romcc: Ignore empty string tokens. So far, romcc emitted a single double-quote for...
[coreboot.git] / util / romcc / romcc.c
1 #undef VERSION_MAJOR
2 #undef VERSION_MINOR
3 #undef RELEASE_DATE
4 #undef VERSION
5 #define VERSION_MAJOR "0"
6 #define VERSION_MINOR "72"
7 #define RELEASE_DATE "10 February 2010"
8 #define VERSION VERSION_MAJOR "." VERSION_MINOR
9
10 #include <stdarg.h>
11 #include <errno.h>
12 #include <stdint.h>
13 #include <stdlib.h>
14 #include <stdio.h>
15 #include <sys/types.h>
16 #include <sys/stat.h>
17 #include <fcntl.h>
18 #include <unistd.h>
19 #include <stdio.h>
20 #include <string.h>
21 #include <limits.h>
22 #include <locale.h>
23 #include <time.h>
24
25 #define MAX_CWD_SIZE 4096
26 #define MAX_ALLOCATION_PASSES 100
27
28 /* NOTE: Before you even start thinking to touch anything 
29  * in this code, set DEBUG_ROMCC_WARNINGS to 1 to get an
30  * insight on the original author's thoughts. We introduced 
31  * this switch as romcc was about the only thing producing
32  * massive warnings in our code..
33  */
34 #define DEBUG_ROMCC_WARNINGS 0
35
36 #define DEBUG_CONSISTENCY 1
37 #define DEBUG_SDP_BLOCKS 0
38 #define DEBUG_TRIPLE_COLOR 0
39
40 #define DEBUG_DISPLAY_USES 1
41 #define DEBUG_DISPLAY_TYPES 1
42 #define DEBUG_REPLACE_CLOSURE_TYPE_HIRES 0
43 #define DEBUG_DECOMPOSE_PRINT_TUPLES 0
44 #define DEBUG_DECOMPOSE_HIRES  0
45 #define DEBUG_INITIALIZER 0
46 #define DEBUG_UPDATE_CLOSURE_TYPE 0
47 #define DEBUG_LOCAL_TRIPLE 0
48 #define DEBUG_BASIC_BLOCKS_VERBOSE 0
49 #define DEBUG_CPS_RENAME_VARIABLES_HIRES 0
50 #define DEBUG_SIMPLIFY_HIRES 0
51 #define DEBUG_SHRINKING 0
52 #define DEBUG_COALESCE_HITCHES 0
53 #define DEBUG_CODE_ELIMINATION 0
54
55 #define DEBUG_EXPLICIT_CLOSURES 0
56
57 #if DEBUG_ROMCC_WARNINGS
58 #warning "FIXME give clear error messages about unused variables"
59 #warning "FIXME properly handle multi dimensional arrays"
60 #warning "FIXME handle multiple register sizes"
61 #endif
62
63 /*  Control flow graph of a loop without goto.
64  * 
65  *        AAA
66  *   +---/
67  *  /
68  * / +--->CCC
69  * | |    / \
70  * | |  DDD EEE    break;
71  * | |    \    \
72  * | |    FFF   \
73  *  \|    / \    \
74  *   |\ GGG HHH   |   continue;
75  *   | \  \   |   |
76  *   |  \ III |  /
77  *   |   \ | /  / 
78  *   |    vvv  /  
79  *   +----BBB /   
80  *         | /
81  *         vv
82  *        JJJ
83  *
84  * 
85  *             AAA
86  *     +-----+  |  +----+
87  *     |      \ | /     |
88  *     |       BBB  +-+ |
89  *     |       / \ /  | |
90  *     |     CCC JJJ / /
91  *     |     / \    / / 
92  *     |   DDD EEE / /  
93  *     |    |   +-/ /
94  *     |   FFF     /    
95  *     |   / \    /     
96  *     | GGG HHH /      
97  *     |  |   +-/
98  *     | III
99  *     +--+ 
100  *
101  * 
102  * DFlocal(X) = { Y <- Succ(X) | idom(Y) != X }
103  * DFup(Z)    = { Y <- DF(Z) | idom(Y) != X }
104  *
105  *
106  * [] == DFlocal(X) U DF(X)
107  * () == DFup(X)
108  *
109  * Dominator graph of the same nodes.
110  *
111  *           AAA     AAA: [ ] ()
112  *          /   \
113  *        BBB    JJJ BBB: [ JJJ ] ( JJJ )  JJJ: [ ] ()
114  *         |
115  *        CCC        CCC: [ ] ( BBB, JJJ )
116  *        / \
117  *     DDD   EEE     DDD: [ ] ( BBB ) EEE: [ JJJ ] ()
118  *      |
119  *     FFF           FFF: [ ] ( BBB )
120  *     / \         
121  *  GGG   HHH        GGG: [ ] ( BBB ) HHH: [ BBB ] ()
122  *   |
123  *  III              III: [ BBB ] ()
124  *
125  *
126  * BBB and JJJ are definitely the dominance frontier.
127  * Where do I place phi functions and how do I make that decision.
128  *   
129  */
130
131 struct filelist {
132         const char *filename;
133         struct filelist *next;
134 };
135
136 struct filelist *include_filelist = NULL;
137
138 static void die(char *fmt, ...)
139 {
140         va_list args;
141
142         va_start(args, fmt);
143         vfprintf(stderr, fmt, args);
144         va_end(args);
145         fflush(stdout);
146         fflush(stderr);
147         exit(1);
148 }
149
150 static void *xmalloc(size_t size, const char *name)
151 {
152         void *buf;
153         buf = malloc(size);
154         if (!buf) {
155                 die("Cannot malloc %ld bytes to hold %s: %s\n",
156                         size + 0UL, name, strerror(errno));
157         }
158         return buf;
159 }
160
161 static void *xcmalloc(size_t size, const char *name)
162 {
163         void *buf;
164         buf = xmalloc(size, name);
165         memset(buf, 0, size);
166         return buf;
167 }
168
169 static void *xrealloc(void *ptr, size_t size, const char *name)
170 {
171         void *buf;
172         buf = realloc(ptr, size);
173         if (!buf) {
174                 die("Cannot realloc %ld bytes to hold %s: %s\n",
175                         size + 0UL, name, strerror(errno));
176         }
177         return buf;
178 }
179
180 static void xfree(const void *ptr)
181 {
182         free((void *)ptr);
183 }
184
185 static char *xstrdup(const char *str)
186 {
187         char *new;
188         int len;
189         len = strlen(str);
190         new = xmalloc(len + 1, "xstrdup string");
191         memcpy(new, str, len);
192         new[len] = '\0';
193         return new;
194 }
195
196 static void xchdir(const char *path)
197 {
198         if (chdir(path) != 0) {
199                 die("chdir to `%s' failed: %s\n",
200                         path, strerror(errno));
201         }
202 }
203
204 static int exists(const char *dirname, const char *filename)
205 {
206         char cwd[MAX_CWD_SIZE];
207         int does_exist;
208
209         if (getcwd(cwd, sizeof(cwd)) == 0) {
210                 die("cwd buffer to small");
211         }
212
213         does_exist = 1;
214         if (chdir(dirname) != 0) {
215                 does_exist = 0;
216         }
217         if (does_exist && (access(filename, O_RDONLY) < 0)) {
218                 if ((errno != EACCES) && (errno != EROFS)) {
219                         does_exist = 0;
220                 }
221         }
222         xchdir(cwd);
223         return does_exist;
224 }
225
226
227 static char *slurp_file(const char *dirname, const char *filename, off_t *r_size)
228 {
229         char cwd[MAX_CWD_SIZE];
230         char *buf;
231         off_t size, progress;
232         ssize_t result;
233         FILE* file;
234         
235         if (!filename) {
236                 *r_size = 0;
237                 return 0;
238         }
239         if (getcwd(cwd, sizeof(cwd)) == 0) {
240                 die("cwd buffer to small");
241         }
242         xchdir(dirname);
243         file = fopen(filename, "rb");
244         xchdir(cwd);
245         if (file == NULL) {
246                 die("Cannot open '%s' : %s\n",
247                         filename, strerror(errno));
248         }
249         fseek(file, 0, SEEK_END);
250         size = ftell(file);
251         fseek(file, 0, SEEK_SET);
252         *r_size = size +1;
253         buf = xmalloc(size +2, filename);
254         buf[size] = '\n'; /* Make certain the file is newline terminated */
255         buf[size+1] = '\0'; /* Null terminate the file for good measure */
256         progress = 0;
257         while(progress < size) {
258                 result = fread(buf + progress, 1, size - progress, file);
259                 if (result < 0) {
260                         if ((errno == EINTR) || (errno == EAGAIN))
261                                 continue;
262                         die("read on %s of %ld bytes failed: %s\n",
263                                 filename, (size - progress)+ 0UL, strerror(errno));
264                 }
265                 progress += result;
266         }
267         fclose(file);
268         return buf;
269 }
270
271 /* Types on the destination platform */
272 #if DEBUG_ROMCC_WARNINGS
273 #warning "FIXME this assumes 32bit x86 is the destination"
274 #endif
275 typedef int8_t   schar_t;
276 typedef uint8_t  uchar_t;
277 typedef int8_t   char_t;
278 typedef int16_t  short_t;
279 typedef uint16_t ushort_t;
280 typedef int32_t  int_t;
281 typedef uint32_t uint_t;
282 typedef int32_t  long_t;
283 #define ulong_t uint32_t
284
285 #define SCHAR_T_MIN (-128)
286 #define SCHAR_T_MAX 127
287 #define UCHAR_T_MAX 255
288 #define CHAR_T_MIN  SCHAR_T_MIN
289 #define CHAR_T_MAX  SCHAR_T_MAX
290 #define SHRT_T_MIN  (-32768)
291 #define SHRT_T_MAX  32767
292 #define USHRT_T_MAX 65535
293 #define INT_T_MIN   (-LONG_T_MAX - 1)
294 #define INT_T_MAX   2147483647
295 #define UINT_T_MAX  4294967295U
296 #define LONG_T_MIN  (-LONG_T_MAX - 1)
297 #define LONG_T_MAX  2147483647
298 #define ULONG_T_MAX 4294967295U
299
300 #define SIZEOF_I8    8
301 #define SIZEOF_I16   16
302 #define SIZEOF_I32   32
303 #define SIZEOF_I64   64
304
305 #define SIZEOF_CHAR    8
306 #define SIZEOF_SHORT   16
307 #define SIZEOF_INT     32
308 #define SIZEOF_LONG    (sizeof(long_t)*SIZEOF_CHAR)
309
310
311 #define ALIGNOF_CHAR    8
312 #define ALIGNOF_SHORT   16
313 #define ALIGNOF_INT     32
314 #define ALIGNOF_LONG    (sizeof(long_t)*SIZEOF_CHAR)
315
316 #define REG_SIZEOF_REG     32
317 #define REG_SIZEOF_CHAR    REG_SIZEOF_REG
318 #define REG_SIZEOF_SHORT   REG_SIZEOF_REG
319 #define REG_SIZEOF_INT     REG_SIZEOF_REG
320 #define REG_SIZEOF_LONG    REG_SIZEOF_REG
321
322 #define REG_ALIGNOF_REG     REG_SIZEOF_REG
323 #define REG_ALIGNOF_CHAR    REG_SIZEOF_REG
324 #define REG_ALIGNOF_SHORT   REG_SIZEOF_REG
325 #define REG_ALIGNOF_INT     REG_SIZEOF_REG
326 #define REG_ALIGNOF_LONG    REG_SIZEOF_REG
327
328 /* Additional definitions for clarity.
329  * I currently assume a long is the largest native
330  * machine word and that a pointer fits into it.
331  */
332 #define SIZEOF_WORD     SIZEOF_LONG
333 #define SIZEOF_POINTER  SIZEOF_LONG
334 #define ALIGNOF_WORD    ALIGNOF_LONG
335 #define ALIGNOF_POINTER ALIGNOF_LONG
336 #define REG_SIZEOF_POINTER  REG_SIZEOF_LONG
337 #define REG_ALIGNOF_POINTER REG_ALIGNOF_LONG
338
339 struct file_state {
340         struct file_state *prev;
341         const char *basename;
342         char *dirname;
343         const char *buf;
344         off_t size;
345         const char *pos;
346         int line;
347         const char *line_start;
348         int report_line;
349         const char *report_name;
350         const char *report_dir;
351         int macro      : 1;
352         int trigraphs  : 1;
353         int join_lines : 1;
354 };
355 struct hash_entry;
356 struct token {
357         int tok;
358         struct hash_entry *ident;
359         const char *pos;
360         int str_len;
361         union {
362                 ulong_t integer;
363                 const char *str;
364                 int notmacro;
365         } val;
366 };
367
368 /* I have two classes of types:
369  * Operational types.
370  * Logical types.  (The type the C standard says the operation is of)
371  *
372  * The operational types are:
373  * chars
374  * shorts
375  * ints
376  * longs
377  *
378  * floats
379  * doubles
380  * long doubles
381  *
382  * pointer
383  */
384
385
386 /* Machine model.
387  * No memory is useable by the compiler.
388  * There is no floating point support.
389  * All operations take place in general purpose registers.
390  * There is one type of general purpose register.
391  * Unsigned longs are stored in that general purpose register.
392  */
393
394 /* Operations on general purpose registers.
395  */
396
397 #define OP_SDIVT      0
398 #define OP_UDIVT      1
399 #define OP_SMUL       2
400 #define OP_UMUL       3
401 #define OP_SDIV       4
402 #define OP_UDIV       5
403 #define OP_SMOD       6
404 #define OP_UMOD       7
405 #define OP_ADD        8
406 #define OP_SUB        9
407 #define OP_SL        10
408 #define OP_USR       11
409 #define OP_SSR       12 
410 #define OP_AND       13 
411 #define OP_XOR       14
412 #define OP_OR        15
413 #define OP_POS       16 /* Dummy positive operator don't use it */
414 #define OP_NEG       17
415 #define OP_INVERT    18
416                      
417 #define OP_EQ        20
418 #define OP_NOTEQ     21
419 #define OP_SLESS     22
420 #define OP_ULESS     23
421 #define OP_SMORE     24
422 #define OP_UMORE     25
423 #define OP_SLESSEQ   26
424 #define OP_ULESSEQ   27
425 #define OP_SMOREEQ   28
426 #define OP_UMOREEQ   29
427                      
428 #define OP_LFALSE    30  /* Test if the expression is logically false */
429 #define OP_LTRUE     31  /* Test if the expression is logcially true */
430
431 #define OP_LOAD      32
432 #define OP_STORE     33
433 /* For OP_STORE ->type holds the type
434  * RHS(0) holds the destination address
435  * RHS(1) holds the value to store.
436  */
437
438 #define OP_UEXTRACT  34
439 /* OP_UEXTRACT extracts an unsigned bitfield from a pseudo register
440  * RHS(0) holds the psuedo register to extract from
441  * ->type holds the size of the bitfield.
442  * ->u.bitfield.size holds the size of the bitfield.
443  * ->u.bitfield.offset holds the offset to extract from
444  */
445 #define OP_SEXTRACT  35
446 /* OP_SEXTRACT extracts a signed bitfield from a pseudo register
447  * RHS(0) holds the psuedo register to extract from
448  * ->type holds the size of the bitfield.
449  * ->u.bitfield.size holds the size of the bitfield.
450  * ->u.bitfield.offset holds the offset to extract from
451  */
452 #define OP_DEPOSIT   36
453 /* OP_DEPOSIT replaces a bitfield with a new value.
454  * RHS(0) holds the value to replace a bitifield in.
455  * RHS(1) holds the replacement value
456  * ->u.bitfield.size holds the size of the bitfield.
457  * ->u.bitfield.offset holds the deposit into
458  */
459
460 #define OP_NOOP      37
461
462 #define OP_MIN_CONST 50
463 #define OP_MAX_CONST 58
464 #define IS_CONST_OP(X) (((X) >= OP_MIN_CONST) && ((X) <= OP_MAX_CONST))
465 #define OP_INTCONST  50
466 /* For OP_INTCONST ->type holds the type.
467  * ->u.cval holds the constant value.
468  */
469 #define OP_BLOBCONST 51
470 /* For OP_BLOBCONST ->type holds the layout and size
471  * information.  u.blob holds a pointer to the raw binary
472  * data for the constant initializer.
473  */
474 #define OP_ADDRCONST 52
475 /* For OP_ADDRCONST ->type holds the type.
476  * MISC(0) holds the reference to the static variable.
477  * ->u.cval holds an offset from that value.
478  */
479 #define OP_UNKNOWNVAL 59
480 /* For OP_UNKNOWNAL ->type holds the type.
481  * For some reason we don't know what value this type has.
482  * This allows for variables that have don't have values
483  * assigned yet, or variables whose value we simply do not know.
484  */
485
486 #define OP_WRITE     60 
487 /* OP_WRITE moves one pseudo register to another.
488  * MISC(0) holds the destination pseudo register, which must be an OP_DECL.
489  * RHS(0) holds the psuedo to move.
490  */
491
492 #define OP_READ      61
493 /* OP_READ reads the value of a variable and makes
494  * it available for the pseudo operation.
495  * Useful for things like def-use chains.
496  * RHS(0) holds points to the triple to read from.
497  */
498 #define OP_COPY      62
499 /* OP_COPY makes a copy of the pseudo register or constant in RHS(0).
500  */
501 #define OP_CONVERT   63
502 /* OP_CONVERT makes a copy of the pseudo register or constant in RHS(0).
503  * And then the type is converted appropriately.
504  */
505 #define OP_PIECE     64
506 /* OP_PIECE returns one piece of a instruction that returns a structure.
507  * MISC(0) is the instruction
508  * u.cval is the LHS piece of the instruction to return.
509  */
510 #define OP_ASM       65
511 /* OP_ASM holds a sequence of assembly instructions, the result
512  * of a C asm directive.
513  * RHS(x) holds input value x to the assembly sequence.
514  * LHS(x) holds the output value x from the assembly sequence.
515  * u.blob holds the string of assembly instructions.
516  */
517
518 #define OP_DEREF     66
519 /* OP_DEREF generates an lvalue from a pointer.
520  * RHS(0) holds the pointer value.
521  * OP_DEREF serves as a place holder to indicate all necessary
522  * checks have been done to indicate a value is an lvalue.
523  */
524 #define OP_DOT       67
525 /* OP_DOT references a submember of a structure lvalue.
526  * MISC(0) holds the lvalue.
527  * ->u.field holds the name of the field we want.
528  *
529  * Not seen after structures are flattened.
530  */
531 #define OP_INDEX     68
532 /* OP_INDEX references a submember of a tuple or array lvalue.
533  * MISC(0) holds the lvalue.
534  * ->u.cval holds the index into the lvalue.
535  *
536  * Not seen after structures are flattened.
537  */
538 #define OP_VAL       69
539 /* OP_VAL returns the value of a subexpression of the current expression.
540  * Useful for operators that have side effects.
541  * RHS(0) holds the expression.
542  * MISC(0) holds the subexpression of RHS(0) that is the
543  * value of the expression.
544  *
545  * Not seen outside of expressions.
546  */
547
548 #define OP_TUPLE     70
549 /* OP_TUPLE is an array of triples that are either variable
550  * or values for a structure or an array.  It is used as
551  * a place holder when flattening compound types.
552  * The value represented by an OP_TUPLE is held in N registers.
553  * LHS(0..N-1) refer to those registers.
554  * ->use is a list of statements that use the value.
555  * 
556  * Although OP_TUPLE always has register sized pieces they are not
557  * used until structures are flattened/decomposed into their register
558  * components. 
559  * ???? registers ????
560  */
561
562 #define OP_BITREF    71
563 /* OP_BITREF describes a bitfield as an lvalue.
564  * RHS(0) holds the register value.
565  * ->type holds the type of the bitfield.
566  * ->u.bitfield.size holds the size of the bitfield.
567  * ->u.bitfield.offset holds the offset of the bitfield in the register
568  */
569
570
571 #define OP_FCALL     72
572 /* OP_FCALL performs a procedure call. 
573  * MISC(0) holds a pointer to the OP_LIST of a function
574  * RHS(x) holds argument x of a function
575  * 
576  * Currently not seen outside of expressions.
577  */
578 #define OP_PROG      73
579 /* OP_PROG is an expression that holds a list of statements, or
580  * expressions.  The final expression is the value of the expression.
581  * RHS(0) holds the start of the list.
582  */
583
584 /* statements */
585 #define OP_LIST      80
586 /* OP_LIST Holds a list of statements that compose a function, and a result value.
587  * RHS(0) holds the list of statements.
588  * A list of all functions is maintained.
589  */
590
591 #define OP_BRANCH    81 /* an unconditional branch */
592 /* For branch instructions
593  * TARG(0) holds the branch target.
594  * ->next holds where to branch to if the branch is not taken.
595  * The branch target can only be a label
596  */
597
598 #define OP_CBRANCH   82 /* a conditional branch */
599 /* For conditional branch instructions
600  * RHS(0) holds the branch condition.
601  * TARG(0) holds the branch target.
602  * ->next holds where to branch to if the branch is not taken.
603  * The branch target can only be a label
604  */
605
606 #define OP_CALL      83 /* an uncontional branch that will return */
607 /* For call instructions
608  * MISC(0) holds the OP_RET that returns from the branch
609  * TARG(0) holds the branch target.
610  * ->next holds where to branch to if the branch is not taken.
611  * The branch target can only be a label
612  */
613
614 #define OP_RET       84 /* an uncontinonal branch through a variable back to an OP_CALL */
615 /* For call instructions
616  * RHS(0) holds the variable with the return address
617  * The branch target can only be a label
618  */
619
620 #define OP_LABEL     86
621 /* OP_LABEL is a triple that establishes an target for branches.
622  * ->use is the list of all branches that use this label.
623  */
624
625 #define OP_ADECL     87 
626 /* OP_ADECL is a triple that establishes an lvalue for assignments.
627  * A variable takes N registers to contain.
628  * LHS(0..N-1) refer to an OP_PIECE triple that represents
629  * the Xth register that the variable is stored in.
630  * ->use is a list of statements that use the variable.
631  * 
632  * Although OP_ADECL always has register sized pieces they are not
633  * used until structures are flattened/decomposed into their register
634  * components. 
635  */
636
637 #define OP_SDECL     88
638 /* OP_SDECL is a triple that establishes a variable of static
639  * storage duration.
640  * ->use is a list of statements that use the variable.
641  * MISC(0) holds the initializer expression.
642  */
643
644
645 #define OP_PHI       89
646 /* OP_PHI is a triple used in SSA form code.  
647  * It is used when multiple code paths merge and a variable needs
648  * a single assignment from any of those code paths.
649  * The operation is a cross between OP_DECL and OP_WRITE, which
650  * is what OP_PHI is generated from.
651  * 
652  * RHS(x) points to the value from code path x
653  * The number of RHS entries is the number of control paths into the block
654  * in which OP_PHI resides.  The elements of the array point to point
655  * to the variables OP_PHI is derived from.
656  *
657  * MISC(0) holds a pointer to the orginal OP_DECL node.
658  */
659
660 #if 0
661 /* continuation helpers
662  */
663 #define OP_CPS_BRANCH    90 /* an unconditional branch */
664 /* OP_CPS_BRANCH calls a continuation 
665  * RHS(x) holds argument x of the function
666  * TARG(0) holds OP_CPS_START target
667  */
668 #define OP_CPS_CBRANCH   91  /* a conditional branch */
669 /* OP_CPS_CBRANCH conditionally calls one of two continuations 
670  * RHS(0) holds the branch condition
671  * RHS(x + 1) holds argument x of the function
672  * TARG(0) holds the OP_CPS_START to jump to when true
673  * ->next holds the OP_CPS_START to jump to when false
674  */
675 #define OP_CPS_CALL      92  /* an uncontional branch that will return */
676 /* For OP_CPS_CALL instructions
677  * RHS(x) holds argument x of the function
678  * MISC(0) holds the OP_CPS_RET that returns from the branch
679  * TARG(0) holds the branch target.
680  * ->next holds where the OP_CPS_RET will return to.
681  */
682 #define OP_CPS_RET       93
683 /* OP_CPS_RET conditionally calls one of two continuations 
684  * RHS(0) holds the variable with the return function address
685  * RHS(x + 1) holds argument x of the function
686  * The branch target may be any OP_CPS_START
687  */
688 #define OP_CPS_END       94
689 /* OP_CPS_END is the triple at the end of the program.
690  * For most practical purposes it is a branch.
691  */
692 #define OP_CPS_START     95
693 /* OP_CPS_START is a triple at the start of a continuation
694  * The arguments variables takes N registers to contain.
695  * LHS(0..N-1) refer to an OP_PIECE triple that represents
696  * the Xth register that the arguments are stored in.
697  */
698 #endif
699
700 /* Architecture specific instructions */
701 #define OP_CMP         100
702 #define OP_TEST        101
703 #define OP_SET_EQ      102
704 #define OP_SET_NOTEQ   103
705 #define OP_SET_SLESS   104
706 #define OP_SET_ULESS   105
707 #define OP_SET_SMORE   106
708 #define OP_SET_UMORE   107
709 #define OP_SET_SLESSEQ 108
710 #define OP_SET_ULESSEQ 109
711 #define OP_SET_SMOREEQ 110
712 #define OP_SET_UMOREEQ 111
713
714 #define OP_JMP         112
715 #define OP_JMP_EQ      113
716 #define OP_JMP_NOTEQ   114
717 #define OP_JMP_SLESS   115
718 #define OP_JMP_ULESS   116
719 #define OP_JMP_SMORE   117
720 #define OP_JMP_UMORE   118
721 #define OP_JMP_SLESSEQ 119
722 #define OP_JMP_ULESSEQ 120
723 #define OP_JMP_SMOREEQ 121
724 #define OP_JMP_UMOREEQ 122
725
726 /* Builtin operators that it is just simpler to use the compiler for */
727 #define OP_INB         130
728 #define OP_INW         131
729 #define OP_INL         132
730 #define OP_OUTB        133
731 #define OP_OUTW        134
732 #define OP_OUTL        135
733 #define OP_BSF         136
734 #define OP_BSR         137
735 #define OP_RDMSR       138
736 #define OP_WRMSR       139
737 #define OP_HLT         140
738
739 struct op_info {
740         const char *name;
741         unsigned flags;
742 #define PURE       0x001 /* Triple has no side effects */
743 #define IMPURE     0x002 /* Triple has side effects */
744 #define PURE_BITS(FLAGS) ((FLAGS) & 0x3)
745 #define DEF        0x004 /* Triple is a variable definition */
746 #define BLOCK      0x008 /* Triple stores the current block */
747 #define STRUCTURAL 0x010 /* Triple does not generate a machine instruction */
748 #define BRANCH_BITS(FLAGS) ((FLAGS) & 0xe0 )
749 #define UBRANCH    0x020 /* Triple is an unconditional branch instruction */
750 #define CBRANCH    0x040 /* Triple is a conditional branch instruction */
751 #define RETBRANCH  0x060 /* Triple is a return instruction */
752 #define CALLBRANCH 0x080 /* Triple is a call instruction */
753 #define ENDBRANCH  0x0a0 /* Triple is an end instruction */
754 #define PART       0x100 /* Triple is really part of another triple */
755 #define BITFIELD   0x200 /* Triple manipulates a bitfield */
756         signed char lhs, rhs, misc, targ;
757 };
758
759 #define OP(LHS, RHS, MISC, TARG, FLAGS, NAME) { \
760         .name = (NAME), \
761         .flags = (FLAGS), \
762         .lhs = (LHS), \
763         .rhs = (RHS), \
764         .misc = (MISC), \
765         .targ = (TARG), \
766          }
767 static const struct op_info table_ops[] = {
768 [OP_SDIVT      ] = OP( 2,  2, 0, 0, PURE | BLOCK , "sdivt"),
769 [OP_UDIVT      ] = OP( 2,  2, 0, 0, PURE | BLOCK , "udivt"),
770 [OP_SMUL       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smul"),
771 [OP_UMUL       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umul"),
772 [OP_SDIV       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sdiv"),
773 [OP_UDIV       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "udiv"),
774 [OP_SMOD       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smod"),
775 [OP_UMOD       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umod"),
776 [OP_ADD        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "add"),
777 [OP_SUB        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sub"),
778 [OP_SL         ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sl"),
779 [OP_USR        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "usr"),
780 [OP_SSR        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "ssr"),
781 [OP_AND        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "and"),
782 [OP_XOR        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "xor"),
783 [OP_OR         ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "or"),
784 [OP_POS        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "pos"),
785 [OP_NEG        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "neg"),
786 [OP_INVERT     ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "invert"),
787
788 [OP_EQ         ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "eq"),
789 [OP_NOTEQ      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "noteq"),
790 [OP_SLESS      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sless"),
791 [OP_ULESS      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "uless"),
792 [OP_SMORE      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smore"),
793 [OP_UMORE      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umore"),
794 [OP_SLESSEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "slesseq"),
795 [OP_ULESSEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "ulesseq"),
796 [OP_SMOREEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smoreeq"),
797 [OP_UMOREEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umoreeq"),
798 [OP_LFALSE     ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "lfalse"),
799 [OP_LTRUE      ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "ltrue"),
800
801 [OP_LOAD       ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "load"),
802 [OP_STORE      ] = OP( 0,  2, 0, 0, PURE | BLOCK , "store"),
803
804 [OP_UEXTRACT   ] = OP( 0,  1, 0, 0, PURE | DEF | BITFIELD, "uextract"),
805 [OP_SEXTRACT   ] = OP( 0,  1, 0, 0, PURE | DEF | BITFIELD, "sextract"),
806 [OP_DEPOSIT    ] = OP( 0,  2, 0, 0, PURE | DEF | BITFIELD, "deposit"),
807
808 [OP_NOOP       ] = OP( 0,  0, 0, 0, PURE | BLOCK | STRUCTURAL, "noop"),
809
810 [OP_INTCONST   ] = OP( 0,  0, 0, 0, PURE | DEF, "intconst"),
811 [OP_BLOBCONST  ] = OP( 0,  0, 0, 0, PURE , "blobconst"),
812 [OP_ADDRCONST  ] = OP( 0,  0, 1, 0, PURE | DEF, "addrconst"),
813 [OP_UNKNOWNVAL ] = OP( 0,  0, 0, 0, PURE | DEF, "unknown"),
814
815 #if DEBUG_ROMCC_WARNINGS
816 #warning "FIXME is it correct for OP_WRITE to be a def?  I currently use it as one..."
817 #endif
818 [OP_WRITE      ] = OP( 0,  1, 1, 0, PURE | DEF | BLOCK, "write"),
819 [OP_READ       ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "read"),
820 [OP_COPY       ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "copy"),
821 [OP_CONVERT    ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "convert"),
822 [OP_PIECE      ] = OP( 0,  0, 1, 0, PURE | DEF | STRUCTURAL | PART, "piece"),
823 [OP_ASM        ] = OP(-1, -1, 0, 0, PURE, "asm"),
824 [OP_DEREF      ] = OP( 0,  1, 0, 0, 0 | DEF | BLOCK, "deref"), 
825 [OP_DOT        ] = OP( 0,  0, 1, 0, PURE | DEF | PART, "dot"),
826 [OP_INDEX      ] = OP( 0,  0, 1, 0, PURE | DEF | PART, "index"),
827
828 [OP_VAL        ] = OP( 0,  1, 1, 0, 0 | DEF | BLOCK, "val"),
829 [OP_TUPLE      ] = OP(-1,  0, 0, 0, 0 | PURE | BLOCK | STRUCTURAL, "tuple"),
830 [OP_BITREF     ] = OP( 0,  1, 0, 0, 0 | DEF | PURE | STRUCTURAL | BITFIELD, "bitref"),
831 /* Call is special most it can stand in for anything so it depends on context */
832 [OP_FCALL      ] = OP( 0, -1, 1, 0, 0 | BLOCK | CALLBRANCH, "fcall"),
833 [OP_PROG       ] = OP( 0,  1, 0, 0, 0 | IMPURE | BLOCK | STRUCTURAL, "prog"),
834 /* The sizes of OP_FCALL depends upon context */
835
836 [OP_LIST       ] = OP( 0,  1, 1, 0, 0 | DEF | STRUCTURAL, "list"),
837 [OP_BRANCH     ] = OP( 0,  0, 0, 1, PURE | BLOCK | UBRANCH, "branch"),
838 [OP_CBRANCH    ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "cbranch"),
839 [OP_CALL       ] = OP( 0,  0, 1, 1, PURE | BLOCK | CALLBRANCH, "call"),
840 [OP_RET        ] = OP( 0,  1, 0, 0, PURE | BLOCK | RETBRANCH, "ret"),
841 [OP_LABEL      ] = OP( 0,  0, 0, 0, PURE | BLOCK | STRUCTURAL, "label"),
842 [OP_ADECL      ] = OP( 0,  0, 0, 0, PURE | BLOCK | STRUCTURAL, "adecl"),
843 [OP_SDECL      ] = OP( 0,  0, 1, 0, PURE | BLOCK | STRUCTURAL, "sdecl"),
844 /* The number of RHS elements of OP_PHI depend upon context */
845 [OP_PHI        ] = OP( 0, -1, 1, 0, PURE | DEF | BLOCK, "phi"),
846
847 #if 0
848 [OP_CPS_BRANCH ] = OP( 0, -1, 0, 1, PURE | BLOCK | UBRANCH,     "cps_branch"),
849 [OP_CPS_CBRANCH] = OP( 0, -1, 0, 1, PURE | BLOCK | CBRANCH,     "cps_cbranch"),
850 [OP_CPS_CALL   ] = OP( 0, -1, 1, 1, PURE | BLOCK | CALLBRANCH,  "cps_call"),
851 [OP_CPS_RET    ] = OP( 0, -1, 0, 0, PURE | BLOCK | RETBRANCH,   "cps_ret"),
852 [OP_CPS_END    ] = OP( 0, -1, 0, 0, IMPURE | BLOCK | ENDBRANCH, "cps_end"),
853 [OP_CPS_START  ] = OP( -1, 0, 0, 0, PURE | BLOCK | STRUCTURAL,  "cps_start"),
854 #endif
855
856 [OP_CMP        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK, "cmp"),
857 [OP_TEST       ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "test"),
858 [OP_SET_EQ     ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_eq"),
859 [OP_SET_NOTEQ  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_noteq"),
860 [OP_SET_SLESS  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_sless"),
861 [OP_SET_ULESS  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_uless"),
862 [OP_SET_SMORE  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_smore"),
863 [OP_SET_UMORE  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_umore"),
864 [OP_SET_SLESSEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_slesseq"),
865 [OP_SET_ULESSEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_ulesseq"),
866 [OP_SET_SMOREEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_smoreq"),
867 [OP_SET_UMOREEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_umoreq"),
868 [OP_JMP        ] = OP( 0,  0, 0, 1, PURE | BLOCK | UBRANCH, "jmp"),
869 [OP_JMP_EQ     ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_eq"),
870 [OP_JMP_NOTEQ  ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_noteq"),
871 [OP_JMP_SLESS  ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_sless"),
872 [OP_JMP_ULESS  ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_uless"),
873 [OP_JMP_SMORE  ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_smore"),
874 [OP_JMP_UMORE  ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_umore"),
875 [OP_JMP_SLESSEQ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_slesseq"),
876 [OP_JMP_ULESSEQ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_ulesseq"),
877 [OP_JMP_SMOREEQ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_smoreq"),
878 [OP_JMP_UMOREEQ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_umoreq"),
879
880 [OP_INB        ] = OP( 0,  1, 0, 0, IMPURE | DEF | BLOCK, "__inb"),
881 [OP_INW        ] = OP( 0,  1, 0, 0, IMPURE | DEF | BLOCK, "__inw"),
882 [OP_INL        ] = OP( 0,  1, 0, 0, IMPURE | DEF | BLOCK, "__inl"),
883 [OP_OUTB       ] = OP( 0,  2, 0, 0, IMPURE| BLOCK, "__outb"),
884 [OP_OUTW       ] = OP( 0,  2, 0, 0, IMPURE| BLOCK, "__outw"),
885 [OP_OUTL       ] = OP( 0,  2, 0, 0, IMPURE| BLOCK, "__outl"),
886 [OP_BSF        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "__bsf"),
887 [OP_BSR        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "__bsr"),
888 [OP_RDMSR      ] = OP( 2,  1, 0, 0, IMPURE | BLOCK, "__rdmsr"),
889 [OP_WRMSR      ] = OP( 0,  3, 0, 0, IMPURE | BLOCK, "__wrmsr"),
890 [OP_HLT        ] = OP( 0,  0, 0, 0, IMPURE | BLOCK, "__hlt"),
891 };
892 #undef OP
893 #define OP_MAX      (sizeof(table_ops)/sizeof(table_ops[0]))
894
895 static const char *tops(int index) 
896 {
897         static const char unknown[] = "unknown op";
898         if (index < 0) {
899                 return unknown;
900         }
901         if (index > OP_MAX) {
902                 return unknown;
903         }
904         return table_ops[index].name;
905 }
906
907 struct asm_info;
908 struct triple;
909 struct block;
910 struct triple_set {
911         struct triple_set *next;
912         struct triple *member;
913 };
914
915 #define MAX_LHS  63
916 #define MAX_RHS  127
917 #define MAX_MISC 3
918 #define MAX_TARG 1
919
920 struct occurance {
921         int count;
922         const char *filename;
923         const char *function;
924         int line;
925         int col;
926         struct occurance *parent;
927 };
928 struct bitfield {
929         ulong_t size : 8;
930         ulong_t offset : 24;
931 };
932 struct triple {
933         struct triple *next, *prev;
934         struct triple_set *use;
935         struct type *type;
936         unsigned int op : 8;
937         unsigned int template_id : 7;
938         unsigned int lhs  : 6;
939         unsigned int rhs  : 7;
940         unsigned int misc : 2;
941         unsigned int targ : 1;
942 #define TRIPLE_SIZE(TRIPLE) \
943         ((TRIPLE)->lhs + (TRIPLE)->rhs + (TRIPLE)->misc + (TRIPLE)->targ)
944 #define TRIPLE_LHS_OFF(PTR)  (0)
945 #define TRIPLE_RHS_OFF(PTR)  (TRIPLE_LHS_OFF(PTR) + (PTR)->lhs)
946 #define TRIPLE_MISC_OFF(PTR) (TRIPLE_RHS_OFF(PTR) + (PTR)->rhs)
947 #define TRIPLE_TARG_OFF(PTR) (TRIPLE_MISC_OFF(PTR) + (PTR)->misc)
948 #define LHS(PTR,INDEX) ((PTR)->param[TRIPLE_LHS_OFF(PTR) + (INDEX)])
949 #define RHS(PTR,INDEX) ((PTR)->param[TRIPLE_RHS_OFF(PTR) + (INDEX)])
950 #define TARG(PTR,INDEX) ((PTR)->param[TRIPLE_TARG_OFF(PTR) + (INDEX)])
951 #define MISC(PTR,INDEX) ((PTR)->param[TRIPLE_MISC_OFF(PTR) + (INDEX)])
952         unsigned id; /* A scratch value and finally the register */
953 #define TRIPLE_FLAG_FLATTENED   (1 << 31)
954 #define TRIPLE_FLAG_PRE_SPLIT   (1 << 30)
955 #define TRIPLE_FLAG_POST_SPLIT  (1 << 29)
956 #define TRIPLE_FLAG_VOLATILE    (1 << 28)
957 #define TRIPLE_FLAG_INLINE      (1 << 27) /* ???? */
958 #define TRIPLE_FLAG_LOCAL       (1 << 26)
959
960 #define TRIPLE_FLAG_COPY TRIPLE_FLAG_VOLATILE
961         struct occurance *occurance;
962         union {
963                 ulong_t cval;
964                 struct bitfield bitfield;
965                 struct block  *block;
966                 void *blob;
967                 struct hash_entry *field;
968                 struct asm_info *ainfo;
969                 struct triple *func;
970                 struct symbol *symbol;
971         } u;
972         struct triple *param[2];
973 };
974
975 struct reg_info {
976         unsigned reg;
977         unsigned regcm;
978 };
979 struct ins_template {
980         struct reg_info lhs[MAX_LHS + 1], rhs[MAX_RHS + 1];
981 };
982
983 struct asm_info {
984         struct ins_template tmpl;
985         char *str;
986 };
987
988 struct block_set {
989         struct block_set *next;
990         struct block *member;
991 };
992 struct block {
993         struct block *work_next;
994         struct triple *first, *last;
995         int edge_count;
996         struct block_set *edges;
997         int users;
998         struct block_set *use;
999         struct block_set *idominates;
1000         struct block_set *domfrontier;
1001         struct block *idom;
1002         struct block_set *ipdominates;
1003         struct block_set *ipdomfrontier;
1004         struct block *ipdom;
1005         int vertex;
1006         
1007 };
1008
1009 struct symbol {
1010         struct symbol *next;
1011         struct hash_entry *ident;
1012         struct triple *def;
1013         struct type *type;
1014         int scope_depth;
1015 };
1016
1017 struct macro_arg {
1018         struct macro_arg *next;
1019         struct hash_entry *ident;
1020 };
1021 struct macro {
1022         struct hash_entry *ident;
1023         const char *buf;
1024         int buf_len;
1025         struct macro_arg *args;
1026         int argc;
1027 };
1028
1029 struct hash_entry {
1030         struct hash_entry *next;
1031         const char *name;
1032         int name_len;
1033         int tok;
1034         struct macro *sym_define;
1035         struct symbol *sym_label;
1036         struct symbol *sym_tag;
1037         struct symbol *sym_ident;
1038 };
1039
1040 #define HASH_TABLE_SIZE 2048
1041
1042 struct compiler_state {
1043         const char *label_prefix;
1044         const char *ofilename;
1045         unsigned long flags;
1046         unsigned long debug;
1047         unsigned long max_allocation_passes;
1048
1049         size_t include_path_count;
1050         const char **include_paths;
1051
1052         size_t define_count;
1053         const char **defines;
1054
1055         size_t undef_count;
1056         const char **undefs;
1057 };
1058 struct arch_state {
1059         unsigned long features;
1060 };
1061 struct basic_blocks {
1062         struct triple *func;
1063         struct triple *first;
1064         struct block *first_block, *last_block;
1065         int last_vertex;
1066 };
1067 #define MAX_PP_IF_DEPTH 63
1068 struct compile_state {
1069         struct compiler_state *compiler;
1070         struct arch_state *arch;
1071         FILE *output;
1072         FILE *errout;
1073         FILE *dbgout;
1074         struct file_state *file;
1075         struct occurance *last_occurance;
1076         const char *function;
1077         int    token_base;
1078         struct token token[6];
1079         struct hash_entry *hash_table[HASH_TABLE_SIZE];
1080         struct hash_entry *i_switch;
1081         struct hash_entry *i_case;
1082         struct hash_entry *i_continue;
1083         struct hash_entry *i_break;
1084         struct hash_entry *i_default;
1085         struct hash_entry *i_return;
1086         /* Additional hash entries for predefined macros */
1087         struct hash_entry *i_defined;
1088         struct hash_entry *i___VA_ARGS__;
1089         struct hash_entry *i___FILE__;
1090         struct hash_entry *i___LINE__;
1091         /* Additional hash entries for predefined identifiers */
1092         struct hash_entry *i___func__;
1093         /* Additional hash entries for attributes */
1094         struct hash_entry *i_noinline;
1095         struct hash_entry *i_always_inline;
1096         int scope_depth;
1097         unsigned char if_bytes[(MAX_PP_IF_DEPTH + CHAR_BIT -1)/CHAR_BIT];
1098         int if_depth;
1099         int eat_depth, eat_targ;
1100         struct file_state *macro_file;
1101         struct triple *functions;
1102         struct triple *main_function;
1103         struct triple *first;
1104         struct triple *global_pool;
1105         struct basic_blocks bb;
1106         int functions_joined;
1107 };
1108
1109 /* visibility global/local */
1110 /* static/auto duration */
1111 /* typedef, register, inline */
1112 #define STOR_SHIFT         0
1113 #define STOR_MASK     0x001f
1114 /* Visibility */
1115 #define STOR_GLOBAL   0x0001
1116 /* Duration */
1117 #define STOR_PERM     0x0002
1118 /* Definition locality */
1119 #define STOR_NONLOCAL 0x0004  /* The definition is not in this translation unit */
1120 /* Storage specifiers */
1121 #define STOR_AUTO     0x0000
1122 #define STOR_STATIC   0x0002
1123 #define STOR_LOCAL    0x0003
1124 #define STOR_EXTERN   0x0007
1125 #define STOR_INLINE   0x0008
1126 #define STOR_REGISTER 0x0010
1127 #define STOR_TYPEDEF  0x0018
1128
1129 #define QUAL_SHIFT         5
1130 #define QUAL_MASK     0x00e0
1131 #define QUAL_NONE     0x0000
1132 #define QUAL_CONST    0x0020
1133 #define QUAL_VOLATILE 0x0040
1134 #define QUAL_RESTRICT 0x0080
1135
1136 #define TYPE_SHIFT         8
1137 #define TYPE_MASK     0x1f00
1138 #define TYPE_INTEGER(TYPE)    ((((TYPE) >= TYPE_CHAR) && ((TYPE) <= TYPE_ULLONG)) || ((TYPE) == TYPE_ENUM) || ((TYPE) == TYPE_BITFIELD))
1139 #define TYPE_ARITHMETIC(TYPE) ((((TYPE) >= TYPE_CHAR) && ((TYPE) <= TYPE_LDOUBLE)) || ((TYPE) == TYPE_ENUM) || ((TYPE) == TYPE_BITFIELD))
1140 #define TYPE_UNSIGNED(TYPE)   ((TYPE) & 0x0100)
1141 #define TYPE_SIGNED(TYPE)     (!TYPE_UNSIGNED(TYPE))
1142 #define TYPE_MKUNSIGNED(TYPE) (((TYPE) & ~0xF000) | 0x0100)
1143 #define TYPE_RANK(TYPE)       ((TYPE) & ~0xF1FF)
1144 #define TYPE_PTR(TYPE)        (((TYPE) & TYPE_MASK) == TYPE_POINTER)
1145 #define TYPE_DEFAULT  0x0000
1146 #define TYPE_VOID     0x0100
1147 #define TYPE_CHAR     0x0200
1148 #define TYPE_UCHAR    0x0300
1149 #define TYPE_SHORT    0x0400
1150 #define TYPE_USHORT   0x0500
1151 #define TYPE_INT      0x0600
1152 #define TYPE_UINT     0x0700
1153 #define TYPE_LONG     0x0800
1154 #define TYPE_ULONG    0x0900
1155 #define TYPE_LLONG    0x0a00 /* long long */
1156 #define TYPE_ULLONG   0x0b00
1157 #define TYPE_FLOAT    0x0c00
1158 #define TYPE_DOUBLE   0x0d00
1159 #define TYPE_LDOUBLE  0x0e00 /* long double */
1160
1161 /* Note: TYPE_ENUM is chosen very carefully so TYPE_RANK works */
1162 #define TYPE_ENUM     0x1600
1163 #define TYPE_LIST     0x1700
1164 /* TYPE_LIST is a basic building block when defining enumerations
1165  * type->field_ident holds the name of this enumeration entry.
1166  * type->right holds the entry in the list.
1167  */
1168
1169 #define TYPE_STRUCT   0x1000
1170 /* For TYPE_STRUCT
1171  * type->left holds the link list of TYPE_PRODUCT entries that
1172  * make up the structure.
1173  * type->elements hold the length of the linked list
1174  */
1175 #define TYPE_UNION    0x1100
1176 /* For TYPE_UNION
1177  * type->left holds the link list of TYPE_OVERLAP entries that
1178  * make up the union.
1179  * type->elements hold the length of the linked list
1180  */
1181 #define TYPE_POINTER  0x1200 
1182 /* For TYPE_POINTER:
1183  * type->left holds the type pointed to.
1184  */
1185 #define TYPE_FUNCTION 0x1300 
1186 /* For TYPE_FUNCTION:
1187  * type->left holds the return type.
1188  * type->right holds the type of the arguments
1189  * type->elements holds the count of the arguments
1190  */
1191 #define TYPE_PRODUCT  0x1400
1192 /* TYPE_PRODUCT is a basic building block when defining structures
1193  * type->left holds the type that appears first in memory.
1194  * type->right holds the type that appears next in memory.
1195  */
1196 #define TYPE_OVERLAP  0x1500
1197 /* TYPE_OVERLAP is a basic building block when defining unions
1198  * type->left and type->right holds to types that overlap
1199  * each other in memory.
1200  */
1201 #define TYPE_ARRAY    0x1800
1202 /* TYPE_ARRAY is a basic building block when definitng arrays.
1203  * type->left holds the type we are an array of.
1204  * type->elements holds the number of elements.
1205  */
1206 #define TYPE_TUPLE    0x1900
1207 /* TYPE_TUPLE is a basic building block when defining 
1208  * positionally reference type conglomerations. (i.e. closures)
1209  * In essence it is a wrapper for TYPE_PRODUCT, like TYPE_STRUCT
1210  * except it has no field names.
1211  * type->left holds the liked list of TYPE_PRODUCT entries that
1212  * make up the closure type.
1213  * type->elements hold the number of elements in the closure.
1214  */
1215 #define TYPE_JOIN     0x1a00
1216 /* TYPE_JOIN is a basic building block when defining 
1217  * positionally reference type conglomerations. (i.e. closures)
1218  * In essence it is a wrapper for TYPE_OVERLAP, like TYPE_UNION
1219  * except it has no field names.
1220  * type->left holds the liked list of TYPE_OVERLAP entries that
1221  * make up the closure type.
1222  * type->elements hold the number of elements in the closure.
1223  */
1224 #define TYPE_BITFIELD 0x1b00
1225 /* TYPE_BITFIED is the type of a bitfield.
1226  * type->left holds the type basic type TYPE_BITFIELD is derived from.
1227  * type->elements holds the number of bits in the bitfield.
1228  */
1229 #define TYPE_UNKNOWN  0x1c00
1230 /* TYPE_UNKNOWN is the type of an unknown value.
1231  * Used on unknown consts and other places where I don't know the type.
1232  */
1233
1234 #define ATTRIB_SHIFT                 16
1235 #define ATTRIB_MASK          0xffff0000
1236 #define ATTRIB_NOINLINE      0x00010000
1237 #define ATTRIB_ALWAYS_INLINE 0x00020000
1238
1239 #define ELEMENT_COUNT_UNSPECIFIED ULONG_T_MAX
1240
1241 struct type {
1242         unsigned int type;
1243         struct type *left, *right;
1244         ulong_t elements;
1245         struct hash_entry *field_ident;
1246         struct hash_entry *type_ident;
1247 };
1248
1249 #define TEMPLATE_BITS      7
1250 #define MAX_TEMPLATES      (1<<TEMPLATE_BITS)
1251 #define MAX_REG_EQUIVS     16
1252 #define MAX_REGC           14
1253 #define MAX_REGISTERS      75
1254 #define REGISTER_BITS      7
1255 #define MAX_VIRT_REGISTERS (1<<REGISTER_BITS)
1256 #define REG_ERROR          0
1257 #define REG_UNSET          1
1258 #define REG_UNNEEDED       2
1259 #define REG_VIRT0          (MAX_REGISTERS + 0)
1260 #define REG_VIRT1          (MAX_REGISTERS + 1)
1261 #define REG_VIRT2          (MAX_REGISTERS + 2)
1262 #define REG_VIRT3          (MAX_REGISTERS + 3)
1263 #define REG_VIRT4          (MAX_REGISTERS + 4)
1264 #define REG_VIRT5          (MAX_REGISTERS + 5)
1265 #define REG_VIRT6          (MAX_REGISTERS + 6)
1266 #define REG_VIRT7          (MAX_REGISTERS + 7)
1267 #define REG_VIRT8          (MAX_REGISTERS + 8)
1268 #define REG_VIRT9          (MAX_REGISTERS + 9)
1269
1270 #if (MAX_REGISTERS + 9) > MAX_VIRT_REGISTERS
1271 #error "MAX_VIRT_REGISTERS to small"
1272 #endif
1273 #if (MAX_REGC + REGISTER_BITS) >= 26
1274 #error "Too many id bits used"
1275 #endif
1276
1277 /* Provision for 8 register classes */
1278 #define REG_SHIFT  0
1279 #define REGC_SHIFT REGISTER_BITS
1280 #define REGC_MASK (((1 << MAX_REGC) - 1) << REGISTER_BITS)
1281 #define REG_MASK (MAX_VIRT_REGISTERS -1)
1282 #define ID_REG(ID)              ((ID) & REG_MASK)
1283 #define SET_REG(ID, REG)        ((ID) = (((ID) & ~REG_MASK) | ((REG) & REG_MASK)))
1284 #define ID_REGCM(ID)            (((ID) & REGC_MASK) >> REGC_SHIFT)
1285 #define SET_REGCM(ID, REGCM)    ((ID) = (((ID) & ~REGC_MASK) | (((REGCM) << REGC_SHIFT) & REGC_MASK)))
1286 #define SET_INFO(ID, INFO)      ((ID) = (((ID) & ~(REG_MASK | REGC_MASK)) | \
1287                 (((INFO).reg) & REG_MASK) | ((((INFO).regcm) << REGC_SHIFT) & REGC_MASK)))
1288
1289 #define ARCH_INPUT_REGS 4
1290 #define ARCH_OUTPUT_REGS 4
1291
1292 static const struct reg_info arch_input_regs[ARCH_INPUT_REGS];
1293 static const struct reg_info arch_output_regs[ARCH_OUTPUT_REGS];
1294 static unsigned arch_reg_regcm(struct compile_state *state, int reg);
1295 static unsigned arch_regcm_normalize(struct compile_state *state, unsigned regcm);
1296 static unsigned arch_regcm_reg_normalize(struct compile_state *state, unsigned regcm);
1297 static void arch_reg_equivs(
1298         struct compile_state *state, unsigned *equiv, int reg);
1299 static int arch_select_free_register(
1300         struct compile_state *state, char *used, int classes);
1301 static unsigned arch_regc_size(struct compile_state *state, int class);
1302 static int arch_regcm_intersect(unsigned regcm1, unsigned regcm2);
1303 static unsigned arch_type_to_regcm(struct compile_state *state, struct type *type);
1304 static const char *arch_reg_str(int reg);
1305 static struct reg_info arch_reg_constraint(
1306         struct compile_state *state, struct type *type, const char *constraint);
1307 static struct reg_info arch_reg_clobber(
1308         struct compile_state *state, const char *clobber);
1309 static struct reg_info arch_reg_lhs(struct compile_state *state, 
1310         struct triple *ins, int index);
1311 static struct reg_info arch_reg_rhs(struct compile_state *state, 
1312         struct triple *ins, int index);
1313 static int arch_reg_size(int reg);
1314 static struct triple *transform_to_arch_instruction(
1315         struct compile_state *state, struct triple *ins);
1316 static struct triple *flatten(
1317         struct compile_state *state, struct triple *first, struct triple *ptr);
1318 static void print_dominators(struct compile_state *state,
1319         FILE *fp, struct basic_blocks *bb);
1320 static void print_dominance_frontiers(struct compile_state *state,
1321         FILE *fp, struct basic_blocks *bb);
1322
1323
1324
1325 #define DEBUG_ABORT_ON_ERROR    0x00000001
1326 #define DEBUG_BASIC_BLOCKS      0x00000002
1327 #define DEBUG_FDOMINATORS       0x00000004
1328 #define DEBUG_RDOMINATORS       0x00000008
1329 #define DEBUG_TRIPLES           0x00000010
1330 #define DEBUG_INTERFERENCE      0x00000020
1331 #define DEBUG_SCC_TRANSFORM     0x00000040
1332 #define DEBUG_SCC_TRANSFORM2    0x00000080
1333 #define DEBUG_REBUILD_SSA_FORM  0x00000100
1334 #define DEBUG_INLINE            0x00000200
1335 #define DEBUG_RANGE_CONFLICTS   0x00000400
1336 #define DEBUG_RANGE_CONFLICTS2  0x00000800
1337 #define DEBUG_COLOR_GRAPH       0x00001000
1338 #define DEBUG_COLOR_GRAPH2      0x00002000
1339 #define DEBUG_COALESCING        0x00004000
1340 #define DEBUG_COALESCING2       0x00008000
1341 #define DEBUG_VERIFICATION      0x00010000
1342 #define DEBUG_CALLS             0x00020000
1343 #define DEBUG_CALLS2            0x00040000
1344 #define DEBUG_TOKENS            0x80000000
1345
1346 #define DEBUG_DEFAULT ( \
1347         DEBUG_ABORT_ON_ERROR | \
1348         DEBUG_BASIC_BLOCKS | \
1349         DEBUG_FDOMINATORS | \
1350         DEBUG_RDOMINATORS | \
1351         DEBUG_TRIPLES | \
1352         0 )
1353
1354 #define DEBUG_ALL ( \
1355         DEBUG_ABORT_ON_ERROR   | \
1356         DEBUG_BASIC_BLOCKS     | \
1357         DEBUG_FDOMINATORS      | \
1358         DEBUG_RDOMINATORS      | \
1359         DEBUG_TRIPLES          | \
1360         DEBUG_INTERFERENCE     | \
1361         DEBUG_SCC_TRANSFORM    | \
1362         DEBUG_SCC_TRANSFORM2   | \
1363         DEBUG_REBUILD_SSA_FORM | \
1364         DEBUG_INLINE           | \
1365         DEBUG_RANGE_CONFLICTS  | \
1366         DEBUG_RANGE_CONFLICTS2 | \
1367         DEBUG_COLOR_GRAPH      | \
1368         DEBUG_COLOR_GRAPH2     | \
1369         DEBUG_COALESCING       | \
1370         DEBUG_COALESCING2      | \
1371         DEBUG_VERIFICATION     | \
1372         DEBUG_CALLS            | \
1373         DEBUG_CALLS2           | \
1374         DEBUG_TOKENS           | \
1375         0 )
1376
1377 #define COMPILER_INLINE_MASK               0x00000007
1378 #define COMPILER_INLINE_ALWAYS             0x00000000
1379 #define COMPILER_INLINE_NEVER              0x00000001
1380 #define COMPILER_INLINE_DEFAULTON          0x00000002
1381 #define COMPILER_INLINE_DEFAULTOFF         0x00000003
1382 #define COMPILER_INLINE_NOPENALTY          0x00000004
1383 #define COMPILER_ELIMINATE_INEFECTUAL_CODE 0x00000008
1384 #define COMPILER_SIMPLIFY                  0x00000010
1385 #define COMPILER_SCC_TRANSFORM             0x00000020
1386 #define COMPILER_SIMPLIFY_OP               0x00000040
1387 #define COMPILER_SIMPLIFY_PHI              0x00000080
1388 #define COMPILER_SIMPLIFY_LABEL            0x00000100
1389 #define COMPILER_SIMPLIFY_BRANCH           0x00000200
1390 #define COMPILER_SIMPLIFY_COPY             0x00000400
1391 #define COMPILER_SIMPLIFY_ARITH            0x00000800
1392 #define COMPILER_SIMPLIFY_SHIFT            0x00001000
1393 #define COMPILER_SIMPLIFY_BITWISE          0x00002000
1394 #define COMPILER_SIMPLIFY_LOGICAL          0x00004000
1395 #define COMPILER_SIMPLIFY_BITFIELD         0x00008000
1396
1397 #define COMPILER_TRIGRAPHS                 0x40000000
1398 #define COMPILER_PP_ONLY                   0x80000000
1399
1400 #define COMPILER_DEFAULT_FLAGS ( \
1401         COMPILER_TRIGRAPHS | \
1402         COMPILER_ELIMINATE_INEFECTUAL_CODE | \
1403         COMPILER_INLINE_DEFAULTON | \
1404         COMPILER_SIMPLIFY_OP | \
1405         COMPILER_SIMPLIFY_PHI | \
1406         COMPILER_SIMPLIFY_LABEL | \
1407         COMPILER_SIMPLIFY_BRANCH | \
1408         COMPILER_SIMPLIFY_COPY | \
1409         COMPILER_SIMPLIFY_ARITH | \
1410         COMPILER_SIMPLIFY_SHIFT | \
1411         COMPILER_SIMPLIFY_BITWISE | \
1412         COMPILER_SIMPLIFY_LOGICAL | \
1413         COMPILER_SIMPLIFY_BITFIELD | \
1414         0 )
1415
1416 #define GLOBAL_SCOPE_DEPTH   1
1417 #define FUNCTION_SCOPE_DEPTH (GLOBAL_SCOPE_DEPTH + 1)
1418
1419 static void compile_file(struct compile_state *old_state, const char *filename, int local);
1420
1421
1422
1423 static void init_compiler_state(struct compiler_state *compiler)
1424 {
1425         memset(compiler, 0, sizeof(*compiler));
1426         compiler->label_prefix = "";
1427         compiler->ofilename = "auto.inc";
1428         compiler->flags = COMPILER_DEFAULT_FLAGS;
1429         compiler->debug = 0;
1430         compiler->max_allocation_passes = MAX_ALLOCATION_PASSES;
1431         compiler->include_path_count = 1;
1432         compiler->include_paths      = xcmalloc(sizeof(char *), "include_paths");
1433         compiler->define_count       = 1;
1434         compiler->defines            = xcmalloc(sizeof(char *), "defines");
1435         compiler->undef_count        = 1;
1436         compiler->undefs             = xcmalloc(sizeof(char *), "undefs");
1437 }
1438
1439 struct compiler_flag {
1440         const char *name;
1441         unsigned long flag;
1442 };
1443
1444 struct compiler_arg {
1445         const char *name;
1446         unsigned long mask;
1447         struct compiler_flag flags[16];
1448 };
1449
1450 static int set_flag(
1451         const struct compiler_flag *ptr, unsigned long *flags,
1452         int act, const char *flag)
1453 {
1454         int result = -1;
1455         for(; ptr->name; ptr++) {
1456                 if (strcmp(ptr->name, flag) == 0) {
1457                         break;
1458                 }
1459         }
1460         if (ptr->name) {
1461                 result = 0;
1462                 *flags &= ~(ptr->flag);
1463                 if (act) {
1464                         *flags |= ptr->flag;
1465                 }
1466         }
1467         return result;
1468 }
1469
1470 static int set_arg(
1471         const struct compiler_arg *ptr, unsigned long *flags, const char *arg)
1472 {
1473         const char *val;
1474         int result = -1;
1475         int len;
1476         val = strchr(arg, '=');
1477         if (val) {
1478                 len = val - arg;
1479                 val++;
1480                 for(; ptr->name; ptr++) {
1481                         if (strncmp(ptr->name, arg, len) == 0) {
1482                                 break;
1483                         }
1484                 }
1485                 if (ptr->name) {
1486                         *flags &= ~ptr->mask;
1487                         result = set_flag(&ptr->flags[0], flags, 1, val);
1488                 }
1489         }
1490         return result;
1491 }
1492         
1493
1494 static void flag_usage(FILE *fp, const struct compiler_flag *ptr, 
1495         const char *prefix, const char *invert_prefix)
1496 {
1497         for(;ptr->name; ptr++) {
1498                 fprintf(fp, "%s%s\n", prefix, ptr->name);
1499                 if (invert_prefix) {
1500                         fprintf(fp, "%s%s\n", invert_prefix, ptr->name);
1501                 }
1502         }
1503 }
1504
1505 static void arg_usage(FILE *fp, const struct compiler_arg *ptr,
1506         const char *prefix)
1507 {
1508         for(;ptr->name; ptr++) {
1509                 const struct compiler_flag *flag;
1510                 for(flag = &ptr->flags[0]; flag->name; flag++) {
1511                         fprintf(fp, "%s%s=%s\n", 
1512                                 prefix, ptr->name, flag->name);
1513                 }
1514         }
1515 }
1516
1517 static int append_string(size_t *max, const char ***vec, const char *str,
1518         const char *name)
1519 {
1520         size_t count;
1521         count = ++(*max);
1522         *vec = xrealloc(*vec, sizeof(char *)*count, "name");
1523         (*vec)[count -1] = 0;
1524         (*vec)[count -2] = str; 
1525         return 0;
1526 }
1527
1528 static void arg_error(char *fmt, ...);
1529 static const char *identifier(const char *str, const char *end);
1530
1531 static int append_include_path(struct compiler_state *compiler, const char *str)
1532 {
1533         int result;
1534         if (!exists(str, ".")) {
1535                 arg_error("Nonexistent include path: `%s'\n",
1536                         str);
1537         }
1538         result = append_string(&compiler->include_path_count,
1539                 &compiler->include_paths, str, "include_paths");
1540         return result;
1541 }
1542
1543 static int append_define(struct compiler_state *compiler, const char *str)
1544 {
1545         const char *end, *rest;
1546         int result;
1547
1548         end = strchr(str, '=');
1549         if (!end) {
1550                 end = str + strlen(str);
1551         }
1552         rest = identifier(str, end);
1553         if (rest != end) {
1554                 int len = end - str - 1;
1555                 arg_error("Invalid name cannot define macro: `%*.*s'\n", 
1556                         len, len, str);
1557         }
1558         result = append_string(&compiler->define_count,
1559                 &compiler->defines, str, "defines");
1560         return result;
1561 }
1562
1563 static int append_undef(struct compiler_state *compiler, const char *str)
1564 {
1565         const char *end, *rest;
1566         int result;
1567
1568         end = str + strlen(str);
1569         rest = identifier(str, end);
1570         if (rest != end) {
1571                 int len = end - str - 1;
1572                 arg_error("Invalid name cannot undefine macro: `%*.*s'\n", 
1573                         len, len, str);
1574         }
1575         result = append_string(&compiler->undef_count,
1576                 &compiler->undefs, str, "undefs");
1577         return result;
1578 }
1579
1580 static const struct compiler_flag romcc_flags[] = {
1581         { "trigraphs",                 COMPILER_TRIGRAPHS },
1582         { "pp-only",                   COMPILER_PP_ONLY },
1583         { "eliminate-inefectual-code", COMPILER_ELIMINATE_INEFECTUAL_CODE },
1584         { "simplify",                  COMPILER_SIMPLIFY },
1585         { "scc-transform",             COMPILER_SCC_TRANSFORM },
1586         { "simplify-op",               COMPILER_SIMPLIFY_OP },
1587         { "simplify-phi",              COMPILER_SIMPLIFY_PHI },
1588         { "simplify-label",            COMPILER_SIMPLIFY_LABEL },
1589         { "simplify-branch",           COMPILER_SIMPLIFY_BRANCH },
1590         { "simplify-copy",             COMPILER_SIMPLIFY_COPY },
1591         { "simplify-arith",            COMPILER_SIMPLIFY_ARITH },
1592         { "simplify-shift",            COMPILER_SIMPLIFY_SHIFT },
1593         { "simplify-bitwise",          COMPILER_SIMPLIFY_BITWISE },
1594         { "simplify-logical",          COMPILER_SIMPLIFY_LOGICAL },
1595         { "simplify-bitfield",         COMPILER_SIMPLIFY_BITFIELD },
1596         { 0, 0 },
1597 };
1598 static const struct compiler_arg romcc_args[] = {
1599         { "inline-policy",             COMPILER_INLINE_MASK,
1600                 {
1601                         { "always",      COMPILER_INLINE_ALWAYS, },
1602                         { "never",       COMPILER_INLINE_NEVER, },
1603                         { "defaulton",   COMPILER_INLINE_DEFAULTON, },
1604                         { "defaultoff",  COMPILER_INLINE_DEFAULTOFF, },
1605                         { "nopenalty",   COMPILER_INLINE_NOPENALTY, },
1606                         { 0, 0 },
1607                 },
1608         },
1609         { 0, 0 },
1610 };
1611 static const struct compiler_flag romcc_opt_flags[] = {
1612         { "-O",  COMPILER_SIMPLIFY },
1613         { "-O2", COMPILER_SIMPLIFY | COMPILER_SCC_TRANSFORM },
1614         { "-E",  COMPILER_PP_ONLY },
1615         { 0, 0, },
1616 };
1617 static const struct compiler_flag romcc_debug_flags[] = {
1618         { "all",                   DEBUG_ALL },
1619         { "abort-on-error",        DEBUG_ABORT_ON_ERROR },
1620         { "basic-blocks",          DEBUG_BASIC_BLOCKS },
1621         { "fdominators",           DEBUG_FDOMINATORS },
1622         { "rdominators",           DEBUG_RDOMINATORS },
1623         { "triples",               DEBUG_TRIPLES },
1624         { "interference",          DEBUG_INTERFERENCE },
1625         { "scc-transform",         DEBUG_SCC_TRANSFORM },
1626         { "scc-transform2",        DEBUG_SCC_TRANSFORM2 },
1627         { "rebuild-ssa-form",      DEBUG_REBUILD_SSA_FORM },
1628         { "inline",                DEBUG_INLINE },
1629         { "live-range-conflicts",  DEBUG_RANGE_CONFLICTS },
1630         { "live-range-conflicts2", DEBUG_RANGE_CONFLICTS2 },
1631         { "color-graph",           DEBUG_COLOR_GRAPH },
1632         { "color-graph2",          DEBUG_COLOR_GRAPH2 },
1633         { "coalescing",            DEBUG_COALESCING },
1634         { "coalescing2",           DEBUG_COALESCING2 },
1635         { "verification",          DEBUG_VERIFICATION },
1636         { "calls",                 DEBUG_CALLS },
1637         { "calls2",                DEBUG_CALLS2 },
1638         { "tokens",                DEBUG_TOKENS },
1639         { 0, 0 },
1640 };
1641
1642 static int compiler_encode_flag(
1643         struct compiler_state *compiler, const char *flag)
1644 {
1645         int act;
1646         int result;
1647
1648         act = 1;
1649         result = -1;
1650         if (strncmp(flag, "no-", 3) == 0) {
1651                 flag += 3;
1652                 act = 0;
1653         }
1654         if (strncmp(flag, "-O", 2) == 0) {
1655                 result = set_flag(romcc_opt_flags, &compiler->flags, act, flag);
1656         }
1657         else if (strncmp(flag, "-E", 2) == 0) {
1658                 result = set_flag(romcc_opt_flags, &compiler->flags, act, flag);
1659         }
1660         else if (strncmp(flag, "-I", 2) == 0) {
1661                 result = append_include_path(compiler, flag + 2);
1662         }
1663         else if (strncmp(flag, "-D", 2) == 0) {
1664                 result = append_define(compiler, flag + 2);
1665         }
1666         else if (strncmp(flag, "-U", 2) == 0) {
1667                 result = append_undef(compiler, flag + 2);
1668         }
1669         else if (act && strncmp(flag, "label-prefix=", 13) == 0) {
1670                 result = 0;
1671                 compiler->label_prefix = flag + 13;
1672         }
1673         else if (act && strncmp(flag, "max-allocation-passes=", 22) == 0) {
1674                 unsigned long max_passes;
1675                 char *end;
1676                 max_passes = strtoul(flag + 22, &end, 10);
1677                 if (end[0] == '\0') {
1678                         result = 0;
1679                         compiler->max_allocation_passes = max_passes;
1680                 }
1681         }
1682         else if (act && strcmp(flag, "debug") == 0) {
1683                 result = 0;
1684                 compiler->debug |= DEBUG_DEFAULT;
1685         }
1686         else if (strncmp(flag, "debug-", 6) == 0) {
1687                 flag += 6;
1688                 result = set_flag(romcc_debug_flags, &compiler->debug, act, flag);
1689         }
1690         else {
1691                 result = set_flag(romcc_flags, &compiler->flags, act, flag);
1692                 if (result < 0) {
1693                         result = set_arg(romcc_args, &compiler->flags, flag);
1694                 }
1695         }
1696         return result;
1697 }
1698
1699 static void compiler_usage(FILE *fp)
1700 {
1701         flag_usage(fp, romcc_opt_flags, "", 0);
1702         flag_usage(fp, romcc_flags, "-f", "-fno-");
1703         arg_usage(fp,  romcc_args, "-f");
1704         flag_usage(fp, romcc_debug_flags, "-fdebug-", "-fno-debug-");
1705         fprintf(fp, "-flabel-prefix=<prefix for assembly language labels>\n");
1706         fprintf(fp, "--label-prefix=<prefix for assembly language labels>\n");
1707         fprintf(fp, "-I<include path>\n");
1708         fprintf(fp, "-D<macro>[=defn]\n");
1709         fprintf(fp, "-U<macro>\n");
1710 }
1711
1712 static void do_cleanup(struct compile_state *state)
1713 {
1714         if (state->output) {
1715                 fclose(state->output);
1716                 unlink(state->compiler->ofilename);
1717                 state->output = 0;
1718         }
1719         if (state->dbgout) {
1720                 fflush(state->dbgout);
1721         }
1722         if (state->errout) {
1723                 fflush(state->errout);
1724         }
1725 }
1726
1727 static struct compile_state *exit_state;
1728 static void exit_cleanup(void)
1729 {
1730         if (exit_state) {
1731                 do_cleanup(exit_state);
1732         }
1733 }
1734
1735 static int get_col(struct file_state *file)
1736 {
1737         int col;
1738         const char *ptr, *end;
1739         ptr = file->line_start;
1740         end = file->pos;
1741         for(col = 0; ptr < end; ptr++) {
1742                 if (*ptr != '\t') {
1743                         col++;
1744                 } 
1745                 else {
1746                         col = (col & ~7) + 8;
1747                 }
1748         }
1749         return col;
1750 }
1751
1752 static void loc(FILE *fp, struct compile_state *state, struct triple *triple)
1753 {
1754         int col;
1755         if (triple && triple->occurance) {
1756                 struct occurance *spot;
1757                 for(spot = triple->occurance; spot; spot = spot->parent) {
1758                         fprintf(fp, "%s:%d.%d: ", 
1759                                 spot->filename, spot->line, spot->col);
1760                 }
1761                 return;
1762         }
1763         if (!state->file) {
1764                 return;
1765         }
1766         col = get_col(state->file);
1767         fprintf(fp, "%s:%d.%d: ", 
1768                 state->file->report_name, state->file->report_line, col);
1769 }
1770
1771 static void __attribute__ ((noreturn)) internal_error(struct compile_state *state, struct triple *ptr, 
1772         const char *fmt, ...)
