         do {
14165                 count++;
14166                 ins = ins->next;
14167         } while(ins != first);
14168
14169         /* Allocate some memory to temorary hold the id info */
14170         info = xcmalloc(sizeof(*info) * (count +1), "info");
14171
14172         /* Mark the local function */
14173         first = RHS(me, 0);
14174         ins = first;
14175         idx = 1;
14176         do {
14177                 info[idx].id = ins->id;
14178                 ins->id = TRIPLE_FLAG_LOCAL | idx;
14179                 idx++;
14180                 ins = ins->next;
14181         } while(ins != first);
14182
14183         /* 
14184          * Build the list of variables to enclose.
14185          *
14186          * A target it to put the same variable in the
14187          * same slot for ever call of a given function.
14188          * After coloring this removes all of the variable
14189          * manipulation code.
14190          *
14191          * The list of variables to enclose is built ordered
14192          * program order because except in corner cases this
14193          * gives me the stability of assignment I need.
14194          *
14195          * To gurantee that stability I lookup the variables
14196          * to see where they have been used before and
14197          * I build my final list with the assigned indicies.
14198          */
14199         vars = 0;
14200         if (enclose_triple(old_result)) {
14201                 ordered_triple_set(&vars, old_result);
14202         }
14203         for(set = rb[block->vertex].out; set; set = set->next) {
14204                 if (!enclose_triple(set->member)) {
14205                         continue;
14206                 }
14207                 if ((set->member == fcall) || (set->member == old_result)) {
14208                         continue;
14209                 }
14210                 if (!local_triple(state, me, set->member)) {
14211                         internal_error(state, set->member, "not local?");
14212                 }
14213                 ordered_triple_set(&vars, set->member);
14214         }
14215
14216         /* Lookup the current indicies of the live varialbe */
14217         used_indicies = 0;
14218         max_index = -1;
14219         for(set = vars; set ; set = set->next) {
14220                 struct triple *ins;
14221                 int index;
14222                 ins = set->member;
14223                 index  = lookup_closure_index(state, me, ins);
14224                 info[ID_BITS(ins->id)].index = index;
14225                 if (index < 0) {
14226                         continue;
14227                 }
14228                 if (index >= MAX_INDICIES) {
14229                         internal_error(state, ins, "index unexpectedly large");
14230                 }
14231                 if (used_indicies & (1 << index)) {
14232                         internal_error(state, ins, "index previously used?");
14233                 }
14234                 /* Remember which indicies have been used */
14235                 used_indicies |= (1 << index);
14236                 if (index > max_index) {
14237                         max_index = index;
14238                 }
14239         }
14240
14241         /* Walk through the live variables and make certain
14242          * everything is assigned an index.
14243          */
14244         for(set = vars; set; set = set->next) {
14245                 struct triple *ins;
14246                 int index;
14247                 ins = set->member;
14248                 index = info[ID_BITS(ins->id)].index;
14249                 if (index >= 0) {
14250                         continue;
14251                 }
14252                 /* Find the lowest unused index value */
14253                 for(index = 0; index < MAX_INDICIES; index++) {
14254                         if (!(used_indicies & (1 << index))) {
14255                                 break;
14256                         }
14257                 }
14258                 if (index == MAX_INDICIES) {
14259                         internal_error(state, ins, "no free indicies?");
14260                 }
14261                 info[ID_BITS(ins->id)].index = index;
14262                 /* Remember which indicies have been used */
14263                 used_indicies |= (1 << index);
14264                 if (index > max_index) {
14265                         max_index = index;
14266                 }
14267         }
14268
14269         /* Build the return list of variables with positions matching
14270          * their indicies.
14271          */
14272         *enclose = 0;
14273         last_var = enclose;
14274         for(i = 0; i <= max_index; i++) {
14275                 struct triple *var;
14276                 var = 0;
14277                 if (used_indicies & (1 << i)) {
14278                         for(set = vars; set; set = set->next) {
14279                                 int index;
14280                                 index = info[ID_BITS(set->member->id)].index;
14281                                 if (index == i) {
14282                                         var = set->member;
14283                                         break;
14284                                 }
14285                         }
14286                         if (!var) {
14287                                 internal_error(state, me, "missing variable");
14288                         }
14289                 }
14290                 insert_triple_set(last_var, var);
14291                 last_var = &(*last_var)->next;
14292         }
14293
14294 #if DEBUG_EXPLICIT_CLOSURES
14295         /* Print out the variables to be enclosed */
14296         loc(state->dbgout, state, fcall);
14297         fprintf(state->dbgout, "Alive: \n");
14298         for(set = *enclose; set; set = set->next) {
14299                 display_triple(state->dbgout, set->member);
14300         }
14301         fflush(state->dbgout);
14302 #endif
14303
14304         /* Clear the marks */
14305         ins = first;
14306         do {
14307                 ins->id = info[ID_BITS(ins->id)].id;
14308                 ins = ins->next;
14309         } while(ins != first);
14310
14311         /* Release the ordered list of live variables */
14312         free_closure_variables(state, &vars);
14313
14314         /* Release the storage of the old ids */
14315         xfree(info);
14316
14317         /* Release the variable lifetime information */
14318         free_variable_lifetimes(state, &bb, rb);
14319
14320         /* Release the basic blocks of this function */
14321         free_basic_blocks(state, &bb);
14322 }
14323
14324 static void expand_function_call(
14325         struct compile_state *state, struct triple *me, struct triple *fcall)
14326 {
14327         /* Generate an ordinary function call */
14328         struct type *closure_type, **closure_next;
14329         struct triple *func, *func_first, *func_last, *retvar;
14330         struct triple *first;
14331         struct type *ptype, *rtype;
14332         struct triple *jmp;
14333         struct triple *ret_addr, *ret_loc, *ret_set;
14334         struct triple_reg_set *enclose, *set;
14335         int closure_idx, pvals, i;
14336
14337 #if DEBUG_EXPLICIT_CLOSURES
14338         FILE *fp = state->dbgout;
14339         fprintf(fp, "\ndisplay_func(me) ptr: %p\n", fcall);
14340         display_func(state, fp, MISC(fcall, 0));
14341         display_func(state, fp, me);
14342         fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
14343 #endif
14344
14345         /* Find the triples */
14346         func = MISC(fcall, 0);
14347         func_first = RHS(func, 0);
14348         retvar = fretaddr(state, func);
14349         func_last  = func_first->prev;
14350         first = fcall->next;
14351
14352         /* Find what I need to enclose */
14353         compute_closure_variables(state, me, fcall, &enclose);
14354
14355         /* Compute the closure type */
14356         closure_type = new_type(TYPE_TUPLE, 0, 0);
14357         closure_type->elements = 0;
14358         closure_next = &closure_type->left;
14359         for(set = enclose; set ; set = set->next) {
14360                 struct type *type;
14361                 type = &void_type;
14362                 if (set->member) {
14363                         type = set->member->type;
14364                 }
14365                 if (!*closure_next) {
14366                         *closure_next = type;
14367                 } else {
14368                         *closure_next = new_type(TYPE_PRODUCT, *closure_next, 
14369                                 type);
14370                         closure_next = &(*closure_next)->right;
14371                 }
14372                 closure_type->elements += 1;
14373         }
14374         if (closure_type->elements == 0) {
14375                 closure_type->type = TYPE_VOID;
14376         }
14377
14378
14379 #if DEBUG_EXPLICIT_CLOSURES
14380         fprintf(state->dbgout, "closure type: ");
14381         name_of(state->dbgout, closure_type);
14382         fprintf(state->dbgout, "\n");
14383 #endif
14384
14385         /* Update the called functions closure variable */
14386         closure_idx = add_closure_type(state, func, closure_type);
14387
14388         /* Generate some needed triples */
14389         ret_loc = label(state);
14390         ret_addr = triple(state, OP_ADDRCONST, &void_ptr_type, ret_loc, 0);
14391
14392         /* Pass the parameters to the new function */
14393         ptype = func->type->right;
14394         pvals = fcall->rhs;
14395         for(i = 0; i < pvals; i++) {
14396                 struct type *atype;
14397                 struct triple *arg, *param;
14398                 atype = ptype;
14399                 if ((ptype->type & TYPE_MASK) == TYPE_PRODUCT) {
14400                         atype = ptype->left;
14401                 }
14402                 param = farg(state, func, i);
14403                 if ((param->type->type & TYPE_MASK) != (atype->type & TYPE_MASK)) {
14404                         internal_error(state, fcall, "param type mismatch");
14405                 }
14406                 arg = RHS(fcall, i);
14407                 flatten(state, first, write_expr(state, param, arg));
14408                 ptype = ptype->right;
14409         }
14410         rtype = func->type->left;
14411
14412         /* Thread the triples together */
14413         ret_loc       = flatten(state, first, ret_loc);
14414
14415         /* Save the active variables in the result variable */
14416         for(i = 0, set = enclose; set ; set = set->next, i++) {
14417                 if (!set->member) {
14418                         continue;
14419                 }
14420                 flatten(state, ret_loc,
14421                         write_expr(state,
14422                                 closure_expr(state, func, closure_idx, i),
14423                                 read_expr(state, set->member)));
14424         }
14425
14426         /* Initialize the return value */
14427         if ((rtype->type & TYPE_MASK) != TYPE_VOID) {
14428                 flatten(state, ret_loc, 
14429                         write_expr(state, 
14430                                 deref_index(state, fresult(state, func), 1),
14431                                 new_triple(state, OP_UNKNOWNVAL, rtype,  0, 0)));
14432         }
14433
14434         ret_addr      = flatten(state, ret_loc, ret_addr);
14435         ret_set       = flatten(state, ret_loc, write_expr(state, retvar, ret_addr));
14436         jmp           = flatten(state, ret_loc, 
14437                 call(state, retvar, ret_addr, func_first, func_last));
14438
14439         /* Find the result */
14440         if ((rtype->type & TYPE_MASK) != TYPE_VOID) {
14441                 struct triple * result;
14442                 result = flatten(state, first, 
14443                         read_expr(state, 
14444                                 deref_index(state, fresult(state, func), 1)));
14445
14446                 propogate_use(state, fcall, result);
14447         }
14448
14449         /* Release the original fcall instruction */
14450         release_triple(state, fcall);
14451
14452         /* Restore the active variables from the result variable */
14453         for(i = 0, set = enclose; set ; set = set->next, i++) {
14454                 struct triple_set *use, *next;
14455                 struct triple *new;
14456                 struct basic_blocks bb;
14457                 if (!set->member || (set->member == fcall)) {
14458                         continue;
14459                 }
14460                 /* Generate an expression for the value */
14461                 new = flatten(state, first,
14462                         read_expr(state, 
14463                                 closure_expr(state, func, closure_idx, i)));
14464
14465
14466                 /* If the original is an lvalue restore the preserved value */
14467                 if (is_lvalue(state, set->member)) {
14468                         flatten(state, first,
14469                                 write_expr(state, set->member, new));
14470                         continue;
14471                 }
14472                 /*
14473                  * If the original is a value update the dominated uses.
14474                  */
14475                 
14476                 /* Analyze the basic blocks so I can see who dominates whom */
14477                 bb.func = me;
14478                 bb.first = RHS(me, 0);
14479                 if (!triple_is_ret(state, bb.first->prev)) {
14480                         bb.func = 0;
14481                 }
14482                 analyze_basic_blocks(state, &bb);
14483                 
14484
14485 #if DEBUG_EXPLICIT_CLOSURES
14486                 fprintf(state->errout, "Updating domindated uses: %p -> %p\n",
14487                         set->member, new);
14488 #endif
14489                 /* If fcall dominates the use update the expression */
14490                 for(use = set->member->use; use; use = next) {
14491                         /* Replace use modifies the use chain and 
14492                          * removes use, so I must take a copy of the
14493                          * next entry early.
14494                          */
14495                         next = use->next;
14496                         if (!tdominates(state, fcall, use->member)) {
14497                                 continue;
14498                         }
14499                         replace_use(state, set->member, new, use->member);
14500                 }
14501
14502                 /* Release the basic blocks, the instructions will be
14503                  * different next time, and flatten/insert_triple does
14504                  * not update the block values so I can't cache the analysis.
14505                  */
14506                 free_basic_blocks(state, &bb);
14507         }
14508
14509         /* Release the closure variable list */
14510         free_closure_variables(state, &enclose);
14511
14512         if (state->compiler->debug & DEBUG_INLINE) {
14513                 FILE *fp = state->dbgout;
14514                 fprintf(fp, "\n");
14515                 loc(fp, state, 0);
14516                 fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
14517                 display_func(state, fp, func);
14518                 display_func(state, fp, me);
14519                 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
14520         }
14521
14522         return;
14523 }
14524
14525 static int do_inline(struct compile_state *state, struct triple *func)
14526 {
14527         int do_inline;
14528         int policy;
14529
14530         policy = state->compiler->flags & COMPILER_INLINE_MASK;
14531         switch(policy) {
14532         case COMPILER_INLINE_ALWAYS:
14533                 do_inline = 1;
14534                 if (func->type->type & ATTRIB_NOINLINE) {
14535                         error(state, func, "noinline with always_inline compiler option");
14536                 }
14537                 break;
14538         case COMPILER_INLINE_NEVER:
14539                 do_inline = 0;
14540                 if (func->type->type & ATTRIB_ALWAYS_INLINE) {
14541                         error(state, func, "always_inline with noinline compiler option");
14542                 }
14543                 break;
14544         case COMPILER_INLINE_DEFAULTON:
14545                 switch(func->type->type & STOR_MASK) {
14546                 case STOR_STATIC | STOR_INLINE:
14547                 case STOR_LOCAL  | STOR_INLINE:
14548                 case STOR_EXTERN | STOR_INLINE:
14549                         do_inline = 1;
14550                         break;
14551                 default:
14552                         do_inline = 1;
14553                         break;
14554                 }
14555                 break;
14556         case COMPILER_INLINE_DEFAULTOFF:
14557                 switch(func->type->type & STOR_MASK) {
14558                 case STOR_STATIC | STOR_INLINE:
14559                 case STOR_LOCAL  | STOR_INLINE:
14560                 case STOR_EXTERN | STOR_INLINE:
14561                         do_inline = 1;
14562                         break;
14563                 default:
14564                         do_inline = 0;
14565                         break;
14566                 }
14567                 break;
14568         case COMPILER_INLINE_NOPENALTY:
14569                 switch(func->type->type & STOR_MASK) {
14570                 case STOR_STATIC | STOR_INLINE:
14571                 case STOR_LOCAL  | STOR_INLINE:
14572                 case STOR_EXTERN | STOR_INLINE:
14573                         do_inline = 1;
14574                         break;
14575                 default:
14576                         do_inline = (func->u.cval == 1);
14577                         break;
14578                 }
14579                 break;
14580         default:
14581                 do_inline = 0;
14582                 internal_error(state, 0, "Unimplemented inline policy");
14583                 break;
14584         }
14585         /* Force inlining */
14586         if (func->type->type & ATTRIB_NOINLINE) {
14587                 do_inline = 0;
14588         }
14589         if (func->type->type & ATTRIB_ALWAYS_INLINE) {
14590                 do_inline = 1;
14591         }
14592         return do_inline;
14593 }
14594
14595 static void inline_function(struct compile_state *state, struct triple *me, void *arg)
14596 {
14597         struct triple *first, *ptr, *next;
14598         /* If the function is not used don't bother */
14599         if (me->u.cval <= 0) {
14600                 return;
14601         }
14602         if (state->compiler->debug & DEBUG_CALLS2) {
14603                 FILE *fp = state->dbgout;
14604                 fprintf(fp, "in: %s\n",
14605                         me->type->type_ident->name);
14606         }
14607
14608         first = RHS(me, 0);
14609         ptr = next = first;
14610         do {
14611                 struct triple *func, *prev;
14612                 ptr = next;
14613                 prev = ptr->prev;
14614                 next = ptr->next;
14615                 if (ptr->op != OP_FCALL) {
14616                         continue;
14617                 }
14618                 func = MISC(ptr, 0);
14619                 /* See if the function should be inlined */
14620                 if (!do_inline(state, func)) {
14621                         /* Put a label after the fcall */
14622                         post_triple(state, ptr, OP_LABEL, &void_type, 0, 0);
14623                         continue;
14624                 }
14625                 if (state->compiler->debug & DEBUG_CALLS) {
14626                         FILE *fp = state->dbgout;
14627                         if (state->compiler->debug & DEBUG_CALLS2) {
14628                                 loc(fp, state, ptr);
14629                         }
14630                         fprintf(fp, "inlining %s\n",
14631                                 func->type->type_ident->name);
14632                         fflush(fp);
14633                 }
14634
14635                 /* Update the function use counts */
14636                 func->u.cval -= 1;
14637
14638                 /* Replace the fcall with the called function */
14639                 expand_inline_call(state, me, ptr);
14640
14641                 next = prev->next;
14642         } while (next != first);
14643
14644         ptr = next = first;
14645         do {
14646                 struct triple *prev, *func;
14647                 ptr = next;
14648                 prev = ptr->prev;
14649                 next = ptr->next;
14650                 if (ptr->op != OP_FCALL) {
14651                         continue;
14652                 }
14653                 func = MISC(ptr, 0);
14654                 if (state->compiler->debug & DEBUG_CALLS) {
14655                         FILE *fp = state->dbgout;
14656                         if (state->compiler->debug & DEBUG_CALLS2) {
14657                                 loc(fp, state, ptr);
14658                         }
14659                         fprintf(fp, "calling %s\n",
14660                                 func->type->type_ident->name);
14661                         fflush(fp);
14662                 }
14663                 /* Replace the fcall with the instruction sequence
14664                  * needed to make the call.
14665                  */
14666                 expand_function_call(state, me, ptr);
14667                 next = prev->next;
14668         } while(next != first);
14669 }
14670
14671 static void inline_functions(struct compile_state *state, struct triple *func)
14672 {
14673         inline_function(state, func, 0);
14674         reverse_walk_functions(state, inline_function, 0);
14675 }
14676
14677 static void insert_function(struct compile_state *state,
14678         struct triple *func, void *arg)
14679 {
14680         struct triple *first, *end, *ffirst, *fend;
14681
14682         if (state->compiler->debug & DEBUG_INLINE) {
14683                 FILE *fp = state->errout;
14684                 fprintf(fp, "%s func count: %d\n", 
14685                         func->type->type_ident->name, func->u.cval);
14686         }
14687         if (func->u.cval == 0) {
14688                 return;
14689         }
14690
14691         /* Find the end points of the lists */
14692         first  = arg;
14693         end    = first->prev;
14694         ffirst = RHS(func, 0);
14695         fend   = ffirst->prev;
14696
14697         /* splice the lists together */
14698         end->next    = ffirst;
14699         ffirst->prev = end;
14700         fend->next   = first;
14701         first->prev  = fend;
14702 }
14703
14704 struct triple *input_asm(struct compile_state *state)
14705 {
14706         struct asm_info *info;
14707         struct triple *def;
14708         int i, out;
14709         
14710         info = xcmalloc(sizeof(*info), "asm_info");
14711         info->str = "";
14712
14713         out = sizeof(arch_input_regs)/sizeof(arch_input_regs[0]);
14714         memcpy(&info->tmpl.lhs, arch_input_regs, sizeof(arch_input_regs));
14715
14716         def = new_triple(state, OP_ASM, &void_type, out, 0);
14717         def->u.ainfo = info;
14718         def->id |= TRIPLE_FLAG_VOLATILE;
14719         
14720         for(i = 0; i < out; i++) {
14721                 struct triple *piece;
14722                 piece = triple(state, OP_PIECE, &int_type, def, 0);
14723                 piece->u.cval = i;
14724                 LHS(def, i) = piece;
14725         }
14726
14727         return def;
14728 }
14729
14730 struct triple *output_asm(struct compile_state *state)
14731 {
14732         struct asm_info *info;
14733         struct triple *def;
14734         int in;
14735         
14736         info = xcmalloc(sizeof(*info), "asm_info");
14737         info->str = "";
14738
14739         in = sizeof(arch_output_regs)/sizeof(arch_output_regs[0]);
14740         memcpy(&info->tmpl.rhs, arch_output_regs, sizeof(arch_output_regs));
14741
14742         def = new_triple(state, OP_ASM, &void_type, 0, in);
14743         def->u.ainfo = info;
14744         def->id |= TRIPLE_FLAG_VOLATILE;
14745         
14746         return def;
14747 }
14748
14749 static void join_functions(struct compile_state *state)
14750 {
14751         struct triple *jmp, *start, *end, *call, *in, *out, *func;
14752         struct file_state file;
14753         struct type *pnext, *param;
14754         struct type *result_type, *args_type;
14755         int idx;
14756
14757         /* Be clear the functions have not been joined yet */
14758         state->functions_joined = 0;
14759
14760         /* Dummy file state to get debug handing right */
14761         memset(&file, 0, sizeof(file));
14762         file.basename = "";
14763         file.line = 0;
14764         file.report_line = 0;
14765         file.report_name = file.basename;
14766         file.prev = state->file;
14767         state->file = &file;
14768         state->function = "";
14769
14770         if (!state->main_function) {
14771                 error(state, 0, "No functions to compile\n");
14772         }
14773
14774         /* The type of arguments */
14775         args_type   = state->main_function->type->right;
14776         /* The return type without any specifiers */
14777         result_type = clone_type(0, state->main_function->type->left);
14778
14779
14780         /* Verify the external arguments */
14781         if (registers_of(state, args_type) > ARCH_INPUT_REGS) {
14782                 error(state, state->main_function, 
14783                         "Too many external input arguments");
14784         }
14785         if (registers_of(state, result_type) > ARCH_OUTPUT_REGS) {
14786                 error(state, state->main_function, 
14787                         "Too many external output arguments");
14788         }
14789
14790         /* Lay down the basic program structure */
14791         end           = label(state);
14792         start         = label(state);
14793         start         = flatten(state, state->first, start);
14794         end           = flatten(state, state->first, end);
14795         in            = input_asm(state);
14796         out           = output_asm(state);
14797         call          = new_triple(state, OP_FCALL, result_type, -1, registers_of(state, args_type));
14798         MISC(call, 0) = state->main_function;
14799         in            = flatten(state, state->first, in);
14800         call          = flatten(state, state->first, call);
14801         out           = flatten(state, state->first, out);
14802
14803
14804         /* Read the external input arguments */
14805         pnext = args_type;
14806         idx = 0;
14807         while(pnext && ((pnext->type & TYPE_MASK) != TYPE_VOID)) {
14808                 struct triple *expr;
14809                 param = pnext;
14810                 pnext = 0;
14811                 if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
14812                         pnext = param->right;
14813                         param = param->left;
14814                 }
14815                 if (registers_of(state, param) != 1) {
14816                         error(state, state->main_function, 
14817                                 "Arg: %d %s requires multiple registers", 
14818                                 idx + 1, param->field_ident->name);
14819                 }
14820                 expr = read_expr(state, LHS(in, idx));
14821                 RHS(call, idx) = expr;
14822                 expr = flatten(state, call, expr);
14823                 use_triple(expr, call);
14824
14825                 idx++;  
14826         }
14827
14828
14829         /* Write the external output arguments */
14830         pnext = result_type;
14831         if ((pnext->type & TYPE_MASK) == TYPE_STRUCT) {
14832                 pnext = result_type->left;
14833         }
14834         for(idx = 0; idx < out->rhs; idx++) {
14835                 struct triple *expr;
14836                 param = pnext;
14837                 pnext = 0;
14838                 if (param && ((param->type & TYPE_MASK) == TYPE_PRODUCT)) {
14839                         pnext = param->right;
14840                         param = param->left;
14841                 }
14842                 if (param && ((param->type & TYPE_MASK) == TYPE_VOID)) {
14843                         param = 0;
14844                 }
14845                 if (param) {
14846                         if (registers_of(state, param) != 1) {
14847                                 error(state, state->main_function,
14848                                         "Result: %d %s requires multiple registers",
14849                                         idx, param->field_ident->name);
14850                         }
14851                         expr = read_expr(state, call);
14852                         if ((result_type->type & TYPE_MASK) == TYPE_STRUCT) {
14853                                 expr = deref_field(state, expr, param->field_ident);
14854                         }
14855                 } else {
14856                         expr = triple(state, OP_UNKNOWNVAL, &int_type, 0, 0);
14857                 }
14858                 flatten(state, out, expr);
14859                 RHS(out, idx) = expr;
14860                 use_triple(expr, out);
14861         }
14862
14863         /* Allocate a dummy containing function */
14864         func = triple(state, OP_LIST, 
14865                 new_type(TYPE_FUNCTION, &void_type, &void_type), 0, 0);
14866         func->type->type_ident = lookup(state, "", 0);
14867         RHS(func, 0) = state->first;
14868         func->u.cval = 1;
14869
14870         /* See which functions are called, and how often */
14871         mark_live_functions(state);
14872         inline_functions(state, func);
14873         walk_functions(state, insert_function, end);
14874
14875         if (start->next != end) {
14876                 jmp = flatten(state, start, branch(state, end, 0));
14877         }
14878
14879         /* OK now the functions have been joined. */
14880         state->functions_joined = 1;
14881
14882         /* Done now cleanup */
14883         state->file = file.prev;
14884         state->function = 0;
14885 }
14886
14887 /*
14888  * Data structurs for optimation.
14889  */
14890
14891
14892 static int do_use_block(
14893         struct block *used, struct block_set **head, struct block *user, 
14894         int front)
14895 {
14896         struct block_set **ptr, *new;
14897         if (!used)
14898                 return 0;
14899         if (!user)
14900                 return 0;
14901         ptr = head;
14902         while(*ptr) {
14903                 if ((*ptr)->member == user) {
14904                         return 0;
14905                 }
14906                 ptr = &(*ptr)->next;
14907         }
14908         new = xcmalloc(sizeof(*new), "block_set");
14909         new->member = user;
14910         if (front) {
14911                 new->next = *head;
14912                 *head = new;
14913         }
14914         else {
14915                 new->next = 0;
14916                 *ptr = new;
14917         }
14918         return 1;
14919 }
14920 static int do_unuse_block(
14921         struct block *used, struct block_set **head, struct block *unuser)
14922 {
14923         struct block_set *use, **ptr;
14924         int count;
14925         count = 0;
14926         ptr = head;
14927         while(*ptr) {
14928                 use = *ptr;
14929                 if (use->member == unuser) {
14930                         *ptr = use->next;
14931                         memset(use, -1, sizeof(*use));
14932                         xfree(use);
14933                         count += 1;
14934                 }
14935                 else {
14936                         ptr = &use->next;
14937                 }
14938         }
14939         return count;
14940 }
14941
14942 static void use_block(struct block *used, struct block *user)
14943 {
14944         int count;
14945         /* Append new to the head of the list, print_block
14946          * depends on this.
14947          */
14948         count = do_use_block(used, &used->use, user, 1); 
14949         used->users += count;
14950 }
14951 static void unuse_block(struct block *used, struct block *unuser)
14952 {
14953         int count;
14954         count = do_unuse_block(used, &used->use, unuser); 
14955         used->users -= count;
14956 }
14957
14958 static void add_block_edge(struct block *block, struct block *edge, int front)
14959 {
14960         int count;
14961         count = do_use_block(block, &block->edges, edge, front);
14962         block->edge_count += count;
14963 }
14964
14965 static void remove_block_edge(struct block *block, struct block *edge)
14966 {
14967         int count;
14968         count = do_unuse_block(block, &block->edges, edge);
14969         block->edge_count -= count;
14970 }
14971
14972 static void idom_block(struct block *idom, struct block *user)
14973 {
14974         do_use_block(idom, &idom->idominates, user, 0);
14975 }
14976
14977 static void unidom_block(struct block *idom, struct block *unuser)
14978 {
14979         do_unuse_block(idom, &idom->idominates, unuser);
14980 }
14981
14982 static void domf_block(struct block *block, struct block *domf)
14983 {
14984         do_use_block(block, &block->domfrontier, domf, 0);
14985 }
14986
14987 static void undomf_block(struct block *block, struct block *undomf)
14988 {
14989         do_unuse_block(block, &block->domfrontier, undomf);
14990 }
14991
14992 static void ipdom_block(struct block *ipdom, struct block *user)
14993 {
14994         do_use_block(ipdom, &ipdom->ipdominates, user, 0);
14995 }
14996
14997 static void unipdom_block(struct block *ipdom, struct block *unuser)
14998 {
14999         do_unuse_block(ipdom, &ipdom->ipdominates, unuser);
15000 }
15001
15002 static void ipdomf_block(struct block *block, struct block *ipdomf)
15003 {
15004         do_use_block(block, &block->ipdomfrontier, ipdomf, 0);
15005 }
15006
15007 static void unipdomf_block(struct block *block, struct block *unipdomf)
15008 {
15009         do_unuse_block(block, &block->ipdomfrontier, unipdomf);
15010 }
15011
15012 static int walk_triples(
15013         struct compile_state *state, 
15014         int (*cb)(struct compile_state *state, struct triple *ptr, void *arg),
15015         void *arg)
15016 {
15017         struct triple *ptr;
15018         int result;
15019         ptr = state->first;
15020         do {
15021                 result = cb(state, ptr, arg);
15022                 if (ptr->next->prev != ptr) {
15023                         internal_error(state, ptr->next, "bad prev");
15024                 }
15025                 ptr = ptr->next;
15026         } while((result == 0) && (ptr != state->first));
15027         return result;
15028 }
15029
15030 #define PRINT_LIST 1
15031 static int do_print_triple(struct compile_state *state, struct triple *ins, void *arg)
15032 {
15033         FILE *fp = arg;
15034         int op;
15035         op = ins->op;
15036         if (op == OP_LIST) {
15037 #if !PRINT_LIST
15038                 return 0;
15039 #endif
15040         }
15041         if ((op == OP_LABEL) && (ins->use)) {
15042                 fprintf(fp, "\n%p:\n", ins);
15043         }
15044         display_triple(fp, ins);
15045
15046         if (triple_is_branch(state, ins) && ins->use && 
15047                 (ins->op != OP_RET) && (ins->op != OP_FCALL)) {
15048                 internal_error(state, ins, "branch used?");
15049         }
15050         if (triple_is_branch(state, ins)) {
15051                 fprintf(fp, "\n");
15052         }
15053         return 0;
15054 }
15055
15056 static void print_triples(struct compile_state *state)
15057 {
15058         if (state->compiler->debug & DEBUG_TRIPLES) {
15059                 FILE *fp = state->dbgout;
15060                 fprintf(fp, "--------------- triples ---------------\n");
15061                 walk_triples(state, do_print_triple, fp);
15062                 fprintf(fp, "\n");
15063         }
15064 }
15065
15066 struct cf_block {
15067         struct block *block;
15068 };
15069 static void find_cf_blocks(struct cf_block *cf, struct block *block)
15070 {
15071         struct block_set *edge;
15072         if (!block || (cf[block->vertex].block == block)) {
15073                 return;
15074         }
15075         cf[block->vertex].block = block;
15076         for(edge = block->edges; edge; edge = edge->next) {
15077                 find_cf_blocks(cf, edge->member);
15078         }
15079 }
15080
15081 static void print_control_flow(struct compile_state *state,
15082         FILE *fp, struct basic_blocks *bb)
15083 {
15084         struct cf_block *cf;
15085         int i;
15086         fprintf(fp, "\ncontrol flow\n");
15087         cf = xcmalloc(sizeof(*cf) * (bb->last_vertex + 1), "cf_block");
15088         find_cf_blocks(cf, bb->first_block);
15089
15090         for(i = 1; i <= bb->last_vertex; i++) {
15091                 struct block *block;
15092                 struct block_set *edge;
15093                 block = cf[i].block;
15094                 if (!block)
15095                         continue;
15096                 fprintf(fp, "(%p) %d:", block, block->vertex);
15097                 for(edge = block->edges; edge; edge = edge->next) {
15098                         fprintf(fp, " %d", edge->member->vertex);
15099                 }
15100                 fprintf(fp, "\n");
15101         }
15102
15103         xfree(cf);
15104 }
15105
15106 static void free_basic_block(struct compile_state *state, struct block *block)
15107 {
15108         struct block_set *edge, *entry;
15109         struct block *child;
15110         if (!block) {
15111                 return;
15112         }
15113         if (block->vertex == -1) {
15114                 return;
15115         }
15116         block->vertex = -1;
15117         for(edge = block->edges; edge; edge = edge->next) {
15118                 if (edge->member) {
15119                         unuse_block(edge->member, block);
15120                 }
15121         }
15122         if (block->idom) {
15123                 unidom_block(block->idom, block);
15124         }
15125         block->idom = 0;
15126         if (block->ipdom) {
15127                 unipdom_block(block->ipdom, block);
15128         }
15129         block->ipdom = 0;
15130         while((entry = block->use)) {
15131                 child = entry->member;
15132                 unuse_block(block, child);
15133                 if (child && (child->vertex != -1)) {
15134                         for(edge = child->edges; edge; edge = edge->next) {
15135                                 edge->member = 0;
15136                         }
15137                 }
15138         }
15139         while((entry = block->idominates)) {
15140                 child = entry->member;
15141                 unidom_block(block, child);
15142                 if (child && (child->vertex != -1)) {
15143                         child->idom = 0;
15144                 }
15145         }
15146         while((entry = block->domfrontier)) {
15147                 child = entry->member;
15148                 undomf_block(block, child);
15149         }
15150         while((entry = block->ipdominates)) {
15151                 child = entry->member;
15152                 unipdom_block(block, child);
15153                 if (child && (child->vertex != -1)) {
15154                         child->ipdom = 0;
15155                 }
15156         }
15157         while((entry = block->ipdomfrontier)) {
15158                 child = entry->member;
15159                 unipdomf_block(block, child);
15160         }
15161         if (block->users != 0) {
15162                 internal_error(state, 0, "block still has users");
15163         }
15164         while((edge = block->edges)) {
15165                 child = edge->member;
15166                 remove_block_edge(block, child);
15167                 
15168                 if (child && (child->vertex != -1)) {
15169                         free_basic_block(state, child);
15170                 }
15171         }
15172         memset(block, -1, sizeof(*block));
15173 #ifndef WIN32
15174         xfree(block);
15175 #endif
15176 }
15177
15178 static void free_basic_blocks(struct compile_state *state, 
15179         struct basic_blocks *bb)
15180 {
15181         struct triple *first, *ins;
15182         free_basic_block(state, bb->first_block);
15183         bb->last_vertex = 0;
15184         bb->first_block = bb->last_block = 0;
15185         first = bb->first;
15186         ins = first;
15187         do {
15188                 if (triple_stores_block(state, ins)) {
15189                         ins->u.block = 0;
15190                 }
15191                 ins = ins->next;
15192         } while(ins != first);
15193         
15194 }
15195
15196 static struct block *basic_block(struct compile_state *state, 
15197         struct basic_blocks *bb, struct triple *first)
15198 {
15199         struct block *block;
15200         struct triple *ptr;
15201         if (!triple_is_label(state, first)) {
15202                 internal_error(state, first, "block does not start with a label");
15203         }
15204         /* See if this basic block has already been setup */
15205         if (first->u.block != 0) {
15206                 return first->u.block;
15207         }
15208         /* Allocate another basic block structure */
15209         bb->last_vertex += 1;
15210         block = xcmalloc(sizeof(*block), "block");
15211         block->first = block->last = first;
15212         block->vertex = bb->last_vertex;
15213         ptr = first;
15214         do {
15215                 if ((ptr != first) && triple_is_label(state, ptr) && (ptr->use)) { 
15216                         break;
15217                 }
15218                 block->last = ptr;
15219                 /* If ptr->u is not used remember where the baic block is */
15220                 if (triple_stores_block(state, ptr)) {
15221                         ptr->u.block = block;
15222                 }
15223                 if (triple_is_branch(state, ptr)) {
15224                         break;
15225                 }
15226                 ptr = ptr->next;
15227         } while (ptr != bb->first);
15228         if ((ptr == bb->first) ||
15229                 ((ptr->next == bb->first) && (
15230                         triple_is_end(state, ptr) || 
15231                         triple_is_ret(state, ptr))))
15232         {
15233                 /* The block has no outflowing edges */
15234         }
15235         else if (triple_is_label(state, ptr)) {
15236                 struct block *next;
15237                 next = basic_block(state, bb, ptr);
15238                 add_block_edge(block, next, 0);
15239                 use_block(next, block);
15240         }
15241         else if (triple_is_branch(state, ptr)) {
15242                 struct triple **expr, *first;
15243                 struct block *child;
15244                 /* Find the branch targets.
15245                  * I special case the first branch as that magically
15246                  * avoids some difficult cases for the register allocator.
15247                  */
15248                 expr = triple_edge_targ(state, ptr, 0);
15249                 if (!expr) {
15250                         internal_error(state, ptr, "branch without targets");
15251                 }
15252                 first = *expr;
15253                 expr = triple_edge_targ(state, ptr, expr);
15254                 for(; expr; expr = triple_edge_targ(state, ptr, expr)) {
15255                         if (!*expr) continue;
15256                         child = basic_block(state, bb, *expr);
15257                         use_block(child, block);
15258                         add_block_edge(block, child, 0);
15259                 }
15260                 if (first) {
15261                         child = basic_block(state, bb, first);
15262                         use_block(child, block);
15263                         add_block_edge(block, child, 1);
15264
15265                         /* Be certain the return block of a call is
15266                          * in a basic block.  When it is not find
15267                          * start of the block, insert a label if
15268                          * necessary and build the basic block.
15269                          * Then add a fake edge from the start block
15270                          * to the return block of the function.
15271                          */
15272                         if (state->functions_joined && triple_is_call(state, ptr)
15273                                 && !block_of_triple(state, MISC(ptr, 0))) {
15274                                 struct block *tail;
15275                                 struct triple *start;
15276                                 start = triple_to_block_start(state, MISC(ptr, 0));
15277                                 if (!triple_is_label(state, start)) {
15278                                         start = pre_triple(state,
15279                                                 start, OP_LABEL, &void_type, 0, 0);
15280                                 }
15281                                 tail = basic_block(state, bb, start);
15282                                 add_block_edge(child, tail, 0);
15283                                 use_block(tail, child);
15284                         }
15285                 }
15286         }
15287         else {
15288                 internal_error(state, 0, "Bad basic block split");
15289         }
15290 #if 0
15291 {
15292         struct block_set *edge;
15293         FILE *fp = state->errout;
15294         fprintf(fp, "basic_block: %10p [%2d] ( %10p - %10p )",
15295                 block, block->vertex, 
15296                 block->first, block->last);
15297         for(edge = block->edges; edge; edge = edge->next) {
15298                 fprintf(fp, " %10p [%2d]",
15299                         edge->member ? edge->member->first : 0,
15300                         edge->member ? edge->member->vertex : -1);
15301         }
15302         fprintf(fp, "\n");
15303 }
15304 #endif
15305         return block;
15306 }
15307
15308
15309 static void walk_blocks(struct compile_state *state, struct basic_blocks *bb,
15310         void (*cb)(struct compile_state *state, struct block *block, void *arg),
15311         void *arg)
15312 {
15313         struct triple *ptr, *first;
15314         struct block *last_block;
15315         last_block = 0;
15316         first = bb->first;
15317         ptr = first;
15318         do {
15319                 if (triple_stores_block(state, ptr)) {
15320                         struct block *block;
15321                         block = ptr->u.block;
15322                         if (block && (block != last_block)) {
15323                                 cb(state, block, arg);
15324                         }
15325                         last_block = block;
15326                 }
15327                 ptr = ptr->next;
15328         } while(ptr != first);
15329 }
15330
15331 static void print_block(
15332         struct compile_state *state, struct block *block, void *arg)
15333 {
15334         struct block_set *user, *edge;
15335         struct triple *ptr;
15336         FILE *fp = arg;
15337
15338         fprintf(fp, "\nblock: %p (%d) ",
15339                 block, 
15340                 block->vertex);
15341
15342         for(edge = block->edges; edge; edge = edge->next) {
15343                 fprintf(fp, " %p<-%p",
15344                         edge->member,
15345                         (edge->member && edge->member->use)?
15346                         edge->member->use->member : 0);
15347         }
15348         fprintf(fp, "\n");
15349         if (block->first->op == OP_LABEL) {
15350                 fprintf(fp, "%p:\n", block->first);
15351         }
15352         for(ptr = block->first; ; ) {
15353                 display_triple(fp, ptr);
15354                 if (ptr == block->last)
15355                         break;
15356                 ptr = ptr->next;
15357                 if (ptr == block->first) {
15358                         internal_error(state, 0, "missing block last?");
15359                 }
15360         }
15361         fprintf(fp, "users %d: ", block->users);
15362         for(user = block->use; user; user = user->next) {
15363                 fprintf(fp, "%p (%d) ", 
15364                         user->member,
15365                         user->member->vertex);
15366         }
15367         fprintf(fp,"\n\n");
15368 }
15369
15370
15371 static void romcc_print_blocks(struct compile_state *state, FILE *fp)
15372 {
15373         fprintf(fp, "--------------- blocks ---------------\n");
15374         walk_blocks(state, &state->bb, print_block, fp);
15375 }
15376 static void print_blocks(struct compile_state *state, const char *func, FILE *fp)
15377 {
15378         if (state->compiler->debug & DEBUG_BASIC_BLOCKS) {
15379                 fprintf(fp, "After %s\n", func);
15380                 romcc_print_blocks(state, fp);
15381                 if (state->compiler->debug & DEBUG_FDOMINATORS) {
15382                         print_dominators(state, fp, &state->bb);
15383                         print_dominance_frontiers(state, fp, &state->bb);
15384                 }
15385                 print_control_flow(state, fp, &state->bb);
15386         }
15387 }
15388
15389 static void prune_nonblock_triples(struct compile_state *state, 
15390         struct basic_blocks *bb)
15391 {
15392         struct block *block;
15393         struct triple *first, *ins, *next;
15394         /* Delete the triples not in a basic block */
15395         block = 0;
15396         first = bb->first;
15397         ins = first;
15398         do {
15399                 next = ins->next;
15400                 if (ins->op == OP_LABEL) {
15401                         block = ins->u.block;
15402                 }
15403                 if (!block) {
15404                         struct triple_set *use;
15405                         for(use = ins->use; use; use = use->next) {
15406                                 struct block *block;
15407                                 block = block_of_triple(state, use->member);
15408                                 if (block != 0) {
15409                                         internal_error(state, ins, "pruning used ins?");
15410                                 }
15411                         }
15412                         release_triple(state, ins);
15413                 }
15414                 if (block && block->last == ins) {
15415                         block = 0;
15416                 }
15417                 ins = next;
15418         } while(ins != first);
15419 }
15420
15421 static void setup_basic_blocks(struct compile_state *state, 
15422         struct basic_blocks *bb)
15423 {
15424         if (!triple_stores_block(state, bb->first)) {
15425                 internal_error(state, 0, "ins will not store block?");
15426         }
15427         /* Initialize the state */
15428         bb->first_block = bb->last_block = 0;
15429         bb->last_vertex = 0;
15430         free_basic_blocks(state, bb);
15431
15432         /* Find the basic blocks */
15433         bb->first_block = basic_block(state, bb, bb->first);
15434
15435         /* Be certain the last instruction of a function, or the
15436          * entire program is in a basic block.  When it is not find 
15437          * the start of the block, insert a label if necessary and build 
15438          * basic block.  Then add a fake edge from the start block
15439          * to the final block.
15440          */
15441         if (!block_of_triple(state, bb->first->prev)) {
15442                 struct triple *start;
15443                 struct block *tail;
15444                 start = triple_to_block_start(state, bb->first->prev);
15445                 if (!triple_is_label(state, start)) {
15446                         start = pre_triple(state,
15447                                 start, OP_LABEL, &void_type, 0, 0);
15448                 }
15449                 tail = basic_block(state, bb, start);
15450                 add_block_edge(bb->first_block, tail, 0);
15451                 use_block(tail, bb->first_block);
15452         }
15453         
15454         /* Find the last basic block.
15455          */
15456         bb->last_block = block_of_triple(state, bb->first->prev);
15457
15458         /* Delete the triples not in a basic block */
15459         prune_nonblock_triples(state, bb);
15460
15461 #if 0
15462         /* If we are debugging print what I have just done */
15463         if (state->compiler->debug & DEBUG_BASIC_BLOCKS) {
15464                 print_blocks(state, state->dbgout);
15465                 print_control_flow(state, bb);
15466         }
15467 #endif
15468 }
15469
15470
15471 struct sdom_block {
15472         struct block *block;
15473         struct sdom_block *sdominates;
15474         struct sdom_block *sdom_next;
15475         struct sdom_block *sdom;
15476         struct sdom_block *label;
15477         struct sdom_block *parent;
15478         struct sdom_block *ancestor;
15479         int vertex;
15480 };
15481
15482
15483 static void unsdom_block(struct sdom_block *block)
15484 {
15485         struct sdom_block **ptr;
15486         if (!block->sdom_next) {
15487                 return;
15488         }
15489         ptr = &block->sdom->sdominates;
15490         while(*ptr) {
15491                 if ((*ptr) == block) {
15492                         *ptr = block->sdom_next;
15493                         return;
15494                 }
15495                 ptr = &(*ptr)->sdom_next;
15496         }
15497 }
15498
15499 static void sdom_block(struct sdom_block *sdom, struct sdom_block *block)
15500 {
15501         unsdom_block(block);
15502         block->sdom = sdom;
15503         block->sdom_next = sdom->sdominates;
15504         sdom->sdominates = block;
15505 }
15506
15507
15508
15509 static int initialize_sdblock(struct sdom_block *sd,
15510         struct block *parent, struct block *block, int vertex)
15511 {
15512         struct block_set *edge;
15513         if (!block || (sd[block->vertex].block == block)) {
15514                 return vertex;
15515         }
15516         vertex += 1;
15517         /* Renumber the blocks in a convinient fashion */
15518         block->vertex = vertex;
15519         sd[vertex].block    = block;
15520         sd[vertex].sdom     = &sd[vertex];
15521         sd[vertex].label    = &sd[vertex];
15522         sd[vertex].parent   = parent? &sd[parent->vertex] : 0;
15523         sd[vertex].ancestor = 0;
15524         sd[vertex].vertex   = vertex;
15525         for(edge = block->edges; edge; edge = edge->next) {
15526                 vertex = initialize_sdblock(sd, block, edge->member, vertex);
15527         }
15528         return vertex;
15529 }
15530
15531 static int initialize_spdblock(
15532         struct compile_state *state, struct sdom_block *sd,
15533         struct block *parent, struct block *block, int vertex)
15534 {
15535         struct block_set *user;
15536         if (!block || (sd[block->vertex].block == block)) {
15537                 return vertex;
15538         }
15539         vertex += 1;
15540         /* Renumber the blocks in a convinient fashion */
15541         block->vertex = vertex;
15542         sd[vertex].block    = block;
15543         sd[vertex].sdom     = &sd[vertex];
15544         sd[vertex].label    = &sd[vertex];
15545         sd[vertex].parent   = parent? &sd[parent->vertex] : 0;
15546         sd[vertex].ancestor = 0;
15547         sd[vertex].vertex   = vertex;
15548         for(user = block->use; user; user = user->next) {
15549                 vertex = initialize_spdblock(state, sd, block, user->member, vertex);
15550         }
15551         return vertex;
15552 }
15553
15554 static int setup_spdblocks(struct compile_state *state, 
15555         struct basic_blocks *bb, struct sdom_block *sd)
15556 {
15557         struct block *block;
15558         int vertex;
15559         /* Setup as many sdpblocks as possible without using fake edges */
15560         vertex = initialize_spdblock(state, sd, 0, bb->last_block, 0);
15561
15562         /* Walk through the graph and find unconnected blocks.  Add a
15563          * fake edge from the unconnected blocks to the end of the
15564          * graph. 
15565          */
15566         block = bb->first_block->last->next->u.block;
15567         for(; block && block != bb->first_block; block = block->last->next->u.block) {
15568                 if (sd[block->vertex].block == block) {
15569                         continue;
15570                 }
15571 #if DEBUG_SDP_BLOCKS
15572                 {
15573                         FILE *fp = state->errout;
15574                         fprintf(fp, "Adding %d\n", vertex +1);
15575                 }
15576 #endif
15577                 add_block_edge(block, bb->last_block, 0);
15578                 use_block(bb->last_block, block);
15579
15580                 vertex = initialize_spdblock(state, sd, bb->last_block, block, vertex);
15581         }
15582         return vertex;
15583 }
15584
15585 static void compress_ancestors(struct sdom_block *v)
15586 {
15587         /* This procedure assumes ancestor(v) != 0 */
15588         /* if (ancestor(ancestor(v)) != 0) {
15589          *      compress(ancestor(ancestor(v)));
15590          *      if (semi(label(ancestor(v))) < semi(label(v))) {
15591          *              label(v) = label(ancestor(v));
15592          *      }
15593          *      ancestor(v) = ancestor(ancestor(v));
15594          * }
15595          */
15596         if (!v->ancestor) {
15597                 return;
15598         }
15599         if (v->ancestor->ancestor) {
15600                 compress_ancestors(v->ancestor->ancestor);
15601                 if (v->ancestor->label->sdom->vertex < v->label->sdom->vertex) {
15602                         v->label = v->ancestor->label;
15603                 }
15604                 v->ancestor = v->ancestor->ancestor;
15605         }
15606 }
15607
15608 static void compute_sdom(struct compile_state *state, 
15609         struct basic_blocks *bb, struct sdom_block *sd)
15610 {
15611         int i;
15612         /* // step 2 
15613          *  for each v <= pred(w) {
15614          *      u = EVAL(v);
15615          *      if (semi[u] < semi[w] { 
15616          *              semi[w] = semi[u]; 
15617          *      } 
15618          * }
15619          * add w to bucket(vertex(semi[w]));
15620          * LINK(parent(w), w);
15621          *
15622          * // step 3
15623          * for each v <= bucket(parent(w)) {
15624          *      delete v from bucket(parent(w));
15625          *      u = EVAL(v);
15626          *      dom(v) = (semi[u] < semi[v]) ? u : parent(w);
15627          * }
15628          */
15629         for(i = bb->last_vertex; i >= 2; i--) {
15630                 struct sdom_block *v, *parent, *next;
15631                 struct block_set *user;
15632                 struct block *block;
15633                 block = sd[i].block;
15634                 parent = sd[i].parent;
15635                 /* Step 2 */
15636                 for(user = block->use; user; user = user->next) {
15637                         struct sdom_block *v, *u;
15638                         v = &sd[user->member->vertex];
15639                         u = !(v->ancestor)? v : (compress_ancestors(v), v->label);
15640                         if (u->sdom->vertex < sd[i].sdom->vertex) {
15641                                 sd[i].sdom = u->sdom;
15642                         }
15643                 }
15644                 sdom_block(sd[i].sdom, &sd[i]);
15645                 sd[i].ancestor = parent;
15646                 /* Step 3 */
15647                 for(v = parent->sdominates; v; v = next) {
15648                         struct sdom_block *u;
15649                         next = v->sdom_next;
15650                         unsdom_block(v);
15651                         u = (!v->ancestor) ? v : (compress_ancestors(v), v->label);
15652                         v->block->idom = (u->sdom->vertex < v->sdom->vertex)? 
