- O2, enums, and switch statements work in romcc
[coreboot.git] / util / romcc / romcc.c
1 #include <stdarg.h>
2 #include <errno.h>
3 #include <stdint.h>
4 #include <stdlib.h>
5 #include <stdio.h>
6 #include <sys/types.h>
7 #include <sys/stat.h>
8 #include <fcntl.h>
9 #include <unistd.h>
10 #include <stdio.h>
11 #include <string.h>
12 #include <limits.h>
13
14 #define DEBUG_ERROR_MESSAGES 0
15 #define DEBUG_COLOR_GRAPH 0
16 #define DEBUG_SCC 0
17 #define DEBUG_CONSISTENCY 1
18 #define DEBUG_RANGE_CONFLICTS 0
19 #define DEBUG_COALESCING 0
20 #define DEBUG_SDP_BLOCKS 0
21 #define DEBUG_TRIPLE_COLOR 0
22 #define DEBUG_SIMPLIFY 0
23
24 #warning "FIXME boundary cases with small types in larger registers"
25 #warning "FIXME give clear error messages about unused variables"
26 #warning "FIXME properly handle multi dimensional arrays"
27
28 /*  Control flow graph of a loop without goto.
29  * 
30  *        AAA
31  *   +---/
32  *  /
33  * / +--->CCC
34  * | |    / \
35  * | |  DDD EEE    break;
36  * | |    \    \
37  * | |    FFF   \
38  *  \|    / \    \
39  *   |\ GGG HHH   |   continue;
40  *   | \  \   |   |
41  *   |  \ III |  /
42  *   |   \ | /  / 
43  *   |    vvv  /  
44  *   +----BBB /   
45  *         | /
46  *         vv
47  *        JJJ
48  *
49  * 
50  *             AAA
51  *     +-----+  |  +----+
52  *     |      \ | /     |
53  *     |       BBB  +-+ |
54  *     |       / \ /  | |
55  *     |     CCC JJJ / /
56  *     |     / \    / / 
57  *     |   DDD EEE / /  
58  *     |    |   +-/ /
59  *     |   FFF     /    
60  *     |   / \    /     
61  *     | GGG HHH /      
62  *     |  |   +-/
63  *     | III
64  *     +--+ 
65  *
66  * 
67  * DFlocal(X) = { Y <- Succ(X) | idom(Y) != X }
68  * DFup(Z)    = { Y <- DF(Z) | idom(Y) != X }
69  *
70  *
71  * [] == DFlocal(X) U DF(X)
72  * () == DFup(X)
73  *
74  * Dominator graph of the same nodes.
75  *
76  *           AAA     AAA: [ ] ()
77  *          /   \
78  *        BBB    JJJ BBB: [ JJJ ] ( JJJ )  JJJ: [ ] ()
79  *         |
80  *        CCC        CCC: [ ] ( BBB, JJJ )
81  *        / \
82  *     DDD   EEE     DDD: [ ] ( BBB ) EEE: [ JJJ ] ()
83  *      |
84  *     FFF           FFF: [ ] ( BBB )
85  *     / \         
86  *  GGG   HHH        GGG: [ ] ( BBB ) HHH: [ BBB ] ()
87  *   |
88  *  III              III: [ BBB ] ()
89  *
90  *
91  * BBB and JJJ are definitely the dominance frontier.
92  * Where do I place phi functions and how do I make that decision.
93  *   
94  */
95 static void die(char *fmt, ...)
96 {
97         va_list args;
98
99         va_start(args, fmt);
100         vfprintf(stderr, fmt, args);
101         va_end(args);
102         fflush(stdout);
103         fflush(stderr);
104         exit(1);
105 }
106
107 #define MALLOC_STRONG_DEBUG
108 static void *xmalloc(size_t size, const char *name)
109 {
110         void *buf;
111         buf = malloc(size);
112         if (!buf) {
113                 die("Cannot malloc %ld bytes to hold %s: %s\n",
114                         size + 0UL, name, strerror(errno));
115         }
116         return buf;
117 }
118
119 static void *xcmalloc(size_t size, const char *name)
120 {
121         void *buf;
122         buf = xmalloc(size, name);
123         memset(buf, 0, size);
124         return buf;
125 }
126
127 static void xfree(const void *ptr)
128 {
129         free((void *)ptr);
130 }
131
132 static char *xstrdup(const char *str)
133 {
134         char *new;
135         int len;
136         len = strlen(str);
137         new = xmalloc(len + 1, "xstrdup string");
138         memcpy(new, str, len);
139         new[len] = '\0';
140         return new;
141 }
142
143 static void xchdir(const char *path)
144 {
145         if (chdir(path) != 0) {
146                 die("chdir to %s failed: %s\n",
147                         path, strerror(errno));
148         }
149 }
150
151 static int exists(const char *dirname, const char *filename)
152 {
153         int does_exist = 1;
154         xchdir(dirname);
155         if (access(filename, O_RDONLY) < 0) {
156                 if ((errno != EACCES) && (errno != EROFS)) {
157                         does_exist = 0;
158                 }
159         }
160         return does_exist;
161 }
162
163
164 static char *slurp_file(const char *dirname, const char *filename, off_t *r_size)
165 {
166         int fd;
167         char *buf;
168         off_t size, progress;
169         ssize_t result;
170         struct stat stats;
171         
172         if (!filename) {
173                 *r_size = 0;
174                 return 0;
175         }
176         xchdir(dirname);
177         fd = open(filename, O_RDONLY);
178         if (fd < 0) {
179                 die("Cannot open '%s' : %s\n",
180                         filename, strerror(errno));
181         }
182         result = fstat(fd, &stats);
183         if (result < 0) {
184                 die("Cannot stat: %s: %s\n",
185                         filename, strerror(errno));
186         }
187         size = stats.st_size;
188         *r_size = size +1;
189         buf = xmalloc(size +2, filename);
190         buf[size] = '\n'; /* Make certain the file is newline terminated */
191         buf[size+1] = '\0'; /* Null terminate the file for good measure */
192         progress = 0;
193         while(progress < size) {
194                 result = read(fd, buf + progress, size - progress);
195                 if (result < 0) {
196                         if ((errno == EINTR) || (errno == EAGAIN))
197                                 continue;
198                         die("read on %s of %ld bytes failed: %s\n",
199                                 filename, (size - progress)+ 0UL, strerror(errno));
200                 }
201                 progress += result;
202         }
203         result = close(fd);
204         if (result < 0) {
205                 die("Close of %s failed: %s\n",
206                         filename, strerror(errno));
207         }
208         return buf;
209 }
210
211 /* Types on the destination platform */
212 #warning "FIXME this assumes 32bit x86 is the destination"
213 typedef int8_t   schar_t;
214 typedef uint8_t  uchar_t;
215 typedef int8_t   char_t;
216 typedef int16_t  short_t;
217 typedef uint16_t ushort_t;
218 typedef int32_t  int_t;
219 typedef uint32_t uint_t;
220 typedef int32_t  long_t;
221 typedef uint32_t ulong_t;
222
223 #define SCHAR_T_MIN (-128)
224 #define SCHAR_T_MAX 127
225 #define UCHAR_T_MAX 255
226 #define CHAR_T_MIN  SCHAR_T_MIN
227 #define CHAR_T_MAX  SCHAR_T_MAX
228 #define SHRT_T_MIN  (-32768)
229 #define SHRT_T_MAX  32767
230 #define USHRT_T_MAX 65535
231 #define INT_T_MIN   (-LONG_T_MAX - 1)
232 #define INT_T_MAX   2147483647
233 #define UINT_T_MAX  4294967295U
234 #define LONG_T_MIN  (-LONG_T_MAX - 1)
235 #define LONG_T_MAX  2147483647
236 #define ULONG_T_MAX 4294967295U
237
238 struct file_state {
239         struct file_state *prev;
240         const char *basename;
241         char *dirname;
242         char *buf;
243         off_t size;
244         char *pos;
245         int line;
246         char *line_start;
247         int report_line;
248         const char *report_name;
249         const char *report_dir;
250 };
251 struct hash_entry;
252 struct token {
253         int tok;
254         struct hash_entry *ident;
255         int str_len;
256         union {
257                 ulong_t integer;
258                 const char *str;
259         } val;
260 };
261
262 /* I have two classes of types:
263  * Operational types.
264  * Logical types.  (The type the C standard says the operation is of)
265  *
266  * The operational types are:
267  * chars
268  * shorts
269  * ints
270  * longs
271  *
272  * floats
273  * doubles
274  * long doubles
275  *
276  * pointer
277  */
278
279
280 /* Machine model.
281  * No memory is useable by the compiler.
282  * There is no floating point support.
283  * All operations take place in general purpose registers.
284  * There is one type of general purpose register.
285  * Unsigned longs are stored in that general purpose register.
286  */
287
288 /* Operations on general purpose registers.
289  */
290
291 #define OP_SDIVT      0
292 #define OP_UDIVT      1
293 #define OP_SMUL       2
294 #define OP_UMUL       3
295 #define OP_SDIV       4
296 #define OP_UDIV       5
297 #define OP_SMOD       6
298 #define OP_UMOD       7
299 #define OP_ADD        8
300 #define OP_SUB        9
301 #define OP_SL        10
302 #define OP_USR       11
303 #define OP_SSR       12 
304 #define OP_AND       13 
305 #define OP_XOR       14
306 #define OP_OR        15
307 #define OP_POS       16 /* Dummy positive operator don't use it */
308 #define OP_NEG       17
309 #define OP_INVERT    18
310                      
311 #define OP_EQ        20
312 #define OP_NOTEQ     21
313 #define OP_SLESS     22
314 #define OP_ULESS     23
315 #define OP_SMORE     24
316 #define OP_UMORE     25
317 #define OP_SLESSEQ   26
318 #define OP_ULESSEQ   27
319 #define OP_SMOREEQ   28
320 #define OP_UMOREEQ   29
321                      
322 #define OP_LFALSE    30  /* Test if the expression is logically false */
323 #define OP_LTRUE     31  /* Test if the expression is logcially true */
324
325 #define OP_LOAD      32
326 #define OP_STORE     33
327 /* For OP_STORE ->type holds the type
328  * RHS(0) holds the destination address
329  * RHS(1) holds the value to store.
330  */
331
332 #define OP_NOOP      34
333
334 #define OP_MIN_CONST 50
335 #define OP_MAX_CONST 59
336 #define IS_CONST_OP(X) (((X) >= OP_MIN_CONST) && ((X) <= OP_MAX_CONST))
337 #define OP_INTCONST  50
338 /* For OP_INTCONST ->type holds the type.
339  * ->u.cval holds the constant value.
340  */
341 #define OP_BLOBCONST 51
342 /* For OP_BLOBCONST ->type holds the layout and size
343  * information.  u.blob holds a pointer to the raw binary
344  * data for the constant initializer.
345  */
346 #define OP_ADDRCONST 52
347 /* For OP_ADDRCONST ->type holds the type.
348  * MISC(0) holds the reference to the static variable.
349  * ->u.cval holds an offset from that value.
350  */
351
352 #define OP_WRITE     60 
353 /* OP_WRITE moves one pseudo register to another.
354  * RHS(0) holds the destination pseudo register, which must be an OP_DECL.
355  * RHS(1) holds the psuedo to move.
356  */
357
358 #define OP_READ      61
359 /* OP_READ reads the value of a variable and makes
360  * it available for the pseudo operation.
361  * Useful for things like def-use chains.
362  * RHS(0) holds points to the triple to read from.
363  */
364 #define OP_COPY      62
365 /* OP_COPY makes a copy of the psedo register or constant in RHS(0).
366  */
367 #define OP_PIECE     63
368 /* OP_PIECE returns one piece of a instruction that returns a structure.
369  * MISC(0) is the instruction
370  * u.cval is the LHS piece of the instruction to return.
371  */
372 #define OP_ASM       64
373 /* OP_ASM holds a sequence of assembly instructions, the result
374  * of a C asm directive.
375  * RHS(x) holds input value x to the assembly sequence.
376  * LHS(x) holds the output value x from the assembly sequence.
377  * u.blob holds the string of assembly instructions.
378  */
379
380 #define OP_DEREF     65
381 /* OP_DEREF generates an lvalue from a pointer.
382  * RHS(0) holds the pointer value.
383  * OP_DEREF serves as a place holder to indicate all necessary
384  * checks have been done to indicate a value is an lvalue.
385  */
386 #define OP_DOT       66
387 /* OP_DOT references a submember of a structure lvalue.
388  * RHS(0) holds the lvalue.
389  * ->u.field holds the name of the field we want.
390  *
391  * Not seen outside of expressions.
392  */
393 #define OP_VAL       67
394 /* OP_VAL returns the value of a subexpression of the current expression.
395  * Useful for operators that have side effects.
396  * RHS(0) holds the expression.
397  * MISC(0) holds the subexpression of RHS(0) that is the
398  * value of the expression.
399  *
400  * Not seen outside of expressions.
401  */
402 #define OP_LAND      68
403 /* OP_LAND performs a C logical and between RHS(0) and RHS(1).
404  * Not seen outside of expressions.
405  */
406 #define OP_LOR       69
407 /* OP_LOR performs a C logical or between RHS(0) and RHS(1).
408  * Not seen outside of expressions.
409  */
410 #define OP_COND      70
411 /* OP_CODE performas a C ? : operation. 
412  * RHS(0) holds the test.
413  * RHS(1) holds the expression to evaluate if the test returns true.
414  * RHS(2) holds the expression to evaluate if the test returns false.
415  * Not seen outside of expressions.
416  */
417 #define OP_COMMA     71
418 /* OP_COMMA performacs a C comma operation.
419  * That is RHS(0) is evaluated, then RHS(1)
420  * and the value of RHS(1) is returned.
421  * Not seen outside of expressions.
422  */
423
424 #define OP_CALL      72
425 /* OP_CALL performs a procedure call. 
426  * MISC(0) holds a pointer to the OP_LIST of a function
427  * RHS(x) holds argument x of a function
428  * 
429  * Currently not seen outside of expressions.
430  */
431 #define OP_VAL_VEC   74
432 /* OP_VAL_VEC is an array of triples that are either variable
433  * or values for a structure or an array.
434  * RHS(x) holds element x of the vector.
435  * triple->type->elements holds the size of the vector.
436  */
437
438 /* statements */
439 #define OP_LIST      80
440 /* OP_LIST Holds a list of statements, and a result value.
441  * RHS(0) holds the list of statements.
442  * MISC(0) holds the value of the statements.
443  */
444
445 #define OP_BRANCH    81 /* branch */
446 /* For branch instructions
447  * TARG(0) holds the branch target.
448  * RHS(0) if present holds the branch condition.
449  * ->next holds where to branch to if the branch is not taken.
450  * The branch target can only be a decl...
451  */
452
453 #define OP_LABEL     83
454 /* OP_LABEL is a triple that establishes an target for branches.
455  * ->use is the list of all branches that use this label.
456  */
457
458 #define OP_ADECL     84 
459 /* OP_DECL is a triple that establishes an lvalue for assignments.
460  * ->use is a list of statements that use the variable.
461  */
462
463 #define OP_SDECL     85
464 /* OP_SDECL is a triple that establishes a variable of static
465  * storage duration.
466  * ->use is a list of statements that use the variable.
467  * MISC(0) holds the initializer expression.
468  */
469
470
471 #define OP_PHI       86
472 /* OP_PHI is a triple used in SSA form code.  
473  * It is used when multiple code paths merge and a variable needs
474  * a single assignment from any of those code paths.
475  * The operation is a cross between OP_DECL and OP_WRITE, which
476  * is what OP_PHI is geneared from.
477  * 
478  * RHS(x) points to the value from code path x
479  * The number of RHS entries is the number of control paths into the block
480  * in which OP_PHI resides.  The elements of the array point to point
481  * to the variables OP_PHI is derived from.
482  *
483  * MISC(0) holds a pointer to the orginal OP_DECL node.
484  */
485
486 /* Architecture specific instructions */
487 #define OP_CMP         100
488 #define OP_TEST        101
489 #define OP_SET_EQ      102
490 #define OP_SET_NOTEQ   103
491 #define OP_SET_SLESS   104
492 #define OP_SET_ULESS   105
493 #define OP_SET_SMORE   106
494 #define OP_SET_UMORE   107
495 #define OP_SET_SLESSEQ 108
496 #define OP_SET_ULESSEQ 109
497 #define OP_SET_SMOREEQ 110
498 #define OP_SET_UMOREEQ 111
499
500 #define OP_JMP         112
501 #define OP_JMP_EQ      113
502 #define OP_JMP_NOTEQ   114
503 #define OP_JMP_SLESS   115
504 #define OP_JMP_ULESS   116
505 #define OP_JMP_SMORE   117
506 #define OP_JMP_UMORE   118
507 #define OP_JMP_SLESSEQ 119
508 #define OP_JMP_ULESSEQ 120
509 #define OP_JMP_SMOREEQ 121
510 #define OP_JMP_UMOREEQ 122
511
512 /* Builtin operators that it is just simpler to use the compiler for */
513 #define OP_INB         130
514 #define OP_INW         131
515 #define OP_INL         132
516 #define OP_OUTB        133
517 #define OP_OUTW        134
518 #define OP_OUTL        135
519 #define OP_BSF         136
520 #define OP_BSR         137
521 #define OP_RDMSR       138
522 #define OP_WRMSR       139
523 #define OP_HLT         140
524
525 struct op_info {
526         const char *name;
527         unsigned flags;
528 #define PURE   1 /* Triple has no side effects */
529 #define IMPURE 2 /* Triple has side effects */
530 #define PURE_BITS(FLAGS) ((FLAGS) & 0x3)
531 #define DEF    4 /* Triple is a variable definition */
532 #define BLOCK  8 /* Triple stores the current block */
533 #define STRUCTURAL 16 /* Triple does not generate a machine instruction */
534         unsigned char lhs, rhs, misc, targ;
535 };
536
537 #define OP(LHS, RHS, MISC, TARG, FLAGS, NAME) { \
538         .name = (NAME), \
539         .flags = (FLAGS), \
540         .lhs = (LHS), \
541         .rhs = (RHS), \
542         .misc = (MISC), \
543         .targ = (TARG), \
544          }
545 static const struct op_info table_ops[] = {
546 [OP_SDIVT      ] = OP( 2,  2, 0, 0, PURE | BLOCK , "sdivt"),
547 [OP_UDIVT      ] = OP( 2,  2, 0, 0, PURE | BLOCK , "udivt"),
548 [OP_SMUL       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smul"),
549 [OP_UMUL       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umul"),
550 [OP_SDIV       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sdiv"),
551 [OP_UDIV       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "udiv"),
552 [OP_SMOD       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smod"),
553 [OP_UMOD       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umod"),
554 [OP_ADD        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "add"),
555 [OP_SUB        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sub"),
556 [OP_SL         ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sl"),
557 [OP_USR        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "usr"),
558 [OP_SSR        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "ssr"),
559 [OP_AND        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "and"),
560 [OP_XOR        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "xor"),
561 [OP_OR         ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "or"),
562 [OP_POS        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "pos"),
563 [OP_NEG        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "neg"),
564 [OP_INVERT     ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "invert"),
565
566 [OP_EQ         ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "eq"),
567 [OP_NOTEQ      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "noteq"),
568 [OP_SLESS      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sless"),
569 [OP_ULESS      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "uless"),
570 [OP_SMORE      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smore"),
571 [OP_UMORE      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umore"),
572 [OP_SLESSEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "slesseq"),
573 [OP_ULESSEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "ulesseq"),
574 [OP_SMOREEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smoreeq"),
575 [OP_UMOREEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umoreeq"),
576 [OP_LFALSE     ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "lfalse"),
577 [OP_LTRUE      ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "ltrue"),
578
579 [OP_LOAD       ] = OP( 0,  1, 0, 0, IMPURE | DEF | BLOCK, "load"),
580 [OP_STORE      ] = OP( 0,  2, 0, 0, IMPURE | BLOCK , "store"),
581
582 [OP_NOOP       ] = OP( 0,  0, 0, 0, PURE | BLOCK | STRUCTURAL, "noop"),
583
584 [OP_INTCONST   ] = OP( 0,  0, 0, 0, PURE | DEF, "intconst"),
585 [OP_BLOBCONST  ] = OP( 0,  0, 0, 0, PURE , "blobconst"),
586 [OP_ADDRCONST  ] = OP( 0,  0, 1, 0, PURE | DEF, "addrconst"),
587
588 [OP_WRITE      ] = OP( 0,  2, 0, 0, PURE | BLOCK, "write"),
589 [OP_READ       ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "read"),
590 [OP_COPY       ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "copy"),
591 [OP_PIECE      ] = OP( 0,  0, 1, 0, PURE | DEF | STRUCTURAL, "piece"),
592 [OP_ASM        ] = OP(-1, -1, 0, 0, IMPURE, "asm"),
593 [OP_DEREF      ] = OP( 0,  1, 0, 0, 0 | DEF | BLOCK, "deref"), 
594 [OP_DOT        ] = OP( 0,  1, 0, 0, 0 | DEF | BLOCK, "dot"),
595
596 [OP_VAL        ] = OP( 0,  1, 1, 0, 0 | DEF | BLOCK, "val"),
597 [OP_LAND       ] = OP( 0,  2, 0, 0, 0 | DEF | BLOCK, "land"),
598 [OP_LOR        ] = OP( 0,  2, 0, 0, 0 | DEF | BLOCK, "lor"),
599 [OP_COND       ] = OP( 0,  3, 0, 0, 0 | DEF | BLOCK, "cond"),
600 [OP_COMMA      ] = OP( 0,  2, 0, 0, 0 | DEF | BLOCK, "comma"),
601 /* Call is special most it can stand in for anything so it depends on context */
602 [OP_CALL       ] = OP(-1, -1, 1, 0, 0 | BLOCK, "call"),
603 /* The sizes of OP_CALL and OP_VAL_VEC depend upon context */
604 [OP_VAL_VEC    ] = OP( 0, -1, 0, 0, 0 | BLOCK | STRUCTURAL, "valvec"),
605
606 [OP_LIST       ] = OP( 0,  1, 1, 0, 0 | DEF | STRUCTURAL, "list"),
607 /* The number of targets for OP_BRANCH depends on context */
608 [OP_BRANCH     ] = OP( 0, -1, 0, 1, PURE | BLOCK, "branch"),
609 [OP_LABEL      ] = OP( 0,  0, 0, 0, PURE | BLOCK | STRUCTURAL, "label"),
610 [OP_ADECL      ] = OP( 0,  0, 0, 0, PURE | BLOCK | STRUCTURAL, "adecl"),
611 [OP_SDECL      ] = OP( 0,  0, 1, 0, PURE | BLOCK | STRUCTURAL, "sdecl"),
612 /* The number of RHS elements of OP_PHI depend upon context */
613 [OP_PHI        ] = OP( 0, -1, 1, 0, PURE | DEF | BLOCK, "phi"),
614
615 [OP_CMP        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK, "cmp"),
616 [OP_TEST       ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "test"),
617 [OP_SET_EQ     ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_eq"),
618 [OP_SET_NOTEQ  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_noteq"),
619 [OP_SET_SLESS  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_sless"),
620 [OP_SET_ULESS  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_uless"),
621 [OP_SET_SMORE  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_smore"),
622 [OP_SET_UMORE  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_umore"),
623 [OP_SET_SLESSEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_slesseq"),
624 [OP_SET_ULESSEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_ulesseq"),
625 [OP_SET_SMOREEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_smoreq"),
626 [OP_SET_UMOREEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_umoreq"),
627 [OP_JMP        ] = OP( 0,  0, 0, 1, PURE | BLOCK, "jmp"),
628 [OP_JMP_EQ     ] = OP( 0,  1, 0, 1, PURE | BLOCK, "jmp_eq"),
629 [OP_JMP_NOTEQ  ] = OP( 0,  1, 0, 1, PURE | BLOCK, "jmp_noteq"),
630 [OP_JMP_SLESS  ] = OP( 0,  1, 0, 1, PURE | BLOCK, "jmp_sless"),
631 [OP_JMP_ULESS  ] = OP( 0,  1, 0, 1, PURE | BLOCK, "jmp_uless"),
632 [OP_JMP_SMORE  ] = OP( 0,  1, 0, 1, PURE | BLOCK, "jmp_smore"),
633 [OP_JMP_UMORE  ] = OP( 0,  1, 0, 1, PURE | BLOCK, "jmp_umore"),
634 [OP_JMP_SLESSEQ] = OP( 0,  1, 0, 1, PURE | BLOCK, "jmp_slesseq"),
635 [OP_JMP_ULESSEQ] = OP( 0,  1, 0, 1, PURE | BLOCK, "jmp_ulesseq"),
636 [OP_JMP_SMOREEQ] = OP( 0,  1, 0, 1, PURE | BLOCK, "jmp_smoreq"),
637 [OP_JMP_UMOREEQ] = OP( 0,  1, 0, 1, PURE | BLOCK, "jmp_umoreq"),
638
639 [OP_INB        ] = OP( 0,  1, 0, 0, IMPURE | DEF | BLOCK, "__inb"),
640 [OP_INW        ] = OP( 0,  1, 0, 0, IMPURE | DEF | BLOCK, "__inw"),
641 [OP_INL        ] = OP( 0,  1, 0, 0, IMPURE | DEF | BLOCK, "__inl"),
642 [OP_OUTB       ] = OP( 0,  2, 0, 0, IMPURE| BLOCK, "__outb"),
643 [OP_OUTW       ] = OP( 0,  2, 0, 0, IMPURE| BLOCK, "__outw"),
644 [OP_OUTL       ] = OP( 0,  2, 0, 0, IMPURE| BLOCK, "__outl"),
645 [OP_BSF        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "__bsf"),
646 [OP_BSR        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "__bsr"),
647 [OP_RDMSR      ] = OP( 2,  1, 0, 0, IMPURE | BLOCK, "__rdmsr"),
648 [OP_WRMSR      ] = OP( 0,  3, 0, 0, IMPURE | BLOCK, "__wrmsr"),
649 [OP_HLT        ] = OP( 0,  0, 0, 0, IMPURE | BLOCK, "__hlt"),
650 };
651 #undef OP
652 #define OP_MAX      (sizeof(table_ops)/sizeof(table_ops[0]))
653
654 static const char *tops(int index) 
655 {
656         static const char unknown[] = "unknown op";
657         if (index < 0) {
658                 return unknown;
659         }
660         if (index > OP_MAX) {
661                 return unknown;
662         }
663         return table_ops[index].name;
664 }
665
666 struct asm_info;
667 struct triple;
668 struct block;
669 struct triple_set {
670         struct triple_set *next;
671         struct triple *member;
672 };
673
674 #define MAX_LHS  15
675 #define MAX_RHS  250
676 #define MAX_MISC 3
677 #define MAX_TARG 3
678
679 struct occurance {
680         int count;
681         const char *filename;
682         const char *function;
683         int line;
684         int col;
685         struct occurance *parent;
686 };
687 struct triple {
688         struct triple *next, *prev;
689         struct triple_set *use;
690         struct type *type;
691         unsigned char op;
692         unsigned char template_id;
693         unsigned short sizes;
694 #define TRIPLE_LHS(SIZES)  (((SIZES) >>  0) & 0x0f)
695 #define TRIPLE_RHS(SIZES)  (((SIZES) >>  4) & 0xff)
696 #define TRIPLE_MISC(SIZES) (((SIZES) >> 12) & 0x03)
697 #define TRIPLE_TARG(SIZES) (((SIZES) >> 14) & 0x03)
698 #define TRIPLE_SIZE(SIZES) \
699         (TRIPLE_LHS(SIZES)  + \
700          TRIPLE_RHS(SIZES)  + \
701          TRIPLE_MISC(SIZES) + \
702          TRIPLE_TARG(SIZES))
703 #define TRIPLE_SIZES(LHS, RHS, MISC, TARG) \
704         ((((LHS) & 0x0f) <<  0) | \
705         (((RHS)  & 0xff) <<  4) | \
706         (((MISC) & 0x03) << 12) | \
707         (((TARG) & 0x03) << 14))
708 #define TRIPLE_LHS_OFF(SIZES)  (0)
709 #define TRIPLE_RHS_OFF(SIZES)  (TRIPLE_LHS_OFF(SIZES) + TRIPLE_LHS(SIZES))
710 #define TRIPLE_MISC_OFF(SIZES) (TRIPLE_RHS_OFF(SIZES) + TRIPLE_RHS(SIZES))
711 #define TRIPLE_TARG_OFF(SIZES) (TRIPLE_MISC_OFF(SIZES) + TRIPLE_MISC(SIZES))
712 #define LHS(PTR,INDEX) ((PTR)->param[TRIPLE_LHS_OFF((PTR)->sizes) + (INDEX)])
713 #define RHS(PTR,INDEX) ((PTR)->param[TRIPLE_RHS_OFF((PTR)->sizes) + (INDEX)])
714 #define TARG(PTR,INDEX) ((PTR)->param[TRIPLE_TARG_OFF((PTR)->sizes) + (INDEX)])
715 #define MISC(PTR,INDEX) ((PTR)->param[TRIPLE_MISC_OFF((PTR)->sizes) + (INDEX)])
716         unsigned id; /* A scratch value and finally the register */
717 #define TRIPLE_FLAG_FLATTENED   (1 << 31)
718 #define TRIPLE_FLAG_PRE_SPLIT   (1 << 30)
719 #define TRIPLE_FLAG_POST_SPLIT  (1 << 29)
720 #define TRIPLE_FLAG_VOLATILE    (1 << 28)
721 #define TRIPLE_FLAG_LOCAL       (1 << 27)
722         struct occurance *occurance;
723         union {
724                 ulong_t cval;
725                 struct block  *block;
726                 void *blob;
727                 struct hash_entry *field;
728                 struct asm_info *ainfo;
729         } u;
730         struct triple *param[2];
731 };
732
733 struct reg_info {
734         unsigned reg;
735         unsigned regcm;
736 };
737 struct ins_template {
738         struct reg_info lhs[MAX_LHS + 1], rhs[MAX_RHS + 1];
739 };
740
741 struct asm_info {
742         struct ins_template tmpl;
743         char *str;
744 };
745
746 struct block_set {
747         struct block_set *next;
748         struct block *member;
749 };
750 struct block {
751         struct block *work_next;
752         struct block *left, *right;
753         struct triple *first, *last;
754         int users;
755         struct block_set *use;
756         struct block_set *idominates;
757         struct block_set *domfrontier;
758         struct block *idom;
759         struct block_set *ipdominates;
760         struct block_set *ipdomfrontier;
761         struct block *ipdom;
762         int vertex;
763         
764 };
765
766 struct symbol {
767         struct symbol *next;
768         struct hash_entry *ident;
769         struct triple *def;
770         struct type *type;
771         int scope_depth;
772 };
773
774 struct macro {
775         struct hash_entry *ident;
776         char *buf;
777         int buf_len;
778 };
779
780 struct hash_entry {
781         struct hash_entry *next;
782         const char *name;
783         int name_len;
784         int tok;
785         struct macro *sym_define;
786         struct symbol *sym_label;
787         struct symbol *sym_tag;
788         struct symbol *sym_ident;
789 };
790
791 #define HASH_TABLE_SIZE 2048
792
793 struct compile_state {
794         const char *label_prefix;
795         const char *ofilename;
796         FILE *output;
797         struct file_state *file;
798         struct occurance *last_occurance;
799         const char *function;
800         struct token token[4];
801         struct hash_entry *hash_table[HASH_TABLE_SIZE];
802         struct hash_entry *i_switch;
803         struct hash_entry *i_case;
804         struct hash_entry *i_continue;
805         struct hash_entry *i_break;
806         struct hash_entry *i_default;
807         int scope_depth;
808         int if_depth, if_value;
809         int macro_line;
810         struct file_state *macro_file;
811         struct triple *main_function;
812         struct triple *first;
813         struct block *first_block, *last_block;
814         int last_vertex;
815         unsigned long features;
816         int debug;
817         int optimize;
818 };
819
820 /* visibility global/local */
821 /* static/auto duration */
822 /* typedef, register, inline */
823 #define STOR_SHIFT         0
824 #define STOR_MASK     0x000f
825 /* Visibility */
826 #define STOR_GLOBAL   0x0001
827 /* Duration */
828 #define STOR_PERM     0x0002
829 /* Storage specifiers */
830 #define STOR_AUTO     0x0000
831 #define STOR_STATIC   0x0002
832 #define STOR_EXTERN   0x0003
833 #define STOR_REGISTER 0x0004
834 #define STOR_TYPEDEF  0x0008
835 #define STOR_INLINE   0x000c
836
837 #define QUAL_SHIFT         4
838 #define QUAL_MASK     0x0070
839 #define QUAL_NONE     0x0000
840 #define QUAL_CONST    0x0010
841 #define QUAL_VOLATILE 0x0020
842 #define QUAL_RESTRICT 0x0040
843
844 #define TYPE_SHIFT         8
845 #define TYPE_MASK     0x1f00
846 #define TYPE_INTEGER(TYPE)    ((((TYPE) >= TYPE_CHAR) && ((TYPE) <= TYPE_ULLONG)) || ((TYPE) == TYPE_ENUM))
847 #define TYPE_ARITHMETIC(TYPE) ((((TYPE) >= TYPE_CHAR) && ((TYPE) <= TYPE_LDOUBLE)) || ((TYPE) == TYPE_ENUM))
848 #define TYPE_UNSIGNED(TYPE)   ((TYPE) & 0x0100)
849 #define TYPE_SIGNED(TYPE)     (!TYPE_UNSIGNED(TYPE))
850 #define TYPE_MKUNSIGNED(TYPE) (((TYPE) & ~0xF000) | 0x0100)
851 #define TYPE_RANK(TYPE)       ((TYPE) & ~0xF1FF)
852 #define TYPE_PTR(TYPE)        (((TYPE) & TYPE_MASK) == TYPE_POINTER)
853 #define TYPE_DEFAULT  0x0000
854 #define TYPE_VOID     0x0100
855 #define TYPE_CHAR     0x0200
856 #define TYPE_UCHAR    0x0300
857 #define TYPE_SHORT    0x0400
858 #define TYPE_USHORT   0x0500
859 #define TYPE_INT      0x0600
860 #define TYPE_UINT     0x0700
861 #define TYPE_LONG     0x0800
862 #define TYPE_ULONG    0x0900
863 #define TYPE_LLONG    0x0a00 /* long long */
864 #define TYPE_ULLONG   0x0b00
865 #define TYPE_FLOAT    0x0c00
866 #define TYPE_DOUBLE   0x0d00
867 #define TYPE_LDOUBLE  0x0e00 /* long double */
868
869 /* Note: TYPE_ENUM is chosen very carefully so TYPE_RANK works */
870 #define TYPE_ENUM     0x1600
871 #define TYPE_LIST     0x1700
872 /* TYPE_LIST is a basic building block when defining enumerations
873  * type->field_ident holds the name of this enumeration entry.
874  * type->right holds the entry in the list.
875  */
876
877 #define TYPE_STRUCT   0x1000
878 #define TYPE_UNION    0x1100
879 #define TYPE_POINTER  0x1200 
880 /* For TYPE_POINTER:
881  * type->left holds the type pointed to.
882  */
883 #define TYPE_FUNCTION 0x1300 
884 /* For TYPE_FUNCTION:
885  * type->left holds the return type.
886  * type->right holds the...
887  */
888 #define TYPE_PRODUCT  0x1400
889 /* TYPE_PRODUCT is a basic building block when defining structures
890  * type->left holds the type that appears first in memory.
891  * type->right holds the type that appears next in memory.
892  */
893 #define TYPE_OVERLAP  0x1500
894 /* TYPE_OVERLAP is a basic building block when defining unions
895  * type->left and type->right holds to types that overlap
896  * each other in memory.
897  */
898 #define TYPE_ARRAY    0x1800
899 /* TYPE_ARRAY is a basic building block when definitng arrays.
900  * type->left holds the type we are an array of.
901  * type-> holds the number of elements.
902  */
903
904 #define ELEMENT_COUNT_UNSPECIFIED ULONG_T_MAX
905
906 struct type {
907         unsigned int type;
908         struct type *left, *right;
909         ulong_t elements;
910         struct hash_entry *field_ident;
911         struct hash_entry *type_ident;
912 };
913
914 #define TEMPLATE_BITS      7
915 #define MAX_TEMPLATES      (1<<TEMPLATE_BITS)
916 #define MAX_REG_EQUIVS     16
917 #define MAX_REGC           14
918 #define MAX_REGISTERS      75
919 #define REGISTER_BITS      7
920 #define MAX_VIRT_REGISTERS (1<<REGISTER_BITS)
921 #define REG_UNSET          0
922 #define REG_UNNEEDED       1
923 #define REG_VIRT0          (MAX_REGISTERS + 0)
924 #define REG_VIRT1          (MAX_REGISTERS + 1)
925 #define REG_VIRT2          (MAX_REGISTERS + 2)
926 #define REG_VIRT3          (MAX_REGISTERS + 3)
927 #define REG_VIRT4          (MAX_REGISTERS + 4)
928 #define REG_VIRT5          (MAX_REGISTERS + 5)
929 #define REG_VIRT6          (MAX_REGISTERS + 6)
930 #define REG_VIRT7          (MAX_REGISTERS + 7)
931 #define REG_VIRT8          (MAX_REGISTERS + 8)
932 #define REG_VIRT9          (MAX_REGISTERS + 9)
933
934 #if (MAX_REGISTERS + 9) > MAX_VIRT_REGISTERS
935 #error "MAX_VIRT_REGISTERS to small"
936 #endif
937 #if (MAX_REGC + REGISTER_BITS) > 27
938 #error "Too many id bits used"
939 #endif
940
941 /* Provision for 8 register classes */
942 #define REG_SHIFT  0
943 #define REGC_SHIFT REGISTER_BITS
944 #define REGC_MASK (((1 << MAX_REGC) - 1) << REGISTER_BITS)
945 #define REG_MASK (MAX_VIRT_REGISTERS -1)
946 #define ID_REG(ID)              ((ID) & REG_MASK)
947 #define SET_REG(ID, REG)        ((ID) = (((ID) & ~REG_MASK) | ((REG) & REG_MASK)))
948 #define ID_REGCM(ID)            (((ID) & REGC_MASK) >> REGC_SHIFT)
949 #define SET_REGCM(ID, REGCM)    ((ID) = (((ID) & ~REGC_MASK) | (((REGCM) << REGC_SHIFT) & REGC_MASK)))
950 #define SET_INFO(ID, INFO)      ((ID) = (((ID) & ~(REG_MASK | REGC_MASK)) | \
951                 (((INFO).reg) & REG_MASK) | ((((INFO).regcm) << REGC_SHIFT) & REGC_MASK)))
952
953 static unsigned arch_reg_regcm(struct compile_state *state, int reg);
954 static unsigned arch_regcm_normalize(struct compile_state *state, unsigned regcm);
955 static unsigned arch_regcm_reg_normalize(struct compile_state *state, unsigned regcm);
956 static void arch_reg_equivs(
957         struct compile_state *state, unsigned *equiv, int reg);
958 static int arch_select_free_register(
959         struct compile_state *state, char *used, int classes);
960 static unsigned arch_regc_size(struct compile_state *state, int class);
961 static int arch_regcm_intersect(unsigned regcm1, unsigned regcm2);
962 static unsigned arch_type_to_regcm(struct compile_state *state, struct type *type);
963 static const char *arch_reg_str(int reg);
964 static struct reg_info arch_reg_constraint(
965         struct compile_state *state, struct type *type, const char *constraint);
966 static struct reg_info arch_reg_clobber(
967         struct compile_state *state, const char *clobber);
968 static struct reg_info arch_reg_lhs(struct compile_state *state, 
969         struct triple *ins, int index);
970 static struct reg_info arch_reg_rhs(struct compile_state *state, 
971         struct triple *ins, int index);
972 static struct triple *transform_to_arch_instruction(
973         struct compile_state *state, struct triple *ins);
974
975
976
977 #define DEBUG_ABORT_ON_ERROR    0x0001
978 #define DEBUG_INTERMEDIATE_CODE 0x0002
979 #define DEBUG_CONTROL_FLOW      0x0004
980 #define DEBUG_BASIC_BLOCKS      0x0008
981 #define DEBUG_FDOMINATORS       0x0010
982 #define DEBUG_RDOMINATORS       0x0020
983 #define DEBUG_TRIPLES           0x0040
984 #define DEBUG_INTERFERENCE      0x0080
985 #define DEBUG_ARCH_CODE         0x0100
986 #define DEBUG_CODE_ELIMINATION  0x0200
987 #define DEBUG_INSERTED_COPIES   0x0400
988
989 #define GLOBAL_SCOPE_DEPTH   1
990 #define FUNCTION_SCOPE_DEPTH (GLOBAL_SCOPE_DEPTH + 1)
991
992 static void compile_file(struct compile_state *old_state, const char *filename, int local);
993
994 static void do_cleanup(struct compile_state *state)
995 {
996         if (state->output) {
997                 fclose(state->output);
998                 unlink(state->ofilename);
999         }
1000 }
1001
1002 static int get_col(struct file_state *file)
1003 {
1004         int col;
1005         char *ptr, *end;
1006         ptr = file->line_start;
1007         end = file->pos;
1008         for(col = 0; ptr < end; ptr++) {
1009                 if (*ptr != '\t') {
1010                         col++;
1011                 } 
1012                 else {
1013                         col = (col & ~7) + 8;
1014                 }
1015         }
1016         return col;
1017 }
1018
1019 static void loc(FILE *fp, struct compile_state *state, struct triple *triple)
1020 {
1021         int col;
1022         if (triple && triple->occurance) {
1023                 struct occurance *spot;
1024                 spot = triple->occurance;
1025                 while(spot->parent) {
1026                         spot = spot->parent;
1027                 }
1028                 fprintf(fp, "%s:%d.%d: ", 
1029                         spot->filename, spot->line, spot->col);
1030                 return;
1031         }
1032         if (!state->file) {
1033                 return;
1034         }
1035         col = get_col(state->file);
1036         fprintf(fp, "%s:%d.%d: ", 
1037                 state->file->report_name, state->file->report_line, col);
1038 }
1039
1040 static void romcc_internal_error(struct compile_state *state, struct triple *ptr, 
1041         char *fmt, ...)
1042 {
1043         va_list args;
1044         va_start(args, fmt);
1045         loc(stderr, state, ptr);
1046         if (ptr) {
1047                 fprintf(stderr, "%p %s ", ptr, tops(ptr->op));
1048         }
1049         fprintf(stderr, "Internal compiler error: ");
1050         vfprintf(stderr, fmt, args);
1051         fprintf(stderr, "\n");
1052         va_end(args);
1053         do_cleanup(state);
1054         abort();
1055 }
1056
1057
1058 static void romcc_internal_warning(struct compile_state *state, struct triple *ptr, 
1059         char *fmt, ...)
1060 {
1061         va_list args;
1062         va_start(args, fmt);
1063         loc(stderr, state, ptr);
1064         if (ptr) {
1065                 fprintf(stderr, "%p %s ", ptr, tops(ptr->op));
1066         }
1067         fprintf(stderr, "Internal compiler warning: ");
1068         vfprintf(stderr, fmt, args);
1069         fprintf(stderr, "\n");
1070         va_end(args);
1071 }
1072
1073
1074
1075 static void romcc_error(struct compile_state *state, struct triple *ptr, 
1076         char *fmt, ...)
1077 {
1078         va_list args;
1079         va_start(args, fmt);
1080         loc(stderr, state, ptr);
1081         if (ptr && (state->debug & DEBUG_ABORT_ON_ERROR)) {
1082                 fprintf(stderr, "%p %s ", ptr, tops(ptr->op));
1083         }
1084         vfprintf(stderr, fmt, args);
1085         va_end(args);
1086         fprintf(stderr, "\n");
1087         do_cleanup(state);
1088         if (state->debug & DEBUG_ABORT_ON_ERROR) {
1089                 abort();
1090         }
1091         exit(1);
1092 }
1093
1094 static void romcc_warning(struct compile_state *state, struct triple *ptr, 
1095         char *fmt, ...)
1096 {
1097         va_list args;
1098         va_start(args, fmt);
1099         loc(stderr, state, ptr);
1100         fprintf(stderr, "warning: "); 
1101         vfprintf(stderr, fmt, args);
1102         fprintf(stderr, "\n");
1103         va_end(args);
1104 }
1105
1106 #if DEBUG_ERROR_MESSAGES 
1107 #  define internal_error fprintf(stderr,  "@ %s.%s:%d \t", __FILE__, __func__, __LINE__),romcc_internal_error
1108 #  define internal_warning fprintf(stderr,  "@ %s.%s:%d \t", __FILE__, __func__, __LINE__),romcc_internal_warning
1109 #  define error fprintf(stderr, "@ %s.%s:%d \t", __FILE__, __func__, __LINE__),romcc_error
1110 #  define warning fprintf(stderr, "@ %s.%s:%d \t", __FILE__, __func__, __LINE__),romcc_warning
1111 #else
1112 #  define internal_error romcc_internal_error
1113 #  define internal_warning romcc_internal_warning
1114 #  define error romcc_error
1115 #  define warning romcc_warning
1116 #endif
1117 #define FINISHME() warning(state, 0, "FINISHME @ %s.%s:%d", __FILE__, __func__, __LINE__)
1118
1119 static void valid_op(struct compile_state *state, int op)
1120 {
1121         char *fmt = "invalid op: %d";
1122         if (op >= OP_MAX) {
1123                 internal_error(state, 0, fmt, op);
1124         }
1125         if (op < 0) {
1126                 internal_error(state, 0, fmt, op);
1127         }
1128 }
1129
1130 static void valid_ins(struct compile_state *state, struct triple *ptr)
1131 {
1132         valid_op(state, ptr->op);
1133 }
1134
1135 static void process_trigraphs(struct compile_state *state)
1136 {
1137         char *src, *dest, *end;
1138         struct file_state *file;
1139         file = state->file;
1140         src = dest = file->buf;
1141         end = file->buf + file->size;
1142         while((end - src) >= 3) {
1143                 if ((src[0] == '?') && (src[1] == '?')) {
1144                         int c = -1;
1145                         switch(src[2]) {
1146                         case '=': c = '#'; break;
1147                         case '/': c = '\\'; break;
1148                         case '\'': c = '^'; break;
1149                         case '(': c = '['; break;
1150                         case ')': c = ']'; break;
1151                         case '!': c = '!'; break;
1152                         case '<': c = '{'; break;
1153                         case '>': c = '}'; break;
1154                         case '-': c = '~'; break;
1155                         }
1156                         if (c != -1) {
1157                                 *dest++ = c;
1158                                 src += 3;
1159                         }
1160                         else {
1161                                 *dest++ = *src++;
1162                         }
1163                 }
1164                 else {
1165                         *dest++ = *src++;
1166                 }
1167         }
1168         while(src != end) {
1169                 *dest++ = *src++;
1170         }
1171         file->size = dest - file->buf;
1172 }
1173
1174 static void splice_lines(struct compile_state *state)
1175 {
1176         char *src, *dest, *end;
1177         struct file_state *file;
1178         file = state->file;
1179         src = dest = file->buf;
1180         end = file->buf + file->size;
1181         while((end - src) >= 2) {
1182                 if ((src[0] == '\\') && (src[1] == '\n')) {
1183                         src += 2;
1184                 }
1185                 else {
1186                         *dest++ = *src++;
1187                 }
1188         }
1189         while(src != end) {
1190                 *dest++ = *src++;
1191         }
1192         file->size = dest - file->buf;
1193 }
1194
1195 static struct type void_type;
1196 static void use_triple(struct triple *used, struct triple *user)
1197 {
1198         struct triple_set **ptr, *new;
1199         if (!used)
1200                 return;
1201         if (!user)
1202                 return;
1203         ptr = &used->use;
1204         while(*ptr) {
1205                 if ((*ptr)->member == user) {
1206                         return;
1207                 }
1208                 ptr = &(*ptr)->next;
1209         }
1210         /* Append new to the head of the list, 
1211          * copy_func and rename_block_variables
1212          * depends on this.
1213          */
1214         new = xcmalloc(sizeof(*new), "triple_set");
1215         new->member = user;
1216         new->next   = used->use;
1217         used->use   = new;
1218 }
1219
1220 static void unuse_triple(struct triple *used, struct triple *unuser)
1221 {
1222         struct triple_set *use, **ptr;
1223         if (!used) {
1224                 return;
1225         }
1226         ptr = &used->use;
1227         while(*ptr) {
1228                 use = *ptr;
1229                 if (use->member == unuser) {
1230                         *ptr = use->next;
1231                         xfree(use);
1232                 }
1233                 else {
1234                         ptr = &use->next;
1235                 }
1236         }
1237 }
1238
1239 static void put_occurance(struct occurance *occurance)
1240 {
1241         occurance->count -= 1;
1242         if (occurance->count <= 0) {
1243                 if (occurance->parent) {
1244                         put_occurance(occurance->parent);
1245                 }
1246                 xfree(occurance);
1247         }
1248 }
1249
1250 static void get_occurance(struct occurance *occurance)
1251 {
1252         occurance->count += 1;
1253 }
1254
1255
1256 static struct occurance *new_occurance(struct compile_state *state)
1257 {
1258         struct occurance *result, *last;
1259         const char *filename;
1260         const char *function;
1261         int line, col;
1262
1263         function = "";
1264         filename = 0;
1265         line = 0;
1266         col  = 0;
1267         if (state->file) {
1268                 filename = state->file->report_name;
1269                 line     = state->file->report_line;
1270                 col      = get_col(state->file);
1271         }
1272         if (state->function) {
1273                 function = state->function;
1274         }
1275         last = state->last_occurance;
1276         if (last &&
1277                 (last->col == col) &&
1278                 (last->line == line) &&
1279                 (last->function == function) &&
1280                 ((last->filename == filename) ||
1281                         (strcmp(last->filename, filename) == 0))) 
1282         {
1283                 get_occurance(last);
1284                 return last;
1285         }
1286         if (last) {
1287                 state->last_occurance = 0;
1288                 put_occurance(last);
1289         }
1290         result = xmalloc(sizeof(*result), "occurance");
1291         result->count    = 2;
1292         result->filename = filename;
1293         result->function = function;
1294         result->line     = line;
1295         result->col      = col;
1296         result->parent   = 0;
1297         state->last_occurance = result;
1298         return result;
1299 }
1300
1301 static struct occurance *inline_occurance(struct compile_state *state,
1302         struct occurance *new, struct occurance *orig)
1303 {
1304         struct occurance *result, *last;
1305         last = state->last_occurance;
1306         if (last &&
1307                 (last->parent   == orig) &&
1308                 (last->col      == new->col) &&
1309                 (last->line     == new->line) &&
1310                 (last->function == new->function) &&
1311                 (last->filename == new->filename)) {
1312                 get_occurance(last);
1313                 return last;
1314         }
1315         if (last) {
1316                 state->last_occurance = 0;
1317                 put_occurance(last);
1318         }
1319         get_occurance(orig);
1320         result = xmalloc(sizeof(*result), "occurance");
1321         result->count    = 2;
1322         result->filename = new->filename;
1323         result->function = new->function;
1324         result->line     = new->line;
1325         result->col      = new->col;
1326         result->parent   = orig;
1327         state->last_occurance = result;
1328         return result;
1329 }
1330         
1331
1332 static struct occurance dummy_occurance = {
1333         .count    = 2,
1334         .filename = __FILE__,
1335         .function = "",
1336         .line     = __LINE__,
1337         .col      = 0,
1338         .parent   = 0,
1339 };
1340
1341 /* The zero triple is used as a place holder when we are removing pointers
1342  * from a triple.  Having allows certain sanity checks to pass even
1343  * when the original triple that was pointed to is gone.
1344  */
1345 static struct triple zero_triple = {
1346         .next      = &zero_triple,
1347         .prev      = &zero_triple,
1348         .use       = 0,
1349         .op        = OP_INTCONST,
1350         .sizes     = TRIPLE_SIZES(0, 0, 0, 0),
1351         .id        = -1, /* An invalid id */
1352         .u = { .cval = 0, },
1353         .occurance = &dummy_occurance,
1354         .param = { [0] = 0, [1] = 0, },
1355 };
1356
1357
1358 static unsigned short triple_sizes(struct compile_state *state,
1359         int op, struct type *type, int lhs_wanted, int rhs_wanted,
1360         struct occurance *occurance)
1361 {
1362         int lhs, rhs, misc, targ;
1363         struct triple dummy;
1364         dummy.op = op;
1365         dummy.occurance = occurance;
1366         valid_op(state, op);
1367         lhs = table_ops[op].lhs;
1368         rhs = table_ops[op].rhs;
1369         misc = table_ops[op].misc;
1370         targ = table_ops[op].targ;
1371         
1372         
1373         if (op == OP_CALL) {
1374                 struct type *param;
1375                 rhs = 0;
1376                 param = type->right;
1377                 while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
1378                         rhs++;
1379                         param = param->right;
1380                 }
1381                 if ((param->type & TYPE_MASK) != TYPE_VOID) {
1382                         rhs++;
1383                 }
1384                 lhs = 0;
1385                 if ((type->left->type & TYPE_MASK) == TYPE_STRUCT) {
1386                         lhs = type->left->elements;
1387                 }
1388         }
1389         else if (op == OP_VAL_VEC) {
1390                 rhs = type->elements;
1391         }
1392         else if ((op == OP_BRANCH) || (op == OP_PHI)) {
1393                 rhs = rhs_wanted;
1394         }
1395         else if (op == OP_ASM) {
1396                 rhs = rhs_wanted;
1397                 lhs = lhs_wanted;
1398         }
1399         if ((rhs < 0) || (rhs > MAX_RHS)) {
1400                 internal_error(state, &dummy, "bad rhs %d", rhs);
1401         }
1402         if ((lhs < 0) || (lhs > MAX_LHS)) {
1403                 internal_error(state, &dummy, "bad lhs");
1404         }
1405         if ((misc < 0) || (misc > MAX_MISC)) {
1406                 internal_error(state, &dummy, "bad misc");
1407         }
1408         if ((targ < 0) || (targ > MAX_TARG)) {
1409                 internal_error(state, &dummy, "bad targs");
1410         }
1411         return TRIPLE_SIZES(lhs, rhs, misc, targ);
1412 }
1413
1414 static struct triple *alloc_triple(struct compile_state *state, 
1415         int op, struct type *type, int lhs, int rhs,
1416         struct occurance *occurance)
1417 {
1418         size_t size, sizes, extra_count, min_count;
1419         struct triple *ret;
1420         sizes = triple_sizes(state, op, type, lhs, rhs, occurance);
1421
1422         min_count = sizeof(ret->param)/sizeof(ret->param[0]);
1423         extra_count = TRIPLE_SIZE(sizes);
1424         extra_count = (extra_count < min_count)? 0 : extra_count - min_count;
1425
1426         size = sizeof(*ret) + sizeof(ret->param[0]) * extra_count;
1427         ret = xcmalloc(size, "tripple");
1428         ret->op        = op;
1429         ret->sizes     = sizes;
1430         ret->type      = type;
1431         ret->next      = ret;
1432         ret->prev      = ret;
1433         ret->occurance = occurance;
1434         return ret;
1435 }
1436
1437 struct triple *dup_triple(struct compile_state *state, struct triple *src)
1438 {
1439         struct triple *dup;
1440         int src_lhs, src_rhs, src_size;
1441         src_lhs = TRIPLE_LHS(src->sizes);
1442         src_rhs = TRIPLE_RHS(src->sizes);
1443         src_size = TRIPLE_SIZE(src->sizes);
1444         get_occurance(src->occurance);
1445         dup = alloc_triple(state, src->op, src->type, src_lhs, src_rhs,
1446                 src->occurance);
1447         memcpy(dup, src, sizeof(*src));
1448         memcpy(dup->param, src->param, src_size * sizeof(src->param[0]));
1449         return dup;
1450 }
1451
1452 static struct triple *new_triple(struct compile_state *state, 
1453         int op, struct type *type, int lhs, int rhs)
1454 {
1455         struct triple *ret;
1456         struct occurance *occurance;
1457         occurance = new_occurance(state);
1458         ret = alloc_triple(state, op, type, lhs, rhs, occurance);
1459         return ret;
1460 }
1461
1462 static struct triple *build_triple(struct compile_state *state, 
1463         int op, struct type *type, struct triple *left, struct triple *right,
1464         struct occurance *occurance)
1465 {
1466         struct triple *ret;
1467         size_t count;
1468         ret = alloc_triple(state, op, type, -1, -1, occurance);
1469         count = TRIPLE_SIZE(ret->sizes);
1470         if (count > 0) {
1471                 ret->param[0] = left;
1472         }
1473         if (count > 1) {
1474                 ret->param[1] = right;
1475         }
1476         return ret;
1477 }
1478
1479 static struct triple *triple(struct compile_state *state, 
1480         int op, struct type *type, struct triple *left, struct triple *right)
1481 {
1482         struct triple *ret;
1483         size_t count;
1484         ret = new_triple(state, op, type, -1, -1);
1485         count = TRIPLE_SIZE(ret->sizes);
1486         if (count >= 1) {
1487                 ret->param[0] = left;
1488         }
1489         if (count >= 2) {
1490                 ret->param[1] = right;
1491         }
1492         return ret;
1493 }
1494
1495 static struct triple *branch(struct compile_state *state, 
1496         struct triple *targ, struct triple *test)
1497 {
1498         struct triple *ret;
1499         ret = new_triple(state, OP_BRANCH, &void_type, -1, test?1:0);
1500         if (test) {
1501                 RHS(ret, 0) = test;
1502         }
1503         TARG(ret, 0) = targ;
1504         /* record the branch target was used */
1505         if (!targ || (targ->op != OP_LABEL)) {
1506                 internal_error(state, 0, "branch not to label");
1507                 use_triple(targ, ret);
1508         }
1509         return ret;
1510 }
1511
1512
1513 static void insert_triple(struct compile_state *state,
1514         struct triple *first, struct triple *ptr)
1515 {
1516         if (ptr) {
1517                 if ((ptr->id & TRIPLE_FLAG_FLATTENED) || (ptr->next != ptr)) {
1518                         internal_error(state, ptr, "expression already used");
1519                 }
1520                 ptr->next       = first;
1521                 ptr->prev       = first->prev;
1522                 ptr->prev->next = ptr;
1523                 ptr->next->prev = ptr;
1524                 if ((ptr->prev->op == OP_BRANCH) && 
1525                         TRIPLE_RHS(ptr->prev->sizes)) {
1526                         unuse_triple(first, ptr->prev);
1527                         use_triple(ptr, ptr->prev);
1528                 }
1529         }
1530 }
1531
1532 static int triple_stores_block(struct compile_state *state, struct triple *ins)
1533 {
1534         /* This function is used to determine if u.block 
1535          * is utilized to store the current block number.
1536          */
1537         int stores_block;
1538         valid_ins(state, ins);
1539         stores_block = (table_ops[ins->op].flags & BLOCK) == BLOCK;
1540         return stores_block;
1541 }
1542
1543 static struct block *block_of_triple(struct compile_state *state, 
1544         struct triple *ins)
1545 {
1546         struct triple *first;
1547         if (!ins) {
1548                 return 0;
1549         }
1550         first = state->first;
1551         while(ins != first && !triple_stores_block(state, ins)) {
1552                 if (ins == ins->prev) {
1553                         internal_error(state, 0, "ins == ins->prev?");
1554                 }
1555                 ins = ins->prev;
1556         }
1557         if (!triple_stores_block(state, ins)) {
1558                 internal_error(state, ins, "Cannot find block");
1559         }
1560         return ins->u.block;
1561 }
1562
1563 static struct triple *pre_triple(struct compile_state *state,
1564         struct triple *base,
1565         int op, struct type *type, struct triple *left, struct triple *right)
1566 {
1567         struct block *block;
1568         struct triple *ret;
1569         /* If I am an OP_PIECE jump to the real instruction */
1570         if (base->op == OP_PIECE) {
1571                 base = MISC(base, 0);
1572         }
1573         block = block_of_triple(state, base);
1574         get_occurance(base->occurance);
1575         ret = build_triple(state, op, type, left, right, base->occurance);
1576         if (triple_stores_block(state, ret)) {
1577                 ret->u.block = block;
1578         }
1579         insert_triple(state, base, ret);
1580         if (block->first == base) {
1581                 block->first = ret;
1582         }
1583         return ret;
1584 }
1585
1586 static struct triple *post_triple(struct compile_state *state,
1587         struct triple *base,
1588         int op, struct type *type, struct triple *left, struct triple *right)
1589 {
1590         struct block *block;
1591         struct triple *ret;
1592         int zlhs;
1593         /* If I am an OP_PIECE jump to the real instruction */
1594         if (base->op == OP_PIECE) {
1595                 base = MISC(base, 0);
1596         }
1597         /* If I have a left hand side skip over it */
1598         zlhs = TRIPLE_LHS(base->sizes);
1599         if (zlhs) {
1600                 base = LHS(base, zlhs - 1);
1601         }
1602
1603         block = block_of_triple(state, base);
1604         get_occurance(base->occurance);
1605         ret = build_triple(state, op, type, left, right, base->occurance);
1606         if (triple_stores_block(state, ret)) {
1607                 ret->u.block = block;
1608         }
1609         insert_triple(state, base->next, ret);
1610         if (block->last == base) {
1611                 block->last = ret;
1612         }
1613         return ret;
1614 }
1615
1616 static struct triple *label(struct compile_state *state)
1617 {
1618         /* Labels don't get a type */
1619         struct triple *result;
1620         result = triple(state, OP_LABEL, &void_type, 0, 0);
1621         return result;
1622 }
1623
1624 static void display_triple(FILE *fp, struct triple *ins)
1625 {
1626         struct occurance *ptr;
1627         const char *reg;
1628         char pre, post;
1629         pre = post = ' ';
1630         if (ins->id & TRIPLE_FLAG_PRE_SPLIT) {
1631                 pre = '^';
1632         }
1633         if (ins->id & TRIPLE_FLAG_POST_SPLIT) {
1634                 post = 'v';
1635         }
1636         reg = arch_reg_str(ID_REG(ins->id));
1637         if (ins->op == OP_INTCONST) {
1638                 fprintf(fp, "(%p) %c%c %-7s %-2d %-10s <0x%08lx>         ",
1639                         ins, pre, post, reg, ins->template_id, tops(ins->op), 
1640                         (unsigned long)(ins->u.cval));
1641         }
1642         else if (ins->op == OP_ADDRCONST) {
1643                 fprintf(fp, "(%p) %c%c %-7s %-2d %-10s %-10p <0x%08lx>",
1644                         ins, pre, post, reg, ins->template_id, tops(ins->op), 
1645                         MISC(ins, 0), (unsigned long)(ins->u.cval));
1646         }
1647         else {
1648                 int i, count;
1649                 fprintf(fp, "(%p) %c%c %-7s %-2d %-10s", 
1650                         ins, pre, post, reg, ins->template_id, tops(ins->op));
1651                 count = TRIPLE_SIZE(ins->sizes);
1652                 for(i = 0; i < count; i++) {
1653                         fprintf(fp, " %-10p", ins->param[i]);
1654                 }
1655                 for(; i < 2; i++) {
1656                         fprintf(fp, "           ");
1657                 }
1658         }
1659         fprintf(fp, " @");
1660         for(ptr = ins->occurance; ptr; ptr = ptr->parent) {
1661                 fprintf(fp, " %s,%s:%d.%d",
1662                         ptr->function, 
1663                         ptr->filename,
1664                         ptr->line, 
1665                         ptr->col);
1666         }
1667         fprintf(fp, "\n");
1668 #if 0
1669         {
1670                 struct triple_set *user;
1671                 for(user = ptr->use; user; user = user->next) {
1672                         fprintf(fp, "use: %p\n", user->member);
1673                 }
1674         }
1675 #endif
1676         fflush(fp);
1677 }
1678
1679 static void display_func(FILE *fp, struct triple *func)
1680 {
1681         struct triple *first, *ins;
1682         first = ins = RHS(func, 0);
1683         do {
1684                 display_triple(fp, ins);
1685                 ins = ins->next;
1686         } while(ins != first);
1687 }
1688
1689 static int triple_is_pure(struct compile_state *state, struct triple *ins, unsigned id)
1690 {
1691         /* Does the triple have no side effects.
1692          * I.e. Rexecuting the triple with the same arguments 
1693          * gives the same value.
1694          */
1695         unsigned pure;
1696         valid_ins(state, ins);
1697         pure = PURE_BITS(table_ops[ins->op].flags);
1698         if ((pure != PURE) && (pure != IMPURE)) {
1699                 internal_error(state, 0, "Purity of %s not known\n",
1700                         tops(ins->op));
1701         }
1702         return (pure == PURE) && !(id & TRIPLE_FLAG_VOLATILE);
1703 }
1704
1705 static int triple_is_branch(struct compile_state *state, struct triple *ins)
1706 {
1707         /* This function is used to determine which triples need
1708          * a register.
1709          */
1710         int is_branch;
1711         valid_ins(state, ins);
1712         is_branch = (table_ops[ins->op].targ != 0);
1713         return is_branch;
1714 }
1715
1716 static int triple_is_cond_branch(struct compile_state *state, struct triple *ins)
1717 {
1718         /* A conditional branch has the condition argument as a single
1719          * RHS parameter.
1720          */
1721         return triple_is_branch(state, ins) &&
1722                 (TRIPLE_RHS(ins->sizes) == 1);
1723 }
1724
1725 static int triple_is_uncond_branch(struct compile_state *state, struct triple *ins)
1726 {
1727         /* A unconditional branch has no RHS parameters.
1728          */
1729         return triple_is_branch(state, ins) &&
1730                 (TRIPLE_RHS(ins->sizes) == 0);
1731 }
1732
1733 static int triple_is_def(struct compile_state *state, struct triple *ins)
1734 {
1735         /* This function is used to determine which triples need
1736          * a register.
1737          */
1738         int is_def;
1739         valid_ins(state, ins);
1740         is_def = (table_ops[ins->op].flags & DEF) == DEF;
1741         return is_def;
1742 }
1743
1744 static int triple_is_structural(struct compile_state *state, struct triple *ins)
1745 {
1746         int is_structural;
1747         valid_ins(state, ins);
1748         is_structural = (table_ops[ins->op].flags & STRUCTURAL) == STRUCTURAL;
1749         return is_structural;
1750 }
1751
1752 static struct triple **triple_iter(struct compile_state *state,
1753         size_t count, struct triple **vector,
1754         struct triple *ins, struct triple **last)
1755 {
1756         struct triple **ret;
1757         ret = 0;
1758         if (count) {
1759                 if (!last) {
1760                         ret = vector;
1761                 }
1762                 else if ((last >= vector) && (last < (vector + count - 1))) {
1763                         ret = last + 1;
1764                 }
1765         }
1766         return ret;
1767         
1768 }
1769
1770 static struct triple **triple_lhs(struct compile_state *state,
1771         struct triple *ins, struct triple **last)
1772 {
1773         return triple_iter(state, TRIPLE_LHS(ins->sizes), &LHS(ins,0), 
1774                 ins, last);
1775 }
1776
1777 static struct triple **triple_rhs(struct compile_state *state,
1778         struct triple *ins, struct triple **last)
1779 {
1780         return triple_iter(state, TRIPLE_RHS(ins->sizes), &RHS(ins,0), 
1781                 ins, last);
1782 }
1783
1784 static struct triple **triple_misc(struct compile_state *state,
1785         struct triple *ins, struct triple **last)
1786 {
1787         return triple_iter(state, TRIPLE_MISC(ins->sizes), &MISC(ins,0), 
1788                 ins, last);
1789 }
1790
1791 static struct triple **triple_targ(struct compile_state *state,
1792         struct triple *ins, struct triple **last)
1793 {
1794         size_t count;
1795         struct triple **ret, **vector;
1796         ret = 0;
1797         count = TRIPLE_TARG(ins->sizes);
1798         vector = &TARG(ins, 0);
1799         if (count) {
1800                 if (!last) {
1801                         ret = vector;
1802                 }
1803                 else if ((last >= vector) && (last < (vector + count - 1))) {
1804                         ret = last + 1;
1805                 }
1806                 else if ((last == (vector + count - 1)) && 
1807                         TRIPLE_RHS(ins->sizes)) {
1808                         ret = &ins->next;
1809                 }
1810         }
1811         return ret;
1812 }
1813
1814
1815 static void verify_use(struct compile_state *state,
1816         struct triple *user, struct triple *used)
1817 {
1818         int size, i;
1819         size = TRIPLE_SIZE(user->sizes);
1820         for(i = 0; i < size; i++) {
1821                 if (user->param[i] == used) {
1822                         break;
1823                 }
1824         }
1825         if (triple_is_branch(state, user)) {
1826                 if (user->next == used) {
1827                         i = -1;
1828                 }
1829         }
1830         if (i == size) {
1831                 internal_error(state, user, "%s(%p) does not use %s(%p)",
1832                         tops(user->op), user, tops(used->op), used);
1833         }
1834 }
1835
1836 static int find_rhs_use(struct compile_state *state, 
1837         struct triple *user, struct triple *used)
1838 {
1839         struct triple **param;
1840         int size, i;
1841         verify_use(state, user, used);
1842         size = TRIPLE_RHS(user->sizes);
1843         param = &RHS(user, 0);
1844         for(i = 0; i < size; i++) {
1845                 if (param[i] == used) {
1846                         return i;
1847                 }
1848         }
1849         return -1;
1850 }
1851
1852 static void free_triple(struct compile_state *state, struct triple *ptr)
1853 {
1854         size_t size;
1855         size = sizeof(*ptr) - sizeof(ptr->param) +
1856                 (sizeof(ptr->param[0])*TRIPLE_SIZE(ptr->sizes));
1857         ptr->prev->next = ptr->next;
1858         ptr->next->prev = ptr->prev;
1859         if (ptr->use) {
1860                 internal_error(state, ptr, "ptr->use != 0");
1861         }
1862         put_occurance(ptr->occurance);
1863         memset(ptr, -1, size);
1864         xfree(ptr);
1865 }
1866
1867 static void release_triple(struct compile_state *state, struct triple *ptr)
1868 {
1869         struct triple_set *set, *next;
1870         struct triple **expr;
1871         struct block *block;
1872         /* Make certain the we are not the first or last element of a block */
1873         block = block_of_triple(state, ptr);
1874         if (block) {
1875                 if ((block->last == ptr) && (block->first == ptr)) {
1876                         block->last = block->first = 0;
1877                 }
1878                 else if (block->last == ptr) {
1879                         block->last = ptr->prev;
1880                 }
1881                 else if (block->first == ptr) {
1882                         block->first = ptr->next;
1883                 }
1884         }
1885         /* Remove ptr from use chains where it is the user */
1886         expr = triple_rhs(state, ptr, 0);
1887         for(; expr; expr = triple_rhs(state, ptr, expr)) {
1888                 if (*expr) {
1889                         unuse_triple(*expr, ptr);
1890                 }
1891         }
1892         expr = triple_lhs(state, ptr, 0);
1893         for(; expr; expr = triple_lhs(state, ptr, expr)) {
1894                 if (*expr) {
1895                         unuse_triple(*expr, ptr);
1896                 }
1897         }
1898         expr = triple_misc(state, ptr, 0);
1899         for(; expr; expr = triple_misc(state, ptr, expr)) {
1900                 if (*expr) {
1901                         unuse_triple(*expr, ptr);
1902                 }
1903         }
1904         expr = triple_targ(state, ptr, 0);
1905         for(; expr; expr = triple_targ(state, ptr, expr)) {
1906                 if (*expr) {
1907                         unuse_triple(*expr, ptr);
1908                 }
1909         }
1910         /* Reomve ptr from use chains where it is used */
1911         for(set = ptr->use; set; set = next) {
1912                 next = set->next;
1913                 expr = triple_rhs(state, set->member, 0);
1914                 for(; expr; expr = triple_rhs(state, set->member, expr)) {
1915                         if (*expr == ptr) {
1916                                 *expr = &zero_triple;
1917                         }
1918                 }
1919                 expr = triple_lhs(state, set->member, 0);
1920                 for(; expr; expr = triple_lhs(state, set->member, expr)) {
1921                         if (*expr == ptr) {
1922                                 *expr = &zero_triple;
1923                         }
1924                 }
1925                 expr = triple_misc(state, set->member, 0);
1926                 for(; expr; expr = triple_misc(state, set->member, expr)) {
1927                         if (*expr == ptr) {
1928                                 *expr = &zero_triple;
1929                         }
1930                 }
1931                 expr = triple_targ(state, set->member, 0);
1932                 for(; expr; expr = triple_targ(state, set->member, expr)) {
1933                         if (*expr == ptr) {
1934                                 *expr = &zero_triple;
1935                         }
1936                 }
1937                 unuse_triple(ptr, set->member);
1938         }
1939         free_triple(state, ptr);
1940 }
1941
1942 static void print_triple(struct compile_state *state, struct triple *ptr);
1943
1944 #define TOK_UNKNOWN     0
1945 #define TOK_SPACE       1
1946 #define TOK_SEMI        2
1947 #define TOK_LBRACE      3
1948 #define TOK_RBRACE      4
1949 #define TOK_COMMA       5
1950 #define TOK_EQ          6
1951 #define TOK_COLON       7
1952 #define TOK_LBRACKET    8
1953 #define TOK_RBRACKET    9
1954 #define TOK_LPAREN      10
1955 #define TOK_RPAREN      11
1956 #define TOK_STAR        12
1957 #define TOK_DOTS        13
1958 #define TOK_MORE        14
1959 #define TOK_LESS        15
1960 #define TOK_TIMESEQ     16
1961 #define TOK_DIVEQ       17
1962 #define TOK_MODEQ       18
1963 #define TOK_PLUSEQ      19
1964 #define TOK_MINUSEQ     20
1965 #define TOK_SLEQ        21
1966 #define TOK_SREQ        22
1967 #define TOK_ANDEQ       23
1968 #define TOK_XOREQ       24
1969 #define TOK_OREQ        25
1970 #define TOK_EQEQ        26
1971 #define TOK_NOTEQ       27
1972 #define TOK_QUEST       28
1973 #define TOK_LOGOR       29
1974 #define TOK_LOGAND      30
1975 #define TOK_OR          31
1976 #define TOK_AND         32
1977 #define TOK_XOR         33
1978 #define TOK_LESSEQ      34
1979 #define TOK_MOREEQ      35
1980 #define TOK_SL          36
1981 #define TOK_SR          37
1982 #define TOK_PLUS        38
1983 #define TOK_MINUS       39
1984 #define TOK_DIV         40
1985 #define TOK_MOD         41
1986 #define TOK_PLUSPLUS    42
1987 #define TOK_MINUSMINUS  43
1988 #define TOK_BANG        44
1989 #define TOK_ARROW       45
1990 #define TOK_DOT         46
1991 #define TOK_TILDE       47
1992 #define TOK_LIT_STRING  48
1993 #define TOK_LIT_CHAR    49
1994 #define TOK_LIT_INT     50
1995 #define TOK_LIT_FLOAT   51
1996 #define TOK_MACRO       52
1997 #define TOK_CONCATENATE 53
1998
1999 #define TOK_IDENT       54
2000 #define TOK_STRUCT_NAME 55
2001 #define TOK_ENUM_CONST  56
2002 #define TOK_TYPE_NAME   57
2003
2004 #define TOK_AUTO        58
2005 #define TOK_BREAK       59
2006 #define TOK_CASE        60
2007 #define TOK_CHAR        61
2008 #define TOK_CONST       62
2009 #define TOK_CONTINUE    63
2010 #define TOK_DEFAULT     64
2011 #define TOK_DO          65
2012 #define TOK_DOUBLE      66
2013 #define TOK_ELSE        67
2014 #define TOK_ENUM        68
2015 #define TOK_EXTERN      69
2016 #define TOK_FLOAT       70
2017 #define TOK_FOR         71
2018 #define TOK_GOTO        72
2019 #define TOK_IF          73
2020 #define TOK_INLINE      74
2021 #define TOK_INT         75
2022 #define TOK_LONG        76
2023 #define TOK_REGISTER    77
2024 #define TOK_RESTRICT    78
2025 #define TOK_RETURN      79
2026 #define TOK_SHORT       80
2027 #define TOK_SIGNED      81
2028 #define TOK_SIZEOF      82
2029 #define TOK_STATIC      83
2030 #define TOK_STRUCT      84
2031 #define TOK_SWITCH      85
2032 #define TOK_TYPEDEF     86
2033 #define TOK_UNION       87
2034 #define TOK_UNSIGNED    88
2035 #define TOK_VOID        89
2036 #define TOK_VOLATILE    90
2037 #define TOK_WHILE       91
2038 #define TOK_ASM         92
2039 #define TOK_ATTRIBUTE   93
2040 #define TOK_ALIGNOF     94
2041 #define TOK_FIRST_KEYWORD TOK_AUTO
2042 #define TOK_LAST_KEYWORD  TOK_ALIGNOF
2043
2044 #define TOK_DEFINE      100
2045 #define TOK_UNDEF       101
2046 #define TOK_INCLUDE     102
2047 #define TOK_LINE        103
2048 #define TOK_ERROR       104
2049 #define TOK_WARNING     105
2050 #define TOK_PRAGMA      106
2051 #define TOK_IFDEF       107
2052 #define TOK_IFNDEF      108
2053 #define TOK_ELIF        109
2054 #define TOK_ENDIF       110
2055
2056 #define TOK_FIRST_MACRO TOK_DEFINE
2057 #define TOK_LAST_MACRO  TOK_ENDIF
2058          
2059 #define TOK_EOF         111
2060
2061 static const char *tokens[] = {
2062 [TOK_UNKNOWN     ] = "unknown",
2063 [TOK_SPACE       ] = ":space:",
2064 [TOK_SEMI        ] = ";",
2065 [TOK_LBRACE      ] = "{",
2066 [TOK_RBRACE      ] = "}",
2067 [TOK_COMMA       ] = ",",
2068 [TOK_EQ          ] = "=",
2069 [TOK_COLON       ] = ":",
2070 [TOK_LBRACKET    ] = "[",
2071 [TOK_RBRACKET    ] = "]",
2072 [TOK_LPAREN      ] = "(",
2073 [TOK_RPAREN      ] = ")",
2074 [TOK_STAR        ] = "*",
2075 [TOK_DOTS        ] = "...",
2076 [TOK_MORE        ] = ">",
2077 [TOK_LESS        ] = "<",
2078 [TOK_TIMESEQ     ] = "*=",
2079 [TOK_DIVEQ       ] = "/=",
2080 [TOK_MODEQ       ] = "%=",
2081 [TOK_PLUSEQ      ] = "+=",
2082 [TOK_MINUSEQ     ] = "-=",
2083 [TOK_SLEQ        ] = "<<=",
2084 [TOK_SREQ        ] = ">>=",
2085 [TOK_ANDEQ       ] = "&=",
2086 [TOK_XOREQ       ] = "^=",
2087 [TOK_OREQ        ] = "|=",
2088 [TOK_EQEQ        ] = "==",
2089 [TOK_NOTEQ       ] = "!=",
2090 [TOK_QUEST       ] = "?",
2091 [TOK_LOGOR       ] = "||",
2092 [TOK_LOGAND      ] = "&&",
2093 [TOK_OR          ] = "|",
2094 [TOK_AND         ] = "&",
2095 [TOK_XOR         ] = "^",
2096 [TOK_LESSEQ      ] = "<=",
2097 [TOK_MOREEQ      ] = ">=",
2098 [TOK_SL          ] = "<<",
2099 [TOK_SR          ] = ">>",
2100 [TOK_PLUS        ] = "+",
2101 [TOK_MINUS       ] = "-",
2102 [TOK_DIV         ] = "/",
2103 [TOK_MOD         ] = "%",
2104 [TOK_PLUSPLUS    ] = "++",
2105 [TOK_MINUSMINUS  ] = "--",
2106 [TOK_BANG        ] = "!",
2107 [TOK_ARROW       ] = "->",
2108 [TOK_DOT         ] = ".",
2109 [TOK_TILDE       ] = "~",
2110 [TOK_LIT_STRING  ] = ":string:",
2111 [TOK_IDENT       ] = ":ident:",
2112 [TOK_TYPE_NAME   ] = ":typename:",
2113 [TOK_LIT_CHAR    ] = ":char:",
2114 [TOK_LIT_INT     ] = ":integer:",
2115 [TOK_LIT_FLOAT   ] = ":float:",
2116 [TOK_MACRO       ] = "#",
2117 [TOK_CONCATENATE ] = "##",
2118
2119 [TOK_AUTO        ] = "auto",
2120 [TOK_BREAK       ] = "break",
2121 [TOK_CASE        ] = "case",
2122 [TOK_CHAR        ] = "char",
2123 [TOK_CONST       ] = "const",
2124 [TOK_CONTINUE    ] = "continue",
2125 [TOK_DEFAULT     ] = "default",
2126 [TOK_DO          ] = "do",
2127 [TOK_DOUBLE      ] = "double",
2128 [TOK_ELSE        ] = "else",
2129 [TOK_ENUM        ] = "enum",
2130 [TOK_EXTERN      ] = "extern",
2131 [TOK_FLOAT       ] = "float",
2132 [TOK_FOR         ] = "for",
2133 [TOK_GOTO        ] = "goto",
2134 [TOK_IF          ] = "if",
2135 [TOK_INLINE      ] = "inline",
2136 [TOK_INT         ] = "int",
2137 [TOK_LONG        ] = "long",
2138 [TOK_REGISTER    ] = "register",
2139 [TOK_RESTRICT    ] = "restrict",
2140 [TOK_RETURN      ] = "return",
2141 [TOK_SHORT       ] = "short",
2142 [TOK_SIGNED      ] = "signed",
2143 [TOK_SIZEOF      ] = "sizeof",
2144 [TOK_STATIC      ] = "static",
2145 [TOK_STRUCT      ] = "struct",
2146 [TOK_SWITCH      ] = "switch",
2147 [TOK_TYPEDEF     ] = "typedef",
2148 [TOK_UNION       ] = "union",
2149 [TOK_UNSIGNED    ] = "unsigned",
2150 [TOK_VOID        ] = "void",
2151 [TOK_VOLATILE    ] = "volatile",
2152 [TOK_WHILE       ] = "while",
2153 [TOK_ASM         ] = "asm",
2154 [TOK_ATTRIBUTE   ] = "__attribute__",
2155 [TOK_ALIGNOF     ] = "__alignof__",
2156
2157 [TOK_DEFINE      ] = "define",
2158 [TOK_UNDEF       ] = "undef",
2159 [TOK_INCLUDE     ] = "include",
2160 [TOK_LINE        ] = "line",
2161 [TOK_ERROR       ] = "error",
2162 [TOK_WARNING     ] = "warning",
2163 [TOK_PRAGMA      ] = "pragma",
2164 [TOK_IFDEF       ] = "ifdef",
2165 [TOK_IFNDEF      ] = "ifndef",
2166 [TOK_ELIF        ] = "elif",
2167 [TOK_ENDIF       ] = "endif",
2168
2169 [TOK_EOF         ] = "EOF",
2170 };
2171
2172 static unsigned int hash(const char *str, int str_len)
2173 {
2174         unsigned int hash;
2175         const char *end;
2176         end = str + str_len;
2177         hash = 0;
2178         for(; str < end; str++) {
2179                 hash = (hash *263) + *str;
2180         }
2181         hash = hash & (HASH_TABLE_SIZE -1);
2182         return hash;
2183 }
2184
2185 static struct hash_entry *lookup(
2186         struct compile_state *state, const char *name, int name_len)
2187 {
2188         struct hash_entry *entry;
2189         unsigned int index;
2190         index = hash(name, name_len);
2191         entry = state->hash_table[index];
2192         while(entry && 
2193                 ((entry->name_len != name_len) ||
2194                         (memcmp(entry->name, name, name_len) != 0))) {
2195                 entry = entry->next;
2196         }
2197         if (!entry) {
2198                 char *new_name;
2199                 /* Get a private copy of the name */
2200                 new_name = xmalloc(name_len + 1, "hash_name");
2201                 memcpy(new_name, name, name_len);
2202                 new_name[name_len] = '\0';
2203
2204                 /* Create a new hash entry */
2205                 entry = xcmalloc(sizeof(*entry), "hash_entry");
2206                 entry->next = state->hash_table[index];
2207                 entry->name = new_name;
2208                 entry->name_len = name_len;
2209
2210                 /* Place the new entry in the hash table */
2211                 state->hash_table[index] = entry;
2212         }
2213         return entry;
2214 }
2215
2216 static void ident_to_keyword(struct compile_state *state, struct token *tk)
2217 {
2218         struct hash_entry *entry;
2219         entry = tk->ident;
2220         if (entry && ((entry->tok == TOK_TYPE_NAME) ||
2221                 (entry->tok == TOK_ENUM_CONST) ||
2222                 ((entry->tok >= TOK_FIRST_KEYWORD) && 
2223                         (entry->tok <= TOK_LAST_KEYWORD)))) {
2224                 tk->tok = entry->tok;
2225         }
2226 }
2227
2228 static void ident_to_macro(struct compile_state *state, struct token *tk)
2229 {
2230         struct hash_entry *entry;
2231         entry = tk->ident;
2232         if (entry && 
2233                 (entry->tok >= TOK_FIRST_MACRO) &&
2234                 (entry->tok <= TOK_LAST_MACRO)) {
2235                 tk->tok = entry->tok;
2236         }
2237 }
2238
2239 static void hash_keyword(
2240         struct compile_state *state, const char *keyword, int tok)
2241 {
2242         struct hash_entry *entry;
2243         entry = lookup(state, keyword, strlen(keyword));
2244         if (entry && entry->tok != TOK_UNKNOWN) {
2245                 die("keyword %s already hashed", keyword);
2246         }
2247         entry->tok  = tok;
2248 }
2249
2250 static void symbol(
2251         struct compile_state *state, struct hash_entry *ident,
2252         struct symbol **chain, struct triple *def, struct type *type)
2253 {
2254         struct symbol *sym;
2255         if (*chain && ((*chain)->scope_depth == state->scope_depth)) {
2256                 error(state, 0, "%s already defined", ident->name);
2257         }
2258         sym = xcmalloc(sizeof(*sym), "symbol");
2259         sym->ident = ident;
2260         sym->def   = def;
2261         sym->type  = type;
2262         sym->scope_depth = state->scope_depth;
2263         sym->next = *chain;
2264         *chain    = sym;
2265 }
2266
2267 static void label_symbol(struct compile_state *state, 
2268         struct hash_entry *ident, struct triple *label)
2269 {
2270         struct symbol *sym;
2271         if (ident->sym_label) {
2272                 error(state, 0, "label %s already defined", ident->name);
2273         }
2274         sym = xcmalloc(sizeof(*sym), "label");
2275         sym->ident = ident;
2276         sym->def   = label;
2277         sym->type  = &void_type;
2278         sym->scope_depth = FUNCTION_SCOPE_DEPTH;
2279         sym->next  = 0;
2280         ident->sym_label = sym;
2281 }
2282
2283 static void start_scope(struct compile_state *state)
2284 {
2285         state->scope_depth++;
2286 }
2287
2288 static void end_scope_syms(struct symbol **chain, int depth)
2289 {
2290         struct symbol *sym, *next;
2291         sym = *chain;
2292         while(sym && (sym->scope_depth == depth)) {
2293                 next = sym->next;
2294                 xfree(sym);
2295                 sym = next;
2296         }
2297         *chain = sym;
2298 }
2299
2300 static void end_scope(struct compile_state *state)
2301 {
2302         int i;
2303         int depth;
2304         /* Walk through the hash table and remove all symbols
2305          * in the current scope. 