1773 {
1774         FILE *fp = state->errout;
1775         va_list args;
1776         va_start(args, fmt);
1777         loc(fp, state, ptr);
1778         fputc('\n', fp);
1779         if (ptr) {
1780                 fprintf(fp, "%p %-10s ", ptr, tops(ptr->op));
1781         }
1782         fprintf(fp, "Internal compiler error: ");
1783         vfprintf(fp, fmt, args);
1784         fprintf(fp, "\n");
1785         va_end(args);
1786         do_cleanup(state);
1787         abort();
1788 }
1789
1790
1791 static void internal_warning(struct compile_state *state, struct triple *ptr, 
1792         const char *fmt, ...)
1793 {
1794         FILE *fp = state->errout;
1795         va_list args;
1796         va_start(args, fmt);
1797         loc(fp, state, ptr);
1798         if (ptr) {
1799                 fprintf(fp, "%p %-10s ", ptr, tops(ptr->op));
1800         }
1801         fprintf(fp, "Internal compiler warning: ");
1802         vfprintf(fp, fmt, args);
1803         fprintf(fp, "\n");
1804         va_end(args);
1805 }
1806
1807
1808
1809 static void __attribute__ ((noreturn)) error(struct compile_state *state, struct triple *ptr, 
1810         const char *fmt, ...)
1811 {
1812         FILE *fp = state->errout;
1813         va_list args;
1814         va_start(args, fmt);
1815         loc(fp, state, ptr);
1816         fputc('\n', fp);
1817         if (ptr && (state->compiler->debug & DEBUG_ABORT_ON_ERROR)) {
1818                 fprintf(fp, "%p %-10s ", ptr, tops(ptr->op));
1819         }
1820         vfprintf(fp, fmt, args);
1821         va_end(args);
1822         fprintf(fp, "\n");
1823         do_cleanup(state);
1824         if (state->compiler->debug & DEBUG_ABORT_ON_ERROR) {
1825                 abort();
1826         }
1827         exit(1);
1828 }
1829
1830 static void warning(struct compile_state *state, struct triple *ptr, 
1831         const char *fmt, ...)
1832 {
1833         FILE *fp = state->errout;
1834         va_list args;
1835         va_start(args, fmt);
1836         loc(fp, state, ptr);
1837         fprintf(fp, "warning: "); 
1838         if (ptr && (state->compiler->debug & DEBUG_ABORT_ON_ERROR)) {
1839                 fprintf(fp, "%p %-10s ", ptr, tops(ptr->op));
1840         }
1841         vfprintf(fp, fmt, args);
1842         fprintf(fp, "\n");
1843         va_end(args);
1844 }
1845
1846 #define FINISHME() warning(state, 0, "FINISHME @ %s.%s:%d", __FILE__, __func__, __LINE__)
1847
1848 static void valid_op(struct compile_state *state, int op)
1849 {
1850         char *fmt = "invalid op: %d";
1851         if (op >= OP_MAX) {
1852                 internal_error(state, 0, fmt, op);
1853         }
1854         if (op < 0) {
1855                 internal_error(state, 0, fmt, op);
1856         }
1857 }
1858
1859 static void valid_ins(struct compile_state *state, struct triple *ptr)
1860 {
1861         valid_op(state, ptr->op);
1862 }
1863
1864 #if DEBUG_ROMCC_WARNING
1865 static void valid_param_count(struct compile_state *state, struct triple *ins)
1866 {
1867         int lhs, rhs, misc, targ;
1868         valid_ins(state, ins);
1869         lhs  = table_ops[ins->op].lhs;
1870         rhs  = table_ops[ins->op].rhs;
1871         misc = table_ops[ins->op].misc;
1872         targ = table_ops[ins->op].targ;
1873
1874         if ((lhs >= 0) && (ins->lhs != lhs)) {
1875                 internal_error(state, ins, "Bad lhs count");
1876         }
1877         if ((rhs >= 0) && (ins->rhs != rhs)) {
1878                 internal_error(state, ins, "Bad rhs count");
1879         }
1880         if ((misc >= 0) && (ins->misc != misc)) {
1881                 internal_error(state, ins, "Bad misc count");
1882         }
1883         if ((targ >= 0) && (ins->targ != targ)) {
1884                 internal_error(state, ins, "Bad targ count");
1885         }
1886 }
1887 #endif
1888
1889 static struct type void_type;
1890 static struct type unknown_type;
1891 static void use_triple(struct triple *used, struct triple *user)
1892 {
1893         struct triple_set **ptr, *new;
1894         if (!used)
1895                 return;
1896         if (!user)
1897                 return;
1898         ptr = &used->use;
1899         while(*ptr) {
1900                 if ((*ptr)->member == user) {
1901                         return;
1902                 }
1903                 ptr = &(*ptr)->next;
1904         }
1905         /* Append new to the head of the list, 
1906          * copy_func and rename_block_variables
1907          * depends on this.
1908          */
1909         new = xcmalloc(sizeof(*new), "triple_set");
1910         new->member = user;
1911         new->next   = used->use;
1912         used->use   = new;
1913 }
1914
1915 static void unuse_triple(struct triple *used, struct triple *unuser)
1916 {
1917         struct triple_set *use, **ptr;
1918         if (!used) {
1919                 return;
1920         }
1921         ptr = &used->use;
1922         while(*ptr) {
1923                 use = *ptr;
1924                 if (use->member == unuser) {
1925                         *ptr = use->next;
1926                         xfree(use);
1927                 }
1928                 else {
1929                         ptr = &use->next;
1930                 }
1931         }
1932 }
1933
1934 static void put_occurance(struct occurance *occurance)
1935 {
1936         if (occurance) {
1937                 occurance->count -= 1;
1938                 if (occurance->count <= 0) {
1939                         if (occurance->parent) {
1940                                 put_occurance(occurance->parent);
1941                         }
1942                         xfree(occurance);
1943                 }
1944         }
1945 }
1946
1947 static void get_occurance(struct occurance *occurance)
1948 {
1949         if (occurance) {
1950                 occurance->count += 1;
1951         }
1952 }
1953
1954
1955 static struct occurance *new_occurance(struct compile_state *state)
1956 {
1957         struct occurance *result, *last;
1958         const char *filename;
1959         const char *function;
1960         int line, col;
1961
1962         function = "";
1963         filename = 0;
1964         line = 0;
1965         col  = 0;
1966         if (state->file) {
1967                 filename = state->file->report_name;
1968                 line     = state->file->report_line;
1969                 col      = get_col(state->file);
1970         }
1971         if (state->function) {
1972                 function = state->function;
1973         }
1974         last = state->last_occurance;
1975         if (last &&
1976                 (last->col == col) &&
1977                 (last->line == line) &&
1978                 (last->function == function) &&
1979                 ((last->filename == filename) ||
1980                         (strcmp(last->filename, filename) == 0))) 
1981         {
1982                 get_occurance(last);
1983                 return last;
1984         }
1985         if (last) {
1986                 state->last_occurance = 0;
1987                 put_occurance(last);
1988         }
1989         result = xmalloc(sizeof(*result), "occurance");
1990         result->count    = 2;
1991         result->filename = filename;
1992         result->function = function;
1993         result->line     = line;
1994         result->col      = col;
1995         result->parent   = 0;
1996         state->last_occurance = result;
1997         return result;
1998 }
1999
2000 static struct occurance *inline_occurance(struct compile_state *state,
2001         struct occurance *base, struct occurance *top)
2002 {
2003         struct occurance *result, *last;
2004         if (top->parent) {
2005                 internal_error(state, 0, "inlining an already inlined function?");
2006         }
2007         /* If I have a null base treat it that way */
2008         if ((base->parent == 0) &&
2009                 (base->col == 0) &&
2010                 (base->line == 0) &&
2011                 (base->function[0] == '\0') &&
2012                 (base->filename[0] == '\0')) {
2013                 base = 0;
2014         }
2015         /* See if I can reuse the last occurance I had */
2016         last = state->last_occurance;
2017         if (last &&
2018                 (last->parent   == base) &&
2019                 (last->col      == top->col) &&
2020                 (last->line     == top->line) &&
2021                 (last->function == top->function) &&
2022                 (last->filename == top->filename)) {
2023                 get_occurance(last);
2024                 return last;
2025         }
2026         /* I can't reuse the last occurance so free it */
2027         if (last) {
2028                 state->last_occurance = 0;
2029                 put_occurance(last);
2030         }
2031         /* Generate a new occurance structure */
2032         get_occurance(base);
2033         result = xmalloc(sizeof(*result), "occurance");
2034         result->count    = 2;
2035         result->filename = top->filename;
2036         result->function = top->function;
2037         result->line     = top->line;
2038         result->col      = top->col;
2039         result->parent   = base;
2040         state->last_occurance = result;
2041         return result;
2042 }
2043
2044 static struct occurance dummy_occurance = {
2045         .count    = 2,
2046         .filename = __FILE__,
2047         .function = "",
2048         .line     = __LINE__,
2049         .col      = 0,
2050         .parent   = 0,
2051 };
2052
2053 /* The undef triple is used as a place holder when we are removing pointers
2054  * from a triple.  Having allows certain sanity checks to pass even
2055  * when the original triple that was pointed to is gone.
2056  */
2057 static struct triple unknown_triple = {
2058         .next      = &unknown_triple,
2059         .prev      = &unknown_triple,
2060         .use       = 0,
2061         .op        = OP_UNKNOWNVAL,
2062         .lhs       = 0,
2063         .rhs       = 0,
2064         .misc      = 0,
2065         .targ      = 0,
2066         .type      = &unknown_type,
2067         .id        = -1, /* An invalid id */
2068         .u = { .cval = 0, },
2069         .occurance = &dummy_occurance,
2070         .param = { [0] = 0, [1] = 0, },
2071 };
2072
2073
2074 static size_t registers_of(struct compile_state *state, struct type *type);
2075
2076 static struct triple *alloc_triple(struct compile_state *state, 
2077         int op, struct type *type, int lhs_wanted, int rhs_wanted,
2078         struct occurance *occurance)
2079 {
2080         size_t size, extra_count, min_count;
2081         int lhs, rhs, misc, targ;
2082         struct triple *ret, dummy;
2083         dummy.op = op;
2084         dummy.occurance = occurance;
2085         valid_op(state, op);
2086         lhs = table_ops[op].lhs;
2087         rhs = table_ops[op].rhs;
2088         misc = table_ops[op].misc;
2089         targ = table_ops[op].targ;
2090
2091         switch(op) {
2092         case OP_FCALL:
2093                 rhs = rhs_wanted;
2094                 break;
2095         case OP_PHI:
2096                 rhs = rhs_wanted;
2097                 break;
2098         case OP_ADECL:
2099                 lhs = registers_of(state, type);
2100                 break;
2101         case OP_TUPLE:
2102                 lhs = registers_of(state, type);
2103                 break;
2104         case OP_ASM:
2105                 rhs = rhs_wanted;
2106                 lhs = lhs_wanted;
2107                 break;
2108         }
2109         if ((rhs < 0) || (rhs > MAX_RHS)) {
2110                 internal_error(state, &dummy, "bad rhs count %d", rhs);
2111         }
2112         if ((lhs < 0) || (lhs > MAX_LHS)) {
2113                 internal_error(state, &dummy, "bad lhs count %d", lhs);
2114         }
2115         if ((misc < 0) || (misc > MAX_MISC)) {
2116                 internal_error(state, &dummy, "bad misc count %d", misc);
2117         }
2118         if ((targ < 0) || (targ > MAX_TARG)) {
2119                 internal_error(state, &dummy, "bad targs count %d", targ);
2120         }
2121
2122         min_count = sizeof(ret->param)/sizeof(ret->param[0]);
2123         extra_count = lhs + rhs + misc + targ;
2124         extra_count = (extra_count < min_count)? 0 : extra_count - min_count;
2125
2126         size = sizeof(*ret) + sizeof(ret->param[0]) * extra_count;
2127         ret = xcmalloc(size, "tripple");
2128         ret->op        = op;
2129         ret->lhs       = lhs;
2130         ret->rhs       = rhs;
2131         ret->misc      = misc;
2132         ret->targ      = targ;
2133         ret->type      = type;
2134         ret->next      = ret;
2135         ret->prev      = ret;
2136         ret->occurance = occurance;
2137         /* A simple sanity check */
2138         if ((ret->op != op) ||
2139                 (ret->lhs != lhs) ||
2140                 (ret->rhs != rhs) ||
2141                 (ret->misc != misc) ||
2142                 (ret->targ != targ) ||
2143                 (ret->type != type) ||
2144                 (ret->next != ret) ||
2145                 (ret->prev != ret) ||
2146                 (ret->occurance != occurance)) {
2147                 internal_error(state, ret, "huh?");
2148         }
2149         return ret;
2150 }
2151
2152 struct triple *dup_triple(struct compile_state *state, struct triple *src)
2153 {
2154         struct triple *dup;
2155         int src_lhs, src_rhs, src_size;
2156         src_lhs = src->lhs;
2157         src_rhs = src->rhs;
2158         src_size = TRIPLE_SIZE(src);
2159         get_occurance(src->occurance);
2160         dup = alloc_triple(state, src->op, src->type, src_lhs, src_rhs,
2161                 src->occurance);
2162         memcpy(dup, src, sizeof(*src));
2163         memcpy(dup->param, src->param, src_size * sizeof(src->param[0]));
2164         return dup;
2165 }
2166
2167 static struct triple *copy_triple(struct compile_state *state, struct triple *src)
2168 {
2169         struct triple *copy;
2170         copy = dup_triple(state, src);
2171         copy->use = 0;
2172         copy->next = copy->prev = copy;
2173         return copy;
2174 }
2175
2176 static struct triple *new_triple(struct compile_state *state, 
2177         int op, struct type *type, int lhs, int rhs)
2178 {
2179         struct triple *ret;
2180         struct occurance *occurance;
2181         occurance = new_occurance(state);
2182         ret = alloc_triple(state, op, type, lhs, rhs, occurance);
2183         return ret;
2184 }
2185
2186 static struct triple *build_triple(struct compile_state *state, 
2187         int op, struct type *type, struct triple *left, struct triple *right,
2188         struct occurance *occurance)
2189 {
2190         struct triple *ret;
2191         size_t count;
2192         ret = alloc_triple(state, op, type, -1, -1, occurance);
2193         count = TRIPLE_SIZE(ret);
2194         if (count > 0) {
2195                 ret->param[0] = left;
2196         }
2197         if (count > 1) {
2198                 ret->param[1] = right;
2199         }
2200         return ret;
2201 }
2202
2203 static struct triple *triple(struct compile_state *state, 
2204         int op, struct type *type, struct triple *left, struct triple *right)
2205 {
2206         struct triple *ret;
2207         size_t count;
2208         ret = new_triple(state, op, type, -1, -1);
2209         count = TRIPLE_SIZE(ret);
2210         if (count >= 1) {
2211                 ret->param[0] = left;
2212         }
2213         if (count >= 2) {
2214                 ret->param[1] = right;
2215         }
2216         return ret;
2217 }
2218
2219 static struct triple *branch(struct compile_state *state, 
2220         struct triple *targ, struct triple *test)
2221 {
2222         struct triple *ret;
2223         if (test) {
2224                 ret = new_triple(state, OP_CBRANCH, &void_type, -1, 1);
2225                 RHS(ret, 0) = test;
2226         } else {
2227                 ret = new_triple(state, OP_BRANCH, &void_type, -1, 0);
2228         }
2229         TARG(ret, 0) = targ;
2230         /* record the branch target was used */
2231         if (!targ || (targ->op != OP_LABEL)) {
2232                 internal_error(state, 0, "branch not to label");
2233         }
2234         return ret;
2235 }
2236
2237 static int triple_is_label(struct compile_state *state, struct triple *ins);
2238 static int triple_is_call(struct compile_state *state, struct triple *ins);
2239 static int triple_is_cbranch(struct compile_state *state, struct triple *ins);
2240 static void insert_triple(struct compile_state *state,
2241         struct triple *first, struct triple *ptr)
2242 {
2243         if (ptr) {
2244                 if ((ptr->id & TRIPLE_FLAG_FLATTENED) || (ptr->next != ptr)) {
2245                         internal_error(state, ptr, "expression already used");
2246                 }
2247                 ptr->next       = first;
2248                 ptr->prev       = first->prev;
2249                 ptr->prev->next = ptr;
2250                 ptr->next->prev = ptr;
2251
2252                 if (triple_is_cbranch(state, ptr->prev) ||
2253                         triple_is_call(state, ptr->prev)) {
2254                         unuse_triple(first, ptr->prev);
2255                         use_triple(ptr, ptr->prev);
2256                 }
2257         }
2258 }
2259
2260 static int triple_stores_block(struct compile_state *state, struct triple *ins)
2261 {
2262         /* This function is used to determine if u.block 
2263          * is utilized to store the current block number.
2264          */
2265         int stores_block;
2266         valid_ins(state, ins);
2267         stores_block = (table_ops[ins->op].flags & BLOCK) == BLOCK;
2268         return stores_block;
2269 }
2270
2271 static int triple_is_branch(struct compile_state *state, struct triple *ins);
2272 static struct block *block_of_triple(struct compile_state *state, 
2273         struct triple *ins)
2274 {
2275         struct triple *first;
2276         if (!ins || ins == &unknown_triple) {
2277                 return 0;
2278         }
2279         first = state->first;
2280         while(ins != first && !triple_is_branch(state, ins->prev) &&
2281                 !triple_stores_block(state, ins)) 
2282         { 
2283                 if (ins == ins->prev) {
2284                         internal_error(state, ins, "ins == ins->prev?");
2285                 }
2286                 ins = ins->prev;
2287         }
2288         return triple_stores_block(state, ins)? ins->u.block: 0;
2289 }
2290
2291 static void generate_lhs_pieces(struct compile_state *state, struct triple *ins);
2292 static struct triple *pre_triple(struct compile_state *state,
2293         struct triple *base,
2294         int op, struct type *type, struct triple *left, struct triple *right)
2295 {
2296         struct block *block;
2297         struct triple *ret;
2298         int i;
2299         /* If I am an OP_PIECE jump to the real instruction */
2300         if (base->op == OP_PIECE) {
2301                 base = MISC(base, 0);
2302         }
2303         block = block_of_triple(state, base);
2304         get_occurance(base->occurance);
2305         ret = build_triple(state, op, type, left, right, base->occurance);
2306         generate_lhs_pieces(state, ret);
2307         if (triple_stores_block(state, ret)) {
2308                 ret->u.block = block;
2309         }
2310         insert_triple(state, base, ret);
2311         for(i = 0; i < ret->lhs; i++) {
2312                 struct triple *piece;
2313                 piece = LHS(ret, i);
2314                 insert_triple(state, base, piece);
2315                 use_triple(ret, piece);
2316                 use_triple(piece, ret);
2317         }
2318         if (block && (block->first == base)) {
2319                 block->first = ret;
2320         }
2321         return ret;
2322 }
2323
2324 static struct triple *post_triple(struct compile_state *state,
2325         struct triple *base,
2326         int op, struct type *type, struct triple *left, struct triple *right)
2327 {
2328         struct block *block;
2329         struct triple *ret, *next;
2330         int zlhs, i;
2331         /* If I am an OP_PIECE jump to the real instruction */
2332         if (base->op == OP_PIECE) {
2333                 base = MISC(base, 0);
2334         }
2335         /* If I have a left hand side skip over it */
2336         zlhs = base->lhs;
2337         if (zlhs) {
2338                 base = LHS(base, zlhs - 1);
2339         }
2340
2341         block = block_of_triple(state, base);
2342         get_occurance(base->occurance);
2343         ret = build_triple(state, op, type, left, right, base->occurance);
2344         generate_lhs_pieces(state, ret);
2345         if (triple_stores_block(state, ret)) {
2346                 ret->u.block = block;
2347         }
2348         next = base->next;
2349         insert_triple(state, next, ret);
2350         zlhs = ret->lhs;
2351         for(i = 0; i < zlhs; i++) {
2352                 struct triple *piece;
2353                 piece = LHS(ret, i);
2354                 insert_triple(state, next, piece);
2355                 use_triple(ret, piece);
2356                 use_triple(piece, ret);
2357         }
2358         if (block && (block->last == base)) {
2359                 block->last = ret;
2360                 if (zlhs) {
2361                         block->last = LHS(ret, zlhs - 1);
2362                 }
2363         }
2364         return ret;
2365 }
2366
2367 static struct type *reg_type(
2368         struct compile_state *state, struct type *type, int reg);
2369
2370 static void generate_lhs_piece(
2371         struct compile_state *state, struct triple *ins, int index)
2372 {
2373         struct type *piece_type;
2374         struct triple *piece;
2375         get_occurance(ins->occurance);
2376         piece_type = reg_type(state, ins->type, index * REG_SIZEOF_REG);
2377
2378         if ((piece_type->type & TYPE_MASK) == TYPE_BITFIELD) {
2379                 piece_type = piece_type->left;
2380         }
2381 #if 0
2382 {
2383         static void name_of(FILE *fp, struct type *type);
2384         FILE * fp = state->errout;
2385         fprintf(fp, "piece_type(%d): ", index);
2386         name_of(fp, piece_type);
2387         fprintf(fp, "\n");
2388 }
2389 #endif
2390         piece = alloc_triple(state, OP_PIECE, piece_type, -1, -1, ins->occurance);
2391         piece->u.cval  = index;
2392         LHS(ins, piece->u.cval) = piece;
2393         MISC(piece, 0) = ins;
2394 }
2395
2396 static void generate_lhs_pieces(struct compile_state *state, struct triple *ins)
2397 {
2398         int i, zlhs;
2399         zlhs = ins->lhs;
2400         for(i = 0; i < zlhs; i++) {
2401                 generate_lhs_piece(state, ins, i);
2402         }
2403 }
2404
2405 static struct triple *label(struct compile_state *state)
2406 {
2407         /* Labels don't get a type */
2408         struct triple *result;
2409         result = triple(state, OP_LABEL, &void_type, 0, 0);
2410         return result;
2411 }
2412
2413 static struct triple *mkprog(struct compile_state *state, ...)
2414 {
2415         struct triple *prog, *head, *arg;
2416         va_list args;
2417         int i;
2418
2419         head = label(state);
2420         prog = new_triple(state, OP_PROG, &void_type, -1, -1);
2421         RHS(prog, 0) = head;
2422         va_start(args, state);
2423         i = 0;
2424         while((arg = va_arg(args, struct triple *)) != 0) {
2425                 if (++i >= 100) {
2426                         internal_error(state, 0, "too many arguments to mkprog");
2427                 }
2428                 flatten(state, head, arg);
2429         }
2430         va_end(args);
2431         prog->type = head->prev->type;
2432         return prog;
2433 }
2434 static void name_of(FILE *fp, struct type *type);
2435 static void display_triple(FILE *fp, struct triple *ins)
2436 {
2437         struct occurance *ptr;
2438         const char *reg;
2439         char pre, post, vol;
2440         pre = post = vol = ' ';
2441         if (ins) {
2442                 if (ins->id & TRIPLE_FLAG_PRE_SPLIT) {
2443                         pre = '^';
2444                 }
2445                 if (ins->id & TRIPLE_FLAG_POST_SPLIT) {
2446                         post = ',';
2447                 }
2448                 if (ins->id & TRIPLE_FLAG_VOLATILE) {
2449                         vol = 'v';
2450                 }
2451                 reg = arch_reg_str(ID_REG(ins->id));
2452         }
2453         if (ins == 0) {
2454                 fprintf(fp, "(%p) <nothing> ", ins);
2455         }
2456         else if (ins->op == OP_INTCONST) {
2457                 fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s <0x%08lx>         ",
2458                         ins, pre, post, vol, reg, ins->template_id, tops(ins->op), 
2459                         (unsigned long)(ins->u.cval));
2460         }
2461         else if (ins->op == OP_ADDRCONST) {
2462                 fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s %-10p <0x%08lx>",
2463                         ins, pre, post, vol, reg, ins->template_id, tops(ins->op), 
2464                         MISC(ins, 0), (unsigned long)(ins->u.cval));
2465         }
2466         else if (ins->op == OP_INDEX) {
2467                 fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s %-10p <0x%08lx>",
2468                         ins, pre, post, vol, reg, ins->template_id, tops(ins->op), 
2469                         RHS(ins, 0), (unsigned long)(ins->u.cval));
2470         }
2471         else if (ins->op == OP_PIECE) {
2472                 fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s %-10p <0x%08lx>",
2473                         ins, pre, post, vol, reg, ins->template_id, tops(ins->op), 
2474                         MISC(ins, 0), (unsigned long)(ins->u.cval));
2475         }
2476         else {
2477                 int i, count;
2478                 fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s", 
2479                         ins, pre, post, vol, reg, ins->template_id, tops(ins->op));
2480                 if (table_ops[ins->op].flags & BITFIELD) {
2481                         fprintf(fp, " <%2d-%2d:%2d>", 
2482                                 ins->u.bitfield.offset,
2483                                 ins->u.bitfield.offset + ins->u.bitfield.size,
2484                                 ins->u.bitfield.size);
2485                 }
2486                 count = TRIPLE_SIZE(ins);
2487                 for(i = 0; i < count; i++) {
2488                         fprintf(fp, " %-10p", ins->param[i]);
2489                 }
2490                 for(; i < 2; i++) {
2491                         fprintf(fp, "           ");
2492                 }
2493         }
2494         if (ins) {
2495                 struct triple_set *user;
2496 #if DEBUG_DISPLAY_TYPES
2497                 fprintf(fp, " <");
2498                 name_of(fp, ins->type);
2499                 fprintf(fp, "> ");
2500 #endif
2501 #if DEBUG_DISPLAY_USES
2502                 fprintf(fp, " [");
2503                 for(user = ins->use; user; user = user->next) {
2504                         fprintf(fp, " %-10p", user->member);
2505                 }
2506                 fprintf(fp, " ]");
2507 #endif
2508                 fprintf(fp, " @");
2509                 for(ptr = ins->occurance; ptr; ptr = ptr->parent) {
2510                         fprintf(fp, " %s,%s:%d.%d",
2511                                 ptr->function, 
2512                                 ptr->filename,
2513                                 ptr->line, 
2514                                 ptr->col);
2515                 }
2516                 if (ins->op == OP_ASM) {
2517                         fprintf(fp, "\n\t%s", ins->u.ainfo->str);
2518                 }
2519         }
2520         fprintf(fp, "\n");
2521         fflush(fp);
2522 }
2523
2524 static int equiv_types(struct type *left, struct type *right);
2525 static void display_triple_changes(
2526         FILE *fp, const struct triple *new, const struct triple *orig)
2527 {
2528
2529         int new_count, orig_count;
2530         new_count = TRIPLE_SIZE(new);
2531         orig_count = TRIPLE_SIZE(orig);
2532         if ((new->op != orig->op) ||
2533                 (new_count != orig_count) ||
2534                 (memcmp(orig->param, new->param,        
2535                         orig_count * sizeof(orig->param[0])) != 0) ||
2536                 (memcmp(&orig->u, &new->u, sizeof(orig->u)) != 0)) 
2537         {
2538                 struct occurance *ptr;
2539                 int i, min_count, indent;
2540                 fprintf(fp, "(%p %p)", new, orig);
2541                 if (orig->op == new->op) {
2542                         fprintf(fp, " %-11s", tops(orig->op));
2543                 } else {
2544                         fprintf(fp, " [%-10s %-10s]", 
2545                                 tops(new->op), tops(orig->op));
2546                 }
2547                 min_count = new_count;
2548                 if (min_count > orig_count) {
2549                         min_count = orig_count;
2550                 }
2551                 for(indent = i = 0; i < min_count; i++) {
2552                         if (orig->param[i] == new->param[i]) {
2553                                 fprintf(fp, " %-11p", 
2554                                         orig->param[i]);
2555                                 indent += 12;
2556                         } else {
2557                                 fprintf(fp, " [%-10p %-10p]",
2558                                         new->param[i], 
2559                                         orig->param[i]);
2560                                 indent += 24;
2561                         }
2562                 }
2563                 for(; i < orig_count; i++) {
2564                         fprintf(fp, " [%-9p]", orig->param[i]);
2565                         indent += 12;
2566                 }
2567                 for(; i < new_count; i++) {
2568                         fprintf(fp, " [%-9p]", new->param[i]);
2569                         indent += 12;
2570                 }
2571                 if ((new->op == OP_INTCONST)||
2572                         (new->op == OP_ADDRCONST)) {
2573                         fprintf(fp, " <0x%08lx>", 
2574                                 (unsigned long)(new->u.cval));
2575                         indent += 13;
2576                 }
2577                 for(;indent < 36; indent++) {
2578                         putc(' ', fp);
2579                 }
2580
2581 #if DEBUG_DISPLAY_TYPES
2582                 fprintf(fp, " <");
2583                 name_of(fp, new->type);
2584                 if (!equiv_types(new->type, orig->type)) {
2585                         fprintf(fp, " -- ");
2586                         name_of(fp, orig->type);
2587                 }
2588                 fprintf(fp, "> ");
2589 #endif
2590
2591                 fprintf(fp, " @");
2592                 for(ptr = orig->occurance; ptr; ptr = ptr->parent) {
2593                         fprintf(fp, " %s,%s:%d.%d",
2594                                 ptr->function, 
2595                                 ptr->filename,
2596                                 ptr->line, 
2597                                 ptr->col);
2598                         
2599                 }
2600                 fprintf(fp, "\n");
2601                 fflush(fp);
2602         }
2603 }
2604
2605 static int triple_is_pure(struct compile_state *state, struct triple *ins, unsigned id)
2606 {
2607         /* Does the triple have no side effects.
2608          * I.e. Rexecuting the triple with the same arguments 
2609          * gives the same value.
2610          */
2611         unsigned pure;
2612         valid_ins(state, ins);
2613         pure = PURE_BITS(table_ops[ins->op].flags);
2614         if ((pure != PURE) && (pure != IMPURE)) {
2615                 internal_error(state, 0, "Purity of %s not known",
2616                         tops(ins->op));
2617         }
2618         return (pure == PURE) && !(id & TRIPLE_FLAG_VOLATILE);
2619 }
2620
2621 static int triple_is_branch_type(struct compile_state *state, 
2622         struct triple *ins, unsigned type)
2623 {
2624         /* Is this one of the passed branch types? */
2625         valid_ins(state, ins);
2626         return (BRANCH_BITS(table_ops[ins->op].flags) == type);
2627 }
2628
2629 static int triple_is_branch(struct compile_state *state, struct triple *ins)
2630 {
2631         /* Is this triple a branch instruction? */
2632         valid_ins(state, ins);
2633         return (BRANCH_BITS(table_ops[ins->op].flags) != 0);
2634 }
2635
2636 static int triple_is_cbranch(struct compile_state *state, struct triple *ins)
2637 {
2638         /* Is this triple a conditional branch instruction? */
2639         return triple_is_branch_type(state, ins, CBRANCH);
2640 }
2641
2642 static int triple_is_ubranch(struct compile_state *state, struct triple *ins)
2643 {
2644         /* Is this triple a unconditional branch instruction? */
2645         unsigned type;
2646         valid_ins(state, ins);
2647         type = BRANCH_BITS(table_ops[ins->op].flags);
2648         return (type != 0) && (type != CBRANCH);
2649 }
2650
2651 static int triple_is_call(struct compile_state *state, struct triple *ins)
2652 {
2653         /* Is this triple a call instruction? */
2654         return triple_is_branch_type(state, ins, CALLBRANCH);
2655 }
2656
2657 static int triple_is_ret(struct compile_state *state, struct triple *ins)
2658 {
2659         /* Is this triple a return instruction? */
2660         return triple_is_branch_type(state, ins, RETBRANCH);
2661 }
2662  
2663 #if DEBUG_ROMCC_WARNING
2664 static int triple_is_simple_ubranch(struct compile_state *state, struct triple *ins)
2665 {
2666         /* Is this triple an unconditional branch and not a call or a
2667          * return? */
2668         return triple_is_branch_type(state, ins, UBRANCH);
2669 }
2670 #endif
2671
2672 static int triple_is_end(struct compile_state *state, struct triple *ins)
2673 {
2674         return triple_is_branch_type(state, ins, ENDBRANCH);
2675 }
2676
2677 static int triple_is_label(struct compile_state *state, struct triple *ins)
2678 {
2679         valid_ins(state, ins);
2680         return (ins->op == OP_LABEL);
2681 }
2682
2683 static struct triple *triple_to_block_start(
2684         struct compile_state *state, struct triple *start)
2685 {
2686         while(!triple_is_branch(state, start->prev) &&
2687                 (!triple_is_label(state, start) || !start->use)) {
2688                 start = start->prev;
2689         }
2690         return start;
2691 }
2692
2693 static int triple_is_def(struct compile_state *state, struct triple *ins)
2694 {
2695         /* This function is used to determine which triples need
2696          * a register.
2697          */
2698         int is_def;
2699         valid_ins(state, ins);
2700         is_def = (table_ops[ins->op].flags & DEF) == DEF;
2701         if (ins->lhs >= 1) {
2702                 is_def = 0;
2703         }
2704         return is_def;
2705 }
2706
2707 static int triple_is_structural(struct compile_state *state, struct triple *ins)
2708 {
2709         int is_structural;
2710         valid_ins(state, ins);
2711         is_structural = (table_ops[ins->op].flags & STRUCTURAL) == STRUCTURAL;
2712         return is_structural;
2713 }
2714
2715 static int triple_is_part(struct compile_state *state, struct triple *ins)
2716 {
2717         int is_part;
2718         valid_ins(state, ins);
2719         is_part = (table_ops[ins->op].flags & PART) == PART;
2720         return is_part;
2721 }
2722
2723 static int triple_is_auto_var(struct compile_state *state, struct triple *ins)
2724 {
2725         return (ins->op == OP_PIECE) && (MISC(ins, 0)->op == OP_ADECL);
2726 }
2727
2728 static struct triple **triple_iter(struct compile_state *state,
2729         size_t count, struct triple **vector,
2730         struct triple *ins, struct triple **last)
2731 {
2732         struct triple **ret;
2733         ret = 0;
2734         if (count) {
2735                 if (!last) {
2736                         ret = vector;
2737                 }
2738                 else if ((last >= vector) && (last < (vector + count - 1))) {
2739                         ret = last + 1;
2740                 }
2741         }
2742         return ret;
2743         
2744 }
2745
2746 static struct triple **triple_lhs(struct compile_state *state,
2747         struct triple *ins, struct triple **last)
2748 {
2749         return triple_iter(state, ins->lhs, &LHS(ins,0), 
2750                 ins, last);
2751 }
2752
2753 static struct triple **triple_rhs(struct compile_state *state,
2754         struct triple *ins, struct triple **last)
2755 {
2756         return triple_iter(state, ins->rhs, &RHS(ins,0), 
2757                 ins, last);
2758 }
2759
2760 static struct triple **triple_misc(struct compile_state *state,
2761         struct triple *ins, struct triple **last)
2762 {
2763         return triple_iter(state, ins->misc, &MISC(ins,0), 
2764                 ins, last);
2765 }
2766
2767 static struct triple **do_triple_targ(struct compile_state *state,
2768         struct triple *ins, struct triple **last, int call_edges, int next_edges)
2769 {
2770         size_t count;
2771         struct triple **ret, **vector;
2772         int next_is_targ;
2773         ret = 0;
2774         count = ins->targ;
2775         next_is_targ = 0;
2776         if (triple_is_cbranch(state, ins)) {
2777                 next_is_targ = 1;
2778         }
2779         if (!call_edges && triple_is_call(state, ins)) {
2780                 count = 0;
2781         }
2782         if (next_edges && triple_is_call(state, ins)) {
2783                 next_is_targ = 1;
2784         }
2785         vector = &TARG(ins, 0);
2786         if (!ret && next_is_targ) {
2787                 if (!last) {
2788                         ret = &ins->next;
2789                 } else if (last == &ins->next) {
2790                         last = 0;
2791                 }
2792         }
2793         if (!ret && count) {
2794                 if (!last) {
2795                         ret = vector;
2796                 }
2797                 else if ((last >= vector) && (last < (vector + count - 1))) {
2798                         ret = last + 1;
2799                 }
2800                 else if (last == vector + count - 1) {
2801                         last = 0;
2802                 }
2803         }
2804         if (!ret && triple_is_ret(state, ins) && call_edges) {
2805                 struct triple_set *use;
2806                 for(use = ins->use; use; use = use->next) {
2807                         if (!triple_is_call(state, use->member)) {
2808                                 continue;
2809                         }
2810                         if (!last) {
2811                                 ret = &use->member->next;
2812                                 break;
2813                         }
2814                         else if (last == &use->member->next) {
2815                                 last = 0;
2816                         }
2817                 }
2818         }
2819         return ret;
2820 }
2821
2822 static struct triple **triple_targ(struct compile_state *state,
2823         struct triple *ins, struct triple **last)
2824 {
2825         return do_triple_targ(state, ins, last, 1, 1);
2826 }
2827
2828 static struct triple **triple_edge_targ(struct compile_state *state,
2829         struct triple *ins, struct triple **last)
2830 {
2831         return do_triple_targ(state, ins, last, 
2832                 state->functions_joined, !state->functions_joined);
2833 }
2834
2835 static struct triple *after_lhs(struct compile_state *state, struct triple *ins)
2836 {
2837         struct triple *next;
2838         int lhs, i;
2839         lhs = ins->lhs;
2840         next = ins->next;
2841         for(i = 0; i < lhs; i++) {
2842                 struct triple *piece;
2843                 piece = LHS(ins, i);
2844                 if (next != piece) {
2845                         internal_error(state, ins, "malformed lhs on %s",
2846                                 tops(ins->op));
2847                 }
2848                 if (next->op != OP_PIECE) {
2849                         internal_error(state, ins, "bad lhs op %s at %d on %s",
2850                                 tops(next->op), i, tops(ins->op));
2851                 }
2852                 if (next->u.cval != i) {
2853                         internal_error(state, ins, "bad u.cval of %d %d expected",
2854                                 next->u.cval, i);
2855                 }
2856                 next = next->next;
2857         }
2858         return next;
2859 }
2860
2861 /* Function piece accessor functions */
2862 static struct triple *do_farg(struct compile_state *state, 
2863         struct triple *func, unsigned index)
2864 {
2865         struct type *ftype;
2866         struct triple *first, *arg;
2867         unsigned i;
2868
2869         ftype = func->type;
2870         if((index < 0) || (index >= (ftype->elements + 2))) {
2871                 internal_error(state, func, "bad argument index: %d", index);
2872         }
2873         first = RHS(func, 0);
2874         arg = first->next;
2875         for(i = 0; i < index; i++, arg = after_lhs(state, arg)) {
2876                 /* do nothing */
2877         }
2878         if (arg->op != OP_ADECL) {
2879                 internal_error(state, 0, "arg not adecl?");
2880         }
2881         return arg;
2882 }
2883 static struct triple *fresult(struct compile_state *state, struct triple *func)
2884 {
2885         return do_farg(state, func, 0);
2886 }
2887 static struct triple *fretaddr(struct compile_state *state, struct triple *func)
2888 {
2889         return do_farg(state, func, 1);
2890 }
2891 static struct triple *farg(struct compile_state *state, 
2892         struct triple *func, unsigned index)
2893 {
2894         return do_farg(state, func, index + 2);
2895 }
2896
2897
2898 static void display_func(struct compile_state *state, FILE *fp, struct triple *func)
2899 {
2900         struct triple *first, *ins;
2901         fprintf(fp, "display_func %s\n", func->type->type_ident->name);
2902         first = ins = RHS(func, 0);
2903         do {
2904                 if (triple_is_label(state, ins) && ins->use) {
2905                         fprintf(fp, "%p:\n", ins);
2906                 }
2907                 display_triple(fp, ins);
2908
2909                 if (triple_is_branch(state, ins)) {
2910                         fprintf(fp, "\n");
2911                 }
2912                 if (ins->next->prev != ins) {
2913                         internal_error(state, ins->next, "bad prev");
2914                 }
2915                 ins = ins->next;
2916         } while(ins != first);
2917 }
2918
2919 static void verify_use(struct compile_state *state,
2920         struct triple *user, struct triple *used)
2921 {
2922         int size, i;
2923         size = TRIPLE_SIZE(user);
2924         for(i = 0; i < size; i++) {
2925                 if (user->param[i] == used) {
2926                         break;
2927                 }
2928         }
2929         if (triple_is_branch(state, user)) {
2930                 if (user->next == used) {
2931                         i = -1;
2932                 }
2933         }
2934         if (i == size) {
2935                 internal_error(state, user, "%s(%p) does not use %s(%p)",
2936                         tops(user->op), user, tops(used->op), used);
2937         }
2938 }
2939
2940 static int find_rhs_use(struct compile_state *state, 
2941         struct triple *user, struct triple *used)
2942 {
2943         struct triple **param;
2944         int size, i;
2945         verify_use(state, user, used);
2946
2947 #if DEBUG_ROMCC_WARNINGS
2948 #warning "AUDIT ME ->rhs"
2949 #endif
2950         size = user->rhs;
2951         param = &RHS(user, 0);
2952         for(i = 0; i < size; i++) {
2953                 if (param[i] == used) {
2954                         return i;
2955                 }
2956         }
2957         return -1;
2958 }
2959
2960 static void free_triple(struct compile_state *state, struct triple *ptr)
2961 {
2962         size_t size;
2963         size = sizeof(*ptr) - sizeof(ptr->param) +
2964                 (sizeof(ptr->param[0])*TRIPLE_SIZE(ptr));
2965         ptr->prev->next = ptr->next;
2966         ptr->next->prev = ptr->prev;
2967         if (ptr->use) {
2968                 internal_error(state, ptr, "ptr->use != 0");
2969         }
2970         put_occurance(ptr->occurance);
2971         memset(ptr, -1, size);
2972         xfree(ptr);
2973 }
2974
2975 static void release_triple(struct compile_state *state, struct triple *ptr)
2976 {
2977         struct triple_set *set, *next;
2978         struct triple **expr;
2979         struct block *block;
2980         if (ptr == &unknown_triple) {
2981                 return;
2982         }
2983         valid_ins(state, ptr);
2984         /* Make certain the we are not the first or last element of a block */
2985         block = block_of_triple(state, ptr);
2986         if (block) {
2987                 if ((block->last == ptr) && (block->first == ptr)) {
2988                         block->last = block->first = 0;
2989                 }
2990                 else if (block->last == ptr) {
2991                         block->last = ptr->prev;
2992                 }
2993                 else if (block->first == ptr) {
2994                         block->first = ptr->next;
2995                 }
2996         }
2997         /* Remove ptr from use chains where it is the user */
2998         expr = triple_rhs(state, ptr, 0);
2999         for(; expr; expr = triple_rhs(state, ptr, expr)) {
3000                 if (*expr) {
3001                         unuse_triple(*expr, ptr);
3002                 }
3003         }
3004         expr = triple_lhs(state, ptr, 0);
3005         for(; expr; expr = triple_lhs(state, ptr, expr)) {
3006                 if (*expr) {
3007                         unuse_triple(*expr, ptr);
3008                 }
3009         }
3010         expr = triple_misc(state, ptr, 0);
3011         for(; expr; expr = triple_misc(state, ptr, expr)) {
3012                 if (*expr) {
3013                         unuse_triple(*expr, ptr);
3014                 }
3015         }
3016         expr = triple_targ(state, ptr, 0);
3017         for(; expr; expr = triple_targ(state, ptr, expr)) {
3018                 if (*expr){
3019                         unuse_triple(*expr, ptr);
3020                 }
3021         }
3022         /* Reomve ptr from use chains where it is used */
3023         for(set = ptr->use; set; set = next) {
3024                 next = set->next;
3025                 valid_ins(state, set->member);
3026                 expr = triple_rhs(state, set->member, 0);
3027                 for(; expr; expr = triple_rhs(state, set->member, expr)) {
3028                         if (*expr == ptr) {
3029                                 *expr = &unknown_triple;
3030                         }
3031                 }
3032                 expr = triple_lhs(state, set->member, 0);
3033                 for(; expr; expr = triple_lhs(state, set->member, expr)) {
3034                         if (*expr == ptr) {
3035                                 *expr = &unknown_triple;
3036                         }
3037                 }
3038                 expr = triple_misc(state, set->member, 0);
3039                 for(; expr; expr = triple_misc(state, set->member, expr)) {
3040                         if (*expr == ptr) {
3041                                 *expr = &unknown_triple;
3042                         }
3043                 }
3044                 expr = triple_targ(state, set->member, 0);
3045                 for(; expr; expr = triple_targ(state, set->member, expr)) {
3046                         if (*expr == ptr) {
3047                                 *expr = &unknown_triple;
3048                         }
3049                 }
3050                 unuse_triple(ptr, set->member);
3051         }
3052         free_triple(state, ptr);
3053 }
3054
3055 static void print_triples(struct compile_state *state);
3056 static void print_blocks(struct compile_state *state, const char *func, FILE *fp);
3057
3058 #define TOK_UNKNOWN       0
3059 #define TOK_SPACE         1
3060 #define TOK_SEMI          2
3061 #define TOK_LBRACE        3
3062 #define TOK_RBRACE        4
3063 #define TOK_COMMA         5
3064 #define TOK_EQ            6
3065 #define TOK_COLON         7
3066 #define TOK_LBRACKET      8
3067 #define TOK_RBRACKET      9
3068 #define TOK_LPAREN        10
3069 #define TOK_RPAREN        11
3070 #define TOK_STAR          12
3071 #define TOK_DOTS          13
3072 #define TOK_MORE          14
3073 #define TOK_LESS          15
3074 #define TOK_TIMESEQ       16
3075 #define TOK_DIVEQ         17
3076 #define TOK_MODEQ         18
3077 #define TOK_PLUSEQ        19
3078 #define TOK_MINUSEQ       20
3079 #define TOK_SLEQ          21
3080 #define TOK_SREQ          22
3081 #define TOK_ANDEQ         23
3082 #define TOK_XOREQ         24
3083 #define TOK_OREQ          25
3084 #define TOK_EQEQ          26
3085 #define TOK_NOTEQ         27
3086 #define TOK_QUEST         28
3087 #define TOK_LOGOR         29
3088 #define TOK_LOGAND        30
3089 #define TOK_OR            31
3090 #define TOK_AND           32
3091 #define TOK_XOR           33
3092 #define TOK_LESSEQ        34
3093 #define TOK_MOREEQ        35
3094 #define TOK_SL            36
3095 #define TOK_SR            37
3096 #define TOK_PLUS          38
3097 #define TOK_MINUS         39
3098 #define TOK_DIV           40
3099 #define TOK_MOD           41
3100 #define TOK_PLUSPLUS      42
3101 #define TOK_MINUSMINUS    43
3102 #define TOK_BANG          44
3103 #define TOK_ARROW         45
3104 #define TOK_DOT           46
3105 #define TOK_TILDE         47
3106 #define TOK_LIT_STRING    48
3107 #define TOK_LIT_CHAR      49
3108 #define TOK_LIT_INT       50
3109 #define TOK_LIT_FLOAT     51
3110 #define TOK_MACRO         52
3111 #define TOK_CONCATENATE   53
3112
3113 #define TOK_IDENT         54
3114 #define TOK_STRUCT_NAME   55
3115 #define TOK_ENUM_CONST    56
3116 #define TOK_TYPE_NAME     57
3117
3118 #define TOK_AUTO          58
3119 #define TOK_BREAK         59
3120 #define TOK_CASE          60
3121 #define TOK_CHAR          61
3122 #define TOK_CONST         62
3123 #define TOK_CONTINUE      63
3124 #define TOK_DEFAULT       64
3125 #define TOK_DO            65
3126 #define TOK_DOUBLE        66
3127 #define TOK_ELSE          67
3128 #define TOK_ENUM          68
3129 #define TOK_EXTERN        69
3130 #define TOK_FLOAT         70
3131 #define TOK_FOR           71
3132 #define TOK_GOTO          72
3133 #define TOK_IF            73
3134 #define TOK_INLINE        74
3135 #define TOK_INT           75
3136 #define TOK_LONG          76
3137 #define TOK_REGISTER      77
3138 #define TOK_RESTRICT      78
3139 #define TOK_RETURN        79
3140 #define TOK_SHORT         80
3141 #define TOK_SIGNED        81
3142 #define TOK_SIZEOF        82
3143 #define TOK_STATIC        83
3144 #define TOK_STRUCT        84
3145 #define TOK_SWITCH        85
3146 #define TOK_TYPEDEF       86
3147 #define TOK_UNION         87
3148 #define TOK_UNSIGNED      88
3149 #define TOK_VOID          89
3150 #define TOK_VOLATILE      90
3151 #define TOK_WHILE         91
3152 #define TOK_ASM           92
3153 #define TOK_ATTRIBUTE     93
3154 #define TOK_ALIGNOF       94
3155 #define TOK_FIRST_KEYWORD TOK_AUTO
3156 #define TOK_LAST_KEYWORD  TOK_ALIGNOF
3157
3158 #define TOK_MDEFINE       100
3159 #define TOK_MDEFINED      101
3160 #define TOK_MUNDEF        102
3161 #define TOK_MINCLUDE      103
3162 #define TOK_MLINE         104
3163 #define TOK_MERROR        105
3164 #define TOK_MWARNING      106
3165 #define TOK_MPRAGMA       107
3166 #define TOK_MIFDEF        108
3167 #define TOK_MIFNDEF       109
3168 #define TOK_MELIF         110
3169 #define TOK_MENDIF        111
3170
3171 #define TOK_FIRST_MACRO   TOK_MDEFINE
3172 #define TOK_LAST_MACRO    TOK_MENDIF
3173          
3174 #define TOK_MIF           112
3175 #define TOK_MELSE         113
3176 #define TOK_MIDENT        114
3177
3178 #define TOK_EOL           115
3179 #define TOK_EOF           116
3180
3181 static const char *tokens[] = {
3182 [TOK_UNKNOWN     ] = ":unknown:",
3183 [TOK_SPACE       ] = ":space:",
3184 [TOK_SEMI        ] = ";",
3185 [TOK_LBRACE      ] = "{",
3186 [TOK_RBRACE      ] = "}",
3187 [TOK_COMMA       ] = ",",
3188 [TOK_EQ          ] = "=",
3189 [TOK_COLON       ] = ":",
3190 [TOK_LBRACKET    ] = "[",
3191 [TOK_RBRACKET    ] = "]",
3192 [TOK_LPAREN      ] = "(",
3193 [TOK_RPAREN      ] = ")",
3194 [TOK_STAR        ] = "*",
3195 [TOK_DOTS        ] = "...",
3196 [TOK_MORE        ] = ">",
3197 [TOK_LESS        ] = "<",
3198 [TOK_TIMESEQ     ] = "*=",
3199 [TOK_DIVEQ       ] = "/=",
3200 [TOK_MODEQ       ] = "%=",
3201 [TOK_PLUSEQ      ] = "+=",
3202 [TOK_MINUSEQ     ] = "-=",
3203 [TOK_SLEQ        ] = "<<=",
3204 [TOK_SREQ        ] = ">>=",
3205 [TOK_ANDEQ       ] = "&=",
3206 [TOK_XOREQ       ] = "^=",
3207 [TOK_OREQ        ] = "|=",
3208 [TOK_EQEQ        ] = "==",
3209 [TOK_NOTEQ       ] = "!=",
3210 [TOK_QUEST       ] = "?",
3211 [TOK_LOGOR       ] = "||",
3212 [TOK_LOGAND      ] = "&&",
3213 [TOK_OR          ] = "|",
3214 [TOK_AND         ] = "&",
3215 [TOK_XOR         ] = "^",
3216 [TOK_LESSEQ      ] = "<=",
3217 [TOK_MOREEQ      ] = ">=",
3218 [TOK_SL          ] = "<<",
3219 [TOK_SR          ] = ">>",
3220 [TOK_PLUS        ] = "+",
3221 [TOK_MINUS       ] = "-",
3222 [TOK_DIV         ] = "/",
3223 [TOK_MOD         ] = "%",
3224 [TOK_PLUSPLUS    ] = "++",
3225 [TOK_MINUSMINUS  ] = "--",
3226 [TOK_BANG        ] = "!",
3227 [TOK_ARROW       ] = "->",
3228 [TOK_DOT         ] = ".",
3229 [TOK_TILDE       ] = "~",
3230 [TOK_LIT_STRING  ] = ":string:",
3231 [TOK_IDENT       ] = ":ident:",
3232 [TOK_TYPE_NAME   ] = ":typename:",
3233 [TOK_LIT_CHAR    ] = ":char:",
3234 [TOK_LIT_INT     ] = ":integer:",
3235 [TOK_LIT_FLOAT   ] = ":float:",
3236 [TOK_MACRO       ] = "#",
3237 [TOK_CONCATENATE ] = "##",
3238
3239 [TOK_AUTO        ] = "auto",
3240 [TOK_BREAK       ] = "break",
3241 [TOK_CASE        ] = "case",
3242 [TOK_CHAR        ] = "char",
3243 [TOK_CONST       ] = "const",
3244 [TOK_CONTINUE    ] = "continue",
3245 [TOK_DEFAULT     ] = "default",
3246 [TOK_DO          ] = "do",
3247 [TOK_DOUBLE      ] = "double",
3248 [TOK_ELSE        ] = "else",
3249 [TOK_ENUM        ] = "enum",
3250 [TOK_EXTERN      ] = "extern",
3251 [TOK_FLOAT       ] = "float",
3252 [TOK_FOR         ] = "for",
3253 [TOK_GOTO        ] = "goto",
3254 [TOK_IF          ] = "if",
3255 [TOK_INLINE      ] = "inline",
3256 [TOK_INT         ] = "int",
3257 [TOK_LONG        ] = "long",
3258 [TOK_REGISTER    ] = "register",
3259 [TOK_RESTRICT    ] = "restrict",
3260 [TOK_RETURN      ] = "return",
3261 [TOK_SHORT       ] = "short",
3262 [TOK_SIGNED      ] = "signed",
3263 [TOK_SIZEOF      ] = "sizeof",
3264 [TOK_STATIC      ] = "static",
3265 [TOK_STRUCT      ] = "struct",
3266 [TOK_SWITCH      ] = "switch",
3267 [TOK_TYPEDEF     ] = "typedef",
3268 [TOK_UNION       ] = "union",
3269 [TOK_UNSIGNED    ] = "unsigned",
3270 [TOK_VOID        ] = "void",
3271 [TOK_VOLATILE    ] = "volatile",
3272 [TOK_WHILE       ] = "while",
3273 [TOK_ASM         ] = "asm",
3274 [TOK_ATTRIBUTE   ] = "__attribute__",
3275 [TOK_ALIGNOF     ] = "__alignof__",
3276
3277 [TOK_MDEFINE     ] = "#define",
3278 [TOK_MDEFINED    ] = "#defined",
3279 [TOK_MUNDEF      ] = "#undef",
3280 [TOK_MINCLUDE    ] = "#include",
3281 [TOK_MLINE       ] = "#line",
3282 [TOK_MERROR      ] = "#error",
3283 [TOK_MWARNING    ] = "#warning",
3284 [TOK_MPRAGMA     ] = "#pragma",
3285 [TOK_MIFDEF      ] = "#ifdef",
3286 [TOK_MIFNDEF     ] = "#ifndef",
3287 [TOK_MELIF       ] = "#elif",
3288 [TOK_MENDIF      ] = "#endif",
3289
3290 [TOK_MIF         ] = "#if",
3291 [TOK_MELSE       ] = "#else",
3292 [TOK_MIDENT      ] = "#:ident:",
3293 [TOK_EOL         ] = "EOL", 
3294 [TOK_EOF         ] = "EOF",
3295 };
3296
3297 static unsigned int hash(const char *str, int str_len)
3298 {
3299         unsigned int hash;
3300         const char *end;
3301         end = str + str_len;
3302         hash = 0;
3303         for(; str < end; str++) {
3304                 hash = (hash *263) + *str;
3305         }
3306         hash = hash & (HASH_TABLE_SIZE -1);
3307         return hash;
3308 }
3309
3310 static struct hash_entry *lookup(
3311         struct compile_state *state, const char *name, int name_len)
3312 {
3313         struct hash_entry *entry;
3314         unsigned int index;
3315         index = hash(name, name_len);
3316         entry = state->hash_table[index];
3317         while(entry && 
3318                 ((entry->name_len != name_len) ||
3319                         (memcmp(entry->name, name, name_len) != 0))) {
3320                 entry = entry->next;
3321         }
3322         if (!entry) {
3323                 char *new_name;
3324                 /* Get a private copy of the name */
3325                 new_name = xmalloc(name_len + 1, "hash_name");
3326                 memcpy(new_name, name, name_len);
3327                 new_name[name_len] = '\0';
3328
3329                 /* Create a new hash entry */
3330                 entry = xcmalloc(sizeof(*entry), "hash_entry");
3331                 entry->next = state->hash_table[index];
3332                 entry->name = new_name;
3333                 entry->name_len = name_len;
3334
3335                 /* Place the new entry in the hash table */
3336                 state->hash_table[index] = entry;
3337         }
3338         return entry;
3339 }
3340
3341 static void ident_to_keyword(struct compile_state *state, struct token *tk)
3342 {
3343         struct hash_entry *entry;
3344         entry = tk->ident;
3345         if (entry && ((entry->tok == TOK_TYPE_NAME) ||
3346                 (entry->tok == TOK_ENUM_CONST) ||
3347                 ((entry->tok >= TOK_FIRST_KEYWORD) && 
3348                         (entry->tok <= TOK_LAST_KEYWORD)))) {
3349                 tk->tok = entry->tok;
3350         }
3351 }
3352
3353 static void ident_to_macro(struct compile_state *state, struct token *tk)
3354 {
3355         struct hash_entry *entry;
3356         entry = tk->ident;
3357         if (!entry)
3358                 return;
3359         if ((entry->tok >= TOK_FIRST_MACRO) && (entry->tok <= TOK_LAST_MACRO)) {
3360                 tk->tok = entry->tok;
3361         }
3362         else if (entry->tok == TOK_IF) {
3363                 tk->tok = TOK_MIF;
3364         }
3365         else if (entry->tok == TOK_ELSE) {
3366                 tk->tok = TOK_MELSE;
3367         }
3368         else {
3369                 tk->tok = TOK_MIDENT;
3370         }
3371 }
3372
3373 static void hash_keyword(
3374         struct compile_state *state, const char *keyword, int tok)
3375 {
3376         struct hash_entry *entry;
3377         entry = lookup(state, keyword, strlen(keyword));
3378         if (entry && entry->tok != TOK_UNKNOWN) {
3379                 die("keyword %s already hashed", keyword);
3380         }
3381         entry->tok  = tok;
3382 }
3383
3384 static void romcc_symbol(
3385         struct compile_state *state, struct hash_entry *ident,
3386         struct symbol **chain, struct triple *def, struct type *type, int depth)
3387 {
3388         struct symbol *sym;
3389         if (*chain && ((*chain)->scope_depth >= depth)) {
3390                 error(state, 0, "%s already defined", ident->name);
3391         }
3392         sym = xcmalloc(sizeof(*sym), "symbol");
3393         sym->ident = ident;
3394         sym->def   = def;
3395         sym->type  = type;
3396         sym->scope_depth = depth;
3397         sym->next = *chain;
3398         *chain    = sym;
3399 }
3400
3401 static void symbol(
3402         struct compile_state *state, struct hash_entry *ident,
3403         struct symbol **chain, struct triple *def, struct type *type)
3404 {
3405         romcc_symbol(state, ident, chain, def, type, state->scope_depth);
3406 }
3407
3408 static void var_symbol(struct compile_state *state, 
3409         struct hash_entry *ident, struct triple *def)
3410 {
3411         if ((def->type->type & TYPE_MASK) == TYPE_PRODUCT) {
3412                 internal_error(state, 0, "bad var type");
3413         }
3414         symbol(state, ident, &ident->sym_ident, def, def->type);
3415 }
3416
3417 static void label_symbol(struct compile_state *state, 
3418         struct hash_entry *ident, struct triple *label, int depth)
3419 {
3420         romcc_symbol(state, ident, &ident->sym_label, label, &void_type, depth);
3421 }
3422
3423 static void start_scope(struct compile_state *state)
3424 {
3425         state->scope_depth++;
3426 }
3427
3428 static void end_scope_syms(struct compile_state *state,
3429         struct symbol **chain, int depth)
3430 {
3431         struct symbol *sym, *next;
3432         sym = *chain;
3433         while(sym && (sym->scope_depth == depth)) {
3434                 next = sym->next;
3435                 xfree(sym);
3436                 sym = next;
3437         }
3438         *chain = sym;
3439 }
3440
3441 static void end_scope(struct compile_state *state)
3442 {
3443         int i;
3444         int depth;
3445         /* Walk through the hash table and remove all symbols
3446          * in the current scope. 