15653                                 u->block : parent->block;
15654                 }
15655         }
15656 }
15657
15658 static void compute_spdom(struct compile_state *state, 
15659         struct basic_blocks *bb, struct sdom_block *sd)
15660 {
15661         int i;
15662         /* // step 2 
15663          *  for each v <= pred(w) {
15664          *      u = EVAL(v);
15665          *      if (semi[u] < semi[w] { 
15666          *              semi[w] = semi[u]; 
15667          *      } 
15668          * }
15669          * add w to bucket(vertex(semi[w]));
15670          * LINK(parent(w), w);
15671          *
15672          * // step 3
15673          * for each v <= bucket(parent(w)) {
15674          *      delete v from bucket(parent(w));
15675          *      u = EVAL(v);
15676          *      dom(v) = (semi[u] < semi[v]) ? u : parent(w);
15677          * }
15678          */
15679         for(i = bb->last_vertex; i >= 2; i--) {
15680                 struct sdom_block *u, *v, *parent, *next;
15681                 struct block_set *edge;
15682                 struct block *block;
15683                 block = sd[i].block;
15684                 parent = sd[i].parent;
15685                 /* Step 2 */
15686                 for(edge = block->edges; edge; edge = edge->next) {
15687                         v = &sd[edge->member->vertex];
15688                         u = !(v->ancestor)? v : (compress_ancestors(v), v->label);
15689                         if (u->sdom->vertex < sd[i].sdom->vertex) {
15690                                 sd[i].sdom = u->sdom;
15691                         }
15692                 }
15693                 sdom_block(sd[i].sdom, &sd[i]);
15694                 sd[i].ancestor = parent;
15695                 /* Step 3 */
15696                 for(v = parent->sdominates; v; v = next) {
15697                         struct sdom_block *u;
15698                         next = v->sdom_next;
15699                         unsdom_block(v);
15700                         u = (!v->ancestor) ? v : (compress_ancestors(v), v->label);
15701                         v->block->ipdom = (u->sdom->vertex < v->sdom->vertex)? 
15702                                 u->block : parent->block;
15703                 }
15704         }
15705 }
15706
15707 static void compute_idom(struct compile_state *state, 
15708         struct basic_blocks *bb, struct sdom_block *sd)
15709 {
15710         int i;
15711         for(i = 2; i <= bb->last_vertex; i++) {
15712                 struct block *block;
15713                 block = sd[i].block;
15714                 if (block->idom->vertex != sd[i].sdom->vertex) {
15715                         block->idom = block->idom->idom;
15716                 }
15717                 idom_block(block->idom, block);
15718         }
15719         sd[1].block->idom = 0;
15720 }
15721
15722 static void compute_ipdom(struct compile_state *state, 
15723         struct basic_blocks *bb, struct sdom_block *sd)
15724 {
15725         int i;
15726         for(i = 2; i <= bb->last_vertex; i++) {
15727                 struct block *block;
15728                 block = sd[i].block;
15729                 if (block->ipdom->vertex != sd[i].sdom->vertex) {
15730                         block->ipdom = block->ipdom->ipdom;
15731                 }
15732                 ipdom_block(block->ipdom, block);
15733         }
15734         sd[1].block->ipdom = 0;
15735 }
15736
15737         /* Theorem 1:
15738          *   Every vertex of a flowgraph G = (V, E, r) except r has
15739          *   a unique immediate dominator.  
15740          *   The edges {(idom(w), w) |w <= V - {r}} form a directed tree
15741          *   rooted at r, called the dominator tree of G, such that 
15742          *   v dominates w if and only if v is a proper ancestor of w in
15743          *   the dominator tree.
15744          */
15745         /* Lemma 1:  
15746          *   If v and w are vertices of G such that v <= w,
15747          *   than any path from v to w must contain a common ancestor
15748          *   of v and w in T.
15749          */
15750         /* Lemma 2:  For any vertex w != r, idom(w) -> w */
15751         /* Lemma 3:  For any vertex w != r, sdom(w) -> w */
15752         /* Lemma 4:  For any vertex w != r, idom(w) -> sdom(w) */
15753         /* Theorem 2:
15754          *   Let w != r.  Suppose every u for which sdom(w) -> u -> w satisfies
15755          *   sdom(u) >= sdom(w).  Then idom(w) = sdom(w).
15756          */
15757         /* Theorem 3:
15758          *   Let w != r and let u be a vertex for which sdom(u) is 
15759          *   minimum amoung vertices u satisfying sdom(w) -> u -> w.
15760          *   Then sdom(u) <= sdom(w) and idom(u) = idom(w).
15761          */
15762         /* Lemma 5:  Let vertices v,w satisfy v -> w.
15763          *           Then v -> idom(w) or idom(w) -> idom(v)
15764          */
15765
15766 static void find_immediate_dominators(struct compile_state *state,
15767         struct basic_blocks *bb)
15768 {
15769         struct sdom_block *sd;
15770         /* w->sdom = min{v| there is a path v = v0,v1,...,vk = w such that:
15771          *           vi > w for (1 <= i <= k - 1}
15772          */
15773         /* Theorem 4:
15774          *   For any vertex w != r.
15775          *   sdom(w) = min(
15776          *                 {v|(v,w) <= E  and v < w } U 
15777          *                 {sdom(u) | u > w and there is an edge (v, w) such that u -> v})
15778          */
15779         /* Corollary 1:
15780          *   Let w != r and let u be a vertex for which sdom(u) is 
15781          *   minimum amoung vertices u satisfying sdom(w) -> u -> w.
15782          *   Then:
15783          *                   { sdom(w) if sdom(w) = sdom(u),
15784          *        idom(w) = {
15785          *                   { idom(u) otherwise
15786          */
15787         /* The algorithm consists of the following 4 steps.
15788          * Step 1.  Carry out a depth-first search of the problem graph.  
15789          *    Number the vertices from 1 to N as they are reached during
15790          *    the search.  Initialize the variables used in succeeding steps.
15791          * Step 2.  Compute the semidominators of all vertices by applying
15792          *    theorem 4.   Carry out the computation vertex by vertex in
15793          *    decreasing order by number.
15794          * Step 3.  Implicitly define the immediate dominator of each vertex
15795          *    by applying Corollary 1.
15796          * Step 4.  Explicitly define the immediate dominator of each vertex,
15797          *    carrying out the computation vertex by vertex in increasing order
15798          *    by number.
15799          */
15800         /* Step 1 initialize the basic block information */
15801         sd = xcmalloc(sizeof(*sd) * (bb->last_vertex + 1), "sdom_state");
15802         initialize_sdblock(sd, 0, bb->first_block, 0);
15803 #if 0
15804         sd[1].size  = 0;
15805         sd[1].label = 0;
15806         sd[1].sdom  = 0;
15807 #endif
15808         /* Step 2 compute the semidominators */
15809         /* Step 3 implicitly define the immediate dominator of each vertex */
15810         compute_sdom(state, bb, sd);
15811         /* Step 4 explicitly define the immediate dominator of each vertex */
15812         compute_idom(state, bb, sd);
15813         xfree(sd);
15814 }
15815
15816 static void find_post_dominators(struct compile_state *state,
15817         struct basic_blocks *bb)
15818 {
15819         struct sdom_block *sd;
15820         int vertex;
15821         /* Step 1 initialize the basic block information */
15822         sd = xcmalloc(sizeof(*sd) * (bb->last_vertex + 1), "sdom_state");
15823
15824         vertex = setup_spdblocks(state, bb, sd);
15825         if (vertex != bb->last_vertex) {
15826                 internal_error(state, 0, "missing %d blocks",
15827                         bb->last_vertex - vertex);
15828         }
15829
15830         /* Step 2 compute the semidominators */
15831         /* Step 3 implicitly define the immediate dominator of each vertex */
15832         compute_spdom(state, bb, sd);
15833         /* Step 4 explicitly define the immediate dominator of each vertex */
15834         compute_ipdom(state, bb, sd);
15835         xfree(sd);
15836 }
15837
15838
15839
15840 static void find_block_domf(struct compile_state *state, struct block *block)
15841 {
15842         struct block *child;
15843         struct block_set *user, *edge;
15844         if (block->domfrontier != 0) {
15845                 internal_error(state, block->first, "domfrontier present?");
15846         }
15847         for(user = block->idominates; user; user = user->next) {
15848                 child = user->member;
15849                 if (child->idom != block) {
15850                         internal_error(state, block->first, "bad idom");
15851                 }
15852                 find_block_domf(state, child);
15853         }
15854         for(edge = block->edges; edge; edge = edge->next) {
15855                 if (edge->member->idom != block) {
15856                         domf_block(block, edge->member);
15857                 }
15858         }
15859         for(user = block->idominates; user; user = user->next) {
15860                 struct block_set *frontier;
15861                 child = user->member;
15862                 for(frontier = child->domfrontier; frontier; frontier = frontier->next) {
15863                         if (frontier->member->idom != block) {
15864                                 domf_block(block, frontier->member);
15865                         }
15866                 }
15867         }
15868 }
15869
15870 static void find_block_ipdomf(struct compile_state *state, struct block *block)
15871 {
15872         struct block *child;
15873         struct block_set *user;
15874         if (block->ipdomfrontier != 0) {
15875                 internal_error(state, block->first, "ipdomfrontier present?");
15876         }
15877         for(user = block->ipdominates; user; user = user->next) {
15878                 child = user->member;
15879                 if (child->ipdom != block) {
15880                         internal_error(state, block->first, "bad ipdom");
15881                 }
15882                 find_block_ipdomf(state, child);
15883         }
15884         for(user = block->use; user; user = user->next) {
15885                 if (user->member->ipdom != block) {
15886                         ipdomf_block(block, user->member);
15887                 }
15888         }
15889         for(user = block->ipdominates; user; user = user->next) {
15890                 struct block_set *frontier;
15891                 child = user->member;
15892                 for(frontier = child->ipdomfrontier; frontier; frontier = frontier->next) {
15893                         if (frontier->member->ipdom != block) {
15894                                 ipdomf_block(block, frontier->member);
15895                         }
15896                 }
15897         }
15898 }
15899
15900 static void print_dominated(
15901         struct compile_state *state, struct block *block, void *arg)
15902 {
15903         struct block_set *user;
15904         FILE *fp = arg;
15905
15906         fprintf(fp, "%d:", block->vertex);
15907         for(user = block->idominates; user; user = user->next) {
15908                 fprintf(fp, " %d", user->member->vertex);
15909                 if (user->member->idom != block) {
15910                         internal_error(state, user->member->first, "bad idom");
15911                 }
15912         }
15913         fprintf(fp,"\n");
15914 }
15915
15916 static void print_dominated2(
15917         struct compile_state *state, FILE *fp, int depth, struct block *block)
15918 {
15919         struct block_set *user;
15920         struct triple *ins;
15921         struct occurance *ptr, *ptr2;
15922         const char *filename1, *filename2;
15923         int equal_filenames;
15924         int i;
15925         for(i = 0; i < depth; i++) {
15926                 fprintf(fp, "   ");
15927         }
15928         fprintf(fp, "%3d: %p (%p - %p) @", 
15929                 block->vertex, block, block->first, block->last);
15930         ins = block->first;
15931         while(ins != block->last && (ins->occurance->line == 0)) {
15932                 ins = ins->next;
15933         }
15934         ptr = ins->occurance;
15935         ptr2 = block->last->occurance;
15936         filename1 = ptr->filename? ptr->filename : "";
15937         filename2 = ptr2->filename? ptr2->filename : "";
15938         equal_filenames = (strcmp(filename1, filename2) == 0);
15939         if ((ptr == ptr2) || (equal_filenames && ptr->line == ptr2->line)) {
15940                 fprintf(fp, " %s:%d", ptr->filename, ptr->line);
15941         } else if (equal_filenames) {
15942                 fprintf(fp, " %s:(%d - %d)",
15943                         ptr->filename, ptr->line, ptr2->line);
15944         } else {
15945                 fprintf(fp, " (%s:%d - %s:%d)",
15946                         ptr->filename, ptr->line,
15947                         ptr2->filename, ptr2->line);
15948         }
15949         fprintf(fp, "\n");
15950         for(user = block->idominates; user; user = user->next) {
15951                 print_dominated2(state, fp, depth + 1, user->member);
15952         }
15953 }
15954
15955 static void print_dominators(struct compile_state *state, FILE *fp, struct basic_blocks *bb)
15956 {
15957         fprintf(fp, "\ndominates\n");
15958         walk_blocks(state, bb, print_dominated, fp);
15959         fprintf(fp, "dominates\n");
15960         print_dominated2(state, fp, 0, bb->first_block);
15961 }
15962
15963
15964 static int print_frontiers(
15965         struct compile_state *state, FILE *fp, struct block *block, int vertex)
15966 {
15967         struct block_set *user, *edge;
15968
15969         if (!block || (block->vertex != vertex + 1)) {
15970                 return vertex;
15971         }
15972         vertex += 1;
15973
15974         fprintf(fp, "%d:", block->vertex);
15975         for(user = block->domfrontier; user; user = user->next) {
15976                 fprintf(fp, " %d", user->member->vertex);
15977         }
15978         fprintf(fp, "\n");
15979         
15980         for(edge = block->edges; edge; edge = edge->next) {
15981                 vertex = print_frontiers(state, fp, edge->member, vertex);
15982         }
15983         return vertex;
15984 }
15985 static void print_dominance_frontiers(struct compile_state *state,
15986         FILE *fp, struct basic_blocks *bb)
15987 {
15988         fprintf(fp, "\ndominance frontiers\n");
15989         print_frontiers(state, fp, bb->first_block, 0);
15990         
15991 }
15992
15993 static void analyze_idominators(struct compile_state *state, struct basic_blocks *bb)
15994 {
15995         /* Find the immediate dominators */
15996         find_immediate_dominators(state, bb);
15997         /* Find the dominance frontiers */
15998         find_block_domf(state, bb->first_block);
15999         /* If debuging print the print what I have just found */
16000         if (state->compiler->debug & DEBUG_FDOMINATORS) {
16001                 print_dominators(state, state->dbgout, bb);
16002                 print_dominance_frontiers(state, state->dbgout, bb);
16003                 print_control_flow(state, state->dbgout, bb);
16004         }
16005 }
16006
16007
16008 static void print_ipdominated(
16009         struct compile_state *state, struct block *block, void *arg)
16010 {
16011         struct block_set *user;
16012         FILE *fp = arg;
16013
16014         fprintf(fp, "%d:", block->vertex);
16015         for(user = block->ipdominates; user; user = user->next) {
16016                 fprintf(fp, " %d", user->member->vertex);
16017                 if (user->member->ipdom != block) {
16018                         internal_error(state, user->member->first, "bad ipdom");
16019                 }
16020         }
16021         fprintf(fp, "\n");
16022 }
16023
16024 static void print_ipdominators(struct compile_state *state, FILE *fp,
16025         struct basic_blocks *bb)
16026 {
16027         fprintf(fp, "\nipdominates\n");
16028         walk_blocks(state, bb, print_ipdominated, fp);
16029 }
16030
16031 static int print_pfrontiers(
16032         struct compile_state *state, FILE *fp, struct block *block, int vertex)
16033 {
16034         struct block_set *user;
16035
16036         if (!block || (block->vertex != vertex + 1)) {
16037                 return vertex;
16038         }
16039         vertex += 1;
16040
16041         fprintf(fp, "%d:", block->vertex);
16042         for(user = block->ipdomfrontier; user; user = user->next) {
16043                 fprintf(fp, " %d", user->member->vertex);
16044         }
16045         fprintf(fp, "\n");
16046         for(user = block->use; user; user = user->next) {
16047                 vertex = print_pfrontiers(state, fp, user->member, vertex);
16048         }
16049         return vertex;
16050 }
16051 static void print_ipdominance_frontiers(struct compile_state *state,
16052         FILE *fp, struct basic_blocks *bb)
16053 {
16054         fprintf(fp, "\nipdominance frontiers\n");
16055         print_pfrontiers(state, fp, bb->last_block, 0);
16056         
16057 }
16058
16059 static void analyze_ipdominators(struct compile_state *state,
16060         struct basic_blocks *bb)
16061 {
16062         /* Find the post dominators */
16063         find_post_dominators(state, bb);
16064         /* Find the control dependencies (post dominance frontiers) */
16065         find_block_ipdomf(state, bb->last_block);
16066         /* If debuging print the print what I have just found */
16067         if (state->compiler->debug & DEBUG_RDOMINATORS) {
16068                 print_ipdominators(state, state->dbgout, bb);
16069                 print_ipdominance_frontiers(state, state->dbgout, bb);
16070                 print_control_flow(state, state->dbgout, bb);
16071         }
16072 }
16073
16074 static int bdominates(struct compile_state *state,
16075         struct block *dom, struct block *sub)
16076 {
16077         while(sub && (sub != dom)) {
16078                 sub = sub->idom;
16079         }
16080         return sub == dom;
16081 }
16082
16083 static int tdominates(struct compile_state *state,
16084         struct triple *dom, struct triple *sub)
16085 {
16086         struct block *bdom, *bsub;
16087         int result;
16088         bdom = block_of_triple(state, dom);
16089         bsub = block_of_triple(state, sub);
16090         if (bdom != bsub) {
16091                 result = bdominates(state, bdom, bsub);
16092         } 
16093         else {
16094                 struct triple *ins;
16095                 if (!bdom || !bsub) {
16096                         internal_error(state, dom, "huh?");
16097                 }
16098                 ins = sub;
16099                 while((ins != bsub->first) && (ins != dom)) {
16100                         ins = ins->prev;
16101                 }
16102                 result = (ins == dom);
16103         }
16104         return result;
16105 }
16106
16107 static void analyze_basic_blocks(
16108         struct compile_state *state, struct basic_blocks *bb)
16109 {
16110         setup_basic_blocks(state, bb);
16111         analyze_idominators(state, bb);
16112         analyze_ipdominators(state, bb);
16113 }
16114
16115 static void insert_phi_operations(struct compile_state *state)
16116 {
16117         size_t size;
16118         struct triple *first;
16119         int *has_already, *work;
16120         struct block *work_list, **work_list_tail;
16121         int iter;
16122         struct triple *var, *vnext;
16123
16124         size = sizeof(int) * (state->bb.last_vertex + 1);
16125         has_already = xcmalloc(size, "has_already");
16126         work =        xcmalloc(size, "work");
16127         iter = 0;
16128
16129         first = state->first;
16130         for(var = first->next; var != first ; var = vnext) {
16131                 struct block *block;
16132                 struct triple_set *user, *unext;
16133                 vnext = var->next;
16134
16135                 if (!triple_is_auto_var(state, var) || !var->use) {
16136                         continue;
16137                 }
16138                         
16139                 iter += 1;
16140                 work_list = 0;
16141                 work_list_tail = &work_list;
16142                 for(user = var->use; user; user = unext) {
16143                         unext = user->next;
16144                         if (MISC(var, 0) == user->member) {
16145                                 continue;
16146                         }
16147                         if (user->member->op == OP_READ) {
16148                                 continue;
16149                         }
16150                         if (user->member->op != OP_WRITE) {
16151                                 internal_error(state, user->member, 
16152                                         "bad variable access");
16153                         }
16154                         block = user->member->u.block;
16155                         if (!block) {
16156                                 warning(state, user->member, "dead code");
16157                                 release_triple(state, user->member);
16158                                 continue;
16159                         }
16160                         if (work[block->vertex] >= iter) {
16161                                 continue;
16162                         }
16163                         work[block->vertex] = iter;
16164                         *work_list_tail = block;
16165                         block->work_next = 0;
16166                         work_list_tail = &block->work_next;
16167                 }
16168                 for(block = work_list; block; block = block->work_next) {
16169                         struct block_set *df;
16170                         for(df = block->domfrontier; df; df = df->next) {
16171                                 struct triple *phi;
16172                                 struct block *front;
16173                                 int in_edges;
16174                                 front = df->member;
16175
16176                                 if (has_already[front->vertex] >= iter) {
16177                                         continue;
16178                                 }
16179                                 /* Count how many edges flow into this block */
16180                                 in_edges = front->users;
16181                                 /* Insert a phi function for this variable */
16182                                 get_occurance(var->occurance);
16183                                 phi = alloc_triple(
16184                                         state, OP_PHI, var->type, -1, in_edges, 
16185                                         var->occurance);
16186                                 phi->u.block = front;
16187                                 MISC(phi, 0) = var;
16188                                 use_triple(var, phi);
16189 #if 1
16190                                 if (phi->rhs != in_edges) {
16191                                         internal_error(state, phi, "phi->rhs: %d != in_edges: %d",
16192                                                 phi->rhs, in_edges);
16193                                 }
16194 #endif
16195                                 /* Insert the phi functions immediately after the label */
16196                                 insert_triple(state, front->first->next, phi);
16197                                 if (front->first == front->last) {
16198                                         front->last = front->first->next;
16199                                 }
16200                                 has_already[front->vertex] = iter;
16201                                 transform_to_arch_instruction(state, phi);
16202
16203                                 /* If necessary plan to visit the basic block */
16204                                 if (work[front->vertex] >= iter) {
16205                                         continue;
16206                                 }
16207                                 work[front->vertex] = iter;
16208                                 *work_list_tail = front;
16209                                 front->work_next = 0;
16210                                 work_list_tail = &front->work_next;
16211                         }
16212                 }
16213         }
16214         xfree(has_already);
16215         xfree(work);
16216 }
16217
16218
16219 struct stack {
16220         struct triple_set *top;
16221         unsigned orig_id;
16222 };
16223
16224 static int count_auto_vars(struct compile_state *state)
16225 {
16226         struct triple *first, *ins;
16227         int auto_vars = 0;
16228         first = state->first;
16229         ins = first;
16230         do {
16231                 if (triple_is_auto_var(state, ins)) {
16232                         auto_vars += 1;
16233                 }
16234                 ins = ins->next;
16235         } while(ins != first);
16236         return auto_vars;
16237 }
16238
16239 static void number_auto_vars(struct compile_state *state, struct stack *stacks)
16240 {
16241         struct triple *first, *ins;
16242         int auto_vars = 0;
16243         first = state->first;
16244         ins = first;
16245         do {
16246                 if (triple_is_auto_var(state, ins)) {
16247                         auto_vars += 1;
16248                         stacks[auto_vars].orig_id = ins->id;
16249                         ins->id = auto_vars;
16250                 }
16251                 ins = ins->next;
16252         } while(ins != first);
16253 }
16254
16255 static void restore_auto_vars(struct compile_state *state, struct stack *stacks)
16256 {
16257         struct triple *first, *ins;
16258         first = state->first;
16259         ins = first;
16260         do {
16261                 if (triple_is_auto_var(state, ins)) {
16262                         ins->id = stacks[ins->id].orig_id;
16263                 }
16264                 ins = ins->next;
16265         } while(ins != first);
16266 }
16267
16268 static struct triple *peek_triple(struct stack *stacks, struct triple *var)
16269 {
16270         struct triple_set *head;
16271         struct triple *top_val;
16272         top_val = 0;
16273         head = stacks[var->id].top;
16274         if (head) {
16275                 top_val = head->member;
16276         }
16277         return top_val;
16278 }
16279
16280 static void push_triple(struct stack *stacks, struct triple *var, struct triple *val)
16281 {
16282         struct triple_set *new;
16283         /* Append new to the head of the list,
16284          * it's the only sensible behavoir for a stack.
16285          */
16286         new = xcmalloc(sizeof(*new), "triple_set");
16287         new->member = val;
16288         new->next   = stacks[var->id].top;
16289         stacks[var->id].top = new;
16290 }
16291
16292 static void pop_triple(struct stack *stacks, struct triple *var, struct triple *oldval)
16293 {
16294         struct triple_set *set, **ptr;
16295         ptr = &stacks[var->id].top;
16296         while(*ptr) {
16297                 set = *ptr;
16298                 if (set->member == oldval) {
16299                         *ptr = set->next;
16300                         xfree(set);
16301                         /* Only free one occurance from the stack */
16302                         return;
16303                 }
16304                 else {
16305                         ptr = &set->next;
16306                 }
16307         }
16308 }
16309
16310 /*
16311  * C(V)
16312  * S(V)
16313  */
16314 static void fixup_block_phi_variables(
16315         struct compile_state *state, struct stack *stacks, struct block *parent, struct block *block)
16316 {
16317         struct block_set *set;
16318         struct triple *ptr;
16319         int edge;
16320         if (!parent || !block)
16321                 return;
16322         /* Find the edge I am coming in on */
16323         edge = 0;
16324         for(set = block->use; set; set = set->next, edge++) {
16325                 if (set->member == parent) {
16326                         break;
16327                 }
16328         }
16329         if (!set) {
16330                 internal_error(state, 0, "phi input is not on a control predecessor");
16331         }
16332         for(ptr = block->first; ; ptr = ptr->next) {
16333                 if (ptr->op == OP_PHI) {
16334                         struct triple *var, *val, **slot;
16335                         var = MISC(ptr, 0);
16336                         if (!var) {
16337                                 internal_error(state, ptr, "no var???");
16338                         }
16339                         /* Find the current value of the variable */
16340                         val = peek_triple(stacks, var);
16341                         if (val && ((val->op == OP_WRITE) || (val->op == OP_READ))) {
16342                                 internal_error(state, val, "bad value in phi");
16343                         }
16344                         if (edge >= ptr->rhs) {
16345                                 internal_error(state, ptr, "edges > phi rhs");
16346                         }
16347                         slot = &RHS(ptr, edge);
16348                         if ((*slot != 0) && (*slot != val)) {
16349                                 internal_error(state, ptr, "phi already bound on this edge");
16350                         }
16351                         *slot = val;
16352                         use_triple(val, ptr);
16353                 }
16354                 if (ptr == block->last) {
16355                         break;
16356                 }
16357         }
16358 }
16359
16360
16361 static void rename_block_variables(
16362         struct compile_state *state, struct stack *stacks, struct block *block)
16363 {
16364         struct block_set *user, *edge;
16365         struct triple *ptr, *next, *last;
16366         int done;
16367         if (!block)
16368                 return;
16369         last = block->first;
16370         done = 0;
16371         for(ptr = block->first; !done; ptr = next) {
16372                 next = ptr->next;
16373                 if (ptr == block->last) {
16374                         done = 1;
16375                 }
16376                 /* RHS(A) */
16377                 if (ptr->op == OP_READ) {
16378                         struct triple *var, *val;
16379                         var = RHS(ptr, 0);
16380                         if (!triple_is_auto_var(state, var)) {
16381                                 internal_error(state, ptr, "read of non auto var!");
16382                         }
16383                         unuse_triple(var, ptr);
16384                         /* Find the current value of the variable */
16385                         val = peek_triple(stacks, var);
16386                         if (!val) {
16387                                 /* Let the optimizer at variables that are not initially
16388                                  * set.  But give it a bogus value so things seem to
16389                                  * work by accident.  This is useful for bitfields because
16390                                  * setting them always involves a read-modify-write.
16391                                  */
16392                                 if (TYPE_ARITHMETIC(ptr->type->type)) {
16393                                         val = pre_triple(state, ptr, OP_INTCONST, ptr->type, 0, 0);
16394                                         val->u.cval = 0xdeadbeaf;
16395                                 } else {
16396                                         val = pre_triple(state, ptr, OP_UNKNOWNVAL, ptr->type, 0, 0);
16397                                 }
16398                         }
16399                         if (!val) {
16400                                 error(state, ptr, "variable used without being set");
16401                         }
16402                         if ((val->op == OP_WRITE) || (val->op == OP_READ)) {
16403                                 internal_error(state, val, "bad value in read");
16404                         }
16405                         propogate_use(state, ptr, val);
16406                         release_triple(state, ptr);
16407                         continue;
16408                 }
16409                 /* LHS(A) */
16410                 if (ptr->op == OP_WRITE) {
16411                         struct triple *var, *val, *tval;
16412                         var = MISC(ptr, 0);
16413                         if (!triple_is_auto_var(state, var)) {
16414                                 internal_error(state, ptr, "write to non auto var!");
16415                         }
16416                         tval = val = RHS(ptr, 0);
16417                         if ((val->op == OP_WRITE) || (val->op == OP_READ) ||
16418                                 triple_is_auto_var(state, val)) {
16419                                 internal_error(state, ptr, "bad value in write");
16420                         }
16421                         /* Insert a cast if the types differ */
16422                         if (!is_subset_type(ptr->type, val->type)) {
16423                                 if (val->op == OP_INTCONST) {
16424                                         tval = pre_triple(state, ptr, OP_INTCONST, ptr->type, 0, 0);
16425                                         tval->u.cval = val->u.cval;
16426                                 }
16427                                 else {
16428                                         tval = pre_triple(state, ptr, OP_CONVERT, ptr->type, val, 0);
16429                                         use_triple(val, tval);
16430                                 }
16431                                 transform_to_arch_instruction(state, tval);
16432                                 unuse_triple(val, ptr);
16433                                 RHS(ptr, 0) = tval;
16434                                 use_triple(tval, ptr);
16435                         }
16436                         propogate_use(state, ptr, tval);
16437                         unuse_triple(var, ptr);
16438                         /* Push OP_WRITE ptr->right onto a stack of variable uses */
16439                         push_triple(stacks, var, tval);
16440                 }
16441                 if (ptr->op == OP_PHI) {
16442                         struct triple *var;
16443                         var = MISC(ptr, 0);
16444                         if (!triple_is_auto_var(state, var)) {
16445                                 internal_error(state, ptr, "phi references non auto var!");
16446                         }
16447                         /* Push OP_PHI onto a stack of variable uses */
16448                         push_triple(stacks, var, ptr);
16449                 }
16450                 last = ptr;
16451         }
16452         block->last = last;
16453
16454         /* Fixup PHI functions in the cf successors */
16455         for(edge = block->edges; edge; edge = edge->next) {
16456                 fixup_block_phi_variables(state, stacks, block, edge->member);
16457         }
16458         /* rename variables in the dominated nodes */
16459         for(user = block->idominates; user; user = user->next) {
16460                 rename_block_variables(state, stacks, user->member);
16461         }
16462         /* pop the renamed variable stack */
16463         last = block->first;
16464         done = 0;
16465         for(ptr = block->first; !done ; ptr = next) {
16466                 next = ptr->next;
16467                 if (ptr == block->last) {
16468                         done = 1;
16469                 }
16470                 if (ptr->op == OP_WRITE) {
16471                         struct triple *var;
16472                         var = MISC(ptr, 0);
16473                         /* Pop OP_WRITE ptr->right from the stack of variable uses */
16474                         pop_triple(stacks, var, RHS(ptr, 0));
16475                         release_triple(state, ptr);
16476                         continue;
16477                 }
16478                 if (ptr->op == OP_PHI) {
16479                         struct triple *var;
16480                         var = MISC(ptr, 0);
16481                         /* Pop OP_WRITE ptr->right from the stack of variable uses */
16482                         pop_triple(stacks, var, ptr);
16483                 }
16484                 last = ptr;
16485         }
16486         block->last = last;
16487 }
16488
16489 static void rename_variables(struct compile_state *state)
16490 {
16491         struct stack *stacks;
16492         int auto_vars;
16493
16494         /* Allocate stacks for the Variables */
16495         auto_vars = count_auto_vars(state);
16496         stacks = xcmalloc(sizeof(stacks[0])*(auto_vars + 1), "auto var stacks");
16497
16498         /* Give each auto_var a stack */
16499         number_auto_vars(state, stacks);
16500
16501         /* Rename the variables */
16502         rename_block_variables(state, stacks, state->bb.first_block);
16503
16504         /* Remove the stacks from the auto_vars */
16505         restore_auto_vars(state, stacks);
16506         xfree(stacks);
16507 }
16508
16509 static void prune_block_variables(struct compile_state *state,
16510         struct block *block)
16511 {
16512         struct block_set *user;
16513         struct triple *next, *ptr;
16514         int done;
16515
16516         done = 0;
16517         for(ptr = block->first; !done; ptr = next) {
16518                 /* Be extremely careful I am deleting the list
16519                  * as I walk trhough it.
16520                  */
16521                 next = ptr->next;
16522                 if (ptr == block->last) {
16523                         done = 1;
16524                 }
16525                 if (triple_is_auto_var(state, ptr)) {
16526                         struct triple_set *user, *next;
16527                         for(user = ptr->use; user; user = next) {
16528                                 struct triple *use;
16529                                 next = user->next;
16530                                 use = user->member;
16531                                 if (MISC(ptr, 0) == user->member) {
16532                                         continue;
16533                                 }
16534                                 if (use->op != OP_PHI) {
16535                                         internal_error(state, use, "decl still used");
16536                                 }
16537                                 if (MISC(use, 0) != ptr) {
16538                                         internal_error(state, use, "bad phi use of decl");
16539                                 }
16540                                 unuse_triple(ptr, use);
16541                                 MISC(use, 0) = 0;
16542                         }
16543                         if ((ptr->u.cval == 0) && (MISC(ptr, 0)->lhs == 1)) {
16544                                 /* Delete the adecl */
16545                                 release_triple(state, MISC(ptr, 0));
16546                                 /* And the piece */
16547                                 release_triple(state, ptr);
16548                         }
16549                         continue;
16550                 }
16551         }
16552         for(user = block->idominates; user; user = user->next) {
16553                 prune_block_variables(state, user->member);
16554         }
16555 }
16556
16557 struct phi_triple {
16558         struct triple *phi;
16559         unsigned orig_id;
16560         int alive;
16561 };
16562
16563 static void keep_phi(struct compile_state *state, struct phi_triple *live, struct triple *phi)
16564 {
16565         struct triple **slot;
16566         int zrhs, i;
16567         if (live[phi->id].alive) {
16568                 return;
16569         }
16570         live[phi->id].alive = 1;
16571         zrhs = phi->rhs;
16572         slot = &RHS(phi, 0);
16573         for(i = 0; i < zrhs; i++) {
16574                 struct triple *used;
16575                 used = slot[i];
16576                 if (used && (used->op == OP_PHI)) {
16577                         keep_phi(state, live, used);
16578                 }
16579         }
16580 }
16581
16582 static void prune_unused_phis(struct compile_state *state)
16583 {
16584         struct triple *first, *phi;
16585         struct phi_triple *live;
16586         int phis, i;
16587         
16588         /* Find the first instruction */
16589         first = state->first;
16590
16591         /* Count how many phi functions I need to process */
16592         phis = 0;
16593         for(phi = first->next; phi != first; phi = phi->next) {
16594                 if (phi->op == OP_PHI) {
16595                         phis += 1;
16596                 }
16597         }
16598         
16599         /* Mark them all dead */
16600         live = xcmalloc(sizeof(*live) * (phis + 1), "phi_triple");
16601         phis = 0;
16602         for(phi = first->next; phi != first; phi = phi->next) {
16603                 if (phi->op != OP_PHI) {
16604                         continue;
16605                 }
16606                 live[phis].alive   = 0;
16607                 live[phis].orig_id = phi->id;
16608                 live[phis].phi     = phi;
16609                 phi->id = phis;
16610                 phis += 1;
16611         }
16612         
16613         /* Mark phis alive that are used by non phis */
16614         for(i = 0; i < phis; i++) {
16615                 struct triple_set *set;
16616                 for(set = live[i].phi->use; !live[i].alive && set; set = set->next) {
16617                         if (set->member->op != OP_PHI) {
16618                                 keep_phi(state, live, live[i].phi);
16619                                 break;
16620                         }
16621                 }
16622         }
16623
16624         /* Delete the extraneous phis */
16625         for(i = 0; i < phis; i++) {
16626                 struct triple **slot;
16627                 int zrhs, j;
16628                 if (!live[i].alive) {
16629                         release_triple(state, live[i].phi);
16630                         continue;
16631                 }
16632                 phi = live[i].phi;
16633                 slot = &RHS(phi, 0);
16634                 zrhs = phi->rhs;
16635                 for(j = 0; j < zrhs; j++) {
16636                         if(!slot[j]) {
16637                                 struct triple *unknown;
16638                                 get_occurance(phi->occurance);
16639                                 unknown = flatten(state, state->global_pool,
16640                                         alloc_triple(state, OP_UNKNOWNVAL,
16641                                                 phi->type, 0, 0, phi->occurance));
16642                                 slot[j] = unknown;
16643                                 use_triple(unknown, phi);
16644                                 transform_to_arch_instruction(state, unknown);
16645 #if 0                           
16646                                 warning(state, phi, "variable not set at index %d on all paths to use", j);
16647 #endif
16648                         }
16649                 }
16650         }
16651         xfree(live);
16652 }
16653
16654 static void transform_to_ssa_form(struct compile_state *state)
16655 {
16656         insert_phi_operations(state);
16657         rename_variables(state);
16658
16659         prune_block_variables(state, state->bb.first_block);
16660         prune_unused_phis(state);
16661
16662         print_blocks(state, __func__, state->dbgout);
16663 }
16664
16665
16666 static void clear_vertex(
16667         struct compile_state *state, struct block *block, void *arg)
16668 {
16669         /* Clear the current blocks vertex and the vertex of all
16670          * of the current blocks neighbors in case there are malformed
16671          * blocks with now instructions at this point.
16672          */
16673         struct block_set *user, *edge;
16674         block->vertex = 0;
16675         for(edge = block->edges; edge; edge = edge->next) {
16676                 edge->member->vertex = 0;
16677         }
16678         for(user = block->use; user; user = user->next) {
16679                 user->member->vertex = 0;
16680         }
16681 }
16682
16683 static void mark_live_block(
16684         struct compile_state *state, struct block *block, int *next_vertex)
16685 {
16686         /* See if this is a block that has not been marked */
16687         if (block->vertex != 0) {
16688                 return;
16689         }
16690         block->vertex = *next_vertex;
16691         *next_vertex += 1;
16692         if (triple_is_branch(state, block->last)) {
16693                 struct triple **targ;
16694                 targ = triple_edge_targ(state, block->last, 0);
16695                 for(; targ; targ = triple_edge_targ(state, block->last, targ)) {
16696                         if (!*targ) {
16697                                 continue;
16698                         }
16699                         if (!triple_stores_block(state, *targ)) {
16700                                 internal_error(state, 0, "bad targ");
16701                         }
16702                         mark_live_block(state, (*targ)->u.block, next_vertex);
16703                 }
16704                 /* Ensure the last block of a function remains alive */
16705                 if (triple_is_call(state, block->last)) {
16706                         mark_live_block(state, MISC(block->last, 0)->u.block, next_vertex);
16707                 }
16708         }
16709         else if (block->last->next != state->first) {
16710                 struct triple *ins;
16711                 ins = block->last->next;
16712                 if (!triple_stores_block(state, ins)) {
16713                         internal_error(state, 0, "bad block start");
16714                 }
16715                 mark_live_block(state, ins->u.block, next_vertex);
16716         }
16717 }
16718
16719 static void transform_from_ssa_form(struct compile_state *state)
16720 {
16721         /* To get out of ssa form we insert moves on the incoming
16722          * edges to blocks containting phi functions.
16723          */
16724         struct triple *first;
16725         struct triple *phi, *var, *next;
16726         int next_vertex;
16727
16728         /* Walk the control flow to see which blocks remain alive */
16729         walk_blocks(state, &state->bb, clear_vertex, 0);
16730         next_vertex = 1;
16731         mark_live_block(state, state->bb.first_block, &next_vertex);
16732
16733         /* Walk all of the operations to find the phi functions */
16734         first = state->first;
16735         for(phi = first->next; phi != first ; phi = next) {
16736                 struct block_set *set;
16737                 struct block *block;
16738                 struct triple **slot;
16739                 struct triple *var;
16740                 struct triple_set *use, *use_next;
16741                 int edge, writers, readers;
16742                 next = phi->next;
16743                 if (phi->op != OP_PHI) {
16744                         continue;
16745                 }
16746
16747                 block = phi->u.block;
16748                 slot  = &RHS(phi, 0);
16749
16750                 /* If this phi is in a dead block just forget it */
16751                 if (block->vertex == 0) {
16752                         release_triple(state, phi);
16753                         continue;
16754                 }
16755
16756                 /* Forget uses from code in dead blocks */
16757                 for(use = phi->use; use; use = use_next) {
16758                         struct block *ublock;
16759                         struct triple **expr;
16760                         use_next = use->next;
16761                         ublock = block_of_triple(state, use->member);
16762                         if ((use->member == phi) || (ublock->vertex != 0)) {
16763                                 continue;
16764                         }
16765                         expr = triple_rhs(state, use->member, 0);
16766                         for(; expr; expr = triple_rhs(state, use->member, expr)) {
16767                                 if (*expr == phi) {
16768                                         *expr = 0;
16769                                 }
16770                         }
16771                         unuse_triple(phi, use->member);
16772                 }
16773                 /* A variable to replace the phi function */
16774                 if (registers_of(state, phi->type) != 1) {
16775                         internal_error(state, phi, "phi->type does not fit in a single register!");
16776                 }
16777                 var = post_triple(state, phi, OP_ADECL, phi->type, 0, 0);
16778                 var = var->next; /* point at the var */
16779                         
16780                 /* Replaces use of phi with var */
16781                 propogate_use(state, phi, var);
16782
16783                 /* Count the readers */
16784                 readers = 0;
16785                 for(use = var->use; use; use = use->next) {
16786                         if (use->member != MISC(var, 0)) {
16787                                 readers++;
16788                         }
16789                 }
16790
16791                 /* Walk all of the incoming edges/blocks and insert moves.
16792                  */
16793                 writers = 0;
16794                 for(edge = 0, set = block->use; set; set = set->next, edge++) {
16795                         struct block *eblock, *vblock;
16796                         struct triple *move;
16797                         struct triple *val, *base;
16798                         eblock = set->member;
16799                         val = slot[edge];
16800                         slot[edge] = 0;
16801                         unuse_triple(val, phi);
16802                         vblock = block_of_triple(state, val);
16803
16804                         /* If we don't have a value that belongs in an OP_WRITE
16805                          * continue on.
16806                          */
16807                         if (!val || (val == &unknown_triple) || (val == phi)
16808                                 || (vblock && (vblock->vertex == 0))) {
16809                                 continue;
16810                         }
16811                         /* If the value should never occur error */
16812                         if (!vblock) {
16813                                 internal_error(state, val, "no vblock?");
16814                                 continue;
16815                         }
16816
16817                         /* If the value occurs in a dead block see if a replacement
16818                          * block can be found.
16819                          */
16820                         while(eblock && (eblock->vertex == 0)) {
16821                                 eblock = eblock->idom;
16822                         }
16823                         /* If not continue on with the next value. */
16824                         if (!eblock || (eblock->vertex == 0)) {
16825                                 continue;
16826                         }
16827
16828                         /* If we have an empty incoming block ignore it. */
16829                         if (!eblock->first) {
16830                                 internal_error(state, 0, "empty block?");
16831                         }
16832                         
16833                         /* Make certain the write is placed in the edge block... */
16834                         /* Walk through the edge block backwards to find an
16835                          * appropriate location for the OP_WRITE.
16836                          */
16837                         for(base = eblock->last; base != eblock->first; base = base->prev) {
16838                                 struct triple **expr;
16839                                 if (base->op == OP_PIECE) {
16840                                         base = MISC(base, 0);
16841                                 }
16842                                 if ((base == var) || (base == val)) {
16843                                         goto out;
16844                                 }
16845                                 expr = triple_lhs(state, base, 0);
16846                                 for(; expr; expr = triple_lhs(state, base, expr)) {
16847                                         if ((*expr) == val) {
16848                                                 goto out;
16849                                         }
16850                                 }
16851                                 expr = triple_rhs(state, base, 0);
16852                                 for(; expr; expr = triple_rhs(state, base, expr)) {
16853                                         if ((*expr) == var) {
16854                                                 goto out;
16855                                         }
16856                                 }
16857                         }
16858                 out:
16859                         if (triple_is_branch(state, base)) {
16860                                 internal_error(state, base,
16861                                         "Could not insert write to phi");
16862                         }
16863                         move = post_triple(state, base, OP_WRITE, var->type, val, var);
16864                         use_triple(val, move);
16865                         use_triple(var, move);
16866                         writers++;
16867                 }
16868                 if (!writers && readers) {
16869                         internal_error(state, var, "no value written to in use phi?");
16870                 }
16871                 /* If var is not used free it */
16872                 if (!writers) {
16873                         release_triple(state, MISC(var, 0));
16874                         release_triple(state, var);
16875                 }
16876                 /* Release the phi function */
16877                 release_triple(state, phi);
16878         }
16879         
16880         /* Walk all of the operations to find the adecls */
16881         for(var = first->next; var != first ; var = var->next) {
16882                 struct triple_set *use, *use_next;
16883                 if (!triple_is_auto_var(state, var)) {
16884                         continue;
16885                 }
16886
16887                 /* Walk through all of the rhs uses of var and
16888                  * replace them with read of var.
16889                  */
16890                 for(use = var->use; use; use = use_next) {
16891                         struct triple *read, *user;
16892                         struct triple **slot;
16893                         int zrhs, i, used;
16894                         use_next = use->next;
16895                         user = use->member;
16896                         
16897                         /* Generate a read of var */
16898                         read = pre_triple(state, user, OP_READ, var->type, var, 0);
16899                         use_triple(var, read);
16900
16901                         /* Find the rhs uses and see if they need to be replaced */
16902                         used = 0;
16903                         zrhs = user->rhs;
16904                         slot = &RHS(user, 0);
16905                         for(i = 0; i < zrhs; i++) {
16906                                 if (slot[i] == var) {
16907                                         slot[i] = read;
16908                                         used = 1;
16909                                 }
16910                         }
16911                         /* If we did use it cleanup the uses */
16912                         if (used) {
16913                                 unuse_triple(var, user);
16914                                 use_triple(read, user);
16915                         } 
16916                         /* If we didn't use it release the extra triple */
16917                         else {
16918                                 release_triple(state, read);
16919                         }
16920                 }
16921         }
16922 }
16923
16924 #define HI() if (state->compiler->debug & DEBUG_REBUILD_SSA_FORM) { \
16925         FILE *fp = state->dbgout; \
16926         fprintf(fp, "@ %s:%d\n", __FILE__, __LINE__); romcc_print_blocks(state, fp); \
16927         } 
16928
16929 static void rebuild_ssa_form(struct compile_state *state)
16930 {
16931 HI();
16932         transform_from_ssa_form(state);
16933 HI();
16934         state->bb.first = state->first;
16935         free_basic_blocks(state, &state->bb);
16936         analyze_basic_blocks(state, &state->bb);
16937 HI();
16938         insert_phi_operations(state);
16939 HI();
16940         rename_variables(state);
16941 HI();
16942         
16943         prune_block_variables(state, state->bb.first_block);
16944 HI();
16945         prune_unused_phis(state);
16946 HI();
16947 }
16948 #undef HI
16949
16950 /* 
16951  * Register conflict resolution
16952  * =========================================================
16953  */
16954
16955 static struct reg_info find_def_color(
16956         struct compile_state *state, struct triple *def)
16957 {
16958         struct triple_set *set;
16959         struct reg_info info;
16960         info.reg = REG_UNSET;
16961         info.regcm = 0;
16962         if (!triple_is_def(state, def)) {
16963                 return info;
16964         }
16965         info = arch_reg_lhs(state, def, 0);
16966         if (info.reg >= MAX_REGISTERS) {
16967                 info.reg = REG_UNSET;
16968         }
16969         for(set = def->use; set; set = set->next) {
16970                 struct reg_info tinfo;
16971                 int i;
16972                 i = find_rhs_use(state, set->member, def);
16973                 if (i < 0) {
16974                         continue;
16975                 }
16976                 tinfo = arch_reg_rhs(state, set->member, i);
16977                 if (tinfo.reg >= MAX_REGISTERS) {
16978                         tinfo.reg = REG_UNSET;
16979                 }
16980                 if ((tinfo.reg != REG_UNSET) && 
16981                         (info.reg != REG_UNSET) &&
16982                         (tinfo.reg != info.reg)) {
16983                         internal_error(state, def, "register conflict");
16984                 }
16985                 if ((info.regcm & tinfo.regcm) == 0) {
16986                         internal_error(state, def, "regcm conflict %x & %x == 0",
16987                                 info.regcm, tinfo.regcm);
16988                 }
16989                 if (info.reg == REG_UNSET) {
16990                         info.reg = tinfo.reg;
16991                 }
16992                 info.regcm &= tinfo.regcm;
16993         }
16994         if (info.reg >= MAX_REGISTERS) {
16995                 internal_error(state, def, "register out of range");
16996         }
16997         return info;
16998 }
16999
17000 static struct reg_info find_lhs_pre_color(
17001         struct compile_state *state, struct triple *ins, int index)
17002 {
17003         struct reg_info info;
17004         int zlhs, zrhs, i;
17005         zrhs = ins->rhs;
17006         zlhs = ins->lhs;
17007         if (!zlhs && triple_is_def(state, ins)) {
17008                 zlhs = 1;
17009         }
17010         if (index >= zlhs) {
17011                 internal_error(state, ins, "Bad lhs %d", index);
17012         }
17013         info = arch_reg_lhs(state, ins, index);
17014         for(i = 0; i < zrhs; i++) {
17015                 struct reg_info rinfo;
17016                 rinfo = arch_reg_rhs(state, ins, i);
17017                 if ((info.reg == rinfo.reg) &&
17018                         (rinfo.reg >= MAX_REGISTERS)) {
17019                         struct reg_info tinfo;
17020                         tinfo = find_lhs_pre_color(state, RHS(ins, index), 0);
17021                         info.reg = tinfo.reg;
17022                         info.regcm &= tinfo.regcm;
17023                         break;
17024                 }
17025         }
17026         if (info.reg >= MAX_REGISTERS) {
17027                 info.reg = REG_UNSET;
17028         }
17029         return info;
17030 }
17031
17032 static struct reg_info find_rhs_post_color(
17033         struct compile_state *state, struct triple *ins, int index);
17034
17035 static struct reg_info find_lhs_post_color(
17036         struct compile_state *state, struct triple *ins, int index)
17037 {
17038         struct triple_set *set;
17039         struct reg_info info;
17040         struct triple *lhs;
17041 #if DEBUG_TRIPLE_COLOR
17042         fprintf(state->errout, "find_lhs_post_color(%p, %d)\n",
17043                 ins, index);
17044 #endif
17045         if ((index == 0) && triple_is_def(state, ins)) {
17046                 lhs = ins;
17047         }
17048         else if (index < ins->lhs) {
17049                 lhs = LHS(ins, index);
17050         }
17051         else {
17052                 internal_error(state, ins, "Bad lhs %d", index);
17053                 lhs = 0;
17054         }
17055         info = arch_reg_lhs(state, ins, index);
17056         if (info.reg >= MAX_REGISTERS) {
17057                 info.reg = REG_UNSET;
17058         }
17059         for(set = lhs->use; set; set = set->next) {
17060                 struct reg_info rinfo;
17061                 struct triple *user;
17062                 int zrhs, i;
17063                 user = set->member;
17064                 zrhs = user->rhs;
17065                 for(i = 0; i < zrhs; i++) {
17066                         if (RHS(user, i) != lhs) {
17067                                 continue;
17068                         }
17069                         rinfo = find_rhs_post_color(state, user, i);
17070                         if ((info.reg != REG_UNSET) &&
17071                                 (rinfo.reg != REG_UNSET) &&
17072                                 (info.reg != rinfo.reg)) {
17073                                 internal_error(state, ins, "register conflict");
17074                         }
17075                         if ((info.regcm & rinfo.regcm) == 0) {
17076                                 internal_error(state, ins, "regcm conflict %x & %x == 0",
17077                                         info.regcm, rinfo.regcm);
17078                         }
17079                         if (info.reg == REG_UNSET) {
17080                                 info.reg = rinfo.reg;
17081                         }
17082                         info.regcm &= rinfo.regcm;
17083                 }
17084         }
17085 #if DEBUG_TRIPLE_COLOR
17086         fprintf(state->errout, "find_lhs_post_color(%p, %d) -> ( %d, %x)\n",
17087                 ins, index, info.reg, info.regcm);
17088 #endif
17089         return info;
17090 }
17091
17092 static struct reg_info find_rhs_post_color(
17093         struct compile_state *state, struct triple *ins, int index)
17094 {
17095         struct reg_info info, rinfo;
17096         int zlhs, i;
17097 #if DEBUG_TRIPLE_COLOR
17098         fprintf(state->errout, "find_rhs_post_color(%p, %d)\n",
17099                 ins, index);
17100 #endif
17101         rinfo = arch_reg_rhs(state, ins, index);
17102         zlhs = ins->lhs;
17103         if (!zlhs && triple_is_def(state, ins)) {
17104                 zlhs = 1;
17105         }
17106         info = rinfo;
17107         if (info.reg >= MAX_REGISTERS) {
17108                 info.reg = REG_UNSET;
17109         }
17110         for(i = 0; i < zlhs; i++) {
17111                 struct reg_info linfo;
17112                 linfo = arch_reg_lhs(state, ins, i);
17113                 if ((linfo.reg == rinfo.reg) &&
17114                         (linfo.reg >= MAX_REGISTERS)) {
17115                         struct reg_info tinfo;
17116                         tinfo = find_lhs_post_color(state, ins, i);
17117                         if (tinfo.reg >= MAX_REGISTERS) {
17118                                 tinfo.reg = REG_UNSET;
17119                         }
17120                         info.regcm &= linfo.regcm;
17121                         info.regcm &= tinfo.regcm;
17122                         if (info.reg != REG_UNSET) {
17123                                 internal_error(state, ins, "register conflict");
17124                         }
17125                         if (info.regcm == 0) {
17126                                 internal_error(state, ins, "regcm conflict");
17127                         }
17128                         info.reg = tinfo.reg;
17129                 }
17130         }
17131 #if DEBUG_TRIPLE_COLOR
17132         fprintf(state->errout, "find_rhs_post_color(%p, %d) -> ( %d, %x)\n",
17133                 ins, index, info.reg, info.regcm);
17134 #endif
17135         return info;
17136 }
17137
17138 static struct reg_info find_lhs_color(
17139         struct compile_state *state, struct triple *ins, int index)
17140 {
17141         struct reg_info pre, post, info;
17142 #if DEBUG_TRIPLE_COLOR
17143         fprintf(state->errout, "find_lhs_color(%p, %d)\n",
17144                 ins, index);
17145 #endif
17146         pre = find_lhs_pre_color(state, ins, index);
17147         post = find_lhs_post_color(state, ins, index);
17148         if ((pre.reg != post.reg) &&
17149                 (pre.reg != REG_UNSET) &&
17150                 (post.reg != REG_UNSET)) {
17151                 internal_error(state, ins, "register conflict");
17152         }
17153         info.regcm = pre.regcm & post.regcm;
17154         info.reg = pre.reg;
17155         if (info.reg == REG_UNSET) {
17156                 info.reg = post.reg;
17157         }
17158 #if DEBUG_TRIPLE_COLOR
17159         fprintf(state->errout, "find_lhs_color(%p, %d) -> ( %d, %x) ... (%d, %x) (%d, %x)\n",
17160                 ins, index, info.reg, info.regcm,
17161                 pre.reg, pre.regcm, post.reg, post.regcm);
17162 #endif
17163         return info;
17164 }
17165
17166 static struct triple *post_copy(struct compile_state *state, struct triple *ins)
17167 {
17168         struct triple_set *entry, *next;
17169         struct triple *out;
17170         struct reg_info info, rinfo;
17171
17172         info = arch_reg_lhs(state, ins, 0);
17173         out = post_triple(state, ins, OP_COPY, ins->type, ins, 0);
17174         use_triple(RHS(out, 0), out);
17175         /* Get the users of ins to use out instead */
17176         for(entry = ins->use; entry; entry = next) {
17177                 int i;
17178                 next = entry->next;
17179                 if (entry->member == out) {
17180                         continue;
17181                 }
17182                 i = find_rhs_use(state, entry->member, ins);
17183                 if (i < 0) {
17184                         continue;
17185                 }
17186                 rinfo = arch_reg_rhs(state, entry->member, i);
17187                 if ((info.reg == REG_UNNEEDED) && (rinfo.reg == REG_UNNEEDED)) {
17188                         continue;
17189                 }
17190                 replace_rhs_use(state, ins, out, entry->member);
17191         }
17192         transform_to_arch_instruction(state, out);
17193         return out;
17194 }
17195
17196 static struct triple *typed_pre_copy(
17197         struct compile_state *state, struct type *type, struct triple *ins, int index)
17198 {
17199         /* Carefully insert enough operations so that I can
17200          * enter any operation with a GPR32.