2306          */
2307         depth = state->scope_depth;
2308         for(i = 0; i < HASH_TABLE_SIZE; i++) {
2309                 struct hash_entry *entry;
2310                 entry = state->hash_table[i];
2311                 while(entry) {
2312                         end_scope_syms(&entry->sym_label, depth);
2313                         end_scope_syms(&entry->sym_tag,   depth);
2314                         end_scope_syms(&entry->sym_ident, depth);
2315                         entry = entry->next;
2316                 }
2317         }
2318         state->scope_depth = depth - 1;
2319 }
2320
2321 static void register_keywords(struct compile_state *state)
2322 {
2323         hash_keyword(state, "auto",          TOK_AUTO);
2324         hash_keyword(state, "break",         TOK_BREAK);
2325         hash_keyword(state, "case",          TOK_CASE);
2326         hash_keyword(state, "char",          TOK_CHAR);
2327         hash_keyword(state, "const",         TOK_CONST);
2328         hash_keyword(state, "continue",      TOK_CONTINUE);
2329         hash_keyword(state, "default",       TOK_DEFAULT);
2330         hash_keyword(state, "do",            TOK_DO);
2331         hash_keyword(state, "double",        TOK_DOUBLE);
2332         hash_keyword(state, "else",          TOK_ELSE);
2333         hash_keyword(state, "enum",          TOK_ENUM);
2334         hash_keyword(state, "extern",        TOK_EXTERN);
2335         hash_keyword(state, "float",         TOK_FLOAT);
2336         hash_keyword(state, "for",           TOK_FOR);
2337         hash_keyword(state, "goto",          TOK_GOTO);
2338         hash_keyword(state, "if",            TOK_IF);
2339         hash_keyword(state, "inline",        TOK_INLINE);
2340         hash_keyword(state, "int",           TOK_INT);
2341         hash_keyword(state, "long",          TOK_LONG);
2342         hash_keyword(state, "register",      TOK_REGISTER);
2343         hash_keyword(state, "restrict",      TOK_RESTRICT);
2344         hash_keyword(state, "return",        TOK_RETURN);
2345         hash_keyword(state, "short",         TOK_SHORT);
2346         hash_keyword(state, "signed",        TOK_SIGNED);
2347         hash_keyword(state, "sizeof",        TOK_SIZEOF);
2348         hash_keyword(state, "static",        TOK_STATIC);
2349         hash_keyword(state, "struct",        TOK_STRUCT);
2350         hash_keyword(state, "switch",        TOK_SWITCH);
2351         hash_keyword(state, "typedef",       TOK_TYPEDEF);
2352         hash_keyword(state, "union",         TOK_UNION);
2353         hash_keyword(state, "unsigned",      TOK_UNSIGNED);
2354         hash_keyword(state, "void",          TOK_VOID);
2355         hash_keyword(state, "volatile",      TOK_VOLATILE);
2356         hash_keyword(state, "__volatile__",  TOK_VOLATILE);
2357         hash_keyword(state, "while",         TOK_WHILE);
2358         hash_keyword(state, "asm",           TOK_ASM);
2359         hash_keyword(state, "__asm__",       TOK_ASM);
2360         hash_keyword(state, "__attribute__", TOK_ATTRIBUTE);
2361         hash_keyword(state, "__alignof__",   TOK_ALIGNOF);
2362 }
2363
2364 static void register_macro_keywords(struct compile_state *state)
2365 {
2366         hash_keyword(state, "define",        TOK_DEFINE);
2367         hash_keyword(state, "undef",         TOK_UNDEF);
2368         hash_keyword(state, "include",       TOK_INCLUDE);
2369         hash_keyword(state, "line",          TOK_LINE);
2370         hash_keyword(state, "error",         TOK_ERROR);
2371         hash_keyword(state, "warning",       TOK_WARNING);
2372         hash_keyword(state, "pragma",        TOK_PRAGMA);
2373         hash_keyword(state, "ifdef",         TOK_IFDEF);
2374         hash_keyword(state, "ifndef",        TOK_IFNDEF);
2375         hash_keyword(state, "elif",          TOK_ELIF);
2376         hash_keyword(state, "endif",         TOK_ENDIF);
2377 }
2378
2379 static int spacep(int c)
2380 {
2381         int ret = 0;
2382         switch(c) {
2383         case ' ':
2384         case '\t':
2385         case '\f':
2386         case '\v':
2387         case '\r':
2388         case '\n':
2389                 ret = 1;
2390                 break;
2391         }
2392         return ret;
2393 }
2394
2395 static int digitp(int c)
2396 {
2397         int ret = 0;
2398         switch(c) {
2399         case '0': case '1': case '2': case '3': case '4': 
2400         case '5': case '6': case '7': case '8': case '9':
2401                 ret = 1;
2402                 break;
2403         }
2404         return ret;
2405 }
2406 static int digval(int c)
2407 {
2408         int val = -1;
2409         if ((c >= '0') && (c <= '9')) {
2410                 val = c - '0';
2411         }
2412         return val;
2413 }
2414
2415 static int hexdigitp(int c)
2416 {
2417         int ret = 0;
2418         switch(c) {
2419         case '0': case '1': case '2': case '3': case '4': 
2420         case '5': case '6': case '7': case '8': case '9':
2421         case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
2422         case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
2423                 ret = 1;
2424                 break;
2425         }
2426         return ret;
2427 }
2428 static int hexdigval(int c) 
2429 {
2430         int val = -1;
2431         if ((c >= '0') && (c <= '9')) {
2432                 val = c - '0';
2433         }
2434         else if ((c >= 'A') && (c <= 'F')) {
2435                 val = 10 + (c - 'A');
2436         }
2437         else if ((c >= 'a') && (c <= 'f')) {
2438                 val = 10 + (c - 'a');
2439         }
2440         return val;
2441 }
2442
2443 static int octdigitp(int c)
2444 {
2445         int ret = 0;
2446         switch(c) {
2447         case '0': case '1': case '2': case '3': 
2448         case '4': case '5': case '6': case '7':
2449                 ret = 1;
2450                 break;
2451         }
2452         return ret;
2453 }
2454 static int octdigval(int c)
2455 {
2456         int val = -1;
2457         if ((c >= '0') && (c <= '7')) {
2458                 val = c - '0';
2459         }
2460         return val;
2461 }
2462
2463 static int letterp(int c)
2464 {
2465         int ret = 0;
2466         switch(c) {
2467         case 'a': case 'b': case 'c': case 'd': case 'e':
2468         case 'f': case 'g': case 'h': case 'i': case 'j':
2469         case 'k': case 'l': case 'm': case 'n': case 'o':
2470         case 'p': case 'q': case 'r': case 's': case 't':
2471         case 'u': case 'v': case 'w': case 'x': case 'y':
2472         case 'z':
2473         case 'A': case 'B': case 'C': case 'D': case 'E':
2474         case 'F': case 'G': case 'H': case 'I': case 'J':
2475         case 'K': case 'L': case 'M': case 'N': case 'O':
2476         case 'P': case 'Q': case 'R': case 'S': case 'T':
2477         case 'U': case 'V': case 'W': case 'X': case 'Y':
2478         case 'Z':
2479         case '_':
2480                 ret = 1;
2481                 break;
2482         }
2483         return ret;
2484 }
2485
2486 static int char_value(struct compile_state *state,
2487         const signed char **strp, const signed char *end)
2488 {
2489         const signed char *str;
2490         int c;
2491         str = *strp;
2492         c = *str++;
2493         if ((c == '\\') && (str < end)) {
2494                 switch(*str) {
2495                 case 'n':  c = '\n'; str++; break;
2496                 case 't':  c = '\t'; str++; break;
2497                 case 'v':  c = '\v'; str++; break;
2498                 case 'b':  c = '\b'; str++; break;
2499                 case 'r':  c = '\r'; str++; break;
2500                 case 'f':  c = '\f'; str++; break;
2501                 case 'a':  c = '\a'; str++; break;
2502                 case '\\': c = '\\'; str++; break;
2503                 case '?':  c = '?';  str++; break;
2504                 case '\'': c = '\''; str++; break;
2505                 case '"':  c = '"';  break;
2506                 case 'x': 
2507                         c = 0;
2508                         str++;
2509                         while((str < end) && hexdigitp(*str)) {
2510                                 c <<= 4;
2511                                 c += hexdigval(*str);
2512                                 str++;
2513                         }
2514                         break;
2515                 case '0': case '1': case '2': case '3': 
2516                 case '4': case '5': case '6': case '7':
2517                         c = 0;
2518                         while((str < end) && octdigitp(*str)) {
2519                                 c <<= 3;
2520                                 c += octdigval(*str);
2521                                 str++;
2522                         }
2523                         break;
2524                 default:
2525                         error(state, 0, "Invalid character constant");
2526                         break;
2527                 }
2528         }
2529         *strp = str;
2530         return c;
2531 }
2532
2533 static char *after_digits(char *ptr, char *end)
2534 {
2535         while((ptr < end) && digitp(*ptr)) {
2536                 ptr++;
2537         }
2538         return ptr;
2539 }
2540
2541 static char *after_octdigits(char *ptr, char *end)
2542 {
2543         while((ptr < end) && octdigitp(*ptr)) {
2544                 ptr++;
2545         }
2546         return ptr;
2547 }
2548
2549 static char *after_hexdigits(char *ptr, char *end)
2550 {
2551         while((ptr < end) && hexdigitp(*ptr)) {
2552                 ptr++;
2553         }
2554         return ptr;
2555 }
2556
2557 static void save_string(struct compile_state *state, 
2558         struct token *tk, char *start, char *end, const char *id)
2559 {
2560         char *str;
2561         int str_len;
2562         /* Create a private copy of the string */
2563         str_len = end - start + 1;
2564         str = xmalloc(str_len + 1, id);
2565         memcpy(str, start, str_len);
2566         str[str_len] = '\0';
2567
2568         /* Store the copy in the token */
2569         tk->val.str = str;
2570         tk->str_len = str_len;
2571 }
2572 static void next_token(struct compile_state *state, int index)
2573 {
2574         struct file_state *file;
2575         struct token *tk;
2576         char *token;
2577         int c, c1, c2, c3;
2578         char *tokp, *end;
2579         int tok;
2580 next_token:
2581         file = state->file;
2582         tk = &state->token[index];
2583         tk->str_len = 0;
2584         tk->ident = 0;
2585         token = tokp = file->pos;
2586         end = file->buf + file->size;
2587         tok = TOK_UNKNOWN;
2588         c = -1;
2589         if (tokp < end) {
2590                 c = *tokp;
2591         }
2592         c1 = -1;
2593         if ((tokp + 1) < end) {
2594                 c1 = tokp[1];
2595         }
2596         c2 = -1;
2597         if ((tokp + 2) < end) {
2598                 c2 = tokp[2];
2599         }
2600         c3 = -1;
2601         if ((tokp + 3) < end) {
2602                 c3 = tokp[3];
2603         }
2604         if (tokp >= end) {
2605                 tok = TOK_EOF;
2606                 tokp = end;
2607         }
2608         /* Whitespace */
2609         else if (spacep(c)) {
2610                 tok = TOK_SPACE;
2611                 while ((tokp < end) && spacep(c)) {
2612                         if (c == '\n') {
2613                                 file->line++;
2614                                 file->report_line++;
2615                                 file->line_start = tokp + 1;
2616                         }
2617                         c = *(++tokp);
2618                 }
2619                 if (!spacep(c)) {
2620                         tokp--;
2621                 }
2622         }
2623         /* EOL Comments */
2624         else if ((c == '/') && (c1 == '/')) {
2625                 tok = TOK_SPACE;
2626                 for(tokp += 2; tokp < end; tokp++) {
2627                         c = *tokp;
2628                         if (c == '\n') {
2629                                 file->line++;
2630                                 file->report_line++;
2631                                 file->line_start = tokp +1;
2632                                 break;
2633                         }
2634                 }
2635         }
2636         /* Comments */
2637         else if ((c == '/') && (c1 == '*')) {
2638                 int line;
2639                 char *line_start;
2640                 line = file->line;
2641                 line_start = file->line_start;
2642                 for(tokp += 2; (end - tokp) >= 2; tokp++) {
2643                         c = *tokp;
2644                         if (c == '\n') {
2645                                 line++;
2646                                 line_start = tokp +1;
2647                         }
2648                         else if ((c == '*') && (tokp[1] == '/')) {
2649                                 tok = TOK_SPACE;
2650                                 tokp += 1;
2651                                 break;
2652                         }
2653                 }
2654                 if (tok == TOK_UNKNOWN) {
2655                         error(state, 0, "unterminated comment");
2656                 }
2657                 file->report_line += line - file->line;
2658                 file->line = line;
2659                 file->line_start = line_start;
2660         }
2661         /* string constants */
2662         else if ((c == '"') ||
2663                 ((c == 'L') && (c1 == '"'))) {
2664                 int line;
2665                 char *line_start;
2666                 int wchar;
2667                 line = file->line;
2668                 line_start = file->line_start;
2669                 wchar = 0;
2670                 if (c == 'L') {
2671                         wchar = 1;
2672                         tokp++;
2673                 }
2674                 for(tokp += 1; tokp < end; tokp++) {
2675                         c = *tokp;
2676                         if (c == '\n') {
2677                                 line++;
2678                                 line_start = tokp + 1;
2679                         }
2680                         else if ((c == '\\') && (tokp +1 < end)) {
2681                                 tokp++;
2682                         }
2683                         else if (c == '"') {
2684                                 tok = TOK_LIT_STRING;
2685                                 break;
2686                         }
2687                 }
2688                 if (tok == TOK_UNKNOWN) {
2689                         error(state, 0, "unterminated string constant");
2690                 }
2691                 if (line != file->line) {
2692                         warning(state, 0, "multiline string constant");
2693                 }
2694                 file->report_line += line - file->line;
2695                 file->line = line;
2696                 file->line_start = line_start;
2697
2698                 /* Save the string value */
2699                 save_string(state, tk, token, tokp, "literal string");
2700         }
2701         /* character constants */
2702         else if ((c == '\'') ||
2703                 ((c == 'L') && (c1 == '\''))) {
2704                 int line;
2705                 char *line_start;
2706                 int wchar;
2707                 line = file->line;
2708                 line_start = file->line_start;
2709                 wchar = 0;
2710                 if (c == 'L') {
2711                         wchar = 1;
2712                         tokp++;
2713                 }
2714                 for(tokp += 1; tokp < end; tokp++) {
2715                         c = *tokp;
2716                         if (c == '\n') {
2717                                 line++;
2718                                 line_start = tokp + 1;
2719                         }
2720                         else if ((c == '\\') && (tokp +1 < end)) {
2721                                 tokp++;
2722                         }
2723                         else if (c == '\'') {
2724                                 tok = TOK_LIT_CHAR;
2725                                 break;
2726                         }
2727                 }
2728                 if (tok == TOK_UNKNOWN) {
2729                         error(state, 0, "unterminated character constant");
2730                 }
2731                 if (line != file->line) {
2732                         warning(state, 0, "multiline character constant");
2733                 }
2734                 file->report_line += line - file->line;
2735                 file->line = line;
2736                 file->line_start = line_start;
2737
2738                 /* Save the character value */
2739                 save_string(state, tk, token, tokp, "literal character");
2740         }
2741         /* integer and floating constants 
2742          * Integer Constants
2743          * {digits}
2744          * 0[Xx]{hexdigits}
2745          * 0{octdigit}+
2746          * 
2747          * Floating constants
2748          * {digits}.{digits}[Ee][+-]?{digits}
2749          * {digits}.{digits}
2750          * {digits}[Ee][+-]?{digits}
2751          * .{digits}[Ee][+-]?{digits}
2752          * .{digits}
2753          */
2754         
2755         else if (digitp(c) || ((c == '.') && (digitp(c1)))) {
2756                 char *next, *new;
2757                 int is_float;
2758                 is_float = 0;
2759                 if (c != '.') {
2760                         next = after_digits(tokp, end);
2761                 }
2762                 else {
2763                         next = tokp;
2764                 }
2765                 if (next[0] == '.') {
2766                         new = after_digits(next, end);
2767                         is_float = (new != next);
2768                         next = new;
2769                 }
2770                 if ((next[0] == 'e') || (next[0] == 'E')) {
2771                         if (((next + 1) < end) && 
2772                                 ((next[1] == '+') || (next[1] == '-'))) {
2773                                 next++;
2774                         }
2775                         new = after_digits(next, end);
2776                         is_float = (new != next);
2777                         next = new;
2778                 }
2779                 if (is_float) {
2780                         tok = TOK_LIT_FLOAT;
2781                         if ((next < end) && (
2782                                 (next[0] == 'f') ||
2783                                 (next[0] == 'F') ||
2784                                 (next[0] == 'l') ||
2785                                 (next[0] == 'L'))
2786                                 ) {
2787                                 next++;
2788                         }
2789                 }
2790                 if (!is_float && digitp(c)) {
2791                         tok = TOK_LIT_INT;
2792                         if ((c == '0') && ((c1 == 'x') || (c1 == 'X'))) {
2793                                 next = after_hexdigits(tokp + 2, end);
2794                         }
2795                         else if (c == '0') {
2796                                 next = after_octdigits(tokp, end);
2797                         }
2798                         else {
2799                                 next = after_digits(tokp, end);
2800                         }
2801                         /* crazy integer suffixes */
2802                         if ((next < end) && 
2803                                 ((next[0] == 'u') || (next[0] == 'U'))) { 
2804                                 next++;
2805                                 if ((next < end) &&
2806                                         ((next[0] == 'l') || (next[0] == 'L'))) {
2807                                         next++;
2808                                 }
2809                         }
2810                         else if ((next < end) &&
2811                                 ((next[0] == 'l') || (next[0] == 'L'))) {
2812                                 next++;
2813                                 if ((next < end) && 
2814                                         ((next[0] == 'u') || (next[0] == 'U'))) { 
2815                                         next++;
2816                                 }
2817                         }
2818                 }
2819                 tokp = next - 1;
2820
2821                 /* Save the integer/floating point value */
2822                 save_string(state, tk, token, tokp, "literal number");
2823         }
2824         /* identifiers */
2825         else if (letterp(c)) {
2826                 tok = TOK_IDENT;
2827                 for(tokp += 1; tokp < end; tokp++) {
2828                         c = *tokp;
2829                         if (!letterp(c) && !digitp(c)) {
2830                                 break;
2831                         }
2832                 }
2833                 tokp -= 1;
2834                 tk->ident = lookup(state, token, tokp +1 - token);
2835         }
2836         /* C99 alternate macro characters */
2837         else if ((c == '%') && (c1 == ':') && (c2 == '%') && (c3 == ':')) { 
2838                 tokp += 3; 
2839                 tok = TOK_CONCATENATE; 
2840         }
2841         else if ((c == '.') && (c1 == '.') && (c2 == '.')) { tokp += 2; tok = TOK_DOTS; }
2842         else if ((c == '<') && (c1 == '<') && (c2 == '=')) { tokp += 2; tok = TOK_SLEQ; }
2843         else if ((c == '>') && (c1 == '>') && (c2 == '=')) { tokp += 2; tok = TOK_SREQ; }
2844         else if ((c == '*') && (c1 == '=')) { tokp += 1; tok = TOK_TIMESEQ; }
2845         else if ((c == '/') && (c1 == '=')) { tokp += 1; tok = TOK_DIVEQ; }
2846         else if ((c == '%') && (c1 == '=')) { tokp += 1; tok = TOK_MODEQ; }
2847         else if ((c == '+') && (c1 == '=')) { tokp += 1; tok = TOK_PLUSEQ; }
2848         else if ((c == '-') && (c1 == '=')) { tokp += 1; tok = TOK_MINUSEQ; }
2849         else if ((c == '&') && (c1 == '=')) { tokp += 1; tok = TOK_ANDEQ; }
2850         else if ((c == '^') && (c1 == '=')) { tokp += 1; tok = TOK_XOREQ; }
2851         else if ((c == '|') && (c1 == '=')) { tokp += 1; tok = TOK_OREQ; }
2852         else if ((c == '=') && (c1 == '=')) { tokp += 1; tok = TOK_EQEQ; }
2853         else if ((c == '!') && (c1 == '=')) { tokp += 1; tok = TOK_NOTEQ; }
2854         else if ((c == '|') && (c1 == '|')) { tokp += 1; tok = TOK_LOGOR; }
2855         else if ((c == '&') && (c1 == '&')) { tokp += 1; tok = TOK_LOGAND; }
2856         else if ((c == '<') && (c1 == '=')) { tokp += 1; tok = TOK_LESSEQ; }
2857         else if ((c == '>') && (c1 == '=')) { tokp += 1; tok = TOK_MOREEQ; }
2858         else if ((c == '<') && (c1 == '<')) { tokp += 1; tok = TOK_SL; }
2859         else if ((c == '>') && (c1 == '>')) { tokp += 1; tok = TOK_SR; }
2860         else if ((c == '+') && (c1 == '+')) { tokp += 1; tok = TOK_PLUSPLUS; }
2861         else if ((c == '-') && (c1 == '-')) { tokp += 1; tok = TOK_MINUSMINUS; }
2862         else if ((c == '-') && (c1 == '>')) { tokp += 1; tok = TOK_ARROW; }
2863         else if ((c == '<') && (c1 == ':')) { tokp += 1; tok = TOK_LBRACKET; }
2864         else if ((c == ':') && (c1 == '>')) { tokp += 1; tok = TOK_RBRACKET; }
2865         else if ((c == '<') && (c1 == '%')) { tokp += 1; tok = TOK_LBRACE; }
2866         else if ((c == '%') && (c1 == '>')) { tokp += 1; tok = TOK_RBRACE; }
2867         else if ((c == '%') && (c1 == ':')) { tokp += 1; tok = TOK_MACRO; }
2868         else if ((c == '#') && (c1 == '#')) { tokp += 1; tok = TOK_CONCATENATE; }
2869         else if (c == ';') { tok = TOK_SEMI; }
2870         else if (c == '{') { tok = TOK_LBRACE; }
2871         else if (c == '}') { tok = TOK_RBRACE; }
2872         else if (c == ',') { tok = TOK_COMMA; }
2873         else if (c == '=') { tok = TOK_EQ; }
2874         else if (c == ':') { tok = TOK_COLON; }
2875         else if (c == '[') { tok = TOK_LBRACKET; }
2876         else if (c == ']') { tok = TOK_RBRACKET; }
2877         else if (c == '(') { tok = TOK_LPAREN; }
2878         else if (c == ')') { tok = TOK_RPAREN; }
2879         else if (c == '*') { tok = TOK_STAR; }
2880         else if (c == '>') { tok = TOK_MORE; }
2881         else if (c == '<') { tok = TOK_LESS; }
2882         else if (c == '?') { tok = TOK_QUEST; }
2883         else if (c == '|') { tok = TOK_OR; }
2884         else if (c == '&') { tok = TOK_AND; }
2885         else if (c == '^') { tok = TOK_XOR; }
2886         else if (c == '+') { tok = TOK_PLUS; }
2887         else if (c == '-') { tok = TOK_MINUS; }
2888         else if (c == '/') { tok = TOK_DIV; }
2889         else if (c == '%') { tok = TOK_MOD; }
2890         else if (c == '!') { tok = TOK_BANG; }
2891         else if (c == '.') { tok = TOK_DOT; }
2892         else if (c == '~') { tok = TOK_TILDE; }
2893         else if (c == '#') { tok = TOK_MACRO; }
2894         if (tok == TOK_MACRO) {
2895                 /* Only match preprocessor directives at the start of a line */
2896                 char *ptr;
2897                 for(ptr = file->line_start; spacep(*ptr); ptr++)
2898                         ;
2899                 if (ptr != tokp) {
2900                         tok = TOK_UNKNOWN;
2901                 }
2902         }
2903         if (tok == TOK_UNKNOWN) {
2904                 error(state, 0, "unknown token");
2905         }
2906
2907         file->pos = tokp + 1;
2908         tk->tok = tok;
2909         if (tok == TOK_IDENT) {
2910                 ident_to_keyword(state, tk);
2911         }
2912         /* Don't return space tokens. */
2913         if (tok == TOK_SPACE) {
2914                 goto next_token;
2915         }
2916 }
2917
2918 static void compile_macro(struct compile_state *state, struct token *tk)
2919 {
2920         struct file_state *file;
2921         struct hash_entry *ident;
2922         ident = tk->ident;
2923         file = xmalloc(sizeof(*file), "file_state");
2924         file->basename = xstrdup(tk->ident->name);
2925         file->dirname = xstrdup("");
2926         file->size = ident->sym_define->buf_len;
2927         file->buf = xmalloc(file->size +2,  file->basename);
2928         memcpy(file->buf, ident->sym_define->buf, file->size);
2929         file->buf[file->size] = '\n';
2930         file->buf[file->size + 1] = '\0';
2931         file->pos = file->buf;
2932         file->line_start = file->pos;
2933         file->line = 1;
2934         file->report_line = 1;
2935         file->report_name = file->basename;
2936         file->report_dir  = file->dirname;
2937         file->prev = state->file;
2938         state->file = file;
2939 }
2940
2941
2942 static int mpeek(struct compile_state *state, int index)
2943 {
2944         struct token *tk;
2945         int rescan;
2946         tk = &state->token[index + 1];
2947         if (tk->tok == -1) {
2948                 next_token(state, index + 1);
2949         }
2950         do {
2951                 rescan = 0;
2952                 if ((tk->tok == TOK_EOF) && 
2953                         (state->file != state->macro_file) &&
2954                         (state->file->prev)) {
2955                         struct file_state *file = state->file;
2956                         state->file = file->prev;
2957                         /* file->basename is used keep it */
2958                         if (file->report_dir != file->dirname) {
2959                                 xfree(file->report_dir);
2960                         }
2961                         xfree(file->dirname);
2962                         xfree(file->buf);
2963                         xfree(file);
2964                         next_token(state, index + 1);
2965                         rescan = 1;
2966                 }
2967                 else if (tk->ident && tk->ident->sym_define) {
2968                         compile_macro(state, tk);
2969                         next_token(state, index + 1);
2970                         rescan = 1;
2971                 }
2972         } while(rescan);
2973         /* Don't show the token on the next line */
2974         if (state->macro_line < state->macro_file->line) {
2975                 return TOK_EOF;
2976         }
2977         return state->token[index +1].tok;
2978 }
2979
2980 static void meat(struct compile_state *state, int index, int tok)
2981 {
2982         int next_tok;
2983         int i;
2984         next_tok = mpeek(state, index);
2985         if (next_tok != tok) {
2986                 const char *name1, *name2;
2987                 name1 = tokens[next_tok];
2988                 name2 = "";
2989                 if (next_tok == TOK_IDENT) {
2990                         name2 = state->token[index + 1].ident->name;
2991                 }
2992                 error(state, 0, "found %s %s expected %s", 
2993                         name1, name2, tokens[tok]);
2994         }
2995         /* Free the old token value */
2996         if (state->token[index].str_len) {
2997                 memset((void *)(state->token[index].val.str), -1, 
2998                         state->token[index].str_len);
2999                 xfree(state->token[index].val.str);
3000         }
3001         for(i = index; i < sizeof(state->token)/sizeof(state->token[0]) - 1; i++) {
3002                 state->token[i] = state->token[i + 1];
3003         }
3004         memset(&state->token[i], 0, sizeof(state->token[i]));
3005         state->token[i].tok = -1;
3006 }
3007
3008 static long_t mcexpr(struct compile_state *state, int index);
3009
3010 static long_t mprimary_expr(struct compile_state *state, int index)
3011 {
3012         long_t val;
3013         int tok;
3014         tok = mpeek(state, index);
3015         while(state->token[index + 1].ident && 
3016                 state->token[index + 1].ident->sym_define) {
3017                 meat(state, index, tok);
3018                 compile_macro(state, &state->token[index]);
3019                 tok = mpeek(state, index);
3020         }
3021         switch(tok) {
3022         case TOK_LPAREN:
3023                 meat(state, index, TOK_LPAREN);
3024                 val = mcexpr(state, index);
3025                 meat(state, index, TOK_RPAREN);
3026                 break;
3027         case TOK_LIT_INT:
3028         {
3029                 long lval;
3030                 char *end;
3031                 meat(state, index, TOK_LIT_INT);
3032                 errno = 0;
3033                 lval = strtol(state->token[index].val.str, &end, 0);
3034                 if ((lval > LONG_T_MAX) || (lval < LONG_T_MIN) ||
3035                         (((lval == LONG_MIN) || (lval == LONG_MAX)) &&
3036                                 (errno == ERANGE))) {
3037                         error(state, 0, "Integer constant to large");
3038                 }
3039                 val = lval;
3040                 break;
3041         }
3042         default:
3043                 meat(state, index, TOK_LIT_INT);
3044                 val = 0;
3045         }
3046         return val;
3047 }
3048 static long_t munary_expr(struct compile_state *state, int index)
3049 {
3050         long_t val;
3051         switch(mpeek(state, index)) {
3052         case TOK_PLUS:
3053                 meat(state, index, TOK_PLUS);
3054                 val = munary_expr(state, index);
3055                 val = + val;
3056                 break;
3057         case TOK_MINUS:
3058                 meat(state, index, TOK_MINUS);
3059                 val = munary_expr(state, index);
3060                 val = - val;
3061                 break;
3062         case TOK_TILDE:
3063                 meat(state, index, TOK_BANG);
3064                 val = munary_expr(state, index);
3065                 val = ~ val;
3066                 break;
3067         case TOK_BANG:
3068                 meat(state, index, TOK_BANG);
3069                 val = munary_expr(state, index);
3070                 val = ! val;
3071                 break;
3072         default:
3073                 val = mprimary_expr(state, index);
3074                 break;
3075         }
3076         return val;
3077         
3078 }
3079 static long_t mmul_expr(struct compile_state *state, int index)
3080 {
3081         long_t val;
3082         int done;
3083         val = munary_expr(state, index);
3084         do {
3085                 long_t right;
3086                 done = 0;
3087                 switch(mpeek(state, index)) {
3088                 case TOK_STAR:
3089                         meat(state, index, TOK_STAR);
3090                         right = munary_expr(state, index);
3091                         val = val * right;
3092                         break;
3093                 case TOK_DIV:
3094                         meat(state, index, TOK_DIV);
3095                         right = munary_expr(state, index);
3096                         val = val / right;
3097                         break;
3098                 case TOK_MOD:
3099                         meat(state, index, TOK_MOD);
3100                         right = munary_expr(state, index);
3101                         val = val % right;
3102                         break;
3103                 default:
3104                         done = 1;
3105                         break;
3106                 }
3107         } while(!done);
3108
3109         return val;
3110 }
3111
3112 static long_t madd_expr(struct compile_state *state, int index)
3113 {
3114         long_t val;
3115         int done;
3116         val = mmul_expr(state, index);
3117         do {
3118                 long_t right;
3119                 done = 0;
3120                 switch(mpeek(state, index)) {
3121                 case TOK_PLUS:
3122                         meat(state, index, TOK_PLUS);
3123                         right = mmul_expr(state, index);
3124                         val = val + right;
3125                         break;
3126                 case TOK_MINUS:
3127                         meat(state, index, TOK_MINUS);
3128                         right = mmul_expr(state, index);
3129                         val = val - right;
3130                         break;
3131                 default:
3132                         done = 1;
3133                         break;
3134                 }
3135         } while(!done);
3136
3137         return val;
3138 }
3139
3140 static long_t mshift_expr(struct compile_state *state, int index)
3141 {
3142         long_t val;
3143         int done;
3144         val = madd_expr(state, index);
3145         do {
3146                 long_t right;
3147                 done = 0;
3148                 switch(mpeek(state, index)) {
3149                 case TOK_SL:
3150                         meat(state, index, TOK_SL);
3151                         right = madd_expr(state, index);
3152                         val = val << right;
3153                         break;
3154                 case TOK_SR:
3155                         meat(state, index, TOK_SR);
3156                         right = madd_expr(state, index);
3157                         val = val >> right;
3158                         break;
3159                 default:
3160                         done = 1;
3161                         break;
3162                 }
3163         } while(!done);
3164
3165         return val;
3166 }
3167
3168 static long_t mrel_expr(struct compile_state *state, int index)
3169 {
3170         long_t val;
3171         int done;
3172         val = mshift_expr(state, index);
3173         do {
3174                 long_t right;
3175                 done = 0;
3176                 switch(mpeek(state, index)) {
3177                 case TOK_LESS:
3178                         meat(state, index, TOK_LESS);
3179                         right = mshift_expr(state, index);
3180                         val = val < right;
3181                         break;
3182                 case TOK_MORE:
3183                         meat(state, index, TOK_MORE);
3184                         right = mshift_expr(state, index);
3185                         val = val > right;
3186                         break;
3187                 case TOK_LESSEQ:
3188                         meat(state, index, TOK_LESSEQ);
3189                         right = mshift_expr(state, index);
3190                         val = val <= right;
3191                         break;
3192                 case TOK_MOREEQ:
3193                         meat(state, index, TOK_MOREEQ);
3194                         right = mshift_expr(state, index);
3195                         val = val >= right;
3196                         break;
3197                 default:
3198                         done = 1;
3199                         break;
3200                 }
3201         } while(!done);
3202         return val;
3203 }
3204
3205 static long_t meq_expr(struct compile_state *state, int index)
3206 {
3207         long_t val;
3208         int done;
3209         val = mrel_expr(state, index);
3210         do {
3211                 long_t right;
3212                 done = 0;
3213                 switch(mpeek(state, index)) {
3214                 case TOK_EQEQ:
3215                         meat(state, index, TOK_EQEQ);
3216                         right = mrel_expr(state, index);
3217                         val = val == right;
3218                         break;
3219                 case TOK_NOTEQ:
3220                         meat(state, index, TOK_NOTEQ);
3221                         right = mrel_expr(state, index);
3222                         val = val != right;
3223                         break;
3224                 default:
3225                         done = 1;
3226                         break;
3227                 }
3228         } while(!done);
3229         return val;
3230 }
3231
3232 static long_t mand_expr(struct compile_state *state, int index)
3233 {
3234         long_t val;
3235         val = meq_expr(state, index);
3236         if (mpeek(state, index) == TOK_AND) {
3237                 long_t right;
3238                 meat(state, index, TOK_AND);
3239                 right = meq_expr(state, index);
3240                 val = val & right;
3241         }
3242         return val;
3243 }
3244
3245 static long_t mxor_expr(struct compile_state *state, int index)
3246 {
3247         long_t val;
3248         val = mand_expr(state, index);
3249         if (mpeek(state, index) == TOK_XOR) {
3250                 long_t right;
3251                 meat(state, index, TOK_XOR);
3252                 right = mand_expr(state, index);
3253                 val = val ^ right;
3254         }
3255         return val;
3256 }
3257
3258 static long_t mor_expr(struct compile_state *state, int index)
3259 {
3260         long_t val;
3261         val = mxor_expr(state, index);
3262         if (mpeek(state, index) == TOK_OR) {
3263                 long_t right;
3264                 meat(state, index, TOK_OR);
3265                 right = mxor_expr(state, index);
3266                 val = val | right;
3267         }
3268         return val;
3269 }
3270
3271 static long_t mland_expr(struct compile_state *state, int index)
3272 {
3273         long_t val;
3274         val = mor_expr(state, index);
3275         if (mpeek(state, index) == TOK_LOGAND) {
3276                 long_t right;
3277                 meat(state, index, TOK_LOGAND);
3278                 right = mor_expr(state, index);
3279                 val = val && right;
3280         }
3281         return val;
3282 }
3283 static long_t mlor_expr(struct compile_state *state, int index)
3284 {
3285         long_t val;
3286         val = mland_expr(state, index);
3287         if (mpeek(state, index) == TOK_LOGOR) {
3288                 long_t right;
3289                 meat(state, index, TOK_LOGOR);
3290                 right = mland_expr(state, index);
3291                 val = val || right;
3292         }
3293         return val;
3294 }
3295
3296 static long_t mcexpr(struct compile_state *state, int index)
3297 {
3298         return mlor_expr(state, index);
3299 }
3300 static void preprocess(struct compile_state *state, int index)
3301 {
3302         /* Doing much more with the preprocessor would require
3303          * a parser and a major restructuring.
3304          * Postpone that for later.
3305          */
3306         struct file_state *file;
3307         struct token *tk;
3308         int line;
3309         int tok;
3310         
3311         file = state->file;
3312         tk = &state->token[index];
3313         state->macro_line = line = file->line;
3314         state->macro_file = file;
3315
3316         next_token(state, index);
3317         ident_to_macro(state, tk);
3318         if (tk->tok == TOK_IDENT) {
3319                 error(state, 0, "undefined preprocessing directive `%s'",
3320                         tk->ident->name);
3321         }
3322         switch(tk->tok) {
3323         case TOK_LIT_INT:
3324         {
3325                 int override_line;
3326                 override_line = strtoul(tk->val.str, 0, 10);
3327                 next_token(state, index);
3328                 /* I have a cpp line marker parse it */
3329                 if (tk->tok == TOK_LIT_STRING) {
3330                         const char *token, *base;
3331                         char *name, *dir;
3332                         int name_len, dir_len;
3333                         name = xmalloc(tk->str_len, "report_name");
3334                         token = tk->val.str + 1;
3335                         base = strrchr(token, '/');
3336                         name_len = tk->str_len -2;
3337                         if (base != 0) {
3338                                 dir_len = base - token;
3339                                 base++;
3340                                 name_len -= base - token;
3341                         } else {
3342                                 dir_len = 0;
3343                                 base = token;
3344                         }
3345                         memcpy(name, base, name_len);
3346                         name[name_len] = '\0';
3347                         dir = xmalloc(dir_len + 1, "report_dir");
3348                         memcpy(dir, token, dir_len);
3349                         dir[dir_len] = '\0';
3350                         file->report_line = override_line - 1;
3351                         file->report_name = name;
3352                         file->report_dir = dir;
3353                 }
3354         }
3355                 break;
3356         case TOK_LINE:
3357                 meat(state, index, TOK_LINE);
3358                 meat(state, index, TOK_LIT_INT);
3359                 file->report_line = strtoul(tk->val.str, 0, 10) -1;
3360                 if (mpeek(state, index) == TOK_LIT_STRING) {
3361                         const char *token, *base;
3362                         char *name, *dir;
3363                         int name_len, dir_len;
3364                         meat(state, index, TOK_LIT_STRING);
3365                         name = xmalloc(tk->str_len, "report_name");
3366                         token = tk->val.str + 1;
3367                         name_len = tk->str_len - 2;
3368                         if (base != 0) {
3369                                 dir_len = base - token;
3370                                 base++;
3371                                 name_len -= base - token;
3372                         } else {
3373                                 dir_len = 0;
3374                                 base = token;
3375                         }
3376                         memcpy(name, base, name_len);
3377                         name[name_len] = '\0';
3378                         dir = xmalloc(dir_len + 1, "report_dir");
3379                         memcpy(dir, token, dir_len);
3380                         dir[dir_len] = '\0';
3381                         file->report_name = name;
3382                         file->report_dir = dir;
3383                 }
3384                 break;
3385         case TOK_UNDEF:
3386         case TOK_PRAGMA:
3387                 if (state->if_value < 0) {
3388                         break;
3389                 }
3390                 warning(state, 0, "Ignoring preprocessor directive: %s", 
3391                         tk->ident->name);
3392                 break;
3393         case TOK_ELIF:
3394                 error(state, 0, "#elif not supported");
3395 #warning "FIXME multiple #elif and #else in an #if do not work properly"
3396                 if (state->if_depth == 0) {
3397                         error(state, 0, "#elif without #if");
3398                 }
3399                 /* If the #if was taken the #elif just disables the following code */
3400                 if (state->if_value >= 0) {
3401                         state->if_value = - state->if_value;
3402                 }
3403                 /* If the previous #if was not taken see if the #elif enables the 
3404                  * trailing code.
3405                  */
3406                 else if ((state->if_value < 0) && 
3407                         (state->if_depth == - state->if_value))
3408                 {
3409                         if (mcexpr(state, index) != 0) {
3410                                 state->if_value = state->if_depth;
3411                         }
3412                         else {
3413                                 state->if_value = - state->if_depth;
3414                         }
3415                 }
3416                 break;
3417         case TOK_IF:
3418                 state->if_depth++;
3419                 if (state->if_value < 0) {
3420                         break;
3421                 }
3422                 if (mcexpr(state, index) != 0) {
3423                         state->if_value = state->if_depth;
3424                 }
3425                 else {
3426                         state->if_value = - state->if_depth;
3427                 }
3428                 break;
3429         case TOK_IFNDEF:
3430                 state->if_depth++;
3431                 if (state->if_value < 0) {
3432                         break;
3433                 }
3434                 next_token(state, index);
3435                 if ((line != file->line) || (tk->tok != TOK_IDENT)) {
3436                         error(state, 0, "Invalid macro name");
3437                 }
3438                 if (tk->ident->sym_define == 0) {
3439                         state->if_value = state->if_depth;
3440                 } 
3441                 else {
3442                         state->if_value = - state->if_depth;
3443                 }
3444                 break;
3445         case TOK_IFDEF:
3446                 state->if_depth++;
3447                 if (state->if_value < 0) {
3448                         break;
3449                 }
3450                 next_token(state, index);
3451                 if ((line != file->line) || (tk->tok != TOK_IDENT)) {
3452                         error(state, 0, "Invalid macro name");
3453                 }
3454                 if (tk->ident->sym_define != 0) {
3455                         state->if_value = state->if_depth;
3456                 }
3457                 else {
3458                         state->if_value = - state->if_depth;
3459                 }
3460                 break;
3461         case TOK_ELSE:
3462                 if (state->if_depth == 0) {
3463                         error(state, 0, "#else without #if");
3464                 }
3465                 if ((state->if_value >= 0) ||
3466                         ((state->if_value < 0) && 
3467                                 (state->if_depth == -state->if_value)))
3468                 {
3469                         state->if_value = - state->if_value;
3470                 }
3471                 break;
3472         case TOK_ENDIF:
3473                 if (state->if_depth == 0) {
3474                         error(state, 0, "#endif without #if");
3475                 }
3476                 if ((state->if_value >= 0) ||
3477                         ((state->if_value < 0) &&
3478                                 (state->if_depth == -state->if_value))) 
3479                 {
3480                         state->if_value = state->if_depth - 1;
3481                 }
3482                 state->if_depth--;
3483                 break;
3484         case TOK_DEFINE:
3485         {
3486                 struct hash_entry *ident;
3487                 struct macro *macro;
3488                 char *ptr;
3489                 
3490                 if (state->if_value < 0) /* quit early when #if'd out */
3491                         break;
3492
3493                 meat(state, index, TOK_IDENT);
3494                 ident = tk->ident;
3495                 
3496
3497                 if (*file->pos == '(') {
3498 #warning "FIXME macros with arguments not supported"
3499                         error(state, 0, "Macros with arguments not supported");
3500                 }
3501
3502                 /* Find the end of the line to get an estimate of
3503                  * the macro's length.
3504                  */
3505                 for(ptr = file->pos; *ptr != '\n'; ptr++)  
3506                         ;
3507
3508                 if (ident->sym_define != 0) {
3509                         error(state, 0, "macro %s already defined\n", ident->name);
3510                 }
3511                 macro = xmalloc(sizeof(*macro), "macro");
3512                 macro->ident = ident;
3513                 macro->buf_len = ptr - file->pos +1;
3514                 macro->buf = xmalloc(macro->buf_len +2, "macro buf");
3515
3516                 memcpy(macro->buf, file->pos, macro->buf_len);
3517                 macro->buf[macro->buf_len] = '\n';
3518                 macro->buf[macro->buf_len +1] = '\0';
3519
3520                 ident->sym_define = macro;
3521                 break;
3522         }
3523         case TOK_ERROR:
3524         {
3525                 char *end;
3526                 int len;
3527                 /* Find the end of the line */
3528                 for(end = file->pos; *end != '\n'; end++)
3529                         ;
3530                 len = (end - file->pos);
3531                 if (state->if_value >= 0) {
3532                         error(state, 0, "%*.*s", len, len, file->pos);
3533                 }
3534                 file->pos = end;
3535                 break;
3536         }
3537         case TOK_WARNING:
3538         {
3539                 char *end;
3540                 int len;
3541                 /* Find the end of the line */
3542                 for(end = file->pos; *end != '\n'; end++)
3543                         ;
3544                 len = (end - file->pos);
3545                 if (state->if_value >= 0) {
3546                         warning(state, 0, "%*.*s", len, len, file->pos);
3547                 }
3548                 file->pos = end;
3549                 break;
3550         }
3551         case TOK_INCLUDE:
3552         {
3553                 char *name;
3554                 char *ptr;
3555                 int local;
3556                 local = 0;
3557                 name = 0;
3558                 next_token(state, index);
3559                 if (tk->tok == TOK_LIT_STRING) {
3560                         const char *token;
3561                         int name_len;
3562                         name = xmalloc(tk->str_len, "include");
3563                         token = tk->val.str +1;
3564                         name_len = tk->str_len -2;
3565                         if (*token == '"') {
3566                                 token++;
3567                                 name_len--;
3568                         }
3569                         memcpy(name, token, name_len);
3570                         name[name_len] = '\0';
3571                         local = 1;
3572                 }
3573                 else if (tk->tok == TOK_LESS) {
3574                         char *start, *end;
3575                         start = file->pos;
3576                         for(end = start; *end != '\n'; end++) {
3577                                 if (*end == '>') {
3578                                         break;
3579                                 }
3580                         }
3581                         if (*end == '\n') {
3582                                 error(state, 0, "Unterminated included directive");
3583                         }
3584                         name = xmalloc(end - start + 1, "include");
3585                         memcpy(name, start, end - start);
3586                         name[end - start] = '\0';
3587                         file->pos = end +1;
3588                         local = 0;
3589                 }
3590                 else {
3591                         error(state, 0, "Invalid include directive");
3592                 }
3593                 /* Error if there are any characters after the include */
3594                 for(ptr = file->pos; *ptr != '\n'; ptr++) {
3595                         switch(*ptr) {
3596                         case ' ':
3597                         case '\t':
3598                         case '\v':
3599                                 break;
3600                         default:
3601                                 error(state, 0, "garbage after include directive");
3602                         }
3603                 }
3604                 if (state->if_value >= 0) {
3605                         compile_file(state, name, local);
3606                 }
3607                 xfree(name);
3608                 next_token(state, index);
3609                 return;
3610         }
3611         default:
3612                 /* Ignore # without a following ident */
3613                 if (tk->tok == TOK_IDENT) {
3614                         error(state, 0, "Invalid preprocessor directive: %s", 
3615                                 tk->ident->name);
3616                 }
3617                 break;
3618         }
3619         /* Consume the rest of the macro line */
3620         do {
3621                 tok = mpeek(state, index);
3622                 meat(state, index, tok);
3623         } while(tok != TOK_EOF);
3624         return;
3625 }
3626
3627 static void token(struct compile_state *state, int index)
3628 {
3629         struct file_state *file;
3630         struct token *tk;
3631         int rescan;
3632
3633         tk = &state->token[index];
3634         next_token(state, index);
3635         do {
3636                 rescan = 0;
3637                 file = state->file;
3638                 if (tk->tok == TOK_EOF && file->prev) {
3639                         state->file = file->prev;
3640                         /* file->basename is used keep it */
3641                         xfree(file->dirname);
3642                         xfree(file->buf);
3643                         xfree(file);
3644                         next_token(state, index);
3645                         rescan = 1;
3646                 }
3647                 else if (tk->tok == TOK_MACRO) {
3648                         preprocess(state, index);
3649                         rescan = 1;
3650                 }
3651                 else if (tk->ident && tk->ident->sym_define) {
3652                         compile_macro(state, tk);
3653                         next_token(state, index);
3654                         rescan = 1;
3655                 }
3656                 else if (state->if_value < 0) {
3657                         next_token(state, index);
3658                         rescan = 1;
3659                 }
3660         } while(rescan);
3661 }
3662
3663 static int peek(struct compile_state *state)
3664 {
3665         if (state->token[1].tok == -1) {
3666                 token(state, 1);
3667         }
3668         return state->token[1].tok;
3669 }
3670
3671 static int peek2(struct compile_state *state)
3672 {
3673         if (state->token[1].tok == -1) {
3674                 token(state, 1);
3675         }
3676         if (state->token[2].tok == -1) {
3677                 token(state, 2);
3678         }
3679         return state->token[2].tok;
3680 }
3681
3682 static void eat(struct compile_state *state, int tok)
3683 {
3684         int next_tok;
3685         int i;
3686         next_tok = peek(state);
3687         if (next_tok != tok) {
3688                 const char *name1, *name2;
3689                 name1 = tokens[next_tok];
3690                 name2 = "";
3691                 if (next_tok == TOK_IDENT) {
3692                         name2 = state->token[1].ident->name;
3693                 }
3694                 error(state, 0, "\tfound %s %s expected %s",
3695                         name1, name2 ,tokens[tok]);
3696         }
3697         /* Free the old token value */
3698         if (state->token[0].str_len) {
3699                 xfree((void *)(state->token[0].val.str));
3700         }
3701         for(i = 0; i < sizeof(state->token)/sizeof(state->token[0]) - 1; i++) {
3702                 state->token[i] = state->token[i + 1];
3703         }
3704         memset(&state->token[i], 0, sizeof(state->token[i]));
3705         state->token[i].tok = -1;
3706 }
3707
3708 #warning "FIXME do not hardcode the include paths"
3709 static char *include_paths[] = {
3710         "/home/eric/projects/linuxbios/checkin/solo/freebios2/src/include",
3711         "/home/eric/projects/linuxbios/checkin/solo/freebios2/src/arch/i386/include",
3712         "/home/eric/projects/linuxbios/checkin/solo/freebios2/src",
3713         0
3714 };
3715
3716 static void compile_file(struct compile_state *state, const char *filename, int local)
3717 {
3718         char cwd[4096];
3719         const char *subdir, *base;
3720         int subdir_len;
3721         struct file_state *file;
3722         char *basename;
3723         file = xmalloc(sizeof(*file), "file_state");
3724
3725         base = strrchr(filename, '/');
3726         subdir = filename;
3727         if (base != 0) {
3728                 subdir_len = base - filename;
3729                 base++;
3730         }
3731         else {
3732                 base = filename;
3733                 subdir_len = 0;
3734         }
3735         basename = xmalloc(strlen(base) +1, "basename");
3736         strcpy(basename, base);
3737         file->basename = basename;
3738
3739         if (getcwd(cwd, sizeof(cwd)) == 0) {
3740                 die("cwd buffer to small");
3741         }
3742         
3743         if (subdir[0] == '/') {
3744                 file->dirname = xmalloc(subdir_len + 1, "dirname");
3745                 memcpy(file->dirname, subdir, subdir_len);
3746                 file->dirname[subdir_len] = '\0';
3747         }
3748         else {
3749                 char *dir;
3750                 int dirlen;
3751                 char **path;
3752                 /* Find the appropriate directory... */
3753                 dir = 0;
3754                 if (!state->file && exists(cwd, filename)) {
3755                         dir = cwd;
3756                 }
3757                 if (local && state->file && exists(state->file->dirname, filename)) {
3758                         dir = state->file->dirname;
3759                 }
3760                 for(path = include_paths; !dir && *path; path++) {
3761                         if (exists(*path, filename)) {
3762                                 dir = *path;
3763                         }
3764                 }
3765                 if (!dir) {
3766                         error(state, 0, "Cannot find `%s'\n", filename);
3767                 }
3768                 dirlen = strlen(dir);
3769                 file->dirname = xmalloc(dirlen + 1 + subdir_len + 1, "dirname");
3770                 memcpy(file->dirname, dir, dirlen);
3771                 file->dirname[dirlen] = '/';
3772                 memcpy(file->dirname + dirlen + 1, subdir, subdir_len);
3773                 file->dirname[dirlen + 1 + subdir_len] = '\0';
3774         }
3775         file->buf = slurp_file(file->dirname, file->basename, &file->size);
3776         xchdir(cwd);
3777
3778         file->pos = file->buf;
3779         file->line_start = file->pos;
3780         file->line = 1;
3781
3782         file->report_line = 1;
3783         file->report_name = file->basename;
3784         file->report_dir  = file->dirname;
3785
3786         file->prev = state->file;
3787         state->file = file;
3788         
3789         process_trigraphs(state);
3790         splice_lines(state);
3791 }
3792
3793 /* Type helper functions */
3794
3795 static struct type *new_type(
3796         unsigned int type, struct type *left, struct type *right)
3797 {
3798         struct type *result;
3799         result = xmalloc(sizeof(*result), "type");
3800         result->type = type;
3801         result->left = left;
3802         result->right = right;
3803         result->field_ident = 0;
3804         result->type_ident = 0;
3805         return result;
3806 }
3807
3808 static struct type *clone_type(unsigned int specifiers, struct type *old)
3809 {
3810         struct type *result;
3811         result = xmalloc(sizeof(*result), "type");
3812         memcpy(result, old, sizeof(*result));
3813         result->type &= TYPE_MASK;
3814         result->type |= specifiers;
3815         return result;
3816 }
3817
3818 #define SIZEOF_SHORT 2
3819 #define SIZEOF_INT   4
3820 #define SIZEOF_LONG  (sizeof(long_t))
3821
3822 #define ALIGNOF_SHORT 2
3823 #define ALIGNOF_INT   4
3824 #define ALIGNOF_LONG  (sizeof(long_t))
3825
3826 #define MASK_UCHAR(X)    ((X) & ((ulong_t)0xff))
3827 #define MASK_USHORT(X)   ((X) & (((ulong_t)1 << (SIZEOF_SHORT*8)) - 1))
3828 static inline ulong_t mask_uint(ulong_t x)
3829 {
3830         if (SIZEOF_INT < SIZEOF_LONG) {
3831                 ulong_t mask = (((ulong_t)1) << ((ulong_t)(SIZEOF_INT*8))) -1;
3832                 x &= mask;
3833         }
3834         return x;
3835 }
3836 #define MASK_UINT(X)      (mask_uint(X))
3837 #define MASK_ULONG(X)    (X)
3838
3839 static struct type void_type   = { .type  = TYPE_VOID };
3840 static struct type char_type   = { .type  = TYPE_CHAR };
3841 static struct type uchar_type  = { .type  = TYPE_UCHAR };
3842 static struct type short_type  = { .type  = TYPE_SHORT };
3843 static struct type ushort_type = { .type  = TYPE_USHORT };
3844 static struct type int_type    = { .type  = TYPE_INT };
3845 static struct type uint_type   = { .type  = TYPE_UINT };
3846 static struct type long_type   = { .type  = TYPE_LONG };
3847 static struct type ulong_type  = { .type  = TYPE_ULONG };
3848
3849 static struct type void_func   = { 
3850         .type  = TYPE_FUNCTION,
3851         .left  = &void_type,
3852         .right = &void_type,
3853 };
3854
3855 static struct triple *variable(struct compile_state *state, struct type *type)
3856 {
3857         struct triple *result;
3858         if ((type->type & STOR_MASK) != STOR_PERM) {
3859                 if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
3860                         result = triple(state, OP_ADECL, type, 0, 0);
3861                 } else {
3862                         struct type *field;
3863                         struct triple **vector;
3864                         ulong_t index;
3865                         result = new_triple(state, OP_VAL_VEC, type, -1, -1);
3866                         vector = &result->param[0];
3867
3868                         field = type->left;
3869                         index = 0;
3870                         while((field->type & TYPE_MASK) == TYPE_PRODUCT) {
3871                                 vector[index] = variable(state, field->left);
3872                                 field = field->right;
3873                                 index++;
3874                         }
3875                         vector[index] = variable(state, field);
3876                 }
3877         }
3878         else {
3879                 result = triple(state, OP_SDECL, type, 0, 0);
3880         }
3881         return result;
3882 }
3883
3884 static void stor_of(FILE *fp, struct type *type)
3885 {
3886         switch(type->type & STOR_MASK) {
3887         case STOR_AUTO:
3888                 fprintf(fp, "auto ");
3889                 break;
3890         case STOR_STATIC:
3891                 fprintf(fp, "static ");
3892                 break;
3893         case STOR_EXTERN:
3894                 fprintf(fp, "extern ");
3895                 break;
3896         case STOR_REGISTER:
3897                 fprintf(fp, "register ");
3898                 break;
3899         case STOR_TYPEDEF:
3900                 fprintf(fp, "typedef ");
3901                 break;
3902         case STOR_INLINE:
3903                 fprintf(fp, "inline ");
3904                 break;
3905         }
3906 }
3907 static void qual_of(FILE *fp, struct type *type)
3908 {
3909         if (type->type & QUAL_CONST) {
3910                 fprintf(fp, " const");
3911         }
3912         if (type->type & QUAL_VOLATILE) {
3913                 fprintf(fp, " volatile");
3914         }
3915         if (type->type & QUAL_RESTRICT) {
3916                 fprintf(fp, " restrict");
3917         }
3918 }
3919
3920 static void name_of(FILE *fp, struct type *type)
3921 {
3922         stor_of(fp, type);
3923         switch(type->type & TYPE_MASK) {
3924         case TYPE_VOID:
3925                 fprintf(fp, "void");
3926                 qual_of(fp, type);
3927                 break;
3928         case TYPE_CHAR:
3929                 fprintf(fp, "signed char");
3930                 qual_of(fp, type);
3931                 break;
3932         case TYPE_UCHAR:
3933                 fprintf(fp, "unsigned char");
3934                 qual_of(fp, type);
3935                 break;
3936         case TYPE_SHORT:
3937                 fprintf(fp, "signed short");
3938                 qual_of(fp, type);
3939                 break;
3940         case TYPE_USHORT:
3941                 fprintf(fp, "unsigned short");
3942                 qual_of(fp, type);
3943                 break;
3944         case TYPE_INT:
3945                 fprintf(fp, "signed int");
3946                 qual_of(fp, type);
3947                 break;
3948         case TYPE_UINT:
3949                 fprintf(fp, "unsigned int");
3950                 qual_of(fp, type);
3951                 break;
3952         case TYPE_LONG:
3953                 fprintf(fp, "signed long");
3954                 qual_of(fp, type);
3955                 break;
3956         case TYPE_ULONG:
3957                 fprintf(fp, "unsigned long");
3958                 qual_of(fp, type);
3959                 break;
3960         case TYPE_POINTER:
3961                 name_of(fp, type->left);
3962                 fprintf(fp, " * ");
3963                 qual_of(fp, type);
3964                 break;
3965         case TYPE_PRODUCT:
3966         case TYPE_OVERLAP:
3967                 name_of(fp, type->left);
3968                 fprintf(fp, ", ");
3969                 name_of(fp, type->right);
3970                 break;
3971         case TYPE_ENUM:
3972                 fprintf(fp, "enum %s", type->type_ident->name);
3973                 qual_of(fp, type);
3974                 break;
3975         case TYPE_STRUCT:
3976                 fprintf(fp, "struct %s", type->type_ident->name);
3977                 qual_of(fp, type);
3978                 break;
3979         case TYPE_FUNCTION:
3980         {
3981                 name_of(fp, type->left);
3982                 fprintf(fp, " (*)(");
3983                 name_of(fp, type->right);
3984                 fprintf(fp, ")");
3985                 break;
3986         }
3987         case TYPE_ARRAY:
3988                 name_of(fp, type->left);
3989                 fprintf(fp, " [%ld]", (long)(type->elements));
3990                 break;
3991         default:
3992                 fprintf(fp, "????: %x", type->type & TYPE_MASK);
3993                 break;
3994         }
3995 }
3996
3997 static size_t align_of(struct compile_state *state, struct type *type)
3998 {
3999         size_t align;
4000         align = 0;
4001         switch(type->type & TYPE_MASK) {
4002         case TYPE_VOID:
4003                 align = 1;
4004                 break;
4005         case TYPE_CHAR:
4006         case TYPE_UCHAR:
4007                 align = 1;
4008                 break;
4009         case TYPE_SHORT:
4010         case TYPE_USHORT:
4011                 align = ALIGNOF_SHORT;
4012                 break;
4013         case TYPE_INT:
4014         case TYPE_UINT:
4015         case TYPE_ENUM:
4016                 align = ALIGNOF_INT;
4017                 break;
4018         case TYPE_LONG:
4019         case TYPE_ULONG:
4020         case TYPE_POINTER:
4021                 align = ALIGNOF_LONG;
4022                 break;
4023         case TYPE_PRODUCT:
4024         case TYPE_OVERLAP:
4025         {
4026                 size_t left_align, right_align;
4027                 left_align  = align_of(state, type->left);
4028                 right_align = align_of(state, type->right);
4029                 align = (left_align >= right_align) ? left_align : right_align;
4030                 break;
4031         }
4032         case TYPE_ARRAY:
4033                 align = align_of(state, type->left);
4034                 break;
4035         case TYPE_STRUCT:
4036                 align = align_of(state, type->left);
4037                 break;
4038         default:
4039                 error(state, 0, "alignof not yet defined for type\n");
4040                 break;
4041         }
4042         return align;
4043 }
4044
4045 static size_t needed_padding(size_t offset, size_t align)
4046 {
4047         size_t padding;
4048         padding = 0;
4049         if (offset % align) {
4050                 padding = align - (offset % align);
4051         }
4052         return padding;
4053 }
4054 static size_t size_of(struct compile_state *state, struct type *type)
4055 {
4056         size_t size;
4057         size = 0;
4058         switch(type->type & TYPE_MASK) {
4059         case TYPE_VOID:
4060                 size = 0;
4061                 break;
4062         case TYPE_CHAR:
4063         case TYPE_UCHAR:
4064                 size = 1;
4065                 break;
4066         case TYPE_SHORT:
4067         case TYPE_USHORT:
4068                 size = SIZEOF_SHORT;
4069                 break;
4070         case TYPE_INT:
4071         case TYPE_UINT:
4072         case TYPE_ENUM:
4073                 size = SIZEOF_INT;
4074                 break;
4075         case TYPE_LONG:
4076         case TYPE_ULONG:
4077         case TYPE_POINTER:
4078                 size = SIZEOF_LONG;
4079                 break;
4080         case TYPE_PRODUCT:
4081         {
4082                 size_t align, pad;
4083                 size = 0;
4084                 while((type->type & TYPE_MASK) == TYPE_PRODUCT) {
4085                         align = align_of(state, type->left);
4086                         pad = needed_padding(size, align);
4087                         size = size + pad + size_of(state, type->left);
4088                         type = type->right;
4089                 }
4090                 align = align_of(state, type);
4091                 pad = needed_padding(size, align);
4092                 size = size + pad + size_of(state, type);
4093                 break;
4094         }
4095         case TYPE_OVERLAP:
4096         {
4097                 size_t size_left, size_right;
4098                 size_left = size_of(state, type->left);
4099                 size_right = size_of(state, type->right);
4100                 size = (size_left >= size_right)? size_left : size_right;
4101                 break;
4102         }
4103         case TYPE_ARRAY:
4104                 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
4105                         internal_error(state, 0, "Invalid array type");
4106                 } else {
4107                         size = size_of(state, type->left) * type->elements;
4108                 }
4109                 break;
4110         case TYPE_STRUCT:
4111         {
4112                 size_t align, pad;
4113                 size = size_of(state, type->left);
4114                 /* Pad structures so their size is a multiples of their alignment */
4115                 align = align_of(state, type);
4116                 pad = needed_padding(size, align);
4117                 size = size + pad;
4118                 break;
4119         }
4120         default:
4121                 internal_error(state, 0, "sizeof not yet defined for type\n");
4122                 break;
4123         }
4124         return size;
4125 }
4126
4127 static size_t field_offset(struct compile_state *state, 
4128         struct type *type, struct hash_entry *field)
4129 {
4130         struct type *member;
4131         size_t size, align;
4132         if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
4133                 internal_error(state, 0, "field_offset only works on structures");
4134         }
4135         size = 0;
4136         member = type->left;
4137         while((member->type & TYPE_MASK) == TYPE_PRODUCT) {
4138                 align = align_of(state, member->left);
4139                 size += needed_padding(size, align);
4140                 if (member->left->field_ident == field) {
4141                         member = member->left;
4142                         break;
4143                 }
4144                 size += size_of(state, member->left);
4145                 member = member->right;
4146         }
4147         align = align_of(state, member);
4148         size += needed_padding(size, align);
4149         if (member->field_ident != field) {
4150                 error(state, 0, "member %s not present", field->name);
4151         }
4152         return size;
4153 }
4154
4155 static struct type *field_type(struct compile_state *state, 
4156         struct type *type, struct hash_entry *field)
4157 {
4158         struct type *member;
4159         if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
4160                 internal_error(state, 0, "field_type only works on structures");
4161         }
4162         member = type->left;
4163         while((member->type & TYPE_MASK) == TYPE_PRODUCT) {
4164                 if (member->left->field_ident == field) {
4165                         member = member->left;
4166                         break;
4167                 }
4168                 member = member->right;
4169         }
4170         if (member->field_ident != field) {
4171                 error(state, 0, "member %s not present", field->name);
4172         }
4173         return member;
4174 }
4175
4176 static struct type *next_field(struct compile_state *state,
4177         struct type *type, struct type *prev_member) 
4178 {
4179         struct type *member;
4180         if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
4181                 internal_error(state, 0, "next_field only works on structures");
4182         }
4183         member = type->left;
4184         while((member->type & TYPE_MASK) == TYPE_PRODUCT) {
4185                 if (!prev_member) {
4186                         member = member->left;
4187                         break;
4188                 }
4189                 if (member->left == prev_member) {
4190                         prev_member = 0;
4191                 }
4192                 member = member->right;
4193         }
4194         if (member == prev_member) {
4195                 prev_member = 0;
4196         }
4197         if (prev_member) {
4198                 internal_error(state, 0, "prev_member %s not present", 
4199                         prev_member->field_ident->name);
4200         }
4201         return member;
4202 }
4203
4204 static struct triple *struct_field(struct compile_state *state,
4205         struct triple *decl, struct hash_entry *field)
4206 {
4207         struct triple **vector;
4208         struct type *type;
4209         ulong_t index;
4210         type = decl->type;
4211         if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
4212                 return decl;
4213         }
4214         if (decl->op != OP_VAL_VEC) {
4215                 internal_error(state, 0, "Invalid struct variable");
4216         }
4217         if (!field) {
4218                 internal_error(state, 0, "Missing structure field");
4219         }
4220         type = type->left;
4221         vector = &RHS(decl, 0);
4222         index = 0;
4223         while((type->type & TYPE_MASK) == TYPE_PRODUCT) {
4224                 if (type->left->field_ident == field) {
4225                         type = type->left;
4226                         break;
4227                 }
4228                 index += 1;
4229                 type = type->right;
4230         }
4231         if (type->field_ident != field) {
4232                 internal_error(state, 0, "field %s not found?", field->name);
4233         }
4234         return vector[index];
4235 }
4236
4237 static void arrays_complete(struct compile_state *state, struct type *type)
4238 {
4239         if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
4240                 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
4241                         error(state, 0, "array size not specified");
4242                 }
4243                 arrays_complete(state, type->left);
4244         }
4245 }
4246
4247 static unsigned int do_integral_promotion(unsigned int type)
4248 {
4249         type &= TYPE_MASK;
4250         if (type == TYPE_ENUM) type = TYPE_INT;
4251         if (TYPE_INTEGER(type) && (TYPE_RANK(type) < TYPE_RANK(TYPE_INT))) {
4252                 type = TYPE_INT;
4253         }
4254         return type;
4255 }
4256
4257 static unsigned int do_arithmetic_conversion(
4258         unsigned int left, unsigned int right)
4259 {
4260         left &= TYPE_MASK;
4261         right &= TYPE_MASK;
4262         /* Convert enums to ints */
4263         if (left == TYPE_ENUM) left = TYPE_INT;
4264         if (right == TYPE_ENUM) right = TYPE_INT;
4265         if ((left == TYPE_LDOUBLE) || (right == TYPE_LDOUBLE)) {
4266                 return TYPE_LDOUBLE;
4267         }
4268         else if ((left == TYPE_DOUBLE) || (right == TYPE_DOUBLE)) {
4269                 return TYPE_DOUBLE;
4270         }
4271         else if ((left == TYPE_FLOAT) || (right == TYPE_FLOAT)) {
4272                 return TYPE_FLOAT;
4273         }
4274         left = do_integral_promotion(left);
4275         right = do_integral_promotion(right);
4276         /* If both operands have the same size done */
4277         if (left == right) {
4278                 return left;
4279         }
4280         /* If both operands have the same signedness pick the larger */
4281         else if (!!TYPE_UNSIGNED(left) == !!TYPE_UNSIGNED(right)) {
4282                 return (TYPE_RANK(left) >= TYPE_RANK(right)) ? left : right;
4283         }
4284         /* If the signed type can hold everything use it */
4285         else if (TYPE_SIGNED(left) && (TYPE_RANK(left) > TYPE_RANK(right))) {
4286                 return left;
4287         }
4288         else if (TYPE_SIGNED(right) && (TYPE_RANK(right) > TYPE_RANK(left))) {
4289                 return right;
4290         }
4291         /* Convert to the unsigned type with the same rank as the signed type */
4292         else if (TYPE_SIGNED(left)) {
4293                 return TYPE_MKUNSIGNED(left);
4294         }
4295         else {
4296                 return TYPE_MKUNSIGNED(right);
4297         }
4298 }
4299
4300 /* see if two types are the same except for qualifiers */
4301 static int equiv_types(struct type *left, struct type *right)
4302 {
4303         unsigned int type;
4304         /* Error if the basic types do not match */
4305         if ((left->type & TYPE_MASK) != (right->type & TYPE_MASK)) {
4306                 return 0;
4307         }
4308         type = left->type & TYPE_MASK;
4309         /* If the basic types match and it is a void type we are done */
4310         if (type == TYPE_VOID) {
4311                 return 1;
4312         }
4313         /* if the basic types match and it is an arithmetic type we are done */
4314         if (TYPE_ARITHMETIC(type)) {
4315                 return 1;
4316         }
4317         /* If it is a pointer type recurse and keep testing */
4318         if (type == TYPE_POINTER) {
4319                 return equiv_types(left->left, right->left);
4320         }
4321         else if (type == TYPE_ARRAY) {
4322                 return (left->elements == right->elements) &&
4323                         equiv_types(left->left, right->left);
4324         }
4325         /* test for struct/union equality */
4326         else if (type == TYPE_STRUCT) {
4327                 return left->type_ident == right->type_ident;
4328         }
4329         /* Test for equivalent functions */
4330         else if (type == TYPE_FUNCTION) {
4331                 return equiv_types(left->left, right->left) &&
4332                         equiv_types(left->right, right->right);
4333         }
4334         /* We only see TYPE_PRODUCT as part of function equivalence matching */
4335         else if (type == TYPE_PRODUCT) {
4336                 return equiv_types(left->left, right->left) &&
4337                         equiv_types(left->right, right->right);
4338         }
4339         /* We should see TYPE_OVERLAP */
4340         else {
4341                 return 0;
4342         }
4343 }
4344
4345 static int equiv_ptrs(struct type *left, struct type *right)
4346 {
4347         if (((left->type & TYPE_MASK) != TYPE_POINTER) ||
4348                 ((right->type & TYPE_MASK) != TYPE_POINTER)) {
4349                 return 0;
4350         }
4351         return equiv_types(left->left, right->left);
4352 }
4353
4354 static struct type *compatible_types(struct type *left, struct type *right)
4355 {
4356         struct type *result;
4357         unsigned int type, qual_type;
4358         /* Error if the basic types do not match */
4359         if ((left->type & TYPE_MASK) != (right->type & TYPE_MASK)) {
4360                 return 0;
4361         }
4362         type = left->type & TYPE_MASK;
4363         qual_type = (left->type & ~STOR_MASK) | (right->type & ~STOR_MASK);
4364         result = 0;
4365         /* if the basic types match and it is an arithmetic type we are done */
4366         if (TYPE_ARITHMETIC(type)) {
4367                 result = new_type(qual_type, 0, 0);
4368         }
4369         /* If it is a pointer type recurse and keep testing */
4370         else if (type == TYPE_POINTER) {
4371                 result = compatible_types(left->left, right->left);
4372                 if (result) {
4373                         result = new_type(qual_type, result, 0);
4374                 }
4375         }
4376         /* test for struct/union equality */
4377         else if (type == TYPE_STRUCT) {
4378                 if (left->type_ident == right->type_ident) {
4379                         result = left;
4380                 }
4381         }
4382         /* Test for equivalent functions */
4383         else if (type == TYPE_FUNCTION) {
4384                 struct type *lf, *rf;
4385                 lf = compatible_types(left->left, right->left);
4386                 rf = compatible_types(left->right, right->right);
4387                 if (lf && rf) {
4388                         result = new_type(qual_type, lf, rf);
4389                 }
4390         }
4391         /* We only see TYPE_PRODUCT as part of function equivalence matching */
4392         else if (type == TYPE_PRODUCT) {
4393                 struct type *lf, *rf;
4394                 lf = compatible_types(left->left, right->left);
4395                 rf = compatible_types(left->right, right->right);
4396                 if (lf && rf) {
4397                         result = new_type(qual_type, lf, rf);
4398                 }
4399         }
4400         else {
4401                 /* Nothing else is compatible */
4402         }
4403         return result;
4404 }
4405
4406 static struct type *compatible_ptrs(struct type *left, struct type *right)
4407 {
4408         struct type *result;
4409         if (((left->type & TYPE_MASK) != TYPE_POINTER) ||
4410                 ((right->type & TYPE_MASK) != TYPE_POINTER)) {
4411                 return 0;
4412         }
4413         result = compatible_types(left->left, right->left);
4414         if (result) {
4415                 unsigned int qual_type;
4416                 qual_type = (left->type & ~STOR_MASK) | (right->type & ~STOR_MASK);
4417                 result = new_type(qual_type, result, 0);
4418         }
4419         return result;
4420         
4421 }
4422 static struct triple *integral_promotion(
4423         struct compile_state *state, struct triple *def)
4424 {
4425         struct type *type;
4426         type = def->type;
4427         /* As all operations are carried out in registers
4428          * the values are converted on load I just convert
4429          * logical type of the operand.
4430          */
4431         if (TYPE_INTEGER(type->type)) {
4432                 unsigned int int_type;
4433                 int_type = type->type & ~TYPE_MASK;
4434                 int_type |= do_integral_promotion(type->type);
4435                 if (int_type != type->type) {
4436                         def->type = new_type(int_type, 0, 0);
4437                 }
4438         }
4439         return def;
4440 }
4441
4442
4443 static void arithmetic(struct compile_state *state, struct triple *def)
4444 {
4445         if (!TYPE_ARITHMETIC(def->type->type)) {
4446                 error(state, 0, "arithmetic type expexted");
4447         }
4448 }
4449
4450 static void ptr_arithmetic(struct compile_state *state, struct triple *def)
4451 {
4452         if (!TYPE_PTR(def->type->type) && !TYPE_ARITHMETIC(def->type->type)) {
4453                 error(state, def, "pointer or arithmetic type expected");
4454         }
4455 }
4456
4457 static int is_integral(struct triple *ins)
4458 {
4459         return TYPE_INTEGER(ins->type->type);
4460 }
4461
4462 static void integral(struct compile_state *state, struct triple *def)
4463 {
4464         if (!is_integral(def)) {
4465                 error(state, 0, "integral type expected");
4466         }
4467 }
4468
4469
4470 static void bool(struct compile_state *state, struct triple *def)
4471 {
4472         if (!TYPE_ARITHMETIC(def->type->type) &&
4473                 ((def->type->type & TYPE_MASK) != TYPE_POINTER)) {
4474                 error(state, 0, "arithmetic or pointer type expected");
4475         }
4476 }
4477
4478 static int is_signed(struct type *type)
4479 {
4480         return !!TYPE_SIGNED(type->type);
4481 }
4482
4483 /* Is this value located in a register otherwise it must be in memory */
4484 static int is_in_reg(struct compile_state *state, struct triple *def)
4485 {
4486         int in_reg;
4487         if (def->op == OP_ADECL) {
4488                 in_reg = 1;
4489         }
4490         else if ((def->op == OP_SDECL) || (def->op == OP_DEREF)) {
4491                 in_reg = 0;
4492         }
4493         else if (def->op == OP_VAL_VEC) {
4494                 in_reg = is_in_reg(state, RHS(def, 0));
4495         }
4496         else if (def->op == OP_DOT) {
4497                 in_reg = is_in_reg(state, RHS(def, 0));
4498         }
4499         else {
4500                 internal_error(state, 0, "unknown expr storage location");
4501                 in_reg = -1;
4502         }
4503         return in_reg;
4504 }
4505
4506 /* Is this a stable variable location otherwise it must be a temporary */
4507 static int is_stable(struct compile_state *state, struct triple *def)
4508 {
4509         int ret;
4510         ret = 0;
4511         if (!def) {
4512                 return 0;
4513         }
4514         if ((def->op == OP_ADECL) || 
4515                 (def->op == OP_SDECL) || 
4516                 (def->op == OP_DEREF) ||
4517                 (def->op == OP_BLOBCONST)) {
4518                 ret = 1;
4519         }
4520         else if (def->op == OP_DOT) {
4521                 ret = is_stable(state, RHS(def, 0));
4522         }
4523         else if (def->op == OP_VAL_VEC) {
4524                 struct triple **vector;
4525                 ulong_t i;
4526                 ret = 1;
4527                 vector = &RHS(def, 0);
4528                 for(i = 0; i < def->type->elements; i++) {
4529                         if (!is_stable(state, vector[i])) {
4530                                 ret = 0;
4531                                 break;
4532                         }
4533                 }
4534         }
4535         return ret;
4536 }
4537
4538 static int is_lvalue(struct compile_state *state, struct triple *def)
4539 {
4540         int ret;
4541         ret = 1;
4542         if (!def) {
4543                 return 0;
4544         }
4545         if (!is_stable(state, def)) {
4546                 return 0;
4547         }
4548         if (def->op == OP_DOT) {
4549                 ret = is_lvalue(state, RHS(def, 0));
4550         }
4551         return ret;
4552 }
4553
4554 static void clvalue(struct compile_state *state, struct triple *def)
4555 {
4556         if (!def) {
4557                 internal_error(state, def, "nothing where lvalue expected?");
4558         }
4559         if (!is_lvalue(state, def)) { 
4560                 error(state, def, "lvalue expected");
4561         }
4562 }
4563 static void lvalue(struct compile_state *state, struct triple *def)
4564 {
4565         clvalue(state, def);
4566         if (def->type->type & QUAL_CONST) {
4567                 error(state, def, "modifable lvalue expected");
4568         }
4569 }
4570
4571 static int is_pointer(struct triple *def)
4572 {
4573         return (def->type->type & TYPE_MASK) == TYPE_POINTER;
4574 }
4575
4576 static void pointer(struct compile_state *state, struct triple *def)
4577 {
4578         if (!is_pointer(def)) {
4579                 error(state, def, "pointer expected");
4580         }
4581 }
4582
4583 static struct triple *int_const(
4584         struct compile_state *state, struct type *type, ulong_t value)
4585 {
4586         struct triple *result;
4587         switch(type->type & TYPE_MASK) {
4588         case TYPE_CHAR:
4589         case TYPE_INT:   case TYPE_UINT:
4590         case TYPE_LONG:  case TYPE_ULONG:
4591                 break;
4592         default:
4593                 internal_error(state, 0, "constant for unkown type");
4594         }
4595         result = triple(state, OP_INTCONST, type, 0, 0);
4596         result->u.cval = value;
4597         return result;
4598 }
4599
4600
4601 static struct triple *read_expr(struct compile_state *state, struct triple *def);
4602
4603 static struct triple *do_mk_addr_expr(struct compile_state *state, 
4604         struct triple *expr, struct type *type, ulong_t offset)
4605 {
4606         struct triple *result;
4607         clvalue(state, expr);
4608
4609         type = new_type(TYPE_POINTER | (type->type & QUAL_MASK), type, 0);
4610
4611         result = 0;
4612         if (expr->op == OP_ADECL) {
4613                 error(state, expr, "address of auto variables not supported");
4614         }
4615         else if (expr->op == OP_SDECL) {
4616                 result = triple(state, OP_ADDRCONST, type, 0, 0);
4617                 MISC(result, 0) = expr;
4618                 result->u.cval = offset;
4619         }
4620         else if (expr->op == OP_DEREF) {
4621                 result = triple(state, OP_ADD, type,
4622                         RHS(expr, 0),
4623                         int_const(state, &ulong_type, offset));
4624         }
4625         if (!result) {
4626                 internal_error(state, expr, "cannot take address of expression");
4627         }
4628         return result;
4629 }
4630
4631 static struct triple *mk_addr_expr(
4632         struct compile_state *state, struct triple *expr, ulong_t offset)
4633 {
4634         return do_mk_addr_expr(state, expr, expr->type, offset);
4635 }
4636
4637 static struct triple *mk_deref_expr(
4638         struct compile_state *state, struct triple *expr)
4639 {
4640         struct type *base_type;
4641         pointer(state, expr);
4642         base_type = expr->type->left;
4643         return triple(state, OP_DEREF, base_type, expr, 0);
4644 }
4645
4646 static struct triple *array_to_pointer(struct compile_state *state, struct triple *def)
4647 {
4648         if ((def->type->type & TYPE_MASK) == TYPE_ARRAY) {
4649                 struct type *type;
4650                 type = new_type(
4651                         TYPE_POINTER | (def->type->type & QUAL_MASK),
4652                         def->type->left, 0);
4653                 if ((def->op == OP_SDECL) || IS_CONST_OP(def->op)) {
4654                         struct triple *addrconst;
4655                         if ((def->op != OP_SDECL) && (def->op != OP_BLOBCONST)) {
4656                                 internal_error(state, def, "bad array constant");
4657                         }
4658                         addrconst = triple(state, OP_ADDRCONST, type, 0, 0);
4659                         MISC(addrconst, 0) = def;
4660                         def = addrconst;
4661                 }
4662                 else {
4663                         def = triple(state, OP_COPY, type, def, 0);
4664                 }
4665         }
4666         return def;
4667 }
4668
4669 static struct triple *deref_field(
4670         struct compile_state *state, struct triple *expr, struct hash_entry *field)
4671 {
4672         struct triple *result;
4673         struct type *type, *member;
4674         if (!field) {
4675                 internal_error(state, 0, "No field passed to deref_field");
4676         }
4677         result = 0;
4678         type = expr->type;
4679         if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
4680                 error(state, 0, "request for member %s in something not a struct or union",
4681                         field->name);
4682         }
4683         member = field_type(state, type, field);
4684         if ((type->type & STOR_MASK) == STOR_PERM) {
4685                 /* Do the pointer arithmetic to get a deref the field */
4686                 ulong_t offset;
4687                 offset = field_offset(state, type, field);
4688                 result = do_mk_addr_expr(state, expr, member, offset);
4689                 result = mk_deref_expr(state, result);
4690         }
4691         else {
4692                 /* Find the variable for the field I want. */
4693                 result = triple(state, OP_DOT, member, expr, 0);
4694                 result->u.field = field;
4695         }
4696         return result;
4697 }
4698
4699 static struct triple *read_expr(struct compile_state *state, struct triple *def)
4700 {
4701         int op;
4702         if  (!def) {
4703                 return 0;
4704         }
4705         if (!is_stable(state, def)) {
4706                 return def;
4707         }
4708         /* Tranform an array to a pointer to the first element */
4709         
4710 #warning "CHECK_ME is this the right place to transform arrays to pointers?"