3447          */
3448         depth = state->scope_depth;
3449         for(i = 0; i < HASH_TABLE_SIZE; i++) {
3450                 struct hash_entry *entry;
3451                 entry = state->hash_table[i];
3452                 while(entry) {
3453                         end_scope_syms(state, &entry->sym_label, depth);
3454                         end_scope_syms(state, &entry->sym_tag,   depth);
3455                         end_scope_syms(state, &entry->sym_ident, depth);
3456                         entry = entry->next;
3457                 }
3458         }
3459         state->scope_depth = depth - 1;
3460 }
3461
3462 static void register_keywords(struct compile_state *state)
3463 {
3464         hash_keyword(state, "auto",          TOK_AUTO);
3465         hash_keyword(state, "break",         TOK_BREAK);
3466         hash_keyword(state, "case",          TOK_CASE);
3467         hash_keyword(state, "char",          TOK_CHAR);
3468         hash_keyword(state, "const",         TOK_CONST);
3469         hash_keyword(state, "continue",      TOK_CONTINUE);
3470         hash_keyword(state, "default",       TOK_DEFAULT);
3471         hash_keyword(state, "do",            TOK_DO);
3472         hash_keyword(state, "double",        TOK_DOUBLE);
3473         hash_keyword(state, "else",          TOK_ELSE);
3474         hash_keyword(state, "enum",          TOK_ENUM);
3475         hash_keyword(state, "extern",        TOK_EXTERN);
3476         hash_keyword(state, "float",         TOK_FLOAT);
3477         hash_keyword(state, "for",           TOK_FOR);
3478         hash_keyword(state, "goto",          TOK_GOTO);
3479         hash_keyword(state, "if",            TOK_IF);
3480         hash_keyword(state, "inline",        TOK_INLINE);
3481         hash_keyword(state, "int",           TOK_INT);
3482         hash_keyword(state, "long",          TOK_LONG);
3483         hash_keyword(state, "register",      TOK_REGISTER);
3484         hash_keyword(state, "restrict",      TOK_RESTRICT);
3485         hash_keyword(state, "return",        TOK_RETURN);
3486         hash_keyword(state, "short",         TOK_SHORT);
3487         hash_keyword(state, "signed",        TOK_SIGNED);
3488         hash_keyword(state, "sizeof",        TOK_SIZEOF);
3489         hash_keyword(state, "static",        TOK_STATIC);
3490         hash_keyword(state, "struct",        TOK_STRUCT);
3491         hash_keyword(state, "switch",        TOK_SWITCH);
3492         hash_keyword(state, "typedef",       TOK_TYPEDEF);
3493         hash_keyword(state, "union",         TOK_UNION);
3494         hash_keyword(state, "unsigned",      TOK_UNSIGNED);
3495         hash_keyword(state, "void",          TOK_VOID);
3496         hash_keyword(state, "volatile",      TOK_VOLATILE);
3497         hash_keyword(state, "__volatile__",  TOK_VOLATILE);
3498         hash_keyword(state, "while",         TOK_WHILE);
3499         hash_keyword(state, "asm",           TOK_ASM);
3500         hash_keyword(state, "__asm__",       TOK_ASM);
3501         hash_keyword(state, "__attribute__", TOK_ATTRIBUTE);
3502         hash_keyword(state, "__alignof__",   TOK_ALIGNOF);
3503 }
3504
3505 static void register_macro_keywords(struct compile_state *state)
3506 {
3507         hash_keyword(state, "define",        TOK_MDEFINE);
3508         hash_keyword(state, "defined",       TOK_MDEFINED);
3509         hash_keyword(state, "undef",         TOK_MUNDEF);
3510         hash_keyword(state, "include",       TOK_MINCLUDE);
3511         hash_keyword(state, "line",          TOK_MLINE);
3512         hash_keyword(state, "error",         TOK_MERROR);
3513         hash_keyword(state, "warning",       TOK_MWARNING);
3514         hash_keyword(state, "pragma",        TOK_MPRAGMA);
3515         hash_keyword(state, "ifdef",         TOK_MIFDEF);
3516         hash_keyword(state, "ifndef",        TOK_MIFNDEF);
3517         hash_keyword(state, "elif",          TOK_MELIF);
3518         hash_keyword(state, "endif",         TOK_MENDIF);
3519 }
3520
3521
3522 static void undef_macro(struct compile_state *state, struct hash_entry *ident)
3523 {
3524         if (ident->sym_define != 0) {
3525                 struct macro *macro;
3526                 struct macro_arg *arg, *anext;
3527                 macro = ident->sym_define;
3528                 ident->sym_define = 0;
3529                 
3530                 /* Free the macro arguments... */
3531                 anext = macro->args;
3532                 while(anext) {
3533                         arg = anext;
3534                         anext = arg->next;
3535                         xfree(arg);
3536                 }
3537
3538                 /* Free the macro buffer */
3539                 xfree(macro->buf);
3540
3541                 /* Now free the macro itself */
3542                 xfree(macro);
3543         }
3544 }
3545
3546 static void do_define_macro(struct compile_state *state, 
3547         struct hash_entry *ident, const char *body, 
3548         int argc, struct macro_arg *args)
3549 {
3550         struct macro *macro;
3551         struct macro_arg *arg;
3552         size_t body_len;
3553
3554         /* Find the length of the body */
3555         body_len = strlen(body);
3556         macro = ident->sym_define;
3557         if (macro != 0) {
3558                 int identical_bodies, identical_args;
3559                 struct macro_arg *oarg;
3560                 /* Explicitly allow identical redfinitions of the same macro */
3561                 identical_bodies = 
3562                         (macro->buf_len == body_len) &&
3563                         (memcmp(macro->buf, body, body_len) == 0);
3564                 identical_args = macro->argc == argc;
3565                 oarg = macro->args;
3566                 arg = args;
3567                 while(identical_args && arg) {
3568                         identical_args = oarg->ident == arg->ident;
3569                         arg = arg->next;
3570                         oarg = oarg->next;
3571                 }
3572                 if (identical_bodies && identical_args) {
3573                         xfree(body);
3574                         return;
3575                 }
3576                 error(state, 0, "macro %s already defined\n", ident->name);
3577         }
3578 #if 0
3579         fprintf(state->errout, "#define %s: `%*.*s'\n",
3580                 ident->name, body_len, body_len, body);
3581 #endif
3582         macro = xmalloc(sizeof(*macro), "macro");
3583         macro->ident   = ident;
3584         macro->buf     = body;
3585         macro->buf_len = body_len;
3586         macro->args    = args;
3587         macro->argc    = argc;
3588
3589         ident->sym_define = macro;
3590 }
3591         
3592 static void define_macro(
3593         struct compile_state *state,
3594         struct hash_entry *ident,
3595         const char *body, int body_len,
3596         int argc, struct macro_arg *args)
3597 {
3598         char *buf;
3599         buf = xmalloc(body_len + 1, "macro buf");
3600         memcpy(buf, body, body_len);
3601         buf[body_len] = '\0';
3602         do_define_macro(state, ident, buf, argc, args);
3603 }
3604
3605 static void register_builtin_macro(struct compile_state *state,
3606         const char *name, const char *value)
3607 {
3608         struct hash_entry *ident;
3609
3610         if (value[0] == '(') {
3611                 internal_error(state, 0, "Builtin macros with arguments not supported");
3612         }
3613         ident = lookup(state, name, strlen(name));
3614         define_macro(state, ident, value, strlen(value), -1, 0);
3615 }
3616
3617 static void register_builtin_macros(struct compile_state *state)
3618 {
3619         char buf[30];
3620         char scratch[30];
3621         time_t now;
3622         struct tm *tm;
3623         now = time(NULL);
3624         tm = localtime(&now);
3625
3626         register_builtin_macro(state, "__ROMCC__", VERSION_MAJOR);
3627         register_builtin_macro(state, "__ROMCC_MINOR__", VERSION_MINOR);
3628         register_builtin_macro(state, "__FILE__", "\"This should be the filename\"");
3629         register_builtin_macro(state, "__LINE__", "54321");
3630
3631         strftime(scratch, sizeof(scratch), "%b %e %Y", tm);
3632         sprintf(buf, "\"%s\"", scratch);
3633         register_builtin_macro(state, "__DATE__", buf);
3634
3635         strftime(scratch, sizeof(scratch), "%H:%M:%S", tm);
3636         sprintf(buf, "\"%s\"", scratch);
3637         register_builtin_macro(state, "__TIME__", buf);
3638
3639         /* I can't be a conforming implementation of C :( */
3640         register_builtin_macro(state, "__STDC__", "0");
3641         /* In particular I don't conform to C99 */
3642         register_builtin_macro(state, "__STDC_VERSION__", "199901L");
3643         
3644 }
3645
3646 static void process_cmdline_macros(struct compile_state *state)
3647 {
3648         const char **macro, *name;
3649         struct hash_entry *ident;
3650         for(macro = state->compiler->defines; (name = *macro); macro++) {
3651                 const char *body;
3652                 size_t name_len;
3653
3654                 name_len = strlen(name);
3655                 body = strchr(name, '=');
3656                 if (!body) {
3657                         body = "\0";
3658                 } else {
3659                         name_len = body - name;
3660                         body++;
3661                 }
3662                 ident = lookup(state, name, name_len);
3663                 define_macro(state, ident, body, strlen(body), -1, 0);
3664         }
3665         for(macro = state->compiler->undefs; (name = *macro); macro++) {
3666                 ident = lookup(state, name, strlen(name));
3667                 undef_macro(state, ident);
3668         }
3669 }
3670
3671 static int spacep(int c)
3672 {
3673         int ret = 0;
3674         switch(c) {
3675         case ' ':
3676         case '\t':
3677         case '\f':
3678         case '\v':
3679         case '\r':
3680                 ret = 1;
3681                 break;
3682         }
3683         return ret;
3684 }
3685
3686 static int digitp(int c)
3687 {
3688         int ret = 0;
3689         switch(c) {
3690         case '0': case '1': case '2': case '3': case '4': 
3691         case '5': case '6': case '7': case '8': case '9':
3692                 ret = 1;
3693                 break;
3694         }
3695         return ret;
3696 }
3697 static int digval(int c)
3698 {
3699         int val = -1;
3700         if ((c >= '0') && (c <= '9')) {
3701                 val = c - '0';
3702         }
3703         return val;
3704 }
3705
3706 static int hexdigitp(int c)
3707 {
3708         int ret = 0;
3709         switch(c) {
3710         case '0': case '1': case '2': case '3': case '4': 
3711         case '5': case '6': case '7': case '8': case '9':
3712         case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
3713         case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
3714                 ret = 1;
3715                 break;
3716         }
3717         return ret;
3718 }
3719 static int hexdigval(int c) 
3720 {
3721         int val = -1;
3722         if ((c >= '0') && (c <= '9')) {
3723                 val = c - '0';
3724         }
3725         else if ((c >= 'A') && (c <= 'F')) {
3726                 val = 10 + (c - 'A');
3727         }
3728         else if ((c >= 'a') && (c <= 'f')) {
3729                 val = 10 + (c - 'a');
3730         }
3731         return val;
3732 }
3733
3734 static int octdigitp(int c)
3735 {
3736         int ret = 0;
3737         switch(c) {
3738         case '0': case '1': case '2': case '3': 
3739         case '4': case '5': case '6': case '7':
3740                 ret = 1;
3741                 break;
3742         }
3743         return ret;
3744 }
3745 static int octdigval(int c)
3746 {
3747         int val = -1;
3748         if ((c >= '0') && (c <= '7')) {
3749                 val = c - '0';
3750         }
3751         return val;
3752 }
3753
3754 static int letterp(int c)
3755 {
3756         int ret = 0;
3757         switch(c) {
3758         case 'a': case 'b': case 'c': case 'd': case 'e':
3759         case 'f': case 'g': case 'h': case 'i': case 'j':
3760         case 'k': case 'l': case 'm': case 'n': case 'o':
3761         case 'p': case 'q': case 'r': case 's': case 't':
3762         case 'u': case 'v': case 'w': case 'x': case 'y':
3763         case 'z':
3764         case 'A': case 'B': case 'C': case 'D': case 'E':
3765         case 'F': case 'G': case 'H': case 'I': case 'J':
3766         case 'K': case 'L': case 'M': case 'N': case 'O':
3767         case 'P': case 'Q': case 'R': case 'S': case 'T':
3768         case 'U': case 'V': case 'W': case 'X': case 'Y':
3769         case 'Z':
3770         case '_':
3771                 ret = 1;
3772                 break;
3773         }
3774         return ret;
3775 }
3776
3777 static const char *identifier(const char *str, const char *end)
3778 {
3779         if (letterp(*str)) {
3780                 for(; str < end; str++) {
3781                         int c;
3782                         c = *str;
3783                         if (!letterp(c) && !digitp(c)) {
3784                                 break;
3785                         }
3786                 }
3787         }
3788         return str;
3789 }
3790
3791 static int char_value(struct compile_state *state,
3792         const signed char **strp, const signed char *end)
3793 {
3794         const signed char *str;
3795         int c;
3796         str = *strp;
3797         c = *str++;
3798         if ((c == '\\') && (str < end)) {
3799                 switch(*str) {
3800                 case 'n':  c = '\n'; str++; break;
3801                 case 't':  c = '\t'; str++; break;
3802                 case 'v':  c = '\v'; str++; break;
3803                 case 'b':  c = '\b'; str++; break;
3804                 case 'r':  c = '\r'; str++; break;
3805                 case 'f':  c = '\f'; str++; break;
3806                 case 'a':  c = '\a'; str++; break;
3807                 case '\\': c = '\\'; str++; break;
3808                 case '?':  c = '?';  str++; break;
3809                 case '\'': c = '\''; str++; break;
3810                 case '"':  c = '"';  str++; break;
3811                 case 'x': 
3812                         c = 0;
3813                         str++;
3814                         while((str < end) && hexdigitp(*str)) {
3815                                 c <<= 4;
3816                                 c += hexdigval(*str);
3817                                 str++;
3818                         }
3819                         break;
3820                 case '0': case '1': case '2': case '3': 
3821                 case '4': case '5': case '6': case '7':
3822                         c = 0;
3823                         while((str < end) && octdigitp(*str)) {
3824                                 c <<= 3;
3825                                 c += octdigval(*str);
3826                                 str++;
3827                         }
3828                         break;
3829                 default:
3830                         error(state, 0, "Invalid character constant");
3831                         break;
3832                 }
3833         }
3834         *strp = str;
3835         return c;
3836 }
3837
3838 static const char *next_char(struct file_state *file, const char *pos, int index)
3839 {
3840         const char *end = file->buf + file->size;
3841         while(pos < end) {
3842                 /* Lookup the character */
3843                 int size = 1;
3844                 int c = *pos;
3845                 /* Is this a trigraph? */
3846                 if (file->trigraphs &&
3847                         (c == '?') && ((end - pos) >= 3) && (pos[1] == '?')) 
3848                 {
3849                         switch(pos[2]) {
3850                         case '=': c = '#'; break;
3851                         case '/': c = '\\'; break;
3852                         case '\'': c = '^'; break;
3853                         case '(': c = '['; break;
3854                         case ')': c = ']'; break;
3855                         case '!': c = '!'; break;
3856                         case '<': c = '{'; break;
3857                         case '>': c = '}'; break;
3858                         case '-': c = '~'; break;
3859                         }
3860                         if (c != '?') {
3861                                 size = 3;
3862                         }
3863                 }
3864                 /* Is this an escaped newline? */
3865                 if (file->join_lines &&
3866                         (c == '\\') && (pos + size < end) && ((pos[1] == '\n') || ((pos[1] == '\r') && (pos[2] == '\n'))))
3867                 {
3868                         int cr_offset = ((pos[1] == '\r') && (pos[2] == '\n'))?1:0;
3869                         /* At the start of a line just eat it */
3870                         if (pos == file->pos) {
3871                                 file->line++;
3872                                 file->report_line++;
3873                                 file->line_start = pos + size + 1 + cr_offset;
3874                         }
3875                         pos += size + 1 + cr_offset;
3876                 }
3877                 /* Do I need to ga any farther? */
3878                 else if (index == 0) {
3879                         break;
3880                 }
3881                 /* Process a normal character */
3882                 else {
3883                         pos += size;
3884                         index -= 1;
3885                 }
3886         }
3887         return pos;
3888 }
3889
3890 static int get_char(struct file_state *file, const char *pos)
3891 {
3892         const char *end = file->buf + file->size;
3893         int c;
3894         c = -1;
3895         pos = next_char(file, pos, 0);
3896         if (pos < end) {
3897                 /* Lookup the character */
3898                 c = *pos;
3899                 /* If it is a trigraph get the trigraph value */
3900                 if (file->trigraphs &&
3901                         (c == '?') && ((end - pos) >= 3) && (pos[1] == '?')) 
3902                 {
3903                         switch(pos[2]) {
3904                         case '=': c = '#'; break;
3905                         case '/': c = '\\'; break;
3906                         case '\'': c = '^'; break;
3907                         case '(': c = '['; break;
3908                         case ')': c = ']'; break;
3909                         case '!': c = '!'; break;
3910                         case '<': c = '{'; break;
3911                         case '>': c = '}'; break;
3912                         case '-': c = '~'; break;
3913                         }
3914                 }
3915         }
3916         return c;
3917 }
3918
3919 static void eat_chars(struct file_state *file, const char *targ)
3920 {
3921         const char *pos = file->pos;
3922         while(pos < targ) {
3923                 /* Do we have a newline? */
3924                 if (pos[0] == '\n') {
3925                         file->line++;
3926                         file->report_line++;
3927                         file->line_start = pos + 1;
3928                 }
3929                 pos++;
3930         }
3931         file->pos = pos;
3932 }
3933
3934
3935 static size_t char_strlen(struct file_state *file, const char *src, const char *end)
3936 {
3937         size_t len;
3938         len = 0;
3939         while(src < end) {
3940                 src = next_char(file, src, 1);
3941                 len++;
3942         }
3943         return len;
3944 }
3945
3946 static void char_strcpy(char *dest, 
3947         struct file_state *file, const char *src, const char *end)
3948 {
3949         while(src < end) {
3950                 int c;
3951                 c = get_char(file, src);
3952                 src = next_char(file, src, 1);
3953                 *dest++ = c;
3954         }
3955 }
3956
3957 static char *char_strdup(struct file_state *file, 
3958         const char *start, const char *end, const char *id)
3959 {
3960         char *str;
3961         size_t str_len;
3962         str_len = char_strlen(file, start, end);
3963         str = xcmalloc(str_len + 1, id);
3964         char_strcpy(str, file, start, end);
3965         str[str_len] = '\0';
3966         return str;
3967 }
3968
3969 static const char *after_digits(struct file_state *file, const char *ptr)
3970 {
3971         while(digitp(get_char(file, ptr))) {
3972                 ptr = next_char(file, ptr, 1);
3973         }
3974         return ptr;
3975 }
3976
3977 static const char *after_octdigits(struct file_state *file, const char *ptr)
3978 {
3979         while(octdigitp(get_char(file, ptr))) {
3980                 ptr = next_char(file, ptr, 1);
3981         }
3982         return ptr;
3983 }
3984
3985 static const char *after_hexdigits(struct file_state *file, const char *ptr)
3986 {
3987         while(hexdigitp(get_char(file, ptr))) {
3988                 ptr = next_char(file, ptr, 1);
3989         }
3990         return ptr;
3991 }
3992
3993 static const char *after_alnums(struct file_state *file, const char *ptr)
3994 {
3995         int c;
3996         c = get_char(file, ptr);
3997         while(letterp(c) || digitp(c)) {
3998                 ptr = next_char(file, ptr, 1);
3999                 c = get_char(file, ptr);
4000         }
4001         return ptr;
4002 }
4003
4004 static void save_string(struct file_state *file,
4005         struct token *tk, const char *start, const char *end, const char *id)
4006 {
4007         char *str;
4008
4009         /* Create a private copy of the string */
4010         str = char_strdup(file, start, end, id);
4011
4012         /* Store the copy in the token */
4013         tk->val.str = str;
4014         tk->str_len = strlen(str);
4015 }
4016
4017 static void raw_next_token(struct compile_state *state, 
4018         struct file_state *file, struct token *tk)
4019 {
4020         const char *token;
4021         int c, c1, c2, c3;
4022         const char *tokp;
4023         int eat;
4024         int tok;
4025
4026         tk->str_len = 0;
4027         tk->ident = 0;
4028         token = tokp = next_char(file, file->pos, 0);
4029         tok = TOK_UNKNOWN;
4030         c  = get_char(file, tokp);
4031         tokp = next_char(file, tokp, 1);
4032         eat = 0;
4033         c1 = get_char(file, tokp);
4034         c2 = get_char(file, next_char(file, tokp, 1));
4035         c3 = get_char(file, next_char(file, tokp, 2));
4036
4037         /* The end of the file */
4038         if (c == -1) {
4039                 tok = TOK_EOF;
4040         }
4041         /* Whitespace */
4042         else if (spacep(c)) {
4043                 tok = TOK_SPACE;
4044                 while (spacep(get_char(file, tokp))) {
4045                         tokp = next_char(file, tokp, 1);
4046                 }
4047         }
4048         /* EOL Comments */
4049         else if ((c == '/') && (c1 == '/')) {
4050                 tok = TOK_SPACE;
4051                 tokp = next_char(file, tokp, 1);
4052                 while((c = get_char(file, tokp)) != -1) {
4053                         /* Advance to the next character only after we verify
4054                          * the current character is not a newline.  
4055                          * EOL is special to the preprocessor so we don't
4056                          * want to loose any.
4057                          */
4058                         if (c == '\n') {
4059                                 break;
4060                         }
4061                         tokp = next_char(file, tokp, 1);
4062                 }
4063         }
4064         /* Comments */
4065         else if ((c == '/') && (c1 == '*')) {
4066                 tokp = next_char(file, tokp, 2);
4067                 c = c2;
4068                 while((c1 = get_char(file, tokp)) != -1) {
4069                         tokp = next_char(file, tokp, 1);
4070                         if ((c == '*') && (c1 == '/')) {
4071                                 tok = TOK_SPACE;
4072                                 break;
4073                         }
4074                         c = c1;
4075                 }
4076                 if (tok == TOK_UNKNOWN) {
4077                         error(state, 0, "unterminated comment");
4078                 }
4079         }
4080         /* string constants */
4081         else if ((c == '"') || ((c == 'L') && (c1 == '"'))) {
4082                 int wchar, multiline;
4083
4084                 wchar = 0;
4085                 multiline = 0;
4086                 if (c == 'L') {
4087                         wchar = 1;
4088                         tokp = next_char(file, tokp, 1);
4089                 }
4090                 while((c = get_char(file, tokp)) != -1) {
4091                         tokp = next_char(file, tokp, 1);
4092                         if (c == '\n') {
4093                                 multiline = 1;
4094                         }
4095                         else if (c == '\\') {
4096                                 tokp = next_char(file, tokp, 1);
4097                         }
4098                         else if (c == '"') {
4099                                 tok = TOK_LIT_STRING;
4100                                 break;
4101                         }
4102                 }
4103                 if (tok == TOK_UNKNOWN) {
4104                         error(state, 0, "unterminated string constant");
4105                 }
4106                 if (multiline) {
4107                         warning(state, 0, "multiline string constant");
4108                 }
4109
4110                 /* Save the string value */
4111                 save_string(file, tk, token, tokp, "literal string");
4112         }
4113         /* character constants */
4114         else if ((c == '\'') || ((c == 'L') && (c1 == '\''))) {
4115                 int wchar, multiline;
4116
4117                 wchar = 0;
4118                 multiline = 0;
4119                 if (c == 'L') {
4120                         wchar = 1;
4121                         tokp = next_char(file, tokp, 1);
4122                 }
4123                 while((c = get_char(file, tokp)) != -1) {
4124                         tokp = next_char(file, tokp, 1);
4125                         if (c == '\n') {
4126                                 multiline = 1;
4127                         }
4128                         else if (c == '\\') {
4129                                 tokp = next_char(file, tokp, 1);
4130                         }
4131                         else if (c == '\'') {
4132                                 tok = TOK_LIT_CHAR;
4133                                 break;
4134                         }
4135                 }
4136                 if (tok == TOK_UNKNOWN) {
4137                         error(state, 0, "unterminated character constant");
4138                 }
4139                 if (multiline) {
4140                         warning(state, 0, "multiline character constant");
4141                 }
4142
4143                 /* Save the character value */
4144                 save_string(file, tk, token, tokp, "literal character");
4145         }
4146         /* integer and floating constants 
4147          * Integer Constants
4148          * {digits}
4149          * 0[Xx]{hexdigits}
4150          * 0{octdigit}+
4151          * 
4152          * Floating constants
4153          * {digits}.{digits}[Ee][+-]?{digits}
4154          * {digits}.{digits}
4155          * {digits}[Ee][+-]?{digits}
4156          * .{digits}[Ee][+-]?{digits}
4157          * .{digits}
4158          */
4159         else if (digitp(c) || ((c == '.') && (digitp(c1)))) {
4160                 const char *next;
4161                 int is_float;
4162                 int cn;
4163                 is_float = 0;
4164                 if (c != '.') {
4165                         next = after_digits(file, tokp);
4166                 }
4167                 else {
4168                         next = token;
4169                 }
4170                 cn = get_char(file, next);
4171                 if (cn == '.') {
4172                         next = next_char(file, next, 1);
4173                         next = after_digits(file, next);
4174                         is_float = 1;
4175                 }
4176                 cn = get_char(file, next);
4177                 if ((cn == 'e') || (cn == 'E')) {
4178                         const char *new;
4179                         next = next_char(file, next, 1);
4180                         cn = get_char(file, next);
4181                         if ((cn == '+') || (cn == '-')) {
4182                                 next = next_char(file, next, 1);
4183                         }
4184                         new = after_digits(file, next);
4185                         is_float |= (new != next);
4186                         next = new;
4187                 }
4188                 if (is_float) {
4189                         tok = TOK_LIT_FLOAT;
4190                         cn = get_char(file, next);
4191                         if ((cn  == 'f') || (cn == 'F') || (cn == 'l') || (cn == 'L')) {
4192                                 next = next_char(file, next, 1);
4193                         }
4194                 }
4195                 if (!is_float && digitp(c)) {
4196                         tok = TOK_LIT_INT;
4197                         if ((c == '0') && ((c1 == 'x') || (c1 == 'X'))) {
4198                                 next = next_char(file, tokp, 1);
4199                                 next = after_hexdigits(file, next);
4200                         }
4201                         else if (c == '0') {
4202                                 next = after_octdigits(file, tokp);
4203                         }
4204                         else {
4205                                 next = after_digits(file, tokp);
4206                         }
4207                         /* crazy integer suffixes */
4208                         cn = get_char(file, next);
4209                         if ((cn == 'u') || (cn == 'U')) {
4210                                 next = next_char(file, next, 1);
4211                                 cn = get_char(file, next);
4212                                 if ((cn == 'l') || (cn == 'L')) {
4213                                         next = next_char(file, next, 1);
4214                                         cn = get_char(file, next);
4215                                 }
4216                                 if ((cn == 'l') || (cn == 'L')) {
4217                                         next = next_char(file, next, 1);
4218                                 }
4219                         }
4220                         else if ((cn == 'l') || (cn == 'L')) {
4221                                 next = next_char(file, next, 1);
4222                                 cn = get_char(file, next);
4223                                 if ((cn == 'l') || (cn == 'L')) {
4224                                         next = next_char(file, next, 1);
4225                                         cn = get_char(file, next);
4226                                 }
4227                                 if ((cn == 'u') || (cn == 'U')) {
4228                                         next = next_char(file, next, 1);
4229                                 }
4230                         }
4231                 }
4232                 tokp = next;
4233
4234                 /* Save the integer/floating point value */
4235                 save_string(file, tk, token, tokp, "literal number");
4236         }
4237         /* identifiers */
4238         else if (letterp(c)) {
4239                 tok = TOK_IDENT;
4240
4241                 /* Find and save the identifier string */
4242                 tokp = after_alnums(file, tokp);
4243                 save_string(file, tk, token, tokp, "identifier");
4244
4245                 /* Look up to see which identifier it is */
4246                 tk->ident = lookup(state, tk->val.str, tk->str_len);
4247
4248                 /* Free the identifier string */
4249                 tk->str_len = 0;
4250                 xfree(tk->val.str);
4251
4252                 /* See if this identifier can be macro expanded */
4253                 tk->val.notmacro = 0;
4254                 c = get_char(file, tokp);
4255                 if (c == '$') {
4256                         tokp = next_char(file, tokp, 1);
4257                         tk->val.notmacro = 1;
4258                 }
4259         }
4260         /* C99 alternate macro characters */
4261         else if ((c == '%') && (c1 == ':') && (c2 == '%') && (c3 == ':')) { 
4262                 eat += 3;
4263                 tok = TOK_CONCATENATE; 
4264         }
4265         else if ((c == '.') && (c1 == '.') && (c2 == '.')) { eat += 2; tok = TOK_DOTS; }
4266         else if ((c == '<') && (c1 == '<') && (c2 == '=')) { eat += 2; tok = TOK_SLEQ; }
4267         else if ((c == '>') && (c1 == '>') && (c2 == '=')) { eat += 2; tok = TOK_SREQ; }
4268         else if ((c == '*') && (c1 == '=')) { eat += 1; tok = TOK_TIMESEQ; }
4269         else if ((c == '/') && (c1 == '=')) { eat += 1; tok = TOK_DIVEQ; }
4270         else if ((c == '%') && (c1 == '=')) { eat += 1; tok = TOK_MODEQ; }
4271         else if ((c == '+') && (c1 == '=')) { eat += 1; tok = TOK_PLUSEQ; }
4272         else if ((c == '-') && (c1 == '=')) { eat += 1; tok = TOK_MINUSEQ; }
4273         else if ((c == '&') && (c1 == '=')) { eat += 1; tok = TOK_ANDEQ; }
4274         else if ((c == '^') && (c1 == '=')) { eat += 1; tok = TOK_XOREQ; }
4275         else if ((c == '|') && (c1 == '=')) { eat += 1; tok = TOK_OREQ; }
4276         else if ((c == '=') && (c1 == '=')) { eat += 1; tok = TOK_EQEQ; }
4277         else if ((c == '!') && (c1 == '=')) { eat += 1; tok = TOK_NOTEQ; }
4278         else if ((c == '|') && (c1 == '|')) { eat += 1; tok = TOK_LOGOR; }
4279         else if ((c == '&') && (c1 == '&')) { eat += 1; tok = TOK_LOGAND; }
4280         else if ((c == '<') && (c1 == '=')) { eat += 1; tok = TOK_LESSEQ; }
4281         else if ((c == '>') && (c1 == '=')) { eat += 1; tok = TOK_MOREEQ; }
4282         else if ((c == '<') && (c1 == '<')) { eat += 1; tok = TOK_SL; }
4283         else if ((c == '>') && (c1 == '>')) { eat += 1; tok = TOK_SR; }
4284         else if ((c == '+') && (c1 == '+')) { eat += 1; tok = TOK_PLUSPLUS; }
4285         else if ((c == '-') && (c1 == '-')) { eat += 1; tok = TOK_MINUSMINUS; }
4286         else if ((c == '-') && (c1 == '>')) { eat += 1; tok = TOK_ARROW; }
4287         else if ((c == '<') && (c1 == ':')) { eat += 1; tok = TOK_LBRACKET; }
4288         else if ((c == ':') && (c1 == '>')) { eat += 1; tok = TOK_RBRACKET; }
4289         else if ((c == '<') && (c1 == '%')) { eat += 1; tok = TOK_LBRACE; }
4290         else if ((c == '%') && (c1 == '>')) { eat += 1; tok = TOK_RBRACE; }
4291         else if ((c == '%') && (c1 == ':')) { eat += 1; tok = TOK_MACRO; }
4292         else if ((c == '#') && (c1 == '#')) { eat += 1; tok = TOK_CONCATENATE; }
4293         else if (c == ';') { tok = TOK_SEMI; }
4294         else if (c == '{') { tok = TOK_LBRACE; }
4295         else if (c == '}') { tok = TOK_RBRACE; }
4296         else if (c == ',') { tok = TOK_COMMA; }
4297         else if (c == '=') { tok = TOK_EQ; }
4298         else if (c == ':') { tok = TOK_COLON; }
4299         else if (c == '[') { tok = TOK_LBRACKET; }
4300         else if (c == ']') { tok = TOK_RBRACKET; }
4301         else if (c == '(') { tok = TOK_LPAREN; }
4302         else if (c == ')') { tok = TOK_RPAREN; }
4303         else if (c == '*') { tok = TOK_STAR; }
4304         else if (c == '>') { tok = TOK_MORE; }
4305         else if (c == '<') { tok = TOK_LESS; }
4306         else if (c == '?') { tok = TOK_QUEST; }
4307         else if (c == '|') { tok = TOK_OR; }
4308         else if (c == '&') { tok = TOK_AND; }
4309         else if (c == '^') { tok = TOK_XOR; }
4310         else if (c == '+') { tok = TOK_PLUS; }
4311         else if (c == '-') { tok = TOK_MINUS; }
4312         else if (c == '/') { tok = TOK_DIV; }
4313         else if (c == '%') { tok = TOK_MOD; }
4314         else if (c == '!') { tok = TOK_BANG; }
4315         else if (c == '.') { tok = TOK_DOT; }
4316         else if (c == '~') { tok = TOK_TILDE; }
4317         else if (c == '#') { tok = TOK_MACRO; }
4318         else if (c == '\n') { tok = TOK_EOL; }
4319
4320         tokp = next_char(file, tokp, eat);
4321         eat_chars(file, tokp);
4322         tk->tok = tok;
4323         tk->pos = token;
4324 }
4325
4326 static void check_tok(struct compile_state *state, struct token *tk, int tok)
4327 {
4328         if (tk->tok != tok) {
4329                 const char *name1, *name2;
4330                 name1 = tokens[tk->tok];
4331                 name2 = "";
4332                 if ((tk->tok == TOK_IDENT) || (tk->tok == TOK_MIDENT)) {
4333                         name2 = tk->ident->name;
4334                 }
4335                 error(state, 0, "\tfound %s %s expected %s",
4336                         name1, name2, tokens[tok]);
4337         }
4338 }
4339
4340 struct macro_arg_value {
4341         struct hash_entry *ident;
4342         char *value;
4343         size_t len;
4344 };
4345 static struct macro_arg_value *read_macro_args(
4346         struct compile_state *state, struct macro *macro, 
4347         struct file_state *file, struct token *tk)
4348 {
4349         struct macro_arg_value *argv;
4350         struct macro_arg *arg;
4351         int paren_depth;
4352         int i;
4353
4354         if (macro->argc == 0) {
4355                 do {
4356                         raw_next_token(state, file, tk);
4357                 } while(tk->tok == TOK_SPACE);
4358                 return NULL;
4359         }
4360         argv = xcmalloc(sizeof(*argv) * macro->argc, "macro args");
4361         for(i = 0, arg = macro->args; arg; arg = arg->next, i++) {
4362                 argv[i].value = 0;
4363                 argv[i].len   = 0;
4364                 argv[i].ident = arg->ident;
4365         }
4366         paren_depth = 0;
4367         i = 0;
4368         
4369         for(;;) {
4370                 const char *start;
4371                 size_t len;
4372                 start = file->pos;
4373                 raw_next_token(state, file, tk);
4374                 
4375                 if (!paren_depth && (tk->tok == TOK_COMMA) &&
4376                         (argv[i].ident != state->i___VA_ARGS__)) 
4377                 {
4378                         i++;
4379                         if (i >= macro->argc) {
4380                                 error(state, 0, "too many args to %s\n",
4381                                         macro->ident->name);
4382                         }
4383                         continue;
4384                 }
4385                 
4386                 if (tk->tok == TOK_LPAREN) {
4387                         paren_depth++;
4388                 }
4389                 
4390                 if (tk->tok == TOK_RPAREN) {
4391                         if (paren_depth == 0) {
4392                                 break;
4393                         }
4394                         paren_depth--;
4395                 }
4396                 if (tk->tok == TOK_EOF) {
4397                         error(state, 0, "End of file encountered while parsing macro arguments");
4398                 }
4399
4400                 len = char_strlen(file, start, file->pos);
4401                 argv[i].value = xrealloc(
4402                         argv[i].value, argv[i].len + len, "macro args");
4403                 char_strcpy((char *)argv[i].value + argv[i].len, file, start, file->pos);
4404                 argv[i].len += len;
4405         }
4406         if (i != macro->argc -1) {
4407                 error(state, 0, "missing %s arg %d\n", 
4408                         macro->ident->name, i +2);
4409         }
4410         return argv;
4411 }
4412
4413
4414 static void free_macro_args(struct macro *macro, struct macro_arg_value *argv)
4415 {
4416         int i;
4417         for(i = 0; i < macro->argc; i++) {
4418                 xfree(argv[i].value);
4419         }
4420         xfree(argv);
4421 }
4422
4423 struct macro_buf {
4424         char *str;
4425         size_t len, pos;
4426 };
4427
4428 static void grow_macro_buf(struct compile_state *state,
4429         const char *id, struct macro_buf *buf,
4430         size_t grow)
4431 {
4432         if ((buf->pos + grow) >= buf->len) {
4433                 buf->str = xrealloc(buf->str, buf->len + grow, id);
4434                 buf->len += grow;
4435         }
4436 }
4437
4438 static void append_macro_text(struct compile_state *state,
4439         const char *id, struct macro_buf *buf,
4440         const char *fstart, size_t flen)
4441 {
4442         grow_macro_buf(state, id, buf, flen);
4443         memcpy(buf->str + buf->pos, fstart, flen);
4444 #if 0
4445         fprintf(state->errout, "append: `%*.*s' `%*.*s'\n",
4446                 buf->pos, buf->pos, buf->str,
4447                 flen, flen, buf->str + buf->pos);
4448 #endif
4449         buf->pos += flen;
4450 }
4451
4452
4453 static void append_macro_chars(struct compile_state *state,
4454         const char *id, struct macro_buf *buf,
4455         struct file_state *file, const char *start, const char *end)
4456 {
4457         size_t flen;
4458         flen = char_strlen(file, start, end);
4459         grow_macro_buf(state, id, buf, flen);
4460         char_strcpy(buf->str + buf->pos, file, start, end);
4461 #if 0
4462         fprintf(state->errout, "append: `%*.*s' `%*.*s'\n",
4463                 buf->pos, buf->pos, buf->str,
4464                 flen, flen, buf->str + buf->pos);
4465 #endif
4466         buf->pos += flen;
4467 }
4468
4469 static int compile_macro(struct compile_state *state, 
4470         struct file_state **filep, struct token *tk);
4471
4472 static void macro_expand_args(struct compile_state *state, 
4473         struct macro *macro, struct macro_arg_value *argv, struct token *tk)
4474 {
4475         int i;
4476         
4477         for(i = 0; i < macro->argc; i++) {
4478                 struct file_state fmacro, *file;
4479                 struct macro_buf buf;
4480
4481                 fmacro.prev        = 0;
4482                 fmacro.basename    = argv[i].ident->name;
4483                 fmacro.dirname     = "";
4484                 fmacro.buf         = (char *)argv[i].value;
4485                 fmacro.size        = argv[i].len;
4486                 fmacro.pos         = fmacro.buf;
4487                 fmacro.line        = 1;
4488                 fmacro.line_start  = fmacro.buf;
4489                 fmacro.report_line = 1;
4490                 fmacro.report_name = fmacro.basename;
4491                 fmacro.report_dir  = fmacro.dirname;
4492                 fmacro.macro       = 1;
4493                 fmacro.trigraphs   = 0;
4494                 fmacro.join_lines  = 0;
4495
4496                 buf.len = argv[i].len;
4497                 buf.str = xmalloc(buf.len, argv[i].ident->name);
4498                 buf.pos = 0;
4499
4500                 file = &fmacro;
4501                 for(;;) {
4502                         raw_next_token(state, file, tk);
4503                         
4504                         /* If we have recursed into another macro body
4505                          * get out of it.
4506                          */
4507                         if (tk->tok == TOK_EOF) {
4508                                 struct file_state *old;
4509                                 old = file;
4510                                 file = file->prev;
4511                                 if (!file) {
4512                                         break;
4513                                 }
4514                                 /* old->basename is used keep it */
4515                                 xfree(old->dirname);
4516                                 xfree(old->buf);
4517                                 xfree(old);
4518                                 continue;
4519                         }
4520                         else if (tk->ident && tk->ident->sym_define) {
4521                                 if (compile_macro(state, &file, tk)) {
4522                                         continue;
4523                                 }
4524                         }
4525
4526                         append_macro_chars(state, macro->ident->name, &buf,
4527                                 file, tk->pos, file->pos);
4528                 }
4529                         
4530                 xfree(argv[i].value);
4531                 argv[i].value = buf.str;
4532                 argv[i].len   = buf.pos;
4533         }
4534         return;
4535 }
4536
4537 static void expand_macro(struct compile_state *state,
4538         struct macro *macro, struct macro_buf *buf,
4539         struct macro_arg_value *argv, struct token *tk)
4540 {
4541         struct file_state fmacro;
4542         const char space[] = " ";
4543         const char *fstart;
4544         size_t flen;
4545         int i, j;
4546
4547         /* Place the macro body in a dummy file */
4548         fmacro.prev        = 0;
4549         fmacro.basename    = macro->ident->name;
4550         fmacro.dirname     = "";
4551         fmacro.buf         = macro->buf;
4552         fmacro.size        = macro->buf_len;
4553         fmacro.pos         = fmacro.buf;
4554         fmacro.line        = 1;
4555         fmacro.line_start  = fmacro.buf;
4556         fmacro.report_line = 1;
4557         fmacro.report_name = fmacro.basename;
4558         fmacro.report_dir  = fmacro.dirname;
4559         fmacro.macro       = 1;
4560         fmacro.trigraphs   = 0;
4561         fmacro.join_lines  = 0;
4562         
4563         /* Allocate a buffer to hold the macro expansion */
4564         buf->len = macro->buf_len + 3;
4565         buf->str = xmalloc(buf->len, macro->ident->name);
4566         buf->pos = 0;
4567         
4568         fstart = fmacro.pos;
4569         raw_next_token(state, &fmacro, tk);
4570         while(tk->tok != TOK_EOF) {
4571                 flen = fmacro.pos - fstart;
4572                 switch(tk->tok) {
4573                 case TOK_IDENT:
4574                         for(i = 0; i < macro->argc; i++) {
4575                                 if (argv[i].ident == tk->ident) {
4576                                         break;
4577                                 }
4578                         }
4579                         if (i >= macro->argc) {
4580                                 break;
4581                         }
4582                         /* Substitute macro parameter */
4583                         fstart = argv[i].value;
4584                         flen   = argv[i].len;
4585                         break;
4586                 case TOK_MACRO:
4587                         if (macro->argc < 0) {
4588                                 break;
4589                         }
4590                         do {
4591                                 raw_next_token(state, &fmacro, tk);
4592                         } while(tk->tok == TOK_SPACE);
4593                         check_tok(state, tk, TOK_IDENT);
4594                         for(i = 0; i < macro->argc; i++) {
4595                                 if (argv[i].ident == tk->ident) {
4596                                         break;
4597                                 }
4598                         }
4599                         if (i >= macro->argc) {
4600                                 error(state, 0, "parameter `%s' not found",
4601                                         tk->ident->name);
4602                         }
4603                         /* Stringize token */
4604                         append_macro_text(state, macro->ident->name, buf, "\"", 1);
4605                         for(j = 0; j < argv[i].len; j++) {
4606                                 char *str = argv[i].value + j;
4607                                 size_t len = 1;
4608                                 if (*str == '\\') {
4609                                         str = "\\";
4610                                         len = 2;
4611                                 } 
4612                                 else if (*str == '"') {
4613                                         str = "\\\"";
4614                                         len = 2;
4615                                 }
4616                                 append_macro_text(state, macro->ident->name, buf, str, len);
4617                         }
4618                         append_macro_text(state, macro->ident->name, buf, "\"", 1);
4619                         fstart = 0;
4620                         flen   = 0;
4621                         break;
4622                 case TOK_CONCATENATE:
4623                         /* Concatenate tokens */
4624                         /* Delete the previous whitespace token */
4625                         if (buf->str[buf->pos - 1] == ' ') {
4626                                 buf->pos -= 1;
4627                         }
4628                         /* Skip the next sequence of whitspace tokens */
4629                         do {
4630                                 fstart = fmacro.pos;
4631                                 raw_next_token(state, &fmacro, tk);
4632                         } while(tk->tok == TOK_SPACE);
4633                         /* Restart at the top of the loop.
4634                          * I need to process the non white space token.
4635                          */
4636                         continue;
4637                         break;
4638                 case TOK_SPACE:
4639                         /* Collapse multiple spaces into one */
4640                         if (buf->str[buf->pos - 1] != ' ') {
4641                                 fstart = space;
4642                                 flen   = 1;
4643                         } else {
4644                                 fstart = 0;
4645                                 flen   = 0;
4646                         }
4647                         break;
4648                 default:
4649                         break;
4650                 }
4651
4652                 append_macro_text(state, macro->ident->name, buf, fstart, flen);
4653                 
4654                 fstart = fmacro.pos;
4655                 raw_next_token(state, &fmacro, tk);
4656         }
4657 }
4658
4659 static void tag_macro_name(struct compile_state *state,
4660         struct macro *macro, struct macro_buf *buf,
4661         struct token *tk)
4662 {
4663         /* Guard all instances of the macro name in the replacement
4664          * text from further macro expansion.
4665          */
4666         struct file_state fmacro;
4667         const char *fstart;
4668         size_t flen;
4669
4670         /* Put the old macro expansion buffer in a file */
4671         fmacro.prev        = 0;
4672         fmacro.basename    = macro->ident->name;
4673         fmacro.dirname     = "";
4674         fmacro.buf         = buf->str;
4675         fmacro.size        = buf->pos;
4676         fmacro.pos         = fmacro.buf;
4677         fmacro.line        = 1;
4678         fmacro.line_start  = fmacro.buf;
4679         fmacro.report_line = 1;
4680         fmacro.report_name = fmacro.basename;
4681         fmacro.report_dir  = fmacro.dirname;
4682         fmacro.macro       = 1;
4683         fmacro.trigraphs   = 0;
4684         fmacro.join_lines  = 0;
4685         
4686         /* Allocate a new macro expansion buffer */
4687         buf->len = macro->buf_len + 3;
4688         buf->str = xmalloc(buf->len, macro->ident->name);
4689         buf->pos = 0;
4690         
4691         fstart = fmacro.pos;
4692         raw_next_token(state, &fmacro, tk);
4693         while(tk->tok != TOK_EOF) {
4694                 flen = fmacro.pos - fstart;
4695                 if ((tk->tok == TOK_IDENT) &&
4696                         (tk->ident == macro->ident) &&
4697                         (tk->val.notmacro == 0)) 
4698                 {
4699                         append_macro_text(state, macro->ident->name, buf, fstart, flen);
4700                         fstart = "$";
4701                         flen   = 1;
4702                 }
4703
4704                 append_macro_text(state, macro->ident->name, buf, fstart, flen);
4705                 
4706                 fstart = fmacro.pos;
4707                 raw_next_token(state, &fmacro, tk);
4708         }
4709         xfree(fmacro.buf);
4710 }
4711
4712 static int compile_macro(struct compile_state *state, 
4713         struct file_state **filep, struct token *tk)
4714 {
4715         struct file_state *file;
4716         struct hash_entry *ident;
4717         struct macro *macro;
4718         struct macro_arg_value *argv;
4719         struct macro_buf buf;
4720
4721 #if 0
4722         fprintf(state->errout, "macro: %s\n", tk->ident->name);
4723 #endif
4724         ident = tk->ident;
4725         macro = ident->sym_define;
4726
4727         /* If this token comes from a macro expansion ignore it */
4728         if (tk->val.notmacro) {
4729                 return 0;
4730         }
4731         /* If I am a function like macro and the identifier is not followed
4732          * by a left parenthesis, do nothing.
4733          */
4734         if ((macro->argc >= 0) && (get_char(*filep, (*filep)->pos) != '(')) {
4735                 return 0;
4736         }
4737
4738         /* Read in the macro arguments */
4739         argv = 0;
4740         if (macro->argc >= 0) {
4741                 raw_next_token(state, *filep, tk);
4742                 check_tok(state, tk, TOK_LPAREN);
4743
4744                 argv = read_macro_args(state, macro, *filep, tk);
4745
4746                 check_tok(state, tk, TOK_RPAREN);
4747         }
4748         /* Macro expand the macro arguments */
4749         macro_expand_args(state, macro, argv, tk);
4750
4751         buf.str = 0;
4752         buf.len = 0;
4753         buf.pos = 0;
4754         if (ident == state->i___FILE__) {
4755                 buf.len = strlen(state->file->basename) + 1 + 2 + 3;
4756                 buf.str = xmalloc(buf.len, ident->name);
4757                 sprintf(buf.str, "\"%s\"", state->file->basename);
4758                 buf.pos = strlen(buf.str);
4759         }
4760         else if (ident == state->i___LINE__) {
4761                 buf.len = 30;
4762                 buf.str = xmalloc(buf.len, ident->name);
4763                 sprintf(buf.str, "%d", state->file->line);
4764                 buf.pos = strlen(buf.str);
4765         }
4766         else {
4767                 expand_macro(state, macro, &buf, argv, tk);
4768         }
4769         /* Tag the macro name with a $ so it will no longer
4770          * be regonized as a canidate for macro expansion.
4771          */
4772         tag_macro_name(state, macro, &buf, tk);
4773
4774 #if 0
4775         fprintf(state->errout, "%s: %d -> `%*.*s'\n",
4776                 ident->name, buf.pos, buf.pos, (int)(buf.pos), buf.str);
4777 #endif
4778
4779         free_macro_args(macro, argv);
4780
4781         file = xmalloc(sizeof(*file), "file_state");
4782         file->prev        = *filep;
4783         file->basename    = xstrdup(ident->name);
4784         file->dirname     = xstrdup("");
4785         file->buf         = buf.str;
4786         file->size        = buf.pos;
4787         file->pos         = file->buf;
4788         file->line        = 1;
4789         file->line_start  = file->pos;
4790         file->report_line = 1;
4791         file->report_name = file->basename;
4792         file->report_dir  = file->dirname;
4793         file->macro       = 1;
4794         file->trigraphs   = 0;
4795         file->join_lines  = 0;
4796         *filep = file;
4797         return 1;
4798 }
4799
4800 static void eat_tokens(struct compile_state *state, int targ_tok)
4801 {
4802         if (state->eat_depth > 0) {
4803                 internal_error(state, 0, "Already eating...");
4804         }
4805         state->eat_depth = state->if_depth;
4806         state->eat_targ = targ_tok;
4807 }
4808 static int if_eat(struct compile_state *state)
4809 {
4810         return state->eat_depth > 0;
4811 }
4812 static int if_value(struct compile_state *state)
4813 {
4814         int index, offset;
4815         index = state->if_depth / CHAR_BIT;
4816         offset = state->if_depth % CHAR_BIT;
4817         return !!(state->if_bytes[index] & (1 << (offset)));
4818 }
4819 static void set_if_value(struct compile_state *state, int value) 
4820 {
4821         int index, offset;
4822         index = state->if_depth / CHAR_BIT;
4823         offset = state->if_depth % CHAR_BIT;
4824
4825         state->if_bytes[index] &= ~(1 << offset);
4826         if (value) {
4827                 state->if_bytes[index] |= (1 << offset);
4828         }
4829 }
4830 static void in_if(struct compile_state *state, const char *name)
4831 {
4832         if (state->if_depth <= 0) {
4833                 error(state, 0, "%s without #if", name);
4834         }
4835 }
4836 static void enter_if(struct compile_state *state)
4837 {
4838         state->if_depth += 1;
4839         if (state->if_depth > MAX_PP_IF_DEPTH) {
4840                 error(state, 0, "#if depth too great");
4841         }
4842 }
4843 static void reenter_if(struct compile_state *state, const char *name)
4844 {
4845         in_if(state, name);
4846         if ((state->eat_depth == state->if_depth) &&
4847                 (state->eat_targ == TOK_MELSE)) {
4848                 state->eat_depth = 0;
4849                 state->eat_targ = 0;
4850         }
4851 }
4852 static void enter_else(struct compile_state *state, const char *name)
4853 {
4854         in_if(state, name);
4855         if ((state->eat_depth == state->if_depth) &&
4856                 (state->eat_targ == TOK_MELSE)) {
4857                 state->eat_depth = 0;
4858                 state->eat_targ = 0;
4859         }
4860 }
4861 static void exit_if(struct compile_state *state, const char *name)
4862 {
4863         in_if(state, name);
4864         if (state->eat_depth == state->if_depth) {
4865                 state->eat_depth = 0;
4866                 state->eat_targ = 0;
4867         }
4868         state->if_depth -= 1;
4869 }
4870
4871 static void raw_token(struct compile_state *state, struct token *tk)
4872 {
4873         struct file_state *file;
4874         int rescan;
4875
4876         file = state->file;
4877         raw_next_token(state, file, tk);
4878         do {
4879                 rescan = 0;
4880                 file = state->file;
4881                 /* Exit out of an include directive or macro call */
4882                 if ((tk->tok == TOK_EOF) && 
4883                         (file != state->macro_file) && file->prev) 
4884                 {
4885                         state->file = file->prev;
4886                         /* file->basename is used keep it */
4887                         xfree(file->dirname);
4888                         xfree(file->buf);
4889                         xfree(file);
4890                         file = 0;
4891                         raw_next_token(state, state->file, tk);
4892                         rescan = 1;
4893                 }
4894         } while(rescan);
4895 }
4896
4897 static void pp_token(struct compile_state *state, struct token *tk)
4898 {
4899         struct file_state *file;
4900         int rescan;
4901
4902         raw_token(state, tk);
4903         do {
4904                 rescan = 0;
4905                 file = state->file;
4906                 if (tk->tok == TOK_SPACE) {
4907                         raw_token(state, tk);
4908                         rescan = 1;
4909                 }
4910                 else if (tk->tok == TOK_IDENT) {
4911                         if (state->token_base == 0) {
4912                                 ident_to_keyword(state, tk);
4913                         } else {
4914                                 ident_to_macro(state, tk);
4915                         }
4916                 }
4917         } while(rescan);
4918 }
4919
4920 static void preprocess(struct compile_state *state, struct token *tk);
4921
4922 static void token(struct compile_state *state, struct token *tk)
4923 {
4924         int rescan;
4925         pp_token(state, tk);
4926         do {
4927                 rescan = 0;
4928                 /* Process a macro directive */
4929                 if (tk->tok == TOK_MACRO) {
4930                         /* Only match preprocessor directives at the start of a line */
4931                         const char *ptr;
4932                         ptr = state->file->line_start;
4933                         while((ptr < tk->pos)
4934                                 && spacep(get_char(state->file, ptr)))
4935                         {
4936                                 ptr = next_char(state->file, ptr, 1);
4937                         }
4938                         if (ptr == tk->pos) {
4939                                 preprocess(state, tk);
4940                                 rescan = 1;
4941                         }
4942                 }
4943                 /* Expand a macro call */
4944                 else if (tk->ident && tk->ident->sym_define) {
4945                         rescan = compile_macro(state, &state->file, tk);
4946                         if (rescan) {
4947                                 pp_token(state, tk);
4948                         }
4949                 }
4950                 /* Eat tokens disabled by the preprocessor 
4951                  * (Unless we are parsing a preprocessor directive 
4952                  */
4953                 else if (if_eat(state) && (state->token_base == 0)) {
4954                         pp_token(state, tk);
4955                         rescan = 1;
4956                 }
4957                 /* Make certain EOL only shows up in preprocessor directives */
4958                 else if ((tk->tok == TOK_EOL) && (state->token_base == 0)) {
4959                         pp_token(state, tk);
4960                         rescan = 1;
4961                 }
4962                 /* Error on unknown tokens */
4963                 else if (tk->tok == TOK_UNKNOWN) {
4964                         error(state, 0, "unknown token");
4965                 }
4966         } while(rescan);
4967 }
4968
4969
4970 static inline struct token *get_token(struct compile_state *state, int offset)
4971 {
4972         int index;
4973         index = state->token_base + offset;
4974         if (index >= sizeof(state->token)/sizeof(state->token[0])) {
4975                 internal_error(state, 0, "token array to small");
4976         }
4977         return &state->token[index];
4978 }
4979
4980 static struct token *do_eat_token(struct compile_state *state, int tok)
4981 {
4982         struct token *tk;
4983         int i;
4984         check_tok(state, get_token(state, 1), tok);
4985         
4986         /* Free the old token value */
4987         tk = get_token(state, 0);
4988         if (tk->str_len) {
4989                 memset((void *)tk->val.str, -1, tk->str_len);
4990                 xfree(tk->val.str);
4991         }
4992         /* Overwrite the old token with newer tokens */
4993         for(i = state->token_base; i < sizeof(state->token)/sizeof(state->token[0]) - 1; i++) {
4994                 state->token[i] = state->token[i + 1];
4995         }
4996         /* Clear the last token */
4997         memset(&state->token[i], 0, sizeof(state->token[i]));
4998         state->token[i].tok = -1;
4999
5000         /* Return the token */
5001         return tk;
5002 }
5003
5004 static int raw_peek(struct compile_state *state)
5005 {
5006         struct token *tk1;
5007         tk1 = get_token(state, 1);
5008         if (tk1->tok == -1) {
5009                 raw_token(state, tk1);
5010         }
5011         return tk1->tok;
5012 }
5013
5014 static struct token *raw_eat(struct compile_state *state, int tok)
5015 {
5016         raw_peek(state);
5017         return do_eat_token(state, tok);
5018 }
5019
5020 static int pp_peek(struct compile_state *state)
5021 {
5022         struct token *tk1;
5023         tk1 = get_token(state, 1);
5024         if (tk1->tok == -1) {
5025                 pp_token(state, tk1);
5026         }
5027         return tk1->tok;
5028 }
5029
5030 static struct token *pp_eat(struct compile_state *state, int tok)
5031 {
5032         pp_peek(state);
5033         return do_eat_token(state, tok);
5034 }
5035
5036 static int peek(struct compile_state *state)
5037 {
5038         struct token *tk1;
5039         tk1 = get_token(state, 1);
5040         if (tk1->tok == -1) {
5041                 token(state, tk1);
5042         }
5043         return tk1->tok;
5044 }
5045
5046 static int peek2(struct compile_state *state)
5047 {
5048         struct token *tk1, *tk2;
5049         tk1 = get_token(state, 1);
5050         tk2 = get_token(state, 2);
5051         if (tk1->tok == -1) {
5052                 token(state, tk1);
5053         }
5054         if (tk2->tok == -1) {
5055                 token(state, tk2);
5056         }
5057         return tk2->tok;
5058 }
5059
5060 static struct token *eat(struct compile_state *state, int tok)
5061 {
5062         peek(state);
5063         return do_eat_token(state, tok);
5064 }
5065
5066 static void compile_file(struct compile_state *state, const char *filename, int local)
5067 {
5068         char cwd[MAX_CWD_SIZE];
5069         const char *subdir, *base;
5070         int subdir_len;
5071         struct file_state *file;
5072         char *basename;
5073         file = xmalloc(sizeof(*file), "file_state");
5074
5075         base = strrchr(filename, '/');
5076         subdir = filename;
5077         if (base != 0) {
5078                 subdir_len = base - filename;
5079                 base++;
5080         }
5081         else {
5082                 base = filename;
5083                 subdir_len = 0;
5084         }
5085         basename = xmalloc(strlen(base) +1, "basename");
5086         strcpy(basename, base);
5087         file->basename = basename;
5088
5089         if (getcwd(cwd, sizeof(cwd)) == 0) {
5090                 die("cwd buffer to small");
5091         }
5092         if ((subdir[0] == '/') || ((subdir[1] == ':') && ((subdir[2] == '/') || (subdir[2] == '\\')))) {
5093                 file->dirname = xmalloc(subdir_len + 1, "dirname");
5094                 memcpy(file->dirname, subdir, subdir_len);
5095                 file->dirname[subdir_len] = '\0';
5096         }
5097         else {
5098                 const char *dir;
5099                 int dirlen;
5100                 const char **path;
5101                 /* Find the appropriate directory... */
5102                 dir = 0;
5103                 if (!state->file && exists(cwd, filename)) {
5104                         dir = cwd;
5105                 }
5106                 if (local && state->file && exists(state->file->dirname, filename)) {
5107                         dir = state->file->dirname;
5108                 }
5109                 for(path = state->compiler->include_paths; !dir && *path; path++) {
5110                         if (exists(*path, filename)) {
5111                                 dir = *path;
5112                         }
5113                 }
5114                 if (!dir) {
5115                         error(state, 0, "Cannot open `%s'\n", filename);
5116                 }
5117                 dirlen = strlen(dir);
5118                 file->dirname = xmalloc(dirlen + 1 + subdir_len + 1, "dirname");
5119                 memcpy(file->dirname, dir, dirlen);
5120                 file->dirname[dirlen] = '/';
5121                 memcpy(file->dirname + dirlen + 1, subdir, subdir_len);
5122                 file->dirname[dirlen + 1 + subdir_len] = '\0';
5123         }
5124         file->buf = slurp_file(file->dirname, file->basename, &file->size);
5125
5126         file->pos = file->buf;
5127         file->line_start = file->pos;
5128         file->line = 1;
5129
5130         file->report_line = 1;
5131         file->report_name = file->basename;
5132         file->report_dir  = file->dirname;
5133         file->macro       = 0;
5134         file->trigraphs   = (state->compiler->flags & COMPILER_TRIGRAPHS)? 1: 0;
5135         file->join_lines  = 1;
5136
5137         file->prev = state->file;
5138         state->file = file;
5139 }
5140
5141 static struct triple *constant_expr(struct compile_state *state);
5142 static void integral(struct compile_state *state, struct triple *def);
5143
5144 static int mcexpr(struct compile_state *state)
5145 {
5146         struct triple *cvalue;
5147         cvalue = constant_expr(state);
5148         integral(state, cvalue);
5149         if (cvalue->op != OP_INTCONST) {
5150                 error(state, 0, "integer constant expected");
5151         }
5152         return cvalue->u.cval != 0;
5153 }
5154
5155 static void preprocess(struct compile_state *state, struct token *current_token)
5156 {
5157         /* Doing much more with the preprocessor would require
5158          * a parser and a major restructuring.
5159          * Postpone that for later.
5160          */
5161         int old_token_base;
5162         int tok;
5163         
5164         state->macro_file = state->file;
5165
5166         old_token_base = state->token_base;
5167         state->token_base = current_token - state->token;
5168
5169         tok = pp_peek(state);
5170         switch(tok) {
5171         case TOK_LIT_INT:
5172         {
5173                 struct token *tk;
5174                 int override_line;
5175                 tk = pp_eat(state, TOK_LIT_INT);
5176                 override_line = strtoul(tk->val.str, 0, 10);
5177                 /* I have a preprocessor  line marker parse it */
5178                 if (pp_peek(state) == TOK_LIT_STRING) {
5179                         const char *token, *base;
5180                         char *name, *dir;
5181                         int name_len, dir_len;
5182                         tk = pp_eat(state, TOK_LIT_STRING);
5183                         name = xmalloc(tk->str_len, "report_name");
5184                         token = tk->val.str + 1;
5185                         base = strrchr(token, '/');
5186                         name_len = tk->str_len -2;
5187                         if (base != 0) {
5188                                 dir_len = base - token;
5189                                 base++;
5190                                 name_len -= base - token;
5191                         } else {
5192                                 dir_len = 0;
5193                                 base = token;
5194                         }
5195                         memcpy(name, base, name_len);
5196                         name[name_len] = '\0';
5197                         dir = xmalloc(dir_len + 1, "report_dir");
5198                         memcpy(dir, token, dir_len);
5199                         dir[dir_len] = '\0';
5200                         state->file->report_line = override_line - 1;
5201                         state->file->report_name = name;
5202                         state->file->report_dir = dir;
5203                         state->file->macro      = 0;
5204                 }
5205                 break;
5206         }
5207         case TOK_MLINE:
5208         {
5209                 struct token *tk;
5210                 pp_eat(state, TOK_MLINE);
5211                 tk = eat(state, TOK_LIT_INT);
5212                 state->file->report_line = strtoul(tk->val.str, 0, 10) -1;
5213                 if (pp_peek(state) == TOK_LIT_STRING) {
5214                         const char *token, *base;
5215                         char *name, *dir;
5216                         int name_len, dir_len;
5217                         tk = pp_eat(state, TOK_LIT_STRING);
5218                         name = xmalloc(tk->str_len, "report_name");
5219                         token = tk->val.str + 1;
5220                         base = strrchr(token, '/');
5221                         name_len = tk->str_len - 2;
5222                         if (base != 0) {
5223                                 dir_len = base - token;
5224                                 base++;
5225                                 name_len -= base - token;
5226                         } else {
5227                                 dir_len = 0;
5228                                 base = token;
5229                         }
5230                         memcpy(name, base, name_len);
5231                         name[name_len] = '\0';
5232                         dir = xmalloc(dir_len + 1, "report_dir");
5233                         memcpy(dir, token, dir_len);
5234                         dir[dir_len] = '\0';
5235                         state->file->report_name = name;
5236                         state->file->report_dir = dir;
5237                         state->file->macro      = 0;
5238                 }
5239                 break;
5240         }
5241         case TOK_MUNDEF:
5242         {
5243                 struct hash_entry *ident;
5244                 pp_eat(state, TOK_MUNDEF);
5245                 if (if_eat(state))  /* quit early when #if'd out */
5246                         break;
5247                 
5248                 ident = pp_eat(state, TOK_MIDENT)->ident;
5249
5250                 undef_macro(state, ident);
5251                 break;
5252         }
5253         case TOK_MPRAGMA:
5254                 pp_eat(state, TOK_MPRAGMA);
5255                 if (if_eat(state))  /* quit early when #if'd out */
5256                         break;
5257                 warning(state, 0, "Ignoring pragma"); 
5258                 break;
5259         case TOK_MELIF:
5260                 pp_eat(state, TOK_MELIF);
5261                 reenter_if(state, "#elif");
5262                 if (if_eat(state))   /* quit early when #if'd out */
5263                         break;
5264                 /* If the #if was taken the #elif just disables the following code */
5265                 if (if_value(state)) {
5266                         eat_tokens(state, TOK_MENDIF);
5267                 }
5268                 /* If the previous #if was not taken see if the #elif enables the 
5269                  * trailing code.