17201          */
17202         struct triple *in;
17203         struct triple **expr;
17204         unsigned classes;
17205         struct reg_info info;
17206         int op;
17207         if (ins->op == OP_PHI) {
17208                 internal_error(state, ins, "pre_copy on a phi?");
17209         }
17210         classes = arch_type_to_regcm(state, type);
17211         info = arch_reg_rhs(state, ins, index);
17212         expr = &RHS(ins, index);
17213         if ((info.regcm & classes) == 0) {
17214                 FILE *fp = state->errout;
17215                 fprintf(fp, "src_type: ");
17216                 name_of(fp, ins->type);
17217                 fprintf(fp, "\ndst_type: ");
17218                 name_of(fp, type);
17219                 fprintf(fp, "\n");
17220                 internal_error(state, ins, "pre_copy with no register classes");
17221         }
17222         op = OP_COPY;
17223         if (!equiv_types(type, (*expr)->type)) {
17224                 op = OP_CONVERT;
17225         }
17226         in = pre_triple(state, ins, op, type, *expr, 0);
17227         unuse_triple(*expr, ins);
17228         *expr = in;
17229         use_triple(RHS(in, 0), in);
17230         use_triple(in, ins);
17231         transform_to_arch_instruction(state, in);
17232         return in;
17233         
17234 }
17235 static struct triple *pre_copy(
17236         struct compile_state *state, struct triple *ins, int index)
17237 {
17238         return typed_pre_copy(state, RHS(ins, index)->type, ins, index);
17239 }
17240
17241
17242 static void insert_copies_to_phi(struct compile_state *state)
17243 {
17244         /* To get out of ssa form we insert moves on the incoming
17245          * edges to blocks containting phi functions.
17246          */
17247         struct triple *first;
17248         struct triple *phi;
17249
17250         /* Walk all of the operations to find the phi functions */
17251         first = state->first;
17252         for(phi = first->next; phi != first ; phi = phi->next) {
17253                 struct block_set *set;
17254                 struct block *block;
17255                 struct triple **slot, *copy;
17256                 int edge;
17257                 if (phi->op != OP_PHI) {
17258                         continue;
17259                 }
17260                 phi->id |= TRIPLE_FLAG_POST_SPLIT;
17261                 block = phi->u.block;
17262                 slot  = &RHS(phi, 0);
17263                 /* Phi's that feed into mandatory live range joins
17264                  * cause nasty complications.  Insert a copy of
17265                  * the phi value so I never have to deal with
17266                  * that in the rest of the code.
17267                  */
17268                 copy = post_copy(state, phi);
17269                 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
17270                 /* Walk all of the incoming edges/blocks and insert moves.
17271                  */
17272                 for(edge = 0, set = block->use; set; set = set->next, edge++) {
17273                         struct block *eblock;
17274                         struct triple *move;
17275                         struct triple *val;
17276                         struct triple *ptr;
17277                         eblock = set->member;
17278                         val = slot[edge];
17279
17280                         if (val == phi) {
17281                                 continue;
17282                         }
17283
17284                         get_occurance(val->occurance);
17285                         move = build_triple(state, OP_COPY, val->type, val, 0,
17286                                 val->occurance);
17287                         move->u.block = eblock;
17288                         move->id |= TRIPLE_FLAG_PRE_SPLIT;
17289                         use_triple(val, move);
17290                         
17291                         slot[edge] = move;
17292                         unuse_triple(val, phi);
17293                         use_triple(move, phi);
17294
17295                         /* Walk up the dominator tree until I have found the appropriate block */
17296                         while(eblock && !tdominates(state, val, eblock->last)) {
17297                                 eblock = eblock->idom;
17298                         }
17299                         if (!eblock) {
17300                                 internal_error(state, phi, "Cannot find block dominated by %p",
17301                                         val);
17302                         }
17303
17304                         /* Walk through the block backwards to find
17305                          * an appropriate location for the OP_COPY.
17306                          */
17307                         for(ptr = eblock->last; ptr != eblock->first; ptr = ptr->prev) {
17308                                 struct triple **expr;
17309                                 if (ptr->op == OP_PIECE) {
17310                                         ptr = MISC(ptr, 0);
17311                                 }
17312                                 if ((ptr == phi) || (ptr == val)) {
17313                                         goto out;
17314                                 }
17315                                 expr = triple_lhs(state, ptr, 0);
17316                                 for(;expr; expr = triple_lhs(state, ptr, expr)) {
17317                                         if ((*expr) == val) {
17318                                                 goto out;
17319                                         }
17320                                 }
17321                                 expr = triple_rhs(state, ptr, 0);
17322                                 for(;expr; expr = triple_rhs(state, ptr, expr)) {
17323                                         if ((*expr) == phi) {
17324                                                 goto out;
17325                                         }
17326                                 }
17327                         }
17328                 out:
17329                         if (triple_is_branch(state, ptr)) {
17330                                 internal_error(state, ptr,
17331                                         "Could not insert write to phi");
17332                         }
17333                         insert_triple(state, after_lhs(state, ptr), move);
17334                         if (eblock->last == after_lhs(state, ptr)->prev) {
17335                                 eblock->last = move;
17336                         }
17337                         transform_to_arch_instruction(state, move);
17338                 }
17339         }
17340         print_blocks(state, __func__, state->dbgout);
17341 }
17342
17343 struct triple_reg_set;
17344 struct reg_block;
17345
17346
17347 static int do_triple_set(struct triple_reg_set **head, 
17348         struct triple *member, struct triple *new_member)
17349 {
17350         struct triple_reg_set **ptr, *new;
17351         if (!member)
17352                 return 0;
17353         ptr = head;
17354         while(*ptr) {
17355                 if ((*ptr)->member == member) {
17356                         return 0;
17357                 }
17358                 ptr = &(*ptr)->next;
17359         }
17360         new = xcmalloc(sizeof(*new), "triple_set");
17361         new->member = member;
17362         new->new    = new_member;
17363         new->next   = *head;
17364         *head       = new;
17365         return 1;
17366 }
17367
17368 static void do_triple_unset(struct triple_reg_set **head, struct triple *member)
17369 {
17370         struct triple_reg_set *entry, **ptr;
17371         ptr = head;
17372         while(*ptr) {
17373                 entry = *ptr;
17374                 if (entry->member == member) {
17375                         *ptr = entry->next;
17376                         xfree(entry);
17377                         return;
17378                 }
17379                 else {
17380                         ptr = &entry->next;
17381                 }
17382         }
17383 }
17384
17385 static int in_triple(struct reg_block *rb, struct triple *in)
17386 {
17387         return do_triple_set(&rb->in, in, 0);
17388 }
17389
17390 #if DEBUG_ROMCC_WARNING
17391 static void unin_triple(struct reg_block *rb, struct triple *unin)
17392 {
17393         do_triple_unset(&rb->in, unin);
17394 }
17395 #endif
17396
17397 static int out_triple(struct reg_block *rb, struct triple *out)
17398 {
17399         return do_triple_set(&rb->out, out, 0);
17400 }
17401 #if DEBUG_ROMCC_WARNING
17402 static void unout_triple(struct reg_block *rb, struct triple *unout)
17403 {
17404         do_triple_unset(&rb->out, unout);
17405 }
17406 #endif
17407
17408 static int initialize_regblock(struct reg_block *blocks,
17409         struct block *block, int vertex)
17410 {
17411         struct block_set *user;
17412         if (!block || (blocks[block->vertex].block == block)) {
17413                 return vertex;
17414         }
17415         vertex += 1;
17416         /* Renumber the blocks in a convinient fashion */
17417         block->vertex = vertex;
17418         blocks[vertex].block    = block;
17419         blocks[vertex].vertex   = vertex;
17420         for(user = block->use; user; user = user->next) {
17421                 vertex = initialize_regblock(blocks, user->member, vertex);
17422         }
17423         return vertex;
17424 }
17425
17426 static struct triple *part_to_piece(struct compile_state *state, struct triple *ins)
17427 {
17428 /* Part to piece is a best attempt and it cannot be correct all by
17429  * itself.  If various values are read as different sizes in different
17430  * parts of the code this function cannot work.  Or rather it cannot
17431  * work in conjunction with compute_variable_liftimes.  As the
17432  * analysis will get confused.
17433  */
17434         struct triple *base;
17435         unsigned reg;
17436         if (!is_lvalue(state, ins)) {
17437                 return ins;
17438         }
17439         base = 0;
17440         reg = 0;
17441         while(ins && triple_is_part(state, ins) && (ins->op != OP_PIECE)) {
17442                 base = MISC(ins, 0);
17443                 switch(ins->op) {
17444                 case OP_INDEX:
17445                         reg += index_reg_offset(state, base->type, ins->u.cval)/REG_SIZEOF_REG;
17446                         break;
17447                 case OP_DOT:
17448                         reg += field_reg_offset(state, base->type, ins->u.field)/REG_SIZEOF_REG;
17449                         break;
17450                 default:
17451                         internal_error(state, ins, "unhandled part");
17452                         break;
17453                 }
17454                 ins = base;
17455         }
17456         if (base) {
17457                 if (reg > base->lhs) {
17458                         internal_error(state, base, "part out of range?");
17459                 }
17460                 ins = LHS(base, reg);
17461         }
17462         return ins;
17463 }
17464
17465 static int this_def(struct compile_state *state, 
17466         struct triple *ins, struct triple *other)
17467 {
17468         if (ins == other) {
17469                 return 1;
17470         }
17471         if (ins->op == OP_WRITE) {
17472                 ins = part_to_piece(state, MISC(ins, 0));
17473         }
17474         return ins == other;
17475 }
17476
17477 static int phi_in(struct compile_state *state, struct reg_block *blocks,
17478         struct reg_block *rb, struct block *suc)
17479 {
17480         /* Read the conditional input set of a successor block
17481          * (i.e. the input to the phi nodes) and place it in the
17482          * current blocks output set.
17483          */
17484         struct block_set *set;
17485         struct triple *ptr;
17486         int edge;
17487         int done, change;
17488         change = 0;
17489         /* Find the edge I am coming in on */
17490         for(edge = 0, set = suc->use; set; set = set->next, edge++) {
17491                 if (set->member == rb->block) {
17492                         break;
17493                 }
17494         }
17495         if (!set) {
17496                 internal_error(state, 0, "Not coming on a control edge?");
17497         }
17498         for(done = 0, ptr = suc->first; !done; ptr = ptr->next) {
17499                 struct triple **slot, *expr, *ptr2;
17500                 int out_change, done2;
17501                 done = (ptr == suc->last);
17502                 if (ptr->op != OP_PHI) {
17503                         continue;
17504                 }
17505                 slot = &RHS(ptr, 0);
17506                 expr = slot[edge];
17507                 out_change = out_triple(rb, expr);
17508                 if (!out_change) {
17509                         continue;
17510                 }
17511                 /* If we don't define the variable also plast it
17512                  * in the current blocks input set.
17513                  */
17514                 ptr2 = rb->block->first;
17515                 for(done2 = 0; !done2; ptr2 = ptr2->next) {
17516                         if (this_def(state, ptr2, expr)) {
17517                                 break;
17518                         }
17519                         done2 = (ptr2 == rb->block->last);
17520                 }
17521                 if (!done2) {
17522                         continue;
17523                 }
17524                 change |= in_triple(rb, expr);
17525         }
17526         return change;
17527 }
17528
17529 static int reg_in(struct compile_state *state, struct reg_block *blocks,
17530         struct reg_block *rb, struct block *suc)
17531 {
17532         struct triple_reg_set *in_set;
17533         int change;
17534         change = 0;
17535         /* Read the input set of a successor block
17536          * and place it in the current blocks output set.
17537          */
17538         in_set = blocks[suc->vertex].in;
17539         for(; in_set; in_set = in_set->next) {
17540                 int out_change, done;
17541                 struct triple *first, *last, *ptr;
17542                 out_change = out_triple(rb, in_set->member);
17543                 if (!out_change) {
17544                         continue;
17545                 }
17546                 /* If we don't define the variable also place it
17547                  * in the current blocks input set.
17548                  */
17549                 first = rb->block->first;
17550                 last = rb->block->last;
17551                 done = 0;
17552                 for(ptr = first; !done; ptr = ptr->next) {
17553                         if (this_def(state, ptr, in_set->member)) {
17554                                 break;
17555                         }
17556                         done = (ptr == last);
17557                 }
17558                 if (!done) {
17559                         continue;
17560                 }
17561                 change |= in_triple(rb, in_set->member);
17562         }
17563         change |= phi_in(state, blocks, rb, suc);
17564         return change;
17565 }
17566
17567 static int use_in(struct compile_state *state, struct reg_block *rb)
17568 {
17569         /* Find the variables we use but don't define and add
17570          * it to the current blocks input set.
17571          */
17572 #if DEBUG_ROMCC_WARNINGS
17573 #warning "FIXME is this O(N^2) algorithm bad?"
17574 #endif
17575         struct block *block;
17576         struct triple *ptr;
17577         int done;
17578         int change;
17579         block = rb->block;
17580         change = 0;
17581         for(done = 0, ptr = block->last; !done; ptr = ptr->prev) {
17582                 struct triple **expr;
17583                 done = (ptr == block->first);
17584                 /* The variable a phi function uses depends on the
17585                  * control flow, and is handled in phi_in, not
17586                  * here.
17587                  */
17588                 if (ptr->op == OP_PHI) {
17589                         continue;
17590                 }
17591                 expr = triple_rhs(state, ptr, 0);
17592                 for(;expr; expr = triple_rhs(state, ptr, expr)) {
17593                         struct triple *rhs, *test;
17594                         int tdone;
17595                         rhs = part_to_piece(state, *expr);
17596                         if (!rhs) {
17597                                 continue;
17598                         }
17599
17600                         /* See if rhs is defined in this block.
17601                          * A write counts as a definition.
17602                          */
17603                         for(tdone = 0, test = ptr; !tdone; test = test->prev) {
17604                                 tdone = (test == block->first);
17605                                 if (this_def(state, test, rhs)) {
17606                                         rhs = 0;
17607                                         break;
17608                                 }
17609                         }
17610                         /* If I still have a valid rhs add it to in */
17611                         change |= in_triple(rb, rhs);
17612                 }
17613         }
17614         return change;
17615 }
17616
17617 static struct reg_block *compute_variable_lifetimes(
17618         struct compile_state *state, struct basic_blocks *bb)
17619 {
17620         struct reg_block *blocks;
17621         int change;
17622         blocks = xcmalloc(
17623                 sizeof(*blocks)*(bb->last_vertex + 1), "reg_block");
17624         initialize_regblock(blocks, bb->last_block, 0);
17625         do {
17626                 int i;
17627                 change = 0;
17628                 for(i = 1; i <= bb->last_vertex; i++) {
17629                         struct block_set *edge;
17630                         struct reg_block *rb;
17631                         rb = &blocks[i];
17632                         /* Add the all successor's input set to in */
17633                         for(edge = rb->block->edges; edge; edge = edge->next) {
17634                                 change |= reg_in(state, blocks, rb, edge->member);
17635                         }
17636                         /* Add use to in... */
17637                         change |= use_in(state, rb);
17638                 }
17639         } while(change);
17640         return blocks;
17641 }
17642
17643 static void free_variable_lifetimes(struct compile_state *state, 
17644         struct basic_blocks *bb, struct reg_block *blocks)
17645 {
17646         int i;
17647         /* free in_set && out_set on each block */
17648         for(i = 1; i <= bb->last_vertex; i++) {
17649                 struct triple_reg_set *entry, *next;
17650                 struct reg_block *rb;
17651                 rb = &blocks[i];
17652                 for(entry = rb->in; entry ; entry = next) {
17653                         next = entry->next;
17654                         do_triple_unset(&rb->in, entry->member);
17655                 }
17656                 for(entry = rb->out; entry; entry = next) {
17657                         next = entry->next;
17658                         do_triple_unset(&rb->out, entry->member);
17659                 }
17660         }
17661         xfree(blocks);
17662
17663 }
17664
17665 typedef void (*wvl_cb_t)(
17666         struct compile_state *state, 
17667         struct reg_block *blocks, struct triple_reg_set *live, 
17668         struct reg_block *rb, struct triple *ins, void *arg);
17669
17670 static void walk_variable_lifetimes(struct compile_state *state,
17671         struct basic_blocks *bb, struct reg_block *blocks, 
17672         wvl_cb_t cb, void *arg)
17673 {
17674         int i;
17675         
17676         for(i = 1; i <= state->bb.last_vertex; i++) {
17677                 struct triple_reg_set *live;
17678                 struct triple_reg_set *entry, *next;
17679                 struct triple *ptr, *prev;
17680                 struct reg_block *rb;
17681                 struct block *block;
17682                 int done;
17683
17684                 /* Get the blocks */
17685                 rb = &blocks[i];
17686                 block = rb->block;
17687
17688                 /* Copy out into live */
17689                 live = 0;
17690                 for(entry = rb->out; entry; entry = next) {
17691                         next = entry->next;
17692                         do_triple_set(&live, entry->member, entry->new);
17693                 }
17694                 /* Walk through the basic block calculating live */
17695                 for(done = 0, ptr = block->last; !done; ptr = prev) {
17696                         struct triple **expr;
17697
17698                         prev = ptr->prev;
17699                         done = (ptr == block->first);
17700
17701                         /* Ensure the current definition is in live */
17702                         if (triple_is_def(state, ptr)) {
17703                                 do_triple_set(&live, ptr, 0);
17704                         }
17705
17706                         /* Inform the callback function of what is
17707                          * going on.
17708                          */
17709                          cb(state, blocks, live, rb, ptr, arg);
17710                         
17711                         /* Remove the current definition from live */
17712                         do_triple_unset(&live, ptr);
17713
17714                         /* Add the current uses to live.
17715                          *
17716                          * It is safe to skip phi functions because they do
17717                          * not have any block local uses, and the block
17718                          * output sets already properly account for what
17719                          * control flow depedent uses phi functions do have.
17720                          */
17721                         if (ptr->op == OP_PHI) {
17722                                 continue;
17723                         }
17724                         expr = triple_rhs(state, ptr, 0);
17725                         for(;expr; expr = triple_rhs(state, ptr, expr)) {
17726                                 /* If the triple is not a definition skip it. */
17727                                 if (!*expr || !triple_is_def(state, *expr)) {
17728                                         continue;
17729                                 }
17730                                 do_triple_set(&live, *expr, 0);
17731                         }
17732                 }
17733                 /* Free live */
17734                 for(entry = live; entry; entry = next) {
17735                         next = entry->next;
17736                         do_triple_unset(&live, entry->member);
17737                 }
17738         }
17739 }
17740
17741 struct print_live_variable_info {
17742         struct reg_block *rb;
17743         FILE *fp;
17744 };
17745 #if DEBUG_EXPLICIT_CLOSURES
17746 static void print_live_variables_block(
17747         struct compile_state *state, struct block *block, void *arg)
17748
17749 {
17750         struct print_live_variable_info *info = arg;
17751         struct block_set *edge;
17752         FILE *fp = info->fp;
17753         struct reg_block *rb;
17754         struct triple *ptr;
17755         int phi_present;
17756         int done;
17757         rb = &info->rb[block->vertex];
17758
17759         fprintf(fp, "\nblock: %p (%d),",
17760                 block,  block->vertex);
17761         for(edge = block->edges; edge; edge = edge->next) {
17762                 fprintf(fp, " %p<-%p",
17763                         edge->member, 
17764                         edge->member && edge->member->use?edge->member->use->member : 0);
17765         }
17766         fprintf(fp, "\n");
17767         if (rb->in) {
17768                 struct triple_reg_set *in_set;
17769                 fprintf(fp, "        in:");
17770                 for(in_set = rb->in; in_set; in_set = in_set->next) {
17771                         fprintf(fp, " %-10p", in_set->member);
17772                 }
17773                 fprintf(fp, "\n");
17774         }
17775         phi_present = 0;
17776         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
17777                 done = (ptr == block->last);
17778                 if (ptr->op == OP_PHI) {
17779                         phi_present = 1;
17780                         break;
17781                 }
17782         }
17783         if (phi_present) {
17784                 int edge;
17785                 for(edge = 0; edge < block->users; edge++) {
17786                         fprintf(fp, "     in(%d):", edge);
17787                         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
17788                                 struct triple **slot;
17789                                 done = (ptr == block->last);
17790                                 if (ptr->op != OP_PHI) {
17791                                         continue;
17792                                 }
17793                                 slot = &RHS(ptr, 0);
17794                                 fprintf(fp, " %-10p", slot[edge]);
17795                         }
17796                         fprintf(fp, "\n");
17797                 }
17798         }
17799         if (block->first->op == OP_LABEL) {
17800                 fprintf(fp, "%p:\n", block->first);
17801         }
17802         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
17803                 done = (ptr == block->last);
17804                 display_triple(fp, ptr);
17805         }
17806         if (rb->out) {
17807                 struct triple_reg_set *out_set;
17808                 fprintf(fp, "       out:");
17809                 for(out_set = rb->out; out_set; out_set = out_set->next) {
17810                         fprintf(fp, " %-10p", out_set->member);
17811                 }
17812                 fprintf(fp, "\n");
17813         }
17814         fprintf(fp, "\n");
17815 }
17816
17817 static void print_live_variables(struct compile_state *state, 
17818         struct basic_blocks *bb, struct reg_block *rb, FILE *fp)
17819 {
17820         struct print_live_variable_info info;
17821         info.rb = rb;
17822         info.fp = fp;
17823         fprintf(fp, "\nlive variables by block\n");
17824         walk_blocks(state, bb, print_live_variables_block, &info);
17825
17826 }
17827 #endif
17828
17829 static int count_triples(struct compile_state *state)
17830 {
17831         struct triple *first, *ins;
17832         int triples = 0;
17833         first = state->first;
17834         ins = first;
17835         do {
17836                 triples++;
17837                 ins = ins->next;
17838         } while (ins != first);
17839         return triples;
17840 }
17841
17842
17843 struct dead_triple {
17844         struct triple *triple;
17845         struct dead_triple *work_next;
17846         struct block *block;
17847         int old_id;
17848         int flags;
17849 #define TRIPLE_FLAG_ALIVE 1
17850 #define TRIPLE_FLAG_FREE  1
17851 };
17852
17853 static void print_dead_triples(struct compile_state *state, 
17854         struct dead_triple *dtriple)
17855 {
17856         struct triple *first, *ins;
17857         struct dead_triple *dt;
17858         FILE *fp;
17859         if (!(state->compiler->debug & DEBUG_TRIPLES)) {
17860                 return;
17861         }
17862         fp = state->dbgout;
17863         fprintf(fp, "--------------- dtriples ---------------\n");
17864         first = state->first;
17865         ins = first;
17866         do {
17867                 dt = &dtriple[ins->id];
17868                 if ((ins->op == OP_LABEL) && (ins->use)) {
17869                         fprintf(fp, "\n%p:\n", ins);
17870                 }
17871                 fprintf(fp, "%c", 
17872                         (dt->flags & TRIPLE_FLAG_ALIVE)?' ': '-');
17873                 display_triple(fp, ins);
17874                 if (triple_is_branch(state, ins)) {
17875                         fprintf(fp, "\n");
17876                 }
17877                 ins = ins->next;
17878         } while(ins != first);
17879         fprintf(fp, "\n");
17880 }
17881
17882
17883 static void awaken(
17884         struct compile_state *state,
17885         struct dead_triple *dtriple, struct triple **expr,
17886         struct dead_triple ***work_list_tail)
17887 {
17888         struct triple *triple;
17889         struct dead_triple *dt;
17890         if (!expr) {
17891                 return;
17892         }
17893         triple = *expr;
17894         if (!triple) {
17895                 return;
17896         }
17897         if (triple->id <= 0)  {
17898                 internal_error(state, triple, "bad triple id: %d",
17899                         triple->id);
17900         }
17901         if (triple->op == OP_NOOP) {
17902                 internal_error(state, triple, "awakening noop?");
17903                 return;
17904         }
17905         dt = &dtriple[triple->id];
17906         if (!(dt->flags & TRIPLE_FLAG_ALIVE)) {
17907                 dt->flags |= TRIPLE_FLAG_ALIVE;
17908                 if (!dt->work_next) {
17909                         **work_list_tail = dt;
17910                         *work_list_tail = &dt->work_next;
17911                 }
17912         }
17913 }
17914
17915 static void eliminate_inefectual_code(struct compile_state *state)
17916 {
17917         struct block *block;
17918         struct dead_triple *dtriple, *work_list, **work_list_tail, *dt;
17919         int triples, i;
17920         struct triple *first, *final, *ins;
17921
17922         if (!(state->compiler->flags & COMPILER_ELIMINATE_INEFECTUAL_CODE)) {
17923                 return;
17924         }
17925
17926         /* Setup the work list */
17927         work_list = 0;
17928         work_list_tail = &work_list;
17929
17930         first = state->first;
17931         final = state->first->prev;
17932
17933         /* Count how many triples I have */
17934         triples = count_triples(state);
17935
17936         /* Now put then in an array and mark all of the triples dead */
17937         dtriple = xcmalloc(sizeof(*dtriple) * (triples + 1), "dtriples");
17938         
17939         ins = first;
17940         i = 1;
17941         block = 0;
17942         do {
17943                 dtriple[i].triple = ins;
17944                 dtriple[i].block  = block_of_triple(state, ins);
17945                 dtriple[i].flags  = 0;
17946                 dtriple[i].old_id = ins->id;
17947                 ins->id = i;
17948                 /* See if it is an operation we always keep */
17949                 if (!triple_is_pure(state, ins, dtriple[i].old_id)) {
17950                         awaken(state, dtriple, &ins, &work_list_tail);
17951                 }
17952                 i++;
17953                 ins = ins->next;
17954         } while(ins != first);
17955         while(work_list) {
17956                 struct block *block;
17957                 struct dead_triple *dt;
17958                 struct block_set *user;
17959                 struct triple **expr;
17960                 dt = work_list;
17961                 work_list = dt->work_next;
17962                 if (!work_list) {
17963                         work_list_tail = &work_list;
17964                 }
17965                 /* Make certain the block the current instruction is in lives */
17966                 block = block_of_triple(state, dt->triple);
17967                 awaken(state, dtriple, &block->first, &work_list_tail);
17968                 if (triple_is_branch(state, block->last)) {
17969                         awaken(state, dtriple, &block->last, &work_list_tail);
17970                 } else {
17971                         awaken(state, dtriple, &block->last->next, &work_list_tail);
17972                 }
17973
17974                 /* Wake up the data depencencies of this triple */
17975                 expr = 0;
17976                 do {
17977                         expr = triple_rhs(state, dt->triple, expr);
17978                         awaken(state, dtriple, expr, &work_list_tail);
17979                 } while(expr);
17980                 do {
17981                         expr = triple_lhs(state, dt->triple, expr);
17982                         awaken(state, dtriple, expr, &work_list_tail);
17983                 } while(expr);
17984                 do {
17985                         expr = triple_misc(state, dt->triple, expr);
17986                         awaken(state, dtriple, expr, &work_list_tail);
17987                 } while(expr);
17988                 /* Wake up the forward control dependencies */
17989                 do {
17990                         expr = triple_targ(state, dt->triple, expr);
17991                         awaken(state, dtriple, expr, &work_list_tail);
17992                 } while(expr);
17993                 /* Wake up the reverse control dependencies of this triple */
17994                 for(user = dt->block->ipdomfrontier; user; user = user->next) {
17995                         struct triple *last;
17996                         last = user->member->last;
17997                         while((last->op == OP_NOOP) && (last != user->member->first)) {
17998 #if DEBUG_ROMCC_WARNINGS
17999 #warning "Should we bring the awakening noops back?"
18000 #endif
18001                                 // internal_warning(state, last, "awakening noop?");
18002                                 last = last->prev;
18003                         }
18004                         awaken(state, dtriple, &last, &work_list_tail);
18005                 }
18006         }
18007         print_dead_triples(state, dtriple);
18008         for(dt = &dtriple[1]; dt <= &dtriple[triples]; dt++) {
18009                 if ((dt->triple->op == OP_NOOP) && 
18010                         (dt->flags & TRIPLE_FLAG_ALIVE)) {
18011                         internal_error(state, dt->triple, "noop effective?");
18012                 }
18013                 dt->triple->id = dt->old_id;    /* Restore the color */
18014                 if (!(dt->flags & TRIPLE_FLAG_ALIVE)) {
18015                         release_triple(state, dt->triple);
18016                 }
18017         }
18018         xfree(dtriple);
18019
18020         rebuild_ssa_form(state);
18021
18022         print_blocks(state, __func__, state->dbgout);
18023 }
18024
18025
18026 static void insert_mandatory_copies(struct compile_state *state)
18027 {
18028         struct triple *ins, *first;
18029
18030         /* The object is with a minimum of inserted copies,
18031          * to resolve in fundamental register conflicts between
18032          * register value producers and consumers.
18033          * Theoretically we may be greater than minimal when we
18034          * are inserting copies before instructions but that
18035          * case should be rare.
18036          */
18037         first = state->first;
18038         ins = first;
18039         do {
18040                 struct triple_set *entry, *next;
18041                 struct triple *tmp;
18042                 struct reg_info info;
18043                 unsigned reg, regcm;
18044                 int do_post_copy, do_pre_copy;
18045                 tmp = 0;
18046                 if (!triple_is_def(state, ins)) {
18047                         goto next;
18048                 }
18049                 /* Find the architecture specific color information */
18050                 info = find_lhs_pre_color(state, ins, 0);
18051                 if (info.reg >= MAX_REGISTERS) {
18052                         info.reg = REG_UNSET;
18053                 }
18054
18055                 reg = REG_UNSET;
18056                 regcm = arch_type_to_regcm(state, ins->type);
18057                 do_post_copy = do_pre_copy = 0;
18058
18059                 /* Walk through the uses of ins and check for conflicts */
18060                 for(entry = ins->use; entry; entry = next) {
18061                         struct reg_info rinfo;
18062                         int i;
18063                         next = entry->next;
18064                         i = find_rhs_use(state, entry->member, ins);
18065                         if (i < 0) {
18066                                 continue;
18067                         }
18068                         
18069                         /* Find the users color requirements */
18070                         rinfo = arch_reg_rhs(state, entry->member, i);
18071                         if (rinfo.reg >= MAX_REGISTERS) {
18072                                 rinfo.reg = REG_UNSET;
18073                         }
18074                         
18075                         /* See if I need a pre_copy */
18076                         if (rinfo.reg != REG_UNSET) {
18077                                 if ((reg != REG_UNSET) && (reg != rinfo.reg)) {
18078                                         do_pre_copy = 1;
18079                                 }
18080                                 reg = rinfo.reg;
18081                         }
18082                         regcm &= rinfo.regcm;
18083                         regcm = arch_regcm_normalize(state, regcm);
18084                         if (regcm == 0) {
18085                                 do_pre_copy = 1;
18086                         }
18087                         /* Always use pre_copies for constants.
18088                          * They do not take up any registers until a
18089                          * copy places them in one.
18090                          */
18091                         if ((info.reg == REG_UNNEEDED) && 
18092                                 (rinfo.reg != REG_UNNEEDED)) {
18093                                 do_pre_copy = 1;
18094                         }
18095                 }
18096                 do_post_copy =
18097                         !do_pre_copy &&
18098                         (((info.reg != REG_UNSET) && 
18099                                 (reg != REG_UNSET) &&
18100                                 (info.reg != reg)) ||
18101                         ((info.regcm & regcm) == 0));
18102
18103                 reg = info.reg;
18104                 regcm = info.regcm;
18105                 /* Walk through the uses of ins and do a pre_copy or see if a post_copy is warranted */
18106                 for(entry = ins->use; entry; entry = next) {
18107                         struct reg_info rinfo;
18108                         int i;
18109                         next = entry->next;
18110                         i = find_rhs_use(state, entry->member, ins);
18111                         if (i < 0) {
18112                                 continue;
18113                         }
18114                         
18115                         /* Find the users color requirements */
18116                         rinfo = arch_reg_rhs(state, entry->member, i);
18117                         if (rinfo.reg >= MAX_REGISTERS) {
18118                                 rinfo.reg = REG_UNSET;
18119                         }
18120
18121                         /* Now see if it is time to do the pre_copy */
18122                         if (rinfo.reg != REG_UNSET) {
18123                                 if (((reg != REG_UNSET) && (reg != rinfo.reg)) ||
18124                                         ((regcm & rinfo.regcm) == 0) ||
18125                                         /* Don't let a mandatory coalesce sneak
18126                                          * into a operation that is marked to prevent
18127                                          * coalescing.
18128                                          */
18129                                         ((reg != REG_UNNEEDED) &&
18130                                         ((ins->id & TRIPLE_FLAG_POST_SPLIT) ||
18131                                         (entry->member->id & TRIPLE_FLAG_PRE_SPLIT)))
18132                                         ) {
18133                                         if (do_pre_copy) {
18134                                                 struct triple *user;
18135                                                 user = entry->member;
18136                                                 if (RHS(user, i) != ins) {
18137                                                         internal_error(state, user, "bad rhs");
18138                                                 }
18139                                                 tmp = pre_copy(state, user, i);
18140                                                 tmp->id |= TRIPLE_FLAG_PRE_SPLIT;
18141                                                 continue;
18142                                         } else {
18143                                                 do_post_copy = 1;
18144                                         }
18145                                 }
18146                                 reg = rinfo.reg;
18147                         }
18148                         if ((regcm & rinfo.regcm) == 0) {
18149                                 if (do_pre_copy) {
18150                                         struct triple *user;
18151                                         user = entry->member;
18152                                         if (RHS(user, i) != ins) {
18153                                                 internal_error(state, user, "bad rhs");
18154                                         }
18155                                         tmp = pre_copy(state, user, i);
18156                                         tmp->id |= TRIPLE_FLAG_PRE_SPLIT;
18157                                         continue;
18158                                 } else {
18159                                         do_post_copy = 1;
18160                                 }
18161                         }
18162                         regcm &= rinfo.regcm;
18163                         
18164                 }
18165                 if (do_post_copy) {
18166                         struct reg_info pre, post;
18167                         tmp = post_copy(state, ins);
18168                         tmp->id |= TRIPLE_FLAG_PRE_SPLIT;
18169                         pre = arch_reg_lhs(state, ins, 0);
18170                         post = arch_reg_lhs(state, tmp, 0);
18171                         if ((pre.reg == post.reg) && (pre.regcm == post.regcm)) {
18172                                 internal_error(state, tmp, "useless copy");
18173                         }
18174                 }
18175         next:
18176                 ins = ins->next;
18177         } while(ins != first);
18178
18179         print_blocks(state, __func__, state->dbgout);
18180 }
18181
18182
18183 struct live_range_edge;
18184 struct live_range_def;
18185 struct live_range {
18186         struct live_range_edge *edges;
18187         struct live_range_def *defs;
18188 /* Note. The list pointed to by defs is kept in order.
18189  * That is baring splits in the flow control
18190  * defs dominates defs->next wich dominates defs->next->next
18191  * etc.
18192  */
18193         unsigned color;
18194         unsigned classes;
18195         unsigned degree;
18196         unsigned length;
18197         struct live_range *group_next, **group_prev;
18198 };
18199
18200 struct live_range_edge {
18201         struct live_range_edge *next;
18202         struct live_range *node;
18203 };
18204
18205 struct live_range_def {
18206         struct live_range_def *next;
18207         struct live_range_def *prev;
18208         struct live_range *lr;
18209         struct triple *def;
18210         unsigned orig_id;
18211 };
18212
18213 #define LRE_HASH_SIZE 2048
18214 struct lre_hash {
18215         struct lre_hash *next;
18216         struct live_range *left;
18217         struct live_range *right;
18218 };
18219
18220
18221 struct reg_state {
18222         struct lre_hash *hash[LRE_HASH_SIZE];
18223         struct reg_block *blocks;
18224         struct live_range_def *lrd;
18225         struct live_range *lr;
18226         struct live_range *low, **low_tail;
18227         struct live_range *high, **high_tail;
18228         unsigned defs;
18229         unsigned ranges;
18230         int passes, max_passes;
18231 };
18232
18233
18234 struct print_interference_block_info {
18235         struct reg_state *rstate;
18236         FILE *fp;
18237         int need_edges;
18238 };
18239 static void print_interference_block(
18240         struct compile_state *state, struct block *block, void *arg)
18241
18242 {
18243         struct print_interference_block_info *info = arg;
18244         struct reg_state *rstate = info->rstate;
18245         struct block_set *edge;
18246         FILE *fp = info->fp;
18247         struct reg_block *rb;
18248         struct triple *ptr;
18249         int phi_present;
18250         int done;
18251         rb = &rstate->blocks[block->vertex];
18252
18253         fprintf(fp, "\nblock: %p (%d),",
18254                 block,  block->vertex);
18255         for(edge = block->edges; edge; edge = edge->next) {
18256                 fprintf(fp, " %p<-%p",
18257                         edge->member, 
18258                         edge->member && edge->member->use?edge->member->use->member : 0);
18259         }
18260         fprintf(fp, "\n");
18261         if (rb->in) {
18262                 struct triple_reg_set *in_set;
18263                 fprintf(fp, "        in:");
18264                 for(in_set = rb->in; in_set; in_set = in_set->next) {
18265                         fprintf(fp, " %-10p", in_set->member);
18266                 }
18267                 fprintf(fp, "\n");
18268         }
18269         phi_present = 0;
18270         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
18271                 done = (ptr == block->last);
18272                 if (ptr->op == OP_PHI) {
18273                         phi_present = 1;
18274                         break;
18275                 }
18276         }
18277         if (phi_present) {
18278                 int edge;
18279                 for(edge = 0; edge < block->users; edge++) {
18280                         fprintf(fp, "     in(%d):", edge);
18281                         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
18282                                 struct triple **slot;
18283                                 done = (ptr == block->last);
18284                                 if (ptr->op != OP_PHI) {
18285                                         continue;
18286                                 }
18287                                 slot = &RHS(ptr, 0);
18288                                 fprintf(fp, " %-10p", slot[edge]);
18289                         }
18290                         fprintf(fp, "\n");
18291                 }
18292         }
18293         if (block->first->op == OP_LABEL) {
18294                 fprintf(fp, "%p:\n", block->first);
18295         }
18296         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
18297                 struct live_range *lr;
18298                 unsigned id;
18299                 int op;
18300                 op = ptr->op;
18301                 done = (ptr == block->last);
18302                 lr = rstate->lrd[ptr->id].lr;
18303                 
18304                 id = ptr->id;
18305                 ptr->id = rstate->lrd[id].orig_id;
18306                 SET_REG(ptr->id, lr->color);
18307                 display_triple(fp, ptr);
18308                 ptr->id = id;
18309
18310                 if (triple_is_def(state, ptr) && (lr->defs == 0)) {
18311                         internal_error(state, ptr, "lr has no defs!");
18312                 }
18313                 if (info->need_edges) {
18314                         if (lr->defs) {
18315                                 struct live_range_def *lrd;
18316                                 fprintf(fp, "       range:");
18317                                 lrd = lr->defs;
18318                                 do {
18319                                         fprintf(fp, " %-10p", lrd->def);
18320                                         lrd = lrd->next;
18321                                 } while(lrd != lr->defs);
18322                                 fprintf(fp, "\n");
18323                         }
18324                         if (lr->edges > 0) {
18325                                 struct live_range_edge *edge;
18326                                 fprintf(fp, "       edges:");
18327                                 for(edge = lr->edges; edge; edge = edge->next) {
18328                                         struct live_range_def *lrd;
18329                                         lrd = edge->node->defs;
18330                                         do {
18331                                                 fprintf(fp, " %-10p", lrd->def);
18332                                                 lrd = lrd->next;
18333                                         } while(lrd != edge->node->defs);
18334                                         fprintf(fp, "|");
18335                                 }
18336                                 fprintf(fp, "\n");
18337                         }
18338                 }
18339                 /* Do a bunch of sanity checks */
18340                 valid_ins(state, ptr);
18341                 if ((ptr->id < 0) || (ptr->id > rstate->defs)) {
18342                         internal_error(state, ptr, "Invalid triple id: %d",
18343                                 ptr->id);
18344                 }
18345         }
18346         if (rb->out) {
18347                 struct triple_reg_set *out_set;
18348                 fprintf(fp, "       out:");
18349                 for(out_set = rb->out; out_set; out_set = out_set->next) {
18350                         fprintf(fp, " %-10p", out_set->member);
18351                 }
18352                 fprintf(fp, "\n");
18353         }
18354         fprintf(fp, "\n");
18355 }
18356
18357 static void print_interference_blocks(
18358         struct compile_state *state, struct reg_state *rstate, FILE *fp, int need_edges)
18359 {
18360         struct print_interference_block_info info;
18361         info.rstate = rstate;
18362         info.fp = fp;
18363         info.need_edges = need_edges;
18364         fprintf(fp, "\nlive variables by block\n");
18365         walk_blocks(state, &state->bb, print_interference_block, &info);
18366
18367 }
18368
18369 static unsigned regc_max_size(struct compile_state *state, int classes)
18370 {
18371         unsigned max_size;
18372         int i;
18373         max_size = 0;
18374         for(i = 0; i < MAX_REGC; i++) {
18375                 if (classes & (1 << i)) {
18376                         unsigned size;
18377                         size = arch_regc_size(state, i);
18378                         if (size > max_size) {
18379                                 max_size = size;
18380                         }
18381                 }
18382         }
18383         return max_size;
18384 }
18385
18386 static int reg_is_reg(struct compile_state *state, int reg1, int reg2)
18387 {
18388         unsigned equivs[MAX_REG_EQUIVS];
18389         int i;
18390         if ((reg1 < 0) || (reg1 >= MAX_REGISTERS)) {
18391                 internal_error(state, 0, "invalid register");
18392         }
18393         if ((reg2 < 0) || (reg2 >= MAX_REGISTERS)) {
18394                 internal_error(state, 0, "invalid register");
18395         }
18396         arch_reg_equivs(state, equivs, reg1);
18397         for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
18398                 if (equivs[i] == reg2) {
18399                         return 1;
18400                 }
18401         }
18402         return 0;
18403 }
18404
18405 static void reg_fill_used(struct compile_state *state, char *used, int reg)
18406 {
18407         unsigned equivs[MAX_REG_EQUIVS];
18408         int i;
18409         if (reg == REG_UNNEEDED) {
18410                 return;
18411         }
18412         arch_reg_equivs(state, equivs, reg);
18413         for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
18414                 used[equivs[i]] = 1;
18415         }
18416         return;
18417 }
18418
18419 static void reg_inc_used(struct compile_state *state, char *used, int reg)
18420 {
18421         unsigned equivs[MAX_REG_EQUIVS];
18422         int i;
18423         if (reg == REG_UNNEEDED) {
18424                 return;
18425         }
18426         arch_reg_equivs(state, equivs, reg);
18427         for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
18428                 used[equivs[i]] += 1;
18429         }
18430         return;
18431 }
18432
18433 static unsigned int hash_live_edge(
18434         struct live_range *left, struct live_range *right)
18435 {
18436         unsigned int hash, val;
18437         unsigned long lval, rval;
18438         lval = ((unsigned long)left)/sizeof(struct live_range);
18439         rval = ((unsigned long)right)/sizeof(struct live_range);
18440         hash = 0;
18441         while(lval) {
18442                 val = lval & 0xff;
18443                 lval >>= 8;
18444                 hash = (hash *263) + val;
18445         }
18446         while(rval) {
18447                 val = rval & 0xff;
18448                 rval >>= 8;
18449                 hash = (hash *263) + val;
18450         }
18451         hash = hash & (LRE_HASH_SIZE - 1);
18452         return hash;
18453 }
18454
18455 static struct lre_hash **lre_probe(struct reg_state *rstate,
18456         struct live_range *left, struct live_range *right)
18457 {
18458         struct lre_hash **ptr;
18459         unsigned int index;
18460         /* Ensure left <= right */
18461         if (left > right) {
18462                 struct live_range *tmp;
18463                 tmp = left;
18464                 left = right;
18465                 right = tmp;
18466         }
18467         index = hash_live_edge(left, right);
18468         
18469         ptr = &rstate->hash[index];
18470         while(*ptr) {
18471                 if (((*ptr)->left == left) && ((*ptr)->right == right)) {
18472                         break;
18473                 }
18474                 ptr = &(*ptr)->next;
18475         }
18476         return ptr;
18477 }
18478
18479 static int interfere(struct reg_state *rstate,
18480         struct live_range *left, struct live_range *right)
18481 {
18482         struct lre_hash **ptr;
18483         ptr = lre_probe(rstate, left, right);
18484         return ptr && *ptr;
18485 }
18486
18487 static void add_live_edge(struct reg_state *rstate, 
18488         struct live_range *left, struct live_range *right)
18489 {
18490         /* FIXME the memory allocation overhead is noticeable here... */
18491         struct lre_hash **ptr, *new_hash;
18492         struct live_range_edge *edge;
18493
18494         if (left == right) {
18495                 return;
18496         }
18497         if ((left == &rstate->lr[0]) || (right == &rstate->lr[0])) {
18498                 return;
18499         }
18500         /* Ensure left <= right */
18501         if (left > right) {
18502                 struct live_range *tmp;
18503                 tmp = left;
18504                 left = right;
18505                 right = tmp;
18506         }
18507         ptr = lre_probe(rstate, left, right);
18508         if (*ptr) {
18509                 return;
18510         }
18511 #if 0
18512         fprintf(state->errout, "new_live_edge(%p, %p)\n",
18513                 left, right);
18514 #endif
18515         new_hash = xmalloc(sizeof(*new_hash), "lre_hash");
18516         new_hash->next  = *ptr;
18517         new_hash->left  = left;
18518         new_hash->right = right;
18519         *ptr = new_hash;
18520
18521         edge = xmalloc(sizeof(*edge), "live_range_edge");
18522         edge->next   = left->edges;
18523         edge->node   = right;
18524         left->edges  = edge;
18525         left->degree += 1;
18526         
18527         edge = xmalloc(sizeof(*edge), "live_range_edge");
18528         edge->next    = right->edges;
18529         edge->node    = left;
18530         right->edges  = edge;
18531         right->degree += 1;
18532 }
18533
18534 static void remove_live_edge(struct reg_state *rstate,
18535         struct live_range *left, struct live_range *right)
18536 {
18537         struct live_range_edge *edge, **ptr;
18538         struct lre_hash **hptr, *entry;
18539         hptr = lre_probe(rstate, left, right);
18540         if (!hptr || !*hptr) {
18541                 return;
18542         }
18543         entry = *hptr;
18544         *hptr = entry->next;
18545         xfree(entry);
18546
18547         for(ptr = &left->edges; *ptr; ptr = &(*ptr)->next) {
18548                 edge = *ptr;
18549                 if (edge->node == right) {
18550                         *ptr = edge->next;
18551                         memset(edge, 0, sizeof(*edge));
18552                         xfree(edge);
18553                         right->degree--;
18554                         break;
18555                 }
18556         }
18557         for(ptr = &right->edges; *ptr; ptr = &(*ptr)->next) {
18558                 edge = *ptr;
18559                 if (edge->node == left) {
18560                         *ptr = edge->next;
18561                         memset(edge, 0, sizeof(*edge));
18562                         xfree(edge);
18563                         left->degree--;
18564                         break;
18565                 }
18566         }
18567 }
18568
18569 static void remove_live_edges(struct reg_state *rstate, struct live_range *range)
18570 {
18571         struct live_range_edge *edge, *next;
18572         for(edge = range->edges; edge; edge = next) {
18573                 next = edge->next;
18574                 remove_live_edge(rstate, range, edge->node);
18575         }
18576 }
18577
18578 static void transfer_live_edges(struct reg_state *rstate, 
18579         struct live_range *dest, struct live_range *src)
18580 {
18581         struct live_range_edge *edge, *next;
18582         for(edge = src->edges; edge; edge = next) {
18583                 struct live_range *other;
18584                 next = edge->next;
18585                 other = edge->node;
18586                 remove_live_edge(rstate, src, other);
18587                 add_live_edge(rstate, dest, other);
18588         }
18589 }
18590
18591
18592 /* Interference graph...