4711         if ((def->type->type & TYPE_MASK) == TYPE_ARRAY) {
4712                 return array_to_pointer(state, def);
4713         }
4714         if (is_in_reg(state, def)) {
4715                 op = OP_READ;
4716         } else {
4717                 if (def->op == OP_SDECL) {
4718                         def = mk_addr_expr(state, def, 0);
4719                         def = mk_deref_expr(state, def);
4720                 }
4721                 op = OP_LOAD;
4722         }
4723         return triple(state, op, def->type, def, 0);
4724 }
4725
4726 int is_write_compatible(struct compile_state *state, 
4727         struct type *dest, struct type *rval)
4728 {
4729         int compatible = 0;
4730         /* Both operands have arithmetic type */
4731         if (TYPE_ARITHMETIC(dest->type) && TYPE_ARITHMETIC(rval->type)) {
4732                 compatible = 1;
4733         }
4734         /* One operand is a pointer and the other is a pointer to void */
4735         else if (((dest->type & TYPE_MASK) == TYPE_POINTER) &&
4736                 ((rval->type & TYPE_MASK) == TYPE_POINTER) &&
4737                 (((dest->left->type & TYPE_MASK) == TYPE_VOID) ||
4738                         ((rval->left->type & TYPE_MASK) == TYPE_VOID))) {
4739                 compatible = 1;
4740         }
4741         /* If both types are the same without qualifiers we are good */
4742         else if (equiv_ptrs(dest, rval)) {
4743                 compatible = 1;
4744         }
4745         /* test for struct/union equality  */
4746         else if (((dest->type & TYPE_MASK) == TYPE_STRUCT) &&
4747                 ((rval->type & TYPE_MASK) == TYPE_STRUCT) &&
4748                 (dest->type_ident == rval->type_ident)) {
4749                 compatible = 1;
4750         }
4751         return compatible;
4752 }
4753
4754
4755 static void write_compatible(struct compile_state *state,
4756         struct type *dest, struct type *rval)
4757 {
4758         if (!is_write_compatible(state, dest, rval)) {
4759                 error(state, 0, "Incompatible types in assignment");
4760         }
4761 }
4762
4763 static int is_init_compatible(struct compile_state *state,
4764         struct type *dest, struct type *rval)
4765 {
4766         int compatible = 0;
4767         if (is_write_compatible(state, dest, rval)) {
4768                 compatible = 1;
4769         }
4770         else if (equiv_types(dest, rval)) {
4771                 compatible = 1;
4772         }
4773         return compatible;
4774 }
4775
4776 static struct triple *write_expr(
4777         struct compile_state *state, struct triple *dest, struct triple *rval)
4778 {
4779         struct triple *def;
4780         int op;
4781
4782         def = 0;
4783         if (!rval) {
4784                 internal_error(state, 0, "missing rval");
4785         }
4786
4787         if (rval->op == OP_LIST) {
4788                 internal_error(state, 0, "expression of type OP_LIST?");
4789         }
4790         if (!is_lvalue(state, dest)) {
4791                 internal_error(state, 0, "writing to a non lvalue?");
4792         }
4793         if (dest->type->type & QUAL_CONST) {
4794                 internal_error(state, 0, "modifable lvalue expexted");
4795         }
4796
4797         write_compatible(state, dest->type, rval->type);
4798
4799         /* Now figure out which assignment operator to use */
4800         op = -1;
4801         if (is_in_reg(state, dest)) {
4802                 op = OP_WRITE;
4803         } else {
4804                 op = OP_STORE;
4805         }
4806         def = triple(state, op, dest->type, dest, rval);
4807         return def;
4808 }
4809
4810 static struct triple *init_expr(
4811         struct compile_state *state, struct triple *dest, struct triple *rval)
4812 {
4813         struct triple *def;
4814
4815         def = 0;
4816         if (!rval) {
4817                 internal_error(state, 0, "missing rval");
4818         }
4819         if ((dest->type->type & STOR_MASK) != STOR_PERM) {
4820                 rval = read_expr(state, rval);
4821                 def = write_expr(state, dest, rval);
4822         }
4823         else {
4824                 /* Fill in the array size if necessary */
4825                 if (((dest->type->type & TYPE_MASK) == TYPE_ARRAY) &&
4826                         ((rval->type->type & TYPE_MASK) == TYPE_ARRAY)) {
4827                         if (dest->type->elements == ELEMENT_COUNT_UNSPECIFIED) {
4828                                 dest->type->elements = rval->type->elements;
4829                         }
4830                 }
4831                 if (!equiv_types(dest->type, rval->type)) {
4832                         error(state, 0, "Incompatible types in inializer");
4833                 }
4834                 MISC(dest, 0) = rval;
4835                 insert_triple(state, dest, rval);
4836                 rval->id |= TRIPLE_FLAG_FLATTENED;
4837                 use_triple(MISC(dest, 0), dest);
4838         }
4839         return def;
4840 }
4841
4842 struct type *arithmetic_result(
4843         struct compile_state *state, struct triple *left, struct triple *right)
4844 {
4845         struct type *type;
4846         /* Sanity checks to ensure I am working with arithmetic types */
4847         arithmetic(state, left);
4848         arithmetic(state, right);
4849         type = new_type(
4850                 do_arithmetic_conversion(
4851                         left->type->type, 
4852                         right->type->type), 0, 0);
4853         return type;
4854 }
4855
4856 struct type *ptr_arithmetic_result(
4857         struct compile_state *state, struct triple *left, struct triple *right)
4858 {
4859         struct type *type;
4860         /* Sanity checks to ensure I am working with the proper types */
4861         ptr_arithmetic(state, left);
4862         arithmetic(state, right);
4863         if (TYPE_ARITHMETIC(left->type->type) && 
4864                 TYPE_ARITHMETIC(right->type->type)) {
4865                 type = arithmetic_result(state, left, right);
4866         }
4867         else if (TYPE_PTR(left->type->type)) {
4868                 type = left->type;
4869         }
4870         else {
4871                 internal_error(state, 0, "huh?");
4872                 type = 0;
4873         }
4874         return type;
4875 }
4876
4877
4878 /* boolean helper function */
4879
4880 static struct triple *ltrue_expr(struct compile_state *state, 
4881         struct triple *expr)
4882 {
4883         switch(expr->op) {
4884         case OP_LTRUE:   case OP_LFALSE:  case OP_EQ:      case OP_NOTEQ:
4885         case OP_SLESS:   case OP_ULESS:   case OP_SMORE:   case OP_UMORE:
4886         case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
4887                 /* If the expression is already boolean do nothing */
4888                 break;
4889         default:
4890                 expr = triple(state, OP_LTRUE, &int_type, expr, 0);
4891                 break;
4892         }
4893         return expr;
4894 }
4895
4896 static struct triple *lfalse_expr(struct compile_state *state, 
4897         struct triple *expr)
4898 {
4899         return triple(state, OP_LFALSE, &int_type, expr, 0);
4900 }
4901
4902 static struct triple *cond_expr(
4903         struct compile_state *state, 
4904         struct triple *test, struct triple *left, struct triple *right)
4905 {
4906         struct triple *def;
4907         struct type *result_type;
4908         unsigned int left_type, right_type;
4909         bool(state, test);
4910         left_type = left->type->type;
4911         right_type = right->type->type;
4912         result_type = 0;
4913         /* Both operands have arithmetic type */
4914         if (TYPE_ARITHMETIC(left_type) && TYPE_ARITHMETIC(right_type)) {
4915                 result_type = arithmetic_result(state, left, right);
4916         }
4917         /* Both operands have void type */
4918         else if (((left_type & TYPE_MASK) == TYPE_VOID) &&
4919                 ((right_type & TYPE_MASK) == TYPE_VOID)) {
4920                 result_type = &void_type;
4921         }
4922         /* pointers to the same type... */
4923         else if ((result_type = compatible_ptrs(left->type, right->type))) {
4924                 ;
4925         }
4926         /* Both operands are pointers and left is a pointer to void */
4927         else if (((left_type & TYPE_MASK) == TYPE_POINTER) &&
4928                 ((right_type & TYPE_MASK) == TYPE_POINTER) &&
4929                 ((left->type->left->type & TYPE_MASK) == TYPE_VOID)) {
4930                 result_type = right->type;
4931         }
4932         /* Both operands are pointers and right is a pointer to void */
4933         else if (((left_type & TYPE_MASK) == TYPE_POINTER) &&
4934                 ((right_type & TYPE_MASK) == TYPE_POINTER) &&
4935                 ((right->type->left->type & TYPE_MASK) == TYPE_VOID)) {
4936                 result_type = left->type;
4937         }
4938         if (!result_type) {
4939                 error(state, 0, "Incompatible types in conditional expression");
4940         }
4941         /* Cleanup and invert the test */
4942         test = lfalse_expr(state, read_expr(state, test));
4943         def = new_triple(state, OP_COND, result_type, 0, 3);
4944         def->param[0] = test;
4945         def->param[1] = left;
4946         def->param[2] = right;
4947         return def;
4948 }
4949
4950
4951 static int expr_depth(struct compile_state *state, struct triple *ins)
4952 {
4953         int count;
4954         count = 0;
4955         if (!ins || (ins->id & TRIPLE_FLAG_FLATTENED)) {
4956                 count = 0;
4957         }
4958         else if (ins->op == OP_DEREF) {
4959                 count = expr_depth(state, RHS(ins, 0)) - 1;
4960         }
4961         else if (ins->op == OP_VAL) {
4962                 count = expr_depth(state, RHS(ins, 0)) - 1;
4963         }
4964         else if (ins->op == OP_COMMA) {
4965                 int ldepth, rdepth;
4966                 ldepth = expr_depth(state, RHS(ins, 0));
4967                 rdepth = expr_depth(state, RHS(ins, 1));
4968                 count = (ldepth >= rdepth)? ldepth : rdepth;
4969         }
4970         else if (ins->op == OP_CALL) {
4971                 /* Don't figure the depth of a call just guess it is huge */
4972                 count = 1000;
4973         }
4974         else {
4975                 struct triple **expr;
4976                 expr = triple_rhs(state, ins, 0);
4977                 for(;expr; expr = triple_rhs(state, ins, expr)) {
4978                         if (*expr) {
4979                                 int depth;
4980                                 depth = expr_depth(state, *expr);
4981                                 if (depth > count) {
4982                                         count = depth;
4983                                 }
4984                         }
4985                 }
4986         }
4987         return count + 1;
4988 }
4989
4990 static struct triple *flatten(
4991         struct compile_state *state, struct triple *first, struct triple *ptr);
4992
4993 static struct triple *flatten_generic(
4994         struct compile_state *state, struct triple *first, struct triple *ptr)
4995 {
4996         struct rhs_vector {
4997                 int depth;
4998                 struct triple **ins;
4999         } vector[MAX_RHS];
5000         int i, rhs, lhs;
5001         /* Only operations with just a rhs should come here */
5002         rhs = TRIPLE_RHS(ptr->sizes);
5003         lhs = TRIPLE_LHS(ptr->sizes);
5004         if (TRIPLE_SIZE(ptr->sizes) != lhs + rhs) {
5005                 internal_error(state, ptr, "unexpected args for: %d %s",
5006                         ptr->op, tops(ptr->op));
5007         }
5008         /* Find the depth of the rhs elements */
5009         for(i = 0; i < rhs; i++) {
5010                 vector[i].ins = &RHS(ptr, i);
5011                 vector[i].depth = expr_depth(state, *vector[i].ins);
5012         }
5013         /* Selection sort the rhs */
5014         for(i = 0; i < rhs; i++) {
5015                 int j, max = i;
5016                 for(j = i + 1; j < rhs; j++ ) {
5017                         if (vector[j].depth > vector[max].depth) {
5018                                 max = j;
5019                         }
5020                 }
5021                 if (max != i) {
5022                         struct rhs_vector tmp;
5023                         tmp = vector[i];
5024                         vector[i] = vector[max];
5025                         vector[max] = tmp;
5026                 }
5027         }
5028         /* Now flatten the rhs elements */
5029         for(i = 0; i < rhs; i++) {
5030                 *vector[i].ins = flatten(state, first, *vector[i].ins);
5031                 use_triple(*vector[i].ins, ptr);
5032         }
5033         
5034         /* Now flatten the lhs elements */
5035         for(i = 0; i < lhs; i++) {
5036                 struct triple **ins = &LHS(ptr, i);
5037                 *ins = flatten(state, first, *ins);
5038                 use_triple(*ins, ptr);
5039         }
5040         return ptr;
5041 }
5042
5043 static struct triple *flatten_land(
5044         struct compile_state *state, struct triple *first, struct triple *ptr)
5045 {
5046         struct triple *left, *right;
5047         struct triple *val, *test, *jmp, *label1, *end;
5048
5049         /* Find the triples */
5050         left = RHS(ptr, 0);
5051         right = RHS(ptr, 1);
5052
5053         /* Generate the needed triples */
5054         end = label(state);
5055
5056         /* Thread the triples together */
5057         val          = flatten(state, first, variable(state, ptr->type));
5058         left         = flatten(state, first, write_expr(state, val, left));
5059         test         = flatten(state, first, 
5060                 lfalse_expr(state, read_expr(state, val)));
5061         jmp          = flatten(state, first, branch(state, end, test));
5062         label1       = flatten(state, first, label(state));
5063         right        = flatten(state, first, write_expr(state, val, right));
5064         TARG(jmp, 0) = flatten(state, first, end); 
5065         
5066         /* Now give the caller something to chew on */
5067         return read_expr(state, val);
5068 }
5069
5070 static struct triple *flatten_lor(
5071         struct compile_state *state, struct triple *first, struct triple *ptr)
5072 {
5073         struct triple *left, *right;
5074         struct triple *val, *jmp, *label1, *end;
5075
5076         /* Find the triples */
5077         left = RHS(ptr, 0);
5078         right = RHS(ptr, 1);
5079
5080         /* Generate the needed triples */
5081         end = label(state);
5082
5083         /* Thread the triples together */
5084         val          = flatten(state, first, variable(state, ptr->type));
5085         left         = flatten(state, first, write_expr(state, val, left));
5086         jmp          = flatten(state, first, branch(state, end, left));
5087         label1       = flatten(state, first, label(state));
5088         right        = flatten(state, first, write_expr(state, val, right));
5089         TARG(jmp, 0) = flatten(state, first, end);
5090        
5091         
5092         /* Now give the caller something to chew on */
5093         return read_expr(state, val);
5094 }
5095
5096 static struct triple *flatten_cond(
5097         struct compile_state *state, struct triple *first, struct triple *ptr)
5098 {
5099         struct triple *test, *left, *right;
5100         struct triple *val, *mv1, *jmp1, *label1, *mv2, *middle, *jmp2, *end;
5101
5102         /* Find the triples */
5103         test = RHS(ptr, 0);
5104         left = RHS(ptr, 1);
5105         right = RHS(ptr, 2);
5106
5107         /* Generate the needed triples */
5108         end = label(state);
5109         middle = label(state);
5110
5111         /* Thread the triples together */
5112         val           = flatten(state, first, variable(state, ptr->type));
5113         test          = flatten(state, first, test);
5114         jmp1          = flatten(state, first, branch(state, middle, test));
5115         label1        = flatten(state, first, label(state));
5116         left          = flatten(state, first, left);
5117         mv1           = flatten(state, first, write_expr(state, val, left));
5118         jmp2          = flatten(state, first, branch(state, end, 0));
5119         TARG(jmp1, 0) = flatten(state, first, middle);
5120         right         = flatten(state, first, right);
5121         mv2           = flatten(state, first, write_expr(state, val, right));
5122         TARG(jmp2, 0) = flatten(state, first, end);
5123         
5124         /* Now give the caller something to chew on */
5125         return read_expr(state, val);
5126 }
5127
5128 static int local_triple(struct compile_state *state, 
5129         struct triple *func, struct triple *ins)
5130 {
5131         int local = (ins->id & TRIPLE_FLAG_LOCAL);
5132 #if 0
5133         if (!local) {
5134                 fprintf(stderr, "global: ");
5135                 display_triple(stderr, ins);
5136         }
5137 #endif
5138         return local;
5139 }
5140
5141 struct triple *copy_func(struct compile_state *state, struct triple *ofunc, 
5142         struct occurance *base_occurance)
5143 {
5144         struct triple *nfunc;
5145         struct triple *nfirst, *ofirst;
5146         struct triple *new, *old;
5147
5148 #if 0
5149         fprintf(stdout, "\n");
5150         loc(stdout, state, 0);
5151         fprintf(stdout, "\n__________ copy_func _________\n");
5152         display_func(stdout, ofunc);
5153         fprintf(stdout, "__________ copy_func _________ done\n\n");
5154 #endif
5155
5156         /* Make a new copy of the old function */
5157         nfunc = triple(state, OP_LIST, ofunc->type, 0, 0);
5158         nfirst = 0;
5159         ofirst = old = RHS(ofunc, 0);
5160         do {
5161                 struct triple *new;
5162                 struct occurance *occurance;
5163                 int old_lhs, old_rhs;
5164                 old_lhs = TRIPLE_LHS(old->sizes);
5165                 old_rhs = TRIPLE_RHS(old->sizes);
5166                 occurance = inline_occurance(state, base_occurance, old->occurance);
5167                 new = alloc_triple(state, old->op, old->type, old_lhs, old_rhs,
5168                         occurance);
5169                 if (!triple_stores_block(state, new)) {
5170                         memcpy(&new->u, &old->u, sizeof(new->u));
5171                 }
5172                 if (!nfirst) {
5173                         RHS(nfunc, 0) = nfirst = new;
5174                 }
5175                 else {
5176                         insert_triple(state, nfirst, new);
5177                 }
5178                 new->id |= TRIPLE_FLAG_FLATTENED;
5179                 
5180                 /* During the copy remember new as user of old */
5181                 use_triple(old, new);
5182
5183                 /* Populate the return type if present */
5184                 if (old == MISC(ofunc, 0)) {
5185                         MISC(nfunc, 0) = new;
5186                 }
5187                 /* Remember which instructions are local */
5188                 old->id |= TRIPLE_FLAG_LOCAL;
5189                 old = old->next;
5190         } while(old != ofirst);
5191
5192         /* Make a second pass to fix up any unresolved references */
5193         old = ofirst;
5194         new = nfirst;
5195         do {
5196                 struct triple **oexpr, **nexpr;
5197                 int count, i;
5198                 /* Lookup where the copy is, to join pointers */
5199                 count = TRIPLE_SIZE(old->sizes);
5200                 for(i = 0; i < count; i++) {
5201                         oexpr = &old->param[i];
5202                         nexpr = &new->param[i];
5203                         if (*oexpr && !*nexpr) {
5204                                 if (!local_triple(state, ofunc, *oexpr)) {
5205                                         *nexpr = *oexpr;
5206                                 }
5207                                 else if ((*oexpr)->use) {
5208                                         *nexpr = (*oexpr)->use->member;
5209                                 }
5210                                 if (*nexpr == old) {
5211                                         internal_error(state, 0, "new == old?");
5212                                 }
5213                                 use_triple(*nexpr, new);
5214                         }
5215                         if (!*nexpr && *oexpr) {
5216                                 internal_error(state, 0, "Could not copy %d\n", i);
5217                         }
5218                 }
5219                 old = old->next;
5220                 new = new->next;
5221         } while((old != ofirst) && (new != nfirst));
5222         
5223         /* Make a third pass to cleanup the extra useses */
5224         old = ofirst;
5225         new = nfirst;
5226         do {
5227                 unuse_triple(old, new);
5228                 /* Forget which instructions are local */
5229                 old->id &= ~TRIPLE_FLAG_LOCAL;
5230                 old = old->next;
5231                 new = new->next;
5232         } while ((old != ofirst) && (new != nfirst));
5233         return nfunc;
5234 }
5235
5236 static struct triple *flatten_call(
5237         struct compile_state *state, struct triple *first, struct triple *ptr)
5238 {
5239         /* Inline the function call */
5240         struct type *ptype;
5241         struct triple *ofunc, *nfunc, *nfirst, *param, *result;
5242         struct triple *end, *nend;
5243         int pvals, i;
5244
5245         /* Find the triples */
5246         ofunc = MISC(ptr, 0);
5247         if (ofunc->op != OP_LIST) {
5248                 internal_error(state, 0, "improper function");
5249         }
5250         nfunc = copy_func(state, ofunc, ptr->occurance);
5251         nfirst = RHS(nfunc, 0)->next;
5252         /* Prepend the parameter reading into the new function list */
5253         ptype = nfunc->type->right;
5254         param = RHS(nfunc, 0)->next;
5255         pvals = TRIPLE_RHS(ptr->sizes);
5256         for(i = 0; i < pvals; i++) {
5257                 struct type *atype;
5258                 struct triple *arg;
5259                 atype = ptype;
5260                 if ((ptype->type & TYPE_MASK) == TYPE_PRODUCT) {
5261                         atype = ptype->left;
5262                 }
5263                 while((param->type->type & TYPE_MASK) != (atype->type & TYPE_MASK)) {
5264                         param = param->next;
5265                 }
5266                 arg = RHS(ptr, i);
5267                 flatten(state, nfirst, write_expr(state, param, arg));
5268                 ptype = ptype->right;
5269                 param = param->next;
5270         }
5271         result = 0;
5272         if ((nfunc->type->left->type & TYPE_MASK) != TYPE_VOID) {
5273                 result = read_expr(state, MISC(nfunc,0));
5274         }
5275 #if 0
5276         fprintf(stdout, "\n");
5277         loc(stdout, state, 0);
5278         fprintf(stdout, "\n__________ flatten_call _________\n");
5279         display_func(stdout, nfunc);
5280         fprintf(stdout, "__________ flatten_call _________ done\n\n");
5281 #endif
5282
5283         /* Get rid of the extra triples */
5284         nfirst = RHS(nfunc, 0)->next;
5285         free_triple(state, RHS(nfunc, 0));
5286         RHS(nfunc, 0) = 0;
5287         free_triple(state, nfunc);
5288
5289         /* Append the new function list onto the return list */
5290         end = first->prev;
5291         nend = nfirst->prev;
5292         end->next    = nfirst;
5293         nfirst->prev = end;
5294         nend->next   = first;
5295         first->prev  = nend;
5296
5297         return result;
5298 }
5299
5300 static struct triple *flatten(
5301         struct compile_state *state, struct triple *first, struct triple *ptr)
5302 {
5303         struct triple *orig_ptr;
5304         if (!ptr)
5305                 return 0;
5306         do {
5307                 orig_ptr = ptr;
5308                 /* Only flatten triples once */
5309                 if (ptr->id & TRIPLE_FLAG_FLATTENED) {
5310                         return ptr;
5311                 }
5312                 switch(ptr->op) {
5313                 case OP_COMMA:
5314                         RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
5315                         ptr = RHS(ptr, 1);
5316                         break;
5317                 case OP_VAL:
5318                         RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
5319                         return MISC(ptr, 0);
5320                         break;
5321                 case OP_LAND:
5322                         ptr = flatten_land(state, first, ptr);
5323                         break;
5324                 case OP_LOR:
5325                         ptr = flatten_lor(state, first, ptr);
5326                         break;
5327                 case OP_COND:
5328                         ptr = flatten_cond(state, first, ptr);
5329                         break;
5330                 case OP_CALL:
5331                         ptr = flatten_call(state, first, ptr);
5332                         break;
5333                 case OP_READ:
5334                 case OP_LOAD:
5335                         RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
5336                         use_triple(RHS(ptr, 0), ptr);
5337                         break;
5338                 case OP_BRANCH:
5339                         use_triple(TARG(ptr, 0), ptr);
5340                         if (TRIPLE_RHS(ptr->sizes)) {
5341                                 use_triple(RHS(ptr, 0), ptr);
5342                                 if (ptr->next != ptr) {
5343                                         use_triple(ptr->next, ptr);
5344                                 }
5345                         }
5346                         break;
5347                 case OP_BLOBCONST:
5348                         insert_triple(state, state->first, ptr);
5349                         ptr->id |= TRIPLE_FLAG_FLATTENED;
5350                         ptr->id &= ~TRIPLE_FLAG_LOCAL;
5351                         ptr = triple(state, OP_SDECL, ptr->type, ptr, 0);
5352                         use_triple(MISC(ptr, 0), ptr);
5353                         break;
5354                 case OP_DEREF:
5355                         /* Since OP_DEREF is just a marker delete it when I flatten it */
5356                         ptr = RHS(ptr, 0);
5357                         RHS(orig_ptr, 0) = 0;
5358                         free_triple(state, orig_ptr);
5359                         break;
5360                 case OP_DOT:
5361                 {
5362                         struct triple *base;
5363                         base = RHS(ptr, 0);
5364                         if (base->op == OP_DEREF) {
5365                                 struct triple *left;
5366                                 ulong_t offset;
5367                                 offset = field_offset(state, base->type, ptr->u.field);
5368                                 left = RHS(base, 0);
5369                                 ptr = triple(state, OP_ADD, left->type, 
5370                                         read_expr(state, left),
5371                                         int_const(state, &ulong_type, offset));
5372                                 free_triple(state, base);
5373                         }
5374                         else if (base->op == OP_VAL_VEC) {
5375                                 base = flatten(state, first, base);
5376                                 ptr = struct_field(state, base, ptr->u.field);
5377                         }
5378                         break;
5379                 }
5380                 case OP_PIECE:
5381                         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
5382                         use_triple(MISC(ptr, 0), ptr);
5383                         use_triple(ptr, MISC(ptr, 0));
5384                         break;
5385                 case OP_ADDRCONST:
5386                         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
5387                         use_triple(MISC(ptr, 0), ptr);
5388                         break;
5389                 case OP_SDECL:
5390                         first = state->first;
5391                         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
5392                         use_triple(MISC(ptr, 0), ptr);
5393                         insert_triple(state, first, ptr);
5394                         ptr->id |= TRIPLE_FLAG_FLATTENED;
5395                         ptr->id &= ~TRIPLE_FLAG_LOCAL;
5396                         return ptr;
5397                 case OP_ADECL:
5398                         break;
5399                 default:
5400                         /* Flatten the easy cases we don't override */
5401                         ptr = flatten_generic(state, first, ptr);
5402                         break;
5403                 }
5404         } while(ptr && (ptr != orig_ptr));
5405         if (ptr) {
5406                 insert_triple(state, first, ptr);
5407                 ptr->id |= TRIPLE_FLAG_FLATTENED;
5408                 ptr->id &= ~TRIPLE_FLAG_LOCAL;
5409         }
5410         return ptr;
5411 }
5412
5413 static void release_expr(struct compile_state *state, struct triple *expr)
5414 {
5415         struct triple *head;
5416         head = label(state);
5417         flatten(state, head, expr);
5418         while(head->next != head) {
5419                 release_triple(state, head->next);
5420         }
5421         free_triple(state, head);
5422 }
5423
5424 static int replace_rhs_use(struct compile_state *state,
5425         struct triple *orig, struct triple *new, struct triple *use)
5426 {
5427         struct triple **expr;
5428         int found;
5429         found = 0;
5430         expr = triple_rhs(state, use, 0);
5431         for(;expr; expr = triple_rhs(state, use, expr)) {
5432                 if (*expr == orig) {
5433                         *expr = new;
5434                         found = 1;
5435                 }
5436         }
5437         if (found) {
5438                 unuse_triple(orig, use);
5439                 use_triple(new, use);
5440         }
5441         return found;
5442 }
5443
5444 static int replace_lhs_use(struct compile_state *state,
5445         struct triple *orig, struct triple *new, struct triple *use)
5446 {
5447         struct triple **expr;
5448         int found;
5449         found = 0;
5450         expr = triple_lhs(state, use, 0);
5451         for(;expr; expr = triple_lhs(state, use, expr)) {
5452                 if (*expr == orig) {
5453                         *expr = new;
5454                         found = 1;
5455                 }
5456         }
5457         if (found) {
5458                 unuse_triple(orig, use);
5459                 use_triple(new, use);
5460         }
5461         return found;
5462 }
5463
5464 static void propogate_use(struct compile_state *state,
5465         struct triple *orig, struct triple *new)
5466 {
5467         struct triple_set *user, *next;
5468         for(user = orig->use; user; user = next) {
5469                 struct triple *use;
5470                 int found;
5471                 next = user->next;
5472                 use = user->member;
5473                 found = 0;
5474                 found |= replace_rhs_use(state, orig, new, use);
5475                 found |= replace_lhs_use(state, orig, new, use);
5476                 if (!found) {
5477                         internal_error(state, use, "use without use");
5478                 }
5479         }
5480         if (orig->use) {
5481                 internal_error(state, orig, "used after propogate_use");
5482         }
5483 }
5484
5485 /*
5486  * Code generators
5487  * ===========================
5488  */
5489
5490 static struct triple *mk_add_expr(
5491         struct compile_state *state, struct triple *left, struct triple *right)
5492 {
5493         struct type *result_type;
5494         /* Put pointer operands on the left */
5495         if (is_pointer(right)) {
5496                 struct triple *tmp;
5497                 tmp = left;
5498                 left = right;
5499                 right = tmp;
5500         }
5501         left  = read_expr(state, left);
5502         right = read_expr(state, right);
5503         result_type = ptr_arithmetic_result(state, left, right);
5504         if (is_pointer(left)) {
5505                 right = triple(state, 
5506                         is_signed(right->type)? OP_SMUL : OP_UMUL, 
5507                         &ulong_type, 
5508                         right, 
5509                         int_const(state, &ulong_type, 
5510                                 size_of(state, left->type->left)));
5511         }
5512         return triple(state, OP_ADD, result_type, left, right);
5513 }
5514
5515 static struct triple *mk_sub_expr(
5516         struct compile_state *state, struct triple *left, struct triple *right)
5517 {
5518         struct type *result_type;
5519         result_type = ptr_arithmetic_result(state, left, right);
5520         left  = read_expr(state, left);
5521         right = read_expr(state, right);
5522         if (is_pointer(left)) {
5523                 right = triple(state, 
5524                         is_signed(right->type)? OP_SMUL : OP_UMUL, 
5525                         &ulong_type, 
5526                         right, 
5527                         int_const(state, &ulong_type, 
5528                                 size_of(state, left->type->left)));
5529         }
5530         return triple(state, OP_SUB, result_type, left, right);
5531 }
5532
5533 static struct triple *mk_pre_inc_expr(
5534         struct compile_state *state, struct triple *def)
5535 {
5536         struct triple *val;
5537         lvalue(state, def);
5538         val = mk_add_expr(state, def, int_const(state, &int_type, 1));
5539         return triple(state, OP_VAL, def->type,
5540                 write_expr(state, def, val),
5541                 val);
5542 }
5543
5544 static struct triple *mk_pre_dec_expr(
5545         struct compile_state *state, struct triple *def)
5546 {
5547         struct triple *val;
5548         lvalue(state, def);
5549         val = mk_sub_expr(state, def, int_const(state, &int_type, 1));
5550         return triple(state, OP_VAL, def->type,
5551                 write_expr(state, def, val),
5552                 val);
5553 }
5554
5555 static struct triple *mk_post_inc_expr(
5556         struct compile_state *state, struct triple *def)
5557 {
5558         struct triple *val;
5559         lvalue(state, def);
5560         val = read_expr(state, def);
5561         return triple(state, OP_VAL, def->type,
5562                 write_expr(state, def,
5563                         mk_add_expr(state, val, int_const(state, &int_type, 1)))
5564                 , val);
5565 }
5566
5567 static struct triple *mk_post_dec_expr(
5568         struct compile_state *state, struct triple *def)
5569 {
5570         struct triple *val;
5571         lvalue(state, def);
5572         val = read_expr(state, def);
5573         return triple(state, OP_VAL, def->type, 
5574                 write_expr(state, def,
5575                         mk_sub_expr(state, val, int_const(state, &int_type, 1)))
5576                 , val);
5577 }
5578
5579 static struct triple *mk_subscript_expr(
5580         struct compile_state *state, struct triple *left, struct triple *right)
5581 {
5582         left  = read_expr(state, left);
5583         right = read_expr(state, right);
5584         if (!is_pointer(left) && !is_pointer(right)) {
5585                 error(state, left, "subscripted value is not a pointer");
5586         }
5587         return mk_deref_expr(state, mk_add_expr(state, left, right));
5588 }
5589
5590 static struct triple *mk_cast_expr(
5591         struct compile_state *state, struct type *type, struct triple *expr)
5592 {
5593         struct triple *def;
5594         def = read_expr(state, expr);
5595         def = triple(state, OP_COPY, type, def, 0);
5596         return def;
5597 }
5598
5599 /*
5600  * Compile time evaluation
5601  * ===========================
5602  */
5603 static int is_const(struct triple *ins)
5604 {
5605         return IS_CONST_OP(ins->op);
5606 }
5607
5608 static int is_simple_const(struct triple *ins)
5609 {
5610         return IS_CONST_OP(ins->op) && (ins->op != OP_ADDRCONST);
5611 }
5612
5613 static int constants_equal(struct compile_state *state, 
5614         struct triple *left, struct triple *right)
5615 {
5616         int equal;
5617         if (!is_const(left) || !is_const(right)) {
5618                 equal = 0;
5619         }
5620         else if (left->op != right->op) {
5621                 equal = 0;
5622         }
5623         else if (!equiv_types(left->type, right->type)) {
5624                 equal = 0;
5625         }
5626         else {
5627                 equal = 0;
5628                 switch(left->op) {
5629                 case OP_INTCONST:
5630                         if (left->u.cval == right->u.cval) {
5631                                 equal = 1;
5632                         }
5633                         break;
5634                 case OP_BLOBCONST:
5635                 {
5636                         size_t lsize, rsize;
5637                         lsize = size_of(state, left->type);
5638                         rsize = size_of(state, right->type);
5639                         if (lsize != rsize) {
5640                                 break;
5641                         }
5642                         if (memcmp(left->u.blob, right->u.blob, lsize) == 0) {
5643                                 equal = 1;
5644                         }
5645                         break;
5646                 }
5647                 case OP_ADDRCONST:
5648                         if ((MISC(left, 0) == MISC(right, 0)) &&
5649                                 (left->u.cval == right->u.cval)) {
5650                                 equal = 1;
5651                         }
5652                         break;
5653                 default:
5654                         internal_error(state, left, "uknown constant type");
5655                         break;
5656                 }
5657         }
5658         return equal;
5659 }
5660
5661 static int is_zero(struct triple *ins)
5662 {
5663         return is_const(ins) && (ins->u.cval == 0);
5664 }
5665
5666 static int is_one(struct triple *ins)
5667 {
5668         return is_const(ins) && (ins->u.cval == 1);
5669 }
5670
5671 static long_t bit_count(ulong_t value)
5672 {
5673         int count;
5674         int i;
5675         count = 0;
5676         for(i = (sizeof(ulong_t)*8) -1; i >= 0; i--) {
5677                 ulong_t mask;
5678                 mask = 1;
5679                 mask <<= i;
5680                 if (value & mask) {
5681                         count++;
5682                 }
5683         }
5684         return count;
5685         
5686 }
5687 static long_t bsr(ulong_t value)
5688 {
5689         int i;
5690         for(i = (sizeof(ulong_t)*8) -1; i >= 0; i--) {
5691                 ulong_t mask;
5692                 mask = 1;
5693                 mask <<= i;
5694                 if (value & mask) {
5695                         return i;
5696                 }
5697         }
5698         return -1;
5699 }
5700
5701 static long_t bsf(ulong_t value)
5702 {
5703         int i;
5704         for(i = 0; i < (sizeof(ulong_t)*8); i++) {
5705                 ulong_t mask;
5706                 mask = 1;
5707                 mask <<= 1;
5708                 if (value & mask) {
5709                         return i;
5710                 }
5711         }
5712         return -1;
5713 }
5714
5715 static long_t log2(ulong_t value)
5716 {
5717         return bsr(value);
5718 }
5719
5720 static long_t tlog2(struct triple *ins)
5721 {
5722         return log2(ins->u.cval);
5723 }
5724
5725 static int is_pow2(struct triple *ins)
5726 {
5727         ulong_t value, mask;
5728         long_t log;
5729         if (!is_const(ins)) {
5730                 return 0;
5731         }
5732         value = ins->u.cval;
5733         log = log2(value);
5734         if (log == -1) {
5735                 return 0;
5736         }
5737         mask = 1;
5738         mask <<= log;
5739         return  ((value & mask) == value);
5740 }
5741
5742 static ulong_t read_const(struct compile_state *state,
5743         struct triple *ins, struct triple **expr)
5744 {
5745         struct triple *rhs;
5746         rhs = *expr;
5747         switch(rhs->type->type &TYPE_MASK) {
5748         case TYPE_CHAR:   
5749         case TYPE_SHORT:
5750         case TYPE_INT:
5751         case TYPE_LONG:
5752         case TYPE_UCHAR:   
5753         case TYPE_USHORT:  
5754         case TYPE_UINT:
5755         case TYPE_ULONG:
5756         case TYPE_POINTER:
5757                 break;
5758         default:
5759                 internal_error(state, rhs, "bad type to read_const\n");
5760                 break;
5761         }
5762         if (!is_simple_const(rhs)) {
5763                 internal_error(state, rhs, "bad op to read_const\n");
5764         }
5765         return rhs->u.cval;
5766 }
5767
5768 static long_t read_sconst(struct triple *ins, struct triple **expr)
5769 {
5770         struct triple *rhs;
5771         rhs = *expr;
5772         return (long_t)(rhs->u.cval);
5773 }
5774
5775 static void unuse_rhs(struct compile_state *state, struct triple *ins)
5776 {
5777         struct triple **expr;
5778         expr = triple_rhs(state, ins, 0);
5779         for(;expr;expr = triple_rhs(state, ins, expr)) {
5780                 if (*expr) {
5781                         unuse_triple(*expr, ins);
5782                         *expr = 0;
5783                 }
5784         }
5785 }
5786
5787 static void unuse_lhs(struct compile_state *state, struct triple *ins)
5788 {
5789         struct triple **expr;
5790         expr = triple_lhs(state, ins, 0);
5791         for(;expr;expr = triple_lhs(state, ins, expr)) {
5792                 unuse_triple(*expr, ins);
5793                 *expr = 0;
5794         }
5795 }
5796
5797 static void check_lhs(struct compile_state *state, struct triple *ins)
5798 {
5799         struct triple **expr;
5800         expr = triple_lhs(state, ins, 0);
5801         for(;expr;expr = triple_lhs(state, ins, expr)) {
5802                 internal_error(state, ins, "unexpected lhs");
5803         }
5804         
5805 }
5806 static void check_targ(struct compile_state *state, struct triple *ins)
5807 {
5808         struct triple **expr;
5809         expr = triple_targ(state, ins, 0);
5810         for(;expr;expr = triple_targ(state, ins, expr)) {
5811                 internal_error(state, ins, "unexpected targ");
5812         }
5813 }
5814
5815 static void wipe_ins(struct compile_state *state, struct triple *ins)
5816 {
5817         /* Becareful which instructions you replace the wiped
5818          * instruction with, as there are not enough slots
5819          * in all instructions to hold all others.
5820          */
5821         check_targ(state, ins);
5822         unuse_rhs(state, ins);
5823         unuse_lhs(state, ins);
5824 }
5825
5826 static void mkcopy(struct compile_state *state, 
5827         struct triple *ins, struct triple *rhs)
5828 {
5829         struct block *block;
5830         block = block_of_triple(state, ins);
5831         wipe_ins(state, ins);
5832         ins->op = OP_COPY;
5833         ins->sizes = TRIPLE_SIZES(0, 1, 0, 0);
5834         ins->u.block = block;
5835         RHS(ins, 0) = rhs;
5836         use_triple(RHS(ins, 0), ins);
5837 }
5838
5839 static void mkconst(struct compile_state *state, 
5840         struct triple *ins, ulong_t value)
5841 {
5842         if (!is_integral(ins) && !is_pointer(ins)) {
5843                 internal_error(state, ins, "unknown type to make constant\n");
5844         }
5845         wipe_ins(state, ins);
5846         ins->op = OP_INTCONST;
5847         ins->sizes = TRIPLE_SIZES(0, 0, 0, 0);
5848         ins->u.cval = value;
5849 }
5850
5851 static void mkaddr_const(struct compile_state *state,
5852         struct triple *ins, struct triple *sdecl, ulong_t value)
5853 {
5854         if (sdecl->op != OP_SDECL) {
5855                 internal_error(state, ins, "bad base for addrconst");
5856         }
5857         wipe_ins(state, ins);
5858         ins->op = OP_ADDRCONST;
5859         ins->sizes = TRIPLE_SIZES(0, 0, 1, 0);
5860         MISC(ins, 0) = sdecl;
5861         ins->u.cval = value;
5862         use_triple(sdecl, ins);
5863 }
5864
5865 /* Transform multicomponent variables into simple register variables */
5866 static void flatten_structures(struct compile_state *state)
5867 {
5868         struct triple *ins, *first;
5869         first = state->first;
5870         ins = first;
5871         /* Pass one expand structure values into valvecs.
5872          */
5873         ins = first;
5874         do {
5875                 struct triple *next;
5876                 next = ins->next;
5877                 if ((ins->type->type & TYPE_MASK) == TYPE_STRUCT) {
5878                         if (ins->op == OP_VAL_VEC) {
5879                                 /* Do nothing */
5880                         }
5881                         else if ((ins->op == OP_LOAD) || (ins->op == OP_READ)) {
5882                                 struct triple *def, **vector;
5883                                 struct type *tptr;
5884                                 int op;
5885                                 ulong_t i;
5886
5887                                 op = ins->op;
5888                                 def = RHS(ins, 0);
5889                                 get_occurance(ins->occurance);
5890                                 next = alloc_triple(state, OP_VAL_VEC, ins->type, -1, -1,
5891                                         ins->occurance);
5892
5893                                 vector = &RHS(next, 0);
5894                                 tptr = next->type->left;
5895                                 for(i = 0; i < next->type->elements; i++) {
5896                                         struct triple *sfield;
5897                                         struct type *mtype;
5898                                         mtype = tptr;
5899                                         if ((mtype->type & TYPE_MASK) == TYPE_PRODUCT) {
5900                                                 mtype = mtype->left;
5901                                         }
5902                                         sfield = deref_field(state, def, mtype->field_ident);
5903                                         
5904                                         vector[i] = triple(
5905                                                 state, op, mtype, sfield, 0);
5906                                         put_occurance(vector[i]->occurance);
5907                                         get_occurance(next->occurance);
5908                                         vector[i]->occurance = next->occurance;
5909                                         tptr = tptr->right;
5910                                 }
5911                                 propogate_use(state, ins, next);
5912                                 flatten(state, ins, next);
5913                                 free_triple(state, ins);
5914                         }
5915                         else if ((ins->op == OP_STORE) || (ins->op == OP_WRITE)) {
5916                                 struct triple *src, *dst, **vector;
5917                                 struct type *tptr;
5918                                 int op;
5919                                 ulong_t i;
5920
5921                                 op = ins->op;
5922                                 src = RHS(ins, 1);
5923                                 dst = RHS(ins, 0);
5924                                 get_occurance(ins->occurance);
5925                                 next = alloc_triple(state, OP_VAL_VEC, ins->type, -1, -1,
5926                                         ins->occurance);
5927                                 
5928                                 vector = &RHS(next, 0);
5929                                 tptr = next->type->left;
5930                                 for(i = 0; i < ins->type->elements; i++) {
5931                                         struct triple *dfield, *sfield;
5932                                         struct type *mtype;
5933                                         mtype = tptr;
5934                                         if ((mtype->type & TYPE_MASK) == TYPE_PRODUCT) {
5935                                                 mtype = mtype->left;
5936                                         }
5937                                         sfield = deref_field(state, src, mtype->field_ident);
5938                                         dfield = deref_field(state, dst, mtype->field_ident);
5939                                         vector[i] = triple(
5940                                                 state, op, mtype, dfield, sfield);
5941                                         put_occurance(vector[i]->occurance);
5942                                         get_occurance(next->occurance);
5943                                         vector[i]->occurance = next->occurance;
5944                                         tptr = tptr->right;
5945                                 }
5946                                 propogate_use(state, ins, next);
5947                                 flatten(state, ins, next);
5948                                 free_triple(state, ins);
5949                         }
5950                 }
5951                 ins = next;
5952         } while(ins != first);
5953         /* Pass two flatten the valvecs.
5954          */
5955         ins = first;
5956         do {
5957                 struct triple *next;
5958                 next = ins->next;
5959                 if (ins->op == OP_VAL_VEC) {
5960                         release_triple(state, ins);
5961                 } 
5962                 ins = next;
5963         } while(ins != first);
5964         /* Pass three verify the state and set ->id to 0.
5965          */
5966         ins = first;
5967         do {
5968                 ins->id &= ~TRIPLE_FLAG_FLATTENED;
5969                 if ((ins->op != OP_BLOBCONST) && (ins->op != OP_SDECL) &&
5970                         ((ins->type->type & TYPE_MASK) == TYPE_STRUCT)) {
5971                         internal_error(state, ins, "STRUCT_TYPE remains?");
5972                 }
5973                 if (ins->op == OP_DOT) {
5974                         internal_error(state, ins, "OP_DOT remains?");
5975                 }
5976                 if (ins->op == OP_VAL_VEC) {
5977                         internal_error(state, ins, "OP_VAL_VEC remains?");
5978                 }
5979                 ins = ins->next;
5980         } while(ins != first);
5981 }
5982
5983 /* For those operations that cannot be simplified */
5984 static void simplify_noop(struct compile_state *state, struct triple *ins)
5985 {
5986         return;
5987 }
5988
5989 static void simplify_smul(struct compile_state *state, struct triple *ins)
5990 {
5991         if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
5992                 struct triple *tmp;
5993                 tmp = RHS(ins, 0);
5994                 RHS(ins, 0) = RHS(ins, 1);
5995                 RHS(ins, 1) = tmp;
5996         }
5997         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
5998                 long_t left, right;
5999                 left  = read_sconst(ins, &RHS(ins, 0));
6000                 right = read_sconst(ins, &RHS(ins, 1));
6001                 mkconst(state, ins, left * right);
6002         }
6003         else if (is_zero(RHS(ins, 1))) {
6004                 mkconst(state, ins, 0);
6005         }
6006         else if (is_one(RHS(ins, 1))) {
6007                 mkcopy(state, ins, RHS(ins, 0));
6008         }
6009         else if (is_pow2(RHS(ins, 1))) {
6010                 struct triple *val;
6011                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
6012                 ins->op = OP_SL;
6013                 insert_triple(state, ins, val);
6014                 unuse_triple(RHS(ins, 1), ins);
6015                 use_triple(val, ins);
6016                 RHS(ins, 1) = val;
6017         }
6018 }
6019
6020 static void simplify_umul(struct compile_state *state, struct triple *ins)
6021 {
6022         if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
6023                 struct triple *tmp;
6024                 tmp = RHS(ins, 0);
6025                 RHS(ins, 0) = RHS(ins, 1);
6026                 RHS(ins, 1) = tmp;
6027         }
6028         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6029                 ulong_t left, right;
6030                 left  = read_const(state, ins, &RHS(ins, 0));
6031                 right = read_const(state, ins, &RHS(ins, 1));
6032                 mkconst(state, ins, left * right);
6033         }
6034         else if (is_zero(RHS(ins, 1))) {
6035                 mkconst(state, ins, 0);
6036         }
6037         else if (is_one(RHS(ins, 1))) {
6038                 mkcopy(state, ins, RHS(ins, 0));
6039         }
6040         else if (is_pow2(RHS(ins, 1))) {
6041                 struct triple *val;
6042                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
6043                 ins->op = OP_SL;
6044                 insert_triple(state, ins, val);
6045                 unuse_triple(RHS(ins, 1), ins);
6046                 use_triple(val, ins);
6047                 RHS(ins, 1) = val;
6048         }
6049 }
6050
6051 static void simplify_sdiv(struct compile_state *state, struct triple *ins)
6052 {
6053         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6054                 long_t left, right;
6055                 left  = read_sconst(ins, &RHS(ins, 0));
6056                 right = read_sconst(ins, &RHS(ins, 1));
6057                 mkconst(state, ins, left / right);
6058         }
6059         else if (is_zero(RHS(ins, 0))) {
6060                 mkconst(state, ins, 0);
6061         }
6062         else if (is_zero(RHS(ins, 1))) {
6063                 error(state, ins, "division by zero");
6064         }
6065         else if (is_one(RHS(ins, 1))) {
6066                 mkcopy(state, ins, RHS(ins, 0));
6067         }
6068         else if (is_pow2(RHS(ins, 1))) {
6069                 struct triple *val;
6070                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
6071                 ins->op = OP_SSR;
6072                 insert_triple(state, ins, val);
6073                 unuse_triple(RHS(ins, 1), ins);
6074                 use_triple(val, ins);
6075                 RHS(ins, 1) = val;
6076         }
6077 }
6078
6079 static void simplify_udiv(struct compile_state *state, struct triple *ins)
6080 {
6081         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6082                 ulong_t left, right;
6083                 left  = read_const(state, ins, &RHS(ins, 0));
6084                 right = read_const(state, ins, &RHS(ins, 1));
6085                 mkconst(state, ins, left / right);
6086         }
6087         else if (is_zero(RHS(ins, 0))) {
6088                 mkconst(state, ins, 0);
6089         }
6090         else if (is_zero(RHS(ins, 1))) {
6091                 error(state, ins, "division by zero");
6092         }
6093         else if (is_one(RHS(ins, 1))) {
6094                 mkcopy(state, ins, RHS(ins, 0));
6095         }
6096         else if (is_pow2(RHS(ins, 1))) {
6097                 struct triple *val;
6098                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
6099                 ins->op = OP_USR;
6100                 insert_triple(state, ins, val);
6101                 unuse_triple(RHS(ins, 1), ins);
6102                 use_triple(val, ins);
6103                 RHS(ins, 1) = val;
6104         }
6105 }
6106
6107 static void simplify_smod(struct compile_state *state, struct triple *ins)
6108 {
6109         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6110                 long_t left, right;
6111                 left  = read_const(state, ins, &RHS(ins, 0));
6112                 right = read_const(state, ins, &RHS(ins, 1));
6113                 mkconst(state, ins, left % right);
6114         }
6115         else if (is_zero(RHS(ins, 0))) {
6116                 mkconst(state, ins, 0);
6117         }
6118         else if (is_zero(RHS(ins, 1))) {
6119                 error(state, ins, "division by zero");
6120         }
6121         else if (is_one(RHS(ins, 1))) {
6122                 mkconst(state, ins, 0);
6123         }
6124         else if (is_pow2(RHS(ins, 1))) {
6125                 struct triple *val;
6126                 val = int_const(state, ins->type, RHS(ins, 1)->u.cval - 1);
6127                 ins->op = OP_AND;
6128                 insert_triple(state, ins, val);
6129                 unuse_triple(RHS(ins, 1), ins);
6130                 use_triple(val, ins);
6131                 RHS(ins, 1) = val;
6132         }
6133 }
6134
6135 static void simplify_umod(struct compile_state *state, struct triple *ins)
6136 {
6137         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6138                 ulong_t left, right;
6139                 left  = read_const(state, ins, &RHS(ins, 0));
6140                 right = read_const(state, ins, &RHS(ins, 1));
6141                 mkconst(state, ins, left % right);
6142         }
6143         else if (is_zero(RHS(ins, 0))) {
6144                 mkconst(state, ins, 0);
6145         }
6146         else if (is_zero(RHS(ins, 1))) {
6147                 error(state, ins, "division by zero");
6148         }
6149         else if (is_one(RHS(ins, 1))) {
6150                 mkconst(state, ins, 0);
6151         }
6152         else if (is_pow2(RHS(ins, 1))) {
6153                 struct triple *val;
6154                 val = int_const(state, ins->type, RHS(ins, 1)->u.cval - 1);
6155                 ins->op = OP_AND;
6156                 insert_triple(state, ins, val);
6157                 unuse_triple(RHS(ins, 1), ins);
6158                 use_triple(val, ins);
6159                 RHS(ins, 1) = val;
6160         }
6161 }
6162
6163 static void simplify_add(struct compile_state *state, struct triple *ins)
6164 {
6165         /* start with the pointer on the left */
6166         if (is_pointer(RHS(ins, 1))) {
6167                 struct triple *tmp;
6168                 tmp = RHS(ins, 0);
6169                 RHS(ins, 0) = RHS(ins, 1);
6170                 RHS(ins, 1) = tmp;
6171         }
6172         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6173                 if (RHS(ins, 0)->op == OP_INTCONST) {
6174                         ulong_t left, right;
6175                         left  = read_const(state, ins, &RHS(ins, 0));
6176                         right = read_const(state, ins, &RHS(ins, 1));
6177                         mkconst(state, ins, left + right);
6178                 }
6179                 else if (RHS(ins, 0)->op == OP_ADDRCONST) {
6180                         struct triple *sdecl;
6181                         ulong_t left, right;
6182                         sdecl = MISC(RHS(ins, 0), 0);
6183                         left  = RHS(ins, 0)->u.cval;
6184                         right = RHS(ins, 1)->u.cval;
6185                         mkaddr_const(state, ins, sdecl, left + right);
6186                 }
6187                 else {
6188                         internal_warning(state, ins, "Optimize me!");
6189                 }
6190         }
6191         else if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
6192                 struct triple *tmp;
6193                 tmp = RHS(ins, 1);
6194                 RHS(ins, 1) = RHS(ins, 0);
6195                 RHS(ins, 0) = tmp;
6196         }
6197 }
6198
6199 static void simplify_sub(struct compile_state *state, struct triple *ins)
6200 {
6201         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6202                 if (RHS(ins, 0)->op == OP_INTCONST) {
6203                         ulong_t left, right;
6204                         left  = read_const(state, ins, &RHS(ins, 0));
6205                         right = read_const(state, ins, &RHS(ins, 1));
6206                         mkconst(state, ins, left - right);
6207                 }
6208                 else if (RHS(ins, 0)->op == OP_ADDRCONST) {
6209                         struct triple *sdecl;
6210                         ulong_t left, right;
6211                         sdecl = MISC(RHS(ins, 0), 0);
6212                         left  = RHS(ins, 0)->u.cval;
6213                         right = RHS(ins, 1)->u.cval;
6214                         mkaddr_const(state, ins, sdecl, left - right);
6215                 }
6216                 else {
6217                         internal_warning(state, ins, "Optimize me!");
6218                 }
6219         }
6220 }
6221
6222 static void simplify_sl(struct compile_state *state, struct triple *ins)
6223 {
6224         if (is_const(RHS(ins, 1))) {
6225                 ulong_t right;
6226                 right = read_const(state, ins, &RHS(ins, 1));
6227                 if (right >= (size_of(state, ins->type)*8)) {
6228                         warning(state, ins, "left shift count >= width of type");
6229                 }
6230         }
6231         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6232                 ulong_t left, right;
6233                 left  = read_const(state, ins, &RHS(ins, 0));
6234                 right = read_const(state, ins, &RHS(ins, 1));
6235                 mkconst(state, ins,  left << right);
6236         }
6237 }
6238
6239 static void simplify_usr(struct compile_state *state, struct triple *ins)
6240 {
6241         if (is_const(RHS(ins, 1))) {
6242                 ulong_t right;
6243                 right = read_const(state, ins, &RHS(ins, 1));
6244                 if (right >= (size_of(state, ins->type)*8)) {
6245                         warning(state, ins, "right shift count >= width of type");
6246                 }
6247         }
6248         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6249                 ulong_t left, right;
6250                 left  = read_const(state, ins, &RHS(ins, 0));
6251                 right = read_const(state, ins, &RHS(ins, 1));
6252                 mkconst(state, ins, left >> right);
6253         }
6254 }
6255
6256 static void simplify_ssr(struct compile_state *state, struct triple *ins)
6257 {
6258         if (is_const(RHS(ins, 1))) {
6259                 ulong_t right;
6260                 right = read_const(state, ins, &RHS(ins, 1));
6261                 if (right >= (size_of(state, ins->type)*8)) {
6262                         warning(state, ins, "right shift count >= width of type");
6263                 }
6264         }
6265         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6266                 long_t left, right;
6267                 left  = read_sconst(ins, &RHS(ins, 0));
6268                 right = read_sconst(ins, &RHS(ins, 1));
6269                 mkconst(state, ins, left >> right);
6270         }
6271 }
6272
6273 static void simplify_and(struct compile_state *state, struct triple *ins)
6274 {
6275         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6276                 ulong_t left, right;
6277                 left  = read_const(state, ins, &RHS(ins, 0));
6278                 right = read_const(state, ins, &RHS(ins, 1));
6279                 mkconst(state, ins, left & right);
6280         }
6281 }
6282
6283 static void simplify_or(struct compile_state *state, struct triple *ins)
6284 {
6285         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6286                 ulong_t left, right;
6287                 left  = read_const(state, ins, &RHS(ins, 0));
6288                 right = read_const(state, ins, &RHS(ins, 1));
6289                 mkconst(state, ins, left | right);
6290         }
6291 }
6292
6293 static void simplify_xor(struct compile_state *state, struct triple *ins)
6294 {
6295         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6296                 ulong_t left, right;
6297                 left  = read_const(state, ins, &RHS(ins, 0));
6298                 right = read_const(state, ins, &RHS(ins, 1));
6299                 mkconst(state, ins, left ^ right);
6300         }
6301 }
6302
6303 static void simplify_pos(struct compile_state *state, struct triple *ins)
6304 {
6305         if (is_const(RHS(ins, 0))) {
6306                 mkconst(state, ins, RHS(ins, 0)->u.cval);
6307         }
6308         else {
6309                 mkcopy(state, ins, RHS(ins, 0));
6310         }
6311 }
6312
6313 static void simplify_neg(struct compile_state *state, struct triple *ins)
6314 {
6315         if (is_const(RHS(ins, 0))) {
6316                 ulong_t left;
6317                 left = read_const(state, ins, &RHS(ins, 0));
6318                 mkconst(state, ins, -left);
6319         }
6320         else if (RHS(ins, 0)->op == OP_NEG) {
6321                 mkcopy(state, ins, RHS(RHS(ins, 0), 0));
6322         }
6323 }
6324
6325 static void simplify_invert(struct compile_state *state, struct triple *ins)
6326 {
6327         if (is_const(RHS(ins, 0))) {
6328                 ulong_t left;
6329                 left = read_const(state, ins, &RHS(ins, 0));
6330                 mkconst(state, ins, ~left);
6331         }
6332 }
6333
6334 static void simplify_eq(struct compile_state *state, struct triple *ins)
6335 {
6336         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6337                 ulong_t left, right;
6338                 left  = read_const(state, ins, &RHS(ins, 0));
6339                 right = read_const(state, ins, &RHS(ins, 1));
6340                 mkconst(state, ins, left == right);
6341         }
6342         else if (RHS(ins, 0) == RHS(ins, 1)) {
6343                 mkconst(state, ins, 1);
6344         }
6345 }
6346
6347 static void simplify_noteq(struct compile_state *state, struct triple *ins)
6348 {
6349         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6350                 ulong_t left, right;
6351                 left  = read_const(state, ins, &RHS(ins, 0));
6352                 right = read_const(state, ins, &RHS(ins, 1));
6353                 mkconst(state, ins, left != right);
6354         }
6355         else if (RHS(ins, 0) == RHS(ins, 1)) {
6356                 mkconst(state, ins, 0);
6357         }
6358 }
6359
6360 static void simplify_sless(struct compile_state *state, struct triple *ins)
6361 {
6362         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6363                 long_t left, right;
6364                 left  = read_sconst(ins, &RHS(ins, 0));
6365                 right = read_sconst(ins, &RHS(ins, 1));
6366                 mkconst(state, ins, left < right);
6367         }
6368         else if (RHS(ins, 0) == RHS(ins, 1)) {
6369                 mkconst(state, ins, 0);
6370         }
6371 }
6372
6373 static void simplify_uless(struct compile_state *state, struct triple *ins)
6374 {
6375         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6376                 ulong_t left, right;
6377                 left  = read_const(state, ins, &RHS(ins, 0));
6378                 right = read_const(state, ins, &RHS(ins, 1));
6379                 mkconst(state, ins, left < right);
6380         }
6381         else if (is_zero(RHS(ins, 0))) {
6382                 mkconst(state, ins, 1);
6383         }
6384         else if (RHS(ins, 0) == RHS(ins, 1)) {
6385                 mkconst(state, ins, 0);
6386         }
6387 }
6388
6389 static void simplify_smore(struct compile_state *state, struct triple *ins)
6390 {
6391         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6392                 long_t left, right;
6393                 left  = read_sconst(ins, &RHS(ins, 0));
6394                 right = read_sconst(ins, &RHS(ins, 1));
6395                 mkconst(state, ins, left > right);
6396         }
6397         else if (RHS(ins, 0) == RHS(ins, 1)) {
6398                 mkconst(state, ins, 0);
6399         }
6400 }
6401
6402 static void simplify_umore(struct compile_state *state, struct triple *ins)
6403 {
6404         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6405                 ulong_t left, right;
6406                 left  = read_const(state, ins, &RHS(ins, 0));
6407                 right = read_const(state, ins, &RHS(ins, 1));
6408                 mkconst(state, ins, left > right);
6409         }
6410         else if (is_zero(RHS(ins, 1))) {
6411                 mkconst(state, ins, 1);
6412         }
6413         else if (RHS(ins, 0) == RHS(ins, 1)) {
6414                 mkconst(state, ins, 0);
6415         }
6416 }
6417
6418
6419 static void simplify_slesseq(struct compile_state *state, struct triple *ins)
6420 {
6421         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6422                 long_t left, right;
6423                 left  = read_sconst(ins, &RHS(ins, 0));
6424                 right = read_sconst(ins, &RHS(ins, 1));
6425                 mkconst(state, ins, left <= right);
6426         }
6427         else if (RHS(ins, 0) == RHS(ins, 1)) {
6428                 mkconst(state, ins, 1);
6429         }
6430 }
6431
6432 static void simplify_ulesseq(struct compile_state *state, struct triple *ins)
6433 {
6434         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6435                 ulong_t left, right;
6436                 left  = read_const(state, ins, &RHS(ins, 0));
6437                 right = read_const(state, ins, &RHS(ins, 1));
6438                 mkconst(state, ins, left <= right);
6439         }
6440         else if (is_zero(RHS(ins, 0))) {
6441                 mkconst(state, ins, 1);
6442         }
6443         else if (RHS(ins, 0) == RHS(ins, 1)) {
6444                 mkconst(state, ins, 1);
6445         }
6446 }
6447
6448 static void simplify_smoreeq(struct compile_state *state, struct triple *ins)
6449 {
6450         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 0))) {
6451                 long_t left, right;
6452                 left  = read_sconst(ins, &RHS(ins, 0));
6453                 right = read_sconst(ins, &RHS(ins, 1));
6454                 mkconst(state, ins, left >= right);
6455         }
6456         else if (RHS(ins, 0) == RHS(ins, 1)) {
6457                 mkconst(state, ins, 1);
6458         }
6459 }
6460
6461 static void simplify_umoreeq(struct compile_state *state, struct triple *ins)
6462 {
6463         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6464                 ulong_t left, right;
6465                 left  = read_const(state, ins, &RHS(ins, 0));
6466                 right = read_const(state, ins, &RHS(ins, 1));
6467                 mkconst(state, ins, left >= right);
6468         }
6469         else if (is_zero(RHS(ins, 1))) {
6470                 mkconst(state, ins, 1);
6471         }
6472         else if (RHS(ins, 0) == RHS(ins, 1)) {
6473                 mkconst(state, ins, 1);
6474         }
6475 }
6476
6477 static void simplify_lfalse(struct compile_state *state, struct triple *ins)
6478 {
6479         if (is_const(RHS(ins, 0))) {
6480                 ulong_t left;
6481                 left = read_const(state, ins, &RHS(ins, 0));
6482                 mkconst(state, ins, left == 0);
6483         }
6484         /* Otherwise if I am the only user... */
6485         else if ((RHS(ins, 0)->use) &&
6486                 (RHS(ins, 0)->use->member == ins) && (RHS(ins, 0)->use->next == 0)) {
6487                 int need_copy = 1;
6488                 /* Invert a boolean operation */
6489                 switch(RHS(ins, 0)->op) {
6490                 case OP_LTRUE:   RHS(ins, 0)->op = OP_LFALSE;  break;
6491                 case OP_LFALSE:  RHS(ins, 0)->op = OP_LTRUE;   break;
6492                 case OP_EQ:      RHS(ins, 0)->op = OP_NOTEQ;   break;
6493                 case OP_NOTEQ:   RHS(ins, 0)->op = OP_EQ;      break;
6494                 case OP_SLESS:   RHS(ins, 0)->op = OP_SMOREEQ; break;
6495                 case OP_ULESS:   RHS(ins, 0)->op = OP_UMOREEQ; break;
6496                 case OP_SMORE:   RHS(ins, 0)->op = OP_SLESSEQ; break;
6497                 case OP_UMORE:   RHS(ins, 0)->op = OP_ULESSEQ; break;
6498                 case OP_SLESSEQ: RHS(ins, 0)->op = OP_SMORE;   break;
6499                 case OP_ULESSEQ: RHS(ins, 0)->op = OP_UMORE;   break;
6500                 case OP_SMOREEQ: RHS(ins, 0)->op = OP_SLESS;   break;
6501                 case OP_UMOREEQ: RHS(ins, 0)->op = OP_ULESS;   break;
6502                 default:
6503                         need_copy = 0;
6504                         break;
6505                 }
6506                 if (need_copy) {
6507                         mkcopy(state, ins, RHS(ins, 0));
6508                 }
6509         }
6510 }
6511
6512 static void simplify_ltrue (struct compile_state *state, struct triple *ins)
6513 {
6514         if (is_const(RHS(ins, 0))) {
6515                 ulong_t left;
6516                 left = read_const(state, ins, &RHS(ins, 0));
6517                 mkconst(state, ins, left != 0);
6518         }
6519         else switch(RHS(ins, 0)->op) {
6520         case OP_LTRUE:   case OP_LFALSE:  case OP_EQ:      case OP_NOTEQ:
6521         case OP_SLESS:   case OP_ULESS:   case OP_SMORE:   case OP_UMORE:
6522         case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
6523                 mkcopy(state, ins, RHS(ins, 0));
6524         }
6525
6526 }
6527
6528 static void simplify_copy(struct compile_state *state, struct triple *ins)
6529 {
6530         if (is_const(RHS(ins, 0))) {
6531                 switch(RHS(ins, 0)->op) {
6532                 case OP_INTCONST:
6533                 {
6534                         ulong_t left;
6535                         left = read_const(state, ins, &RHS(ins, 0));
6536                         mkconst(state, ins, left);
6537                         break;
6538                 }
6539                 case OP_ADDRCONST:
6540                 {
6541                         struct triple *sdecl;
6542                         ulong_t offset;
6543                         sdecl  = MISC(RHS(ins, 0), 0);
6544                         offset = RHS(ins, 0)->u.cval;
6545                         mkaddr_const(state, ins, sdecl, offset);
6546                         break;
6547                 }
6548                 default:
6549                         internal_error(state, ins, "uknown constant");
6550                         break;
6551                 }
6552         }
6553 }
6554
6555 static int phi_present(struct block *block)
6556 {
6557         struct triple *ptr;
6558         if (!block) {
6559                 return 0;
6560         }
6561         ptr = block->first;
6562         do {
6563                 if (ptr->op == OP_PHI) {
6564                         return 1;
6565                 }
6566                 ptr = ptr->next;
6567         } while(ptr != block->last);
6568         return 0;
6569 }
6570
6571 static int phi_dependency(struct block *block)
6572 {
6573         /* A block has a phi dependency if a phi function
6574          * depends on that block to exist, and makes a block
6575          * that is otherwise useless unsafe to remove.
6576          */
6577         if (block && (
6578                     phi_present(block->left) ||
6579                     phi_present(block->right))) {
6580                 return 1;
6581         }
6582         return 0;
6583 }
6584
6585 static struct triple *branch_target(struct compile_state *state, struct triple *ins)
6586 {
6587         struct triple *targ;
6588         targ = TARG(ins, 0);
6589         /* During scc_transform temporary triples are allocated that
6590          * loop back onto themselves. If I see one don't advance the
6591          * target.
6592          */
6593         while(triple_is_structural(state, targ) && (targ->next != targ)) {
6594                 targ = targ->next;
6595         }
6596         return targ;
6597 }
6598
6599
6600 static void simplify_branch(struct compile_state *state, struct triple *ins)
6601 {
6602         int simplified;
6603         if (ins->op != OP_BRANCH) {
6604                 internal_error(state, ins, "not branch");
6605         }
6606         if (ins->use != 0) {
6607                 internal_error(state, ins, "branch use");
6608         }
6609         /* The challenge here with simplify branch is that I need to 
6610          * make modifications to the control flow graph as well
6611          * as to the branch instruction itself.  That is handled
6612          * by rebuilding the basic blocks after simplify all is called.
6613          */
6614
6615         /* If we have a branch to an unconditional branch update
6616          * our target.  But watch out for dependencies from phi
6617          * functions. 
6618          */
6619         do {
6620                 struct triple *targ;
6621                 simplified = 0;
6622                 targ = branch_target(state, ins);
6623                 if ((targ != ins) && triple_is_uncond_branch(state, targ)) {
6624                         if (!phi_dependency(targ->u.block)) 
6625                         {
6626                                 unuse_triple(TARG(ins, 0), ins);
6627                                 TARG(ins, 0) = TARG(targ, 0);
6628                                 use_triple(TARG(ins, 0), ins);
6629                                 simplified = 1;
6630                         }
6631                 }
6632         } while(simplified);
6633
6634         /* If we have a conditional branch with a constant condition
6635          * make it an unconditional branch.
6636          */
6637         if (TRIPLE_RHS(ins->sizes) && is_const(RHS(ins, 0))) {
6638                 struct triple *targ;
6639                 ulong_t value;
6640                 value = read_const(state, ins, &RHS(ins, 0));
6641                 unuse_triple(RHS(ins, 0), ins);
6642                 targ = TARG(ins, 0);
6643                 ins->sizes = TRIPLE_SIZES(0, 0, 0, 1);
6644                 if (value) {
6645                         unuse_triple(ins->next, ins);
6646                         TARG(ins, 0) = targ;
6647                 }
6648                 else {
6649                         unuse_triple(targ, ins);
6650                         TARG(ins, 0) = ins->next;
6651                 }
6652         }
6653         
6654         /* If we have an unconditional branch to the next instruction
6655          * make it a noop.
6656          */
6657         if (TARG(ins, 0) == ins->next) {
6658                 unuse_triple(ins->next, ins);
6659                 if (TRIPLE_RHS(ins->sizes)) {
6660                         unuse_triple(RHS(ins, 0), ins);
6661                         unuse_triple(ins->next, ins);
6662                 }
6663                 ins->sizes = TRIPLE_SIZES(0, 0, 0, 0);
6664                 ins->op = OP_NOOP;
6665                 if (ins->use) {
6666                         internal_error(state, ins, "noop use != 0");
6667                 }
6668         }
6669 }
6670
6671 static void simplify_label(struct compile_state *state, struct triple *ins)
6672 {
6673         struct triple *first;
6674         first = state->first;
6675         /* Ignore volatile labels */
6676         if (!triple_is_pure(state, ins, ins->id)) {
6677                 return;
6678         }
6679         if (ins->use == 0) {
6680                 ins->op = OP_NOOP;
6681         }
6682         else if (ins->prev->op == OP_LABEL) {
6683                 /* In general it is not safe to merge one label that
6684                  * imediately follows another.  The problem is that the empty
6685                  * looking block may have phi functions that depend on it.
6686                  */
6687                 if (!phi_dependency(ins->prev->u.block)) {
6688                         struct triple_set *user, *next;
6689                         ins->op = OP_NOOP;
6690                         for(user = ins->use; user; user = next) {
6691                                 struct triple *use;
6692                                 next = user->next;
6693                                 use = user->member;
6694                                 if (TARG(use, 0) == ins) {
6695                                         TARG(use, 0) = ins->prev;
6696                                         unuse_triple(ins, use);
6697                                         use_triple(ins->prev, use);
6698                                 }
6699                         }
6700                         if (ins->use) {
6701                                 internal_error(state, ins, "noop use != 0");
6702                         }
6703                 }
6704         }
6705 }
6706
6707 static void simplify_phi(struct compile_state *state, struct triple *ins)
6708 {
6709         struct triple **slot;
6710         struct triple *value;
6711         int zrhs, i;
6712         ulong_t cvalue;
6713         slot = &RHS(ins, 0);
6714         zrhs = TRIPLE_RHS(ins->sizes);
6715         if (zrhs == 0) {
6716                 return;
6717         }
6718         /* See if all of the rhs members of a phi have the same value */
6719         if (slot[0] && is_simple_const(slot[0])) {
6720                 cvalue = read_const(state, ins, &slot[0]);
6721                 for(i = 1; i < zrhs; i++) {
6722                         if (    !slot[i] ||
6723                                 !is_simple_const(slot[i]) ||
6724                                 (cvalue != read_const(state, ins, &slot[i]))) {
6725                                 break;
6726                         }
6727                 }
6728                 if (i == zrhs) {
6729                         mkconst(state, ins, cvalue);
6730                         return;
6731                 }
6732         }
6733         
6734         /* See if all of rhs members of a phi are the same */
6735         value = slot[0];
6736         for(i = 1; i < zrhs; i++) {
6737                 if (slot[i] != value) {
6738                         break;
6739                 }
6740         }
6741         if (i == zrhs) {
6742                 /* If the phi has a single value just copy it */
6743                 mkcopy(state, ins, value);
6744                 return;
6745         }
6746 }
6747
6748
6749 static void simplify_bsf(struct compile_state *state, struct triple *ins)
6750 {
6751         if (is_const(RHS(ins, 0))) {
6752                 ulong_t left;
6753                 left = read_const(state, ins, &RHS(ins, 0));
6754                 mkconst(state, ins, bsf(left));
6755         }
6756 }
6757
6758 static void simplify_bsr(struct compile_state *state, struct triple *ins)
6759 {
6760         if (is_const(RHS(ins, 0))) {
6761                 ulong_t left;
6762                 left = read_const(state, ins, &RHS(ins, 0));
6763                 mkconst(state, ins, bsr(left));
6764         }
6765 }
6766
6767
6768 typedef void (*simplify_t)(struct compile_state *state, struct triple *ins);
6769 static const simplify_t table_simplify[] = {
6770 #if 1
6771 #define simplify_sdivt    simplify_noop
6772 #define simplify_udivt    simplify_noop
6773 #endif
6774 #if 0
6775 #define simplify_smul     simplify_noop
6776 #define simplify_umul     simplify_noop
6777 #define simplify_sdiv     simplify_noop
6778 #define simplify_udiv     simplify_noop
6779 #define simplify_smod     simplify_noop
6780 #define simplify_umod     simplify_noop
6781 #endif
6782 #if 0
6783 #define simplify_add      simplify_noop
6784 #define simplify_sub      simplify_noop
6785 #endif
6786 #if 0
6787 #define simplify_sl       simplify_noop
6788 #define simplify_usr      simplify_noop
6789 #define simplify_ssr      simplify_noop
6790 #endif
6791 #if 0
6792 #define simplify_and      simplify_noop
6793 #define simplify_xor      simplify_noop
6794 #define simplify_or       simplify_noop
6795 #endif
6796 #if 0
6797 #define simplify_pos      simplify_noop
6798 #define simplify_neg      simplify_noop
6799 #define simplify_invert   simplify_noop
6800 #endif
6801
6802 #if 0
6803 #define simplify_eq       simplify_noop
6804 #define simplify_noteq    simplify_noop
6805 #endif
6806 #if 0
6807 #define simplify_sless    simplify_noop
6808 #define simplify_uless    simplify_noop
6809 #define simplify_smore    simplify_noop
6810 #define simplify_umore    simplify_noop
6811 #endif
6812 #if 0
6813 #define simplify_slesseq  simplify_noop
6814 #define simplify_ulesseq  simplify_noop
6815 #define simplify_smoreeq  simplify_noop
6816 #define simplify_umoreeq  simplify_noop
6817 #endif
6818 #if 0
6819 #define simplify_lfalse   simplify_noop
6820 #endif
6821 #if 0
6822 #define simplify_ltrue    simplify_noop
6823 #endif
6824
6825 #if 0
6826 #define simplify_copy     simplify_noop
6827 #endif
6828
6829 #if 0
6830 #define simplify_branch   simplify_noop
6831 #endif
6832 #if 0
6833 #define simplify_label    simplify_noop
6834 #endif
6835
6836 #if 0
6837 #define simplify_phi      simplify_noop
6838 #endif
6839
6840 #if 0
6841 #define simplify_bsf      simplify_noop
6842 #define simplify_bsr      simplify_noop
6843 #endif
6844
6845 #if 1
6846 #define simplify_piece    simplify_noop
6847 #endif
6848
6849 [OP_SDIVT      ] = simplify_sdivt,
6850 [OP_UDIVT      ] = simplify_udivt,
6851 [OP_SMUL       ] = simplify_smul,
6852 [OP_UMUL       ] = simplify_umul,
6853 [OP_SDIV       ] = simplify_sdiv,
6854 [OP_UDIV       ] = simplify_udiv,
6855 [OP_SMOD       ] = simplify_smod,
6856 [OP_UMOD       ] = simplify_umod,
6857 [OP_ADD        ] = simplify_add,
6858 [OP_SUB        ] = simplify_sub,
6859 [OP_SL         ] = simplify_sl,
6860 [OP_USR        ] = simplify_usr,
6861 [OP_SSR        ] = simplify_ssr,
6862 [OP_AND        ] = simplify_and,
6863 [OP_XOR        ] = simplify_xor,
6864 [OP_OR         ] = simplify_or,
6865 [OP_POS        ] = simplify_pos,
6866 [OP_NEG        ] = simplify_neg,
6867 [OP_INVERT     ] = simplify_invert,
6868
6869 [OP_EQ         ] = simplify_eq,
6870 [OP_NOTEQ      ] = simplify_noteq,
6871 [OP_SLESS      ] = simplify_sless,
6872 [OP_ULESS      ] = simplify_uless,
6873 [OP_SMORE      ] = simplify_smore,
6874 [OP_UMORE      ] = simplify_umore,
6875 [OP_SLESSEQ    ] = simplify_slesseq,
6876 [OP_ULESSEQ    ] = simplify_ulesseq,
6877 [OP_SMOREEQ    ] = simplify_smoreeq,
6878 [OP_UMOREEQ    ] = simplify_umoreeq,
6879 [OP_LFALSE     ] = simplify_lfalse,
6880 [OP_LTRUE      ] = simplify_ltrue,
6881
6882 [OP_LOAD       ] = simplify_noop,
6883 [OP_STORE      ] = simplify_noop,
6884
6885 [OP_NOOP       ] = simplify_noop,
6886
6887 [OP_INTCONST   ] = simplify_noop,
6888 [OP_BLOBCONST  ] = simplify_noop,
6889 [OP_ADDRCONST  ] = simplify_noop,
6890
6891 [OP_WRITE      ] = simplify_noop,
6892 [OP_READ       ] = simplify_noop,
6893 [OP_COPY       ] = simplify_copy,
6894 [OP_PIECE      ] = simplify_piece,
6895 [OP_ASM        ] = simplify_noop,
6896
6897 [OP_DOT        ] = simplify_noop,
6898 [OP_VAL_VEC    ] = simplify_noop,
6899
6900 [OP_LIST       ] = simplify_noop,
6901 [OP_BRANCH     ] = simplify_branch,
6902 [OP_LABEL      ] = simplify_label,
6903 [OP_ADECL      ] = simplify_noop,
6904 [OP_SDECL      ] = simplify_noop,
6905 [OP_PHI        ] = simplify_phi,
6906
6907 [OP_INB        ] = simplify_noop,
6908 [OP_INW        ] = simplify_noop,
6909 [OP_INL        ] = simplify_noop,
6910 [OP_OUTB       ] = simplify_noop,
6911 [OP_OUTW       ] = simplify_noop,
6912 [OP_OUTL       ] = simplify_noop,
6913 [OP_BSF        ] = simplify_bsf,
6914 [OP_BSR        ] = simplify_bsr,
6915 [OP_RDMSR      ] = simplify_noop,
6916 [OP_WRMSR      ] = simplify_noop,                    
6917 [OP_HLT        ] = simplify_noop,
6918 };
6919
6920 static void simplify(struct compile_state *state, struct triple *ins)
6921 {
6922         int op;
6923         simplify_t do_simplify;
6924         do {
6925                 op = ins->op;
6926                 do_simplify = 0;
6927                 if ((op < 0) || (op > sizeof(table_simplify)/sizeof(table_simplify[0]))) {
6928                         do_simplify = 0;
6929                 }
6930                 else {
6931                         do_simplify = table_simplify[op];
6932                 }
6933                 if (!do_simplify) {
6934                         internal_error(state, ins, "cannot simplify op: %d %s\n",
6935                                 op, tops(op));
6936                         return;
6937                 }
6938 #if !DEBUG_SIMPLIFY
6939                 do_simplify(state, ins);
6940 #else
6941                 {
6942                         struct triple *dup;
6943                         int ins_count, dup_count;
6944                         dup = dup_triple(state, ins);
6945                         do_simplify(state, ins);
6946                         ins_count = TRIPLE_SIZE(ins->sizes);
6947                         dup_count = TRIPLE_SIZE(dup->sizes);
6948                         if ((dup->op != ins->op) ||
6949                                 (ins_count != dup_count) ||
6950                                 (memcmp(dup->param, ins->param, 
6951                                         dup_count * sizeof(dup->param[0])) != 0) ||
6952                                 (memcmp(&dup->u, &ins->u, sizeof(ins->u)) != 0)) 
6953                         {
6954                                 int i, min_count;
6955                                 fprintf(stderr, "simplify: %11p", ins);
6956                                 if (dup->op == ins->op) {
6957                                         fprintf(stderr, " %-11s", tops(ins->op));
6958                                 } else {
6959                                         fprintf(stderr, " [%-10s %-10s]", 
6960                                                 tops(dup->op), tops(ins->op));
6961                                 }
6962                                 min_count = dup_count;
6963                                 if (min_count > ins_count) {
6964                                         min_count = ins_count;
6965                                 }
6966                                 for(i = 0; i < min_count; i++) {
6967                                         if (dup->param[i] == ins->param[i]) {
6968                                                 fprintf(stderr, " %-11p", ins->param[i]);
6969                                         } else {
6970                                                 fprintf(stderr, " [%-10p %-10p]",
6971                                                         dup->param[i], ins->param[i]);
6972                                         }
6973                                 }
6974                                 for(; i < ins_count; i++) {
6975                                         fprintf(stderr, " [%-9p]", ins->param[i]);
6976                                 }
6977                                 for(; i < dup_count; i++) {
6978                                         fprintf(stderr, " [%-9p]", dup->param[i]);
6979                                 }
6980                                 fprintf(stderr, "\n");
6981                                 fflush(stderr);
6982                         }
6983                         xfree(dup);
6984                 }
6985 #endif
6986         } while(ins->op != op);
6987 }
6988
6989 static void simplify_all(struct compile_state *state)
6990 {
6991         struct triple *ins, *first;
6992         first = state->first;
6993         ins = first->prev;
6994         do {
6995                 simplify(state, ins);
6996                 ins = ins->prev;
6997         } while(ins != first->prev);
6998         ins = first;
6999         do {
7000                 simplify(state, ins);
7001                 ins = ins->next;
7002         }while(ins != first);
7003 }
7004
7005 /*
7006  * Builtins....
7007  * ============================
7008  */
7009
7010 static void register_builtin_function(struct compile_state *state,
7011         const char *name, int op, struct type *rtype, ...)