5270                  */
5271                 else {
5272                         set_if_value(state, mcexpr(state));
5273                         if (!if_value(state)) {
5274                                 eat_tokens(state, TOK_MELSE);
5275                         }
5276                 }
5277                 break;
5278         case TOK_MIF:
5279                 pp_eat(state, TOK_MIF);
5280                 enter_if(state);
5281                 if (if_eat(state))  /* quit early when #if'd out */
5282                         break;
5283                 set_if_value(state, mcexpr(state));
5284                 if (!if_value(state)) {
5285                         eat_tokens(state, TOK_MELSE);
5286                 }
5287                 break;
5288         case TOK_MIFNDEF:
5289         {
5290                 struct hash_entry *ident;
5291
5292                 pp_eat(state, TOK_MIFNDEF);
5293                 enter_if(state);
5294                 if (if_eat(state))  /* quit early when #if'd out */
5295                         break;
5296                 ident = pp_eat(state, TOK_MIDENT)->ident;
5297                 set_if_value(state, ident->sym_define == 0);
5298                 if (!if_value(state)) {
5299                         eat_tokens(state, TOK_MELSE);
5300                 }
5301                 break;
5302         }
5303         case TOK_MIFDEF:
5304         {
5305                 struct hash_entry *ident;
5306                 pp_eat(state, TOK_MIFDEF);
5307                 enter_if(state);
5308                 if (if_eat(state))  /* quit early when #if'd out */
5309                         break;
5310                 ident = pp_eat(state, TOK_MIDENT)->ident;
5311                 set_if_value(state, ident->sym_define != 0);
5312                 if (!if_value(state)) {
5313                         eat_tokens(state, TOK_MELSE);
5314                 }
5315                 break;
5316         }
5317         case TOK_MELSE:
5318                 pp_eat(state, TOK_MELSE);
5319                 enter_else(state, "#else");
5320                 if (!if_eat(state) && if_value(state)) {
5321                         eat_tokens(state, TOK_MENDIF);
5322                 }
5323                 break;
5324         case TOK_MENDIF:
5325                 pp_eat(state, TOK_MENDIF);
5326                 exit_if(state, "#endif");
5327                 break;
5328         case TOK_MDEFINE:
5329         {
5330                 struct hash_entry *ident;
5331                 struct macro_arg *args, **larg;
5332                 const char *mstart, *mend;
5333                 int argc;
5334
5335                 pp_eat(state, TOK_MDEFINE);
5336                 if (if_eat(state))  /* quit early when #if'd out */
5337                         break;
5338                 ident = pp_eat(state, TOK_MIDENT)->ident;
5339                 argc = -1;
5340                 args = 0;
5341                 larg = &args;
5342
5343                 /* Parse macro parameters */
5344                 if (raw_peek(state) == TOK_LPAREN) {
5345                         raw_eat(state, TOK_LPAREN);
5346                         argc += 1;
5347
5348                         for(;;) {
5349                                 struct macro_arg *narg, *arg;
5350                                 struct hash_entry *aident;
5351                                 int tok;
5352
5353                                 tok = pp_peek(state);
5354                                 if (!args && (tok == TOK_RPAREN)) {
5355                                         break;
5356                                 }
5357                                 else if (tok == TOK_DOTS) {
5358                                         pp_eat(state, TOK_DOTS);
5359                                         aident = state->i___VA_ARGS__;
5360                                 } 
5361                                 else {
5362                                         aident = pp_eat(state, TOK_MIDENT)->ident;
5363                                 }
5364                                 
5365                                 narg = xcmalloc(sizeof(*arg), "macro arg");
5366                                 narg->ident = aident;
5367
5368                                 /* Verify I don't have a duplicate identifier */
5369                                 for(arg = args; arg; arg = arg->next) {
5370                                         if (arg->ident == narg->ident) {
5371                                                 error(state, 0, "Duplicate macro arg `%s'",
5372                                                         narg->ident->name);
5373                                         }
5374                                 }
5375                                 /* Add the new argument to the end of the list */
5376                                 *larg = narg;
5377                                 larg = &narg->next;
5378                                 argc += 1;
5379
5380                                 if ((aident == state->i___VA_ARGS__) ||
5381                                         (pp_peek(state) != TOK_COMMA)) {
5382                                         break;
5383                                 }
5384                                 pp_eat(state, TOK_COMMA);
5385                         }
5386                         pp_eat(state, TOK_RPAREN);
5387                 }
5388                 /* Remove leading whitespace */
5389                 while(raw_peek(state) == TOK_SPACE) {
5390                         raw_eat(state, TOK_SPACE);
5391                 }
5392
5393                 /* Remember the start of the macro body */
5394                 tok = raw_peek(state);
5395                 mend = mstart = get_token(state, 1)->pos;
5396
5397                 /* Find the end of the macro */
5398                 for(tok = raw_peek(state); tok != TOK_EOL; tok = raw_peek(state)) {
5399                         raw_eat(state, tok);
5400                         /* Remember the end of the last non space token */
5401                         raw_peek(state);
5402                         if (tok != TOK_SPACE) {
5403                                 mend = get_token(state, 1)->pos;
5404                         }
5405                 }
5406                 
5407                 /* Now that I have found the body defined the token */
5408                 do_define_macro(state, ident,
5409                         char_strdup(state->file, mstart, mend, "macro buf"),
5410                         argc, args);
5411                 break;
5412         }
5413         case TOK_MERROR:
5414         {
5415                 const char *start, *end;
5416                 int len;
5417                 
5418                 pp_eat(state, TOK_MERROR);
5419                 /* Find the start of the line */
5420                 raw_peek(state);
5421                 start = get_token(state, 1)->pos;
5422
5423                 /* Find the end of the line */
5424                 while((tok = raw_peek(state)) != TOK_EOL) {
5425                         raw_eat(state, tok);
5426                 }
5427                 end = get_token(state, 1)->pos;
5428                 len = end - start;
5429                 if (!if_eat(state)) {
5430                         error(state, 0, "%*.*s", len, len, start);
5431                 }
5432                 break;
5433         }
5434         case TOK_MWARNING:
5435         {
5436                 const char *start, *end;
5437                 int len;
5438                 
5439                 pp_eat(state, TOK_MWARNING);
5440
5441                 /* Find the start of the line */
5442                 raw_peek(state);
5443                 start = get_token(state, 1)->pos;
5444                  
5445                 /* Find the end of the line */
5446                 while((tok = raw_peek(state)) != TOK_EOL) {
5447                         raw_eat(state, tok);
5448                 }
5449                 end = get_token(state, 1)->pos;
5450                 len = end - start;
5451                 if (!if_eat(state)) {
5452                         warning(state, 0, "%*.*s", len, len, start);
5453                 }
5454                 break;
5455         }
5456         case TOK_MINCLUDE:
5457         {
5458                 char *name;
5459                 int local;
5460                 local = 0;
5461                 name = 0;
5462
5463                 pp_eat(state, TOK_MINCLUDE);
5464                 if (if_eat(state)) {
5465                         /* Find the end of the line */
5466                         while((tok = raw_peek(state)) != TOK_EOL) {
5467                                 raw_eat(state, tok);
5468                         }
5469                         break;
5470                 }
5471                 tok = peek(state);
5472                 if (tok == TOK_LIT_STRING) {
5473                         struct token *tk;
5474                         const char *token;
5475                         int name_len;
5476                         tk = eat(state, TOK_LIT_STRING);
5477                         name = xmalloc(tk->str_len, "include");
5478                         token = tk->val.str +1;
5479                         name_len = tk->str_len -2;
5480                         if (*token == '"') {
5481                                 token++;
5482                                 name_len--;
5483                         }
5484                         memcpy(name, token, name_len);
5485                         name[name_len] = '\0';
5486                         local = 1;
5487                 }
5488                 else if (tok == TOK_LESS) {
5489                         struct macro_buf buf;
5490                         eat(state, TOK_LESS);
5491
5492                         buf.len = 40;
5493                         buf.str = xmalloc(buf.len, "include");
5494                         buf.pos = 0;
5495
5496                         tok = peek(state);
5497                         while((tok != TOK_MORE) &&
5498                                 (tok != TOK_EOL) && (tok != TOK_EOF))
5499                         {
5500                                 struct token *tk;
5501                                 tk = eat(state, tok);
5502                                 append_macro_chars(state, "include", &buf,
5503                                         state->file, tk->pos, state->file->pos);
5504                                 tok = peek(state);
5505                         }
5506                         append_macro_text(state, "include", &buf, "\0", 1);
5507                         if (peek(state) != TOK_MORE) {
5508                                 error(state, 0, "Unterminated include directive");
5509                         }
5510                         eat(state, TOK_MORE);
5511                         local = 0;
5512                         name = buf.str;
5513                 }
5514                 else {
5515                         error(state, 0, "Invalid include directive");
5516                 }
5517                 /* Error if there are any tokens after the include */
5518                 if (pp_peek(state) != TOK_EOL) {
5519                         error(state, 0, "garbage after include directive");
5520                 }
5521                 if (!if_eat(state)) {
5522                         compile_file(state, name, local);
5523                 }
5524                 xfree(name);
5525                 break;
5526         }
5527         case TOK_EOL:
5528                 /* Ignore # without a follwing ident */
5529                 break;
5530         default:
5531         {
5532                 const char *name1, *name2;
5533                 name1 = tokens[tok];
5534                 name2 = "";
5535                 if (tok == TOK_MIDENT) {
5536                         name2 = get_token(state, 1)->ident->name;
5537                 }
5538                 error(state, 0, "Invalid preprocessor directive: %s %s", 
5539                         name1, name2);
5540                 break;
5541         }
5542         }
5543         /* Consume the rest of the macro line */
5544         do {
5545                 tok = pp_peek(state);
5546                 pp_eat(state, tok);
5547         } while((tok != TOK_EOF) && (tok != TOK_EOL));
5548         state->token_base = old_token_base;
5549         state->macro_file = NULL;
5550         return;
5551 }
5552
5553 /* Type helper functions */
5554
5555 static struct type *new_type(
5556         unsigned int type, struct type *left, struct type *right)
5557 {
5558         struct type *result;
5559         result = xmalloc(sizeof(*result), "type");
5560         result->type = type;
5561         result->left = left;
5562         result->right = right;
5563         result->field_ident = 0;
5564         result->type_ident = 0;
5565         result->elements = 0;
5566         return result;
5567 }
5568
5569 static struct type *clone_type(unsigned int specifiers, struct type *old)
5570 {
5571         struct type *result;
5572         result = xmalloc(sizeof(*result), "type");
5573         memcpy(result, old, sizeof(*result));
5574         result->type &= TYPE_MASK;
5575         result->type |= specifiers;
5576         return result;
5577 }
5578
5579 static struct type *dup_type(struct compile_state *state, struct type *orig)
5580 {
5581         struct type *new;
5582         new = xcmalloc(sizeof(*new), "type");
5583         new->type = orig->type;
5584         new->field_ident = orig->field_ident;
5585         new->type_ident  = orig->type_ident;
5586         new->elements    = orig->elements;
5587         if (orig->left) {
5588                 new->left = dup_type(state, orig->left);
5589         }
5590         if (orig->right) {
5591                 new->right = dup_type(state, orig->right);
5592         }
5593         return new;
5594 }
5595
5596
5597 static struct type *invalid_type(struct compile_state *state, struct type *type)
5598 {
5599         struct type *invalid, *member;
5600         invalid = 0;
5601         if (!type) {
5602                 internal_error(state, 0, "type missing?");
5603         }
5604         switch(type->type & TYPE_MASK) {
5605         case TYPE_VOID:
5606         case TYPE_CHAR:         case TYPE_UCHAR:
5607         case TYPE_SHORT:        case TYPE_USHORT:
5608         case TYPE_INT:          case TYPE_UINT:
5609         case TYPE_LONG:         case TYPE_ULONG:
5610         case TYPE_LLONG:        case TYPE_ULLONG:
5611         case TYPE_POINTER:
5612         case TYPE_ENUM:
5613                 break;
5614         case TYPE_BITFIELD:
5615                 invalid = invalid_type(state, type->left);
5616                 break;
5617         case TYPE_ARRAY:
5618                 invalid = invalid_type(state, type->left);
5619                 break;
5620         case TYPE_STRUCT:
5621         case TYPE_TUPLE:
5622                 member = type->left;
5623                 while(member && (invalid == 0) && 
5624                         ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
5625                         invalid = invalid_type(state, member->left);
5626                         member = member->right;
5627                 }
5628                 if (!invalid) {
5629                         invalid = invalid_type(state, member);
5630                 }
5631                 break;
5632         case TYPE_UNION:
5633         case TYPE_JOIN:
5634                 member = type->left;
5635                 while(member && (invalid == 0) &&
5636                         ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
5637                         invalid = invalid_type(state, member->left);
5638                         member = member->right;
5639                 }
5640                 if (!invalid) {
5641                         invalid = invalid_type(state, member);
5642                 }
5643                 break;
5644         default:
5645                 invalid = type;
5646                 break;
5647         }
5648         return invalid;
5649         
5650 }
5651
5652 #define MASK_UCHAR(X)    ((X) & ((ulong_t)0xff))
5653 #define MASK_USHORT(X)   ((X) & (((ulong_t)1 << (SIZEOF_SHORT)) - 1))
5654 static inline ulong_t mask_uint(ulong_t x)
5655 {
5656         if (SIZEOF_INT < SIZEOF_LONG) {
5657                 ulong_t mask = (1ULL << ((ulong_t)(SIZEOF_INT))) -1;
5658                 x &= mask;
5659         }
5660         return x;
5661 }
5662 #define MASK_UINT(X)      (mask_uint(X))
5663 #define MASK_ULONG(X)    (X)
5664
5665 static struct type void_type    = { .type  = TYPE_VOID };
5666 static struct type char_type    = { .type  = TYPE_CHAR };
5667 static struct type uchar_type   = { .type  = TYPE_UCHAR };
5668 #if DEBUG_ROMCC_WARNING
5669 static struct type short_type   = { .type  = TYPE_SHORT };
5670 #endif
5671 static struct type ushort_type  = { .type  = TYPE_USHORT };
5672 static struct type int_type     = { .type  = TYPE_INT };
5673 static struct type uint_type    = { .type  = TYPE_UINT };
5674 static struct type long_type    = { .type  = TYPE_LONG };
5675 static struct type ulong_type   = { .type  = TYPE_ULONG };
5676 static struct type unknown_type = { .type  = TYPE_UNKNOWN };
5677
5678 static struct type void_ptr_type  = {
5679         .type = TYPE_POINTER,
5680         .left = &void_type,
5681 };
5682
5683 #if DEBUG_ROMCC_WARNING
5684 static struct type void_func_type = { 
5685         .type  = TYPE_FUNCTION,
5686         .left  = &void_type,
5687         .right = &void_type,
5688 };
5689 #endif
5690
5691 static size_t bits_to_bytes(size_t size)
5692 {
5693         return (size + SIZEOF_CHAR - 1)/SIZEOF_CHAR;
5694 }
5695
5696 static struct triple *variable(struct compile_state *state, struct type *type)
5697 {
5698         struct triple *result;
5699         if ((type->type & STOR_MASK) != STOR_PERM) {
5700                 result = triple(state, OP_ADECL, type, 0, 0);
5701                 generate_lhs_pieces(state, result);
5702         }
5703         else {
5704                 result = triple(state, OP_SDECL, type, 0, 0);
5705         }
5706         return result;
5707 }
5708
5709 static void stor_of(FILE *fp, struct type *type)
5710 {
5711         switch(type->type & STOR_MASK) {
5712         case STOR_AUTO:
5713                 fprintf(fp, "auto ");
5714                 break;
5715         case STOR_STATIC:
5716                 fprintf(fp, "static ");
5717                 break;
5718         case STOR_LOCAL:
5719                 fprintf(fp, "local ");
5720                 break;
5721         case STOR_EXTERN:
5722                 fprintf(fp, "extern ");
5723                 break;
5724         case STOR_REGISTER:
5725                 fprintf(fp, "register ");
5726                 break;
5727         case STOR_TYPEDEF:
5728                 fprintf(fp, "typedef ");
5729                 break;
5730         case STOR_INLINE | STOR_LOCAL:
5731                 fprintf(fp, "inline ");
5732                 break;
5733         case STOR_INLINE | STOR_STATIC:
5734                 fprintf(fp, "static inline");
5735                 break;
5736         case STOR_INLINE | STOR_EXTERN:
5737                 fprintf(fp, "extern inline");
5738                 break;
5739         default:
5740                 fprintf(fp, "stor:%x", type->type & STOR_MASK);
5741                 break;
5742         }
5743 }
5744 static void qual_of(FILE *fp, struct type *type)
5745 {
5746         if (type->type & QUAL_CONST) {
5747                 fprintf(fp, " const");
5748         }
5749         if (type->type & QUAL_VOLATILE) {
5750                 fprintf(fp, " volatile");
5751         }
5752         if (type->type & QUAL_RESTRICT) {
5753                 fprintf(fp, " restrict");
5754         }
5755 }
5756
5757 static void name_of(FILE *fp, struct type *type)
5758 {
5759         unsigned int base_type;
5760         base_type = type->type & TYPE_MASK;
5761         if ((base_type != TYPE_PRODUCT) && (base_type != TYPE_OVERLAP)) {
5762                 stor_of(fp, type);
5763         }
5764         switch(base_type) {
5765         case TYPE_VOID:
5766                 fprintf(fp, "void");
5767                 qual_of(fp, type);
5768                 break;
5769         case TYPE_CHAR:
5770                 fprintf(fp, "signed char");
5771                 qual_of(fp, type);
5772                 break;
5773         case TYPE_UCHAR:
5774                 fprintf(fp, "unsigned char");
5775                 qual_of(fp, type);
5776                 break;
5777         case TYPE_SHORT:
5778                 fprintf(fp, "signed short");
5779                 qual_of(fp, type);
5780                 break;
5781         case TYPE_USHORT:
5782                 fprintf(fp, "unsigned short");
5783                 qual_of(fp, type);
5784                 break;
5785         case TYPE_INT:
5786                 fprintf(fp, "signed int");
5787                 qual_of(fp, type);
5788                 break;
5789         case TYPE_UINT:
5790                 fprintf(fp, "unsigned int");
5791                 qual_of(fp, type);
5792                 break;
5793         case TYPE_LONG:
5794                 fprintf(fp, "signed long");
5795                 qual_of(fp, type);
5796                 break;
5797         case TYPE_ULONG:
5798                 fprintf(fp, "unsigned long");
5799                 qual_of(fp, type);
5800                 break;
5801         case TYPE_POINTER:
5802                 name_of(fp, type->left);
5803                 fprintf(fp, " * ");
5804                 qual_of(fp, type);
5805                 break;
5806         case TYPE_PRODUCT:
5807                 name_of(fp, type->left);
5808                 fprintf(fp, ", ");
5809                 name_of(fp, type->right);
5810                 break;
5811         case TYPE_OVERLAP:
5812                 name_of(fp, type->left);
5813                 fprintf(fp, ",| ");
5814                 name_of(fp, type->right);
5815                 break;
5816         case TYPE_ENUM:
5817                 fprintf(fp, "enum %s", 
5818                         (type->type_ident)? type->type_ident->name : "");
5819                 qual_of(fp, type);
5820                 break;
5821         case TYPE_STRUCT:
5822                 fprintf(fp, "struct %s { ", 
5823                         (type->type_ident)? type->type_ident->name : "");
5824                 name_of(fp, type->left);
5825                 fprintf(fp, " } ");
5826                 qual_of(fp, type);
5827                 break;
5828         case TYPE_UNION:
5829                 fprintf(fp, "union %s { ", 
5830                         (type->type_ident)? type->type_ident->name : "");
5831                 name_of(fp, type->left);
5832                 fprintf(fp, " } ");
5833                 qual_of(fp, type);
5834                 break;
5835         case TYPE_FUNCTION:
5836                 name_of(fp, type->left);
5837                 fprintf(fp, " (*)(");
5838                 name_of(fp, type->right);
5839                 fprintf(fp, ")");
5840                 break;
5841         case TYPE_ARRAY:
5842                 name_of(fp, type->left);
5843                 fprintf(fp, " [%ld]", (long)(type->elements));
5844                 break;
5845         case TYPE_TUPLE:
5846                 fprintf(fp, "tuple { "); 
5847                 name_of(fp, type->left);
5848                 fprintf(fp, " } ");
5849                 qual_of(fp, type);
5850                 break;
5851         case TYPE_JOIN:
5852                 fprintf(fp, "join { ");
5853                 name_of(fp, type->left);
5854                 fprintf(fp, " } ");
5855                 qual_of(fp, type);
5856                 break;
5857         case TYPE_BITFIELD:
5858                 name_of(fp, type->left);
5859                 fprintf(fp, " : %d ", type->elements);
5860                 qual_of(fp, type);
5861                 break;
5862         case TYPE_UNKNOWN:
5863                 fprintf(fp, "unknown_t");
5864                 break;
5865         default:
5866                 fprintf(fp, "????: %x", base_type);
5867                 break;
5868         }
5869         if (type->field_ident && type->field_ident->name) {
5870                 fprintf(fp, " .%s", type->field_ident->name);
5871         }
5872 }
5873
5874 static size_t align_of(struct compile_state *state, struct type *type)
5875 {
5876         size_t align;
5877         align = 0;
5878         switch(type->type & TYPE_MASK) {
5879         case TYPE_VOID:
5880                 align = 1;
5881                 break;
5882         case TYPE_BITFIELD:
5883                 align = 1;
5884                 break;
5885         case TYPE_CHAR:
5886         case TYPE_UCHAR:
5887                 align = ALIGNOF_CHAR;
5888                 break;
5889         case TYPE_SHORT:
5890         case TYPE_USHORT:
5891                 align = ALIGNOF_SHORT;
5892                 break;
5893         case TYPE_INT:
5894         case TYPE_UINT:
5895         case TYPE_ENUM:
5896                 align = ALIGNOF_INT;
5897                 break;
5898         case TYPE_LONG:
5899         case TYPE_ULONG:
5900                 align = ALIGNOF_LONG;
5901                 break;
5902         case TYPE_POINTER:
5903                 align = ALIGNOF_POINTER;
5904                 break;
5905         case TYPE_PRODUCT:
5906         case TYPE_OVERLAP:
5907         {
5908                 size_t left_align, right_align;
5909                 left_align  = align_of(state, type->left);
5910                 right_align = align_of(state, type->right);
5911                 align = (left_align >= right_align) ? left_align : right_align;
5912                 break;
5913         }
5914         case TYPE_ARRAY:
5915                 align = align_of(state, type->left);
5916                 break;
5917         case TYPE_STRUCT:
5918         case TYPE_TUPLE:
5919         case TYPE_UNION:
5920         case TYPE_JOIN:
5921                 align = align_of(state, type->left);
5922                 break;
5923         default:
5924                 error(state, 0, "alignof not yet defined for type\n");
5925                 break;
5926         }
5927         return align;
5928 }
5929
5930 static size_t reg_align_of(struct compile_state *state, struct type *type)
5931 {
5932         size_t align;
5933         align = 0;
5934         switch(type->type & TYPE_MASK) {
5935         case TYPE_VOID:
5936                 align = 1;
5937                 break;
5938         case TYPE_BITFIELD:
5939                 align = 1;
5940                 break;
5941         case TYPE_CHAR:
5942         case TYPE_UCHAR:
5943                 align = REG_ALIGNOF_CHAR;
5944                 break;
5945         case TYPE_SHORT:
5946         case TYPE_USHORT:
5947                 align = REG_ALIGNOF_SHORT;
5948                 break;
5949         case TYPE_INT:
5950         case TYPE_UINT:
5951         case TYPE_ENUM:
5952                 align = REG_ALIGNOF_INT;
5953                 break;
5954         case TYPE_LONG:
5955         case TYPE_ULONG:
5956                 align = REG_ALIGNOF_LONG;
5957                 break;
5958         case TYPE_POINTER:
5959                 align = REG_ALIGNOF_POINTER;
5960                 break;
5961         case TYPE_PRODUCT:
5962         case TYPE_OVERLAP:
5963         {
5964                 size_t left_align, right_align;
5965                 left_align  = reg_align_of(state, type->left);
5966                 right_align = reg_align_of(state, type->right);
5967                 align = (left_align >= right_align) ? left_align : right_align;
5968                 break;
5969         }
5970         case TYPE_ARRAY:
5971                 align = reg_align_of(state, type->left);
5972                 break;
5973         case TYPE_STRUCT:
5974         case TYPE_UNION:
5975         case TYPE_TUPLE:
5976         case TYPE_JOIN:
5977                 align = reg_align_of(state, type->left);
5978                 break;
5979         default:
5980                 error(state, 0, "alignof not yet defined for type\n");
5981                 break;
5982         }
5983         return align;
5984 }
5985
5986 static size_t align_of_in_bytes(struct compile_state *state, struct type *type)
5987 {
5988         return bits_to_bytes(align_of(state, type));
5989 }
5990 static size_t size_of(struct compile_state *state, struct type *type);
5991 static size_t reg_size_of(struct compile_state *state, struct type *type);
5992
5993 static size_t needed_padding(struct compile_state *state, 
5994         struct type *type, size_t offset)
5995 {
5996         size_t padding, align;
5997         align = align_of(state, type);
5998         /* Align to the next machine word if the bitfield does completely
5999          * fit into the current word.
6000          */
6001         if ((type->type & TYPE_MASK) == TYPE_BITFIELD) {
6002                 size_t size;
6003                 size = size_of(state, type);
6004                 if ((offset + type->elements)/size != offset/size) {
6005                         align = size;
6006                 }
6007         }
6008         padding = 0;
6009         if (offset % align) {
6010                 padding = align - (offset % align);
6011         }
6012         return padding;
6013 }
6014
6015 static size_t reg_needed_padding(struct compile_state *state, 
6016         struct type *type, size_t offset)
6017 {
6018         size_t padding, align;
6019         align = reg_align_of(state, type);
6020         /* Align to the next register word if the bitfield does completely
6021          * fit into the current register.
6022          */
6023         if (((type->type & TYPE_MASK) == TYPE_BITFIELD) &&
6024                 (((offset + type->elements)/REG_SIZEOF_REG) != (offset/REG_SIZEOF_REG))) 
6025         {
6026                 align = REG_SIZEOF_REG;
6027         }
6028         padding = 0;
6029         if (offset % align) {
6030                 padding = align - (offset % align);
6031         }
6032         return padding;
6033 }
6034
6035 static size_t size_of(struct compile_state *state, struct type *type)
6036 {
6037         size_t size;
6038         size = 0;
6039         switch(type->type & TYPE_MASK) {
6040         case TYPE_VOID:
6041                 size = 0;
6042                 break;
6043         case TYPE_BITFIELD:
6044                 size = type->elements;
6045                 break;
6046         case TYPE_CHAR:
6047         case TYPE_UCHAR:
6048                 size = SIZEOF_CHAR;
6049                 break;
6050         case TYPE_SHORT:
6051         case TYPE_USHORT:
6052                 size = SIZEOF_SHORT;
6053                 break;
6054         case TYPE_INT:
6055         case TYPE_UINT:
6056         case TYPE_ENUM:
6057                 size = SIZEOF_INT;
6058                 break;
6059         case TYPE_LONG:
6060         case TYPE_ULONG:
6061                 size = SIZEOF_LONG;
6062                 break;
6063         case TYPE_POINTER:
6064                 size = SIZEOF_POINTER;
6065                 break;
6066         case TYPE_PRODUCT:
6067         {
6068                 size_t pad;
6069                 size = 0;
6070                 while((type->type & TYPE_MASK) == TYPE_PRODUCT) {
6071                         pad = needed_padding(state, type->left, size);
6072                         size = size + pad + size_of(state, type->left);
6073                         type = type->right;
6074                 }
6075                 pad = needed_padding(state, type, size);
6076                 size = size + pad + size_of(state, type);
6077                 break;
6078         }
6079         case TYPE_OVERLAP:
6080         {
6081                 size_t size_left, size_right;
6082                 size_left = size_of(state, type->left);
6083                 size_right = size_of(state, type->right);
6084                 size = (size_left >= size_right)? size_left : size_right;
6085                 break;
6086         }
6087         case TYPE_ARRAY:
6088                 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
6089                         internal_error(state, 0, "Invalid array type");
6090                 } else {
6091                         size = size_of(state, type->left) * type->elements;
6092                 }
6093                 break;
6094         case TYPE_STRUCT:
6095         case TYPE_TUPLE:
6096         {
6097                 size_t pad;
6098                 size = size_of(state, type->left);
6099                 /* Pad structures so their size is a multiples of their alignment */
6100                 pad = needed_padding(state, type, size);
6101                 size = size + pad;
6102                 break;
6103         }
6104         case TYPE_UNION:
6105         case TYPE_JOIN:
6106         {
6107                 size_t pad;
6108                 size = size_of(state, type->left);
6109                 /* Pad unions so their size is a multiple of their alignment */
6110                 pad = needed_padding(state, type, size);
6111                 size = size + pad;
6112                 break;
6113         }
6114         default:
6115                 internal_error(state, 0, "sizeof not yet defined for type");
6116                 break;
6117         }
6118         return size;
6119 }
6120
6121 static size_t reg_size_of(struct compile_state *state, struct type *type)
6122 {
6123         size_t size;
6124         size = 0;
6125         switch(type->type & TYPE_MASK) {
6126         case TYPE_VOID:
6127                 size = 0;
6128                 break;
6129         case TYPE_BITFIELD:
6130                 size = type->elements;
6131                 break;
6132         case TYPE_CHAR:
6133         case TYPE_UCHAR:
6134                 size = REG_SIZEOF_CHAR;
6135                 break;
6136         case TYPE_SHORT:
6137         case TYPE_USHORT:
6138                 size = REG_SIZEOF_SHORT;
6139                 break;
6140         case TYPE_INT:
6141         case TYPE_UINT:
6142         case TYPE_ENUM:
6143                 size = REG_SIZEOF_INT;
6144                 break;
6145         case TYPE_LONG:
6146         case TYPE_ULONG:
6147                 size = REG_SIZEOF_LONG;
6148                 break;
6149         case TYPE_POINTER:
6150                 size = REG_SIZEOF_POINTER;
6151                 break;
6152         case TYPE_PRODUCT:
6153         {
6154                 size_t pad;
6155                 size = 0;
6156                 while((type->type & TYPE_MASK) == TYPE_PRODUCT) {
6157                         pad = reg_needed_padding(state, type->left, size);
6158                         size = size + pad + reg_size_of(state, type->left);
6159                         type = type->right;
6160                 }
6161                 pad = reg_needed_padding(state, type, size);
6162                 size = size + pad + reg_size_of(state, type);
6163                 break;
6164         }
6165         case TYPE_OVERLAP:
6166         {
6167                 size_t size_left, size_right;
6168                 size_left  = reg_size_of(state, type->left);
6169                 size_right = reg_size_of(state, type->right);
6170                 size = (size_left >= size_right)? size_left : size_right;
6171                 break;
6172         }
6173         case TYPE_ARRAY:
6174                 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
6175                         internal_error(state, 0, "Invalid array type");
6176                 } else {
6177                         size = reg_size_of(state, type->left) * type->elements;
6178                 }
6179                 break;
6180         case TYPE_STRUCT:
6181         case TYPE_TUPLE:
6182         {
6183                 size_t pad;
6184                 size = reg_size_of(state, type->left);
6185                 /* Pad structures so their size is a multiples of their alignment */
6186                 pad = reg_needed_padding(state, type, size);
6187                 size = size + pad;
6188                 break;
6189         }
6190         case TYPE_UNION:
6191         case TYPE_JOIN:
6192         {
6193                 size_t pad;
6194                 size = reg_size_of(state, type->left);
6195                 /* Pad unions so their size is a multiple of their alignment */
6196                 pad = reg_needed_padding(state, type, size);
6197                 size = size + pad;
6198                 break;
6199         }
6200         default:
6201                 internal_error(state, 0, "sizeof not yet defined for type");
6202                 break;
6203         }
6204         return size;
6205 }
6206
6207 static size_t registers_of(struct compile_state *state, struct type *type)
6208 {
6209         size_t registers;
6210         registers = reg_size_of(state, type);
6211         registers += REG_SIZEOF_REG - 1;
6212         registers /= REG_SIZEOF_REG;
6213         return registers;
6214 }
6215
6216 static size_t size_of_in_bytes(struct compile_state *state, struct type *type)
6217 {
6218         return bits_to_bytes(size_of(state, type));
6219 }
6220
6221 static size_t field_offset(struct compile_state *state, 
6222         struct type *type, struct hash_entry *field)
6223 {
6224         struct type *member;
6225         size_t size;
6226
6227         size = 0;
6228         member = 0;
6229         if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
6230                 member = type->left;
6231                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6232                         size += needed_padding(state, member->left, size);
6233                         if (member->left->field_ident == field) {
6234                                 member = member->left;
6235                                 break;
6236                         }
6237                         size += size_of(state, member->left);
6238                         member = member->right;
6239                 }
6240                 size += needed_padding(state, member, size);
6241         }
6242         else if ((type->type & TYPE_MASK) == TYPE_UNION) {
6243                 member = type->left;
6244                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6245                         if (member->left->field_ident == field) {
6246                                 member = member->left;
6247                                 break;
6248                         }
6249                         member = member->right;
6250                 }
6251         }
6252         else {
6253                 internal_error(state, 0, "field_offset only works on structures and unions");
6254         }
6255
6256         if (!member || (member->field_ident != field)) {
6257                 error(state, 0, "member %s not present", field->name);
6258         }
6259         return size;
6260 }
6261
6262 static size_t field_reg_offset(struct compile_state *state, 
6263         struct type *type, struct hash_entry *field)
6264 {
6265         struct type *member;
6266         size_t size;
6267
6268         size = 0;
6269         member = 0;
6270         if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
6271                 member = type->left;
6272                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6273                         size += reg_needed_padding(state, member->left, size);
6274                         if (member->left->field_ident == field) {
6275                                 member = member->left;
6276                                 break;
6277                         }
6278                         size += reg_size_of(state, member->left);
6279                         member = member->right;
6280                 }
6281         }
6282         else if ((type->type & TYPE_MASK) == TYPE_UNION) {
6283                 member = type->left;
6284                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6285                         if (member->left->field_ident == field) {
6286                                 member = member->left;
6287                                 break;
6288                         }
6289                         member = member->right;
6290                 }
6291         }
6292         else {
6293                 internal_error(state, 0, "field_reg_offset only works on structures and unions");
6294         }
6295
6296         size += reg_needed_padding(state, member, size);
6297         if (!member || (member->field_ident != field)) {
6298                 error(state, 0, "member %s not present", field->name);
6299         }
6300         return size;
6301 }
6302
6303 static struct type *field_type(struct compile_state *state, 
6304         struct type *type, struct hash_entry *field)
6305 {
6306         struct type *member;
6307
6308         member = 0;
6309         if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
6310                 member = type->left;
6311                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6312                         if (member->left->field_ident == field) {
6313                                 member = member->left;
6314                                 break;
6315                         }
6316                         member = member->right;
6317                 }
6318         }
6319         else if ((type->type & TYPE_MASK) == TYPE_UNION) {
6320                 member = type->left;
6321                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6322                         if (member->left->field_ident == field) {
6323                                 member = member->left;
6324                                 break;
6325                         }
6326                         member = member->right;
6327                 }
6328         }
6329         else {
6330                 internal_error(state, 0, "field_type only works on structures and unions");
6331         }
6332         
6333         if (!member || (member->field_ident != field)) {
6334                 error(state, 0, "member %s not present", field->name);
6335         }
6336         return member;
6337 }
6338
6339 static size_t index_offset(struct compile_state *state, 
6340         struct type *type, ulong_t index)
6341 {
6342         struct type *member;
6343         size_t size;
6344         size = 0;
6345         if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
6346                 size = size_of(state, type->left) * index;
6347         }
6348         else if ((type->type & TYPE_MASK) == TYPE_TUPLE) {
6349                 ulong_t i;
6350                 member = type->left;
6351                 i = 0;
6352                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6353                         size += needed_padding(state, member->left, size);
6354                         if (i == index) {
6355                                 member = member->left;
6356                                 break;
6357                         }
6358                         size += size_of(state, member->left);
6359                         i++;
6360                         member = member->right;
6361                 }
6362                 size += needed_padding(state, member, size);
6363                 if (i != index) {
6364                         internal_error(state, 0, "Missing member index: %u", index);
6365                 }
6366         }
6367         else if ((type->type & TYPE_MASK) == TYPE_JOIN) {
6368                 ulong_t i;
6369                 size = 0;
6370                 member = type->left;
6371                 i = 0;
6372                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6373                         if (i == index) {
6374                                 member = member->left;
6375                                 break;
6376                         }
6377                         i++;
6378                         member = member->right;
6379                 }
6380                 if (i != index) {
6381                         internal_error(state, 0, "Missing member index: %u", index);
6382                 }
6383         }
6384         else {
6385                 internal_error(state, 0, 
6386                         "request for index %u in something not an array, tuple or join",
6387                         index);
6388         }
6389         return size;
6390 }
6391
6392 static size_t index_reg_offset(struct compile_state *state, 
6393         struct type *type, ulong_t index)
6394 {
6395         struct type *member;
6396         size_t size;
6397         size = 0;
6398         if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
6399                 size = reg_size_of(state, type->left) * index;
6400         }
6401         else if ((type->type & TYPE_MASK) == TYPE_TUPLE) {
6402                 ulong_t i;
6403                 member = type->left;
6404                 i = 0;
6405                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6406                         size += reg_needed_padding(state, member->left, size);
6407                         if (i == index) {
6408                                 member = member->left;
6409                                 break;
6410                         }
6411                         size += reg_size_of(state, member->left);
6412                         i++;
6413                         member = member->right;
6414                 }
6415                 size += reg_needed_padding(state, member, size);
6416                 if (i != index) {
6417                         internal_error(state, 0, "Missing member index: %u", index);
6418                 }
6419                 
6420         }
6421         else if ((type->type & TYPE_MASK) == TYPE_JOIN) {
6422                 ulong_t i;
6423                 size = 0;
6424                 member = type->left;
6425                 i = 0;
6426                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6427                         if (i == index) {
6428                                 member = member->left;
6429                                 break;
6430                         }
6431                         i++;
6432                         member = member->right;
6433                 }
6434                 if (i != index) {
6435                         internal_error(state, 0, "Missing member index: %u", index);
6436                 }
6437         }
6438         else {
6439                 internal_error(state, 0, 
6440                         "request for index %u in something not an array, tuple or join",
6441                         index);
6442         }
6443         return size;
6444 }
6445
6446 static struct type *index_type(struct compile_state *state,
6447         struct type *type, ulong_t index)
6448 {
6449         struct type *member;
6450         if (index >= type->elements) {
6451                 internal_error(state, 0, "Invalid element %u requested", index);
6452         }
6453         if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
6454                 member = type->left;
6455         }
6456         else if ((type->type & TYPE_MASK) == TYPE_TUPLE) {
6457                 ulong_t i;
6458                 member = type->left;
6459                 i = 0;
6460                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6461                         if (i == index) {
6462                                 member = member->left;
6463                                 break;
6464                         }
6465                         i++;
6466                         member = member->right;
6467                 }
6468                 if (i != index) {
6469                         internal_error(state, 0, "Missing member index: %u", index);
6470                 }
6471         }
6472         else if ((type->type & TYPE_MASK) == TYPE_JOIN) {
6473                 ulong_t i;
6474                 member = type->left;
6475                 i = 0;
6476                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6477                         if (i == index) {
6478                                 member = member->left;
6479                                 break;
6480                         }
6481                         i++;
6482                         member = member->right;
6483                 }
6484                 if (i != index) {
6485                         internal_error(state, 0, "Missing member index: %u", index);
6486                 }
6487         }
6488         else {
6489                 member = 0;
6490                 internal_error(state, 0, 
6491                         "request for index %u in something not an array, tuple or join",
6492                         index);
6493         }
6494         return member;
6495 }
6496
6497 static struct type *unpack_type(struct compile_state *state, struct type *type)
6498 {
6499         /* If I have a single register compound type not a bit-field
6500          * find the real type.
6501          */
6502         struct type *start_type;
6503         size_t size;
6504         /* Get out early if I need multiple registers for this type */
6505         size = reg_size_of(state, type);
6506         if (size > REG_SIZEOF_REG) {
6507                 return type;
6508         }
6509         /* Get out early if I don't need any registers for this type */
6510         if (size == 0) {
6511                 return &void_type;
6512         }
6513         /* Loop until I have no more layers I can remove */
6514         do {
6515                 start_type = type;
6516                 switch(type->type & TYPE_MASK) {
6517                 case TYPE_ARRAY:
6518                         /* If I have a single element the unpacked type
6519                          * is that element.
6520                          */
6521                         if (type->elements == 1) {
6522                                 type = type->left;
6523                         }
6524                         break;
6525                 case TYPE_STRUCT:
6526                 case TYPE_TUPLE:
6527                         /* If I have a single element the unpacked type
6528                          * is that element.
6529                          */
6530                         if (type->elements == 1) {
6531                                 type = type->left;
6532                         }
6533                         /* If I have multiple elements the unpacked
6534                          * type is the non-void element.
6535                          */
6536                         else {
6537                                 struct type *next, *member;
6538                                 struct type *sub_type;
6539                                 sub_type = 0;
6540                                 next = type->left;
6541                                 while(next) {
6542                                         member = next;
6543                                         next = 0;
6544                                         if ((member->type & TYPE_MASK) == TYPE_PRODUCT) {
6545                                                 next = member->right;
6546                                                 member = member->left;
6547                                         }
6548                                         if (reg_size_of(state, member) > 0) {
6549                                                 if (sub_type) {
6550                                                         internal_error(state, 0, "true compound type in a register");
6551                                                 }
6552                                                 sub_type = member;
6553                                         }
6554                                 }
6555                                 if (sub_type) {
6556                                         type = sub_type;
6557                                 }
6558                         }
6559                         break;
6560
6561                 case TYPE_UNION:
6562                 case TYPE_JOIN:
6563                         /* If I have a single element the unpacked type
6564                          * is that element.
6565                          */
6566                         if (type->elements == 1) {
6567                                 type = type->left;
6568                         }
6569                         /* I can't in general unpack union types */
6570                         break;
6571                 default:
6572                         /* If I'm not a compound type I can't unpack it */
6573                         break;
6574                 }
6575         } while(start_type != type);
6576         switch(type->type & TYPE_MASK) {
6577         case TYPE_STRUCT:
6578         case TYPE_ARRAY:
6579         case TYPE_TUPLE:
6580                 internal_error(state, 0, "irredicible type?");
6581                 break;
6582         }
6583         return type;
6584 }
6585
6586 static int equiv_types(struct type *left, struct type *right);
6587 static int is_compound_type(struct type *type);
6588
6589 static struct type *reg_type(
6590         struct compile_state *state, struct type *type, int reg_offset)
6591 {
6592         struct type *member;
6593         size_t size;
6594 #if 1
6595         struct type *invalid;
6596         invalid = invalid_type(state, type);
6597         if (invalid) {
6598                 fprintf(state->errout, "type: ");
6599                 name_of(state->errout, type);
6600                 fprintf(state->errout, "\n");
6601                 fprintf(state->errout, "invalid: ");
6602                 name_of(state->errout, invalid);
6603                 fprintf(state->errout, "\n");
6604                 internal_error(state, 0, "bad input type?");
6605         }
6606 #endif
6607
6608         size = reg_size_of(state, type);
6609         if (reg_offset > size) {
6610                 member = 0;
6611                 fprintf(state->errout, "type: ");
6612                 name_of(state->errout, type);
6613                 fprintf(state->errout, "\n");
6614                 internal_error(state, 0, "offset outside of type");
6615         }
6616         else {
6617                 switch(type->type & TYPE_MASK) {
6618                         /* Don't do anything with the basic types */
6619                 case TYPE_VOID:
6620                 case TYPE_CHAR:         case TYPE_UCHAR:
6621                 case TYPE_SHORT:        case TYPE_USHORT:
6622                 case TYPE_INT:          case TYPE_UINT:
6623                 case TYPE_LONG:         case TYPE_ULONG:
6624                 case TYPE_LLONG:        case TYPE_ULLONG:
6625                 case TYPE_FLOAT:        case TYPE_DOUBLE:
6626                 case TYPE_LDOUBLE:
6627                 case TYPE_POINTER:
6628                 case TYPE_ENUM:
6629                 case TYPE_BITFIELD:
6630                         member = type;
6631                         break;
6632                 case TYPE_ARRAY:
6633                         member = type->left;
6634                         size = reg_size_of(state, member);
6635                         if (size > REG_SIZEOF_REG) {
6636                                 member = reg_type(state, member, reg_offset % size);
6637                         }
6638                         break;
6639                 case TYPE_STRUCT:
6640                 case TYPE_TUPLE:
6641                 {
6642                         size_t offset;
6643                         offset = 0;
6644                         member = type->left;
6645                         while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6646                                 size = reg_size_of(state, member->left);
6647                                 offset += reg_needed_padding(state, member->left, offset);
6648                                 if ((offset + size) > reg_offset) {
6649                                         member = member->left;
6650                                         break;
6651                                 }
6652                                 offset += size;
6653                                 member = member->right;
6654                         }
6655                         offset += reg_needed_padding(state, member, offset);
6656                         member = reg_type(state, member, reg_offset - offset);
6657                         break;
6658                 }
6659                 case TYPE_UNION:
6660                 case TYPE_JOIN:
6661                 {
6662                         struct type *join, **jnext, *mnext;
6663                         join = new_type(TYPE_JOIN, 0, 0);
6664                         jnext = &join->left;
6665                         mnext = type->left;
6666                         while(mnext) {
6667                                 size_t size;
6668                                 member = mnext;
6669                                 mnext = 0;
6670                                 if ((member->type & TYPE_MASK) == TYPE_OVERLAP) {
6671                                         mnext = member->right;
6672                                         member = member->left;
6673                                 }
6674                                 size = reg_size_of(state, member);
6675                                 if (size > reg_offset) {
6676                                         struct type *part, *hunt;
6677                                         part = reg_type(state, member, reg_offset);
6678                                         /* See if this type is already in the union */
6679                                         hunt = join->left;
6680                                         while(hunt) {
6681                                                 struct type *test = hunt;
6682                                                 hunt = 0;
6683                                                 if ((test->type & TYPE_MASK) == TYPE_OVERLAP) {
6684                                                         hunt = test->right;
6685                                                         test = test->left;
6686                                                 }
6687                                                 if (equiv_types(part, test)) {
6688                                                         goto next;
6689                                                 }
6690                                         }
6691                                         /* Nope add it */
6692                                         if (!*jnext) {
6693                                                 *jnext = part;
6694                                         } else {
6695                                                 *jnext = new_type(TYPE_OVERLAP, *jnext, part);
6696                                                 jnext = &(*jnext)->right;
6697                                         }
6698                                         join->elements++;
6699                                 }
6700                         next:
6701                                 ;
6702                         }
6703                         if (join->elements == 0) {
6704                                 internal_error(state, 0, "No elements?");
6705                         }
6706                         member = join;
6707                         break;
6708                 }
6709                 default:
6710                         member = 0;
6711                         fprintf(state->errout, "type: ");
6712                         name_of(state->errout, type);
6713                         fprintf(state->errout, "\n");
6714                         internal_error(state, 0, "reg_type not yet defined for type");
6715                         
6716                 }
6717         }
6718         /* If I have a single register compound type not a bit-field
6719          * find the real type.
6720          */
6721         member = unpack_type(state, member);
6722                 ;
6723         size  = reg_size_of(state, member);
6724         if (size > REG_SIZEOF_REG) {
6725                 internal_error(state, 0, "Cannot find type of single register");
6726         }
6727 #if 1
6728         invalid = invalid_type(state, member);
6729         if (invalid) {
6730                 fprintf(state->errout, "type: ");
6731                 name_of(state->errout, member);
6732                 fprintf(state->errout, "\n");
6733                 fprintf(state->errout, "invalid: ");
6734                 name_of(state->errout, invalid);
6735                 fprintf(state->errout, "\n");
6736                 internal_error(state, 0, "returning bad type?");
6737         }
6738 #endif
6739         return member;
6740 }
6741
6742 static struct type *next_field(struct compile_state *state,
6743         struct type *type, struct type *prev_member) 
6744 {
6745         struct type *member;
6746         if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
6747                 internal_error(state, 0, "next_field only works on structures");
6748         }
6749         member = type->left;
6750         while((member->type & TYPE_MASK) == TYPE_PRODUCT) {
6751                 if (!prev_member) {
6752                         member = member->left;
6753                         break;
6754                 }
6755                 if (member->left == prev_member) {
6756                         prev_member = 0;
6757                 }
6758                 member = member->right;
6759         }
6760         if (member == prev_member) {
6761                 prev_member = 0;
6762         }
6763         if (prev_member) {
6764                 internal_error(state, 0, "prev_member %s not present", 
6765                         prev_member->field_ident->name);
6766         }
6767         return member;
6768 }
6769
6770 typedef void (*walk_type_fields_cb_t)(struct compile_state *state, struct type *type, 
6771         size_t ret_offset, size_t mem_offset, void *arg);
6772
6773 static void walk_type_fields(struct compile_state *state,
6774         struct type *type, size_t reg_offset, size_t mem_offset,
6775         walk_type_fields_cb_t cb, void *arg);
6776
6777 static void walk_struct_fields(struct compile_state *state,
6778         struct type *type, size_t reg_offset, size_t mem_offset,
6779         walk_type_fields_cb_t cb, void *arg)
6780 {
6781         struct type *tptr;
6782         ulong_t i;
6783         if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
6784                 internal_error(state, 0, "walk_struct_fields only works on structures");
6785         }
6786         tptr = type->left;
6787         for(i = 0; i < type->elements; i++) {
6788                 struct type *mtype;
6789                 mtype = tptr;
6790                 if ((mtype->type & TYPE_MASK) == TYPE_PRODUCT) {
6791                         mtype = mtype->left;
6792                 }
6793                 walk_type_fields(state, mtype, 
6794                         reg_offset + 
6795                         field_reg_offset(state, type, mtype->field_ident),
6796                         mem_offset + 
6797                         field_offset(state, type, mtype->field_ident),
6798                         cb, arg);
6799                 tptr = tptr->right;
6800         }
6801         
6802 }
6803
6804 static void walk_type_fields(struct compile_state *state,
6805         struct type *type, size_t reg_offset, size_t mem_offset,
6806         walk_type_fields_cb_t cb, void *arg)
6807 {
6808         switch(type->type & TYPE_MASK) {
6809         case TYPE_STRUCT:
6810                 walk_struct_fields(state, type, reg_offset, mem_offset, cb, arg);
6811                 break;
6812         case TYPE_CHAR:
6813         case TYPE_UCHAR:
6814         case TYPE_SHORT:
6815         case TYPE_USHORT:
6816         case TYPE_INT:
6817         case TYPE_UINT:
6818         case TYPE_LONG:
6819         case TYPE_ULONG:
6820                 cb(state, type, reg_offset, mem_offset, arg);
6821                 break;
6822         case TYPE_VOID:
6823                 break;
6824         default:
6825                 internal_error(state, 0, "walk_type_fields not yet implemented for type");
6826         }
6827 }
6828
6829 static void arrays_complete(struct compile_state *state, struct type *type)
6830 {
6831         if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
6832                 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
6833                         error(state, 0, "array size not specified");
6834                 }
6835                 arrays_complete(state, type->left);
6836         }
6837 }
6838
6839 static unsigned int get_basic_type(struct type *type)
6840 {
6841         unsigned int basic;
6842         basic = type->type & TYPE_MASK;
6843         /* Convert enums to ints */
6844         if (basic == TYPE_ENUM) {
6845                 basic = TYPE_INT;
6846         }
6847         /* Convert bitfields to standard types */
6848         else if (basic == TYPE_BITFIELD) {
6849                 if (type->elements <= SIZEOF_CHAR) {
6850                         basic = TYPE_CHAR;
6851                 }
6852                 else if (type->elements <= SIZEOF_SHORT) {
6853                         basic = TYPE_SHORT;
6854                 }
6855                 else if (type->elements <= SIZEOF_INT) {
6856                         basic = TYPE_INT;
6857                 }
6858                 else if (type->elements <= SIZEOF_LONG) {
6859                         basic = TYPE_LONG;
6860                 }
6861                 if (!TYPE_SIGNED(type->left->type)) {
6862                         basic += 1;
6863                 }
6864         }
6865         return basic;
6866 }
6867
6868 static unsigned int do_integral_promotion(unsigned int type)
6869 {
6870         if (TYPE_INTEGER(type) && (TYPE_RANK(type) < TYPE_RANK(TYPE_INT))) {
6871                 type = TYPE_INT;
6872         }
6873         return type;
6874 }
6875
6876 static unsigned int do_arithmetic_conversion(
6877         unsigned int left, unsigned int right)
6878 {
6879         if ((left == TYPE_LDOUBLE) || (right == TYPE_LDOUBLE)) {
6880                 return TYPE_LDOUBLE;
6881         }
6882         else if ((left == TYPE_DOUBLE) || (right == TYPE_DOUBLE)) {
6883                 return TYPE_DOUBLE;
6884         }
6885         else if ((left == TYPE_FLOAT) || (right == TYPE_FLOAT)) {
6886                 return TYPE_FLOAT;
6887         }
6888         left = do_integral_promotion(left);
6889         right = do_integral_promotion(right);
6890         /* If both operands have the same size done */
6891         if (left == right) {
6892                 return left;
6893         }
6894         /* If both operands have the same signedness pick the larger */
6895         else if (!!TYPE_UNSIGNED(left) == !!TYPE_UNSIGNED(right)) {
6896                 return (TYPE_RANK(left) >= TYPE_RANK(right)) ? left : right;
6897         }
6898         /* If the signed type can hold everything use it */
6899         else if (TYPE_SIGNED(left) && (TYPE_RANK(left) > TYPE_RANK(right))) {
6900                 return left;
6901         }
6902         else if (TYPE_SIGNED(right) && (TYPE_RANK(right) > TYPE_RANK(left))) {
6903                 return right;
6904         }
6905         /* Convert to the unsigned type with the same rank as the signed type */
6906         else if (TYPE_SIGNED(left)) {
6907                 return TYPE_MKUNSIGNED(left);
6908         }
6909         else {
6910                 return TYPE_MKUNSIGNED(right);
6911         }
6912 }
6913
6914 /* see if two types are the same except for qualifiers */
6915 static int equiv_types(struct type *left, struct type *right)
6916 {
6917         unsigned int type;
6918         /* Error if the basic types do not match */
6919         if ((left->type & TYPE_MASK) != (right->type & TYPE_MASK)) {
6920                 return 0;
6921         }
6922         type = left->type & TYPE_MASK;
6923         /* If the basic types match and it is a void type we are done */
6924         if (type == TYPE_VOID) {
6925                 return 1;
6926         }
6927         /* For bitfields we need to compare the sizes */
6928         else if (type == TYPE_BITFIELD) {
6929                 return (left->elements == right->elements) &&
6930                         (TYPE_SIGNED(left->left->type) == TYPE_SIGNED(right->left->type));
6931         }
6932         /* if the basic types match and it is an arithmetic type we are done */
6933         else if (TYPE_ARITHMETIC(type)) {
6934                 return 1;
6935         }
6936         /* If it is a pointer type recurse and keep testing */
6937         else if (type == TYPE_POINTER) {
6938                 return equiv_types(left->left, right->left);
6939         }
6940         else if (type == TYPE_ARRAY) {
6941                 return (left->elements == right->elements) &&
6942                         equiv_types(left->left, right->left);
6943         }
6944         /* test for struct equality */
6945         else if (type == TYPE_STRUCT) {
6946                 return left->type_ident == right->type_ident;
6947         }
6948         /* test for union equality */
6949         else if (type == TYPE_UNION) {
6950                 return left->type_ident == right->type_ident;
6951         }
6952         /* Test for equivalent functions */
6953         else if (type == TYPE_FUNCTION) {
6954                 return equiv_types(left->left, right->left) &&
6955                         equiv_types(left->right, right->right);
6956         }
6957         /* We only see TYPE_PRODUCT as part of function equivalence matching */
6958         /* We also see TYPE_PRODUCT as part of of tuple equivalence matchin */
6959         else if (type == TYPE_PRODUCT) {
6960                 return equiv_types(left->left, right->left) &&
6961                         equiv_types(left->right, right->right);
6962         }
6963         /* We should see TYPE_OVERLAP when comparing joins */
6964         else if (type == TYPE_OVERLAP) {
6965                 return equiv_types(left->left, right->left) &&
6966                         equiv_types(left->right, right->right);
6967         }
6968         /* Test for equivalence of tuples */
6969         else if (type == TYPE_TUPLE) {
6970                 return (left->elements == right->elements) &&
6971                         equiv_types(left->left, right->left);
6972         }
6973         /* Test for equivalence of joins */
6974         else if (type == TYPE_JOIN) {
6975                 return (left->elements == right->elements) &&
6976                         equiv_types(left->left, right->left);
6977         }
6978         else {
6979                 return 0;
6980         }
6981 }
6982
6983 static int equiv_ptrs(struct type *left, struct type *right)
6984 {
6985         if (((left->type & TYPE_MASK) != TYPE_POINTER) ||
6986                 ((right->type & TYPE_MASK) != TYPE_POINTER)) {
6987                 return 0;
6988         }
6989         return equiv_types(left->left, right->left);
6990 }
6991
6992 static struct type *compatible_types(struct type *left, struct type *right)
6993 {
6994         struct type *result;
6995         unsigned int type, qual_type;
6996         /* Error if the basic types do not match */
6997         if ((left->type & TYPE_MASK) != (right->type & TYPE_MASK)) {
6998                 return 0;
6999         }
7000         type = left->type & TYPE_MASK;
7001         qual_type = (left->type & ~STOR_MASK) | (right->type & ~STOR_MASK);
7002         result = 0;
7003         /* if the basic types match and it is an arithmetic type we are done */
7004         if (TYPE_ARITHMETIC(type)) {
7005                 result = new_type(qual_type, 0, 0);
7006         }
7007         /* If it is a pointer type recurse and keep testing */
7008         else if (type == TYPE_POINTER) {
7009                 result = compatible_types(left->left, right->left);
7010                 if (result) {
7011                         result = new_type(qual_type, result, 0);
7012                 }
7013         }
7014         /* test for struct equality */
7015         else if (type == TYPE_STRUCT) {
7016                 if (left->type_ident == right->type_ident) {
7017                         result = left;
7018                 }
7019         }
7020         /* test for union equality */
7021         else if (type == TYPE_UNION) {
7022                 if (left->type_ident == right->type_ident) {
7023                         result = left;
7024                 }
7025         }
7026         /* Test for equivalent functions */
7027         else if (type == TYPE_FUNCTION) {
7028                 struct type *lf, *rf;
7029                 lf = compatible_types(left->left, right->left);
7030                 rf = compatible_types(left->right, right->right);
7031                 if (lf && rf) {
7032                         result = new_type(qual_type, lf, rf);
7033                 }
7034         }
7035         /* We only see TYPE_PRODUCT as part of function equivalence matching */
7036         else if (type == TYPE_PRODUCT) {
7037                 struct type *lf, *rf;
7038                 lf = compatible_types(left->left, right->left);
7039                 rf = compatible_types(left->right, right->right);
7040                 if (lf && rf) {
7041                         result = new_type(qual_type, lf, rf);
7042                 }
7043         }
7044         else {
7045                 /* Nothing else is compatible */
7046         }
7047         return result;
7048 }
7049
7050 /* See if left is a equivalent to right or right is a union member of left */
7051 static int is_subset_type(struct type *left, struct type *right)
7052 {
7053         if (equiv_types(left, right)) {
7054                 return 1;
7055         }
7056         if ((left->type & TYPE_MASK) == TYPE_JOIN) {
7057                 struct type *member, *mnext;
7058                 mnext = left->left;
7059                 while(mnext) {
7060                         member = mnext;
7061                         mnext = 0;
7062                         if ((member->type & TYPE_MASK) == TYPE_OVERLAP) {
7063                                 mnext = member->right;
7064                                 member = member->left;
7065                         }
7066                         if (is_subset_type( member, right)) {
7067                                 return 1;
7068                         }
7069                 }
7070         }
7071         return 0;
7072 }
7073
7074 static struct type *compatible_ptrs(struct type *left, struct type *right)
7075 {
7076         struct type *result;
7077         if (((left->type & TYPE_MASK) != TYPE_POINTER) ||
7078                 ((right->type & TYPE_MASK) != TYPE_POINTER)) {
7079                 return 0;
7080         }
7081         result = compatible_types(left->left, right->left);
7082         if (result) {
7083                 unsigned int qual_type;
7084                 qual_type = (left->type & ~STOR_MASK) | (right->type & ~STOR_MASK);
7085                 result = new_type(qual_type, result, 0);
7086         }
7087         return result;
7088         
7089 }
7090 static struct triple *integral_promotion(
7091         struct compile_state *state, struct triple *def)
7092 {
7093         struct type *type;
7094         type = def->type;
7095         /* As all operations are carried out in registers
7096          * the values are converted on load I just convert
7097          * logical type of the operand.
7098          */
7099         if (TYPE_INTEGER(type->type)) {
7100                 unsigned int int_type;
7101                 int_type = type->type & ~TYPE_MASK;
7102                 int_type |= do_integral_promotion(get_basic_type(type));
7103                 if (int_type != type->type) {
7104                         if (def->op != OP_LOAD) {
7105                                 def->type = new_type(int_type, 0, 0);
7106                         }
7107                         else {
7108                                 def = triple(state, OP_CONVERT, 
7109                                         new_type(int_type, 0, 0), def, 0);
7110                         }
7111                 }
7112         }
7113         return def;
7114 }
7115
7116
7117 static void arithmetic(struct compile_state *state, struct triple *def)
7118 {
7119         if (!TYPE_ARITHMETIC(def->type->type)) {
7120                 error(state, 0, "arithmetic type expexted");
7121         }
7122 }
7123
7124 static void ptr_arithmetic(struct compile_state *state, struct triple *def)
7125 {
7126         if (!TYPE_PTR(def->type->type) && !TYPE_ARITHMETIC(def->type->type)) {
7127                 error(state, def, "pointer or arithmetic type expected");
7128         }
7129 }
7130
7131 static int is_integral(struct triple *ins)
7132 {
7133         return TYPE_INTEGER(ins->type->type);
7134 }
7135
7136 static void integral(struct compile_state *state, struct triple *def)
7137 {
7138         if (!is_integral(def)) {
7139                 error(state, 0, "integral type expected");
7140         }
7141 }
7142
7143
7144 static void bool(struct compile_state *state, struct triple *def)
7145 {
7146         if (!TYPE_ARITHMETIC(def->type->type) &&
7147                 ((def->type->type & TYPE_MASK) != TYPE_POINTER)) {
7148                 error(state, 0, "arithmetic or pointer type expected");
7149         }
7150 }
7151
7152 static int is_signed(struct type *type)
7153 {
7154         if ((type->type & TYPE_MASK) == TYPE_BITFIELD) {
7155                 type = type->left;
7156         }
7157         return !!TYPE_SIGNED(type->type);
7158 }
7159 static int is_compound_type(struct type *type)
7160 {
7161         int is_compound;
7162         switch((type->type & TYPE_MASK)) {
7163         case TYPE_ARRAY:
7164         case TYPE_STRUCT:
7165         case TYPE_TUPLE:
7166         case TYPE_UNION:
7167         case TYPE_JOIN: 
7168                 is_compound = 1;
7169                 break;
7170         default:
7171                 is_compound = 0;
7172                 break;
7173         }
7174         return is_compound;
7175 }
7176
7177 /* Is this value located in a register otherwise it must be in memory */
7178 static int is_in_reg(struct compile_state *state, struct triple *def)
7179 {
7180         int in_reg;
7181         if (def->op == OP_ADECL) {
7182                 in_reg = 1;
7183         }
7184         else if ((def->op == OP_SDECL) || (def->op == OP_DEREF)) {
7185                 in_reg = 0;
7186         }
7187         else if (triple_is_part(state, def)) {
7188                 in_reg = is_in_reg(state, MISC(def, 0));
7189         }
7190         else {
7191                 internal_error(state, def, "unknown expr storage location");
7192                 in_reg = -1;
7193         }
7194         return in_reg;
7195 }
7196
7197 /* Is this an auto or static variable location? Something that can
7198  * be assigned to.  Otherwise it must must be a pure value, a temporary.
7199  */
7200 static int is_lvalue(struct compile_state *state, struct triple *def)
7201 {
7202         int ret;
7203         ret = 0;
7204         if (!def) {
7205                 return 0;
7206         }
7207         if ((def->op == OP_ADECL) || 
7208                 (def->op == OP_SDECL) || 
7209                 (def->op == OP_DEREF) ||
7210                 (def->op == OP_BLOBCONST) ||
7211                 (def->op == OP_LIST)) {
7212                 ret = 1;
7213         }
7214         else if (triple_is_part(state, def)) {
7215                 ret = is_lvalue(state, MISC(def, 0));
7216         }
7217         return ret;
7218 }
7219
7220 static void clvalue(struct compile_state *state, struct triple *def)
7221 {
7222         if (!def) {
7223                 internal_error(state, def, "nothing where lvalue expected?");
7224         }
7225         if (!is_lvalue(state, def)) { 
7226                 error(state, def, "lvalue expected");
7227         }
7228 }
7229 static void lvalue(struct compile_state *state, struct triple *def)
7230 {
7231         clvalue(state, def);
7232         if (def->type->type & QUAL_CONST) {
7233                 error(state, def, "modifable lvalue expected");
7234         }
7235 }
7236
7237 static int is_pointer(struct triple *def)
7238 {
7239         return (def->type->type & TYPE_MASK) == TYPE_POINTER;
7240 }
7241
7242 static void pointer(struct compile_state *state, struct triple *def)
7243 {
7244         if (!is_pointer(def)) {
7245                 error(state, def, "pointer expected");
7246         }
7247 }
7248
7249 static struct triple *int_const(
7250         struct compile_state *state, struct type *type, ulong_t value)
7251 {
7252         struct triple *result;
7253         switch(type->type & TYPE_MASK) {
7254         case TYPE_CHAR:
7255         case TYPE_INT:   case TYPE_UINT:
7256         case TYPE_LONG:  case TYPE_ULONG:
7257                 break;
7258         default:
7259                 internal_error(state, 0, "constant for unknown type");
7260         }
7261         result = triple(state, OP_INTCONST, type, 0, 0);
7262         result->u.cval = value;
7263         return result;
7264 }
7265
7266
7267 static struct triple *read_expr(struct compile_state *state, struct triple *def);
7268
7269 static struct triple *do_mk_addr_expr(struct compile_state *state, 
7270         struct triple *expr, struct type *type, ulong_t offset)
7271 {
7272         struct triple *result;
7273         struct type *ptr_type;
7274         clvalue(state, expr);
7275
7276         ptr_type = new_type(TYPE_POINTER | (type->type & QUAL_MASK), type, 0);
7277
7278         
7279         result = 0;
7280         if (expr->op == OP_ADECL) {
7281                 error(state, expr, "address of auto variables not supported");
7282         }
7283         else if (expr->op == OP_SDECL) {
7284                 result = triple(state, OP_ADDRCONST, ptr_type, 0, 0);
7285                 MISC(result, 0) = expr;
7286                 result->u.cval = offset;
7287         }
7288         else if (expr->op == OP_DEREF) {
7289                 result = triple(state, OP_ADD, ptr_type,
7290                         RHS(expr, 0),
7291                         int_const(state, &ulong_type, offset));
7292         }
7293         else if (expr->op == OP_BLOBCONST) {
7294                 FINISHME();
7295                 internal_error(state, expr, "not yet implemented");
7296         }
7297         else if (expr->op == OP_LIST) {
7298                 error(state, 0, "Function addresses not supported");
7299         }
7300         else if (triple_is_part(state, expr)) {
7301                 struct triple *part;
7302                 part = expr;
7303                 expr = MISC(expr, 0);
7304                 if (part->op == OP_DOT) {
7305                         offset += bits_to_bytes(
7306                                 field_offset(state, expr->type, part->u.field));
7307                 }
7308                 else if (part->op == OP_INDEX) {
7309                         offset += bits_to_bytes(
7310                                 index_offset(state, expr->type, part->u.cval));
7311                 }
7312                 else {
7313                         internal_error(state, part, "unhandled part type");
7314                 }
7315                 result = do_mk_addr_expr(state, expr, type, offset);
7316         }
7317         if (!result) {
7318                 internal_error(state, expr, "cannot take address of expression");
7319         }
7320         return result;
7321 }
7322
7323 static struct triple *mk_addr_expr(
7324         struct compile_state *state, struct triple *expr, ulong_t offset)
7325 {
7326         return do_mk_addr_expr(state, expr, expr->type, offset);
7327 }
7328
7329 static struct triple *mk_deref_expr(
7330         struct compile_state *state, struct triple *expr)
7331 {
7332         struct type *base_type;
7333         pointer(state, expr);
7334         base_type = expr->type->left;
7335         return triple(state, OP_DEREF, base_type, expr, 0);
7336 }
7337
7338 /* lvalue conversions always apply except when certain operators
7339  * are applied.  So I apply apply it when I know no more
7340  * operators will be applied.
7341  */
7342 static struct triple *lvalue_conversion(struct compile_state *state, struct triple *def)
7343 {
7344         /* Tranform an array to a pointer to the first element */
7345         if ((def->type->type & TYPE_MASK) == TYPE_ARRAY) {
7346                 struct type *type;
7347                 type = new_type(
7348                         TYPE_POINTER | (def->type->type & QUAL_MASK),
7349                         def->type->left, 0);
7350                 if ((def->op == OP_SDECL) || IS_CONST_OP(def->op)) {
7351                         struct triple *addrconst;
7352                         if ((def->op != OP_SDECL) && (def->op != OP_BLOBCONST)) {
7353                                 internal_error(state, def, "bad array constant");
7354                         }
7355                         addrconst = triple(state, OP_ADDRCONST, type, 0, 0);
7356                         MISC(addrconst, 0) = def;
7357                         def = addrconst;
7358                 }
7359                 else {
7360                         def = triple(state, OP_CONVERT, type, def, 0);
7361                 }
7362         }
7363         /* Transform a function to a pointer to it */
7364         else if ((def->type->type & TYPE_MASK) == TYPE_FUNCTION) {
7365                 def = mk_addr_expr(state, def, 0);
7366         }
7367         return def;
7368 }
7369
7370 static struct triple *deref_field(
7371         struct compile_state *state, struct triple *expr, struct hash_entry *field)
7372 {
7373         struct triple *result;
7374         struct type *type, *member;
7375         ulong_t offset;
7376         if (!field) {
7377                 internal_error(state, 0, "No field passed to deref_field");
7378         }
7379         result = 0;
7380         type = expr->type;
7381         if (((type->type & TYPE_MASK) != TYPE_STRUCT) &&
7382                 ((type->type & TYPE_MASK) != TYPE_UNION)) {
7383                 error(state, 0, "request for member %s in something not a struct or union",
7384                         field->name);
7385         }
7386         member = field_type(state, type, field);
7387         if ((type->type & STOR_MASK) == STOR_PERM) {
7388                 /* Do the pointer arithmetic to get a deref the field */
7389                 offset = bits_to_bytes(field_offset(state, type, field));
7390                 result = do_mk_addr_expr(state, expr, member, offset);
7391                 result = mk_deref_expr(state, result);
7392         }
7393         else {
7394                 /* Find the variable for the field I want. */
7395                 result = triple(state, OP_DOT, member, expr, 0);
7396                 result->u.field = field;
7397         }
7398         return result;
7399 }
7400
7401 static struct triple *deref_index(
7402         struct compile_state *state, struct triple *expr, size_t index)
7403 {
7404         struct triple *result;
7405         struct type *type, *member;
7406         ulong_t offset;
7407
7408         result = 0;
7409         type = expr->type;
7410         member = index_type(state, type, index);
7411
7412         if ((type->type & STOR_MASK) == STOR_PERM) {
7413                 offset = bits_to_bytes(index_offset(state, type, index));
7414                 result = do_mk_addr_expr(state, expr, member, offset);
7415                 result = mk_deref_expr(state, result);
7416         }
7417         else {
7418                 result = triple(state, OP_INDEX, member, expr, 0);
7419                 result->u.cval = index;
7420         }
7421         return result;
7422 }
7423
7424 static struct triple *read_expr(struct compile_state *state, struct triple *def)
7425 {
7426         int op;
7427         if  (!def) {
7428                 return 0;
7429         }
7430 #if DEBUG_ROMCC_WARNINGS
7431 #warning "CHECK_ME is this the only place I need to do lvalue conversions?"