18593  * 
18594  * new(n) --- Return a graph with n nodes but no edges.
18595  * add(g,x,y) --- Return a graph including g with an between x and y
18596  * interfere(g, x, y) --- Return true if there exists an edge between the nodes
18597  *                x and y in the graph g
18598  * degree(g, x) --- Return the degree of the node x in the graph g
18599  * neighbors(g, x, f) --- Apply function f to each neighbor of node x in the graph g
18600  *
18601  * Implement with a hash table && a set of adjcency vectors.
18602  * The hash table supports constant time implementations of add and interfere.
18603  * The adjacency vectors support an efficient implementation of neighbors.
18604  */
18605
18606 /* 
18607  *     +---------------------------------------------------+
18608  *     |         +--------------+                          |
18609  *     v         v              |                          |
18610  * renumber -> build graph -> colalesce -> spill_costs -> simplify -> select 
18611  *
18612  * -- In simplify implment optimistic coloring... (No backtracking)
18613  * -- Implement Rematerialization it is the only form of spilling we can perform
18614  *    Essentially this means dropping a constant from a register because
18615  *    we can regenerate it later.
18616  *
18617  * --- Very conservative colalescing (don't colalesce just mark the opportunities)
18618  *     coalesce at phi points...
18619  * --- Bias coloring if at all possible do the coalesing a compile time.
18620  *
18621  *
18622  */
18623
18624 #if DEBUG_ROMCC_WARNING
18625 static void different_colored(
18626         struct compile_state *state, struct reg_state *rstate, 
18627         struct triple *parent, struct triple *ins)
18628 {
18629         struct live_range *lr;
18630         struct triple **expr;
18631         lr = rstate->lrd[ins->id].lr;
18632         expr = triple_rhs(state, ins, 0);
18633         for(;expr; expr = triple_rhs(state, ins, expr)) {
18634                 struct live_range *lr2;
18635                 if (!*expr || (*expr == parent) || (*expr == ins)) {
18636                         continue;
18637                 }
18638                 lr2 = rstate->lrd[(*expr)->id].lr;
18639                 if (lr->color == lr2->color) {
18640                         internal_error(state, ins, "live range too big");
18641                 }
18642         }
18643 }
18644 #endif
18645
18646 static struct live_range *coalesce_ranges(
18647         struct compile_state *state, struct reg_state *rstate,
18648         struct live_range *lr1, struct live_range *lr2)
18649 {
18650         struct live_range_def *head, *mid1, *mid2, *end, *lrd;
18651         unsigned color;
18652         unsigned classes;
18653         if (lr1 == lr2) {
18654                 return lr1;
18655         }
18656         if (!lr1->defs || !lr2->defs) {
18657                 internal_error(state, 0,
18658                         "cannot coalese dead live ranges");
18659         }
18660         if ((lr1->color == REG_UNNEEDED) ||
18661                 (lr2->color == REG_UNNEEDED)) {
18662                 internal_error(state, 0, 
18663                         "cannot coalesce live ranges without a possible color");
18664         }
18665         if ((lr1->color != lr2->color) &&
18666                 (lr1->color != REG_UNSET) &&
18667                 (lr2->color != REG_UNSET)) {
18668                 internal_error(state, lr1->defs->def, 
18669                         "cannot coalesce live ranges of different colors");
18670         }
18671         color = lr1->color;
18672         if (color == REG_UNSET) {
18673                 color = lr2->color;
18674         }
18675         classes = lr1->classes & lr2->classes;
18676         if (!classes) {
18677                 internal_error(state, lr1->defs->def,
18678                         "cannot coalesce live ranges with dissimilar register classes");
18679         }
18680         if (state->compiler->debug & DEBUG_COALESCING) {
18681                 FILE *fp = state->errout;
18682                 fprintf(fp, "coalescing:");
18683                 lrd = lr1->defs;
18684                 do {
18685                         fprintf(fp, " %p", lrd->def);
18686                         lrd = lrd->next;
18687                 } while(lrd != lr1->defs);
18688                 fprintf(fp, " |");
18689                 lrd = lr2->defs;
18690                 do {
18691                         fprintf(fp, " %p", lrd->def);
18692                         lrd = lrd->next;
18693                 } while(lrd != lr2->defs);
18694                 fprintf(fp, "\n");
18695         }
18696         /* If there is a clear dominate live range put it in lr1,
18697          * For purposes of this test phi functions are
18698          * considered dominated by the definitions that feed into
18699          * them. 
18700          */
18701         if ((lr1->defs->prev->def->op == OP_PHI) ||
18702                 ((lr2->defs->prev->def->op != OP_PHI) &&
18703                 tdominates(state, lr2->defs->def, lr1->defs->def))) {
18704                 struct live_range *tmp;
18705                 tmp = lr1;
18706                 lr1 = lr2;
18707                 lr2 = tmp;
18708         }
18709 #if 0
18710         if (lr1->defs->orig_id  & TRIPLE_FLAG_POST_SPLIT) {
18711                 fprintf(state->errout, "lr1 post\n");
18712         }
18713         if (lr1->defs->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
18714                 fprintf(state->errout, "lr1 pre\n");
18715         }
18716         if (lr2->defs->orig_id  & TRIPLE_FLAG_POST_SPLIT) {
18717                 fprintf(state->errout, "lr2 post\n");
18718         }
18719         if (lr2->defs->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
18720                 fprintf(state->errout, "lr2 pre\n");
18721         }
18722 #endif
18723 #if 0
18724         fprintf(state->errout, "coalesce color1(%p): %3d color2(%p) %3d\n",
18725                 lr1->defs->def,
18726                 lr1->color,
18727                 lr2->defs->def,
18728                 lr2->color);
18729 #endif
18730         
18731         /* Append lr2 onto lr1 */
18732 #if DEBUG_ROMCC_WARNINGS
18733 #warning "FIXME should this be a merge instead of a splice?"
18734 #endif
18735         /* This FIXME item applies to the correctness of live_range_end 
18736          * and to the necessity of making multiple passes of coalesce_live_ranges.
18737          * A failure to find some coalesce opportunities in coaleace_live_ranges
18738          * does not impact the correct of the compiler just the efficiency with
18739          * which registers are allocated.
18740          */
18741         head = lr1->defs;
18742         mid1 = lr1->defs->prev;
18743         mid2 = lr2->defs;
18744         end  = lr2->defs->prev;
18745         
18746         head->prev = end;
18747         end->next  = head;
18748
18749         mid1->next = mid2;
18750         mid2->prev = mid1;
18751
18752         /* Fixup the live range in the added live range defs */
18753         lrd = head;
18754         do {
18755                 lrd->lr = lr1;
18756                 lrd = lrd->next;
18757         } while(lrd != head);
18758
18759         /* Mark lr2 as free. */
18760         lr2->defs = 0;
18761         lr2->color = REG_UNNEEDED;
18762         lr2->classes = 0;
18763
18764         if (!lr1->defs) {
18765                 internal_error(state, 0, "lr1->defs == 0 ?");
18766         }
18767
18768         lr1->color   = color;
18769         lr1->classes = classes;
18770
18771         /* Keep the graph in sync by transfering the edges from lr2 to lr1 */
18772         transfer_live_edges(rstate, lr1, lr2);
18773
18774         return lr1;
18775 }
18776
18777 static struct live_range_def *live_range_head(
18778         struct compile_state *state, struct live_range *lr,
18779         struct live_range_def *last)
18780 {
18781         struct live_range_def *result;
18782         result = 0;
18783         if (last == 0) {
18784                 result = lr->defs;
18785         }
18786         else if (!tdominates(state, lr->defs->def, last->next->def)) {
18787                 result = last->next;
18788         }
18789         return result;
18790 }
18791
18792 static struct live_range_def *live_range_end(
18793         struct compile_state *state, struct live_range *lr,
18794         struct live_range_def *last)
18795 {
18796         struct live_range_def *result;
18797         result = 0;
18798         if (last == 0) {
18799                 result = lr->defs->prev;
18800         }
18801         else if (!tdominates(state, last->prev->def, lr->defs->prev->def)) {
18802                 result = last->prev;
18803         }
18804         return result;
18805 }
18806
18807
18808 static void initialize_live_ranges(
18809         struct compile_state *state, struct reg_state *rstate)
18810 {
18811         struct triple *ins, *first;
18812         size_t count, size;
18813         int i, j;
18814
18815         first = state->first;
18816         /* First count how many instructions I have.
18817          */
18818         count = count_triples(state);
18819         /* Potentially I need one live range definitions for each
18820          * instruction.
18821          */
18822         rstate->defs = count;
18823         /* Potentially I need one live range for each instruction
18824          * plus an extra for the dummy live range.
18825          */
18826         rstate->ranges = count + 1;
18827         size = sizeof(rstate->lrd[0]) * rstate->defs;
18828         rstate->lrd = xcmalloc(size, "live_range_def");
18829         size = sizeof(rstate->lr[0]) * rstate->ranges;
18830         rstate->lr  = xcmalloc(size, "live_range");
18831
18832         /* Setup the dummy live range */
18833         rstate->lr[0].classes = 0;
18834         rstate->lr[0].color = REG_UNSET;
18835         rstate->lr[0].defs = 0;
18836         i = j = 0;
18837         ins = first;
18838         do {
18839                 /* If the triple is a variable give it a live range */
18840                 if (triple_is_def(state, ins)) {
18841                         struct reg_info info;
18842                         /* Find the architecture specific color information */
18843                         info = find_def_color(state, ins);
18844                         i++;
18845                         rstate->lr[i].defs    = &rstate->lrd[j];
18846                         rstate->lr[i].color   = info.reg;
18847                         rstate->lr[i].classes = info.regcm;
18848                         rstate->lr[i].degree  = 0;
18849                         rstate->lrd[j].lr = &rstate->lr[i];
18850                 } 
18851                 /* Otherwise give the triple the dummy live range. */
18852                 else {
18853                         rstate->lrd[j].lr = &rstate->lr[0];
18854                 }
18855
18856                 /* Initalize the live_range_def */
18857                 rstate->lrd[j].next    = &rstate->lrd[j];
18858                 rstate->lrd[j].prev    = &rstate->lrd[j];
18859                 rstate->lrd[j].def     = ins;
18860                 rstate->lrd[j].orig_id = ins->id;
18861                 ins->id = j;
18862
18863                 j++;
18864                 ins = ins->next;
18865         } while(ins != first);
18866         rstate->ranges = i;
18867
18868         /* Make a second pass to handle achitecture specific register
18869          * constraints.
18870          */
18871         ins = first;
18872         do {
18873                 int zlhs, zrhs, i, j;
18874                 if (ins->id > rstate->defs) {
18875                         internal_error(state, ins, "bad id");
18876                 }
18877                 
18878                 /* Walk through the template of ins and coalesce live ranges */
18879                 zlhs = ins->lhs;
18880                 if ((zlhs == 0) && triple_is_def(state, ins)) {
18881                         zlhs = 1;
18882                 }
18883                 zrhs = ins->rhs;
18884
18885                 if (state->compiler->debug & DEBUG_COALESCING2) {
18886                         fprintf(state->errout, "mandatory coalesce: %p %d %d\n",
18887                                 ins, zlhs, zrhs);
18888                 }
18889
18890                 for(i = 0; i < zlhs; i++) {
18891                         struct reg_info linfo;
18892                         struct live_range_def *lhs;
18893                         linfo = arch_reg_lhs(state, ins, i);
18894                         if (linfo.reg < MAX_REGISTERS) {
18895                                 continue;
18896                         }
18897                         if (triple_is_def(state, ins)) {
18898                                 lhs = &rstate->lrd[ins->id];
18899                         } else {
18900                                 lhs = &rstate->lrd[LHS(ins, i)->id];
18901                         }
18902
18903                         if (state->compiler->debug & DEBUG_COALESCING2) {
18904                                 fprintf(state->errout, "coalesce lhs(%d): %p %d\n",
18905                                         i, lhs, linfo.reg);
18906                         }
18907
18908                         for(j = 0; j < zrhs; j++) {
18909                                 struct reg_info rinfo;
18910                                 struct live_range_def *rhs;
18911                                 rinfo = arch_reg_rhs(state, ins, j);
18912                                 if (rinfo.reg < MAX_REGISTERS) {
18913                                         continue;
18914                                 }
18915                                 rhs = &rstate->lrd[RHS(ins, j)->id];
18916
18917                                 if (state->compiler->debug & DEBUG_COALESCING2) {
18918                                         fprintf(state->errout, "coalesce rhs(%d): %p %d\n",
18919                                                 j, rhs, rinfo.reg);
18920                                 }
18921
18922                                 if (rinfo.reg == linfo.reg) {
18923                                         coalesce_ranges(state, rstate, 
18924                                                 lhs->lr, rhs->lr);
18925                                 }
18926                         }
18927                 }
18928                 ins = ins->next;
18929         } while(ins != first);
18930 }
18931
18932 static void graph_ins(
18933         struct compile_state *state, 
18934         struct reg_block *blocks, struct triple_reg_set *live, 
18935         struct reg_block *rb, struct triple *ins, void *arg)
18936 {
18937         struct reg_state *rstate = arg;
18938         struct live_range *def;
18939         struct triple_reg_set *entry;
18940
18941         /* If the triple is not a definition
18942          * we do not have a definition to add to
18943          * the interference graph.
18944          */
18945         if (!triple_is_def(state, ins)) {
18946                 return;
18947         }
18948         def = rstate->lrd[ins->id].lr;
18949         
18950         /* Create an edge between ins and everything that is
18951          * alive, unless the live_range cannot share
18952          * a physical register with ins.
18953          */
18954         for(entry = live; entry; entry = entry->next) {
18955                 struct live_range *lr;
18956                 if ((entry->member->id < 0) || (entry->member->id > rstate->defs)) {
18957                         internal_error(state, 0, "bad entry?");
18958                 }
18959                 lr = rstate->lrd[entry->member->id].lr;
18960                 if (def == lr) {
18961                         continue;
18962                 }
18963                 if (!arch_regcm_intersect(def->classes, lr->classes)) {
18964                         continue;
18965                 }
18966                 add_live_edge(rstate, def, lr);
18967         }
18968         return;
18969 }
18970
18971 #if DEBUG_CONSISTENCY > 1
18972 static struct live_range *get_verify_live_range(
18973         struct compile_state *state, struct reg_state *rstate, struct triple *ins)
18974 {
18975         struct live_range *lr;
18976         struct live_range_def *lrd;
18977         int ins_found;
18978         if ((ins->id < 0) || (ins->id > rstate->defs)) {
18979                 internal_error(state, ins, "bad ins?");
18980         }
18981         lr = rstate->lrd[ins->id].lr;
18982         ins_found = 0;
18983         lrd = lr->defs;
18984         do {
18985                 if (lrd->def == ins) {
18986                         ins_found = 1;
18987                 }
18988                 lrd = lrd->next;
18989         } while(lrd != lr->defs);
18990         if (!ins_found) {
18991                 internal_error(state, ins, "ins not in live range");
18992         }
18993         return lr;
18994 }
18995
18996 static void verify_graph_ins(
18997         struct compile_state *state, 
18998         struct reg_block *blocks, struct triple_reg_set *live, 
18999         struct reg_block *rb, struct triple *ins, void *arg)
19000 {
19001         struct reg_state *rstate = arg;
19002         struct triple_reg_set *entry1, *entry2;
19003
19004
19005         /* Compare live against edges and make certain the code is working */
19006         for(entry1 = live; entry1; entry1 = entry1->next) {
19007                 struct live_range *lr1;
19008                 lr1 = get_verify_live_range(state, rstate, entry1->member);
19009                 for(entry2 = live; entry2; entry2 = entry2->next) {
19010                         struct live_range *lr2;
19011                         struct live_range_edge *edge2;
19012                         int lr1_found;
19013                         int lr2_degree;
19014                         if (entry2 == entry1) {
19015                                 continue;
19016                         }
19017                         lr2 = get_verify_live_range(state, rstate, entry2->member);
19018                         if (lr1 == lr2) {
19019                                 internal_error(state, entry2->member, 
19020                                         "live range with 2 values simultaneously alive");
19021                         }
19022                         if (!arch_regcm_intersect(lr1->classes, lr2->classes)) {
19023                                 continue;
19024                         }
19025                         if (!interfere(rstate, lr1, lr2)) {
19026                                 internal_error(state, entry2->member, 
19027                                         "edges don't interfere?");
19028                         }
19029                                 
19030                         lr1_found = 0;
19031                         lr2_degree = 0;
19032                         for(edge2 = lr2->edges; edge2; edge2 = edge2->next) {
19033                                 lr2_degree++;
19034                                 if (edge2->node == lr1) {
19035                                         lr1_found = 1;
19036                                 }
19037                         }
19038                         if (lr2_degree != lr2->degree) {
19039                                 internal_error(state, entry2->member,
19040                                         "computed degree: %d does not match reported degree: %d\n",
19041                                         lr2_degree, lr2->degree);
19042                         }
19043                         if (!lr1_found) {
19044                                 internal_error(state, entry2->member, "missing edge");
19045                         }
19046                 }
19047         }
19048         return;
19049 }
19050 #endif
19051
19052 static void print_interference_ins(
19053         struct compile_state *state, 
19054         struct reg_block *blocks, struct triple_reg_set *live, 
19055         struct reg_block *rb, struct triple *ins, void *arg)
19056 {
19057         struct reg_state *rstate = arg;
19058         struct live_range *lr;
19059         unsigned id;
19060         FILE *fp = state->dbgout;
19061
19062         lr = rstate->lrd[ins->id].lr;
19063         id = ins->id;
19064         ins->id = rstate->lrd[id].orig_id;
19065         SET_REG(ins->id, lr->color);
19066         display_triple(state->dbgout, ins);
19067         ins->id = id;
19068
19069         if (lr->defs) {
19070                 struct live_range_def *lrd;
19071                 fprintf(fp, "       range:");
19072                 lrd = lr->defs;
19073                 do {
19074                         fprintf(fp, " %-10p", lrd->def);
19075                         lrd = lrd->next;
19076                 } while(lrd != lr->defs);
19077                 fprintf(fp, "\n");
19078         }
19079         if (live) {
19080                 struct triple_reg_set *entry;
19081                 fprintf(fp, "        live:");
19082                 for(entry = live; entry; entry = entry->next) {
19083                         fprintf(fp, " %-10p", entry->member);
19084                 }
19085                 fprintf(fp, "\n");
19086         }
19087         if (lr->edges) {
19088                 struct live_range_edge *entry;
19089                 fprintf(fp, "       edges:");
19090                 for(entry = lr->edges; entry; entry = entry->next) {
19091                         struct live_range_def *lrd;
19092                         lrd = entry->node->defs;
19093                         do {
19094                                 fprintf(fp, " %-10p", lrd->def);
19095                                 lrd = lrd->next;
19096                         } while(lrd != entry->node->defs);
19097                         fprintf(fp, "|");
19098                 }
19099                 fprintf(fp, "\n");
19100         }
19101         if (triple_is_branch(state, ins)) {
19102                 fprintf(fp, "\n");
19103         }
19104         return;
19105 }
19106
19107 static int coalesce_live_ranges(
19108         struct compile_state *state, struct reg_state *rstate)
19109 {
19110         /* At the point where a value is moved from one
19111          * register to another that value requires two
19112          * registers, thus increasing register pressure.
19113          * Live range coaleescing reduces the register
19114          * pressure by keeping a value in one register
19115          * longer.
19116          *
19117          * In the case of a phi function all paths leading
19118          * into it must be allocated to the same register
19119          * otherwise the phi function may not be removed.
19120          *
19121          * Forcing a value to stay in a single register
19122          * for an extended period of time does have
19123          * limitations when applied to non homogenous
19124          * register pool.  
19125          *
19126          * The two cases I have identified are:
19127          * 1) Two forced register assignments may
19128          *    collide.
19129          * 2) Registers may go unused because they
19130          *    are only good for storing the value
19131          *    and not manipulating it.
19132          *
19133          * Because of this I need to split live ranges,
19134          * even outside of the context of coalesced live
19135          * ranges.  The need to split live ranges does
19136          * impose some constraints on live range coalescing.
19137          *
19138          * - Live ranges may not be coalesced across phi
19139          *   functions.  This creates a 2 headed live
19140          *   range that cannot be sanely split.
19141          *
19142          * - phi functions (coalesced in initialize_live_ranges) 
19143          *   are handled as pre split live ranges so we will
19144          *   never attempt to split them.
19145          */
19146         int coalesced;
19147         int i;
19148
19149         coalesced = 0;
19150         for(i = 0; i <= rstate->ranges; i++) {
19151                 struct live_range *lr1;
19152                 struct live_range_def *lrd1;
19153                 lr1 = &rstate->lr[i];
19154                 if (!lr1->defs) {
19155                         continue;
19156                 }
19157                 lrd1 = live_range_end(state, lr1, 0);
19158                 for(; lrd1; lrd1 = live_range_end(state, lr1, lrd1)) {
19159                         struct triple_set *set;
19160                         if (lrd1->def->op != OP_COPY) {
19161                                 continue;
19162                         }
19163                         /* Skip copies that are the result of a live range split. */
19164                         if (lrd1->orig_id & TRIPLE_FLAG_POST_SPLIT) {
19165                                 continue;
19166                         }
19167                         for(set = lrd1->def->use; set; set = set->next) {
19168                                 struct live_range_def *lrd2;
19169                                 struct live_range *lr2, *res;
19170
19171                                 lrd2 = &rstate->lrd[set->member->id];
19172
19173                                 /* Don't coalesce with instructions
19174                                  * that are the result of a live range
19175                                  * split.
19176                                  */
19177                                 if (lrd2->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
19178                                         continue;
19179                                 }
19180                                 lr2 = rstate->lrd[set->member->id].lr;
19181                                 if (lr1 == lr2) {
19182                                         continue;
19183                                 }
19184                                 if ((lr1->color != lr2->color) &&
19185                                         (lr1->color != REG_UNSET) &&
19186                                         (lr2->color != REG_UNSET)) {
19187                                         continue;
19188                                 }
19189                                 if ((lr1->classes & lr2->classes) == 0) {
19190                                         continue;
19191                                 }
19192                                 
19193                                 if (interfere(rstate, lr1, lr2)) {
19194                                         continue;
19195                                 }
19196
19197                                 res = coalesce_ranges(state, rstate, lr1, lr2);
19198                                 coalesced += 1;
19199                                 if (res != lr1) {
19200                                         goto next;
19201                                 }
19202                         }
19203                 }
19204         next:
19205                 ;
19206         }
19207         return coalesced;
19208 }
19209
19210
19211 static void fix_coalesce_conflicts(struct compile_state *state,
19212         struct reg_block *blocks, struct triple_reg_set *live,
19213         struct reg_block *rb, struct triple *ins, void *arg)
19214 {
19215         int *conflicts = arg;
19216         int zlhs, zrhs, i, j;
19217
19218         /* See if we have a mandatory coalesce operation between
19219          * a lhs and a rhs value.  If so and the rhs value is also
19220          * alive then this triple needs to be pre copied.  Otherwise
19221          * we would have two definitions in the same live range simultaneously
19222          * alive.
19223          */
19224         zlhs = ins->lhs;
19225         if ((zlhs == 0) && triple_is_def(state, ins)) {
19226                 zlhs = 1;
19227         }
19228         zrhs = ins->rhs;
19229         for(i = 0; i < zlhs; i++) {
19230                 struct reg_info linfo;
19231                 linfo = arch_reg_lhs(state, ins, i);
19232                 if (linfo.reg < MAX_REGISTERS) {
19233                         continue;
19234                 }
19235                 for(j = 0; j < zrhs; j++) {
19236                         struct reg_info rinfo;
19237                         struct triple *rhs;
19238                         struct triple_reg_set *set;
19239                         int found;
19240                         found = 0;
19241                         rinfo = arch_reg_rhs(state, ins, j);
19242                         if (rinfo.reg != linfo.reg) {
19243                                 continue;
19244                         }
19245                         rhs = RHS(ins, j);
19246                         for(set = live; set && !found; set = set->next) {
19247                                 if (set->member == rhs) {
19248                                         found = 1;
19249                                 }
19250                         }
19251                         if (found) {
19252                                 struct triple *copy;
19253                                 copy = pre_copy(state, ins, j);
19254                                 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
19255                                 (*conflicts)++;
19256                         }
19257                 }
19258         }
19259         return;
19260 }
19261
19262 static int correct_coalesce_conflicts(
19263         struct compile_state *state, struct reg_block *blocks)
19264 {
19265         int conflicts;
19266         conflicts = 0;
19267         walk_variable_lifetimes(state, &state->bb, blocks, 
19268                 fix_coalesce_conflicts, &conflicts);
19269         return conflicts;
19270 }
19271
19272 static void replace_set_use(struct compile_state *state,
19273         struct triple_reg_set *head, struct triple *orig, struct triple *new)
19274 {
19275         struct triple_reg_set *set;
19276         for(set = head; set; set = set->next) {
19277                 if (set->member == orig) {
19278                         set->member = new;
19279                 }
19280         }
19281 }
19282
19283 static void replace_block_use(struct compile_state *state, 
19284         struct reg_block *blocks, struct triple *orig, struct triple *new)
19285 {
19286         int i;
19287 #if DEBUG_ROMCC_WARNINGS
19288 #warning "WISHLIST visit just those blocks that need it *"
19289 #endif
19290         for(i = 1; i <= state->bb.last_vertex; i++) {
19291                 struct reg_block *rb;
19292                 rb = &blocks[i];
19293                 replace_set_use(state, rb->in, orig, new);
19294                 replace_set_use(state, rb->out, orig, new);
19295         }
19296 }
19297
19298 static void color_instructions(struct compile_state *state)
19299 {
19300         struct triple *ins, *first;
19301         first = state->first;
19302         ins = first;
19303         do {
19304                 if (triple_is_def(state, ins)) {
19305                         struct reg_info info;
19306                         info = find_lhs_color(state, ins, 0);
19307                         if (info.reg >= MAX_REGISTERS) {
19308                                 info.reg = REG_UNSET;
19309                         }
19310                         SET_INFO(ins->id, info);
19311                 }
19312                 ins = ins->next;
19313         } while(ins != first);
19314 }
19315
19316 static struct reg_info read_lhs_color(
19317         struct compile_state *state, struct triple *ins, int index)
19318 {
19319         struct reg_info info;
19320         if ((index == 0) && triple_is_def(state, ins)) {
19321                 info.reg   = ID_REG(ins->id);
19322                 info.regcm = ID_REGCM(ins->id);
19323         }
19324         else if (index < ins->lhs) {
19325                 info = read_lhs_color(state, LHS(ins, index), 0);
19326         }
19327         else {
19328                 internal_error(state, ins, "Bad lhs %d", index);
19329                 info.reg = REG_UNSET;
19330                 info.regcm = 0;
19331         }
19332         return info;
19333 }
19334
19335 static struct triple *resolve_tangle(
19336         struct compile_state *state, struct triple *tangle)
19337 {
19338         struct reg_info info, uinfo;
19339         struct triple_set *set, *next;
19340         struct triple *copy;
19341
19342 #if DEBUG_ROMCC_WARNINGS
19343 #warning "WISHLIST recalculate all affected instructions colors"
19344 #endif
19345         info = find_lhs_color(state, tangle, 0);
19346         for(set = tangle->use; set; set = next) {
19347                 struct triple *user;
19348                 int i, zrhs;
19349                 next = set->next;
19350                 user = set->member;
19351                 zrhs = user->rhs;
19352                 for(i = 0; i < zrhs; i++) {
19353                         if (RHS(user, i) != tangle) {
19354                                 continue;
19355                         }
19356                         uinfo = find_rhs_post_color(state, user, i);
19357                         if (uinfo.reg == info.reg) {
19358                                 copy = pre_copy(state, user, i);
19359                                 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
19360                                 SET_INFO(copy->id, uinfo);
19361                         }
19362                 }
19363         }
19364         copy = 0;
19365         uinfo = find_lhs_pre_color(state, tangle, 0);
19366         if (uinfo.reg == info.reg) {
19367                 struct reg_info linfo;
19368                 copy = post_copy(state, tangle);
19369                 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
19370                 linfo = find_lhs_color(state, copy, 0);
19371                 SET_INFO(copy->id, linfo);
19372         }
19373         info = find_lhs_color(state, tangle, 0);
19374         SET_INFO(tangle->id, info);
19375         
19376         return copy;
19377 }
19378
19379
19380 static void fix_tangles(struct compile_state *state,
19381         struct reg_block *blocks, struct triple_reg_set *live,
19382         struct reg_block *rb, struct triple *ins, void *arg)
19383 {
19384         int *tangles = arg;
19385         struct triple *tangle;
19386         do {
19387                 char used[MAX_REGISTERS];
19388                 struct triple_reg_set *set;
19389                 tangle = 0;
19390
19391                 /* Find out which registers have multiple uses at this point */
19392                 memset(used, 0, sizeof(used));
19393                 for(set = live; set; set = set->next) {
19394                         struct reg_info info;
19395                         info = read_lhs_color(state, set->member, 0);
19396                         if (info.reg == REG_UNSET) {
19397                                 continue;
19398                         }
19399                         reg_inc_used(state, used, info.reg);
19400                 }
19401                 
19402                 /* Now find the least dominated definition of a register in
19403                  * conflict I have seen so far.
19404                  */
19405                 for(set = live; set; set = set->next) {
19406                         struct reg_info info;
19407                         info = read_lhs_color(state, set->member, 0);
19408                         if (used[info.reg] < 2) {
19409                                 continue;
19410                         }
19411                         /* Changing copies that feed into phi functions
19412                          * is incorrect.
19413                          */
19414                         if (set->member->use && 
19415                                 (set->member->use->member->op == OP_PHI)) {
19416                                 continue;
19417                         }
19418                         if (!tangle || tdominates(state, set->member, tangle)) {
19419                                 tangle = set->member;
19420                         }
19421                 }
19422                 /* If I have found a tangle resolve it */
19423                 if (tangle) {
19424                         struct triple *post_copy;
19425                         (*tangles)++;
19426                         post_copy = resolve_tangle(state, tangle);
19427                         if (post_copy) {
19428                                 replace_block_use(state, blocks, tangle, post_copy);
19429                         }
19430                         if (post_copy && (tangle != ins)) {
19431                                 replace_set_use(state, live, tangle, post_copy);
19432                         }
19433                 }
19434         } while(tangle);
19435         return;
19436 }
19437
19438 static int correct_tangles(
19439         struct compile_state *state, struct reg_block *blocks)
19440 {
19441         int tangles;
19442         tangles = 0;
19443         color_instructions(state);
19444         walk_variable_lifetimes(state, &state->bb, blocks, 
19445                 fix_tangles, &tangles);
19446         return tangles;
19447 }
19448
19449
19450 static void ids_from_rstate(struct compile_state *state, struct reg_state *rstate);
19451 static void cleanup_rstate(struct compile_state *state, struct reg_state *rstate);
19452
19453 struct triple *find_constrained_def(
19454         struct compile_state *state, struct live_range *range, struct triple *constrained)
19455 {
19456         struct live_range_def *lrd, *lrd_next;
19457         lrd_next = range->defs;
19458         do {
19459                 struct reg_info info;
19460                 unsigned regcm;
19461
19462                 lrd = lrd_next;
19463                 lrd_next = lrd->next;
19464
19465                 regcm = arch_type_to_regcm(state, lrd->def->type);
19466                 info = find_lhs_color(state, lrd->def, 0);
19467                 regcm      = arch_regcm_reg_normalize(state, regcm);
19468                 info.regcm = arch_regcm_reg_normalize(state, info.regcm);
19469                 /* If the 2 register class masks are equal then
19470                  * the current register class is not constrained.
19471                  */
19472                 if (regcm == info.regcm) {
19473                         continue;
19474                 }
19475                 
19476                 /* If there is just one use.
19477                  * That use cannot accept a larger register class.
19478                  * There are no intervening definitions except
19479                  * definitions that feed into that use.
19480                  * Then a triple is not constrained.
19481                  * FIXME handle this case!
19482                  */
19483 #if DEBUG_ROMCC_WARNINGS
19484 #warning "FIXME ignore cases that cannot be fixed (a definition followed by a use)"
19485 #endif
19486                 
19487
19488                 /* Of the constrained live ranges deal with the
19489                  * least dominated one first.
19490                  */
19491                 if (state->compiler->debug & DEBUG_RANGE_CONFLICTS) {
19492                         fprintf(state->errout, "canidate: %p %-8s regcm: %x %x\n",
19493                                 lrd->def, tops(lrd->def->op), regcm, info.regcm);
19494                 }
19495                 if (!constrained || 
19496                         tdominates(state, lrd->def, constrained))
19497                 {
19498                         constrained = lrd->def;
19499                 }
19500         } while(lrd_next != range->defs);
19501         return constrained;
19502 }
19503
19504 static int split_constrained_ranges(
19505         struct compile_state *state, struct reg_state *rstate, 
19506         struct live_range *range)
19507 {
19508         /* Walk through the edges in conflict and our current live
19509          * range, and find definitions that are more severly constrained
19510          * than they type of data they contain require.
19511          * 
19512          * Then pick one of those ranges and relax the constraints.
19513          */
19514         struct live_range_edge *edge;
19515         struct triple *constrained;
19516
19517         constrained = 0;
19518         for(edge = range->edges; edge; edge = edge->next) {
19519                 constrained = find_constrained_def(state, edge->node, constrained);
19520         }
19521 #if DEBUG_ROMCC_WARNINGS
19522 #warning "FIXME should I call find_constrained_def here only if no previous constrained def was found?"
19523 #endif
19524         if (!constrained) {
19525                 constrained = find_constrained_def(state, range, constrained);
19526         }
19527
19528         if (state->compiler->debug & DEBUG_RANGE_CONFLICTS) {
19529                 fprintf(state->errout, "constrained: ");
19530                 display_triple(state->errout, constrained);
19531         }
19532         if (constrained) {
19533                 ids_from_rstate(state, rstate);
19534                 cleanup_rstate(state, rstate);
19535                 resolve_tangle(state, constrained);
19536         }
19537         return !!constrained;
19538 }
19539         
19540 static int split_ranges(
19541         struct compile_state *state, struct reg_state *rstate,
19542         char *used, struct live_range *range)
19543 {
19544         int split;
19545         if (state->compiler->debug & DEBUG_RANGE_CONFLICTS) {
19546                 fprintf(state->errout, "split_ranges %d %s %p\n", 
19547                         rstate->passes, tops(range->defs->def->op), range->defs->def);
19548         }
19549         if ((range->color == REG_UNNEEDED) ||
19550                 (rstate->passes >= rstate->max_passes)) {
19551                 return 0;
19552         }
19553         split = split_constrained_ranges(state, rstate, range);
19554
19555         /* Ideally I would split the live range that will not be used
19556          * for the longest period of time in hopes that this will 
19557          * (a) allow me to spill a register or
19558          * (b) allow me to place a value in another register.
19559          *
19560          * So far I don't have a test case for this, the resolving
19561          * of mandatory constraints has solved all of my
19562          * know issues.  So I have choosen not to write any
19563          * code until I cat get a better feel for cases where
19564          * it would be useful to have.
19565          *
19566          */
19567 #if DEBUG_ROMCC_WARNINGS
19568 #warning "WISHLIST implement live range splitting..."
19569 #endif
19570         
19571         if (!split && (state->compiler->debug & DEBUG_RANGE_CONFLICTS2)) {
19572                 FILE *fp = state->errout;
19573                 print_interference_blocks(state, rstate, fp, 0);
19574                 print_dominators(state, fp, &state->bb);
19575         }
19576         return split;
19577 }
19578
19579 static FILE *cgdebug_fp(struct compile_state *state)
19580 {
19581         FILE *fp;
19582         fp = 0;
19583         if (!fp && (state->compiler->debug & DEBUG_COLOR_GRAPH2)) {
19584                 fp = state->errout;
19585         }
19586         if (!fp && (state->compiler->debug & DEBUG_COLOR_GRAPH)) {
19587                 fp = state->dbgout;
19588         }
19589         return fp;
19590 }
19591
19592 static void cgdebug_printf(struct compile_state *state, const char *fmt, ...)
19593 {
19594         FILE *fp;
19595         fp = cgdebug_fp(state);
19596         if (fp) {
19597                 va_list args;
19598                 va_start(args, fmt);
19599                 vfprintf(fp, fmt, args);
19600                 va_end(args);
19601         }
19602 }
19603
19604 static void cgdebug_flush(struct compile_state *state)
19605 {
19606         FILE *fp;
19607         fp = cgdebug_fp(state);
19608         if (fp) {
19609                 fflush(fp);
19610         }
19611 }
19612
19613 static void cgdebug_loc(struct compile_state *state, struct triple *ins)
19614 {
19615         FILE *fp;
19616         fp = cgdebug_fp(state);
19617         if (fp) {
19618                 loc(fp, state, ins);
19619         }
19620 }
19621
19622 static int select_free_color(struct compile_state *state, 
19623         struct reg_state *rstate, struct live_range *range)
19624 {
19625         struct triple_set *entry;
19626         struct live_range_def *lrd;
19627         struct live_range_def *phi;
19628         struct live_range_edge *edge;
19629         char used[MAX_REGISTERS];
19630         struct triple **expr;
19631
19632         /* Instead of doing just the trivial color select here I try
19633          * a few extra things because a good color selection will help reduce
19634          * copies.
19635          */
19636
19637         /* Find the registers currently in use */
19638         memset(used, 0, sizeof(used));
19639         for(edge = range->edges; edge; edge = edge->next) {
19640                 if (edge->node->color == REG_UNSET) {
19641                         continue;
19642                 }
19643                 reg_fill_used(state, used, edge->node->color);
19644         }
19645
19646         if (state->compiler->debug & DEBUG_COLOR_GRAPH2) {
19647                 int i;
19648                 i = 0;
19649                 for(edge = range->edges; edge; edge = edge->next) {
19650                         i++;
19651                 }
19652                 cgdebug_printf(state, "\n%s edges: %d", 
19653                         tops(range->defs->def->op), i);
19654                 cgdebug_loc(state, range->defs->def);
19655                 cgdebug_printf(state, "\n");
19656                 for(i = 0; i < MAX_REGISTERS; i++) {
19657                         if (used[i]) {
19658                                 cgdebug_printf(state, "used: %s\n",
19659                                         arch_reg_str(i));
19660                         }
19661                 }
19662         }       
19663
19664         /* If a color is already assigned see if it will work */
19665         if (range->color != REG_UNSET) {
19666                 struct live_range_def *lrd;
19667                 if (!used[range->color]) {
19668                         return 1;
19669                 }
19670                 for(edge = range->edges; edge; edge = edge->next) {
19671                         if (edge->node->color != range->color) {
19672                                 continue;
19673                         }
19674                         warning(state, edge->node->defs->def, "edge: ");
19675                         lrd = edge->node->defs;
19676                         do {
19677                                 warning(state, lrd->def, " %p %s",
19678                                         lrd->def, tops(lrd->def->op));
19679                                 lrd = lrd->next;
19680                         } while(lrd != edge->node->defs);
19681                 }
19682                 lrd = range->defs;
19683                 warning(state, range->defs->def, "def: ");
19684                 do {
19685                         warning(state, lrd->def, " %p %s",
19686                                 lrd->def, tops(lrd->def->op));
19687                         lrd = lrd->next;
19688                 } while(lrd != range->defs);
19689                 internal_error(state, range->defs->def,
19690                         "live range with already used color %s",
19691                         arch_reg_str(range->color));
19692         }
19693
19694         /* If I feed into an expression reuse it's color.
19695          * This should help remove copies in the case of 2 register instructions
19696          * and phi functions.
19697          */
19698         phi = 0;
19699         lrd = live_range_end(state, range, 0);
19700         for(; (range->color == REG_UNSET) && lrd ; lrd = live_range_end(state, range, lrd)) {
19701                 entry = lrd->def->use;
19702                 for(;(range->color == REG_UNSET) && entry; entry = entry->next) {
19703                         struct live_range_def *insd;
19704                         unsigned regcm;
19705                         insd = &rstate->lrd[entry->member->id];
19706                         if (insd->lr->defs == 0) {
19707                                 continue;
19708                         }
19709                         if (!phi && (insd->def->op == OP_PHI) &&
19710                                 !interfere(rstate, range, insd->lr)) {
19711                                 phi = insd;
19712                         }
19713                         if (insd->lr->color == REG_UNSET) {
19714                                 continue;
19715                         }
19716                         regcm = insd->lr->classes;
19717                         if (((regcm & range->classes) == 0) ||
19718                                 (used[insd->lr->color])) {
19719                                 continue;
19720                         }
19721                         if (interfere(rstate, range, insd->lr)) {
19722                                 continue;
19723                         }
19724                         range->color = insd->lr->color;
19725                 }
19726         }
19727         /* If I feed into a phi function reuse it's color or the color
19728          * of something else that feeds into the phi function.
19729          */
19730         if (phi) {
19731                 if (phi->lr->color != REG_UNSET) {
19732                         if (used[phi->lr->color]) {
19733                                 range->color = phi->lr->color;
19734                         }
19735                 }
19736                 else {
19737                         expr = triple_rhs(state, phi->def, 0);
19738                         for(; expr; expr = triple_rhs(state, phi->def, expr)) {
19739                                 struct live_range *lr;
19740                                 unsigned regcm;
19741                                 if (!*expr) {
19742                                         continue;
19743                                 }
19744                                 lr = rstate->lrd[(*expr)->id].lr;
19745                                 if (lr->color == REG_UNSET) {
19746                                         continue;
19747                                 }
19748                                 regcm = lr->classes;
19749                                 if (((regcm & range->classes) == 0) ||
19750                                         (used[lr->color])) {
19751                                         continue;
19752                                 }
19753                                 if (interfere(rstate, range, lr)) {
19754                                         continue;
19755                                 }
19756                                 range->color = lr->color;
19757                         }
19758                 }
19759         }
19760         /* If I don't interfere with a rhs node reuse it's color */
19761         lrd = live_range_head(state, range, 0);
19762         for(; (range->color == REG_UNSET) && lrd ; lrd = live_range_head(state, range, lrd)) {
19763                 expr = triple_rhs(state, lrd->def, 0);
19764                 for(; expr; expr = triple_rhs(state, lrd->def, expr)) {
19765                         struct live_range *lr;
19766                         unsigned regcm;
19767                         if (!*expr) {
19768                                 continue;
19769                         }
19770                         lr = rstate->lrd[(*expr)->id].lr;
19771                         if (lr->color == REG_UNSET) {
19772                                 continue;
19773                         }
19774                         regcm = lr->classes;
19775                         if (((regcm & range->classes) == 0) ||
19776                                 (used[lr->color])) {
19777                                 continue;
19778                         }
19779                         if (interfere(rstate, range, lr)) {
19780                                 continue;
19781                         }
19782                         range->color = lr->color;
19783                         break;
19784                 }
19785         }
19786         /* If I have not opportunitically picked a useful color
19787          * pick the first color that is free.
19788          */
19789         if (range->color == REG_UNSET) {
19790                 range->color = 
19791                         arch_select_free_register(state, used, range->classes);
19792         }
19793         if (range->color == REG_UNSET) {
19794                 struct live_range_def *lrd;
19795                 int i;
19796                 if (split_ranges(state, rstate, used, range)) {
19797                         return 0;
19798                 }
19799                 for(edge = range->edges; edge; edge = edge->next) {
19800                         warning(state, edge->node->defs->def, "edge reg %s",
19801                                 arch_reg_str(edge->node->color));
19802                         lrd = edge->node->defs;
19803                         do {
19804                                 warning(state, lrd->def, " %s %p",
19805                                         tops(lrd->def->op), lrd->def);
19806                                 lrd = lrd->next;
19807                         } while(lrd != edge->node->defs);
19808                 }
19809                 warning(state, range->defs->def, "range: ");
19810                 lrd = range->defs;
19811                 do {
19812                         warning(state, lrd->def, " %s %p",
19813                                 tops(lrd->def->op), lrd->def);
19814                         lrd = lrd->next;
19815                 } while(lrd != range->defs);
19816                         
19817                 warning(state, range->defs->def, "classes: %x",
19818                         range->classes);
19819                 for(i = 0; i < MAX_REGISTERS; i++) {
19820                         if (used[i]) {
19821                                 warning(state, range->defs->def, "used: %s",
19822                                         arch_reg_str(i));
19823                         }
19824                 }
19825                 error(state, range->defs->def, "too few registers");
19826         }
19827         range->classes &= arch_reg_regcm(state, range->color);
19828         if ((range->color == REG_UNSET) || (range->classes == 0)) {
19829                 internal_error(state, range->defs->def, "select_free_color did not?");
19830         }
19831         return 1;
19832 }
19833
19834 static int color_graph(struct compile_state *state, struct reg_state *rstate)
19835 {
19836         int colored;
19837         struct live_range_edge *edge;
19838         struct live_range *range;
19839         if (rstate->low) {
19840                 cgdebug_printf(state, "Lo: ");
19841                 range = rstate->low;
19842                 if (*range->group_prev != range) {
19843                         internal_error(state, 0, "lo: *prev != range?");
19844                 }
19845                 *range->group_prev = range->group_next;
19846                 if (range->group_next) {
19847                         range->group_next->group_prev = range->group_prev;
19848                 }
19849                 if (&range->group_next == rstate->low_tail) {
19850                         rstate->low_tail = range->group_prev;
19851                 }
19852                 if (rstate->low == range) {
19853                         internal_error(state, 0, "low: next != prev?");
19854                 }
19855         }
19856         else if (rstate->high) {
19857                 cgdebug_printf(state, "Hi: ");
19858                 range = rstate->high;
19859                 if (*range->group_prev != range) {
19860                         internal_error(state, 0, "hi: *prev != range?");
19861                 }
19862                 *range->group_prev = range->group_next;
19863                 if (range->group_next) {
19864                         range->group_next->group_prev = range->group_prev;
19865                 }
19866                 if (&range->group_next == rstate->high_tail) {
19867                         rstate->high_tail = range->group_prev;
19868                 }
19869                 if (rstate->high == range) {
19870                         internal_error(state, 0, "high: next != prev?");
19871                 }
19872         }
19873         else {
19874                 return 1;
19875         }
19876         cgdebug_printf(state, " %d\n", range - rstate->lr);
19877         range->group_prev = 0;
19878         for(edge = range->edges; edge; edge = edge->next) {
19879                 struct live_range *node;
19880                 node = edge->node;
19881                 /* Move nodes from the high to the low list */
19882                 if (node->group_prev && (node->color == REG_UNSET) &&
19883                         (node->degree == regc_max_size(state, node->classes))) {
19884                         if (*node->group_prev != node) {
19885                                 internal_error(state, 0, "move: *prev != node?");
19886                         }
19887                         *node->group_prev = node->group_next;
19888                         if (node->group_next) {
19889                                 node->group_next->group_prev = node->group_prev;
19890                         }
19891                         if (&node->group_next == rstate->high_tail) {
19892                                 rstate->high_tail = node->group_prev;
19893                         }
19894                         cgdebug_printf(state, "Moving...%d to low\n", node - rstate->lr);
19895                         node->group_prev  = rstate->low_tail;
19896                         node->group_next  = 0;
19897                         *rstate->low_tail = node;
19898                         rstate->low_tail  = &node->group_next;
19899                         if (*node->group_prev != node) {
19900                                 internal_error(state, 0, "move2: *prev != node?");
19901                         }
19902                 }
19903                 node->degree -= 1;
19904         }
19905         colored = color_graph(state, rstate);
19906         if (colored) {
19907                 cgdebug_printf(state, "Coloring %d @", range - rstate->lr);
19908                 cgdebug_loc(state, range->defs->def);
19909                 cgdebug_flush(state);
19910                 colored = select_free_color(state, rstate, range);
19911                 if (colored) {
19912                         cgdebug_printf(state, " %s\n", arch_reg_str(range->color));
19913                 }
19914         }
19915         return colored;
19916 }
19917
19918 static void verify_colors(struct compile_state *state, struct reg_state *rstate)
19919 {
19920         struct live_range *lr;
19921         struct live_range_edge *edge;
19922         struct triple *ins, *first;
19923         char used[MAX_REGISTERS];
19924         first = state->first;
19925         ins = first;
19926         do {
19927                 if (triple_is_def(state, ins)) {
19928                         if ((ins->id < 0) || (ins->id > rstate->defs)) {
19929                                 internal_error(state, ins, 
19930                                         "triple without a live range def");
19931                         }
19932                         lr = rstate->lrd[ins->id].lr;
19933                         if (lr->color == REG_UNSET) {
19934                                 internal_error(state, ins,
19935                                         "triple without a color");
19936                         }
19937                         /* Find the registers used by the edges */
19938                         memset(used, 0, sizeof(used));
19939                         for(edge = lr->edges; edge; edge = edge->next) {
19940                                 if (edge->node->color == REG_UNSET) {
19941                                         internal_error(state, 0,
19942                                                 "live range without a color");
19943                         }
19944                                 reg_fill_used(state, used, edge->node->color);
19945                         }
19946                         if (used[lr->color]) {
19947                                 internal_error(state, ins,
19948                                         "triple with already used color");
19949                         }
19950                 }
19951                 ins = ins->next;
19952         } while(ins != first);
19953 }
19954
19955 static void color_triples(struct compile_state *state, struct reg_state *rstate)
19956 {
19957         struct live_range_def *lrd;
19958         struct live_range *lr;
19959         struct triple *first, *ins;
19960         first = state->first;
19961         ins = first;
19962         do {
19963                 if ((ins->id < 0) || (ins->id > rstate->defs)) {
19964                         internal_error(state, ins, 
19965                                 "triple without a live range");
19966                 }
19967                 lrd = &rstate->lrd[ins->id];
19968                 lr = lrd->lr;
19969                 ins->id = lrd->orig_id;
19970                 SET_REG(ins->id, lr->color);
19971                 ins = ins->next;
19972         } while (ins != first);
19973 }
19974
19975 static struct live_range *merge_sort_lr(
19976         struct live_range *first, struct live_range *last)
19977 {
19978         struct live_range *mid, *join, **join_tail, *pick;
19979         size_t size;
19980         size = (last - first) + 1;
19981         if (size >= 2) {
19982                 mid = first + size/2;
19983                 first = merge_sort_lr(first, mid -1);
19984                 mid   = merge_sort_lr(mid, last);
19985                 
19986                 join = 0;
19987                 join_tail = &join;
19988                 /* merge the two lists */
19989                 while(first && mid) {
19990                         if ((first->degree < mid->degree) ||
19991                                 ((first->degree == mid->degree) &&
19992                                         (first->length < mid->length))) {
19993                                 pick = first;
19994                                 first = first->group_next;
19995                                 if (first) {
19996                                         first->group_prev = 0;
19997                                 }
19998                         }
19999                         else {
20000                                 pick = mid;
20001                                 mid = mid->group_next;
20002                                 if (mid) {
20003                                         mid->group_prev = 0;
20004                                 }
20005                         }
20006                         pick->group_next = 0;
20007                         pick->group_prev = join_tail;
20008                         *join_tail = pick;
20009                         join_tail = &pick->group_next;
20010                 }
20011                 /* Splice the remaining list */
20012                 pick = (first)? first : mid;
20013                 *join_tail = pick;
20014                 if (pick) { 
20015                         pick->group_prev = join_tail;
20016                 }
20017         }
20018         else {
20019                 if (!first->defs) {
20020                         first = 0;
20021                 }
20022                 join = first;
20023         }
20024         return join;
20025 }
20026
20027 static void ids_from_rstate(struct compile_state *state, 
20028         struct reg_state *rstate)
20029 {
20030         struct triple *ins, *first;
20031         if (!rstate->defs) {
20032                 return;
20033         }
20034         /* Display the graph if desired */
20035         if (state->compiler->debug & DEBUG_INTERFERENCE) {
20036                 FILE *fp = state->dbgout;
20037                 print_interference_blocks(state, rstate, fp, 0);
20038                 print_control_flow(state, fp, &state->bb);
20039                 fflush(fp);
20040         }
20041         first = state->first;
20042         ins = first;
20043         do {
20044                 if (ins->id) {
20045                         struct live_range_def *lrd;
20046                         lrd = &rstate->lrd[ins->id];
20047                         ins->id = lrd->orig_id;
20048                 }
20049                 ins = ins->next;
20050         } while(ins != first);
20051 }
20052
20053 static void cleanup_live_edges(struct reg_state *rstate)
20054 {
20055         int i;
20056         /* Free the edges on each node */
20057         for(i = 1; i <= rstate->ranges; i++) {
20058                 remove_live_edges(rstate, &rstate->lr[i]);
20059         }
20060 }
20061
20062 static void cleanup_rstate(struct compile_state *state, struct reg_state *rstate)
20063 {
20064         cleanup_live_edges(rstate);
20065         xfree(rstate->lrd);
20066         xfree(rstate->lr);
20067
20068         /* Free the variable lifetime information */
20069         if (rstate->blocks) {
20070                 free_variable_lifetimes(state, &state->bb, rstate->blocks);
20071         }
20072         rstate->defs = 0;
20073         rstate->ranges = 0;
20074         rstate->lrd = 0;
20075         rstate->lr = 0;
20076         rstate->blocks = 0;
20077 }
20078
20079 static void verify_consistency(struct compile_state *state);
20080 static void allocate_registers(struct compile_state *state)
20081 {
20082         struct reg_state rstate;
20083         int colored;
20084
20085         /* Clear out the reg_state */
20086         memset(&rstate, 0, sizeof(rstate));
20087         rstate.max_passes = state->compiler->max_allocation_passes;
20088
20089         do {
20090                 struct live_range **point, **next;
20091                 int conflicts;
20092                 int tangles;
20093                 int coalesced;
20094
20095                 if (state->compiler->debug & DEBUG_RANGE_CONFLICTS) {
20096                         FILE *fp = state->errout;
20097                         fprintf(fp, "pass: %d\n", rstate.passes);
20098                         fflush(fp);
20099                 }
20100
20101                 /* Restore ids */
20102                 ids_from_rstate(state, &rstate);
20103
20104                 /* Cleanup the temporary data structures */
20105                 cleanup_rstate(state, &rstate);
20106
20107                 /* Compute the variable lifetimes */
20108                 rstate.blocks = compute_variable_lifetimes(state, &state->bb);
20109
20110                 /* Fix invalid mandatory live range coalesce conflicts */
20111                 conflicts = correct_coalesce_conflicts(state, rstate.blocks);
20112
20113                 /* Fix two simultaneous uses of the same register.