7012 {
7013         struct type *ftype, *atype, *param, **next;
7014         struct triple *def, *arg, *result, *work, *last, *first;
7015         struct hash_entry *ident;
7016         struct file_state file;
7017         int parameters;
7018         int name_len;
7019         va_list args;
7020         int i;
7021
7022         /* Dummy file state to get debug handling right */
7023         memset(&file, 0, sizeof(file));
7024         file.basename = "<built-in>";
7025         file.line = 1;
7026         file.report_line = 1;
7027         file.report_name = file.basename;
7028         file.prev = state->file;
7029         state->file = &file;
7030         state->function = name;
7031
7032         /* Find the Parameter count */
7033         valid_op(state, op);
7034         parameters = table_ops[op].rhs;
7035         if (parameters < 0 ) {
7036                 internal_error(state, 0, "Invalid builtin parameter count");
7037         }
7038
7039         /* Find the function type */
7040         ftype = new_type(TYPE_FUNCTION, rtype, 0);
7041         next = &ftype->right;
7042         va_start(args, rtype);
7043         for(i = 0; i < parameters; i++) {
7044                 atype = va_arg(args, struct type *);
7045                 if (!*next) {
7046                         *next = atype;
7047                 } else {
7048                         *next = new_type(TYPE_PRODUCT, *next, atype);
7049                         next = &((*next)->right);
7050                 }
7051         }
7052         if (!*next) {
7053                 *next = &void_type;
7054         }
7055         va_end(args);
7056
7057         /* Generate the needed triples */
7058         def = triple(state, OP_LIST, ftype, 0, 0);
7059         first = label(state);
7060         RHS(def, 0) = first;
7061
7062         /* Now string them together */
7063         param = ftype->right;
7064         for(i = 0; i < parameters; i++) {
7065                 if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
7066                         atype = param->left;
7067                 } else {
7068                         atype = param;
7069                 }
7070                 arg = flatten(state, first, variable(state, atype));
7071                 param = param->right;
7072         }
7073         result = 0;
7074         if ((rtype->type & TYPE_MASK) != TYPE_VOID) {
7075                 result = flatten(state, first, variable(state, rtype));
7076         }
7077         MISC(def, 0) = result;
7078         work = new_triple(state, op, rtype, -1, parameters);
7079         for(i = 0, arg = first->next; i < parameters; i++, arg = arg->next) {
7080                 RHS(work, i) = read_expr(state, arg);
7081         }
7082         if (result && ((rtype->type & TYPE_MASK) == TYPE_STRUCT)) {
7083                 struct triple *val;
7084                 /* Populate the LHS with the target registers */
7085                 work = flatten(state, first, work);
7086                 work->type = &void_type;
7087                 param = rtype->left;
7088                 if (rtype->elements != TRIPLE_LHS(work->sizes)) {
7089                         internal_error(state, 0, "Invalid result type");
7090                 }
7091                 val = new_triple(state, OP_VAL_VEC, rtype, -1, -1);
7092                 for(i = 0; i < rtype->elements; i++) {
7093                         struct triple *piece;
7094                         atype = param;
7095                         if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
7096                                 atype = param->left;
7097                         }
7098                         if (!TYPE_ARITHMETIC(atype->type) &&
7099                                 !TYPE_PTR(atype->type)) {
7100                                 internal_error(state, 0, "Invalid lhs type");
7101                         }
7102                         piece = triple(state, OP_PIECE, atype, work, 0);
7103                         piece->u.cval = i;
7104                         LHS(work, i) = piece;
7105                         RHS(val, i) = piece;
7106                 }
7107                 work = val;
7108         }
7109         if (result) {
7110                 work = write_expr(state, result, work);
7111         }
7112         work = flatten(state, first, work);
7113         last = flatten(state, first, label(state));
7114         name_len = strlen(name);
7115         ident = lookup(state, name, name_len);
7116         symbol(state, ident, &ident->sym_ident, def, ftype);
7117         
7118         state->file = file.prev;
7119         state->function = 0;
7120 #if 0
7121         fprintf(stdout, "\n");
7122         loc(stdout, state, 0);
7123         fprintf(stdout, "\n__________ builtin_function _________\n");
7124         print_triple(state, def);
7125         fprintf(stdout, "__________ builtin_function _________ done\n\n");
7126 #endif
7127 }
7128
7129 static struct type *partial_struct(struct compile_state *state,
7130         const char *field_name, struct type *type, struct type *rest)
7131 {
7132         struct hash_entry *field_ident;
7133         struct type *result;
7134         int field_name_len;
7135
7136         field_name_len = strlen(field_name);
7137         field_ident = lookup(state, field_name, field_name_len);
7138
7139         result = clone_type(0, type);
7140         result->field_ident = field_ident;
7141
7142         if (rest) {
7143                 result = new_type(TYPE_PRODUCT, result, rest);
7144         }
7145         return result;
7146 }
7147
7148 static struct type *register_builtin_type(struct compile_state *state,
7149         const char *name, struct type *type)
7150 {
7151         struct hash_entry *ident;
7152         int name_len;
7153
7154         name_len = strlen(name);
7155         ident = lookup(state, name, name_len);
7156         
7157         if ((type->type & TYPE_MASK) == TYPE_PRODUCT) {
7158                 ulong_t elements = 0;
7159                 struct type *field;
7160                 type = new_type(TYPE_STRUCT, type, 0);
7161                 field = type->left;
7162                 while((field->type & TYPE_MASK) == TYPE_PRODUCT) {
7163                         elements++;
7164                         field = field->right;
7165                 }
7166                 elements++;
7167                 symbol(state, ident, &ident->sym_tag, 0, type);
7168                 type->type_ident = ident;
7169                 type->elements = elements;
7170         }
7171         symbol(state, ident, &ident->sym_ident, 0, type);
7172         ident->tok = TOK_TYPE_NAME;
7173         return type;
7174 }
7175
7176
7177 static void register_builtins(struct compile_state *state)
7178 {
7179         struct type *div_type, *ldiv_type;
7180         struct type *udiv_type, *uldiv_type;
7181         struct type *msr_type;
7182
7183         div_type = register_builtin_type(state, "__builtin_div_t",
7184                 partial_struct(state, "quot", &int_type,
7185                 partial_struct(state, "rem",  &int_type, 0)));
7186         ldiv_type = register_builtin_type(state, "__builtin_ldiv_t",
7187                 partial_struct(state, "quot", &long_type,
7188                 partial_struct(state, "rem",  &long_type, 0)));
7189         udiv_type = register_builtin_type(state, "__builtin_udiv_t",
7190                 partial_struct(state, "quot", &uint_type,
7191                 partial_struct(state, "rem",  &uint_type, 0)));
7192         uldiv_type = register_builtin_type(state, "__builtin_uldiv_t",
7193                 partial_struct(state, "quot", &ulong_type,
7194                 partial_struct(state, "rem",  &ulong_type, 0)));
7195
7196         register_builtin_function(state, "__builtin_div",   OP_SDIVT, div_type,
7197                 &int_type, &int_type);
7198         register_builtin_function(state, "__builtin_ldiv",  OP_SDIVT, ldiv_type,
7199                 &long_type, &long_type);
7200         register_builtin_function(state, "__builtin_udiv",  OP_UDIVT, udiv_type,
7201                 &uint_type, &uint_type);
7202         register_builtin_function(state, "__builtin_uldiv", OP_UDIVT, uldiv_type,
7203                 &ulong_type, &ulong_type);
7204
7205         register_builtin_function(state, "__builtin_inb", OP_INB, &uchar_type, 
7206                 &ushort_type);
7207         register_builtin_function(state, "__builtin_inw", OP_INW, &ushort_type,
7208                 &ushort_type);
7209         register_builtin_function(state, "__builtin_inl", OP_INL, &uint_type,   
7210                 &ushort_type);
7211
7212         register_builtin_function(state, "__builtin_outb", OP_OUTB, &void_type, 
7213                 &uchar_type, &ushort_type);
7214         register_builtin_function(state, "__builtin_outw", OP_OUTW, &void_type, 
7215                 &ushort_type, &ushort_type);
7216         register_builtin_function(state, "__builtin_outl", OP_OUTL, &void_type, 
7217                 &uint_type, &ushort_type);
7218         
7219         register_builtin_function(state, "__builtin_bsf", OP_BSF, &int_type, 
7220                 &int_type);
7221         register_builtin_function(state, "__builtin_bsr", OP_BSR, &int_type, 
7222                 &int_type);
7223
7224         msr_type = register_builtin_type(state, "__builtin_msr_t",
7225                 partial_struct(state, "lo", &ulong_type,
7226                 partial_struct(state, "hi", &ulong_type, 0)));
7227
7228         register_builtin_function(state, "__builtin_rdmsr", OP_RDMSR, msr_type,
7229                 &ulong_type);
7230         register_builtin_function(state, "__builtin_wrmsr", OP_WRMSR, &void_type,
7231                 &ulong_type, &ulong_type, &ulong_type);
7232         
7233         register_builtin_function(state, "__builtin_hlt", OP_HLT, &void_type, 
7234                 &void_type);
7235 }
7236
7237 static struct type *declarator(
7238         struct compile_state *state, struct type *type, 
7239         struct hash_entry **ident, int need_ident);
7240 static void decl(struct compile_state *state, struct triple *first);
7241 static struct type *specifier_qualifier_list(struct compile_state *state);
7242 static int isdecl_specifier(int tok);
7243 static struct type *decl_specifiers(struct compile_state *state);
7244 static int istype(int tok);
7245 static struct triple *expr(struct compile_state *state);
7246 static struct triple *assignment_expr(struct compile_state *state);
7247 static struct type *type_name(struct compile_state *state);
7248 static void statement(struct compile_state *state, struct triple *fist);
7249
7250 static struct triple *call_expr(
7251         struct compile_state *state, struct triple *func)
7252 {
7253         struct triple *def;
7254         struct type *param, *type;
7255         ulong_t pvals, index;
7256
7257         if ((func->type->type & TYPE_MASK) != TYPE_FUNCTION) {
7258                 error(state, 0, "Called object is not a function");
7259         }
7260         if (func->op != OP_LIST) {
7261                 internal_error(state, 0, "improper function");
7262         }
7263         eat(state, TOK_LPAREN);
7264         /* Find the return type without any specifiers */
7265         type = clone_type(0, func->type->left);
7266         def = new_triple(state, OP_CALL, func->type, -1, -1);
7267         def->type = type;
7268
7269         pvals = TRIPLE_RHS(def->sizes);
7270         MISC(def, 0) = func;
7271
7272         param = func->type->right;
7273         for(index = 0; index < pvals; index++) {
7274                 struct triple *val;
7275                 struct type *arg_type;
7276                 val = read_expr(state, assignment_expr(state));
7277                 arg_type = param;
7278                 if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
7279                         arg_type = param->left;
7280                 }
7281                 write_compatible(state, arg_type, val->type);
7282                 RHS(def, index) = val;
7283                 if (index != (pvals - 1)) {
7284                         eat(state, TOK_COMMA);
7285                         param = param->right;
7286                 }
7287         }
7288         eat(state, TOK_RPAREN);
7289         return def;
7290 }
7291
7292
7293 static struct triple *character_constant(struct compile_state *state)
7294 {
7295         struct triple *def;
7296         struct token *tk;
7297         const signed char *str, *end;
7298         int c;
7299         int str_len;
7300         eat(state, TOK_LIT_CHAR);
7301         tk = &state->token[0];
7302         str = tk->val.str + 1;
7303         str_len = tk->str_len - 2;
7304         if (str_len <= 0) {
7305                 error(state, 0, "empty character constant");
7306         }
7307         end = str + str_len;
7308         c = char_value(state, &str, end);
7309         if (str != end) {
7310                 error(state, 0, "multibyte character constant not supported");
7311         }
7312         def = int_const(state, &char_type, (ulong_t)((long_t)c));
7313         return def;
7314 }
7315
7316 static struct triple *string_constant(struct compile_state *state)
7317 {
7318         struct triple *def;
7319         struct token *tk;
7320         struct type *type;
7321         const signed char *str, *end;
7322         signed char *buf, *ptr;
7323         int str_len;
7324
7325         buf = 0;
7326         type = new_type(TYPE_ARRAY, &char_type, 0);
7327         type->elements = 0;
7328         /* The while loop handles string concatenation */
7329         do {
7330                 eat(state, TOK_LIT_STRING);
7331                 tk = &state->token[0];
7332                 str = tk->val.str + 1;
7333                 str_len = tk->str_len - 2;
7334                 if (str_len < 0) {
7335                         error(state, 0, "negative string constant length");
7336                 }
7337                 end = str + str_len;
7338                 ptr = buf;
7339                 buf = xmalloc(type->elements + str_len + 1, "string_constant");
7340                 memcpy(buf, ptr, type->elements);
7341                 ptr = buf + type->elements;
7342                 do {
7343                         *ptr++ = char_value(state, &str, end);
7344                 } while(str < end);
7345                 type->elements = ptr - buf;
7346         } while(peek(state) == TOK_LIT_STRING);
7347         *ptr = '\0';
7348         type->elements += 1;
7349         def = triple(state, OP_BLOBCONST, type, 0, 0);
7350         def->u.blob = buf;
7351         return def;
7352 }
7353
7354
7355 static struct triple *integer_constant(struct compile_state *state)
7356 {
7357         struct triple *def;
7358         unsigned long val;
7359         struct token *tk;
7360         char *end;
7361         int u, l, decimal;
7362         struct type *type;
7363
7364         eat(state, TOK_LIT_INT);
7365         tk = &state->token[0];
7366         errno = 0;
7367         decimal = (tk->val.str[0] != '0');
7368         val = strtoul(tk->val.str, &end, 0);
7369         if ((val > ULONG_T_MAX) || ((val == ULONG_MAX) && (errno == ERANGE))) {
7370                 error(state, 0, "Integer constant to large");
7371         }
7372         u = l = 0;
7373         if ((*end == 'u') || (*end == 'U')) {
7374                 u = 1;
7375                         end++;
7376         }
7377         if ((*end == 'l') || (*end == 'L')) {
7378                 l = 1;
7379                 end++;
7380         }
7381         if ((*end == 'u') || (*end == 'U')) {
7382                 u = 1;
7383                 end++;
7384         }
7385         if (*end) {
7386                 error(state, 0, "Junk at end of integer constant");
7387         }
7388         if (u && l)  {
7389                 type = &ulong_type;
7390         }
7391         else if (l) {
7392                 type = &long_type;
7393                 if (!decimal && (val > LONG_T_MAX)) {
7394                         type = &ulong_type;
7395                 }
7396         }
7397         else if (u) {
7398                 type = &uint_type;
7399                 if (val > UINT_T_MAX) {
7400                         type = &ulong_type;
7401                 }
7402         }
7403         else {
7404                 type = &int_type;
7405                 if (!decimal && (val > INT_T_MAX) && (val <= UINT_T_MAX)) {
7406                         type = &uint_type;
7407                 }
7408                 else if (!decimal && (val > LONG_T_MAX)) {
7409                         type = &ulong_type;
7410                 }
7411                 else if (val > INT_T_MAX) {
7412                         type = &long_type;
7413                 }
7414         }
7415         def = int_const(state, type, val);
7416         return def;
7417 }
7418
7419 static struct triple *primary_expr(struct compile_state *state)
7420 {
7421         struct triple *def;
7422         int tok;
7423         tok = peek(state);
7424         switch(tok) {
7425         case TOK_IDENT:
7426         {
7427                 struct hash_entry *ident;
7428                 /* Here ident is either:
7429                  * a varable name
7430                  * a function name
7431                  */
7432                 eat(state, TOK_IDENT);
7433                 ident = state->token[0].ident;
7434                 if (!ident->sym_ident) {
7435                         error(state, 0, "%s undeclared", ident->name);
7436                 }
7437                 def = ident->sym_ident->def;
7438                 break;
7439         }
7440         case TOK_ENUM_CONST:
7441         {
7442                 struct hash_entry *ident;
7443                 /* Here ident is an enumeration constant */
7444                 eat(state, TOK_ENUM_CONST);
7445                 ident = state->token[0].ident;
7446                 if (!ident->sym_ident) {
7447                         error(state, 0, "%s undeclared", ident->name);
7448                 }
7449                 def = ident->sym_ident->def;
7450                 break;
7451         }
7452         case TOK_LPAREN:
7453                 eat(state, TOK_LPAREN);
7454                 def = expr(state);
7455                 eat(state, TOK_RPAREN);
7456                 break;
7457         case TOK_LIT_INT:
7458                 def = integer_constant(state);
7459                 break;
7460         case TOK_LIT_FLOAT:
7461                 eat(state, TOK_LIT_FLOAT);
7462                 error(state, 0, "Floating point constants not supported");
7463                 def = 0;
7464                 FINISHME();
7465                 break;
7466         case TOK_LIT_CHAR:
7467                 def = character_constant(state);
7468                 break;
7469         case TOK_LIT_STRING:
7470                 def = string_constant(state);
7471                 break;
7472         default:
7473                 def = 0;
7474                 error(state, 0, "Unexpected token: %s\n", tokens[tok]);
7475         }
7476         return def;
7477 }
7478
7479 static struct triple *postfix_expr(struct compile_state *state)
7480 {
7481         struct triple *def;
7482         int postfix;
7483         def = primary_expr(state);
7484         do {
7485                 struct triple *left;
7486                 int tok;
7487                 postfix = 1;
7488                 left = def;
7489                 switch((tok = peek(state))) {
7490                 case TOK_LBRACKET:
7491                         eat(state, TOK_LBRACKET);
7492                         def = mk_subscript_expr(state, left, expr(state));
7493                         eat(state, TOK_RBRACKET);
7494                         break;
7495                 case TOK_LPAREN:
7496                         def = call_expr(state, def);
7497                         break;
7498                 case TOK_DOT:
7499                 {
7500                         struct hash_entry *field;
7501                         eat(state, TOK_DOT);
7502                         eat(state, TOK_IDENT);
7503                         field = state->token[0].ident;
7504                         def = deref_field(state, def, field);
7505                         break;
7506                 }
7507                 case TOK_ARROW:
7508                 {
7509                         struct hash_entry *field;
7510                         eat(state, TOK_ARROW);
7511                         eat(state, TOK_IDENT);
7512                         field = state->token[0].ident;
7513                         def = mk_deref_expr(state, read_expr(state, def));
7514                         def = deref_field(state, def, field);
7515                         break;
7516                 }
7517                 case TOK_PLUSPLUS:
7518                         eat(state, TOK_PLUSPLUS);
7519                         def = mk_post_inc_expr(state, left);
7520                         break;
7521                 case TOK_MINUSMINUS:
7522                         eat(state, TOK_MINUSMINUS);
7523                         def = mk_post_dec_expr(state, left);
7524                         break;
7525                 default:
7526                         postfix = 0;
7527                         break;
7528                 }
7529         } while(postfix);
7530         return def;
7531 }
7532
7533 static struct triple *cast_expr(struct compile_state *state);
7534
7535 static struct triple *unary_expr(struct compile_state *state)
7536 {
7537         struct triple *def, *right;
7538         int tok;
7539         switch((tok = peek(state))) {
7540         case TOK_PLUSPLUS:
7541                 eat(state, TOK_PLUSPLUS);
7542                 def = mk_pre_inc_expr(state, unary_expr(state));
7543                 break;
7544         case TOK_MINUSMINUS:
7545                 eat(state, TOK_MINUSMINUS);
7546                 def = mk_pre_dec_expr(state, unary_expr(state));
7547                 break;
7548         case TOK_AND:
7549                 eat(state, TOK_AND);
7550                 def = mk_addr_expr(state, cast_expr(state), 0);
7551                 break;
7552         case TOK_STAR:
7553                 eat(state, TOK_STAR);
7554                 def = mk_deref_expr(state, read_expr(state, cast_expr(state)));
7555                 break;
7556         case TOK_PLUS:
7557                 eat(state, TOK_PLUS);
7558                 right = read_expr(state, cast_expr(state));
7559                 arithmetic(state, right);
7560                 def = integral_promotion(state, right);
7561                 break;
7562         case TOK_MINUS:
7563                 eat(state, TOK_MINUS);
7564                 right = read_expr(state, cast_expr(state));
7565                 arithmetic(state, right);
7566                 def = integral_promotion(state, right);
7567                 def = triple(state, OP_NEG, def->type, def, 0);
7568                 break;
7569         case TOK_TILDE:
7570                 eat(state, TOK_TILDE);
7571                 right = read_expr(state, cast_expr(state));
7572                 integral(state, right);
7573                 def = integral_promotion(state, right);
7574                 def = triple(state, OP_INVERT, def->type, def, 0);
7575                 break;
7576         case TOK_BANG:
7577                 eat(state, TOK_BANG);
7578                 right = read_expr(state, cast_expr(state));
7579                 bool(state, right);
7580                 def = lfalse_expr(state, right);
7581                 break;
7582         case TOK_SIZEOF:
7583         {
7584                 struct type *type;
7585                 int tok1, tok2;
7586                 eat(state, TOK_SIZEOF);
7587                 tok1 = peek(state);
7588                 tok2 = peek2(state);
7589                 if ((tok1 == TOK_LPAREN) && istype(tok2)) {
7590                         eat(state, TOK_LPAREN);
7591                         type = type_name(state);
7592                         eat(state, TOK_RPAREN);
7593                 }
7594                 else {
7595                         struct triple *expr;
7596                         expr = unary_expr(state);
7597                         type = expr->type;
7598                         release_expr(state, expr);
7599                 }
7600                 def = int_const(state, &ulong_type, size_of(state, type));
7601                 break;
7602         }
7603         case TOK_ALIGNOF:
7604         {
7605                 struct type *type;
7606                 int tok1, tok2;
7607                 eat(state, TOK_ALIGNOF);
7608                 tok1 = peek(state);
7609                 tok2 = peek2(state);
7610                 if ((tok1 == TOK_LPAREN) && istype(tok2)) {
7611                         eat(state, TOK_LPAREN);
7612                         type = type_name(state);
7613                         eat(state, TOK_RPAREN);
7614                 }
7615                 else {
7616                         struct triple *expr;
7617                         expr = unary_expr(state);
7618                         type = expr->type;
7619                         release_expr(state, expr);
7620                 }
7621                 def = int_const(state, &ulong_type, align_of(state, type));
7622                 break;
7623         }
7624         default:
7625                 def = postfix_expr(state);
7626                 break;
7627         }
7628         return def;
7629 }
7630
7631 static struct triple *cast_expr(struct compile_state *state)
7632 {
7633         struct triple *def;
7634         int tok1, tok2;
7635         tok1 = peek(state);
7636         tok2 = peek2(state);
7637         if ((tok1 == TOK_LPAREN) && istype(tok2)) {
7638                 struct type *type;
7639                 eat(state, TOK_LPAREN);
7640                 type = type_name(state);
7641                 eat(state, TOK_RPAREN);
7642                 def = mk_cast_expr(state, type, cast_expr(state));
7643         }
7644         else {
7645                 def = unary_expr(state);
7646         }
7647         return def;
7648 }
7649
7650 static struct triple *mult_expr(struct compile_state *state)
7651 {
7652         struct triple *def;
7653         int done;
7654         def = cast_expr(state);
7655         do {
7656                 struct triple *left, *right;
7657                 struct type *result_type;
7658                 int tok, op, sign;
7659                 done = 0;
7660                 switch(tok = (peek(state))) {
7661                 case TOK_STAR:
7662                 case TOK_DIV:
7663                 case TOK_MOD:
7664                         left = read_expr(state, def);
7665                         arithmetic(state, left);
7666
7667                         eat(state, tok);
7668
7669                         right = read_expr(state, cast_expr(state));
7670                         arithmetic(state, right);
7671
7672                         result_type = arithmetic_result(state, left, right);
7673                         sign = is_signed(result_type);
7674                         op = -1;
7675                         switch(tok) {
7676                         case TOK_STAR: op = sign? OP_SMUL : OP_UMUL; break;
7677                         case TOK_DIV:  op = sign? OP_SDIV : OP_UDIV; break;
7678                         case TOK_MOD:  op = sign? OP_SMOD : OP_UMOD; break;
7679                         }
7680                         def = triple(state, op, result_type, left, right);
7681                         break;
7682                 default:
7683                         done = 1;
7684                         break;
7685                 }
7686         } while(!done);
7687         return def;
7688 }
7689
7690 static struct triple *add_expr(struct compile_state *state)
7691 {
7692         struct triple *def;
7693         int done;
7694         def = mult_expr(state);
7695         do {
7696                 done = 0;
7697                 switch( peek(state)) {
7698                 case TOK_PLUS:
7699                         eat(state, TOK_PLUS);
7700                         def = mk_add_expr(state, def, mult_expr(state));
7701                         break;
7702                 case TOK_MINUS:
7703                         eat(state, TOK_MINUS);
7704                         def = mk_sub_expr(state, def, mult_expr(state));
7705                         break;
7706                 default:
7707                         done = 1;
7708                         break;
7709                 }
7710         } while(!done);
7711         return def;
7712 }
7713
7714 static struct triple *shift_expr(struct compile_state *state)
7715 {
7716         struct triple *def;
7717         int done;
7718         def = add_expr(state);
7719         do {
7720                 struct triple *left, *right;
7721                 int tok, op;
7722                 done = 0;
7723                 switch((tok = peek(state))) {
7724                 case TOK_SL:
7725                 case TOK_SR:
7726                         left = read_expr(state, def);
7727                         integral(state, left);
7728                         left = integral_promotion(state, left);
7729
7730                         eat(state, tok);
7731
7732                         right = read_expr(state, add_expr(state));
7733                         integral(state, right);
7734                         right = integral_promotion(state, right);
7735                         
7736                         op = (tok == TOK_SL)? OP_SL : 
7737                                 is_signed(left->type)? OP_SSR: OP_USR;
7738
7739                         def = triple(state, op, left->type, left, right);
7740                         break;
7741                 default:
7742                         done = 1;
7743                         break;
7744                 }
7745         } while(!done);
7746         return def;
7747 }
7748
7749 static struct triple *relational_expr(struct compile_state *state)
7750 {
7751 #warning "Extend relational exprs to work on more than arithmetic types"
7752         struct triple *def;
7753         int done;
7754         def = shift_expr(state);
7755         do {
7756                 struct triple *left, *right;
7757                 struct type *arg_type;
7758                 int tok, op, sign;
7759                 done = 0;
7760                 switch((tok = peek(state))) {
7761                 case TOK_LESS:
7762                 case TOK_MORE:
7763                 case TOK_LESSEQ:
7764                 case TOK_MOREEQ:
7765                         left = read_expr(state, def);
7766                         arithmetic(state, left);
7767
7768                         eat(state, tok);
7769
7770                         right = read_expr(state, shift_expr(state));
7771                         arithmetic(state, right);
7772
7773                         arg_type = arithmetic_result(state, left, right);
7774                         sign = is_signed(arg_type);
7775                         op = -1;
7776                         switch(tok) {
7777                         case TOK_LESS:   op = sign? OP_SLESS : OP_ULESS; break;
7778                         case TOK_MORE:   op = sign? OP_SMORE : OP_UMORE; break;
7779                         case TOK_LESSEQ: op = sign? OP_SLESSEQ : OP_ULESSEQ; break;
7780                         case TOK_MOREEQ: op = sign? OP_SMOREEQ : OP_UMOREEQ; break;
7781                         }
7782                         def = triple(state, op, &int_type, left, right);
7783                         break;
7784                 default:
7785                         done = 1;
7786                         break;
7787                 }
7788         } while(!done);
7789         return def;
7790 }
7791
7792 static struct triple *equality_expr(struct compile_state *state)
7793 {
7794 #warning "Extend equality exprs to work on more than arithmetic types"
7795         struct triple *def;
7796         int done;
7797         def = relational_expr(state);
7798         do {
7799                 struct triple *left, *right;
7800                 int tok, op;
7801                 done = 0;
7802                 switch((tok = peek(state))) {
7803                 case TOK_EQEQ:
7804                 case TOK_NOTEQ:
7805                         left = read_expr(state, def);
7806                         arithmetic(state, left);
7807                         eat(state, tok);
7808                         right = read_expr(state, relational_expr(state));
7809                         arithmetic(state, right);
7810                         op = (tok == TOK_EQEQ) ? OP_EQ: OP_NOTEQ;
7811                         def = triple(state, op, &int_type, left, right);
7812                         break;
7813                 default:
7814                         done = 1;
7815                         break;
7816                 }
7817         } while(!done);
7818         return def;
7819 }
7820
7821 static struct triple *and_expr(struct compile_state *state)
7822 {
7823         struct triple *def;
7824         def = equality_expr(state);
7825         while(peek(state) == TOK_AND) {
7826                 struct triple *left, *right;
7827                 struct type *result_type;
7828                 left = read_expr(state, def);
7829                 integral(state, left);
7830                 eat(state, TOK_AND);
7831                 right = read_expr(state, equality_expr(state));
7832                 integral(state, right);
7833                 result_type = arithmetic_result(state, left, right);
7834                 def = triple(state, OP_AND, result_type, left, right);
7835         }
7836         return def;
7837 }
7838
7839 static struct triple *xor_expr(struct compile_state *state)
7840 {
7841         struct triple *def;
7842         def = and_expr(state);
7843         while(peek(state) == TOK_XOR) {
7844                 struct triple *left, *right;
7845                 struct type *result_type;
7846                 left = read_expr(state, def);
7847                 integral(state, left);
7848                 eat(state, TOK_XOR);
7849                 right = read_expr(state, and_expr(state));
7850                 integral(state, right);
7851                 result_type = arithmetic_result(state, left, right);
7852                 def = triple(state, OP_XOR, result_type, left, right);
7853         }
7854         return def;
7855 }
7856
7857 static struct triple *or_expr(struct compile_state *state)
7858 {
7859         struct triple *def;
7860         def = xor_expr(state);
7861         while(peek(state) == TOK_OR) {
7862                 struct triple *left, *right;
7863                 struct type *result_type;
7864                 left = read_expr(state, def);
7865                 integral(state, left);
7866                 eat(state, TOK_OR);
7867                 right = read_expr(state, xor_expr(state));
7868                 integral(state, right);
7869                 result_type = arithmetic_result(state, left, right);
7870                 def = triple(state, OP_OR, result_type, left, right);
7871         }
7872         return def;
7873 }
7874
7875 static struct triple *land_expr(struct compile_state *state)
7876 {
7877         struct triple *def;
7878         def = or_expr(state);
7879         while(peek(state) == TOK_LOGAND) {
7880                 struct triple *left, *right;
7881                 left = read_expr(state, def);
7882                 bool(state, left);
7883                 eat(state, TOK_LOGAND);
7884                 right = read_expr(state, or_expr(state));
7885                 bool(state, right);
7886
7887                 def = triple(state, OP_LAND, &int_type,
7888                         ltrue_expr(state, left),
7889                         ltrue_expr(state, right));
7890         }
7891         return def;
7892 }
7893
7894 static struct triple *lor_expr(struct compile_state *state)
7895 {
7896         struct triple *def;
7897         def = land_expr(state);
7898         while(peek(state) == TOK_LOGOR) {
7899                 struct triple *left, *right;
7900                 left = read_expr(state, def);
7901                 bool(state, left);
7902                 eat(state, TOK_LOGOR);
7903                 right = read_expr(state, land_expr(state));
7904                 bool(state, right);
7905                 
7906                 def = triple(state, OP_LOR, &int_type,
7907                         ltrue_expr(state, left),
7908                         ltrue_expr(state, right));
7909         }
7910         return def;
7911 }
7912
7913 static struct triple *conditional_expr(struct compile_state *state)
7914 {
7915         struct triple *def;
7916         def = lor_expr(state);
7917         if (peek(state) == TOK_QUEST) {
7918                 struct triple *test, *left, *right;
7919                 bool(state, def);
7920                 test = ltrue_expr(state, read_expr(state, def));
7921                 eat(state, TOK_QUEST);
7922                 left = read_expr(state, expr(state));
7923                 eat(state, TOK_COLON);
7924                 right = read_expr(state, conditional_expr(state));
7925
7926                 def = cond_expr(state, test, left, right);
7927         }
7928         return def;
7929 }
7930
7931 static struct triple *eval_const_expr(
7932         struct compile_state *state, struct triple *expr)
7933 {
7934         struct triple *def;
7935         if (is_const(expr)) {
7936                 def = expr;
7937         } 
7938         else {
7939                 /* If we don't start out as a constant simplify into one */
7940                 struct triple *head, *ptr;
7941                 head = label(state); /* dummy initial triple */
7942                 flatten(state, head, expr);
7943                 for(ptr = head->next; ptr != head; ptr = ptr->next) {
7944                         simplify(state, ptr);
7945                 }
7946                 /* Remove the constant value the tail of the list */
7947                 def = head->prev;
7948                 def->prev->next = def->next;
7949                 def->next->prev = def->prev;
7950                 def->next = def->prev = def;
7951                 if (!is_const(def)) {
7952                         error(state, 0, "Not a constant expression");
7953                 }
7954                 /* Free the intermediate expressions */
7955                 while(head->next != head) {
7956                         release_triple(state, head->next);
7957                 }
7958                 free_triple(state, head);
7959         }
7960         return def;
7961 }
7962
7963 static struct triple *constant_expr(struct compile_state *state)
7964 {
7965         return eval_const_expr(state, conditional_expr(state));
7966 }
7967
7968 static struct triple *assignment_expr(struct compile_state *state)
7969 {
7970         struct triple *def, *left, *right;
7971         int tok, op, sign;
7972         /* The C grammer in K&R shows assignment expressions
7973          * only taking unary expressions as input on their
7974          * left hand side.  But specifies the precedence of
7975          * assignemnt as the lowest operator except for comma.
7976          *
7977          * Allowing conditional expressions on the left hand side
7978          * of an assignement results in a grammar that accepts
7979          * a larger set of statements than standard C.   As long
7980          * as the subset of the grammar that is standard C behaves
7981          * correctly this should cause no problems.
7982          * 
7983          * For the extra token strings accepted by the grammar
7984          * none of them should produce a valid lvalue, so they
7985          * should not produce functioning programs.
7986          *
7987          * GCC has this bug as well, so surprises should be minimal.
7988          */
7989         def = conditional_expr(state);
7990         left = def;
7991         switch((tok = peek(state))) {
7992         case TOK_EQ:
7993                 lvalue(state, left);
7994                 eat(state, TOK_EQ);
7995                 def = write_expr(state, left, 
7996                         read_expr(state, assignment_expr(state)));
7997                 break;
7998         case TOK_TIMESEQ:
7999         case TOK_DIVEQ:
8000         case TOK_MODEQ:
8001                 lvalue(state, left);
8002                 arithmetic(state, left);
8003                 eat(state, tok);
8004                 right = read_expr(state, assignment_expr(state));
8005                 arithmetic(state, right);
8006
8007                 sign = is_signed(left->type);
8008                 op = -1;
8009                 switch(tok) {
8010                 case TOK_TIMESEQ: op = sign? OP_SMUL : OP_UMUL; break;
8011                 case TOK_DIVEQ:   op = sign? OP_SDIV : OP_UDIV; break;
8012                 case TOK_MODEQ:   op = sign? OP_SMOD : OP_UMOD; break;
8013                 }
8014                 def = write_expr(state, left,
8015                         triple(state, op, left->type, 
8016                                 read_expr(state, left), right));
8017                 break;
8018         case TOK_PLUSEQ:
8019                 lvalue(state, left);
8020                 eat(state, TOK_PLUSEQ);
8021                 def = write_expr(state, left,
8022                         mk_add_expr(state, left, assignment_expr(state)));
8023                 break;
8024         case TOK_MINUSEQ:
8025                 lvalue(state, left);
8026                 eat(state, TOK_MINUSEQ);
8027                 def = write_expr(state, left,
8028                         mk_sub_expr(state, left, assignment_expr(state)));
8029                 break;
8030         case TOK_SLEQ:
8031         case TOK_SREQ:
8032         case TOK_ANDEQ:
8033         case TOK_XOREQ:
8034         case TOK_OREQ:
8035                 lvalue(state, left);
8036                 integral(state, left);
8037                 eat(state, tok);
8038                 right = read_expr(state, assignment_expr(state));
8039                 integral(state, right);
8040                 right = integral_promotion(state, right);
8041                 sign = is_signed(left->type);
8042                 op = -1;
8043                 switch(tok) {
8044                 case TOK_SLEQ:  op = OP_SL; break;
8045                 case TOK_SREQ:  op = sign? OP_SSR: OP_USR; break;
8046                 case TOK_ANDEQ: op = OP_AND; break;
8047                 case TOK_XOREQ: op = OP_XOR; break;
8048                 case TOK_OREQ:  op = OP_OR; break;
8049                 }
8050                 def = write_expr(state, left,
8051                         triple(state, op, left->type, 
8052                                 read_expr(state, left), right));
8053                 break;
8054         }
8055         return def;
8056 }
8057
8058 static struct triple *expr(struct compile_state *state)
8059 {
8060         struct triple *def;
8061         def = assignment_expr(state);
8062         while(peek(state) == TOK_COMMA) {
8063                 struct triple *left, *right;
8064                 left = def;
8065                 eat(state, TOK_COMMA);
8066                 right = assignment_expr(state);
8067                 def = triple(state, OP_COMMA, right->type, left, right);
8068         }
8069         return def;
8070 }
8071
8072 static void expr_statement(struct compile_state *state, struct triple *first)
8073 {
8074         if (peek(state) != TOK_SEMI) {
8075                 flatten(state, first, expr(state));
8076         }
8077         eat(state, TOK_SEMI);
8078 }
8079
8080 static void if_statement(struct compile_state *state, struct triple *first)
8081 {
8082         struct triple *test, *jmp1, *jmp2, *middle, *end;
8083
8084         jmp1 = jmp2 = middle = 0;
8085         eat(state, TOK_IF);
8086         eat(state, TOK_LPAREN);
8087         test = expr(state);
8088         bool(state, test);
8089         /* Cleanup and invert the test */
8090         test = lfalse_expr(state, read_expr(state, test));
8091         eat(state, TOK_RPAREN);
8092         /* Generate the needed pieces */
8093         middle = label(state);
8094         jmp1 = branch(state, middle, test);
8095         /* Thread the pieces together */
8096         flatten(state, first, test);
8097         flatten(state, first, jmp1);
8098         flatten(state, first, label(state));
8099         statement(state, first);
8100         if (peek(state) == TOK_ELSE) {
8101                 eat(state, TOK_ELSE);
8102                 /* Generate the rest of the pieces */
8103                 end = label(state);
8104                 jmp2 = branch(state, end, 0);
8105                 /* Thread them together */
8106                 flatten(state, first, jmp2);
8107                 flatten(state, first, middle);
8108                 statement(state, first);
8109                 flatten(state, first, end);
8110         }
8111         else {
8112                 flatten(state, first, middle);
8113         }
8114 }
8115
8116 static void for_statement(struct compile_state *state, struct triple *first)
8117 {
8118         struct triple *head, *test, *tail, *jmp1, *jmp2, *end;
8119         struct triple *label1, *label2, *label3;
8120         struct hash_entry *ident;
8121
8122         eat(state, TOK_FOR);
8123         eat(state, TOK_LPAREN);
8124         head = test = tail = jmp1 = jmp2 = 0;
8125         if (peek(state) != TOK_SEMI) {
8126                 head = expr(state);
8127         } 
8128         eat(state, TOK_SEMI);
8129         if (peek(state) != TOK_SEMI) {
8130                 test = expr(state);
8131                 bool(state, test);
8132                 test = ltrue_expr(state, read_expr(state, test));
8133         }
8134         eat(state, TOK_SEMI);
8135         if (peek(state) != TOK_RPAREN) {
8136                 tail = expr(state);
8137         }
8138         eat(state, TOK_RPAREN);
8139         /* Generate the needed pieces */
8140         label1 = label(state);
8141         label2 = label(state);
8142         label3 = label(state);
8143         if (test) {
8144                 jmp1 = branch(state, label3, 0);
8145                 jmp2 = branch(state, label1, test);
8146         }
8147         else {
8148                 jmp2 = branch(state, label1, 0);
8149         }
8150         end = label(state);
8151         /* Remember where break and continue go */
8152         start_scope(state);
8153         ident = state->i_break;
8154         symbol(state, ident, &ident->sym_ident, end, end->type);
8155         ident = state->i_continue;
8156         symbol(state, ident, &ident->sym_ident, label2, label2->type);
8157         /* Now include the body */
8158         flatten(state, first, head);
8159         flatten(state, first, jmp1);
8160         flatten(state, first, label1);
8161         statement(state, first);
8162         flatten(state, first, label2);
8163         flatten(state, first, tail);
8164         flatten(state, first, label3);
8165         flatten(state, first, test);
8166         flatten(state, first, jmp2);
8167         flatten(state, first, end);
8168         /* Cleanup the break/continue scope */
8169         end_scope(state);
8170 }
8171
8172 static void while_statement(struct compile_state *state, struct triple *first)
8173 {
8174         struct triple *label1, *test, *label2, *jmp1, *jmp2, *end;
8175         struct hash_entry *ident;
8176         eat(state, TOK_WHILE);
8177         eat(state, TOK_LPAREN);
8178         test = expr(state);
8179         bool(state, test);
8180         test = ltrue_expr(state, read_expr(state, test));
8181         eat(state, TOK_RPAREN);
8182         /* Generate the needed pieces */
8183         label1 = label(state);
8184         label2 = label(state);
8185         jmp1 = branch(state, label2, 0);
8186         jmp2 = branch(state, label1, test);
8187         end = label(state);
8188         /* Remember where break and continue go */
8189         start_scope(state);
8190         ident = state->i_break;
8191         symbol(state, ident, &ident->sym_ident, end, end->type);
8192         ident = state->i_continue;
8193         symbol(state, ident, &ident->sym_ident, label2, label2->type);
8194         /* Thread them together */
8195         flatten(state, first, jmp1);
8196         flatten(state, first, label1);
8197         statement(state, first);
8198         flatten(state, first, label2);
8199         flatten(state, first, test);
8200         flatten(state, first, jmp2);
8201         flatten(state, first, end);
8202         /* Cleanup the break/continue scope */
8203         end_scope(state);
8204 }
8205
8206 static void do_statement(struct compile_state *state, struct triple *first)
8207 {
8208         struct triple *label1, *label2, *test, *end;
8209         struct hash_entry *ident;
8210         eat(state, TOK_DO);
8211         /* Generate the needed pieces */
8212         label1 = label(state);
8213         label2 = label(state);
8214         end = label(state);
8215         /* Remember where break and continue go */
8216         start_scope(state);
8217         ident = state->i_break;
8218         symbol(state, ident, &ident->sym_ident, end, end->type);
8219         ident = state->i_continue;
8220         symbol(state, ident, &ident->sym_ident, label2, label2->type);
8221         /* Now include the body */
8222         flatten(state, first, label1);
8223         statement(state, first);
8224         /* Cleanup the break/continue scope */
8225         end_scope(state);
8226         /* Eat the rest of the loop */
8227         eat(state, TOK_WHILE);
8228         eat(state, TOK_LPAREN);
8229         test = read_expr(state, expr(state));
8230         bool(state, test);
8231         eat(state, TOK_RPAREN);
8232         eat(state, TOK_SEMI);
8233         /* Thread the pieces together */
8234         test = ltrue_expr(state, test);
8235         flatten(state, first, label2);
8236         flatten(state, first, test);
8237         flatten(state, first, branch(state, label1, test));
8238         flatten(state, first, end);
8239 }
8240
8241
8242 static void return_statement(struct compile_state *state, struct triple *first)
8243 {
8244         struct triple *jmp, *mv, *dest, *var, *val;
8245         int last;
8246         eat(state, TOK_RETURN);
8247
8248 #warning "FIXME implement a more general excess branch elimination"
8249         val = 0;
8250         /* If we have a return value do some more work */
8251         if (peek(state) != TOK_SEMI) {
8252                 val = read_expr(state, expr(state));
8253         }
8254         eat(state, TOK_SEMI);
8255
8256         /* See if this last statement in a function */
8257         last = ((peek(state) == TOK_RBRACE) && 
8258                 (state->scope_depth == GLOBAL_SCOPE_DEPTH +2));
8259
8260         /* Find the return variable */
8261         var = MISC(state->main_function, 0);
8262         /* Find the return destination */
8263         dest = RHS(state->main_function, 0)->prev;
8264         mv = jmp = 0;
8265         /* If needed generate a jump instruction */
8266         if (!last) {
8267                 jmp = branch(state, dest, 0);
8268         }
8269         /* If needed generate an assignment instruction */
8270         if (val) {
8271                 mv = write_expr(state, var, val);
8272         }
8273         /* Now put the code together */
8274         if (mv) {
8275                 flatten(state, first, mv);
8276                 flatten(state, first, jmp);
8277         }
8278         else if (jmp) {
8279                 flatten(state, first, jmp);
8280         }
8281 }
8282
8283 static void break_statement(struct compile_state *state, struct triple *first)
8284 {
8285         struct triple *dest;
8286         eat(state, TOK_BREAK);
8287         eat(state, TOK_SEMI);
8288         if (!state->i_break->sym_ident) {
8289                 error(state, 0, "break statement not within loop or switch");
8290         }
8291         dest = state->i_break->sym_ident->def;
8292         flatten(state, first, branch(state, dest, 0));
8293 }
8294
8295 static void continue_statement(struct compile_state *state, struct triple *first)
8296 {
8297         struct triple *dest;
8298         eat(state, TOK_CONTINUE);
8299         eat(state, TOK_SEMI);
8300         if (!state->i_continue->sym_ident) {
8301                 error(state, 0, "continue statement outside of a loop");
8302         }
8303         dest = state->i_continue->sym_ident->def;
8304         flatten(state, first, branch(state, dest, 0));
8305 }
8306
8307 static void goto_statement(struct compile_state *state, struct triple *first)
8308 {
8309         struct hash_entry *ident;
8310         eat(state, TOK_GOTO);
8311         eat(state, TOK_IDENT);
8312         ident = state->token[0].ident;
8313         if (!ident->sym_label) {
8314                 /* If this is a forward branch allocate the label now,
8315                  * it will be flattend in the appropriate location later.
8316                  */
8317                 struct triple *ins;
8318                 ins = label(state);
8319                 label_symbol(state, ident, ins);
8320         }
8321         eat(state, TOK_SEMI);
8322
8323         flatten(state, first, branch(state, ident->sym_label->def, 0));
8324 }
8325
8326 static void labeled_statement(struct compile_state *state, struct triple *first)
8327 {
8328         struct triple *ins;
8329         struct hash_entry *ident;
8330         eat(state, TOK_IDENT);
8331
8332         ident = state->token[0].ident;
8333         if (ident->sym_label && ident->sym_label->def) {
8334                 ins = ident->sym_label->def;
8335                 put_occurance(ins->occurance);
8336                 ins->occurance = new_occurance(state);
8337         }
8338         else {
8339                 ins = label(state);
8340                 label_symbol(state, ident, ins);
8341         }
8342         if (ins->id & TRIPLE_FLAG_FLATTENED) {
8343                 error(state, 0, "label %s already defined", ident->name);
8344         }
8345         flatten(state, first, ins);
8346
8347         eat(state, TOK_COLON);
8348         statement(state, first);
8349 }
8350
8351 static void switch_statement(struct compile_state *state, struct triple *first)
8352 {
8353         struct triple *value, *top, *end, *dbranch;
8354         struct hash_entry *ident;
8355
8356         /* See if we have a valid switch statement */
8357         eat(state, TOK_SWITCH);
8358         eat(state, TOK_LPAREN);
8359         value = expr(state);
8360         integral(state, value);
8361         value = read_expr(state, value);
8362         eat(state, TOK_RPAREN);
8363         /* Generate the needed pieces */
8364         top = label(state);
8365         end = label(state);
8366         dbranch = branch(state, end, 0);
8367         /* Remember where case branches and break goes */
8368         start_scope(state);
8369         ident = state->i_switch;
8370         symbol(state, ident, &ident->sym_ident, value, value->type);
8371         ident = state->i_case;
8372         symbol(state, ident, &ident->sym_ident, top, top->type);
8373         ident = state->i_break;
8374         symbol(state, ident, &ident->sym_ident, end, end->type);
8375         ident = state->i_default;
8376         symbol(state, ident, &ident->sym_ident, dbranch, dbranch->type);
8377         /* Thread them together */
8378         flatten(state, first, value);
8379         flatten(state, first, top);
8380         flatten(state, first, dbranch);
8381         statement(state, first);
8382         flatten(state, first, end);
8383         /* Cleanup the switch scope */
8384         end_scope(state);
8385 }
8386
8387 static void case_statement(struct compile_state *state, struct triple *first)
8388 {
8389         struct triple *cvalue, *dest, *test, *jmp;
8390         struct triple *ptr, *value, *top, *dbranch;
8391
8392         /* See if w have a valid case statement */
8393         eat(state, TOK_CASE);
8394         cvalue = constant_expr(state);
8395         integral(state, cvalue);
8396         if (cvalue->op != OP_INTCONST) {
8397                 error(state, 0, "integer constant expected");
8398         }
8399         eat(state, TOK_COLON);
8400         if (!state->i_case->sym_ident) {
8401                 error(state, 0, "case statement not within a switch");
8402         }
8403
8404         /* Lookup the interesting pieces */
8405         top = state->i_case->sym_ident->def;
8406         value = state->i_switch->sym_ident->def;
8407         dbranch = state->i_default->sym_ident->def;
8408
8409         /* See if this case label has already been used */
8410         for(ptr = top; ptr != dbranch; ptr = ptr->next) {
8411                 if (ptr->op != OP_EQ) {
8412                         continue;
8413                 }
8414                 if (RHS(ptr, 1)->u.cval == cvalue->u.cval) {
8415                         error(state, 0, "duplicate case %d statement",
8416                                 cvalue->u.cval);
8417                 }
8418         }
8419         /* Generate the needed pieces */
8420         dest = label(state);
8421         test = triple(state, OP_EQ, &int_type, value, cvalue);
8422         jmp = branch(state, dest, test);
8423         /* Thread the pieces together */
8424         flatten(state, dbranch, test);
8425         flatten(state, dbranch, jmp);
8426         flatten(state, dbranch, label(state));
8427         flatten(state, first, dest);
8428         statement(state, first);
8429 }
8430
8431 static void default_statement(struct compile_state *state, struct triple *first)
8432 {
8433         struct triple *dest;
8434         struct triple *dbranch, *end;
8435
8436         /* See if we have a valid default statement */
8437         eat(state, TOK_DEFAULT);
8438         eat(state, TOK_COLON);
8439
8440         if (!state->i_case->sym_ident) {
8441                 error(state, 0, "default statement not within a switch");
8442         }
8443
8444         /* Lookup the interesting pieces */
8445         dbranch = state->i_default->sym_ident->def;
8446         end = state->i_break->sym_ident->def;
8447
8448         /* See if a default statement has already happened */
8449         if (TARG(dbranch, 0) != end) {
8450                 error(state, 0, "duplicate default statement");
8451         }
8452
8453         /* Generate the needed pieces */
8454         dest = label(state);
8455
8456         /* Thread the pieces together */
8457         TARG(dbranch, 0) = dest;
8458         flatten(state, first, dest);
8459         statement(state, first);
8460 }
8461
8462 static void asm_statement(struct compile_state *state, struct triple *first)
8463 {
8464         struct asm_info *info;
8465         struct {
8466                 struct triple *constraint;
8467                 struct triple *expr;
8468         } out_param[MAX_LHS], in_param[MAX_RHS], clob_param[MAX_LHS];
8469         struct triple *def, *asm_str;
8470         int out, in, clobbers, more, colons, i;
8471
8472         eat(state, TOK_ASM);
8473         /* For now ignore the qualifiers */
8474         switch(peek(state)) {
8475         case TOK_CONST:
8476                 eat(state, TOK_CONST);
8477                 break;
8478         case TOK_VOLATILE:
8479                 eat(state, TOK_VOLATILE);
8480                 break;
8481         }
8482         eat(state, TOK_LPAREN);
8483         asm_str = string_constant(state);
8484
8485         colons = 0;
8486         out = in = clobbers = 0;
8487         /* Outputs */
8488         if ((colons == 0) && (peek(state) == TOK_COLON)) {
8489                 eat(state, TOK_COLON);
8490                 colons++;
8491                 more = (peek(state) == TOK_LIT_STRING);
8492                 while(more) {
8493                         struct triple *var;
8494                         struct triple *constraint;
8495                         char *str;
8496                         more = 0;
8497                         if (out > MAX_LHS) {
8498                                 error(state, 0, "Maximum output count exceeded.");
8499                         }
8500                         constraint = string_constant(state);
8501                         str = constraint->u.blob;
8502                         if (str[0] != '=') {
8503                                 error(state, 0, "Output constraint does not start with =");
8504                         }
8505                         constraint->u.blob = str + 1;
8506                         eat(state, TOK_LPAREN);
8507                         var = conditional_expr(state);
8508                         eat(state, TOK_RPAREN);
8509
8510                         lvalue(state, var);
8511                         out_param[out].constraint = constraint;
8512                         out_param[out].expr       = var;
8513                         if (peek(state) == TOK_COMMA) {
8514                                 eat(state, TOK_COMMA);
8515                                 more = 1;
8516                         }
8517                         out++;
8518                 }
8519         }
8520         /* Inputs */
8521         if ((colons == 1) && (peek(state) == TOK_COLON)) {
8522                 eat(state, TOK_COLON);
8523                 colons++;
8524                 more = (peek(state) == TOK_LIT_STRING);
8525                 while(more) {
8526                         struct triple *val;
8527                         struct triple *constraint;
8528                         char *str;
8529                         more = 0;
8530                         if (in > MAX_RHS) {
8531                                 error(state, 0, "Maximum input count exceeded.");
8532                         }
8533                         constraint = string_constant(state);
8534                         str = constraint->u.blob;
8535                         if (digitp(str[0] && str[1] == '\0')) {
8536                                 int val;
8537                                 val = digval(str[0]);
8538                                 if ((val < 0) || (val >= out)) {
8539                                         error(state, 0, "Invalid input constraint %d", val);
8540                                 }
8541                         }
8542                         eat(state, TOK_LPAREN);
8543                         val = conditional_expr(state);
8544                         eat(state, TOK_RPAREN);
8545
8546                         in_param[in].constraint = constraint;
8547                         in_param[in].expr       = val;
8548                         if (peek(state) == TOK_COMMA) {
8549                                 eat(state, TOK_COMMA);
8550                                 more = 1;
8551                         }
8552                         in++;
8553                 }
8554         }
8555
8556         /* Clobber */
8557         if ((colons == 2) && (peek(state) == TOK_COLON)) {
8558                 eat(state, TOK_COLON);
8559                 colons++;
8560                 more = (peek(state) == TOK_LIT_STRING);
8561                 while(more) {
8562                         struct triple *clobber;
8563                         more = 0;
8564                         if ((clobbers + out) > MAX_LHS) {
8565                                 error(state, 0, "Maximum clobber limit exceeded.");
8566                         }
8567                         clobber = string_constant(state);
8568
8569                         clob_param[clobbers].constraint = clobber;
8570                         if (peek(state) == TOK_COMMA) {
8571                                 eat(state, TOK_COMMA);
8572                                 more = 1;
8573                         }
8574                         clobbers++;
8575                 }
8576         }
8577         eat(state, TOK_RPAREN);
8578         eat(state, TOK_SEMI);
8579
8580
8581         info = xcmalloc(sizeof(*info), "asm_info");
8582         info->str = asm_str->u.blob;
8583         free_triple(state, asm_str);
8584
8585         def = new_triple(state, OP_ASM, &void_type, clobbers + out, in);
8586         def->u.ainfo = info;
8587
8588         /* Find the register constraints */
8589         for(i = 0; i < out; i++) {
8590                 struct triple *constraint;
8591                 constraint = out_param[i].constraint;
8592                 info->tmpl.lhs[i] = arch_reg_constraint(state, 
8593                         out_param[i].expr->type, constraint->u.blob);
8594                 free_triple(state, constraint);
8595         }
8596         for(; i - out < clobbers; i++) {
8597                 struct triple *constraint;
8598                 constraint = clob_param[i - out].constraint;
8599                 info->tmpl.lhs[i] = arch_reg_clobber(state, constraint->u.blob);
8600                 free_triple(state, constraint);
8601         }
8602         for(i = 0; i < in; i++) {
8603                 struct triple *constraint;
8604                 const char *str;
8605                 constraint = in_param[i].constraint;
8606                 str = constraint->u.blob;
8607                 if (digitp(str[0]) && str[1] == '\0') {
8608                         struct reg_info cinfo;
8609                         int val;
8610                         val = digval(str[0]);
8611                         cinfo.reg = info->tmpl.lhs[val].reg;
8612                         cinfo.regcm = arch_type_to_regcm(state, in_param[i].expr->type);
8613                         cinfo.regcm &= info->tmpl.lhs[val].regcm;
8614                         if (cinfo.reg == REG_UNSET) {
8615                                 cinfo.reg = REG_VIRT0 + val;
8616                         }
8617                         if (cinfo.regcm == 0) {
8618                                 error(state, 0, "No registers for %d", val);
8619                         }
8620                         info->tmpl.lhs[val] = cinfo;
8621                         info->tmpl.rhs[i]   = cinfo;
8622                                 
8623                 } else {
8624                         info->tmpl.rhs[i] = arch_reg_constraint(state, 
8625                                 in_param[i].expr->type, str);
8626                 }
8627                 free_triple(state, constraint);
8628         }
8629
8630         /* Now build the helper expressions */
8631         for(i = 0; i < in; i++) {
8632                 RHS(def, i) = read_expr(state,in_param[i].expr);
8633         }
8634         flatten(state, first, def);
8635         for(i = 0; i < (out + clobbers); i++) {
8636                 struct type *type;
8637                 struct triple *piece;
8638                 type = (i < out)? out_param[i].expr->type : &void_type;
8639                 piece = triple(state, OP_PIECE, type, def, 0);
8640                 piece->u.cval = i;
8641                 LHS(def, i) = piece;
8642                 flatten(state, first, piece);
8643         }
8644         /* And write the helpers to their destinations */
8645         for(i = 0; i < out; i++) {
8646                 struct triple *piece;
8647                 piece = LHS(def, i);
8648                 flatten(state, first,
8649                         write_expr(state, out_param[i].expr, piece));
8650         }
8651 }
8652
8653
8654 static int isdecl(int tok)
8655 {
8656         switch(tok) {
8657         case TOK_AUTO:
8658         case TOK_REGISTER:
8659         case TOK_STATIC:
8660         case TOK_EXTERN:
8661         case TOK_TYPEDEF:
8662         case TOK_CONST:
8663         case TOK_RESTRICT:
8664         case TOK_VOLATILE:
8665         case TOK_VOID:
8666         case TOK_CHAR:
8667         case TOK_SHORT:
8668         case TOK_INT:
8669         case TOK_LONG:
8670         case TOK_FLOAT:
8671         case TOK_DOUBLE:
8672         case TOK_SIGNED:
8673         case TOK_UNSIGNED:
8674         case TOK_STRUCT:
8675         case TOK_UNION:
8676         case TOK_ENUM:
8677         case TOK_TYPE_NAME: /* typedef name */
8678                 return 1;
8679         default:
8680                 return 0;
8681         }
8682 }
8683
8684 static void compound_statement(struct compile_state *state, struct triple *first)
8685 {
8686         eat(state, TOK_LBRACE);
8687         start_scope(state);
8688
8689         /* statement-list opt */
8690         while (peek(state) != TOK_RBRACE) {
8691                 statement(state, first);
8692         }
8693         end_scope(state);
8694         eat(state, TOK_RBRACE);
8695 }
8696
8697 static void statement(struct compile_state *state, struct triple *first)
8698 {
8699         int tok;
8700         tok = peek(state);
8701         if (tok == TOK_LBRACE) {
8702                 compound_statement(state, first);
8703         }
8704         else if (tok == TOK_IF) {
8705                 if_statement(state, first); 
8706         }
8707         else if (tok == TOK_FOR) {
8708                 for_statement(state, first);
8709         }
8710         else if (tok == TOK_WHILE) {
8711                 while_statement(state, first);
8712         }
8713         else if (tok == TOK_DO) {
8714                 do_statement(state, first);
8715         }
8716         else if (tok == TOK_RETURN) {
8717                 return_statement(state, first);
8718         }
8719         else if (tok == TOK_BREAK) {
8720                 break_statement(state, first);
8721         }
8722         else if (tok == TOK_CONTINUE) {
8723                 continue_statement(state, first);
8724         }
8725         else if (tok == TOK_GOTO) {
8726                 goto_statement(state, first);
8727         }
8728         else if (tok == TOK_SWITCH) {
8729                 switch_statement(state, first);
8730         }
8731         else if (tok == TOK_ASM) {
8732                 asm_statement(state, first);
8733         }
8734         else if ((tok == TOK_IDENT) && (peek2(state) == TOK_COLON)) {
8735                 labeled_statement(state, first); 
8736         }
8737         else if (tok == TOK_CASE) {
8738                 case_statement(state, first);
8739         }
8740         else if (tok == TOK_DEFAULT) {
8741                 default_statement(state, first);
8742         }
8743         else if (isdecl(tok)) {
8744                 /* This handles C99 intermixing of statements and decls */
8745                 decl(state, first);
8746         }
8747         else {
8748                 expr_statement(state, first);
8749         }
8750 }
8751
8752 static struct type *param_decl(struct compile_state *state)
8753 {
8754         struct type *type;
8755         struct hash_entry *ident;
8756         /* Cheat so the declarator will know we are not global */
8757         start_scope(state); 
8758         ident = 0;
8759         type = decl_specifiers(state);
8760         type = declarator(state, type, &ident, 0);
8761         type->field_ident = ident;
8762         end_scope(state);
8763         return type;
8764 }
8765
8766 static struct type *param_type_list(struct compile_state *state, struct type *type)
8767 {
8768         struct type *ftype, **next;
8769         ftype = new_type(TYPE_FUNCTION, type, param_decl(state));
8770         next = &ftype->right;
8771         while(peek(state) == TOK_COMMA) {
8772                 eat(state, TOK_COMMA);
8773                 if (peek(state) == TOK_DOTS) {
8774                         eat(state, TOK_DOTS);
8775                         error(state, 0, "variadic functions not supported");
8776                 }
8777                 else {
8778                         *next = new_type(TYPE_PRODUCT, *next, param_decl(state));
8779                         next = &((*next)->right);
8780                 }
8781         }
8782         return ftype;
8783 }
8784
8785
8786 static struct type *type_name(struct compile_state *state)
8787 {
8788         struct type *type;
8789         type = specifier_qualifier_list(state);
8790         /* abstract-declarator (may consume no tokens) */
8791         type = declarator(state, type, 0, 0);
8792         return type;
8793 }
8794
8795 static struct type *direct_declarator(
8796         struct compile_state *state, struct type *type, 
8797         struct hash_entry **ident, int need_ident)
8798 {
8799         struct type *outer;
8800         int op;
8801         outer = 0;
8802         arrays_complete(state, type);
8803         switch(peek(state)) {
8804         case TOK_IDENT:
8805                 eat(state, TOK_IDENT);
8806                 if (!ident) {
8807                         error(state, 0, "Unexpected identifier found");
8808                 }
8809                 /* The name of what we are declaring */
8810                 *ident = state->token[0].ident;
8811                 break;
8812         case TOK_LPAREN:
8813                 eat(state, TOK_LPAREN);
8814                 outer = declarator(state, type, ident, need_ident);
8815                 eat(state, TOK_RPAREN);
8816                 break;
8817         default:
8818                 if (need_ident) {
8819                         error(state, 0, "Identifier expected");
8820                 }
8821                 break;
8822         }
8823         do {
8824                 op = 1;
8825                 arrays_complete(state, type);
8826                 switch(peek(state)) {
8827                 case TOK_LPAREN:
8828                         eat(state, TOK_LPAREN);
8829                         type = param_type_list(state, type);
8830                         eat(state, TOK_RPAREN);
8831                         break;
8832                 case TOK_LBRACKET:
8833                 {
8834                         unsigned int qualifiers;
8835                         struct triple *value;
8836                         value = 0;
8837                         eat(state, TOK_LBRACKET);
8838                         if (peek(state) != TOK_RBRACKET) {
8839                                 value = constant_expr(state);
8840                                 integral(state, value);
8841                         }
8842                         eat(state, TOK_RBRACKET);
8843
8844                         qualifiers = type->type & (QUAL_MASK | STOR_MASK);
8845                         type = new_type(TYPE_ARRAY | qualifiers, type, 0);
8846                         if (value) {
8847                                 type->elements = value->u.cval;
8848                                 free_triple(state, value);
8849                         } else {
8850                                 type->elements = ELEMENT_COUNT_UNSPECIFIED;
8851                                 op = 0;
8852                         }
8853                 }
8854                         break;
8855                 default:
8856                         op = 0;
8857                         break;
8858                 }
8859         } while(op);
8860         if (outer) {
8861                 struct type *inner;
8862                 arrays_complete(state, type);
8863                 FINISHME();
8864                 for(inner = outer; inner->left; inner = inner->left)
8865                         ;
8866                 inner->left = type;
8867                 type = outer;
8868         }
8869         return type;
8870 }
8871
8872 static struct type *declarator(
8873         struct compile_state *state, struct type *type, 
8874         struct hash_entry **ident, int need_ident)
8875 {
8876         while(peek(state) == TOK_STAR) {
8877                 eat(state, TOK_STAR);
8878                 type = new_type(TYPE_POINTER | (type->type & STOR_MASK), type, 0);
8879         }
8880         type = direct_declarator(state, type, ident, need_ident);
8881         return type;
8882 }
8883
8884
8885 static struct type *typedef_name(
8886         struct compile_state *state, unsigned int specifiers)
8887 {
8888         struct hash_entry *ident;
8889         struct type *type;
8890         eat(state, TOK_TYPE_NAME);
8891         ident = state->token[0].ident;
8892         type = ident->sym_ident->type;
8893         specifiers |= type->type & QUAL_MASK;
8894         if ((specifiers & (STOR_MASK | QUAL_MASK)) != 
8895                 (type->type & (STOR_MASK | QUAL_MASK))) {
8896                 type = clone_type(specifiers, type);
8897         }
8898         return type;
8899 }
8900
8901 static struct type *enum_specifier(
8902         struct compile_state *state, unsigned int spec)
8903 {
8904         struct hash_entry *ident;
8905         ulong_t base;
8906         int tok;
8907         struct type *enum_type;
8908         enum_type = 0;
8909         ident = 0;
8910         eat(state, TOK_ENUM);
8911         tok = peek(state);
8912         if ((tok == TOK_IDENT) || (tok == TOK_ENUM_CONST) || (tok == TOK_TYPE_NAME)) {
8913                 eat(state, tok);
8914                 ident = state->token[0].ident;
8915                 
8916         }
8917         base = 0;
8918         if (!ident || (peek(state) == TOK_LBRACE)) {
8919                 struct type **next;
8920                 eat(state, TOK_LBRACE);
8921                 enum_type = new_type(TYPE_ENUM | spec, 0, 0);
8922                 enum_type->type_ident = ident;
8923                 next = &enum_type->right;
8924                 do {
8925                         struct hash_entry *eident;
8926                         struct triple *value;
8927                         struct type *entry;
8928                         eat(state, TOK_IDENT);
8929                         eident = state->token[0].ident;
8930                         if (eident->sym_ident) {
8931                                 error(state, 0, "%s already declared", 
8932                                         eident->name);
8933                         }
8934                         eident->tok = TOK_ENUM_CONST;
8935                         if (peek(state) == TOK_EQ) {
8936                                 struct triple *val;
8937                                 eat(state, TOK_EQ);
8938                                 val = constant_expr(state);
8939                                 integral(state, val);
8940                                 base = val->u.cval;
8941                         }
8942                         value = int_const(state, &int_type, base);
8943                         symbol(state, eident, &eident->sym_ident, value, &int_type);
8944                         entry = new_type(TYPE_LIST, 0, 0);
8945                         entry->field_ident = eident;
8946                         *next = entry;
8947                         next = &entry->right;
8948                         base += 1;
8949                         if (peek(state) == TOK_COMMA) {
8950                                 eat(state, TOK_COMMA);
8951                         }
8952                 } while(peek(state) != TOK_RBRACE);
8953                 eat(state, TOK_RBRACE);
8954                 if (ident) {
8955                         symbol(state, ident, &ident->sym_tag, 0, enum_type);
8956                 }
8957         }
8958         if (ident && ident->sym_tag &&
8959                 ident->sym_tag->type &&
8960                 ((ident->sym_tag->type->type & TYPE_MASK) == TYPE_ENUM)) {
8961                 enum_type = clone_type(spec, ident->sym_tag->type);
8962         }
8963         else if (ident && !enum_type) {
8964                 error(state, 0, "enum %s undeclared", ident->name);
8965         }
8966         return enum_type;
8967 }
8968
8969 static struct type *struct_declarator(
8970         struct compile_state *state, struct type *type, struct hash_entry **ident)
8971 {
8972         int tok;
8973         tok = peek(state);
8974         if (tok != TOK_COLON) {
8975                 type = declarator(state, type, ident, 1);
8976         }
8977         if ((tok == TOK_COLON) || (peek(state) == TOK_COLON)) {
8978                 struct triple *value;
8979                 eat(state, TOK_COLON);
8980                 value = constant_expr(state);
8981 #warning "FIXME implement bitfields to reduce register usage"
8982                 error(state, 0, "bitfields not yet implemented");
8983         }
8984         return type;
8985 }
8986
8987 static struct type *struct_or_union_specifier(
8988         struct compile_state *state, unsigned int spec)
8989 {
8990         struct type *struct_type;
8991         struct hash_entry *ident;
8992         unsigned int type_join;
8993         int tok;
8994         struct_type = 0;
8995         ident = 0;
8996         switch(peek(state)) {
8997         case TOK_STRUCT:
8998                 eat(state, TOK_STRUCT);
8999                 type_join = TYPE_PRODUCT;
9000                 break;
9001         case TOK_UNION:
9002                 eat(state, TOK_UNION);
9003                 type_join = TYPE_OVERLAP;
9004                 error(state, 0, "unions not yet supported\n");
9005                 break;
9006         default:
9007                 eat(state, TOK_STRUCT);
9008                 type_join = TYPE_PRODUCT;
9009                 break;
9010         }
9011         tok = peek(state);
9012         if ((tok == TOK_IDENT) || (tok == TOK_ENUM_CONST) || (tok == TOK_TYPE_NAME)) {
9013                 eat(state, tok);
9014                 ident = state->token[0].ident;
9015         }
9016         if (!ident || (peek(state) == TOK_LBRACE)) {
9017                 ulong_t elements;
9018                 struct type **next;
9019                 elements = 0;
9020                 eat(state, TOK_LBRACE);
9021                 next = &struct_type;
9022                 do {
9023                         struct type *base_type;
9024                         int done;
9025                         base_type = specifier_qualifier_list(state);
9026                         do {
9027                                 struct type *type;
9028                                 struct hash_entry *fident;
9029                                 done = 1;
9030                                 type = struct_declarator(state, base_type, &fident);
9031                                 elements++;
9032                                 if (peek(state) == TOK_COMMA) {
9033                                         done = 0;
9034                                         eat(state, TOK_COMMA);
9035                                 }
9036                                 type = clone_type(0, type);
9037                                 type->field_ident = fident;
9038                                 if (*next) {
9039                                         *next = new_type(type_join, *next, type);
9040                                         next = &((*next)->right);
9041                                 } else {
9042                                         *next = type;
9043                                 }
9044                         } while(!done);
9045                         eat(state, TOK_SEMI);
9046                 } while(peek(state) != TOK_RBRACE);
9047                 eat(state, TOK_RBRACE);
9048                 struct_type = new_type(TYPE_STRUCT | spec, struct_type, 0);
9049                 struct_type->type_ident = ident;
9050                 struct_type->elements = elements;
9051                 if (ident) {
9052                         symbol(state, ident, &ident->sym_tag, 0, struct_type);
9053                 }
9054         }
9055         if (ident && ident->sym_tag && 
9056                 ident->sym_tag->type && 
9057                 ((ident->sym_tag->type->type & TYPE_MASK) == TYPE_STRUCT)) {
9058                 struct_type = clone_type(spec, ident->sym_tag->type);
9059         }
9060         else if (ident && !struct_type) {
9061                 error(state, 0, "struct %s undeclared", ident->name);
9062         }
9063         return struct_type;
9064 }
9065
9066 static unsigned int storage_class_specifier_opt(struct compile_state *state)
9067 {
9068         unsigned int specifiers;
9069         switch(peek(state)) {
9070         case TOK_AUTO:
9071                 eat(state, TOK_AUTO);
9072                 specifiers = STOR_AUTO;
9073                 break;
9074         case TOK_REGISTER:
9075                 eat(state, TOK_REGISTER);
9076                 specifiers = STOR_REGISTER;
9077                 break;
9078         case TOK_STATIC:
9079                 eat(state, TOK_STATIC);
9080                 specifiers = STOR_STATIC;
9081                 break;
9082         case TOK_EXTERN:
9083                 eat(state, TOK_EXTERN);
9084                 specifiers = STOR_EXTERN;
9085                 break;
9086         case TOK_TYPEDEF:
9087                 eat(state, TOK_TYPEDEF);
9088                 specifiers = STOR_TYPEDEF;
9089                 break;
9090         default:
9091                 if (state->scope_depth <= GLOBAL_SCOPE_DEPTH) {
9092                         specifiers = STOR_STATIC;
9093                 }
9094                 else {
9095                         specifiers = STOR_AUTO;
9096                 }
9097         }
9098         return specifiers;
9099 }
9100
9101 static unsigned int function_specifier_opt(struct compile_state *state)
9102 {
9103         /* Ignore the inline keyword */
9104         unsigned int specifiers;
9105         specifiers = 0;
9106         switch(peek(state)) {
9107         case TOK_INLINE:
9108                 eat(state, TOK_INLINE);
9109                 specifiers = STOR_INLINE;
9110         }
9111         return specifiers;
9112 }
9113
9114 static unsigned int type_qualifiers(struct compile_state *state)
9115 {
9116         unsigned int specifiers;
9117         int done;
9118         done = 0;
9119         specifiers = QUAL_NONE;
9120         do {
9121                 switch(peek(state)) {
9122                 case TOK_CONST:
9123                         eat(state, TOK_CONST);
9124                         specifiers = QUAL_CONST;
9125                         break;
9126                 case TOK_VOLATILE:
9127                         eat(state, TOK_VOLATILE);
9128                         specifiers = QUAL_VOLATILE;
9129                         break;
9130                 case TOK_RESTRICT:
9131                         eat(state, TOK_RESTRICT);
9132                         specifiers = QUAL_RESTRICT;
9133                         break;
9134                 default:
9135                         done = 1;
9136                         break;
9137                 }
9138         } while(!done);
9139         return specifiers;
9140 }
9141
9142 static struct type *type_specifier(
9143         struct compile_state *state, unsigned int spec)
9144 {
9145         struct type *type;
9146         type = 0;
9147         switch(peek(state)) {
9148         case TOK_VOID:
9149                 eat(state, TOK_VOID);
9150                 type = new_type(TYPE_VOID | spec, 0, 0);
9151                 break;
9152         case TOK_CHAR:
9153                 eat(state, TOK_CHAR);
9154                 type = new_type(TYPE_CHAR | spec, 0, 0);
9155                 break;
9156         case TOK_SHORT:
9157                 eat(state, TOK_SHORT);
9158                 if (peek(state) == TOK_INT) {
9159                         eat(state, TOK_INT);
9160                 }
9161                 type = new_type(TYPE_SHORT | spec, 0, 0);
9162                 break;
9163         case TOK_INT:
9164                 eat(state, TOK_INT);
9165                 type = new_type(TYPE_INT | spec, 0, 0);
9166                 break;
9167         case TOK_LONG:
9168                 eat(state, TOK_LONG);
9169                 switch(peek(state)) {
9170                 case TOK_LONG:
9171                         eat(state, TOK_LONG);
9172                         error(state, 0, "long long not supported");
9173                         break;
9174                 case TOK_DOUBLE:
9175                         eat(state, TOK_DOUBLE);
9176                         error(state, 0, "long double not supported");
9177                         break;
9178                 case TOK_INT:
9179                         eat(state, TOK_INT);
9180                         type = new_type(TYPE_LONG | spec, 0, 0);
9181                         break;
9182                 default:
9183                         type = new_type(TYPE_LONG | spec, 0, 0);
9184                         break;
9185                 }
9186                 break;
9187         case TOK_FLOAT:
9188                 eat(state, TOK_FLOAT);
9189                 error(state, 0, "type float not supported");
9190                 break;
9191         case TOK_DOUBLE:
9192                 eat(state, TOK_DOUBLE);
9193                 error(state, 0, "type double not supported");
9194                 break;
9195         case TOK_SIGNED:
9196                 eat(state, TOK_SIGNED);
9197                 switch(peek(state)) {
9198                 case TOK_LONG:
9199                         eat(state, TOK_LONG);
9200                         switch(peek(state)) {
9201                         case TOK_LONG:
9202                                 eat(state, TOK_LONG);
9203                                 error(state, 0, "type long long not supported");
9204                                 break;
9205                         case TOK_INT:
9206                                 eat(state, TOK_INT);
9207                                 type = new_type(TYPE_LONG | spec, 0, 0);
9208                                 break;
9209                         default:
9210                                 type = new_type(TYPE_LONG | spec, 0, 0);
9211                                 break;
9212                         }
9213                         break;
9214                 case TOK_INT:
9215                         eat(state, TOK_INT);
9216                         type = new_type(TYPE_INT | spec, 0, 0);
9217                         break;
9218                 case TOK_SHORT:
9219                         eat(state, TOK_SHORT);
9220                         type = new_type(TYPE_SHORT | spec, 0, 0);
9221                         break;
9222                 case TOK_CHAR:
9223                         eat(state, TOK_CHAR);
9224                         type = new_type(TYPE_CHAR | spec, 0, 0);
9225                         break;
9226                 default:
9227                         type = new_type(TYPE_INT | spec, 0, 0);
9228                         break;
9229                 }
9230                 break;
9231         case TOK_UNSIGNED:
9232                 eat(state, TOK_UNSIGNED);
9233                 switch(peek(state)) {
9234                 case TOK_LONG:
9235                         eat(state, TOK_LONG);
9236                         switch(peek(state)) {
9237                         case TOK_LONG:
9238                                 eat(state, TOK_LONG);
9239                                 error(state, 0, "unsigned long long not supported");
9240                                 break;
9241                         case TOK_INT:
9242                                 eat(state, TOK_INT);
9243                                 type = new_type(TYPE_ULONG | spec, 0, 0);
9244                                 break;
9245                         default:
9246                                 type = new_type(TYPE_ULONG | spec, 0, 0);
9247                                 break;
9248                         }
9249                         break;
9250                 case TOK_INT:
9251                         eat(state, TOK_INT);
9252                         type = new_type(TYPE_UINT | spec, 0, 0);
9253                         break;
9254                 case TOK_SHORT:
9255                         eat(state, TOK_SHORT);
9256                         type = new_type(TYPE_USHORT | spec, 0, 0);
9257                         break;
9258                 case TOK_CHAR:
9259                         eat(state, TOK_CHAR);
9260                         type = new_type(TYPE_UCHAR | spec, 0, 0);
9261                         break;
9262                 default:
9263                         type = new_type(TYPE_UINT | spec, 0, 0);
9264                         break;
9265                 }
9266                 break;
9267                 /* struct or union specifier */
9268         case TOK_STRUCT:
9269         case TOK_UNION:
9270                 type = struct_or_union_specifier(state, spec);
9271                 break;
9272                 /* enum-spefifier */
9273         case TOK_ENUM:
9274                 type = enum_specifier(state, spec);
9275                 break;
9276                 /* typedef name */
9277         case TOK_TYPE_NAME:
9278                 type = typedef_name(state, spec);
9279                 break;
9280         default:
9281                 error(state, 0, "bad type specifier %s", 
9282                         tokens[peek(state)]);
9283                 break;
9284         }
9285         return type;
9286 }
9287
9288 static int istype(int tok)
9289 {
9290         switch(tok) {
9291         case TOK_CONST:
9292         case TOK_RESTRICT:
9293         case TOK_VOLATILE:
9294         case TOK_VOID:
9295         case TOK_CHAR:
9296         case TOK_SHORT:
9297         case TOK_INT:
9298         case TOK_LONG:
9299         case TOK_FLOAT:
9300         case TOK_DOUBLE:
9301         case TOK_SIGNED:
9302         case TOK_UNSIGNED:
9303         case TOK_STRUCT:
9304         case TOK_UNION:
9305         case TOK_ENUM:
9306         case TOK_TYPE_NAME:
9307                 return 1;
9308         default:
9309                 return 0;
9310         }
9311 }
9312
9313
9314 static struct type *specifier_qualifier_list(struct compile_state *state)
9315 {
9316         struct type *type;
9317         unsigned int specifiers = 0;
9318
9319         /* type qualifiers */
9320         specifiers |= type_qualifiers(state);
9321
9322         /* type specifier */
9323         type = type_specifier(state, specifiers);
9324
9325         return type;
9326 }
9327
9328 static int isdecl_specifier(int tok)
9329 {
9330         switch(tok) {
9331                 /* storage class specifier */
9332         case TOK_AUTO:
9333         case TOK_REGISTER:
9334         case TOK_STATIC:
9335         case TOK_EXTERN:
9336         case TOK_TYPEDEF:
9337                 /* type qualifier */
9338         case TOK_CONST:
9339         case TOK_RESTRICT:
9340         case TOK_VOLATILE:
9341                 /* type specifiers */
9342         case TOK_VOID:
9343         case TOK_CHAR:
9344         case TOK_SHORT:
9345         case TOK_INT:
9346         case TOK_LONG:
9347         case TOK_FLOAT:
9348         case TOK_DOUBLE:
9349         case TOK_SIGNED:
9350         case TOK_UNSIGNED:
9351                 /* struct or union specifier */
9352         case TOK_STRUCT:
9353         case TOK_UNION:
9354                 /* enum-spefifier */
9355         case TOK_ENUM:
9356                 /* typedef name */
9357         case TOK_TYPE_NAME:
9358                 /* function specifiers */
9359         case TOK_INLINE:
9360                 return 1;
9361         default:
9362                 return 0;
9363         }
9364 }
9365
9366 static struct type *decl_specifiers(struct compile_state *state)
9367 {
9368         struct type *type;
9369         unsigned int specifiers;
9370         /* I am overly restrictive in the arragement of specifiers supported.
9371          * C is overly flexible in this department it makes interpreting
9372          * the parse tree difficult.
9373          */
9374         specifiers = 0;
9375
9376         /* storage class specifier */
9377         specifiers |= storage_class_specifier_opt(state);
9378
9379         /* function-specifier */
9380         specifiers |= function_specifier_opt(state);
9381
9382         /* type qualifier */
9383         specifiers |= type_qualifiers(state);
9384
9385         /* type specifier */
9386         type = type_specifier(state, specifiers);
9387         return type;
9388 }
9389
9390 struct field_info {
9391         struct type *type;
9392         size_t offset;
9393 };
9394
9395 static struct field_info designator(struct compile_state *state, struct type *type)
9396 {
9397         int tok;
9398         struct field_info info;
9399         info.offset = ~0U;
9400         info.type = 0;
9401         do {
9402                 switch(peek(state)) {
9403                 case TOK_LBRACKET:
9404                 {
9405                         struct triple *value;
9406                         if ((type->type & TYPE_MASK) != TYPE_ARRAY) {
9407                                 error(state, 0, "Array designator not in array initializer");
9408                         }
9409                         eat(state, TOK_LBRACKET);
9410                         value = constant_expr(state);
9411                         eat(state, TOK_RBRACKET);
9412
9413                         info.type = type->left;
9414                         info.offset = value->u.cval * size_of(state, info.type);
9415                         break;
9416                 }
9417                 case TOK_DOT:
9418                 {
9419                         struct hash_entry *field;
9420                         if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
9421                                 error(state, 0, "Struct designator not in struct initializer");
9422                         }
9423                         eat(state, TOK_DOT);
9424                         eat(state, TOK_IDENT);
9425                         field = state->token[0].ident;
9426                         info.offset = field_offset(state, type, field);
9427                         info.type   = field_type(state, type, field);
9428                         break;
9429                 }
9430                 default:
9431                         error(state, 0, "Invalid designator");
9432                 }
9433                 tok = peek(state);
9434         } while((tok == TOK_LBRACKET) || (tok == TOK_DOT));
9435         eat(state, TOK_EQ);
9436         return info;
9437 }
9438
9439 static struct triple *initializer(
9440         struct compile_state *state, struct type *type)
9441 {
9442         struct triple *result;
9443 #warning "FIXME more consistent initializer handling (where should eval_const_expr go?"
9444         if (peek(state) != TOK_LBRACE) {
9445                 result = assignment_expr(state);
9446                 if (((type->type & TYPE_MASK) == TYPE_ARRAY) &&
9447                         (type->elements == ELEMENT_COUNT_UNSPECIFIED) &&
9448                         ((result->type->type & TYPE_MASK) == TYPE_ARRAY) &&
9449                         (result->type->elements != ELEMENT_COUNT_UNSPECIFIED) &&
9450                         (equiv_types(type->left, result->type->left))) {
9451                         type->elements = result->type->elements;
9452                 }
9453                 if (is_stable(state, result) && 
9454                         ((result->type->type & TYPE_MASK) == TYPE_ARRAY) &&
9455                         (type->type & TYPE_MASK) != TYPE_ARRAY)
9456                 {
9457                         result = array_to_pointer(state, result);
9458                 }
9459                 if (!is_init_compatible(state, type, result->type)) {
9460                         error(state, 0, "Incompatible types in initializer");
9461                 }
9462                 if (!equiv_types(type, result->type)) {
9463                         result = mk_cast_expr(state, type, result);
9464                 }
9465         }
9466         else {
9467                 int comma;
9468                 size_t max_offset;
9469                 struct field_info info;
9470                 void *buf;
9471                 if (((type->type & TYPE_MASK) != TYPE_ARRAY) &&
9472                         ((type->type & TYPE_MASK) != TYPE_STRUCT)) {
9473                         internal_error(state, 0, "unknown initializer type");
9474                 }
9475                 info.offset = 0;
9476                 info.type = type->left;
9477                 if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
9478                         info.type = next_field(state, type, 0);
9479                 }
9480                 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
9481                         max_offset = 0;
9482                 } else {
9483                         max_offset = size_of(state, type);
9484                 }
9485                 buf = xcmalloc(max_offset, "initializer");
9486                 eat(state, TOK_LBRACE);
9487                 do {
9488                         struct triple *value;
9489                         struct type *value_type;
9490                         size_t value_size;
9491                         void *dest;
9492                         int tok;
9493                         comma = 0;
9494                         tok = peek(state);
9495                         if ((tok == TOK_LBRACKET) || (tok == TOK_DOT)) {
9496                                 info = designator(state, type);
9497                         }
9498                         if ((type->elements != ELEMENT_COUNT_UNSPECIFIED) &&
9499                                 (info.offset >= max_offset)) {
9500                                 error(state, 0, "element beyond bounds");
9501                         }
9502                         value_type = info.type;
9503                         value = eval_const_expr(state, initializer(state, value_type));
9504                         value_size = size_of(state, value_type);
9505                         if (((type->type & TYPE_MASK) == TYPE_ARRAY) &&
9506                                 (type->elements == ELEMENT_COUNT_UNSPECIFIED) &&
9507                                 (max_offset <= info.offset)) {
9508                                 void *old_buf;
9509                                 size_t old_size;
9510                                 old_buf = buf;
9511                                 old_size = max_offset;
9512                                 max_offset = info.offset + value_size;
9513                                 buf = xmalloc(max_offset, "initializer");
9514                                 memcpy(buf, old_buf, old_size);
9515                                 xfree(old_buf);
9516                         }
9517                         dest = ((char *)buf) + info.offset;
9518                         if (value->op == OP_BLOBCONST) {
9519                                 memcpy(dest, value->u.blob, value_size);
9520                         }
9521                         else if ((value->op == OP_INTCONST) && (value_size == 1)) {
9522                                 *((uint8_t *)dest) = value->u.cval & 0xff;
9523                         }
9524                         else if ((value->op == OP_INTCONST) && (value_size == 2)) {
9525                                 *((uint16_t *)dest) = value->u.cval & 0xffff;
9526                         }
9527                         else if ((value->op == OP_INTCONST) && (value_size == 4)) {
9528                                 *((uint32_t *)dest) = value->u.cval & 0xffffffff;
9529                         }
9530                         else {
9531                                 internal_error(state, 0, "unhandled constant initializer");
9532                         }
9533                         free_triple(state, value);
9534                         if (peek(state) == TOK_COMMA) {
9535                                 eat(state, TOK_COMMA);
9536                                 comma = 1;
9537                         }
9538                         info.offset += value_size;
9539                         if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
9540                                 info.type = next_field(state, type, info.type);
9541                                 info.offset = field_offset(state, type, 
9542                                         info.type->field_ident);
9543                         }
9544                 } while(comma && (peek(state) != TOK_RBRACE));
9545                 if ((type->elements == ELEMENT_COUNT_UNSPECIFIED) &&
9546                         ((type->type & TYPE_MASK) == TYPE_ARRAY)) {
9547                         type->elements = max_offset / size_of(state, type->left);
9548                 }
9549                 eat(state, TOK_RBRACE);
9550                 result = triple(state, OP_BLOBCONST, type, 0, 0);
9551                 result->u.blob = buf;
9552         }
9553         return result;
9554 }
9555
9556 static void resolve_branches(struct compile_state *state)
9557 {
9558         /* Make a second pass and finish anything outstanding
9559          * with respect to branches.  The only outstanding item
9560          * is to see if there are goto to labels that have not
9561          * been defined and to error about them.