7432 #endif
7433         /* Transform lvalues into something we can read */
7434         def = lvalue_conversion(state, def);
7435         if (!is_lvalue(state, def)) {
7436                 return def;
7437         }
7438         if (is_in_reg(state, def)) {
7439                 op = OP_READ;
7440         } else {
7441                 if (def->op == OP_SDECL) {
7442                         def = mk_addr_expr(state, def, 0);
7443                         def = mk_deref_expr(state, def);
7444                 }
7445                 op = OP_LOAD;
7446         }
7447         def = triple(state, op, def->type, def, 0);
7448         if (def->type->type & QUAL_VOLATILE) {
7449                 def->id |= TRIPLE_FLAG_VOLATILE;
7450         }
7451         return def;
7452 }
7453
7454 int is_write_compatible(struct compile_state *state, 
7455         struct type *dest, struct type *rval)
7456 {
7457         int compatible = 0;
7458         /* Both operands have arithmetic type */
7459         if (TYPE_ARITHMETIC(dest->type) && TYPE_ARITHMETIC(rval->type)) {
7460                 compatible = 1;
7461         }
7462         /* One operand is a pointer and the other is a pointer to void */
7463         else if (((dest->type & TYPE_MASK) == TYPE_POINTER) &&
7464                 ((rval->type & TYPE_MASK) == TYPE_POINTER) &&
7465                 (((dest->left->type & TYPE_MASK) == TYPE_VOID) ||
7466                         ((rval->left->type & TYPE_MASK) == TYPE_VOID))) {
7467                 compatible = 1;
7468         }
7469         /* If both types are the same without qualifiers we are good */
7470         else if (equiv_ptrs(dest, rval)) {
7471                 compatible = 1;
7472         }
7473         /* test for struct/union equality  */
7474         else if (equiv_types(dest, rval)) {
7475                 compatible = 1;
7476         }
7477         return compatible;
7478 }
7479
7480 static void write_compatible(struct compile_state *state,
7481         struct type *dest, struct type *rval)
7482 {
7483         if (!is_write_compatible(state, dest, rval)) {
7484                 FILE *fp = state->errout;
7485                 fprintf(fp, "dest: ");
7486                 name_of(fp, dest);
7487                 fprintf(fp,"\nrval: ");
7488                 name_of(fp, rval);
7489                 fprintf(fp, "\n");
7490                 error(state, 0, "Incompatible types in assignment");
7491         }
7492 }
7493
7494 static int is_init_compatible(struct compile_state *state,
7495         struct type *dest, struct type *rval)
7496 {
7497         int compatible = 0;
7498         if (is_write_compatible(state, dest, rval)) {
7499                 compatible = 1;
7500         }
7501         else if (equiv_types(dest, rval)) {
7502                 compatible = 1;
7503         }
7504         return compatible;
7505 }
7506
7507 static struct triple *write_expr(
7508         struct compile_state *state, struct triple *dest, struct triple *rval)
7509 {
7510         struct triple *def;
7511         int op;
7512
7513         def = 0;
7514         if (!rval) {
7515                 internal_error(state, 0, "missing rval");
7516         }
7517
7518         if (rval->op == OP_LIST) {
7519                 internal_error(state, 0, "expression of type OP_LIST?");
7520         }
7521         if (!is_lvalue(state, dest)) {
7522                 internal_error(state, 0, "writing to a non lvalue?");
7523         }
7524         if (dest->type->type & QUAL_CONST) {
7525                 internal_error(state, 0, "modifable lvalue expexted");
7526         }
7527
7528         write_compatible(state, dest->type, rval->type);
7529         if (!equiv_types(dest->type, rval->type)) {
7530                 rval = triple(state, OP_CONVERT, dest->type, rval, 0);
7531         }
7532
7533         /* Now figure out which assignment operator to use */
7534         op = -1;
7535         if (is_in_reg(state, dest)) {
7536                 def = triple(state, OP_WRITE, dest->type, rval, dest);
7537                 if (MISC(def, 0) != dest) {
7538                         internal_error(state, def, "huh?");
7539                 }
7540                 if (RHS(def, 0) != rval) {
7541                         internal_error(state, def, "huh?");
7542                 }
7543         } else {
7544                 def = triple(state, OP_STORE, dest->type, dest, rval);
7545         }
7546         if (def->type->type & QUAL_VOLATILE) {
7547                 def->id |= TRIPLE_FLAG_VOLATILE;
7548         }
7549         return def;
7550 }
7551
7552 static struct triple *init_expr(
7553         struct compile_state *state, struct triple *dest, struct triple *rval)
7554 {
7555         struct triple *def;
7556
7557         def = 0;
7558         if (!rval) {
7559                 internal_error(state, 0, "missing rval");
7560         }
7561         if ((dest->type->type & STOR_MASK) != STOR_PERM) {
7562                 rval = read_expr(state, rval);
7563                 def = write_expr(state, dest, rval);
7564         }
7565         else {
7566                 /* Fill in the array size if necessary */
7567                 if (((dest->type->type & TYPE_MASK) == TYPE_ARRAY) &&
7568                         ((rval->type->type & TYPE_MASK) == TYPE_ARRAY)) {
7569                         if (dest->type->elements == ELEMENT_COUNT_UNSPECIFIED) {
7570                                 dest->type->elements = rval->type->elements;
7571                         }
7572                 }
7573                 if (!equiv_types(dest->type, rval->type)) {
7574                         error(state, 0, "Incompatible types in inializer");
7575                 }
7576                 MISC(dest, 0) = rval;
7577                 insert_triple(state, dest, rval);
7578                 rval->id |= TRIPLE_FLAG_FLATTENED;
7579                 use_triple(MISC(dest, 0), dest);
7580         }
7581         return def;
7582 }
7583
7584 struct type *arithmetic_result(
7585         struct compile_state *state, struct triple *left, struct triple *right)
7586 {
7587         struct type *type;
7588         /* Sanity checks to ensure I am working with arithmetic types */
7589         arithmetic(state, left);
7590         arithmetic(state, right);
7591         type = new_type(
7592                 do_arithmetic_conversion(
7593                         get_basic_type(left->type),
7594                         get_basic_type(right->type)),
7595                 0, 0);
7596         return type;
7597 }
7598
7599 struct type *ptr_arithmetic_result(
7600         struct compile_state *state, struct triple *left, struct triple *right)
7601 {
7602         struct type *type;
7603         /* Sanity checks to ensure I am working with the proper types */
7604         ptr_arithmetic(state, left);
7605         arithmetic(state, right);
7606         if (TYPE_ARITHMETIC(left->type->type) && 
7607                 TYPE_ARITHMETIC(right->type->type)) {
7608                 type = arithmetic_result(state, left, right);
7609         }
7610         else if (TYPE_PTR(left->type->type)) {
7611                 type = left->type;
7612         }
7613         else {
7614                 internal_error(state, 0, "huh?");
7615                 type = 0;
7616         }
7617         return type;
7618 }
7619
7620 /* boolean helper function */
7621
7622 static struct triple *ltrue_expr(struct compile_state *state, 
7623         struct triple *expr)
7624 {
7625         switch(expr->op) {
7626         case OP_LTRUE:   case OP_LFALSE:  case OP_EQ:      case OP_NOTEQ:
7627         case OP_SLESS:   case OP_ULESS:   case OP_SMORE:   case OP_UMORE:
7628         case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
7629                 /* If the expression is already boolean do nothing */
7630                 break;
7631         default:
7632                 expr = triple(state, OP_LTRUE, &int_type, expr, 0);
7633                 break;
7634         }
7635         return expr;
7636 }
7637
7638 static struct triple *lfalse_expr(struct compile_state *state, 
7639         struct triple *expr)
7640 {
7641         return triple(state, OP_LFALSE, &int_type, expr, 0);
7642 }
7643
7644 static struct triple *mkland_expr(
7645         struct compile_state *state,
7646         struct triple *left, struct triple *right)
7647 {
7648         struct triple *def, *val, *var, *jmp, *mid, *end;
7649         struct triple *lstore, *rstore;
7650
7651         /* Generate some intermediate triples */
7652         end = label(state);
7653         var = variable(state, &int_type);
7654         
7655         /* Store the left hand side value */
7656         lstore = write_expr(state, var, left);
7657
7658         /* Jump if the value is false */
7659         jmp =  branch(state, end, 
7660                 lfalse_expr(state, read_expr(state, var)));
7661         mid = label(state);
7662         
7663         /* Store the right hand side value */
7664         rstore = write_expr(state, var, right);
7665
7666         /* An expression for the computed value */
7667         val = read_expr(state, var);
7668
7669         /* Generate the prog for a logical and */
7670         def = mkprog(state, var, lstore, jmp, mid, rstore, end, val, 0UL);
7671         
7672         return def;
7673 }
7674
7675 static struct triple *mklor_expr(
7676         struct compile_state *state,
7677         struct triple *left, struct triple *right)
7678 {
7679         struct triple *def, *val, *var, *jmp, *mid, *end;
7680
7681         /* Generate some intermediate triples */
7682         end = label(state);
7683         var = variable(state, &int_type);
7684         
7685         /* Store the left hand side value */
7686         left = write_expr(state, var, left);
7687         
7688         /* Jump if the value is true */
7689         jmp = branch(state, end, read_expr(state, var));
7690         mid = label(state);
7691         
7692         /* Store the right hand side value */
7693         right = write_expr(state, var, right);
7694                 
7695         /* An expression for the computed value*/
7696         val = read_expr(state, var);
7697
7698         /* Generate the prog for a logical or */
7699         def = mkprog(state, var, left, jmp, mid, right, end, val, 0UL);
7700
7701         return def;
7702 }
7703
7704 static struct triple *mkcond_expr(
7705         struct compile_state *state, 
7706         struct triple *test, struct triple *left, struct triple *right)
7707 {
7708         struct triple *def, *val, *var, *jmp1, *jmp2, *top, *mid, *end;
7709         struct type *result_type;
7710         unsigned int left_type, right_type;
7711         bool(state, test);
7712         left_type = left->type->type;
7713         right_type = right->type->type;
7714         result_type = 0;
7715         /* Both operands have arithmetic type */
7716         if (TYPE_ARITHMETIC(left_type) && TYPE_ARITHMETIC(right_type)) {
7717                 result_type = arithmetic_result(state, left, right);
7718         }
7719         /* Both operands have void type */
7720         else if (((left_type & TYPE_MASK) == TYPE_VOID) &&
7721                 ((right_type & TYPE_MASK) == TYPE_VOID)) {
7722                 result_type = &void_type;
7723         }
7724         /* pointers to the same type... */
7725         else if ((result_type = compatible_ptrs(left->type, right->type))) {
7726                 ;
7727         }
7728         /* Both operands are pointers and left is a pointer to void */
7729         else if (((left_type & TYPE_MASK) == TYPE_POINTER) &&
7730                 ((right_type & TYPE_MASK) == TYPE_POINTER) &&
7731                 ((left->type->left->type & TYPE_MASK) == TYPE_VOID)) {
7732                 result_type = right->type;
7733         }
7734         /* Both operands are pointers and right is a pointer to void */
7735         else if (((left_type & TYPE_MASK) == TYPE_POINTER) &&
7736                 ((right_type & TYPE_MASK) == TYPE_POINTER) &&
7737                 ((right->type->left->type & TYPE_MASK) == TYPE_VOID)) {
7738                 result_type = left->type;
7739         }
7740         if (!result_type) {
7741                 error(state, 0, "Incompatible types in conditional expression");
7742         }
7743         /* Generate some intermediate triples */
7744         mid = label(state);
7745         end = label(state);
7746         var = variable(state, result_type);
7747
7748         /* Branch if the test is false */
7749         jmp1 = branch(state, mid, lfalse_expr(state, read_expr(state, test)));
7750         top = label(state);
7751
7752         /* Store the left hand side value */
7753         left = write_expr(state, var, left);
7754
7755         /* Branch to the end */
7756         jmp2 = branch(state, end, 0);
7757
7758         /* Store the right hand side value */
7759         right = write_expr(state, var, right);
7760         
7761         /* An expression for the computed value */
7762         val = read_expr(state, var);
7763
7764         /* Generate the prog for a conditional expression */
7765         def = mkprog(state, var, jmp1, top, left, jmp2, mid, right, end, val, 0UL);
7766
7767         return def;
7768 }
7769
7770
7771 static int expr_depth(struct compile_state *state, struct triple *ins)
7772 {
7773 #if DEBUG_ROMCC_WARNINGS
7774 #warning "FIXME move optimal ordering of subexpressions into the optimizer"
7775 #endif
7776         int count;
7777         count = 0;
7778         if (!ins || (ins->id & TRIPLE_FLAG_FLATTENED)) {
7779                 count = 0;
7780         }
7781         else if (ins->op == OP_DEREF) {
7782                 count = expr_depth(state, RHS(ins, 0)) - 1;
7783         }
7784         else if (ins->op == OP_VAL) {
7785                 count = expr_depth(state, RHS(ins, 0)) - 1;
7786         }
7787         else if (ins->op == OP_FCALL) {
7788                 /* Don't figure the depth of a call just guess it is huge */
7789                 count = 1000;
7790         }
7791         else {
7792                 struct triple **expr;
7793                 expr = triple_rhs(state, ins, 0);
7794                 for(;expr; expr = triple_rhs(state, ins, expr)) {
7795                         if (*expr) {
7796                                 int depth;
7797                                 depth = expr_depth(state, *expr);
7798                                 if (depth > count) {
7799                                         count = depth;
7800                                 }
7801                         }
7802                 }
7803         }
7804         return count + 1;
7805 }
7806
7807 static struct triple *flatten_generic(
7808         struct compile_state *state, struct triple *first, struct triple *ptr,
7809         int ignored)
7810 {
7811         struct rhs_vector {
7812                 int depth;
7813                 struct triple **ins;
7814         } vector[MAX_RHS];
7815         int i, rhs, lhs;
7816         /* Only operations with just a rhs and a lhs should come here */
7817         rhs = ptr->rhs;
7818         lhs = ptr->lhs;
7819         if (TRIPLE_SIZE(ptr) != lhs + rhs + ignored) {
7820                 internal_error(state, ptr, "unexpected args for: %d %s",
7821                         ptr->op, tops(ptr->op));
7822         }
7823         /* Find the depth of the rhs elements */
7824         for(i = 0; i < rhs; i++) {
7825                 vector[i].ins = &RHS(ptr, i);
7826                 vector[i].depth = expr_depth(state, *vector[i].ins);
7827         }
7828         /* Selection sort the rhs */
7829         for(i = 0; i < rhs; i++) {
7830                 int j, max = i;
7831                 for(j = i + 1; j < rhs; j++ ) {
7832                         if (vector[j].depth > vector[max].depth) {
7833                                 max = j;
7834                         }
7835                 }
7836                 if (max != i) {
7837                         struct rhs_vector tmp;
7838                         tmp = vector[i];
7839                         vector[i] = vector[max];
7840                         vector[max] = tmp;
7841                 }
7842         }
7843         /* Now flatten the rhs elements */
7844         for(i = 0; i < rhs; i++) {
7845                 *vector[i].ins = flatten(state, first, *vector[i].ins);
7846                 use_triple(*vector[i].ins, ptr);
7847         }
7848         if (lhs) {
7849                 insert_triple(state, first, ptr);
7850                 ptr->id |= TRIPLE_FLAG_FLATTENED;
7851                 ptr->id &= ~TRIPLE_FLAG_LOCAL;
7852                 
7853                 /* Now flatten the lhs elements */
7854                 for(i = 0; i < lhs; i++) {
7855                         struct triple **ins = &LHS(ptr, i);
7856                         *ins = flatten(state, first, *ins);
7857                         use_triple(*ins, ptr);
7858                 }
7859         }
7860         return ptr;
7861 }
7862
7863 static struct triple *flatten_prog(
7864         struct compile_state *state, struct triple *first, struct triple *ptr)
7865 {
7866         struct triple *head, *body, *val;
7867         head = RHS(ptr, 0);
7868         RHS(ptr, 0) = 0;
7869         val  = head->prev;
7870         body = head->next;
7871         release_triple(state, head);
7872         release_triple(state, ptr);
7873         val->next        = first;
7874         body->prev       = first->prev;
7875         body->prev->next = body;
7876         val->next->prev  = val;
7877
7878         if (triple_is_cbranch(state, body->prev) ||
7879                 triple_is_call(state, body->prev)) {
7880                 unuse_triple(first, body->prev);
7881                 use_triple(body, body->prev);
7882         }
7883         
7884         if (!(val->id & TRIPLE_FLAG_FLATTENED)) {
7885                 internal_error(state, val, "val not flattened?");
7886         }
7887
7888         return val;
7889 }
7890
7891
7892 static struct triple *flatten_part(
7893         struct compile_state *state, struct triple *first, struct triple *ptr)
7894 {
7895         if (!triple_is_part(state, ptr)) {
7896                 internal_error(state, ptr,  "not a part");
7897         }
7898         if (ptr->rhs || ptr->lhs || ptr->targ || (ptr->misc != 1)) {
7899                 internal_error(state, ptr, "unexpected args for: %d %s",
7900                         ptr->op, tops(ptr->op));
7901         }
7902         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
7903         use_triple(MISC(ptr, 0), ptr);
7904         return flatten_generic(state, first, ptr, 1);
7905 }
7906
7907 static struct triple *flatten(
7908         struct compile_state *state, struct triple *first, struct triple *ptr)
7909 {
7910         struct triple *orig_ptr;
7911         if (!ptr)
7912                 return 0;
7913         do {
7914                 orig_ptr = ptr;
7915                 /* Only flatten triples once */
7916                 if (ptr->id & TRIPLE_FLAG_FLATTENED) {
7917                         return ptr;
7918                 }
7919                 switch(ptr->op) {
7920                 case OP_VAL:
7921                         RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
7922                         return MISC(ptr, 0);
7923                         break;
7924                 case OP_PROG:
7925                         ptr = flatten_prog(state, first, ptr);
7926                         break;
7927                 case OP_FCALL:
7928                         ptr = flatten_generic(state, first, ptr, 1);
7929                         insert_triple(state, first, ptr);
7930                         ptr->id |= TRIPLE_FLAG_FLATTENED;
7931                         ptr->id &= ~TRIPLE_FLAG_LOCAL;
7932                         if (ptr->next != ptr) {
7933                                 use_triple(ptr->next, ptr);
7934                         }
7935                         break;
7936                 case OP_READ:
7937                 case OP_LOAD:
7938                         RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
7939                         use_triple(RHS(ptr, 0), ptr);
7940                         break;
7941                 case OP_WRITE:
7942                         ptr = flatten_generic(state, first, ptr, 1);
7943                         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
7944                         use_triple(MISC(ptr, 0), ptr);
7945                         break;
7946                 case OP_BRANCH:
7947                         use_triple(TARG(ptr, 0), ptr);
7948                         break;
7949                 case OP_CBRANCH:
7950                         RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
7951                         use_triple(RHS(ptr, 0), ptr);
7952                         use_triple(TARG(ptr, 0), ptr);
7953                         insert_triple(state, first, ptr);
7954                         ptr->id |= TRIPLE_FLAG_FLATTENED;
7955                         ptr->id &= ~TRIPLE_FLAG_LOCAL;
7956                         if (ptr->next != ptr) {
7957                                 use_triple(ptr->next, ptr);
7958                         }
7959                         break;
7960                 case OP_CALL:
7961                         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
7962                         use_triple(MISC(ptr, 0), ptr);
7963                         use_triple(TARG(ptr, 0), ptr);
7964                         insert_triple(state, first, ptr);
7965                         ptr->id |= TRIPLE_FLAG_FLATTENED;
7966                         ptr->id &= ~TRIPLE_FLAG_LOCAL;
7967                         if (ptr->next != ptr) {
7968                                 use_triple(ptr->next, ptr);
7969                         }
7970                         break;
7971                 case OP_RET:
7972                         RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
7973                         use_triple(RHS(ptr, 0), ptr);
7974                         break;
7975                 case OP_BLOBCONST:
7976                         insert_triple(state, state->global_pool, ptr);
7977                         ptr->id |= TRIPLE_FLAG_FLATTENED;
7978                         ptr->id &= ~TRIPLE_FLAG_LOCAL;
7979                         ptr = triple(state, OP_SDECL, ptr->type, ptr, 0);
7980                         use_triple(MISC(ptr, 0), ptr);
7981                         break;
7982                 case OP_DEREF:
7983                         /* Since OP_DEREF is just a marker delete it when I flatten it */
7984                         ptr = RHS(ptr, 0);
7985                         RHS(orig_ptr, 0) = 0;
7986                         free_triple(state, orig_ptr);
7987                         break;
7988                 case OP_DOT:
7989                         if (RHS(ptr, 0)->op == OP_DEREF) {
7990                                 struct triple *base, *left;
7991                                 ulong_t offset;
7992                                 base = MISC(ptr, 0);
7993                                 offset = bits_to_bytes(field_offset(state, base->type, ptr->u.field));
7994                                 left = RHS(base, 0);
7995                                 ptr = triple(state, OP_ADD, left->type, 
7996                                         read_expr(state, left),
7997                                         int_const(state, &ulong_type, offset));
7998                                 free_triple(state, base);
7999                         }
8000                         else {
8001                                 ptr = flatten_part(state, first, ptr);
8002                         }
8003                         break;
8004                 case OP_INDEX:
8005                         if (RHS(ptr, 0)->op == OP_DEREF) {
8006                                 struct triple *base, *left;
8007                                 ulong_t offset;
8008                                 base = MISC(ptr, 0);
8009                                 offset = bits_to_bytes(index_offset(state, base->type, ptr->u.cval));
8010                                 left = RHS(base, 0);
8011                                 ptr = triple(state, OP_ADD, left->type,
8012                                         read_expr(state, left),
8013                                         int_const(state, &long_type, offset));
8014                                 free_triple(state, base);
8015                         }
8016                         else {
8017                                 ptr = flatten_part(state, first, ptr);
8018                         }
8019                         break;
8020                 case OP_PIECE:
8021                         ptr = flatten_part(state, first, ptr);
8022                         use_triple(ptr, MISC(ptr, 0));
8023                         break;
8024                 case OP_ADDRCONST:
8025                         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
8026                         use_triple(MISC(ptr, 0), ptr);
8027                         break;
8028                 case OP_SDECL:
8029                         first = state->global_pool;
8030                         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
8031                         use_triple(MISC(ptr, 0), ptr);
8032                         insert_triple(state, first, ptr);
8033                         ptr->id |= TRIPLE_FLAG_FLATTENED;
8034                         ptr->id &= ~TRIPLE_FLAG_LOCAL;
8035                         return ptr;
8036                 case OP_ADECL:
8037                         ptr = flatten_generic(state, first, ptr, 0);
8038                         break;
8039                 default:
8040                         /* Flatten the easy cases we don't override */
8041                         ptr = flatten_generic(state, first, ptr, 0);
8042                         break;
8043                 }
8044         } while(ptr && (ptr != orig_ptr));
8045         if (ptr && !(ptr->id & TRIPLE_FLAG_FLATTENED)) {
8046                 insert_triple(state, first, ptr);
8047                 ptr->id |= TRIPLE_FLAG_FLATTENED;
8048                 ptr->id &= ~TRIPLE_FLAG_LOCAL;
8049         }
8050         return ptr;
8051 }
8052
8053 static void release_expr(struct compile_state *state, struct triple *expr)
8054 {
8055         struct triple *head;
8056         head = label(state);
8057         flatten(state, head, expr);
8058         while(head->next != head) {
8059                 release_triple(state, head->next);
8060         }
8061         free_triple(state, head);
8062 }
8063
8064 static int replace_rhs_use(struct compile_state *state,
8065         struct triple *orig, struct triple *new, struct triple *use)
8066 {
8067         struct triple **expr;
8068         int found;
8069         found = 0;
8070         expr = triple_rhs(state, use, 0);
8071         for(;expr; expr = triple_rhs(state, use, expr)) {
8072                 if (*expr == orig) {
8073                         *expr = new;
8074                         found = 1;
8075                 }
8076         }
8077         if (found) {
8078                 unuse_triple(orig, use);
8079                 use_triple(new, use);
8080         }
8081         return found;
8082 }
8083
8084 static int replace_lhs_use(struct compile_state *state,
8085         struct triple *orig, struct triple *new, struct triple *use)
8086 {
8087         struct triple **expr;
8088         int found;
8089         found = 0;
8090         expr = triple_lhs(state, use, 0);
8091         for(;expr; expr = triple_lhs(state, use, expr)) {
8092                 if (*expr == orig) {
8093                         *expr = new;
8094                         found = 1;
8095                 }
8096         }
8097         if (found) {
8098                 unuse_triple(orig, use);
8099                 use_triple(new, use);
8100         }
8101         return found;
8102 }
8103
8104 static int replace_misc_use(struct compile_state *state,
8105         struct triple *orig, struct triple *new, struct triple *use)
8106 {
8107         struct triple **expr;
8108         int found;
8109         found = 0;
8110         expr = triple_misc(state, use, 0);
8111         for(;expr; expr = triple_misc(state, use, expr)) {
8112                 if (*expr == orig) {
8113                         *expr = new;
8114                         found = 1;
8115                 }
8116         }
8117         if (found) {
8118                 unuse_triple(orig, use);
8119                 use_triple(new, use);
8120         }
8121         return found;
8122 }
8123
8124 static int replace_targ_use(struct compile_state *state,
8125         struct triple *orig, struct triple *new, struct triple *use)
8126 {
8127         struct triple **expr;
8128         int found;
8129         found = 0;
8130         expr = triple_targ(state, use, 0);
8131         for(;expr; expr = triple_targ(state, use, expr)) {
8132                 if (*expr == orig) {
8133                         *expr = new;
8134                         found = 1;
8135                 }
8136         }
8137         if (found) {
8138                 unuse_triple(orig, use);
8139                 use_triple(new, use);
8140         }
8141         return found;
8142 }
8143
8144 static void replace_use(struct compile_state *state,
8145         struct triple *orig, struct triple *new, struct triple *use)
8146 {
8147         int found;
8148         found = 0;
8149         found |= replace_rhs_use(state, orig, new, use);
8150         found |= replace_lhs_use(state, orig, new, use);
8151         found |= replace_misc_use(state, orig, new, use);
8152         found |= replace_targ_use(state, orig, new, use);
8153         if (!found) {
8154                 internal_error(state, use, "use without use");
8155         }
8156 }
8157
8158 static void propogate_use(struct compile_state *state,
8159         struct triple *orig, struct triple *new)
8160 {
8161         struct triple_set *user, *next;
8162         for(user = orig->use; user; user = next) {
8163                 /* Careful replace_use modifies the use chain and
8164                  * removes use.  So we must get a copy of the next
8165                  * entry early.
8166                  */
8167                 next = user->next;
8168                 replace_use(state, orig, new, user->member);
8169         }
8170         if (orig->use) {
8171                 internal_error(state, orig, "used after propogate_use");
8172         }
8173 }
8174
8175 /*
8176  * Code generators
8177  * ===========================
8178  */
8179
8180 static struct triple *mk_cast_expr(
8181         struct compile_state *state, struct type *type, struct triple *expr)
8182 {
8183         struct triple *def;
8184         def = read_expr(state, expr);
8185         def = triple(state, OP_CONVERT, type, def, 0);
8186         return def;
8187 }
8188
8189 static struct triple *mk_add_expr(
8190         struct compile_state *state, struct triple *left, struct triple *right)
8191 {
8192         struct type *result_type;
8193         /* Put pointer operands on the left */
8194         if (is_pointer(right)) {
8195                 struct triple *tmp;
8196                 tmp = left;
8197                 left = right;
8198                 right = tmp;
8199         }
8200         left  = read_expr(state, left);
8201         right = read_expr(state, right);
8202         result_type = ptr_arithmetic_result(state, left, right);
8203         if (is_pointer(left)) {
8204                 struct type *ptr_math;
8205                 int op;
8206                 if (is_signed(right->type)) {
8207                         ptr_math = &long_type;
8208                         op = OP_SMUL;
8209                 } else {
8210                         ptr_math = &ulong_type;
8211                         op = OP_UMUL;
8212                 }
8213                 if (!equiv_types(right->type, ptr_math)) {
8214                         right = mk_cast_expr(state, ptr_math, right);
8215                 }
8216                 right = triple(state, op, ptr_math, right, 
8217                         int_const(state, ptr_math, 
8218                                 size_of_in_bytes(state, left->type->left)));
8219         }
8220         return triple(state, OP_ADD, result_type, left, right);
8221 }
8222
8223 static struct triple *mk_sub_expr(
8224         struct compile_state *state, struct triple *left, struct triple *right)
8225 {
8226         struct type *result_type;
8227         result_type = ptr_arithmetic_result(state, left, right);
8228         left  = read_expr(state, left);
8229         right = read_expr(state, right);
8230         if (is_pointer(left)) {
8231                 struct type *ptr_math;
8232                 int op;
8233                 if (is_signed(right->type)) {
8234                         ptr_math = &long_type;
8235                         op = OP_SMUL;
8236                 } else {
8237                         ptr_math = &ulong_type;
8238                         op = OP_UMUL;
8239                 }
8240                 if (!equiv_types(right->type, ptr_math)) {
8241                         right = mk_cast_expr(state, ptr_math, right);
8242                 }
8243                 right = triple(state, op, ptr_math, right, 
8244                         int_const(state, ptr_math, 
8245                                 size_of_in_bytes(state, left->type->left)));
8246         }
8247         return triple(state, OP_SUB, result_type, left, right);
8248 }
8249
8250 static struct triple *mk_pre_inc_expr(
8251         struct compile_state *state, struct triple *def)
8252 {
8253         struct triple *val;
8254         lvalue(state, def);
8255         val = mk_add_expr(state, def, int_const(state, &int_type, 1));
8256         return triple(state, OP_VAL, def->type,
8257                 write_expr(state, def, val),
8258                 val);
8259 }
8260
8261 static struct triple *mk_pre_dec_expr(
8262         struct compile_state *state, struct triple *def)
8263 {
8264         struct triple *val;
8265         lvalue(state, def);
8266         val = mk_sub_expr(state, def, int_const(state, &int_type, 1));
8267         return triple(state, OP_VAL, def->type,
8268                 write_expr(state, def, val),
8269                 val);
8270 }
8271
8272 static struct triple *mk_post_inc_expr(
8273         struct compile_state *state, struct triple *def)
8274 {
8275         struct triple *val;
8276         lvalue(state, def);
8277         val = read_expr(state, def);
8278         return triple(state, OP_VAL, def->type,
8279                 write_expr(state, def,
8280                         mk_add_expr(state, val, int_const(state, &int_type, 1)))
8281                 , val);
8282 }
8283
8284 static struct triple *mk_post_dec_expr(
8285         struct compile_state *state, struct triple *def)
8286 {
8287         struct triple *val;
8288         lvalue(state, def);
8289         val = read_expr(state, def);
8290         return triple(state, OP_VAL, def->type, 
8291                 write_expr(state, def,
8292                         mk_sub_expr(state, val, int_const(state, &int_type, 1)))
8293                 , val);
8294 }
8295
8296 static struct triple *mk_subscript_expr(
8297         struct compile_state *state, struct triple *left, struct triple *right)
8298 {
8299         left  = read_expr(state, left);
8300         right = read_expr(state, right);
8301         if (!is_pointer(left) && !is_pointer(right)) {
8302                 error(state, left, "subscripted value is not a pointer");
8303         }
8304         return mk_deref_expr(state, mk_add_expr(state, left, right));
8305 }
8306
8307
8308 /*
8309  * Compile time evaluation
8310  * ===========================
8311  */
8312 static int is_const(struct triple *ins)
8313 {
8314         return IS_CONST_OP(ins->op);
8315 }
8316
8317 static int is_simple_const(struct triple *ins)
8318 {
8319         /* Is this a constant that u.cval has the value.
8320          * Or equivalently is this a constant that read_const
8321          * works on.
8322          * So far only OP_INTCONST qualifies.  
8323          */
8324         return (ins->op == OP_INTCONST);
8325 }
8326
8327 static int constants_equal(struct compile_state *state, 
8328         struct triple *left, struct triple *right)
8329 {
8330         int equal;
8331         if ((left->op == OP_UNKNOWNVAL) || (right->op == OP_UNKNOWNVAL)) {
8332                 equal = 0;
8333         }
8334         else if (!is_const(left) || !is_const(right)) {
8335                 equal = 0;
8336         }
8337         else if (left->op != right->op) {
8338                 equal = 0;
8339         }
8340         else if (!equiv_types(left->type, right->type)) {
8341                 equal = 0;
8342         }
8343         else {
8344                 equal = 0;
8345                 switch(left->op) {
8346                 case OP_INTCONST:
8347                         if (left->u.cval == right->u.cval) {
8348                                 equal = 1;
8349                         }
8350                         break;
8351                 case OP_BLOBCONST:
8352                 {
8353                         size_t lsize, rsize, bytes;
8354                         lsize = size_of(state, left->type);
8355                         rsize = size_of(state, right->type);
8356                         if (lsize != rsize) {
8357                                 break;
8358                         }
8359                         bytes = bits_to_bytes(lsize);
8360                         if (memcmp(left->u.blob, right->u.blob, bytes) == 0) {
8361                                 equal = 1;
8362                         }
8363                         break;
8364                 }
8365                 case OP_ADDRCONST:
8366                         if ((MISC(left, 0) == MISC(right, 0)) &&
8367                                 (left->u.cval == right->u.cval)) {
8368                                 equal = 1;
8369                         }
8370                         break;
8371                 default:
8372                         internal_error(state, left, "uknown constant type");
8373                         break;
8374                 }
8375         }
8376         return equal;
8377 }
8378
8379 static int is_zero(struct triple *ins)
8380 {
8381         return is_simple_const(ins) && (ins->u.cval == 0);
8382 }
8383
8384 static int is_one(struct triple *ins)
8385 {
8386         return is_simple_const(ins) && (ins->u.cval == 1);
8387 }
8388
8389 #if DEBUG_ROMCC_WARNING
8390 static long_t bit_count(ulong_t value)
8391 {
8392         int count;
8393         int i;
8394         count = 0;
8395         for(i = (sizeof(ulong_t)*8) -1; i >= 0; i--) {
8396                 ulong_t mask;
8397                 mask = 1;
8398                 mask <<= i;
8399                 if (value & mask) {
8400                         count++;
8401                 }
8402         }
8403         return count;
8404         
8405 }
8406 #endif
8407
8408 static long_t bsr(ulong_t value)
8409 {
8410         int i;
8411         for(i = (sizeof(ulong_t)*8) -1; i >= 0; i--) {
8412                 ulong_t mask;
8413                 mask = 1;
8414                 mask <<= i;
8415                 if (value & mask) {
8416                         return i;
8417                 }
8418         }
8419         return -1;
8420 }
8421
8422 static long_t bsf(ulong_t value)
8423 {
8424         int i;
8425         for(i = 0; i < (sizeof(ulong_t)*8); i++) {
8426                 ulong_t mask;
8427                 mask = 1;
8428                 mask <<= 1;
8429                 if (value & mask) {
8430                         return i;
8431                 }
8432         }
8433         return -1;
8434 }
8435
8436 static long_t ilog2(ulong_t value)
8437 {
8438         return bsr(value);
8439 }
8440
8441 static long_t tlog2(struct triple *ins)
8442 {
8443         return ilog2(ins->u.cval);
8444 }
8445
8446 static int is_pow2(struct triple *ins)
8447 {
8448         ulong_t value, mask;
8449         long_t log;
8450         if (!is_const(ins)) {
8451                 return 0;
8452         }
8453         value = ins->u.cval;
8454         log = ilog2(value);
8455         if (log == -1) {
8456                 return 0;
8457         }
8458         mask = 1;
8459         mask <<= log;
8460         return  ((value & mask) == value);
8461 }
8462
8463 static ulong_t read_const(struct compile_state *state,
8464         struct triple *ins, struct triple *rhs)
8465 {
8466         switch(rhs->type->type &TYPE_MASK) {
8467         case TYPE_CHAR:   
8468         case TYPE_SHORT:
8469         case TYPE_INT:
8470         case TYPE_LONG:
8471         case TYPE_UCHAR:   
8472         case TYPE_USHORT:  
8473         case TYPE_UINT:
8474         case TYPE_ULONG:
8475         case TYPE_POINTER:
8476         case TYPE_BITFIELD:
8477                 break;
8478         default:
8479                 fprintf(state->errout, "type: ");
8480                 name_of(state->errout, rhs->type);
8481                 fprintf(state->errout, "\n");
8482                 internal_warning(state, rhs, "bad type to read_const");
8483                 break;
8484         }
8485         if (!is_simple_const(rhs)) {
8486                 internal_error(state, rhs, "bad op to read_const");
8487         }
8488         return rhs->u.cval;
8489 }
8490
8491 static long_t read_sconst(struct compile_state *state,
8492         struct triple *ins, struct triple *rhs)
8493 {
8494         return (long_t)(rhs->u.cval);
8495 }
8496
8497 int const_ltrue(struct compile_state *state, struct triple *ins, struct triple *rhs)
8498 {
8499         if (!is_const(rhs)) {
8500                 internal_error(state, 0, "non const passed to const_true");
8501         }
8502         return !is_zero(rhs);
8503 }
8504
8505 int const_eq(struct compile_state *state, struct triple *ins,
8506         struct triple *left, struct triple *right)
8507 {
8508         int result;
8509         if (!is_const(left) || !is_const(right)) {
8510                 internal_warning(state, ins, "non const passed to const_eq");
8511                 result = -1;
8512         }
8513         else if (left == right) {
8514                 result = 1;
8515         }
8516         else if (is_simple_const(left) && is_simple_const(right)) {
8517                 ulong_t lval, rval;
8518                 lval = read_const(state, ins, left);
8519                 rval = read_const(state, ins, right);
8520                 result = (lval == rval);
8521         }
8522         else if ((left->op == OP_ADDRCONST) && 
8523                 (right->op == OP_ADDRCONST)) {
8524                 result = (MISC(left, 0) == MISC(right, 0)) &&
8525                         (left->u.cval == right->u.cval);
8526         }
8527         else {
8528                 internal_warning(state, ins, "incomparable constants passed to const_eq");
8529                 result = -1;
8530         }
8531         return result;
8532         
8533 }
8534
8535 int const_ucmp(struct compile_state *state, struct triple *ins,
8536         struct triple *left, struct triple *right)
8537 {
8538         int result;
8539         if (!is_const(left) || !is_const(right)) {
8540                 internal_warning(state, ins, "non const past to const_ucmp");
8541                 result = -2;
8542         }
8543         else if (left == right) {
8544                 result = 0;
8545         }
8546         else if (is_simple_const(left) && is_simple_const(right)) {
8547                 ulong_t lval, rval;
8548                 lval = read_const(state, ins, left);
8549                 rval = read_const(state, ins, right);
8550                 result = 0;
8551                 if (lval > rval) {
8552                         result = 1;
8553                 } else if (rval > lval) {
8554                         result = -1;
8555                 }
8556         }
8557         else if ((left->op == OP_ADDRCONST) && 
8558                 (right->op == OP_ADDRCONST) &&
8559                 (MISC(left, 0) == MISC(right, 0))) {
8560                 result = 0;
8561                 if (left->u.cval > right->u.cval) {
8562                         result = 1;
8563                 } else if (left->u.cval < right->u.cval) {
8564                         result = -1;
8565                 }
8566         }
8567         else {
8568                 internal_warning(state, ins, "incomparable constants passed to const_ucmp");
8569                 result = -2;
8570         }
8571         return result;
8572 }
8573
8574 int const_scmp(struct compile_state *state, struct triple *ins,
8575         struct triple *left, struct triple *right)
8576 {
8577         int result;
8578         if (!is_const(left) || !is_const(right)) {
8579                 internal_warning(state, ins, "non const past to ucmp_const");
8580                 result = -2;
8581         }
8582         else if (left == right) {
8583                 result = 0;
8584         }
8585         else if (is_simple_const(left) && is_simple_const(right)) {
8586                 long_t lval, rval;
8587                 lval = read_sconst(state, ins, left);
8588                 rval = read_sconst(state, ins, right);
8589                 result = 0;
8590                 if (lval > rval) {
8591                         result = 1;
8592                 } else if (rval > lval) {
8593                         result = -1;
8594                 }
8595         }
8596         else {
8597                 internal_warning(state, ins, "incomparable constants passed to const_scmp");
8598                 result = -2;
8599         }
8600         return result;
8601 }
8602
8603 static void unuse_rhs(struct compile_state *state, struct triple *ins)
8604 {
8605         struct triple **expr;
8606         expr = triple_rhs(state, ins, 0);
8607         for(;expr;expr = triple_rhs(state, ins, expr)) {
8608                 if (*expr) {
8609                         unuse_triple(*expr, ins);
8610                         *expr = 0;
8611                 }
8612         }
8613 }
8614
8615 static void unuse_lhs(struct compile_state *state, struct triple *ins)
8616 {
8617         struct triple **expr;
8618         expr = triple_lhs(state, ins, 0);
8619         for(;expr;expr = triple_lhs(state, ins, expr)) {
8620                 unuse_triple(*expr, ins);
8621                 *expr = 0;
8622         }
8623 }
8624
8625 #if DEBUG_ROMCC_WARNING
8626 static void unuse_misc(struct compile_state *state, struct triple *ins)
8627 {
8628         struct triple **expr;
8629         expr = triple_misc(state, ins, 0);
8630         for(;expr;expr = triple_misc(state, ins, expr)) {
8631                 unuse_triple(*expr, ins);
8632                 *expr = 0;
8633         }
8634 }
8635
8636 static void unuse_targ(struct compile_state *state, struct triple *ins)
8637 {
8638         int i;
8639         struct triple **slot;
8640         slot = &TARG(ins, 0);
8641         for(i = 0; i < ins->targ; i++) {
8642                 unuse_triple(slot[i], ins);
8643                 slot[i] = 0;
8644         }
8645 }
8646
8647 static void check_lhs(struct compile_state *state, struct triple *ins)
8648 {
8649         struct triple **expr;
8650         expr = triple_lhs(state, ins, 0);
8651         for(;expr;expr = triple_lhs(state, ins, expr)) {
8652                 internal_error(state, ins, "unexpected lhs");
8653         }
8654         
8655 }
8656 #endif
8657
8658 static void check_misc(struct compile_state *state, struct triple *ins)
8659 {
8660         struct triple **expr;
8661         expr = triple_misc(state, ins, 0);
8662         for(;expr;expr = triple_misc(state, ins, expr)) {
8663                 if (*expr) {
8664                         internal_error(state, ins, "unexpected misc");
8665                 }
8666         }
8667 }
8668
8669 static void check_targ(struct compile_state *state, struct triple *ins)
8670 {
8671         struct triple **expr;
8672         expr = triple_targ(state, ins, 0);
8673         for(;expr;expr = triple_targ(state, ins, expr)) {
8674                 internal_error(state, ins, "unexpected targ");
8675         }
8676 }
8677
8678 static void wipe_ins(struct compile_state *state, struct triple *ins)
8679 {
8680         /* Becareful which instructions you replace the wiped
8681          * instruction with, as there are not enough slots
8682          * in all instructions to hold all others.
8683          */
8684         check_targ(state, ins);
8685         check_misc(state, ins);
8686         unuse_rhs(state, ins);
8687         unuse_lhs(state, ins);
8688         ins->lhs  = 0;
8689         ins->rhs  = 0;
8690         ins->misc = 0;
8691         ins->targ = 0;
8692 }
8693
8694 #if DEBUG_ROMCC_WARNING
8695 static void wipe_branch(struct compile_state *state, struct triple *ins)
8696 {
8697         /* Becareful which instructions you replace the wiped
8698          * instruction with, as there are not enough slots
8699          * in all instructions to hold all others.
8700          */
8701         unuse_rhs(state, ins);
8702         unuse_lhs(state, ins);
8703         unuse_misc(state, ins);
8704         unuse_targ(state, ins);
8705         ins->lhs  = 0;
8706         ins->rhs  = 0;
8707         ins->misc = 0;
8708         ins->targ = 0;
8709 }
8710 #endif
8711
8712 static void mkcopy(struct compile_state *state, 
8713         struct triple *ins, struct triple *rhs)
8714 {
8715         struct block *block;
8716         if (!equiv_types(ins->type, rhs->type)) {
8717                 FILE *fp = state->errout;
8718                 fprintf(fp, "src type: ");
8719                 name_of(fp, rhs->type);
8720                 fprintf(fp, "\ndst type: ");
8721                 name_of(fp, ins->type);
8722                 fprintf(fp, "\n");
8723                 internal_error(state, ins, "mkcopy type mismatch");
8724         }
8725         block = block_of_triple(state, ins);
8726         wipe_ins(state, ins);
8727         ins->op = OP_COPY;
8728         ins->rhs  = 1;
8729         ins->u.block = block;
8730         RHS(ins, 0) = rhs;
8731         use_triple(RHS(ins, 0), ins);
8732 }
8733
8734 static void mkconst(struct compile_state *state, 
8735         struct triple *ins, ulong_t value)
8736 {
8737         if (!is_integral(ins) && !is_pointer(ins)) {
8738                 fprintf(state->errout, "type: ");
8739                 name_of(state->errout, ins->type);
8740                 fprintf(state->errout, "\n");
8741                 internal_error(state, ins, "unknown type to make constant value: %ld",
8742                         value);
8743         }
8744         wipe_ins(state, ins);
8745         ins->op = OP_INTCONST;
8746         ins->u.cval = value;
8747 }
8748
8749 static void mkaddr_const(struct compile_state *state,
8750         struct triple *ins, struct triple *sdecl, ulong_t value)
8751 {
8752         if ((sdecl->op != OP_SDECL) && (sdecl->op != OP_LABEL)) {
8753                 internal_error(state, ins, "bad base for addrconst");
8754         }
8755         wipe_ins(state, ins);
8756         ins->op = OP_ADDRCONST;
8757         ins->misc = 1;
8758         MISC(ins, 0) = sdecl;
8759         ins->u.cval = value;
8760         use_triple(sdecl, ins);
8761 }
8762
8763 #if DEBUG_DECOMPOSE_PRINT_TUPLES
8764 static void print_tuple(struct compile_state *state, 
8765         struct triple *ins, struct triple *tuple)
8766 {
8767         FILE *fp = state->dbgout;
8768         fprintf(fp, "%5s %p tuple: %p ", tops(ins->op), ins, tuple);
8769         name_of(fp, tuple->type);
8770         if (tuple->lhs > 0) {
8771                 fprintf(fp, " lhs: ");
8772                 name_of(fp, LHS(tuple, 0)->type);
8773         }
8774         fprintf(fp, "\n");
8775         
8776 }
8777 #endif
8778
8779 static struct triple *decompose_with_tuple(struct compile_state *state, 
8780         struct triple *ins, struct triple *tuple)
8781 {
8782         struct triple *next;
8783         next = ins->next;
8784         flatten(state, next, tuple);
8785 #if DEBUG_DECOMPOSE_PRINT_TUPLES
8786         print_tuple(state, ins, tuple);
8787 #endif
8788
8789         if (!is_compound_type(tuple->type) && (tuple->lhs > 0)) {
8790                 struct triple *tmp;
8791                 if (tuple->lhs != 1) {
8792                         internal_error(state, tuple, "plain type in multiple registers?");
8793                 }
8794                 tmp = LHS(tuple, 0);
8795                 release_triple(state, tuple);
8796                 tuple = tmp;
8797         }
8798
8799         propogate_use(state, ins, tuple);
8800         release_triple(state, ins);
8801         
8802         return next;
8803 }
8804
8805 static struct triple *decompose_unknownval(struct compile_state *state,
8806         struct triple *ins)
8807 {
8808         struct triple *tuple;
8809         ulong_t i;
8810
8811 #if DEBUG_DECOMPOSE_HIRES
8812         FILE *fp = state->dbgout;
8813         fprintf(fp, "unknown type: ");
8814         name_of(fp, ins->type);
8815         fprintf(fp, "\n");
8816 #endif
8817
8818         get_occurance(ins->occurance);
8819         tuple = alloc_triple(state, OP_TUPLE, ins->type, -1, -1, 
8820                 ins->occurance);
8821
8822         for(i = 0; i < tuple->lhs; i++) {
8823                 struct type *piece_type;
8824                 struct triple *unknown;
8825
8826                 piece_type = reg_type(state, ins->type, i * REG_SIZEOF_REG);
8827                 get_occurance(tuple->occurance);
8828                 unknown = alloc_triple(state, OP_UNKNOWNVAL, piece_type, 0, 0,
8829                         tuple->occurance);
8830                 LHS(tuple, i) = unknown;
8831         }
8832         return decompose_with_tuple(state, ins, tuple);
8833 }
8834
8835
8836 static struct triple *decompose_read(struct compile_state *state, 
8837         struct triple *ins)
8838 {
8839         struct triple *tuple, *lval;
8840         ulong_t i;
8841
8842         lval = RHS(ins, 0);
8843
8844         if (lval->op == OP_PIECE) {
8845                 return ins->next;
8846         }
8847         get_occurance(ins->occurance);
8848         tuple = alloc_triple(state, OP_TUPLE, lval->type, -1, -1,
8849                 ins->occurance);
8850
8851         if ((tuple->lhs != lval->lhs) &&
8852                 (!triple_is_def(state, lval) || (tuple->lhs != 1))) 
8853         {
8854                 internal_error(state, ins, "lhs size inconsistency?");
8855         }
8856         for(i = 0; i < tuple->lhs; i++) {
8857                 struct triple *piece, *read, *bitref;
8858                 if ((i != 0) || !triple_is_def(state, lval)) {
8859                         piece = LHS(lval, i);
8860                 } else {
8861                         piece = lval;
8862                 }
8863
8864                 /* See if the piece is really a bitref */
8865                 bitref = 0;
8866                 if (piece->op == OP_BITREF) {
8867                         bitref = piece;
8868                         piece = RHS(bitref, 0);
8869                 }
8870
8871                 get_occurance(tuple->occurance);
8872                 read = alloc_triple(state, OP_READ, piece->type, -1, -1, 
8873                         tuple->occurance);
8874                 RHS(read, 0) = piece;
8875
8876                 if (bitref) {
8877                         struct triple *extract;
8878                         int op;
8879                         if (is_signed(bitref->type->left)) {
8880                                 op = OP_SEXTRACT;
8881                         } else {
8882                                 op = OP_UEXTRACT;
8883                         }
8884                         get_occurance(tuple->occurance);
8885                         extract = alloc_triple(state, op, bitref->type, -1, -1,
8886                                 tuple->occurance);
8887                         RHS(extract, 0) = read;
8888                         extract->u.bitfield.size   = bitref->u.bitfield.size;
8889                         extract->u.bitfield.offset = bitref->u.bitfield.offset;
8890
8891                         read = extract;
8892                 }
8893
8894                 LHS(tuple, i) = read;
8895         }
8896         return decompose_with_tuple(state, ins, tuple);
8897 }
8898
8899 static struct triple *decompose_write(struct compile_state *state, 
8900         struct triple *ins)
8901 {
8902         struct triple *tuple, *lval, *val;
8903         ulong_t i;
8904         
8905         lval = MISC(ins, 0);
8906         val = RHS(ins, 0);
8907         get_occurance(ins->occurance);
8908         tuple = alloc_triple(state, OP_TUPLE, ins->type, -1, -1,
8909                 ins->occurance);
8910
8911         if ((tuple->lhs != lval->lhs) &&
8912                 (!triple_is_def(state, lval) || tuple->lhs != 1)) 
8913         {
8914                 internal_error(state, ins, "lhs size inconsistency?");
8915         }
8916         for(i = 0; i < tuple->lhs; i++) {
8917                 struct triple *piece, *write, *pval, *bitref;
8918                 if ((i != 0) || !triple_is_def(state, lval)) {
8919                         piece = LHS(lval, i);
8920                 } else {
8921                         piece = lval;
8922                 }
8923                 if ((i == 0) && (tuple->lhs == 1) && (val->lhs == 0)) {
8924                         pval = val;
8925                 }
8926                 else {
8927                         if (i > val->lhs) {
8928                                 internal_error(state, ins, "lhs size inconsistency?");
8929                         }
8930                         pval = LHS(val, i);
8931                 }
8932                 
8933                 /* See if the piece is really a bitref */
8934                 bitref = 0;
8935                 if (piece->op == OP_BITREF) {
8936                         struct triple *read, *deposit;
8937                         bitref = piece;
8938                         piece = RHS(bitref, 0);
8939
8940                         /* Read the destination register */
8941                         get_occurance(tuple->occurance);
8942                         read = alloc_triple(state, OP_READ, piece->type, -1, -1,
8943                                 tuple->occurance);
8944                         RHS(read, 0) = piece;
8945
8946                         /* Deposit the new bitfield value */
8947                         get_occurance(tuple->occurance);
8948                         deposit = alloc_triple(state, OP_DEPOSIT, piece->type, -1, -1,
8949                                 tuple->occurance);
8950                         RHS(deposit, 0) = read;
8951                         RHS(deposit, 1) = pval;
8952                         deposit->u.bitfield.size   = bitref->u.bitfield.size;
8953                         deposit->u.bitfield.offset = bitref->u.bitfield.offset;
8954
8955                         /* Now write the newly generated value */
8956                         pval = deposit;
8957                 }
8958
8959                 get_occurance(tuple->occurance);
8960                 write = alloc_triple(state, OP_WRITE, piece->type, -1, -1, 
8961                         tuple->occurance);
8962                 MISC(write, 0) = piece;
8963                 RHS(write, 0) = pval;
8964                 LHS(tuple, i) = write;
8965         }
8966         return decompose_with_tuple(state, ins, tuple);
8967 }
8968
8969 struct decompose_load_info {
8970         struct occurance *occurance;
8971         struct triple *lval;
8972         struct triple *tuple;
8973 };
8974 static void decompose_load_cb(struct compile_state *state,
8975         struct type *type, size_t reg_offset, size_t mem_offset, void *arg)
8976 {
8977         struct decompose_load_info *info = arg;
8978         struct triple *load;
8979         
8980         if (reg_offset > info->tuple->lhs) {
8981                 internal_error(state, info->tuple, "lhs to small?");
8982         }
8983         get_occurance(info->occurance);
8984         load = alloc_triple(state, OP_LOAD, type, -1, -1, info->occurance);
8985         RHS(load, 0) = mk_addr_expr(state, info->lval, mem_offset);
8986         LHS(info->tuple, reg_offset/REG_SIZEOF_REG) = load;
8987 }
8988
8989 static struct triple *decompose_load(struct compile_state *state, 
8990         struct triple *ins)
8991 {
8992         struct triple *tuple;
8993         struct decompose_load_info info;
8994
8995         if (!is_compound_type(ins->type)) {
8996                 return ins->next;
8997         }
8998         get_occurance(ins->occurance);
8999         tuple = alloc_triple(state, OP_TUPLE, ins->type, -1, -1,
9000                 ins->occurance);
9001
9002         info.occurance = ins->occurance;
9003         info.lval      = RHS(ins, 0);
9004         info.tuple     = tuple;
9005         walk_type_fields(state, ins->type, 0, 0, decompose_load_cb, &info);
9006
9007         return decompose_with_tuple(state, ins, tuple);
9008 }
9009
9010
9011 struct decompose_store_info {
9012         struct occurance *occurance;
9013         struct triple *lval;
9014         struct triple *val;
9015         struct triple *tuple;
9016 };
9017 static void decompose_store_cb(struct compile_state *state,
9018         struct type *type, size_t reg_offset, size_t mem_offset, void *arg)
9019 {
9020         struct decompose_store_info *info = arg;
9021         struct triple *store;
9022         
9023         if (reg_offset > info->tuple->lhs) {
9024                 internal_error(state, info->tuple, "lhs to small?");
9025         }
9026         get_occurance(info->occurance);
9027         store = alloc_triple(state, OP_STORE, type, -1, -1, info->occurance);
9028         RHS(store, 0) = mk_addr_expr(state, info->lval, mem_offset);
9029         RHS(store, 1) = LHS(info->val, reg_offset);
9030         LHS(info->tuple, reg_offset/REG_SIZEOF_REG) = store;
9031 }
9032
9033 static struct triple *decompose_store(struct compile_state *state, 
9034         struct triple *ins)
9035 {
9036         struct triple *tuple;
9037         struct decompose_store_info info;
9038
9039         if (!is_compound_type(ins->type)) {
9040                 return ins->next;
9041         }
9042         get_occurance(ins->occurance);
9043         tuple = alloc_triple(state, OP_TUPLE, ins->type, -1, -1,
9044                 ins->occurance);
9045
9046         info.occurance = ins->occurance;
9047         info.lval      = RHS(ins, 0);
9048         info.val       = RHS(ins, 1);
9049         info.tuple     = tuple;
9050         walk_type_fields(state, ins->type, 0, 0, decompose_store_cb, &info);
9051
9052         return decompose_with_tuple(state, ins, tuple);
9053 }
9054
9055 static struct triple *decompose_dot(struct compile_state *state, 
9056         struct triple *ins)
9057 {
9058         struct triple *tuple, *lval;
9059         struct type *type;
9060         size_t reg_offset;
9061         int i, idx;
9062
9063         lval = MISC(ins, 0);
9064         reg_offset = field_reg_offset(state, lval->type, ins->u.field);
9065         idx  = reg_offset/REG_SIZEOF_REG;
9066         type = field_type(state, lval->type, ins->u.field);
9067 #if DEBUG_DECOMPOSE_HIRES
9068         {
9069                 FILE *fp = state->dbgout;
9070                 fprintf(fp, "field type: ");
9071                 name_of(fp, type);
9072                 fprintf(fp, "\n");
9073         }
9074 #endif
9075
9076         get_occurance(ins->occurance);
9077         tuple = alloc_triple(state, OP_TUPLE, type, -1, -1, 
9078                 ins->occurance);
9079
9080         if (((ins->type->type & TYPE_MASK) == TYPE_BITFIELD) &&
9081                 (tuple->lhs != 1))
9082         {
9083                 internal_error(state, ins, "multi register bitfield?");
9084         }
9085
9086         for(i = 0; i < tuple->lhs; i++, idx++) {
9087                 struct triple *piece;
9088                 if (!triple_is_def(state, lval)) {
9089                         if (idx > lval->lhs) {
9090                                 internal_error(state, ins, "inconsistent lhs count");
9091                         }
9092                         piece = LHS(lval, idx);
9093                 } else {
9094                         if (idx != 0) {
9095                                 internal_error(state, ins, "bad reg_offset into def");
9096                         }
9097                         if (i != 0) {
9098                                 internal_error(state, ins, "bad reg count from def");
9099                         }
9100                         piece = lval;
9101                 }
9102
9103                 /* Remember the offset of the bitfield */
9104                 if ((type->type & TYPE_MASK) == TYPE_BITFIELD) {
9105                         get_occurance(ins->occurance);
9106                         piece = build_triple(state, OP_BITREF, type, piece, 0,
9107                                 ins->occurance);
9108                         piece->u.bitfield.size   = size_of(state, type);
9109                         piece->u.bitfield.offset = reg_offset % REG_SIZEOF_REG;
9110                 }
9111                 else if ((reg_offset % REG_SIZEOF_REG) != 0) {
9112                         internal_error(state, ins, 
9113                                 "request for a nonbitfield sub register?");
9114                 }
9115
9116                 LHS(tuple, i) = piece;
9117         }
9118
9119         return decompose_with_tuple(state, ins, tuple);
9120 }
9121
9122 static struct triple *decompose_index(struct compile_state *state, 
9123         struct triple *ins)
9124 {
9125         struct triple *tuple, *lval;
9126         struct type *type;
9127         int i, idx;
9128
9129         lval = MISC(ins, 0);
9130         idx = index_reg_offset(state, lval->type, ins->u.cval)/REG_SIZEOF_REG;
9131         type = index_type(state, lval->type, ins->u.cval);
9132 #if DEBUG_DECOMPOSE_HIRES
9133 {
9134         FILE *fp = state->dbgout;
9135         fprintf(fp, "index type: ");
9136         name_of(fp, type);
9137         fprintf(fp, "\n");
9138 }
9139 #endif
9140
9141         get_occurance(ins->occurance);
9142         tuple = alloc_triple(state, OP_TUPLE, type, -1, -1, 
9143                 ins->occurance);
9144
9145         for(i = 0; i < tuple->lhs; i++, idx++) {
9146                 struct triple *piece;
9147                 if (!triple_is_def(state, lval)) {
9148                         if (idx > lval->lhs) {
9149                                 internal_error(state, ins, "inconsistent lhs count");
9150                         }
9151                         piece = LHS(lval, idx);
9152                 } else {
9153                         if (idx != 0) {
9154                                 internal_error(state, ins, "bad reg_offset into def");
9155                         }
9156                         if (i != 0) {
9157                                 internal_error(state, ins, "bad reg count from def");
9158                         }
9159                         piece = lval;
9160                 }
9161                 LHS(tuple, i) = piece;
9162         }
9163
9164         return decompose_with_tuple(state, ins, tuple);
9165 }
9166
9167 static void decompose_compound_types(struct compile_state *state)
9168 {
9169         struct triple *ins, *next, *first;
9170         FILE *fp;
9171         fp = state->dbgout;
9172         first = state->first;
9173         ins = first;
9174
9175         /* Pass one expand compound values into pseudo registers.
9176          */
9177         next = first;
9178         do {
9179                 ins = next;
9180                 next = ins->next;
9181                 switch(ins->op) {
9182                 case OP_UNKNOWNVAL:
9183                         next = decompose_unknownval(state, ins);
9184                         break;
9185
9186                 case OP_READ:
9187                         next = decompose_read(state, ins);
9188                         break;
9189
9190                 case OP_WRITE:
9191                         next = decompose_write(state, ins);
9192                         break;
9193
9194
9195                 /* Be very careful with the load/store logic. These
9196                  * operations must convert from the in register layout
9197                  * to the in memory layout, which is nontrivial.
9198                  */
9199                 case OP_LOAD:
9200                         next = decompose_load(state, ins);
9201                         break;
9202                 case OP_STORE:
9203                         next = decompose_store(state, ins);
9204                         break;
9205
9206                 case OP_DOT:
9207                         next = decompose_dot(state, ins);
9208                         break;
9209                 case OP_INDEX:
9210                         next = decompose_index(state, ins);
9211                         break;
9212                         
9213                 }
9214 #if DEBUG_DECOMPOSE_HIRES
9215                 fprintf(fp, "decompose next: %p \n", next);
9216                 fflush(fp);
9217                 fprintf(fp, "next->op: %d %s\n",
9218                         next->op, tops(next->op));
9219                 /* High resolution debugging mode */
9220                 print_triples(state);
9221 #endif
9222         } while (next != first);
9223
9224         /* Pass two remove the tuples.
9225          */
9226         ins = first;
9227         do {
9228                 next = ins->next;
9229                 if (ins->op == OP_TUPLE) {
9230                         if (ins->use) {
9231                                 internal_error(state, ins, "tuple used");
9232                         }
9233                         else {
9234                                 release_triple(state, ins);
9235                         }
9236                 } 
9237                 ins = next;
9238         } while(ins != first);
9239         ins = first;
9240         do {
9241                 next = ins->next;
9242                 if (ins->op == OP_BITREF) {
9243                         if (ins->use) {
9244                                 internal_error(state, ins, "bitref used");
9245                         } 
9246                         else {
9247                                 release_triple(state, ins);
9248                         }
9249                 }
9250                 ins = next;
9251         } while(ins != first);
9252
9253         /* Pass three verify the state and set ->id to 0.
9254          */
9255         next = first;
9256         do {
9257                 ins = next;
9258                 next = ins->next;
9259                 ins->id &= ~TRIPLE_FLAG_FLATTENED;
9260                 if (triple_stores_block(state, ins)) {
9261                         ins->u.block = 0;
9262                 }
9263                 if (triple_is_def(state, ins)) {
9264                         if (reg_size_of(state, ins->type) > REG_SIZEOF_REG) {
9265                                 internal_error(state, ins, "multi register value remains?");
9266                         }
9267                 }
9268                 if (ins->op == OP_DOT) {
9269                         internal_error(state, ins, "OP_DOT remains?");
9270                 }
9271                 if (ins->op == OP_INDEX) {
9272                         internal_error(state, ins, "OP_INDEX remains?");
9273                 }
9274                 if (ins->op == OP_BITREF) {
9275                         internal_error(state, ins, "OP_BITREF remains?");
9276                 }
9277                 if (ins->op == OP_TUPLE) {
9278                         internal_error(state, ins, "OP_TUPLE remains?");
9279                 }
9280         } while(next != first);
9281 }
9282
9283 /* For those operations that cannot be simplified */
9284 static void simplify_noop(struct compile_state *state, struct triple *ins)
9285 {
9286         return;
9287 }
9288
9289 static void simplify_smul(struct compile_state *state, struct triple *ins)
9290 {
9291         if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
9292                 struct triple *tmp;
9293                 tmp = RHS(ins, 0);
9294                 RHS(ins, 0) = RHS(ins, 1);
9295                 RHS(ins, 1) = tmp;
9296         }
9297         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
9298                 long_t left, right;
9299                 left  = read_sconst(state, ins, RHS(ins, 0));
9300                 right = read_sconst(state, ins, RHS(ins, 1));
9301                 mkconst(state, ins, left * right);
9302         }
9303         else if (is_zero(RHS(ins, 1))) {
9304                 mkconst(state, ins, 0);
9305         }
9306         else if (is_one(RHS(ins, 1))) {
9307                 mkcopy(state, ins, RHS(ins, 0));
9308         }
9309         else if (is_pow2(RHS(ins, 1))) {
9310                 struct triple *val;
9311                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
9312                 ins->op = OP_SL;
9313                 insert_triple(state, state->global_pool, val);
9314                 unuse_triple(RHS(ins, 1), ins);
9315                 use_triple(val, ins);
9316                 RHS(ins, 1) = val;
9317         }
9318 }
9319
9320 static void simplify_umul(struct compile_state *state, struct triple *ins)
9321 {
9322         if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
9323                 struct triple *tmp;
9324                 tmp = RHS(ins, 0);
9325                 RHS(ins, 0) = RHS(ins, 1);
9326                 RHS(ins, 1) = tmp;
9327         }
9328         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9329                 ulong_t left, right;
9330                 left  = read_const(state, ins, RHS(ins, 0));
9331                 right = read_const(state, ins, RHS(ins, 1));
9332                 mkconst(state, ins, left * right);
9333         }
9334         else if (is_zero(RHS(ins, 1))) {
9335                 mkconst(state, ins, 0);
9336         }
9337         else if (is_one(RHS(ins, 1))) {
9338                 mkcopy(state, ins, RHS(ins, 0));
9339         }
9340         else if (is_pow2(RHS(ins, 1))) {
9341                 struct triple *val;
9342                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
9343                 ins->op = OP_SL;
9344                 insert_triple(state, state->global_pool, val);
9345                 unuse_triple(RHS(ins, 1), ins);
9346                 use_triple(val, ins);
9347                 RHS(ins, 1) = val;
9348         }
9349 }
9350
9351 static void simplify_sdiv(struct compile_state *state, struct triple *ins)
9352 {
9353         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
9354                 long_t left, right;
9355                 left  = read_sconst(state, ins, RHS(ins, 0));
9356                 right = read_sconst(state, ins, RHS(ins, 1));
9357                 mkconst(state, ins, left / right);
9358         }
9359         else if (is_zero(RHS(ins, 0))) {
9360                 mkconst(state, ins, 0);
9361         }
9362         else if (is_zero(RHS(ins, 1))) {
9363                 error(state, ins, "division by zero");
9364         }
9365         else if (is_one(RHS(ins, 1))) {
9366                 mkcopy(state, ins, RHS(ins, 0));
9367         }
9368         else if (is_pow2(RHS(ins, 1))) {
9369                 struct triple *val;
9370                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
9371                 ins->op = OP_SSR;
9372                 insert_triple(state, state->global_pool, val);
9373                 unuse_triple(RHS(ins, 1), ins);
9374                 use_triple(val, ins);
9375                 RHS(ins, 1) = val;
9376         }
9377 }
9378
9379 static void simplify_udiv(struct compile_state *state, struct triple *ins)
9380 {
9381         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9382                 ulong_t left, right;
9383                 left  = read_const(state, ins, RHS(ins, 0));
9384                 right = read_const(state, ins, RHS(ins, 1));
9385                 mkconst(state, ins, left / right);
9386         }
9387         else if (is_zero(RHS(ins, 0))) {
9388                 mkconst(state, ins, 0);
9389         }
9390         else if (is_zero(RHS(ins, 1))) {
9391                 error(state, ins, "division by zero");
9392         }
9393         else if (is_one(RHS(ins, 1))) {
9394                 mkcopy(state, ins, RHS(ins, 0));
9395         }
9396         else if (is_pow2(RHS(ins, 1))) {
9397                 struct triple *val;
9398                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
9399                 ins->op = OP_USR;
9400                 insert_triple(state, state->global_pool, val);
9401                 unuse_triple(RHS(ins, 1), ins);
9402                 use_triple(val, ins);
9403                 RHS(ins, 1) = val;
9404         }
9405 }
9406
9407 static void simplify_smod(struct compile_state *state, struct triple *ins)
9408 {
9409         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9410                 long_t left, right;
9411                 left  = read_const(state, ins, RHS(ins, 0));
9412                 right = read_const(state, ins, RHS(ins, 1));
9413                 mkconst(state, ins, left % right);
9414         }
9415         else if (is_zero(RHS(ins, 0))) {
9416                 mkconst(state, ins, 0);
9417         }
9418         else if (is_zero(RHS(ins, 1))) {
9419                 error(state, ins, "division by zero");
9420         }
9421         else if (is_one(RHS(ins, 1))) {
9422                 mkconst(state, ins, 0);
9423         }
9424         else if (is_pow2(RHS(ins, 1))) {
9425                 struct triple *val;
9426                 val = int_const(state, ins->type, RHS(ins, 1)->u.cval - 1);
9427                 ins->op = OP_AND;
9428                 insert_triple(state, state->global_pool, val);
9429                 unuse_triple(RHS(ins, 1), ins);
9430                 use_triple(val, ins);
9431                 RHS(ins, 1) = val;
9432         }
9433 }
9434
9435 static void simplify_umod(struct compile_state *state, struct triple *ins)
9436 {
9437         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9438                 ulong_t left, right;
9439                 left  = read_const(state, ins, RHS(ins, 0));
9440                 right = read_const(state, ins, RHS(ins, 1));
9441                 mkconst(state, ins, left % right);
9442         }
9443         else if (is_zero(RHS(ins, 0))) {
9444                 mkconst(state, ins, 0);
9445         }
9446         else if (is_zero(RHS(ins, 1))) {
9447                 error(state, ins, "division by zero");
9448         }
9449         else if (is_one(RHS(ins, 1))) {
9450                 mkconst(state, ins, 0);
9451         }
9452         else if (is_pow2(RHS(ins, 1))) {
9453                 struct triple *val;
9454                 val = int_const(state, ins->type, RHS(ins, 1)->u.cval - 1);
9455                 ins->op = OP_AND;
9456                 insert_triple(state, state->global_pool, val);
9457                 unuse_triple(RHS(ins, 1), ins);
9458                 use_triple(val, ins);
9459                 RHS(ins, 1) = val;
9460         }
9461 }
9462
9463 static void simplify_add(struct compile_state *state, struct triple *ins)
9464 {
9465         /* start with the pointer on the left */
9466         if (is_pointer(RHS(ins, 1))) {
9467                 struct triple *tmp;
9468                 tmp = RHS(ins, 0);
9469                 RHS(ins, 0) = RHS(ins, 1);
9470                 RHS(ins, 1) = tmp;
9471         }
9472         if (is_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9473                 if (RHS(ins, 0)->op == OP_INTCONST) {
9474                         ulong_t left, right;
9475                         left  = read_const(state, ins, RHS(ins, 0));
9476                         right = read_const(state, ins, RHS(ins, 1));
9477                         mkconst(state, ins, left + right);
9478                 }
9479                 else if (RHS(ins, 0)->op == OP_ADDRCONST) {
9480                         struct triple *sdecl;
9481                         ulong_t left, right;
9482                         sdecl = MISC(RHS(ins, 0), 0);
9483                         left  = RHS(ins, 0)->u.cval;
9484                         right = RHS(ins, 1)->u.cval;
9485                         mkaddr_const(state, ins, sdecl, left + right);
9486                 }
9487                 else {
9488                         internal_warning(state, ins, "Optimize me!");
9489                 }
9490         }
9491         else if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
9492                 struct triple *tmp;
9493                 tmp = RHS(ins, 1);
9494                 RHS(ins, 1) = RHS(ins, 0);
9495                 RHS(ins, 0) = tmp;
9496         }
9497 }
9498
9499 static void simplify_sub(struct compile_state *state, struct triple *ins)
9500 {
9501         if (is_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9502                 if (RHS(ins, 0)->op == OP_INTCONST) {
9503                         ulong_t left, right;
9504                         left  = read_const(state, ins, RHS(ins, 0));
9505                         right = read_const(state, ins, RHS(ins, 1));
9506                         mkconst(state, ins, left - right);
9507                 }
9508                 else if (RHS(ins, 0)->op == OP_ADDRCONST) {
9509                         struct triple *sdecl;
9510                         ulong_t left, right;
9511                         sdecl = MISC(RHS(ins, 0), 0);
9512                         left  = RHS(ins, 0)->u.cval;
9513                         right = RHS(ins, 1)->u.cval;
9514                         mkaddr_const(state, ins, sdecl, left - right);
9515                 }
9516                 else {
9517                         internal_warning(state, ins, "Optimize me!");
9518                 }
9519         }
9520 }
9521
9522 static void simplify_sl(struct compile_state *state, struct triple *ins)
9523 {
9524         if (is_simple_const(RHS(ins, 1))) {
9525                 ulong_t right;
9526                 right = read_const(state, ins, RHS(ins, 1));
9527                 if (right >= (size_of(state, ins->type))) {
9528                         warning(state, ins, "left shift count >= width of type");
9529                 }
9530         }
9531         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9532                 ulong_t left, right;
9533                 left  = read_const(state, ins, RHS(ins, 0));
9534                 right = read_const(state, ins, RHS(ins, 1));
9535                 mkconst(state, ins,  left << right);
9536         }
9537 }
9538
9539 static void simplify_usr(struct compile_state *state, struct triple *ins)
9540 {
9541         if (is_simple_const(RHS(ins, 1))) {
9542                 ulong_t right;
9543                 right = read_const(state, ins, RHS(ins, 1));
9544                 if (right >= (size_of(state, ins->type))) {
9545                         warning(state, ins, "right shift count >= width of type");
9546                 }
9547         }
9548         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9549                 ulong_t left, right;
9550                 left  = read_const(state, ins, RHS(ins, 0));
9551                 right = read_const(state, ins, RHS(ins, 1));
9552                 mkconst(state, ins, left >> right);
9553         }
9554 }
9555
9556 static void simplify_ssr(struct compile_state *state, struct triple *ins)
9557 {
9558         if (is_simple_const(RHS(ins, 1))) {
9559                 ulong_t right;
9560                 right = read_const(state, ins, RHS(ins, 1));
9561                 if (right >= (size_of(state, ins->type))) {
9562                         warning(state, ins, "right shift count >= width of type");
9563                 }
9564         }
9565         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9566                 long_t left, right;
9567                 left  = read_sconst(state, ins, RHS(ins, 0));
9568                 right = read_sconst(state, ins, RHS(ins, 1));
9569                 mkconst(state, ins, left >> right);
9570         }
9571 }
9572
9573 static void simplify_and(struct compile_state *state, struct triple *ins)
9574 {
9575         struct triple *left, *right;
9576         left = RHS(ins, 0);
9577         right = RHS(ins, 1);
9578
9579         if (is_simple_const(left) && is_simple_const(right)) {
9580                 ulong_t lval, rval;
9581                 lval = read_const(state, ins, left);
9582                 rval = read_const(state, ins, right);
9583                 mkconst(state, ins, lval & rval);
9584         }
9585         else if (is_zero(right) || is_zero(left)) {
9586                 mkconst(state, ins, 0);
9587         }
9588 }
9589
9590 static void simplify_or(struct compile_state *state, struct triple *ins)
9591 {
9592         struct triple *left, *right;
9593         left = RHS(ins, 0);
9594         right = RHS(ins, 1);
9595
9596         if (is_simple_const(left) && is_simple_const(right)) {
9597                 ulong_t lval, rval;
9598                 lval = read_const(state, ins, left);
9599                 rval = read_const(state, ins, right);
9600                 mkconst(state, ins, lval | rval);
9601         }
9602 #if 0 /* I need to handle type mismatches here... */
9603         else if (is_zero(right)) {
9604                 mkcopy(state, ins, left);
9605         }
9606         else if (is_zero(left)) {
9607                 mkcopy(state, ins, right);
9608         }
9609 #endif
9610 }
9611
9612 static void simplify_xor(struct compile_state *state, struct triple *ins)
9613 {
9614         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9615                 ulong_t left, right;
9616                 left  = read_const(state, ins, RHS(ins, 0));
9617                 right = read_const(state, ins, RHS(ins, 1));
9618                 mkconst(state, ins, left ^ right);
9619         }
9620 }
9621
9622 static void simplify_pos(struct compile_state *state, struct triple *ins)
9623 {
9624         if (is_const(RHS(ins, 0))) {
9625                 mkconst(state, ins, RHS(ins, 0)->u.cval);
9626         }
9627         else {
9628                 mkcopy(state, ins, RHS(ins, 0));
9629         }
9630 }
9631
9632 static void simplify_neg(struct compile_state *state, struct triple *ins)
9633 {
9634         if (is_simple_const(RHS(ins, 0))) {
9635                 ulong_t left;
9636                 left = read_const(state, ins, RHS(ins, 0));
9637                 mkconst(state, ins, -left);
9638         }
9639         else if (RHS(ins, 0)->op == OP_NEG) {
9640                 mkcopy(state, ins, RHS(RHS(ins, 0), 0));
9641         }
9642 }
9643
9644 static void simplify_invert(struct compile_state *state, struct triple *ins)
9645 {
9646         if (is_simple_const(RHS(ins, 0))) {
9647                 ulong_t left;
9648                 left = read_const(state, ins, RHS(ins, 0));
9649                 mkconst(state, ins, ~left);
9650         }
9651 }
9652
9653 static void simplify_eq(struct compile_state *state, struct triple *ins)
9654 {
9655         struct triple *left, *right;
9656         left = RHS(ins, 0);
9657         right = RHS(ins, 1);
9658
9659         if (is_const(left) && is_const(right)) {
9660                 int val;
9661                 val = const_eq(state, ins, left, right);
9662                 if (val >= 0) {
9663                         mkconst(state, ins, val == 1);
9664                 }
9665         }
9666         else if (left == right) {
9667                 mkconst(state, ins, 1);
9668         }
9669 }
9670
9671 static void simplify_noteq(struct compile_state *state, struct triple *ins)
9672 {
9673         struct triple *left, *right;
9674         left = RHS(ins, 0);
9675         right = RHS(ins, 1);
9676
9677         if (is_const(left) && is_const(right)) {
9678                 int val;
9679                 val = const_eq(state, ins, left, right);
9680                 if (val >= 0) {
9681                         mkconst(state, ins, val != 1);
9682                 }
9683         }
9684         if (left == right) {
9685                 mkconst(state, ins, 0);
9686         }
9687 }
9688
9689 static void simplify_sless(struct compile_state *state, struct triple *ins)
9690 {
9691         struct triple *left, *right;
9692         left = RHS(ins, 0);
9693         right = RHS(ins, 1);
9694
9695         if (is_const(left) && is_const(right)) {
9696                 int val;
9697                 val = const_scmp(state, ins, left, right);
9698                 if ((val >= -1) && (val <= 1)) {
9699                         mkconst(state, ins, val < 0);
9700                 }
9701         }
9702         else if (left == right) {
9703                 mkconst(state, ins, 0);
9704         }
9705 }
9706
9707 static void simplify_uless(struct compile_state *state, struct triple *ins)
9708 {
9709         struct triple *left, *right;
9710         left = RHS(ins, 0);
9711         right = RHS(ins, 1);
9712
9713         if (is_const(left) && is_const(right)) {
9714                 int val;
9715                 val = const_ucmp(state, ins, left, right);
9716                 if ((val >= -1) && (val <= 1)) {
9717                         mkconst(state, ins, val < 0);
9718                 }
9719         }
9720         else if (is_zero(right)) {
9721                 mkconst(state, ins, 0);
9722         }
9723         else if (left == right) {
9724                 mkconst(state, ins, 0);
9725         }
9726 }
9727
9728 static void simplify_smore(struct compile_state *state, struct triple *ins)
9729 {
9730         struct triple *left, *right;
9731         left = RHS(ins, 0);
9732         right = RHS(ins, 1);
9733
9734         if (is_const(left) && is_const(right)) {
9735                 int val;
9736                 val = const_scmp(state, ins, left, right);
9737                 if ((val >= -1) && (val <= 1)) {
9738                         mkconst(state, ins, val > 0);
9739                 }
9740         }
9741         else if (left == right) {
9742                 mkconst(state, ins, 0);
9743         }
9744 }
9745
9746 static void simplify_umore(struct compile_state *state, struct triple *ins)
9747 {
9748         struct triple *left, *right;
9749         left = RHS(ins, 0);
9750         right = RHS(ins, 1);
9751
9752         if (is_const(left) && is_const(right)) {
9753                 int val;
9754                 val = const_ucmp(state, ins, left, right);
9755                 if ((val >= -1) && (val <= 1)) {
9756                         mkconst(state, ins, val > 0);
9757                 }
9758         }
9759         else if (is_zero(left)) {
9760                 mkconst(state, ins, 0);
9761         }
9762         else if (left == right) {
9763                 mkconst(state, ins, 0);
9764         }
9765 }
9766
9767
9768 static void simplify_slesseq(struct compile_state *state, struct triple *ins)
9769 {
9770         struct triple *left, *right;
9771         left = RHS(ins, 0);
9772         right = RHS(ins, 1);
9773
9774         if (is_const(left) && is_const(right)) {
9775                 int val;
9776                 val = const_scmp(state, ins, left, right);
9777                 if ((val >= -1) && (val <= 1)) {
9778                         mkconst(state, ins, val <= 0);
9779                 }
9780         }
9781         else if (left == right) {
9782                 mkconst(state, ins, 1);
9783         }
9784 }
9785
9786 static void simplify_ulesseq(struct compile_state *state, struct triple *ins)
9787 {
9788         struct triple *left, *right;
9789         left = RHS(ins, 0);
9790         right = RHS(ins, 1);
9791
9792         if (is_const(left) && is_const(right)) {
9793                 int val;
9794                 val = const_ucmp(state, ins, left, right);
9795                 if ((val >= -1) && (val <= 1)) {
9796                         mkconst(state, ins, val <= 0);
9797                 }
9798         }
9799         else if (is_zero(left)) {
9800                 mkconst(state, ins, 1);
9801         }
9802         else if (left == right) {
9803                 mkconst(state, ins, 1);
9804         }
9805 }
9806
9807 static void simplify_smoreeq(struct compile_state *state, struct triple *ins)
9808 {
9809         struct triple *left, *right;
9810         left = RHS(ins, 0);
9811         right = RHS(ins, 1);
9812
9813         if (is_const(left) && is_const(right)) {
9814                 int val;
9815                 val = const_scmp(state, ins, left, right);
9816                 if ((val >= -1) && (val <= 1)) {
9817                         mkconst(state, ins, val >= 0);
9818                 }
9819         }
9820         else if (left == right) {
9821                 mkconst(state, ins, 1);
9822         }
9823 }
9824
9825 static void simplify_umoreeq(struct compile_state *state, struct triple *ins)
9826 {
9827         struct triple *left, *right;
9828         left = RHS(ins, 0);
9829         right = RHS(ins, 1);
9830
9831         if (is_const(left) && is_const(right)) {
9832                 int val;
9833                 val = const_ucmp(state, ins, left, right);
9834                 if ((val >= -1) && (val <= 1)) {
9835                         mkconst(state, ins, val >= 0);
9836                 }
9837         }
9838         else if (is_zero(right)) {
9839                 mkconst(state, ins, 1);
9840         }
9841         else if (left == right) {
9842                 mkconst(state, ins, 1);
9843         }
9844 }
9845
9846 static void simplify_lfalse(struct compile_state *state, struct triple *ins)
9847 {
9848         struct triple *rhs;
9849         rhs = RHS(ins, 0);
9850
9851         if (is_const(rhs)) {
9852                 mkconst(state, ins, !const_ltrue(state, ins, rhs));
9853         }
9854         /* Otherwise if I am the only user... */
9855         else if ((rhs->use) &&
9856                 (rhs->use->member == ins) && (rhs->use->next == 0)) {
9857                 int need_copy = 1;
9858                 /* Invert a boolean operation */
9859                 switch(rhs->op) {
9860                 case OP_LTRUE:   rhs->op = OP_LFALSE;  break;
9861                 case OP_LFALSE:  rhs->op = OP_LTRUE;   break;
9862                 case OP_EQ:      rhs->op = OP_NOTEQ;   break;
9863                 case OP_NOTEQ:   rhs->op = OP_EQ;      break;
9864                 case OP_SLESS:   rhs->op = OP_SMOREEQ; break;
9865                 case OP_ULESS:   rhs->op = OP_UMOREEQ; break;
9866                 case OP_SMORE:   rhs->op = OP_SLESSEQ; break;
9867                 case OP_UMORE:   rhs->op = OP_ULESSEQ; break;
9868                 case OP_SLESSEQ: rhs->op = OP_SMORE;   break;
9869                 case OP_ULESSEQ: rhs->op = OP_UMORE;   break;
9870                 case OP_SMOREEQ: rhs->op = OP_SLESS;   break;
9871                 case OP_UMOREEQ: rhs->op = OP_ULESS;   break;
9872                 default:
9873                         need_copy = 0;
9874                         break;
9875                 }
9876                 if (need_copy) {
9877                         mkcopy(state, ins, rhs);
9878                 }
9879         }
9880 }
9881
9882 static void simplify_ltrue (struct compile_state *state, struct triple *ins)
9883 {
9884         struct triple *rhs;
9885         rhs = RHS(ins, 0);
9886
9887         if (is_const(rhs)) {
9888                 mkconst(state, ins, const_ltrue(state, ins, rhs));
9889         }
9890         else switch(rhs->op) {
9891         case OP_LTRUE:   case OP_LFALSE:  case OP_EQ:      case OP_NOTEQ:
9892         case OP_SLESS:   case OP_ULESS:   case OP_SMORE:   case OP_UMORE:
9893         case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
9894                 mkcopy(state, ins, rhs);
9895         }
9896
9897 }
9898
9899 static void simplify_load(struct compile_state *state, struct triple *ins)
9900 {
9901         struct triple *addr, *sdecl, *blob;
9902
9903         /* If I am doing a load with a constant pointer from a constant
9904          * table get the value.