20114                  * In a few pathlogical cases a partial untangle moves
20115                  * the tangle to a part of the graph we won't revisit.
20116                  * So we keep looping until we have no more tangle fixes
20117                  * to apply.
20118                  */
20119                 do {
20120                         tangles = correct_tangles(state, rstate.blocks);
20121                 } while(tangles);
20122
20123                 
20124                 print_blocks(state, "resolve_tangles", state->dbgout);
20125                 verify_consistency(state);
20126                 
20127                 /* Allocate and initialize the live ranges */
20128                 initialize_live_ranges(state, &rstate);
20129
20130                 /* Note currently doing coalescing in a loop appears to 
20131                  * buys me nothing.  The code is left this way in case
20132                  * there is some value in it.  Or if a future bugfix
20133                  * yields some benefit.
20134                  */
20135                 do {
20136                         if (state->compiler->debug & DEBUG_COALESCING) {
20137                                 fprintf(state->errout, "coalescing\n");
20138                         }
20139
20140                         /* Remove any previous live edge calculations */
20141                         cleanup_live_edges(&rstate);
20142
20143                         /* Compute the interference graph */
20144                         walk_variable_lifetimes(
20145                                 state, &state->bb, rstate.blocks, 
20146                                 graph_ins, &rstate);
20147                         
20148                         /* Display the interference graph if desired */
20149                         if (state->compiler->debug & DEBUG_INTERFERENCE) {
20150                                 print_interference_blocks(state, &rstate, state->dbgout, 1);
20151                                 fprintf(state->dbgout, "\nlive variables by instruction\n");
20152                                 walk_variable_lifetimes(
20153                                         state, &state->bb, rstate.blocks, 
20154                                         print_interference_ins, &rstate);
20155                         }
20156                         
20157                         coalesced = coalesce_live_ranges(state, &rstate);
20158
20159                         if (state->compiler->debug & DEBUG_COALESCING) {
20160                                 fprintf(state->errout, "coalesced: %d\n", coalesced);
20161                         }
20162                 } while(coalesced);
20163
20164 #if DEBUG_CONSISTENCY > 1
20165 # if 0
20166                 fprintf(state->errout, "verify_graph_ins...\n");
20167 # endif
20168                 /* Verify the interference graph */
20169                 walk_variable_lifetimes(
20170                         state, &state->bb, rstate.blocks, 
20171                         verify_graph_ins, &rstate);
20172 # if 0
20173                 fprintf(state->errout, "verify_graph_ins done\n");
20174 #endif
20175 #endif
20176                         
20177                 /* Build the groups low and high.  But with the nodes
20178                  * first sorted by degree order.
20179                  */
20180                 rstate.low_tail  = &rstate.low;
20181                 rstate.high_tail = &rstate.high;
20182                 rstate.high = merge_sort_lr(&rstate.lr[1], &rstate.lr[rstate.ranges]);
20183                 if (rstate.high) {
20184                         rstate.high->group_prev = &rstate.high;
20185                 }
20186                 for(point = &rstate.high; *point; point = &(*point)->group_next)
20187                         ;
20188                 rstate.high_tail = point;
20189                 /* Walk through the high list and move everything that needs
20190                  * to be onto low.
20191                  */
20192                 for(point = &rstate.high; *point; point = next) {
20193                         struct live_range *range;
20194                         next = &(*point)->group_next;
20195                         range = *point;
20196                         
20197                         /* If it has a low degree or it already has a color
20198                          * place the node in low.
20199                          */
20200                         if ((range->degree < regc_max_size(state, range->classes)) ||
20201                                 (range->color != REG_UNSET)) {
20202                                 cgdebug_printf(state, "Lo: %5d degree %5d%s\n", 
20203                                         range - rstate.lr, range->degree,
20204                                         (range->color != REG_UNSET) ? " (colored)": "");
20205                                 *range->group_prev = range->group_next;
20206                                 if (range->group_next) {
20207                                         range->group_next->group_prev = range->group_prev;
20208                                 }
20209                                 if (&range->group_next == rstate.high_tail) {
20210                                         rstate.high_tail = range->group_prev;
20211                                 }
20212                                 range->group_prev  = rstate.low_tail;
20213                                 range->group_next  = 0;
20214                                 *rstate.low_tail   = range;
20215                                 rstate.low_tail    = &range->group_next;
20216                                 next = point;
20217                         }
20218                         else {
20219                                 cgdebug_printf(state, "hi: %5d degree %5d%s\n", 
20220                                         range - rstate.lr, range->degree,
20221                                         (range->color != REG_UNSET) ? " (colored)": "");
20222                         }
20223                 }
20224                 /* Color the live_ranges */
20225                 colored = color_graph(state, &rstate);
20226                 rstate.passes++;
20227         } while (!colored);
20228
20229         /* Verify the graph was properly colored */
20230         verify_colors(state, &rstate);
20231
20232         /* Move the colors from the graph to the triples */
20233         color_triples(state, &rstate);
20234
20235         /* Cleanup the temporary data structures */
20236         cleanup_rstate(state, &rstate);
20237
20238         /* Display the new graph */
20239         print_blocks(state, __func__, state->dbgout);
20240 }
20241
20242 /* Sparce Conditional Constant Propogation
20243  * =========================================
20244  */
20245 struct ssa_edge;
20246 struct flow_block;
20247 struct lattice_node {
20248         unsigned old_id;
20249         struct triple *def;
20250         struct ssa_edge *out;
20251         struct flow_block *fblock;
20252         struct triple *val;
20253         /* lattice high   val == def
20254          * lattice const  is_const(val)
20255          * lattice low    other
20256          */
20257 };
20258 struct ssa_edge {
20259         struct lattice_node *src;
20260         struct lattice_node *dst;
20261         struct ssa_edge *work_next;
20262         struct ssa_edge *work_prev;
20263         struct ssa_edge *out_next;
20264 };
20265 struct flow_edge {
20266         struct flow_block *src;
20267         struct flow_block *dst;
20268         struct flow_edge *work_next;
20269         struct flow_edge *work_prev;
20270         struct flow_edge *in_next;
20271         struct flow_edge *out_next;
20272         int executable;
20273 };
20274 #define MAX_FLOW_BLOCK_EDGES 3
20275 struct flow_block {
20276         struct block *block;
20277         struct flow_edge *in;
20278         struct flow_edge *out;
20279         struct flow_edge *edges;
20280 };
20281
20282 struct scc_state {
20283         int ins_count;
20284         struct lattice_node *lattice;
20285         struct ssa_edge     *ssa_edges;
20286         struct flow_block   *flow_blocks;
20287         struct flow_edge    *flow_work_list;
20288         struct ssa_edge     *ssa_work_list;
20289 };
20290
20291
20292 static int is_scc_const(struct compile_state *state, struct triple *ins)
20293 {
20294         return ins && (triple_is_ubranch(state, ins) || is_const(ins));
20295 }
20296
20297 static int is_lattice_hi(struct compile_state *state, struct lattice_node *lnode)
20298 {
20299         return !is_scc_const(state, lnode->val) && (lnode->val == lnode->def);
20300 }
20301
20302 static int is_lattice_const(struct compile_state *state, struct lattice_node *lnode)
20303 {
20304         return is_scc_const(state, lnode->val);
20305 }
20306
20307 static int is_lattice_lo(struct compile_state *state, struct lattice_node *lnode)
20308 {
20309         return (lnode->val != lnode->def) && !is_scc_const(state, lnode->val);
20310 }
20311
20312 static void scc_add_fedge(struct compile_state *state, struct scc_state *scc, 
20313         struct flow_edge *fedge)
20314 {
20315         if (state->compiler->debug & DEBUG_SCC_TRANSFORM2) {
20316                 fprintf(state->errout, "adding fedge: %p (%4d -> %5d)\n",
20317                         fedge,
20318                         fedge->src->block?fedge->src->block->last->id: 0,
20319                         fedge->dst->block?fedge->dst->block->first->id: 0);
20320         }
20321         if ((fedge == scc->flow_work_list) ||
20322                 (fedge->work_next != fedge) ||
20323                 (fedge->work_prev != fedge)) {
20324
20325                 if (state->compiler->debug & DEBUG_SCC_TRANSFORM2) {
20326                         fprintf(state->errout, "dupped fedge: %p\n",
20327                                 fedge);
20328                 }
20329                 return;
20330         }
20331         if (!scc->flow_work_list) {
20332                 scc->flow_work_list = fedge;
20333                 fedge->work_next = fedge->work_prev = fedge;
20334         }
20335         else {
20336                 struct flow_edge *ftail;
20337                 ftail = scc->flow_work_list->work_prev;
20338                 fedge->work_next = ftail->work_next;
20339                 fedge->work_prev = ftail;
20340                 fedge->work_next->work_prev = fedge;
20341                 fedge->work_prev->work_next = fedge;
20342         }
20343 }
20344
20345 static struct flow_edge *scc_next_fedge(
20346         struct compile_state *state, struct scc_state *scc)
20347 {
20348         struct flow_edge *fedge;
20349         fedge = scc->flow_work_list;
20350         if (fedge) {
20351                 fedge->work_next->work_prev = fedge->work_prev;
20352                 fedge->work_prev->work_next = fedge->work_next;
20353                 if (fedge->work_next != fedge) {
20354                         scc->flow_work_list = fedge->work_next;
20355                 } else {
20356                         scc->flow_work_list = 0;
20357                 }
20358                 fedge->work_next = fedge->work_prev = fedge;
20359         }
20360         return fedge;
20361 }
20362
20363 static void scc_add_sedge(struct compile_state *state, struct scc_state *scc,
20364         struct ssa_edge *sedge)
20365 {
20366         if (state->compiler->debug & DEBUG_SCC_TRANSFORM2) {
20367                 fprintf(state->errout, "adding sedge: %5ld (%4d -> %5d)\n",
20368                         (long)(sedge - scc->ssa_edges),
20369                         sedge->src->def->id,
20370                         sedge->dst->def->id);
20371         }
20372         if ((sedge == scc->ssa_work_list) ||
20373                 (sedge->work_next != sedge) ||
20374                 (sedge->work_prev != sedge)) {
20375
20376                 if (state->compiler->debug & DEBUG_SCC_TRANSFORM2) {
20377                         fprintf(state->errout, "dupped sedge: %5ld\n",
20378                                 (long)(sedge - scc->ssa_edges));
20379                 }
20380                 return;
20381         }
20382         if (!scc->ssa_work_list) {
20383                 scc->ssa_work_list = sedge;
20384                 sedge->work_next = sedge->work_prev = sedge;
20385         }
20386         else {
20387                 struct ssa_edge *stail;
20388                 stail = scc->ssa_work_list->work_prev;
20389                 sedge->work_next = stail->work_next;
20390                 sedge->work_prev = stail;
20391                 sedge->work_next->work_prev = sedge;
20392                 sedge->work_prev->work_next = sedge;
20393         }
20394 }
20395
20396 static struct ssa_edge *scc_next_sedge(
20397         struct compile_state *state, struct scc_state *scc)
20398 {
20399         struct ssa_edge *sedge;
20400         sedge = scc->ssa_work_list;
20401         if (sedge) {
20402                 sedge->work_next->work_prev = sedge->work_prev;
20403                 sedge->work_prev->work_next = sedge->work_next;
20404                 if (sedge->work_next != sedge) {
20405                         scc->ssa_work_list = sedge->work_next;
20406                 } else {
20407                         scc->ssa_work_list = 0;
20408                 }
20409                 sedge->work_next = sedge->work_prev = sedge;
20410         }
20411         return sedge;
20412 }
20413
20414 static void initialize_scc_state(
20415         struct compile_state *state, struct scc_state *scc)
20416 {
20417         int ins_count, ssa_edge_count;
20418         int ins_index, ssa_edge_index, fblock_index;
20419         struct triple *first, *ins;
20420         struct block *block;
20421         struct flow_block *fblock;
20422
20423         memset(scc, 0, sizeof(*scc));
20424
20425         /* Inialize pass zero find out how much memory we need */
20426         first = state->first;
20427         ins = first;
20428         ins_count = ssa_edge_count = 0;
20429         do {
20430                 struct triple_set *edge;
20431                 ins_count += 1;
20432                 for(edge = ins->use; edge; edge = edge->next) {
20433                         ssa_edge_count++;
20434                 }
20435                 ins = ins->next;
20436         } while(ins != first);
20437         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20438                 fprintf(state->errout, "ins_count: %d ssa_edge_count: %d vertex_count: %d\n",
20439                         ins_count, ssa_edge_count, state->bb.last_vertex);
20440         }
20441         scc->ins_count   = ins_count;
20442         scc->lattice     = 
20443                 xcmalloc(sizeof(*scc->lattice)*(ins_count + 1), "lattice");
20444         scc->ssa_edges   = 
20445                 xcmalloc(sizeof(*scc->ssa_edges)*(ssa_edge_count + 1), "ssa_edges");
20446         scc->flow_blocks = 
20447                 xcmalloc(sizeof(*scc->flow_blocks)*(state->bb.last_vertex + 1), 
20448                         "flow_blocks");
20449
20450         /* Initialize pass one collect up the nodes */
20451         fblock = 0;
20452         block = 0;
20453         ins_index = ssa_edge_index = fblock_index = 0;
20454         ins = first;
20455         do {
20456                 if ((ins->op == OP_LABEL) && (block != ins->u.block)) {
20457                         block = ins->u.block;
20458                         if (!block) {
20459                                 internal_error(state, ins, "label without block");
20460                         }
20461                         fblock_index += 1;
20462                         block->vertex = fblock_index;
20463                         fblock = &scc->flow_blocks[fblock_index];
20464                         fblock->block = block;
20465                         fblock->edges = xcmalloc(sizeof(*fblock->edges)*block->edge_count,
20466                                 "flow_edges");
20467                 }
20468                 {
20469                         struct lattice_node *lnode;
20470                         ins_index += 1;
20471                         lnode = &scc->lattice[ins_index];
20472                         lnode->def = ins;
20473                         lnode->out = 0;
20474                         lnode->fblock = fblock;
20475                         lnode->val = ins; /* LATTICE HIGH */
20476                         if (lnode->val->op == OP_UNKNOWNVAL) {
20477                                 lnode->val = 0; /* LATTICE LOW by definition */
20478                         }
20479                         lnode->old_id = ins->id;
20480                         ins->id = ins_index;
20481                 }
20482                 ins = ins->next;
20483         } while(ins != first);
20484         /* Initialize pass two collect up the edges */
20485         block = 0;
20486         fblock = 0;
20487         ins = first;
20488         do {
20489                 {
20490                         struct triple_set *edge;
20491                         struct ssa_edge **stail;
20492                         struct lattice_node *lnode;
20493                         lnode = &scc->lattice[ins->id];
20494                         lnode->out = 0;
20495                         stail = &lnode->out;
20496                         for(edge = ins->use; edge; edge = edge->next) {
20497                                 struct ssa_edge *sedge;
20498                                 ssa_edge_index += 1;
20499                                 sedge = &scc->ssa_edges[ssa_edge_index];
20500                                 *stail = sedge;
20501                                 stail = &sedge->out_next;
20502                                 sedge->src = lnode;
20503                                 sedge->dst = &scc->lattice[edge->member->id];
20504                                 sedge->work_next = sedge->work_prev = sedge;
20505                                 sedge->out_next = 0;
20506                         }
20507                 }
20508                 if ((ins->op == OP_LABEL) && (block != ins->u.block)) {
20509                         struct flow_edge *fedge, **ftail;
20510                         struct block_set *bedge;
20511                         block = ins->u.block;
20512                         fblock = &scc->flow_blocks[block->vertex];
20513                         fblock->in = 0;
20514                         fblock->out = 0;
20515                         ftail = &fblock->out;
20516
20517                         fedge = fblock->edges;
20518                         bedge = block->edges;
20519                         for(; bedge; bedge = bedge->next, fedge++) {
20520                                 fedge->dst = &scc->flow_blocks[bedge->member->vertex];
20521                                 if (fedge->dst->block != bedge->member) {
20522                                         internal_error(state, 0, "block mismatch");
20523                                 }
20524                                 *ftail = fedge;
20525                                 ftail = &fedge->out_next;
20526                                 fedge->out_next = 0;
20527                         }
20528                         for(fedge = fblock->out; fedge; fedge = fedge->out_next) {
20529                                 fedge->src = fblock;
20530                                 fedge->work_next = fedge->work_prev = fedge;
20531                                 fedge->executable = 0;
20532                         }
20533                 }
20534                 ins = ins->next;
20535         } while (ins != first);
20536         block = 0;
20537         fblock = 0;
20538         ins = first;
20539         do {
20540                 if ((ins->op  == OP_LABEL) && (block != ins->u.block)) {
20541                         struct flow_edge **ftail;
20542                         struct block_set *bedge;
20543                         block = ins->u.block;
20544                         fblock = &scc->flow_blocks[block->vertex];
20545                         ftail = &fblock->in;
20546                         for(bedge = block->use; bedge; bedge = bedge->next) {
20547                                 struct block *src_block;
20548                                 struct flow_block *sfblock;
20549                                 struct flow_edge *sfedge;
20550                                 src_block = bedge->member;
20551                                 sfblock = &scc->flow_blocks[src_block->vertex];
20552                                 for(sfedge = sfblock->out; sfedge; sfedge = sfedge->out_next) {
20553                                         if (sfedge->dst == fblock) {
20554                                                 break;
20555                                         }
20556                                 }
20557                                 if (!sfedge) {
20558                                         internal_error(state, 0, "edge mismatch");
20559                                 }
20560                                 *ftail = sfedge;
20561                                 ftail = &sfedge->in_next;
20562                                 sfedge->in_next = 0;
20563                         }
20564                 }
20565                 ins = ins->next;
20566         } while(ins != first);
20567         /* Setup a dummy block 0 as a node above the start node */
20568         {
20569                 struct flow_block *fblock, *dst;
20570                 struct flow_edge *fedge;
20571                 fblock = &scc->flow_blocks[0];
20572                 fblock->block = 0;
20573                 fblock->edges = xcmalloc(sizeof(*fblock->edges)*1, "flow_edges");
20574                 fblock->in = 0;
20575                 fblock->out = fblock->edges;
20576                 dst = &scc->flow_blocks[state->bb.first_block->vertex];
20577                 fedge = fblock->edges;
20578                 fedge->src        = fblock;
20579                 fedge->dst        = dst;
20580                 fedge->work_next  = fedge;
20581                 fedge->work_prev  = fedge;
20582                 fedge->in_next    = fedge->dst->in;
20583                 fedge->out_next   = 0;
20584                 fedge->executable = 0;
20585                 fedge->dst->in = fedge;
20586                 
20587                 /* Initialize the work lists */
20588                 scc->flow_work_list = 0;
20589                 scc->ssa_work_list  = 0;
20590                 scc_add_fedge(state, scc, fedge);
20591         }
20592         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20593                 fprintf(state->errout, "ins_index: %d ssa_edge_index: %d fblock_index: %d\n",
20594                         ins_index, ssa_edge_index, fblock_index);
20595         }
20596 }
20597
20598         
20599 static void free_scc_state(
20600         struct compile_state *state, struct scc_state *scc)
20601 {
20602         int i;
20603         for(i = 0; i < state->bb.last_vertex + 1; i++) {
20604                 struct flow_block *fblock;
20605                 fblock = &scc->flow_blocks[i];
20606                 if (fblock->edges) {
20607                         xfree(fblock->edges);
20608                         fblock->edges = 0;
20609                 }
20610         }
20611         xfree(scc->flow_blocks);
20612         xfree(scc->ssa_edges);
20613         xfree(scc->lattice);
20614         
20615 }
20616
20617 static struct lattice_node *triple_to_lattice(
20618         struct compile_state *state, struct scc_state *scc, struct triple *ins)
20619 {
20620         if (ins->id <= 0) {
20621                 internal_error(state, ins, "bad id");
20622         }
20623         return &scc->lattice[ins->id];
20624 }
20625
20626 static struct triple *preserve_lval(
20627         struct compile_state *state, struct lattice_node *lnode)
20628 {
20629         struct triple *old;
20630         /* Preserve the original value */
20631         if (lnode->val) {
20632                 old = dup_triple(state, lnode->val);
20633                 if (lnode->val != lnode->def) {
20634                         xfree(lnode->val);
20635                 }
20636                 lnode->val = 0;
20637         } else {
20638                 old = 0;
20639         }
20640         return old;
20641 }
20642
20643 static int lval_changed(struct compile_state *state, 
20644         struct triple *old, struct lattice_node *lnode)
20645 {
20646         int changed;
20647         /* See if the lattice value has changed */
20648         changed = 1;
20649         if (!old && !lnode->val) {
20650                 changed = 0;
20651         }
20652         if (changed &&
20653                 lnode->val && old &&
20654                 (memcmp(lnode->val->param, old->param,
20655                         TRIPLE_SIZE(lnode->val) * sizeof(lnode->val->param[0])) == 0) &&
20656                 (memcmp(&lnode->val->u, &old->u, sizeof(old->u)) == 0)) {
20657                 changed = 0;
20658         }
20659         if (old) {
20660                 xfree(old);
20661         }
20662         return changed;
20663
20664 }
20665
20666 static void scc_debug_lnode(
20667         struct compile_state *state, struct scc_state *scc,
20668         struct lattice_node *lnode, int changed)
20669 {
20670         if ((state->compiler->debug & DEBUG_SCC_TRANSFORM2) && lnode->val) {
20671                 display_triple_changes(state->errout, lnode->val, lnode->def);
20672         }
20673         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20674                 FILE *fp = state->errout;
20675                 struct triple *val, **expr;
20676                 val = lnode->val? lnode->val : lnode->def;
20677                 fprintf(fp, "%p %s %3d %10s (",
20678                         lnode->def, 
20679                         ((lnode->def->op == OP_PHI)? "phi: ": "expr:"),
20680                         lnode->def->id,
20681                         tops(lnode->def->op));
20682                 expr = triple_rhs(state, lnode->def, 0);
20683                 for(;expr;expr = triple_rhs(state, lnode->def, expr)) {
20684                         if (*expr) {
20685                                 fprintf(fp, " %d", (*expr)->id);
20686                         }
20687                 }
20688                 if (val->op == OP_INTCONST) {
20689                         fprintf(fp, " <0x%08lx>", (unsigned long)(val->u.cval));
20690                 }
20691                 fprintf(fp, " ) -> %s %s\n",
20692                         (is_lattice_hi(state, lnode)? "hi":
20693                                 is_lattice_const(state, lnode)? "const" : "lo"),
20694                         changed? "changed" : ""
20695                         );
20696         }
20697 }
20698
20699 static int compute_lnode_val(struct compile_state *state, struct scc_state *scc,
20700         struct lattice_node *lnode)
20701 {
20702         int changed;
20703         struct triple *old, *scratch;
20704         struct triple **dexpr, **vexpr;
20705         int count, i;
20706         
20707         /* Store the original value */
20708         old = preserve_lval(state, lnode);
20709
20710         /* Reinitialize the value */
20711         lnode->val = scratch = dup_triple(state, lnode->def);
20712         scratch->id = lnode->old_id;
20713         scratch->next     = scratch;
20714         scratch->prev     = scratch;
20715         scratch->use      = 0;
20716
20717         count = TRIPLE_SIZE(scratch);
20718         for(i = 0; i < count; i++) {
20719                 dexpr = &lnode->def->param[i];
20720                 vexpr = &scratch->param[i];
20721                 *vexpr = *dexpr;
20722                 if (((i < TRIPLE_MISC_OFF(scratch)) ||
20723                         (i >= TRIPLE_TARG_OFF(scratch))) &&
20724                         *dexpr) {
20725                         struct lattice_node *tmp;
20726                         tmp = triple_to_lattice(state, scc, *dexpr);
20727                         *vexpr = (tmp->val)? tmp->val : tmp->def;
20728                 }
20729         }
20730         if (triple_is_branch(state, scratch)) {
20731                 scratch->next = lnode->def->next;
20732         }
20733         /* Recompute the value */
20734 #if DEBUG_ROMCC_WARNINGS
20735 #warning "FIXME see if simplify does anything bad"
20736 #endif
20737         /* So far it looks like only the strength reduction
20738          * optimization are things I need to worry about.
20739          */
20740         simplify(state, scratch);
20741         /* Cleanup my value */
20742         if (scratch->use) {
20743                 internal_error(state, lnode->def, "scratch used?");
20744         }
20745         if ((scratch->prev != scratch) ||
20746                 ((scratch->next != scratch) &&
20747                         (!triple_is_branch(state, lnode->def) ||
20748                                 (scratch->next != lnode->def->next)))) {
20749                 internal_error(state, lnode->def, "scratch in list?");
20750         }
20751         /* undo any uses... */
20752         count = TRIPLE_SIZE(scratch);
20753         for(i = 0; i < count; i++) {
20754                 vexpr = &scratch->param[i];
20755                 if (*vexpr) {
20756                         unuse_triple(*vexpr, scratch);
20757                 }
20758         }
20759         if (lnode->val->op == OP_UNKNOWNVAL) {
20760                 lnode->val = 0; /* Lattice low by definition */
20761         }
20762         /* Find the case when I am lattice high */
20763         if (lnode->val && 
20764                 (lnode->val->op == lnode->def->op) &&
20765                 (memcmp(lnode->val->param, lnode->def->param, 
20766                         count * sizeof(lnode->val->param[0])) == 0) &&
20767                 (memcmp(&lnode->val->u, &lnode->def->u, sizeof(lnode->def->u)) == 0)) {
20768                 lnode->val = lnode->def;
20769         }
20770         /* Only allow lattice high when all of my inputs
20771          * are also lattice high.  Occassionally I can
20772          * have constants with a lattice low input, so
20773          * I do not need to check that case.
20774          */
20775         if (is_lattice_hi(state, lnode)) {
20776                 struct lattice_node *tmp;
20777                 int rhs;
20778                 rhs = lnode->val->rhs;
20779                 for(i = 0; i < rhs; i++) {
20780                         tmp = triple_to_lattice(state, scc, RHS(lnode->val, i));
20781                         if (!is_lattice_hi(state, tmp)) {
20782                                 lnode->val = 0;
20783                                 break;
20784                         }
20785                 }
20786         }
20787         /* Find the cases that are always lattice lo */
20788         if (lnode->val && 
20789                 triple_is_def(state, lnode->val) &&
20790                 !triple_is_pure(state, lnode->val, lnode->old_id)) {
20791                 lnode->val = 0;
20792         }
20793         /* See if the lattice value has changed */
20794         changed = lval_changed(state, old, lnode);
20795         /* See if this value should not change */
20796         if ((lnode->val != lnode->def) && 
20797                 ((      !triple_is_def(state, lnode->def)  &&
20798                         !triple_is_cbranch(state, lnode->def)) ||
20799                         (lnode->def->op == OP_PIECE))) {
20800 #if DEBUG_ROMCC_WARNINGS
20801 #warning "FIXME constant propogate through expressions with multiple left hand sides"
20802 #endif
20803                 if (changed) {
20804                         internal_warning(state, lnode->def, "non def changes value?");
20805                 }
20806                 lnode->val = 0;
20807         }
20808
20809         /* See if we need to free the scratch value */
20810         if (lnode->val != scratch) {
20811                 xfree(scratch);
20812         }
20813         
20814         return changed;
20815 }
20816
20817
20818 static void scc_visit_cbranch(struct compile_state *state, struct scc_state *scc,
20819         struct lattice_node *lnode)
20820 {
20821         struct lattice_node *cond;
20822         struct flow_edge *left, *right;
20823         int changed;
20824
20825         /* Update the branch value */
20826         changed = compute_lnode_val(state, scc, lnode);
20827         scc_debug_lnode(state, scc, lnode, changed);
20828
20829         /* This only applies to conditional branches */
20830         if (!triple_is_cbranch(state, lnode->def)) {
20831                 internal_error(state, lnode->def, "not a conditional branch");
20832         }
20833
20834         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20835                 struct flow_edge *fedge;
20836                 FILE *fp = state->errout;
20837                 fprintf(fp, "%s: %d (",
20838                         tops(lnode->def->op),
20839                         lnode->def->id);
20840                 
20841                 for(fedge = lnode->fblock->out; fedge; fedge = fedge->out_next) {
20842                         fprintf(fp, " %d", fedge->dst->block->vertex);
20843                 }
20844                 fprintf(fp, " )");
20845                 if (lnode->def->rhs > 0) {
20846                         fprintf(fp, " <- %d",
20847                                 RHS(lnode->def, 0)->id);
20848                 }
20849                 fprintf(fp, "\n");
20850         }
20851         cond = triple_to_lattice(state, scc, RHS(lnode->def,0));
20852         for(left = cond->fblock->out; left; left = left->out_next) {
20853                 if (left->dst->block->first == lnode->def->next) {
20854                         break;
20855                 }
20856         }
20857         if (!left) {
20858                 internal_error(state, lnode->def, "Cannot find left branch edge");
20859         }
20860         for(right = cond->fblock->out; right; right = right->out_next) {
20861                 if (right->dst->block->first == TARG(lnode->def, 0)) {
20862                         break;
20863                 }
20864         }
20865         if (!right) {
20866                 internal_error(state, lnode->def, "Cannot find right branch edge");
20867         }
20868         /* I should only come here if the controlling expressions value
20869          * has changed, which means it must be either a constant or lo.
20870          */
20871         if (is_lattice_hi(state, cond)) {
20872                 internal_error(state, cond->def, "condition high?");
20873                 return;
20874         }
20875         if (is_lattice_lo(state, cond)) {
20876                 scc_add_fedge(state, scc, left);
20877                 scc_add_fedge(state, scc, right);
20878         }
20879         else if (cond->val->u.cval) {
20880                 scc_add_fedge(state, scc, right);
20881         } else {
20882                 scc_add_fedge(state, scc, left);
20883         }
20884
20885 }
20886
20887
20888 static void scc_add_sedge_dst(struct compile_state *state, 
20889         struct scc_state *scc, struct ssa_edge *sedge)
20890 {
20891         if (triple_is_cbranch(state, sedge->dst->def)) {
20892                 scc_visit_cbranch(state, scc, sedge->dst);
20893         }
20894         else if (triple_is_def(state, sedge->dst->def)) {
20895                 scc_add_sedge(state, scc, sedge);
20896         }
20897 }
20898
20899 static void scc_visit_phi(struct compile_state *state, struct scc_state *scc, 
20900         struct lattice_node *lnode)
20901 {
20902         struct lattice_node *tmp;
20903         struct triple **slot, *old;
20904         struct flow_edge *fedge;
20905         int changed;
20906         int index;
20907         if (lnode->def->op != OP_PHI) {
20908                 internal_error(state, lnode->def, "not phi");
20909         }
20910         /* Store the original value */
20911         old = preserve_lval(state, lnode);
20912
20913         /* default to lattice high */
20914         lnode->val = lnode->def;
20915         slot = &RHS(lnode->def, 0);
20916         index = 0;
20917         for(fedge = lnode->fblock->in; fedge; index++, fedge = fedge->in_next) {
20918                 if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20919                         fprintf(state->errout, "Examining edge: %d vertex: %d executable: %d\n", 
20920                                 index,
20921                                 fedge->dst->block->vertex,
20922                                 fedge->executable
20923                                 );
20924                 }
20925                 if (!fedge->executable) {
20926                         continue;
20927                 }
20928                 if (!slot[index]) {
20929                         internal_error(state, lnode->def, "no phi value");
20930                 }
20931                 tmp = triple_to_lattice(state, scc, slot[index]);
20932                 /* meet(X, lattice low) = lattice low */
20933                 if (is_lattice_lo(state, tmp)) {
20934                         lnode->val = 0;
20935                 }
20936                 /* meet(X, lattice high) = X */
20937                 else if (is_lattice_hi(state, tmp)) {
20938                         lnode->val = lnode->val;
20939                 }
20940                 /* meet(lattice high, X) = X */
20941                 else if (is_lattice_hi(state, lnode)) {
20942                         lnode->val = dup_triple(state, tmp->val);
20943                         /* Only change the type if necessary */
20944                         if (!is_subset_type(lnode->def->type, tmp->val->type)) {
20945                                 lnode->val->type = lnode->def->type;
20946                         }
20947                 }
20948                 /* meet(const, const) = const or lattice low */
20949                 else if (!constants_equal(state, lnode->val, tmp->val)) {
20950                         lnode->val = 0;
20951                 }
20952
20953                 /* meet(lattice low, X) = lattice low */
20954                 if (is_lattice_lo(state, lnode)) {
20955                         lnode->val = 0;
20956                         break;
20957                 }
20958         }
20959         changed = lval_changed(state, old, lnode);
20960         scc_debug_lnode(state, scc, lnode, changed);
20961
20962         /* If the lattice value has changed update the work lists. */
20963         if (changed) {
20964                 struct ssa_edge *sedge;
20965                 for(sedge = lnode->out; sedge; sedge = sedge->out_next) {
20966                         scc_add_sedge_dst(state, scc, sedge);
20967                 }
20968         }
20969 }
20970
20971
20972 static void scc_visit_expr(struct compile_state *state, struct scc_state *scc,
20973         struct lattice_node *lnode)
20974 {
20975         int changed;
20976
20977         if (!triple_is_def(state, lnode->def)) {
20978                 internal_warning(state, lnode->def, "not visiting an expression?");
20979         }
20980         changed = compute_lnode_val(state, scc, lnode);
20981         scc_debug_lnode(state, scc, lnode, changed);
20982
20983         if (changed) {
20984                 struct ssa_edge *sedge;
20985                 for(sedge = lnode->out; sedge; sedge = sedge->out_next) {
20986                         scc_add_sedge_dst(state, scc, sedge);
20987                 }
20988         }
20989 }
20990
20991 static void scc_writeback_values(
20992         struct compile_state *state, struct scc_state *scc)
20993 {
20994         struct triple *first, *ins;
20995         first = state->first;
20996         ins = first;
20997         do {
20998                 struct lattice_node *lnode;
20999                 lnode = triple_to_lattice(state, scc, ins);
21000                 if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
21001                         if (is_lattice_hi(state, lnode) &&
21002                                 (lnode->val->op != OP_NOOP))
21003                         {
21004                                 struct flow_edge *fedge;
21005                                 int executable;
21006                                 executable = 0;
21007                                 for(fedge = lnode->fblock->in; 
21008                                     !executable && fedge; fedge = fedge->in_next) {
21009                                         executable |= fedge->executable;
21010                                 }
21011                                 if (executable) {
21012                                         internal_warning(state, lnode->def,
21013                                                 "lattice node %d %s->%s still high?",
21014                                                 ins->id, 
21015                                                 tops(lnode->def->op),
21016                                                 tops(lnode->val->op));
21017                                 }
21018                         }
21019                 }
21020
21021                 /* Restore id */
21022                 ins->id = lnode->old_id;
21023                 if (lnode->val && (lnode->val != ins)) {
21024                         /* See if it something I know how to write back */
21025                         switch(lnode->val->op) {
21026                         case OP_INTCONST:
21027                                 mkconst(state, ins, lnode->val->u.cval);
21028                                 break;
21029                         case OP_ADDRCONST:
21030                                 mkaddr_const(state, ins, 
21031                                         MISC(lnode->val, 0), lnode->val->u.cval);
21032                                 break;
21033                         default:
21034                                 /* By default don't copy the changes,
21035                                  * recompute them in place instead.
21036                                  */
21037                                 simplify(state, ins);
21038                                 break;
21039                         }
21040                         if (is_const(lnode->val) &&
21041                                 !constants_equal(state, lnode->val, ins)) {
21042                                 internal_error(state, 0, "constants not equal");
21043                         }
21044                         /* Free the lattice nodes */
21045                         xfree(lnode->val);
21046                         lnode->val = 0;
21047                 }
21048                 ins = ins->next;
21049         } while(ins != first);
21050 }
21051
21052 static void scc_transform(struct compile_state *state)
21053 {
21054         struct scc_state scc;
21055         if (!(state->compiler->flags & COMPILER_SCC_TRANSFORM)) {
21056                 return;
21057         }
21058
21059         initialize_scc_state(state, &scc);
21060
21061         while(scc.flow_work_list || scc.ssa_work_list) {
21062                 struct flow_edge *fedge;
21063                 struct ssa_edge *sedge;
21064                 struct flow_edge *fptr;
21065                 while((fedge = scc_next_fedge(state, &scc))) {
21066                         struct block *block;
21067                         struct triple *ptr;
21068                         struct flow_block *fblock;
21069                         int reps;
21070                         int done;
21071                         if (fedge->executable) {
21072                                 continue;
21073                         }
21074                         if (!fedge->dst) {
21075                                 internal_error(state, 0, "fedge without dst");
21076                         }
21077                         if (!fedge->src) {
21078                                 internal_error(state, 0, "fedge without src");
21079                         }
21080                         fedge->executable = 1;
21081                         fblock = fedge->dst;
21082                         block = fblock->block;
21083                         reps = 0;
21084                         for(fptr = fblock->in; fptr; fptr = fptr->in_next) {
21085                                 if (fptr->executable) {
21086                                         reps++;
21087                                 }
21088                         }
21089                         
21090                         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
21091                                 fprintf(state->errout, "vertex: %d reps: %d\n", 
21092                                         block->vertex, reps);
21093                         }
21094
21095                         done = 0;
21096                         for(ptr = block->first; !done; ptr = ptr->next) {
21097                                 struct lattice_node *lnode;
21098                                 done = (ptr == block->last);
21099                                 lnode = &scc.lattice[ptr->id];
21100                                 if (ptr->op == OP_PHI) {
21101                                         scc_visit_phi(state, &scc, lnode);
21102                                 }
21103                                 else if ((reps == 1) && triple_is_def(state, ptr))
21104                                 {
21105                                         scc_visit_expr(state, &scc, lnode);
21106                                 }
21107                         }
21108                         /* Add unconditional branch edges */
21109                         if (!triple_is_cbranch(state, fblock->block->last)) {
21110                                 struct flow_edge *out;
21111                                 for(out = fblock->out; out; out = out->out_next) {
21112                                         scc_add_fedge(state, &scc, out);
21113                                 }
21114                         }
21115                 }
21116                 while((sedge = scc_next_sedge(state, &scc))) {
21117                         struct lattice_node *lnode;
21118                         struct flow_block *fblock;
21119                         lnode = sedge->dst;
21120                         fblock = lnode->fblock;
21121
21122                         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
21123                                 fprintf(state->errout, "sedge: %5ld (%5d -> %5d)\n",
21124                                         (unsigned long)sedge - (unsigned long)scc.ssa_edges,
21125                                         sedge->src->def->id,
21126                                         sedge->dst->def->id);
21127                         }
21128
21129                         if (lnode->def->op == OP_PHI) {
21130                                 scc_visit_phi(state, &scc, lnode);
21131                         }
21132                         else {
21133                                 for(fptr = fblock->in; fptr; fptr = fptr->in_next) {
21134                                         if (fptr->executable) {
21135                                                 break;
21136                                         }
21137                                 }
21138                                 if (fptr) {
21139                                         scc_visit_expr(state, &scc, lnode);
21140                                 }
21141                         }
21142                 }
21143         }
21144         
21145         scc_writeback_values(state, &scc);
21146         free_scc_state(state, &scc);
21147         rebuild_ssa_form(state);
21148         
21149         print_blocks(state, __func__, state->dbgout);
21150 }
21151
21152
21153 static void transform_to_arch_instructions(struct compile_state *state)
21154 {
21155         struct triple *ins, *first;
21156         first = state->first;
21157         ins = first;
21158         do {
21159                 ins = transform_to_arch_instruction(state, ins);
21160         } while(ins != first);
21161         
21162         print_blocks(state, __func__, state->dbgout);
21163 }
21164
21165 #if DEBUG_CONSISTENCY
21166 static void verify_uses(struct compile_state *state)
21167 {
21168         struct triple *first, *ins;
21169         struct triple_set *set;
21170         first = state->first;
21171         ins = first;
21172         do {
21173                 struct triple **expr;
21174                 expr = triple_rhs(state, ins, 0);
21175                 for(; expr; expr = triple_rhs(state, ins, expr)) {
21176                         struct triple *rhs;
21177                         rhs = *expr;
21178                         for(set = rhs?rhs->use:0; set; set = set->next) {
21179                                 if (set->member == ins) {
21180                                         break;
21181                                 }
21182                         }
21183                         if (!set) {
21184                                 internal_error(state, ins, "rhs not used");
21185                         }
21186                 }
21187                 expr = triple_lhs(state, ins, 0);
21188                 for(; expr; expr = triple_lhs(state, ins, expr)) {
21189                         struct triple *lhs;
21190                         lhs = *expr;
21191                         for(set =  lhs?lhs->use:0; set; set = set->next) {
21192                                 if (set->member == ins) {
21193                                         break;
21194                                 }
21195                         }
21196                         if (!set) {
21197                                 internal_error(state, ins, "lhs not used");
21198                         }
21199                 }
21200                 expr = triple_misc(state, ins, 0);
21201                 if (ins->op != OP_PHI) {
21202                         for(; expr; expr = triple_targ(state, ins, expr)) {
21203                                 struct triple *misc;
21204                                 misc = *expr;
21205                                 for(set = misc?misc->use:0; set; set = set->next) {
21206                                         if (set->member == ins) {
21207                                                 break;
21208                                         }
21209                                 }
21210                                 if (!set) {
21211                                         internal_error(state, ins, "misc not used");
21212                                 }
21213                         }
21214                 }
21215                 if (!triple_is_ret(state, ins)) {
21216                         expr = triple_targ(state, ins, 0);
21217                         for(; expr; expr = triple_targ(state, ins, expr)) {
21218                                 struct triple *targ;
21219                                 targ = *expr;
21220                                 for(set = targ?targ->use:0; set; set = set->next) {
21221                                         if (set->member == ins) {
21222                                                 break;
21223                                         }
21224                                 }
21225                                 if (!set) {
21226                                         internal_error(state, ins, "targ not used");
21227                                 }
21228                         }
21229                 }
21230                 ins = ins->next;
21231         } while(ins != first);
21232         
21233 }
21234 static void verify_blocks_present(struct compile_state *state)
21235 {
21236         struct triple *first, *ins;
21237         if (!state->bb.first_block) {
21238                 return;
21239         }
21240         first = state->first;
21241         ins = first;
21242         do {
21243                 valid_ins(state, ins);
21244                 if (triple_stores_block(state, ins)) {
21245                         if (!ins->u.block) {
21246                                 internal_error(state, ins, 
21247                                         "%p not in a block?", ins);
21248                         }
21249                 }
21250                 ins = ins->next;
21251         } while(ins != first);
21252         
21253         
21254 }
21255
21256 static int edge_present(struct compile_state *state, struct block *block, struct triple *edge)
21257 {
21258         struct block_set *bedge;
21259         struct block *targ;
21260         targ = block_of_triple(state, edge);
21261         for(bedge = block->edges; bedge; bedge = bedge->next) {
21262                 if (bedge->member == targ) {
21263                         return 1;
21264                 }
21265         }
21266         return 0;
21267 }
21268
21269 static void verify_blocks(struct compile_state *state)
21270 {
21271         struct triple *ins;
21272         struct block *block;
21273         int blocks;
21274         block = state->bb.first_block;
21275         if (!block) {
21276                 return;
21277         }
21278         blocks = 0;
21279         do {
21280                 int users;
21281                 struct block_set *user, *edge;
21282                 blocks++;
21283                 for(ins = block->first; ins != block->last->next; ins = ins->next) {
21284                         if (triple_stores_block(state, ins) && (ins->u.block != block)) {
21285                                 internal_error(state, ins, "inconsitent block specified");
21286                         }
21287                         valid_ins(state, ins);
21288                 }
21289                 users = 0;
21290                 for(user = block->use; user; user = user->next) {
21291                         users++;
21292                         if (!user->member->first) {
21293                                 internal_error(state, block->first, "user is empty");
21294                         }
21295                         if ((block == state->bb.last_block) &&
21296                                 (user->member == state->bb.first_block)) {
21297                                 continue;
21298                         }
21299                         for(edge = user->member->edges; edge; edge = edge->next) {
21300                                 if (edge->member == block) {
21301                                         break;
21302                                 }
21303                         }
21304                         if (!edge) {
21305                                 internal_error(state, user->member->first,
21306                                         "user does not use block");
21307                         }
21308                 }
21309                 if (triple_is_branch(state, block->last)) {
21310                         struct triple **expr;
21311                         expr = triple_edge_targ(state, block->last, 0);
21312                         for(;expr; expr = triple_edge_targ(state, block->last, expr)) {
21313                                 if (*expr && !edge_present(state, block, *expr)) {
21314                                         internal_error(state, block->last, "no edge to targ");
21315                                 }
21316                         }
21317                 }
21318                 if (!triple_is_ubranch(state, block->last) &&
21319                         (block != state->bb.last_block) &&
21320                         !edge_present(state, block, block->last->next)) {
21321                         internal_error(state, block->last, "no edge to block->last->next");
21322                 }
21323                 for(edge = block->edges; edge; edge = edge->next) {
21324                         for(user = edge->member->use; user; user = user->next) {
21325                                 if (user->member == block) {
21326                                         break;
21327                                 }
21328                         }
21329                         if (!user || user->member != block) {
21330                                 internal_error(state, block->first,
21331                                         "block does not use edge");
21332                         }
21333                         if (!edge->member->first) {
21334                                 internal_error(state, block->first, "edge block is empty");
21335                         }
21336                 }
21337                 if (block->users != users) {
21338                         internal_error(state, block->first, 
21339                                 "computed users %d != stored users %d",
21340                                 users, block->users);
21341                 }
21342                 if (!triple_stores_block(state, block->last->next)) {
21343                         internal_error(state, block->last->next, 
21344                                 "cannot find next block");
21345                 }
21346                 block = block->last->next->u.block;
21347                 if (!block) {
21348                         internal_error(state, block->last->next,
21349                                 "bad next block");
21350                 }
21351         } while(block != state->bb.first_block);
21352         if (blocks != state->bb.last_vertex) {
21353                 internal_error(state, 0, "computed blocks: %d != stored blocks %d",
21354                         blocks, state->bb.last_vertex);
21355         }
21356 }
21357
21358 static void verify_domination(struct compile_state *state)
21359 {
21360         struct triple *first, *ins;
21361         struct triple_set *set;
21362         if (!state->bb.first_block) {
21363                 return;
21364         }
21365         
21366         first = state->first;
21367         ins = first;
21368         do {
21369                 for(set = ins->use; set; set = set->next) {
21370                         struct triple **slot;
21371                         struct triple *use_point;
21372                         int i, zrhs;
21373                         use_point = 0;
21374                         zrhs = set->member->rhs;
21375                         slot = &RHS(set->member, 0);
21376                         /* See if the use is on the right hand side */
21377                         for(i = 0; i < zrhs; i++) {
21378                                 if (slot[i] == ins) {
21379                                         break;
21380                                 }
21381                         }
21382                         if (i < zrhs) {
21383                                 use_point = set->member;
21384                                 if (set->member->op == OP_PHI) {
21385                                         struct block_set *bset;
21386                                         int edge;
21387                                         bset = set->member->u.block->use;
21388                                         for(edge = 0; bset && (edge < i); edge++) {
21389                                                 bset = bset->next;
21390                                         }
21391                                         if (!bset) {
21392                                                 internal_error(state, set->member, 
21393                                                         "no edge for phi rhs %d", i);
21394                                         }
21395                                         use_point = bset->member->last;
21396                                 }
21397                         }
21398                         if (use_point &&
21399                                 !tdominates(state, ins, use_point)) {
21400                                 if (is_const(ins)) {
21401                                         internal_warning(state, ins, 
21402                                         "non dominated rhs use point %p?", use_point);
21403                                 }
21404                                 else {
21405                                         internal_error(state, ins, 
21406                                                 "non dominated rhs use point %p?", use_point);
21407                                 }
21408                         }
21409                 }
21410                 ins = ins->next;
21411         } while(ins != first);
21412 }
21413
21414 static void verify_rhs(struct compile_state *state)
21415 {
21416         struct triple *first, *ins;
21417         first = state->first;
21418         ins = first;
21419         do {
21420                 struct triple **slot;
21421                 int zrhs, i;
21422                 zrhs = ins->rhs;
21423                 slot = &RHS(ins, 0);
21424                 for(i = 0; i < zrhs; i++) {
21425                         if (slot[i] == 0) {
21426                                 internal_error(state, ins,
21427                                         "missing rhs %d on %s",
21428                                         i, tops(ins->op));
21429                         }
21430                         if ((ins->op != OP_PHI) && (slot[i] == ins)) {
21431                                 internal_error(state, ins,
21432                                         "ins == rhs[%d] on %s",
21433                                         i, tops(ins->op));
21434                         }
21435                 }
21436                 ins = ins->next;
21437         } while(ins != first);
21438 }
21439
21440 static void verify_piece(struct compile_state *state)
21441 {
21442         struct triple *first, *ins;
21443         first = state->first;
21444         ins = first;
21445         do {
21446                 struct triple *ptr;
21447                 int lhs, i;
21448                 lhs = ins->lhs;
21449                 for(ptr = ins->next, i = 0; i < lhs; i++, ptr = ptr->next) {
21450                         if (ptr != LHS(ins, i)) {
21451                                 internal_error(state, ins, "malformed lhs on %s",
21452                                         tops(ins->op));
21453                         }
21454                         if (ptr->op != OP_PIECE) {
21455                                 internal_error(state, ins, "bad lhs op %s at %d on %s",
21456                                         tops(ptr->op), i, tops(ins->op));
21457                         }
21458                         if (ptr->u.cval != i) {
21459                                 internal_error(state, ins, "bad u.cval of %d %d expected",
21460                                         ptr->u.cval, i);
21461                         }
21462                 }
21463                 ins = ins->next;
21464         } while(ins != first);
21465 }
21466
21467 static void verify_ins_colors(struct compile_state *state)
21468 {
21469         struct triple *first, *ins;
21470         
21471         first = state->first;
21472         ins = first;
21473         do {
21474                 ins = ins->next;
21475         } while(ins != first);
21476 }
21477
21478 static void verify_unknown(struct compile_state *state)
21479 {
21480         struct triple *first, *ins;
21481         if (    (unknown_triple.next != &unknown_triple) ||
21482                 (unknown_triple.prev != &unknown_triple) ||
21483 #if 0
21484                 (unknown_triple.use != 0) ||
21485 #endif
21486                 (unknown_triple.op != OP_UNKNOWNVAL) ||
21487                 (unknown_triple.lhs != 0) ||
21488                 (unknown_triple.rhs != 0) ||
21489                 (unknown_triple.misc != 0) ||
21490                 (unknown_triple.targ != 0) ||
21491                 (unknown_triple.template_id != 0) ||
21492                 (unknown_triple.id != -1) ||
21493                 (unknown_triple.type != &unknown_type) ||
21494                 (unknown_triple.occurance != &dummy_occurance) ||
21495                 (unknown_triple.param[0] != 0) ||
21496                 (unknown_triple.param[1] != 0)) {
21497                 internal_error(state, &unknown_triple, "unknown_triple corrupted!");
21498         }
21499         if (    (dummy_occurance.count != 2) ||
21500                 (strcmp(dummy_occurance.filename, __FILE__) != 0) ||
21501                 (strcmp(dummy_occurance.function, "") != 0) ||
21502                 (dummy_occurance.col != 0) ||
21503                 (dummy_occurance.parent != 0)) {
21504                 internal_error(state, &unknown_triple, "dummy_occurance corrupted!");
21505         }
21506         if (    (unknown_type.type != TYPE_UNKNOWN)) {
21507                 internal_error(state, &unknown_triple, "unknown_type corrupted!");
21508         }
21509         first = state->first;
21510         ins = first;
21511         do {
21512                 int params, i;
21513                 if (ins == &unknown_triple) {
21514                         internal_error(state, ins, "unknown triple in list");
21515                 }
21516                 params = TRIPLE_SIZE(ins);
21517                 for(i = 0; i < params; i++) {
21518                         if (ins->param[i] == &unknown_triple) {
21519                                 internal_error(state, ins, "unknown triple used!");
21520                         }
21521                 }
21522                 ins = ins->next;
21523         } while(ins != first);
21524 }
21525
21526 static void verify_types(struct compile_state *state)
21527 {
21528         struct triple *first, *ins;
21529         first = state->first;
21530         ins = first;
21531         do {
21532                 struct type *invalid;
21533                 invalid = invalid_type(state, ins->type);
21534                 if (invalid) {
21535                         FILE *fp = state->errout;
21536                         fprintf(fp, "type: ");
21537                         name_of(fp, ins->type);
21538                         fprintf(fp, "\n");
21539                         fprintf(fp, "invalid type: ");
21540                         name_of(fp, invalid);
21541                         fprintf(fp, "\n");
21542                         internal_error(state, ins, "invalid ins type");
21543                 }
21544         } while(ins != first);
21545 }
21546
21547 static void verify_copy(struct compile_state *state)
21548 {
21549         struct triple *first, *ins, *next;
21550         first = state->first;
21551         next = ins = first;
21552         do {
21553                 ins = next;
21554                 next = ins->next;
21555                 if (ins->op != OP_COPY) {
21556                         continue;
21557                 }
21558                 if (!equiv_types(ins->type, RHS(ins, 0)->type)) {
21559                         FILE *fp = state->errout;
21560                         fprintf(fp, "src type: ");
21561                         name_of(fp, RHS(ins, 0)->type);
21562                         fprintf(fp, "\n");
21563                         fprintf(fp, "dst type: ");
21564                         name_of(fp, ins->type);
21565                         fprintf(fp, "\n");
21566                         internal_error(state, ins, "type mismatch in copy");
21567                 }
21568         } while(next != first);
21569 }
21570
21571 static void verify_consistency(struct compile_state *state)
21572 {
21573         verify_unknown(state);
21574         verify_uses(state);
21575         verify_blocks_present(state);
21576         verify_blocks(state);
21577         verify_domination(state);
21578         verify_rhs(state);
21579         verify_piece(state);
21580         verify_ins_colors(state);
21581         verify_types(state);
21582         verify_copy(state);
21583         if (state->compiler->debug & DEBUG_VERIFICATION) {
21584                 fprintf(state->dbgout, "consistency verified\n");
21585         }
21586 }
21587 #else 
21588 static void verify_consistency(struct compile_state *state) {}
21589 #endif /* DEBUG_CONSISTENCY */
21590
21591 static void optimize(struct compile_state *state)
21592 {
21593         /* Join all of the functions into one giant function */
21594         join_functions(state);
21595
21596         /* Dump what the instruction graph intially looks like */
21597         print_triples(state);
21598
21599         /* Replace structures with simpler data types */
21600         decompose_compound_types(state);
21601         print_triples(state);
21602
21603         verify_consistency(state);
21604         /* Analyze the intermediate code */
21605         state->bb.first = state->first;
21606         analyze_basic_blocks(state, &state->bb);
21607
21608         /* Transform the code to ssa form. */
21609         /*
21610          * The transformation to ssa form puts a phi function
21611          * on each of edge of a dominance frontier where that
21612          * phi function might be needed.  At -O2 if we don't
21613          * eleminate the excess phi functions we can get an
21614          * exponential code size growth.  So I kill the extra
21615          * phi functions early and I kill them often.