9562          */
9563         int i;
9564         for(i = 0; i < HASH_TABLE_SIZE; i++) {
9565                 struct hash_entry *entry;
9566                 for(entry = state->hash_table[i]; entry; entry = entry->next) {
9567                         struct triple *ins;
9568                         if (!entry->sym_label) {
9569                                 continue;
9570                         }
9571                         ins = entry->sym_label->def;
9572                         if (!(ins->id & TRIPLE_FLAG_FLATTENED)) {
9573                                 error(state, ins, "label `%s' used but not defined",
9574                                         entry->name);
9575                         }
9576                 }
9577         }
9578 }
9579
9580 static struct triple *function_definition(
9581         struct compile_state *state, struct type *type)
9582 {
9583         struct triple *def, *tmp, *first, *end;
9584         struct hash_entry *ident;
9585         struct type *param;
9586         int i;
9587         if ((type->type &TYPE_MASK) != TYPE_FUNCTION) {
9588                 error(state, 0, "Invalid function header");
9589         }
9590
9591         /* Verify the function type */
9592         if (((type->right->type & TYPE_MASK) != TYPE_VOID)  &&
9593                 ((type->right->type & TYPE_MASK) != TYPE_PRODUCT) &&
9594                 (type->right->field_ident == 0)) {
9595                 error(state, 0, "Invalid function parameters");
9596         }
9597         param = type->right;
9598         i = 0;
9599         while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
9600                 i++;
9601                 if (!param->left->field_ident) {
9602                         error(state, 0, "No identifier for parameter %d\n", i);
9603                 }
9604                 param = param->right;
9605         }
9606         i++;
9607         if (((param->type & TYPE_MASK) != TYPE_VOID) && !param->field_ident) {
9608                 error(state, 0, "No identifier for paramter %d\n", i);
9609         }
9610         
9611         /* Get a list of statements for this function. */
9612         def = triple(state, OP_LIST, type, 0, 0);
9613
9614         /* Start a new scope for the passed parameters */
9615         start_scope(state);
9616
9617         /* Put a label at the very start of a function */
9618         first = label(state);
9619         RHS(def, 0) = first;
9620
9621         /* Put a label at the very end of a function */
9622         end = label(state);
9623         flatten(state, first, end);
9624
9625         /* Walk through the parameters and create symbol table entries
9626          * for them.
9627          */
9628         param = type->right;
9629         while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
9630                 ident = param->left->field_ident;
9631                 tmp = variable(state, param->left);
9632                 symbol(state, ident, &ident->sym_ident, tmp, tmp->type);
9633                 flatten(state, end, tmp);
9634                 param = param->right;
9635         }
9636         if ((param->type & TYPE_MASK) != TYPE_VOID) {
9637                 /* And don't forget the last parameter */
9638                 ident = param->field_ident;
9639                 tmp = variable(state, param);
9640                 symbol(state, ident, &ident->sym_ident, tmp, tmp->type);
9641                 flatten(state, end, tmp);
9642         }
9643         /* Add a variable for the return value */
9644         MISC(def, 0) = 0;
9645         if ((type->left->type & TYPE_MASK) != TYPE_VOID) {
9646                 /* Remove all type qualifiers from the return type */
9647                 tmp = variable(state, clone_type(0, type->left));
9648                 flatten(state, end, tmp);
9649                 /* Remember where the return value is */
9650                 MISC(def, 0) = tmp;
9651         }
9652
9653         /* Remember which function I am compiling.
9654          * Also assume the last defined function is the main function.
9655          */
9656         state->main_function = def;
9657
9658         /* Now get the actual function definition */
9659         compound_statement(state, end);
9660
9661         /* Finish anything unfinished with branches */
9662         resolve_branches(state);
9663
9664         /* Remove the parameter scope */
9665         end_scope(state);
9666
9667 #if 0
9668         fprintf(stdout, "\n");
9669         loc(stdout, state, 0);
9670         fprintf(stdout, "\n__________ function_definition _________\n");
9671         print_triple(state, def);
9672         fprintf(stdout, "__________ function_definition _________ done\n\n");
9673 #endif
9674
9675         return def;
9676 }
9677
9678 static struct triple *do_decl(struct compile_state *state, 
9679         struct type *type, struct hash_entry *ident)
9680 {
9681         struct triple *def;
9682         def = 0;
9683         /* Clean up the storage types used */
9684         switch (type->type & STOR_MASK) {
9685         case STOR_AUTO:
9686         case STOR_STATIC:
9687                 /* These are the good types I am aiming for */
9688                 break;
9689         case STOR_REGISTER:
9690                 type->type &= ~STOR_MASK;
9691                 type->type |= STOR_AUTO;
9692                 break;
9693         case STOR_EXTERN:
9694                 type->type &= ~STOR_MASK;
9695                 type->type |= STOR_STATIC;
9696                 break;
9697         case STOR_TYPEDEF:
9698                 if (!ident) {
9699                         error(state, 0, "typedef without name");
9700                 }
9701                 symbol(state, ident, &ident->sym_ident, 0, type);
9702                 ident->tok = TOK_TYPE_NAME;
9703                 return 0;
9704                 break;
9705         default:
9706                 internal_error(state, 0, "Undefined storage class");
9707         }
9708         if ((type->type & TYPE_MASK) == TYPE_FUNCTION) {
9709                 error(state, 0, "Function prototypes not supported");
9710         }
9711         if (ident && 
9712                 ((type->type & STOR_MASK) == STOR_STATIC) &&
9713                 ((type->type & QUAL_CONST) == 0)) {
9714                 error(state, 0, "non const static variables not supported");
9715         }
9716         if (ident) {
9717                 def = variable(state, type);
9718                 symbol(state, ident, &ident->sym_ident, def, type);
9719         }
9720         return def;
9721 }
9722
9723 static void decl(struct compile_state *state, struct triple *first)
9724 {
9725         struct type *base_type, *type;
9726         struct hash_entry *ident;
9727         struct triple *def;
9728         int global;
9729         global = (state->scope_depth <= GLOBAL_SCOPE_DEPTH);
9730         base_type = decl_specifiers(state);
9731         ident = 0;
9732         type = declarator(state, base_type, &ident, 0);
9733         if (global && ident && (peek(state) == TOK_LBRACE)) {
9734                 /* function */
9735                 state->function = ident->name;
9736                 def = function_definition(state, type);
9737                 symbol(state, ident, &ident->sym_ident, def, type);
9738                 state->function = 0;
9739         }
9740         else {
9741                 int done;
9742                 flatten(state, first, do_decl(state, type, ident));
9743                 /* type or variable definition */
9744                 do {
9745                         done = 1;
9746                         if (peek(state) == TOK_EQ) {
9747                                 if (!ident) {
9748                                         error(state, 0, "cannot assign to a type");
9749                                 }
9750                                 eat(state, TOK_EQ);
9751                                 flatten(state, first,
9752                                         init_expr(state, 
9753                                                 ident->sym_ident->def, 
9754                                                 initializer(state, type)));
9755                         }
9756                         arrays_complete(state, type);
9757                         if (peek(state) == TOK_COMMA) {
9758                                 eat(state, TOK_COMMA);
9759                                 ident = 0;
9760                                 type = declarator(state, base_type, &ident, 0);
9761                                 flatten(state, first, do_decl(state, type, ident));
9762                                 done = 0;
9763                         }
9764                 } while(!done);
9765                 eat(state, TOK_SEMI);
9766         }
9767 }
9768
9769 static void decls(struct compile_state *state)
9770 {
9771         struct triple *list;
9772         int tok;
9773         list = label(state);
9774         while(1) {
9775                 tok = peek(state);
9776                 if (tok == TOK_EOF) {
9777                         return;
9778                 }
9779                 if (tok == TOK_SPACE) {
9780                         eat(state, TOK_SPACE);
9781                 }
9782                 decl(state, list);
9783                 if (list->next != list) {
9784                         error(state, 0, "global variables not supported");
9785                 }
9786         }
9787 }
9788
9789 /*
9790  * Data structurs for optimation.
9791  */
9792
9793 static int do_use_block(
9794         struct block *used, struct block_set **head, struct block *user, 
9795         int front)
9796 {
9797         struct block_set **ptr, *new;
9798         if (!used)
9799                 return 0;
9800         if (!user)
9801                 return 0;
9802         ptr = head;
9803         while(*ptr) {
9804                 if ((*ptr)->member == user) {
9805                         return 0;
9806                 }
9807                 ptr = &(*ptr)->next;
9808         }
9809         new = xcmalloc(sizeof(*new), "block_set");
9810         new->member = user;
9811         if (front) {
9812                 new->next = *head;
9813                 *head = new;
9814         }
9815         else {
9816                 new->next = 0;
9817                 *ptr = new;
9818         }
9819         return 1;
9820 }
9821 static int do_unuse_block(
9822         struct block *used, struct block_set **head, struct block *unuser)
9823 {
9824         struct block_set *use, **ptr;
9825         int count;
9826         count = 0;
9827         ptr = head;
9828         while(*ptr) {
9829                 use = *ptr;
9830                 if (use->member == unuser) {
9831                         *ptr = use->next;
9832                         memset(use, -1, sizeof(*use));
9833                         xfree(use);
9834                         count += 1;
9835                 }
9836                 else {
9837                         ptr = &use->next;
9838                 }
9839         }
9840         return count;
9841 }
9842
9843 static void use_block(struct block *used, struct block *user)
9844 {
9845         int count;
9846         /* Append new to the head of the list, print_block
9847          * depends on this.
9848          */
9849         count = do_use_block(used, &used->use, user, 1); 
9850         used->users += count;
9851 }
9852 static void unuse_block(struct block *used, struct block *unuser)
9853 {
9854         int count;
9855         count = do_unuse_block(used, &used->use, unuser); 
9856         used->users -= count;
9857 }
9858
9859 static void idom_block(struct block *idom, struct block *user)
9860 {
9861         do_use_block(idom, &idom->idominates, user, 0);
9862 }
9863
9864 static void unidom_block(struct block *idom, struct block *unuser)
9865 {
9866         do_unuse_block(idom, &idom->idominates, unuser);
9867 }
9868
9869 static void domf_block(struct block *block, struct block *domf)
9870 {
9871         do_use_block(block, &block->domfrontier, domf, 0);
9872 }
9873
9874 static void undomf_block(struct block *block, struct block *undomf)
9875 {
9876         do_unuse_block(block, &block->domfrontier, undomf);
9877 }
9878
9879 static void ipdom_block(struct block *ipdom, struct block *user)
9880 {
9881         do_use_block(ipdom, &ipdom->ipdominates, user, 0);
9882 }
9883
9884 static void unipdom_block(struct block *ipdom, struct block *unuser)
9885 {
9886         do_unuse_block(ipdom, &ipdom->ipdominates, unuser);
9887 }
9888
9889 static void ipdomf_block(struct block *block, struct block *ipdomf)
9890 {
9891         do_use_block(block, &block->ipdomfrontier, ipdomf, 0);
9892 }
9893
9894 static void unipdomf_block(struct block *block, struct block *unipdomf)
9895 {
9896         do_unuse_block(block, &block->ipdomfrontier, unipdomf);
9897 }
9898
9899 static int walk_triples(
9900         struct compile_state *state, 
9901         int (*cb)(struct compile_state *state, struct triple *ptr))
9902 {
9903         struct triple *ptr;
9904         int result;
9905         ptr = state->first;
9906         do {
9907                 result = cb(state, ptr);
9908                 if (ptr->next->prev != ptr) {
9909                         internal_error(state, ptr->next, "bad prev");
9910                 }
9911                 ptr = ptr->next;
9912         } while((result == 0) && (ptr != state->first));
9913         return result;
9914 }
9915
9916 #define PRINT_LIST 1
9917 static int do_print_triple(struct compile_state *state, struct triple *ins)
9918 {
9919         int op;
9920         op = ins->op;
9921         if (op == OP_LIST) {
9922 #if !PRINT_LIST
9923                 return 0;
9924 #endif
9925         }
9926         if ((op == OP_LABEL) && (ins->use)) {
9927                 printf("\n%p:\n", ins);
9928         }
9929         display_triple(stdout, ins);
9930
9931         if ((ins->op == OP_BRANCH) && ins->use) {
9932                 internal_error(state, ins, "branch used?");
9933         }
9934         if (triple_is_branch(state, ins)) {
9935                 printf("\n");
9936         }
9937         return 0;
9938 }
9939
9940 static void print_triples(struct compile_state *state)
9941 {
9942         walk_triples(state, do_print_triple);
9943 }
9944
9945 struct cf_block {
9946         struct block *block;
9947 };
9948 static void find_cf_blocks(struct cf_block *cf, struct block *block)
9949 {
9950         if (!block || (cf[block->vertex].block == block)) {
9951                 return;
9952         }
9953         cf[block->vertex].block = block;
9954         find_cf_blocks(cf, block->left);
9955         find_cf_blocks(cf, block->right);
9956 }
9957
9958 static void print_control_flow(struct compile_state *state)
9959 {
9960         struct cf_block *cf;
9961         int i;
9962         printf("\ncontrol flow\n");
9963         cf = xcmalloc(sizeof(*cf) * (state->last_vertex + 1), "cf_block");
9964         find_cf_blocks(cf, state->first_block);
9965
9966         for(i = 1; i <= state->last_vertex; i++) {
9967                 struct block *block;
9968                 block = cf[i].block;
9969                 if (!block)
9970                         continue;
9971                 printf("(%p) %d:", block, block->vertex);
9972                 if (block->left) {
9973                         printf(" %d", block->left->vertex);
9974                 }
9975                 if (block->right && (block->right != block->left)) {
9976                         printf(" %d", block->right->vertex);
9977                 }
9978                 printf("\n");
9979         }
9980
9981         xfree(cf);
9982 }
9983
9984
9985 static struct block *basic_block(struct compile_state *state,
9986         struct triple *first)
9987 {
9988         struct block *block;
9989         struct triple *ptr;
9990         if (first->op != OP_LABEL) {
9991                 internal_error(state, 0, "block does not start with a label");
9992         }
9993         /* See if this basic block has already been setup */
9994         if (first->u.block != 0) {
9995                 return first->u.block;
9996         }
9997         /* Allocate another basic block structure */
9998         state->last_vertex += 1;
9999         block = xcmalloc(sizeof(*block), "block");
10000         block->first = block->last = first;
10001         block->vertex = state->last_vertex;
10002         ptr = first;
10003         do {
10004                 if ((ptr != first) && (ptr->op == OP_LABEL) && (ptr->use)) { 
10005                         break;
10006                 }
10007                 block->last = ptr;
10008                 /* If ptr->u is not used remember where the baic block is */
10009                 if (triple_stores_block(state, ptr)) {
10010                         ptr->u.block = block;
10011                 }
10012                 if (triple_is_branch(state, ptr)) {
10013                         break;
10014                 }
10015                 ptr = ptr->next;
10016         } while (ptr != state->first);
10017         if (ptr == state->first) {
10018                 /* The block has no outflowing edges */
10019         }
10020         else if (ptr->op == OP_LABEL) {
10021                 block->left = basic_block(state, ptr);
10022                 block->right = 0;
10023                 use_block(block->left, block);
10024         }
10025         else if (triple_is_branch(state, ptr)) {
10026                 block->left = 0;
10027                 /* Trace the branch target */
10028                 block->right = basic_block(state, TARG(ptr, 0));
10029                 use_block(block->right, block);
10030                 /* If there is a test trace the branch as well */
10031                 if (TRIPLE_RHS(ptr->sizes)) {
10032                         block->left = basic_block(state, ptr->next);
10033                         use_block(block->left, block);
10034                 }
10035         }
10036         else {
10037                 internal_error(state, 0, "Bad basic block split");
10038         }
10039 #if 0
10040         fprintf(stderr, "basic_block: %10p [%2d] ( %10p - %10p ) %10p [%2d] %10p [%2d] \n",
10041                 block, block->vertex, 
10042                 block->first, block->last,
10043                 block->left ? block->left->first : 0,
10044                 block->left ? block->left->vertex : -1,
10045                 block->left ? block->left->first : 0,
10046                 block->left ? block->left->vertex : -1);
10047 #endif
10048         return block;
10049 }
10050
10051
10052 static void walk_blocks(struct compile_state *state,
10053         void (*cb)(struct compile_state *state, struct block *block, void *arg),
10054         void *arg)
10055 {
10056         struct triple *ptr, *first;
10057         struct block *last_block;
10058         last_block = 0;
10059         first = state->first;
10060         ptr = first;
10061         do {
10062                 struct block *block;
10063                 if (triple_stores_block(state, ptr)) {
10064                         block = ptr->u.block;
10065                         if (block && (block != last_block)) {
10066                                 cb(state, block, arg);
10067                         }
10068                         last_block = block;
10069                 }
10070                 if (block && (block->last == ptr)) {
10071                         block = 0;
10072                 }
10073                 ptr = ptr->next;
10074         } while(ptr != first);
10075 }
10076
10077 static void print_block(
10078         struct compile_state *state, struct block *block, void *arg)
10079 {
10080         struct block_set *user;
10081         struct triple *ptr;
10082         FILE *fp = arg;
10083
10084         fprintf(fp, "\nblock: %p (%d)  %p<-%p %p<-%p\n", 
10085                 block, 
10086                 block->vertex,
10087                 block->left, 
10088                 block->left && block->left->use?block->left->use->member : 0,
10089                 block->right, 
10090                 block->right && block->right->use?block->right->use->member : 0);
10091         if (block->first->op == OP_LABEL) {
10092                 fprintf(fp, "%p:\n", block->first);
10093         }
10094         for(ptr = block->first; ; ptr = ptr->next) {
10095                 display_triple(fp, ptr);
10096                 if (ptr == block->last)
10097                         break;
10098         }
10099         fprintf(fp, "users %d: ", block->users);
10100         for(user = block->use; user; user = user->next) {
10101                 fprintf(fp, "%p (%d) ", 
10102                         user->member,
10103                         user->member->vertex);
10104         }
10105         fprintf(fp,"\n\n");
10106 }
10107
10108
10109 static void print_blocks(struct compile_state *state, FILE *fp)
10110 {
10111         fprintf(fp, "--------------- blocks ---------------\n");
10112         walk_blocks(state, print_block, fp);
10113 }
10114
10115 static void prune_nonblock_triples(struct compile_state *state)
10116 {
10117         struct block *block;
10118         struct triple *first, *ins, *next;
10119         /* Delete the triples not in a basic block */
10120         first = state->first;
10121         block = 0;
10122         ins = first;
10123         do {
10124                 next = ins->next;
10125                 if (ins->op == OP_LABEL) {
10126                         block = ins->u.block;
10127                 }
10128                 if (!block) {
10129                         release_triple(state, ins);
10130                 }
10131                 if (block && block->last == ins) {
10132                         block = 0;
10133                 }
10134                 ins = next;
10135         } while(ins != first);
10136 }
10137
10138 static void setup_basic_blocks(struct compile_state *state)
10139 {
10140         if (!triple_stores_block(state, state->first)) {
10141                 internal_error(state, 0, "ins will not store block?");
10142         }
10143         /* Find the basic blocks */
10144         state->last_vertex = 0;
10145         state->first_block = basic_block(state, state->first);
10146         /* Delete the triples not in a basic block */
10147         prune_nonblock_triples(state);
10148
10149         /* Find the last basic block.
10150          *
10151          * For purposes of reverse flow computation it is
10152          * important that the last basic block is empty.
10153          * This allows the control flow graph to be modified to
10154          * have one unique starting block and one unique final block.
10155          * With the insertion of a few extra edges.
10156          *
10157          * If the final block contained instructions it could contain
10158          * phi functions from edges that would never contribute a
10159          * value.  Which for now at least I consider a compile error.
10160          */
10161         state->last_block = block_of_triple(state, state->first->prev);
10162         if ((state->last_block->first != state->last_block->last) ||
10163                 (state->last_block->last->op != OP_LABEL))
10164         {
10165                 struct block *block, *prev_block;
10166                 struct triple *final;
10167                 prev_block = state->last_block;
10168                 final = label(state);
10169                 flatten(state, state->first, final);
10170                 use_triple(final, final);
10171                 block = basic_block(state, final);
10172                 state->last_block = block;
10173                 prev_block->left = block;
10174                 use_block(prev_block->left, prev_block);
10175         }
10176
10177         /* If we are debugging print what I have just done */
10178         if (state->debug & DEBUG_BASIC_BLOCKS) {
10179                 print_blocks(state, stdout);
10180                 print_control_flow(state);
10181         }
10182 }
10183
10184 static void free_basic_block(struct compile_state *state, struct block *block)
10185 {
10186         struct block_set *entry, *next;
10187         struct block *child;
10188         if (!block) {
10189                 return;
10190         }
10191         if (block->vertex == -1) {
10192                 return;
10193         }
10194         block->vertex = -1;
10195         if (block->left) {
10196                 unuse_block(block->left, block);
10197         }
10198         if (block->right) {
10199                 unuse_block(block->right, block);
10200         }
10201         if (block->idom) {
10202                 unidom_block(block->idom, block);
10203         }
10204         block->idom = 0;
10205         if (block->ipdom) {
10206                 unipdom_block(block->ipdom, block);
10207         }
10208         block->ipdom = 0;
10209         for(entry = block->use; entry; entry = next) {
10210                 next = entry->next;
10211                 child = entry->member;
10212                 unuse_block(block, child);
10213                 if (child->left == block) {
10214                         child->left = 0;
10215                 }
10216                 if (child->right == block) {
10217                         child->right = 0;
10218                 }
10219         }
10220         for(entry = block->idominates; entry; entry = next) {
10221                 next = entry->next;
10222                 child = entry->member;
10223                 unidom_block(block, child);
10224                 child->idom = 0;
10225         }
10226         for(entry = block->domfrontier; entry; entry = next) {
10227                 next = entry->next;
10228                 child = entry->member;
10229                 undomf_block(block, child);
10230         }
10231         for(entry = block->ipdominates; entry; entry = next) {
10232                 next = entry->next;
10233                 child = entry->member;
10234                 unipdom_block(block, child);
10235                 child->ipdom = 0;
10236         }
10237         for(entry = block->ipdomfrontier; entry; entry = next) {
10238                 next = entry->next;
10239                 child = entry->member;
10240                 unipdomf_block(block, child);
10241         }
10242         if (block->users != 0) {
10243                 internal_error(state, 0, "block still has users");
10244         }
10245         free_basic_block(state, block->left);
10246         block->left = 0;
10247         free_basic_block(state, block->right);
10248         block->right = 0;
10249         memset(block, -1, sizeof(*block));
10250         xfree(block);
10251 }
10252
10253 static void free_basic_blocks(struct compile_state *state)
10254 {
10255         struct triple *first, *ins;
10256         free_basic_block(state, state->first_block);
10257         state->last_vertex = 0;
10258         state->first_block = state->last_block = 0;
10259         first = state->first;
10260         ins = first;
10261         do {
10262                 if (triple_stores_block(state, ins)) {
10263                         ins->u.block = 0;
10264                 }
10265                 ins = ins->next;
10266         } while(ins != first);
10267         
10268 }
10269
10270 struct sdom_block {
10271         struct block *block;
10272         struct sdom_block *sdominates;
10273         struct sdom_block *sdom_next;
10274         struct sdom_block *sdom;
10275         struct sdom_block *label;
10276         struct sdom_block *parent;
10277         struct sdom_block *ancestor;
10278         int vertex;
10279 };
10280
10281
10282 static void unsdom_block(struct sdom_block *block)
10283 {
10284         struct sdom_block **ptr;
10285         if (!block->sdom_next) {
10286                 return;
10287         }
10288         ptr = &block->sdom->sdominates;
10289         while(*ptr) {
10290                 if ((*ptr) == block) {
10291                         *ptr = block->sdom_next;
10292                         return;
10293                 }
10294                 ptr = &(*ptr)->sdom_next;
10295         }
10296 }
10297
10298 static void sdom_block(struct sdom_block *sdom, struct sdom_block *block)
10299 {
10300         unsdom_block(block);
10301         block->sdom = sdom;
10302         block->sdom_next = sdom->sdominates;
10303         sdom->sdominates = block;
10304 }
10305
10306
10307
10308 static int initialize_sdblock(struct sdom_block *sd,
10309         struct block *parent, struct block *block, int vertex)
10310 {
10311         if (!block || (sd[block->vertex].block == block)) {
10312                 return vertex;
10313         }
10314         vertex += 1;
10315         /* Renumber the blocks in a convinient fashion */
10316         block->vertex = vertex;
10317         sd[vertex].block    = block;
10318         sd[vertex].sdom     = &sd[vertex];
10319         sd[vertex].label    = &sd[vertex];
10320         sd[vertex].parent   = parent? &sd[parent->vertex] : 0;
10321         sd[vertex].ancestor = 0;
10322         sd[vertex].vertex   = vertex;
10323         vertex = initialize_sdblock(sd, block, block->left, vertex);
10324         vertex = initialize_sdblock(sd, block, block->right, vertex);
10325         return vertex;
10326 }
10327
10328 static int initialize_spdblock(
10329         struct compile_state *state, struct sdom_block *sd,
10330         struct block *parent, struct block *block, int vertex)
10331 {
10332         struct block_set *user;
10333         if (!block || (sd[block->vertex].block == block)) {
10334                 return vertex;
10335         }
10336         vertex += 1;
10337         /* Renumber the blocks in a convinient fashion */
10338         block->vertex = vertex;
10339         sd[vertex].block    = block;
10340         sd[vertex].sdom     = &sd[vertex];
10341         sd[vertex].label    = &sd[vertex];
10342         sd[vertex].parent   = parent? &sd[parent->vertex] : 0;
10343         sd[vertex].ancestor = 0;
10344         sd[vertex].vertex   = vertex;
10345         for(user = block->use; user; user = user->next) {
10346                 vertex = initialize_spdblock(state, sd, block, user->member, vertex);
10347         }
10348         return vertex;
10349 }
10350
10351 static int setup_spdblocks(struct compile_state *state, struct sdom_block *sd)
10352 {
10353         struct block *block;
10354         int vertex;
10355         /* Setup as many sdpblocks as possible without using fake edges */
10356         vertex = initialize_spdblock(state, sd, 0, state->last_block, 0);
10357
10358         /* Walk through the graph and find unconnected blocks.  If 
10359          * we can, add a fake edge from the unconnected blocks to the
10360          * end of the graph.
10361          */
10362         block = state->first_block->last->next->u.block;
10363         for(; block && block != state->first_block; block = block->last->next->u.block) {
10364                 if (sd[block->vertex].block == block) {
10365                         continue;
10366                 }
10367                 if (block->left != 0) {
10368                         continue;
10369                 }
10370
10371 #if DEBUG_SDP_BLOCKS
10372                 fprintf(stderr, "Adding %d\n", vertex +1);
10373 #endif
10374
10375                 block->left = state->last_block;
10376                 use_block(block->left, block);
10377                 vertex = initialize_spdblock(state, sd, state->last_block, block, vertex);
10378         }
10379         return vertex;
10380 }
10381
10382 static void compress_ancestors(struct sdom_block *v)
10383 {
10384         /* This procedure assumes ancestor(v) != 0 */
10385         /* if (ancestor(ancestor(v)) != 0) {
10386          *      compress(ancestor(ancestor(v)));
10387          *      if (semi(label(ancestor(v))) < semi(label(v))) {
10388          *              label(v) = label(ancestor(v));
10389          *      }
10390          *      ancestor(v) = ancestor(ancestor(v));
10391          * }
10392          */
10393         if (!v->ancestor) {
10394                 return;
10395         }
10396         if (v->ancestor->ancestor) {
10397                 compress_ancestors(v->ancestor->ancestor);
10398                 if (v->ancestor->label->sdom->vertex < v->label->sdom->vertex) {
10399                         v->label = v->ancestor->label;
10400                 }
10401                 v->ancestor = v->ancestor->ancestor;
10402         }
10403 }
10404
10405 static void compute_sdom(struct compile_state *state, struct sdom_block *sd)
10406 {
10407         int i;
10408         /* // step 2 
10409          *  for each v <= pred(w) {
10410          *      u = EVAL(v);
10411          *      if (semi[u] < semi[w] { 
10412          *              semi[w] = semi[u]; 
10413          *      } 
10414          * }
10415          * add w to bucket(vertex(semi[w]));
10416          * LINK(parent(w), w);
10417          *
10418          * // step 3
10419          * for each v <= bucket(parent(w)) {
10420          *      delete v from bucket(parent(w));
10421          *      u = EVAL(v);
10422          *      dom(v) = (semi[u] < semi[v]) ? u : parent(w);
10423          * }
10424          */
10425         for(i = state->last_vertex; i >= 2; i--) {
10426                 struct sdom_block *v, *parent, *next;
10427                 struct block_set *user;
10428                 struct block *block;
10429                 block = sd[i].block;
10430                 parent = sd[i].parent;
10431                 /* Step 2 */
10432                 for(user = block->use; user; user = user->next) {
10433                         struct sdom_block *v, *u;
10434                         v = &sd[user->member->vertex];
10435                         u = !(v->ancestor)? v : (compress_ancestors(v), v->label);
10436                         if (u->sdom->vertex < sd[i].sdom->vertex) {
10437                                 sd[i].sdom = u->sdom;
10438                         }
10439                 }
10440                 sdom_block(sd[i].sdom, &sd[i]);
10441                 sd[i].ancestor = parent;
10442                 /* Step 3 */
10443                 for(v = parent->sdominates; v; v = next) {
10444                         struct sdom_block *u;
10445                         next = v->sdom_next;
10446                         unsdom_block(v);
10447                         u = (!v->ancestor) ? v : (compress_ancestors(v), v->label);
10448                         v->block->idom = (u->sdom->vertex < v->sdom->vertex)? 
10449                                 u->block : parent->block;
10450                 }
10451         }
10452 }
10453
10454 static void compute_spdom(struct compile_state *state, struct sdom_block *sd)
10455 {
10456         int i;
10457         /* // step 2 
10458          *  for each v <= pred(w) {
10459          *      u = EVAL(v);
10460          *      if (semi[u] < semi[w] { 
10461          *              semi[w] = semi[u]; 
10462          *      } 
10463          * }
10464          * add w to bucket(vertex(semi[w]));
10465          * LINK(parent(w), w);
10466          *
10467          * // step 3
10468          * for each v <= bucket(parent(w)) {
10469          *      delete v from bucket(parent(w));
10470          *      u = EVAL(v);
10471          *      dom(v) = (semi[u] < semi[v]) ? u : parent(w);
10472          * }
10473          */
10474         for(i = state->last_vertex; i >= 2; i--) {
10475                 struct sdom_block *u, *v, *parent, *next;
10476                 struct block *block;
10477                 block = sd[i].block;
10478                 parent = sd[i].parent;
10479                 /* Step 2 */
10480                 if (block->left) {
10481                         v = &sd[block->left->vertex];
10482                         u = !(v->ancestor)? v : (compress_ancestors(v), v->label);
10483                         if (u->sdom->vertex < sd[i].sdom->vertex) {
10484                                 sd[i].sdom = u->sdom;
10485                         }
10486                 }
10487                 if (block->right && (block->right != block->left)) {
10488                         v = &sd[block->right->vertex];
10489                         u = !(v->ancestor)? v : (compress_ancestors(v), v->label);
10490                         if (u->sdom->vertex < sd[i].sdom->vertex) {
10491                                 sd[i].sdom = u->sdom;
10492                         }
10493                 }
10494                 sdom_block(sd[i].sdom, &sd[i]);
10495                 sd[i].ancestor = parent;
10496                 /* Step 3 */
10497                 for(v = parent->sdominates; v; v = next) {
10498                         struct sdom_block *u;
10499                         next = v->sdom_next;
10500                         unsdom_block(v);
10501                         u = (!v->ancestor) ? v : (compress_ancestors(v), v->label);
10502                         v->block->ipdom = (u->sdom->vertex < v->sdom->vertex)? 
10503                                 u->block : parent->block;
10504                 }
10505         }
10506 }
10507
10508 static void compute_idom(struct compile_state *state, struct sdom_block *sd)
10509 {
10510         int i;
10511         for(i = 2; i <= state->last_vertex; i++) {
10512                 struct block *block;
10513                 block = sd[i].block;
10514                 if (block->idom->vertex != sd[i].sdom->vertex) {
10515                         block->idom = block->idom->idom;
10516                 }
10517                 idom_block(block->idom, block);
10518         }
10519         sd[1].block->idom = 0;
10520 }
10521
10522 static void compute_ipdom(struct compile_state *state, struct sdom_block *sd)
10523 {
10524         int i;
10525         for(i = 2; i <= state->last_vertex; i++) {
10526                 struct block *block;
10527                 block = sd[i].block;
10528                 if (block->ipdom->vertex != sd[i].sdom->vertex) {
10529                         block->ipdom = block->ipdom->ipdom;
10530                 }
10531                 ipdom_block(block->ipdom, block);
10532         }
10533         sd[1].block->ipdom = 0;
10534 }
10535
10536         /* Theorem 1:
10537          *   Every vertex of a flowgraph G = (V, E, r) except r has
10538          *   a unique immediate dominator.  
10539          *   The edges {(idom(w), w) |w <= V - {r}} form a directed tree
10540          *   rooted at r, called the dominator tree of G, such that 
10541          *   v dominates w if and only if v is a proper ancestor of w in
10542          *   the dominator tree.
10543          */
10544         /* Lemma 1:  
10545          *   If v and w are vertices of G such that v <= w,
10546          *   than any path from v to w must contain a common ancestor
10547          *   of v and w in T.
10548          */
10549         /* Lemma 2:  For any vertex w != r, idom(w) -> w */
10550         /* Lemma 3:  For any vertex w != r, sdom(w) -> w */
10551         /* Lemma 4:  For any vertex w != r, idom(w) -> sdom(w) */
10552         /* Theorem 2:
10553          *   Let w != r.  Suppose every u for which sdom(w) -> u -> w satisfies
10554          *   sdom(u) >= sdom(w).  Then idom(w) = sdom(w).
10555          */
10556         /* Theorem 3:
10557          *   Let w != r and let u be a vertex for which sdom(u) is 
10558          *   minimum amoung vertices u satisfying sdom(w) -> u -> w.
10559          *   Then sdom(u) <= sdom(w) and idom(u) = idom(w).
10560          */
10561         /* Lemma 5:  Let vertices v,w satisfy v -> w.
10562          *           Then v -> idom(w) or idom(w) -> idom(v)
10563          */
10564
10565 static void find_immediate_dominators(struct compile_state *state)
10566 {
10567         struct sdom_block *sd;
10568         /* w->sdom = min{v| there is a path v = v0,v1,...,vk = w such that:
10569          *           vi > w for (1 <= i <= k - 1}
10570          */
10571         /* Theorem 4:
10572          *   For any vertex w != r.
10573          *   sdom(w) = min(
10574          *                 {v|(v,w) <= E  and v < w } U 
10575          *                 {sdom(u) | u > w and there is an edge (v, w) such that u -> v})
10576          */
10577         /* Corollary 1:
10578          *   Let w != r and let u be a vertex for which sdom(u) is 
10579          *   minimum amoung vertices u satisfying sdom(w) -> u -> w.
10580          *   Then:
10581          *                   { sdom(w) if sdom(w) = sdom(u),
10582          *        idom(w) = {
10583          *                   { idom(u) otherwise
10584          */
10585         /* The algorithm consists of the following 4 steps.
10586          * Step 1.  Carry out a depth-first search of the problem graph.  
10587          *    Number the vertices from 1 to N as they are reached during
10588          *    the search.  Initialize the variables used in succeeding steps.
10589          * Step 2.  Compute the semidominators of all vertices by applying
10590          *    theorem 4.   Carry out the computation vertex by vertex in
10591          *    decreasing order by number.
10592          * Step 3.  Implicitly define the immediate dominator of each vertex
10593          *    by applying Corollary 1.
10594          * Step 4.  Explicitly define the immediate dominator of each vertex,
10595          *    carrying out the computation vertex by vertex in increasing order
10596          *    by number.
10597          */
10598         /* Step 1 initialize the basic block information */
10599         sd = xcmalloc(sizeof(*sd) * (state->last_vertex + 1), "sdom_state");
10600         initialize_sdblock(sd, 0, state->first_block, 0);
10601 #if 0
10602         sd[1].size  = 0;
10603         sd[1].label = 0;
10604         sd[1].sdom  = 0;
10605 #endif
10606         /* Step 2 compute the semidominators */
10607         /* Step 3 implicitly define the immediate dominator of each vertex */
10608         compute_sdom(state, sd);
10609         /* Step 4 explicitly define the immediate dominator of each vertex */
10610         compute_idom(state, sd);
10611         xfree(sd);
10612 }
10613
10614 static void find_post_dominators(struct compile_state *state)
10615 {
10616         struct sdom_block *sd;
10617         int vertex;
10618         /* Step 1 initialize the basic block information */
10619         sd = xcmalloc(sizeof(*sd) * (state->last_vertex + 1), "sdom_state");
10620
10621         vertex = setup_spdblocks(state, sd);
10622         if (vertex != state->last_vertex) {
10623                 internal_error(state, 0, "missing %d blocks\n",
10624                         state->last_vertex - vertex);
10625         }
10626
10627         /* Step 2 compute the semidominators */
10628         /* Step 3 implicitly define the immediate dominator of each vertex */
10629         compute_spdom(state, sd);
10630         /* Step 4 explicitly define the immediate dominator of each vertex */
10631         compute_ipdom(state, sd);
10632         xfree(sd);
10633 }
10634
10635
10636
10637 static void find_block_domf(struct compile_state *state, struct block *block)
10638 {
10639         struct block *child;
10640         struct block_set *user;
10641         if (block->domfrontier != 0) {
10642                 internal_error(state, block->first, "domfrontier present?");
10643         }
10644         for(user = block->idominates; user; user = user->next) {
10645                 child = user->member;
10646                 if (child->idom != block) {
10647                         internal_error(state, block->first, "bad idom");
10648                 }
10649                 find_block_domf(state, child);
10650         }
10651         if (block->left && block->left->idom != block) {
10652                 domf_block(block, block->left);
10653         }
10654         if (block->right && block->right->idom != block) {
10655                 domf_block(block, block->right);
10656         }
10657         for(user = block->idominates; user; user = user->next) {
10658                 struct block_set *frontier;
10659                 child = user->member;
10660                 for(frontier = child->domfrontier; frontier; frontier = frontier->next) {
10661                         if (frontier->member->idom != block) {
10662                                 domf_block(block, frontier->member);
10663                         }
10664                 }
10665         }
10666 }
10667
10668 static void find_block_ipdomf(struct compile_state *state, struct block *block)
10669 {
10670         struct block *child;
10671         struct block_set *user;
10672         if (block->ipdomfrontier != 0) {
10673                 internal_error(state, block->first, "ipdomfrontier present?");
10674         }
10675         for(user = block->ipdominates; user; user = user->next) {
10676                 child = user->member;
10677                 if (child->ipdom != block) {
10678                         internal_error(state, block->first, "bad ipdom");
10679                 }
10680                 find_block_ipdomf(state, child);
10681         }
10682         for(user = block->use; user; user = user->next) {
10683                 if (user->member->ipdom != block) {
10684                         ipdomf_block(block, user->member);
10685                 }
10686         }
10687         for(user = block->ipdominates; user; user = user->next) {
10688                 struct block_set *frontier;
10689                 child = user->member;
10690                 for(frontier = child->ipdomfrontier; frontier; frontier = frontier->next) {
10691                         if (frontier->member->ipdom != block) {
10692                                 ipdomf_block(block, frontier->member);
10693                         }
10694                 }
10695         }
10696 }
10697
10698 static void print_dominated(
10699         struct compile_state *state, struct block *block, void *arg)
10700 {
10701         struct block_set *user;
10702         FILE *fp = arg;
10703
10704         fprintf(fp, "%d:", block->vertex);
10705         for(user = block->idominates; user; user = user->next) {
10706                 fprintf(fp, " %d", user->member->vertex);
10707                 if (user->member->idom != block) {
10708                         internal_error(state, user->member->first, "bad idom");
10709                 }
10710         }
10711         fprintf(fp,"\n");
10712 }
10713
10714 static void print_dominators(struct compile_state *state, FILE *fp)
10715 {
10716         fprintf(fp, "\ndominates\n");
10717         walk_blocks(state, print_dominated, fp);
10718 }
10719
10720
10721 static int print_frontiers(
10722         struct compile_state *state, struct block *block, int vertex)
10723 {
10724         struct block_set *user;
10725
10726         if (!block || (block->vertex != vertex + 1)) {
10727                 return vertex;
10728         }
10729         vertex += 1;
10730
10731         printf("%d:", block->vertex);
10732         for(user = block->domfrontier; user; user = user->next) {
10733                 printf(" %d", user->member->vertex);
10734         }
10735         printf("\n");
10736
10737         vertex = print_frontiers(state, block->left, vertex);
10738         vertex = print_frontiers(state, block->right, vertex);
10739         return vertex;
10740 }
10741 static void print_dominance_frontiers(struct compile_state *state)
10742 {
10743         printf("\ndominance frontiers\n");
10744         print_frontiers(state, state->first_block, 0);
10745         
10746 }
10747
10748 static void analyze_idominators(struct compile_state *state)
10749 {
10750         /* Find the immediate dominators */
10751         find_immediate_dominators(state);
10752         /* Find the dominance frontiers */
10753         find_block_domf(state, state->first_block);
10754         /* If debuging print the print what I have just found */
10755         if (state->debug & DEBUG_FDOMINATORS) {
10756                 print_dominators(state, stdout);
10757                 print_dominance_frontiers(state);
10758                 print_control_flow(state);
10759         }
10760 }
10761
10762
10763
10764 static void print_ipdominated(
10765         struct compile_state *state, struct block *block, void *arg)
10766 {
10767         struct block_set *user;
10768         FILE *fp = arg;
10769
10770         fprintf(fp, "%d:", block->vertex);
10771         for(user = block->ipdominates; user; user = user->next) {
10772                 fprintf(fp, " %d", user->member->vertex);
10773                 if (user->member->ipdom != block) {
10774                         internal_error(state, user->member->first, "bad ipdom");
10775                 }
10776         }
10777         fprintf(fp, "\n");
10778 }
10779
10780 static void print_ipdominators(struct compile_state *state, FILE *fp)
10781 {
10782         fprintf(fp, "\nipdominates\n");
10783         walk_blocks(state, print_ipdominated, fp);
10784 }
10785
10786 static int print_pfrontiers(
10787         struct compile_state *state, struct block *block, int vertex)
10788 {
10789         struct block_set *user;
10790
10791         if (!block || (block->vertex != vertex + 1)) {
10792                 return vertex;
10793         }
10794         vertex += 1;
10795
10796         printf("%d:", block->vertex);
10797         for(user = block->ipdomfrontier; user; user = user->next) {
10798                 printf(" %d", user->member->vertex);
10799         }
10800         printf("\n");
10801         for(user = block->use; user; user = user->next) {
10802                 vertex = print_pfrontiers(state, user->member, vertex);
10803         }
10804         return vertex;
10805 }
10806 static void print_ipdominance_frontiers(struct compile_state *state)
10807 {
10808         printf("\nipdominance frontiers\n");
10809         print_pfrontiers(state, state->last_block, 0);
10810         
10811 }
10812
10813 static void analyze_ipdominators(struct compile_state *state)
10814 {
10815         /* Find the post dominators */
10816         find_post_dominators(state);
10817         /* Find the control dependencies (post dominance frontiers) */
10818         find_block_ipdomf(state, state->last_block);
10819         /* If debuging print the print what I have just found */
10820         if (state->debug & DEBUG_RDOMINATORS) {
10821                 print_ipdominators(state, stdout);
10822                 print_ipdominance_frontiers(state);
10823                 print_control_flow(state);
10824         }
10825 }
10826
10827 static int bdominates(struct compile_state *state,
10828         struct block *dom, struct block *sub)
10829 {
10830         while(sub && (sub != dom)) {
10831                 sub = sub->idom;
10832         }
10833         return sub == dom;
10834 }
10835
10836 static int tdominates(struct compile_state *state,
10837         struct triple *dom, struct triple *sub)
10838 {
10839         struct block *bdom, *bsub;
10840         int result;
10841         bdom = block_of_triple(state, dom);
10842         bsub = block_of_triple(state, sub);
10843         if (bdom != bsub) {
10844                 result = bdominates(state, bdom, bsub);
10845         } 
10846         else {
10847                 struct triple *ins;
10848                 ins = sub;
10849                 while((ins != bsub->first) && (ins != dom)) {
10850                         ins = ins->prev;
10851                 }
10852                 result = (ins == dom);
10853         }
10854         return result;
10855 }
10856
10857 static void analyze_basic_blocks(struct compile_state *state)
10858 {
10859         setup_basic_blocks(state);
10860         analyze_idominators(state);
10861         analyze_ipdominators(state);
10862 }
10863
10864 static void insert_phi_operations(struct compile_state *state)
10865 {
10866         size_t size;
10867         struct triple *first;
10868         int *has_already, *work;
10869         struct block *work_list, **work_list_tail;
10870         int iter;
10871         struct triple *var, *vnext;
10872
10873         size = sizeof(int) * (state->last_vertex + 1);
10874         has_already = xcmalloc(size, "has_already");
10875         work =        xcmalloc(size, "work");
10876         iter = 0;
10877
10878         first = state->first;
10879         for(var = first->next; var != first ; var = vnext) {
10880                 struct block *block;
10881                 struct triple_set *user, *unext;
10882                 vnext = var->next;
10883                 if ((var->op != OP_ADECL) || !var->use) {
10884                         continue;
10885                 }
10886                 iter += 1;
10887                 work_list = 0;
10888                 work_list_tail = &work_list;
10889                 for(user = var->use; user; user = unext) {
10890                         unext = user->next;
10891                         if (user->member->op == OP_READ) {
10892                                 continue;
10893                         }
10894                         if (user->member->op != OP_WRITE) {
10895                                 internal_error(state, user->member, 
10896                                         "bad variable access");
10897                         }
10898                         block = user->member->u.block;
10899                         if (!block) {
10900                                 warning(state, user->member, "dead code");
10901                                 release_triple(state, user->member);
10902                                 continue;
10903                         }
10904                         if (work[block->vertex] >= iter) {
10905                                 continue;
10906                         }
10907                         work[block->vertex] = iter;
10908                         *work_list_tail = block;
10909                         block->work_next = 0;
10910                         work_list_tail = &block->work_next;
10911                 }
10912                 for(block = work_list; block; block = block->work_next) {
10913                         struct block_set *df;
10914                         for(df = block->domfrontier; df; df = df->next) {
10915                                 struct triple *phi;
10916                                 struct block *front;
10917                                 int in_edges;
10918                                 front = df->member;
10919
10920                                 if (has_already[front->vertex] >= iter) {
10921                                         continue;
10922                                 }
10923                                 /* Count how many edges flow into this block */
10924                                 in_edges = front->users;
10925                                 /* Insert a phi function for this variable */
10926                                 get_occurance(var->occurance);
10927                                 phi = alloc_triple(
10928                                         state, OP_PHI, var->type, -1, in_edges, 
10929                                         var->occurance);
10930                                 phi->u.block = front;
10931                                 MISC(phi, 0) = var;
10932                                 use_triple(var, phi);
10933                                 /* Insert the phi functions immediately after the label */
10934                                 insert_triple(state, front->first->next, phi);
10935                                 if (front->first == front->last) {
10936                                         front->last = front->first->next;
10937                                 }
10938                                 has_already[front->vertex] = iter;
10939                                 transform_to_arch_instruction(state, phi);
10940
10941                                 /* If necessary plan to visit the basic block */
10942                                 if (work[front->vertex] >= iter) {
10943                                         continue;
10944                                 }
10945                                 work[front->vertex] = iter;
10946                                 *work_list_tail = front;
10947                                 front->work_next = 0;
10948                                 work_list_tail = &front->work_next;
10949                         }
10950                 }
10951         }
10952         xfree(has_already);
10953         xfree(work);
10954 }
10955
10956
10957 struct stack {
10958         struct triple_set *top;
10959         unsigned orig_id;
10960 };
10961
10962 static int count_adecls(struct compile_state *state)
10963 {
10964         struct triple *first, *ins;
10965         int adecls = 0;
10966         first = state->first;
10967         ins = first;
10968         do {
10969                 if (ins->op == OP_ADECL) {
10970                         adecls += 1;
10971                 }
10972                 ins = ins->next;
10973         } while(ins != first);
10974         return adecls;
10975 }
10976
10977 static void number_adecls(struct compile_state *state, struct stack *stacks)
10978 {
10979         struct triple *first, *ins;
10980         int adecls = 0;
10981         first = state->first;
10982         ins = first;
10983         do {
10984                 if (ins->op == OP_ADECL) {
10985                         adecls += 1;
10986                         stacks[adecls].orig_id = ins->id;
10987                         ins->id = adecls;
10988                 }
10989                 ins = ins->next;
10990         } while(ins != first);
10991 }
10992
10993 static void restore_adecls(struct compile_state *state, struct stack *stacks)
10994 {
10995         struct triple *first, *ins;
10996         first = state->first;
10997         ins = first;
10998         do {
10999                 if (ins->op == OP_ADECL) {
11000                         ins->id = stacks[ins->id].orig_id;
11001                 }
11002                 ins = ins->next;
11003         } while(ins != first);
11004 }
11005
11006 static struct triple *peek_triple(struct stack *stacks, struct triple *var)
11007 {
11008         struct triple_set *head;
11009         struct triple *top_val;
11010         top_val = 0;
11011         head = stacks[var->id].top;
11012         if (head) {
11013                 top_val = head->member;
11014         }
11015         return top_val;
11016 }
11017
11018 static void push_triple(struct stack *stacks, struct triple *var, struct triple *val)
11019 {
11020         struct triple_set *new;
11021         /* Append new to the head of the list,
11022          * it's the only sensible behavoir for a stack.
11023          */
11024         new = xcmalloc(sizeof(*new), "triple_set");
11025         new->member = val;
11026         new->next   = stacks[var->id].top;
11027         stacks[var->id].top = new;
11028 }
11029
11030 static void pop_triple(struct stack *stacks, struct triple *var, struct triple *oldval)
11031 {
11032         struct triple_set *set, **ptr;
11033         ptr = &stacks[var->id].top;
11034         while(*ptr) {
11035                 set = *ptr;
11036                 if (set->member == oldval) {
11037                         *ptr = set->next;
11038                         xfree(set);
11039                         /* Only free one occurance from the stack */
11040                         return;
11041                 }
11042                 else {
11043                         ptr = &set->next;
11044                 }
11045         }
11046 }
11047
11048 /*
11049  * C(V)
11050  * S(V)
11051  */
11052 static void fixup_block_phi_variables(
11053         struct compile_state *state, struct stack *stacks, struct block *parent, struct block *block)
11054 {
11055         struct block_set *set;
11056         struct triple *ptr;
11057         int edge;
11058         if (!parent || !block)
11059                 return;
11060         /* Find the edge I am coming in on */
11061         edge = 0;
11062         for(set = block->use; set; set = set->next, edge++) {
11063                 if (set->member == parent) {
11064                         break;
11065                 }
11066         }
11067         if (!set) {
11068                 internal_error(state, 0, "phi input is not on a control predecessor");
11069         }
11070         for(ptr = block->first; ; ptr = ptr->next) {
11071                 if (ptr->op == OP_PHI) {
11072                         struct triple *var, *val, **slot;
11073                         var = MISC(ptr, 0);
11074                         if (!var) {
11075                                 internal_error(state, ptr, "no var???");
11076                         }
11077                         /* Find the current value of the variable */
11078                         val = peek_triple(stacks, var);
11079                         if (val && ((val->op == OP_WRITE) || (val->op == OP_READ))) {
11080                                 internal_error(state, val, "bad value in phi");
11081                         }
11082                         if (edge >= TRIPLE_RHS(ptr->sizes)) {
11083                                 internal_error(state, ptr, "edges > phi rhs");
11084                         }
11085                         slot = &RHS(ptr, edge);
11086                         if ((*slot != 0) && (*slot != val)) {
11087                                 internal_error(state, ptr, "phi already bound on this edge");
11088                         }
11089                         *slot = val;
11090                         use_triple(val, ptr);
11091                 }
11092                 if (ptr == block->last) {
11093                         break;
11094                 }
11095         }
11096 }
11097
11098
11099 static void rename_block_variables(
11100         struct compile_state *state, struct stack *stacks, struct block *block)
11101 {
11102         struct block_set *user;
11103         struct triple *ptr, *next, *last;
11104         int done;
11105         if (!block)
11106                 return;
11107         last = block->first;
11108         done = 0;
11109         for(ptr = block->first; !done; ptr = next) {
11110                 next = ptr->next;
11111                 if (ptr == block->last) {
11112                         done = 1;
11113                 }
11114                 /* RHS(A) */
11115                 if (ptr->op == OP_READ) {
11116                         struct triple *var, *val;
11117                         var = RHS(ptr, 0);
11118                         unuse_triple(var, ptr);
11119                         /* Find the current value of the variable */
11120                         val = peek_triple(stacks, var);
11121                         if (!val) {
11122                                 error(state, ptr, "variable used without being set");
11123                         }
11124                         if ((val->op == OP_WRITE) || (val->op == OP_READ)) {
11125                                 internal_error(state, val, "bad value in read");
11126                         }
11127                         propogate_use(state, ptr, val);
11128                         release_triple(state, ptr);
11129                         continue;
11130                 }
11131                 /* LHS(A) */
11132                 if (ptr->op == OP_WRITE) {
11133                         struct triple *var, *val, *tval;
11134                         var = RHS(ptr, 0);
11135                         tval = val = RHS(ptr, 1);
11136                         if ((val->op == OP_WRITE) || (val->op == OP_READ)) {
11137                                 internal_error(state, ptr, "bad value in write");
11138                         }
11139                         /* Insert a copy if the types differ */
11140                         if (!equiv_types(ptr->type, val->type)) {
11141                                 if (val->op == OP_INTCONST) {
11142                                         tval = pre_triple(state, ptr, OP_INTCONST, ptr->type, 0, 0);
11143                                         tval->u.cval = val->u.cval;
11144                                 }
11145                                 else {
11146                                         tval = pre_triple(state, ptr, OP_COPY, ptr->type, val, 0);
11147                                         use_triple(val, tval);
11148                                 }
11149                                 transform_to_arch_instruction(state, tval);
11150                                 unuse_triple(val, ptr);
11151                                 RHS(ptr, 1) = tval;
11152                                 use_triple(tval, ptr);
11153                         }
11154                         propogate_use(state, ptr, tval);
11155                         unuse_triple(var, ptr);
11156                         /* Push OP_WRITE ptr->right onto a stack of variable uses */
11157                         push_triple(stacks, var, tval);
11158                 }
11159                 if (ptr->op == OP_PHI) {
11160                         struct triple *var;
11161                         var = MISC(ptr, 0);
11162                         /* Push OP_PHI onto a stack of variable uses */
11163                         push_triple(stacks, var, ptr);
11164                 }
11165                 last = ptr;
11166         }
11167         block->last = last;
11168
11169         /* Fixup PHI functions in the cf successors */
11170         fixup_block_phi_variables(state, stacks, block, block->left);
11171         fixup_block_phi_variables(state, stacks, block, block->right);
11172         /* rename variables in the dominated nodes */
11173         for(user = block->idominates; user; user = user->next) {
11174                 rename_block_variables(state, stacks, user->member);
11175         }
11176         /* pop the renamed variable stack */
11177         last = block->first;
11178         done = 0;
11179         for(ptr = block->first; !done ; ptr = next) {
11180                 next = ptr->next;
11181                 if (ptr == block->last) {
11182                         done = 1;
11183                 }
11184                 if (ptr->op == OP_WRITE) {
11185                         struct triple *var;
11186                         var = RHS(ptr, 0);
11187                         /* Pop OP_WRITE ptr->right from the stack of variable uses */
11188                         pop_triple(stacks, var, RHS(ptr, 1));
11189                         release_triple(state, ptr);
11190                         continue;
11191                 }
11192                 if (ptr->op == OP_PHI) {
11193                         struct triple *var;
11194                         var = MISC(ptr, 0);
11195                         /* Pop OP_WRITE ptr->right from the stack of variable uses */
11196                         pop_triple(stacks, var, ptr);
11197                 }
11198                 last = ptr;
11199         }
11200         block->last = last;
11201 }
11202
11203 static void rename_variables(struct compile_state *state)
11204 {
11205         struct stack *stacks;
11206         int adecls;
11207
11208         /* Allocate stacks for the Variables */
11209         adecls = count_adecls(state);
11210         stacks = xcmalloc(sizeof(stacks[0])*(adecls + 1), "adecl stacks");
11211
11212         /* Give each adecl a stack */
11213         number_adecls(state, stacks);
11214
11215         /* Rename the variables */
11216         rename_block_variables(state, stacks, state->first_block);
11217
11218         /* Remove the stacks from the adecls */
11219         restore_adecls(state, stacks);
11220         xfree(stacks);
11221 }
11222
11223 static void prune_block_variables(struct compile_state *state,
11224         struct block *block)
11225 {
11226         struct block_set *user;
11227         struct triple *next, *last, *ptr;
11228         int done;
11229         last = block->first;
11230         done = 0;
11231         for(ptr = block->first; !done; ptr = next) {
11232                 next = ptr->next;
11233                 if (ptr == block->last) {
11234                         done = 1;
11235                 }
11236                 if (ptr->op == OP_ADECL) {
11237                         struct triple_set *user, *next;
11238                         for(user = ptr->use; user; user = next) {
11239                                 struct triple *use;
11240                                 next = user->next;
11241                                 use = user->member;
11242                                 if (use->op != OP_PHI) {
11243                                         internal_error(state, use, "decl still used");
11244                                 }
11245                                 if (MISC(use, 0) != ptr) {
11246                                         internal_error(state, use, "bad phi use of decl");
11247                                 }
11248                                 unuse_triple(ptr, use);
11249                                 MISC(use, 0) = 0;
11250                         }
11251                         release_triple(state, ptr);
11252                         continue;
11253                 }
11254                 last = ptr;
11255         }
11256         block->last = last;
11257         for(user = block->idominates; user; user = user->next) {
11258                 prune_block_variables(state, user->member);
11259         }
11260 }
11261
11262 struct phi_triple {
11263         struct triple *phi;
11264         unsigned orig_id;
11265         int alive;
11266 };
11267
11268 static void keep_phi(struct compile_state *state, struct phi_triple *live, struct triple *phi)
11269 {
11270         struct triple **slot;
11271         int zrhs, i;
11272         if (live[phi->id].alive) {
11273                 return;
11274         }
11275         live[phi->id].alive = 1;
11276         zrhs = TRIPLE_RHS(phi->sizes);
11277         slot = &RHS(phi, 0);
11278         for(i = 0; i < zrhs; i++) {
11279                 struct triple *used;
11280                 used = slot[i];
11281                 if (used && (used->op == OP_PHI)) {
11282                         keep_phi(state, live, used);
11283                 }
11284         }
11285 }
11286
11287 static void prune_unused_phis(struct compile_state *state)
11288 {
11289         struct triple *first, *phi;
11290         struct phi_triple *live;
11291         int phis, i;
11292         
11293         /* Find the first instruction */
11294         first = state->first;
11295
11296         /* Count how many phi functions I need to process */
11297         phis = 0;
11298         for(phi = first->next; phi != first; phi = phi->next) {
11299                 if (phi->op == OP_PHI) {
11300                         phis += 1;
11301                 }
11302         }
11303         
11304         /* Mark them all dead */
11305         live = xcmalloc(sizeof(*live) * (phis + 1), "phi_triple");
11306         phis = 0;
11307         for(phi = first->next; phi != first; phi = phi->next) {
11308                 if (phi->op != OP_PHI) {
11309                         continue;
11310                 }
11311                 live[phis].alive   = 0;
11312                 live[phis].orig_id = phi->id;
11313                 live[phis].phi     = phi;
11314                 phi->id = phis;
11315                 phis += 1;
11316         }
11317         
11318         /* Mark phis alive that are used by non phis */
11319         for(i = 0; i < phis; i++) {
11320                 struct triple_set *set;
11321                 for(set = live[i].phi->use; !live[i].alive && set; set = set->next) {
11322                         if (set->member->op != OP_PHI) {
11323                                 keep_phi(state, live, live[i].phi);
11324                                 break;
11325                         }
11326                 }
11327         }
11328
11329         /* Delete the extraneous phis */
11330         for(i = 0; i < phis; i++) {
11331                 struct triple **slot;
11332                 int zrhs, j;
11333                 if (!live[i].alive) {
11334                         release_triple(state, live[i].phi);
11335                         continue;
11336                 }
11337                 phi = live[i].phi;
11338                 slot = &RHS(phi, 0);
11339                 zrhs = TRIPLE_RHS(phi->sizes);
11340                 for(j = 0; j < zrhs; j++) {
11341                         if(!slot[j]) {
11342                                 error(state, phi, "variable not set on all paths to use");
11343                         }
11344                 }
11345         }
11346         xfree(live);
11347 }
11348
11349 static void transform_to_ssa_form(struct compile_state *state)
11350 {
11351         insert_phi_operations(state);
11352         rename_variables(state);
11353
11354         prune_block_variables(state, state->first_block);
11355         prune_unused_phis(state);
11356 }
11357
11358
11359 static void clear_vertex(
11360         struct compile_state *state, struct block *block, void *arg)
11361 {
11362         /* Clear the current blocks vertex and the vertex of all
11363          * of the current blocks neighbors in case there are malformed
11364          * blocks with now instructions at this point.
11365          */
11366         struct block_set *user;
11367         block->vertex = 0;
11368         if (block->left) {
11369                 block->left->vertex = 0;
11370         }
11371         if (block->right) {
11372                 block->right->vertex = 0;
11373         }
11374         for(user = block->use; user; user = user->next) {
11375                 user->member->vertex = 0;
11376         }
11377 }
11378
11379 static void mark_live_block(
11380         struct compile_state *state, struct block *block, int *next_vertex)
11381 {
11382         /* See if this is a block that has not been marked */
11383         if (block->vertex != 0) {
11384                 return;
11385         }
11386         block->vertex = *next_vertex;
11387         *next_vertex += 1;
11388         if (triple_is_branch(state, block->last)) {
11389                 struct triple **targ;
11390                 targ = triple_targ(state, block->last, 0);
11391                 for(; targ; targ = triple_targ(state, block->last, targ)) {
11392                         if (!*targ) {
11393                                 continue;
11394                         }
11395                         if (!triple_stores_block(state, *targ)) {
11396                                 internal_error(state, 0, "bad targ");
11397                         }
11398                         mark_live_block(state, (*targ)->u.block, next_vertex);
11399                 }
11400         }
11401         else if (block->last->next != state->first) {
11402                 struct triple *ins;
11403                 ins = block->last->next;
11404                 if (!triple_stores_block(state, ins)) {
11405                         internal_error(state, 0, "bad block start");
11406                 }
11407                 mark_live_block(state, ins->u.block, next_vertex);
11408         }
11409 }
11410
11411 static void transform_from_ssa_form(struct compile_state *state)
11412 {
11413         /* To get out of ssa form we insert moves on the incoming
11414          * edges to blocks containting phi functions.
11415          */
11416         struct triple *first;
11417         struct triple *phi, *var, *next;
11418         int next_vertex;
11419
11420         /* Walk the control flow to see which blocks remain alive */
11421         walk_blocks(state, clear_vertex, 0);
11422         next_vertex = 1;
11423         mark_live_block(state, state->first_block, &next_vertex);
11424
11425 #if 0
11426         fprintf(stderr, "@ %s:%d\n", __FILE__, __LINE__);
11427         print_blocks(state, stderr);
11428 #endif
11429
11430         /* Walk all of the operations to find the phi functions */
11431         first = state->first;
11432         for(phi = first->next; phi != first ; phi = next) {
11433                 struct block_set *set;
11434                 struct block *block;
11435                 struct triple **slot;
11436                 struct triple *var;
11437                 struct triple_set *use, *use_next;
11438                 int edge, used;
11439                 next = phi->next;
11440                 if (phi->op != OP_PHI) {
11441                         continue;
11442                 }
11443
11444                 block = phi->u.block;
11445                 slot  = &RHS(phi, 0);
11446
11447                 /* If this phi is in a dead block just forget it */
11448                 if (block->vertex == 0) {
11449                         release_triple(state, phi);
11450                         continue;
11451                 }
11452
11453                 /* Forget uses from code in dead blocks */
11454                 for(use = phi->use; use; use = use_next) {
11455                         struct block *ublock;
11456                         struct triple **expr;
11457                         use_next = use->next;
11458                         ublock = block_of_triple(state, use->member);
11459                         if ((use->member == phi) || (ublock->vertex != 0)) {
11460                                 continue;
11461                         }
11462                         expr = triple_rhs(state, use->member, 0);
11463                         for(; expr; expr = triple_rhs(state, use->member, expr)) {
11464                                 if (*expr == phi) {
11465                                         *expr = 0;
11466                                 }
11467                         }
11468                         unuse_triple(phi, use->member);
11469                 }
11470                 /* A variable to replace the phi function */
11471                 var = post_triple(state, phi, OP_ADECL, phi->type, 0,0);
11472
11473                 /* Replaces use of phi with var */
11474                 propogate_use(state, phi, var);
11475
11476                 /* Walk all of the incoming edges/blocks and insert moves.
11477                  */
11478                 used = 0;
11479                 for(edge = 0, set = block->use; set; set = set->next, edge++) {
11480                         struct block *eblock, *vblock;
11481                         struct triple *move;
11482                         struct triple *val, *base;
11483                         eblock = set->member;
11484                         val = slot[edge];
11485                         slot[edge] = 0;
11486                         unuse_triple(val, phi);
11487                         vblock = block_of_triple(state, val);
11488
11489                         /* If we don't have a value that belongs in an OP_WRITE
11490                          * continue on.
11491                          */
11492                         if (!val || (val == &zero_triple) || (val == phi) || 
11493                                 (!vblock) || (vblock->vertex == 0)) {
11494                                 continue;
11495                         }
11496
11497                         /* If the value occurs in a dead block see if a replacement
11498                          * block can be found.
11499                          */
11500                         while(eblock && (eblock->vertex == 0)) {
11501                                 eblock = eblock->idom;
11502                         }
11503                         /* If not continue on with the next value. */
11504                         if (!eblock || (eblock->vertex == 0)) {
11505                                 continue;
11506                         }
11507
11508                         /* If we have an empty incoming block ignore it. */
11509                         if (!eblock->first) {
11510                                 internal_error(state, 0, "empty block?");
11511                         }
11512                         
11513                         /* Make certain the write is placed in the edge block... */
11514                         base = eblock->first;
11515                         if (block_of_triple(state, val) == eblock) {
11516                                 base = val;
11517                         }
11518                         move = post_triple(state, base, OP_WRITE, var->type, var, val);
11519                         use_triple(val, move);
11520                         use_triple(var, move);
11521                         used = 1;
11522                 }               
11523                 /* If var is not used free it */
11524                 if (!used) {
11525                         free_triple(state, var);
11526                 }
11527
11528                 /* Release the phi function */
11529                 release_triple(state, phi);
11530         }
11531         
11532         /* Walk all of the operations to find the adecls */
11533         for(var = first->next; var != first ; var = var->next) {
11534                 struct triple_set *use, *use_next;
11535                 if (var->op != OP_ADECL) {
11536                         continue;
11537                 }
11538
11539                 /* Walk through all of the rhs uses of var and
11540                  * replace them with read of var.
11541                  */
11542                 for(use = var->use; use; use = use_next) {
11543                         struct triple *read, *user;
11544                         struct triple **slot;
11545                         int zrhs, i, used;
11546                         use_next = use->next;
11547                         user = use->member;
11548                         
11549                         /* Generate a read of var */
11550                         read = pre_triple(state, user, OP_READ, var->type, var, 0);
11551                         use_triple(var, read);
11552
11553                         /* Find the rhs uses and see if they need to be replaced */
11554                         used = 0;
11555                         zrhs = TRIPLE_RHS(user->sizes);
11556                         slot = &RHS(user, 0);
11557                         for(i = 0; i < zrhs; i++) {
11558                                 if ((slot[i] == var) &&
11559                                         ((i != 0) || (user->op != OP_WRITE))) 
11560                                 {
11561                                         slot[i] = read;
11562                                         used = 1;
11563                                 }
11564                         }
11565                         /* If we did use it cleanup the uses */
11566                         if (used) {
11567                                 unuse_triple(var, user);
11568                                 use_triple(read, user);
11569                         } 
11570                         /* If we didn't use it release the extra triple */
11571                         else {
11572                                 release_triple(state, read);
11573                         }
11574                 }
11575         }
11576 }
11577
11578 #if 0
11579 #define HI() do { fprintf(stderr, "@ %s:%d\n", __FILE__, __LINE__); print_blocks(state, stderr); } while (0)
11580 #else
11581 #define HI() 
11582 #endif
11583 static void rebuild_ssa_form(struct compile_state *state)
11584 {
11585 HI();
11586         transform_from_ssa_form(state);
11587 HI();
11588         free_basic_blocks(state);
11589         analyze_basic_blocks(state);
11590 HI();
11591         insert_phi_operations(state);
11592 HI();
11593         rename_variables(state);
11594 HI();
11595         
11596         prune_block_variables(state, state->first_block);
11597 HI();
11598         prune_unused_phis(state);
11599 HI();
11600 }
11601 #undef HI
11602
11603 /* 
11604  * Register conflict resolution
11605  * =========================================================
11606  */
11607
11608 static struct reg_info find_def_color(
11609         struct compile_state *state, struct triple *def)
11610 {
11611         struct triple_set *set;
11612         struct reg_info info;
11613         info.reg = REG_UNSET;
11614         info.regcm = 0;
11615         if (!triple_is_def(state, def)) {
11616                 return info;
11617         }
11618         info = arch_reg_lhs(state, def, 0);
11619         if (info.reg >= MAX_REGISTERS) {
11620                 info.reg = REG_UNSET;
11621         }
11622         for(set = def->use; set; set = set->next) {
11623                 struct reg_info tinfo;
11624                 int i;
11625                 i = find_rhs_use(state, set->member, def);
11626                 if (i < 0) {
11627                         continue;
11628                 }
11629                 tinfo = arch_reg_rhs(state, set->member, i);
11630                 if (tinfo.reg >= MAX_REGISTERS) {
11631                         tinfo.reg = REG_UNSET;
11632                 }
11633                 if ((tinfo.reg != REG_UNSET) && 
11634                         (info.reg != REG_UNSET) &&
11635                         (tinfo.reg != info.reg)) {
11636                         internal_error(state, def, "register conflict");
11637                 }
11638                 if ((info.regcm & tinfo.regcm) == 0) {
11639                         internal_error(state, def, "regcm conflict %x & %x == 0",
11640                                 info.regcm, tinfo.regcm);
11641                 }
11642                 if (info.reg == REG_UNSET) {
11643                         info.reg = tinfo.reg;
11644                 }
11645                 info.regcm &= tinfo.regcm;
11646         }
11647         if (info.reg >= MAX_REGISTERS) {
11648                 internal_error(state, def, "register out of range");
11649         }
11650         return info;
11651 }
11652
11653 static struct reg_info find_lhs_pre_color(
11654         struct compile_state *state, struct triple *ins, int index)
11655 {
11656         struct reg_info info;
11657         int zlhs, zrhs, i;
11658         zrhs = TRIPLE_RHS(ins->sizes);
11659         zlhs = TRIPLE_LHS(ins->sizes);
11660         if (!zlhs && triple_is_def(state, ins)) {
11661                 zlhs = 1;
11662         }
11663         if (index >= zlhs) {
11664                 internal_error(state, ins, "Bad lhs %d", index);
11665         }
11666         info = arch_reg_lhs(state, ins, index);
11667         for(i = 0; i < zrhs; i++) {
11668                 struct reg_info rinfo;
11669                 rinfo = arch_reg_rhs(state, ins, i);
11670                 if ((info.reg == rinfo.reg) &&
11671                         (rinfo.reg >= MAX_REGISTERS)) {
11672                         struct reg_info tinfo;
11673                         tinfo = find_lhs_pre_color(state, RHS(ins, index), 0);
11674                         info.reg = tinfo.reg;
11675                         info.regcm &= tinfo.regcm;
11676                         break;
11677                 }
11678         }
11679         if (info.reg >= MAX_REGISTERS) {
11680                 info.reg = REG_UNSET;
11681         }
11682         return info;
11683 }
11684
11685 static struct reg_info find_rhs_post_color(
11686         struct compile_state *state, struct triple *ins, int index);
11687
11688 static struct reg_info find_lhs_post_color(
11689         struct compile_state *state, struct triple *ins, int index)
11690 {
11691         struct triple_set *set;
11692         struct reg_info info;
11693         struct triple *lhs;
11694 #if DEBUG_TRIPLE_COLOR
11695         fprintf(stderr, "find_lhs_post_color(%p, %d)\n",
11696                 ins, index);
11697 #endif
11698         if ((index == 0) && triple_is_def(state, ins)) {
11699                 lhs = ins;
11700         }
11701         else if (index < TRIPLE_LHS(ins->sizes)) {
11702                 lhs = LHS(ins, index);
11703         }
11704         else {
11705                 internal_error(state, ins, "Bad lhs %d", index);
11706                 lhs = 0;
11707         }
11708         info = arch_reg_lhs(state, ins, index);
11709         if (info.reg >= MAX_REGISTERS) {
11710                 info.reg = REG_UNSET;
11711         }
11712         for(set = lhs->use; set; set = set->next) {
11713                 struct reg_info rinfo;
11714                 struct triple *user;
11715                 int zrhs, i;
11716                 user = set->member;
11717                 zrhs = TRIPLE_RHS(user->sizes);
11718                 for(i = 0; i < zrhs; i++) {
11719                         if (RHS(user, i) != lhs) {
11720                                 continue;
11721                         }
11722                         rinfo = find_rhs_post_color(state, user, i);
11723                         if ((info.reg != REG_UNSET) &&
11724                                 (rinfo.reg != REG_UNSET) &&
11725                                 (info.reg != rinfo.reg)) {
11726                                 internal_error(state, ins, "register conflict");
11727                         }
11728                         if ((info.regcm & rinfo.regcm) == 0) {
11729                                 internal_error(state, ins, "regcm conflict %x & %x == 0",
11730                                         info.regcm, rinfo.regcm);
11731                         }
11732                         if (info.reg == REG_UNSET) {
11733                                 info.reg = rinfo.reg;
11734                         }
11735                         info.regcm &= rinfo.regcm;
11736                 }
11737         }
11738 #if DEBUG_TRIPLE_COLOR
11739         fprintf(stderr, "find_lhs_post_color(%p, %d) -> ( %d, %x)\n",
11740                 ins, index, info.reg, info.regcm);
11741 #endif
11742         return info;
11743 }
11744
11745 static struct reg_info find_rhs_post_color(
11746         struct compile_state *state, struct triple *ins, int index)
11747 {
11748         struct reg_info info, rinfo;
11749         int zlhs, i;
11750 #if DEBUG_TRIPLE_COLOR
11751         fprintf(stderr, "find_rhs_post_color(%p, %d)\n",
11752                 ins, index);
11753 #endif
11754         rinfo = arch_reg_rhs(state, ins, index);
11755         zlhs = TRIPLE_LHS(ins->sizes);
11756         if (!zlhs && triple_is_def(state, ins)) {
11757                 zlhs = 1;
11758         }
11759         info = rinfo;
11760         if (info.reg >= MAX_REGISTERS) {
11761                 info.reg = REG_UNSET;
11762         }
11763         for(i = 0; i < zlhs; i++) {
11764                 struct reg_info linfo;
11765                 linfo = arch_reg_lhs(state, ins, i);
11766                 if ((linfo.reg == rinfo.reg) &&
11767                         (linfo.reg >= MAX_REGISTERS)) {
11768                         struct reg_info tinfo;
11769                         tinfo = find_lhs_post_color(state, ins, i);
11770                         if (tinfo.reg >= MAX_REGISTERS) {
11771                                 tinfo.reg = REG_UNSET;
11772                         }
11773                         info.regcm &= linfo.regcm;
11774                         info.regcm &= tinfo.regcm;
11775                         if (info.reg != REG_UNSET) {
11776                                 internal_error(state, ins, "register conflict");
11777                         }
11778                         if (info.regcm == 0) {
11779                                 internal_error(state, ins, "regcm conflict");
11780                         }
11781                         info.reg = tinfo.reg;
11782                 }
11783         }
11784 #if DEBUG_TRIPLE_COLOR
11785         fprintf(stderr, "find_rhs_post_color(%p, %d) -> ( %d, %x)\n",
11786                 ins, index, info.reg, info.regcm);
11787 #endif
11788         return info;
11789 }
11790
11791 static struct reg_info find_lhs_color(
11792         struct compile_state *state, struct triple *ins, int index)
11793 {
11794         struct reg_info pre, post, info;
11795 #if DEBUG_TRIPLE_COLOR
11796         fprintf(stderr, "find_lhs_color(%p, %d)\n",
11797                 ins, index);
11798 #endif
11799         pre = find_lhs_pre_color(state, ins, index);
11800         post = find_lhs_post_color(state, ins, index);
11801         if ((pre.reg != post.reg) &&
11802                 (pre.reg != REG_UNSET) &&
11803                 (post.reg != REG_UNSET)) {
11804                 internal_error(state, ins, "register conflict");
11805         }
11806         info.regcm = pre.regcm & post.regcm;
11807         info.reg = pre.reg;
11808         if (info.reg == REG_UNSET) {
11809                 info.reg = post.reg;
11810         }
11811 #if DEBUG_TRIPLE_COLOR
11812         fprintf(stderr, "find_lhs_color(%p, %d) -> ( %d, %x) ... (%d, %x) (%d, %x)\n",
11813                 ins, index, info.reg, info.regcm,
11814                 pre.reg, pre.regcm, post.reg, post.regcm);
11815 #endif
11816         return info;
11817 }
11818
11819 static struct triple *post_copy(struct compile_state *state, struct triple *ins)
11820 {
11821         struct triple_set *entry, *next;
11822         struct triple *out;
11823         struct reg_info info, rinfo;
11824
11825         info = arch_reg_lhs(state, ins, 0);
11826         out = post_triple(state, ins, OP_COPY, ins->type, ins, 0);
11827         use_triple(RHS(out, 0), out);
11828         /* Get the users of ins to use out instead */
11829         for(entry = ins->use; entry; entry = next) {
11830                 int i;
11831                 next = entry->next;
11832                 if (entry->member == out) {
11833                         continue;
11834                 }
11835                 i = find_rhs_use(state, entry->member, ins);
11836                 if (i < 0) {
11837                         continue;
11838                 }
11839                 rinfo = arch_reg_rhs(state, entry->member, i);
11840                 if ((info.reg == REG_UNNEEDED) && (rinfo.reg == REG_UNNEEDED)) {
11841                         continue;
11842                 }
11843                 replace_rhs_use(state, ins, out, entry->member);
11844         }
11845         transform_to_arch_instruction(state, out);
11846         return out;
11847 }
11848
11849 static struct triple *typed_pre_copy(
11850         struct compile_state *state, struct type *type, struct triple *ins, int index)
11851 {
11852         /* Carefully insert enough operations so that I can
11853          * enter any operation with a GPR32.
11854          */
11855         struct triple *in;
11856         struct triple **expr;
11857         unsigned classes;
11858         struct reg_info info;
11859         if (ins->op == OP_PHI) {
11860                 internal_error(state, ins, "pre_copy on a phi?");
11861         }
11862         classes = arch_type_to_regcm(state, type);
11863         info = arch_reg_rhs(state, ins, index);
11864         expr = &RHS(ins, index);
11865         if ((info.regcm & classes) == 0) {
11866                 internal_error(state, ins, "pre_copy with no register classes");
11867         }
11868         in = pre_triple(state, ins, OP_COPY, type, *expr, 0);
11869         unuse_triple(*expr, ins);
11870         *expr = in;
11871         use_triple(RHS(in, 0), in);
11872         use_triple(in, ins);
11873         transform_to_arch_instruction(state, in);
11874         return in;
11875         
11876 }
11877 static struct triple *pre_copy(
11878         struct compile_state *state, struct triple *ins, int index)
11879 {
11880         return typed_pre_copy(state, RHS(ins, index)->type, ins, index);
11881 }
11882
11883
11884 static void insert_copies_to_phi(struct compile_state *state)
11885 {
11886         /* To get out of ssa form we insert moves on the incoming
11887          * edges to blocks containting phi functions.
11888          */
11889         struct triple *first;
11890         struct triple *phi;
11891
11892         /* Walk all of the operations to find the phi functions */
11893         first = state->first;
11894         for(phi = first->next; phi != first ; phi = phi->next) {
11895                 struct block_set *set;
11896                 struct block *block;
11897                 struct triple **slot, *copy;
11898                 int edge;
11899                 if (phi->op != OP_PHI) {
11900                         continue;
11901                 }
11902                 phi->id |= TRIPLE_FLAG_POST_SPLIT;
11903                 block = phi->u.block;
11904                 slot  = &RHS(phi, 0);
11905                 /* Phi's that feed into mandatory live range joins
11906                  * cause nasty complications.  Insert a copy of
11907                  * the phi value so I never have to deal with
11908                  * that in the rest of the code.
11909                  */
11910                 copy = post_copy(state, phi);
11911                 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
11912                 /* Walk all of the incoming edges/blocks and insert moves.
11913                  */
11914                 for(edge = 0, set = block->use; set; set = set->next, edge++) {
11915                         struct block *eblock;
11916                         struct triple *move;
11917                         struct triple *val;
11918                         struct triple *ptr;
11919                         eblock = set->member;
11920                         val = slot[edge];
11921
11922                         if (val == phi) {
11923                                 continue;
11924                         }
11925
11926                         get_occurance(val->occurance);
11927                         move = build_triple(state, OP_COPY, phi->type, val, 0,
11928                                 val->occurance);
11929                         move->u.block = eblock;
11930                         move->id |= TRIPLE_FLAG_PRE_SPLIT;
11931                         use_triple(val, move);
11932                         
11933                         slot[edge] = move;
11934                         unuse_triple(val, phi);
11935                         use_triple(move, phi);
11936
11937                         /* Walk up the dominator tree until I have found the appropriate block */
11938                         while(eblock && !tdominates(state, val, eblock->last)) {
11939                                 eblock = eblock->idom;
11940                         }
11941                         if (!eblock) {
11942                                 internal_error(state, phi, "Cannot find block dominated by %p",
11943                                         val);
11944                         }
11945
11946                         /* Walk through the block backwards to find
11947                          * an appropriate location for the OP_COPY.
11948                          */
11949                         for(ptr = eblock->last; ptr != eblock->first; ptr = ptr->prev) {
11950                                 struct triple **expr;
11951                                 if ((ptr == phi) || (ptr == val)) {
11952                                         goto out;
11953                                 }
11954                                 expr = triple_rhs(state, ptr, 0);
11955                                 for(;expr; expr = triple_rhs(state, ptr, expr)) {
11956                                         if ((*expr) == phi) {
11957                                                 goto out;
11958                                         }
11959                                 }
11960                         }
11961                 out:
11962                         if (triple_is_branch(state, ptr)) {
11963                                 internal_error(state, ptr,
11964                                         "Could not insert write to phi");
11965                         }
11966                         insert_triple(state, ptr->next, move);
11967                         if (eblock->last == ptr) {
11968                                 eblock->last = move;
11969                         }
11970                         transform_to_arch_instruction(state, move);
11971                 }
11972         }
11973 }
11974
11975 struct triple_reg_set {
11976         struct triple_reg_set *next;
11977         struct triple *member;
11978         struct triple *new;
11979 };
11980
11981 struct reg_block {
11982         struct block *block;
11983         struct triple_reg_set *in;
11984         struct triple_reg_set *out;
11985         int vertex;
11986 };
11987
11988 static int do_triple_set(struct triple_reg_set **head, 
11989         struct triple *member, struct triple *new_member)
11990 {
11991         struct triple_reg_set **ptr, *new;
11992         if (!member)
11993                 return 0;
11994         ptr = head;
11995         while(*ptr) {
11996                 if ((*ptr)->member == member) {
11997                         return 0;
11998                 }
11999                 ptr = &(*ptr)->next;
12000         }
12001         new = xcmalloc(sizeof(*new), "triple_set");
12002         new->member = member;
12003         new->new    = new_member;
12004         new->next   = *head;
12005         *head       = new;
12006         return 1;
12007 }
12008
12009 static void do_triple_unset(struct triple_reg_set **head, struct triple *member)
12010 {
12011         struct triple_reg_set *entry, **ptr;
12012         ptr = head;
12013         while(*ptr) {
12014                 entry = *ptr;
12015                 if (entry->member == member) {
12016                         *ptr = entry->next;
12017                         xfree(entry);
12018                         return;
12019                 }
12020                 else {
12021                         ptr = &entry->next;
12022                 }
12023         }
12024 }
12025
12026 static int in_triple(struct reg_block *rb, struct triple *in)
12027 {
12028         return do_triple_set(&rb->in, in, 0);
12029 }
12030 static void unin_triple(struct reg_block *rb, struct triple *unin)
12031 {
12032         do_triple_unset(&rb->in, unin);
12033 }
12034
12035 static int out_triple(struct reg_block *rb, struct triple *out)
12036 {
12037         return do_triple_set(&rb->out, out, 0);
12038 }
12039 static void unout_triple(struct reg_block *rb, struct triple *unout)
12040 {
12041         do_triple_unset(&rb->out, unout);
12042 }
12043
12044 static int initialize_regblock(struct reg_block *blocks,
12045         struct block *block, int vertex)
12046 {
12047         struct block_set *user;
12048         if (!block || (blocks[block->vertex].block == block)) {
12049                 return vertex;
12050         }
12051         vertex += 1;
12052         /* Renumber the blocks in a convinient fashion */
12053         block->vertex = vertex;
12054         blocks[vertex].block    = block;
12055         blocks[vertex].vertex   = vertex;
12056         for(user = block->use; user; user = user->next) {
12057                 vertex = initialize_regblock(blocks, user->member, vertex);
12058         }
12059         return vertex;
12060 }
12061
12062 static int phi_in(struct compile_state *state, struct reg_block *blocks,
12063         struct reg_block *rb, struct block *suc)
12064 {
12065         /* Read the conditional input set of a successor block
12066          * (i.e. the input to the phi nodes) and place it in the
12067          * current blocks output set.