9905          */
9906         addr = RHS(ins, 0);
9907         if ((addr->op == OP_ADDRCONST) && (sdecl = MISC(addr, 0)) &&
9908                 (sdecl->op == OP_SDECL) && (blob = MISC(sdecl, 0)) &&
9909                 (blob->op == OP_BLOBCONST)) {
9910                 unsigned char buffer[SIZEOF_WORD];
9911                 size_t reg_size, mem_size;
9912                 const char *src, *end;
9913                 ulong_t val;
9914                 reg_size = reg_size_of(state, ins->type);
9915                 if (reg_size > REG_SIZEOF_REG) {
9916                         internal_error(state, ins, "load size greater than register");
9917                 }
9918                 mem_size = size_of(state, ins->type);
9919                 end = blob->u.blob;
9920                 end += bits_to_bytes(size_of(state, sdecl->type));
9921                 src = blob->u.blob;
9922                 src += addr->u.cval;
9923
9924                 if (src > end) {
9925                         error(state, ins, "Load address out of bounds");
9926                 }
9927
9928                 memset(buffer, 0, sizeof(buffer));
9929                 memcpy(buffer, src, bits_to_bytes(mem_size));
9930
9931                 switch(mem_size) {
9932                 case SIZEOF_I8:  val = *((uint8_t *) buffer); break;
9933                 case SIZEOF_I16: val = *((uint16_t *)buffer); break;
9934                 case SIZEOF_I32: val = *((uint32_t *)buffer); break;
9935                 case SIZEOF_I64: val = *((uint64_t *)buffer); break;
9936                 default:
9937                         internal_error(state, ins, "mem_size: %d not handled",
9938                                 mem_size);
9939                         val = 0;
9940                         break;
9941                 }
9942                 mkconst(state, ins, val);
9943         }
9944 }
9945
9946 static void simplify_uextract(struct compile_state *state, struct triple *ins)
9947 {
9948         if (is_simple_const(RHS(ins, 0))) {
9949                 ulong_t val;
9950                 ulong_t mask;
9951                 val = read_const(state, ins, RHS(ins, 0));
9952                 mask = 1;
9953                 mask <<= ins->u.bitfield.size;
9954                 mask -= 1;
9955                 val >>= ins->u.bitfield.offset;
9956                 val &= mask;
9957                 mkconst(state, ins, val);
9958         }
9959 }
9960
9961 static void simplify_sextract(struct compile_state *state, struct triple *ins)
9962 {
9963         if (is_simple_const(RHS(ins, 0))) {
9964                 ulong_t val;
9965                 ulong_t mask;
9966                 long_t sval;
9967                 val = read_const(state, ins, RHS(ins, 0));
9968                 mask = 1;
9969                 mask <<= ins->u.bitfield.size;
9970                 mask -= 1;
9971                 val >>= ins->u.bitfield.offset;
9972                 val &= mask;
9973                 val <<= (SIZEOF_LONG - ins->u.bitfield.size);
9974                 sval = val;
9975                 sval >>= (SIZEOF_LONG - ins->u.bitfield.size); 
9976                 mkconst(state, ins, sval);
9977         }
9978 }
9979
9980 static void simplify_deposit(struct compile_state *state, struct triple *ins)
9981 {
9982         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9983                 ulong_t targ, val;
9984                 ulong_t mask;
9985                 targ = read_const(state, ins, RHS(ins, 0));
9986                 val  = read_const(state, ins, RHS(ins, 1));
9987                 mask = 1;
9988                 mask <<= ins->u.bitfield.size;
9989                 mask -= 1;
9990                 mask <<= ins->u.bitfield.offset;
9991                 targ &= ~mask;
9992                 val <<= ins->u.bitfield.offset;
9993                 val &= mask;
9994                 targ |= val;
9995                 mkconst(state, ins, targ);
9996         }
9997 }
9998
9999 static void simplify_copy(struct compile_state *state, struct triple *ins)
10000 {
10001         struct triple *right;
10002         right = RHS(ins, 0);
10003         if (is_subset_type(ins->type, right->type)) {
10004                 ins->type = right->type;
10005         }
10006         if (equiv_types(ins->type, right->type)) {
10007                 ins->op = OP_COPY;/* I don't need to convert if the types match */
10008         } else {
10009                 if (ins->op == OP_COPY) {
10010                         internal_error(state, ins, "type mismatch on copy");
10011                 }
10012         }
10013         if (is_const(right) && (right->op == OP_ADDRCONST) && is_pointer(ins)) {
10014                 struct triple *sdecl;
10015                 ulong_t offset;
10016                 sdecl  = MISC(right, 0);
10017                 offset = right->u.cval;
10018                 mkaddr_const(state, ins, sdecl, offset);
10019         }
10020         else if (is_const(right) && is_write_compatible(state, ins->type, right->type)) {
10021                 switch(right->op) {
10022                 case OP_INTCONST:
10023                 {
10024                         ulong_t left;
10025                         left = read_const(state, ins, right);
10026                         /* Ensure I have not overflowed the destination. */
10027                         if (size_of(state, right->type) > size_of(state, ins->type)) {
10028                                 ulong_t mask;
10029                                 mask = 1;
10030                                 mask <<= size_of(state, ins->type);
10031                                 mask -= 1;
10032                                 left &= mask;
10033                         }
10034                         /* Ensure I am properly sign extended */
10035                         if (size_of(state, right->type) < size_of(state, ins->type) &&
10036                                 is_signed(right->type)) {
10037                                 long_t val;
10038                                 int shift;
10039                                 shift = SIZEOF_LONG - size_of(state, right->type);
10040                                 val = left;
10041                                 val <<= shift;
10042                                 val >>= shift;
10043                                 left = val;
10044                         }
10045                         mkconst(state, ins, left);
10046                         break;
10047                 }
10048                 default:
10049                         internal_error(state, ins, "uknown constant");
10050                         break;
10051                 }
10052         }
10053 }
10054
10055 static int phi_present(struct block *block)
10056 {
10057         struct triple *ptr;
10058         if (!block) {
10059                 return 0;
10060         }
10061         ptr = block->first;
10062         do {
10063                 if (ptr->op == OP_PHI) {
10064                         return 1;
10065                 }
10066                 ptr = ptr->next;
10067         } while(ptr != block->last);
10068         return 0;
10069 }
10070
10071 static int phi_dependency(struct block *block)
10072 {
10073         /* A block has a phi dependency if a phi function
10074          * depends on that block to exist, and makes a block
10075          * that is otherwise useless unsafe to remove.
10076          */
10077         if (block) {
10078                 struct block_set *edge;
10079                 for(edge = block->edges; edge; edge = edge->next) {
10080                         if (phi_present(edge->member)) {
10081                                 return 1;
10082                         }
10083                 }
10084         }
10085         return 0;
10086 }
10087
10088 static struct triple *branch_target(struct compile_state *state, struct triple *ins)
10089 {
10090         struct triple *targ;
10091         targ = TARG(ins, 0);
10092         /* During scc_transform temporary triples are allocated that
10093          * loop back onto themselves. If I see one don't advance the
10094          * target.
10095          */
10096         while(triple_is_structural(state, targ) && 
10097                 (targ->next != targ) && (targ->next != state->first)) {
10098                 targ = targ->next;
10099         }
10100         return targ;
10101 }
10102
10103
10104 static void simplify_branch(struct compile_state *state, struct triple *ins)
10105 {
10106         int simplified, loops;
10107         if ((ins->op != OP_BRANCH) && (ins->op != OP_CBRANCH)) {
10108                 internal_error(state, ins, "not branch");
10109         }
10110         if (ins->use != 0) {
10111                 internal_error(state, ins, "branch use");
10112         }
10113         /* The challenge here with simplify branch is that I need to 
10114          * make modifications to the control flow graph as well
10115          * as to the branch instruction itself.  That is handled
10116          * by rebuilding the basic blocks after simplify all is called.
10117          */
10118
10119         /* If we have a branch to an unconditional branch update
10120          * our target.  But watch out for dependencies from phi
10121          * functions.
10122          * Also only do this a limited number of times so
10123          * we don't get into an infinite loop.
10124          */
10125         loops = 0;
10126         do {
10127                 struct triple *targ;
10128                 simplified = 0;
10129                 targ = branch_target(state, ins);
10130                 if ((targ != ins) && (targ->op == OP_BRANCH) && 
10131                         !phi_dependency(targ->u.block))
10132                 {
10133                         unuse_triple(TARG(ins, 0), ins);
10134                         TARG(ins, 0) = TARG(targ, 0);
10135                         use_triple(TARG(ins, 0), ins);
10136                         simplified = 1;
10137                 }
10138         } while(simplified && (++loops < 20));
10139
10140         /* If we have a conditional branch with a constant condition
10141          * make it an unconditional branch.
10142          */
10143         if ((ins->op == OP_CBRANCH) && is_simple_const(RHS(ins, 0))) {
10144                 struct triple *targ;
10145                 ulong_t value;
10146                 value = read_const(state, ins, RHS(ins, 0));
10147                 unuse_triple(RHS(ins, 0), ins);
10148                 targ = TARG(ins, 0);
10149                 ins->rhs  = 0;
10150                 ins->targ = 1;
10151                 ins->op = OP_BRANCH;
10152                 if (value) {
10153                         unuse_triple(ins->next, ins);
10154                         TARG(ins, 0) = targ;
10155                 }
10156                 else {
10157                         unuse_triple(targ, ins);
10158                         TARG(ins, 0) = ins->next;
10159                 }
10160         }
10161
10162         /* If we have a branch to the next instruction,
10163          * make it a noop.
10164          */
10165         if (TARG(ins, 0) == ins->next) {
10166                 unuse_triple(TARG(ins, 0), ins);
10167                 if (ins->op == OP_CBRANCH) {
10168                         unuse_triple(RHS(ins, 0), ins);
10169                         unuse_triple(ins->next, ins);
10170                 }
10171                 ins->lhs = 0;
10172                 ins->rhs = 0;
10173                 ins->misc = 0;
10174                 ins->targ = 0;
10175                 ins->op = OP_NOOP;
10176                 if (ins->use) {
10177                         internal_error(state, ins, "noop use != 0");
10178                 }
10179         }
10180 }
10181
10182 static void simplify_label(struct compile_state *state, struct triple *ins)
10183 {
10184         /* Ignore volatile labels */
10185         if (!triple_is_pure(state, ins, ins->id)) {
10186                 return;
10187         }
10188         if (ins->use == 0) {
10189                 ins->op = OP_NOOP;
10190         }
10191         else if (ins->prev->op == OP_LABEL) {
10192                 /* In general it is not safe to merge one label that
10193                  * imediately follows another.  The problem is that the empty
10194                  * looking block may have phi functions that depend on it.
10195                  */
10196                 if (!phi_dependency(ins->prev->u.block)) {
10197                         struct triple_set *user, *next;
10198                         ins->op = OP_NOOP;
10199                         for(user = ins->use; user; user = next) {
10200                                 struct triple *use, **expr;
10201                                 next = user->next;
10202                                 use = user->member;
10203                                 expr = triple_targ(state, use, 0);
10204                                 for(;expr; expr = triple_targ(state, use, expr)) {
10205                                         if (*expr == ins) {
10206                                                 *expr = ins->prev;
10207                                                 unuse_triple(ins, use);
10208                                                 use_triple(ins->prev, use);
10209                                         }
10210                                         
10211                                 }
10212                         }
10213                         if (ins->use) {
10214                                 internal_error(state, ins, "noop use != 0");
10215                         }
10216                 }
10217         }
10218 }
10219
10220 static void simplify_phi(struct compile_state *state, struct triple *ins)
10221 {
10222         struct triple **slot;
10223         struct triple *value;
10224         int zrhs, i;
10225         ulong_t cvalue;
10226         slot = &RHS(ins, 0);
10227         zrhs = ins->rhs;
10228         if (zrhs == 0) {
10229                 return;
10230         }
10231         /* See if all of the rhs members of a phi have the same value */
10232         if (slot[0] && is_simple_const(slot[0])) {
10233                 cvalue = read_const(state, ins, slot[0]);
10234                 for(i = 1; i < zrhs; i++) {
10235                         if (    !slot[i] ||
10236                                 !is_simple_const(slot[i]) ||
10237                                 !equiv_types(slot[0]->type, slot[i]->type) ||
10238                                 (cvalue != read_const(state, ins, slot[i]))) {
10239                                 break;
10240                         }
10241                 }
10242                 if (i == zrhs) {
10243                         mkconst(state, ins, cvalue);
10244                         return;
10245                 }
10246         }
10247         
10248         /* See if all of rhs members of a phi are the same */
10249         value = slot[0];
10250         for(i = 1; i < zrhs; i++) {
10251                 if (slot[i] != value) {
10252                         break;
10253                 }
10254         }
10255         if (i == zrhs) {
10256                 /* If the phi has a single value just copy it */
10257                 if (!is_subset_type(ins->type, value->type)) {
10258                         internal_error(state, ins, "bad input type to phi");
10259                 }
10260                 /* Make the types match */
10261                 if (!equiv_types(ins->type, value->type)) {
10262                         ins->type = value->type;
10263                 }
10264                 /* Now make the actual copy */
10265                 mkcopy(state, ins, value);
10266                 return;
10267         }
10268 }
10269
10270
10271 static void simplify_bsf(struct compile_state *state, struct triple *ins)
10272 {
10273         if (is_simple_const(RHS(ins, 0))) {
10274                 ulong_t left;
10275                 left = read_const(state, ins, RHS(ins, 0));
10276                 mkconst(state, ins, bsf(left));
10277         }
10278 }
10279
10280 static void simplify_bsr(struct compile_state *state, struct triple *ins)
10281 {
10282         if (is_simple_const(RHS(ins, 0))) {
10283                 ulong_t left;
10284                 left = read_const(state, ins, RHS(ins, 0));
10285                 mkconst(state, ins, bsr(left));
10286         }
10287 }
10288
10289
10290 typedef void (*simplify_t)(struct compile_state *state, struct triple *ins);
10291 static const struct simplify_table {
10292         simplify_t func;
10293         unsigned long flag;
10294 } table_simplify[] = {
10295 #define simplify_sdivt    simplify_noop
10296 #define simplify_udivt    simplify_noop
10297 #define simplify_piece    simplify_noop
10298
10299 [OP_SDIVT      ] = { simplify_sdivt,    COMPILER_SIMPLIFY_ARITH },
10300 [OP_UDIVT      ] = { simplify_udivt,    COMPILER_SIMPLIFY_ARITH },
10301 [OP_SMUL       ] = { simplify_smul,     COMPILER_SIMPLIFY_ARITH },
10302 [OP_UMUL       ] = { simplify_umul,     COMPILER_SIMPLIFY_ARITH },
10303 [OP_SDIV       ] = { simplify_sdiv,     COMPILER_SIMPLIFY_ARITH },
10304 [OP_UDIV       ] = { simplify_udiv,     COMPILER_SIMPLIFY_ARITH },
10305 [OP_SMOD       ] = { simplify_smod,     COMPILER_SIMPLIFY_ARITH },
10306 [OP_UMOD       ] = { simplify_umod,     COMPILER_SIMPLIFY_ARITH },
10307 [OP_ADD        ] = { simplify_add,      COMPILER_SIMPLIFY_ARITH },
10308 [OP_SUB        ] = { simplify_sub,      COMPILER_SIMPLIFY_ARITH },
10309 [OP_SL         ] = { simplify_sl,       COMPILER_SIMPLIFY_SHIFT },
10310 [OP_USR        ] = { simplify_usr,      COMPILER_SIMPLIFY_SHIFT },
10311 [OP_SSR        ] = { simplify_ssr,      COMPILER_SIMPLIFY_SHIFT },
10312 [OP_AND        ] = { simplify_and,      COMPILER_SIMPLIFY_BITWISE },
10313 [OP_XOR        ] = { simplify_xor,      COMPILER_SIMPLIFY_BITWISE },
10314 [OP_OR         ] = { simplify_or,       COMPILER_SIMPLIFY_BITWISE },
10315 [OP_POS        ] = { simplify_pos,      COMPILER_SIMPLIFY_ARITH },
10316 [OP_NEG        ] = { simplify_neg,      COMPILER_SIMPLIFY_ARITH },
10317 [OP_INVERT     ] = { simplify_invert,   COMPILER_SIMPLIFY_BITWISE },
10318
10319 [OP_EQ         ] = { simplify_eq,       COMPILER_SIMPLIFY_LOGICAL },
10320 [OP_NOTEQ      ] = { simplify_noteq,    COMPILER_SIMPLIFY_LOGICAL },
10321 [OP_SLESS      ] = { simplify_sless,    COMPILER_SIMPLIFY_LOGICAL },
10322 [OP_ULESS      ] = { simplify_uless,    COMPILER_SIMPLIFY_LOGICAL },
10323 [OP_SMORE      ] = { simplify_smore,    COMPILER_SIMPLIFY_LOGICAL },
10324 [OP_UMORE      ] = { simplify_umore,    COMPILER_SIMPLIFY_LOGICAL },
10325 [OP_SLESSEQ    ] = { simplify_slesseq,  COMPILER_SIMPLIFY_LOGICAL },
10326 [OP_ULESSEQ    ] = { simplify_ulesseq,  COMPILER_SIMPLIFY_LOGICAL },
10327 [OP_SMOREEQ    ] = { simplify_smoreeq,  COMPILER_SIMPLIFY_LOGICAL },
10328 [OP_UMOREEQ    ] = { simplify_umoreeq,  COMPILER_SIMPLIFY_LOGICAL },
10329 [OP_LFALSE     ] = { simplify_lfalse,   COMPILER_SIMPLIFY_LOGICAL },
10330 [OP_LTRUE      ] = { simplify_ltrue,    COMPILER_SIMPLIFY_LOGICAL },
10331
10332 [OP_LOAD       ] = { simplify_load,     COMPILER_SIMPLIFY_OP },
10333 [OP_STORE      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10334
10335 [OP_UEXTRACT   ] = { simplify_uextract, COMPILER_SIMPLIFY_BITFIELD },
10336 [OP_SEXTRACT   ] = { simplify_sextract, COMPILER_SIMPLIFY_BITFIELD },
10337 [OP_DEPOSIT    ] = { simplify_deposit,  COMPILER_SIMPLIFY_BITFIELD },
10338
10339 [OP_NOOP       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10340
10341 [OP_INTCONST   ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10342 [OP_BLOBCONST  ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10343 [OP_ADDRCONST  ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10344 [OP_UNKNOWNVAL ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10345
10346 [OP_WRITE      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10347 [OP_READ       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10348 [OP_COPY       ] = { simplify_copy,     COMPILER_SIMPLIFY_COPY },
10349 [OP_CONVERT    ] = { simplify_copy,     COMPILER_SIMPLIFY_COPY },
10350 [OP_PIECE      ] = { simplify_piece,    COMPILER_SIMPLIFY_OP },
10351 [OP_ASM        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10352
10353 [OP_DOT        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10354 [OP_INDEX      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10355
10356 [OP_LIST       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10357 [OP_BRANCH     ] = { simplify_branch,   COMPILER_SIMPLIFY_BRANCH },
10358 [OP_CBRANCH    ] = { simplify_branch,   COMPILER_SIMPLIFY_BRANCH },
10359 [OP_CALL       ] = { simplify_noop,     COMPILER_SIMPLIFY_BRANCH },
10360 [OP_RET        ] = { simplify_noop,     COMPILER_SIMPLIFY_BRANCH },
10361 [OP_LABEL      ] = { simplify_label,    COMPILER_SIMPLIFY_LABEL },
10362 [OP_ADECL      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10363 [OP_SDECL      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10364 [OP_PHI        ] = { simplify_phi,      COMPILER_SIMPLIFY_PHI },
10365
10366 [OP_INB        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10367 [OP_INW        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10368 [OP_INL        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10369 [OP_OUTB       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10370 [OP_OUTW       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10371 [OP_OUTL       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10372 [OP_BSF        ] = { simplify_bsf,      COMPILER_SIMPLIFY_OP },
10373 [OP_BSR        ] = { simplify_bsr,      COMPILER_SIMPLIFY_OP },
10374 [OP_RDMSR      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10375 [OP_WRMSR      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },               
10376 [OP_HLT        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10377 };
10378
10379 static inline void debug_simplify(struct compile_state *state, 
10380         simplify_t do_simplify, struct triple *ins)
10381 {
10382 #if DEBUG_SIMPLIFY_HIRES
10383                 if (state->functions_joined && (do_simplify != simplify_noop)) {
10384                         /* High resolution debugging mode */
10385                         fprintf(state->dbgout, "simplifing: ");
10386                         display_triple(state->dbgout, ins);
10387                 }
10388 #endif
10389                 do_simplify(state, ins);
10390 #if DEBUG_SIMPLIFY_HIRES
10391                 if (state->functions_joined && (do_simplify != simplify_noop)) {
10392                         /* High resolution debugging mode */
10393                         fprintf(state->dbgout, "simplified: ");
10394                         display_triple(state->dbgout, ins);
10395                 }
10396 #endif
10397 }
10398 static void simplify(struct compile_state *state, struct triple *ins)
10399 {
10400         int op;
10401         simplify_t do_simplify;
10402         if (ins == &unknown_triple) {
10403                 internal_error(state, ins, "simplifying the unknown triple?");
10404         }
10405         do {
10406                 op = ins->op;
10407                 do_simplify = 0;
10408                 if ((op < 0) || (op > sizeof(table_simplify)/sizeof(table_simplify[0]))) {
10409                         do_simplify = 0;
10410                 }
10411                 else {
10412                         do_simplify = table_simplify[op].func;
10413                 }
10414                 if (do_simplify && 
10415                         !(state->compiler->flags & table_simplify[op].flag)) {
10416                         do_simplify = simplify_noop;
10417                 }
10418                 if (do_simplify && (ins->id & TRIPLE_FLAG_VOLATILE)) {
10419                         do_simplify = simplify_noop;
10420                 }
10421         
10422                 if (!do_simplify) {
10423                         internal_error(state, ins, "cannot simplify op: %d %s",
10424                                 op, tops(op));
10425                         return;
10426                 }
10427                 debug_simplify(state, do_simplify, ins);
10428         } while(ins->op != op);
10429 }
10430
10431 static void rebuild_ssa_form(struct compile_state *state);
10432
10433 static void simplify_all(struct compile_state *state)
10434 {
10435         struct triple *ins, *first;
10436         if (!(state->compiler->flags & COMPILER_SIMPLIFY)) {
10437                 return;
10438         }
10439         first = state->first;
10440         ins = first->prev;
10441         do {
10442                 simplify(state, ins);
10443                 ins = ins->prev;
10444         } while(ins != first->prev);
10445         ins = first;
10446         do {
10447                 simplify(state, ins);
10448                 ins = ins->next;
10449         }while(ins != first);
10450         rebuild_ssa_form(state);
10451
10452         print_blocks(state, __func__, state->dbgout);
10453 }
10454
10455 /*
10456  * Builtins....
10457  * ============================
10458  */
10459
10460 static void register_builtin_function(struct compile_state *state,
10461         const char *name, int op, struct type *rtype, ...)
10462 {
10463         struct type *ftype, *atype, *ctype, *crtype, *param, **next;
10464         struct triple *def, *arg, *result, *work, *last, *first, *retvar, *ret;
10465         struct hash_entry *ident;
10466         struct file_state file;
10467         int parameters;
10468         int name_len;
10469         va_list args;
10470         int i;
10471
10472         /* Dummy file state to get debug handling right */
10473         memset(&file, 0, sizeof(file));
10474         file.basename = "<built-in>";
10475         file.line = 1;
10476         file.report_line = 1;
10477         file.report_name = file.basename;
10478         file.prev = state->file;
10479         state->file = &file;
10480         state->function = name;
10481
10482         /* Find the Parameter count */
10483         valid_op(state, op);
10484         parameters = table_ops[op].rhs;
10485         if (parameters < 0 ) {
10486                 internal_error(state, 0, "Invalid builtin parameter count");
10487         }
10488
10489         /* Find the function type */
10490         ftype = new_type(TYPE_FUNCTION | STOR_INLINE | STOR_STATIC, rtype, 0);
10491         ftype->elements = parameters;
10492         next = &ftype->right;
10493         va_start(args, rtype);
10494         for(i = 0; i < parameters; i++) {
10495                 atype = va_arg(args, struct type *);
10496                 if (!*next) {
10497                         *next = atype;
10498                 } else {
10499                         *next = new_type(TYPE_PRODUCT, *next, atype);
10500                         next = &((*next)->right);
10501                 }
10502         }
10503         if (!*next) {
10504                 *next = &void_type;
10505         }
10506         va_end(args);
10507
10508         /* Get the initial closure type */
10509         ctype = new_type(TYPE_JOIN, &void_type, 0);
10510         ctype->elements = 1;
10511
10512         /* Get the return type */
10513         crtype = new_type(TYPE_TUPLE, new_type(TYPE_PRODUCT, ctype, rtype), 0);
10514         crtype->elements = 2;
10515
10516         /* Generate the needed triples */
10517         def = triple(state, OP_LIST, ftype, 0, 0);
10518         first = label(state);
10519         RHS(def, 0) = first;
10520         result = flatten(state, first, variable(state, crtype));
10521         retvar = flatten(state, first, variable(state, &void_ptr_type));
10522         ret = triple(state, OP_RET, &void_type, read_expr(state, retvar), 0);
10523
10524         /* Now string them together */
10525         param = ftype->right;
10526         for(i = 0; i < parameters; i++) {
10527                 if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
10528                         atype = param->left;
10529                 } else {
10530                         atype = param;
10531                 }
10532                 arg = flatten(state, first, variable(state, atype));
10533                 param = param->right;
10534         }
10535         work = new_triple(state, op, rtype, -1, parameters);
10536         generate_lhs_pieces(state, work);
10537         for(i = 0; i < parameters; i++) {
10538                 RHS(work, i) = read_expr(state, farg(state, def, i));
10539         }
10540         if ((rtype->type & TYPE_MASK) != TYPE_VOID) {
10541                 work = write_expr(state, deref_index(state, result, 1), work);
10542         }
10543         work = flatten(state, first, work);
10544         last = flatten(state, first, label(state));
10545         ret  = flatten(state, first, ret);
10546         name_len = strlen(name);
10547         ident = lookup(state, name, name_len);
10548         ftype->type_ident = ident;
10549         symbol(state, ident, &ident->sym_ident, def, ftype);
10550         
10551         state->file = file.prev;
10552         state->function = 0;
10553         state->main_function = 0;
10554
10555         if (!state->functions) {
10556                 state->functions = def;
10557         } else {
10558                 insert_triple(state, state->functions, def);
10559         }
10560         if (state->compiler->debug & DEBUG_INLINE) {
10561                 FILE *fp = state->dbgout;
10562                 fprintf(fp, "\n");
10563                 loc(fp, state, 0);
10564                 fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
10565                 display_func(state, fp, def);
10566                 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
10567         }
10568 }
10569
10570 static struct type *partial_struct(struct compile_state *state,
10571         const char *field_name, struct type *type, struct type *rest)
10572 {
10573         struct hash_entry *field_ident;
10574         struct type *result;
10575         int field_name_len;
10576
10577         field_name_len = strlen(field_name);
10578         field_ident = lookup(state, field_name, field_name_len);
10579
10580         result = clone_type(0, type);
10581         result->field_ident = field_ident;
10582
10583         if (rest) {
10584                 result = new_type(TYPE_PRODUCT, result, rest);
10585         }
10586         return result;
10587 }
10588
10589 static struct type *register_builtin_type(struct compile_state *state,
10590         const char *name, struct type *type)
10591 {
10592         struct hash_entry *ident;
10593         int name_len;
10594
10595         name_len = strlen(name);
10596         ident = lookup(state, name, name_len);
10597         
10598         if ((type->type & TYPE_MASK) == TYPE_PRODUCT) {
10599                 ulong_t elements = 0;
10600                 struct type *field;
10601                 type = new_type(TYPE_STRUCT, type, 0);
10602                 field = type->left;
10603                 while((field->type & TYPE_MASK) == TYPE_PRODUCT) {
10604                         elements++;
10605                         field = field->right;
10606                 }
10607                 elements++;
10608                 symbol(state, ident, &ident->sym_tag, 0, type);
10609                 type->type_ident = ident;
10610                 type->elements = elements;
10611         }
10612         symbol(state, ident, &ident->sym_ident, 0, type);
10613         ident->tok = TOK_TYPE_NAME;
10614         return type;
10615 }
10616
10617
10618 static void register_builtins(struct compile_state *state)
10619 {
10620         struct type *div_type, *ldiv_type;
10621         struct type *udiv_type, *uldiv_type;
10622         struct type *msr_type;
10623
10624         div_type = register_builtin_type(state, "__builtin_div_t",
10625                 partial_struct(state, "quot", &int_type,
10626                 partial_struct(state, "rem",  &int_type, 0)));
10627         ldiv_type = register_builtin_type(state, "__builtin_ldiv_t",
10628                 partial_struct(state, "quot", &long_type,
10629                 partial_struct(state, "rem",  &long_type, 0)));
10630         udiv_type = register_builtin_type(state, "__builtin_udiv_t",
10631                 partial_struct(state, "quot", &uint_type,
10632                 partial_struct(state, "rem",  &uint_type, 0)));
10633         uldiv_type = register_builtin_type(state, "__builtin_uldiv_t",
10634                 partial_struct(state, "quot", &ulong_type,
10635                 partial_struct(state, "rem",  &ulong_type, 0)));
10636
10637         register_builtin_function(state, "__builtin_div",   OP_SDIVT, div_type,
10638                 &int_type, &int_type);
10639         register_builtin_function(state, "__builtin_ldiv",  OP_SDIVT, ldiv_type,
10640                 &long_type, &long_type);
10641         register_builtin_function(state, "__builtin_udiv",  OP_UDIVT, udiv_type,
10642                 &uint_type, &uint_type);
10643         register_builtin_function(state, "__builtin_uldiv", OP_UDIVT, uldiv_type,
10644                 &ulong_type, &ulong_type);
10645
10646         register_builtin_function(state, "__builtin_inb", OP_INB, &uchar_type, 
10647                 &ushort_type);
10648         register_builtin_function(state, "__builtin_inw", OP_INW, &ushort_type,
10649                 &ushort_type);
10650         register_builtin_function(state, "__builtin_inl", OP_INL, &uint_type,   
10651                 &ushort_type);
10652
10653         register_builtin_function(state, "__builtin_outb", OP_OUTB, &void_type, 
10654                 &uchar_type, &ushort_type);
10655         register_builtin_function(state, "__builtin_outw", OP_OUTW, &void_type, 
10656                 &ushort_type, &ushort_type);
10657         register_builtin_function(state, "__builtin_outl", OP_OUTL, &void_type, 
10658                 &uint_type, &ushort_type);
10659         
10660         register_builtin_function(state, "__builtin_bsf", OP_BSF, &int_type, 
10661                 &int_type);
10662         register_builtin_function(state, "__builtin_bsr", OP_BSR, &int_type, 
10663                 &int_type);
10664
10665         msr_type = register_builtin_type(state, "__builtin_msr_t",
10666                 partial_struct(state, "lo", &ulong_type,
10667                 partial_struct(state, "hi", &ulong_type, 0)));
10668
10669         register_builtin_function(state, "__builtin_rdmsr", OP_RDMSR, msr_type,
10670                 &ulong_type);
10671         register_builtin_function(state, "__builtin_wrmsr", OP_WRMSR, &void_type,
10672                 &ulong_type, &ulong_type, &ulong_type);
10673         
10674         register_builtin_function(state, "__builtin_hlt", OP_HLT, &void_type, 
10675                 &void_type);
10676 }
10677
10678 static struct type *declarator(
10679         struct compile_state *state, struct type *type, 
10680         struct hash_entry **ident, int need_ident);
10681 static void decl(struct compile_state *state, struct triple *first);
10682 static struct type *specifier_qualifier_list(struct compile_state *state);
10683 #if DEBUG_ROMCC_WARNING
10684 static int isdecl_specifier(int tok);
10685 #endif
10686 static struct type *decl_specifiers(struct compile_state *state);
10687 static int istype(int tok);
10688 static struct triple *expr(struct compile_state *state);
10689 static struct triple *assignment_expr(struct compile_state *state);
10690 static struct type *type_name(struct compile_state *state);
10691 static void statement(struct compile_state *state, struct triple *first);
10692
10693 static struct triple *call_expr(
10694         struct compile_state *state, struct triple *func)
10695 {
10696         struct triple *def;
10697         struct type *param, *type;
10698         ulong_t pvals, index;
10699
10700         if ((func->type->type & TYPE_MASK) != TYPE_FUNCTION) {
10701                 error(state, 0, "Called object is not a function");
10702         }
10703         if (func->op != OP_LIST) {
10704                 internal_error(state, 0, "improper function");
10705         }
10706         eat(state, TOK_LPAREN);
10707         /* Find the return type without any specifiers */
10708         type = clone_type(0, func->type->left);
10709         /* Count the number of rhs entries for OP_FCALL */
10710         param = func->type->right;
10711         pvals = 0;
10712         while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
10713                 pvals++;
10714                 param = param->right;
10715         }
10716         if ((param->type & TYPE_MASK) != TYPE_VOID) {
10717                 pvals++;
10718         }
10719         def = new_triple(state, OP_FCALL, type, -1, pvals);
10720         MISC(def, 0) = func;
10721
10722         param = func->type->right;
10723         for(index = 0; index < pvals; index++) {
10724                 struct triple *val;
10725                 struct type *arg_type;
10726                 val = read_expr(state, assignment_expr(state));
10727                 arg_type = param;
10728                 if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
10729                         arg_type = param->left;
10730                 }
10731                 write_compatible(state, arg_type, val->type);
10732                 RHS(def, index) = val;
10733                 if (index != (pvals - 1)) {
10734                         eat(state, TOK_COMMA);
10735                         param = param->right;
10736                 }
10737         }
10738         eat(state, TOK_RPAREN);
10739         return def;
10740 }
10741
10742
10743 static struct triple *character_constant(struct compile_state *state)
10744 {
10745         struct triple *def;
10746         struct token *tk;
10747         const signed char *str, *end;
10748         int c;
10749         int str_len;
10750         tk = eat(state, TOK_LIT_CHAR);
10751         str = (signed char *)tk->val.str + 1;
10752         str_len = tk->str_len - 2;
10753         if (str_len <= 0) {
10754                 error(state, 0, "empty character constant");
10755         }
10756         end = str + str_len;
10757         c = char_value(state, &str, end);
10758         if (str != end) {
10759                 error(state, 0, "multibyte character constant not supported");
10760         }
10761         def = int_const(state, &char_type, (ulong_t)((long_t)c));
10762         return def;
10763 }
10764
10765 static struct triple *string_constant(struct compile_state *state)
10766 {
10767         struct triple *def;
10768         struct token *tk;
10769         struct type *type;
10770         const signed char *str, *end;
10771         signed char *buf, *ptr;
10772         int str_len;
10773
10774         buf = 0;
10775         type = new_type(TYPE_ARRAY, &char_type, 0);
10776         type->elements = 0;
10777         /* The while loop handles string concatenation */
10778         do {
10779                 tk = eat(state, TOK_LIT_STRING);
10780                 str = (signed char *)tk->val.str + 1;
10781                 str_len = tk->str_len - 2;
10782                 if (str_len < 0) {
10783                         error(state, 0, "negative string constant length");
10784                 }
10785                 /* ignore empty string tokens */
10786                 if (strcmp("\"", str) == 0)
10787                         continue;
10788                 end = str + str_len;
10789                 ptr = buf;
10790                 buf = xmalloc(type->elements + str_len + 1, "string_constant");
10791                 memcpy(buf, ptr, type->elements);
10792                 ptr = buf + type->elements;
10793                 do {
10794                         *ptr++ = char_value(state, &str, end);
10795                 } while(str < end);
10796                 type->elements = ptr - buf;
10797         } while(peek(state) == TOK_LIT_STRING);
10798         *ptr = '\0';
10799         type->elements += 1;
10800         def = triple(state, OP_BLOBCONST, type, 0, 0);
10801         def->u.blob = buf;
10802
10803         return def;
10804 }
10805
10806
10807 static struct triple *integer_constant(struct compile_state *state)
10808 {
10809         struct triple *def;
10810         unsigned long val;
10811         struct token *tk;
10812         char *end;
10813         int u, l, decimal;
10814         struct type *type;
10815
10816         tk = eat(state, TOK_LIT_INT);
10817         errno = 0;
10818         decimal = (tk->val.str[0] != '0');
10819         val = strtoul(tk->val.str, &end, 0);
10820         if ((val > ULONG_T_MAX) || ((val == ULONG_MAX) && (errno == ERANGE))) {
10821                 error(state, 0, "Integer constant to large");
10822         }
10823         u = l = 0;
10824         if ((*end == 'u') || (*end == 'U')) {
10825                 u = 1;
10826                         end++;
10827         }
10828         if ((*end == 'l') || (*end == 'L')) {
10829                 l = 1;
10830                 end++;
10831         }
10832         if ((*end == 'u') || (*end == 'U')) {
10833                 u = 1;
10834                 end++;
10835         }
10836         if (*end) {
10837                 error(state, 0, "Junk at end of integer constant");
10838         }
10839         if (u && l)  {
10840                 type = &ulong_type;
10841         }
10842         else if (l) {
10843                 type = &long_type;
10844                 if (!decimal && (val > LONG_T_MAX)) {
10845                         type = &ulong_type;
10846                 }
10847         }
10848         else if (u) {
10849                 type = &uint_type;
10850                 if (val > UINT_T_MAX) {
10851                         type = &ulong_type;
10852                 }
10853         }
10854         else {
10855                 type = &int_type;
10856                 if (!decimal && (val > INT_T_MAX) && (val <= UINT_T_MAX)) {
10857                         type = &uint_type;
10858                 }
10859                 else if (!decimal && (val > LONG_T_MAX)) {
10860                         type = &ulong_type;
10861                 }
10862                 else if (val > INT_T_MAX) {
10863                         type = &long_type;
10864                 }
10865         }
10866         def = int_const(state, type, val);
10867         return def;
10868 }
10869
10870 static struct triple *primary_expr(struct compile_state *state)
10871 {
10872         struct triple *def;
10873         int tok;
10874         tok = peek(state);
10875         switch(tok) {
10876         case TOK_IDENT:
10877         {
10878                 struct hash_entry *ident;
10879                 /* Here ident is either:
10880                  * a varable name
10881                  * a function name
10882                  */
10883                 ident = eat(state, TOK_IDENT)->ident;
10884                 if (!ident->sym_ident) {
10885                         error(state, 0, "%s undeclared", ident->name);
10886                 }
10887                 def = ident->sym_ident->def;
10888                 break;
10889         }
10890         case TOK_ENUM_CONST:
10891         {
10892                 struct hash_entry *ident;
10893                 /* Here ident is an enumeration constant */
10894                 ident = eat(state, TOK_ENUM_CONST)->ident;
10895                 if (!ident->sym_ident) {
10896                         error(state, 0, "%s undeclared", ident->name);
10897                 }
10898                 def = ident->sym_ident->def;
10899                 break;
10900         }
10901         case TOK_MIDENT:
10902         {
10903                 struct hash_entry *ident;
10904                 ident = eat(state, TOK_MIDENT)->ident;
10905                 warning(state, 0, "Replacing undefined macro: %s with 0",
10906                         ident->name);
10907                 def = int_const(state, &int_type, 0);
10908                 break;
10909         }
10910         case TOK_LPAREN:
10911                 eat(state, TOK_LPAREN);
10912                 def = expr(state);
10913                 eat(state, TOK_RPAREN);
10914                 break;
10915         case TOK_LIT_INT:
10916                 def = integer_constant(state);
10917                 break;
10918         case TOK_LIT_FLOAT:
10919                 eat(state, TOK_LIT_FLOAT);
10920                 error(state, 0, "Floating point constants not supported");
10921                 def = 0;
10922                 FINISHME();
10923                 break;
10924         case TOK_LIT_CHAR:
10925                 def = character_constant(state);
10926                 break;
10927         case TOK_LIT_STRING:
10928                 def = string_constant(state);
10929                 break;
10930         default:
10931                 def = 0;
10932                 error(state, 0, "Unexpected token: %s\n", tokens[tok]);
10933         }
10934         return def;
10935 }
10936
10937 static struct triple *postfix_expr(struct compile_state *state)
10938 {
10939         struct triple *def;
10940         int postfix;
10941         def = primary_expr(state);
10942         do {
10943                 struct triple *left;
10944                 int tok;
10945                 postfix = 1;
10946                 left = def;
10947                 switch((tok = peek(state))) {
10948                 case TOK_LBRACKET:
10949                         eat(state, TOK_LBRACKET);
10950                         def = mk_subscript_expr(state, left, expr(state));
10951                         eat(state, TOK_RBRACKET);
10952                         break;
10953                 case TOK_LPAREN:
10954                         def = call_expr(state, def);
10955                         break;
10956                 case TOK_DOT:
10957                 {
10958                         struct hash_entry *field;
10959                         eat(state, TOK_DOT);
10960                         field = eat(state, TOK_IDENT)->ident;
10961                         def = deref_field(state, def, field);
10962                         break;
10963                 }
10964                 case TOK_ARROW:
10965                 {
10966                         struct hash_entry *field;
10967                         eat(state, TOK_ARROW);
10968                         field = eat(state, TOK_IDENT)->ident;
10969                         def = mk_deref_expr(state, read_expr(state, def));
10970                         def = deref_field(state, def, field);
10971                         break;
10972                 }
10973                 case TOK_PLUSPLUS:
10974                         eat(state, TOK_PLUSPLUS);
10975                         def = mk_post_inc_expr(state, left);
10976                         break;
10977                 case TOK_MINUSMINUS:
10978                         eat(state, TOK_MINUSMINUS);
10979                         def = mk_post_dec_expr(state, left);
10980                         break;
10981                 default:
10982                         postfix = 0;
10983                         break;
10984                 }
10985         } while(postfix);
10986         return def;
10987 }
10988
10989 static struct triple *cast_expr(struct compile_state *state);
10990
10991 static struct triple *unary_expr(struct compile_state *state)
10992 {
10993         struct triple *def, *right;
10994         int tok;
10995         switch((tok = peek(state))) {
10996         case TOK_PLUSPLUS:
10997                 eat(state, TOK_PLUSPLUS);
10998                 def = mk_pre_inc_expr(state, unary_expr(state));
10999                 break;
11000         case TOK_MINUSMINUS:
11001                 eat(state, TOK_MINUSMINUS);
11002                 def = mk_pre_dec_expr(state, unary_expr(state));
11003                 break;
11004         case TOK_AND:
11005                 eat(state, TOK_AND);
11006                 def = mk_addr_expr(state, cast_expr(state), 0);
11007                 break;
11008         case TOK_STAR:
11009                 eat(state, TOK_STAR);
11010                 def = mk_deref_expr(state, read_expr(state, cast_expr(state)));
11011                 break;
11012         case TOK_PLUS:
11013                 eat(state, TOK_PLUS);
11014                 right = read_expr(state, cast_expr(state));
11015                 arithmetic(state, right);
11016                 def = integral_promotion(state, right);
11017                 break;
11018         case TOK_MINUS:
11019                 eat(state, TOK_MINUS);
11020                 right = read_expr(state, cast_expr(state));
11021                 arithmetic(state, right);
11022                 def = integral_promotion(state, right);
11023                 def = triple(state, OP_NEG, def->type, def, 0);
11024                 break;
11025         case TOK_TILDE:
11026                 eat(state, TOK_TILDE);
11027                 right = read_expr(state, cast_expr(state));
11028                 integral(state, right);
11029                 def = integral_promotion(state, right);
11030                 def = triple(state, OP_INVERT, def->type, def, 0);
11031                 break;
11032         case TOK_BANG:
11033                 eat(state, TOK_BANG);
11034                 right = read_expr(state, cast_expr(state));
11035                 bool(state, right);
11036                 def = lfalse_expr(state, right);
11037                 break;
11038         case TOK_SIZEOF:
11039         {
11040                 struct type *type;
11041                 int tok1, tok2;
11042                 eat(state, TOK_SIZEOF);
11043                 tok1 = peek(state);
11044                 tok2 = peek2(state);
11045                 if ((tok1 == TOK_LPAREN) && istype(tok2)) {
11046                         eat(state, TOK_LPAREN);
11047                         type = type_name(state);
11048                         eat(state, TOK_RPAREN);
11049                 }
11050                 else {
11051                         struct triple *expr;
11052                         expr = unary_expr(state);
11053                         type = expr->type;
11054                         release_expr(state, expr);
11055                 }
11056                 def = int_const(state, &ulong_type, size_of_in_bytes(state, type));
11057                 break;
11058         }
11059         case TOK_ALIGNOF:
11060         {
11061                 struct type *type;
11062                 int tok1, tok2;
11063                 eat(state, TOK_ALIGNOF);
11064                 tok1 = peek(state);
11065                 tok2 = peek2(state);
11066                 if ((tok1 == TOK_LPAREN) && istype(tok2)) {
11067                         eat(state, TOK_LPAREN);
11068                         type = type_name(state);
11069                         eat(state, TOK_RPAREN);
11070                 }
11071                 else {
11072                         struct triple *expr;
11073                         expr = unary_expr(state);
11074                         type = expr->type;
11075                         release_expr(state, expr);
11076                 }
11077                 def = int_const(state, &ulong_type, align_of_in_bytes(state, type));
11078                 break;
11079         }
11080         case TOK_MDEFINED:
11081         {
11082                 /* We only come here if we are called from the preprocessor */
11083                 struct hash_entry *ident;
11084                 int parens;
11085                 eat(state, TOK_MDEFINED);
11086                 parens = 0;
11087                 if (pp_peek(state) == TOK_LPAREN) {
11088                         pp_eat(state, TOK_LPAREN);
11089                         parens = 1;
11090                 }
11091                 ident = pp_eat(state, TOK_MIDENT)->ident;
11092                 if (parens) {
11093                         eat(state, TOK_RPAREN);
11094                 }
11095                 def = int_const(state, &int_type, ident->sym_define != 0);
11096                 break;
11097         }
11098         default:
11099                 def = postfix_expr(state);
11100                 break;
11101         }
11102         return def;
11103 }
11104
11105 static struct triple *cast_expr(struct compile_state *state)
11106 {
11107         struct triple *def;
11108         int tok1, tok2;
11109         tok1 = peek(state);
11110         tok2 = peek2(state);
11111         if ((tok1 == TOK_LPAREN) && istype(tok2)) {
11112                 struct type *type;
11113                 eat(state, TOK_LPAREN);
11114                 type = type_name(state);
11115                 eat(state, TOK_RPAREN);
11116                 def = mk_cast_expr(state, type, cast_expr(state));
11117         }
11118         else {
11119                 def = unary_expr(state);
11120         }
11121         return def;
11122 }
11123
11124 static struct triple *mult_expr(struct compile_state *state)
11125 {
11126         struct triple *def;
11127         int done;
11128         def = cast_expr(state);
11129         do {
11130                 struct triple *left, *right;
11131                 struct type *result_type;
11132                 int tok, op, sign;
11133                 done = 0;
11134                 tok = peek(state);
11135                 switch(tok) {
11136                 case TOK_STAR:
11137                 case TOK_DIV:
11138                 case TOK_MOD:
11139                         left = read_expr(state, def);
11140                         arithmetic(state, left);
11141
11142                         eat(state, tok);
11143
11144                         right = read_expr(state, cast_expr(state));
11145                         arithmetic(state, right);
11146
11147                         result_type = arithmetic_result(state, left, right);
11148                         sign = is_signed(result_type);
11149                         op = -1;
11150                         switch(tok) {
11151                         case TOK_STAR: op = sign? OP_SMUL : OP_UMUL; break;
11152                         case TOK_DIV:  op = sign? OP_SDIV : OP_UDIV; break;
11153                         case TOK_MOD:  op = sign? OP_SMOD : OP_UMOD; break;
11154                         }
11155                         def = triple(state, op, result_type, left, right);
11156                         break;
11157                 default:
11158                         done = 1;
11159                         break;
11160                 }
11161         } while(!done);
11162         return def;
11163 }
11164
11165 static struct triple *add_expr(struct compile_state *state)
11166 {
11167         struct triple *def;
11168         int done;
11169         def = mult_expr(state);
11170         do {
11171                 done = 0;
11172                 switch( peek(state)) {
11173                 case TOK_PLUS:
11174                         eat(state, TOK_PLUS);
11175                         def = mk_add_expr(state, def, mult_expr(state));
11176                         break;
11177                 case TOK_MINUS:
11178                         eat(state, TOK_MINUS);
11179                         def = mk_sub_expr(state, def, mult_expr(state));
11180                         break;
11181                 default:
11182                         done = 1;
11183                         break;
11184                 }
11185         } while(!done);
11186         return def;
11187 }
11188
11189 static struct triple *shift_expr(struct compile_state *state)
11190 {
11191         struct triple *def;
11192         int done;
11193         def = add_expr(state);
11194         do {
11195                 struct triple *left, *right;
11196                 int tok, op;
11197                 done = 0;
11198                 switch((tok = peek(state))) {
11199                 case TOK_SL:
11200                 case TOK_SR:
11201                         left = read_expr(state, def);
11202                         integral(state, left);
11203                         left = integral_promotion(state, left);
11204
11205                         eat(state, tok);
11206
11207                         right = read_expr(state, add_expr(state));
11208                         integral(state, right);
11209                         right = integral_promotion(state, right);
11210                         
11211                         op = (tok == TOK_SL)? OP_SL : 
11212                                 is_signed(left->type)? OP_SSR: OP_USR;
11213
11214                         def = triple(state, op, left->type, left, right);
11215                         break;
11216                 default:
11217                         done = 1;
11218                         break;
11219                 }
11220         } while(!done);
11221         return def;
11222 }
11223
11224 static struct triple *relational_expr(struct compile_state *state)
11225 {
11226 #if DEBUG_ROMCC_WARNINGS
11227 #warning "Extend relational exprs to work on more than arithmetic types"
11228 #endif
11229         struct triple *def;
11230         int done;
11231         def = shift_expr(state);
11232         do {
11233                 struct triple *left, *right;
11234                 struct type *arg_type;
11235                 int tok, op, sign;
11236                 done = 0;
11237                 switch((tok = peek(state))) {
11238                 case TOK_LESS:
11239                 case TOK_MORE:
11240                 case TOK_LESSEQ:
11241                 case TOK_MOREEQ:
11242                         left = read_expr(state, def);
11243                         arithmetic(state, left);
11244
11245                         eat(state, tok);
11246
11247                         right = read_expr(state, shift_expr(state));
11248                         arithmetic(state, right);
11249
11250                         arg_type = arithmetic_result(state, left, right);
11251                         sign = is_signed(arg_type);
11252                         op = -1;
11253                         switch(tok) {
11254                         case TOK_LESS:   op = sign? OP_SLESS : OP_ULESS; break;
11255                         case TOK_MORE:   op = sign? OP_SMORE : OP_UMORE; break;
11256                         case TOK_LESSEQ: op = sign? OP_SLESSEQ : OP_ULESSEQ; break;
11257                         case TOK_MOREEQ: op = sign? OP_SMOREEQ : OP_UMOREEQ; break;
11258                         }
11259                         def = triple(state, op, &int_type, left, right);
11260                         break;
11261                 default:
11262                         done = 1;
11263                         break;
11264                 }
11265         } while(!done);
11266         return def;
11267 }
11268
11269 static struct triple *equality_expr(struct compile_state *state)
11270 {
11271 #if DEBUG_ROMCC_WARNINGS
11272 #warning "Extend equality exprs to work on more than arithmetic types"
11273 #endif
11274         struct triple *def;
11275         int done;
11276         def = relational_expr(state);
11277         do {
11278                 struct triple *left, *right;
11279                 int tok, op;
11280                 done = 0;
11281                 switch((tok = peek(state))) {
11282                 case TOK_EQEQ:
11283                 case TOK_NOTEQ:
11284                         left = read_expr(state, def);
11285                         arithmetic(state, left);
11286                         eat(state, tok);
11287                         right = read_expr(state, relational_expr(state));
11288                         arithmetic(state, right);
11289                         op = (tok == TOK_EQEQ) ? OP_EQ: OP_NOTEQ;
11290                         def = triple(state, op, &int_type, left, right);
11291                         break;
11292                 default:
11293                         done = 1;
11294                         break;
11295                 }
11296         } while(!done);
11297         return def;
11298 }
11299
11300 static struct triple *and_expr(struct compile_state *state)
11301 {
11302         struct triple *def;
11303         def = equality_expr(state);
11304         while(peek(state) == TOK_AND) {
11305                 struct triple *left, *right;
11306                 struct type *result_type;
11307                 left = read_expr(state, def);
11308                 integral(state, left);
11309                 eat(state, TOK_AND);
11310                 right = read_expr(state, equality_expr(state));
11311                 integral(state, right);
11312                 result_type = arithmetic_result(state, left, right);
11313                 def = triple(state, OP_AND, result_type, left, right);
11314         }
11315         return def;
11316 }
11317
11318 static struct triple *xor_expr(struct compile_state *state)
11319 {
11320         struct triple *def;
11321         def = and_expr(state);
11322         while(peek(state) == TOK_XOR) {
11323                 struct triple *left, *right;
11324                 struct type *result_type;
11325                 left = read_expr(state, def);
11326                 integral(state, left);
11327                 eat(state, TOK_XOR);
11328                 right = read_expr(state, and_expr(state));
11329                 integral(state, right);
11330                 result_type = arithmetic_result(state, left, right);
11331                 def = triple(state, OP_XOR, result_type, left, right);
11332         }
11333         return def;
11334 }
11335
11336 static struct triple *or_expr(struct compile_state *state)
11337 {
11338         struct triple *def;
11339         def = xor_expr(state);
11340         while(peek(state) == TOK_OR) {
11341                 struct triple *left, *right;
11342                 struct type *result_type;
11343                 left = read_expr(state, def);
11344                 integral(state, left);
11345                 eat(state, TOK_OR);
11346                 right = read_expr(state, xor_expr(state));
11347                 integral(state, right);
11348                 result_type = arithmetic_result(state, left, right);
11349                 def = triple(state, OP_OR, result_type, left, right);
11350         }
11351         return def;
11352 }
11353
11354 static struct triple *land_expr(struct compile_state *state)
11355 {
11356         struct triple *def;
11357         def = or_expr(state);
11358         while(peek(state) == TOK_LOGAND) {
11359                 struct triple *left, *right;
11360                 left = read_expr(state, def);
11361                 bool(state, left);
11362                 eat(state, TOK_LOGAND);
11363                 right = read_expr(state, or_expr(state));
11364                 bool(state, right);
11365
11366                 def = mkland_expr(state,
11367                         ltrue_expr(state, left),
11368                         ltrue_expr(state, right));
11369         }
11370         return def;
11371 }
11372
11373 static struct triple *lor_expr(struct compile_state *state)
11374 {
11375         struct triple *def;
11376         def = land_expr(state);
11377         while(peek(state) == TOK_LOGOR) {
11378                 struct triple *left, *right;
11379                 left = read_expr(state, def);
11380                 bool(state, left);
11381                 eat(state, TOK_LOGOR);
11382                 right = read_expr(state, land_expr(state));
11383                 bool(state, right);
11384
11385                 def = mklor_expr(state, 
11386                         ltrue_expr(state, left),
11387                         ltrue_expr(state, right));
11388         }
11389         return def;
11390 }
11391
11392 static struct triple *conditional_expr(struct compile_state *state)
11393 {
11394         struct triple *def;
11395         def = lor_expr(state);
11396         if (peek(state) == TOK_QUEST) {
11397                 struct triple *test, *left, *right;
11398                 bool(state, def);
11399                 test = ltrue_expr(state, read_expr(state, def));
11400                 eat(state, TOK_QUEST);
11401                 left = read_expr(state, expr(state));
11402                 eat(state, TOK_COLON);
11403                 right = read_expr(state, conditional_expr(state));
11404
11405                 def = mkcond_expr(state, test, left, right);
11406         }
11407         return def;
11408 }
11409
11410 struct cv_triple {
11411         struct triple *val;
11412         int id;
11413 };
11414
11415 static void set_cv(struct compile_state *state, struct cv_triple *cv,
11416         struct triple *dest, struct triple *val)
11417 {
11418         if (cv[dest->id].val) {
11419                 free_triple(state, cv[dest->id].val);
11420         }
11421         cv[dest->id].val = val;
11422 }
11423 static struct triple *get_cv(struct compile_state *state, struct cv_triple *cv,
11424         struct triple *src)
11425 {
11426         return cv[src->id].val;
11427 }
11428
11429 static struct triple *eval_const_expr(
11430         struct compile_state *state, struct triple *expr)
11431 {
11432         struct triple *def;
11433         if (is_const(expr)) {
11434                 def = expr;
11435         }
11436         else {
11437                 /* If we don't start out as a constant simplify into one */
11438                 struct triple *head, *ptr;
11439                 struct cv_triple *cv;
11440                 int i, count;
11441                 head = label(state); /* dummy initial triple */
11442                 flatten(state, head, expr);
11443                 count = 1;
11444                 for(ptr = head->next; ptr != head; ptr = ptr->next) {
11445                         count++;
11446                 }
11447                 cv = xcmalloc(sizeof(struct cv_triple)*count, "const value vector");
11448                 i = 1;
11449                 for(ptr = head->next; ptr != head; ptr = ptr->next) {
11450                         cv[i].val = 0;
11451                         cv[i].id  = ptr->id;
11452                         ptr->id   = i;
11453                         i++;
11454                 }
11455                 ptr = head->next;
11456                 do {
11457                         valid_ins(state, ptr);
11458                         if ((ptr->op == OP_PHI) || (ptr->op == OP_LIST)) {
11459                                 internal_error(state, ptr, 
11460                                         "unexpected %s in constant expression",
11461                                         tops(ptr->op));
11462                         }
11463                         else if (ptr->op == OP_LIST) {
11464                         }
11465                         else if (triple_is_structural(state, ptr)) {
11466                                 ptr = ptr->next;
11467                         }
11468                         else if (triple_is_ubranch(state, ptr)) {
11469                                 ptr = TARG(ptr, 0);
11470                         }
11471                         else if (triple_is_cbranch(state, ptr)) {
11472                                 struct triple *cond_val;
11473                                 cond_val = get_cv(state, cv, RHS(ptr, 0));
11474                                 if (!cond_val || !is_const(cond_val) || 
11475                                         (cond_val->op != OP_INTCONST)) 
11476                                 {
11477                                         internal_error(state, ptr, "bad branch condition");
11478                                 }
11479                                 if (cond_val->u.cval == 0) {
11480                                         ptr = ptr->next;
11481                                 } else {
11482                                         ptr = TARG(ptr, 0);
11483                                 }
11484                         }
11485                         else if (triple_is_branch(state, ptr)) {
11486                                 error(state, ptr, "bad branch type in constant expression");
11487                         }
11488                         else if (ptr->op == OP_WRITE) {
11489                                 struct triple *val;
11490                                 val = get_cv(state, cv, RHS(ptr, 0));
11491                                 
11492                                 set_cv(state, cv, MISC(ptr, 0), 
11493                                         copy_triple(state, val));
11494                                 set_cv(state, cv, ptr, 
11495                                         copy_triple(state, val));
11496                                 ptr = ptr->next;
11497                         }
11498                         else if (ptr->op == OP_READ) {
11499                                 set_cv(state, cv, ptr, 
11500                                         copy_triple(state, 
11501                                                 get_cv(state, cv, RHS(ptr, 0))));
11502                                 ptr = ptr->next;
11503                         }
11504                         else if (triple_is_pure(state, ptr, cv[ptr->id].id)) {
11505                                 struct triple *val, **rhs;
11506                                 val = copy_triple(state, ptr);
11507                                 rhs = triple_rhs(state, val, 0);
11508                                 for(; rhs; rhs = triple_rhs(state, val, rhs)) {
11509                                         if (!*rhs) {
11510                                                 internal_error(state, ptr, "Missing rhs");
11511                                         }
11512                                         *rhs = get_cv(state, cv, *rhs);
11513                                 }
11514                                 simplify(state, val);
11515                                 set_cv(state, cv, ptr, val);
11516                                 ptr = ptr->next;
11517                         }
11518                         else {
11519                                 error(state, ptr, "impure operation in constant expression");
11520                         }
11521                         
11522                 } while(ptr != head);
11523
11524                 /* Get the result value */
11525                 def = get_cv(state, cv, head->prev);
11526                 cv[head->prev->id].val = 0;
11527
11528                 /* Free the temporary values */
11529                 for(i = 0; i < count; i++) {
11530                         if (cv[i].val) {
11531                                 free_triple(state, cv[i].val);
11532                                 cv[i].val = 0;
11533                         }
11534                 }
11535                 xfree(cv);
11536                 /* Free the intermediate expressions */
11537                 while(head->next != head) {
11538                         release_triple(state, head->next);
11539                 }
11540                 free_triple(state, head);
11541         }
11542         if (!is_const(def)) {
11543                 error(state, expr, "Not a constant expression");
11544         }
11545         return def;
11546 }
11547
11548 static struct triple *constant_expr(struct compile_state *state)
11549 {
11550         return eval_const_expr(state, conditional_expr(state));
11551 }
11552
11553 static struct triple *assignment_expr(struct compile_state *state)
11554 {
11555         struct triple *def, *left, *right;
11556         int tok, op, sign;
11557         /* The C grammer in K&R shows assignment expressions
11558          * only taking unary expressions as input on their
11559          * left hand side.  But specifies the precedence of
11560          * assignemnt as the lowest operator except for comma.