21616          */
21617         transform_to_ssa_form(state);
21618         verify_consistency(state);
21619
21620         /* Remove dead code */
21621         eliminate_inefectual_code(state);
21622         verify_consistency(state);
21623
21624         /* Do strength reduction and simple constant optimizations */
21625         simplify_all(state);
21626         verify_consistency(state);
21627         /* Propogate constants throughout the code */
21628         scc_transform(state);
21629         verify_consistency(state);
21630 #if DEBUG_ROMCC_WARNINGS
21631 #warning "WISHLIST implement single use constants (least possible register pressure)"
21632 #warning "WISHLIST implement induction variable elimination"
21633 #endif
21634         /* Select architecture instructions and an initial partial
21635          * coloring based on architecture constraints.
21636          */
21637         transform_to_arch_instructions(state);
21638         verify_consistency(state);
21639
21640         /* Remove dead code */
21641         eliminate_inefectual_code(state);
21642         verify_consistency(state);
21643
21644         /* Color all of the variables to see if they will fit in registers */
21645         insert_copies_to_phi(state);
21646         verify_consistency(state);
21647
21648         insert_mandatory_copies(state);
21649         verify_consistency(state);
21650
21651         allocate_registers(state);
21652         verify_consistency(state);
21653
21654         /* Remove the optimization information.
21655          * This is more to check for memory consistency than to free memory.
21656          */
21657         free_basic_blocks(state, &state->bb);
21658 }
21659
21660 static void print_op_asm(struct compile_state *state,
21661         struct triple *ins, FILE *fp)
21662 {
21663         struct asm_info *info;
21664         const char *ptr;
21665         unsigned lhs, rhs, i;
21666         info = ins->u.ainfo;
21667         lhs = ins->lhs;
21668         rhs = ins->rhs;
21669         /* Don't count the clobbers in lhs */
21670         for(i = 0; i < lhs; i++) {
21671                 if (LHS(ins, i)->type == &void_type) {
21672                         break;
21673                 }
21674         }
21675         lhs = i;
21676         fprintf(fp, "#ASM\n");
21677         fputc('\t', fp);
21678         for(ptr = info->str; *ptr; ptr++) {
21679                 char *next;
21680                 unsigned long param;
21681                 struct triple *piece;
21682                 if (*ptr != '%') {
21683                         fputc(*ptr, fp);
21684                         continue;
21685                 }
21686                 ptr++;
21687                 if (*ptr == '%') {
21688                         fputc('%', fp);
21689                         continue;
21690                 }
21691                 param = strtoul(ptr, &next, 10);
21692                 if (ptr == next) {
21693                         error(state, ins, "Invalid asm template");
21694                 }
21695                 if (param >= (lhs + rhs)) {
21696                         error(state, ins, "Invalid param %%%u in asm template",
21697                                 param);
21698                 }
21699                 piece = (param < lhs)? LHS(ins, param) : RHS(ins, param - lhs);
21700                 fprintf(fp, "%s", 
21701                         arch_reg_str(ID_REG(piece->id)));
21702                 ptr = next -1;
21703         }
21704         fprintf(fp, "\n#NOT ASM\n");
21705 }
21706
21707
21708 /* Only use the low x86 byte registers.  This allows me
21709  * allocate the entire register when a byte register is used.
21710  */
21711 #define X86_4_8BIT_GPRS 1
21712
21713 /* x86 featrues */
21714 #define X86_MMX_REGS  (1<<0)
21715 #define X86_XMM_REGS  (1<<1)
21716 #define X86_NOOP_COPY (1<<2)
21717
21718 /* The x86 register classes */
21719 #define REGC_FLAGS       0
21720 #define REGC_GPR8        1
21721 #define REGC_GPR16       2
21722 #define REGC_GPR32       3
21723 #define REGC_DIVIDEND64  4
21724 #define REGC_DIVIDEND32  5
21725 #define REGC_MMX         6
21726 #define REGC_XMM         7
21727 #define REGC_GPR32_8     8
21728 #define REGC_GPR16_8     9
21729 #define REGC_GPR8_LO    10
21730 #define REGC_IMM32      11
21731 #define REGC_IMM16      12
21732 #define REGC_IMM8       13
21733 #define LAST_REGC  REGC_IMM8
21734 #if LAST_REGC >= MAX_REGC
21735 #error "MAX_REGC is to low"
21736 #endif
21737
21738 /* Register class masks */
21739 #define REGCM_FLAGS      (1 << REGC_FLAGS)
21740 #define REGCM_GPR8       (1 << REGC_GPR8)
21741 #define REGCM_GPR16      (1 << REGC_GPR16)
21742 #define REGCM_GPR32      (1 << REGC_GPR32)
21743 #define REGCM_DIVIDEND64 (1 << REGC_DIVIDEND64)
21744 #define REGCM_DIVIDEND32 (1 << REGC_DIVIDEND32)
21745 #define REGCM_MMX        (1 << REGC_MMX)
21746 #define REGCM_XMM        (1 << REGC_XMM)
21747 #define REGCM_GPR32_8    (1 << REGC_GPR32_8)
21748 #define REGCM_GPR16_8    (1 << REGC_GPR16_8)
21749 #define REGCM_GPR8_LO    (1 << REGC_GPR8_LO)
21750 #define REGCM_IMM32      (1 << REGC_IMM32)
21751 #define REGCM_IMM16      (1 << REGC_IMM16)
21752 #define REGCM_IMM8       (1 << REGC_IMM8)
21753 #define REGCM_ALL        ((1 << (LAST_REGC + 1)) - 1)
21754 #define REGCM_IMMALL    (REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)
21755
21756 /* The x86 registers */
21757 #define REG_EFLAGS  2
21758 #define REGC_FLAGS_FIRST REG_EFLAGS
21759 #define REGC_FLAGS_LAST  REG_EFLAGS
21760 #define REG_AL      3
21761 #define REG_BL      4
21762 #define REG_CL      5
21763 #define REG_DL      6
21764 #define REG_AH      7
21765 #define REG_BH      8
21766 #define REG_CH      9
21767 #define REG_DH      10
21768 #define REGC_GPR8_LO_FIRST REG_AL
21769 #define REGC_GPR8_LO_LAST  REG_DL
21770 #define REGC_GPR8_FIRST  REG_AL
21771 #define REGC_GPR8_LAST   REG_DH
21772 #define REG_AX     11
21773 #define REG_BX     12
21774 #define REG_CX     13
21775 #define REG_DX     14
21776 #define REG_SI     15
21777 #define REG_DI     16
21778 #define REG_BP     17
21779 #define REG_SP     18
21780 #define REGC_GPR16_FIRST REG_AX
21781 #define REGC_GPR16_LAST  REG_SP
21782 #define REG_EAX    19
21783 #define REG_EBX    20
21784 #define REG_ECX    21
21785 #define REG_EDX    22
21786 #define REG_ESI    23
21787 #define REG_EDI    24
21788 #define REG_EBP    25
21789 #define REG_ESP    26
21790 #define REGC_GPR32_FIRST REG_EAX
21791 #define REGC_GPR32_LAST  REG_ESP
21792 #define REG_EDXEAX 27
21793 #define REGC_DIVIDEND64_FIRST REG_EDXEAX
21794 #define REGC_DIVIDEND64_LAST  REG_EDXEAX
21795 #define REG_DXAX   28
21796 #define REGC_DIVIDEND32_FIRST REG_DXAX
21797 #define REGC_DIVIDEND32_LAST  REG_DXAX
21798 #define REG_MMX0   29
21799 #define REG_MMX1   30
21800 #define REG_MMX2   31
21801 #define REG_MMX3   32
21802 #define REG_MMX4   33
21803 #define REG_MMX5   34
21804 #define REG_MMX6   35
21805 #define REG_MMX7   36
21806 #define REGC_MMX_FIRST REG_MMX0
21807 #define REGC_MMX_LAST  REG_MMX7
21808 #define REG_XMM0   37
21809 #define REG_XMM1   38
21810 #define REG_XMM2   39
21811 #define REG_XMM3   40
21812 #define REG_XMM4   41
21813 #define REG_XMM5   42
21814 #define REG_XMM6   43
21815 #define REG_XMM7   44
21816 #define REGC_XMM_FIRST REG_XMM0
21817 #define REGC_XMM_LAST  REG_XMM7
21818
21819 #if DEBUG_ROMCC_WARNINGS
21820 #warning "WISHLIST figure out how to use pinsrw and pextrw to better use extended regs"
21821 #endif
21822
21823 #define LAST_REG   REG_XMM7
21824
21825 #define REGC_GPR32_8_FIRST REG_EAX
21826 #define REGC_GPR32_8_LAST  REG_EDX
21827 #define REGC_GPR16_8_FIRST REG_AX
21828 #define REGC_GPR16_8_LAST  REG_DX
21829
21830 #define REGC_IMM8_FIRST    -1
21831 #define REGC_IMM8_LAST     -1
21832 #define REGC_IMM16_FIRST   -2
21833 #define REGC_IMM16_LAST    -1
21834 #define REGC_IMM32_FIRST   -4
21835 #define REGC_IMM32_LAST    -1
21836
21837 #if LAST_REG >= MAX_REGISTERS
21838 #error "MAX_REGISTERS to low"
21839 #endif
21840
21841
21842 static unsigned regc_size[LAST_REGC +1] = {
21843         [REGC_FLAGS]      = REGC_FLAGS_LAST      - REGC_FLAGS_FIRST + 1,
21844         [REGC_GPR8]       = REGC_GPR8_LAST       - REGC_GPR8_FIRST + 1,
21845         [REGC_GPR16]      = REGC_GPR16_LAST      - REGC_GPR16_FIRST + 1,
21846         [REGC_GPR32]      = REGC_GPR32_LAST      - REGC_GPR32_FIRST + 1,
21847         [REGC_DIVIDEND64] = REGC_DIVIDEND64_LAST - REGC_DIVIDEND64_FIRST + 1,
21848         [REGC_DIVIDEND32] = REGC_DIVIDEND32_LAST - REGC_DIVIDEND32_FIRST + 1,
21849         [REGC_MMX]        = REGC_MMX_LAST        - REGC_MMX_FIRST + 1,
21850         [REGC_XMM]        = REGC_XMM_LAST        - REGC_XMM_FIRST + 1,
21851         [REGC_GPR32_8]    = REGC_GPR32_8_LAST    - REGC_GPR32_8_FIRST + 1,
21852         [REGC_GPR16_8]    = REGC_GPR16_8_LAST    - REGC_GPR16_8_FIRST + 1,
21853         [REGC_GPR8_LO]    = REGC_GPR8_LO_LAST    - REGC_GPR8_LO_FIRST + 1,
21854         [REGC_IMM32]      = 0,
21855         [REGC_IMM16]      = 0,
21856         [REGC_IMM8]       = 0,
21857 };
21858
21859 static const struct {
21860         int first, last;
21861 } regcm_bound[LAST_REGC + 1] = {
21862         [REGC_FLAGS]      = { REGC_FLAGS_FIRST,      REGC_FLAGS_LAST },
21863         [REGC_GPR8]       = { REGC_GPR8_FIRST,       REGC_GPR8_LAST },
21864         [REGC_GPR16]      = { REGC_GPR16_FIRST,      REGC_GPR16_LAST },
21865         [REGC_GPR32]      = { REGC_GPR32_FIRST,      REGC_GPR32_LAST },
21866         [REGC_DIVIDEND64] = { REGC_DIVIDEND64_FIRST, REGC_DIVIDEND64_LAST },
21867         [REGC_DIVIDEND32] = { REGC_DIVIDEND32_FIRST, REGC_DIVIDEND32_LAST },
21868         [REGC_MMX]        = { REGC_MMX_FIRST,        REGC_MMX_LAST },
21869         [REGC_XMM]        = { REGC_XMM_FIRST,        REGC_XMM_LAST },
21870         [REGC_GPR32_8]    = { REGC_GPR32_8_FIRST,    REGC_GPR32_8_LAST },
21871         [REGC_GPR16_8]    = { REGC_GPR16_8_FIRST,    REGC_GPR16_8_LAST },
21872         [REGC_GPR8_LO]    = { REGC_GPR8_LO_FIRST,    REGC_GPR8_LO_LAST },
21873         [REGC_IMM32]      = { REGC_IMM32_FIRST,      REGC_IMM32_LAST },
21874         [REGC_IMM16]      = { REGC_IMM16_FIRST,      REGC_IMM16_LAST },
21875         [REGC_IMM8]       = { REGC_IMM8_FIRST,       REGC_IMM8_LAST },
21876 };
21877
21878 #if ARCH_INPUT_REGS != 4
21879 #error ARCH_INPUT_REGS size mismatch
21880 #endif
21881 static const struct reg_info arch_input_regs[ARCH_INPUT_REGS] = {
21882         { .reg = REG_EAX, .regcm = REGCM_GPR32 },
21883         { .reg = REG_EBX, .regcm = REGCM_GPR32 },
21884         { .reg = REG_ECX, .regcm = REGCM_GPR32 },
21885         { .reg = REG_EDX, .regcm = REGCM_GPR32 },
21886 };
21887
21888 #if ARCH_OUTPUT_REGS != 4
21889 #error ARCH_INPUT_REGS size mismatch
21890 #endif
21891 static const struct reg_info arch_output_regs[ARCH_OUTPUT_REGS] = {
21892         { .reg = REG_EAX, .regcm = REGCM_GPR32 },
21893         { .reg = REG_EBX, .regcm = REGCM_GPR32 },
21894         { .reg = REG_ECX, .regcm = REGCM_GPR32 },
21895         { .reg = REG_EDX, .regcm = REGCM_GPR32 },
21896 };
21897
21898 static void init_arch_state(struct arch_state *arch)
21899 {
21900         memset(arch, 0, sizeof(*arch));
21901         arch->features = 0;
21902 }
21903
21904 static const struct compiler_flag arch_flags[] = {
21905         { "mmx",       X86_MMX_REGS },
21906         { "sse",       X86_XMM_REGS },
21907         { "noop-copy", X86_NOOP_COPY },
21908         { 0,     0 },
21909 };
21910 static const struct compiler_flag arch_cpus[] = {
21911         { "i386", 0 },
21912         { "p2",   X86_MMX_REGS },
21913         { "p3",   X86_MMX_REGS | X86_XMM_REGS },
21914         { "p4",   X86_MMX_REGS | X86_XMM_REGS },
21915         { "k7",   X86_MMX_REGS },
21916         { "k8",   X86_MMX_REGS | X86_XMM_REGS },
21917         { "c3",   X86_MMX_REGS },
21918         { "c3-2", X86_MMX_REGS | X86_XMM_REGS }, /* Nehemiah */
21919         {  0,     0 }
21920 };
21921 static int arch_encode_flag(struct arch_state *arch, const char *flag)
21922 {
21923         int result;
21924         int act;
21925
21926         act = 1;
21927         result = -1;
21928         if (strncmp(flag, "no-", 3) == 0) {
21929                 flag += 3;
21930                 act = 0;
21931         }
21932         if (act && strncmp(flag, "cpu=", 4) == 0) {
21933                 flag += 4;
21934                 result = set_flag(arch_cpus, &arch->features, 1, flag);
21935         }
21936         else {
21937                 result = set_flag(arch_flags, &arch->features, act, flag);
21938         }
21939         return result;
21940 }
21941
21942 static void arch_usage(FILE *fp)
21943 {
21944         flag_usage(fp, arch_flags, "-m", "-mno-");
21945         flag_usage(fp, arch_cpus, "-mcpu=", 0);
21946 }
21947
21948 static unsigned arch_regc_size(struct compile_state *state, int class)
21949 {
21950         if ((class < 0) || (class > LAST_REGC)) {
21951                 return 0;
21952         }
21953         return regc_size[class];
21954 }
21955
21956 static int arch_regcm_intersect(unsigned regcm1, unsigned regcm2)
21957 {
21958         /* See if two register classes may have overlapping registers */
21959         unsigned gpr_mask = REGCM_GPR8 | REGCM_GPR8_LO | REGCM_GPR16_8 | REGCM_GPR16 |
21960                 REGCM_GPR32_8 | REGCM_GPR32 | 
21961                 REGCM_DIVIDEND32 | REGCM_DIVIDEND64;
21962
21963         /* Special case for the immediates */
21964         if ((regcm1 & (REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) &&
21965                 ((regcm1 & ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) == 0) &&
21966                 (regcm2 & (REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) &&
21967                 ((regcm2 & ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) == 0)) { 
21968                 return 0;
21969         }
21970         return (regcm1 & regcm2) ||
21971                 ((regcm1 & gpr_mask) && (regcm2 & gpr_mask));
21972 }
21973
21974 static void arch_reg_equivs(
21975         struct compile_state *state, unsigned *equiv, int reg)
21976 {
21977         if ((reg < 0) || (reg > LAST_REG)) {
21978                 internal_error(state, 0, "invalid register");
21979         }
21980         *equiv++ = reg;
21981         switch(reg) {
21982         case REG_AL:
21983 #if X86_4_8BIT_GPRS
21984                 *equiv++ = REG_AH;
21985 #endif
21986                 *equiv++ = REG_AX;
21987                 *equiv++ = REG_EAX;
21988                 *equiv++ = REG_DXAX;
21989                 *equiv++ = REG_EDXEAX;
21990                 break;
21991         case REG_AH:
21992 #if X86_4_8BIT_GPRS
21993                 *equiv++ = REG_AL;
21994 #endif
21995                 *equiv++ = REG_AX;
21996                 *equiv++ = REG_EAX;
21997                 *equiv++ = REG_DXAX;
21998                 *equiv++ = REG_EDXEAX;
21999                 break;
22000         case REG_BL:  
22001 #if X86_4_8BIT_GPRS
22002                 *equiv++ = REG_BH;
22003 #endif
22004                 *equiv++ = REG_BX;
22005                 *equiv++ = REG_EBX;
22006                 break;
22007
22008         case REG_BH:
22009 #if X86_4_8BIT_GPRS
22010                 *equiv++ = REG_BL;
22011 #endif
22012                 *equiv++ = REG_BX;
22013                 *equiv++ = REG_EBX;
22014                 break;
22015         case REG_CL:
22016 #if X86_4_8BIT_GPRS
22017                 *equiv++ = REG_CH;
22018 #endif
22019                 *equiv++ = REG_CX;
22020                 *equiv++ = REG_ECX;
22021                 break;
22022
22023         case REG_CH:
22024 #if X86_4_8BIT_GPRS
22025                 *equiv++ = REG_CL;
22026 #endif
22027                 *equiv++ = REG_CX;
22028                 *equiv++ = REG_ECX;
22029                 break;
22030         case REG_DL:
22031 #if X86_4_8BIT_GPRS
22032                 *equiv++ = REG_DH;
22033 #endif
22034                 *equiv++ = REG_DX;
22035                 *equiv++ = REG_EDX;
22036                 *equiv++ = REG_DXAX;
22037                 *equiv++ = REG_EDXEAX;
22038                 break;
22039         case REG_DH:
22040 #if X86_4_8BIT_GPRS
22041                 *equiv++ = REG_DL;
22042 #endif
22043                 *equiv++ = REG_DX;
22044                 *equiv++ = REG_EDX;
22045                 *equiv++ = REG_DXAX;
22046                 *equiv++ = REG_EDXEAX;
22047                 break;
22048         case REG_AX:
22049                 *equiv++ = REG_AL;
22050                 *equiv++ = REG_AH;
22051                 *equiv++ = REG_EAX;
22052                 *equiv++ = REG_DXAX;
22053                 *equiv++ = REG_EDXEAX;
22054                 break;
22055         case REG_BX:
22056                 *equiv++ = REG_BL;
22057                 *equiv++ = REG_BH;
22058                 *equiv++ = REG_EBX;
22059                 break;
22060         case REG_CX:  
22061                 *equiv++ = REG_CL;
22062                 *equiv++ = REG_CH;
22063                 *equiv++ = REG_ECX;
22064                 break;
22065         case REG_DX:  
22066                 *equiv++ = REG_DL;
22067                 *equiv++ = REG_DH;
22068                 *equiv++ = REG_EDX;
22069                 *equiv++ = REG_DXAX;
22070                 *equiv++ = REG_EDXEAX;
22071                 break;
22072         case REG_SI:  
22073                 *equiv++ = REG_ESI;
22074                 break;
22075         case REG_DI:
22076                 *equiv++ = REG_EDI;
22077                 break;
22078         case REG_BP:
22079                 *equiv++ = REG_EBP;
22080                 break;
22081         case REG_SP:
22082                 *equiv++ = REG_ESP;
22083                 break;
22084         case REG_EAX:
22085                 *equiv++ = REG_AL;
22086                 *equiv++ = REG_AH;
22087                 *equiv++ = REG_AX;
22088                 *equiv++ = REG_DXAX;
22089                 *equiv++ = REG_EDXEAX;
22090                 break;
22091         case REG_EBX:
22092                 *equiv++ = REG_BL;
22093                 *equiv++ = REG_BH;
22094                 *equiv++ = REG_BX;
22095                 break;
22096         case REG_ECX:
22097                 *equiv++ = REG_CL;
22098                 *equiv++ = REG_CH;
22099                 *equiv++ = REG_CX;
22100                 break;
22101         case REG_EDX:
22102                 *equiv++ = REG_DL;
22103                 *equiv++ = REG_DH;
22104                 *equiv++ = REG_DX;
22105                 *equiv++ = REG_DXAX;
22106                 *equiv++ = REG_EDXEAX;
22107                 break;
22108         case REG_ESI: 
22109                 *equiv++ = REG_SI;
22110                 break;
22111         case REG_EDI: 
22112                 *equiv++ = REG_DI;
22113                 break;
22114         case REG_EBP: 
22115                 *equiv++ = REG_BP;
22116                 break;
22117         case REG_ESP: 
22118                 *equiv++ = REG_SP;
22119                 break;
22120         case REG_DXAX: 
22121                 *equiv++ = REG_AL;
22122                 *equiv++ = REG_AH;
22123                 *equiv++ = REG_DL;
22124                 *equiv++ = REG_DH;
22125                 *equiv++ = REG_AX;
22126                 *equiv++ = REG_DX;
22127                 *equiv++ = REG_EAX;
22128                 *equiv++ = REG_EDX;
22129                 *equiv++ = REG_EDXEAX;
22130                 break;
22131         case REG_EDXEAX: 
22132                 *equiv++ = REG_AL;
22133                 *equiv++ = REG_AH;
22134                 *equiv++ = REG_DL;
22135                 *equiv++ = REG_DH;
22136                 *equiv++ = REG_AX;
22137                 *equiv++ = REG_DX;
22138                 *equiv++ = REG_EAX;
22139                 *equiv++ = REG_EDX;
22140                 *equiv++ = REG_DXAX;
22141                 break;
22142         }
22143         *equiv++ = REG_UNSET; 
22144 }
22145
22146 static unsigned arch_avail_mask(struct compile_state *state)
22147 {
22148         unsigned avail_mask;
22149         /* REGCM_GPR8 is not available */
22150         avail_mask = REGCM_GPR8_LO | REGCM_GPR16_8 | REGCM_GPR16 | 
22151                 REGCM_GPR32 | REGCM_GPR32_8 | 
22152                 REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
22153                 REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8 | REGCM_FLAGS;
22154         if (state->arch->features & X86_MMX_REGS) {
22155                 avail_mask |= REGCM_MMX;
22156         }
22157         if (state->arch->features & X86_XMM_REGS) {
22158                 avail_mask |= REGCM_XMM;
22159         }
22160         return avail_mask;
22161 }
22162
22163 static unsigned arch_regcm_normalize(struct compile_state *state, unsigned regcm)
22164 {
22165         unsigned mask, result;
22166         int class, class2;
22167         result = regcm;
22168
22169         for(class = 0, mask = 1; mask; mask <<= 1, class++) {
22170                 if ((result & mask) == 0) {
22171                         continue;
22172                 }
22173                 if (class > LAST_REGC) {
22174                         result &= ~mask;
22175                 }
22176                 for(class2 = 0; class2 <= LAST_REGC; class2++) {
22177                         if ((regcm_bound[class2].first >= regcm_bound[class].first) &&
22178                                 (regcm_bound[class2].last <= regcm_bound[class].last)) {
22179                                 result |= (1 << class2);
22180                         }
22181                 }
22182         }
22183         result &= arch_avail_mask(state);
22184         return result;
22185 }
22186
22187 static unsigned arch_regcm_reg_normalize(struct compile_state *state, unsigned regcm)
22188 {
22189         /* Like arch_regcm_normalize except immediate register classes are excluded */
22190         regcm = arch_regcm_normalize(state, regcm);
22191         /* Remove the immediate register classes */
22192         regcm &= ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8);
22193         return regcm;
22194         
22195 }
22196
22197 static unsigned arch_reg_regcm(struct compile_state *state, int reg)
22198 {
22199         unsigned mask;
22200         int class;
22201         mask = 0;
22202         for(class = 0; class <= LAST_REGC; class++) {
22203                 if ((reg >= regcm_bound[class].first) &&
22204                         (reg <= regcm_bound[class].last)) {
22205                         mask |= (1 << class);
22206                 }
22207         }
22208         if (!mask) {
22209                 internal_error(state, 0, "reg %d not in any class", reg);
22210         }
22211         return mask;
22212 }
22213
22214 static struct reg_info arch_reg_constraint(
22215         struct compile_state *state, struct type *type, const char *constraint)
22216 {
22217         static const struct {
22218                 char class;
22219                 unsigned int mask;
22220                 unsigned int reg;
22221         } constraints[] = {
22222                 { 'r', REGCM_GPR32,   REG_UNSET },
22223                 { 'g', REGCM_GPR32,   REG_UNSET },
22224                 { 'p', REGCM_GPR32,   REG_UNSET },
22225                 { 'q', REGCM_GPR8_LO, REG_UNSET },
22226                 { 'Q', REGCM_GPR32_8, REG_UNSET },
22227                 { 'x', REGCM_XMM,     REG_UNSET },
22228                 { 'y', REGCM_MMX,     REG_UNSET },
22229                 { 'a', REGCM_GPR32,   REG_EAX },
22230                 { 'b', REGCM_GPR32,   REG_EBX },
22231                 { 'c', REGCM_GPR32,   REG_ECX },
22232                 { 'd', REGCM_GPR32,   REG_EDX },
22233                 { 'D', REGCM_GPR32,   REG_EDI },
22234                 { 'S', REGCM_GPR32,   REG_ESI },
22235                 { '\0', 0, REG_UNSET },
22236         };
22237         unsigned int regcm;
22238         unsigned int mask, reg;
22239         struct reg_info result;
22240         const char *ptr;
22241         regcm = arch_type_to_regcm(state, type);
22242         reg = REG_UNSET;
22243         mask = 0;
22244         for(ptr = constraint; *ptr; ptr++) {
22245                 int i;
22246                 if (*ptr ==  ' ') {
22247                         continue;
22248                 }
22249                 for(i = 0; constraints[i].class != '\0'; i++) {
22250                         if (constraints[i].class == *ptr) {
22251                                 break;
22252                         }
22253                 }
22254                 if (constraints[i].class == '\0') {
22255                         error(state, 0, "invalid register constraint ``%c''", *ptr);
22256                         break;
22257                 }
22258                 if ((constraints[i].mask & regcm) == 0) {
22259                         error(state, 0, "invalid register class %c specified",
22260                                 *ptr);
22261                 }
22262                 mask |= constraints[i].mask;
22263                 if (constraints[i].reg != REG_UNSET) {
22264                         if ((reg != REG_UNSET) && (reg != constraints[i].reg)) {
22265                                 error(state, 0, "Only one register may be specified");
22266                         }
22267                         reg = constraints[i].reg;
22268                 }
22269         }
22270         result.reg = reg;
22271         result.regcm = mask;
22272         return result;
22273 }
22274
22275 static struct reg_info arch_reg_clobber(
22276         struct compile_state *state, const char *clobber)
22277 {
22278         struct reg_info result;
22279         if (strcmp(clobber, "memory") == 0) {
22280                 result.reg = REG_UNSET;
22281                 result.regcm = 0;
22282         }
22283         else if (strcmp(clobber, "eax") == 0) {
22284                 result.reg = REG_EAX;
22285                 result.regcm = REGCM_GPR32;
22286         }
22287         else if (strcmp(clobber, "ebx") == 0) {
22288                 result.reg = REG_EBX;
22289                 result.regcm = REGCM_GPR32;
22290         }
22291         else if (strcmp(clobber, "ecx") == 0) {
22292                 result.reg = REG_ECX;
22293                 result.regcm = REGCM_GPR32;
22294         }
22295         else if (strcmp(clobber, "edx") == 0) {
22296                 result.reg = REG_EDX;
22297                 result.regcm = REGCM_GPR32;
22298         }
22299         else if (strcmp(clobber, "esi") == 0) {
22300                 result.reg = REG_ESI;
22301                 result.regcm = REGCM_GPR32;
22302         }
22303         else if (strcmp(clobber, "edi") == 0) {
22304                 result.reg = REG_EDI;
22305                 result.regcm = REGCM_GPR32;
22306         }
22307         else if (strcmp(clobber, "ebp") == 0) {
22308                 result.reg = REG_EBP;
22309                 result.regcm = REGCM_GPR32;
22310         }
22311         else if (strcmp(clobber, "esp") == 0) {
22312                 result.reg = REG_ESP;
22313                 result.regcm = REGCM_GPR32;
22314         }
22315         else if (strcmp(clobber, "cc") == 0) {
22316                 result.reg = REG_EFLAGS;
22317                 result.regcm = REGCM_FLAGS;
22318         }
22319         else if ((strncmp(clobber, "xmm", 3) == 0)  &&
22320                 octdigitp(clobber[3]) && (clobber[4] == '\0')) {
22321                 result.reg = REG_XMM0 + octdigval(clobber[3]);
22322                 result.regcm = REGCM_XMM;
22323         }
22324         else if ((strncmp(clobber, "mm", 2) == 0) &&
22325                 octdigitp(clobber[3]) && (clobber[4] == '\0')) {
22326                 result.reg = REG_MMX0 + octdigval(clobber[3]);
22327                 result.regcm = REGCM_MMX;
22328         }
22329         else {
22330                 error(state, 0, "unknown register name `%s' in asm",
22331                         clobber);
22332                 result.reg = REG_UNSET;
22333                 result.regcm = 0;
22334         }
22335         return result;
22336 }
22337
22338 static int do_select_reg(struct compile_state *state, 
22339         char *used, int reg, unsigned classes)
22340 {
22341         unsigned mask;
22342         if (used[reg]) {
22343                 return REG_UNSET;
22344         }
22345         mask = arch_reg_regcm(state, reg);
22346         return (classes & mask) ? reg : REG_UNSET;
22347 }
22348
22349 static int arch_select_free_register(
22350         struct compile_state *state, char *used, int classes)
22351 {
22352         /* Live ranges with the most neighbors are colored first.
22353          *
22354          * Generally it does not matter which colors are given
22355          * as the register allocator attempts to color live ranges
22356          * in an order where you are guaranteed not to run out of colors.
22357          *
22358          * Occasionally the register allocator cannot find an order
22359          * of register selection that will find a free color.  To
22360          * increase the odds the register allocator will work when
22361          * it guesses first give out registers from register classes
22362          * least likely to run out of registers.
22363          * 
22364          */
22365         int i, reg;
22366         reg = REG_UNSET;
22367         for(i = REGC_XMM_FIRST; (reg == REG_UNSET) && (i <= REGC_XMM_LAST); i++) {
22368                 reg = do_select_reg(state, used, i, classes);
22369         }
22370         for(i = REGC_MMX_FIRST; (reg == REG_UNSET) && (i <= REGC_MMX_LAST); i++) {
22371                 reg = do_select_reg(state, used, i, classes);
22372         }
22373         for(i = REGC_GPR32_LAST; (reg == REG_UNSET) && (i >= REGC_GPR32_FIRST); i--) {
22374                 reg = do_select_reg(state, used, i, classes);
22375         }
22376         for(i = REGC_GPR16_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR16_LAST); i++) {
22377                 reg = do_select_reg(state, used, i, classes);
22378         }
22379         for(i = REGC_GPR8_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR8_LAST); i++) {
22380                 reg = do_select_reg(state, used, i, classes);
22381         }
22382         for(i = REGC_GPR8_LO_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR8_LO_LAST); i++) {
22383                 reg = do_select_reg(state, used, i, classes);
22384         }
22385         for(i = REGC_DIVIDEND32_FIRST; (reg == REG_UNSET) && (i <= REGC_DIVIDEND32_LAST); i++) {
22386                 reg = do_select_reg(state, used, i, classes);
22387         }
22388         for(i = REGC_DIVIDEND64_FIRST; (reg == REG_UNSET) && (i <= REGC_DIVIDEND64_LAST); i++) {
22389                 reg = do_select_reg(state, used, i, classes);
22390         }
22391         for(i = REGC_FLAGS_FIRST; (reg == REG_UNSET) && (i <= REGC_FLAGS_LAST); i++) {
22392                 reg = do_select_reg(state, used, i, classes);
22393         }
22394         return reg;
22395 }
22396
22397
22398 static unsigned arch_type_to_regcm(struct compile_state *state, struct type *type) 
22399 {
22400
22401 #if DEBUG_ROMCC_WARNINGS
22402 #warning "FIXME force types smaller (if legal) before I get here"
22403 #endif
22404         unsigned mask;
22405         mask = 0;
22406         switch(type->type & TYPE_MASK) {
22407         case TYPE_ARRAY:
22408         case TYPE_VOID: 
22409                 mask = 0; 
22410                 break;
22411         case TYPE_CHAR:
22412         case TYPE_UCHAR:
22413                 mask = REGCM_GPR8 | REGCM_GPR8_LO |
22414                         REGCM_GPR16 | REGCM_GPR16_8 | 
22415                         REGCM_GPR32 | REGCM_GPR32_8 |
22416                         REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
22417                         REGCM_MMX | REGCM_XMM |
22418                         REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8;
22419                 break;
22420         case TYPE_SHORT:
22421         case TYPE_USHORT:
22422                 mask =  REGCM_GPR16 | REGCM_GPR16_8 |
22423                         REGCM_GPR32 | REGCM_GPR32_8 |
22424                         REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
22425                         REGCM_MMX | REGCM_XMM |
22426                         REGCM_IMM32 | REGCM_IMM16;
22427                 break;
22428         case TYPE_ENUM:
22429         case TYPE_INT:
22430         case TYPE_UINT:
22431         case TYPE_LONG:
22432         case TYPE_ULONG:
22433         case TYPE_POINTER:
22434                 mask =  REGCM_GPR32 | REGCM_GPR32_8 |
22435                         REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
22436                         REGCM_MMX | REGCM_XMM |
22437                         REGCM_IMM32;
22438                 break;
22439         case TYPE_JOIN:
22440         case TYPE_UNION:
22441                 mask = arch_type_to_regcm(state, type->left);
22442                 break;
22443         case TYPE_OVERLAP:
22444                 mask = arch_type_to_regcm(state, type->left) &
22445                         arch_type_to_regcm(state, type->right);
22446                 break;
22447         case TYPE_BITFIELD:
22448                 mask = arch_type_to_regcm(state, type->left);
22449                 break;
22450         default:
22451                 fprintf(state->errout, "type: ");
22452                 name_of(state->errout, type);
22453                 fprintf(state->errout, "\n");
22454                 internal_error(state, 0, "no register class for type");
22455                 break;
22456         }
22457         mask = arch_regcm_normalize(state, mask);
22458         return mask;
22459 }
22460
22461 static int is_imm32(struct triple *imm)
22462 {
22463         // second condition commented out to prevent compiler warning:
22464         // imm->u.cval is always 32bit unsigned, so the comparison is
22465         // always true.