12068          */
12069         struct block_set *set;
12070         struct triple *ptr;
12071         int edge;
12072         int done, change;
12073         change = 0;
12074         /* Find the edge I am coming in on */
12075         for(edge = 0, set = suc->use; set; set = set->next, edge++) {
12076                 if (set->member == rb->block) {
12077                         break;
12078                 }
12079         }
12080         if (!set) {
12081                 internal_error(state, 0, "Not coming on a control edge?");
12082         }
12083         for(done = 0, ptr = suc->first; !done; ptr = ptr->next) {
12084                 struct triple **slot, *expr, *ptr2;
12085                 int out_change, done2;
12086                 done = (ptr == suc->last);
12087                 if (ptr->op != OP_PHI) {
12088                         continue;
12089                 }
12090                 slot = &RHS(ptr, 0);
12091                 expr = slot[edge];
12092                 out_change = out_triple(rb, expr);
12093                 if (!out_change) {
12094                         continue;
12095                 }
12096                 /* If we don't define the variable also plast it
12097                  * in the current blocks input set.
12098                  */
12099                 ptr2 = rb->block->first;
12100                 for(done2 = 0; !done2; ptr2 = ptr2->next) {
12101                         if (ptr2 == expr) {
12102                                 break;
12103                         }
12104                         done2 = (ptr2 == rb->block->last);
12105                 }
12106                 if (!done2) {
12107                         continue;
12108                 }
12109                 change |= in_triple(rb, expr);
12110         }
12111         return change;
12112 }
12113
12114 static int reg_in(struct compile_state *state, struct reg_block *blocks,
12115         struct reg_block *rb, struct block *suc)
12116 {
12117         struct triple_reg_set *in_set;
12118         int change;
12119         change = 0;
12120         /* Read the input set of a successor block
12121          * and place it in the current blocks output set.
12122          */
12123         in_set = blocks[suc->vertex].in;
12124         for(; in_set; in_set = in_set->next) {
12125                 int out_change, done;
12126                 struct triple *first, *last, *ptr;
12127                 out_change = out_triple(rb, in_set->member);
12128                 if (!out_change) {
12129                         continue;
12130                 }
12131                 /* If we don't define the variable also place it
12132                  * in the current blocks input set.
12133                  */
12134                 first = rb->block->first;
12135                 last = rb->block->last;
12136                 done = 0;
12137                 for(ptr = first; !done; ptr = ptr->next) {
12138                         if (ptr == in_set->member) {
12139                                 break;
12140                         }
12141                         done = (ptr == last);
12142                 }
12143                 if (!done) {
12144                         continue;
12145                 }
12146                 change |= in_triple(rb, in_set->member);
12147         }
12148         change |= phi_in(state, blocks, rb, suc);
12149         return change;
12150 }
12151
12152
12153 static int use_in(struct compile_state *state, struct reg_block *rb)
12154 {
12155         /* Find the variables we use but don't define and add
12156          * it to the current blocks input set.
12157          */
12158 #warning "FIXME is this O(N^2) algorithm bad?"
12159         struct block *block;
12160         struct triple *ptr;
12161         int done;
12162         int change;
12163         block = rb->block;
12164         change = 0;
12165         for(done = 0, ptr = block->last; !done; ptr = ptr->prev) {
12166                 struct triple **expr;
12167                 done = (ptr == block->first);
12168                 /* The variable a phi function uses depends on the
12169                  * control flow, and is handled in phi_in, not
12170                  * here.
12171                  */
12172                 if (ptr->op == OP_PHI) {
12173                         continue;
12174                 }
12175                 expr = triple_rhs(state, ptr, 0);
12176                 for(;expr; expr = triple_rhs(state, ptr, expr)) {
12177                         struct triple *rhs, *test;
12178                         int tdone;
12179                         rhs = *expr;
12180                         if (!rhs) {
12181                                 continue;
12182                         }
12183                         /* See if rhs is defined in this block */
12184                         for(tdone = 0, test = ptr; !tdone; test = test->prev) {
12185                                 tdone = (test == block->first);
12186                                 if (test == rhs) {
12187                                         rhs = 0;
12188                                         break;
12189                                 }
12190                         }
12191                         /* If I still have a valid rhs add it to in */
12192                         change |= in_triple(rb, rhs);
12193                 }
12194         }
12195         return change;
12196 }
12197
12198 static struct reg_block *compute_variable_lifetimes(
12199         struct compile_state *state)
12200 {
12201         struct reg_block *blocks;
12202         int change;
12203         blocks = xcmalloc(
12204                 sizeof(*blocks)*(state->last_vertex + 1), "reg_block");
12205         initialize_regblock(blocks, state->last_block, 0);
12206         do {
12207                 int i;
12208                 change = 0;
12209                 for(i = 1; i <= state->last_vertex; i++) {
12210                         struct reg_block *rb;
12211                         rb = &blocks[i];
12212                         /* Add the left successor's input set to in */
12213                         if (rb->block->left) {
12214                                 change |= reg_in(state, blocks, rb, rb->block->left);
12215                         }
12216                         /* Add the right successor's input set to in */
12217                         if ((rb->block->right) && 
12218                                 (rb->block->right != rb->block->left)) {
12219                                 change |= reg_in(state, blocks, rb, rb->block->right);
12220                         }
12221                         /* Add use to in... */
12222                         change |= use_in(state, rb);
12223                 }
12224         } while(change);
12225         return blocks;
12226 }
12227
12228 static void free_variable_lifetimes(
12229         struct compile_state *state, struct reg_block *blocks)
12230 {
12231         int i;
12232         /* free in_set && out_set on each block */
12233         for(i = 1; i <= state->last_vertex; i++) {
12234                 struct triple_reg_set *entry, *next;
12235                 struct reg_block *rb;
12236                 rb = &blocks[i];
12237                 for(entry = rb->in; entry ; entry = next) {
12238                         next = entry->next;
12239                         do_triple_unset(&rb->in, entry->member);
12240                 }
12241                 for(entry = rb->out; entry; entry = next) {
12242                         next = entry->next;
12243                         do_triple_unset(&rb->out, entry->member);
12244                 }
12245         }
12246         xfree(blocks);
12247
12248 }
12249
12250 typedef void (*wvl_cb_t)(
12251         struct compile_state *state, 
12252         struct reg_block *blocks, struct triple_reg_set *live, 
12253         struct reg_block *rb, struct triple *ins, void *arg);
12254
12255 static void walk_variable_lifetimes(struct compile_state *state,
12256         struct reg_block *blocks, wvl_cb_t cb, void *arg)
12257 {
12258         int i;
12259         
12260         for(i = 1; i <= state->last_vertex; i++) {
12261                 struct triple_reg_set *live;
12262                 struct triple_reg_set *entry, *next;
12263                 struct triple *ptr, *prev;
12264                 struct reg_block *rb;
12265                 struct block *block;
12266                 int done;
12267
12268                 /* Get the blocks */
12269                 rb = &blocks[i];
12270                 block = rb->block;
12271
12272                 /* Copy out into live */
12273                 live = 0;
12274                 for(entry = rb->out; entry; entry = next) {
12275                         next = entry->next;
12276                         do_triple_set(&live, entry->member, entry->new);
12277                 }
12278                 /* Walk through the basic block calculating live */
12279                 for(done = 0, ptr = block->last; !done; ptr = prev) {
12280                         struct triple **expr;
12281
12282                         prev = ptr->prev;
12283                         done = (ptr == block->first);
12284
12285                         /* Ensure the current definition is in live */
12286                         if (triple_is_def(state, ptr)) {
12287                                 do_triple_set(&live, ptr, 0);
12288                         }
12289
12290                         /* Inform the callback function of what is
12291                          * going on.
12292                          */
12293                          cb(state, blocks, live, rb, ptr, arg);
12294                         
12295                         /* Remove the current definition from live */
12296                         do_triple_unset(&live, ptr);
12297
12298                         /* Add the current uses to live.
12299                          *
12300                          * It is safe to skip phi functions because they do
12301                          * not have any block local uses, and the block
12302                          * output sets already properly account for what
12303                          * control flow depedent uses phi functions do have.
12304                          */
12305                         if (ptr->op == OP_PHI) {
12306                                 continue;
12307                         }
12308                         expr = triple_rhs(state, ptr, 0);
12309                         for(;expr; expr = triple_rhs(state, ptr, expr)) {
12310                                 /* If the triple is not a definition skip it. */
12311                                 if (!*expr || !triple_is_def(state, *expr)) {
12312                                         continue;
12313                                 }
12314                                 do_triple_set(&live, *expr, 0);
12315                         }
12316                 }
12317                 /* Free live */
12318                 for(entry = live; entry; entry = next) {
12319                         next = entry->next;
12320                         do_triple_unset(&live, entry->member);
12321                 }
12322         }
12323 }
12324
12325 static int count_triples(struct compile_state *state)
12326 {
12327         struct triple *first, *ins;
12328         int triples = 0;
12329         first = state->first;
12330         ins = first;
12331         do {
12332                 triples++;
12333                 ins = ins->next;
12334         } while (ins != first);
12335         return triples;
12336 }
12337
12338
12339 struct dead_triple {
12340         struct triple *triple;
12341         struct dead_triple *work_next;
12342         struct block *block;
12343         int old_id;
12344         int flags;
12345 #define TRIPLE_FLAG_ALIVE 1
12346 };
12347
12348
12349 static void awaken(
12350         struct compile_state *state,
12351         struct dead_triple *dtriple, struct triple **expr,
12352         struct dead_triple ***work_list_tail)
12353 {
12354         struct triple *triple;
12355         struct dead_triple *dt;
12356         if (!expr) {
12357                 return;
12358         }
12359         triple = *expr;
12360         if (!triple) {
12361                 return;
12362         }
12363         if (triple->id <= 0)  {
12364                 internal_error(state, triple, "bad triple id: %d",
12365                         triple->id);
12366         }
12367         if (triple->op == OP_NOOP) {
12368                 internal_error(state, triple, "awakening noop?");
12369                 return;
12370         }
12371         dt = &dtriple[triple->id];
12372         if (!(dt->flags & TRIPLE_FLAG_ALIVE)) {
12373                 dt->flags |= TRIPLE_FLAG_ALIVE;
12374                 if (!dt->work_next) {
12375                         **work_list_tail = dt;
12376                         *work_list_tail = &dt->work_next;
12377                 }
12378         }
12379 }
12380
12381 static void eliminate_inefectual_code(struct compile_state *state)
12382 {
12383         struct block *block;
12384         struct dead_triple *dtriple, *work_list, **work_list_tail, *dt;
12385         int triples, i;
12386         struct triple *first, *final, *ins;
12387
12388         /* Setup the work list */
12389         work_list = 0;
12390         work_list_tail = &work_list;
12391
12392         first = state->first;
12393         final = state->first->prev;
12394
12395         /* Count how many triples I have */
12396         triples = count_triples(state);
12397
12398         /* Now put then in an array and mark all of the triples dead */
12399         dtriple = xcmalloc(sizeof(*dtriple) * (triples + 1), "dtriples");
12400         
12401         ins = first;
12402         i = 1;
12403         block = 0;
12404         do {
12405                 dtriple[i].triple = ins;
12406                 dtriple[i].block  = block_of_triple(state, ins);
12407                 dtriple[i].flags  = 0;
12408                 dtriple[i].old_id = ins->id;
12409                 ins->id = i;
12410                 /* See if it is an operation we always keep */
12411                 if (!triple_is_pure(state, ins, dtriple[i].old_id)) {
12412                         awaken(state, dtriple, &ins, &work_list_tail);
12413                 }
12414                 i++;
12415                 ins = ins->next;
12416         } while(ins != first);
12417         while(work_list) {
12418                 struct block *block;
12419                 struct dead_triple *dt;
12420                 struct block_set *user;
12421                 struct triple **expr;
12422                 dt = work_list;
12423                 work_list = dt->work_next;
12424                 if (!work_list) {
12425                         work_list_tail = &work_list;
12426                 }
12427                 /* Make certain the block the current instruction is in lives */
12428                 block = block_of_triple(state, dt->triple);
12429                 awaken(state, dtriple, &block->first, &work_list_tail);
12430                 if (triple_is_branch(state, block->last)) {
12431                         awaken(state, dtriple, &block->last, &work_list_tail);
12432                 }
12433
12434                 /* Wake up the data depencencies of this triple */
12435                 expr = 0;
12436                 do {
12437                         expr = triple_rhs(state, dt->triple, expr);
12438                         awaken(state, dtriple, expr, &work_list_tail);
12439                 } while(expr);
12440                 do {
12441                         expr = triple_lhs(state, dt->triple, expr);
12442                         awaken(state, dtriple, expr, &work_list_tail);
12443                 } while(expr);
12444                 do {
12445                         expr = triple_misc(state, dt->triple, expr);
12446                         awaken(state, dtriple, expr, &work_list_tail);
12447                 } while(expr);
12448                 /* Wake up the forward control dependencies */
12449                 do {
12450                         expr = triple_targ(state, dt->triple, expr);
12451                         awaken(state, dtriple, expr, &work_list_tail);
12452                 } while(expr);
12453                 /* Wake up the reverse control dependencies of this triple */
12454                 for(user = dt->block->ipdomfrontier; user; user = user->next) {
12455                         awaken(state, dtriple, &user->member->last, &work_list_tail);
12456                         if ((user->member->left != state->last_block) &&
12457                                 !triple_is_cond_branch(state, user->member->last)) {
12458                                 internal_error(state, dt->triple, 
12459                                         "conditional branch missing");
12460                         }
12461                 }
12462         }
12463         for(dt = &dtriple[1]; dt <= &dtriple[triples]; dt++) {
12464                 if ((dt->triple->op == OP_NOOP) && 
12465                         (dt->flags & TRIPLE_FLAG_ALIVE)) {
12466                         internal_error(state, dt->triple, "noop effective?");
12467                 }
12468                 dt->triple->id = dt->old_id;    /* Restore the color */
12469                 if (!(dt->flags & TRIPLE_FLAG_ALIVE)) {
12470                         release_triple(state, dt->triple);
12471                 }
12472         }
12473         xfree(dtriple);
12474 }
12475
12476
12477 static void insert_mandatory_copies(struct compile_state *state)
12478 {
12479         struct triple *ins, *first;
12480
12481         /* The object is with a minimum of inserted copies,
12482          * to resolve in fundamental register conflicts between
12483          * register value producers and consumers.
12484          * Theoretically we may be greater than minimal when we
12485          * are inserting copies before instructions but that
12486          * case should be rare.
12487          */
12488         first = state->first;
12489         ins = first;
12490         do {
12491                 struct triple_set *entry, *next;
12492                 struct triple *tmp;
12493                 struct reg_info info;
12494                 unsigned reg, regcm;
12495                 int do_post_copy, do_pre_copy;
12496                 tmp = 0;
12497                 if (!triple_is_def(state, ins)) {
12498                         goto next;
12499                 }
12500                 /* Find the architecture specific color information */
12501                 info = arch_reg_lhs(state, ins, 0);
12502                 if (info.reg >= MAX_REGISTERS) {
12503                         info.reg = REG_UNSET;
12504                 }
12505                 
12506                 reg = REG_UNSET;
12507                 regcm = arch_type_to_regcm(state, ins->type);
12508                 do_post_copy = do_pre_copy = 0;
12509
12510                 /* Walk through the uses of ins and check for conflicts */
12511                 for(entry = ins->use; entry; entry = next) {
12512                         struct reg_info rinfo;
12513                         int i;
12514                         next = entry->next;
12515                         i = find_rhs_use(state, entry->member, ins);
12516                         if (i < 0) {
12517                                 continue;
12518                         }
12519                         
12520                         /* Find the users color requirements */
12521                         rinfo = arch_reg_rhs(state, entry->member, i);
12522                         if (rinfo.reg >= MAX_REGISTERS) {
12523                                 rinfo.reg = REG_UNSET;
12524                         }
12525                         
12526                         /* See if I need a pre_copy */
12527                         if (rinfo.reg != REG_UNSET) {
12528                                 if ((reg != REG_UNSET) && (reg != rinfo.reg)) {
12529                                         do_pre_copy = 1;
12530                                 }
12531                                 reg = rinfo.reg;
12532                         }
12533                         regcm &= rinfo.regcm;
12534                         regcm = arch_regcm_normalize(state, regcm);
12535                         if (regcm == 0) {
12536                                 do_pre_copy = 1;
12537                         }
12538                         /* Always use pre_copies for constants.
12539                          * They do not take up any registers until a
12540                          * copy places them in one.
12541                          */
12542                         if ((info.reg == REG_UNNEEDED) && 
12543                                 (rinfo.reg != REG_UNNEEDED)) {
12544                                 do_pre_copy = 1;
12545                         }
12546                 }
12547                 do_post_copy =
12548                         !do_pre_copy &&
12549                         (((info.reg != REG_UNSET) && 
12550                                 (reg != REG_UNSET) &&
12551                                 (info.reg != reg)) ||
12552                         ((info.regcm & regcm) == 0));
12553
12554                 reg = info.reg;
12555                 regcm = info.regcm;
12556                 /* Walk through the uses of ins and do a pre_copy or see if a post_copy is warranted */
12557                 for(entry = ins->use; entry; entry = next) {
12558                         struct reg_info rinfo;
12559                         int i;
12560                         next = entry->next;
12561                         i = find_rhs_use(state, entry->member, ins);
12562                         if (i < 0) {
12563                                 continue;
12564                         }
12565                         
12566                         /* Find the users color requirements */
12567                         rinfo = arch_reg_rhs(state, entry->member, i);
12568                         if (rinfo.reg >= MAX_REGISTERS) {
12569                                 rinfo.reg = REG_UNSET;
12570                         }
12571
12572                         /* Now see if it is time to do the pre_copy */
12573                         if (rinfo.reg != REG_UNSET) {
12574                                 if (((reg != REG_UNSET) && (reg != rinfo.reg)) ||
12575                                         ((regcm & rinfo.regcm) == 0) ||
12576                                         /* Don't let a mandatory coalesce sneak
12577                                          * into a operation that is marked to prevent
12578                                          * coalescing.
12579                                          */
12580                                         ((reg != REG_UNNEEDED) &&
12581                                         ((ins->id & TRIPLE_FLAG_POST_SPLIT) ||
12582                                         (entry->member->id & TRIPLE_FLAG_PRE_SPLIT)))
12583                                         ) {
12584                                         if (do_pre_copy) {
12585                                                 struct triple *user;
12586                                                 user = entry->member;
12587                                                 if (RHS(user, i) != ins) {
12588                                                         internal_error(state, user, "bad rhs");
12589                                                 }
12590                                                 tmp = pre_copy(state, user, i);
12591                                                 tmp->id |= TRIPLE_FLAG_PRE_SPLIT;
12592                                                 continue;
12593                                         } else {
12594                                                 do_post_copy = 1;
12595                                         }
12596                                 }
12597                                 reg = rinfo.reg;
12598                         }
12599                         if ((regcm & rinfo.regcm) == 0) {
12600                                 if (do_pre_copy) {
12601                                         struct triple *user;
12602                                         user = entry->member;
12603                                         if (RHS(user, i) != ins) {
12604                                                 internal_error(state, user, "bad rhs");
12605                                         }
12606                                         tmp = pre_copy(state, user, i);
12607                                         tmp->id |= TRIPLE_FLAG_PRE_SPLIT;
12608                                         continue;
12609                                 } else {
12610                                         do_post_copy = 1;
12611                                 }
12612                         }
12613                         regcm &= rinfo.regcm;
12614                         
12615                 }
12616                 if (do_post_copy) {
12617                         struct reg_info pre, post;
12618                         tmp = post_copy(state, ins);
12619                         tmp->id |= TRIPLE_FLAG_PRE_SPLIT;
12620                         pre = arch_reg_lhs(state, ins, 0);
12621                         post = arch_reg_lhs(state, tmp, 0);
12622                         if ((pre.reg == post.reg) && (pre.regcm == post.regcm)) {
12623                                 internal_error(state, tmp, "useless copy");
12624                         }
12625                 }
12626         next:
12627                 ins = ins->next;
12628         } while(ins != first);
12629 }
12630
12631
12632 struct live_range_edge;
12633 struct live_range_def;
12634 struct live_range {
12635         struct live_range_edge *edges;
12636         struct live_range_def *defs;
12637 /* Note. The list pointed to by defs is kept in order.
12638  * That is baring splits in the flow control
12639  * defs dominates defs->next wich dominates defs->next->next
12640  * etc.
12641  */
12642         unsigned color;
12643         unsigned classes;
12644         unsigned degree;
12645         unsigned length;
12646         struct live_range *group_next, **group_prev;
12647 };
12648
12649 struct live_range_edge {
12650         struct live_range_edge *next;
12651         struct live_range *node;
12652 };
12653
12654 struct live_range_def {
12655         struct live_range_def *next;
12656         struct live_range_def *prev;
12657         struct live_range *lr;
12658         struct triple *def;
12659         unsigned orig_id;
12660 };
12661
12662 #define LRE_HASH_SIZE 2048
12663 struct lre_hash {
12664         struct lre_hash *next;
12665         struct live_range *left;
12666         struct live_range *right;
12667 };
12668
12669
12670 struct reg_state {
12671         struct lre_hash *hash[LRE_HASH_SIZE];
12672         struct reg_block *blocks;
12673         struct live_range_def *lrd;
12674         struct live_range *lr;
12675         struct live_range *low, **low_tail;
12676         struct live_range *high, **high_tail;
12677         unsigned defs;
12678         unsigned ranges;
12679         int passes, max_passes;
12680 #define MAX_ALLOCATION_PASSES 100
12681 };
12682
12683
12684
12685 struct print_interference_block_info {
12686         struct reg_state *rstate;
12687         FILE *fp;
12688         int need_edges;
12689 };
12690 static void print_interference_block(
12691         struct compile_state *state, struct block *block, void *arg)
12692
12693 {
12694         struct print_interference_block_info *info = arg;
12695         struct reg_state *rstate = info->rstate;
12696         FILE *fp = info->fp;
12697         struct reg_block *rb;
12698         struct triple *ptr;
12699         int phi_present;
12700         int done;
12701         rb = &rstate->blocks[block->vertex];
12702
12703         fprintf(fp, "\nblock: %p (%d), %p<-%p %p<-%p\n", 
12704                 block, 
12705                 block->vertex,
12706                 block->left, 
12707                 block->left && block->left->use?block->left->use->member : 0,
12708                 block->right, 
12709                 block->right && block->right->use?block->right->use->member : 0);
12710         if (rb->in) {
12711                 struct triple_reg_set *in_set;
12712                 fprintf(fp, "        in:");
12713                 for(in_set = rb->in; in_set; in_set = in_set->next) {
12714                         fprintf(fp, " %-10p", in_set->member);
12715                 }
12716                 fprintf(fp, "\n");
12717         }
12718         phi_present = 0;
12719         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
12720                 done = (ptr == block->last);
12721                 if (ptr->op == OP_PHI) {
12722                         phi_present = 1;
12723                         break;
12724                 }
12725         }
12726         if (phi_present) {
12727                 int edge;
12728                 for(edge = 0; edge < block->users; edge++) {
12729                         fprintf(fp, "     in(%d):", edge);
12730                         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
12731                                 struct triple **slot;
12732                                 done = (ptr == block->last);
12733                                 if (ptr->op != OP_PHI) {
12734                                         continue;
12735                                 }
12736                                 slot = &RHS(ptr, 0);
12737                                 fprintf(fp, " %-10p", slot[edge]);
12738                         }
12739                         fprintf(fp, "\n");
12740                 }
12741         }
12742         if (block->first->op == OP_LABEL) {
12743                 fprintf(fp, "%p:\n", block->first);
12744         }
12745         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
12746                 struct live_range *lr;
12747                 unsigned id;
12748                 int op;
12749                 op = ptr->op;
12750                 done = (ptr == block->last);
12751                 lr = rstate->lrd[ptr->id].lr;
12752                 
12753                 id = ptr->id;
12754                 ptr->id = rstate->lrd[id].orig_id;
12755                 SET_REG(ptr->id, lr->color);
12756                 display_triple(fp, ptr);
12757                 ptr->id = id;
12758
12759                 if (triple_is_def(state, ptr) && (lr->defs == 0)) {
12760                         internal_error(state, ptr, "lr has no defs!");
12761                 }
12762                 if (info->need_edges) {
12763                         if (lr->defs) {
12764                                 struct live_range_def *lrd;
12765                                 fprintf(fp, "       range:");
12766                                 lrd = lr->defs;
12767                                 do {
12768                                         fprintf(fp, " %-10p", lrd->def);
12769                                         lrd = lrd->next;
12770                                 } while(lrd != lr->defs);
12771                                 fprintf(fp, "\n");
12772                         }
12773                         if (lr->edges > 0) {
12774                                 struct live_range_edge *edge;
12775                                 fprintf(fp, "       edges:");
12776                                 for(edge = lr->edges; edge; edge = edge->next) {
12777                                         struct live_range_def *lrd;
12778                                         lrd = edge->node->defs;
12779                                         do {
12780                                                 fprintf(fp, " %-10p", lrd->def);
12781                                                 lrd = lrd->next;
12782                                         } while(lrd != edge->node->defs);
12783                                         fprintf(fp, "|");
12784                                 }
12785                                 fprintf(fp, "\n");
12786                         }
12787                 }
12788                 /* Do a bunch of sanity checks */
12789                 valid_ins(state, ptr);
12790                 if ((ptr->id < 0) || (ptr->id > rstate->defs)) {
12791                         internal_error(state, ptr, "Invalid triple id: %d",
12792                                 ptr->id);
12793                 }
12794         }
12795         if (rb->out) {
12796                 struct triple_reg_set *out_set;
12797                 fprintf(fp, "       out:");
12798                 for(out_set = rb->out; out_set; out_set = out_set->next) {
12799                         fprintf(fp, " %-10p", out_set->member);
12800                 }
12801                 fprintf(fp, "\n");
12802         }
12803         fprintf(fp, "\n");
12804 }
12805
12806 static void print_interference_blocks(
12807         struct compile_state *state, struct reg_state *rstate, FILE *fp, int need_edges)
12808 {
12809         struct print_interference_block_info info;
12810         info.rstate = rstate;
12811         info.fp = fp;
12812         info.need_edges = need_edges;
12813         fprintf(fp, "\nlive variables by block\n");
12814         walk_blocks(state, print_interference_block, &info);
12815
12816 }
12817
12818 static unsigned regc_max_size(struct compile_state *state, int classes)
12819 {
12820         unsigned max_size;
12821         int i;
12822         max_size = 0;
12823         for(i = 0; i < MAX_REGC; i++) {
12824                 if (classes & (1 << i)) {
12825                         unsigned size;
12826                         size = arch_regc_size(state, i);
12827                         if (size > max_size) {
12828                                 max_size = size;
12829                         }
12830                 }
12831         }
12832         return max_size;
12833 }
12834
12835 static int reg_is_reg(struct compile_state *state, int reg1, int reg2)
12836 {
12837         unsigned equivs[MAX_REG_EQUIVS];
12838         int i;
12839         if ((reg1 < 0) || (reg1 >= MAX_REGISTERS)) {
12840                 internal_error(state, 0, "invalid register");
12841         }
12842         if ((reg2 < 0) || (reg2 >= MAX_REGISTERS)) {
12843                 internal_error(state, 0, "invalid register");
12844         }
12845         arch_reg_equivs(state, equivs, reg1);
12846         for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
12847                 if (equivs[i] == reg2) {
12848                         return 1;
12849                 }
12850         }
12851         return 0;
12852 }
12853
12854 static void reg_fill_used(struct compile_state *state, char *used, int reg)
12855 {
12856         unsigned equivs[MAX_REG_EQUIVS];
12857         int i;
12858         if (reg == REG_UNNEEDED) {
12859                 return;
12860         }
12861         arch_reg_equivs(state, equivs, reg);
12862         for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
12863                 used[equivs[i]] = 1;
12864         }
12865         return;
12866 }
12867
12868 static void reg_inc_used(struct compile_state *state, char *used, int reg)
12869 {
12870         unsigned equivs[MAX_REG_EQUIVS];
12871         int i;
12872         if (reg == REG_UNNEEDED) {
12873                 return;
12874         }
12875         arch_reg_equivs(state, equivs, reg);
12876         for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
12877                 used[equivs[i]] += 1;
12878         }
12879         return;
12880 }
12881
12882 static unsigned int hash_live_edge(
12883         struct live_range *left, struct live_range *right)
12884 {
12885         unsigned int hash, val;
12886         unsigned long lval, rval;
12887         lval = ((unsigned long)left)/sizeof(struct live_range);
12888         rval = ((unsigned long)right)/sizeof(struct live_range);
12889         hash = 0;
12890         while(lval) {
12891                 val = lval & 0xff;
12892                 lval >>= 8;
12893                 hash = (hash *263) + val;
12894         }
12895         while(rval) {
12896                 val = rval & 0xff;
12897                 rval >>= 8;
12898                 hash = (hash *263) + val;
12899         }
12900         hash = hash & (LRE_HASH_SIZE - 1);
12901         return hash;
12902 }
12903
12904 static struct lre_hash **lre_probe(struct reg_state *rstate,
12905         struct live_range *left, struct live_range *right)
12906 {
12907         struct lre_hash **ptr;
12908         unsigned int index;
12909         /* Ensure left <= right */
12910         if (left > right) {
12911                 struct live_range *tmp;
12912                 tmp = left;
12913                 left = right;
12914                 right = tmp;
12915         }
12916         index = hash_live_edge(left, right);
12917         
12918         ptr = &rstate->hash[index];
12919         while(*ptr) {
12920                 if (((*ptr)->left == left) && ((*ptr)->right == right)) {
12921                         break;
12922                 }
12923                 ptr = &(*ptr)->next;
12924         }
12925         return ptr;
12926 }
12927
12928 static int interfere(struct reg_state *rstate,
12929         struct live_range *left, struct live_range *right)
12930 {
12931         struct lre_hash **ptr;
12932         ptr = lre_probe(rstate, left, right);
12933         return ptr && *ptr;
12934 }
12935
12936 static void add_live_edge(struct reg_state *rstate, 
12937         struct live_range *left, struct live_range *right)
12938 {
12939         /* FIXME the memory allocation overhead is noticeable here... */
12940         struct lre_hash **ptr, *new_hash;
12941         struct live_range_edge *edge;
12942
12943         if (left == right) {
12944                 return;
12945         }
12946         if ((left == &rstate->lr[0]) || (right == &rstate->lr[0])) {
12947                 return;
12948         }
12949         /* Ensure left <= right */
12950         if (left > right) {
12951                 struct live_range *tmp;
12952                 tmp = left;
12953                 left = right;
12954                 right = tmp;
12955         }
12956         ptr = lre_probe(rstate, left, right);
12957         if (*ptr) {
12958                 return;
12959         }
12960 #if 0
12961         fprintf(stderr, "new_live_edge(%p, %p)\n",
12962                 left, right);
12963 #endif
12964         new_hash = xmalloc(sizeof(*new_hash), "lre_hash");
12965         new_hash->next  = *ptr;
12966         new_hash->left  = left;
12967         new_hash->right = right;
12968         *ptr = new_hash;
12969
12970         edge = xmalloc(sizeof(*edge), "live_range_edge");
12971         edge->next   = left->edges;
12972         edge->node   = right;
12973         left->edges  = edge;
12974         left->degree += 1;
12975         
12976         edge = xmalloc(sizeof(*edge), "live_range_edge");
12977         edge->next    = right->edges;
12978         edge->node    = left;
12979         right->edges  = edge;
12980         right->degree += 1;
12981 }
12982
12983 static void remove_live_edge(struct reg_state *rstate,
12984         struct live_range *left, struct live_range *right)
12985 {
12986         struct live_range_edge *edge, **ptr;
12987         struct lre_hash **hptr, *entry;
12988         hptr = lre_probe(rstate, left, right);
12989         if (!hptr || !*hptr) {
12990                 return;
12991         }
12992         entry = *hptr;
12993         *hptr = entry->next;
12994         xfree(entry);
12995
12996         for(ptr = &left->edges; *ptr; ptr = &(*ptr)->next) {
12997                 edge = *ptr;
12998                 if (edge->node == right) {
12999                         *ptr = edge->next;
13000                         memset(edge, 0, sizeof(*edge));
13001                         xfree(edge);
13002                         right->degree--;
13003                         break;
13004                 }
13005         }
13006         for(ptr = &right->edges; *ptr; ptr = &(*ptr)->next) {
13007                 edge = *ptr;
13008                 if (edge->node == left) {
13009                         *ptr = edge->next;
13010                         memset(edge, 0, sizeof(*edge));
13011                         xfree(edge);
13012                         left->degree--;
13013                         break;
13014                 }
13015         }
13016 }
13017
13018 static void remove_live_edges(struct reg_state *rstate, struct live_range *range)
13019 {
13020         struct live_range_edge *edge, *next;
13021         for(edge = range->edges; edge; edge = next) {
13022                 next = edge->next;
13023                 remove_live_edge(rstate, range, edge->node);
13024         }
13025 }
13026
13027 static void transfer_live_edges(struct reg_state *rstate, 
13028         struct live_range *dest, struct live_range *src)
13029 {
13030         struct live_range_edge *edge, *next;
13031         for(edge = src->edges; edge; edge = next) {
13032                 struct live_range *other;
13033                 next = edge->next;
13034                 other = edge->node;
13035                 remove_live_edge(rstate, src, other);
13036                 add_live_edge(rstate, dest, other);
13037         }
13038 }
13039
13040
13041 /* Interference graph...
13042  * 
13043  * new(n) --- Return a graph with n nodes but no edges.
13044  * add(g,x,y) --- Return a graph including g with an between x and y
13045  * interfere(g, x, y) --- Return true if there exists an edge between the nodes
13046  *                x and y in the graph g
13047  * degree(g, x) --- Return the degree of the node x in the graph g
13048  * neighbors(g, x, f) --- Apply function f to each neighbor of node x in the graph g
13049  *
13050  * Implement with a hash table && a set of adjcency vectors.
13051  * The hash table supports constant time implementations of add and interfere.
13052  * The adjacency vectors support an efficient implementation of neighbors.
13053  */
13054
13055 /* 
13056  *     +---------------------------------------------------+
13057  *     |         +--------------+                          |
13058  *     v         v              |                          |
13059  * renumber -> build graph -> colalesce -> spill_costs -> simplify -> select 
13060  *
13061  * -- In simplify implment optimistic coloring... (No backtracking)
13062  * -- Implement Rematerialization it is the only form of spilling we can perform
13063  *    Essentially this means dropping a constant from a register because
13064  *    we can regenerate it later.
13065  *
13066  * --- Very conservative colalescing (don't colalesce just mark the opportunities)
13067  *     coalesce at phi points...
13068  * --- Bias coloring if at all possible do the coalesing a compile time.
13069  *
13070  *
13071  */
13072
13073 static void different_colored(
13074         struct compile_state *state, struct reg_state *rstate, 
13075         struct triple *parent, struct triple *ins)
13076 {
13077         struct live_range *lr;
13078         struct triple **expr;
13079         lr = rstate->lrd[ins->id].lr;
13080         expr = triple_rhs(state, ins, 0);
13081         for(;expr; expr = triple_rhs(state, ins, expr)) {
13082                 struct live_range *lr2;
13083                 if (!*expr || (*expr == parent) || (*expr == ins)) {
13084                         continue;
13085                 }
13086                 lr2 = rstate->lrd[(*expr)->id].lr;
13087                 if (lr->color == lr2->color) {
13088                         internal_error(state, ins, "live range too big");
13089                 }
13090         }
13091 }
13092
13093
13094 static struct live_range *coalesce_ranges(
13095         struct compile_state *state, struct reg_state *rstate,
13096         struct live_range *lr1, struct live_range *lr2)
13097 {
13098         struct live_range_def *head, *mid1, *mid2, *end, *lrd;
13099         unsigned color;
13100         unsigned classes;
13101         if (lr1 == lr2) {
13102                 return lr1;
13103         }
13104         if (!lr1->defs || !lr2->defs) {
13105                 internal_error(state, 0,
13106                         "cannot coalese dead live ranges");
13107         }
13108         if ((lr1->color == REG_UNNEEDED) ||
13109                 (lr2->color == REG_UNNEEDED)) {
13110                 internal_error(state, 0, 
13111                         "cannot coalesce live ranges without a possible color");
13112         }
13113         if ((lr1->color != lr2->color) &&
13114                 (lr1->color != REG_UNSET) &&
13115                 (lr2->color != REG_UNSET)) {
13116                 internal_error(state, lr1->defs->def, 
13117                         "cannot coalesce live ranges of different colors");
13118         }
13119         color = lr1->color;
13120         if (color == REG_UNSET) {
13121                 color = lr2->color;
13122         }
13123         classes = lr1->classes & lr2->classes;
13124         if (!classes) {
13125                 internal_error(state, lr1->defs->def,
13126                         "cannot coalesce live ranges with dissimilar register classes");
13127         }
13128 #if DEBUG_COALESCING
13129         fprintf(stderr, "coalescing:");
13130         lrd = lr1->defs;
13131         do {
13132                 fprintf(stderr, " %p", lrd->def);
13133                 lrd = lrd->next;
13134         } while(lrd != lr1->defs);
13135         fprintf(stderr, " |");
13136         lrd = lr2->defs;
13137         do {
13138                 fprintf(stderr, " %p", lrd->def);
13139                 lrd = lrd->next;
13140         } while(lrd != lr2->defs);
13141         fprintf(stderr, "\n");
13142 #endif
13143         /* If there is a clear dominate live range put it in lr1,
13144          * For purposes of this test phi functions are
13145          * considered dominated by the definitions that feed into
13146          * them. 
13147          */
13148         if ((lr1->defs->prev->def->op == OP_PHI) ||
13149                 ((lr2->defs->prev->def->op != OP_PHI) &&
13150                 tdominates(state, lr2->defs->def, lr1->defs->def))) {
13151                 struct live_range *tmp;
13152                 tmp = lr1;
13153                 lr1 = lr2;
13154                 lr2 = tmp;
13155         }
13156 #if 0
13157         if (lr1->defs->orig_id  & TRIPLE_FLAG_POST_SPLIT) {
13158                 fprintf(stderr, "lr1 post\n");
13159         }
13160         if (lr1->defs->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
13161                 fprintf(stderr, "lr1 pre\n");
13162         }
13163         if (lr2->defs->orig_id  & TRIPLE_FLAG_POST_SPLIT) {
13164                 fprintf(stderr, "lr2 post\n");
13165         }
13166         if (lr2->defs->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
13167                 fprintf(stderr, "lr2 pre\n");
13168         }
13169 #endif
13170 #if 0
13171         fprintf(stderr, "coalesce color1(%p): %3d color2(%p) %3d\n",
13172                 lr1->defs->def,
13173                 lr1->color,
13174                 lr2->defs->def,
13175                 lr2->color);
13176 #endif
13177         
13178         /* Append lr2 onto lr1 */
13179 #warning "FIXME should this be a merge instead of a splice?"
13180         /* This FIXME item applies to the correctness of live_range_end 
13181          * and to the necessity of making multiple passes of coalesce_live_ranges.
13182          * A failure to find some coalesce opportunities in coaleace_live_ranges
13183          * does not impact the correct of the compiler just the efficiency with
13184          * which registers are allocated.
13185          */
13186         head = lr1->defs;
13187         mid1 = lr1->defs->prev;
13188         mid2 = lr2->defs;
13189         end  = lr2->defs->prev;
13190         
13191         head->prev = end;
13192         end->next  = head;
13193
13194         mid1->next = mid2;
13195         mid2->prev = mid1;
13196
13197         /* Fixup the live range in the added live range defs */
13198         lrd = head;
13199         do {
13200                 lrd->lr = lr1;
13201                 lrd = lrd->next;
13202         } while(lrd != head);
13203
13204         /* Mark lr2 as free. */
13205         lr2->defs = 0;
13206         lr2->color = REG_UNNEEDED;
13207         lr2->classes = 0;
13208
13209         if (!lr1->defs) {
13210                 internal_error(state, 0, "lr1->defs == 0 ?");
13211         }
13212
13213         lr1->color   = color;
13214         lr1->classes = classes;
13215
13216         /* Keep the graph in sync by transfering the edges from lr2 to lr1 */
13217         transfer_live_edges(rstate, lr1, lr2);
13218
13219         return lr1;
13220 }
13221
13222 static struct live_range_def *live_range_head(
13223         struct compile_state *state, struct live_range *lr,
13224         struct live_range_def *last)
13225 {
13226         struct live_range_def *result;
13227         result = 0;
13228         if (last == 0) {
13229                 result = lr->defs;
13230         }
13231         else if (!tdominates(state, lr->defs->def, last->next->def)) {
13232                 result = last->next;
13233         }
13234         return result;
13235 }
13236
13237 static struct live_range_def *live_range_end(
13238         struct compile_state *state, struct live_range *lr,
13239         struct live_range_def *last)
13240 {
13241         struct live_range_def *result;
13242         result = 0;
13243         if (last == 0) {
13244                 result = lr->defs->prev;
13245         }
13246         else if (!tdominates(state, last->prev->def, lr->defs->prev->def)) {
13247                 result = last->prev;
13248         }
13249         return result;
13250 }
13251
13252
13253 static void initialize_live_ranges(
13254         struct compile_state *state, struct reg_state *rstate)
13255 {
13256         struct triple *ins, *first;
13257         size_t count, size;
13258         int i, j;
13259
13260         first = state->first;
13261         /* First count how many instructions I have.
13262          */
13263         count = count_triples(state);
13264         /* Potentially I need one live range definitions for each
13265          * instruction.
13266          */
13267         rstate->defs = count;
13268         /* Potentially I need one live range for each instruction
13269          * plus an extra for the dummy live range.
13270          */
13271         rstate->ranges = count + 1;
13272         size = sizeof(rstate->lrd[0]) * rstate->defs;
13273         rstate->lrd = xcmalloc(size, "live_range_def");
13274         size = sizeof(rstate->lr[0]) * rstate->ranges;
13275         rstate->lr  = xcmalloc(size, "live_range");
13276
13277         /* Setup the dummy live range */
13278         rstate->lr[0].classes = 0;
13279         rstate->lr[0].color = REG_UNSET;
13280         rstate->lr[0].defs = 0;
13281         i = j = 0;
13282         ins = first;
13283         do {
13284                 /* If the triple is a variable give it a live range */
13285                 if (triple_is_def(state, ins)) {
13286                         struct reg_info info;
13287                         /* Find the architecture specific color information */
13288                         info = find_def_color(state, ins);
13289                         i++;
13290                         rstate->lr[i].defs    = &rstate->lrd[j];
13291                         rstate->lr[i].color   = info.reg;
13292                         rstate->lr[i].classes = info.regcm;
13293                         rstate->lr[i].degree  = 0;
13294                         rstate->lrd[j].lr = &rstate->lr[i];
13295                 } 
13296                 /* Otherwise give the triple the dummy live range. */
13297                 else {
13298                         rstate->lrd[j].lr = &rstate->lr[0];
13299                 }
13300
13301                 /* Initalize the live_range_def */
13302                 rstate->lrd[j].next    = &rstate->lrd[j];
13303                 rstate->lrd[j].prev    = &rstate->lrd[j];
13304                 rstate->lrd[j].def     = ins;
13305                 rstate->lrd[j].orig_id = ins->id;
13306                 ins->id = j;
13307
13308                 j++;
13309                 ins = ins->next;
13310         } while(ins != first);
13311         rstate->ranges = i;
13312
13313         /* Make a second pass to handle achitecture specific register
13314          * constraints.
13315          */
13316         ins = first;
13317         do {
13318                 int zlhs, zrhs, i, j;
13319                 if (ins->id > rstate->defs) {
13320                         internal_error(state, ins, "bad id");
13321                 }
13322                 
13323                 /* Walk through the template of ins and coalesce live ranges */
13324                 zlhs = TRIPLE_LHS(ins->sizes);
13325                 if ((zlhs == 0) && triple_is_def(state, ins)) {
13326                         zlhs = 1;
13327                 }
13328                 zrhs = TRIPLE_RHS(ins->sizes);
13329
13330 #if DEBUG_COALESCING > 1
13331                 fprintf(stderr, "mandatory coalesce: %p %d %d\n",
13332                         ins, zlhs, zrhs);
13333 #endif          
13334                 for(i = 0; i < zlhs; i++) {
13335                         struct reg_info linfo;
13336                         struct live_range_def *lhs;
13337                         linfo = arch_reg_lhs(state, ins, i);
13338                         if (linfo.reg < MAX_REGISTERS) {
13339                                 continue;
13340                         }
13341                         if (triple_is_def(state, ins)) {
13342                                 lhs = &rstate->lrd[ins->id];
13343                         } else {
13344                                 lhs = &rstate->lrd[LHS(ins, i)->id];
13345                         }
13346 #if DEBUG_COALESCING > 1
13347                         fprintf(stderr, "coalesce lhs(%d): %p %d\n",
13348                                 i, lhs, linfo.reg);
13349                 
13350 #endif          
13351                         for(j = 0; j < zrhs; j++) {
13352                                 struct reg_info rinfo;
13353                                 struct live_range_def *rhs;
13354                                 rinfo = arch_reg_rhs(state, ins, j);
13355                                 if (rinfo.reg < MAX_REGISTERS) {
13356                                         continue;
13357                                 }
13358                                 rhs = &rstate->lrd[RHS(ins, j)->id];
13359 #if DEBUG_COALESCING > 1
13360                                 fprintf(stderr, "coalesce rhs(%d): %p %d\n",
13361                                         j, rhs, rinfo.reg);
13362                 
13363 #endif          
13364                                 if (rinfo.reg == linfo.reg) {
13365                                         coalesce_ranges(state, rstate, 
13366                                                 lhs->lr, rhs->lr);
13367                                 }
13368                         }
13369                 }
13370                 ins = ins->next;
13371         } while(ins != first);
13372 }
13373
13374 static void graph_ins(
13375         struct compile_state *state, 
13376         struct reg_block *blocks, struct triple_reg_set *live, 
13377         struct reg_block *rb, struct triple *ins, void *arg)
13378 {
13379         struct reg_state *rstate = arg;
13380         struct live_range *def;
13381         struct triple_reg_set *entry;
13382
13383         /* If the triple is not a definition
13384          * we do not have a definition to add to
13385          * the interference graph.
13386          */
13387         if (!triple_is_def(state, ins)) {
13388                 return;
13389         }
13390         def = rstate->lrd[ins->id].lr;
13391         
13392         /* Create an edge between ins and everything that is
13393          * alive, unless the live_range cannot share
13394          * a physical register with ins.
13395          */
13396         for(entry = live; entry; entry = entry->next) {
13397                 struct live_range *lr;
13398                 if ((entry->member->id < 0) || (entry->member->id > rstate->defs)) {
13399                         internal_error(state, 0, "bad entry?");
13400                 }
13401                 lr = rstate->lrd[entry->member->id].lr;
13402                 if (def == lr) {
13403                         continue;
13404                 }
13405                 if (!arch_regcm_intersect(def->classes, lr->classes)) {
13406                         continue;
13407                 }
13408                 add_live_edge(rstate, def, lr);
13409         }
13410         return;
13411 }
13412
13413 static struct live_range *get_verify_live_range(
13414         struct compile_state *state, struct reg_state *rstate, struct triple *ins)
13415 {
13416         struct live_range *lr;
13417         struct live_range_def *lrd;
13418         int ins_found;
13419         if ((ins->id < 0) || (ins->id > rstate->defs)) {
13420                 internal_error(state, ins, "bad ins?");
13421         }
13422         lr = rstate->lrd[ins->id].lr;
13423         ins_found = 0;
13424         lrd = lr->defs;
13425         do {
13426                 if (lrd->def == ins) {
13427                         ins_found = 1;
13428                 }
13429                 lrd = lrd->next;
13430         } while(lrd != lr->defs);
13431         if (!ins_found) {
13432                 internal_error(state, ins, "ins not in live range");
13433         }
13434         return lr;
13435 }
13436
13437 static void verify_graph_ins(
13438         struct compile_state *state, 
13439         struct reg_block *blocks, struct triple_reg_set *live, 
13440         struct reg_block *rb, struct triple *ins, void *arg)
13441 {
13442         struct reg_state *rstate = arg;
13443         struct triple_reg_set *entry1, *entry2;
13444
13445
13446         /* Compare live against edges and make certain the code is working */
13447         for(entry1 = live; entry1; entry1 = entry1->next) {
13448                 struct live_range *lr1;
13449                 lr1 = get_verify_live_range(state, rstate, entry1->member);
13450                 for(entry2 = live; entry2; entry2 = entry2->next) {
13451                         struct live_range *lr2;
13452                         struct live_range_edge *edge2;
13453                         int lr1_found;
13454                         int lr2_degree;
13455                         if (entry2 == entry1) {
13456                                 continue;
13457                         }
13458                         lr2 = get_verify_live_range(state, rstate, entry2->member);
13459                         if (lr1 == lr2) {
13460                                 internal_error(state, entry2->member, 
13461                                         "live range with 2 values simultaneously alive");
13462                         }
13463                         if (!arch_regcm_intersect(lr1->classes, lr2->classes)) {
13464                                 continue;
13465                         }
13466                         if (!interfere(rstate, lr1, lr2)) {
13467                                 internal_error(state, entry2->member, 
13468                                         "edges don't interfere?");
13469                         }
13470                                 
13471                         lr1_found = 0;
13472                         lr2_degree = 0;
13473                         for(edge2 = lr2->edges; edge2; edge2 = edge2->next) {
13474                                 lr2_degree++;
13475                                 if (edge2->node == lr1) {
13476                                         lr1_found = 1;
13477                                 }
13478                         }
13479                         if (lr2_degree != lr2->degree) {
13480                                 internal_error(state, entry2->member,
13481                                         "computed degree: %d does not match reported degree: %d\n",
13482                                         lr2_degree, lr2->degree);
13483                         }
13484                         if (!lr1_found) {
13485                                 internal_error(state, entry2->member, "missing edge");
13486                         }
13487                 }
13488         }
13489         return;
13490 }
13491
13492
13493 static void print_interference_ins(
13494         struct compile_state *state, 
13495         struct reg_block *blocks, struct triple_reg_set *live, 
13496         struct reg_block *rb, struct triple *ins, void *arg)
13497 {
13498         struct reg_state *rstate = arg;
13499         struct live_range *lr;
13500         unsigned id;
13501
13502         lr = rstate->lrd[ins->id].lr;
13503         id = ins->id;
13504         ins->id = rstate->lrd[id].orig_id;
13505         SET_REG(ins->id, lr->color);
13506         display_triple(stdout, ins);
13507         ins->id = id;
13508
13509         if (lr->defs) {
13510                 struct live_range_def *lrd;
13511                 printf("       range:");
13512                 lrd = lr->defs;
13513                 do {
13514                         printf(" %-10p", lrd->def);
13515                         lrd = lrd->next;
13516                 } while(lrd != lr->defs);
13517                 printf("\n");
13518         }
13519         if (live) {
13520                 struct triple_reg_set *entry;
13521                 printf("        live:");
13522                 for(entry = live; entry; entry = entry->next) {
13523                         printf(" %-10p", entry->member);
13524                 }
13525                 printf("\n");
13526         }
13527         if (lr->edges) {
13528                 struct live_range_edge *entry;
13529                 printf("       edges:");
13530                 for(entry = lr->edges; entry; entry = entry->next) {
13531                         struct live_range_def *lrd;
13532                         lrd = entry->node->defs;
13533                         do {
13534                                 printf(" %-10p", lrd->def);
13535                                 lrd = lrd->next;
13536                         } while(lrd != entry->node->defs);
13537                         printf("|");
13538                 }
13539                 printf("\n");
13540         }
13541         if (triple_is_branch(state, ins)) {
13542                 printf("\n");
13543         }
13544         return;
13545 }
13546
13547 static int coalesce_live_ranges(
13548         struct compile_state *state, struct reg_state *rstate)
13549 {
13550         /* At the point where a value is moved from one
13551          * register to another that value requires two
13552          * registers, thus increasing register pressure.
13553          * Live range coaleescing reduces the register
13554          * pressure by keeping a value in one register
13555          * longer.
13556          *
13557          * In the case of a phi function all paths leading
13558          * into it must be allocated to the same register
13559          * otherwise the phi function may not be removed.
13560          *
13561          * Forcing a value to stay in a single register
13562          * for an extended period of time does have
13563          * limitations when applied to non homogenous
13564          * register pool.  
13565          *
13566          * The two cases I have identified are:
13567          * 1) Two forced register assignments may
13568          *    collide.
13569          * 2) Registers may go unused because they
13570          *    are only good for storing the value
13571          *    and not manipulating it.
13572          *
13573          * Because of this I need to split live ranges,
13574          * even outside of the context of coalesced live
13575          * ranges.  The need to split live ranges does
13576          * impose some constraints on live range coalescing.
13577          *
13578          * - Live ranges may not be coalesced across phi
13579          *   functions.  This creates a 2 headed live
13580          *   range that cannot be sanely split.
13581          *
13582          * - phi functions (coalesced in initialize_live_ranges) 
13583          *   are handled as pre split live ranges so we will
13584          *   never attempt to split them.
13585          */
13586         int coalesced;
13587         int i;
13588
13589         coalesced = 0;
13590         for(i = 0; i <= rstate->ranges; i++) {
13591                 struct live_range *lr1;
13592                 struct live_range_def *lrd1;
13593                 lr1 = &rstate->lr[i];
13594                 if (!lr1->defs) {
13595                         continue;
13596                 }
13597                 lrd1 = live_range_end(state, lr1, 0);
13598                 for(; lrd1; lrd1 = live_range_end(state, lr1, lrd1)) {
13599                         struct triple_set *set;
13600                         if (lrd1->def->op != OP_COPY) {
13601                                 continue;
13602                         }
13603                         /* Skip copies that are the result of a live range split. */
13604                         if (lrd1->orig_id & TRIPLE_FLAG_POST_SPLIT) {
13605                                 continue;
13606                         }
13607                         for(set = lrd1->def->use; set; set = set->next) {
13608                                 struct live_range_def *lrd2;
13609                                 struct live_range *lr2, *res;
13610
13611                                 lrd2 = &rstate->lrd[set->member->id];
13612
13613                                 /* Don't coalesce with instructions
13614                                  * that are the result of a live range
13615                                  * split.
13616                                  */
13617                                 if (lrd2->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
13618                                         continue;
13619                                 }
13620                                 lr2 = rstate->lrd[set->member->id].lr;
13621                                 if (lr1 == lr2) {
13622                                         continue;
13623                                 }
13624                                 if ((lr1->color != lr2->color) &&
13625                                         (lr1->color != REG_UNSET) &&
13626                                         (lr2->color != REG_UNSET)) {
13627                                         continue;
13628                                 }
13629                                 if ((lr1->classes & lr2->classes) == 0) {
13630                                         continue;
13631                                 }
13632                                 
13633                                 if (interfere(rstate, lr1, lr2)) {
13634                                         continue;
13635                                 }
13636
13637                                 res = coalesce_ranges(state, rstate, lr1, lr2);
13638                                 coalesced += 1;
13639                                 if (res != lr1) {
13640                                         goto next;
13641                                 }
13642                         }
13643                 }
13644         next:
13645                 ;
13646         }
13647         return coalesced;
13648 }
13649
13650
13651 static void fix_coalesce_conflicts(struct compile_state *state,
13652         struct reg_block *blocks, struct triple_reg_set *live,
13653         struct reg_block *rb, struct triple *ins, void *arg)
13654 {
13655         int *conflicts = arg;
13656         int zlhs, zrhs, i, j;
13657
13658         /* See if we have a mandatory coalesce operation between
13659          * a lhs and a rhs value.  If so and the rhs value is also
13660          * alive then this triple needs to be pre copied.  Otherwise
13661          * we would have two definitions in the same live range simultaneously
13662          * alive.
13663          */
13664         zlhs = TRIPLE_LHS(ins->sizes);
13665         if ((zlhs == 0) && triple_is_def(state, ins)) {
13666                 zlhs = 1;
13667         }
13668         zrhs = TRIPLE_RHS(ins->sizes);
13669         for(i = 0; i < zlhs; i++) {
13670                 struct reg_info linfo;
13671                 linfo = arch_reg_lhs(state, ins, i);
13672                 if (linfo.reg < MAX_REGISTERS) {
13673                         continue;
13674                 }
13675                 for(j = 0; j < zrhs; j++) {
13676                         struct reg_info rinfo;
13677                         struct triple *rhs;
13678                         struct triple_reg_set *set;
13679                         int found;
13680                         found = 0;
13681                         rinfo = arch_reg_rhs(state, ins, j);
13682                         if (rinfo.reg != linfo.reg) {
13683                                 continue;
13684                         }
13685                         rhs = RHS(ins, j);
13686                         for(set = live; set && !found; set = set->next) {
13687                                 if (set->member == rhs) {
13688                                         found = 1;
13689                                 }
13690                         }
13691                         if (found) {
13692                                 struct triple *copy;
13693                                 copy = pre_copy(state, ins, j);
13694                                 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
13695                                 (*conflicts)++;
13696                         }
13697                 }
13698         }
13699         return;
13700 }
13701
13702 static int correct_coalesce_conflicts(
13703         struct compile_state *state, struct reg_block *blocks)
13704 {
13705         int conflicts;
13706         conflicts = 0;
13707         walk_variable_lifetimes(state, blocks, fix_coalesce_conflicts, &conflicts);
13708         return conflicts;
13709 }
13710
13711 static void replace_set_use(struct compile_state *state,
13712         struct triple_reg_set *head, struct triple *orig, struct triple *new)
13713 {
13714         struct triple_reg_set *set;
13715         for(set = head; set; set = set->next) {
13716                 if (set->member == orig) {
13717                         set->member = new;
13718                 }
13719         }
13720 }
13721
13722 static void replace_block_use(struct compile_state *state, 
13723         struct reg_block *blocks, struct triple *orig, struct triple *new)
13724 {
13725         int i;
13726 #warning "WISHLIST visit just those blocks that need it *"
13727         for(i = 1; i <= state->last_vertex; i++) {
13728                 struct reg_block *rb;
13729                 rb = &blocks[i];
13730                 replace_set_use(state, rb->in, orig, new);
13731                 replace_set_use(state, rb->out, orig, new);
13732         }
13733 }
13734
13735 static void color_instructions(struct compile_state *state)
13736 {
13737         struct triple *ins, *first;
13738         first = state->first;
13739         ins = first;
13740         do {
13741                 if (triple_is_def(state, ins)) {
13742                         struct reg_info info;
13743                         info = find_lhs_color(state, ins, 0);
13744                         if (info.reg >= MAX_REGISTERS) {
13745                                 info.reg = REG_UNSET;
13746                         }
13747                         SET_INFO(ins->id, info);
13748                 }
13749                 ins = ins->next;
13750         } while(ins != first);
13751 }
13752
13753 static struct reg_info read_lhs_color(
13754         struct compile_state *state, struct triple *ins, int index)
13755 {
13756         struct reg_info info;
13757         if ((index == 0) && triple_is_def(state, ins)) {
13758                 info.reg   = ID_REG(ins->id);
13759                 info.regcm = ID_REGCM(ins->id);
13760         }
13761         else if (index < TRIPLE_LHS(ins->sizes)) {
13762                 info = read_lhs_color(state, LHS(ins, index), 0);
13763         }
13764         else {
13765                 internal_error(state, ins, "Bad lhs %d", index);
13766                 info.reg = REG_UNSET;
13767                 info.regcm = 0;
13768         }
13769         return info;
13770 }
13771
13772 static struct triple *resolve_tangle(
13773         struct compile_state *state, struct triple *tangle)
13774 {
13775         struct reg_info info, uinfo;
13776         struct triple_set *set, *next;
13777         struct triple *copy;
13778
13779 #warning "WISHLIST recalculate all affected instructions colors"
13780         info = find_lhs_color(state, tangle, 0);
13781         for(set = tangle->use; set; set = next) {
13782                 struct triple *user;
13783                 int i, zrhs;
13784                 next = set->next;
13785                 user = set->member;
13786                 zrhs = TRIPLE_RHS(user->sizes);
13787                 for(i = 0; i < zrhs; i++) {
13788                         if (RHS(user, i) != tangle) {
13789                                 continue;
13790                         }
13791                         uinfo = find_rhs_post_color(state, user, i);
13792                         if (uinfo.reg == info.reg) {
13793                                 copy = pre_copy(state, user, i);
13794                                 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
13795                                 SET_INFO(copy->id, uinfo);
13796                         }
13797                 }
13798         }
13799         copy = 0;
13800         uinfo = find_lhs_pre_color(state, tangle, 0);
13801         if (uinfo.reg == info.reg) {
13802                 struct reg_info linfo;
13803                 copy = post_copy(state, tangle);
13804                 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
13805                 linfo = find_lhs_color(state, copy, 0);
13806                 SET_INFO(copy->id, linfo);
13807         }
13808         info = find_lhs_color(state, tangle, 0);
13809         SET_INFO(tangle->id, info);
13810         
13811         return copy;
13812 }
13813
13814
13815 static void fix_tangles(struct compile_state *state,
13816         struct reg_block *blocks, struct triple_reg_set *live,
13817         struct reg_block *rb, struct triple *ins, void *arg)
13818 {
13819         int *tangles = arg;
13820         struct triple *tangle;
13821         do {
13822                 char used[MAX_REGISTERS];
13823                 struct triple_reg_set *set;
13824                 tangle = 0;
13825
13826                 /* Find out which registers have multiple uses at this point */
13827                 memset(used, 0, sizeof(used));
13828                 for(set = live; set; set = set->next) {
13829                         struct reg_info info;
13830                         info = read_lhs_color(state, set->member, 0);
13831                         if (info.reg == REG_UNSET) {
13832                                 continue;
13833                         }
13834                         reg_inc_used(state, used, info.reg);
13835                 }
13836                 
13837                 /* Now find the least dominated definition of a register in
13838                  * conflict I have seen so far.
13839                  */
13840                 for(set = live; set; set = set->next) {
13841                         struct reg_info info;
13842                         info = read_lhs_color(state, set->member, 0);
13843                         if (used[info.reg] < 2) {
13844                                 continue;
13845                         }
13846                         /* Changing copies that feed into phi functions
13847                          * is incorrect.
13848                          */
13849                         if (set->member->use && 
13850                                 (set->member->use->member->op == OP_PHI)) {
13851                                 continue;
13852                         }
13853                         if (!tangle || tdominates(state, set->member, tangle)) {
13854                                 tangle = set->member;
13855                         }
13856                 }
13857                 /* If I have found a tangle resolve it */
13858                 if (tangle) {
13859                         struct triple *post_copy;
13860                         (*tangles)++;
13861                         post_copy = resolve_tangle(state, tangle);
13862                         if (post_copy) {
13863                                 replace_block_use(state, blocks, tangle, post_copy);
13864                         }
13865                         if (post_copy && (tangle != ins)) {
13866                                 replace_set_use(state, live, tangle, post_copy);
13867                         }
13868                 }
13869         } while(tangle);
13870         return;
13871 }
13872
13873 static int correct_tangles(
13874         struct compile_state *state, struct reg_block *blocks)
13875 {
13876         int tangles;
13877         tangles = 0;
13878         color_instructions(state);
13879         walk_variable_lifetimes(state, blocks, fix_tangles, &tangles);
13880         return tangles;
13881 }
13882
13883
13884 static void ids_from_rstate(struct compile_state *state, struct reg_state *rstate);
13885 static void cleanup_rstate(struct compile_state *state, struct reg_state *rstate);
13886
13887 struct triple *find_constrained_def(
13888         struct compile_state *state, struct live_range *range, struct triple *constrained)
13889 {
13890         struct live_range_def *lrd;
13891         lrd = range->defs;
13892         do {
13893                 struct reg_info info;
13894                 unsigned regcm;
13895                 int is_constrained;
13896                 regcm = arch_type_to_regcm(state, lrd->def->type);
13897                 info = find_lhs_color(state, lrd->def, 0);
13898                 regcm      = arch_regcm_reg_normalize(state, regcm);
13899                 info.regcm = arch_regcm_reg_normalize(state, info.regcm);
13900                 /* If the 2 register class masks are not equal the
13901                  * the current register class is constrained.
13902                  */
13903                 is_constrained = regcm != info.regcm;
13904                 
13905                 /* Of the constrained live ranges deal with the
13906                  * least dominated one first.
13907                  */
13908                 if (is_constrained) {
13909 #if DEBUG_RANGE_CONFLICTS
13910                         fprintf(stderr, "canidate: %p %-8s regcm: %x %x\n",
13911                                 lrd->def, tops(lrd->def->op), regcm, info.regcm);
13912 #endif
13913                         if (!constrained || 
13914                                 tdominates(state, lrd->def, constrained))
13915                         {
13916                                 constrained = lrd->def;
13917                         }
13918                 }
13919                 lrd = lrd->next;
13920         } while(lrd != range->defs);
13921         return constrained;
13922 }
13923
13924 static int split_constrained_ranges(
13925         struct compile_state *state, struct reg_state *rstate, 
13926         struct live_range *range)
13927 {
13928         /* Walk through the edges in conflict and our current live
13929          * range, and find definitions that are more severly constrained
13930          * than they type of data they contain require.
13931          * 
13932          * Then pick one of those ranges and relax the constraints.
13933          */
13934         struct live_range_edge *edge;
13935         struct triple *constrained;
13936
13937         constrained = 0;
13938         for(edge = range->edges; edge; edge = edge->next) {
13939                 constrained = find_constrained_def(state, edge->node, constrained);
13940         }
13941         if (!constrained) {
13942                 constrained = find_constrained_def(state, range, constrained);
13943         }
13944 #if DEBUG_RANGE_CONFLICTS
13945         fprintf(stderr, "constrained: %p %-8s\n",
13946                 constrained, tops(constrained->op));
13947 #endif
13948         if (constrained) {
13949                 ids_from_rstate(state, rstate);
13950                 cleanup_rstate(state, rstate);
13951                 resolve_tangle(state, constrained);
13952         }
13953         return !!constrained;
13954 }
13955         
13956 static int split_ranges(
13957         struct compile_state *state, struct reg_state *rstate,
13958         char *used, struct live_range *range)
13959 {
13960         int split;
13961 #if DEBUG_RANGE_CONFLICTS
13962         fprintf(stderr, "split_ranges %d %s %p\n", 
13963                 rstate->passes, tops(range->defs->def->op), range->defs->def);
13964 #endif
13965         if ((range->color == REG_UNNEEDED) ||
13966                 (rstate->passes >= rstate->max_passes)) {
13967                 return 0;
13968         }
13969         split = split_constrained_ranges(state, rstate, range);
13970
13971         /* Ideally I would split the live range that will not be used
13972          * for the longest period of time in hopes that this will 
13973          * (a) allow me to spill a register or
13974          * (b) allow me to place a value in another register.
13975          *
13976          * So far I don't have a test case for this, the resolving
13977          * of mandatory constraints has solved all of my
13978          * know issues.  So I have choosen not to write any
13979          * code until I cat get a better feel for cases where
13980          * it would be useful to have.
13981          *
13982          */
13983 #warning "WISHLIST implement live range splitting..."
13984         if ((DEBUG_RANGE_CONFLICTS > 1) && 
13985                 (!split || (DEBUG_RANGE_CONFLICTS > 2))) {
13986                 print_interference_blocks(state, rstate, stderr, 0);
13987                 print_dominators(state, stderr);
13988         }
13989         return split;
13990 }
13991
13992 #if DEBUG_COLOR_GRAPH > 1
13993 #define cgdebug_printf(...) fprintf(stdout, __VA_ARGS__)
13994 #define cgdebug_flush() fflush(stdout)
13995 #define cgdebug_loc(STATE, TRIPLE) loc(stdout, STATE, TRIPLE)
13996 #elif DEBUG_COLOR_GRAPH == 1
13997 #define cgdebug_printf(...) fprintf(stderr, __VA_ARGS__)
13998 #define cgdebug_flush() fflush(stderr)
13999 #define cgdebug_loc(STATE, TRIPLE) loc(stderr, STATE, TRIPLE)
14000 #else
14001 #define cgdebug_printf(...)
14002 #define cgdebug_flush()
14003 #define cgdebug_loc(STATE, TRIPLE)
14004 #endif
14005
14006         
14007 static int select_free_color(struct compile_state *state, 
14008         struct reg_state *rstate, struct live_range *range)
14009 {
14010         struct triple_set *entry;
14011         struct live_range_def *lrd;
14012         struct live_range_def *phi;
14013         struct live_range_edge *edge;
14014         char used[MAX_REGISTERS];
14015         struct triple **expr;
14016
14017         /* Instead of doing just the trivial color select here I try
14018          * a few extra things because a good color selection will help reduce
14019          * copies.
14020          */
14021
14022         /* Find the registers currently in use */
14023         memset(used, 0, sizeof(used));
14024         for(edge = range->edges; edge; edge = edge->next) {
14025                 if (edge->node->color == REG_UNSET) {
14026                         continue;
14027                 }
14028                 reg_fill_used(state, used, edge->node->color);
14029         }
14030 #if DEBUG_COLOR_GRAPH > 1
14031         {
14032                 int i;
14033                 i = 0;
14034                 for(edge = range->edges; edge; edge = edge->next) {
14035                         i++;
14036                 }
14037                 cgdebug_printf("\n%s edges: %d @%s:%d.%d\n", 
14038                         tops(range->def->op), i, 
14039                         range->def->filename, range->def->line, range->def->col);
14040                 for(i = 0; i < MAX_REGISTERS; i++) {
14041                         if (used[i]) {
14042                                 cgdebug_printf("used: %s\n",
14043                                         arch_reg_str(i));
14044                         }
14045                 }
14046         }       
14047 #endif
14048
14049         /* If a color is already assigned see if it will work */
14050         if (range->color != REG_UNSET) {
14051                 struct live_range_def *lrd;
14052                 if (!used[range->color]) {
14053                         return 1;
14054                 }
14055                 for(edge = range->edges; edge; edge = edge->next) {
14056                         if (edge->node->color != range->color) {
14057                                 continue;
14058                         }
14059                         warning(state, edge->node->defs->def, "edge: ");
14060                         lrd = edge->node->defs;
14061                         do {
14062                                 warning(state, lrd->def, " %p %s",
14063                                         lrd->def, tops(lrd->def->op));
14064                                 lrd = lrd->next;
14065                         } while(lrd != edge->node->defs);
14066                 }
14067                 lrd = range->defs;
14068                 warning(state, range->defs->def, "def: ");
14069                 do {
14070                         warning(state, lrd->def, " %p %s",
14071                                 lrd->def, tops(lrd->def->op));
14072                         lrd = lrd->next;
14073                 } while(lrd != range->defs);
14074                 internal_error(state, range->defs->def,
14075                         "live range with already used color %s",
14076                         arch_reg_str(range->color));
14077         }
14078
14079         /* If I feed into an expression reuse it's color.
14080          * This should help remove copies in the case of 2 register instructions
14081          * and phi functions.
14082          */
14083         phi = 0;
14084         lrd = live_range_end(state, range, 0);
14085         for(; (range->color == REG_UNSET) && lrd ; lrd = live_range_end(state, range, lrd)) {
14086                 entry = lrd->def->use;
14087                 for(;(range->color == REG_UNSET) && entry; entry = entry->next) {
14088                         struct live_range_def *insd;
14089                         unsigned regcm;
14090                         insd = &rstate->lrd[entry->member->id];
14091                         if (insd->lr->defs == 0) {
14092                                 continue;
14093                         }
14094                         if (!phi && (insd->def->op == OP_PHI) &&
14095                                 !interfere(rstate, range, insd->lr)) {
14096                                 phi = insd;
14097                         }
14098                         if (insd->lr->color == REG_UNSET) {
14099                                 continue;
14100                         }
14101                         regcm = insd->lr->classes;
14102                         if (((regcm & range->classes) == 0) ||
14103                                 (used[insd->lr->color])) {
14104                                 continue;
14105                         }
14106                         if (interfere(rstate, range, insd->lr)) {
14107                                 continue;
14108                         }
14109                         range->color = insd->lr->color;
14110                 }
14111         }
14112         /* If I feed into a phi function reuse it's color or the color
14113          * of something else that feeds into the phi function.
14114          */
14115         if (phi) {
14116                 if (phi->lr->color != REG_UNSET) {
14117                         if (used[phi->lr->color]) {
14118                                 range->color = phi->lr->color;
14119                         }
14120                 }
14121                 else {
14122                         expr = triple_rhs(state, phi->def, 0);
14123                         for(; expr; expr = triple_rhs(state, phi->def, expr)) {
14124                                 struct live_range *lr;
14125                                 unsigned regcm;
14126                                 if (!*expr) {
14127                                         continue;
14128                                 }
14129                                 lr = rstate->lrd[(*expr)->id].lr;
14130                                 if (lr->color == REG_UNSET) {
14131                                         continue;
14132                                 }
14133                                 regcm = lr->classes;
14134                                 if (((regcm & range->classes) == 0) ||
14135                                         (used[lr->color])) {
14136                                         continue;
14137                                 }
14138                                 if (interfere(rstate, range, lr)) {
14139                                         continue;
14140                                 }
14141                                 range->color = lr->color;
14142                         }
14143                 }
14144         }
14145         /* If I don't interfere with a rhs node reuse it's color */
14146         lrd = live_range_head(state, range, 0);
14147         for(; (range->color == REG_UNSET) && lrd ; lrd = live_range_head(state, range, lrd)) {
14148                 expr = triple_rhs(state, lrd->def, 0);
14149                 for(; expr; expr = triple_rhs(state, lrd->def, expr)) {
14150                         struct live_range *lr;
14151                         unsigned regcm;
14152                         if (!*expr) {
14153                                 continue;
14154                         }
14155                         lr = rstate->lrd[(*expr)->id].lr;
14156                         if (lr->color == REG_UNSET) {
14157                                 continue;
14158                         }
14159                         regcm = lr->classes;
14160                         if (((regcm & range->classes) == 0) ||
14161                                 (used[lr->color])) {
14162                                 continue;
14163                         }
14164                         if (interfere(rstate, range, lr)) {
14165                                 continue;
14166                         }
14167                         range->color = lr->color;
14168                         break;
14169                 }
14170         }
14171         /* If I have not opportunitically picked a useful color
14172          * pick the first color that is free.
14173          */
14174         if (range->color == REG_UNSET) {
14175                 range->color = 
14176                         arch_select_free_register(state, used, range->classes);
14177         }
14178         if (range->color == REG_UNSET) {
14179                 struct live_range_def *lrd;
14180                 int i;
14181                 if (split_ranges(state, rstate, used, range)) {
14182                         return 0;
14183                 }
14184                 for(edge = range->edges; edge; edge = edge->next) {
14185                         warning(state, edge->node->defs->def, "edge reg %s",
14186                                 arch_reg_str(edge->node->color));
14187                         lrd = edge->node->defs;
14188                         do {
14189                                 warning(state, lrd->def, " %s %p",
14190                                         tops(lrd->def->op), lrd->def);
14191                                 lrd = lrd->next;
14192                         } while(lrd != edge->node->defs);
14193                 }
14194                 warning(state, range->defs->def, "range: ");
14195                 lrd = range->defs;
14196                 do {
14197                         warning(state, lrd->def, " %s %p",
14198                                 tops(lrd->def->op), lrd->def);
14199                         lrd = lrd->next;
14200                 } while(lrd != range->defs);
14201                         
14202                 warning(state, range->defs->def, "classes: %x",
14203                         range->classes);
14204                 for(i = 0; i < MAX_REGISTERS; i++) {
14205                         if (used[i]) {
14206                                 warning(state, range->defs->def, "used: %s",
14207                                         arch_reg_str(i));
14208                         }
14209                 }
14210 #if DEBUG_COLOR_GRAPH < 2
14211                 error(state, range->defs->def, "too few registers");
14212 #else
14213                 internal_error(state, range->defs->def, "too few registers");
14214 #endif
14215         }
14216         range->classes &= arch_reg_regcm(state, range->color);
14217         if ((range->color == REG_UNSET) || (range->classes == 0)) {
14218                 internal_error(state, range->defs->def, "select_free_color did not?");
14219         }
14220         return 1;
14221 }
14222
14223 static int color_graph(struct compile_state *state, struct reg_state *rstate)
14224 {
14225         int colored;
14226         struct live_range_edge *edge;
14227         struct live_range *range;
14228         if (rstate->low) {
14229                 cgdebug_printf("Lo: ");
14230                 range = rstate->low;
14231                 if (*range->group_prev != range) {
14232                         internal_error(state, 0, "lo: *prev != range?");
14233                 }
14234                 *range->group_prev = range->group_next;
14235                 if (range->group_next) {
14236                         range->group_next->group_prev = range->group_prev;
14237                 }
14238                 if (&range->group_next == rstate->low_tail) {
14239                         rstate->low_tail = range->group_prev;
14240                 }
14241                 if (rstate->low == range) {
14242                         internal_error(state, 0, "low: next != prev?");
14243                 }
14244         }
14245         else if (rstate->high) {
14246                 cgdebug_printf("Hi: ");
14247                 range = rstate->high;
14248                 if (*range->group_prev != range) {
14249                         internal_error(state, 0, "hi: *prev != range?");
14250                 }
14251                 *range->group_prev = range->group_next;
14252                 if (range->group_next) {
14253                         range->group_next->group_prev = range->group_prev;
14254                 }
14255                 if (&range->group_next == rstate->high_tail) {
14256                         rstate->high_tail = range->group_prev;
14257                 }
14258                 if (rstate->high == range) {
14259                         internal_error(state, 0, "high: next != prev?");
14260                 }
14261         }
14262         else {
14263                 return 1;
14264         }
14265         cgdebug_printf(" %d\n", range - rstate->lr);
14266         range->group_prev = 0;
14267         for(edge = range->edges; edge; edge = edge->next) {
14268                 struct live_range *node;
14269                 node = edge->node;
14270                 /* Move nodes from the high to the low list */
14271                 if (node->group_prev && (node->color == REG_UNSET) &&
14272                         (node->degree == regc_max_size(state, node->classes))) {
14273                         if (*node->group_prev != node) {
14274                                 internal_error(state, 0, "move: *prev != node?");
14275                         }
14276                         *node->group_prev = node->group_next;
14277                         if (node->group_next) {
14278                                 node->group_next->group_prev = node->group_prev;
14279                         }
14280                         if (&node->group_next == rstate->high_tail) {
14281                                 rstate->high_tail = node->group_prev;
14282                         }
14283                         cgdebug_printf("Moving...%d to low\n", node - rstate->lr);
14284                         node->group_prev  = rstate->low_tail;
14285                         node->group_next  = 0;
14286                         *rstate->low_tail = node;
14287                         rstate->low_tail  = &node->group_next;
14288                         if (*node->group_prev != node) {
14289                                 internal_error(state, 0, "move2: *prev != node?");
14290                         }
14291                 }
14292                 node->degree -= 1;
14293         }
14294         colored = color_graph(state, rstate);
14295         if (colored) {
14296                 cgdebug_printf("Coloring %d @", range - rstate->lr);
14297                 cgdebug_loc(state, range->defs->def);
14298                 cgdebug_flush();
14299                 colored = select_free_color(state, rstate, range);
14300                 cgdebug_printf(" %s\n", arch_reg_str(range->color));
14301         }
14302         return colored;
14303 }
14304
14305 static void verify_colors(struct compile_state *state, struct reg_state *rstate)
14306 {
14307         struct live_range *lr;
14308         struct live_range_edge *edge;
14309         struct triple *ins, *first;
14310         char used[MAX_REGISTERS];
14311         first = state->first;
14312         ins = first;
14313         do {
14314                 if (triple_is_def(state, ins)) {
14315                         if ((ins->id < 0) || (ins->id > rstate->defs)) {
14316                                 internal_error(state, ins, 
14317                                         "triple without a live range def");
14318                         }
14319                         lr = rstate->lrd[ins->id].lr;
14320                         if (lr->color == REG_UNSET) {
14321                                 internal_error(state, ins,
14322                                         "triple without a color");
14323                         }
14324                         /* Find the registers used by the edges */
14325                         memset(used, 0, sizeof(used));
14326                         for(edge = lr->edges; edge; edge = edge->next) {
14327                                 if (edge->node->color == REG_UNSET) {
14328                                         internal_error(state, 0,
14329                                                 "live range without a color");
14330                         }
14331                                 reg_fill_used(state, used, edge->node->color);
14332                         }
14333                         if (used[lr->color]) {
14334                                 internal_error(state, ins,
14335                                         "triple with already used color");
14336                         }
14337                 }
14338                 ins = ins->next;
14339         } while(ins != first);
14340 }
14341
14342 static void color_triples(struct compile_state *state, struct reg_state *rstate)
14343 {
14344         struct live_range *lr;
14345         struct triple *first, *ins;
14346         first = state->first;
14347         ins = first;
14348         do {
14349                 if ((ins->id < 0) || (ins->id > rstate->defs)) {
14350                         internal_error(state, ins, 
14351                                 "triple without a live range");
14352                 }
14353                 lr = rstate->lrd[ins->id].lr;
14354                 SET_REG(ins->id, lr->color);
14355                 ins = ins->next;
14356         } while (ins != first);
14357 }
14358
14359 static struct live_range *merge_sort_lr(
14360         struct live_range *first, struct live_range *last)
14361 {
14362         struct live_range *mid, *join, **join_tail, *pick;
14363         size_t size;
14364         size = (last - first) + 1;
14365         if (size >= 2) {
14366                 mid = first + size/2;
14367                 first = merge_sort_lr(first, mid -1);
14368                 mid   = merge_sort_lr(mid, last);
14369                 
14370                 join = 0;
14371                 join_tail = &join;
14372                 /* merge the two lists */
14373                 while(first && mid) {
14374                         if ((first->degree < mid->degree) ||
14375                                 ((first->degree == mid->degree) &&
14376                                         (first->length < mid->length))) {
14377                                 pick = first;
14378                                 first = first->group_next;
14379                                 if (first) {
14380                                         first->group_prev = 0;
14381                                 }
14382                         }
14383                         else {
14384                                 pick = mid;
14385                                 mid = mid->group_next;
14386                                 if (mid) {
14387                                         mid->group_prev = 0;
14388                                 }
14389                         }
14390                         pick->group_next = 0;
14391                         pick->group_prev = join_tail;
14392                         *join_tail = pick;
14393                         join_tail = &pick->group_next;
14394                 }
14395                 /* Splice the remaining list */
14396                 pick = (first)? first : mid;
14397                 *join_tail = pick;
14398                 if (pick) { 
14399                         pick->group_prev = join_tail;
14400                 }
14401         }
14402         else {
14403                 if (!first->defs) {
14404                         first = 0;
14405                 }
14406                 join = first;
14407         }
14408         return join;
14409 }
14410
14411 static void ids_from_rstate(struct compile_state *state, 
14412         struct reg_state *rstate)
14413 {
14414         struct triple *ins, *first;
14415         if (!rstate->defs) {
14416                 return;
14417         }
14418         /* Display the graph if desired */
14419         if (state->debug & DEBUG_INTERFERENCE) {
14420                 print_blocks(state, stdout);
14421                 print_control_flow(state);
14422         }
14423         first = state->first;
14424         ins = first;
14425         do {
14426                 if (ins->id) {
14427                         struct live_range_def *lrd;
14428                         lrd = &rstate->lrd[ins->id];
14429                         ins->id = lrd->orig_id;
14430                 }
14431                 ins = ins->next;
14432         } while(ins != first);
14433 }
14434
14435 static void cleanup_live_edges(struct reg_state *rstate)
14436 {
14437         int i;
14438         /* Free the edges on each node */
14439         for(i = 1; i <= rstate->ranges; i++) {
14440                 remove_live_edges(rstate, &rstate->lr[i]);
14441         }
14442 }
14443
14444 static void cleanup_rstate(struct compile_state *state, struct reg_state *rstate)
14445 {
14446         cleanup_live_edges(rstate);
14447         xfree(rstate->lrd);
14448         xfree(rstate->lr);
14449
14450         /* Free the variable lifetime information */
14451         if (rstate->blocks) {
14452                 free_variable_lifetimes(state, rstate->blocks);
14453         }
14454         rstate->defs = 0;
14455         rstate->ranges = 0;
14456         rstate->lrd = 0;
14457         rstate->lr = 0;
14458         rstate->blocks = 0;
14459 }
14460
14461 static void verify_consistency(struct compile_state *state);
14462 static void allocate_registers(struct compile_state *state)
14463 {
14464         struct reg_state rstate;
14465         int colored;
14466
14467         /* Clear out the reg_state */
14468         memset(&rstate, 0, sizeof(rstate));
14469         rstate.max_passes = MAX_ALLOCATION_PASSES;
14470
14471         do {
14472                 struct live_range **point, **next;
14473                 int conflicts;
14474                 int tangles;
14475                 int coalesced;
14476
14477 #if DEBUG_RANGE_CONFLICTS
14478                 fprintf(stderr, "pass: %d\n", rstate.passes);
14479 #endif
14480
14481                 /* Restore ids */
14482                 ids_from_rstate(state, &rstate);
14483
14484                 /* Cleanup the temporary data structures */
14485                 cleanup_rstate(state, &rstate);
14486
14487                 /* Compute the variable lifetimes */
14488                 rstate.blocks = compute_variable_lifetimes(state);
14489
14490                 /* Fix invalid mandatory live range coalesce conflicts */
14491                 conflicts = correct_coalesce_conflicts(state, rstate.blocks);
14492
14493                 /* Fix two simultaneous uses of the same register.