11561          *
11562          * Allowing conditional expressions on the left hand side
11563          * of an assignement results in a grammar that accepts
11564          * a larger set of statements than standard C.   As long
11565          * as the subset of the grammar that is standard C behaves
11566          * correctly this should cause no problems.
11567          * 
11568          * For the extra token strings accepted by the grammar
11569          * none of them should produce a valid lvalue, so they
11570          * should not produce functioning programs.
11571          *
11572          * GCC has this bug as well, so surprises should be minimal.
11573          */
11574         def = conditional_expr(state);
11575         left = def;
11576         switch((tok = peek(state))) {
11577         case TOK_EQ:
11578                 lvalue(state, left);
11579                 eat(state, TOK_EQ);
11580                 def = write_expr(state, left, 
11581                         read_expr(state, assignment_expr(state)));
11582                 break;
11583         case TOK_TIMESEQ:
11584         case TOK_DIVEQ:
11585         case TOK_MODEQ:
11586                 lvalue(state, left);
11587                 arithmetic(state, left);
11588                 eat(state, tok);
11589                 right = read_expr(state, assignment_expr(state));
11590                 arithmetic(state, right);
11591
11592                 sign = is_signed(left->type);
11593                 op = -1;
11594                 switch(tok) {
11595                 case TOK_TIMESEQ: op = sign? OP_SMUL : OP_UMUL; break;
11596                 case TOK_DIVEQ:   op = sign? OP_SDIV : OP_UDIV; break;
11597                 case TOK_MODEQ:   op = sign? OP_SMOD : OP_UMOD; break;
11598                 }
11599                 def = write_expr(state, left,
11600                         triple(state, op, left->type, 
11601                                 read_expr(state, left), right));
11602                 break;
11603         case TOK_PLUSEQ:
11604                 lvalue(state, left);
11605                 eat(state, TOK_PLUSEQ);
11606                 def = write_expr(state, left,
11607                         mk_add_expr(state, left, assignment_expr(state)));
11608                 break;
11609         case TOK_MINUSEQ:
11610                 lvalue(state, left);
11611                 eat(state, TOK_MINUSEQ);
11612                 def = write_expr(state, left,
11613                         mk_sub_expr(state, left, assignment_expr(state)));
11614                 break;
11615         case TOK_SLEQ:
11616         case TOK_SREQ:
11617         case TOK_ANDEQ:
11618         case TOK_XOREQ:
11619         case TOK_OREQ:
11620                 lvalue(state, left);
11621                 integral(state, left);
11622                 eat(state, tok);
11623                 right = read_expr(state, assignment_expr(state));
11624                 integral(state, right);
11625                 right = integral_promotion(state, right);
11626                 sign = is_signed(left->type);
11627                 op = -1;
11628                 switch(tok) {
11629                 case TOK_SLEQ:  op = OP_SL; break;
11630                 case TOK_SREQ:  op = sign? OP_SSR: OP_USR; break;
11631                 case TOK_ANDEQ: op = OP_AND; break;
11632                 case TOK_XOREQ: op = OP_XOR; break;
11633                 case TOK_OREQ:  op = OP_OR; break;
11634                 }
11635                 def = write_expr(state, left,
11636                         triple(state, op, left->type, 
11637                                 read_expr(state, left), right));
11638                 break;
11639         }
11640         return def;
11641 }
11642
11643 static struct triple *expr(struct compile_state *state)
11644 {
11645         struct triple *def;
11646         def = assignment_expr(state);
11647         while(peek(state) == TOK_COMMA) {
11648                 eat(state, TOK_COMMA);
11649                 def = mkprog(state, def, assignment_expr(state), 0UL);
11650         }
11651         return def;
11652 }
11653
11654 static void expr_statement(struct compile_state *state, struct triple *first)
11655 {
11656         if (peek(state) != TOK_SEMI) {
11657                 /* lvalue conversions always apply except when certian operators
11658                  * are applied.  I apply the lvalue conversions here
11659                  * as I know no more operators will be applied.
11660                  */
11661                 flatten(state, first, lvalue_conversion(state, expr(state)));
11662         }
11663         eat(state, TOK_SEMI);
11664 }
11665
11666 static void if_statement(struct compile_state *state, struct triple *first)
11667 {
11668         struct triple *test, *jmp1, *jmp2, *middle, *end;
11669
11670         jmp1 = jmp2 = middle = 0;
11671         eat(state, TOK_IF);
11672         eat(state, TOK_LPAREN);
11673         test = expr(state);
11674         bool(state, test);
11675         /* Cleanup and invert the test */
11676         test = lfalse_expr(state, read_expr(state, test));
11677         eat(state, TOK_RPAREN);
11678         /* Generate the needed pieces */
11679         middle = label(state);
11680         jmp1 = branch(state, middle, test);
11681         /* Thread the pieces together */
11682         flatten(state, first, test);
11683         flatten(state, first, jmp1);
11684         flatten(state, first, label(state));
11685         statement(state, first);
11686         if (peek(state) == TOK_ELSE) {
11687                 eat(state, TOK_ELSE);
11688                 /* Generate the rest of the pieces */
11689                 end = label(state);
11690                 jmp2 = branch(state, end, 0);
11691                 /* Thread them together */
11692                 flatten(state, first, jmp2);
11693                 flatten(state, first, middle);
11694                 statement(state, first);
11695                 flatten(state, first, end);
11696         }
11697         else {
11698                 flatten(state, first, middle);
11699         }
11700 }
11701
11702 static void for_statement(struct compile_state *state, struct triple *first)
11703 {
11704         struct triple *head, *test, *tail, *jmp1, *jmp2, *end;
11705         struct triple *label1, *label2, *label3;
11706         struct hash_entry *ident;
11707
11708         eat(state, TOK_FOR);
11709         eat(state, TOK_LPAREN);
11710         head = test = tail = jmp1 = jmp2 = 0;
11711         if (peek(state) != TOK_SEMI) {
11712                 head = expr(state);
11713         } 
11714         eat(state, TOK_SEMI);
11715         if (peek(state) != TOK_SEMI) {
11716                 test = expr(state);
11717                 bool(state, test);
11718                 test = ltrue_expr(state, read_expr(state, test));
11719         }
11720         eat(state, TOK_SEMI);
11721         if (peek(state) != TOK_RPAREN) {
11722                 tail = expr(state);
11723         }
11724         eat(state, TOK_RPAREN);
11725         /* Generate the needed pieces */
11726         label1 = label(state);
11727         label2 = label(state);
11728         label3 = label(state);
11729         if (test) {
11730                 jmp1 = branch(state, label3, 0);
11731                 jmp2 = branch(state, label1, test);
11732         }
11733         else {
11734                 jmp2 = branch(state, label1, 0);
11735         }
11736         end = label(state);
11737         /* Remember where break and continue go */
11738         start_scope(state);
11739         ident = state->i_break;
11740         symbol(state, ident, &ident->sym_ident, end, end->type);
11741         ident = state->i_continue;
11742         symbol(state, ident, &ident->sym_ident, label2, label2->type);
11743         /* Now include the body */
11744         flatten(state, first, head);
11745         flatten(state, first, jmp1);
11746         flatten(state, first, label1);
11747         statement(state, first);
11748         flatten(state, first, label2);
11749         flatten(state, first, tail);
11750         flatten(state, first, label3);
11751         flatten(state, first, test);
11752         flatten(state, first, jmp2);
11753         flatten(state, first, end);
11754         /* Cleanup the break/continue scope */
11755         end_scope(state);
11756 }
11757
11758 static void while_statement(struct compile_state *state, struct triple *first)
11759 {
11760         struct triple *label1, *test, *label2, *jmp1, *jmp2, *end;
11761         struct hash_entry *ident;
11762         eat(state, TOK_WHILE);
11763         eat(state, TOK_LPAREN);
11764         test = expr(state);
11765         bool(state, test);
11766         test = ltrue_expr(state, read_expr(state, test));
11767         eat(state, TOK_RPAREN);
11768         /* Generate the needed pieces */
11769         label1 = label(state);
11770         label2 = label(state);
11771         jmp1 = branch(state, label2, 0);
11772         jmp2 = branch(state, label1, test);
11773         end = label(state);
11774         /* Remember where break and continue go */
11775         start_scope(state);
11776         ident = state->i_break;
11777         symbol(state, ident, &ident->sym_ident, end, end->type);
11778         ident = state->i_continue;
11779         symbol(state, ident, &ident->sym_ident, label2, label2->type);
11780         /* Thread them together */
11781         flatten(state, first, jmp1);
11782         flatten(state, first, label1);
11783         statement(state, first);
11784         flatten(state, first, label2);
11785         flatten(state, first, test);
11786         flatten(state, first, jmp2);
11787         flatten(state, first, end);
11788         /* Cleanup the break/continue scope */
11789         end_scope(state);
11790 }
11791
11792 static void do_statement(struct compile_state *state, struct triple *first)
11793 {
11794         struct triple *label1, *label2, *test, *end;
11795         struct hash_entry *ident;
11796         eat(state, TOK_DO);
11797         /* Generate the needed pieces */
11798         label1 = label(state);
11799         label2 = label(state);
11800         end = label(state);
11801         /* Remember where break and continue go */
11802         start_scope(state);
11803         ident = state->i_break;
11804         symbol(state, ident, &ident->sym_ident, end, end->type);
11805         ident = state->i_continue;
11806         symbol(state, ident, &ident->sym_ident, label2, label2->type);
11807         /* Now include the body */
11808         flatten(state, first, label1);
11809         statement(state, first);
11810         /* Cleanup the break/continue scope */
11811         end_scope(state);
11812         /* Eat the rest of the loop */
11813         eat(state, TOK_WHILE);
11814         eat(state, TOK_LPAREN);
11815         test = read_expr(state, expr(state));
11816         bool(state, test);
11817         eat(state, TOK_RPAREN);
11818         eat(state, TOK_SEMI);
11819         /* Thread the pieces together */
11820         test = ltrue_expr(state, test);
11821         flatten(state, first, label2);
11822         flatten(state, first, test);
11823         flatten(state, first, branch(state, label1, test));
11824         flatten(state, first, end);
11825 }
11826
11827
11828 static void return_statement(struct compile_state *state, struct triple *first)
11829 {
11830         struct triple *jmp, *mv, *dest, *var, *val;
11831         int last;
11832         eat(state, TOK_RETURN);
11833
11834 #if DEBUG_ROMCC_WARNINGS
11835 #warning "FIXME implement a more general excess branch elimination"
11836 #endif
11837         val = 0;
11838         /* If we have a return value do some more work */
11839         if (peek(state) != TOK_SEMI) {
11840                 val = read_expr(state, expr(state));
11841         }
11842         eat(state, TOK_SEMI);
11843
11844         /* See if this last statement in a function */
11845         last = ((peek(state) == TOK_RBRACE) && 
11846                 (state->scope_depth == GLOBAL_SCOPE_DEPTH +2));
11847
11848         /* Find the return variable */
11849         var = fresult(state, state->main_function);
11850
11851         /* Find the return destination */
11852         dest = state->i_return->sym_ident->def;
11853         mv = jmp = 0;
11854         /* If needed generate a jump instruction */
11855         if (!last) {
11856                 jmp = branch(state, dest, 0);
11857         }
11858         /* If needed generate an assignment instruction */
11859         if (val) {
11860                 mv = write_expr(state, deref_index(state, var, 1), val);
11861         }
11862         /* Now put the code together */
11863         if (mv) {
11864                 flatten(state, first, mv);
11865                 flatten(state, first, jmp);
11866         }
11867         else if (jmp) {
11868                 flatten(state, first, jmp);
11869         }
11870 }
11871
11872 static void break_statement(struct compile_state *state, struct triple *first)
11873 {
11874         struct triple *dest;
11875         eat(state, TOK_BREAK);
11876         eat(state, TOK_SEMI);
11877         if (!state->i_break->sym_ident) {
11878                 error(state, 0, "break statement not within loop or switch");
11879         }
11880         dest = state->i_break->sym_ident->def;
11881         flatten(state, first, branch(state, dest, 0));
11882 }
11883
11884 static void continue_statement(struct compile_state *state, struct triple *first)
11885 {
11886         struct triple *dest;
11887         eat(state, TOK_CONTINUE);
11888         eat(state, TOK_SEMI);
11889         if (!state->i_continue->sym_ident) {
11890                 error(state, 0, "continue statement outside of a loop");
11891         }
11892         dest = state->i_continue->sym_ident->def;
11893         flatten(state, first, branch(state, dest, 0));
11894 }
11895
11896 static void goto_statement(struct compile_state *state, struct triple *first)
11897 {
11898         struct hash_entry *ident;
11899         eat(state, TOK_GOTO);
11900         ident = eat(state, TOK_IDENT)->ident;
11901         if (!ident->sym_label) {
11902                 /* If this is a forward branch allocate the label now,
11903                  * it will be flattend in the appropriate location later.
11904                  */
11905                 struct triple *ins;
11906                 ins = label(state);
11907                 label_symbol(state, ident, ins, FUNCTION_SCOPE_DEPTH);
11908         }
11909         eat(state, TOK_SEMI);
11910
11911         flatten(state, first, branch(state, ident->sym_label->def, 0));
11912 }
11913
11914 static void labeled_statement(struct compile_state *state, struct triple *first)
11915 {
11916         struct triple *ins;
11917         struct hash_entry *ident;
11918
11919         ident = eat(state, TOK_IDENT)->ident;
11920         if (ident->sym_label && ident->sym_label->def) {
11921                 ins = ident->sym_label->def;
11922                 put_occurance(ins->occurance);
11923                 ins->occurance = new_occurance(state);
11924         }
11925         else {
11926                 ins = label(state);
11927                 label_symbol(state, ident, ins, FUNCTION_SCOPE_DEPTH);
11928         }
11929         if (ins->id & TRIPLE_FLAG_FLATTENED) {
11930                 error(state, 0, "label %s already defined", ident->name);
11931         }
11932         flatten(state, first, ins);
11933
11934         eat(state, TOK_COLON);
11935         statement(state, first);
11936 }
11937
11938 static void switch_statement(struct compile_state *state, struct triple *first)
11939 {
11940         struct triple *value, *top, *end, *dbranch;
11941         struct hash_entry *ident;
11942
11943         /* See if we have a valid switch statement */
11944         eat(state, TOK_SWITCH);
11945         eat(state, TOK_LPAREN);
11946         value = expr(state);
11947         integral(state, value);
11948         value = read_expr(state, value);
11949         eat(state, TOK_RPAREN);
11950         /* Generate the needed pieces */
11951         top = label(state);
11952         end = label(state);
11953         dbranch = branch(state, end, 0);
11954         /* Remember where case branches and break goes */
11955         start_scope(state);
11956         ident = state->i_switch;
11957         symbol(state, ident, &ident->sym_ident, value, value->type);
11958         ident = state->i_case;
11959         symbol(state, ident, &ident->sym_ident, top, top->type);
11960         ident = state->i_break;
11961         symbol(state, ident, &ident->sym_ident, end, end->type);
11962         ident = state->i_default;
11963         symbol(state, ident, &ident->sym_ident, dbranch, dbranch->type);
11964         /* Thread them together */
11965         flatten(state, first, value);
11966         flatten(state, first, top);
11967         flatten(state, first, dbranch);
11968         statement(state, first);
11969         flatten(state, first, end);
11970         /* Cleanup the switch scope */
11971         end_scope(state);
11972 }
11973
11974 static void case_statement(struct compile_state *state, struct triple *first)
11975 {
11976         struct triple *cvalue, *dest, *test, *jmp;
11977         struct triple *ptr, *value, *top, *dbranch;
11978
11979         /* See if w have a valid case statement */
11980         eat(state, TOK_CASE);
11981         cvalue = constant_expr(state);
11982         integral(state, cvalue);
11983         if (cvalue->op != OP_INTCONST) {
11984                 error(state, 0, "integer constant expected");
11985         }
11986         eat(state, TOK_COLON);
11987         if (!state->i_case->sym_ident) {
11988                 error(state, 0, "case statement not within a switch");
11989         }
11990
11991         /* Lookup the interesting pieces */
11992         top = state->i_case->sym_ident->def;
11993         value = state->i_switch->sym_ident->def;
11994         dbranch = state->i_default->sym_ident->def;
11995
11996         /* See if this case label has already been used */
11997         for(ptr = top; ptr != dbranch; ptr = ptr->next) {
11998                 if (ptr->op != OP_EQ) {
11999                         continue;
12000                 }
12001                 if (RHS(ptr, 1)->u.cval == cvalue->u.cval) {
12002                         error(state, 0, "duplicate case %d statement",
12003                                 cvalue->u.cval);
12004                 }
12005         }
12006         /* Generate the needed pieces */
12007         dest = label(state);
12008         test = triple(state, OP_EQ, &int_type, value, cvalue);
12009         jmp = branch(state, dest, test);
12010         /* Thread the pieces together */
12011         flatten(state, dbranch, test);
12012         flatten(state, dbranch, jmp);
12013         flatten(state, dbranch, label(state));
12014         flatten(state, first, dest);
12015         statement(state, first);
12016 }
12017
12018 static void default_statement(struct compile_state *state, struct triple *first)
12019 {
12020         struct triple *dest;
12021         struct triple *dbranch, *end;
12022
12023         /* See if we have a valid default statement */
12024         eat(state, TOK_DEFAULT);
12025         eat(state, TOK_COLON);
12026
12027         if (!state->i_case->sym_ident) {
12028                 error(state, 0, "default statement not within a switch");
12029         }
12030
12031         /* Lookup the interesting pieces */
12032         dbranch = state->i_default->sym_ident->def;
12033         end = state->i_break->sym_ident->def;
12034
12035         /* See if a default statement has already happened */
12036         if (TARG(dbranch, 0) != end) {
12037                 error(state, 0, "duplicate default statement");
12038         }
12039
12040         /* Generate the needed pieces */
12041         dest = label(state);
12042
12043         /* Blame the branch on the default statement */
12044         put_occurance(dbranch->occurance);
12045         dbranch->occurance = new_occurance(state);
12046
12047         /* Thread the pieces together */
12048         TARG(dbranch, 0) = dest;
12049         use_triple(dest, dbranch);
12050         flatten(state, first, dest);
12051         statement(state, first);
12052 }
12053
12054 static void asm_statement(struct compile_state *state, struct triple *first)
12055 {
12056         struct asm_info *info;
12057         struct {
12058                 struct triple *constraint;
12059                 struct triple *expr;
12060         } out_param[MAX_LHS], in_param[MAX_RHS], clob_param[MAX_LHS];
12061         struct triple *def, *asm_str;
12062         int out, in, clobbers, more, colons, i;
12063         int flags;
12064
12065         flags = 0;
12066         eat(state, TOK_ASM);
12067         /* For now ignore the qualifiers */
12068         switch(peek(state)) {
12069         case TOK_CONST:
12070                 eat(state, TOK_CONST);
12071                 break;
12072         case TOK_VOLATILE:
12073                 eat(state, TOK_VOLATILE);
12074                 flags |= TRIPLE_FLAG_VOLATILE;
12075                 break;
12076         }
12077         eat(state, TOK_LPAREN);
12078         asm_str = string_constant(state);
12079
12080         colons = 0;
12081         out = in = clobbers = 0;
12082         /* Outputs */
12083         if ((colons == 0) && (peek(state) == TOK_COLON)) {
12084                 eat(state, TOK_COLON);
12085                 colons++;
12086                 more = (peek(state) == TOK_LIT_STRING);
12087                 while(more) {
12088                         struct triple *var;
12089                         struct triple *constraint;
12090                         char *str;
12091                         more = 0;
12092                         if (out > MAX_LHS) {
12093                                 error(state, 0, "Maximum output count exceeded.");
12094                         }
12095                         constraint = string_constant(state);
12096                         str = constraint->u.blob;
12097                         if (str[0] != '=') {
12098                                 error(state, 0, "Output constraint does not start with =");
12099                         }
12100                         constraint->u.blob = str + 1;
12101                         eat(state, TOK_LPAREN);
12102                         var = conditional_expr(state);
12103                         eat(state, TOK_RPAREN);
12104
12105                         lvalue(state, var);
12106                         out_param[out].constraint = constraint;
12107                         out_param[out].expr       = var;
12108                         if (peek(state) == TOK_COMMA) {
12109                                 eat(state, TOK_COMMA);
12110                                 more = 1;
12111                         }
12112                         out++;
12113                 }
12114         }
12115         /* Inputs */
12116         if ((colons == 1) && (peek(state) == TOK_COLON)) {
12117                 eat(state, TOK_COLON);
12118                 colons++;
12119                 more = (peek(state) == TOK_LIT_STRING);
12120                 while(more) {
12121                         struct triple *val;
12122                         struct triple *constraint;
12123                         char *str;
12124                         more = 0;
12125                         if (in > MAX_RHS) {
12126                                 error(state, 0, "Maximum input count exceeded.");
12127                         }
12128                         constraint = string_constant(state);
12129                         str = constraint->u.blob;
12130                         if (digitp(str[0] && str[1] == '\0')) {
12131                                 int val;
12132                                 val = digval(str[0]);
12133                                 if ((val < 0) || (val >= out)) {
12134                                         error(state, 0, "Invalid input constraint %d", val);
12135                                 }
12136                         }
12137                         eat(state, TOK_LPAREN);
12138                         val = conditional_expr(state);
12139                         eat(state, TOK_RPAREN);
12140
12141                         in_param[in].constraint = constraint;
12142                         in_param[in].expr       = val;
12143                         if (peek(state) == TOK_COMMA) {
12144                                 eat(state, TOK_COMMA);
12145                                 more = 1;
12146                         }
12147                         in++;
12148                 }
12149         }
12150
12151         /* Clobber */
12152         if ((colons == 2) && (peek(state) == TOK_COLON)) {
12153                 eat(state, TOK_COLON);
12154                 colons++;
12155                 more = (peek(state) == TOK_LIT_STRING);
12156                 while(more) {
12157                         struct triple *clobber;
12158                         more = 0;
12159                         if ((clobbers + out) > MAX_LHS) {
12160                                 error(state, 0, "Maximum clobber limit exceeded.");
12161                         }
12162                         clobber = string_constant(state);
12163
12164                         clob_param[clobbers].constraint = clobber;
12165                         if (peek(state) == TOK_COMMA) {
12166                                 eat(state, TOK_COMMA);
12167                                 more = 1;
12168                         }
12169                         clobbers++;
12170                 }
12171         }
12172         eat(state, TOK_RPAREN);
12173         eat(state, TOK_SEMI);
12174
12175
12176         info = xcmalloc(sizeof(*info), "asm_info");
12177         info->str = asm_str->u.blob;
12178         free_triple(state, asm_str);
12179
12180         def = new_triple(state, OP_ASM, &void_type, clobbers + out, in);
12181         def->u.ainfo = info;
12182         def->id |= flags;
12183
12184         /* Find the register constraints */
12185         for(i = 0; i < out; i++) {
12186                 struct triple *constraint;
12187                 constraint = out_param[i].constraint;
12188                 info->tmpl.lhs[i] = arch_reg_constraint(state, 
12189                         out_param[i].expr->type, constraint->u.blob);
12190                 free_triple(state, constraint);
12191         }
12192         for(; i - out < clobbers; i++) {
12193                 struct triple *constraint;
12194                 constraint = clob_param[i - out].constraint;
12195                 info->tmpl.lhs[i] = arch_reg_clobber(state, constraint->u.blob);
12196                 free_triple(state, constraint);
12197         }
12198         for(i = 0; i < in; i++) {
12199                 struct triple *constraint;
12200                 const char *str;
12201                 constraint = in_param[i].constraint;
12202                 str = constraint->u.blob;
12203                 if (digitp(str[0]) && str[1] == '\0') {
12204                         struct reg_info cinfo;
12205                         int val;
12206                         val = digval(str[0]);
12207                         cinfo.reg = info->tmpl.lhs[val].reg;
12208                         cinfo.regcm = arch_type_to_regcm(state, in_param[i].expr->type);
12209                         cinfo.regcm &= info->tmpl.lhs[val].regcm;
12210                         if (cinfo.reg == REG_UNSET) {
12211                                 cinfo.reg = REG_VIRT0 + val;
12212                         }
12213                         if (cinfo.regcm == 0) {
12214                                 error(state, 0, "No registers for %d", val);
12215                         }
12216                         info->tmpl.lhs[val] = cinfo;
12217                         info->tmpl.rhs[i]   = cinfo;
12218                                 
12219                 } else {
12220                         info->tmpl.rhs[i] = arch_reg_constraint(state, 
12221                                 in_param[i].expr->type, str);
12222                 }
12223                 free_triple(state, constraint);
12224         }
12225
12226         /* Now build the helper expressions */
12227         for(i = 0; i < in; i++) {
12228                 RHS(def, i) = read_expr(state, in_param[i].expr);
12229         }
12230         flatten(state, first, def);
12231         for(i = 0; i < (out + clobbers); i++) {
12232                 struct type *type;
12233                 struct triple *piece;
12234                 if (i < out) {
12235                         type = out_param[i].expr->type;
12236                 } else {
12237                         size_t size = arch_reg_size(info->tmpl.lhs[i].reg);
12238                         if (size >= SIZEOF_LONG) {
12239                                 type = &ulong_type;
12240                         } 
12241                         else if (size >= SIZEOF_INT) {
12242                                 type = &uint_type;
12243                         }
12244                         else if (size >= SIZEOF_SHORT) {
12245                                 type = &ushort_type;
12246                         }
12247                         else {
12248                                 type = &uchar_type;
12249                         }
12250                 }
12251                 piece = triple(state, OP_PIECE, type, def, 0);
12252                 piece->u.cval = i;
12253                 LHS(def, i) = piece;
12254                 flatten(state, first, piece);
12255         }
12256         /* And write the helpers to their destinations */
12257         for(i = 0; i < out; i++) {
12258                 struct triple *piece;
12259                 piece = LHS(def, i);
12260                 flatten(state, first,
12261                         write_expr(state, out_param[i].expr, piece));
12262         }
12263 }
12264
12265
12266 static int isdecl(int tok)
12267 {
12268         switch(tok) {
12269         case TOK_AUTO:
12270         case TOK_REGISTER:
12271         case TOK_STATIC:
12272         case TOK_EXTERN:
12273         case TOK_TYPEDEF:
12274         case TOK_CONST:
12275         case TOK_RESTRICT:
12276         case TOK_VOLATILE:
12277         case TOK_VOID:
12278         case TOK_CHAR:
12279         case TOK_SHORT:
12280         case TOK_INT:
12281         case TOK_LONG:
12282         case TOK_FLOAT:
12283         case TOK_DOUBLE:
12284         case TOK_SIGNED:
12285         case TOK_UNSIGNED:
12286         case TOK_STRUCT:
12287         case TOK_UNION:
12288         case TOK_ENUM:
12289         case TOK_TYPE_NAME: /* typedef name */
12290                 return 1;
12291         default:
12292                 return 0;
12293         }
12294 }
12295
12296 static void compound_statement(struct compile_state *state, struct triple *first)
12297 {
12298         eat(state, TOK_LBRACE);
12299         start_scope(state);
12300
12301         /* statement-list opt */
12302         while (peek(state) != TOK_RBRACE) {
12303                 statement(state, first);
12304         }
12305         end_scope(state);
12306         eat(state, TOK_RBRACE);
12307 }
12308
12309 static void statement(struct compile_state *state, struct triple *first)
12310 {
12311         int tok;
12312         tok = peek(state);
12313         if (tok == TOK_LBRACE) {
12314                 compound_statement(state, first);
12315         }
12316         else if (tok == TOK_IF) {
12317                 if_statement(state, first); 
12318         }
12319         else if (tok == TOK_FOR) {
12320                 for_statement(state, first);
12321         }
12322         else if (tok == TOK_WHILE) {
12323                 while_statement(state, first);
12324         }
12325         else if (tok == TOK_DO) {
12326                 do_statement(state, first);
12327         }
12328         else if (tok == TOK_RETURN) {
12329                 return_statement(state, first);
12330         }
12331         else if (tok == TOK_BREAK) {
12332                 break_statement(state, first);
12333         }
12334         else if (tok == TOK_CONTINUE) {
12335                 continue_statement(state, first);
12336         }
12337         else if (tok == TOK_GOTO) {
12338                 goto_statement(state, first);
12339         }
12340         else if (tok == TOK_SWITCH) {
12341                 switch_statement(state, first);
12342         }
12343         else if (tok == TOK_ASM) {
12344                 asm_statement(state, first);
12345         }
12346         else if ((tok == TOK_IDENT) && (peek2(state) == TOK_COLON)) {
12347                 labeled_statement(state, first); 
12348         }
12349         else if (tok == TOK_CASE) {
12350                 case_statement(state, first);
12351         }
12352         else if (tok == TOK_DEFAULT) {
12353                 default_statement(state, first);
12354         }
12355         else if (isdecl(tok)) {
12356                 /* This handles C99 intermixing of statements and decls */
12357                 decl(state, first);
12358         }
12359         else {
12360                 expr_statement(state, first);
12361         }
12362 }
12363
12364 static struct type *param_decl(struct compile_state *state)
12365 {
12366         struct type *type;
12367         struct hash_entry *ident;
12368         /* Cheat so the declarator will know we are not global */
12369         start_scope(state); 
12370         ident = 0;
12371         type = decl_specifiers(state);
12372         type = declarator(state, type, &ident, 0);
12373         type->field_ident = ident;
12374         end_scope(state);
12375         return type;
12376 }
12377
12378 static struct type *param_type_list(struct compile_state *state, struct type *type)
12379 {
12380         struct type *ftype, **next;
12381         ftype = new_type(TYPE_FUNCTION | (type->type & STOR_MASK), type, param_decl(state));
12382         next = &ftype->right;
12383         ftype->elements = 1;
12384         while(peek(state) == TOK_COMMA) {
12385                 eat(state, TOK_COMMA);
12386                 if (peek(state) == TOK_DOTS) {
12387                         eat(state, TOK_DOTS);
12388                         error(state, 0, "variadic functions not supported");
12389                 }
12390                 else {
12391                         *next = new_type(TYPE_PRODUCT, *next, param_decl(state));
12392                         next = &((*next)->right);
12393                         ftype->elements++;
12394                 }
12395         }
12396         return ftype;
12397 }
12398
12399 static struct type *type_name(struct compile_state *state)
12400 {
12401         struct type *type;
12402         type = specifier_qualifier_list(state);
12403         /* abstract-declarator (may consume no tokens) */
12404         type = declarator(state, type, 0, 0);
12405         return type;
12406 }
12407
12408 static struct type *direct_declarator(
12409         struct compile_state *state, struct type *type, 
12410         struct hash_entry **pident, int need_ident)
12411 {
12412         struct hash_entry *ident;
12413         struct type *outer;
12414         int op;
12415         outer = 0;
12416         arrays_complete(state, type);
12417         switch(peek(state)) {
12418         case TOK_IDENT:
12419                 ident = eat(state, TOK_IDENT)->ident;
12420                 if (!ident) {
12421                         error(state, 0, "Unexpected identifier found");
12422                 }
12423                 /* The name of what we are declaring */
12424                 *pident = ident;
12425                 break;
12426         case TOK_LPAREN:
12427                 eat(state, TOK_LPAREN);
12428                 outer = declarator(state, type, pident, need_ident);
12429                 eat(state, TOK_RPAREN);
12430                 break;
12431         default:
12432                 if (need_ident) {
12433                         error(state, 0, "Identifier expected");
12434                 }
12435                 break;
12436         }
12437         do {
12438                 op = 1;
12439                 arrays_complete(state, type);
12440                 switch(peek(state)) {
12441                 case TOK_LPAREN:
12442                         eat(state, TOK_LPAREN);
12443                         type = param_type_list(state, type);
12444                         eat(state, TOK_RPAREN);
12445                         break;
12446                 case TOK_LBRACKET:
12447                 {
12448                         unsigned int qualifiers;
12449                         struct triple *value;
12450                         value = 0;
12451                         eat(state, TOK_LBRACKET);
12452                         if (peek(state) != TOK_RBRACKET) {
12453                                 value = constant_expr(state);
12454                                 integral(state, value);
12455                         }
12456                         eat(state, TOK_RBRACKET);
12457
12458                         qualifiers = type->type & (QUAL_MASK | STOR_MASK);
12459                         type = new_type(TYPE_ARRAY | qualifiers, type, 0);
12460                         if (value) {
12461                                 type->elements = value->u.cval;
12462                                 free_triple(state, value);
12463                         } else {
12464                                 type->elements = ELEMENT_COUNT_UNSPECIFIED;
12465                                 op = 0;
12466                         }
12467                 }
12468                         break;
12469                 default:
12470                         op = 0;
12471                         break;
12472                 }
12473         } while(op);
12474         if (outer) {
12475                 struct type *inner;
12476                 arrays_complete(state, type);
12477                 FINISHME();
12478                 for(inner = outer; inner->left; inner = inner->left)
12479                         ;
12480                 inner->left = type;
12481                 type = outer;
12482         }
12483         return type;
12484 }
12485
12486 static struct type *declarator(
12487         struct compile_state *state, struct type *type, 
12488         struct hash_entry **pident, int need_ident)
12489 {
12490         while(peek(state) == TOK_STAR) {
12491                 eat(state, TOK_STAR);
12492                 type = new_type(TYPE_POINTER | (type->type & STOR_MASK), type, 0);
12493         }
12494         type = direct_declarator(state, type, pident, need_ident);
12495         return type;
12496 }
12497
12498 static struct type *typedef_name(
12499         struct compile_state *state, unsigned int specifiers)
12500 {
12501         struct hash_entry *ident;
12502         struct type *type;
12503         ident = eat(state, TOK_TYPE_NAME)->ident;
12504         type = ident->sym_ident->type;
12505         specifiers |= type->type & QUAL_MASK;
12506         if ((specifiers & (STOR_MASK | QUAL_MASK)) != 
12507                 (type->type & (STOR_MASK | QUAL_MASK))) {
12508                 type = clone_type(specifiers, type);
12509         }
12510         return type;
12511 }
12512
12513 static struct type *enum_specifier(
12514         struct compile_state *state, unsigned int spec)
12515 {
12516         struct hash_entry *ident;
12517         ulong_t base;
12518         int tok;
12519         struct type *enum_type;
12520         enum_type = 0;
12521         ident = 0;
12522         eat(state, TOK_ENUM);
12523         tok = peek(state);
12524         if ((tok == TOK_IDENT) || (tok == TOK_ENUM_CONST) || (tok == TOK_TYPE_NAME)) {
12525                 ident = eat(state, tok)->ident;
12526         }
12527         base = 0;
12528         if (!ident || (peek(state) == TOK_LBRACE)) {
12529                 struct type **next;
12530                 eat(state, TOK_LBRACE);
12531                 enum_type = new_type(TYPE_ENUM | spec, 0, 0);
12532                 enum_type->type_ident = ident;
12533                 next = &enum_type->right;
12534                 do {
12535                         struct hash_entry *eident;
12536                         struct triple *value;
12537                         struct type *entry;
12538                         eident = eat(state, TOK_IDENT)->ident;
12539                         if (eident->sym_ident) {
12540                                 error(state, 0, "%s already declared", 
12541                                         eident->name);
12542                         }
12543                         eident->tok = TOK_ENUM_CONST;
12544                         if (peek(state) == TOK_EQ) {
12545                                 struct triple *val;
12546                                 eat(state, TOK_EQ);
12547                                 val = constant_expr(state);
12548                                 integral(state, val);
12549                                 base = val->u.cval;
12550                         }
12551                         value = int_const(state, &int_type, base);
12552                         symbol(state, eident, &eident->sym_ident, value, &int_type);
12553                         entry = new_type(TYPE_LIST, 0, 0);
12554                         entry->field_ident = eident;
12555                         *next = entry;
12556                         next = &entry->right;
12557                         base += 1;
12558                         if (peek(state) == TOK_COMMA) {
12559                                 eat(state, TOK_COMMA);
12560                         }
12561                 } while(peek(state) != TOK_RBRACE);
12562                 eat(state, TOK_RBRACE);
12563                 if (ident) {
12564                         symbol(state, ident, &ident->sym_tag, 0, enum_type);
12565                 }
12566         }
12567         if (ident && ident->sym_tag &&
12568                 ident->sym_tag->type &&
12569                 ((ident->sym_tag->type->type & TYPE_MASK) == TYPE_ENUM)) {
12570                 enum_type = clone_type(spec, ident->sym_tag->type);
12571         }
12572         else if (ident && !enum_type) {
12573                 error(state, 0, "enum %s undeclared", ident->name);
12574         }
12575         return enum_type;
12576 }
12577
12578 static struct type *struct_declarator(
12579         struct compile_state *state, struct type *type, struct hash_entry **ident)
12580 {
12581         if (peek(state) != TOK_COLON) {
12582                 type = declarator(state, type, ident, 1);
12583         }
12584         if (peek(state) == TOK_COLON) {
12585                 struct triple *value;
12586                 eat(state, TOK_COLON);
12587                 value = constant_expr(state);
12588                 if (value->op != OP_INTCONST) {
12589                         error(state, 0, "Invalid constant expression");
12590                 }
12591                 if (value->u.cval > size_of(state, type)) {
12592                         error(state, 0, "bitfield larger than base type");
12593                 }
12594                 if (!TYPE_INTEGER(type->type) || ((type->type & TYPE_MASK) == TYPE_BITFIELD)) {
12595                         error(state, 0, "bitfield base not an integer type");
12596                 }
12597                 type = new_type(TYPE_BITFIELD, type, 0);
12598                 type->elements = value->u.cval;
12599         }
12600         return type;
12601 }
12602
12603 static struct type *struct_or_union_specifier(
12604         struct compile_state *state, unsigned int spec)
12605 {
12606         struct type *struct_type;
12607         struct hash_entry *ident;
12608         unsigned int type_main;
12609         unsigned int type_join;
12610         int tok;
12611         struct_type = 0;
12612         ident = 0;
12613         switch(peek(state)) {
12614         case TOK_STRUCT:
12615                 eat(state, TOK_STRUCT);
12616                 type_main = TYPE_STRUCT;
12617                 type_join = TYPE_PRODUCT;
12618                 break;
12619         case TOK_UNION:
12620                 eat(state, TOK_UNION);
12621                 type_main = TYPE_UNION;
12622                 type_join = TYPE_OVERLAP;
12623                 break;
12624         default:
12625                 eat(state, TOK_STRUCT);
12626                 type_main = TYPE_STRUCT;
12627                 type_join = TYPE_PRODUCT;
12628                 break;
12629         }
12630         tok = peek(state);
12631         if ((tok == TOK_IDENT) || (tok == TOK_ENUM_CONST) || (tok == TOK_TYPE_NAME)) {
12632                 ident = eat(state, tok)->ident;
12633         }
12634         if (!ident || (peek(state) == TOK_LBRACE)) {
12635                 ulong_t elements;
12636                 struct type **next;
12637                 elements = 0;
12638                 eat(state, TOK_LBRACE);
12639                 next = &struct_type;
12640                 do {
12641                         struct type *base_type;
12642                         int done;
12643                         base_type = specifier_qualifier_list(state);
12644                         do {
12645                                 struct type *type;
12646                                 struct hash_entry *fident;
12647                                 done = 1;
12648                                 type = struct_declarator(state, base_type, &fident);
12649                                 elements++;
12650                                 if (peek(state) == TOK_COMMA) {
12651                                         done = 0;
12652                                         eat(state, TOK_COMMA);
12653                                 }
12654                                 type = clone_type(0, type);
12655                                 type->field_ident = fident;
12656                                 if (*next) {
12657                                         *next = new_type(type_join, *next, type);
12658                                         next = &((*next)->right);
12659                                 } else {
12660                                         *next = type;
12661                                 }
12662                         } while(!done);
12663                         eat(state, TOK_SEMI);
12664                 } while(peek(state) != TOK_RBRACE);
12665                 eat(state, TOK_RBRACE);
12666                 struct_type = new_type(type_main | spec, struct_type, 0);
12667                 struct_type->type_ident = ident;
12668                 struct_type->elements = elements;
12669                 if (ident) {
12670                         symbol(state, ident, &ident->sym_tag, 0, struct_type);
12671                 }
12672         }
12673         if (ident && ident->sym_tag && 
12674                 ident->sym_tag->type && 
12675                 ((ident->sym_tag->type->type & TYPE_MASK) == type_main)) {
12676                 struct_type = clone_type(spec, ident->sym_tag->type);
12677         }
12678         else if (ident && !struct_type) {
12679                 error(state, 0, "%s %s undeclared", 
12680                         (type_main == TYPE_STRUCT)?"struct" : "union",
12681                         ident->name);
12682         }
12683         return struct_type;
12684 }
12685
12686 static unsigned int storage_class_specifier_opt(struct compile_state *state)
12687 {
12688         unsigned int specifiers;
12689         switch(peek(state)) {
12690         case TOK_AUTO:
12691                 eat(state, TOK_AUTO);
12692                 specifiers = STOR_AUTO;
12693                 break;
12694         case TOK_REGISTER:
12695                 eat(state, TOK_REGISTER);
12696                 specifiers = STOR_REGISTER;
12697                 break;
12698         case TOK_STATIC:
12699                 eat(state, TOK_STATIC);
12700                 specifiers = STOR_STATIC;
12701                 break;
12702         case TOK_EXTERN:
12703                 eat(state, TOK_EXTERN);
12704                 specifiers = STOR_EXTERN;
12705                 break;
12706         case TOK_TYPEDEF:
12707                 eat(state, TOK_TYPEDEF);
12708                 specifiers = STOR_TYPEDEF;
12709                 break;
12710         default:
12711                 if (state->scope_depth <= GLOBAL_SCOPE_DEPTH) {
12712                         specifiers = STOR_LOCAL;
12713                 }
12714                 else {
12715                         specifiers = STOR_AUTO;
12716                 }
12717         }
12718         return specifiers;
12719 }
12720
12721 static unsigned int function_specifier_opt(struct compile_state *state)
12722 {
12723         /* Ignore the inline keyword */
12724         unsigned int specifiers;
12725         specifiers = 0;
12726         switch(peek(state)) {
12727         case TOK_INLINE:
12728                 eat(state, TOK_INLINE);
12729                 specifiers = STOR_INLINE;
12730         }
12731         return specifiers;
12732 }
12733
12734 static unsigned int attrib(struct compile_state *state, unsigned int attributes)
12735 {
12736         int tok = peek(state);
12737         switch(tok) {
12738         case TOK_COMMA:
12739         case TOK_LPAREN:
12740                 /* The empty attribute ignore it */
12741                 break;
12742         case TOK_IDENT:
12743         case TOK_ENUM_CONST:
12744         case TOK_TYPE_NAME:
12745         {
12746                 struct hash_entry *ident;
12747                 ident = eat(state, TOK_IDENT)->ident;
12748
12749                 if (ident == state->i_noinline) {
12750                         if (attributes & ATTRIB_ALWAYS_INLINE) {
12751                                 error(state, 0, "both always_inline and noinline attribtes");
12752                         }
12753                         attributes |= ATTRIB_NOINLINE;
12754                 }
12755                 else if (ident == state->i_always_inline) {
12756                         if (attributes & ATTRIB_NOINLINE) {
12757                                 error(state, 0, "both noinline and always_inline attribtes");
12758                         }
12759                         attributes |= ATTRIB_ALWAYS_INLINE;
12760                 }
12761                 else {
12762                         error(state, 0, "Unknown attribute:%s", ident->name);
12763                 }
12764                 break;
12765         }
12766         default:
12767                 error(state, 0, "Unexpected token: %s\n", tokens[tok]);
12768                 break;
12769         }
12770         return attributes;
12771 }
12772
12773 static unsigned int attribute_list(struct compile_state *state, unsigned type)
12774 {
12775         type = attrib(state, type);
12776         while(peek(state) == TOK_COMMA) {
12777                 eat(state, TOK_COMMA);
12778                 type = attrib(state, type);
12779         }
12780         return type;
12781 }
12782
12783 static unsigned int attributes_opt(struct compile_state *state, unsigned type)
12784 {
12785         if (peek(state) == TOK_ATTRIBUTE) {
12786                 eat(state, TOK_ATTRIBUTE);
12787                 eat(state, TOK_LPAREN);
12788                 eat(state, TOK_LPAREN);
12789                 type = attribute_list(state, type);
12790                 eat(state, TOK_RPAREN);
12791                 eat(state, TOK_RPAREN);
12792         }
12793         return type;
12794 }
12795
12796 static unsigned int type_qualifiers(struct compile_state *state)
12797 {
12798         unsigned int specifiers;
12799         int done;
12800         done = 0;
12801         specifiers = QUAL_NONE;
12802         do {
12803                 switch(peek(state)) {
12804                 case TOK_CONST:
12805                         eat(state, TOK_CONST);
12806                         specifiers |= QUAL_CONST;
12807                         break;
12808                 case TOK_VOLATILE:
12809                         eat(state, TOK_VOLATILE);
12810                         specifiers |= QUAL_VOLATILE;
12811                         break;
12812                 case TOK_RESTRICT:
12813                         eat(state, TOK_RESTRICT);
12814                         specifiers |= QUAL_RESTRICT;
12815                         break;
12816                 default:
12817                         done = 1;
12818                         break;
12819                 }
12820         } while(!done);
12821         return specifiers;
12822 }
12823
12824 static struct type *type_specifier(
12825         struct compile_state *state, unsigned int spec)
12826 {
12827         struct type *type;
12828         int tok;
12829         type = 0;
12830         switch((tok = peek(state))) {
12831         case TOK_VOID:
12832                 eat(state, TOK_VOID);
12833                 type = new_type(TYPE_VOID | spec, 0, 0);
12834                 break;
12835         case TOK_CHAR:
12836                 eat(state, TOK_CHAR);
12837                 type = new_type(TYPE_CHAR | spec, 0, 0);
12838                 break;
12839         case TOK_SHORT:
12840                 eat(state, TOK_SHORT);
12841                 if (peek(state) == TOK_INT) {
12842                         eat(state, TOK_INT);
12843                 }
12844                 type = new_type(TYPE_SHORT | spec, 0, 0);
12845                 break;
12846         case TOK_INT:
12847                 eat(state, TOK_INT);
12848                 type = new_type(TYPE_INT | spec, 0, 0);
12849                 break;
12850         case TOK_LONG:
12851                 eat(state, TOK_LONG);
12852                 switch(peek(state)) {
12853                 case TOK_LONG:
12854                         eat(state, TOK_LONG);
12855                         error(state, 0, "long long not supported");
12856                         break;
12857                 case TOK_DOUBLE:
12858                         eat(state, TOK_DOUBLE);
12859                         error(state, 0, "long double not supported");
12860                         break;
12861                 case TOK_INT:
12862                         eat(state, TOK_INT);
12863                         type = new_type(TYPE_LONG | spec, 0, 0);
12864                         break;
12865                 default:
12866                         type = new_type(TYPE_LONG | spec, 0, 0);
12867                         break;
12868                 }
12869                 break;
12870         case TOK_FLOAT:
12871                 eat(state, TOK_FLOAT);
12872                 error(state, 0, "type float not supported");
12873                 break;
12874         case TOK_DOUBLE:
12875                 eat(state, TOK_DOUBLE);
12876                 error(state, 0, "type double not supported");
12877                 break;
12878         case TOK_SIGNED:
12879                 eat(state, TOK_SIGNED);
12880                 switch(peek(state)) {
12881                 case TOK_LONG:
12882                         eat(state, TOK_LONG);
12883                         switch(peek(state)) {
12884                         case TOK_LONG:
12885                                 eat(state, TOK_LONG);
12886                                 error(state, 0, "type long long not supported");
12887                                 break;
12888                         case TOK_INT:
12889                                 eat(state, TOK_INT);
12890                                 type = new_type(TYPE_LONG | spec, 0, 0);
12891                                 break;
12892                         default:
12893                                 type = new_type(TYPE_LONG | spec, 0, 0);
12894                                 break;
12895                         }
12896                         break;
12897                 case TOK_INT:
12898                         eat(state, TOK_INT);
12899                         type = new_type(TYPE_INT | spec, 0, 0);
12900                         break;
12901                 case TOK_SHORT:
12902                         eat(state, TOK_SHORT);
12903                         type = new_type(TYPE_SHORT | spec, 0, 0);
12904                         break;
12905                 case TOK_CHAR:
12906                         eat(state, TOK_CHAR);
12907                         type = new_type(TYPE_CHAR | spec, 0, 0);
12908                         break;
12909                 default:
12910                         type = new_type(TYPE_INT | spec, 0, 0);
12911                         break;
12912                 }
12913                 break;
12914         case TOK_UNSIGNED:
12915                 eat(state, TOK_UNSIGNED);
12916                 switch(peek(state)) {
12917                 case TOK_LONG:
12918                         eat(state, TOK_LONG);
12919                         switch(peek(state)) {
12920                         case TOK_LONG:
12921                                 eat(state, TOK_LONG);
12922                                 error(state, 0, "unsigned long long not supported");
12923                                 break;
12924                         case TOK_INT:
12925                                 eat(state, TOK_INT);
12926                                 type = new_type(TYPE_ULONG | spec, 0, 0);
12927                                 break;
12928                         default:
12929                                 type = new_type(TYPE_ULONG | spec, 0, 0);
12930                                 break;
12931                         }
12932                         break;
12933                 case TOK_INT:
12934                         eat(state, TOK_INT);
12935                         type = new_type(TYPE_UINT | spec, 0, 0);
12936                         break;
12937                 case TOK_SHORT:
12938                         eat(state, TOK_SHORT);
12939                         type = new_type(TYPE_USHORT | spec, 0, 0);
12940                         break;
12941                 case TOK_CHAR:
12942                         eat(state, TOK_CHAR);
12943                         type = new_type(TYPE_UCHAR | spec, 0, 0);
12944                         break;
12945                 default:
12946                         type = new_type(TYPE_UINT | spec, 0, 0);
12947                         break;
12948                 }
12949                 break;
12950                 /* struct or union specifier */
12951         case TOK_STRUCT:
12952         case TOK_UNION:
12953                 type = struct_or_union_specifier(state, spec);
12954                 break;
12955                 /* enum-spefifier */
12956         case TOK_ENUM:
12957                 type = enum_specifier(state, spec);
12958                 break;
12959                 /* typedef name */
12960         case TOK_TYPE_NAME:
12961                 type = typedef_name(state, spec);
12962                 break;
12963         default:
12964                 error(state, 0, "bad type specifier %s", 
12965                         tokens[tok]);
12966                 break;
12967         }
12968         return type;
12969 }
12970
12971 static int istype(int tok)
12972 {
12973         switch(tok) {
12974         case TOK_CONST:
12975         case TOK_RESTRICT:
12976         case TOK_VOLATILE:
12977         case TOK_VOID:
12978         case TOK_CHAR:
12979         case TOK_SHORT:
12980         case TOK_INT:
12981         case TOK_LONG:
12982         case TOK_FLOAT:
12983         case TOK_DOUBLE:
12984         case TOK_SIGNED:
12985         case TOK_UNSIGNED:
12986         case TOK_STRUCT:
12987         case TOK_UNION:
12988         case TOK_ENUM:
12989         case TOK_TYPE_NAME:
12990                 return 1;
12991         default:
12992                 return 0;
12993         }
12994 }
12995
12996
12997 static struct type *specifier_qualifier_list(struct compile_state *state)
12998 {
12999         struct type *type;
13000         unsigned int specifiers = 0;
13001
13002         /* type qualifiers */
13003         specifiers |= type_qualifiers(state);
13004
13005         /* type specifier */
13006         type = type_specifier(state, specifiers);
13007
13008         return type;
13009 }
13010
13011 #if DEBUG_ROMCC_WARNING
13012 static int isdecl_specifier(int tok)
13013 {
13014         switch(tok) {
13015                 /* storage class specifier */
13016         case TOK_AUTO:
13017         case TOK_REGISTER:
13018         case TOK_STATIC:
13019         case TOK_EXTERN:
13020         case TOK_TYPEDEF:
13021                 /* type qualifier */
13022         case TOK_CONST:
13023         case TOK_RESTRICT:
13024         case TOK_VOLATILE:
13025                 /* type specifiers */
13026         case TOK_VOID:
13027         case TOK_CHAR:
13028         case TOK_SHORT:
13029         case TOK_INT:
13030         case TOK_LONG:
13031         case TOK_FLOAT:
13032         case TOK_DOUBLE:
13033         case TOK_SIGNED:
13034         case TOK_UNSIGNED:
13035                 /* struct or union specifier */
13036         case TOK_STRUCT:
13037         case TOK_UNION:
13038                 /* enum-spefifier */
13039         case TOK_ENUM:
13040                 /* typedef name */
13041         case TOK_TYPE_NAME:
13042                 /* function specifiers */
13043         case TOK_INLINE:
13044                 return 1;
13045         default:
13046                 return 0;
13047         }
13048 }
13049 #endif
13050
13051 static struct type *decl_specifiers(struct compile_state *state)
13052 {
13053         struct type *type;
13054         unsigned int specifiers;
13055         /* I am overly restrictive in the arragement of specifiers supported.
13056          * C is overly flexible in this department it makes interpreting
13057          * the parse tree difficult.
13058          */
13059         specifiers = 0;
13060
13061         /* storage class specifier */
13062         specifiers |= storage_class_specifier_opt(state);
13063
13064         /* function-specifier */
13065         specifiers |= function_specifier_opt(state);
13066
13067         /* attributes */
13068         specifiers |= attributes_opt(state, 0);
13069
13070         /* type qualifier */
13071         specifiers |= type_qualifiers(state);
13072
13073         /* type specifier */
13074         type = type_specifier(state, specifiers);
13075         return type;
13076 }
13077
13078 struct field_info {
13079         struct type *type;
13080         size_t offset;
13081 };
13082
13083 static struct field_info designator(struct compile_state *state, struct type *type)
13084 {
13085         int tok;
13086         struct field_info info;
13087         info.offset = ~0U;
13088         info.type = 0;
13089         do {
13090                 switch(peek(state)) {
13091                 case TOK_LBRACKET:
13092                 {
13093                         struct triple *value;
13094                         if ((type->type & TYPE_MASK) != TYPE_ARRAY) {
13095                                 error(state, 0, "Array designator not in array initializer");
13096                         }
13097                         eat(state, TOK_LBRACKET);
13098                         value = constant_expr(state);
13099                         eat(state, TOK_RBRACKET);
13100
13101                         info.type = type->left;
13102                         info.offset = value->u.cval * size_of(state, info.type);
13103                         break;
13104                 }
13105                 case TOK_DOT:
13106                 {
13107                         struct hash_entry *field;
13108                         if (((type->type & TYPE_MASK) != TYPE_STRUCT) &&
13109                                 ((type->type & TYPE_MASK) != TYPE_UNION))
13110                         {
13111                                 error(state, 0, "Struct designator not in struct initializer");
13112                         }
13113                         eat(state, TOK_DOT);
13114                         field = eat(state, TOK_IDENT)->ident;
13115                         info.offset = field_offset(state, type, field);
13116                         info.type   = field_type(state, type, field);
13117                         break;
13118                 }
13119                 default:
13120                         error(state, 0, "Invalid designator");
13121                 }
13122                 tok = peek(state);
13123         } while((tok == TOK_LBRACKET) || (tok == TOK_DOT));
13124         eat(state, TOK_EQ);
13125         return info;
13126 }
13127
13128 static struct triple *initializer(
13129         struct compile_state *state, struct type *type)
13130 {
13131         struct triple *result;
13132 #if DEBUG_ROMCC_WARNINGS
13133 #warning "FIXME more consistent initializer handling (where should eval_const_expr go?"
13134 #endif
13135         if (peek(state) != TOK_LBRACE) {
13136                 result = assignment_expr(state);
13137                 if (((type->type & TYPE_MASK) == TYPE_ARRAY) &&
13138                         (type->elements == ELEMENT_COUNT_UNSPECIFIED) &&
13139                         ((result->type->type & TYPE_MASK) == TYPE_ARRAY) &&
13140                         (result->type->elements != ELEMENT_COUNT_UNSPECIFIED) &&
13141                         (equiv_types(type->left, result->type->left))) {
13142                         type->elements = result->type->elements;
13143                 }
13144                 if (is_lvalue(state, result) && 
13145                         ((result->type->type & TYPE_MASK) == TYPE_ARRAY) &&
13146                         (type->type & TYPE_MASK) != TYPE_ARRAY)
13147                 {
13148                         result = lvalue_conversion(state, result);
13149                 }
13150                 if (!is_init_compatible(state, type, result->type)) {
13151                         error(state, 0, "Incompatible types in initializer");
13152                 }
13153                 if (!equiv_types(type, result->type)) {
13154                         result = mk_cast_expr(state, type, result);
13155                 }
13156         }
13157         else {
13158                 int comma;
13159                 size_t max_offset;
13160                 struct field_info info;
13161                 void *buf;
13162                 if (((type->type & TYPE_MASK) != TYPE_ARRAY) &&
13163                         ((type->type & TYPE_MASK) != TYPE_STRUCT)) {
13164                         internal_error(state, 0, "unknown initializer type");
13165                 }
13166                 info.offset = 0;
13167                 info.type = type->left;
13168                 if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
13169                         info.type = next_field(state, type, 0);
13170                 }
13171                 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
13172                         max_offset = 0;
13173                 } else {
13174                         max_offset = size_of(state, type);
13175                 }
13176                 buf = xcmalloc(bits_to_bytes(max_offset), "initializer");
13177                 eat(state, TOK_LBRACE);
13178                 do {
13179                         struct triple *value;
13180                         struct type *value_type;
13181                         size_t value_size;
13182                         void *dest;
13183                         int tok;
13184                         comma = 0;
13185                         tok = peek(state);
13186                         if ((tok == TOK_LBRACKET) || (tok == TOK_DOT)) {
13187                                 info = designator(state, type);
13188                         }
13189                         if ((type->elements != ELEMENT_COUNT_UNSPECIFIED) &&
13190                                 (info.offset >= max_offset)) {
13191                                 error(state, 0, "element beyond bounds");
13192                         }
13193                         value_type = info.type;
13194                         value = eval_const_expr(state, initializer(state, value_type));
13195                         value_size = size_of(state, value_type);
13196                         if (((type->type & TYPE_MASK) == TYPE_ARRAY) &&
13197                                 (type->elements == ELEMENT_COUNT_UNSPECIFIED) &&
13198                                 (max_offset <= info.offset)) {
13199                                 void *old_buf;
13200                                 size_t old_size;
13201                                 old_buf = buf;
13202                                 old_size = max_offset;
13203                                 max_offset = info.offset + value_size;
13204                                 buf = xmalloc(bits_to_bytes(max_offset), "initializer");
13205                                 memcpy(buf, old_buf, bits_to_bytes(old_size));
13206                                 xfree(old_buf);
13207                         }
13208                         dest = ((char *)buf) + bits_to_bytes(info.offset);
13209 #if DEBUG_INITIALIZER
13210                         fprintf(state->errout, "dest = buf + %d max_offset: %d value_size: %d op: %d\n", 
13211                                 dest - buf,
13212                                 bits_to_bytes(max_offset),
13213                                 bits_to_bytes(value_size),
13214                                 value->op);
13215 #endif
13216                         if (value->op == OP_BLOBCONST) {
13217                                 memcpy(dest, value->u.blob, bits_to_bytes(value_size));
13218                         }
13219                         else if ((value->op == OP_INTCONST) && (value_size == SIZEOF_I8)) {
13220 #if DEBUG_INITIALIZER
13221                                 fprintf(state->errout, "byte: %02x\n", value->u.cval & 0xff);
13222 #endif
13223                                 *((uint8_t *)dest) = value->u.cval & 0xff;
13224                         }
13225                         else if ((value->op == OP_INTCONST) && (value_size == SIZEOF_I16)) {
13226                                 *((uint16_t *)dest) = value->u.cval & 0xffff;
13227                         }
13228                         else if ((value->op == OP_INTCONST) && (value_size == SIZEOF_I32)) {
13229                                 *((uint32_t *)dest) = value->u.cval & 0xffffffff;
13230                         }
13231                         else {
13232                                 internal_error(state, 0, "unhandled constant initializer");
13233                         }
13234                         free_triple(state, value);
13235                         if (peek(state) == TOK_COMMA) {
13236                                 eat(state, TOK_COMMA);
13237                                 comma = 1;
13238                         }
13239                         info.offset += value_size;
13240                         if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
13241                                 info.type = next_field(state, type, info.type);
13242                                 info.offset = field_offset(state, type, 
13243                                         info.type->field_ident);
13244                         }
13245                 } while(comma && (peek(state) != TOK_RBRACE));
13246                 if ((type->elements == ELEMENT_COUNT_UNSPECIFIED) &&
13247                         ((type->type & TYPE_MASK) == TYPE_ARRAY)) {
13248                         type->elements = max_offset / size_of(state, type->left);
13249                 }
13250                 eat(state, TOK_RBRACE);
13251                 result = triple(state, OP_BLOBCONST, type, 0, 0);
13252                 result->u.blob = buf;
13253         }
13254         return result;
13255 }
13256
13257 static void resolve_branches(struct compile_state *state, struct triple *first)
13258 {
13259         /* Make a second pass and finish anything outstanding
13260          * with respect to branches.  The only outstanding item
13261          * is to see if there are goto to labels that have not
13262          * been defined and to error about them.
13263          */
13264         int i;
13265         struct triple *ins;
13266         /* Also error on branches that do not use their targets */
13267         ins = first;
13268         do {
13269                 if (!triple_is_ret(state, ins)) {
13270                         struct triple **expr ;
13271                         struct triple_set *set;
13272                         expr = triple_targ(state, ins, 0);
13273                         for(; expr; expr = triple_targ(state, ins, expr)) {
13274                                 struct triple *targ;
13275                                 targ = *expr;
13276                                 for(set = targ?targ->use:0; set; set = set->next) {
13277                                         if (set->member == ins) {
13278                                                 break;
13279                                         }
13280                                 }
13281                                 if (!set) {
13282                                         internal_error(state, ins, "targ not used");
13283                                 }
13284                         }
13285                 }
13286                 ins = ins->next;
13287         } while(ins != first);
13288         /* See if there are goto to labels that have not been defined */
13289         for(i = 0; i < HASH_TABLE_SIZE; i++) {
13290                 struct hash_entry *entry;
13291                 for(entry = state->hash_table[i]; entry; entry = entry->next) {
13292                         struct triple *ins;
13293                         if (!entry->sym_label) {
13294                                 continue;
13295                         }
13296                         ins = entry->sym_label->def;
13297                         if (!(ins->id & TRIPLE_FLAG_FLATTENED)) {
13298                                 error(state, ins, "label `%s' used but not defined",
13299                                         entry->name);
13300                         }
13301                 }
13302         }
13303 }
13304
13305 static struct triple *function_definition(
13306         struct compile_state *state, struct type *type)
13307 {
13308         struct triple *def, *tmp, *first, *end, *retvar, *result, *ret;
13309         struct triple *fname;
13310         struct type *fname_type;
13311         struct hash_entry *ident;
13312         struct type *param, *crtype, *ctype;
13313         int i;
13314         if ((type->type &TYPE_MASK) != TYPE_FUNCTION) {
13315                 error(state, 0, "Invalid function header");
13316         }
13317
13318         /* Verify the function type */
13319         if (((type->right->type & TYPE_MASK) != TYPE_VOID)  &&
13320                 ((type->right->type & TYPE_MASK) != TYPE_PRODUCT) &&
13321                 (type->right->field_ident == 0)) {
13322                 error(state, 0, "Invalid function parameters");
13323         }
13324         param = type->right;
13325         i = 0;
13326         while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
13327                 i++;
13328                 if (!param->left->field_ident) {
13329                         error(state, 0, "No identifier for parameter %d\n", i);
13330                 }
13331                 param = param->right;
13332         }
13333         i++;
13334         if (((param->type & TYPE_MASK) != TYPE_VOID) && !param->field_ident) {
13335                 error(state, 0, "No identifier for paramter %d\n", i);
13336         }
13337         
13338         /* Get a list of statements for this function. */
13339         def = triple(state, OP_LIST, type, 0, 0);
13340
13341         /* Start a new scope for the passed parameters */
13342         start_scope(state);
13343
13344         /* Put a label at the very start of a function */
13345         first = label(state);
13346         RHS(def, 0) = first;
13347
13348         /* Put a label at the very end of a function */
13349         end = label(state);
13350         flatten(state, first, end);
13351         /* Remember where return goes */
13352         ident = state->i_return;
13353         symbol(state, ident, &ident->sym_ident, end, end->type);
13354
13355         /* Get the initial closure type */
13356         ctype = new_type(TYPE_JOIN, &void_type, 0);
13357         ctype->elements = 1;
13358
13359         /* Add a variable for the return value */
13360         crtype = new_type(TYPE_TUPLE, 
13361                 /* Remove all type qualifiers from the return type */
13362                 new_type(TYPE_PRODUCT, ctype, clone_type(0, type->left)), 0);
13363         crtype->elements = 2;
13364         result = flatten(state, end, variable(state, crtype));
13365
13366         /* Allocate a variable for the return address */
13367         retvar = flatten(state, end, variable(state, &void_ptr_type));
13368
13369         /* Add in the return instruction */
13370         ret = triple(state, OP_RET, &void_type, read_expr(state, retvar), 0);
13371         ret = flatten(state, first, ret);
13372
13373         /* Walk through the parameters and create symbol table entries
13374          * for them.
13375          */
13376         param = type->right;
13377         while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
13378                 ident = param->left->field_ident;
13379                 tmp = variable(state, param->left);
13380                 var_symbol(state, ident, tmp);
13381                 flatten(state, end, tmp);
13382                 param = param->right;
13383         }
13384         if ((param->type & TYPE_MASK) != TYPE_VOID) {
13385                 /* And don't forget the last parameter */
13386                 ident = param->field_ident;
13387                 tmp = variable(state, param);
13388                 symbol(state, ident, &ident->sym_ident, tmp, tmp->type);
13389                 flatten(state, end, tmp);
13390         }
13391
13392         /* Add the declaration static const char __func__ [] = "func-name"  */
13393         fname_type = new_type(TYPE_ARRAY, 
13394                 clone_type(QUAL_CONST | STOR_STATIC, &char_type), 0);
13395         fname_type->type |= QUAL_CONST | STOR_STATIC;
13396         fname_type->elements = strlen(state->function) + 1;
13397
13398         fname = triple(state, OP_BLOBCONST, fname_type, 0, 0);
13399         fname->u.blob = (void *)state->function;
13400         fname = flatten(state, end, fname);
13401
13402         ident = state->i___func__;
13403         symbol(state, ident, &ident->sym_ident, fname, fname_type);
13404
13405         /* Remember which function I am compiling.
13406          * Also assume the last defined function is the main function.