22466         return ((imm->op == OP_INTCONST) /* && (imm->u.cval <= 0xffffffffUL) */ ) ||
22467                 (imm->op == OP_ADDRCONST);
22468         
22469 }
22470 static int is_imm16(struct triple *imm)
22471 {
22472         return ((imm->op == OP_INTCONST) && (imm->u.cval <= 0xffff));
22473 }
22474 static int is_imm8(struct triple *imm)
22475 {
22476         return ((imm->op == OP_INTCONST) && (imm->u.cval <= 0xff));
22477 }
22478
22479 static int get_imm32(struct triple *ins, struct triple **expr)
22480 {
22481         struct triple *imm;
22482         imm = *expr;
22483         while(imm->op == OP_COPY) {
22484                 imm = RHS(imm, 0);
22485         }
22486         if (!is_imm32(imm)) {
22487                 return 0;
22488         }
22489         unuse_triple(*expr, ins);
22490         use_triple(imm, ins);
22491         *expr = imm;
22492         return 1;
22493 }
22494
22495 static int get_imm8(struct triple *ins, struct triple **expr)
22496 {
22497         struct triple *imm;
22498         imm = *expr;
22499         while(imm->op == OP_COPY) {
22500                 imm = RHS(imm, 0);
22501         }
22502         if (!is_imm8(imm)) {
22503                 return 0;
22504         }
22505         unuse_triple(*expr, ins);
22506         use_triple(imm, ins);
22507         *expr = imm;
22508         return 1;
22509 }
22510
22511 #define TEMPLATE_NOP           0
22512 #define TEMPLATE_INTCONST8     1
22513 #define TEMPLATE_INTCONST32    2
22514 #define TEMPLATE_UNKNOWNVAL    3
22515 #define TEMPLATE_COPY8_REG     5
22516 #define TEMPLATE_COPY16_REG    6
22517 #define TEMPLATE_COPY32_REG    7
22518 #define TEMPLATE_COPY_IMM8     8
22519 #define TEMPLATE_COPY_IMM16    9
22520 #define TEMPLATE_COPY_IMM32   10
22521 #define TEMPLATE_PHI8         11
22522 #define TEMPLATE_PHI16        12
22523 #define TEMPLATE_PHI32        13
22524 #define TEMPLATE_STORE8       14
22525 #define TEMPLATE_STORE16      15
22526 #define TEMPLATE_STORE32      16
22527 #define TEMPLATE_LOAD8        17
22528 #define TEMPLATE_LOAD16       18
22529 #define TEMPLATE_LOAD32       19
22530 #define TEMPLATE_BINARY8_REG  20
22531 #define TEMPLATE_BINARY16_REG 21
22532 #define TEMPLATE_BINARY32_REG 22
22533 #define TEMPLATE_BINARY8_IMM  23
22534 #define TEMPLATE_BINARY16_IMM 24
22535 #define TEMPLATE_BINARY32_IMM 25
22536 #define TEMPLATE_SL8_CL       26
22537 #define TEMPLATE_SL16_CL      27
22538 #define TEMPLATE_SL32_CL      28
22539 #define TEMPLATE_SL8_IMM      29
22540 #define TEMPLATE_SL16_IMM     30
22541 #define TEMPLATE_SL32_IMM     31
22542 #define TEMPLATE_UNARY8       32
22543 #define TEMPLATE_UNARY16      33
22544 #define TEMPLATE_UNARY32      34
22545 #define TEMPLATE_CMP8_REG     35
22546 #define TEMPLATE_CMP16_REG    36
22547 #define TEMPLATE_CMP32_REG    37
22548 #define TEMPLATE_CMP8_IMM     38
22549 #define TEMPLATE_CMP16_IMM    39
22550 #define TEMPLATE_CMP32_IMM    40
22551 #define TEMPLATE_TEST8        41
22552 #define TEMPLATE_TEST16       42
22553 #define TEMPLATE_TEST32       43
22554 #define TEMPLATE_SET          44
22555 #define TEMPLATE_JMP          45
22556 #define TEMPLATE_RET          46
22557 #define TEMPLATE_INB_DX       47
22558 #define TEMPLATE_INB_IMM      48
22559 #define TEMPLATE_INW_DX       49
22560 #define TEMPLATE_INW_IMM      50
22561 #define TEMPLATE_INL_DX       51
22562 #define TEMPLATE_INL_IMM      52
22563 #define TEMPLATE_OUTB_DX      53
22564 #define TEMPLATE_OUTB_IMM     54
22565 #define TEMPLATE_OUTW_DX      55
22566 #define TEMPLATE_OUTW_IMM     56
22567 #define TEMPLATE_OUTL_DX      57
22568 #define TEMPLATE_OUTL_IMM     58
22569 #define TEMPLATE_BSF          59
22570 #define TEMPLATE_RDMSR        60
22571 #define TEMPLATE_WRMSR        61
22572 #define TEMPLATE_UMUL8        62
22573 #define TEMPLATE_UMUL16       63
22574 #define TEMPLATE_UMUL32       64
22575 #define TEMPLATE_DIV8         65
22576 #define TEMPLATE_DIV16        66
22577 #define TEMPLATE_DIV32        67
22578 #define LAST_TEMPLATE       TEMPLATE_DIV32
22579 #if LAST_TEMPLATE >= MAX_TEMPLATES
22580 #error "MAX_TEMPLATES to low"
22581 #endif
22582
22583 #define COPY8_REGCM     (REGCM_DIVIDEND64 | REGCM_DIVIDEND32 | REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO | REGCM_MMX | REGCM_XMM)
22584 #define COPY16_REGCM    (REGCM_DIVIDEND64 | REGCM_DIVIDEND32 | REGCM_GPR32 | REGCM_GPR16 | REGCM_MMX | REGCM_XMM)  
22585 #define COPY32_REGCM    (REGCM_DIVIDEND64 | REGCM_DIVIDEND32 | REGCM_GPR32 | REGCM_MMX | REGCM_XMM)
22586
22587
22588 static struct ins_template templates[] = {
22589         [TEMPLATE_NOP]      = {
22590                 .lhs = { 
22591                         [ 0] = { REG_UNNEEDED, REGCM_IMMALL },
22592                         [ 1] = { REG_UNNEEDED, REGCM_IMMALL },
22593                         [ 2] = { REG_UNNEEDED, REGCM_IMMALL },
22594                         [ 3] = { REG_UNNEEDED, REGCM_IMMALL },
22595                         [ 4] = { REG_UNNEEDED, REGCM_IMMALL },
22596                         [ 5] = { REG_UNNEEDED, REGCM_IMMALL },
22597                         [ 6] = { REG_UNNEEDED, REGCM_IMMALL },
22598                         [ 7] = { REG_UNNEEDED, REGCM_IMMALL },
22599                         [ 8] = { REG_UNNEEDED, REGCM_IMMALL },
22600                         [ 9] = { REG_UNNEEDED, REGCM_IMMALL },
22601                         [10] = { REG_UNNEEDED, REGCM_IMMALL },
22602                         [11] = { REG_UNNEEDED, REGCM_IMMALL },
22603                         [12] = { REG_UNNEEDED, REGCM_IMMALL },
22604                         [13] = { REG_UNNEEDED, REGCM_IMMALL },
22605                         [14] = { REG_UNNEEDED, REGCM_IMMALL },
22606                         [15] = { REG_UNNEEDED, REGCM_IMMALL },
22607                         [16] = { REG_UNNEEDED, REGCM_IMMALL },
22608                         [17] = { REG_UNNEEDED, REGCM_IMMALL },
22609                         [18] = { REG_UNNEEDED, REGCM_IMMALL },
22610                         [19] = { REG_UNNEEDED, REGCM_IMMALL },
22611                         [20] = { REG_UNNEEDED, REGCM_IMMALL },
22612                         [21] = { REG_UNNEEDED, REGCM_IMMALL },
22613                         [22] = { REG_UNNEEDED, REGCM_IMMALL },
22614                         [23] = { REG_UNNEEDED, REGCM_IMMALL },
22615                         [24] = { REG_UNNEEDED, REGCM_IMMALL },
22616                         [25] = { REG_UNNEEDED, REGCM_IMMALL },
22617                         [26] = { REG_UNNEEDED, REGCM_IMMALL },
22618                         [27] = { REG_UNNEEDED, REGCM_IMMALL },
22619                         [28] = { REG_UNNEEDED, REGCM_IMMALL },
22620                         [29] = { REG_UNNEEDED, REGCM_IMMALL },
22621                         [30] = { REG_UNNEEDED, REGCM_IMMALL },
22622                         [31] = { REG_UNNEEDED, REGCM_IMMALL },
22623                         [32] = { REG_UNNEEDED, REGCM_IMMALL },
22624                         [33] = { REG_UNNEEDED, REGCM_IMMALL },
22625                         [34] = { REG_UNNEEDED, REGCM_IMMALL },
22626                         [35] = { REG_UNNEEDED, REGCM_IMMALL },
22627                         [36] = { REG_UNNEEDED, REGCM_IMMALL },
22628                         [37] = { REG_UNNEEDED, REGCM_IMMALL },
22629                         [38] = { REG_UNNEEDED, REGCM_IMMALL },
22630                         [39] = { REG_UNNEEDED, REGCM_IMMALL },
22631                         [40] = { REG_UNNEEDED, REGCM_IMMALL },
22632                         [41] = { REG_UNNEEDED, REGCM_IMMALL },
22633                         [42] = { REG_UNNEEDED, REGCM_IMMALL },
22634                         [43] = { REG_UNNEEDED, REGCM_IMMALL },
22635                         [44] = { REG_UNNEEDED, REGCM_IMMALL },
22636                         [45] = { REG_UNNEEDED, REGCM_IMMALL },
22637                         [46] = { REG_UNNEEDED, REGCM_IMMALL },
22638                         [47] = { REG_UNNEEDED, REGCM_IMMALL },
22639                         [48] = { REG_UNNEEDED, REGCM_IMMALL },
22640                         [49] = { REG_UNNEEDED, REGCM_IMMALL },
22641                         [50] = { REG_UNNEEDED, REGCM_IMMALL },
22642                         [51] = { REG_UNNEEDED, REGCM_IMMALL },
22643                         [52] = { REG_UNNEEDED, REGCM_IMMALL },
22644                         [53] = { REG_UNNEEDED, REGCM_IMMALL },
22645                         [54] = { REG_UNNEEDED, REGCM_IMMALL },
22646                         [55] = { REG_UNNEEDED, REGCM_IMMALL },
22647                         [56] = { REG_UNNEEDED, REGCM_IMMALL },
22648                         [57] = { REG_UNNEEDED, REGCM_IMMALL },
22649                         [58] = { REG_UNNEEDED, REGCM_IMMALL },
22650                         [59] = { REG_UNNEEDED, REGCM_IMMALL },
22651                         [60] = { REG_UNNEEDED, REGCM_IMMALL },
22652                         [61] = { REG_UNNEEDED, REGCM_IMMALL },
22653                         [62] = { REG_UNNEEDED, REGCM_IMMALL },
22654                         [63] = { REG_UNNEEDED, REGCM_IMMALL },
22655                 },
22656         },
22657         [TEMPLATE_INTCONST8] = { 
22658                 .lhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
22659         },
22660         [TEMPLATE_INTCONST32] = { 
22661                 .lhs = { [0] = { REG_UNNEEDED, REGCM_IMM32 } },
22662         },
22663         [TEMPLATE_UNKNOWNVAL] = {
22664                 .lhs = { [0] = { REG_UNSET, COPY32_REGCM } },
22665         },
22666         [TEMPLATE_COPY8_REG] = {
22667                 .lhs = { [0] = { REG_UNSET, COPY8_REGCM } },
22668                 .rhs = { [0] = { REG_UNSET, COPY8_REGCM }  },
22669         },
22670         [TEMPLATE_COPY16_REG] = {
22671                 .lhs = { [0] = { REG_UNSET, COPY16_REGCM } },
22672                 .rhs = { [0] = { REG_UNSET, COPY16_REGCM }  },
22673         },
22674         [TEMPLATE_COPY32_REG] = {
22675                 .lhs = { [0] = { REG_UNSET, COPY32_REGCM } },
22676                 .rhs = { [0] = { REG_UNSET, COPY32_REGCM }  },
22677         },
22678         [TEMPLATE_COPY_IMM8] = {
22679                 .lhs = { [0] = { REG_UNSET, COPY8_REGCM } },
22680                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
22681         },
22682         [TEMPLATE_COPY_IMM16] = {
22683                 .lhs = { [0] = { REG_UNSET, COPY16_REGCM } },
22684                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM16 | REGCM_IMM8 } },
22685         },
22686         [TEMPLATE_COPY_IMM32] = {
22687                 .lhs = { [0] = { REG_UNSET, COPY32_REGCM } },
22688                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8 } },
22689         },
22690         [TEMPLATE_PHI8] = { 
22691                 .lhs = { [0] = { REG_VIRT0, COPY8_REGCM } },
22692                 .rhs = { [0] = { REG_VIRT0, COPY8_REGCM } },
22693         },
22694         [TEMPLATE_PHI16] = { 
22695                 .lhs = { [0] = { REG_VIRT0, COPY16_REGCM } },
22696                 .rhs = { [0] = { REG_VIRT0, COPY16_REGCM } }, 
22697         },
22698         [TEMPLATE_PHI32] = { 
22699                 .lhs = { [0] = { REG_VIRT0, COPY32_REGCM } },
22700                 .rhs = { [0] = { REG_VIRT0, COPY32_REGCM } }, 
22701         },
22702         [TEMPLATE_STORE8] = {
22703                 .rhs = { 
22704                         [0] = { REG_UNSET, REGCM_GPR32 },
22705                         [1] = { REG_UNSET, REGCM_GPR8_LO },
22706                 },
22707         },
22708         [TEMPLATE_STORE16] = {
22709                 .rhs = { 
22710                         [0] = { REG_UNSET, REGCM_GPR32 },
22711                         [1] = { REG_UNSET, REGCM_GPR16 },
22712                 },
22713         },
22714         [TEMPLATE_STORE32] = {
22715                 .rhs = { 
22716                         [0] = { REG_UNSET, REGCM_GPR32 },
22717                         [1] = { REG_UNSET, REGCM_GPR32 },
22718                 },
22719         },
22720         [TEMPLATE_LOAD8] = {
22721                 .lhs = { [0] = { REG_UNSET, REGCM_GPR8_LO } },
22722                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22723         },
22724         [TEMPLATE_LOAD16] = {
22725                 .lhs = { [0] = { REG_UNSET, REGCM_GPR16 } },
22726                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22727         },
22728         [TEMPLATE_LOAD32] = {
22729                 .lhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22730                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22731         },
22732         [TEMPLATE_BINARY8_REG] = {
22733                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22734                 .rhs = { 
22735                         [0] = { REG_VIRT0, REGCM_GPR8_LO },
22736                         [1] = { REG_UNSET, REGCM_GPR8_LO },
22737                 },
22738         },
22739         [TEMPLATE_BINARY16_REG] = {
22740                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22741                 .rhs = { 
22742                         [0] = { REG_VIRT0, REGCM_GPR16 },
22743                         [1] = { REG_UNSET, REGCM_GPR16 },
22744                 },
22745         },
22746         [TEMPLATE_BINARY32_REG] = {
22747                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22748                 .rhs = { 
22749                         [0] = { REG_VIRT0, REGCM_GPR32 },
22750                         [1] = { REG_UNSET, REGCM_GPR32 },
22751                 },
22752         },
22753         [TEMPLATE_BINARY8_IMM] = {
22754                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22755                 .rhs = { 
22756                         [0] = { REG_VIRT0,    REGCM_GPR8_LO },
22757                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22758                 },
22759         },
22760         [TEMPLATE_BINARY16_IMM] = {
22761                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22762                 .rhs = { 
22763                         [0] = { REG_VIRT0,    REGCM_GPR16 },
22764                         [1] = { REG_UNNEEDED, REGCM_IMM16 },
22765                 },
22766         },
22767         [TEMPLATE_BINARY32_IMM] = {
22768                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22769                 .rhs = { 
22770                         [0] = { REG_VIRT0,    REGCM_GPR32 },
22771                         [1] = { REG_UNNEEDED, REGCM_IMM32 },
22772                 },
22773         },
22774         [TEMPLATE_SL8_CL] = {
22775                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22776                 .rhs = { 
22777                         [0] = { REG_VIRT0, REGCM_GPR8_LO },
22778                         [1] = { REG_CL, REGCM_GPR8_LO },
22779                 },
22780         },
22781         [TEMPLATE_SL16_CL] = {
22782                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22783                 .rhs = { 
22784                         [0] = { REG_VIRT0, REGCM_GPR16 },
22785                         [1] = { REG_CL, REGCM_GPR8_LO },
22786                 },
22787         },
22788         [TEMPLATE_SL32_CL] = {
22789                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22790                 .rhs = { 
22791                         [0] = { REG_VIRT0, REGCM_GPR32 },
22792                         [1] = { REG_CL, REGCM_GPR8_LO },
22793                 },
22794         },
22795         [TEMPLATE_SL8_IMM] = {
22796                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22797                 .rhs = { 
22798                         [0] = { REG_VIRT0,    REGCM_GPR8_LO },
22799                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22800                 },
22801         },
22802         [TEMPLATE_SL16_IMM] = {
22803                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22804                 .rhs = { 
22805                         [0] = { REG_VIRT0,    REGCM_GPR16 },
22806                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22807                 },
22808         },
22809         [TEMPLATE_SL32_IMM] = {
22810                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22811                 .rhs = { 
22812                         [0] = { REG_VIRT0,    REGCM_GPR32 },
22813                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22814                 },
22815         },
22816         [TEMPLATE_UNARY8] = {
22817                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22818                 .rhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22819         },
22820         [TEMPLATE_UNARY16] = {
22821                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22822                 .rhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22823         },
22824         [TEMPLATE_UNARY32] = {
22825                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22826                 .rhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22827         },
22828         [TEMPLATE_CMP8_REG] = {
22829                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22830                 .rhs = {
22831                         [0] = { REG_UNSET, REGCM_GPR8_LO },
22832                         [1] = { REG_UNSET, REGCM_GPR8_LO },
22833                 },
22834         },
22835         [TEMPLATE_CMP16_REG] = {
22836                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22837                 .rhs = {
22838                         [0] = { REG_UNSET, REGCM_GPR16 },
22839                         [1] = { REG_UNSET, REGCM_GPR16 },
22840                 },
22841         },
22842         [TEMPLATE_CMP32_REG] = {
22843                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22844                 .rhs = {
22845                         [0] = { REG_UNSET, REGCM_GPR32 },
22846                         [1] = { REG_UNSET, REGCM_GPR32 },
22847                 },
22848         },
22849         [TEMPLATE_CMP8_IMM] = {
22850                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22851                 .rhs = {
22852                         [0] = { REG_UNSET, REGCM_GPR8_LO },
22853                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22854                 },
22855         },
22856         [TEMPLATE_CMP16_IMM] = {
22857                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22858                 .rhs = {
22859                         [0] = { REG_UNSET, REGCM_GPR16 },
22860                         [1] = { REG_UNNEEDED, REGCM_IMM16 },
22861                 },
22862         },
22863         [TEMPLATE_CMP32_IMM] = {
22864                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22865                 .rhs = {
22866                         [0] = { REG_UNSET, REGCM_GPR32 },
22867                         [1] = { REG_UNNEEDED, REGCM_IMM32 },
22868                 },
22869         },
22870         [TEMPLATE_TEST8] = {
22871                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22872                 .rhs = { [0] = { REG_UNSET, REGCM_GPR8_LO } },
22873         },
22874         [TEMPLATE_TEST16] = {
22875                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22876                 .rhs = { [0] = { REG_UNSET, REGCM_GPR16 } },
22877         },
22878         [TEMPLATE_TEST32] = {
22879                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22880                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22881         },
22882         [TEMPLATE_SET] = {
22883                 .lhs = { [0] = { REG_UNSET, REGCM_GPR8_LO } },
22884                 .rhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22885         },
22886         [TEMPLATE_JMP] = {
22887                 .rhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22888         },
22889         [TEMPLATE_RET] = {
22890                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22891         },
22892         [TEMPLATE_INB_DX] = {
22893                 .lhs = { [0] = { REG_AL,  REGCM_GPR8_LO } },  
22894                 .rhs = { [0] = { REG_DX, REGCM_GPR16 } },
22895         },
22896         [TEMPLATE_INB_IMM] = {
22897                 .lhs = { [0] = { REG_AL,  REGCM_GPR8_LO } },  
22898                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
22899         },
22900         [TEMPLATE_INW_DX]  = { 
22901                 .lhs = { [0] = { REG_AX,  REGCM_GPR16 } }, 
22902                 .rhs = { [0] = { REG_DX, REGCM_GPR16 } },
22903         },
22904         [TEMPLATE_INW_IMM] = { 
22905                 .lhs = { [0] = { REG_AX,  REGCM_GPR16 } }, 
22906                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
22907         },
22908         [TEMPLATE_INL_DX]  = {
22909                 .lhs = { [0] = { REG_EAX, REGCM_GPR32 } },
22910                 .rhs = { [0] = { REG_DX, REGCM_GPR16 } },
22911         },
22912         [TEMPLATE_INL_IMM] = {
22913                 .lhs = { [0] = { REG_EAX, REGCM_GPR32 } },
22914                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
22915         },
22916         [TEMPLATE_OUTB_DX] = { 
22917                 .rhs = {
22918                         [0] = { REG_AL,  REGCM_GPR8_LO },
22919                         [1] = { REG_DX, REGCM_GPR16 },
22920                 },
22921         },
22922         [TEMPLATE_OUTB_IMM] = { 
22923                 .rhs = {
22924                         [0] = { REG_AL,  REGCM_GPR8_LO },  
22925                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22926                 },
22927         },
22928         [TEMPLATE_OUTW_DX] = { 
22929                 .rhs = {
22930                         [0] = { REG_AX,  REGCM_GPR16 },
22931                         [1] = { REG_DX, REGCM_GPR16 },
22932                 },
22933         },
22934         [TEMPLATE_OUTW_IMM] = {
22935                 .rhs = {
22936                         [0] = { REG_AX,  REGCM_GPR16 }, 
22937                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22938                 },
22939         },
22940         [TEMPLATE_OUTL_DX] = { 
22941                 .rhs = {
22942                         [0] = { REG_EAX, REGCM_GPR32 },
22943                         [1] = { REG_DX, REGCM_GPR16 },
22944                 },
22945         },
22946         [TEMPLATE_OUTL_IMM] = { 
22947                 .rhs = {
22948                         [0] = { REG_EAX, REGCM_GPR32 }, 
22949                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22950                 },
22951         },
22952         [TEMPLATE_BSF] = {
22953                 .lhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22954                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22955         },
22956         [TEMPLATE_RDMSR] = {
22957                 .lhs = { 
22958                         [0] = { REG_EAX, REGCM_GPR32 },
22959                         [1] = { REG_EDX, REGCM_GPR32 },
22960                 },
22961                 .rhs = { [0] = { REG_ECX, REGCM_GPR32 } },
22962         },
22963         [TEMPLATE_WRMSR] = {
22964                 .rhs = {
22965                         [0] = { REG_ECX, REGCM_GPR32 },
22966                         [1] = { REG_EAX, REGCM_GPR32 },
22967                         [2] = { REG_EDX, REGCM_GPR32 },
22968                 },
22969         },
22970         [TEMPLATE_UMUL8] = {
22971                 .lhs = { [0] = { REG_AX, REGCM_GPR16 } },
22972                 .rhs = { 
22973                         [0] = { REG_AL, REGCM_GPR8_LO },
22974                         [1] = { REG_UNSET, REGCM_GPR8_LO },
22975                 },
22976         },
22977         [TEMPLATE_UMUL16] = {
22978                 .lhs = { [0] = { REG_DXAX, REGCM_DIVIDEND32 } },
22979                 .rhs = { 
22980                         [0] = { REG_AX, REGCM_GPR16 },
22981                         [1] = { REG_UNSET, REGCM_GPR16 },
22982                 },
22983         },
22984         [TEMPLATE_UMUL32] = {
22985                 .lhs = { [0] = { REG_EDXEAX, REGCM_DIVIDEND64 } },
22986                 .rhs = { 
22987                         [0] = { REG_EAX, REGCM_GPR32 },
22988                         [1] = { REG_UNSET, REGCM_GPR32 },
22989                 },
22990         },
22991         [TEMPLATE_DIV8] = {
22992                 .lhs = { 
22993                         [0] = { REG_AL, REGCM_GPR8_LO },
22994                         [1] = { REG_AH, REGCM_GPR8 },
22995                 },
22996                 .rhs = {
22997                         [0] = { REG_AX, REGCM_GPR16 },
22998                         [1] = { REG_UNSET, REGCM_GPR8_LO },
22999                 },
23000         },
23001         [TEMPLATE_DIV16] = {
23002                 .lhs = { 
23003                         [0] = { REG_AX, REGCM_GPR16 },
23004                         [1] = { REG_DX, REGCM_GPR16 },
23005                 },
23006                 .rhs = {
23007                         [0] = { REG_DXAX, REGCM_DIVIDEND32 },
23008                         [1] = { REG_UNSET, REGCM_GPR16 },
23009                 },
23010         },
23011         [TEMPLATE_DIV32] = {
23012                 .lhs = { 
23013                         [0] = { REG_EAX, REGCM_GPR32 },
23014                         [1] = { REG_EDX, REGCM_GPR32 },
23015                 },
23016                 .rhs = {
23017                         [0] = { REG_EDXEAX, REGCM_DIVIDEND64 },
23018                         [1] = { REG_UNSET, REGCM_GPR32 },
23019                 },
23020         },
23021 };
23022
23023 static void fixup_branch(struct compile_state *state,
23024         struct triple *branch, int jmp_op, int cmp_op, struct type *cmp_type,
23025         struct triple *left, struct triple *right)
23026 {
23027         struct triple *test;
23028         if (!left) {
23029                 internal_error(state, branch, "no branch test?");
23030         }
23031         test = pre_triple(state, branch,
23032                 cmp_op, cmp_type, left, right);
23033         test->template_id = TEMPLATE_TEST32; 
23034         if (cmp_op == OP_CMP) {
23035                 test->template_id = TEMPLATE_CMP32_REG;
23036                 if (get_imm32(test, &RHS(test, 1))) {
23037                         test->template_id = TEMPLATE_CMP32_IMM;
23038                 }
23039         }
23040         use_triple(RHS(test, 0), test);
23041         use_triple(RHS(test, 1), test);
23042         unuse_triple(RHS(branch, 0), branch);
23043         RHS(branch, 0) = test;
23044         branch->op = jmp_op;
23045         branch->template_id = TEMPLATE_JMP;
23046         use_triple(RHS(branch, 0), branch);
23047 }
23048
23049 static void fixup_branches(struct compile_state *state,
23050         struct triple *cmp, struct triple *use, int jmp_op)
23051 {
23052         struct triple_set *entry, *next;
23053         for(entry = use->use; entry; entry = next) {
23054                 next = entry->next;
23055                 if (entry->member->op == OP_COPY) {
23056                         fixup_branches(state, cmp, entry->member, jmp_op);
23057                 }
23058                 else if (entry->member->op == OP_CBRANCH) {
23059                         struct triple *branch;
23060                         struct triple *left, *right;
23061                         left = right = 0;
23062                         left = RHS(cmp, 0);
23063                         if (cmp->rhs > 1) {
23064                                 right = RHS(cmp, 1);
23065                         }
23066                         branch = entry->member;
23067                         fixup_branch(state, branch, jmp_op, 
23068                                 cmp->op, cmp->type, left, right);
23069                 }
23070         }
23071 }
23072
23073 static void bool_cmp(struct compile_state *state, 
23074         struct triple *ins, int cmp_op, int jmp_op, int set_op)
23075 {
23076         struct triple_set *entry, *next;
23077         struct triple *set, *convert;
23078
23079         /* Put a barrier up before the cmp which preceeds the
23080          * copy instruction.  If a set actually occurs this gives
23081          * us a chance to move variables in registers out of the way.
23082          */
23083
23084         /* Modify the comparison operator */
23085         ins->op = cmp_op;
23086         ins->template_id = TEMPLATE_TEST32;
23087         if (cmp_op == OP_CMP) {
23088                 ins->template_id = TEMPLATE_CMP32_REG;
23089                 if (get_imm32(ins, &RHS(ins, 1))) {
23090                         ins->template_id =  TEMPLATE_CMP32_IMM;
23091                 }
23092         }
23093         /* Generate the instruction sequence that will transform the
23094          * result of the comparison into a logical value.
23095          */
23096         set = post_triple(state, ins, set_op, &uchar_type, ins, 0);
23097         use_triple(ins, set);
23098         set->template_id = TEMPLATE_SET;
23099
23100         convert = set;
23101         if (!equiv_types(ins->type, set->type)) {
23102                 convert = post_triple(state, set, OP_CONVERT, ins->type, set, 0);
23103                 use_triple(set, convert);
23104                 convert->template_id = TEMPLATE_COPY32_REG;
23105         }
23106
23107         for(entry = ins->use; entry; entry = next) {
23108                 next = entry->next;
23109                 if (entry->member == set) {
23110                         continue;
23111                 }
23112                 replace_rhs_use(state, ins, convert, entry->member);
23113         }
23114         fixup_branches(state, ins, convert, jmp_op);
23115 }
23116
23117 struct reg_info arch_reg_lhs(struct compile_state *state, struct triple *ins, int index)
23118 {
23119         struct ins_template *template;
23120         struct reg_info result;
23121         int zlhs;
23122         if (ins->op == OP_PIECE) {
23123                 index = ins->u.cval;
23124                 ins = MISC(ins, 0);
23125         }
23126         zlhs = ins->lhs;
23127         if (triple_is_def(state, ins)) {
23128                 zlhs = 1;
23129         }
23130         if (index >= zlhs) {
23131                 internal_error(state, ins, "index %d out of range for %s",
23132                         index, tops(ins->op));
23133         }
23134         switch(ins->op) {
23135         case OP_ASM:
23136                 template = &ins->u.ainfo->tmpl;
23137                 break;
23138         default:
23139                 if (ins->template_id > LAST_TEMPLATE) {
23140                         internal_error(state, ins, "bad template number %d", 
23141                                 ins->template_id);
23142                 }
23143                 template = &templates[ins->template_id];
23144                 break;
23145         }
23146         result = template->lhs[index];
23147         result.regcm = arch_regcm_normalize(state, result.regcm);
23148         if (result.reg != REG_UNNEEDED) {
23149                 result.regcm &= ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8);
23150         }
23151         if (result.regcm == 0) {
23152                 internal_error(state, ins, "lhs %d regcm == 0", index);
23153         }
23154         return result;
23155 }
23156
23157 struct reg_info arch_reg_rhs(struct compile_state *state, struct triple *ins, int index)
23158 {
23159         struct reg_info result;
23160         struct ins_template *template;
23161         if ((index > ins->rhs) ||
23162                 (ins->op == OP_PIECE)) {
23163                 internal_error(state, ins, "index %d out of range for %s\n",
23164                         index, tops(ins->op));
23165         }
23166         switch(ins->op) {
23167         case OP_ASM:
23168                 template = &ins->u.ainfo->tmpl;
23169                 break;
23170         case OP_PHI:
23171                 index = 0;
23172                 /* Fall through */
23173         default:
23174                 if (ins->template_id > LAST_TEMPLATE) {
23175                         internal_error(state, ins, "bad template number %d", 
23176                                 ins->template_id);
23177                 }
23178                 template = &templates[ins->template_id];
23179                 break;
23180         }
23181         result = template->rhs[index];
23182         result.regcm = arch_regcm_normalize(state, result.regcm);
23183         if (result.regcm == 0) {
23184                 internal_error(state, ins, "rhs %d regcm == 0", index);
23185         }
23186         return result;
23187 }
23188
23189 static struct triple *mod_div(struct compile_state *state,
23190         struct triple *ins, int div_op, int index)
23191 {
23192         struct triple *div, *piece0, *piece1;
23193         
23194         /* Generate the appropriate division instruction */
23195         div = post_triple(state, ins, div_op, ins->type, 0, 0);
23196         RHS(div, 0) = RHS(ins, 0);
23197         RHS(div, 1) = RHS(ins, 1);
23198         piece0 = LHS(div, 0);
23199         piece1 = LHS(div, 1);
23200         div->template_id  = TEMPLATE_DIV32;
23201         use_triple(RHS(div, 0), div);
23202         use_triple(RHS(div, 1), div);
23203         use_triple(LHS(div, 0), div);
23204         use_triple(LHS(div, 1), div);
23205
23206         /* Replate uses of ins with the appropriate piece of the div */
23207         propogate_use(state, ins, LHS(div, index));
23208         release_triple(state, ins);
23209
23210         /* Return the address of the next instruction */
23211         return piece1->next;
23212 }
23213
23214 static int noop_adecl(struct triple *adecl)
23215 {
23216         struct triple_set *use;
23217         /* It's a noop if it doesn't specify stoorage */
23218         if (adecl->lhs == 0) {
23219                 return 1;
23220         }
23221         /* Is the adecl used? If not it's a noop */
23222         for(use = adecl->use; use ; use = use->next) {
23223                 if ((use->member->op != OP_PIECE) ||
23224                         (MISC(use->member, 0) != adecl)) {
23225                         return 0;
23226                 }
23227         }
23228         return 1;
23229 }
23230
23231 static struct triple *x86_deposit(struct compile_state *state, struct triple *ins)
23232 {
23233         struct triple *mask, *nmask, *shift;
23234         struct triple *val, *val_mask, *val_shift;
23235         struct triple *targ, *targ_mask;
23236         struct triple *new;
23237         ulong_t the_mask, the_nmask;
23238
23239         targ = RHS(ins, 0);
23240         val = RHS(ins, 1);
23241
23242         /* Get constant for the mask value */
23243         the_mask = 1;
23244         the_mask <<= ins->u.bitfield.size;
23245         the_mask -= 1;
23246         the_mask <<= ins->u.bitfield.offset;
23247         mask = pre_triple(state, ins, OP_INTCONST, &uint_type, 0, 0);
23248         mask->u.cval = the_mask;
23249
23250         /* Get the inverted mask value */
23251         the_nmask = ~the_mask;
23252         nmask = pre_triple(state, ins, OP_INTCONST, &uint_type, 0, 0);
23253         nmask->u.cval = the_nmask;
23254
23255         /* Get constant for the shift value */
23256         shift = pre_triple(state, ins, OP_INTCONST, &uint_type, 0, 0);
23257         shift->u.cval = ins->u.bitfield.offset;
23258
23259         /* Shift and mask the source value */
23260         val_shift = val;
23261         if (shift->u.cval != 0) {
23262                 val_shift = pre_triple(state, ins, OP_SL, val->type, val, shift);
23263                 use_triple(val, val_shift);
23264                 use_triple(shift, val_shift);
23265         }
23266         val_mask = val_shift;
23267         if (is_signed(val->type)) {
23268                 val_mask = pre_triple(state, ins, OP_AND, val->type, val_shift, mask);
23269                 use_triple(val_shift, val_mask);
23270                 use_triple(mask, val_mask);
23271         }
23272
23273         /* Mask the target value */
23274         targ_mask = pre_triple(state, ins, OP_AND, targ->type, targ, nmask);
23275         use_triple(targ, targ_mask);
23276         use_triple(nmask, targ_mask);
23277
23278         /* Now combined them together */
23279         new = pre_triple(state, ins, OP_OR, targ->type, targ_mask, val_mask);
23280         use_triple(targ_mask, new);
23281         use_triple(val_mask, new);
23282
23283         /* Move all of the users over to the new expression */
23284         propogate_use(state, ins, new);
23285
23286         /* Delete the original triple */
23287         release_triple(state, ins);
23288
23289         /* Restart the transformation at mask */
23290         return mask;
23291 }
23292
23293 static struct triple *x86_extract(struct compile_state *state, struct triple *ins)
23294 {
23295         struct triple *mask, *shift;
23296         struct triple *val, *val_mask, *val_shift;
23297         ulong_t the_mask;
23298
23299         val = RHS(ins, 0);
23300
23301         /* Get constant for the mask value */
23302         the_mask = 1;
23303         the_mask <<= ins->u.bitfield.size;
23304         the_mask -= 1;
23305         mask = pre_triple(state, ins, OP_INTCONST, &int_type, 0, 0);
23306         mask->u.cval = the_mask;
23307
23308         /* Get constant for the right shift value */
23309         shift = pre_triple(state, ins, OP_INTCONST, &int_type, 0, 0);
23310         shift->u.cval = ins->u.bitfield.offset;
23311
23312         /* Shift arithmetic right, to correct the sign */
23313         val_shift = val;
23314         if (shift->u.cval != 0) {
23315                 int op;
23316                 if (ins->op == OP_SEXTRACT) {
23317                         op = OP_SSR;
23318                 } else {
23319                         op = OP_USR;
23320                 }
23321                 val_shift = pre_triple(state, ins, op, val->type, val, shift);
23322                 use_triple(val, val_shift);
23323                 use_triple(shift, val_shift);
23324         }
23325
23326         /* Finally mask the value */
23327         val_mask = pre_triple(state, ins, OP_AND, ins->type, val_shift, mask);
23328         use_triple(val_shift, val_mask);
23329         use_triple(mask,      val_mask);
23330
23331         /* Move all of the users over to the new expression */
23332         propogate_use(state, ins, val_mask);
23333
23334         /* Release the original instruction */
23335         release_triple(state, ins);
23336
23337         return mask;
23338
23339 }
23340
23341 static struct triple *transform_to_arch_instruction(
23342         struct compile_state *state, struct triple *ins)
23343 {
23344         /* Transform from generic 3 address instructions
23345          * to archtecture specific instructions.
23346          * And apply architecture specific constraints to instructions.
23347          * Copies are inserted to preserve the register flexibility
23348          * of 3 address instructions.
23349          */
23350         struct triple *next, *value;
23351         size_t size;
23352         next = ins->next;
23353         switch(ins->op) {
23354         case OP_INTCONST:
23355                 ins->template_id = TEMPLATE_INTCONST32;
23356                 if (ins->u.cval < 256) {
23357                         ins->template_id = TEMPLATE_INTCONST8;
23358                 }
23359                 break;
23360         case OP_ADDRCONST:
23361                 ins->template_id = TEMPLATE_INTCONST32;
23362                 break;
23363         case OP_UNKNOWNVAL:
23364                 ins->template_id = TEMPLATE_UNKNOWNVAL;
23365                 break;
23366         case OP_NOOP:
23367         case OP_SDECL:
23368         case OP_BLOBCONST:
23369         case OP_LABEL:
23370                 ins->template_id = TEMPLATE_NOP;
23371                 break;
23372         case OP_COPY:
23373         case OP_CONVERT:
23374                 size = size_of(state, ins->type);
23375                 value = RHS(ins, 0);
23376                 if (is_imm8(value) && (size <= SIZEOF_I8)) {
23377                         ins->template_id = TEMPLATE_COPY_IMM8;
23378                 }
23379                 else if (is_imm16(value) && (size <= SIZEOF_I16)) {
23380                         ins->template_id = TEMPLATE_COPY_IMM16;
23381                 }
23382                 else if (is_imm32(value) && (size <= SIZEOF_I32)) {
23383                         ins->template_id = TEMPLATE_COPY_IMM32;
23384                 }
23385                 else if (is_const(value)) {
23386                         internal_error(state, ins, "bad constant passed to copy");
23387                 }
23388                 else if (size <= SIZEOF_I8) {
23389                         ins->template_id = TEMPLATE_COPY8_REG;
23390                 }
23391                 else if (size <= SIZEOF_I16) {
23392                         ins->template_id = TEMPLATE_COPY16_REG;
23393                 }
23394                 else if (size <= SIZEOF_I32) {
23395                         ins->template_id = TEMPLATE_COPY32_REG;
23396                 }
23397                 else {
23398                         internal_error(state, ins, "bad type passed to copy");
23399                 }
23400                 break;
23401         case OP_PHI:
23402                 size = size_of(state, ins->type);
23403                 if (size <= SIZEOF_I8) {
23404                         ins->template_id = TEMPLATE_PHI8;
23405                 }
23406                 else if (size <= SIZEOF_I16) {
23407                         ins->template_id = TEMPLATE_PHI16;
23408                 }
23409                 else if (size <= SIZEOF_I32) {
23410                         ins->template_id = TEMPLATE_PHI32;
23411                 }
23412                 else {
23413                         internal_error(state, ins, "bad type passed to phi");
23414                 }
23415                 break;
23416         case OP_ADECL:
23417                 /* Adecls should always be treated as dead code and
23418                  * removed.  If we are not optimizing they may linger.
23419                  */
23420                 if (!noop_adecl(ins)) {
23421                         internal_error(state, ins, "adecl remains?");
23422                 }
23423                 ins->template_id = TEMPLATE_NOP;
23424                 next = after_lhs(state, ins);
23425                 break;
23426         case OP_STORE:
23427                 switch(ins->type->type & TYPE_MASK) {
23428                 case TYPE_CHAR:    case TYPE_UCHAR:
23429                         ins->template_id = TEMPLATE_STORE8;
23430                         break;
23431                 case TYPE_SHORT:   case TYPE_USHORT:
23432                         ins->template_id = TEMPLATE_STORE16;
23433                         break;
23434                 case TYPE_INT:     case TYPE_UINT:
23435                 case TYPE_LONG:    case TYPE_ULONG:
23436                 case TYPE_POINTER:
23437                         ins->template_id = TEMPLATE_STORE32;
23438                         break;
23439                 default:
23440                         internal_error(state, ins, "unknown type in store");
23441                         break;
23442                 }
23443                 break;
23444         case OP_LOAD:
23445                 switch(ins->type->type & TYPE_MASK) {
23446                 case TYPE_CHAR:   case TYPE_UCHAR:
23447                 case TYPE_SHORT:  case TYPE_USHORT:
23448                 case TYPE_INT:    case TYPE_UINT:
23449                 case TYPE_LONG:   case TYPE_ULONG:
23450                 case TYPE_POINTER:
23451                         break;
23452                 default:
23453                         internal_error(state, ins, "unknown type in load");
23454                         break;
23455                 }
23456                 ins->template_id = TEMPLATE_LOAD32;
23457                 break;
23458         case OP_ADD:
23459         case OP_SUB:
23460         case OP_AND:
23461         case OP_XOR:
23462         case OP_OR:
23463         case OP_SMUL:
23464                 ins->template_id = TEMPLATE_BINARY32_REG;
23465                 if (get_imm32(ins, &RHS(ins, 1))) {
23466                         ins->template_id = TEMPLATE_BINARY32_IMM;
23467                 }
23468                 break;
23469         case OP_SDIVT:
23470         case OP_UDIVT:
23471                 ins->template_id = TEMPLATE_DIV32;
23472                 next = after_lhs(state, ins);
23473                 break;
23474         case OP_UMUL:
23475                 ins->template_id = TEMPLATE_UMUL32;
23476                 break;
23477         case OP_UDIV:
23478                 next = mod_div(state, ins, OP_UDIVT, 0);
23479                 break;
23480         case OP_SDIV:
23481                 next = mod_div(state, ins, OP_SDIVT, 0);
23482                 break;
23483         case OP_UMOD:
23484                 next = mod_div(state, ins, OP_UDIVT, 1);
23485                 break;
23486         case OP_SMOD:
23487                 next = mod_div(state, ins, OP_SDIVT, 1);
23488                 break;
23489         case OP_SL:
23490         case OP_SSR:
23491         case OP_USR:
23492                 ins->template_id = TEMPLATE_SL32_CL;
23493                 if (get_imm8(ins, &RHS(ins, 1))) {
23494                         ins->template_id = TEMPLATE_SL32_IMM;
23495                 } else if (size_of(state, RHS(ins, 1)->type) > SIZEOF_CHAR) {
23496                         typed_pre_copy(state, &uchar_type, ins, 1);
23497                 }
23498                 break;
23499         case OP_INVERT:
23500         case OP_NEG:
23501                 ins->template_id = TEMPLATE_UNARY32;
23502                 break;
23503         case OP_EQ: 
23504                 bool_cmp(state, ins, OP_CMP, OP_JMP_EQ, OP_SET_EQ); 
23505                 break;
23506         case OP_NOTEQ:
23507                 bool_cmp(state, ins, OP_CMP, OP_JMP_NOTEQ, OP_SET_NOTEQ);
23508                 break;
23509         case OP_SLESS:
23510                 bool_cmp(state, ins, OP_CMP, OP_JMP_SLESS, OP_SET_SLESS);
23511                 break;
23512         case OP_ULESS:
23513                 bool_cmp(state, ins, OP_CMP, OP_JMP_ULESS, OP_SET_ULESS);
23514                 break;
23515         case OP_SMORE:
23516                 bool_cmp(state, ins, OP_CMP, OP_JMP_SMORE, OP_SET_SMORE);
23517                 break;
23518         case OP_UMORE:
23519                 bool_cmp(state, ins, OP_CMP, OP_JMP_UMORE, OP_SET_UMORE);
23520                 break;
23521         case OP_SLESSEQ:
23522                 bool_cmp(state, ins, OP_CMP, OP_JMP_SLESSEQ, OP_SET_SLESSEQ);
23523                 break;
23524         case OP_ULESSEQ:
23525                 bool_cmp(state, ins, OP_CMP, OP_JMP_ULESSEQ, OP_SET_ULESSEQ);
23526                 break;
23527         case OP_SMOREEQ:
23528                 bool_cmp(state, ins, OP_CMP, OP_JMP_SMOREEQ, OP_SET_SMOREEQ);
23529                 break;
23530         case OP_UMOREEQ:
23531                 bool_cmp(state, ins, OP_CMP, OP_JMP_UMOREEQ, OP_SET_UMOREEQ);
23532                 break;
23533         case OP_LTRUE:
23534                 bool_cmp(state, ins, OP_TEST, OP_JMP_NOTEQ, OP_SET_NOTEQ);
23535                 break;
23536         case OP_LFALSE:
23537                 bool_cmp(state, ins, OP_TEST, OP_JMP_EQ, OP_SET_EQ);
23538                 break;
23539         case OP_BRANCH:
23540                 ins->op = OP_JMP;
23541                 ins->template_id = TEMPLATE_NOP;
23542                 break;
23543         case OP_CBRANCH:
23544                 fixup_branch(state, ins, OP_JMP_NOTEQ, OP_TEST, 
23545                         RHS(ins, 0)->type, RHS(ins, 0), 0);
23546                 break;
23547         case OP_CALL:
23548                 ins->template_id = TEMPLATE_NOP;
23549                 break;
23550         case OP_RET:
23551                 ins->template_id = TEMPLATE_RET;
23552                 break;
23553         case OP_INB:
23554         case OP_INW:
23555         case OP_INL:
23556                 switch(ins->op) {
23557                 case OP_INB: ins->template_id = TEMPLATE_INB_DX; break;
23558                 case OP_INW: ins->template_id = TEMPLATE_INW_DX; break;
23559                 case OP_INL: ins->template_id = TEMPLATE_INL_DX; break;
23560                 }
23561                 if (get_imm8(ins, &RHS(ins, 0))) {
23562                         ins->template_id += 1;
23563                 }
23564                 break;
23565         case OP_OUTB:
23566         case OP_OUTW:
23567         case OP_OUTL:
23568                 switch(ins->op) {
23569                 case OP_OUTB: ins->template_id = TEMPLATE_OUTB_DX; break;
23570                 case OP_OUTW: ins->template_id = TEMPLATE_OUTW_DX; break;
23571                 case OP_OUTL: ins->template_id = TEMPLATE_OUTL_DX; break;
23572                 }
23573                 if (get_imm8(ins, &RHS(ins, 1))) {
23574                         ins->template_id += 1;
23575                 }
23576                 break;
23577         case OP_BSF:
23578         case OP_BSR:
23579                 ins->template_id = TEMPLATE_BSF;
23580                 break;
23581         case OP_RDMSR:
23582                 ins->template_id = TEMPLATE_RDMSR;
23583                 next = after_lhs(state, ins);
23584                 break;
23585         case OP_WRMSR:
23586                 ins->template_id = TEMPLATE_WRMSR;
23587                 break;
23588         case OP_HLT:
23589                 ins->template_id = TEMPLATE_NOP;
23590                 break;
23591         case OP_ASM:
23592                 ins->template_id = TEMPLATE_NOP;
23593                 next = after_lhs(state, ins);
23594                 break;
23595                 /* Already transformed instructions */
23596         case OP_TEST:
23597                 ins->template_id = TEMPLATE_TEST32;
23598                 break;
23599         case OP_CMP:
23600                 ins->template_id = TEMPLATE_CMP32_REG;
23601                 if (get_imm32(ins, &RHS(ins, 1))) {
23602                         ins->template_id = TEMPLATE_CMP32_IMM;
23603                 }
23604                 break;
23605         case OP_JMP:
23606                 ins->template_id = TEMPLATE_NOP;
23607                 break;
23608         case OP_JMP_EQ:      case OP_JMP_NOTEQ:
23609         case OP_JMP_SLESS:   case OP_JMP_ULESS:
23610         case OP_JMP_SMORE:   case OP_JMP_UMORE:
23611         case OP_JMP_SLESSEQ: case OP_JMP_ULESSEQ:
23612         case OP_JMP_SMOREEQ: case OP_JMP_UMOREEQ:
23613                 ins->template_id = TEMPLATE_JMP;
23614                 break;
23615         case OP_SET_EQ:      case OP_SET_NOTEQ:
23616         case OP_SET_SLESS:   case OP_SET_ULESS:
23617         case OP_SET_SMORE:   case OP_SET_UMORE:
23618         case OP_SET_SLESSEQ: case OP_SET_ULESSEQ:
23619         case OP_SET_SMOREEQ: case OP_SET_UMOREEQ:
23620                 ins->template_id = TEMPLATE_SET;
23621                 break;
23622         case OP_DEPOSIT:
23623                 next = x86_deposit(state, ins);
23624                 break;
23625         case OP_SEXTRACT:
23626         case OP_UEXTRACT:
23627                 next = x86_extract(state, ins);
23628                 break;
23629                 /* Unhandled instructions */
23630         case OP_PIECE:
23631         default:
23632                 internal_error(state, ins, "unhandled ins: %d %s",
23633                         ins->op, tops(ins->op));
23634                 break;
23635         }
23636         return next;
23637 }
23638
23639 static long next_label(struct compile_state *state)
23640 {
23641         static long label_counter = 1000;
23642         return ++label_counter;
23643 }
23644 static void generate_local_labels(struct compile_state *state)
23645 {
23646         struct triple *first, *label;
23647         first = state->first;
23648         label = first;
23649         do {
23650                 if ((label->op == OP_LABEL) || 
23651                         (label->op == OP_SDECL)) {
23652                         if (label->use) {
23653                                 label->u.cval = next_label(state);
23654                         } else {
23655                                 label->u.cval = 0;
23656                         }
23657                         
23658                 }
23659                 label = label->next;
23660         } while(label != first);
23661 }
23662
23663 static int check_reg(struct compile_state *state, 
23664         struct triple *triple, int classes)
23665 {
23666         unsigned mask;
23667         int reg;
23668         reg = ID_REG(triple->id);
23669         if (reg == REG_UNSET) {
23670                 internal_error(state, triple, "register not set");
23671         }
23672         mask = arch_reg_regcm(state, reg);
23673         if (!(classes & mask)) {
23674                 internal_error(state, triple, "reg %d in wrong class",
23675                         reg);
23676         }
23677         return reg;
23678 }
23679
23680
23681 #if REG_XMM7 != 44
23682 #error "Registers have renumberd fix arch_reg_str"
23683 #endif
23684 static const char *arch_regs[] = {
23685         "%unset",
23686         "%unneeded",
23687         "%eflags",
23688         "%al", "%bl", "%cl", "%dl", "%ah", "%bh", "%ch", "%dh",
23689         "%ax", "%bx", "%cx", "%dx", "%si", "%di", "%bp", "%sp",
23690         "%eax", "%ebx", "%ecx", "%edx", "%esi", "%edi", "%ebp", "%esp",
23691         "%edx:%eax",
23692         "%dx:%ax",
23693         "%mm0", "%mm1", "%mm2", "%mm3", "%mm4", "%mm5", "%mm6", "%mm7",
23694         "%xmm0", "%xmm1", "%xmm2", "%xmm3", 
23695         "%xmm4", "%xmm5", "%xmm6", "%xmm7",
23696 };
23697 static const char *arch_reg_str(int reg)
23698 {
23699         if (!((reg >= REG_EFLAGS) && (reg <= REG_XMM7))) {
23700                 reg = 0;
23701         }
23702         return arch_regs[reg];
23703 }
23704
23705 static const char *reg(struct compile_state *state, struct triple *triple,
23706         int classes)
23707 {
23708         int reg;
23709         reg = check_reg(state, triple, classes);
23710         return arch_reg_str(reg);
23711 }
23712
23713 static int arch_reg_size(int reg)
23714 {
23715         int size;
23716         size = 0;
23717         if (reg == REG_EFLAGS) {
23718                 size = 32;
23719         }
23720         else if ((reg >= REG_AL) && (reg <= REG_DH)) {
23721                 size = 8;
23722         }
23723         else if ((reg >= REG_AX) && (reg <= REG_SP)) {
23724                 size = 16;
23725         }
23726         else if ((reg >= REG_EAX) && (reg <= REG_ESP)) {
23727                 size = 32;
23728         }
23729         else if (reg == REG_EDXEAX) {
23730                 size = 64;
23731         }
23732         else if (reg == REG_DXAX) {
23733                 size = 32;
23734         }
23735         else if ((reg >= REG_MMX0) && (reg <= REG_MMX7)) {
23736                 size = 64;
23737         }
23738         else if ((reg >= REG_XMM0) && (reg <= REG_XMM7)) {
23739                 size = 128;
23740         }
23741         return size;
23742 }
23743
23744 static int reg_size(struct compile_state *state, struct triple *ins)
23745 {
23746         int reg;
23747         reg = ID_REG(ins->id);
23748         if (reg == REG_UNSET) {
23749                 internal_error(state, ins, "register not set");
23750         }
23751         return arch_reg_size(reg);
23752 }
23753         
23754
23755
23756 const char *type_suffix(struct compile_state *state, struct type *type)
23757 {
23758         const char *suffix;
23759         switch(size_of(state, type)) {
23760         case SIZEOF_I8:  suffix = "b"; break;
23761         case SIZEOF_I16: suffix = "w"; break;
23762         case SIZEOF_I32: suffix = "l"; break;
23763         default:
23764                 internal_error(state, 0, "unknown suffix");
23765                 suffix = 0;
23766                 break;
23767         }
23768         return suffix;
23769 }
23770
23771 static void print_const_val(
23772         struct compile_state *state, struct triple *ins, FILE *fp)
23773 {
23774         switch(ins->op) {
23775         case OP_INTCONST:
23776                 fprintf(fp, " $%ld ", 
23777                         (long)(ins->u.cval));
23778                 break;
23779         case OP_ADDRCONST:
23780                 if ((MISC(ins, 0)->op != OP_SDECL) &&
23781                         (MISC(ins, 0)->op != OP_LABEL))
23782                 {
23783                         internal_error(state, ins, "bad base for addrconst");
23784                 }
23785                 if (MISC(ins, 0)->u.cval <= 0) {
23786                         internal_error(state, ins, "unlabeled constant");
23787                 }
23788                 fprintf(fp, " $L%s%lu+%lu ",
23789                         state->compiler->label_prefix, 
23790                         (unsigned long)(MISC(ins, 0)->u.cval),
23791                         (unsigned long)(ins->u.cval));
23792                 break;
23793         default:
23794                 internal_error(state, ins, "unknown constant type");
23795                 break;
23796         }
23797 }
23798
23799 static void print_const(struct compile_state *state,
23800         struct triple *ins, FILE *fp)
23801 {
23802         switch(ins->op) {
23803         case OP_INTCONST:
23804                 switch(ins->type->type & TYPE_MASK) {
23805                 case TYPE_CHAR:
23806                 case TYPE_UCHAR:
23807                         fprintf(fp, ".byte 0x%02lx\n", 
23808                                 (unsigned long)(ins->u.cval));
23809                         break;
23810                 case TYPE_SHORT:
23811                 case TYPE_USHORT:
23812                         fprintf(fp, ".short 0x%04lx\n", 
23813                                 (unsigned long)(ins->u.cval));
23814                         break;
23815                 case TYPE_INT:
23816                 case TYPE_UINT:
23817                 case TYPE_LONG:
23818                 case TYPE_ULONG:
23819                 case TYPE_POINTER:
23820                         fprintf(fp, ".int %lu\n", 
23821                                 (unsigned long)(ins->u.cval));
23822                         break;
23823                 default:
23824                         fprintf(state->errout, "type: ");
23825                         name_of(state->errout, ins->type);
23826                         fprintf(state->errout, "\n");
23827                         internal_error(state, ins, "Unknown constant type. Val: %lu",
23828                                 (unsigned long)(ins->u.cval));
23829                 }
23830                 
23831                 break;
23832         case OP_ADDRCONST:
23833                 if ((MISC(ins, 0)->op != OP_SDECL) &&
23834                         (MISC(ins, 0)->op != OP_LABEL)) {
23835                         internal_error(state, ins, "bad base for addrconst");
23836                 }
23837                 if (MISC(ins, 0)->u.cval <= 0) {
23838                         internal_error(state, ins, "unlabeled constant");
23839                 }
23840                 fprintf(fp, ".int L%s%lu+%lu\n",
23841                         state->compiler->label_prefix,
23842                         (unsigned long)(MISC(ins, 0)->u.cval),
23843                         (unsigned long)(ins->u.cval));
23844                 break;
23845         case OP_BLOBCONST:
23846         {
23847                 unsigned char *blob;
23848                 size_t size, i;
23849                 size = size_of_in_bytes(state, ins->type);
23850                 blob = ins->u.blob;
23851                 for(i = 0; i < size; i++) {
23852                         fprintf(fp, ".byte 0x%02x\n",
23853                                 blob[i]);
23854                 }
23855                 break;
23856         }
23857         default:
23858                 internal_error(state, ins, "Unknown constant type");
23859                 break;
23860         }
23861 }
23862
23863 #define TEXT_SECTION ".rom.text"
23864 #define DATA_SECTION ".rom.data"
23865
23866 static long get_const_pool_ref(
23867         struct compile_state *state, struct triple *ins, size_t size, FILE *fp)
23868 {
23869         size_t fill_bytes;
23870         long ref;
23871         ref = next_label(state);
23872         fprintf(fp, ".section \"" DATA_SECTION "\"\n");
23873         fprintf(fp, ".balign %ld\n", (long int)align_of_in_bytes(state, ins->type));
23874         fprintf(fp, "L%s%lu:\n", state->compiler->label_prefix, ref);
23875         print_const(state, ins, fp);
23876         fill_bytes = bits_to_bytes(size - size_of(state, ins->type));
23877         if (fill_bytes) {
23878                 fprintf(fp, ".fill %ld, 1, 0\n", (long int)fill_bytes);
23879         }
23880         fprintf(fp, ".section \"" TEXT_SECTION "\"\n");
23881         return ref;
23882 }
23883
23884 static long get_mask_pool_ref(
23885         struct compile_state *state, struct triple *ins, unsigned long mask, FILE *fp)
23886 {
23887         long ref;
23888         if (mask == 0xff) {
23889                 ref = 1;
23890         }
23891         else if (mask == 0xffff) {
23892                 ref = 2;
23893         }
23894         else {
23895                 ref = 0;
23896                 internal_error(state, ins, "unhandled mask value");
23897         }
23898         return ref;
23899 }
23900
23901 static void print_binary_op(struct compile_state *state,
23902         const char *op, struct triple *ins, FILE *fp) 
23903 {
23904         unsigned mask;
23905         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
23906         if (ID_REG(RHS(ins, 0)->id) != ID_REG(ins->id)) {
23907                 internal_error(state, ins, "invalid register assignment");
23908         }
23909         if (is_const(RHS(ins, 1))) {
23910                 fprintf(fp, "\t%s ", op);
23911                 print_const_val(state, RHS(ins, 1), fp);
23912                 fprintf(fp, ", %s\n",
23913                         reg(state, RHS(ins, 0), mask));
23914         }
23915         else {
23916                 unsigned lmask, rmask;
23917                 int lreg, rreg;
23918                 lreg = check_reg(state, RHS(ins, 0), mask);
23919                 rreg = check_reg(state, RHS(ins, 1), mask);
23920                 lmask = arch_reg_regcm(state, lreg);
23921                 rmask = arch_reg_regcm(state, rreg);
23922                 mask = lmask & rmask;
23923                 fprintf(fp, "\t%s %s, %s\n",
23924                         op,
23925                         reg(state, RHS(ins, 1), mask),
23926                         reg(state, RHS(ins, 0), mask));
23927         }
23928 }
23929 static void print_unary_op(struct compile_state *state, 
23930         const char *op, struct triple *ins, FILE *fp)
23931 {
23932         unsigned mask;
23933         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
23934         fprintf(fp, "\t%s %s\n",
23935                 op,
23936                 reg(state, RHS(ins, 0), mask));
23937 }
23938
23939 static void print_op_shift(struct compile_state *state,
23940         const char *op, struct triple *ins, FILE *fp)
23941 {
23942         unsigned mask;
23943         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
23944         if (ID_REG(RHS(ins, 0)->id) != ID_REG(ins->id)) {
23945                 internal_error(state, ins, "invalid register assignment");
23946         }
23947         if (is_const(RHS(ins, 1))) {
23948                 fprintf(fp, "\t%s ", op);
23949                 print_const_val(state, RHS(ins, 1), fp);
23950                 fprintf(fp, ", %s\n",
23951                         reg(state, RHS(ins, 0), mask));
23952         }
23953         else {
23954                 fprintf(fp, "\t%s %s, %s\n",
23955                         op,
23956                         reg(state, RHS(ins, 1), REGCM_GPR8_LO),
23957                         reg(state, RHS(ins, 0), mask));
23958         }
23959 }
23960
23961 static void print_op_in(struct compile_state *state, struct triple *ins, FILE *fp)
23962 {
23963         const char *op;
23964         int mask;
23965         int dreg;
23966         mask = 0;
23967         switch(ins->op) {
23968         case OP_INB: op = "inb", mask = REGCM_GPR8_LO; break;
23969         case OP_INW: op = "inw", mask = REGCM_GPR16; break;
23970         case OP_INL: op = "inl", mask = REGCM_GPR32; break;
23971         default:
23972                 internal_error(state, ins, "not an in operation");
23973                 op = 0;
23974                 break;
23975         }
23976         dreg = check_reg(state, ins, mask);
23977         if (!reg_is_reg(state, dreg, REG_EAX)) {
23978                 internal_error(state, ins, "dst != %%eax");
23979         }
23980         if (is_const(RHS(ins, 0))) {
23981                 fprintf(fp, "\t%s ", op);
23982                 print_const_val(state, RHS(ins, 0), fp);
23983                 fprintf(fp, ", %s\n",
23984                         reg(state, ins, mask));
23985         }
23986         else {
23987                 int addr_reg;
23988                 addr_reg = check_reg(state, RHS(ins, 0), REGCM_GPR16);
23989                 if (!reg_is_reg(state, addr_reg, REG_DX)) {
23990                         internal_error(state, ins, "src != %%dx");
23991                 }
23992                 fprintf(fp, "\t%s %s, %s\n",
23993                         op, 
23994                         reg(state, RHS(ins, 0), REGCM_GPR16),
23995                         reg(state, ins, mask));
23996         }
23997 }
23998
23999 static void print_op_out(struct compile_state *state, struct triple *ins, FILE *fp)
24000 {
24001         const char *op;
24002         int mask;
24003         int lreg;
24004         mask = 0;
24005         switch(ins->op) {
24006         case OP_OUTB: op = "outb", mask = REGCM_GPR8_LO; break;
24007         case OP_OUTW: op = "outw", mask = REGCM_GPR16; break;
24008         case OP_OUTL: op = "outl", mask = REGCM_GPR32; break;
24009         default:
24010                 internal_error(state, ins, "not an out operation");
24011                 op = 0;
24012                 break;
24013         }
24014         lreg = check_reg(state, RHS(ins, 0), mask);
24015         if (!reg_is_reg(state, lreg, REG_EAX)) {
24016                 internal_error(state, ins, "src != %%eax");
24017         }
24018         if (is_const(RHS(ins, 1))) {
24019                 fprintf(fp, "\t%s %s,", 
24020                         op, reg(state, RHS(ins, 0), mask));
24021                 print_const_val(state, RHS(ins, 1), fp);
24022                 fprintf(fp, "\n");
24023         }
24024         else {
24025                 int addr_reg;
24026                 addr_reg = check_reg(state, RHS(ins, 1), REGCM_GPR16);
24027                 if (!reg_is_reg(state, addr_reg, REG_DX)) {
24028                         internal_error(state, ins, "dst != %%dx");
24029                 }
24030                 fprintf(fp, "\t%s %s, %s\n",
24031                         op, 
24032                         reg(state, RHS(ins, 0), mask),
24033                         reg(state, RHS(ins, 1), REGCM_GPR16));
24034         }
24035 }
24036
24037 static void print_op_move(struct compile_state *state,
24038         struct triple *ins, FILE *fp)
24039 {
24040         /* op_move is complex because there are many types
24041          * of registers we can move between.