14494                  * In a few pathlogical cases a partial untangle moves
14495                  * the tangle to a part of the graph we won't revisit.
14496                  * So we keep looping until we have no more tangle fixes
14497                  * to apply.
14498                  */
14499                 do {
14500                         tangles = correct_tangles(state, rstate.blocks);
14501                 } while(tangles);
14502
14503                 if (state->debug & DEBUG_INSERTED_COPIES) {
14504                         printf("After resolve_tangles\n");
14505                         print_blocks(state, stdout);
14506                         print_control_flow(state);
14507                 }
14508                 verify_consistency(state);
14509                 
14510                 /* Allocate and initialize the live ranges */
14511                 initialize_live_ranges(state, &rstate);
14512
14513                 /* Note current doing coalescing in a loop appears to 
14514                  * buys me nothing.  The code is left this way in case
14515                  * there is some value in it.  Or if a future bugfix
14516                  *  yields some benefit.
14517                  */
14518                 do {
14519 #if DEBUG_COALESCING
14520                         fprintf(stderr, "coalescing\n");
14521 #endif                  
14522                         /* Remove any previous live edge calculations */
14523                         cleanup_live_edges(&rstate);
14524
14525                         /* Compute the interference graph */
14526                         walk_variable_lifetimes(
14527                                 state, rstate.blocks, graph_ins, &rstate);
14528                         
14529                         /* Display the interference graph if desired */
14530                         if (state->debug & DEBUG_INTERFERENCE) {
14531                                 print_interference_blocks(state, &rstate, stdout, 1);
14532                                 printf("\nlive variables by instruction\n");
14533                                 walk_variable_lifetimes(
14534                                         state, rstate.blocks, 
14535                                         print_interference_ins, &rstate);
14536                         }
14537                         
14538                         coalesced = coalesce_live_ranges(state, &rstate);
14539
14540 #if DEBUG_COALESCING
14541                         fprintf(stderr, "coalesced: %d\n", coalesced);
14542 #endif
14543                 } while(coalesced);
14544
14545 #if DEBUG_CONSISTENCY > 1
14546 # if 0
14547                 fprintf(stderr, "verify_graph_ins...\n");
14548 # endif
14549                 /* Verify the interference graph */
14550                 walk_variable_lifetimes(
14551                         state, rstate.blocks, verify_graph_ins, &rstate);
14552 # if 0
14553                 fprintf(stderr, "verify_graph_ins done\n");
14554 #endif
14555 #endif
14556                         
14557                 /* Build the groups low and high.  But with the nodes
14558                  * first sorted by degree order.
14559                  */
14560                 rstate.low_tail  = &rstate.low;
14561                 rstate.high_tail = &rstate.high;
14562                 rstate.high = merge_sort_lr(&rstate.lr[1], &rstate.lr[rstate.ranges]);
14563                 if (rstate.high) {
14564                         rstate.high->group_prev = &rstate.high;
14565                 }
14566                 for(point = &rstate.high; *point; point = &(*point)->group_next)
14567                         ;
14568                 rstate.high_tail = point;
14569                 /* Walk through the high list and move everything that needs
14570                  * to be onto low.
14571                  */
14572                 for(point = &rstate.high; *point; point = next) {
14573                         struct live_range *range;
14574                         next = &(*point)->group_next;
14575                         range = *point;
14576                         
14577                         /* If it has a low degree or it already has a color
14578                          * place the node in low.
14579                          */
14580                         if ((range->degree < regc_max_size(state, range->classes)) ||
14581                                 (range->color != REG_UNSET)) {
14582                                 cgdebug_printf("Lo: %5d degree %5d%s\n", 
14583                                         range - rstate.lr, range->degree,
14584                                         (range->color != REG_UNSET) ? " (colored)": "");
14585                                 *range->group_prev = range->group_next;
14586                                 if (range->group_next) {
14587                                         range->group_next->group_prev = range->group_prev;
14588                                 }
14589                                 if (&range->group_next == rstate.high_tail) {
14590                                         rstate.high_tail = range->group_prev;
14591                                 }
14592                                 range->group_prev  = rstate.low_tail;
14593                                 range->group_next  = 0;
14594                                 *rstate.low_tail   = range;
14595                                 rstate.low_tail    = &range->group_next;
14596                                 next = point;
14597                         }
14598                         else {
14599                                 cgdebug_printf("hi: %5d degree %5d%s\n", 
14600                                         range - rstate.lr, range->degree,
14601                                         (range->color != REG_UNSET) ? " (colored)": "");
14602                         }
14603                 }
14604                 /* Color the live_ranges */
14605                 colored = color_graph(state, &rstate);
14606                 rstate.passes++;
14607         } while (!colored);
14608
14609         /* Verify the graph was properly colored */
14610         verify_colors(state, &rstate);
14611
14612         /* Move the colors from the graph to the triples */
14613         color_triples(state, &rstate);
14614
14615         /* Cleanup the temporary data structures */
14616         cleanup_rstate(state, &rstate);
14617 }
14618
14619 /* Sparce Conditional Constant Propogation
14620  * =========================================
14621  */
14622 struct ssa_edge;
14623 struct flow_block;
14624 struct lattice_node {
14625         unsigned old_id;
14626         struct triple *def;
14627         struct ssa_edge *out;
14628         struct flow_block *fblock;
14629         struct triple *val;
14630         /* lattice high   val && !is_const(val) 
14631          * lattice const  is_const(val)
14632          * lattice low    val == 0
14633          */
14634 };
14635 struct ssa_edge {
14636         struct lattice_node *src;
14637         struct lattice_node *dst;
14638         struct ssa_edge *work_next;
14639         struct ssa_edge *work_prev;
14640         struct ssa_edge *out_next;
14641 };
14642 struct flow_edge {
14643         struct flow_block *src;
14644         struct flow_block *dst;
14645         struct flow_edge *work_next;
14646         struct flow_edge *work_prev;
14647         struct flow_edge *in_next;
14648         struct flow_edge *out_next;
14649         int executable;
14650 };
14651 struct flow_block {
14652         struct block *block;
14653         struct flow_edge *in;
14654         struct flow_edge *out;
14655         struct flow_edge left, right;
14656 };
14657
14658 struct scc_state {
14659         int ins_count;
14660         struct lattice_node *lattice;
14661         struct ssa_edge     *ssa_edges;
14662         struct flow_block   *flow_blocks;
14663         struct flow_edge    *flow_work_list;
14664         struct ssa_edge     *ssa_work_list;
14665 };
14666
14667
14668 static void scc_add_fedge(struct compile_state *state, struct scc_state *scc, 
14669         struct flow_edge *fedge)
14670 {
14671         if ((fedge == scc->flow_work_list) ||
14672                 (fedge->work_next != fedge) ||
14673                 (fedge->work_prev != fedge)) {
14674                 return;
14675         }
14676         if (!scc->flow_work_list) {
14677                 scc->flow_work_list = fedge;
14678                 fedge->work_next = fedge->work_prev = fedge;
14679         }
14680         else {
14681                 struct flow_edge *ftail;
14682                 ftail = scc->flow_work_list->work_prev;
14683                 fedge->work_next = ftail->work_next;
14684                 fedge->work_prev = ftail;
14685                 fedge->work_next->work_prev = fedge;
14686                 fedge->work_prev->work_next = fedge;
14687         }
14688 }
14689
14690 static struct flow_edge *scc_next_fedge(
14691         struct compile_state *state, struct scc_state *scc)
14692 {
14693         struct flow_edge *fedge;
14694         fedge = scc->flow_work_list;
14695         if (fedge) {
14696                 fedge->work_next->work_prev = fedge->work_prev;
14697                 fedge->work_prev->work_next = fedge->work_next;
14698                 if (fedge->work_next != fedge) {
14699                         scc->flow_work_list = fedge->work_next;
14700                 } else {
14701                         scc->flow_work_list = 0;
14702                 }
14703                 fedge->work_next = fedge->work_prev = fedge;
14704         }
14705         return fedge;
14706 }
14707
14708 static void scc_add_sedge(struct compile_state *state, struct scc_state *scc,
14709         struct ssa_edge *sedge)
14710 {
14711 #if DEBUG_SCC > 1
14712         fprintf(stderr, "adding sedge: %5d (%4d -> %5d)\n",
14713                 sedge - scc->ssa_edges,
14714                 sedge->src->def->id,
14715                 sedge->dst->def->id);
14716 #endif
14717         if ((sedge == scc->ssa_work_list) ||
14718                 (sedge->work_next != sedge) ||
14719                 (sedge->work_prev != sedge)) {
14720 #if DEBUG_SCC > 1
14721                 fprintf(stderr, "dupped sedge: %5d\n",
14722                         sedge - scc->ssa_edges);
14723 #endif
14724                 return;
14725         }
14726         if (!scc->ssa_work_list) {
14727                 scc->ssa_work_list = sedge;
14728                 sedge->work_next = sedge->work_prev = sedge;
14729         }
14730         else {
14731                 struct ssa_edge *stail;
14732                 stail = scc->ssa_work_list->work_prev;
14733                 sedge->work_next = stail->work_next;
14734                 sedge->work_prev = stail;
14735                 sedge->work_next->work_prev = sedge;
14736                 sedge->work_prev->work_next = sedge;
14737         }
14738 }
14739
14740 static struct ssa_edge *scc_next_sedge(
14741         struct compile_state *state, struct scc_state *scc)
14742 {
14743         struct ssa_edge *sedge;
14744         sedge = scc->ssa_work_list;
14745         if (sedge) {
14746                 sedge->work_next->work_prev = sedge->work_prev;
14747                 sedge->work_prev->work_next = sedge->work_next;
14748                 if (sedge->work_next != sedge) {
14749                         scc->ssa_work_list = sedge->work_next;
14750                 } else {
14751                         scc->ssa_work_list = 0;
14752                 }
14753                 sedge->work_next = sedge->work_prev = sedge;
14754         }
14755         return sedge;
14756 }
14757
14758 static void initialize_scc_state(
14759         struct compile_state *state, struct scc_state *scc)
14760 {
14761         int ins_count, ssa_edge_count;
14762         int ins_index, ssa_edge_index, fblock_index;
14763         struct triple *first, *ins;
14764         struct block *block;
14765         struct flow_block *fblock;
14766
14767         memset(scc, 0, sizeof(*scc));
14768
14769         /* Inialize pass zero find out how much memory we need */
14770         first = state->first;
14771         ins = first;
14772         ins_count = ssa_edge_count = 0;
14773         do {
14774                 struct triple_set *edge;
14775                 ins_count += 1;
14776                 for(edge = ins->use; edge; edge = edge->next) {
14777                         ssa_edge_count++;
14778                 }
14779                 ins = ins->next;
14780         } while(ins != first);
14781 #if DEBUG_SCC
14782         fprintf(stderr, "ins_count: %d ssa_edge_count: %d vertex_count: %d\n",
14783                 ins_count, ssa_edge_count, state->last_vertex);
14784 #endif
14785         scc->ins_count   = ins_count;
14786         scc->lattice     = 
14787                 xcmalloc(sizeof(*scc->lattice)*(ins_count + 1), "lattice");
14788         scc->ssa_edges   = 
14789                 xcmalloc(sizeof(*scc->ssa_edges)*(ssa_edge_count + 1), "ssa_edges");
14790         scc->flow_blocks = 
14791                 xcmalloc(sizeof(*scc->flow_blocks)*(state->last_vertex + 1), 
14792                         "flow_blocks");
14793
14794         /* Initialize pass one collect up the nodes */
14795         fblock = 0;
14796         block = 0;
14797         ins_index = ssa_edge_index = fblock_index = 0;
14798         ins = first;
14799         do {
14800                 if ((ins->op == OP_LABEL) && (block != ins->u.block)) {
14801                         block = ins->u.block;
14802                         if (!block) {
14803                                 internal_error(state, ins, "label without block");
14804                         }
14805                         fblock_index += 1;
14806                         block->vertex = fblock_index;
14807                         fblock = &scc->flow_blocks[fblock_index];
14808                         fblock->block = block;
14809                 }
14810                 {
14811                         struct lattice_node *lnode;
14812                         ins_index += 1;
14813                         lnode = &scc->lattice[ins_index];
14814                         lnode->def = ins;
14815                         lnode->out = 0;
14816                         lnode->fblock = fblock;
14817                         lnode->val = ins; /* LATTICE HIGH */
14818                         lnode->old_id = ins->id;
14819                         ins->id = ins_index;
14820                 }
14821                 ins = ins->next;
14822         } while(ins != first);
14823         /* Initialize pass two collect up the edges */
14824         block = 0;
14825         fblock = 0;
14826         ins = first;
14827         do {
14828                 if ((ins->op == OP_LABEL) && (block != ins->u.block)) {
14829                         struct flow_edge *fedge, **ftail;
14830                         struct block_set *bedge;
14831                         block = ins->u.block;
14832                         fblock = &scc->flow_blocks[block->vertex];
14833                         fblock->in = 0;
14834                         fblock->out = 0;
14835                         ftail = &fblock->out;
14836                         if (block->left) {
14837                                 fblock->left.dst = &scc->flow_blocks[block->left->vertex];
14838                                 if (fblock->left.dst->block != block->left) {
14839                                         internal_error(state, 0, "block mismatch");
14840                                 }
14841                                 fblock->left.out_next = 0;
14842                                 *ftail = &fblock->left;
14843                                 ftail = &fblock->left.out_next;
14844                         }
14845                         if (block->right) {
14846                                 fblock->right.dst = &scc->flow_blocks[block->right->vertex];
14847                                 if (fblock->right.dst->block != block->right) {
14848                                         internal_error(state, 0, "block mismatch");
14849                                 }
14850                                 fblock->right.out_next = 0;
14851                                 *ftail = &fblock->right;
14852                                 ftail = &fblock->right.out_next;
14853                         }
14854                         for(fedge = fblock->out; fedge; fedge = fedge->out_next) {
14855                                 fedge->src = fblock;
14856                                 fedge->work_next = fedge->work_prev = fedge;
14857                                 fedge->executable = 0;
14858                         }
14859                         ftail = &fblock->in;
14860                         for(bedge = block->use; bedge; bedge = bedge->next) {
14861                                 struct block *src_block;
14862                                 struct flow_block *sfblock;
14863                                 struct flow_edge *sfedge;
14864                                 src_block = bedge->member;
14865                                 sfblock = &scc->flow_blocks[src_block->vertex];
14866                                 sfedge = 0;
14867                                 if (src_block->left == block) {
14868                                         sfedge = &sfblock->left;
14869                                 } else {
14870                                         sfedge = &sfblock->right;
14871                                 }
14872                                 *ftail = sfedge;
14873                                 ftail = &sfedge->in_next;
14874                                 sfedge->in_next = 0;
14875                         }
14876                 }
14877                 {
14878                         struct triple_set *edge;
14879                         struct ssa_edge **stail;
14880                         struct lattice_node *lnode;
14881                         lnode = &scc->lattice[ins->id];
14882                         lnode->out = 0;
14883                         stail = &lnode->out;
14884                         for(edge = ins->use; edge; edge = edge->next) {
14885                                 struct ssa_edge *sedge;
14886                                 ssa_edge_index += 1;
14887                                 sedge = &scc->ssa_edges[ssa_edge_index];
14888                                 *stail = sedge;
14889                                 stail = &sedge->out_next;
14890                                 sedge->src = lnode;
14891                                 sedge->dst = &scc->lattice[edge->member->id];
14892                                 sedge->work_next = sedge->work_prev = sedge;
14893                                 sedge->out_next = 0;
14894                         }
14895                 }
14896                 ins = ins->next;
14897         } while(ins != first);
14898         /* Setup a dummy block 0 as a node above the start node */
14899         {
14900                 struct flow_block *fblock, *dst;
14901                 struct flow_edge *fedge;
14902                 fblock = &scc->flow_blocks[0];
14903                 fblock->block = 0;
14904                 fblock->in = 0;
14905                 fblock->out = &fblock->left;
14906                 dst = &scc->flow_blocks[state->first_block->vertex];
14907                 fedge = &fblock->left;
14908                 fedge->src        = fblock;
14909                 fedge->dst        = dst;
14910                 fedge->work_next  = fedge;
14911                 fedge->work_prev  = fedge;
14912                 fedge->in_next    = fedge->dst->in;
14913                 fedge->out_next   = 0;
14914                 fedge->executable = 0;
14915                 fedge->dst->in = fedge;
14916                 
14917                 /* Initialize the work lists */
14918                 scc->flow_work_list = 0;
14919                 scc->ssa_work_list  = 0;
14920                 scc_add_fedge(state, scc, fedge);
14921         }
14922 #if DEBUG_SCC
14923         fprintf(stderr, "ins_index: %d ssa_edge_index: %d fblock_index: %d\n",
14924                 ins_index, ssa_edge_index, fblock_index);
14925 #endif
14926 }
14927
14928         
14929 static void free_scc_state(
14930         struct compile_state *state, struct scc_state *scc)
14931 {
14932         xfree(scc->flow_blocks);
14933         xfree(scc->ssa_edges);
14934         xfree(scc->lattice);
14935         
14936 }
14937
14938 static struct lattice_node *triple_to_lattice(
14939         struct compile_state *state, struct scc_state *scc, struct triple *ins)
14940 {
14941         if (ins->id <= 0) {
14942                 internal_error(state, ins, "bad id");
14943         }
14944         return &scc->lattice[ins->id];
14945 }
14946
14947 static struct triple *preserve_lval(
14948         struct compile_state *state, struct lattice_node *lnode)
14949 {
14950         struct triple *old;
14951         /* Preserve the original value */
14952         if (lnode->val) {
14953                 old = dup_triple(state, lnode->val);
14954                 if (lnode->val != lnode->def) {
14955                         xfree(lnode->val);
14956                 }
14957                 lnode->val = 0;
14958         } else {
14959                 old = 0;
14960         }
14961         return old;
14962 }
14963
14964 static int lval_changed(struct compile_state *state, 
14965         struct triple *old, struct lattice_node *lnode)
14966 {
14967         int changed;
14968         /* See if the lattice value has changed */
14969         changed = 1;
14970         if (!old && !lnode->val) {
14971                 changed = 0;
14972         }
14973         if (changed && lnode->val && !is_const(lnode->val)) {
14974                 changed = 0;
14975         }
14976         if (changed &&
14977                 lnode->val && old &&
14978                 (memcmp(lnode->val->param, old->param,
14979                         TRIPLE_SIZE(lnode->val->sizes) * sizeof(lnode->val->param[0])) == 0) &&
14980                 (memcmp(&lnode->val->u, &old->u, sizeof(old->u)) == 0)) {
14981                 changed = 0;
14982         }
14983         if (old) {
14984                 xfree(old);
14985         }
14986         return changed;
14987
14988 }
14989
14990 static void scc_visit_phi(struct compile_state *state, struct scc_state *scc, 
14991         struct lattice_node *lnode)
14992 {
14993         struct lattice_node *tmp;
14994         struct triple **slot, *old;
14995         struct flow_edge *fedge;
14996         int changed;
14997         int index;
14998         if (lnode->def->op != OP_PHI) {
14999                 internal_error(state, lnode->def, "not phi");
15000         }
15001         /* Store the original value */
15002         old = preserve_lval(state, lnode);
15003
15004         /* default to lattice high */
15005         lnode->val = lnode->def;
15006         slot = &RHS(lnode->def, 0);
15007         index = 0;
15008         for(fedge = lnode->fblock->in; fedge; index++, fedge = fedge->in_next) {
15009 #if DEBUG_SCC
15010                 fprintf(stderr, "Examining edge: %d vertex: %d executable: %d\n", 
15011                         index,
15012                         fedge->dst->block->vertex,
15013                         fedge->executable
15014                         );
15015 #endif
15016                 if (!fedge->executable) {
15017                         continue;
15018                 }
15019                 if (!slot[index]) {
15020                         internal_error(state, lnode->def, "no phi value");
15021                 }
15022                 tmp = triple_to_lattice(state, scc, slot[index]);
15023                 /* meet(X, lattice low) = lattice low */
15024                 if (!tmp->val) {
15025                         lnode->val = 0;
15026                 }
15027                 /* meet(X, lattice high) = X */
15028                 else if (!tmp->val) {
15029                         lnode->val = lnode->val;
15030                 }
15031                 /* meet(lattice high, X) = X */
15032                 else if (!is_const(lnode->val)) {
15033                         lnode->val = dup_triple(state, tmp->val);
15034                         lnode->val->type = lnode->def->type;
15035                 }
15036                 /* meet(const, const) = const or lattice low */
15037                 else if (!constants_equal(state, lnode->val, tmp->val)) {
15038                         lnode->val = 0;
15039                 }
15040                 if (!lnode->val) {
15041                         break;
15042                 }
15043         }
15044         changed = lval_changed(state, old, lnode);
15045 #if DEBUG_SCC
15046         fprintf(stderr, "%p phi:  %d -> %s %s\n",
15047                 lnode->def, 
15048                 lnode->def->id,
15049                 ((!lnode->val)? "lo": is_const(lnode->val)? "const": "hi"),
15050                 changed? "changed" : ""
15051                 );
15052 #endif
15053         /* If the lattice value has changed update the work lists. */
15054         if (changed) {
15055                 struct ssa_edge *sedge;
15056                 for(sedge = lnode->out; sedge; sedge = sedge->out_next) {
15057                         scc_add_sedge(state, scc, sedge);
15058                 }
15059         }
15060 }
15061
15062 static int compute_lnode_val(struct compile_state *state, struct scc_state *scc,
15063         struct lattice_node *lnode)
15064 {
15065         int changed;
15066         struct triple *old, *scratch;
15067         struct triple **dexpr, **vexpr;
15068         int count, i;
15069         
15070         /* Store the original value */
15071         old = preserve_lval(state, lnode);
15072
15073         /* Reinitialize the value */
15074         lnode->val = scratch = dup_triple(state, lnode->def);
15075         scratch->id = lnode->old_id;
15076         scratch->next     = scratch;
15077         scratch->prev     = scratch;
15078         scratch->use      = 0;
15079
15080         count = TRIPLE_SIZE(scratch->sizes);
15081         for(i = 0; i < count; i++) {
15082                 dexpr = &lnode->def->param[i];
15083                 vexpr = &scratch->param[i];
15084                 *vexpr = *dexpr;
15085                 if (((i < TRIPLE_MISC_OFF(scratch->sizes)) ||
15086                         (i >= TRIPLE_TARG_OFF(scratch->sizes))) &&
15087                         *dexpr) {
15088                         struct lattice_node *tmp;
15089                         tmp = triple_to_lattice(state, scc, *dexpr);
15090                         *vexpr = (tmp->val)? tmp->val : tmp->def;
15091                 }
15092         }
15093         if (scratch->op == OP_BRANCH) {
15094                 scratch->next = lnode->def->next;
15095         }
15096         /* Recompute the value */
15097 #warning "FIXME see if simplify does anything bad"
15098         /* So far it looks like only the strength reduction
15099          * optimization are things I need to worry about.
15100          */
15101         simplify(state, scratch);
15102         /* Cleanup my value */
15103         if (scratch->use) {
15104                 internal_error(state, lnode->def, "scratch used?");
15105         }
15106         if ((scratch->prev != scratch) ||
15107                 ((scratch->next != scratch) &&
15108                         ((lnode->def->op != OP_BRANCH) ||
15109                                 (scratch->next != lnode->def->next)))) {
15110                 internal_error(state, lnode->def, "scratch in list?");
15111         }
15112         /* undo any uses... */
15113         count = TRIPLE_SIZE(scratch->sizes);
15114         for(i = 0; i < count; i++) {
15115                 vexpr = &scratch->param[i];
15116                 if (*vexpr) {
15117                         unuse_triple(*vexpr, scratch);
15118                 }
15119         }
15120         if (!is_const(scratch)) {
15121                 for(i = 0; i < count; i++) {
15122                         dexpr = &lnode->def->param[i];
15123                         if (((i < TRIPLE_MISC_OFF(scratch->sizes)) ||
15124                                 (i >= TRIPLE_TARG_OFF(scratch->sizes))) &&
15125                                 *dexpr) {
15126                                 struct lattice_node *tmp;
15127                                 tmp = triple_to_lattice(state, scc, *dexpr);
15128                                 if (!tmp->val) {
15129                                         lnode->val = 0;
15130                                 }
15131                         }
15132                 }
15133         }
15134         if (lnode->val && 
15135                 (lnode->val->op == lnode->def->op) &&
15136                 (memcmp(lnode->val->param, lnode->def->param, 
15137                         count * sizeof(lnode->val->param[0])) == 0) &&
15138                 (memcmp(&lnode->val->u, &lnode->def->u, sizeof(lnode->def->u)) == 0)) {
15139                 lnode->val = lnode->def;
15140         }
15141         /* Find the cases that are always lattice lo */
15142         if (lnode->val && 
15143                 triple_is_def(state, lnode->val) &&
15144                 !triple_is_pure(state, lnode->val, lnode->old_id)) {
15145                 lnode->val = 0;
15146         }
15147         /* See if the lattice value has changed */
15148         changed = lval_changed(state, old, lnode);
15149         /* See if this value should not change */
15150         if (lnode->val && 
15151                 ((      !triple_is_def(state, lnode->def)  &&
15152                         !triple_is_cond_branch(state, lnode->def)) ||
15153                         (lnode->def->op == OP_PIECE))) {
15154 #warning "FIXME constant propogate through expressions with multiple left hand sides"
15155                 if (changed) {
15156                         internal_warning(state, lnode->def, "non def changes value?");
15157                 }
15158                 lnode->val = 0;
15159         }
15160         /* See if we need to free the scratch value */
15161         if (lnode->val != scratch) {
15162                 xfree(scratch);
15163         }
15164         return changed;
15165 }
15166
15167 static void scc_visit_branch(struct compile_state *state, struct scc_state *scc,
15168         struct lattice_node *lnode)
15169 {
15170         struct lattice_node *cond;
15171 #if DEBUG_SCC
15172         {
15173                 struct flow_edge *fedge;
15174                 fprintf(stderr, "branch: %d (",
15175                         lnode->def->id);
15176                 
15177                 for(fedge = lnode->fblock->out; fedge; fedge = fedge->out_next) {
15178                         fprintf(stderr, " %d", fedge->dst->block->vertex);
15179                 }
15180                 fprintf(stderr, " )");
15181                 if (TRIPLE_RHS(lnode->def->sizes) > 0) {
15182                         fprintf(stderr, " <- %d",
15183                                 RHS(lnode->def, 0)->id);
15184                 }
15185                 fprintf(stderr, "\n");
15186         }
15187 #endif
15188         if (lnode->def->op != OP_BRANCH) {
15189                 internal_error(state, lnode->def, "not branch");
15190         }
15191         /* This only applies to conditional branches */
15192         if (TRIPLE_RHS(lnode->def->sizes) == 0) {
15193                 return;
15194         }
15195         cond = triple_to_lattice(state, scc, RHS(lnode->def,0));
15196         if (cond->val && !is_const(cond->val)) {
15197 #warning "FIXME do I need to do something here?"
15198                 warning(state, cond->def, "condition not constant?");
15199                 return;
15200         }
15201         if (cond->val == 0) {
15202                 scc_add_fedge(state, scc, cond->fblock->out);
15203                 scc_add_fedge(state, scc, cond->fblock->out->out_next);
15204         }
15205         else if (cond->val->u.cval) {
15206                 scc_add_fedge(state, scc, cond->fblock->out->out_next);
15207                 
15208         } else {
15209                 scc_add_fedge(state, scc, cond->fblock->out);
15210         }
15211
15212 }
15213
15214 static void scc_visit_expr(struct compile_state *state, struct scc_state *scc,
15215         struct lattice_node *lnode)
15216 {
15217         int changed;
15218
15219         changed = compute_lnode_val(state, scc, lnode);
15220 #if DEBUG_SCC
15221         {
15222                 struct triple **expr;
15223                 fprintf(stderr, "expr: %3d %10s (",
15224                         lnode->def->id, tops(lnode->def->op));
15225                 expr = triple_rhs(state, lnode->def, 0);
15226                 for(;expr;expr = triple_rhs(state, lnode->def, expr)) {
15227                         if (*expr) {
15228                                 fprintf(stderr, " %d", (*expr)->id);
15229                         }
15230                 }
15231                 fprintf(stderr, " ) -> %s\n",
15232                         (!lnode->val)? "lo": is_const(lnode->val)? "const": "hi");
15233         }
15234 #endif
15235         if (lnode->def->op == OP_BRANCH) {
15236                 scc_visit_branch(state, scc, lnode);
15237
15238         }
15239         else if (changed) {
15240                 struct ssa_edge *sedge;
15241                 for(sedge = lnode->out; sedge; sedge = sedge->out_next) {
15242                         scc_add_sedge(state, scc, sedge);
15243                 }
15244         }
15245 }
15246
15247 static void scc_writeback_values(
15248         struct compile_state *state, struct scc_state *scc)
15249 {
15250         struct triple *first, *ins;
15251         first = state->first;
15252         ins = first;
15253         do {
15254                 struct lattice_node *lnode;
15255                 lnode = triple_to_lattice(state, scc, ins);
15256 #if DEBUG_SCC
15257                 if (lnode->val && 
15258                         !is_const(lnode->val) &&
15259                         !triple_is_uncond_branch(state, lnode->val) &&
15260                         (lnode->val->op != OP_NOOP)) 
15261                 {
15262                         struct flow_edge *fedge;
15263                         int executable;
15264                         executable = 0;
15265                         for(fedge = lnode->fblock->in; 
15266                             !executable && fedge; fedge = fedge->in_next) {
15267                                 executable |= fedge->executable;
15268                         }
15269                         if (executable) {
15270                                 internal_warning(state, lnode->val,
15271                                         "lattice node %d %s->%s still high?",
15272                                         ins->id, 
15273                                         tops(lnode->def->op),
15274                                         tops(lnode->val->op));
15275                         }
15276                 }
15277 #endif
15278                 /* Restore id */
15279                 ins->id = lnode->old_id;
15280                 if (lnode->val && (lnode->val != ins)) {
15281                         /* See if it something I know how to write back */
15282                         switch(lnode->val->op) {
15283                         case OP_INTCONST:
15284                                 mkconst(state, ins, lnode->val->u.cval);
15285                                 break;
15286                         case OP_ADDRCONST:
15287                                 mkaddr_const(state, ins, 
15288                                         MISC(lnode->val, 0), lnode->val->u.cval);
15289                                 break;
15290                         default:
15291                                 /* By default don't copy the changes,
15292                                  * recompute them in place instead.
15293                                  */
15294                                 simplify(state, ins);
15295                                 break;
15296                         }
15297                         if (is_const(lnode->val) &&
15298                                 !constants_equal(state, lnode->val, ins)) {
15299                                 internal_error(state, 0, "constants not equal");
15300                         }
15301                         /* Free the lattice nodes */
15302                         xfree(lnode->val);
15303                         lnode->val = 0;
15304                 }
15305                 ins = ins->next;
15306         } while(ins != first);
15307 }
15308
15309 static void scc_transform(struct compile_state *state)
15310 {
15311         struct scc_state scc;
15312
15313         initialize_scc_state(state, &scc);
15314
15315         while(scc.flow_work_list || scc.ssa_work_list) {
15316                 struct flow_edge *fedge;
15317                 struct ssa_edge *sedge;
15318                 struct flow_edge *fptr;
15319                 while((fedge = scc_next_fedge(state, &scc))) {
15320                         struct block *block;
15321                         struct triple *ptr;
15322                         struct flow_block *fblock;
15323                         int reps;
15324                         int done;
15325                         if (fedge->executable) {
15326                                 continue;
15327                         }
15328                         if (!fedge->dst) {
15329                                 internal_error(state, 0, "fedge without dst");
15330                         }
15331                         if (!fedge->src) {
15332                                 internal_error(state, 0, "fedge without src");
15333                         }
15334                         fedge->executable = 1;
15335                         fblock = fedge->dst;
15336                         block = fblock->block;
15337                         reps = 0;
15338                         for(fptr = fblock->in; fptr; fptr = fptr->in_next) {
15339                                 if (fptr->executable) {
15340                                         reps++;
15341                                 }
15342                         }
15343 #if DEBUG_SCC
15344                         fprintf(stderr, "vertex: %d reps: %d\n", 
15345                                 block->vertex, reps);
15346                         
15347 #endif
15348                         done = 0;
15349                         for(ptr = block->first; !done; ptr = ptr->next) {
15350                                 struct lattice_node *lnode;
15351                                 done = (ptr == block->last);
15352                                 lnode = &scc.lattice[ptr->id];
15353                                 if (ptr->op == OP_PHI) {
15354                                         scc_visit_phi(state, &scc, lnode);
15355                                 }
15356                                 else if (reps == 1) {
15357                                         scc_visit_expr(state, &scc, lnode);
15358                                 }
15359                         }
15360                         if (fblock->out && !fblock->out->out_next) {
15361                                 scc_add_fedge(state, &scc, fblock->out);
15362                         }
15363                 }
15364                 while((sedge = scc_next_sedge(state, &scc))) {
15365                         struct lattice_node *lnode;
15366                         struct flow_block *fblock;
15367                         lnode = sedge->dst;
15368                         fblock = lnode->fblock;
15369 #if DEBUG_SCC
15370                         fprintf(stderr, "sedge: %5d (%5d -> %5d)\n",
15371                                 sedge - scc.ssa_edges,
15372                                 sedge->src->def->id,
15373                                 sedge->dst->def->id);
15374 #endif
15375                         if (lnode->def->op == OP_PHI) {
15376                                 scc_visit_phi(state, &scc, lnode);
15377                         }
15378                         else {
15379                                 for(fptr = fblock->in; fptr; fptr = fptr->in_next) {
15380                                         if (fptr->executable) {
15381                                                 break;
15382                                         }
15383                                 }
15384                                 if (fptr) {
15385                                         scc_visit_expr(state, &scc, lnode);
15386                                 }
15387                         }
15388                 }
15389         }
15390         
15391         scc_writeback_values(state, &scc);
15392         free_scc_state(state, &scc);
15393 }
15394
15395
15396 static void transform_to_arch_instructions(struct compile_state *state)
15397 {
15398         struct triple *ins, *first;
15399         first = state->first;
15400         ins = first;
15401         do {
15402                 ins = transform_to_arch_instruction(state, ins);
15403         } while(ins != first);
15404 }
15405
15406 #if DEBUG_CONSISTENCY
15407 static void verify_uses(struct compile_state *state)
15408 {
15409         struct triple *first, *ins;
15410         struct triple_set *set;
15411         first = state->first;
15412         ins = first;
15413         do {
15414                 struct triple **expr;
15415                 expr = triple_rhs(state, ins, 0);
15416                 for(; expr; expr = triple_rhs(state, ins, expr)) {
15417                         struct triple *rhs;
15418                         rhs = *expr;
15419                         for(set = rhs?rhs->use:0; set; set = set->next) {
15420                                 if (set->member == ins) {
15421                                         break;
15422                                 }
15423                         }
15424                         if (!set) {
15425                                 internal_error(state, ins, "rhs not used");
15426                         }
15427                 }
15428                 expr = triple_lhs(state, ins, 0);
15429                 for(; expr; expr = triple_lhs(state, ins, expr)) {
15430                         struct triple *lhs;
15431                         lhs = *expr;
15432                         for(set =  lhs?lhs->use:0; set; set = set->next) {
15433                                 if (set->member == ins) {
15434                                         break;
15435                                 }
15436                         }
15437                         if (!set) {
15438                                 internal_error(state, ins, "lhs not used");
15439                         }
15440                 }
15441                 ins = ins->next;
15442         } while(ins != first);
15443         
15444 }
15445 static void verify_blocks_present(struct compile_state *state)
15446 {
15447         struct triple *first, *ins;
15448         if (!state->first_block) {
15449                 return;
15450         }
15451         first = state->first;
15452         ins = first;
15453         do {
15454                 valid_ins(state, ins);
15455                 if (triple_stores_block(state, ins)) {
15456                         if (!ins->u.block) {
15457                                 internal_error(state, ins, 
15458                                         "%p not in a block?\n", ins);
15459                         }
15460                 }
15461                 ins = ins->next;
15462         } while(ins != first);
15463         
15464         
15465 }
15466 static void verify_blocks(struct compile_state *state)
15467 {
15468         struct triple *ins;
15469         struct block *block;
15470         int blocks;
15471         block = state->first_block;
15472         if (!block) {
15473                 return;
15474         }
15475         blocks = 0;
15476         do {
15477                 int users;
15478                 struct block_set *user;
15479                 blocks++;
15480                 for(ins = block->first; ins != block->last->next; ins = ins->next) {
15481                         if (triple_stores_block(state, ins) && (ins->u.block != block)) {
15482                                 internal_error(state, ins, "inconsitent block specified");
15483                         }
15484                         valid_ins(state, ins);
15485                 }
15486                 users = 0;
15487                 for(user = block->use; user; user = user->next) {
15488                         users++;
15489                         if (!user->member->first) {
15490                                 internal_error(state, block->first, "user is empty");
15491                         }
15492                         if ((block == state->last_block) &&
15493                                 (user->member == state->first_block)) {
15494                                 continue;
15495                         }
15496                         if ((user->member->left != block) &&
15497                                 (user->member->right != block)) {
15498                                 internal_error(state, user->member->first,
15499                                         "user does not use block");
15500                         }
15501                 }
15502                 if (triple_is_branch(state, block->last) &&
15503                         (block->right != block_of_triple(state, TARG(block->last, 0))))
15504                 {
15505                         internal_error(state, block->last, "block->right != TARG(0)");
15506                 }
15507                 if (!triple_is_uncond_branch(state, block->last) &&
15508                         (block != state->last_block) &&
15509                         (block->left != block_of_triple(state, block->last->next)))
15510                 {
15511                         internal_error(state, block->last, "block->left != block->last->next");
15512                 }
15513                 if (block->left) {
15514                         for(user = block->left->use; user; user = user->next) {
15515                                 if (user->member == block) {
15516                                         break;
15517                                 }
15518                         }
15519                         if (!user || user->member != block) {
15520                                 internal_error(state, block->first,
15521                                         "block does not use left");
15522                         }
15523                         if (!block->left->first) {
15524                                 internal_error(state, block->first, "left block is empty");
15525                         }
15526                 }
15527                 if (block->right) {
15528                         for(user = block->right->use; user; user = user->next) {
15529                                 if (user->member == block) {
15530                                         break;
15531                                 }
15532                         }
15533                         if (!user || user->member != block) {
15534                                 internal_error(state, block->first,
15535                                         "block does not use right");
15536                         }
15537                         if (!block->right->first) {
15538                                 internal_error(state, block->first, "right block is empty");
15539                         }
15540                 }
15541                 if (block->users != users) {
15542                         internal_error(state, block->first, 
15543                                 "computed users %d != stored users %d\n",
15544                                 users, block->users);
15545                 }
15546                 for(user = block->ipdomfrontier; user; user = user->next) {
15547                         if ((user->member->left != state->last_block) &&
15548                                 !triple_is_cond_branch(state, user->member->last)) {
15549                                 internal_error(state, user->member->last,
15550                                         "conditional branch missing");
15551                         }
15552                 }
15553                 if (!triple_stores_block(state, block->last->next)) {
15554                         internal_error(state, block->last->next, 
15555                                 "cannot find next block");
15556                 }
15557                 block = block->last->next->u.block;
15558                 if (!block) {
15559                         internal_error(state, block->last->next,
15560                                 "bad next block");
15561                 }
15562         } while(block != state->first_block);
15563         if (blocks != state->last_vertex) {
15564                 internal_error(state, 0, "computed blocks != stored blocks %d\n",
15565                         blocks, state->last_vertex);
15566         }
15567 }
15568
15569 static void verify_domination(struct compile_state *state)
15570 {
15571         struct triple *first, *ins;
15572         struct triple_set *set;
15573         if (!state->first_block) {
15574                 return;
15575         }
15576         
15577         first = state->first;
15578         ins = first;
15579         do {
15580                 for(set = ins->use; set; set = set->next) {
15581                         struct triple **slot;
15582                         struct triple *use_point;
15583                         int i, zrhs;
15584                         use_point = 0;
15585                         zrhs = TRIPLE_RHS(ins->sizes);
15586                         slot = &RHS(set->member, 0);
15587                         /* See if the use is on the right hand side */
15588                         for(i = 0; i < zrhs; i++) {
15589                                 if (slot[i] == ins) {
15590                                         break;
15591                                 }
15592                         }
15593                         if (i < zrhs) {
15594                                 use_point = set->member;
15595                                 if (set->member->op == OP_PHI) {
15596                                         struct block_set *bset;
15597                                         int edge;
15598                                         bset = set->member->u.block->use;
15599                                         for(edge = 0; bset && (edge < i); edge++) {
15600                                                 bset = bset->next;
15601                                         }
15602                                         if (!bset) {
15603                                                 internal_error(state, set->member, 
15604                                                         "no edge for phi rhs %d\n", i);
15605                                         }
15606                                         use_point = bset->member->last;
15607                                 }
15608                         }
15609                         if (use_point &&
15610                                 !tdominates(state, ins, use_point)) {
15611                                 internal_warning(state, ins, 
15612                                         "ins does not dominate rhs use");
15613                                 internal_error(state, use_point, 
15614                                         "non dominated rhs use point?");
15615                         }
15616                 }
15617                 ins = ins->next;
15618         } while(ins != first);
15619 }
15620
15621 static void verify_rhs(struct compile_state *state)
15622 {
15623         struct triple *first, *ins;
15624         first = state->first;
15625         ins = first;
15626         do {
15627                 struct triple **slot;
15628                 int zrhs, i;
15629                 zrhs = TRIPLE_RHS(ins->sizes);
15630                 slot = &RHS(ins, 0);
15631                 for(i = 0; i < zrhs; i++) {
15632                         if (slot[i] == 0) {
15633                                 internal_error(state, ins,
15634                                         "missing rhs %d on %s",
15635                                         i, tops(ins->op));
15636                         }
15637                         if ((ins->op != OP_PHI) && (slot[i] == ins)) {
15638                                 internal_error(state, ins,
15639                                         "ins == rhs[%d] on %s",
15640                                         i, tops(ins->op));
15641                         }
15642                 }
15643                 ins = ins->next;
15644         } while(ins != first);
15645 }
15646
15647 static void verify_piece(struct compile_state *state)
15648 {
15649         struct triple *first, *ins;
15650         first = state->first;
15651         ins = first;
15652         do {
15653                 struct triple *ptr;
15654                 int lhs, i;
15655                 lhs = TRIPLE_LHS(ins->sizes);
15656                 for(ptr = ins->next, i = 0; i < lhs; i++, ptr = ptr->next) {
15657                         if (ptr != LHS(ins, i)) {
15658                                 internal_error(state, ins, "malformed lhs on %s",
15659                                         tops(ins->op));
15660                         }
15661                         if (ptr->op != OP_PIECE) {
15662                                 internal_error(state, ins, "bad lhs op %s at %d on %s",
15663                                         tops(ptr->op), i, tops(ins->op));
15664                         }
15665                         if (ptr->u.cval != i) {
15666                                 internal_error(state, ins, "bad u.cval of %d %d expected",
15667                                         ptr->u.cval, i);
15668                         }
15669                 }
15670                 ins = ins->next;
15671         } while(ins != first);
15672 }
15673
15674 static void verify_ins_colors(struct compile_state *state)
15675 {
15676         struct triple *first, *ins;
15677         
15678         first = state->first;
15679         ins = first;
15680         do {
15681                 ins = ins->next;
15682         } while(ins != first);
15683 }
15684 static void verify_consistency(struct compile_state *state)
15685 {
15686         verify_uses(state);
15687         verify_blocks_present(state);
15688         verify_blocks(state);
15689         verify_domination(state);
15690         verify_rhs(state);
15691         verify_piece(state);
15692         verify_ins_colors(state);
15693 }
15694 #else 
15695 static void verify_consistency(struct compile_state *state) {}
15696 #endif /* DEBUG_CONSISTENCY */
15697
15698 static void optimize(struct compile_state *state)
15699 {
15700         if (state->debug & DEBUG_TRIPLES) {
15701                 print_triples(state);
15702         }
15703         /* Replace structures with simpler data types */
15704         flatten_structures(state);
15705         if (state->debug & DEBUG_TRIPLES) {
15706                 print_triples(state);
15707         }
15708         verify_consistency(state);
15709         /* Analize the intermediate code */
15710         analyze_basic_blocks(state);
15711
15712         /* Transform the code to ssa form. */
15713         /*
15714          * The transformation to ssa form puts a phi function
15715          * on each of edge of a dominance frontier where that
15716          * phi function might be needed.  At -O2 if we don't
15717          * eleminate the excess phi functions we can get an
15718          * exponential code size growth.  So I kill the extra
15719          * phi functions early and I kill them often.
15720          */
15721         transform_to_ssa_form(state);
15722
15723         verify_consistency(state);
15724         if (state->debug & DEBUG_CODE_ELIMINATION) {
15725                 fprintf(stdout, "After transform_to_ssa_form\n");
15726                 print_blocks(state, stdout);
15727         }
15728         /* Remove dead code */
15729         eliminate_inefectual_code(state);
15730         rebuild_ssa_form(state);
15731         verify_consistency(state);
15732
15733         /* Do strength reduction and simple constant optimizations */
15734         if (state->optimize >= 1) {
15735                 simplify_all(state);
15736                 rebuild_ssa_form(state);
15737         }
15738         if (state->debug & DEBUG_CODE_ELIMINATION) {
15739                 fprintf(stdout, "After simplify_all\n");
15740                 print_blocks(state, stdout);
15741         }
15742         verify_consistency(state);
15743         /* Propogate constants throughout the code */
15744         if (state->optimize >= 2) {
15745                 scc_transform(state);
15746                 rebuild_ssa_form(state);
15747         }
15748         verify_consistency(state);
15749 #warning "WISHLIST implement single use constants (least possible register pressure)"
15750 #warning "WISHLIST implement induction variable elimination"
15751         /* Select architecture instructions and an initial partial
15752          * coloring based on architecture constraints.
15753          */
15754         transform_to_arch_instructions(state);
15755         verify_consistency(state);
15756         if (state->debug & DEBUG_ARCH_CODE) {
15757                 printf("After transform_to_arch_instructions\n");
15758                 print_blocks(state, stdout);
15759                 print_control_flow(state);
15760         }
15761         /* Remove dead code */
15762         eliminate_inefectual_code(state);
15763         rebuild_ssa_form(state);
15764         verify_consistency(state);
15765         if (state->debug & DEBUG_CODE_ELIMINATION) {
15766                 printf("After eliminate_inefectual_code\n");
15767                 print_blocks(state, stdout);
15768                 print_control_flow(state);
15769         }
15770         verify_consistency(state);
15771         /* Color all of the variables to see if they will fit in registers */
15772         insert_copies_to_phi(state);
15773         if (state->debug & DEBUG_INSERTED_COPIES) {
15774                 printf("After insert_copies_to_phi\n");
15775                 print_blocks(state, stdout);
15776                 print_control_flow(state);
15777         }
15778         verify_consistency(state);
15779         insert_mandatory_copies(state);
15780         if (state->debug & DEBUG_INSERTED_COPIES) {
15781                 printf("After insert_mandatory_copies\n");
15782                 print_blocks(state, stdout);
15783                 print_control_flow(state);
15784         }
15785         verify_consistency(state);
15786         allocate_registers(state);
15787         verify_consistency(state);
15788         if (state->debug & DEBUG_INTERMEDIATE_CODE) {
15789                 print_blocks(state, stdout);
15790         }
15791         if (state->debug & DEBUG_CONTROL_FLOW) {
15792                 print_control_flow(state);
15793         }
15794         /* Remove the optimization information.
15795          * This is more to check for memory consistency than to free memory.
15796          */
15797         free_basic_blocks(state);
15798 }
15799
15800 static void print_op_asm(struct compile_state *state,
15801         struct triple *ins, FILE *fp)
15802 {
15803         struct asm_info *info;
15804         const char *ptr;
15805         unsigned lhs, rhs, i;
15806         info = ins->u.ainfo;
15807         lhs = TRIPLE_LHS(ins->sizes);
15808         rhs = TRIPLE_RHS(ins->sizes);
15809         /* Don't count the clobbers in lhs */
15810         for(i = 0; i < lhs; i++) {
15811                 if (LHS(ins, i)->type == &void_type) {
15812                         break;
15813                 }
15814         }
15815         lhs = i;
15816         fprintf(fp, "#ASM\n");
15817         fputc('\t', fp);
15818         for(ptr = info->str; *ptr; ptr++) {
15819                 char *next;
15820                 unsigned long param;
15821                 struct triple *piece;
15822                 if (*ptr != '%') {
15823                         fputc(*ptr, fp);
15824                         continue;
15825                 }
15826                 ptr++;
15827                 if (*ptr == '%') {
15828                         fputc('%', fp);
15829                         continue;
15830                 }
15831                 param = strtoul(ptr, &next, 10);
15832                 if (ptr == next) {
15833                         error(state, ins, "Invalid asm template");
15834                 }
15835                 if (param >= (lhs + rhs)) {
15836                         error(state, ins, "Invalid param %%%u in asm template",
15837                                 param);
15838                 }
15839                 piece = (param < lhs)? LHS(ins, param) : RHS(ins, param - lhs);
15840                 fprintf(fp, "%s", 
15841                         arch_reg_str(ID_REG(piece->id)));
15842                 ptr = next -1;
15843         }
15844         fprintf(fp, "\n#NOT ASM\n");
15845 }
15846
15847
15848 /* Only use the low x86 byte registers.  This allows me
15849  * allocate the entire register when a byte register is used.
15850  */
15851 #define X86_4_8BIT_GPRS 1
15852
15853 /* x86 featrues */
15854 #define X86_MMX_REGS (1<<0)
15855 #define X86_XMM_REGS (1<<1)
15856
15857 /* The x86 register classes */
15858 #define REGC_FLAGS       0
15859 #define REGC_GPR8        1
15860 #define REGC_GPR16       2
15861 #define REGC_GPR32       3
15862 #define REGC_DIVIDEND64  4
15863 #define REGC_DIVIDEND32  5
15864 #define REGC_MMX         6
15865 #define REGC_XMM         7
15866 #define REGC_GPR32_8     8
15867 #define REGC_GPR16_8     9
15868 #define REGC_GPR8_LO    10
15869 #define REGC_IMM32      11
15870 #define REGC_IMM16      12
15871 #define REGC_IMM8       13
15872 #define LAST_REGC  REGC_IMM8
15873 #if LAST_REGC >= MAX_REGC
15874 #error "MAX_REGC is to low"
15875 #endif
15876
15877 /* Register class masks */
15878 #define REGCM_FLAGS      (1 << REGC_FLAGS)
15879 #define REGCM_GPR8       (1 << REGC_GPR8)
15880 #define REGCM_GPR16      (1 << REGC_GPR16)
15881 #define REGCM_GPR32      (1 << REGC_GPR32)
15882 #define REGCM_DIVIDEND64 (1 << REGC_DIVIDEND64)
15883 #define REGCM_DIVIDEND32 (1 << REGC_DIVIDEND32)
15884 #define REGCM_MMX        (1 << REGC_MMX)
15885 #define REGCM_XMM        (1 << REGC_XMM)
15886 #define REGCM_GPR32_8    (1 << REGC_GPR32_8)
15887 #define REGCM_GPR16_8    (1 << REGC_GPR16_8)
15888 #define REGCM_GPR8_LO    (1 << REGC_GPR8_LO)
15889 #define REGCM_IMM32      (1 << REGC_IMM32)
15890 #define REGCM_IMM16      (1 << REGC_IMM16)
15891 #define REGCM_IMM8       (1 << REGC_IMM8)
15892 #define REGCM_ALL        ((1 << (LAST_REGC + 1)) - 1)
15893
15894 /* The x86 registers */
15895 #define REG_EFLAGS  2
15896 #define REGC_FLAGS_FIRST REG_EFLAGS
15897 #define REGC_FLAGS_LAST  REG_EFLAGS
15898 #define REG_AL      3
15899 #define REG_BL      4
15900 #define REG_CL      5
15901 #define REG_DL      6
15902 #define REG_AH      7
15903 #define REG_BH      8
15904 #define REG_CH      9
15905 #define REG_DH      10
15906 #define REGC_GPR8_LO_FIRST REG_AL
15907 #define REGC_GPR8_LO_LAST  REG_DL
15908 #define REGC_GPR8_FIRST  REG_AL
15909 #define REGC_GPR8_LAST   REG_DH
15910 #define REG_AX     11
15911 #define REG_BX     12
15912 #define REG_CX     13
15913 #define REG_DX     14
15914 #define REG_SI     15
15915 #define REG_DI     16
15916 #define REG_BP     17
15917 #define REG_SP     18
15918 #define REGC_GPR16_FIRST REG_AX
15919 #define REGC_GPR16_LAST  REG_SP
15920 #define REG_EAX    19
15921 #define REG_EBX    20
15922 #define REG_ECX    21
15923 #define REG_EDX    22
15924 #define REG_ESI    23
15925 #define REG_EDI    24
15926 #define REG_EBP    25
15927 #define REG_ESP    26
15928 #define REGC_GPR32_FIRST REG_EAX
15929 #define REGC_GPR32_LAST  REG_ESP
15930 #define REG_EDXEAX 27
15931 #define REGC_DIVIDEND64_FIRST REG_EDXEAX
15932 #define REGC_DIVIDEND64_LAST  REG_EDXEAX
15933 #define REG_DXAX   28
15934 #define REGC_DIVIDEND32_FIRST REG_DXAX
15935 #define REGC_DIVIDEND32_LAST  REG_DXAX
15936 #define REG_MMX0   29
15937 #define REG_MMX1   30
15938 #define REG_MMX2   31
15939 #define REG_MMX3   32
15940 #define REG_MMX4   33
15941 #define REG_MMX5   34
15942 #define REG_MMX6   35
15943 #define REG_MMX7   36
15944 #define REGC_MMX_FIRST REG_MMX0
15945 #define REGC_MMX_LAST  REG_MMX7
15946 #define REG_XMM0   37
15947 #define REG_XMM1   38
15948 #define REG_XMM2   39
15949 #define REG_XMM3   40
15950 #define REG_XMM4   41
15951 #define REG_XMM5   42
15952 #define REG_XMM6   43
15953 #define REG_XMM7   44
15954 #define REGC_XMM_FIRST REG_XMM0
15955 #define REGC_XMM_LAST  REG_XMM7
15956 #warning "WISHLIST figure out how to use pinsrw and pextrw to better use extended regs"
15957 #define LAST_REG   REG_XMM7
15958
15959 #define REGC_GPR32_8_FIRST REG_EAX
15960 #define REGC_GPR32_8_LAST  REG_EDX
15961 #define REGC_GPR16_8_FIRST REG_AX
15962 #define REGC_GPR16_8_LAST  REG_DX
15963
15964 #define REGC_IMM8_FIRST    -1
15965 #define REGC_IMM8_LAST     -1
15966 #define REGC_IMM16_FIRST   -2
15967 #define REGC_IMM16_LAST    -1
15968 #define REGC_IMM32_FIRST   -4
15969 #define REGC_IMM32_LAST    -1
15970
15971 #if LAST_REG >= MAX_REGISTERS
15972 #error "MAX_REGISTERS to low"
15973 #endif
15974
15975
15976 static unsigned regc_size[LAST_REGC +1] = {
15977         [REGC_FLAGS]      = REGC_FLAGS_LAST      - REGC_FLAGS_FIRST + 1,
15978         [REGC_GPR8]       = REGC_GPR8_LAST       - REGC_GPR8_FIRST + 1,
15979         [REGC_GPR16]      = REGC_GPR16_LAST      - REGC_GPR16_FIRST + 1,
15980         [REGC_GPR32]      = REGC_GPR32_LAST      - REGC_GPR32_FIRST + 1,
15981         [REGC_DIVIDEND64] = REGC_DIVIDEND64_LAST - REGC_DIVIDEND64_FIRST + 1,
15982         [REGC_DIVIDEND32] = REGC_DIVIDEND32_LAST - REGC_DIVIDEND32_FIRST + 1,
15983         [REGC_MMX]        = REGC_MMX_LAST        - REGC_MMX_FIRST + 1,
15984         [REGC_XMM]        = REGC_XMM_LAST        - REGC_XMM_FIRST + 1,
15985         [REGC_GPR32_8]    = REGC_GPR32_8_LAST    - REGC_GPR32_8_FIRST + 1,
15986         [REGC_GPR16_8]    = REGC_GPR16_8_LAST    - REGC_GPR16_8_FIRST + 1,
15987         [REGC_GPR8_LO]    = REGC_GPR8_LO_LAST    - REGC_GPR8_LO_FIRST + 1,
15988         [REGC_IMM32]      = 0,
15989         [REGC_IMM16]      = 0,
15990         [REGC_IMM8]       = 0,
15991 };
15992
15993 static const struct {
15994         int first, last;
15995 } regcm_bound[LAST_REGC + 1] = {
15996         [REGC_FLAGS]      = { REGC_FLAGS_FIRST,      REGC_FLAGS_LAST },
15997         [REGC_GPR8]       = { REGC_GPR8_FIRST,       REGC_GPR8_LAST },
15998         [REGC_GPR16]      = { REGC_GPR16_FIRST,      REGC_GPR16_LAST },
15999         [REGC_GPR32]      = { REGC_GPR32_FIRST,      REGC_GPR32_LAST },
16000         [REGC_DIVIDEND64] = { REGC_DIVIDEND64_FIRST, REGC_DIVIDEND64_LAST },
16001         [REGC_DIVIDEND32] = { REGC_DIVIDEND32_FIRST, REGC_DIVIDEND32_LAST },
16002         [REGC_MMX]        = { REGC_MMX_FIRST,        REGC_MMX_LAST },
16003         [REGC_XMM]        = { REGC_XMM_FIRST,        REGC_XMM_LAST },
16004         [REGC_GPR32_8]    = { REGC_GPR32_8_FIRST,    REGC_GPR32_8_LAST },
16005         [REGC_GPR16_8]    = { REGC_GPR16_8_FIRST,    REGC_GPR16_8_LAST },
16006         [REGC_GPR8_LO]    = { REGC_GPR8_LO_FIRST,    REGC_GPR8_LO_LAST },
16007         [REGC_IMM32]      = { REGC_IMM32_FIRST,      REGC_IMM32_LAST },
16008         [REGC_IMM16]      = { REGC_IMM16_FIRST,      REGC_IMM16_LAST },
16009         [REGC_IMM8]       = { REGC_IMM8_FIRST,       REGC_IMM8_LAST },
16010 };
16011
16012 static int arch_encode_feature(const char *feature, unsigned long *features)
16013 {
16014         struct cpu {
16015                 const char *name;
16016                 int cpu;
16017         } cpus[] = {
16018                 { "i386", 0 },
16019                 { "p2",   X86_MMX_REGS },
16020                 { "p3",   X86_MMX_REGS | X86_XMM_REGS },
16021                 { "p4",   X86_MMX_REGS | X86_XMM_REGS },
16022                 { "k7",   X86_MMX_REGS },
16023                 { "k8",   X86_MMX_REGS | X86_XMM_REGS },
16024                 { "c3",   X86_MMX_REGS },
16025                 { "c3-2", X86_MMX_REGS | X86_XMM_REGS }, /* Nehemiah */
16026                 {  0,     0 }
16027         };
16028         struct cpu *ptr;
16029         int result = 0;
16030         if (strcmp(feature, "mmx") == 0) {
16031                 *features |= X86_MMX_REGS;
16032         }
16033         else if (strcmp(feature, "sse") == 0) {
16034                 *features |= X86_XMM_REGS;
16035         }
16036         else if (strncmp(feature, "cpu=", 4) == 0) {
16037                 const char *cpu = feature + 4;
16038                 for(ptr = cpus; ptr->name; ptr++) {
16039                         if (strcmp(ptr->name, cpu) == 0) {
16040                                 break;
16041                         }
16042                 }
16043                 if (ptr->name) {
16044                         *features |= ptr->cpu; 
16045                 }
16046                 else {
16047                         result = -1;
16048                 }
16049         }
16050         else {
16051                 result = -1;
16052         }
16053         return result;
16054 }
16055
16056 static unsigned arch_regc_size(struct compile_state *state, int class)
16057 {
16058         if ((class < 0) || (class > LAST_REGC)) {
16059                 return 0;
16060         }
16061         return regc_size[class];
16062 }
16063
16064 static int arch_regcm_intersect(unsigned regcm1, unsigned regcm2)
16065 {
16066         /* See if two register classes may have overlapping registers */
16067         unsigned gpr_mask = REGCM_GPR8 | REGCM_GPR8_LO | REGCM_GPR16_8 | REGCM_GPR16 |
16068                 REGCM_GPR32_8 | REGCM_GPR32 | 
16069                 REGCM_DIVIDEND32 | REGCM_DIVIDEND64;
16070
16071         /* Special case for the immediates */
16072         if ((regcm1 & (REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) &&
16073                 ((regcm1 & ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) == 0) &&
16074                 (regcm2 & (REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) &&
16075                 ((regcm2 & ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) == 0)) { 
16076                 return 0;
16077         }
16078         return (regcm1 & regcm2) ||
16079                 ((regcm1 & gpr_mask) && (regcm2 & gpr_mask));
16080 }
16081
16082 static void arch_reg_equivs(
16083         struct compile_state *state, unsigned *equiv, int reg)
16084 {
16085         if ((reg < 0) || (reg > LAST_REG)) {
16086                 internal_error(state, 0, "invalid register");
16087         }
16088         *equiv++ = reg;
16089         switch(reg) {
16090         case REG_AL:
16091 #if X86_4_8BIT_GPRS
16092                 *equiv++ = REG_AH;
16093 #endif
16094                 *equiv++ = REG_AX;
16095                 *equiv++ = REG_EAX;
16096                 *equiv++ = REG_DXAX;
16097                 *equiv++ = REG_EDXEAX;
16098                 break;
16099         case REG_AH:
16100 #if X86_4_8BIT_GPRS
16101                 *equiv++ = REG_AL;
16102 #endif
16103                 *equiv++ = REG_AX;
16104                 *equiv++ = REG_EAX;
16105                 *equiv++ = REG_DXAX;
16106                 *equiv++ = REG_EDXEAX;
16107                 break;
16108         case REG_BL:  
16109 #if X86_4_8BIT_GPRS
16110                 *equiv++ = REG_BH;
16111 #endif
16112                 *equiv++ = REG_BX;
16113                 *equiv++ = REG_EBX;
16114                 break;
16115
16116         case REG_BH:
16117 #if X86_4_8BIT_GPRS
16118                 *equiv++ = REG_BL;
16119 #endif
16120                 *equiv++ = REG_BX;
16121                 *equiv++ = REG_EBX;
16122                 break;
16123         case REG_CL:
16124 #if X86_4_8BIT_GPRS
16125                 *equiv++ = REG_CH;
16126 #endif
16127                 *equiv++ = REG_CX;
16128                 *equiv++ = REG_ECX;
16129                 break;
16130
16131         case REG_CH:
16132 #if X86_4_8BIT_GPRS
16133                 *equiv++ = REG_CL;
16134 #endif
16135                 *equiv++ = REG_CX;
16136                 *equiv++ = REG_ECX;
16137                 break;
16138         case REG_DL:
16139 #if X86_4_8BIT_GPRS
16140                 *equiv++ = REG_DH;
16141 #endif
16142                 *equiv++ = REG_DX;
16143                 *equiv++ = REG_EDX;
16144                 *equiv++ = REG_DXAX;
16145                 *equiv++ = REG_EDXEAX;
16146                 break;
16147         case REG_DH:
16148 #if X86_4_8BIT_GPRS
16149                 *equiv++ = REG_DL;
16150 #endif
16151                 *equiv++ = REG_DX;
16152                 *equiv++ = REG_EDX;
16153                 *equiv++ = REG_DXAX;
16154                 *equiv++ = REG_EDXEAX;
16155                 break;
16156         case REG_AX:
16157                 *equiv++ = REG_AL;
16158                 *equiv++ = REG_AH;
16159                 *equiv++ = REG_EAX;
16160                 *equiv++ = REG_DXAX;
16161                 *equiv++ = REG_EDXEAX;
16162                 break;
16163         case REG_BX:
16164                 *equiv++ = REG_BL;
16165                 *equiv++ = REG_BH;
16166                 *equiv++ = REG_EBX;
16167                 break;
16168         case REG_CX:  
16169                 *equiv++ = REG_CL;
16170                 *equiv++ = REG_CH;
16171                 *equiv++ = REG_ECX;
16172                 break;
16173         case REG_DX:  
16174                 *equiv++ = REG_DL;
16175                 *equiv++ = REG_DH;
16176                 *equiv++ = REG_EDX;
16177                 *equiv++ = REG_DXAX;
16178                 *equiv++ = REG_EDXEAX;
16179                 break;
16180         case REG_SI:  
16181                 *equiv++ = REG_ESI;
16182                 break;
16183         case REG_DI:
16184                 *equiv++ = REG_EDI;
16185                 break;
16186         case REG_BP:
16187                 *equiv++ = REG_EBP;
16188                 break;
16189         case REG_SP:
16190                 *equiv++ = REG_ESP;
16191                 break;
16192         case REG_EAX:
16193                 *equiv++ = REG_AL;
16194                 *equiv++ = REG_AH;
16195                 *equiv++ = REG_AX;
16196                 *equiv++ = REG_DXAX;
16197                 *equiv++ = REG_EDXEAX;
16198                 break;
16199         case REG_EBX:
16200                 *equiv++ = REG_BL;
16201                 *equiv++ = REG_BH;
16202                 *equiv++ = REG_BX;
16203                 break;
16204         case REG_ECX:
16205                 *equiv++ = REG_CL;
16206                 *equiv++ = REG_CH;
16207                 *equiv++ = REG_CX;
16208                 break;
16209         case REG_EDX:
16210                 *equiv++ = REG_DL;
16211                 *equiv++ = REG_DH;
16212                 *equiv++ = REG_DX;
16213                 *equiv++ = REG_DXAX;
16214                 *equiv++ = REG_EDXEAX;
16215                 break;
16216         case REG_ESI: 
16217                 *equiv++ = REG_SI;
16218                 break;
16219         case REG_EDI: 
16220                 *equiv++ = REG_DI;
16221                 break;
16222         case REG_EBP: 
16223                 *equiv++ = REG_BP;
16224                 break;
16225         case REG_ESP: 
16226                 *equiv++ = REG_SP;
16227                 break;
16228         case REG_DXAX: 
16229                 *equiv++ = REG_AL;
16230                 *equiv++ = REG_AH;
16231                 *equiv++ = REG_DL;
16232                 *equiv++ = REG_DH;
16233                 *equiv++ = REG_AX;
16234                 *equiv++ = REG_DX;
16235                 *equiv++ = REG_EAX;
16236                 *equiv++ = REG_EDX;
16237                 *equiv++ = REG_EDXEAX;
16238                 break;
16239         case REG_EDXEAX: 
16240                 *equiv++ = REG_AL;
16241                 *equiv++ = REG_AH;
16242                 *equiv++ = REG_DL;
16243                 *equiv++ = REG_DH;
16244                 *equiv++ = REG_AX;
16245                 *equiv++ = REG_DX;
16246                 *equiv++ = REG_EAX;
16247                 *equiv++ = REG_EDX;
16248                 *equiv++ = REG_DXAX;
16249                 break;
16250         }
16251         *equiv++ = REG_UNSET; 
16252 }
16253
16254 static unsigned arch_avail_mask(struct compile_state *state)
16255 {
16256         unsigned avail_mask;
16257         /* REGCM_GPR8 is not available */
16258         avail_mask = REGCM_GPR8_LO | REGCM_GPR16_8 | REGCM_GPR16 | 
16259                 REGCM_GPR32 | REGCM_GPR32_8 | 
16260                 REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
16261                 REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8 | REGCM_FLAGS;
16262         if (state->features & X86_MMX_REGS) {
16263                 avail_mask |= REGCM_MMX;
16264         }
16265         if (state->features & X86_XMM_REGS) {
16266                 avail_mask |= REGCM_XMM;
16267         }
16268         return avail_mask;
16269 }
16270
16271 static unsigned arch_regcm_normalize(struct compile_state *state, unsigned regcm)
16272 {
16273         unsigned mask, result;
16274         int class, class2;
16275         result = regcm;
16276
16277         for(class = 0, mask = 1; mask; mask <<= 1, class++) {
16278                 if ((result & mask) == 0) {
16279                         continue;
16280                 }
16281                 if (class > LAST_REGC) {
16282                         result &= ~mask;
16283                 }
16284                 for(class2 = 0; class2 <= LAST_REGC; class2++) {
16285                         if ((regcm_bound[class2].first >= regcm_bound[class].first) &&
16286                                 (regcm_bound[class2].last <= regcm_bound[class].last)) {
16287                                 result |= (1 << class2);
16288                         }
16289                 }
16290         }
16291         result &= arch_avail_mask(state);
16292         return result;
16293 }
16294
16295 static unsigned arch_regcm_reg_normalize(struct compile_state *state, unsigned regcm)
16296 {
16297         /* Like arch_regcm_normalize except immediate register classes are excluded */
16298         regcm = arch_regcm_normalize(state, regcm);
16299         /* Remove the immediate register classes */
16300         regcm &= ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8);
16301         return regcm;
16302         
16303 }
16304
16305 static unsigned arch_reg_regcm(struct compile_state *state, int reg)
16306 {
16307         unsigned mask;
16308         int class;
16309         mask = 0;
16310         for(class = 0; class <= LAST_REGC; class++) {
16311                 if ((reg >= regcm_bound[class].first) &&
16312                         (reg <= regcm_bound[class].last)) {
16313                         mask |= (1 << class);
16314                 }
16315         }
16316         if (!mask) {
16317                 internal_error(state, 0, "reg %d not in any class", reg);
16318         }
16319         return mask;
16320 }
16321
16322 static struct reg_info arch_reg_constraint(
16323         struct compile_state *state, struct type *type, const char *constraint)
16324 {
16325         static const struct {
16326                 char class;
16327                 unsigned int mask;
16328                 unsigned int reg;
16329         } constraints[] = {
16330                 { 'r', REGCM_GPR32,   REG_UNSET },
16331                 { 'g', REGCM_GPR32,   REG_UNSET },
16332                 { 'p', REGCM_GPR32,   REG_UNSET },
16333                 { 'q', REGCM_GPR8_LO, REG_UNSET },
16334                 { 'Q', REGCM_GPR32_8, REG_UNSET },
16335                 { 'x', REGCM_XMM,     REG_UNSET },
16336                 { 'y', REGCM_MMX,     REG_UNSET },
16337                 { 'a', REGCM_GPR32,   REG_EAX },
16338                 { 'b', REGCM_GPR32,   REG_EBX },
16339                 { 'c', REGCM_GPR32,   REG_ECX },
16340                 { 'd', REGCM_GPR32,   REG_EDX },
16341                 { 'D', REGCM_GPR32,   REG_EDI },
16342                 { 'S', REGCM_GPR32,   REG_ESI },
16343                 { '\0', 0, REG_UNSET },
16344         };
16345         unsigned int regcm;
16346         unsigned int mask, reg;
16347         struct reg_info result;
16348         const char *ptr;
16349         regcm = arch_type_to_regcm(state, type);
16350         reg = REG_UNSET;
16351         mask = 0;
16352         for(ptr = constraint; *ptr; ptr++) {
16353                 int i;
16354                 if (*ptr ==  ' ') {
16355                         continue;
16356                 }
16357                 for(i = 0; constraints[i].class != '\0'; i++) {
16358                         if (constraints[i].class == *ptr) {
16359                                 break;
16360                         }
16361                 }
16362                 if (constraints[i].class == '\0') {
16363                         error(state, 0, "invalid register constraint ``%c''", *ptr);
16364                         break;
16365                 }
16366                 if ((constraints[i].mask & regcm) == 0) {
16367                         error(state, 0, "invalid register class %c specified",
16368                                 *ptr);
16369                 }
16370                 mask |= constraints[i].mask;
16371                 if (constraints[i].reg != REG_UNSET) {
16372                         if ((reg != REG_UNSET) && (reg != constraints[i].reg)) {
16373                                 error(state, 0, "Only one register may be specified");
16374                         }
16375                         reg = constraints[i].reg;
16376                 }
16377         }
16378         result.reg = reg;
16379         result.regcm = mask;
16380         return result;
16381 }
16382
16383 static struct reg_info arch_reg_clobber(
16384         struct compile_state *state, const char *clobber)
16385 {
16386         struct reg_info result;
16387         if (strcmp(clobber, "memory") == 0) {
16388                 result.reg = REG_UNSET;
16389                 result.regcm = 0;
16390         }
16391         else if (strcmp(clobber, "%eax") == 0) {
16392                 result.reg = REG_EAX;
16393                 result.regcm = REGCM_GPR32;
16394         }
16395         else if (strcmp(clobber, "%ebx") == 0) {
16396                 result.reg = REG_EBX;
16397                 result.regcm = REGCM_GPR32;
16398         }
16399         else if (strcmp(clobber, "%ecx") == 0) {
16400                 result.reg = REG_ECX;
16401                 result.regcm = REGCM_GPR32;
16402         }
16403         else if (strcmp(clobber, "%edx") == 0) {
16404                 result.reg = REG_EDX;
16405                 result.regcm = REGCM_GPR32;
16406         }
16407         else if (strcmp(clobber, "%esi") == 0) {
16408                 result.reg = REG_ESI;
16409                 result.regcm = REGCM_GPR32;
16410         }
16411         else if (strcmp(clobber, "%edi") == 0) {
16412                 result.reg = REG_EDI;
16413                 result.regcm = REGCM_GPR32;
16414         }
16415         else if (strcmp(clobber, "%ebp") == 0) {
16416                 result.reg = REG_EBP;
16417                 result.regcm = REGCM_GPR32;
16418         }
16419         else if (strcmp(clobber, "%esp") == 0) {
16420                 result.reg = REG_ESP;
16421                 result.regcm = REGCM_GPR32;
16422         }
16423         else if (strcmp(clobber, "cc") == 0) {
16424                 result.reg = REG_EFLAGS;
16425                 result.regcm = REGCM_FLAGS;
16426         }
16427         else if ((strncmp(clobber, "xmm", 3) == 0)  &&
16428                 octdigitp(clobber[3]) && (clobber[4] == '\0')) {
16429                 result.reg = REG_XMM0 + octdigval(clobber[3]);
16430                 result.regcm = REGCM_XMM;
16431         }
16432         else if ((strncmp(clobber, "mmx", 3) == 0) &&
16433                 octdigitp(clobber[3]) && (clobber[4] == '\0')) {
16434                 result.reg = REG_MMX0 + octdigval(clobber[3]);
16435                 result.regcm = REGCM_MMX;
16436         }
16437         else {
16438                 error(state, 0, "Invalid register clobber");
16439                 result.reg = REG_UNSET;
16440                 result.regcm = 0;
16441         }
16442         return result;
16443 }
16444
16445 static int do_select_reg(struct compile_state *state, 
16446         char *used, int reg, unsigned classes)
16447 {
16448         unsigned mask;
16449         if (used[reg]) {
16450                 return REG_UNSET;
16451         }
16452         mask = arch_reg_regcm(state, reg);
16453         return (classes & mask) ? reg : REG_UNSET;
16454 }
16455
16456 static int arch_select_free_register(
16457         struct compile_state *state, char *used, int classes)
16458 {
16459         /* Live ranges with the most neighbors are colored first.
16460          *
16461          * Generally it does not matter which colors are given
16462          * as the register allocator attempts to color live ranges
16463          * in an order where you are guaranteed not to run out of colors.
16464          *
16465          * Occasionally the register allocator cannot find an order
16466          * of register selection that will find a free color.  To
16467          * increase the odds the register allocator will work when
16468          * it guesses first give out registers from register classes
16469          * least likely to run out of registers.
16470          * 
16471          */
16472         int i, reg;
16473         reg = REG_UNSET;
16474         for(i = REGC_XMM_FIRST; (reg == REG_UNSET) && (i <= REGC_XMM_LAST); i++) {
16475                 reg = do_select_reg(state, used, i, classes);
16476         }
16477         for(i = REGC_MMX_FIRST; (reg == REG_UNSET) && (i <= REGC_MMX_LAST); i++) {
16478                 reg = do_select_reg(state, used, i, classes);
16479         }
16480         for(i = REGC_GPR32_LAST; (reg == REG_UNSET) && (i >= REGC_GPR32_FIRST); i--) {
16481                 reg = do_select_reg(state, used, i, classes);
16482         }
16483         for(i = REGC_GPR16_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR16_LAST); i++) {
16484                 reg = do_select_reg(state, used, i, classes);
16485         }
16486         for(i = REGC_GPR8_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR8_LAST); i++) {
16487                 reg = do_select_reg(state, used, i, classes);
16488         }
16489         for(i = REGC_GPR8_LO_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR8_LO_LAST); i++) {
16490                 reg = do_select_reg(state, used, i, classes);
16491         }
16492         for(i = REGC_DIVIDEND32_FIRST; (reg == REG_UNSET) && (i <= REGC_DIVIDEND32_LAST); i++) {
16493                 reg = do_select_reg(state, used, i, classes);
16494         }
16495         for(i = REGC_DIVIDEND64_FIRST; (reg == REG_UNSET) && (i <= REGC_DIVIDEND64_LAST); i++) {
16496                 reg = do_select_reg(state, used, i, classes);
16497         }
16498         for(i = REGC_FLAGS_FIRST; (reg == REG_UNSET) && (i <= REGC_FLAGS_LAST); i++) {
16499                 reg = do_select_reg(state, used, i, classes);
16500         }
16501         return reg;
16502 }
16503
16504
16505 static unsigned arch_type_to_regcm(struct compile_state *state, struct type *type) 
16506 {
16507 #warning "FIXME force types smaller (if legal) before I get here"
16508         unsigned mask;
16509         mask = 0;
16510         switch(type->type & TYPE_MASK) {
16511         case TYPE_ARRAY:
16512         case TYPE_VOID: 
16513                 mask = 0; 
16514                 break;
16515         case TYPE_CHAR:
16516         case TYPE_UCHAR:
16517                 mask = REGCM_GPR8 | REGCM_GPR8_LO |
16518                         REGCM_GPR16 | REGCM_GPR16_8 | 
16519                         REGCM_GPR32 | REGCM_GPR32_8 |
16520                         REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
16521                         REGCM_MMX | REGCM_XMM |
16522                         REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8;
16523                 break;
16524         case TYPE_SHORT:
16525         case TYPE_USHORT:
16526                 mask =  REGCM_GPR16 | REGCM_GPR16_8 |
16527                         REGCM_GPR32 | REGCM_GPR32_8 |
16528                         REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
16529                         REGCM_MMX | REGCM_XMM |
16530                         REGCM_IMM32 | REGCM_IMM16;
16531                 break;
16532         case TYPE_INT:
16533         case TYPE_UINT:
16534         case TYPE_LONG:
16535         case TYPE_ULONG:
16536         case TYPE_POINTER:
16537                 mask =  REGCM_GPR32 | REGCM_GPR32_8 |
16538                         REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
16539                         REGCM_MMX | REGCM_XMM |
16540                         REGCM_IMM32;
16541                 break;
16542         default:
16543                 internal_error(state, 0, "no register class for type");
16544                 break;
16545         }
16546         mask = arch_regcm_normalize(state, mask);
16547         return mask;
16548 }
16549
16550 static int is_imm32(struct triple *imm)
16551 {
16552         return ((imm->op == OP_INTCONST) && (imm->u.cval <= 0xffffffffUL)) ||
16553                 (imm->op == OP_ADDRCONST);
16554         
16555 }
16556 static int is_imm16(struct triple *imm)
16557 {
16558         return ((imm->op == OP_INTCONST) && (imm->u.cval <= 0xffff));
16559 }
16560 static int is_imm8(struct triple *imm)
16561 {
16562         return ((imm->op == OP_INTCONST) && (imm->u.cval <= 0xff));
16563 }
16564
16565 static int get_imm32(struct triple *ins, struct triple **expr)
16566 {
16567         struct triple *imm;
16568         imm = *expr;
16569         while(imm->op == OP_COPY) {
16570                 imm = RHS(imm, 0);
16571         }
16572         if (!is_imm32(imm)) {
16573                 return 0;
16574         }
16575         unuse_triple(*expr, ins);
16576         use_triple(imm, ins);
16577         *expr = imm;
16578         return 1;
16579 }
16580
16581 static int get_imm8(struct triple *ins, struct triple **expr)
16582 {
16583         struct triple *imm;
16584         imm = *expr;
16585         while(imm->op == OP_COPY) {
16586                 imm = RHS(imm, 0);
16587         }
16588         if (!is_imm8(imm)) {
16589                 return 0;
16590         }
16591         unuse_triple(*expr, ins);
16592         use_triple(imm, ins);
16593         *expr = imm;
16594         return 1;
16595 }
16596
16597 #define TEMPLATE_NOP           0
16598 #define TEMPLATE_INTCONST8     1
16599 #define TEMPLATE_INTCONST32    2
16600 #define TEMPLATE_COPY8_REG     3
16601 #define TEMPLATE_COPY16_REG    4
16602 #define TEMPLATE_COPY32_REG    5
16603 #define TEMPLATE_COPY_IMM8     6
16604 #define TEMPLATE_COPY_IMM16    7
16605 #define TEMPLATE_COPY_IMM32    8
16606 #define TEMPLATE_PHI8          9
16607 #define TEMPLATE_PHI16        10
16608 #define TEMPLATE_PHI32        11
16609 #define TEMPLATE_STORE8       12
16610 #define TEMPLATE_STORE16      13
16611 #define TEMPLATE_STORE32      14
16612 #define TEMPLATE_LOAD8        15
16613 #define TEMPLATE_LOAD16       16
16614 #define TEMPLATE_LOAD32       17
16615 #define TEMPLATE_BINARY8_REG  18
16616 #define TEMPLATE_BINARY16_REG 19
16617 #define TEMPLATE_BINARY32_REG 20
16618 #define TEMPLATE_BINARY8_IMM  21
16619 #define TEMPLATE_BINARY16_IMM 22
16620 #define TEMPLATE_BINARY32_IMM 23
16621 #define TEMPLATE_SL8_CL       24
16622 #define TEMPLATE_SL16_CL      25
16623 #define TEMPLATE_SL32_CL      26
16624 #define TEMPLATE_SL8_IMM      27
16625 #define TEMPLATE_SL16_IMM     28
16626 #define TEMPLATE_SL32_IMM     29
16627 #define TEMPLATE_UNARY8       30
16628 #define TEMPLATE_UNARY16      31
16629 #define TEMPLATE_UNARY32      32
16630 #define TEMPLATE_CMP8_REG     33
16631 #define TEMPLATE_CMP16_REG    34
16632 #define TEMPLATE_CMP32_REG    35
16633 #define TEMPLATE_CMP8_IMM     36
16634 #define TEMPLATE_CMP16_IMM    37
16635 #define TEMPLATE_CMP32_IMM    38
16636 #define TEMPLATE_TEST8        39
16637 #define TEMPLATE_TEST16       40
16638 #define TEMPLATE_TEST32       41
16639 #define TEMPLATE_SET          42
16640 #define TEMPLATE_JMP          43
16641 #define TEMPLATE_INB_DX       44
16642 #define TEMPLATE_INB_IMM      45
16643 #define TEMPLATE_INW_DX       46
16644 #define TEMPLATE_INW_IMM      47
16645 #define TEMPLATE_INL_DX       48
16646 #define TEMPLATE_INL_IMM      49
16647 #define TEMPLATE_OUTB_DX      50
16648 #define TEMPLATE_OUTB_IMM     51
16649 #define TEMPLATE_OUTW_DX      52
16650 #define TEMPLATE_OUTW_IMM     53
16651 #define TEMPLATE_OUTL_DX      54
16652 #define TEMPLATE_OUTL_IMM     55
16653 #define TEMPLATE_BSF          56
16654 #define TEMPLATE_RDMSR        57
16655 #define TEMPLATE_WRMSR        58
16656 #define TEMPLATE_UMUL8        59
16657 #define TEMPLATE_UMUL16       60
16658 #define TEMPLATE_UMUL32       61
16659 #define TEMPLATE_DIV8         62
16660 #define TEMPLATE_DIV16        63
16661 #define TEMPLATE_DIV32        64
16662 #define LAST_TEMPLATE       TEMPLATE_DIV32
16663 #if LAST_TEMPLATE >= MAX_TEMPLATES
16664 #error "MAX_TEMPLATES to low"
16665 #endif
16666
16667 #define COPY8_REGCM     (REGCM_DIVIDEND64 | REGCM_DIVIDEND32 | REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO | REGCM_MMX | REGCM_XMM)
16668 #define COPY16_REGCM    (REGCM_DIVIDEND64 | REGCM_DIVIDEND32 | REGCM_GPR32 | REGCM_GPR16 | REGCM_MMX | REGCM_XMM)  
16669 #define COPY32_REGCM    (REGCM_DIVIDEND64 | REGCM_DIVIDEND32 | REGCM_GPR32 | REGCM_MMX | REGCM_XMM)
16670
16671
16672 static struct ins_template templates[] = {
16673         [TEMPLATE_NOP]      = {},
16674         [TEMPLATE_INTCONST8] = { 
16675                 .lhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
16676         },
16677         [TEMPLATE_INTCONST32] = { 
16678                 .lhs = { [0] = { REG_UNNEEDED, REGCM_IMM32 } },
16679         },
16680         [TEMPLATE_COPY8_REG] = {
16681                 .lhs = { [0] = { REG_UNSET, COPY8_REGCM } },
16682                 .rhs = { [0] = { REG_UNSET, COPY8_REGCM }  },
16683         },
16684         [TEMPLATE_COPY16_REG] = {
16685                 .lhs = { [0] = { REG_UNSET, COPY16_REGCM } },
16686                 .rhs = { [0] = { REG_UNSET, COPY16_REGCM }  },
16687         },
16688         [TEMPLATE_COPY32_REG] = {
16689                 .lhs = { [0] = { REG_UNSET, COPY32_REGCM } },
16690                 .rhs = { [0] = { REG_UNSET, COPY32_REGCM }  },
16691         },
16692         [TEMPLATE_COPY_IMM8] = {
16693                 .lhs = { [0] = { REG_UNSET, COPY8_REGCM } },
16694                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
16695         },
16696         [TEMPLATE_COPY_IMM16] = {
16697                 .lhs = { [0] = { REG_UNSET, COPY16_REGCM } },
16698                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM16 | REGCM_IMM8 } },
16699         },
16700         [TEMPLATE_COPY_IMM32] = {
16701                 .lhs = { [0] = { REG_UNSET, COPY32_REGCM } },
16702                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8 } },
16703         },
16704         [TEMPLATE_PHI8] = { 
16705                 .lhs = { [0] = { REG_VIRT0, COPY8_REGCM } },
16706                 .rhs = { 
16707                         [ 0] = { REG_VIRT0, COPY8_REGCM },
16708                         [ 1] = { REG_VIRT0, COPY8_REGCM },
16709                         [ 2] = { REG_VIRT0, COPY8_REGCM },
16710                         [ 3] = { REG_VIRT0, COPY8_REGCM },
16711                         [ 4] = { REG_VIRT0, COPY8_REGCM },
16712                         [ 5] = { REG_VIRT0, COPY8_REGCM },
16713                         [ 6] = { REG_VIRT0, COPY8_REGCM },
16714                         [ 7] = { REG_VIRT0, COPY8_REGCM },
16715                         [ 8] = { REG_VIRT0, COPY8_REGCM },
16716                         [ 9] = { REG_VIRT0, COPY8_REGCM },
16717                         [10] = { REG_VIRT0, COPY8_REGCM },
16718                         [11] = { REG_VIRT0, COPY8_REGCM },
16719                         [12] = { REG_VIRT0, COPY8_REGCM },
16720                         [13] = { REG_VIRT0, COPY8_REGCM },
16721                         [14] = { REG_VIRT0, COPY8_REGCM },
16722                         [15] = { REG_VIRT0, COPY8_REGCM },
16723                 }, },
16724         [TEMPLATE_PHI16] = { 
16725                 .lhs = { [0] = { REG_VIRT0, COPY16_REGCM } },
16726                 .rhs = { 
16727                         [ 0] = { REG_VIRT0, COPY16_REGCM },
16728                         [ 1] = { REG_VIRT0, COPY16_REGCM },
16729                         [ 2] = { REG_VIRT0, COPY16_REGCM },
16730                         [ 3] = { REG_VIRT0, COPY16_REGCM },
16731                         [ 4] = { REG_VIRT0, COPY16_REGCM },
16732                         [ 5] = { REG_VIRT0, COPY16_REGCM },
16733                         [ 6] = { REG_VIRT0, COPY16_REGCM },
16734                         [ 7] = { REG_VIRT0, COPY16_REGCM },
16735                         [ 8] = { REG_VIRT0, COPY16_REGCM },
16736                         [ 9] = { REG_VIRT0, COPY16_REGCM },
16737                         [10] = { REG_VIRT0, COPY16_REGCM },
16738                         [11] = { REG_VIRT0, COPY16_REGCM },
16739                         [12] = { REG_VIRT0, COPY16_REGCM },
16740                         [13] = { REG_VIRT0, COPY16_REGCM },
16741                         [14] = { REG_VIRT0, COPY16_REGCM },
16742                         [15] = { REG_VIRT0, COPY16_REGCM },
16743                 }, },
16744         [TEMPLATE_PHI32] = { 
16745                 .lhs = { [0] = { REG_VIRT0, COPY32_REGCM } },
16746                 .rhs = { 
16747                         [ 0] = { REG_VIRT0, COPY32_REGCM },
16748                         [ 1] = { REG_VIRT0, COPY32_REGCM },
16749                         [ 2] = { REG_VIRT0, COPY32_REGCM },
16750                         [ 3] = { REG_VIRT0, COPY32_REGCM },
16751                         [ 4] = { REG_VIRT0, COPY32_REGCM },
16752                         [ 5] = { REG_VIRT0, COPY32_REGCM },
16753                         [ 6] = { REG_VIRT0, COPY32_REGCM },
16754                         [ 7] = { REG_VIRT0, COPY32_REGCM },
16755                         [ 8] = { REG_VIRT0, COPY32_REGCM },
16756                         [ 9] = { REG_VIRT0, COPY32_REGCM },
16757                         [10] = { REG_VIRT0, COPY32_REGCM },
16758                         [11] = { REG_VIRT0, COPY32_REGCM },
16759                         [12] = { REG_VIRT0, COPY32_REGCM },
16760                         [13] = { REG_VIRT0, COPY32_REGCM },
16761                         [14] = { REG_VIRT0, COPY32_REGCM },
16762                         [15] = { REG_VIRT0, COPY32_REGCM },
16763                 }, },
16764         [TEMPLATE_STORE8] = {
16765                 .rhs = { 
16766                         [0] = { REG_UNSET, REGCM_GPR32 },
16767                         [1] = { REG_UNSET, REGCM_GPR8_LO },
16768                 },
16769         },
16770         [TEMPLATE_STORE16] = {
16771                 .rhs = { 
16772                         [0] = { REG_UNSET, REGCM_GPR32 },
16773                         [1] = { REG_UNSET, REGCM_GPR16 },
16774                 },
16775         },
16776         [TEMPLATE_STORE32] = {
16777                 .rhs = { 
16778                         [0] = { REG_UNSET, REGCM_GPR32 },
16779                         [1] = { REG_UNSET, REGCM_GPR32 },
16780                 },
16781         },
16782         [TEMPLATE_LOAD8] = {
16783                 .lhs = { [0] = { REG_UNSET, REGCM_GPR8_LO } },
16784                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
16785         },
16786         [TEMPLATE_LOAD16] = {
16787                 .lhs = { [0] = { REG_UNSET, REGCM_GPR16 } },
16788                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
16789         },
16790         [TEMPLATE_LOAD32] = {
16791                 .lhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
16792                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
16793         },
16794         [TEMPLATE_BINARY8_REG] = {
16795                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
16796                 .rhs = { 
16797                         [0] = { REG_VIRT0, REGCM_GPR8_LO },
16798                         [1] = { REG_UNSET, REGCM_GPR8_LO },
16799                 },
16800         },
16801         [TEMPLATE_BINARY16_REG] = {
16802                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
16803                 .rhs = { 
16804                         [0] = { REG_VIRT0, REGCM_GPR16 },
16805                         [1] = { REG_UNSET, REGCM_GPR16 },
16806                 },
16807         },
16808         [TEMPLATE_BINARY32_REG] = {
16809                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
16810                 .rhs = { 
16811                         [0] = { REG_VIRT0, REGCM_GPR32 },
16812                         [1] = { REG_UNSET, REGCM_GPR32 },
16813                 },
16814         },
16815         [TEMPLATE_BINARY8_IMM] = {
16816                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
16817                 .rhs = { 
16818                         [0] = { REG_VIRT0,    REGCM_GPR8_LO },
16819                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
16820                 },
16821         },
16822         [TEMPLATE_BINARY16_IMM] = {
16823                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
16824                 .rhs = { 
16825                         [0] = { REG_VIRT0,    REGCM_GPR16 },
16826                         [1] = { REG_UNNEEDED, REGCM_IMM16 },
16827                 },
16828         },
16829         [TEMPLATE_BINARY32_IMM] = {
16830                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
16831                 .rhs = { 
16832                         [0] = { REG_VIRT0,    REGCM_GPR32 },
16833                         [1] = { REG_UNNEEDED, REGCM_IMM32 },
16834                 },
16835         },
16836         [TEMPLATE_SL8_CL] = {
16837                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
16838                 .rhs = { 
16839                         [0] = { REG_VIRT0, REGCM_GPR8_LO },
16840                         [1] = { REG_CL, REGCM_GPR8_LO },
16841                 },
16842         },
16843         [TEMPLATE_SL16_CL] = {
16844                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
16845                 .rhs = { 
16846                         [0] = { REG_VIRT0, REGCM_GPR16 },
16847                         [1] = { REG_CL, REGCM_GPR8_LO },
16848                 },
16849         },
16850         [TEMPLATE_SL32_CL] = {
16851                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
16852                 .rhs = { 
16853                         [0] = { REG_VIRT0, REGCM_GPR32 },
16854                         [1] = { REG_CL, REGCM_GPR8_LO },
16855                 },
16856         },
16857         [TEMPLATE_SL8_IMM] = {
16858                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
16859                 .rhs = { 
16860                         [0] = { REG_VIRT0,    REGCM_GPR8_LO },
16861                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
16862                 },
16863         },
16864         [TEMPLATE_SL16_IMM] = {
16865                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
16866                 .rhs = { 
16867                         [0] = { REG_VIRT0,    REGCM_GPR16 },
16868                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
16869                 },
16870         },
16871         [TEMPLATE_SL32_IMM] = {
16872                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
16873                 .rhs = { 
16874                         [0] = { REG_VIRT0,    REGCM_GPR32 },
16875                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
16876                 },
16877         },
16878         [TEMPLATE_UNARY8] = {
16879                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
16880                 .rhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
16881         },
16882         [TEMPLATE_UNARY16] = {
16883                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
16884                 .rhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
16885         },
16886         [TEMPLATE_UNARY32] = {
16887                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
16888                 .rhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
16889         },
16890         [TEMPLATE_CMP8_REG] = {
16891                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
16892                 .rhs = {
16893                         [0] = { REG_UNSET, REGCM_GPR8_LO },
16894                         [1] = { REG_UNSET, REGCM_GPR8_LO },
16895                 },
16896         },
16897         [TEMPLATE_CMP16_REG] = {
16898                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
16899                 .rhs = {
16900                         [0] = { REG_UNSET, REGCM_GPR16 },
16901                         [1] = { REG_UNSET, REGCM_GPR16 },
16902                 },
16903         },
16904         [TEMPLATE_CMP32_REG] = {
16905                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
16906                 .rhs = {
16907                         [0] = { REG_UNSET, REGCM_GPR32 },
16908                         [1] = { REG_UNSET, REGCM_GPR32 },
16909                 },
16910         },
16911         [TEMPLATE_CMP8_IMM] = {
16912                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
16913                 .rhs = {
16914                         [0] = { REG_UNSET, REGCM_GPR8_LO },
16915                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
16916                 },
16917         },
16918         [TEMPLATE_CMP16_IMM] = {
16919                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
16920                 .rhs = {
16921                         [0] = { REG_UNSET, REGCM_GPR16 },
16922                         [1] = { REG_UNNEEDED, REGCM_IMM16 },
16923                 },
16924         },
16925         [TEMPLATE_CMP32_IMM] = {
16926                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
16927                 .rhs = {
16928                         [0] = { REG_UNSET, REGCM_GPR32 },
16929                         [1] = { REG_UNNEEDED, REGCM_IMM32 },
16930                 },
16931         },
16932         [TEMPLATE_TEST8] = {
16933                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
16934                 .rhs = { [0] = { REG_UNSET, REGCM_GPR8_LO } },
16935         },
16936         [TEMPLATE_TEST16] = {
16937                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
16938                 .rhs = { [0] = { REG_UNSET, REGCM_GPR16 } },
16939         },
16940         [TEMPLATE_TEST32] = {
16941                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
16942                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
16943         },
16944         [TEMPLATE_SET] = {
16945                 .lhs = { [0] = { REG_UNSET, REGCM_GPR8_LO } },
16946                 .rhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
16947         },
16948         [TEMPLATE_JMP] = {
16949                 .rhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
16950         },
16951         [TEMPLATE_INB_DX] = {
16952                 .lhs = { [0] = { REG_AL,  REGCM_GPR8_LO } },  
16953                 .rhs = { [0] = { REG_DX, REGCM_GPR16 } },
16954         },
16955         [TEMPLATE_INB_IMM] = {
16956                 .lhs = { [0] = { REG_AL,  REGCM_GPR8_LO } },  
16957                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
16958         },
16959         [TEMPLATE_INW_DX]  = { 
16960                 .lhs = { [0] = { REG_AX,  REGCM_GPR16 } }, 
16961                 .rhs = { [0] = { REG_DX, REGCM_GPR16 } },
16962         },
16963         [TEMPLATE_INW_IMM] = { 
16964                 .lhs = { [0] = { REG_AX,  REGCM_GPR16 } }, 
16965                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
16966         },
16967         [TEMPLATE_INL_DX]  = {
16968                 .lhs = { [0] = { REG_EAX, REGCM_GPR32 } },
16969                 .rhs = { [0] = { REG_DX, REGCM_GPR16 } },
16970         },
16971         [TEMPLATE_INL_IMM] = {
16972                 .lhs = { [0] = { REG_EAX, REGCM_GPR32 } },
16973                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
16974         },
16975         [TEMPLATE_OUTB_DX] = { 
16976                 .rhs = {
16977                         [0] = { REG_AL,  REGCM_GPR8_LO },
16978                         [1] = { REG_DX, REGCM_GPR16 },
16979                 },
16980         },
16981         [TEMPLATE_OUTB_IMM] = { 
16982                 .rhs = {
16983                         [0] = { REG_AL,  REGCM_GPR8_LO },  
16984                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
16985                 },
16986         },
16987         [TEMPLATE_OUTW_DX] = { 
16988                 .rhs = {
16989                         [0] = { REG_AX,  REGCM_GPR16 },
16990                         [1] = { REG_DX, REGCM_GPR16 },
16991                 },
16992         },
16993         [TEMPLATE_OUTW_IMM] = {
16994                 .rhs = {
16995                         [0] = { REG_AX,  REGCM_GPR16 }, 
16996                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
16997                 },
16998         },
16999         [TEMPLATE_OUTL_DX] = { 
17000                 .rhs = {
17001                         [0] = { REG_EAX, REGCM_GPR32 },
17002                         [1] = { REG_DX, REGCM_GPR16 },
17003                 },
17004         },
17005         [TEMPLATE_OUTL_IMM] = { 
17006                 .rhs = {
17007                         [0] = { REG_EAX, REGCM_GPR32 }, 
17008                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
17009                 },
17010         },
17011         [TEMPLATE_BSF] = {
17012                 .lhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
17013                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
17014         },
17015         [TEMPLATE_RDMSR] = {
17016                 .lhs = { 
17017                         [0] = { REG_EAX, REGCM_GPR32 },
17018                         [1] = { REG_EDX, REGCM_GPR32 },
17019                 },
17020                 .rhs = { [0] = { REG_ECX, REGCM_GPR32 } },
17021         },
17022         [TEMPLATE_WRMSR] = {
17023                 .rhs = {
17024                         [0] = { REG_ECX, REGCM_GPR32 },
17025                         [1] = { REG_EAX, REGCM_GPR32 },
17026                         [2] = { REG_EDX, REGCM_GPR32 },
17027                 },
17028         },
17029         [TEMPLATE_UMUL8] = {
17030                 .lhs = { [0] = { REG_AX, REGCM_GPR16 } },
17031                 .rhs = { 
17032                         [0] = { REG_AL, REGCM_GPR8_LO },
17033                         [1] = { REG_UNSET, REGCM_GPR8_LO },
17034                 },
17035         },
17036         [TEMPLATE_UMUL16] = {
17037                 .lhs = { [0] = { REG_DXAX, REGCM_DIVIDEND32 } },
17038                 .rhs = { 
17039                         [0] = { REG_AX, REGCM_GPR16 },
17040                         [1] = { REG_UNSET, REGCM_GPR16 },
17041                 },
17042         },
17043         [TEMPLATE_UMUL32] = {
17044                 .lhs = { [0] = { REG_EDXEAX, REGCM_DIVIDEND64 } },
17045                 .rhs = { 
17046                         [0] = { REG_EAX, REGCM_GPR32 },
17047                         [1] = { REG_UNSET, REGCM_GPR32 },
17048                 },
17049         },
17050         [TEMPLATE_DIV8] = {
17051                 .lhs = { 
17052                         [0] = { REG_AL, REGCM_GPR8_LO },
17053                         [1] = { REG_AH, REGCM_GPR8 },
17054                 },
17055                 .rhs = {
17056                         [0] = { REG_AX, REGCM_GPR16 },
17057                         [1] = { REG_UNSET, REGCM_GPR8_LO },
17058                 },
17059         },
17060         [TEMPLATE_DIV16] = {
17061                 .lhs = { 
17062                         [0] = { REG_AX, REGCM_GPR16 },
17063                         [1] = { REG_DX, REGCM_GPR16 },
17064                 },
17065                 .rhs = {
17066                         [0] = { REG_DXAX, REGCM_DIVIDEND32 },
17067                         [1] = { REG_UNSET, REGCM_GPR16 },
17068                 },
17069         },
17070         [TEMPLATE_DIV32] = {
17071                 .lhs = { 
17072                         [0] = { REG_EAX, REGCM_GPR32 },
17073                         [1] = { REG_EDX, REGCM_GPR32 },
17074                 },
17075                 .rhs = {
17076                         [0] = { REG_EDXEAX, REGCM_DIVIDEND64 },
17077                         [1] = { REG_UNSET, REGCM_GPR32 },
17078                 },
17079         },
17080 };
17081
17082 static void fixup_branch(struct compile_state *state,
17083         struct triple *branch, int jmp_op, int cmp_op, struct type *cmp_type,
17084         struct triple *left, struct triple *right)
17085 {
17086         struct triple *test;
17087         if (!left) {
17088                 internal_error(state, branch, "no branch test?");
17089         }
17090         test = pre_triple(state, branch,
17091                 cmp_op, cmp_type, left, right);
17092         test->template_id = TEMPLATE_TEST32; 
17093         if (cmp_op == OP_CMP) {
17094                 test->template_id = TEMPLATE_CMP32_REG;
17095                 if (get_imm32(test, &RHS(test, 1))) {
17096                         test->template_id = TEMPLATE_CMP32_IMM;
17097                 }
17098         }
17099         use_triple(RHS(test, 0), test);
17100         use_triple(RHS(test, 1), test);
17101         unuse_triple(RHS(branch, 0), branch);
17102         RHS(branch, 0) = test;
17103         branch->op = jmp_op;
17104         branch->template_id = TEMPLATE_JMP;
17105         use_triple(RHS(branch, 0), branch);
17106 }
17107
17108 static void fixup_branches(struct compile_state *state,
17109         struct triple *cmp, struct triple *use, int jmp_op)
17110 {
17111         struct triple_set *entry, *next;
17112         for(entry = use->use; entry; entry = next) {
17113                 next = entry->next;
17114                 if (entry->member->op == OP_COPY) {
17115                         fixup_branches(state, cmp, entry->member, jmp_op);
17116                 }
17117                 else if (entry->member->op == OP_BRANCH) {
17118                         struct triple *branch;
17119                         struct triple *left, *right;
17120                         left = right = 0;
17121                         left = RHS(cmp, 0);
17122                         if (TRIPLE_RHS(cmp->sizes) > 1) {
17123                                 right = RHS(cmp, 1);
17124                         }
17125                         branch = entry->member;
17126                         fixup_branch(state, branch, jmp_op, 
17127                                 cmp->op, cmp->type, left, right);
17128                 }
17129         }
17130 }
17131
17132 static void bool_cmp(struct compile_state *state, 
17133         struct triple *ins, int cmp_op, int jmp_op, int set_op)
17134 {
17135         struct triple_set *entry, *next;
17136         struct triple *set;
17137
17138         /* Put a barrier up before the cmp which preceeds the
17139          * copy instruction.  If a set actually occurs this gives
17140          * us a chance to move variables in registers out of the way.
17141          */
17142
17143         /* Modify the comparison operator */
17144         ins->op = cmp_op;
17145         ins->template_id = TEMPLATE_TEST32;
17146         if (cmp_op == OP_CMP) {
17147                 ins->template_id = TEMPLATE_CMP32_REG;
17148                 if (get_imm32(ins, &RHS(ins, 1))) {
17149                         ins->template_id =  TEMPLATE_CMP32_IMM;
17150                 }
17151         }
17152         /* Generate the instruction sequence that will transform the
17153          * result of the comparison into a logical value.
17154          */
17155         set = post_triple(state, ins, set_op, &char_type, ins, 0);
17156         use_triple(ins, set);
17157         set->template_id = TEMPLATE_SET;
17158
17159         for(entry = ins->use; entry; entry = next) {
17160                 next = entry->next;
17161                 if (entry->member == set) {
17162                         continue;
17163                 }
17164                 replace_rhs_use(state, ins, set, entry->member);
17165         }
17166         fixup_branches(state, ins, set, jmp_op);
17167 }
17168
17169 static struct triple *after_lhs(struct compile_state *state, struct triple *ins)
17170 {
17171         struct triple *next;
17172         int lhs, i;
17173         lhs = TRIPLE_LHS(ins->sizes);
17174         for(next = ins->next, i = 0; i < lhs; i++, next = next->next) {
17175                 if (next != LHS(ins, i)) {
17176                         internal_error(state, ins, "malformed lhs on %s",
17177                                 tops(ins->op));
17178                 }
17179                 if (next->op != OP_PIECE) {
17180                         internal_error(state, ins, "bad lhs op %s at %d on %s",
17181                                 tops(next->op), i, tops(ins->op));
17182                 }
17183                 if (next->u.cval != i) {
17184                         internal_error(state, ins, "bad u.cval of %d %d expected",
17185                                 next->u.cval, i);
17186                 }
17187         }
17188         return next;
17189 }
17190
17191 struct reg_info arch_reg_lhs(struct compile_state *state, struct triple *ins, int index)
17192 {
17193         struct ins_template *template;
17194         struct reg_info result;
17195         int zlhs;
17196         if (ins->op == OP_PIECE) {
17197                 index = ins->u.cval;
17198                 ins = MISC(ins, 0);
17199         }
17200         zlhs = TRIPLE_LHS(ins->sizes);
17201         if (triple_is_def(state, ins)) {
17202                 zlhs = 1;
17203         }
17204         if (index >= zlhs) {
17205                 internal_error(state, ins, "index %d out of range for %s\n",
17206                         index, tops(ins->op));
17207         }
17208         switch(ins->op) {
17209         case OP_ASM:
17210                 template = &ins->u.ainfo->tmpl;
17211                 break;
17212         default:
17213                 if (ins->template_id > LAST_TEMPLATE) {
17214                         internal_error(state, ins, "bad template number %d", 
17215                                 ins->template_id);
17216                 }
17217                 template = &templates[ins->template_id];
17218                 break;
17219         }
17220         result = template->lhs[index];
17221         result.regcm = arch_regcm_normalize(state, result.regcm);
17222         if (result.reg != REG_UNNEEDED) {
17223                 result.regcm &= ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8);
17224         }
17225         if (result.regcm == 0) {
17226                 internal_error(state, ins, "lhs %d regcm == 0", index);
17227         }
17228         return result;
17229 }
17230
17231 struct reg_info arch_reg_rhs(struct compile_state *state, struct triple *ins, int index)
17232 {
17233         struct reg_info result;
17234         struct ins_template *template;
17235         if ((index > TRIPLE_RHS(ins->sizes)) ||
17236                 (ins->op == OP_PIECE)) {
17237                 internal_error(state, ins, "index %d out of range for %s\n",
17238                         index, tops(ins->op));
17239         }
17240         switch(ins->op) {
17241         case OP_ASM:
17242                 template = &ins->u.ainfo->tmpl;
17243                 break;
17244         default:
17245                 if (ins->template_id > LAST_TEMPLATE) {
17246                         internal_error(state, ins, "bad template number %d", 
17247                                 ins->template_id);
17248                 }
17249                 template = &templates[ins->template_id];
17250                 break;
17251         }
17252         result = template->rhs[index];
17253         result.regcm = arch_regcm_normalize(state, result.regcm);
17254         if (result.regcm == 0) {
17255                 internal_error(state, ins, "rhs %d regcm == 0", index);
17256         }
17257         return result;
17258 }
17259
17260 static struct triple *mod_div(struct compile_state *state,
17261         struct triple *ins, int div_op, int index)
17262 {
17263         struct triple *div, *piece0, *piece1;
17264         
17265         /* Generate a piece to hold the remainder */
17266         piece1 = post_triple(state, ins, OP_PIECE, ins->type, 0, 0);
17267         piece1->u.cval = 1;
17268
17269         /* Generate a piece to hold the quotient */
17270         piece0 = post_triple(state, ins, OP_PIECE, ins->type, 0, 0);
17271         piece0->u.cval = 0;
17272
17273         /* Generate the appropriate division instruction */
17274         div = post_triple(state, ins, div_op, ins->type, 0, 0);
17275         RHS(div, 0) = RHS(ins, 0);
17276         RHS(div, 1) = RHS(ins, 1);
17277         LHS(div, 0) = piece0;
17278         LHS(div, 1) = piece1;
17279         div->template_id  = TEMPLATE_DIV32;
17280         use_triple(RHS(div, 0), div);
17281         use_triple(RHS(div, 1), div);
17282         use_triple(LHS(div, 0), div);
17283         use_triple(LHS(div, 1), div);
17284
17285         /* Hook on piece0 */
17286         MISC(piece0, 0) = div;
17287         use_triple(div, piece0);
17288
17289         /* Hook on piece1 */
17290         MISC(piece1, 0) = div;
17291         use_triple(div, piece1);
17292         
17293         /* Replate uses of ins with the appropriate piece of the div */
17294         propogate_use(state, ins, LHS(div, index));
17295         release_triple(state, ins);
17296
17297         /* Return the address of the next instruction */
17298         return piece1->next;
17299 }
17300
17301 static struct triple *transform_to_arch_instruction(
17302         struct compile_state *state, struct triple *ins)
17303 {
17304         /* Transform from generic 3 address instructions
17305          * to archtecture specific instructions.
17306          * And apply architecture specific constraints to instructions.
17307          * Copies are inserted to preserve the register flexibility
17308          * of 3 address instructions.
17309          */
17310         struct triple *next;
17311         size_t size;
17312         next = ins->next;
17313         switch(ins->op) {
17314         case OP_INTCONST:
17315                 ins->template_id = TEMPLATE_INTCONST32;
17316                 if (ins->u.cval < 256) {
17317                         ins->template_id = TEMPLATE_INTCONST8;
17318                 }
17319                 break;
17320         case OP_ADDRCONST:
17321                 ins->template_id = TEMPLATE_INTCONST32;
17322                 break;
17323         case OP_NOOP:
17324         case OP_SDECL:
17325         case OP_BLOBCONST:
17326         case OP_LABEL:
17327                 ins->template_id = TEMPLATE_NOP;
17328                 break;
17329         case OP_COPY:
17330                 size = size_of(state, ins->type);
17331                 if (is_imm8(RHS(ins, 0)) && (size <= 1)) {
17332                         ins->template_id = TEMPLATE_COPY_IMM8;
17333                 }
17334                 else if (is_imm16(RHS(ins, 0)) && (size <= 2)) {
17335                         ins->template_id = TEMPLATE_COPY_IMM16;
17336                 }
17337                 else if (is_imm32(RHS(ins, 0)) && (size <= 4)) {
17338                         ins->template_id = TEMPLATE_COPY_IMM32;
17339                 }
17340                 else if (is_const(RHS(ins, 0))) {
17341                         internal_error(state, ins, "bad constant passed to copy");
17342                 }
17343                 else if (size <= 1) {
17344                         ins->template_id = TEMPLATE_COPY8_REG;
17345                 }
17346                 else if (size <= 2) {
17347                         ins->template_id = TEMPLATE_COPY16_REG;
17348                 }
17349                 else if (size <= 4) {
17350                         ins->template_id = TEMPLATE_COPY32_REG;
17351                 }
17352                 else {
17353                         internal_error(state, ins, "bad type passed to copy");
17354                 }
17355                 break;
17356         case OP_PHI:
17357                 size = size_of(state, ins->type);
17358                 if (size <= 1) {
17359                         ins->template_id = TEMPLATE_PHI8;
17360                 }
17361                 else if (size <= 2) {
17362                         ins->template_id = TEMPLATE_PHI16;
17363                 }
17364                 else if (size <= 4) {
17365                         ins->template_id = TEMPLATE_PHI32;
17366                 }
17367                 else {
17368                         internal_error(state, ins, "bad type passed to phi");
17369                 }
17370                 break;
17371         case OP_STORE:
17372                 switch(ins->type->type & TYPE_MASK) {
17373                 case TYPE_CHAR:    case TYPE_UCHAR:
17374                         ins->template_id = TEMPLATE_STORE8;
17375                         break;
17376                 case TYPE_SHORT:   case TYPE_USHORT:
17377                         ins->template_id = TEMPLATE_STORE16;
17378                         break;
17379                 case TYPE_INT:     case TYPE_UINT:
17380                 case TYPE_LONG:    case TYPE_ULONG:
17381                 case TYPE_POINTER:
17382                         ins->template_id = TEMPLATE_STORE32;
17383                         break;
17384                 default:
17385                         internal_error(state, ins, "unknown type in store");
17386                         break;
17387                 }
17388                 break;
17389         case OP_LOAD:
17390                 switch(ins->type->type & TYPE_MASK) {
17391                 case TYPE_CHAR:   case TYPE_UCHAR:
17392                         ins->template_id = TEMPLATE_LOAD8;
17393                         break;
17394                 case TYPE_SHORT:
17395                 case TYPE_USHORT:
17396                         ins->template_id = TEMPLATE_LOAD16;
17397                         break;
17398                 case TYPE_INT:
17399                 case TYPE_UINT:
17400                 case TYPE_LONG:
17401                 case TYPE_ULONG:
17402                 case TYPE_POINTER:
17403                         ins->template_id = TEMPLATE_LOAD32;
17404                         break;
17405                 default:
17406                         internal_error(state, ins, "unknown type in load");
17407                         break;
17408                 }
17409                 break;
17410         case OP_ADD:
17411         case OP_SUB:
17412         case OP_AND:
17413         case OP_XOR:
17414         case OP_OR:
17415         case OP_SMUL:
17416                 ins->template_id = TEMPLATE_BINARY32_REG;
17417                 if (get_imm32(ins, &RHS(ins, 1))) {
17418                         ins->template_id = TEMPLATE_BINARY32_IMM;
17419                 }
17420                 break;
17421         case OP_SDIVT:
17422         case OP_UDIVT:
17423                 ins->template_id = TEMPLATE_DIV32;
17424                 next = after_lhs(state, ins);
17425                 break;
17426                 /* FIXME UMUL does not work yet.. */
17427         case OP_UMUL:
17428                 ins->template_id = TEMPLATE_UMUL32;
17429                 break;
17430         case OP_UDIV:
17431                 next = mod_div(state, ins, OP_UDIVT, 0);
17432                 break;
17433         case OP_SDIV:
17434                 next = mod_div(state, ins, OP_SDIVT, 0);
17435                 break;
17436         case OP_UMOD:
17437                 next = mod_div(state, ins, OP_UDIVT, 1);
17438                 break;
17439         case OP_SMOD:
17440                 next = mod_div(state, ins, OP_SDIVT, 1);
17441                 break;
17442         case OP_SL:
17443         case OP_SSR:
17444         case OP_USR:
17445                 ins->template_id = TEMPLATE_SL32_CL;
17446                 if (get_imm8(ins, &RHS(ins, 1))) {
17447                         ins->template_id = TEMPLATE_SL32_IMM;
17448                 } else if (size_of(state, RHS(ins, 1)->type) > 1) {
17449                         typed_pre_copy(state, &char_type, ins, 1);
17450                 }
17451                 break;
17452         case OP_INVERT:
17453         case OP_NEG:
17454                 ins->template_id = TEMPLATE_UNARY32;
17455                 break;
17456         case OP_EQ: 
17457                 bool_cmp(state, ins, OP_CMP, OP_JMP_EQ, OP_SET_EQ); 
17458                 break;
17459         case OP_NOTEQ:
17460                 bool_cmp(state, ins, OP_CMP, OP_JMP_NOTEQ, OP_SET_NOTEQ);
17461                 break;
17462         case OP_SLESS:
17463                 bool_cmp(state, ins, OP_CMP, OP_JMP_SLESS, OP_SET_SLESS);
17464                 break;
17465         case OP_ULESS:
17466                 bool_cmp(state, ins, OP_CMP, OP_JMP_ULESS, OP_SET_ULESS);
17467                 break;
17468         case OP_SMORE:
17469                 bool_cmp(state, ins, OP_CMP, OP_JMP_SMORE, OP_SET_SMORE);
17470                 break;
17471         case OP_UMORE:
17472                 bool_cmp(state, ins, OP_CMP, OP_JMP_UMORE, OP_SET_UMORE);
17473                 break;
17474         case OP_SLESSEQ:
17475                 bool_cmp(state, ins, OP_CMP, OP_JMP_SLESSEQ, OP_SET_SLESSEQ);
17476                 break;
17477         case OP_ULESSEQ:
17478                 bool_cmp(state, ins, OP_CMP, OP_JMP_ULESSEQ, OP_SET_ULESSEQ);
17479                 break;
17480         case OP_SMOREEQ:
17481                 bool_cmp(state, ins, OP_CMP, OP_JMP_SMOREEQ, OP_SET_SMOREEQ);
17482                 break;
17483         case OP_UMOREEQ:
17484                 bool_cmp(state, ins, OP_CMP, OP_JMP_UMOREEQ, OP_SET_UMOREEQ);
17485                 break;
17486         case OP_LTRUE:
17487                 bool_cmp(state, ins, OP_TEST, OP_JMP_NOTEQ, OP_SET_NOTEQ);
17488                 break;
17489         case OP_LFALSE:
17490                 bool_cmp(state, ins, OP_TEST, OP_JMP_EQ, OP_SET_EQ);
17491                 break;
17492         case OP_BRANCH:
17493                 if (TRIPLE_RHS(ins->sizes) > 0) {
17494                         struct triple *left = RHS(ins, 0);
17495                         fixup_branch(state, ins, OP_JMP_NOTEQ, OP_TEST, 
17496                                 left->type, left, 0);
17497                 }
17498                 else {
17499                         ins->op = OP_JMP;
17500                         ins->template_id = TEMPLATE_NOP;
17501                 }
17502                 break;
17503         case OP_INB:
17504         case OP_INW:
17505         case OP_INL:
17506                 switch(ins->op) {
17507                 case OP_INB: ins->template_id = TEMPLATE_INB_DX; break;
17508                 case OP_INW: ins->template_id = TEMPLATE_INW_DX; break;
17509                 case OP_INL: ins->template_id = TEMPLATE_INL_DX; break;
17510                 }
17511                 if (get_imm8(ins, &RHS(ins, 0))) {
17512                         ins->template_id += 1;
17513                 }
17514                 break;
17515         case OP_OUTB:
17516         case OP_OUTW:
17517         case OP_OUTL:
17518                 switch(ins->op) {
17519                 case OP_OUTB: ins->template_id = TEMPLATE_OUTB_DX; break;
17520                 case OP_OUTW: ins->template_id = TEMPLATE_OUTW_DX; break;
17521                 case OP_OUTL: ins->template_id = TEMPLATE_OUTL_DX; break;
17522                 }
17523                 if (get_imm8(ins, &RHS(ins, 1))) {
17524                         ins->template_id += 1;
17525                 }
17526                 break;
17527         case OP_BSF:
17528         case OP_BSR:
17529                 ins->template_id = TEMPLATE_BSF;
17530                 break;
17531         case OP_RDMSR:
17532                 ins->template_id = TEMPLATE_RDMSR;
17533                 next = after_lhs(state, ins);
17534                 break;
17535         case OP_WRMSR:
17536                 ins->template_id = TEMPLATE_WRMSR;
17537                 break;
17538         case OP_HLT:
17539                 ins->template_id = TEMPLATE_NOP;
17540                 break;
17541         case OP_ASM:
17542                 ins->template_id = TEMPLATE_NOP;
17543                 next = after_lhs(state, ins);
17544                 break;
17545                 /* Already transformed instructions */
17546         case OP_TEST:
17547                 ins->template_id = TEMPLATE_TEST32;
17548                 break;
17549         case OP_CMP:
17550                 ins->template_id = TEMPLATE_CMP32_REG;
17551                 if (get_imm32(ins, &RHS(ins, 1))) {
17552                         ins->template_id = TEMPLATE_CMP32_IMM;
17553                 }
17554                 break;
17555         case OP_JMP:
17556                 ins->template_id = TEMPLATE_NOP;
17557                 break;
17558         case OP_JMP_EQ:      case OP_JMP_NOTEQ:
17559         case OP_JMP_SLESS:   case OP_JMP_ULESS:
17560         case OP_JMP_SMORE:   case OP_JMP_UMORE:
17561         case OP_JMP_SLESSEQ: case OP_JMP_ULESSEQ:
17562         case OP_JMP_SMOREEQ: case OP_JMP_UMOREEQ:
17563                 ins->template_id = TEMPLATE_JMP;
17564                 break;
17565         case OP_SET_EQ:      case OP_SET_NOTEQ:
17566         case OP_SET_SLESS:   case OP_SET_ULESS:
17567         case OP_SET_SMORE:   case OP_SET_UMORE:
17568         case OP_SET_SLESSEQ: case OP_SET_ULESSEQ:
17569         case OP_SET_SMOREEQ: case OP_SET_UMOREEQ:
17570                 ins->template_id = TEMPLATE_SET;
17571                 break;
17572                 /* Unhandled instructions */
17573         case OP_PIECE:
17574         default:
17575                 internal_error(state, ins, "unhandled ins: %d %s\n",
17576                         ins->op, tops(ins->op));
17577                 break;
17578         }
17579         return next;
17580 }
17581
17582 static long next_label(struct compile_state *state)
17583 {
17584         static long label_counter = 0;
17585         return ++label_counter;
17586 }
17587 static void generate_local_labels(struct compile_state *state)
17588 {
17589         struct triple *first, *label;
17590         first = state->first;
17591         label = first;
17592         do {
17593                 if ((label->op == OP_LABEL) || 
17594                         (label->op == OP_SDECL)) {
17595                         if (label->use) {
17596                                 label->u.cval = next_label(state);
17597                         } else {
17598                                 label->u.cval = 0;
17599                         }
17600                         
17601                 }
17602                 label = label->next;
17603         } while(label != first);
17604 }
17605
17606 static int check_reg(struct compile_state *state, 
17607         struct triple *triple, int classes)
17608 {
17609         unsigned mask;
17610         int reg;
17611         reg = ID_REG(triple->id);
17612         if (reg == REG_UNSET) {
17613                 internal_error(state, triple, "register not set");
17614         }
17615         mask = arch_reg_regcm(state, reg);
17616         if (!(classes & mask)) {
17617                 internal_error(state, triple, "reg %d in wrong class",
17618                         reg);
17619         }
17620         return reg;
17621 }
17622
17623 static const char *arch_reg_str(int reg)
17624 {
17625 #if REG_XMM7 != 44
17626 #error "Registers have renumberd fix arch_reg_str"
17627 #endif
17628         static const char *regs[] = {
17629                 "%unset",
17630                 "%unneeded",
17631                 "%eflags",
17632                 "%al", "%bl", "%cl", "%dl", "%ah", "%bh", "%ch", "%dh",
17633                 "%ax", "%bx", "%cx", "%dx", "%si", "%di", "%bp", "%sp",
17634                 "%eax", "%ebx", "%ecx", "%edx", "%esi", "%edi", "%ebp", "%esp",
17635                 "%edx:%eax",
17636                 "%dx:%ax",
17637                 "%mm0", "%mm1", "%mm2", "%mm3", "%mm4", "%mm5", "%mm6", "%mm7",
17638                 "%xmm0", "%xmm1", "%xmm2", "%xmm3", 
17639                 "%xmm4", "%xmm5", "%xmm6", "%xmm7",
17640         };
17641         if (!((reg >= REG_EFLAGS) && (reg <= REG_XMM7))) {
17642                 reg = 0;
17643         }
17644         return regs[reg];
17645 }
17646
17647
17648 static const char *reg(struct compile_state *state, struct triple *triple,
17649         int classes)
17650 {
17651         int reg;
17652         reg = check_reg(state, triple, classes);
17653         return arch_reg_str(reg);
17654 }
17655
17656 const char *type_suffix(struct compile_state *state, struct type *type)
17657 {
17658         const char *suffix;
17659         switch(size_of(state, type)) {
17660         case 1: suffix = "b"; break;
17661         case 2: suffix = "w"; break;
17662         case 4: suffix = "l"; break;
17663         default:
17664                 internal_error(state, 0, "unknown suffix");
17665                 suffix = 0;
17666                 break;
17667         }
17668         return suffix;
17669 }
17670
17671 static void print_const_val(
17672         struct compile_state *state, struct triple *ins, FILE *fp)
17673 {
17674         switch(ins->op) {
17675         case OP_INTCONST:
17676                 fprintf(fp, " $%ld ", 
17677                         (long)(ins->u.cval));
17678                 break;
17679         case OP_ADDRCONST:
17680                 if (MISC(ins, 0)->op != OP_SDECL) {
17681                         internal_error(state, ins, "bad base for addrconst");
17682                 }
17683                 if (MISC(ins, 0)->u.cval <= 0) {
17684                         internal_error(state, ins, "unlabeled constant");
17685                 }
17686                 fprintf(fp, " $L%s%lu+%lu ",
17687                         state->label_prefix, 
17688                         (unsigned long)(MISC(ins, 0)->u.cval),
17689                         (unsigned long)(ins->u.cval));
17690                 break;
17691         default:
17692                 internal_error(state, ins, "unknown constant type");
17693                 break;
17694         }
17695 }
17696
17697 static void print_const(struct compile_state *state,
17698         struct triple *ins, FILE *fp)
17699 {
17700         switch(ins->op) {
17701         case OP_INTCONST:
17702                 switch(ins->type->type & TYPE_MASK) {
17703                 case TYPE_CHAR:
17704                 case TYPE_UCHAR:
17705                         fprintf(fp, ".byte 0x%02lx\n", 
17706                                 (unsigned long)(ins->u.cval));
17707                         break;
17708                 case TYPE_SHORT:
17709                 case TYPE_USHORT:
17710                         fprintf(fp, ".short 0x%04lx\n", 
17711                                 (unsigned long)(ins->u.cval));
17712                         break;
17713                 case TYPE_INT:
17714                 case TYPE_UINT:
17715                 case TYPE_LONG:
17716                 case TYPE_ULONG:
17717                         fprintf(fp, ".int %lu\n", 
17718                                 (unsigned long)(ins->u.cval));
17719                         break;
17720                 default:
17721                         internal_error(state, ins, "Unknown constant type");
17722                 }
17723                 break;
17724         case OP_ADDRCONST:
17725                 if (MISC(ins, 0)->op != OP_SDECL) {
17726                         internal_error(state, ins, "bad base for addrconst");
17727                 }
17728                 if (MISC(ins, 0)->u.cval <= 0) {
17729                         internal_error(state, ins, "unlabeled constant");
17730                 }
17731                 fprintf(fp, ".int L%s%lu+%lu\n",
17732                         state->label_prefix,
17733                         (unsigned long)(MISC(ins, 0)->u.cval),
17734                         (unsigned long)(ins->u.cval));
17735                 break;
17736         case OP_BLOBCONST:
17737         {
17738                 unsigned char *blob;
17739                 size_t size, i;
17740                 size = size_of(state, ins->type);
17741                 blob = ins->u.blob;
17742                 for(i = 0; i < size; i++) {
17743                         fprintf(fp, ".byte 0x%02x\n",
17744                                 blob[i]);
17745                 }
17746                 break;
17747         }
17748         default:
17749                 internal_error(state, ins, "Unknown constant type");
17750                 break;
17751         }
17752 }
17753
17754 #define TEXT_SECTION ".rom.text"
17755 #define DATA_SECTION ".rom.data"
17756
17757 static long get_const_pool_ref(
17758         struct compile_state *state, struct triple *ins, FILE *fp)
17759 {
17760         long ref;
17761         ref = next_label(state);
17762         fprintf(fp, ".section \"" DATA_SECTION "\"\n");
17763         fprintf(fp, ".balign %d\n", align_of(state, ins->type));
17764         fprintf(fp, "L%s%lu:\n", state->label_prefix, ref);
17765         print_const(state, ins, fp);
17766         fprintf(fp, ".section \"" TEXT_SECTION "\"\n");
17767         return ref;
17768 }
17769
17770 static void print_binary_op(struct compile_state *state,
17771         const char *op, struct triple *ins, FILE *fp) 
17772 {
17773         unsigned mask;
17774         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
17775         if (ID_REG(RHS(ins, 0)->id) != ID_REG(ins->id)) {
17776                 internal_error(state, ins, "invalid register assignment");
17777         }
17778         if (is_const(RHS(ins, 1))) {
17779                 fprintf(fp, "\t%s ", op);
17780                 print_const_val(state, RHS(ins, 1), fp);
17781                 fprintf(fp, ", %s\n",
17782                         reg(state, RHS(ins, 0), mask));
17783         }
17784         else {
17785                 unsigned lmask, rmask;
17786                 int lreg, rreg;
17787                 lreg = check_reg(state, RHS(ins, 0), mask);
17788                 rreg = check_reg(state, RHS(ins, 1), mask);
17789                 lmask = arch_reg_regcm(state, lreg);
17790                 rmask = arch_reg_regcm(state, rreg);
17791                 mask = lmask & rmask;
17792                 fprintf(fp, "\t%s %s, %s\n",
17793                         op,
17794                         reg(state, RHS(ins, 1), mask),
17795                         reg(state, RHS(ins, 0), mask));
17796         }
17797 }
17798 static void print_unary_op(struct compile_state *state, 
17799         const char *op, struct triple *ins, FILE *fp)
17800 {
17801         unsigned mask;
17802         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
17803         fprintf(fp, "\t%s %s\n",
17804                 op,
17805                 reg(state, RHS(ins, 0), mask));
17806 }
17807
17808 static void print_op_shift(struct compile_state *state,
17809         const char *op, struct triple *ins, FILE *fp)
17810 {
17811         unsigned mask;
17812         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
17813         if (ID_REG(RHS(ins, 0)->id) != ID_REG(ins->id)) {
17814                 internal_error(state, ins, "invalid register assignment");
17815         }
17816         if (is_const(RHS(ins, 1))) {
17817                 fprintf(fp, "\t%s ", op);
17818                 print_const_val(state, RHS(ins, 1), fp);
17819                 fprintf(fp, ", %s\n",
17820                         reg(state, RHS(ins, 0), mask));
17821         }
17822         else {
17823                 fprintf(fp, "\t%s %s, %s\n",
17824                         op,
17825                         reg(state, RHS(ins, 1), REGCM_GPR8_LO),
17826                         reg(state, RHS(ins, 0), mask));
17827         }
17828 }
17829
17830 static void print_op_in(struct compile_state *state, struct triple *ins, FILE *fp)
17831 {
17832         const char *op;
17833         int mask;
17834         int dreg;
17835         mask = 0;
17836         switch(ins->op) {
17837         case OP_INB: op = "inb", mask = REGCM_GPR8_LO; break;
17838         case OP_INW: op = "inw", mask = REGCM_GPR16; break;
17839         case OP_INL: op = "inl", mask = REGCM_GPR32; break;
17840         default:
17841                 internal_error(state, ins, "not an in operation");
17842                 op = 0;
17843                 break;
17844         }
17845         dreg = check_reg(state, ins, mask);
17846         if (!reg_is_reg(state, dreg, REG_EAX)) {
17847                 internal_error(state, ins, "dst != %%eax");
17848         }
17849         if (is_const(RHS(ins, 0))) {
17850                 fprintf(fp, "\t%s ", op);
17851                 print_const_val(state, RHS(ins, 0), fp);
17852                 fprintf(fp, ", %s\n",
17853                         reg(state, ins, mask));
17854         }
17855         else {
17856                 int addr_reg;
17857                 addr_reg = check_reg(state, RHS(ins, 0), REGCM_GPR16);
17858                 if (!reg_is_reg(state, addr_reg, REG_DX)) {
17859                         internal_error(state, ins, "src != %%dx");
17860                 }
17861                 fprintf(fp, "\t%s %s, %s\n",
17862                         op, 
17863                         reg(state, RHS(ins, 0), REGCM_GPR16),
17864                         reg(state, ins, mask));
17865         }
17866 }
17867
17868 static void print_op_out(struct compile_state *state, struct triple *ins, FILE *fp)
17869 {
17870         const char *op;
17871         int mask;
17872         int lreg;
17873         mask = 0;
17874         switch(ins->op) {
17875         case OP_OUTB: op = "outb", mask = REGCM_GPR8_LO; break;
17876         case OP_OUTW: op = "outw", mask = REGCM_GPR16; break;
17877         case OP_OUTL: op = "outl", mask = REGCM_GPR32; break;
17878         default:
17879                 internal_error(state, ins, "not an out operation");
17880                 op = 0;
17881                 break;
17882         }
17883         lreg = check_reg(state, RHS(ins, 0), mask);
17884         if (!reg_is_reg(state, lreg, REG_EAX)) {
17885                 internal_error(state, ins, "src != %%eax");
17886         }
17887         if (is_const(RHS(ins, 1))) {
17888                 fprintf(fp, "\t%s %s,", 
17889                         op, reg(state, RHS(ins, 0), mask));
17890                 print_const_val(state, RHS(ins, 1), fp);
17891                 fprintf(fp, "\n");
17892         }
17893         else {
17894                 int addr_reg;
17895                 addr_reg = check_reg(state, RHS(ins, 1), REGCM_GPR16);
17896                 if (!reg_is_reg(state, addr_reg, REG_DX)) {
17897                         internal_error(state, ins, "dst != %%dx");
17898                 }
17899                 fprintf(fp, "\t%s %s, %s\n",
17900                         op, 
17901                         reg(state, RHS(ins, 0), mask),
17902                         reg(state, RHS(ins, 1), REGCM_GPR16));
17903         }
17904 }
17905
17906 static void print_op_move(struct compile_state *state,
17907         struct triple *ins, FILE *fp)
17908 {
17909         /* op_move is complex because there are many types
17910          * of registers we can move between.
17911          * Because OP_COPY will be introduced in arbitrary locations
17912          * OP_COPY must not affect flags.
17913          */
17914         int omit_copy = 1; /* Is it o.k. to omit a noop copy? */
17915         struct triple *dst, *src;
17916         if (ins->op == OP_COPY) {
17917                 src = RHS(ins, 0);
17918                 dst = ins;
17919         }
17920         else {
17921                 internal_error(state, ins, "unknown move operation");
17922                 src = dst = 0;
17923         }
17924         if (!is_const(src)) {
17925                 int src_reg, dst_reg;
17926                 int src_regcm, dst_regcm;
17927                 src_reg   = ID_REG(src->id);
17928                 dst_reg   = ID_REG(dst->id);
17929                 src_regcm = arch_reg_regcm(state, src_reg);
17930                 dst_regcm = arch_reg_regcm(state, dst_reg);
17931                 /* If the class is the same just move the register */
17932                 if (src_regcm & dst_regcm & 
17933                         (REGCM_GPR8_LO | REGCM_GPR16 | REGCM_GPR32)) {
17934                         if ((src_reg != dst_reg) || !omit_copy) {
17935                                 fprintf(fp, "\tmov %s, %s\n",
17936                                         reg(state, src, src_regcm),
17937                                         reg(state, dst, dst_regcm));
17938                         }
17939                 }
17940                 /* Move 32bit to 16bit */
17941                 else if ((src_regcm & REGCM_GPR32) &&
17942                         (dst_regcm & REGCM_GPR16)) {
17943                         src_reg = (src_reg - REGC_GPR32_FIRST) + REGC_GPR16_FIRST;
17944                         if ((src_reg != dst_reg) || !omit_copy) {
17945                                 fprintf(fp, "\tmovw %s, %s\n",
17946                                         arch_reg_str(src_reg), 
17947                                         arch_reg_str(dst_reg));
17948                         }
17949                 }
17950                 /* Move from 32bit gprs to 16bit gprs */
17951                 else if ((src_regcm & REGCM_GPR32) &&
17952                         (dst_regcm & REGCM_GPR16)) {
17953                         dst_reg = (dst_reg - REGC_GPR16_FIRST) + REGC_GPR32_FIRST;
17954                         if ((src_reg != dst_reg) || !omit_copy) {
17955                                 fprintf(fp, "\tmov %s, %s\n",
17956                                         arch_reg_str(src_reg),
17957                                         arch_reg_str(dst_reg));
17958                         }
17959                 }
17960                 /* Move 32bit to 8bit */
17961                 else if ((src_regcm & REGCM_GPR32_8) &&
17962                         (dst_regcm & REGCM_GPR8_LO))
17963                 {
17964                         src_reg = (src_reg - REGC_GPR32_8_FIRST) + REGC_GPR8_FIRST;
17965                         if ((src_reg != dst_reg) || !omit_copy) {
17966                                 fprintf(fp, "\tmovb %s, %s\n",
17967                                         arch_reg_str(src_reg),
17968                                         arch_reg_str(dst_reg));
17969                         }
17970                 }
17971                 /* Move 16bit to 8bit */
17972                 else if ((src_regcm & REGCM_GPR16_8) &&
17973                         (dst_regcm & REGCM_GPR8_LO))
17974                 {
17975                         src_reg = (src_reg - REGC_GPR16_8_FIRST) + REGC_GPR8_FIRST;
17976                         if ((src_reg != dst_reg) || !omit_copy) {
17977                                 fprintf(fp, "\tmovb %s, %s\n",
17978                                         arch_reg_str(src_reg),
17979                                         arch_reg_str(dst_reg));
17980                         }
17981                 }
17982                 /* Move 8/16bit to 16/32bit */
17983                 else if ((src_regcm & (REGCM_GPR8_LO | REGCM_GPR16)) && 
17984                         (dst_regcm & (REGCM_GPR16 | REGCM_GPR32))) {
17985                         const char *op;
17986                         op = is_signed(src->type)? "movsx": "movzx";
17987                         fprintf(fp, "\t%s %s, %s\n",
17988                                 op,
17989                                 reg(state, src, src_regcm),
17990                                 reg(state, dst, dst_regcm));
17991                 }
17992                 /* Move between sse registers */
17993                 else if ((src_regcm & dst_regcm & REGCM_XMM)) {
17994                         if ((src_reg != dst_reg) || !omit_copy) {
17995                                 fprintf(fp, "\tmovdqa %s, %s\n",
17996                                         reg(state, src, src_regcm),
17997                                         reg(state, dst, dst_regcm));
17998                         }
17999                 }
18000                 /* Move between mmx registers */
18001                 else if ((src_regcm & dst_regcm & REGCM_MMX)) {
18002                         if ((src_reg != dst_reg) || !omit_copy) {
18003                                 fprintf(fp, "\tmovq %s, %s\n",
18004                                         reg(state, src, src_regcm),
18005                                         reg(state, dst, dst_regcm));
18006                         }
18007                 }
18008                 /* Move from sse to mmx registers */
18009                 else if ((src_regcm & REGCM_XMM) && (dst_regcm & REGCM_MMX)) {
18010                         fprintf(fp, "\tmovdq2q %s, %s\n",
18011                                 reg(state, src, src_regcm),
18012                                 reg(state, dst, dst_regcm));
18013                 }
18014                 /* Move from mmx to sse registers */
18015                 else if ((src_regcm & REGCM_MMX) && (dst_regcm & REGCM_XMM)) {
18016                         fprintf(fp, "\tmovq2dq %s, %s\n",
18017                                 reg(state, src, src_regcm),
18018                                 reg(state, dst, dst_regcm));
18019                 }
18020                 /* Move between 32bit gprs & mmx/sse registers */
18021                 else if ((src_regcm & (REGCM_GPR32 | REGCM_MMX | REGCM_XMM)) &&
18022                         (dst_regcm & (REGCM_GPR32 | REGCM_MMX | REGCM_XMM))) {
18023                         fprintf(fp, "\tmovd %s, %s\n",
18024                                 reg(state, src, src_regcm),
18025                                 reg(state, dst, dst_regcm));
18026                 }
18027                 /* Move from 16bit gprs &  mmx/sse registers */
18028                 else if ((src_regcm & REGCM_GPR16) &&
18029                         (dst_regcm & (REGCM_MMX | REGCM_XMM))) {
18030                         const char *op;
18031                         int mid_reg;
18032                         op = is_signed(src->type)? "movsx":"movzx";
18033                         mid_reg = (src_reg - REGC_GPR16_FIRST) + REGC_GPR32_FIRST;
18034                         fprintf(fp, "\t%s %s, %s\n\tmovd %s, %s\n",
18035                                 op,
18036                                 arch_reg_str(src_reg),
18037                                 arch_reg_str(mid_reg),
18038                                 arch_reg_str(mid_reg),
18039                                 arch_reg_str(dst_reg));
18040                 }
18041                 /* Move from mmx/sse registers to 16bit gprs */
18042                 else if ((src_regcm & (REGCM_MMX | REGCM_XMM)) &&
18043                         (dst_regcm & REGCM_GPR16)) {
18044                         dst_reg = (dst_reg - REGC_GPR16_FIRST) + REGC_GPR32_FIRST;
18045                         fprintf(fp, "\tmovd %s, %s\n",
18046                                 arch_reg_str(src_reg),
18047                                 arch_reg_str(dst_reg));
18048                 }
18049                 /* Move from gpr to 64bit dividend */
18050                 else if ((src_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO))  &&
18051                         (dst_regcm & REGCM_DIVIDEND64)) {
18052                         const char *extend;
18053                         extend = is_signed(src->type)? "cltd":"movl $0, %edx";
18054                         fprintf(fp, "\tmov %s, %%eax\n\t%s\n",
18055                                 arch_reg_str(src_reg), 
18056                                 extend);
18057                 }
18058                 /* Move from 64bit gpr to gpr */
18059                 else if ((src_regcm & REGCM_DIVIDEND64) &&
18060                         (dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO))) {
18061                         if (dst_regcm & REGCM_GPR32) {
18062                                 src_reg = REG_EAX;
18063                         } 
18064                         else if (dst_regcm & REGCM_GPR16) {
18065                                 src_reg = REG_AX;
18066                         }
18067                         else if (dst_regcm & REGCM_GPR8_LO) {
18068                                 src_reg = REG_AL;
18069                         }
18070                         fprintf(fp, "\tmov %s, %s\n",
18071                                 arch_reg_str(src_reg),
18072                                 arch_reg_str(dst_reg));
18073                 }
18074                 /* Move from mmx/sse registers to 64bit gpr */
18075                 else if ((src_regcm & (REGCM_MMX | REGCM_XMM)) &&
18076                         (dst_regcm & REGCM_DIVIDEND64)) {
18077                         const char *extend;
18078                         extend = is_signed(src->type)? "cltd": "movl $0, %edx";
18079                         fprintf(fp, "\tmovd %s, %%eax\n\t%s\n",
18080                                 arch_reg_str(src_reg),
18081                                 extend);
18082                 }
18083                 /* Move from 64bit gpr to mmx/sse register */
18084                 else if ((src_regcm & REGCM_DIVIDEND64) &&
18085                         (dst_regcm & (REGCM_XMM | REGCM_MMX))) {
18086                         fprintf(fp, "\tmovd %%eax, %s\n",
18087                                 arch_reg_str(dst_reg));
18088                 }
18089 #if X86_4_8BIT_GPRS
18090                 /* Move from 8bit gprs to  mmx/sse registers */
18091                 else if ((src_regcm & REGCM_GPR8_LO) && (src_reg <= REG_DL) &&
18092                         (dst_regcm & (REGCM_MMX | REGCM_XMM))) {
18093                         const char *op;
18094                         int mid_reg;
18095                         op = is_signed(src->type)? "movsx":"movzx";
18096                         mid_reg = (src_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
18097                         fprintf(fp, "\t%s %s, %s\n\tmovd %s, %s\n",
18098                                 op,
18099                                 reg(state, src, src_regcm),
18100                                 arch_reg_str(mid_reg),
18101                                 arch_reg_str(mid_reg),
18102                                 reg(state, dst, dst_regcm));
18103                 }
18104                 /* Move from mmx/sse registers and 8bit gprs */
18105                 else if ((src_regcm & (REGCM_MMX | REGCM_XMM)) &&
18106                         (dst_regcm & REGCM_GPR8_LO) && (dst_reg <= REG_DL)) {
18107                         int mid_reg;
18108                         mid_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
18109                         fprintf(fp, "\tmovd %s, %s\n",
18110                                 reg(state, src, src_regcm),
18111                                 arch_reg_str(mid_reg));
18112                 }
18113                 /* Move from 32bit gprs to 8bit gprs */
18114                 else if ((src_regcm & REGCM_GPR32) &&
18115                         (dst_regcm & REGCM_GPR8_LO)) {
18116                         dst_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
18117                         if ((src_reg != dst_reg) || !omit_copy) {
18118                                 fprintf(fp, "\tmov %s, %s\n",
18119                                         arch_reg_str(src_reg),
18120                                         arch_reg_str(dst_reg));
18121                         }
18122                 }
18123                 /* Move from 16bit gprs to 8bit gprs */
18124                 else if ((src_regcm & REGCM_GPR16) &&
18125                         (dst_regcm & REGCM_GPR8_LO)) {
18126                         dst_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR16_FIRST;
18127                         if ((src_reg != dst_reg) || !omit_copy) {
18128                                 fprintf(fp, "\tmov %s, %s\n",
18129                                         arch_reg_str(src_reg),
18130                                         arch_reg_str(dst_reg));
18131                         }
18132                 }
18133 #endif /* X86_4_8BIT_GPRS */
18134                 else {
18135                         internal_error(state, ins, "unknown copy type");
18136                 }
18137         }
18138         else {
18139                 int dst_reg;
18140                 int dst_regcm;
18141                 dst_reg = ID_REG(dst->id);
18142                 dst_regcm = arch_reg_regcm(state, dst_reg);
18143                 if (dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO)) {
18144                         fprintf(fp, "\tmov ");
18145                         print_const_val(state, src, fp);
18146                         fprintf(fp, ", %s\n",
18147                                 reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO));
18148                 }
18149                 else if (dst_regcm & REGCM_DIVIDEND64) {
18150                         if (size_of(state, dst->type) > 4) {
18151                                 internal_error(state, ins, "64bit constant...");
18152                         }
18153                         fprintf(fp, "\tmov $0, %%edx\n");
18154                         fprintf(fp, "\tmov ");
18155                         print_const_val(state, src, fp);
18156                         fprintf(fp, ", %%eax\n");
18157                 }
18158                 else if (dst_regcm & REGCM_DIVIDEND32) {
18159                         if (size_of(state, dst->type) > 2) {
18160                                 internal_error(state, ins, "32bit constant...");
18161                         }
18162                         fprintf(fp, "\tmov $0, %%dx\n");
18163                         fprintf(fp, "\tmov ");
18164                         print_const_val(state, src, fp);
18165                         fprintf(fp, ", %%ax");
18166                 }
18167                 else if (dst_regcm & (REGCM_XMM | REGCM_MMX)) {
18168                         long ref;
18169                         ref = get_const_pool_ref(state, src, fp);
18170                         fprintf(fp, "\tmovq L%s%lu, %s\n",
18171                                 state->label_prefix, ref,
18172                                 reg(state, dst, (REGCM_XMM | REGCM_MMX)));
18173                 }
18174                 else {
18175                         internal_error(state, ins, "unknown copy immediate type");
18176                 }
18177         }
18178 }
18179
18180 static void print_op_load(struct compile_state *state,
18181         struct triple *ins, FILE *fp)
18182 {
18183         struct triple *dst, *src;
18184         dst = ins;
18185         src = RHS(ins, 0);
18186         if (is_const(src) || is_const(dst)) {
18187                 internal_error(state, ins, "unknown load operation");
18188         }
18189         fprintf(fp, "\tmov (%s), %s\n",
18190                 reg(state, src, REGCM_GPR32),
18191                 reg(state, dst, REGCM_GPR8_LO | REGCM_GPR16 | REGCM_GPR32));
18192 }
18193
18194
18195 static void print_op_store(struct compile_state *state,
18196         struct triple *ins, FILE *fp)
18197 {
18198         struct triple *dst, *src;
18199         dst = RHS(ins, 0);
18200         src = RHS(ins, 1);
18201         if (is_const(src) && (src->op == OP_INTCONST)) {
18202                 long_t value;
18203                 value = (long_t)(src->u.cval);
18204                 fprintf(fp, "\tmov%s $%ld, (%s)\n",
18205                         type_suffix(state, src->type),
18206                         (long)(value),
18207                         reg(state, dst, REGCM_GPR32));
18208         }
18209         else if (is_const(dst) && (dst->op == OP_INTCONST)) {
18210                 fprintf(fp, "\tmov%s %s, 0x%08lx\n",
18211                         type_suffix(state, src->type),
18212                         reg(state, src, REGCM_GPR8_LO | REGCM_GPR16 | REGCM_GPR32),
18213                         (unsigned long)(dst->u.cval));
18214         }
18215         else {
18216                 if (is_const(src) || is_const(dst)) {
18217                         internal_error(state, ins, "unknown store operation");
18218                 }
18219                 fprintf(fp, "\tmov%s %s, (%s)\n",
18220                         type_suffix(state, src->type),
18221                         reg(state, src, REGCM_GPR8_LO | REGCM_GPR16 | REGCM_GPR32),
18222                         reg(state, dst, REGCM_GPR32));
18223         }
18224         
18225         
18226 }
18227
18228 static void print_op_smul(struct compile_state *state,
18229         struct triple *ins, FILE *fp)
18230 {
18231         if (!is_const(RHS(ins, 1))) {
18232                 fprintf(fp, "\timul %s, %s\n",
18233                         reg(state, RHS(ins, 1), REGCM_GPR32),
18234                         reg(state, RHS(ins, 0), REGCM_GPR32));
18235         }
18236         else {
18237                 fprintf(fp, "\timul ");
18238                 print_const_val(state, RHS(ins, 1), fp);
18239                 fprintf(fp, ", %s\n", reg(state, RHS(ins, 0), REGCM_GPR32));
18240         }
18241 }
18242
18243 static void print_op_cmp(struct compile_state *state,
18244         struct triple *ins, FILE *fp)
18245 {
18246         unsigned mask;
18247         int dreg;
18248         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
18249         dreg = check_reg(state, ins, REGCM_FLAGS);
18250         if (!reg_is_reg(state, dreg, REG_EFLAGS)) {
18251                 internal_error(state, ins, "bad dest register for cmp");
18252         }
18253         if (is_const(RHS(ins, 1))) {
18254                 fprintf(fp, "\tcmp ");
18255                 print_const_val(state, RHS(ins, 1), fp);
18256                 fprintf(fp, ", %s\n", reg(state, RHS(ins, 0), mask));
18257         }
18258         else {
18259                 unsigned lmask, rmask;
18260                 int lreg, rreg;
18261                 lreg = check_reg(state, RHS(ins, 0), mask);
18262                 rreg = check_reg(state, RHS(ins, 1), mask);
18263                 lmask = arch_reg_regcm(state, lreg);
18264                 rmask = arch_reg_regcm(state, rreg);
18265                 mask = lmask & rmask;
18266                 fprintf(fp, "\tcmp %s, %s\n",
18267                         reg(state, RHS(ins, 1), mask),
18268                         reg(state, RHS(ins, 0), mask));
18269         }
18270 }
18271
18272 static void print_op_test(struct compile_state *state,
18273         struct triple *ins, FILE *fp)
18274 {
18275         unsigned mask;
18276         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
18277         fprintf(fp, "\ttest %s, %s\n",
18278                 reg(state, RHS(ins, 0), mask),
18279                 reg(state, RHS(ins, 0), mask));
18280 }
18281
18282 static void print_op_branch(struct compile_state *state,
18283         struct triple *branch, FILE *fp)
18284 {
18285         const char *bop = "j";
18286         if (branch->op == OP_JMP) {
18287                 if (TRIPLE_RHS(branch->sizes) != 0) {
18288                         internal_error(state, branch, "jmp with condition?");
18289                 }
18290                 bop = "jmp";
18291         }
18292         else {
18293                 struct triple *ptr;
18294                 if (TRIPLE_RHS(branch->sizes) != 1) {
18295                         internal_error(state, branch, "jmpcc without condition?");
18296                 }
18297                 check_reg(state, RHS(branch, 0), REGCM_FLAGS);
18298                 if ((RHS(branch, 0)->op != OP_CMP) &&
18299                         (RHS(branch, 0)->op != OP_TEST)) {
18300                         internal_error(state, branch, "bad branch test");
18301                 }
18302 #warning "FIXME I have observed instructions between the test and branch instructions"
18303                 ptr = RHS(branch, 0);
18304                 for(ptr = RHS(branch, 0)->next; ptr != branch; ptr = ptr->next) {
18305                         if (ptr->op != OP_COPY) {
18306                                 internal_error(state, branch, "branch does not follow test");
18307                         }
18308                 }
18309                 switch(branch->op) {
18310                 case OP_JMP_EQ:       bop = "jz";  break;
18311                 case OP_JMP_NOTEQ:    bop = "jnz"; break;
18312                 case OP_JMP_SLESS:    bop = "jl";  break;
18313                 case OP_JMP_ULESS:    bop = "jb";  break;
18314                 case OP_JMP_SMORE:    bop = "jg";  break;
18315                 case OP_JMP_UMORE:    bop = "ja";  break;
18316                 case OP_JMP_SLESSEQ:  bop = "jle"; break;
18317                 case OP_JMP_ULESSEQ:  bop = "jbe"; break;
18318                 case OP_JMP_SMOREEQ:  bop = "jge"; break;
18319                 case OP_JMP_UMOREEQ:  bop = "jae"; break;
18320                 default:
18321                         internal_error(state, branch, "Invalid branch op");
18322                         break;
18323                 }
18324                 
18325         }
18326         fprintf(fp, "\t%s L%s%lu\n",
18327                 bop, 
18328                 state->label_prefix,
18329                 (unsigned long)(TARG(branch, 0)->u.cval));
18330 }
18331
18332 static void print_op_set(struct compile_state *state,
18333         struct triple *set, FILE *fp)
18334 {
18335         const char *sop = "set";
18336         if (TRIPLE_RHS(set->sizes) != 1) {
18337                 internal_error(state, set, "setcc without condition?");
18338         }
18339         check_reg(state, RHS(set, 0), REGCM_FLAGS);
18340         if ((RHS(set, 0)->op != OP_CMP) &&
18341                 (RHS(set, 0)->op != OP_TEST)) {
18342                 internal_error(state, set, "bad set test");
18343         }
18344         if (RHS(set, 0)->next != set) {
18345                 internal_error(state, set, "set does not follow test");
18346         }
18347         switch(set->op) {
18348         case OP_SET_EQ:       sop = "setz";  break;
18349         case OP_SET_NOTEQ:    sop = "setnz"; break;
18350         case OP_SET_SLESS:    sop = "setl";  break;
18351         case OP_SET_ULESS:    sop = "setb";  break;
18352         case OP_SET_SMORE:    sop = "setg";  break;
18353         case OP_SET_UMORE:    sop = "seta";  break;
18354         case OP_SET_SLESSEQ:  sop = "setle"; break;
18355         case OP_SET_ULESSEQ:  sop = "setbe"; break;
18356         case OP_SET_SMOREEQ:  sop = "setge"; break;
18357         case OP_SET_UMOREEQ:  sop = "setae"; break;
18358         default:
18359                 internal_error(state, set, "Invalid set op");
18360                 break;
18361         }
18362         fprintf(fp, "\t%s %s\n",
18363                 sop, reg(state, set, REGCM_GPR8_LO));
18364 }
18365
18366 static void print_op_bit_scan(struct compile_state *state, 
18367         struct triple *ins, FILE *fp) 
18368 {
18369         const char *op;
18370         switch(ins->op) {
18371         case OP_BSF: op = "bsf"; break;
18372         case OP_BSR: op = "bsr"; break;
18373         default: 
18374                 internal_error(state, ins, "unknown bit scan");
18375                 op = 0;
18376                 break;
18377         }
18378         fprintf(fp, 
18379                 "\t%s %s, %s\n"
18380                 "\tjnz 1f\n"
18381                 "\tmovl $-1, %s\n"
18382                 "1:\n",
18383                 op,
18384                 reg(state, RHS(ins, 0), REGCM_GPR32),
18385                 reg(state, ins, REGCM_GPR32),
18386                 reg(state, ins, REGCM_GPR32));
18387 }
18388
18389
18390 static void print_sdecl(struct compile_state *state,
18391         struct triple *ins, FILE *fp)
18392 {
18393         fprintf(fp, ".section \"" DATA_SECTION "\"\n");
18394         fprintf(fp, ".balign %d\n", align_of(state, ins->type));
18395         fprintf(fp, "L%s%lu:\n", 
18396                 state->label_prefix, (unsigned long)(ins->u.cval));
18397         print_const(state, MISC(ins, 0), fp);
18398         fprintf(fp, ".section \"" TEXT_SECTION "\"\n");
18399                 
18400 }
18401
18402 static void print_instruction(struct compile_state *state,
18403         struct triple *ins, FILE *fp)
18404 {
18405         /* Assumption: after I have exted the register allocator
18406          * everything is in a valid register. 
18407          */
18408         switch(ins->op) {
18409         case OP_ASM:
18410                 print_op_asm(state, ins, fp);
18411                 break;
18412         case OP_ADD:    print_binary_op(state, "add", ins, fp); break;
18413         case OP_SUB:    print_binary_op(state, "sub", ins, fp); break;
18414         case OP_AND:    print_binary_op(state, "and", ins, fp); break;
18415         case OP_XOR:    print_binary_op(state, "xor", ins, fp); break;
18416         case OP_OR:     print_binary_op(state, "or",  ins, fp); break;
18417         case OP_SL:     print_op_shift(state, "shl", ins, fp); break;
18418         case OP_USR:    print_op_shift(state, "shr", ins, fp); break;
18419         case OP_SSR:    print_op_shift(state, "sar", ins, fp); break;
18420         case OP_POS:    break;
18421         case OP_NEG:    print_unary_op(state, "neg", ins, fp); break;
18422         case OP_INVERT: print_unary_op(state, "not", ins, fp); break;
18423         case OP_INTCONST:
18424         case OP_ADDRCONST:
18425         case OP_BLOBCONST:
18426                 /* Don't generate anything here for constants */
18427         case OP_PHI:
18428                 /* Don't generate anything for variable declarations. */
18429                 break;
18430         case OP_SDECL:
18431                 print_sdecl(state, ins, fp);
18432                 break;
18433         case OP_COPY:   
18434                 print_op_move(state, ins, fp);
18435                 break;
18436         case OP_LOAD:
18437                 print_op_load(state, ins, fp);
18438                 break;
18439         case OP_STORE:
18440                 print_op_store(state, ins, fp);
18441                 break;
18442         case OP_SMUL:
18443                 print_op_smul(state, ins, fp);
18444                 break;
18445         case OP_CMP:    print_op_cmp(state, ins, fp); break;
18446         case OP_TEST:   print_op_test(state, ins, fp); break;
18447         case OP_JMP:
18448         case OP_JMP_EQ:      case OP_JMP_NOTEQ:
18449         case OP_JMP_SLESS:   case OP_JMP_ULESS:
18450         case OP_JMP_SMORE:   case OP_JMP_UMORE:
18451         case OP_JMP_SLESSEQ: case OP_JMP_ULESSEQ:
18452         case OP_JMP_SMOREEQ: case OP_JMP_UMOREEQ:
18453                 print_op_branch(state, ins, fp);
18454                 break;
18455         case OP_SET_EQ:      case OP_SET_NOTEQ:
18456         case OP_SET_SLESS:   case OP_SET_ULESS:
18457         case OP_SET_SMORE:   case OP_SET_UMORE:
18458         case OP_SET_SLESSEQ: case OP_SET_ULESSEQ:
18459         case OP_SET_SMOREEQ: case OP_SET_UMOREEQ:
18460                 print_op_set(state, ins, fp);
18461                 break;
18462         case OP_INB:  case OP_INW:  case OP_INL:
18463                 print_op_in(state, ins, fp); 
18464                 break;
18465         case OP_OUTB: case OP_OUTW: case OP_OUTL:
18466                 print_op_out(state, ins, fp); 
18467                 break;
18468         case OP_BSF:
18469         case OP_BSR:
18470                 print_op_bit_scan(state, ins, fp);
18471                 break;
18472         case OP_RDMSR:
18473                 after_lhs(state, ins);
18474                 fprintf(fp, "\trdmsr\n");
18475                 break;
18476         case OP_WRMSR:
18477                 fprintf(fp, "\twrmsr\n");
18478                 break;
18479         case OP_HLT:
18480                 fprintf(fp, "\thlt\n");
18481                 break;
18482         case OP_SDIVT:
18483                 fprintf(fp, "\tidiv %s\n", reg(state, RHS(ins, 1), REGCM_GPR32));
18484                 break;
18485         case OP_UDIVT:
18486                 fprintf(fp, "\tdiv %s\n", reg(state, RHS(ins, 1), REGCM_GPR32));
18487                 break;
18488         case OP_UMUL:
18489                 fprintf(fp, "\tmul %s\n", reg(state, RHS(ins, 1), REGCM_GPR32));
18490                 break;
18491         case OP_LABEL:
18492                 if (!ins->use) {
18493                         return;
18494                 }
18495                 fprintf(fp, "L%s%lu:\n", 
18496                         state->label_prefix, (unsigned long)(ins->u.cval));
18497                 break;
18498                 /* Ignore OP_PIECE */
18499         case OP_PIECE:
18500                 break;
18501                 /* Operations that should never get here */
18502         case OP_SDIV: case OP_UDIV:
18503         case OP_SMOD: case OP_UMOD:
18504         case OP_LTRUE:   case OP_LFALSE:  case OP_EQ:      case OP_NOTEQ:
18505         case OP_SLESS:   case OP_ULESS:   case OP_SMORE:   case OP_UMORE:
18506         case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
18507         default:
18508                 internal_error(state, ins, "unknown op: %d %s",
18509                         ins->op, tops(ins->op));
18510                 break;
18511         }
18512 }
18513
18514 static void print_instructions(struct compile_state *state)
18515 {
18516         struct triple *first, *ins;
18517         int print_location;
18518         struct occurance *last_occurance;
18519         FILE *fp;
18520         int max_inline_depth;
18521         max_inline_depth = 0;
18522         print_location = 1;
18523         last_occurance = 0;
18524         fp = state->output;
18525         fprintf(fp, ".section \"" TEXT_SECTION "\"\n");
18526         first = state->first;
18527         ins = first;
18528         do {
18529                 if (print_location && 
18530                         last_occurance != ins->occurance) {
18531                         if (!ins->occurance->parent) {
18532                                 fprintf(fp, "\t/* %s,%s:%d.%d */\n",
18533                                         ins->occurance->function,
18534                                         ins->occurance->filename,
18535                                         ins->occurance->line,
18536                                         ins->occurance->col);
18537                         }
18538                         else {
18539                                 struct occurance *ptr;
18540                                 int inline_depth;
18541                                 fprintf(fp, "\t/*\n");
18542                                 inline_depth = 0;
18543                                 for(ptr = ins->occurance; ptr; ptr = ptr->parent) {
18544                                         inline_depth++;
18545                                         fprintf(fp, "\t * %s,%s:%d.%d\n",
18546                                                 ptr->function,
18547                                                 ptr->filename,
18548                                                 ptr->line,
18549                                                 ptr->col);
18550                                 }
18551                                 fprintf(fp, "\t */\n");
18552                                 if (inline_depth > max_inline_depth) {
18553                                         max_inline_depth = inline_depth;
18554                                 }
18555                         }
18556                         if (last_occurance) {
18557                                 put_occurance(last_occurance);
18558                         }
18559                         get_occurance(ins->occurance);
18560                         last_occurance = ins->occurance;
18561                 }
18562
18563                 print_instruction(state, ins, fp);
18564                 ins = ins->next;
18565         } while(ins != first);
18566         if (print_location) {
18567                 fprintf(fp, "/* max inline depth %d */\n",
18568                         max_inline_depth);
18569         }
18570 }
18571
18572 static void generate_code(struct compile_state *state)
18573 {
18574         generate_local_labels(state);
18575         print_instructions(state);
18576         
18577 }
18578
18579 static void print_tokens(struct compile_state *state)
18580 {
18581         struct token *tk;
18582         tk = &state->token[0];
18583         do {
18584 #if 1
18585                 token(state, 0);
18586 #else
18587                 next_token(state, 0);
18588 #endif
18589                 loc(stdout, state, 0);
18590                 printf("%s <- `%s'\n",
18591                         tokens[tk->tok],
18592                         tk->ident ? tk->ident->name :
18593                         tk->str_len ? tk->val.str : "");
18594                 
18595         } while(tk->tok != TOK_EOF);
18596 }
18597
18598 static void call_main(struct compile_state *state)
18599 {
18600         struct triple *call;
18601         call = new_triple(state, OP_CALL, &void_func, -1, -1);
18602         call->type = &void_type;
18603         MISC(call, 0) = state->main_function;
18604         flatten(state, state->first, call);
18605 }
18606
18607 static void compile(const char *filename, const char *ofilename, 
18608         unsigned long features, int debug, int opt, const char *label_prefix)
18609 {
18610         int i;
18611         struct compile_state state;
18612         struct triple *ptr;
18613         memset(&state, 0, sizeof(state));
18614         state.file = 0;
18615         for(i = 0; i < sizeof(state.token)/sizeof(state.token[0]); i++) {
18616                 memset(&state.token[i], 0, sizeof(state.token[i]));
18617                 state.token[i].tok = -1;
18618         }
18619         /* Remember the debug settings */
18620         state.features = features;
18621         state.debug    = debug;
18622         state.optimize = opt;
18623         /* Remember the output filename */
18624         state.ofilename = ofilename;
18625         state.output    = fopen(state.ofilename, "w");
18626         if (!state.output) {
18627                 error(&state, 0, "Cannot open output file %s\n",
18628                         ofilename);
18629         }
18630         /* Remember the label prefix */
18631         state.label_prefix = label_prefix;
18632         /* Prep the preprocessor */
18633         state.if_depth = 0;
18634         state.if_value = 0;
18635         /* register the C keywords */
18636         register_keywords(&state);
18637         /* register the keywords the macro preprocessor knows */
18638         register_macro_keywords(&state);
18639         /* Memorize where some special keywords are. */
18640         state.i_switch   = lookup(&state, "switch", 6);
18641         state.i_case     = lookup(&state, "case", 4);
18642         state.i_continue = lookup(&state, "continue", 8);
18643         state.i_break    = lookup(&state, "break", 5);
18644         state.i_default  = lookup(&state, "default", 7);
18645
18646         /* Allocate beginning bounding labels for the function list */
18647         state.first = label(&state);
18648         state.first->id |= TRIPLE_FLAG_VOLATILE;
18649         use_triple(state.first, state.first);
18650         ptr = label(&state);
18651         ptr->id |= TRIPLE_FLAG_VOLATILE;
18652         use_triple(ptr, ptr);
18653         flatten(&state, state.first, ptr);
18654
18655         /* Enter the globl definition scope */
18656         start_scope(&state);
18657         register_builtins(&state);
18658         compile_file(&state, filename, 1);
18659 #if 0
18660         print_tokens(&state);
18661 #endif  
18662         decls(&state);
18663         /* Exit the global definition scope */
18664         end_scope(&state);
18665
18666         /* Call the main function */
18667         call_main(&state);
18668
18669         /* Now that basic compilation has happened 
18670          * optimize the intermediate code 
18671          */
18672         optimize(&state);
18673
18674         generate_code(&state);
18675         if (state.debug) {
18676                 fprintf(stderr, "done\n");
18677         }
18678 }
18679
18680 static void version(void)
18681 {
18682         printf("romcc " VERSION " released " RELEASE_DATE "\n");
18683 }
18684
18685 static void usage(void)
18686 {
18687         version();
18688         printf(
18689                 "Usage: romcc <source>.c\n"
18690                 "Compile a C source file without using ram\n"
18691         );
18692 }
18693
18694 static void arg_error(char *fmt, ...)
18695 {
18696         va_list args;
18697         va_start(args, fmt);
18698         vfprintf(stderr, fmt, args);
18699         va_end(args);
18700         usage();
18701         exit(1);
18702 }
18703
18704 int main(int argc, char **argv)
18705 {
18706         const char *filename;
18707         const char *ofilename;
18708         const char *label_prefix;
18709         unsigned long features;
18710         int last_argc;
18711         int debug;
18712         int optimize;
18713         features = 0;
18714         label_prefix = "";
18715         ofilename = "auto.inc";
18716         optimize = 0;
18717         debug = 0;
18718         last_argc = -1;
18719         while((argc > 1) && (argc != last_argc)) {
18720                 last_argc = argc;
18721                 if (strncmp(argv[1], "--debug=", 8) == 0) {
18722                         debug = atoi(argv[1] + 8);
18723                         argv++;
18724                         argc--;
18725                 }
18726                 else if (strncmp(argv[1], "--label-prefix=", 15) == 0) {
18727                         label_prefix= argv[1] + 15;
18728                         argv++;
18729                         argc--;
18730                 }
18731                 else if ((strcmp(argv[1],"-O") == 0) ||
18732                         (strcmp(argv[1], "-O1") == 0)) {
18733                         optimize = 1;
18734                         argv++;
18735                         argc--;
18736                 }
18737                 else if (strcmp(argv[1],"-O2") == 0) {
18738                         optimize = 2;
18739                         argv++;
18740                         argc--;
18741                 }
18742                 else if ((strcmp(argv[1], "-o") == 0) && (argc > 2)) {
18743                         ofilename = argv[2];
18744                         argv += 2;
18745                         argc -= 2;
18746                 }
18747                 else if (strncmp(argv[1], "-m", 2) == 0) {
18748                         int result;
18749                         result = arch_encode_feature(argv[1] + 2, &features);
18750                         if (result < 0) {
18751                                 arg_error("Invalid feature specified: %s\n",
18752                                         argv[1] + 2);
18753                         }
18754                         argv++;
18755                         argc--;
18756                 }
18757         }
18758         if (argc != 2) {
18759                 arg_error("Wrong argument count %d\n", argc);
18760         }
18761         filename = argv[1];
18762         compile(filename, ofilename, features, debug, optimize, label_prefix);
18763
18764         return 0;
18765 }