24042          * Because OP_COPY will be introduced in arbitrary locations
24043          * OP_COPY must not affect flags.
24044          * OP_CONVERT can change the flags and it is the only operation
24045          * where it is expected the types in the registers can change.
24046          */
24047         int omit_copy = 1; /* Is it o.k. to omit a noop copy? */
24048         struct triple *dst, *src;
24049         if (state->arch->features & X86_NOOP_COPY) {
24050                 omit_copy = 0;
24051         }
24052         if ((ins->op == OP_COPY) || (ins->op == OP_CONVERT)) {
24053                 src = RHS(ins, 0);
24054                 dst = ins;
24055         }
24056         else {
24057                 internal_error(state, ins, "unknown move operation");
24058                 src = dst = 0;
24059         }
24060         if (reg_size(state, dst) < size_of(state, dst->type)) {
24061                 internal_error(state, ins, "Invalid destination register");
24062         }
24063         if (!equiv_types(src->type, dst->type) && (dst->op == OP_COPY)) {
24064                 fprintf(state->errout, "src type: ");
24065                 name_of(state->errout, src->type);
24066                 fprintf(state->errout, "\n");
24067                 fprintf(state->errout, "dst type: ");
24068                 name_of(state->errout, dst->type);
24069                 fprintf(state->errout, "\n");
24070                 internal_error(state, ins, "Type mismatch for OP_COPY");
24071         }
24072
24073         if (!is_const(src)) {
24074                 int src_reg, dst_reg;
24075                 int src_regcm, dst_regcm;
24076                 src_reg   = ID_REG(src->id);
24077                 dst_reg   = ID_REG(dst->id);
24078                 src_regcm = arch_reg_regcm(state, src_reg);
24079                 dst_regcm = arch_reg_regcm(state, dst_reg);
24080                 /* If the class is the same just move the register */
24081                 if (src_regcm & dst_regcm & 
24082                         (REGCM_GPR8_LO | REGCM_GPR16 | REGCM_GPR32)) {
24083                         if ((src_reg != dst_reg) || !omit_copy) {
24084                                 fprintf(fp, "\tmov %s, %s\n",
24085                                         reg(state, src, src_regcm),
24086                                         reg(state, dst, dst_regcm));
24087                         }
24088                 }
24089                 /* Move 32bit to 16bit */
24090                 else if ((src_regcm & REGCM_GPR32) &&
24091                         (dst_regcm & REGCM_GPR16)) {
24092                         src_reg = (src_reg - REGC_GPR32_FIRST) + REGC_GPR16_FIRST;
24093                         if ((src_reg != dst_reg) || !omit_copy) {
24094                                 fprintf(fp, "\tmovw %s, %s\n",
24095                                         arch_reg_str(src_reg), 
24096                                         arch_reg_str(dst_reg));
24097                         }
24098                 }
24099                 /* Move from 32bit gprs to 16bit gprs */
24100                 else if ((src_regcm & REGCM_GPR32) &&
24101                         (dst_regcm & REGCM_GPR16)) {
24102                         dst_reg = (dst_reg - REGC_GPR16_FIRST) + REGC_GPR32_FIRST;
24103                         if ((src_reg != dst_reg) || !omit_copy) {
24104                                 fprintf(fp, "\tmov %s, %s\n",
24105                                         arch_reg_str(src_reg),
24106                                         arch_reg_str(dst_reg));
24107                         }
24108                 }
24109                 /* Move 32bit to 8bit */
24110                 else if ((src_regcm & REGCM_GPR32_8) &&
24111                         (dst_regcm & REGCM_GPR8_LO))
24112                 {
24113                         src_reg = (src_reg - REGC_GPR32_8_FIRST) + REGC_GPR8_FIRST;
24114                         if ((src_reg != dst_reg) || !omit_copy) {
24115                                 fprintf(fp, "\tmovb %s, %s\n",
24116                                         arch_reg_str(src_reg),
24117                                         arch_reg_str(dst_reg));
24118                         }
24119                 }
24120                 /* Move 16bit to 8bit */
24121                 else if ((src_regcm & REGCM_GPR16_8) &&
24122                         (dst_regcm & REGCM_GPR8_LO))
24123                 {
24124                         src_reg = (src_reg - REGC_GPR16_8_FIRST) + REGC_GPR8_FIRST;
24125                         if ((src_reg != dst_reg) || !omit_copy) {
24126                                 fprintf(fp, "\tmovb %s, %s\n",
24127                                         arch_reg_str(src_reg),
24128                                         arch_reg_str(dst_reg));
24129                         }
24130                 }
24131                 /* Move 8/16bit to 16/32bit */
24132                 else if ((src_regcm & (REGCM_GPR8_LO | REGCM_GPR16)) && 
24133                         (dst_regcm & (REGCM_GPR16 | REGCM_GPR32))) {
24134                         const char *op;
24135                         op = is_signed(src->type)? "movsx": "movzx";
24136                         fprintf(fp, "\t%s %s, %s\n",
24137                                 op,
24138                                 reg(state, src, src_regcm),
24139                                 reg(state, dst, dst_regcm));
24140                 }
24141                 /* Move between sse registers */
24142                 else if ((src_regcm & dst_regcm & REGCM_XMM)) {
24143                         if ((src_reg != dst_reg) || !omit_copy) {
24144                                 fprintf(fp, "\tmovdqa %s, %s\n",
24145                                         reg(state, src, src_regcm),
24146                                         reg(state, dst, dst_regcm));
24147                         }
24148                 }
24149                 /* Move between mmx registers */
24150                 else if ((src_regcm & dst_regcm & REGCM_MMX)) {
24151                         if ((src_reg != dst_reg) || !omit_copy) {
24152                                 fprintf(fp, "\tmovq %s, %s\n",
24153                                         reg(state, src, src_regcm),
24154                                         reg(state, dst, dst_regcm));
24155                         }
24156                 }
24157                 /* Move from sse to mmx registers */
24158                 else if ((src_regcm & REGCM_XMM) && (dst_regcm & REGCM_MMX)) {
24159                         fprintf(fp, "\tmovdq2q %s, %s\n",
24160                                 reg(state, src, src_regcm),
24161                                 reg(state, dst, dst_regcm));
24162                 }
24163                 /* Move from mmx to sse registers */
24164                 else if ((src_regcm & REGCM_MMX) && (dst_regcm & REGCM_XMM)) {
24165                         fprintf(fp, "\tmovq2dq %s, %s\n",
24166                                 reg(state, src, src_regcm),
24167                                 reg(state, dst, dst_regcm));
24168                 }
24169                 /* Move between 32bit gprs & mmx/sse registers */
24170                 else if ((src_regcm & (REGCM_GPR32 | REGCM_MMX | REGCM_XMM)) &&
24171                         (dst_regcm & (REGCM_GPR32 | REGCM_MMX | REGCM_XMM))) {
24172                         fprintf(fp, "\tmovd %s, %s\n",
24173                                 reg(state, src, src_regcm),
24174                                 reg(state, dst, dst_regcm));
24175                 }
24176                 /* Move from 16bit gprs &  mmx/sse registers */
24177                 else if ((src_regcm & REGCM_GPR16) &&
24178                         (dst_regcm & (REGCM_MMX | REGCM_XMM))) {
24179                         const char *op;
24180                         int mid_reg;
24181                         op = is_signed(src->type)? "movsx":"movzx";
24182                         mid_reg = (src_reg - REGC_GPR16_FIRST) + REGC_GPR32_FIRST;
24183                         fprintf(fp, "\t%s %s, %s\n\tmovd %s, %s\n",
24184                                 op,
24185                                 arch_reg_str(src_reg),
24186                                 arch_reg_str(mid_reg),
24187                                 arch_reg_str(mid_reg),
24188                                 arch_reg_str(dst_reg));
24189                 }
24190                 /* Move from mmx/sse registers to 16bit gprs */
24191                 else if ((src_regcm & (REGCM_MMX | REGCM_XMM)) &&
24192                         (dst_regcm & REGCM_GPR16)) {
24193                         dst_reg = (dst_reg - REGC_GPR16_FIRST) + REGC_GPR32_FIRST;
24194                         fprintf(fp, "\tmovd %s, %s\n",
24195                                 arch_reg_str(src_reg),
24196                                 arch_reg_str(dst_reg));
24197                 }
24198                 /* Move from gpr to 64bit dividend */
24199                 else if ((src_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO))  &&
24200                         (dst_regcm & REGCM_DIVIDEND64)) {
24201                         const char *extend;
24202                         extend = is_signed(src->type)? "cltd":"movl $0, %edx";
24203                         fprintf(fp, "\tmov %s, %%eax\n\t%s\n",
24204                                 arch_reg_str(src_reg), 
24205                                 extend);
24206                 }
24207                 /* Move from 64bit gpr to gpr */
24208                 else if ((src_regcm & REGCM_DIVIDEND64) &&
24209                         (dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO))) {
24210                         if (dst_regcm & REGCM_GPR32) {
24211                                 src_reg = REG_EAX;
24212                         } 
24213                         else if (dst_regcm & REGCM_GPR16) {
24214                                 src_reg = REG_AX;
24215                         }
24216                         else if (dst_regcm & REGCM_GPR8_LO) {
24217                                 src_reg = REG_AL;
24218                         }
24219                         fprintf(fp, "\tmov %s, %s\n",
24220                                 arch_reg_str(src_reg),
24221                                 arch_reg_str(dst_reg));
24222                 }
24223                 /* Move from mmx/sse registers to 64bit gpr */
24224                 else if ((src_regcm & (REGCM_MMX | REGCM_XMM)) &&
24225                         (dst_regcm & REGCM_DIVIDEND64)) {
24226                         const char *extend;
24227                         extend = is_signed(src->type)? "cltd": "movl $0, %edx";
24228                         fprintf(fp, "\tmovd %s, %%eax\n\t%s\n",
24229                                 arch_reg_str(src_reg),
24230                                 extend);
24231                 }
24232                 /* Move from 64bit gpr to mmx/sse register */
24233                 else if ((src_regcm & REGCM_DIVIDEND64) &&
24234                         (dst_regcm & (REGCM_XMM | REGCM_MMX))) {
24235                         fprintf(fp, "\tmovd %%eax, %s\n",
24236                                 arch_reg_str(dst_reg));
24237                 }
24238 #if X86_4_8BIT_GPRS
24239                 /* Move from 8bit gprs to  mmx/sse registers */
24240                 else if ((src_regcm & REGCM_GPR8_LO) && (src_reg <= REG_DL) &&
24241                         (dst_regcm & (REGCM_MMX | REGCM_XMM))) {
24242                         const char *op;
24243                         int mid_reg;
24244                         op = is_signed(src->type)? "movsx":"movzx";
24245                         mid_reg = (src_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
24246                         fprintf(fp, "\t%s %s, %s\n\tmovd %s, %s\n",
24247                                 op,
24248                                 reg(state, src, src_regcm),
24249                                 arch_reg_str(mid_reg),
24250                                 arch_reg_str(mid_reg),
24251                                 reg(state, dst, dst_regcm));
24252                 }
24253                 /* Move from mmx/sse registers and 8bit gprs */
24254                 else if ((src_regcm & (REGCM_MMX | REGCM_XMM)) &&
24255                         (dst_regcm & REGCM_GPR8_LO) && (dst_reg <= REG_DL)) {
24256                         int mid_reg;
24257                         mid_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
24258                         fprintf(fp, "\tmovd %s, %s\n",
24259                                 reg(state, src, src_regcm),
24260                                 arch_reg_str(mid_reg));
24261                 }
24262                 /* Move from 32bit gprs to 8bit gprs */
24263                 else if ((src_regcm & REGCM_GPR32) &&
24264                         (dst_regcm & REGCM_GPR8_LO)) {
24265                         dst_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
24266                         if ((src_reg != dst_reg) || !omit_copy) {
24267                                 fprintf(fp, "\tmov %s, %s\n",
24268                                         arch_reg_str(src_reg),
24269                                         arch_reg_str(dst_reg));
24270                         }
24271                 }
24272                 /* Move from 16bit gprs to 8bit gprs */
24273                 else if ((src_regcm & REGCM_GPR16) &&
24274                         (dst_regcm & REGCM_GPR8_LO)) {
24275                         dst_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR16_FIRST;
24276                         if ((src_reg != dst_reg) || !omit_copy) {
24277                                 fprintf(fp, "\tmov %s, %s\n",
24278                                         arch_reg_str(src_reg),
24279                                         arch_reg_str(dst_reg));
24280                         }
24281                 }
24282 #endif /* X86_4_8BIT_GPRS */
24283                 /* Move from %eax:%edx to %eax:%edx */
24284                 else if ((src_regcm & REGCM_DIVIDEND64) &&
24285                         (dst_regcm & REGCM_DIVIDEND64) &&
24286                         (src_reg == dst_reg)) {
24287                         if (!omit_copy) {
24288                                 fprintf(fp, "\t/*mov %s, %s*/\n",
24289                                         arch_reg_str(src_reg),
24290                                         arch_reg_str(dst_reg));
24291                         }
24292                 }
24293                 else {
24294                         if ((src_regcm & ~REGCM_FLAGS) == 0) {
24295                                 internal_error(state, ins, "attempt to copy from %%eflags!");
24296                         }
24297                         internal_error(state, ins, "unknown copy type");
24298                 }
24299         }
24300         else {
24301                 size_t dst_size;
24302                 int dst_reg;
24303                 int dst_regcm;
24304                 dst_size = size_of(state, dst->type);
24305                 dst_reg = ID_REG(dst->id);
24306                 dst_regcm = arch_reg_regcm(state, dst_reg);
24307                 if (dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO)) {
24308                         fprintf(fp, "\tmov ");
24309                         print_const_val(state, src, fp);
24310                         fprintf(fp, ", %s\n",
24311                                 reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO));
24312                 }
24313                 else if (dst_regcm & REGCM_DIVIDEND64) {
24314                         if (dst_size > SIZEOF_I32) {
24315                                 internal_error(state, ins, "%dbit constant...", dst_size);
24316                         }
24317                         fprintf(fp, "\tmov $0, %%edx\n");
24318                         fprintf(fp, "\tmov ");
24319                         print_const_val(state, src, fp);
24320                         fprintf(fp, ", %%eax\n");
24321                 }
24322                 else if (dst_regcm & REGCM_DIVIDEND32) {
24323                         if (dst_size > SIZEOF_I16) {
24324                                 internal_error(state, ins, "%dbit constant...", dst_size);
24325                         }
24326                         fprintf(fp, "\tmov $0, %%dx\n");
24327                         fprintf(fp, "\tmov ");
24328                         print_const_val(state, src, fp);
24329                         fprintf(fp, ", %%ax");
24330                 }
24331                 else if (dst_regcm & (REGCM_XMM | REGCM_MMX)) {
24332                         long ref;
24333                         if (dst_size > SIZEOF_I32) {
24334                                 internal_error(state, ins, "%d bit constant...", dst_size);
24335                         }
24336                         ref = get_const_pool_ref(state, src, SIZEOF_I32, fp);
24337                         fprintf(fp, "\tmovd L%s%lu, %s\n",
24338                                 state->compiler->label_prefix, ref,
24339                                 reg(state, dst, (REGCM_XMM | REGCM_MMX)));
24340                 }
24341                 else {
24342                         internal_error(state, ins, "unknown copy immediate type");
24343                 }
24344         }
24345         /* Leave now if this is not a type conversion */
24346         if (ins->op != OP_CONVERT) {
24347                 return;
24348         }
24349         /* Now make certain I have not logically overflowed the destination */
24350         if ((size_of(state, src->type) > size_of(state, dst->type)) &&
24351                 (size_of(state, dst->type) < reg_size(state, dst)))
24352         {
24353                 unsigned long mask;
24354                 int dst_reg;
24355                 int dst_regcm;
24356                 if (size_of(state, dst->type) >= 32) {
24357                         fprintf(state->errout, "dst type: ");
24358                         name_of(state->errout, dst->type);
24359                         fprintf(state->errout, "\n");
24360                         internal_error(state, dst, "unhandled dst type size");
24361                 }
24362                 mask = 1;
24363                 mask <<= size_of(state, dst->type);
24364                 mask -= 1;
24365
24366                 dst_reg = ID_REG(dst->id);
24367                 dst_regcm = arch_reg_regcm(state, dst_reg);
24368
24369                 if (dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO)) {
24370                         fprintf(fp, "\tand $0x%lx, %s\n",
24371                                 mask, reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO));
24372                 }
24373                 else if (dst_regcm & REGCM_MMX) {
24374                         long ref;
24375                         ref = get_mask_pool_ref(state, dst, mask, fp);
24376                         fprintf(fp, "\tpand L%s%lu, %s\n",
24377                                 state->compiler->label_prefix, ref,
24378                                 reg(state, dst, REGCM_MMX));
24379                 }
24380                 else if (dst_regcm & REGCM_XMM) {
24381                         long ref;
24382                         ref = get_mask_pool_ref(state, dst, mask, fp);
24383                         fprintf(fp, "\tpand L%s%lu, %s\n",
24384                                 state->compiler->label_prefix, ref,
24385                                 reg(state, dst, REGCM_XMM));
24386                 }
24387                 else {
24388                         fprintf(state->errout, "dst type: ");
24389                         name_of(state->errout, dst->type);
24390                         fprintf(state->errout, "\n");
24391                         fprintf(state->errout, "dst: %s\n", reg(state, dst, REGCM_ALL));
24392                         internal_error(state, dst, "failed to trunc value: mask %lx", mask);
24393                 }
24394         }
24395         /* Make certain I am properly sign extended */
24396         if ((size_of(state, src->type) < size_of(state, dst->type)) &&
24397                 (is_signed(src->type)))
24398         {
24399                 int bits, reg_bits, shift_bits;
24400                 int dst_reg;
24401                 int dst_regcm;
24402
24403                 bits = size_of(state, src->type);
24404                 reg_bits = reg_size(state, dst);
24405                 if (reg_bits > 32) {
24406                         reg_bits = 32;
24407                 }
24408                 shift_bits = reg_bits - size_of(state, src->type);
24409                 dst_reg = ID_REG(dst->id);
24410                 dst_regcm = arch_reg_regcm(state, dst_reg);
24411
24412                 if (shift_bits < 0) {
24413                         internal_error(state, dst, "negative shift?");
24414                 }
24415
24416                 if (dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO)) {
24417                         fprintf(fp, "\tshl $%d, %s\n", 
24418                                 shift_bits, 
24419                                 reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO));
24420                         fprintf(fp, "\tsar $%d, %s\n", 
24421                                 shift_bits, 
24422                                 reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO));
24423                 }
24424                 else if (dst_regcm & (REGCM_MMX | REGCM_XMM)) {
24425                         fprintf(fp, "\tpslld $%d, %s\n",
24426                                 shift_bits, 
24427                                 reg(state, dst, REGCM_MMX | REGCM_XMM));
24428                         fprintf(fp, "\tpsrad $%d, %s\n",
24429                                 shift_bits, 
24430                                 reg(state, dst, REGCM_MMX | REGCM_XMM));
24431                 }
24432                 else {
24433                         fprintf(state->errout, "dst type: ");
24434                         name_of(state->errout, dst->type);
24435                         fprintf(state->errout, "\n");
24436                         fprintf(state->errout, "dst: %s\n", reg(state, dst, REGCM_ALL));
24437                         internal_error(state, dst, "failed to signed extend value");
24438                 }
24439         }
24440 }
24441
24442 static void print_op_load(struct compile_state *state,
24443         struct triple *ins, FILE *fp)
24444 {
24445         struct triple *dst, *src;
24446         const char *op;
24447         dst = ins;
24448         src = RHS(ins, 0);
24449         if (is_const(src) || is_const(dst)) {
24450                 internal_error(state, ins, "unknown load operation");
24451         }
24452         switch(ins->type->type & TYPE_MASK) {
24453         case TYPE_CHAR:   op = "movsbl"; break;
24454         case TYPE_UCHAR:  op = "movzbl"; break;
24455         case TYPE_SHORT:  op = "movswl"; break;
24456         case TYPE_USHORT: op = "movzwl"; break;
24457         case TYPE_INT:    case TYPE_UINT:
24458         case TYPE_LONG:   case TYPE_ULONG:
24459         case TYPE_POINTER:
24460                 op = "movl"; 
24461                 break;
24462         default:
24463                 internal_error(state, ins, "unknown type in load");
24464                 op = "<invalid opcode>";
24465                 break;
24466         }
24467         fprintf(fp, "\t%s (%s), %s\n",
24468                 op, 
24469                 reg(state, src, REGCM_GPR32),
24470                 reg(state, dst, REGCM_GPR32));
24471 }
24472
24473
24474 static void print_op_store(struct compile_state *state,
24475         struct triple *ins, FILE *fp)
24476 {
24477         struct triple *dst, *src;
24478         dst = RHS(ins, 0);
24479         src = RHS(ins, 1);
24480         if (is_const(src) && (src->op == OP_INTCONST)) {
24481                 long_t value;
24482                 value = (long_t)(src->u.cval);
24483                 fprintf(fp, "\tmov%s $%ld, (%s)\n",
24484                         type_suffix(state, src->type),
24485                         (long)(value),
24486                         reg(state, dst, REGCM_GPR32));
24487         }
24488         else if (is_const(dst) && (dst->op == OP_INTCONST)) {
24489                 fprintf(fp, "\tmov%s %s, 0x%08lx\n",
24490                         type_suffix(state, src->type),
24491                         reg(state, src, REGCM_GPR8_LO | REGCM_GPR16 | REGCM_GPR32),
24492                         (unsigned long)(dst->u.cval));
24493         }
24494         else {
24495                 if (is_const(src) || is_const(dst)) {
24496                         internal_error(state, ins, "unknown store operation");
24497                 }
24498                 fprintf(fp, "\tmov%s %s, (%s)\n",
24499                         type_suffix(state, src->type),
24500                         reg(state, src, REGCM_GPR8_LO | REGCM_GPR16 | REGCM_GPR32),
24501                         reg(state, dst, REGCM_GPR32));
24502         }
24503         
24504         
24505 }
24506
24507 static void print_op_smul(struct compile_state *state,
24508         struct triple *ins, FILE *fp)
24509 {
24510         if (!is_const(RHS(ins, 1))) {
24511                 fprintf(fp, "\timul %s, %s\n",
24512                         reg(state, RHS(ins, 1), REGCM_GPR32),
24513                         reg(state, RHS(ins, 0), REGCM_GPR32));
24514         }
24515         else {
24516                 fprintf(fp, "\timul ");
24517                 print_const_val(state, RHS(ins, 1), fp);
24518                 fprintf(fp, ", %s\n", reg(state, RHS(ins, 0), REGCM_GPR32));
24519         }
24520 }
24521
24522 static void print_op_cmp(struct compile_state *state,
24523         struct triple *ins, FILE *fp)
24524 {
24525         unsigned mask;
24526         int dreg;
24527         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
24528         dreg = check_reg(state, ins, REGCM_FLAGS);
24529         if (!reg_is_reg(state, dreg, REG_EFLAGS)) {
24530                 internal_error(state, ins, "bad dest register for cmp");
24531         }
24532         if (is_const(RHS(ins, 1))) {
24533                 fprintf(fp, "\tcmp ");
24534                 print_const_val(state, RHS(ins, 1), fp);
24535                 fprintf(fp, ", %s\n", reg(state, RHS(ins, 0), mask));
24536         }
24537         else {
24538                 unsigned lmask, rmask;
24539                 int lreg, rreg;
24540                 lreg = check_reg(state, RHS(ins, 0), mask);
24541                 rreg = check_reg(state, RHS(ins, 1), mask);
24542                 lmask = arch_reg_regcm(state, lreg);
24543                 rmask = arch_reg_regcm(state, rreg);
24544                 mask = lmask & rmask;
24545                 fprintf(fp, "\tcmp %s, %s\n",
24546                         reg(state, RHS(ins, 1), mask),
24547                         reg(state, RHS(ins, 0), mask));
24548         }
24549 }
24550
24551 static void print_op_test(struct compile_state *state,
24552         struct triple *ins, FILE *fp)
24553 {
24554         unsigned mask;
24555         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
24556         fprintf(fp, "\ttest %s, %s\n",
24557                 reg(state, RHS(ins, 0), mask),
24558                 reg(state, RHS(ins, 0), mask));
24559 }
24560
24561 static void print_op_branch(struct compile_state *state,
24562         struct triple *branch, FILE *fp)
24563 {
24564         const char *bop = "j";
24565         if ((branch->op == OP_JMP) || (branch->op == OP_CALL)) {
24566                 if (branch->rhs != 0) {
24567                         internal_error(state, branch, "jmp with condition?");
24568                 }
24569                 bop = "jmp";
24570         }
24571         else {
24572                 struct triple *ptr;
24573                 if (branch->rhs != 1) {
24574                         internal_error(state, branch, "jmpcc without condition?");
24575                 }
24576                 check_reg(state, RHS(branch, 0), REGCM_FLAGS);
24577                 if ((RHS(branch, 0)->op != OP_CMP) &&
24578                         (RHS(branch, 0)->op != OP_TEST)) {
24579                         internal_error(state, branch, "bad branch test");
24580                 }
24581 #if DEBUG_ROMCC_WARNINGS
24582 #warning "FIXME I have observed instructions between the test and branch instructions"
24583 #endif
24584                 ptr = RHS(branch, 0);
24585                 for(ptr = RHS(branch, 0)->next; ptr != branch; ptr = ptr->next) {
24586                         if (ptr->op != OP_COPY) {
24587                                 internal_error(state, branch, "branch does not follow test");
24588                         }
24589                 }
24590                 switch(branch->op) {
24591                 case OP_JMP_EQ:       bop = "jz";  break;
24592                 case OP_JMP_NOTEQ:    bop = "jnz"; break;
24593                 case OP_JMP_SLESS:    bop = "jl";  break;
24594                 case OP_JMP_ULESS:    bop = "jb";  break;
24595                 case OP_JMP_SMORE:    bop = "jg";  break;
24596                 case OP_JMP_UMORE:    bop = "ja";  break;
24597                 case OP_JMP_SLESSEQ:  bop = "jle"; break;
24598                 case OP_JMP_ULESSEQ:  bop = "jbe"; break;
24599                 case OP_JMP_SMOREEQ:  bop = "jge"; break;
24600                 case OP_JMP_UMOREEQ:  bop = "jae"; break;
24601                 default:
24602                         internal_error(state, branch, "Invalid branch op");
24603                         break;
24604                 }
24605                 
24606         }
24607 #if 1
24608         if (branch->op == OP_CALL) {
24609                 fprintf(fp, "\t/* call */\n");
24610         }
24611 #endif
24612         fprintf(fp, "\t%s L%s%lu\n",
24613                 bop, 
24614                 state->compiler->label_prefix,
24615                 (unsigned long)(TARG(branch, 0)->u.cval));
24616 }
24617
24618 static void print_op_ret(struct compile_state *state,
24619         struct triple *branch, FILE *fp)
24620 {
24621         fprintf(fp, "\tjmp *%s\n",
24622                 reg(state, RHS(branch, 0), REGCM_GPR32));
24623 }
24624
24625 static void print_op_set(struct compile_state *state,
24626         struct triple *set, FILE *fp)
24627 {
24628         const char *sop = "set";
24629         if (set->rhs != 1) {
24630                 internal_error(state, set, "setcc without condition?");
24631         }
24632         check_reg(state, RHS(set, 0), REGCM_FLAGS);
24633         if ((RHS(set, 0)->op != OP_CMP) &&
24634                 (RHS(set, 0)->op != OP_TEST)) {
24635                 internal_error(state, set, "bad set test");
24636         }
24637         if (RHS(set, 0)->next != set) {
24638                 internal_error(state, set, "set does not follow test");
24639         }
24640         switch(set->op) {
24641         case OP_SET_EQ:       sop = "setz";  break;
24642         case OP_SET_NOTEQ:    sop = "setnz"; break;
24643         case OP_SET_SLESS:    sop = "setl";  break;
24644         case OP_SET_ULESS:    sop = "setb";  break;
24645         case OP_SET_SMORE:    sop = "setg";  break;
24646         case OP_SET_UMORE:    sop = "seta";  break;
24647         case OP_SET_SLESSEQ:  sop = "setle"; break;
24648         case OP_SET_ULESSEQ:  sop = "setbe"; break;
24649         case OP_SET_SMOREEQ:  sop = "setge"; break;
24650         case OP_SET_UMOREEQ:  sop = "setae"; break;
24651         default:
24652                 internal_error(state, set, "Invalid set op");
24653                 break;
24654         }
24655         fprintf(fp, "\t%s %s\n",
24656                 sop, reg(state, set, REGCM_GPR8_LO));
24657 }
24658
24659 static void print_op_bit_scan(struct compile_state *state, 
24660         struct triple *ins, FILE *fp) 
24661 {
24662         const char *op;
24663         switch(ins->op) {
24664         case OP_BSF: op = "bsf"; break;
24665         case OP_BSR: op = "bsr"; break;
24666         default: 
24667                 internal_error(state, ins, "unknown bit scan");
24668                 op = 0;
24669                 break;
24670         }
24671         fprintf(fp, 
24672                 "\t%s %s, %s\n"
24673                 "\tjnz 1f\n"
24674                 "\tmovl $-1, %s\n"
24675                 "1:\n",
24676                 op,
24677                 reg(state, RHS(ins, 0), REGCM_GPR32),
24678                 reg(state, ins, REGCM_GPR32),
24679                 reg(state, ins, REGCM_GPR32));
24680 }
24681
24682
24683 static void print_sdecl(struct compile_state *state,
24684         struct triple *ins, FILE *fp)
24685 {
24686         fprintf(fp, ".section \"" DATA_SECTION "\"\n");
24687         fprintf(fp, ".balign %ld\n", (long int)align_of_in_bytes(state, ins->type));
24688         fprintf(fp, "L%s%lu:\n", 
24689                 state->compiler->label_prefix, (unsigned long)(ins->u.cval));
24690         print_const(state, MISC(ins, 0), fp);
24691         fprintf(fp, ".section \"" TEXT_SECTION "\"\n");
24692                 
24693 }
24694
24695 static void print_instruction(struct compile_state *state,
24696         struct triple *ins, FILE *fp)
24697 {
24698         /* Assumption: after I have exted the register allocator
24699          * everything is in a valid register. 
24700          */
24701         switch(ins->op) {
24702         case OP_ASM:
24703                 print_op_asm(state, ins, fp);
24704                 break;
24705         case OP_ADD:    print_binary_op(state, "add", ins, fp); break;
24706         case OP_SUB:    print_binary_op(state, "sub", ins, fp); break;
24707         case OP_AND:    print_binary_op(state, "and", ins, fp); break;
24708         case OP_XOR:    print_binary_op(state, "xor", ins, fp); break;
24709         case OP_OR:     print_binary_op(state, "or",  ins, fp); break;
24710         case OP_SL:     print_op_shift(state, "shl", ins, fp); break;
24711         case OP_USR:    print_op_shift(state, "shr", ins, fp); break;
24712         case OP_SSR:    print_op_shift(state, "sar", ins, fp); break;
24713         case OP_POS:    break;
24714         case OP_NEG:    print_unary_op(state, "neg", ins, fp); break;
24715         case OP_INVERT: print_unary_op(state, "not", ins, fp); break;
24716         case OP_NOOP:
24717         case OP_INTCONST:
24718         case OP_ADDRCONST:
24719         case OP_BLOBCONST:
24720                 /* Don't generate anything here for constants */
24721         case OP_PHI:
24722                 /* Don't generate anything for variable declarations. */
24723                 break;
24724         case OP_UNKNOWNVAL:
24725                 fprintf(fp, " /* unknown %s */\n",
24726                         reg(state, ins, REGCM_ALL));
24727                 break;
24728         case OP_SDECL:
24729                 print_sdecl(state, ins, fp);
24730                 break;
24731         case OP_COPY:   
24732         case OP_CONVERT:
24733                 print_op_move(state, ins, fp);
24734                 break;
24735         case OP_LOAD:
24736                 print_op_load(state, ins, fp);
24737                 break;
24738         case OP_STORE:
24739                 print_op_store(state, ins, fp);
24740                 break;
24741         case OP_SMUL:
24742                 print_op_smul(state, ins, fp);
24743                 break;
24744         case OP_CMP:    print_op_cmp(state, ins, fp); break;
24745         case OP_TEST:   print_op_test(state, ins, fp); break;
24746         case OP_JMP:
24747         case OP_JMP_EQ:      case OP_JMP_NOTEQ:
24748         case OP_JMP_SLESS:   case OP_JMP_ULESS:
24749         case OP_JMP_SMORE:   case OP_JMP_UMORE:
24750         case OP_JMP_SLESSEQ: case OP_JMP_ULESSEQ:
24751         case OP_JMP_SMOREEQ: case OP_JMP_UMOREEQ:
24752         case OP_CALL:
24753                 print_op_branch(state, ins, fp);
24754                 break;
24755         case OP_RET:
24756                 print_op_ret(state, ins, fp);
24757                 break;
24758         case OP_SET_EQ:      case OP_SET_NOTEQ:
24759         case OP_SET_SLESS:   case OP_SET_ULESS:
24760         case OP_SET_SMORE:   case OP_SET_UMORE:
24761         case OP_SET_SLESSEQ: case OP_SET_ULESSEQ:
24762         case OP_SET_SMOREEQ: case OP_SET_UMOREEQ:
24763                 print_op_set(state, ins, fp);
24764                 break;
24765         case OP_INB:  case OP_INW:  case OP_INL:
24766                 print_op_in(state, ins, fp); 
24767                 break;
24768         case OP_OUTB: case OP_OUTW: case OP_OUTL:
24769                 print_op_out(state, ins, fp); 
24770                 break;
24771         case OP_BSF:
24772         case OP_BSR:
24773                 print_op_bit_scan(state, ins, fp);
24774                 break;
24775         case OP_RDMSR:
24776                 after_lhs(state, ins);
24777                 fprintf(fp, "\trdmsr\n");
24778                 break;
24779         case OP_WRMSR:
24780                 fprintf(fp, "\twrmsr\n");
24781                 break;
24782         case OP_HLT:
24783                 fprintf(fp, "\thlt\n");
24784                 break;
24785         case OP_SDIVT:
24786                 fprintf(fp, "\tidiv %s\n", reg(state, RHS(ins, 1), REGCM_GPR32));
24787                 break;
24788         case OP_UDIVT:
24789                 fprintf(fp, "\tdiv %s\n", reg(state, RHS(ins, 1), REGCM_GPR32));
24790                 break;
24791         case OP_UMUL:
24792                 fprintf(fp, "\tmul %s\n", reg(state, RHS(ins, 1), REGCM_GPR32));
24793                 break;
24794         case OP_LABEL:
24795                 if (!ins->use) {
24796                         return;
24797                 }
24798                 fprintf(fp, "L%s%lu:\n", 
24799                         state->compiler->label_prefix, (unsigned long)(ins->u.cval));
24800                 break;
24801         case OP_ADECL:
24802                 /* Ignore adecls with no registers error otherwise */
24803                 if (!noop_adecl(ins)) {
24804                         internal_error(state, ins, "adecl remains?");
24805                 }
24806                 break;
24807                 /* Ignore OP_PIECE */
24808         case OP_PIECE:
24809                 break;
24810                 /* Operations that should never get here */
24811         case OP_SDIV: case OP_UDIV:
24812         case OP_SMOD: case OP_UMOD:
24813         case OP_LTRUE:   case OP_LFALSE:  case OP_EQ:      case OP_NOTEQ:
24814         case OP_SLESS:   case OP_ULESS:   case OP_SMORE:   case OP_UMORE:
24815         case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
24816         default:
24817                 internal_error(state, ins, "unknown op: %d %s",
24818                         ins->op, tops(ins->op));
24819                 break;
24820         }
24821 }
24822
24823 static void print_instructions(struct compile_state *state)
24824 {
24825         struct triple *first, *ins;
24826         int print_location;
24827         struct occurance *last_occurance;
24828         FILE *fp;
24829         int max_inline_depth;
24830         max_inline_depth = 0;
24831         print_location = 1;
24832         last_occurance = 0;
24833         fp = state->output;
24834         /* Masks for common sizes */
24835         fprintf(fp, ".section \"" DATA_SECTION "\"\n");
24836         fprintf(fp, ".balign 16\n");
24837         fprintf(fp, "L%s1:\n", state->compiler->label_prefix);
24838         fprintf(fp, ".int 0xff, 0, 0, 0\n");
24839         fprintf(fp, "L%s2:\n", state->compiler->label_prefix);
24840         fprintf(fp, ".int 0xffff, 0, 0, 0\n");
24841         fprintf(fp, ".section \"" TEXT_SECTION "\"\n");
24842         first = state->first;
24843         ins = first;
24844         do {
24845                 if (print_location && 
24846                         last_occurance != ins->occurance) {
24847                         if (!ins->occurance->parent) {
24848                                 fprintf(fp, "\t/* %s,%s:%d.%d */\n",
24849                                         ins->occurance->function?ins->occurance->function:"(null)",
24850                                         ins->occurance->filename?ins->occurance->filename:"(null)",
24851                                         ins->occurance->line,
24852                                         ins->occurance->col);
24853                         }
24854                         else {
24855                                 struct occurance *ptr;
24856                                 int inline_depth;
24857                                 fprintf(fp, "\t/*\n");
24858                                 inline_depth = 0;
24859                                 for(ptr = ins->occurance; ptr; ptr = ptr->parent) {
24860                                         inline_depth++;
24861                                         fprintf(fp, "\t * %s,%s:%d.%d\n",
24862                                                 ptr->function,
24863                                                 ptr->filename,
24864                                                 ptr->line,
24865                                                 ptr->col);
24866                                 }
24867                                 fprintf(fp, "\t */\n");
24868                                 if (inline_depth > max_inline_depth) {
24869                                         max_inline_depth = inline_depth;
24870                                 }
24871                         }
24872                         if (last_occurance) {
24873                                 put_occurance(last_occurance);
24874                         }
24875                         get_occurance(ins->occurance);
24876                         last_occurance = ins->occurance;
24877                 }
24878
24879                 print_instruction(state, ins, fp);
24880                 ins = ins->next;
24881         } while(ins != first);
24882         if (print_location) {
24883                 fprintf(fp, "/* max inline depth %d */\n",
24884                         max_inline_depth);
24885         }
24886 }
24887
24888 static void generate_code(struct compile_state *state)
24889 {
24890         generate_local_labels(state);
24891         print_instructions(state);
24892         
24893 }
24894
24895 static void print_preprocessed_tokens(struct compile_state *state)
24896 {
24897         int tok;
24898         FILE *fp;
24899         int line;
24900         const char *filename;
24901         fp = state->output;
24902         filename = 0;
24903         line = 0;
24904         for(;;) {
24905                 struct file_state *file;
24906                 struct token *tk;
24907                 const char *token_str;
24908                 tok = peek(state);
24909                 if (tok == TOK_EOF) {
24910                         break;
24911                 }
24912                 tk = eat(state, tok);
24913                 token_str = 
24914                         tk->ident ? tk->ident->name :
24915                         tk->str_len ? tk->val.str :
24916                         tokens[tk->tok];
24917
24918                 file = state->file;
24919                 while(file->macro && file->prev) {
24920                         file = file->prev;
24921                 }
24922                 if (!file->macro && 
24923                         ((file->line != line) || (file->basename != filename))) 
24924                 {
24925                         int i, col;
24926                         if ((file->basename == filename) &&
24927                                 (line < file->line)) {
24928                                 while(line < file->line) {
24929                                         fprintf(fp, "\n");
24930                                         line++;
24931                                 }
24932                         }
24933                         else {
24934                                 fprintf(fp, "\n#line %d \"%s\"\n",
24935                                         file->line, file->basename);
24936                         }
24937                         line = file->line;
24938                         filename = file->basename;
24939                         col = get_col(file) - strlen(token_str);
24940                         for(i = 0; i < col; i++) {
24941                                 fprintf(fp, " ");
24942                         }
24943                 }
24944                 
24945                 fprintf(fp, "%s ", token_str);
24946                 
24947                 if (state->compiler->debug & DEBUG_TOKENS) {
24948                         loc(state->dbgout, state, 0);
24949                         fprintf(state->dbgout, "%s <- `%s'\n",
24950                                 tokens[tok], token_str);
24951                 }
24952         }
24953 }
24954
24955 static void compile(const char *filename,
24956         struct compiler_state *compiler, struct arch_state *arch)
24957 {
24958         int i;
24959         struct compile_state state;
24960         struct triple *ptr;
24961         struct filelist *includes = include_filelist;
24962         memset(&state, 0, sizeof(state));
24963         state.compiler = compiler;
24964         state.arch     = arch;
24965         state.file = 0;
24966         for(i = 0; i < sizeof(state.token)/sizeof(state.token[0]); i++) {
24967                 memset(&state.token[i], 0, sizeof(state.token[i]));
24968                 state.token[i].tok = -1;
24969         }
24970         /* Remember the output descriptors */
24971         state.errout = stderr;
24972         state.dbgout = stdout;
24973         /* Remember the output filename */
24974         state.output    = fopen(state.compiler->ofilename, "w");
24975         if (!state.output) {
24976                 error(&state, 0, "Cannot open output file %s\n",
24977                         state.compiler->ofilename);
24978         }
24979         /* Make certain a good cleanup happens */
24980         exit_state = &state;
24981         atexit(exit_cleanup);
24982
24983         /* Prep the preprocessor */
24984         state.if_depth = 0;
24985         memset(state.if_bytes, 0, sizeof(state.if_bytes));
24986         /* register the C keywords */
24987         register_keywords(&state);
24988         /* register the keywords the macro preprocessor knows */
24989         register_macro_keywords(&state);
24990         /* generate some builtin macros */
24991         register_builtin_macros(&state);
24992         /* Memorize where some special keywords are. */
24993         state.i_switch        = lookup(&state, "switch", 6);
24994         state.i_case          = lookup(&state, "case", 4);
24995         state.i_continue      = lookup(&state, "continue", 8);
24996         state.i_break         = lookup(&state, "break", 5);
24997         state.i_default       = lookup(&state, "default", 7);
24998         state.i_return        = lookup(&state, "return", 6);
24999         /* Memorize where predefined macros are. */
25000         state.i___VA_ARGS__   = lookup(&state, "__VA_ARGS__", 11);
25001         state.i___FILE__      = lookup(&state, "__FILE__", 8);
25002         state.i___LINE__      = lookup(&state, "__LINE__", 8);
25003         /* Memorize where predefined identifiers are. */
25004         state.i___func__      = lookup(&state, "__func__", 8);
25005         /* Memorize where some attribute keywords are. */
25006         state.i_noinline      = lookup(&state, "noinline", 8);
25007         state.i_always_inline = lookup(&state, "always_inline", 13);
25008         state.i_noreturn      = lookup(&state, "noreturn", 8);
25009
25010         /* Process the command line macros */
25011         process_cmdline_macros(&state);
25012
25013         /* Allocate beginning bounding labels for the function list */
25014         state.first = label(&state);
25015         state.first->id |= TRIPLE_FLAG_VOLATILE;
25016         use_triple(state.first, state.first);
25017         ptr = label(&state);
25018         ptr->id |= TRIPLE_FLAG_VOLATILE;
25019         use_triple(ptr, ptr);
25020         flatten(&state, state.first, ptr);
25021
25022         /* Allocate a label for the pool of global variables */
25023         state.global_pool = label(&state);
25024         state.global_pool->id |= TRIPLE_FLAG_VOLATILE;
25025         flatten(&state, state.first, state.global_pool);
25026
25027         /* Enter the globl definition scope */
25028         start_scope(&state);
25029         register_builtins(&state);
25030
25031         compile_file(&state, filename, 1);
25032         
25033         while (includes) {
25034                 compile_file(&state, includes->filename, 1);
25035                 includes=includes->next;
25036         }
25037
25038         /* Stop if all we want is preprocessor output */
25039         if (state.compiler->flags & COMPILER_PP_ONLY) {
25040                 print_preprocessed_tokens(&state);
25041                 return;
25042         }
25043
25044         decls(&state);
25045
25046         /* Exit the global definition scope */
25047         end_scope(&state);
25048
25049         /* Now that basic compilation has happened 
25050          * optimize the intermediate code 
25051          */
25052         optimize(&state);
25053
25054         generate_code(&state);
25055         if (state.compiler->debug) {
25056                 fprintf(state.errout, "done\n");
25057         }
25058         exit_state = 0;
25059 }
25060
25061 static void version(FILE *fp)
25062 {
25063         fprintf(fp, "romcc " VERSION " released " RELEASE_DATE "\n");
25064 }
25065
25066 static void usage(void)
25067 {
25068         FILE *fp = stdout;
25069         version(fp);
25070         fprintf(fp,
25071                 "\nUsage: romcc [options] <source>.c\n"
25072                 "Compile a C source file generating a binary that does not implicilty use RAM\n"
25073                 "Options: \n"
25074                 "-o <output file name>\n"
25075                 "-f<option>            Specify a generic compiler option\n"
25076                 "-m<option>            Specify a arch dependent option\n"
25077                 "--                    Specify this is the last option\n"
25078                 "\nGeneric compiler options:\n"
25079         );
25080         compiler_usage(fp);
25081         fprintf(fp,
25082                 "\nArchitecture compiler options:\n"
25083         );
25084         arch_usage(fp);
25085         fprintf(fp,
25086                 "\n"
25087         );
25088 }
25089
25090 static void arg_error(char *fmt, ...)
25091 {
25092         va_list args;
25093         va_start(args, fmt);
25094         vfprintf(stderr, fmt, args);
25095         va_end(args);
25096         usage();
25097         exit(1);
25098 }
25099
25100 int main(int argc, char **argv)
25101 {
25102         const char *filename;
25103         struct compiler_state compiler;
25104         struct arch_state arch;
25105         int all_opts;
25106         
25107         
25108         /* I don't want any surprises */
25109         setlocale(LC_ALL, "C");
25110
25111         init_compiler_state(&compiler);
25112         init_arch_state(&arch);
25113         filename = 0;
25114         all_opts = 0;
25115         while(argc > 1) {
25116                 if (!all_opts && (strcmp(argv[1], "-o") == 0) && (argc > 2)) {
25117                         compiler.ofilename = argv[2];
25118                         argv += 2;
25119                         argc -= 2;
25120                 }
25121                 else if (!all_opts && argv[1][0] == '-') {
25122                         int result;
25123                         result = -1;
25124                         if (strcmp(argv[1], "--") == 0) {
25125                                 result = 0;
25126                                 all_opts = 1;
25127                         }
25128                         else if (strncmp(argv[1], "-E", 2) == 0) {
25129                                 result = compiler_encode_flag(&compiler, argv[1]);
25130                         }
25131                         else if (strncmp(argv[1], "-O", 2) == 0) {
25132                                 result = compiler_encode_flag(&compiler, argv[1]);
25133                         }
25134                         else if (strncmp(argv[1], "-I", 2) == 0) {
25135                                 result = compiler_encode_flag(&compiler, argv[1]);
25136                         }
25137                         else if (strncmp(argv[1], "-D", 2) == 0) {
25138                                 result = compiler_encode_flag(&compiler, argv[1]);
25139                         }
25140                         else if (strncmp(argv[1], "-U", 2) == 0) {
25141                                 result = compiler_encode_flag(&compiler, argv[1]);
25142                         }
25143                         else if (strncmp(argv[1], "--label-prefix=", 15) == 0) {
25144                                 result = compiler_encode_flag(&compiler, argv[1]+2);
25145                         }
25146                         else if (strncmp(argv[1], "-f", 2) == 0) {
25147                                 result = compiler_encode_flag(&compiler, argv[1]+2);
25148                         }
25149                         else if (strncmp(argv[1], "-m", 2) == 0) {
25150                                 result = arch_encode_flag(&arch, argv[1]+2);
25151                         }
25152                         else if (strncmp(argv[1], "-include", 10) == 0) {
25153                                 struct filelist *old_head = include_filelist;
25154                                 include_filelist = malloc(sizeof(struct filelist));
25155                                 if (!include_filelist) {
25156                                         die("Out of memory.\n");
25157                                 }
25158                                 argv++;
25159                                 argc--;
25160                                 include_filelist->filename = argv[1];
25161                                 include_filelist->next = old_head;
25162                                 result = 0;
25163                         }
25164                         if (result < 0) {
25165                                 arg_error("Invalid option specified: %s\n",
25166                                         argv[1]);
25167                         }
25168                         argv++;
25169                         argc--;
25170                 }
25171                 else {
25172                         if (filename) {
25173                                 arg_error("Only one filename may be specified\n");
25174                         }
25175                         filename = argv[1];
25176                         argv++;
25177                         argc--;
25178                 }
25179         }
25180         if (!filename) {
25181                 arg_error("No filename specified\n");
25182         }
25183         compile(filename, &compiler, &arch);
25184
25185         return 0;
25186 }