13407          */
13408         state->main_function = def;
13409
13410         /* Now get the actual function definition */
13411         compound_statement(state, end);
13412
13413         /* Finish anything unfinished with branches */
13414         resolve_branches(state, first);
13415
13416         /* Remove the parameter scope */
13417         end_scope(state);
13418
13419
13420         /* Remember I have defined a function */
13421         if (!state->functions) {
13422                 state->functions = def;
13423         } else {
13424                 insert_triple(state, state->functions, def);
13425         }
13426         if (state->compiler->debug & DEBUG_INLINE) {
13427                 FILE *fp = state->dbgout;
13428                 fprintf(fp, "\n");
13429                 loc(fp, state, 0);
13430                 fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
13431                 display_func(state, fp, def);
13432                 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
13433         }
13434
13435         return def;
13436 }
13437
13438 static struct triple *do_decl(struct compile_state *state, 
13439         struct type *type, struct hash_entry *ident)
13440 {
13441         struct triple *def;
13442         def = 0;
13443         /* Clean up the storage types used */
13444         switch (type->type & STOR_MASK) {
13445         case STOR_AUTO:
13446         case STOR_STATIC:
13447                 /* These are the good types I am aiming for */
13448                 break;
13449         case STOR_REGISTER:
13450                 type->type &= ~STOR_MASK;
13451                 type->type |= STOR_AUTO;
13452                 break;
13453         case STOR_LOCAL:
13454         case STOR_EXTERN:
13455                 type->type &= ~STOR_MASK;
13456                 type->type |= STOR_STATIC;
13457                 break;
13458         case STOR_TYPEDEF:
13459                 if (!ident) {
13460                         error(state, 0, "typedef without name");
13461                 }
13462                 symbol(state, ident, &ident->sym_ident, 0, type);
13463                 ident->tok = TOK_TYPE_NAME;
13464                 return 0;
13465                 break;
13466         default:
13467                 internal_error(state, 0, "Undefined storage class");
13468         }
13469         if ((type->type & TYPE_MASK) == TYPE_FUNCTION) {
13470                 error(state, 0, "Function prototypes not supported");
13471         }
13472         if (ident && 
13473                 ((type->type & STOR_MASK) == STOR_STATIC) &&
13474                 ((type->type & QUAL_CONST) == 0)) {
13475                 error(state, 0, "non const static variables not supported");
13476         }
13477         if (ident) {
13478                 def = variable(state, type);
13479                 var_symbol(state, ident, def);
13480         }
13481         return def;
13482 }
13483
13484 static void decl(struct compile_state *state, struct triple *first)
13485 {
13486         struct type *base_type, *type;
13487         struct hash_entry *ident;
13488         struct triple *def;
13489         int global;
13490         global = (state->scope_depth <= GLOBAL_SCOPE_DEPTH);
13491         base_type = decl_specifiers(state);
13492         ident = 0;
13493         type = declarator(state, base_type, &ident, 0);
13494         type->type = attributes_opt(state, type->type);
13495         if (global && ident && (peek(state) == TOK_LBRACE)) {
13496                 /* function */
13497                 type->type_ident = ident;
13498                 state->function = ident->name;
13499                 def = function_definition(state, type);
13500                 symbol(state, ident, &ident->sym_ident, def, type);
13501                 state->function = 0;
13502         }
13503         else {
13504                 int done;
13505                 flatten(state, first, do_decl(state, type, ident));
13506                 /* type or variable definition */
13507                 do {
13508                         done = 1;
13509                         if (peek(state) == TOK_EQ) {
13510                                 if (!ident) {
13511                                         error(state, 0, "cannot assign to a type");
13512                                 }
13513                                 eat(state, TOK_EQ);
13514                                 flatten(state, first,
13515                                         init_expr(state, 
13516                                                 ident->sym_ident->def, 
13517                                                 initializer(state, type)));
13518                         }
13519                         arrays_complete(state, type);
13520                         if (peek(state) == TOK_COMMA) {
13521                                 eat(state, TOK_COMMA);
13522                                 ident = 0;
13523                                 type = declarator(state, base_type, &ident, 0);
13524                                 flatten(state, first, do_decl(state, type, ident));
13525                                 done = 0;
13526                         }
13527                 } while(!done);
13528                 eat(state, TOK_SEMI);
13529         }
13530 }
13531
13532 static void decls(struct compile_state *state)
13533 {
13534         struct triple *list;
13535         int tok;
13536         list = label(state);
13537         while(1) {
13538                 tok = peek(state);
13539                 if (tok == TOK_EOF) {
13540                         return;
13541                 }
13542                 if (tok == TOK_SPACE) {
13543                         eat(state, TOK_SPACE);
13544                 }
13545                 decl(state, list);
13546                 if (list->next != list) {
13547                         error(state, 0, "global variables not supported");
13548                 }
13549         }
13550 }
13551
13552 /* 
13553  * Function inlining
13554  */
13555 struct triple_reg_set {
13556         struct triple_reg_set *next;
13557         struct triple *member;
13558         struct triple *new;
13559 };
13560 struct reg_block {
13561         struct block *block;
13562         struct triple_reg_set *in;
13563         struct triple_reg_set *out;
13564         int vertex;
13565 };
13566 static void setup_basic_blocks(struct compile_state *, struct basic_blocks *bb);
13567 static void analyze_basic_blocks(struct compile_state *state, struct basic_blocks *bb);
13568 static void free_basic_blocks(struct compile_state *, struct basic_blocks *bb);
13569 static int tdominates(struct compile_state *state, struct triple *dom, struct triple *sub);
13570 static void walk_blocks(struct compile_state *state, struct basic_blocks *bb,
13571         void (*cb)(struct compile_state *state, struct block *block, void *arg),
13572         void *arg);
13573 static void print_block(
13574         struct compile_state *state, struct block *block, void *arg);
13575 static int do_triple_set(struct triple_reg_set **head, 
13576         struct triple *member, struct triple *new_member);
13577 static void do_triple_unset(struct triple_reg_set **head, struct triple *member);
13578 static struct reg_block *compute_variable_lifetimes(
13579         struct compile_state *state, struct basic_blocks *bb);
13580 static void free_variable_lifetimes(struct compile_state *state, 
13581         struct basic_blocks *bb, struct reg_block *blocks);
13582 #if DEBUG_EXPLICIT_CLOSURES
13583 static void print_live_variables(struct compile_state *state, 
13584         struct basic_blocks *bb, struct reg_block *rb, FILE *fp);
13585 #endif
13586
13587
13588 static struct triple *call(struct compile_state *state,
13589         struct triple *retvar, struct triple *ret_addr, 
13590         struct triple *targ, struct triple *ret)
13591 {
13592         struct triple *call;
13593
13594         if (!retvar || !is_lvalue(state, retvar)) {
13595                 internal_error(state, 0, "writing to a non lvalue?");
13596         }
13597         write_compatible(state, retvar->type, &void_ptr_type);
13598
13599         call = new_triple(state, OP_CALL, &void_type, 1, 0);
13600         TARG(call, 0) = targ;
13601         MISC(call, 0) = ret;
13602         if (!targ || (targ->op != OP_LABEL)) {
13603                 internal_error(state, 0, "call not to a label");
13604         }
13605         if (!ret || (ret->op != OP_RET)) {
13606                 internal_error(state, 0, "call not matched with return");
13607         }
13608         return call;
13609 }
13610
13611 static void walk_functions(struct compile_state *state,
13612         void (*cb)(struct compile_state *state, struct triple *func, void *arg),
13613         void *arg)
13614 {
13615         struct triple *func, *first;
13616         func = first = state->functions;
13617         do {
13618                 cb(state, func, arg);
13619                 func = func->next;
13620         } while(func != first);
13621 }
13622
13623 static void reverse_walk_functions(struct compile_state *state,
13624         void (*cb)(struct compile_state *state, struct triple *func, void *arg),
13625         void *arg)
13626 {
13627         struct triple *func, *first;
13628         func = first = state->functions;
13629         do {
13630                 func = func->prev;
13631                 cb(state, func, arg);
13632         } while(func != first);
13633 }
13634
13635
13636 static void mark_live(struct compile_state *state, struct triple *func, void *arg)
13637 {
13638         struct triple *ptr, *first;
13639         if (func->u.cval == 0) {
13640                 return;
13641         }
13642         ptr = first = RHS(func, 0);
13643         do {
13644                 if (ptr->op == OP_FCALL) {
13645                         struct triple *called_func;
13646                         called_func = MISC(ptr, 0);
13647                         /* Mark the called function as used */
13648                         if (!(func->id & TRIPLE_FLAG_FLATTENED)) {
13649                                 called_func->u.cval++;
13650                         }
13651                         /* Remove the called function from the list */
13652                         called_func->prev->next = called_func->next;
13653                         called_func->next->prev = called_func->prev;
13654
13655                         /* Place the called function before me on the list */
13656                         called_func->next       = func;
13657                         called_func->prev       = func->prev;
13658                         called_func->prev->next = called_func;
13659                         called_func->next->prev = called_func;
13660                 }
13661                 ptr = ptr->next;
13662         } while(ptr != first);
13663         func->id |= TRIPLE_FLAG_FLATTENED;
13664 }
13665
13666 static void mark_live_functions(struct compile_state *state)
13667 {
13668         /* Ensure state->main_function is the last function in 
13669          * the list of functions.
13670          */
13671         if ((state->main_function->next != state->functions) ||
13672                 (state->functions->prev != state->main_function)) {
13673                 internal_error(state, 0, 
13674                         "state->main_function is not at the end of the function list ");
13675         }
13676         state->main_function->u.cval = 1;
13677         reverse_walk_functions(state, mark_live, 0);
13678 }
13679
13680 static int local_triple(struct compile_state *state, 
13681         struct triple *func, struct triple *ins)
13682 {
13683         int local = (ins->id & TRIPLE_FLAG_LOCAL);
13684 #if 0
13685         if (!local) {
13686                 FILE *fp = state->errout;
13687                 fprintf(fp, "global: ");
13688                 display_triple(fp, ins);
13689         }
13690 #endif
13691         return local;
13692 }
13693
13694 struct triple *copy_func(struct compile_state *state, struct triple *ofunc, 
13695         struct occurance *base_occurance)
13696 {
13697         struct triple *nfunc;
13698         struct triple *nfirst, *ofirst;
13699         struct triple *new, *old;
13700
13701         if (state->compiler->debug & DEBUG_INLINE) {
13702                 FILE *fp = state->dbgout;
13703                 fprintf(fp, "\n");
13704                 loc(fp, state, 0);
13705                 fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
13706                 display_func(state, fp, ofunc);
13707                 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
13708         }
13709
13710         /* Make a new copy of the old function */
13711         nfunc = triple(state, OP_LIST, ofunc->type, 0, 0);
13712         nfirst = 0;
13713         ofirst = old = RHS(ofunc, 0);
13714         do {
13715                 struct triple *new;
13716                 struct occurance *occurance;
13717                 int old_lhs, old_rhs;
13718                 old_lhs = old->lhs;
13719                 old_rhs = old->rhs;
13720                 occurance = inline_occurance(state, base_occurance, old->occurance);
13721                 if (ofunc->u.cval && (old->op == OP_FCALL)) {
13722                         MISC(old, 0)->u.cval += 1;
13723                 }
13724                 new = alloc_triple(state, old->op, old->type, old_lhs, old_rhs,
13725                         occurance);
13726                 if (!triple_stores_block(state, new)) {
13727                         memcpy(&new->u, &old->u, sizeof(new->u));
13728                 }
13729                 if (!nfirst) {
13730                         RHS(nfunc, 0) = nfirst = new;
13731                 }
13732                 else {
13733                         insert_triple(state, nfirst, new);
13734                 }
13735                 new->id |= TRIPLE_FLAG_FLATTENED;
13736                 new->id |= old->id & TRIPLE_FLAG_COPY;
13737                 
13738                 /* During the copy remember new as user of old */
13739                 use_triple(old, new);
13740
13741                 /* Remember which instructions are local */
13742                 old->id |= TRIPLE_FLAG_LOCAL;
13743                 old = old->next;
13744         } while(old != ofirst);
13745
13746         /* Make a second pass to fix up any unresolved references */
13747         old = ofirst;
13748         new = nfirst;
13749         do {
13750                 struct triple **oexpr, **nexpr;
13751                 int count, i;
13752                 /* Lookup where the copy is, to join pointers */
13753                 count = TRIPLE_SIZE(old);
13754                 for(i = 0; i < count; i++) {
13755                         oexpr = &old->param[i];
13756                         nexpr = &new->param[i];
13757                         if (*oexpr && !*nexpr) {
13758                                 if (!local_triple(state, ofunc, *oexpr)) {
13759                                         *nexpr = *oexpr;
13760                                 }
13761                                 else if ((*oexpr)->use) {
13762                                         *nexpr = (*oexpr)->use->member;
13763                                 }
13764                                 if (*nexpr == old) {
13765                                         internal_error(state, 0, "new == old?");
13766                                 }
13767                                 use_triple(*nexpr, new);
13768                         }
13769                         if (!*nexpr && *oexpr) {
13770                                 internal_error(state, 0, "Could not copy %d", i);
13771                         }
13772                 }
13773                 old = old->next;
13774                 new = new->next;
13775         } while((old != ofirst) && (new != nfirst));
13776         
13777         /* Make a third pass to cleanup the extra useses */
13778         old = ofirst;
13779         new = nfirst;
13780         do {
13781                 unuse_triple(old, new);
13782                 /* Forget which instructions are local */
13783                 old->id &= ~TRIPLE_FLAG_LOCAL;
13784                 old = old->next;
13785                 new = new->next;
13786         } while ((old != ofirst) && (new != nfirst));
13787         return nfunc;
13788 }
13789
13790 static void expand_inline_call(
13791         struct compile_state *state, struct triple *me, struct triple *fcall)
13792 {
13793         /* Inline the function call */
13794         struct type *ptype;
13795         struct triple *ofunc, *nfunc, *nfirst, *result, *retvar, *ins;
13796         struct triple *end, *nend;
13797         int pvals, i;
13798
13799         /* Find the triples */
13800         ofunc = MISC(fcall, 0);
13801         if (ofunc->op != OP_LIST) {
13802                 internal_error(state, 0, "improper function");
13803         }
13804         nfunc = copy_func(state, ofunc, fcall->occurance);
13805         /* Prepend the parameter reading into the new function list */
13806         ptype = nfunc->type->right;
13807         pvals = fcall->rhs;
13808         for(i = 0; i < pvals; i++) {
13809                 struct type *atype;
13810                 struct triple *arg, *param;
13811                 atype = ptype;
13812                 if ((ptype->type & TYPE_MASK) == TYPE_PRODUCT) {
13813                         atype = ptype->left;
13814                 }
13815                 param = farg(state, nfunc, i);
13816                 if ((param->type->type & TYPE_MASK) != (atype->type & TYPE_MASK)) {
13817                         internal_error(state, fcall, "param %d type mismatch", i);
13818                 }
13819                 arg = RHS(fcall, i);
13820                 flatten(state, fcall, write_expr(state, param, arg));
13821                 ptype = ptype->right;
13822         }
13823         result = 0;
13824         if ((nfunc->type->left->type & TYPE_MASK) != TYPE_VOID) {
13825                 result = read_expr(state, 
13826                         deref_index(state, fresult(state, nfunc), 1));
13827         }
13828         if (state->compiler->debug & DEBUG_INLINE) {
13829                 FILE *fp = state->dbgout;
13830                 fprintf(fp, "\n");
13831                 loc(fp, state, 0);
13832                 fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
13833                 display_func(state, fp, nfunc);
13834                 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
13835         }
13836
13837         /* 
13838          * Get rid of the extra triples 
13839          */
13840         /* Remove the read of the return address */
13841         ins = RHS(nfunc, 0)->prev->prev;
13842         if ((ins->op != OP_READ) || (RHS(ins, 0) != fretaddr(state, nfunc))) {
13843                 internal_error(state, ins, "Not return addres read?");
13844         }
13845         release_triple(state, ins);
13846         /* Remove the return instruction */
13847         ins = RHS(nfunc, 0)->prev;
13848         if (ins->op != OP_RET) {
13849                 internal_error(state, ins, "Not return?");
13850         }
13851         release_triple(state, ins);
13852         /* Remove the retaddres variable */
13853         retvar = fretaddr(state, nfunc);
13854         if ((retvar->lhs != 1) || 
13855                 (retvar->op != OP_ADECL) ||
13856                 (retvar->next->op != OP_PIECE) ||
13857                 (MISC(retvar->next, 0) != retvar)) {
13858                 internal_error(state, retvar, "Not the return address?");
13859         }
13860         release_triple(state, retvar->next);
13861         release_triple(state, retvar);
13862
13863         /* Remove the label at the start of the function */
13864         ins = RHS(nfunc, 0);
13865         if (ins->op != OP_LABEL) {
13866                 internal_error(state, ins, "Not label?");
13867         }
13868         nfirst = ins->next;
13869         free_triple(state, ins);
13870         /* Release the new function header */
13871         RHS(nfunc, 0) = 0;
13872         free_triple(state, nfunc);
13873
13874         /* Append the new function list onto the return list */
13875         end = fcall->prev;
13876         nend = nfirst->prev;
13877         end->next    = nfirst;
13878         nfirst->prev = end;
13879         nend->next   = fcall;
13880         fcall->prev  = nend;
13881
13882         /* Now the result reading code */
13883         if (result) {
13884                 result = flatten(state, fcall, result);
13885                 propogate_use(state, fcall, result);
13886         }
13887
13888         /* Release the original fcall instruction */
13889         release_triple(state, fcall);
13890
13891         return;
13892 }
13893
13894 /*
13895  *
13896  * Type of the result variable.
13897  * 
13898  *                                     result
13899  *                                        |
13900  *                             +----------+------------+
13901  *                             |                       |
13902  *                     union of closures         result_type
13903  *                             |
13904  *          +------------------+---------------+
13905  *          |                                  |
13906  *       closure1                    ...   closuerN
13907  *          |                                  | 
13908  *  +----+--+-+--------+-----+       +----+----+---+-----+
13909  *  |    |    |        |     |       |    |        |     |
13910  * var1 var2 var3 ... varN result   var1 var2 ... varN result
13911  *                           |
13912  *                  +--------+---------+
13913  *                  |                  |
13914  *          union of closures     result_type
13915  *                  |
13916  *            +-----+-------------------+
13917  *            |                         |
13918  *         closure1            ...  closureN
13919  *            |                         |
13920  *  +-----+---+----+----+      +----+---+----+-----+
13921  *  |     |        |    |      |    |        |     |
13922  * var1 var2 ... varN result  var1 var2 ... varN result
13923  */
13924
13925 static int add_closure_type(struct compile_state *state, 
13926         struct triple *func, struct type *closure_type)
13927 {
13928         struct type *type, *ctype, **next;
13929         struct triple *var, *new_var;
13930         int i;
13931
13932 #if 0
13933         FILE *fp = state->errout;
13934         fprintf(fp, "original_type: ");
13935         name_of(fp, fresult(state, func)->type);
13936         fprintf(fp, "\n");
13937 #endif
13938         /* find the original type */
13939         var = fresult(state, func);
13940         type = var->type;
13941         if (type->elements != 2) {
13942                 internal_error(state, var, "bad return type");
13943         }
13944
13945         /* Find the complete closure type and update it */
13946         ctype = type->left->left;
13947         next = &ctype->left;
13948         while(((*next)->type & TYPE_MASK) == TYPE_OVERLAP) {
13949                 next = &(*next)->right;
13950         }
13951         *next = new_type(TYPE_OVERLAP, *next, dup_type(state, closure_type));
13952         ctype->elements += 1;
13953
13954 #if 0
13955         fprintf(fp, "new_type: ");
13956         name_of(fp, type);
13957         fprintf(fp, "\n");
13958         fprintf(fp, "ctype: %p %d bits: %d ", 
13959                 ctype, ctype->elements, reg_size_of(state, ctype));
13960         name_of(fp, ctype);
13961         fprintf(fp, "\n");
13962 #endif
13963         
13964         /* Regenerate the variable with the new type definition */
13965         new_var = pre_triple(state, var, OP_ADECL, type, 0, 0);
13966         new_var->id |= TRIPLE_FLAG_FLATTENED;
13967         for(i = 0; i < new_var->lhs; i++) {
13968                 LHS(new_var, i)->id |= TRIPLE_FLAG_FLATTENED;
13969         }
13970         
13971         /* Point everyone at the new variable */
13972         propogate_use(state, var, new_var);
13973
13974         /* Release the original variable */
13975         for(i = 0; i < var->lhs; i++) {
13976                 release_triple(state, LHS(var, i));
13977         }
13978         release_triple(state, var);
13979         
13980         /* Return the index of the added closure type */
13981         return ctype->elements - 1;
13982 }
13983
13984 static struct triple *closure_expr(struct compile_state *state,
13985         struct triple *func, int closure_idx, int var_idx)
13986 {
13987         return deref_index(state,
13988                 deref_index(state,
13989                         deref_index(state, fresult(state, func), 0),
13990                         closure_idx),
13991                 var_idx);
13992 }
13993
13994
13995 static void insert_triple_set(
13996         struct triple_reg_set **head, struct triple *member)
13997 {
13998         struct triple_reg_set *new;
13999         new = xcmalloc(sizeof(*new), "triple_set");
14000         new->member = member;
14001         new->new    = 0;
14002         new->next   = *head;
14003         *head       = new;
14004 }
14005
14006 static int ordered_triple_set(
14007         struct triple_reg_set **head, struct triple *member)
14008 {
14009         struct triple_reg_set **ptr;
14010         if (!member)
14011                 return 0;
14012         ptr = head;
14013         while(*ptr) {
14014                 if (member == (*ptr)->member) {
14015                         return 0;
14016                 }
14017                 /* keep the list ordered */
14018                 if (member->id < (*ptr)->member->id) {
14019                         break;
14020                 }
14021                 ptr = &(*ptr)->next;
14022         }
14023         insert_triple_set(ptr, member);
14024         return 1;
14025 }
14026
14027
14028 static void free_closure_variables(struct compile_state *state,
14029         struct triple_reg_set **enclose)
14030 {
14031         struct triple_reg_set *entry, *next;
14032         for(entry = *enclose; entry; entry = next) {
14033                 next = entry->next;
14034                 do_triple_unset(enclose, entry->member);
14035         }
14036 }
14037
14038 static int lookup_closure_index(struct compile_state *state,
14039         struct triple *me, struct triple *val)
14040 {
14041         struct triple *first, *ins, *next;
14042         first = RHS(me, 0);
14043         ins = next = first;
14044         do {
14045                 struct triple *result;
14046                 struct triple *index0, *index1, *index2, *read, *write;
14047                 ins = next;
14048                 next = ins->next;
14049                 if (ins->op != OP_CALL) {
14050                         continue;
14051                 }
14052                 /* I am at a previous call point examine it closely */
14053                 if (ins->next->op != OP_LABEL) {
14054                         internal_error(state, ins, "call not followed by label");
14055                 }
14056                 /* Does this call does not enclose any variables? */
14057                 if ((ins->next->next->op != OP_INDEX) ||
14058                         (ins->next->next->u.cval != 0) ||
14059                         (result = MISC(ins->next->next, 0)) ||
14060                         (result->id & TRIPLE_FLAG_LOCAL)) {
14061                         continue;
14062                 }
14063                 index0 = ins->next->next;
14064                 /* The pattern is:
14065                  * 0 index result < 0 >
14066                  * 1 index 0 < ? >
14067                  * 2 index 1 < ? >
14068                  * 3 read  2
14069                  * 4 write 3 var
14070                  */
14071                 for(index0 = ins->next->next;
14072                         (index0->op == OP_INDEX) &&
14073                                 (MISC(index0, 0) == result) &&
14074                                 (index0->u.cval == 0) ; 
14075                         index0 = write->next)
14076                 {
14077                         index1 = index0->next;
14078                         index2 = index1->next;
14079                         read   = index2->next;
14080                         write  = read->next;
14081                         if ((index0->op != OP_INDEX) ||
14082                                 (index1->op != OP_INDEX) ||
14083                                 (index2->op != OP_INDEX) ||
14084                                 (read->op != OP_READ) ||
14085                                 (write->op != OP_WRITE) ||
14086                                 (MISC(index1, 0) != index0) ||
14087                                 (MISC(index2, 0) != index1) ||
14088                                 (RHS(read, 0) != index2) ||
14089                                 (RHS(write, 0) != read)) {
14090                                 internal_error(state, index0, "bad var read");
14091                         }
14092                         if (MISC(write, 0) == val) {
14093                                 return index2->u.cval;
14094                         }
14095                 }
14096         } while(next != first);
14097         return -1;
14098 }
14099
14100 static inline int enclose_triple(struct triple *ins)
14101 {
14102         return (ins && ((ins->type->type & TYPE_MASK) != TYPE_VOID));
14103 }
14104
14105 static void compute_closure_variables(struct compile_state *state,
14106         struct triple *me, struct triple *fcall, struct triple_reg_set **enclose)
14107 {
14108         struct triple_reg_set *set, *vars, **last_var;
14109         struct basic_blocks bb;
14110         struct reg_block *rb;
14111         struct block *block;
14112         struct triple *old_result, *first, *ins;
14113         size_t count, idx;
14114         unsigned long used_indicies;
14115         int i, max_index;
14116 #define MAX_INDICIES (sizeof(used_indicies)*CHAR_BIT)
14117 #define ID_BITS(X) ((X) & (TRIPLE_FLAG_LOCAL -1))
14118         struct { 
14119                 unsigned id;
14120                 int index;
14121         } *info;
14122
14123         
14124         /* Find the basic blocks of this function */
14125         bb.func = me;
14126         bb.first = RHS(me, 0);
14127         old_result = 0;
14128         if (!triple_is_ret(state, bb.first->prev)) {
14129                 bb.func = 0;
14130         } else {
14131                 old_result = fresult(state, me);
14132         }
14133         analyze_basic_blocks(state, &bb);
14134
14135         /* Find which variables are currently alive in a given block */
14136         rb = compute_variable_lifetimes(state, &bb);
14137
14138         /* Find the variables that are currently alive */
14139         block = block_of_triple(state, fcall);
14140         if (!block || (block->vertex <= 0) || (block->vertex > bb.last_vertex)) {
14141                 internal_error(state, fcall, "No reg block? block: %p", block);
14142         }
14143
14144 #if DEBUG_EXPLICIT_CLOSURES
14145         print_live_variables(state, &bb, rb, state->dbgout);
14146         fflush(state->dbgout);
14147 #endif
14148
14149         /* Count the number of triples in the function */
14150         first = RHS(me, 0);
14151         ins = first;
14152         count = 0;
14153         do {
14154                 count++;
14155                 ins = ins->next;
14156         } while(ins != first);
14157
14158         /* Allocate some memory to temorary hold the id info */
14159         info = xcmalloc(sizeof(*info) * (count +1), "info");
14160
14161         /* Mark the local function */
14162         first = RHS(me, 0);
14163         ins = first;
14164         idx = 1;
14165         do {
14166                 info[idx].id = ins->id;
14167                 ins->id = TRIPLE_FLAG_LOCAL | idx;
14168                 idx++;
14169                 ins = ins->next;
14170         } while(ins != first);
14171
14172         /* 
14173          * Build the list of variables to enclose.
14174          *
14175          * A target it to put the same variable in the
14176          * same slot for ever call of a given function.
14177          * After coloring this removes all of the variable
14178          * manipulation code.
14179          *
14180          * The list of variables to enclose is built ordered
14181          * program order because except in corner cases this
14182          * gives me the stability of assignment I need.
14183          *
14184          * To gurantee that stability I lookup the variables
14185          * to see where they have been used before and
14186          * I build my final list with the assigned indicies.
14187          */
14188         vars = 0;
14189         if (enclose_triple(old_result)) {
14190                 ordered_triple_set(&vars, old_result);
14191         }
14192         for(set = rb[block->vertex].out; set; set = set->next) {
14193                 if (!enclose_triple(set->member)) {
14194                         continue;
14195                 }
14196                 if ((set->member == fcall) || (set->member == old_result)) {
14197                         continue;
14198                 }
14199                 if (!local_triple(state, me, set->member)) {
14200                         internal_error(state, set->member, "not local?");
14201                 }
14202                 ordered_triple_set(&vars, set->member);
14203         }
14204
14205         /* Lookup the current indicies of the live varialbe */
14206         used_indicies = 0;
14207         max_index = -1;
14208         for(set = vars; set ; set = set->next) {
14209                 struct triple *ins;
14210                 int index;
14211                 ins = set->member;
14212                 index  = lookup_closure_index(state, me, ins);
14213                 info[ID_BITS(ins->id)].index = index;
14214                 if (index < 0) {
14215                         continue;
14216                 }
14217                 if (index >= MAX_INDICIES) {
14218                         internal_error(state, ins, "index unexpectedly large");
14219                 }
14220                 if (used_indicies & (1 << index)) {
14221                         internal_error(state, ins, "index previously used?");
14222                 }
14223                 /* Remember which indicies have been used */
14224                 used_indicies |= (1 << index);
14225                 if (index > max_index) {
14226                         max_index = index;
14227                 }
14228         }
14229
14230         /* Walk through the live variables and make certain
14231          * everything is assigned an index.
14232          */
14233         for(set = vars; set; set = set->next) {
14234                 struct triple *ins;
14235                 int index;
14236                 ins = set->member;
14237                 index = info[ID_BITS(ins->id)].index;
14238                 if (index >= 0) {
14239                         continue;
14240                 }
14241                 /* Find the lowest unused index value */
14242                 for(index = 0; index < MAX_INDICIES; index++) {
14243                         if (!(used_indicies & (1 << index))) {
14244                                 break;
14245                         }
14246                 }
14247                 if (index == MAX_INDICIES) {
14248                         internal_error(state, ins, "no free indicies?");
14249                 }
14250                 info[ID_BITS(ins->id)].index = index;
14251                 /* Remember which indicies have been used */
14252                 used_indicies |= (1 << index);
14253                 if (index > max_index) {
14254                         max_index = index;
14255                 }
14256         }
14257
14258         /* Build the return list of variables with positions matching
14259          * their indicies.
14260          */
14261         *enclose = 0;
14262         last_var = enclose;
14263         for(i = 0; i <= max_index; i++) {
14264                 struct triple *var;
14265                 var = 0;
14266                 if (used_indicies & (1 << i)) {
14267                         for(set = vars; set; set = set->next) {
14268                                 int index;
14269                                 index = info[ID_BITS(set->member->id)].index;
14270                                 if (index == i) {
14271                                         var = set->member;
14272                                         break;
14273                                 }
14274                         }
14275                         if (!var) {
14276                                 internal_error(state, me, "missing variable");
14277                         }
14278                 }
14279                 insert_triple_set(last_var, var);
14280                 last_var = &(*last_var)->next;
14281         }
14282
14283 #if DEBUG_EXPLICIT_CLOSURES
14284         /* Print out the variables to be enclosed */
14285         loc(state->dbgout, state, fcall);
14286         fprintf(state->dbgout, "Alive: \n");
14287         for(set = *enclose; set; set = set->next) {
14288                 display_triple(state->dbgout, set->member);
14289         }
14290         fflush(state->dbgout);
14291 #endif
14292
14293         /* Clear the marks */
14294         ins = first;
14295         do {
14296                 ins->id = info[ID_BITS(ins->id)].id;
14297                 ins = ins->next;
14298         } while(ins != first);
14299
14300         /* Release the ordered list of live variables */
14301         free_closure_variables(state, &vars);
14302
14303         /* Release the storage of the old ids */
14304         xfree(info);
14305
14306         /* Release the variable lifetime information */
14307         free_variable_lifetimes(state, &bb, rb);
14308
14309         /* Release the basic blocks of this function */
14310         free_basic_blocks(state, &bb);
14311 }
14312
14313 static void expand_function_call(
14314         struct compile_state *state, struct triple *me, struct triple *fcall)
14315 {
14316         /* Generate an ordinary function call */
14317         struct type *closure_type, **closure_next;
14318         struct triple *func, *func_first, *func_last, *retvar;
14319         struct triple *first;
14320         struct type *ptype, *rtype;
14321         struct triple *jmp;
14322         struct triple *ret_addr, *ret_loc, *ret_set;
14323         struct triple_reg_set *enclose, *set;
14324         int closure_idx, pvals, i;
14325
14326 #if DEBUG_EXPLICIT_CLOSURES
14327         FILE *fp = state->dbgout;
14328         fprintf(fp, "\ndisplay_func(me) ptr: %p\n", fcall);
14329         display_func(state, fp, MISC(fcall, 0));
14330         display_func(state, fp, me);
14331         fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
14332 #endif
14333
14334         /* Find the triples */
14335         func = MISC(fcall, 0);
14336         func_first = RHS(func, 0);
14337         retvar = fretaddr(state, func);
14338         func_last  = func_first->prev;
14339         first = fcall->next;
14340
14341         /* Find what I need to enclose */
14342         compute_closure_variables(state, me, fcall, &enclose);
14343
14344         /* Compute the closure type */
14345         closure_type = new_type(TYPE_TUPLE, 0, 0);
14346         closure_type->elements = 0;
14347         closure_next = &closure_type->left;
14348         for(set = enclose; set ; set = set->next) {
14349                 struct type *type;
14350                 type = &void_type;
14351                 if (set->member) {
14352                         type = set->member->type;
14353                 }
14354                 if (!*closure_next) {
14355                         *closure_next = type;
14356                 } else {
14357                         *closure_next = new_type(TYPE_PRODUCT, *closure_next, 
14358                                 type);
14359                         closure_next = &(*closure_next)->right;
14360                 }
14361                 closure_type->elements += 1;
14362         }
14363         if (closure_type->elements == 0) {
14364                 closure_type->type = TYPE_VOID;
14365         }
14366
14367
14368 #if DEBUG_EXPLICIT_CLOSURES
14369         fprintf(state->dbgout, "closure type: ");
14370         name_of(state->dbgout, closure_type);
14371         fprintf(state->dbgout, "\n");
14372 #endif
14373
14374         /* Update the called functions closure variable */
14375         closure_idx = add_closure_type(state, func, closure_type);
14376
14377         /* Generate some needed triples */
14378         ret_loc = label(state);
14379         ret_addr = triple(state, OP_ADDRCONST, &void_ptr_type, ret_loc, 0);
14380
14381         /* Pass the parameters to the new function */
14382         ptype = func->type->right;
14383         pvals = fcall->rhs;
14384         for(i = 0; i < pvals; i++) {
14385                 struct type *atype;
14386                 struct triple *arg, *param;
14387                 atype = ptype;
14388                 if ((ptype->type & TYPE_MASK) == TYPE_PRODUCT) {
14389                         atype = ptype->left;
14390                 }
14391                 param = farg(state, func, i);
14392                 if ((param->type->type & TYPE_MASK) != (atype->type & TYPE_MASK)) {
14393                         internal_error(state, fcall, "param type mismatch");
14394                 }
14395                 arg = RHS(fcall, i);
14396                 flatten(state, first, write_expr(state, param, arg));
14397                 ptype = ptype->right;
14398         }
14399         rtype = func->type->left;
14400
14401         /* Thread the triples together */
14402         ret_loc       = flatten(state, first, ret_loc);
14403
14404         /* Save the active variables in the result variable */
14405         for(i = 0, set = enclose; set ; set = set->next, i++) {
14406                 if (!set->member) {
14407                         continue;
14408                 }
14409                 flatten(state, ret_loc,
14410                         write_expr(state,
14411                                 closure_expr(state, func, closure_idx, i),
14412                                 read_expr(state, set->member)));
14413         }
14414
14415         /* Initialize the return value */
14416         if ((rtype->type & TYPE_MASK) != TYPE_VOID) {
14417                 flatten(state, ret_loc, 
14418                         write_expr(state, 
14419                                 deref_index(state, fresult(state, func), 1),
14420                                 new_triple(state, OP_UNKNOWNVAL, rtype,  0, 0)));
14421         }
14422
14423         ret_addr      = flatten(state, ret_loc, ret_addr);
14424         ret_set       = flatten(state, ret_loc, write_expr(state, retvar, ret_addr));
14425         jmp           = flatten(state, ret_loc, 
14426                 call(state, retvar, ret_addr, func_first, func_last));
14427
14428         /* Find the result */
14429         if ((rtype->type & TYPE_MASK) != TYPE_VOID) {
14430                 struct triple * result;
14431                 result = flatten(state, first, 
14432                         read_expr(state, 
14433                                 deref_index(state, fresult(state, func), 1)));
14434
14435                 propogate_use(state, fcall, result);
14436         }
14437
14438         /* Release the original fcall instruction */
14439         release_triple(state, fcall);
14440
14441         /* Restore the active variables from the result variable */
14442         for(i = 0, set = enclose; set ; set = set->next, i++) {
14443                 struct triple_set *use, *next;
14444                 struct triple *new;
14445                 struct basic_blocks bb;
14446                 if (!set->member || (set->member == fcall)) {
14447                         continue;
14448                 }
14449                 /* Generate an expression for the value */
14450                 new = flatten(state, first,
14451                         read_expr(state, 
14452                                 closure_expr(state, func, closure_idx, i)));
14453
14454
14455                 /* If the original is an lvalue restore the preserved value */
14456                 if (is_lvalue(state, set->member)) {
14457                         flatten(state, first,
14458                                 write_expr(state, set->member, new));
14459                         continue;
14460                 }
14461                 /*
14462                  * If the original is a value update the dominated uses.
14463                  */
14464                 
14465                 /* Analyze the basic blocks so I can see who dominates whom */
14466                 bb.func = me;
14467                 bb.first = RHS(me, 0);
14468                 if (!triple_is_ret(state, bb.first->prev)) {
14469                         bb.func = 0;
14470                 }
14471                 analyze_basic_blocks(state, &bb);
14472                 
14473
14474 #if DEBUG_EXPLICIT_CLOSURES
14475                 fprintf(state->errout, "Updating domindated uses: %p -> %p\n",
14476                         set->member, new);
14477 #endif
14478                 /* If fcall dominates the use update the expression */
14479                 for(use = set->member->use; use; use = next) {
14480                         /* Replace use modifies the use chain and 
14481                          * removes use, so I must take a copy of the
14482                          * next entry early.
14483                          */
14484                         next = use->next;
14485                         if (!tdominates(state, fcall, use->member)) {
14486                                 continue;
14487                         }
14488                         replace_use(state, set->member, new, use->member);
14489                 }
14490
14491                 /* Release the basic blocks, the instructions will be
14492                  * different next time, and flatten/insert_triple does
14493                  * not update the block values so I can't cache the analysis.
14494                  */
14495                 free_basic_blocks(state, &bb);
14496         }
14497
14498         /* Release the closure variable list */
14499         free_closure_variables(state, &enclose);
14500
14501         if (state->compiler->debug & DEBUG_INLINE) {
14502                 FILE *fp = state->dbgout;
14503                 fprintf(fp, "\n");
14504                 loc(fp, state, 0);
14505                 fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
14506                 display_func(state, fp, func);
14507                 display_func(state, fp, me);
14508                 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
14509         }
14510
14511         return;
14512 }
14513
14514 static int do_inline(struct compile_state *state, struct triple *func)
14515 {
14516         int do_inline;
14517         int policy;
14518
14519         policy = state->compiler->flags & COMPILER_INLINE_MASK;
14520         switch(policy) {
14521         case COMPILER_INLINE_ALWAYS:
14522                 do_inline = 1;
14523                 if (func->type->type & ATTRIB_NOINLINE) {
14524                         error(state, func, "noinline with always_inline compiler option");
14525                 }
14526                 break;
14527         case COMPILER_INLINE_NEVER:
14528                 do_inline = 0;
14529                 if (func->type->type & ATTRIB_ALWAYS_INLINE) {
14530                         error(state, func, "always_inline with noinline compiler option");
14531                 }
14532                 break;
14533         case COMPILER_INLINE_DEFAULTON:
14534                 switch(func->type->type & STOR_MASK) {
14535                 case STOR_STATIC | STOR_INLINE:
14536                 case STOR_LOCAL  | STOR_INLINE:
14537                 case STOR_EXTERN | STOR_INLINE:
14538                         do_inline = 1;
14539                         break;
14540                 default:
14541                         do_inline = 1;
14542                         break;
14543                 }
14544                 break;
14545         case COMPILER_INLINE_DEFAULTOFF:
14546                 switch(func->type->type & STOR_MASK) {
14547                 case STOR_STATIC | STOR_INLINE:
14548                 case STOR_LOCAL  | STOR_INLINE:
14549                 case STOR_EXTERN | STOR_INLINE:
14550                         do_inline = 1;
14551                         break;
14552                 default:
14553                         do_inline = 0;
14554                         break;
14555                 }
14556                 break;
14557         case COMPILER_INLINE_NOPENALTY:
14558                 switch(func->type->type & STOR_MASK) {
14559                 case STOR_STATIC | STOR_INLINE:
14560                 case STOR_LOCAL  | STOR_INLINE:
14561                 case STOR_EXTERN | STOR_INLINE:
14562                         do_inline = 1;
14563                         break;
14564                 default:
14565                         do_inline = (func->u.cval == 1);
14566                         break;
14567                 }
14568                 break;
14569         default:
14570                 do_inline = 0;
14571                 internal_error(state, 0, "Unimplemented inline policy");
14572                 break;
14573         }
14574         /* Force inlining */
14575         if (func->type->type & ATTRIB_NOINLINE) {
14576                 do_inline = 0;
14577         }
14578         if (func->type->type & ATTRIB_ALWAYS_INLINE) {
14579                 do_inline = 1;
14580         }
14581         return do_inline;
14582 }
14583
14584 static void inline_function(struct compile_state *state, struct triple *me, void *arg)
14585 {
14586         struct triple *first, *ptr, *next;
14587         /* If the function is not used don't bother */
14588         if (me->u.cval <= 0) {
14589                 return;
14590         }
14591         if (state->compiler->debug & DEBUG_CALLS2) {
14592                 FILE *fp = state->dbgout;
14593                 fprintf(fp, "in: %s\n",
14594                         me->type->type_ident->name);
14595         }
14596
14597         first = RHS(me, 0);
14598         ptr = next = first;
14599         do {
14600                 struct triple *func, *prev;
14601                 ptr = next;
14602                 prev = ptr->prev;
14603                 next = ptr->next;
14604                 if (ptr->op != OP_FCALL) {
14605                         continue;
14606                 }
14607                 func = MISC(ptr, 0);
14608                 /* See if the function should be inlined */
14609                 if (!do_inline(state, func)) {
14610                         /* Put a label after the fcall */
14611                         post_triple(state, ptr, OP_LABEL, &void_type, 0, 0);
14612                         continue;
14613                 }
14614                 if (state->compiler->debug & DEBUG_CALLS) {
14615                         FILE *fp = state->dbgout;
14616                         if (state->compiler->debug & DEBUG_CALLS2) {
14617                                 loc(fp, state, ptr);
14618                         }
14619                         fprintf(fp, "inlining %s\n",
14620                                 func->type->type_ident->name);
14621                         fflush(fp);
14622                 }
14623
14624                 /* Update the function use counts */
14625                 func->u.cval -= 1;
14626
14627                 /* Replace the fcall with the called function */
14628                 expand_inline_call(state, me, ptr);
14629
14630                 next = prev->next;
14631         } while (next != first);
14632
14633         ptr = next = first;
14634         do {
14635                 struct triple *prev, *func;
14636                 ptr = next;
14637                 prev = ptr->prev;
14638                 next = ptr->next;
14639                 if (ptr->op != OP_FCALL) {
14640                         continue;
14641                 }
14642                 func = MISC(ptr, 0);
14643                 if (state->compiler->debug & DEBUG_CALLS) {
14644                         FILE *fp = state->dbgout;
14645                         if (state->compiler->debug & DEBUG_CALLS2) {
14646                                 loc(fp, state, ptr);
14647                         }
14648                         fprintf(fp, "calling %s\n",
14649                                 func->type->type_ident->name);
14650                         fflush(fp);
14651                 }
14652                 /* Replace the fcall with the instruction sequence
14653                  * needed to make the call.
14654                  */
14655                 expand_function_call(state, me, ptr);
14656                 next = prev->next;
14657         } while(next != first);
14658 }
14659
14660 static void inline_functions(struct compile_state *state, struct triple *func)
14661 {
14662         inline_function(state, func, 0);
14663         reverse_walk_functions(state, inline_function, 0);
14664 }
14665
14666 static void insert_function(struct compile_state *state,
14667         struct triple *func, void *arg)
14668 {
14669         struct triple *first, *end, *ffirst, *fend;
14670
14671         if (state->compiler->debug & DEBUG_INLINE) {
14672                 FILE *fp = state->errout;
14673                 fprintf(fp, "%s func count: %d\n", 
14674                         func->type->type_ident->name, func->u.cval);
14675         }
14676         if (func->u.cval == 0) {
14677                 return;
14678         }
14679
14680         /* Find the end points of the lists */
14681         first  = arg;
14682         end    = first->prev;
14683         ffirst = RHS(func, 0);
14684         fend   = ffirst->prev;
14685
14686         /* splice the lists together */
14687         end->next    = ffirst;
14688         ffirst->prev = end;
14689         fend->next   = first;
14690         first->prev  = fend;
14691 }
14692
14693 struct triple *input_asm(struct compile_state *state)
14694 {
14695         struct asm_info *info;
14696         struct triple *def;
14697         int i, out;
14698         
14699         info = xcmalloc(sizeof(*info), "asm_info");
14700         info->str = "";
14701
14702         out = sizeof(arch_input_regs)/sizeof(arch_input_regs[0]);
14703         memcpy(&info->tmpl.lhs, arch_input_regs, sizeof(arch_input_regs));
14704
14705         def = new_triple(state, OP_ASM, &void_type, out, 0);
14706         def->u.ainfo = info;
14707         def->id |= TRIPLE_FLAG_VOLATILE;
14708         
14709         for(i = 0; i < out; i++) {
14710                 struct triple *piece;
14711                 piece = triple(state, OP_PIECE, &int_type, def, 0);
14712                 piece->u.cval = i;
14713                 LHS(def, i) = piece;
14714         }
14715
14716         return def;
14717 }
14718
14719 struct triple *output_asm(struct compile_state *state)
14720 {
14721         struct asm_info *info;
14722         struct triple *def;
14723         int in;
14724         
14725         info = xcmalloc(sizeof(*info), "asm_info");
14726         info->str = "";
14727
14728         in = sizeof(arch_output_regs)/sizeof(arch_output_regs[0]);
14729         memcpy(&info->tmpl.rhs, arch_output_regs, sizeof(arch_output_regs));
14730
14731         def = new_triple(state, OP_ASM, &void_type, 0, in);
14732         def->u.ainfo = info;
14733         def->id |= TRIPLE_FLAG_VOLATILE;
14734         
14735         return def;
14736 }
14737
14738 static void join_functions(struct compile_state *state)
14739 {
14740         struct triple *jmp, *start, *end, *call, *in, *out, *func;
14741         struct file_state file;
14742         struct type *pnext, *param;
14743         struct type *result_type, *args_type;
14744         int idx;
14745
14746         /* Be clear the functions have not been joined yet */
14747         state->functions_joined = 0;
14748
14749         /* Dummy file state to get debug handing right */
14750         memset(&file, 0, sizeof(file));
14751         file.basename = "";
14752         file.line = 0;
14753         file.report_line = 0;
14754         file.report_name = file.basename;
14755         file.prev = state->file;
14756         state->file = &file;
14757         state->function = "";
14758
14759         if (!state->main_function) {
14760                 error(state, 0, "No functions to compile\n");
14761         }
14762
14763         /* The type of arguments */
14764         args_type   = state->main_function->type->right;
14765         /* The return type without any specifiers */
14766         result_type = clone_type(0, state->main_function->type->left);
14767
14768
14769         /* Verify the external arguments */
14770         if (registers_of(state, args_type) > ARCH_INPUT_REGS) {
14771                 error(state, state->main_function, 
14772                         "Too many external input arguments");
14773         }
14774         if (registers_of(state, result_type) > ARCH_OUTPUT_REGS) {
14775                 error(state, state->main_function, 
14776                         "Too many external output arguments");
14777         }
14778
14779         /* Lay down the basic program structure */
14780         end           = label(state);
14781         start         = label(state);
14782         start         = flatten(state, state->first, start);
14783         end           = flatten(state, state->first, end);
14784         in            = input_asm(state);
14785         out           = output_asm(state);
14786         call          = new_triple(state, OP_FCALL, result_type, -1, registers_of(state, args_type));
14787         MISC(call, 0) = state->main_function;
14788         in            = flatten(state, state->first, in);
14789         call          = flatten(state, state->first, call);
14790         out           = flatten(state, state->first, out);
14791
14792
14793         /* Read the external input arguments */
14794         pnext = args_type;
14795         idx = 0;
14796         while(pnext && ((pnext->type & TYPE_MASK) != TYPE_VOID)) {
14797                 struct triple *expr;
14798                 param = pnext;
14799                 pnext = 0;
14800                 if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
14801                         pnext = param->right;
14802                         param = param->left;
14803                 }
14804                 if (registers_of(state, param) != 1) {
14805                         error(state, state->main_function, 
14806                                 "Arg: %d %s requires multiple registers", 
14807                                 idx + 1, param->field_ident->name);
14808                 }
14809                 expr = read_expr(state, LHS(in, idx));
14810                 RHS(call, idx) = expr;
14811                 expr = flatten(state, call, expr);
14812                 use_triple(expr, call);
14813
14814                 idx++;  
14815         }
14816
14817
14818         /* Write the external output arguments */
14819         pnext = result_type;
14820         if ((pnext->type & TYPE_MASK) == TYPE_STRUCT) {
14821                 pnext = result_type->left;
14822         }
14823         for(idx = 0; idx < out->rhs; idx++) {
14824                 struct triple *expr;
14825                 param = pnext;
14826                 pnext = 0;
14827                 if (param && ((param->type & TYPE_MASK) == TYPE_PRODUCT)) {
14828                         pnext = param->right;
14829                         param = param->left;
14830                 }
14831                 if (param && ((param->type & TYPE_MASK) == TYPE_VOID)) {
14832                         param = 0;
14833                 }
14834                 if (param) {
14835                         if (registers_of(state, param) != 1) {
14836                                 error(state, state->main_function,
14837                                         "Result: %d %s requires multiple registers",
14838                                         idx, param->field_ident->name);
14839                         }
14840                         expr = read_expr(state, call);
14841                         if ((result_type->type & TYPE_MASK) == TYPE_STRUCT) {
14842                                 expr = deref_field(state, expr, param->field_ident);
14843                         }
14844                 } else {
14845                         expr = triple(state, OP_UNKNOWNVAL, &int_type, 0, 0);
14846                 }
14847                 flatten(state, out, expr);
14848                 RHS(out, idx) = expr;
14849                 use_triple(expr, out);
14850         }
14851
14852         /* Allocate a dummy containing function */
14853         func = triple(state, OP_LIST, 
14854                 new_type(TYPE_FUNCTION, &void_type, &void_type), 0, 0);
14855         func->type->type_ident = lookup(state, "", 0);
14856         RHS(func, 0) = state->first;
14857         func->u.cval = 1;
14858
14859         /* See which functions are called, and how often */
14860         mark_live_functions(state);
14861         inline_functions(state, func);
14862         walk_functions(state, insert_function, end);
14863
14864         if (start->next != end) {
14865                 jmp = flatten(state, start, branch(state, end, 0));
14866         }
14867
14868         /* OK now the functions have been joined. */
14869         state->functions_joined = 1;
14870
14871         /* Done now cleanup */
14872         state->file = file.prev;
14873         state->function = 0;
14874 }
14875
14876 /*
14877  * Data structurs for optimation.
14878  */
14879
14880
14881 static int do_use_block(
14882         struct block *used, struct block_set **head, struct block *user, 
14883         int front)
14884 {
14885         struct block_set **ptr, *new;
14886         if (!used)
14887                 return 0;
14888         if (!user)
14889                 return 0;
14890         ptr = head;
14891         while(*ptr) {
14892                 if ((*ptr)->member == user) {
14893                         return 0;
14894                 }
14895                 ptr = &(*ptr)->next;
14896         }
14897         new = xcmalloc(sizeof(*new), "block_set");
14898         new->member = user;
14899         if (front) {
14900                 new->next = *head;
14901                 *head = new;
14902         }
14903         else {
14904                 new->next = 0;
14905                 *ptr = new;
14906         }
14907         return 1;
14908 }
14909 static int do_unuse_block(
14910         struct block *used, struct block_set **head, struct block *unuser)
14911 {
14912         struct block_set *use, **ptr;
14913         int count;
14914         count = 0;
14915         ptr = head;
14916         while(*ptr) {
14917                 use = *ptr;
14918                 if (use->member == unuser) {
14919                         *ptr = use->next;
14920                         memset(use, -1, sizeof(*use));
14921                         xfree(use);
14922                         count += 1;
14923                 }
14924                 else {
14925                         ptr = &use->next;
14926                 }
14927         }
14928         return count;
14929 }
14930
14931 static void use_block(struct block *used, struct block *user)
14932 {
14933         int count;
14934         /* Append new to the head of the list, print_block
14935          * depends on this.
14936          */
14937         count = do_use_block(used, &used->use, user, 1); 
14938         used->users += count;
14939 }
14940 static void unuse_block(struct block *used, struct block *unuser)
14941 {
14942         int count;
14943         count = do_unuse_block(used, &used->use, unuser); 
14944         used->users -= count;
14945 }
14946
14947 static void add_block_edge(struct block *block, struct block *edge, int front)
14948 {
14949         int count;
14950         count = do_use_block(block, &block->edges, edge, front);
14951         block->edge_count += count;
14952 }
14953
14954 static void remove_block_edge(struct block *block, struct block *edge)
14955 {
14956         int count;
14957         count = do_unuse_block(block, &block->edges, edge);
14958         block->edge_count -= count;
14959 }
14960
14961 static void idom_block(struct block *idom, struct block *user)
14962 {
14963         do_use_block(idom, &idom->idominates, user, 0);
14964 }
14965
14966 static void unidom_block(struct block *idom, struct block *unuser)
14967 {
14968         do_unuse_block(idom, &idom->idominates, unuser);
14969 }
14970
14971 static void domf_block(struct block *block, struct block *domf)
14972 {
14973         do_use_block(block, &block->domfrontier, domf, 0);
14974 }
14975
14976 static void undomf_block(struct block *block, struct block *undomf)
14977 {
14978         do_unuse_block(block, &block->domfrontier, undomf);
14979 }
14980
14981 static void ipdom_block(struct block *ipdom, struct block *user)
14982 {
14983         do_use_block(ipdom, &ipdom->ipdominates, user, 0);
14984 }
14985
14986 static void unipdom_block(struct block *ipdom, struct block *unuser)
14987 {
14988         do_unuse_block(ipdom, &ipdom->ipdominates, unuser);
14989 }
14990
14991 static void ipdomf_block(struct block *block, struct block *ipdomf)
14992 {
14993         do_use_block(block, &block->ipdomfrontier, ipdomf, 0);
14994 }
14995
14996 static void unipdomf_block(struct block *block, struct block *unipdomf)
14997 {
14998         do_unuse_block(block, &block->ipdomfrontier, unipdomf);
14999 }
15000
15001 static int walk_triples(
15002         struct compile_state *state, 
15003         int (*cb)(struct compile_state *state, struct triple *ptr, void *arg),
15004         void *arg)
15005 {
15006         struct triple *ptr;
15007         int result;
15008         ptr = state->first;
15009         do {
15010                 result = cb(state, ptr, arg);
15011                 if (ptr->next->prev != ptr) {
15012                         internal_error(state, ptr->next, "bad prev");
15013                 }
15014                 ptr = ptr->next;
15015         } while((result == 0) && (ptr != state->first));
15016         return result;
15017 }
15018
15019 #define PRINT_LIST 1
15020 static int do_print_triple(struct compile_state *state, struct triple *ins, void *arg)
15021 {
15022         FILE *fp = arg;
15023         int op;
15024         op = ins->op;
15025         if (op == OP_LIST) {
15026 #if !PRINT_LIST
15027                 return 0;
15028 #endif
15029         }
15030         if ((op == OP_LABEL) && (ins->use)) {
15031                 fprintf(fp, "\n%p:\n", ins);
15032         }
15033         display_triple(fp, ins);
15034
15035         if (triple_is_branch(state, ins) && ins->use && 
15036                 (ins->op != OP_RET) && (ins->op != OP_FCALL)) {
15037                 internal_error(state, ins, "branch used?");
15038         }
15039         if (triple_is_branch(state, ins)) {
15040                 fprintf(fp, "\n");
15041         }
15042         return 0;
15043 }
15044
15045 static void print_triples(struct compile_state *state)
15046 {
15047         if (state->compiler->debug & DEBUG_TRIPLES) {
15048                 FILE *fp = state->dbgout;
15049                 fprintf(fp, "--------------- triples ---------------\n");
15050                 walk_triples(state, do_print_triple, fp);
15051                 fprintf(fp, "\n");
15052         }
15053 }
15054
15055 struct cf_block {
15056         struct block *block;
15057 };
15058 static void find_cf_blocks(struct cf_block *cf, struct block *block)
15059 {
15060         struct block_set *edge;
15061         if (!block || (cf[block->vertex].block == block)) {
15062                 return;
15063         }
15064         cf[block->vertex].block = block;
15065         for(edge = block->edges; edge; edge = edge->next) {
15066                 find_cf_blocks(cf, edge->member);
15067         }
15068 }
15069
15070 static void print_control_flow(struct compile_state *state,
15071         FILE *fp, struct basic_blocks *bb)
15072 {
15073         struct cf_block *cf;
15074         int i;
15075         fprintf(fp, "\ncontrol flow\n");
15076         cf = xcmalloc(sizeof(*cf) * (bb->last_vertex + 1), "cf_block");
15077         find_cf_blocks(cf, bb->first_block);
15078
15079         for(i = 1; i <= bb->last_vertex; i++) {
15080                 struct block *block;
15081                 struct block_set *edge;
15082                 block = cf[i].block;
15083                 if (!block)
15084                         continue;
15085                 fprintf(fp, "(%p) %d:", block, block->vertex);
15086                 for(edge = block->edges; edge; edge = edge->next) {
15087                         fprintf(fp, " %d", edge->member->vertex);
15088                 }
15089                 fprintf(fp, "\n");
15090         }
15091
15092         xfree(cf);
15093 }
15094
15095 static void free_basic_block(struct compile_state *state, struct block *block)
15096 {
15097         struct block_set *edge, *entry;
15098         struct block *child;
15099         if (!block) {
15100                 return;
15101         }
15102         if (block->vertex == -1) {
15103                 return;
15104         }
15105         block->vertex = -1;
15106         for(edge = block->edges; edge; edge = edge->next) {
15107                 if (edge->member) {
15108                         unuse_block(edge->member, block);
15109                 }
15110         }
15111         if (block->idom) {
15112                 unidom_block(block->idom, block);
15113         }
15114         block->idom = 0;
15115         if (block->ipdom) {
15116                 unipdom_block(block->ipdom, block);
15117         }
15118         block->ipdom = 0;
15119         while((entry = block->use)) {
15120                 child = entry->member;
15121                 unuse_block(block, child);
15122                 if (child && (child->vertex != -1)) {
15123                         for(edge = child->edges; edge; edge = edge->next) {
15124                                 edge->member = 0;
15125                         }
15126                 }
15127         }
15128         while((entry = block->idominates)) {
15129                 child = entry->member;
15130                 unidom_block(block, child);
15131                 if (child && (child->vertex != -1)) {
15132                         child->idom = 0;
15133                 }
15134         }
15135         while((entry = block->domfrontier)) {
15136                 child = entry->member;
15137                 undomf_block(block, child);
15138         }
15139         while((entry = block->ipdominates)) {
15140                 child = entry->member;
15141                 unipdom_block(block, child);
15142                 if (child && (child->vertex != -1)) {
15143                         child->ipdom = 0;
15144                 }
15145         }
15146         while((entry = block->ipdomfrontier)) {
15147                 child = entry->member;
15148                 unipdomf_block(block, child);
15149         }
15150         if (block->users != 0) {
15151                 internal_error(state, 0, "block still has users");
15152         }
15153         while((edge = block->edges)) {
15154                 child = edge->member;
15155                 remove_block_edge(block, child);
15156                 
15157                 if (child && (child->vertex != -1)) {
15158                         free_basic_block(state, child);
15159                 }
15160         }
15161         memset(block, -1, sizeof(*block));
15162 #ifndef WIN32
15163         xfree(block);
15164 #endif
15165 }
15166
15167 static void free_basic_blocks(struct compile_state *state, 
15168         struct basic_blocks *bb)
15169 {
15170         struct triple *first, *ins;
15171         free_basic_block(state, bb->first_block);
15172         bb->last_vertex = 0;
15173         bb->first_block = bb->last_block = 0;
15174         first = bb->first;
15175         ins = first;
15176         do {
15177                 if (triple_stores_block(state, ins)) {
15178                         ins->u.block = 0;
15179                 }
15180                 ins = ins->next;
15181         } while(ins != first);
15182         
15183 }
15184
15185 static struct block *basic_block(struct compile_state *state, 
15186         struct basic_blocks *bb, struct triple *first)
15187 {
15188         struct block *block;
15189         struct triple *ptr;
15190         if (!triple_is_label(state, first)) {
15191                 internal_error(state, first, "block does not start with a label");
15192         }
15193         /* See if this basic block has already been setup */
15194         if (first->u.block != 0) {
15195                 return first->u.block;
15196         }
15197         /* Allocate another basic block structure */
15198         bb->last_vertex += 1;
15199         block = xcmalloc(sizeof(*block), "block");
15200         block->first = block->last = first;
15201         block->vertex = bb->last_vertex;
15202         ptr = first;
15203         do {
15204                 if ((ptr != first) && triple_is_label(state, ptr) && (ptr->use)) { 
15205                         break;
15206                 }
15207                 block->last = ptr;
15208                 /* If ptr->u is not used remember where the baic block is */
15209                 if (triple_stores_block(state, ptr)) {
15210                         ptr->u.block = block;
15211                 }
15212                 if (triple_is_branch(state, ptr)) {
15213                         break;
15214                 }
15215                 ptr = ptr->next;
15216         } while (ptr != bb->first);
15217         if ((ptr == bb->first) ||
15218                 ((ptr->next == bb->first) && (
15219                         triple_is_end(state, ptr) || 
15220                         triple_is_ret(state, ptr))))
15221         {
15222                 /* The block has no outflowing edges */
15223         }
15224         else if (triple_is_label(state, ptr)) {
15225                 struct block *next;
15226                 next = basic_block(state, bb, ptr);
15227                 add_block_edge(block, next, 0);
15228                 use_block(next, block);
15229         }
15230         else if (triple_is_branch(state, ptr)) {
15231                 struct triple **expr, *first;
15232                 struct block *child;
15233                 /* Find the branch targets.
15234                  * I special case the first branch as that magically
15235                  * avoids some difficult cases for the register allocator.
15236                  */
15237                 expr = triple_edge_targ(state, ptr, 0);
15238                 if (!expr) {
15239                         internal_error(state, ptr, "branch without targets");
15240                 }
15241                 first = *expr;
15242                 expr = triple_edge_targ(state, ptr, expr);
15243                 for(; expr; expr = triple_edge_targ(state, ptr, expr)) {
15244                         if (!*expr) continue;
15245                         child = basic_block(state, bb, *expr);
15246                         use_block(child, block);
15247                         add_block_edge(block, child, 0);
15248                 }
15249                 if (first) {
15250                         child = basic_block(state, bb, first);
15251                         use_block(child, block);
15252                         add_block_edge(block, child, 1);
15253
15254                         /* Be certain the return block of a call is
15255                          * in a basic block.  When it is not find
15256                          * start of the block, insert a label if
15257                          * necessary and build the basic block.
15258                          * Then add a fake edge from the start block
15259                          * to the return block of the function.
15260                          */
15261                         if (state->functions_joined && triple_is_call(state, ptr)
15262                                 && !block_of_triple(state, MISC(ptr, 0))) {
15263                                 struct block *tail;
15264                                 struct triple *start;
15265                                 start = triple_to_block_start(state, MISC(ptr, 0));
15266                                 if (!triple_is_label(state, start)) {
15267                                         start = pre_triple(state,
15268                                                 start, OP_LABEL, &void_type, 0, 0);
15269                                 }
15270                                 tail = basic_block(state, bb, start);
15271                                 add_block_edge(child, tail, 0);
15272                                 use_block(tail, child);
15273                         }
15274                 }
15275         }
15276         else {
15277                 internal_error(state, 0, "Bad basic block split");
15278         }
15279 #if 0
15280 {
15281         struct block_set *edge;
15282         FILE *fp = state->errout;
15283         fprintf(fp, "basic_block: %10p [%2d] ( %10p - %10p )",
15284                 block, block->vertex, 
15285                 block->first, block->last);
15286         for(edge = block->edges; edge; edge = edge->next) {
15287                 fprintf(fp, " %10p [%2d]",
15288                         edge->member ? edge->member->first : 0,
15289                         edge->member ? edge->member->vertex : -1);
15290         }
15291         fprintf(fp, "\n");
15292 }
15293 #endif
15294         return block;
15295 }
15296
15297
15298 static void walk_blocks(struct compile_state *state, struct basic_blocks *bb,
15299         void (*cb)(struct compile_state *state, struct block *block, void *arg),
15300         void *arg)
15301 {
15302         struct triple *ptr, *first;
15303         struct block *last_block;
15304         last_block = 0;
15305         first = bb->first;
15306         ptr = first;
15307         do {
15308                 if (triple_stores_block(state, ptr)) {
15309                         struct block *block;
15310                         block = ptr->u.block;
15311                         if (block && (block != last_block)) {
15312                                 cb(state, block, arg);
15313                         }
15314                         last_block = block;
15315                 }
15316                 ptr = ptr->next;
15317         } while(ptr != first);
15318 }
15319
15320 static void print_block(
15321         struct compile_state *state, struct block *block, void *arg)
15322 {
15323         struct block_set *user, *edge;
15324         struct triple *ptr;
15325         FILE *fp = arg;
15326
15327         fprintf(fp, "\nblock: %p (%d) ",
15328                 block, 
15329                 block->vertex);
15330
15331         for(edge = block->edges; edge; edge = edge->next) {
15332                 fprintf(fp, " %p<-%p",
15333                         edge->member,
15334                         (edge->member && edge->member->use)?
15335                         edge->member->use->member : 0);
15336         }
15337         fprintf(fp, "\n");
15338         if (block->first->op == OP_LABEL) {
15339                 fprintf(fp, "%p:\n", block->first);
15340         }
15341         for(ptr = block->first; ; ) {
15342                 display_triple(fp, ptr);
15343                 if (ptr == block->last)
15344                         break;
15345                 ptr = ptr->next;
15346                 if (ptr == block->first) {
15347                         internal_error(state, 0, "missing block last?");
15348                 }
15349         }
15350         fprintf(fp, "users %d: ", block->users);
15351         for(user = block->use; user; user = user->next) {
15352                 fprintf(fp, "%p (%d) ", 
15353                         user->member,
15354                         user->member->vertex);
15355         }
15356         fprintf(fp,"\n\n");
15357 }
15358
15359
15360 static void romcc_print_blocks(struct compile_state *state, FILE *fp)
15361 {
15362         fprintf(fp, "--------------- blocks ---------------\n");
15363         walk_blocks(state, &state->bb, print_block, fp);
15364 }
15365 static void print_blocks(struct compile_state *state, const char *func, FILE *fp)
15366 {
15367         if (state->compiler->debug & DEBUG_BASIC_BLOCKS) {
15368                 fprintf(fp, "After %s\n", func);
15369                 romcc_print_blocks(state, fp);
15370                 if (state->compiler->debug & DEBUG_FDOMINATORS) {
15371                         print_dominators(state, fp, &state->bb);
15372                         print_dominance_frontiers(state, fp, &state->bb);
15373                 }
15374                 print_control_flow(state, fp, &state->bb);
15375         }
15376 }
15377
15378 static void prune_nonblock_triples(struct compile_state *state, 
15379         struct basic_blocks *bb)
15380 {
15381         struct block *block;
15382         struct triple *first, *ins, *next;
15383         /* Delete the triples not in a basic block */
15384         block = 0;
15385         first = bb->first;
15386         ins = first;
15387         do {
15388                 next = ins->next;
15389                 if (ins->op == OP_LABEL) {
15390                         block = ins->u.block;
15391                 }
15392                 if (!block) {
15393                         struct triple_set *use;
15394                         for(use = ins->use; use; use = use->next) {
15395                                 struct block *block;
15396                                 block = block_of_triple(state, use->member);
15397                                 if (block != 0) {
15398                                         internal_error(state, ins, "pruning used ins?");
15399                                 }
15400                         }
15401                         release_triple(state, ins);
15402                 }
15403                 if (block && block->last == ins) {
15404                         block = 0;
15405                 }
15406                 ins = next;
15407         } while(ins != first);
15408 }
15409
15410 static void setup_basic_blocks(struct compile_state *state, 
15411         struct basic_blocks *bb)
15412 {
15413         if (!triple_stores_block(state, bb->first)) {
15414                 internal_error(state, 0, "ins will not store block?");
15415         }
15416         /* Initialize the state */
15417         bb->first_block = bb->last_block = 0;
15418         bb->last_vertex = 0;
15419         free_basic_blocks(state, bb);
15420
15421         /* Find the basic blocks */
15422         bb->first_block = basic_block(state, bb, bb->first);
15423
15424         /* Be certain the last instruction of a function, or the
15425          * entire program is in a basic block.  When it is not find 
15426          * the start of the block, insert a label if necessary and build 
15427          * basic block.  Then add a fake edge from the start block
15428          * to the final block.
15429          */
15430         if (!block_of_triple(state, bb->first->prev)) {
15431                 struct triple *start;
15432                 struct block *tail;
15433                 start = triple_to_block_start(state, bb->first->prev);
15434                 if (!triple_is_label(state, start)) {
15435                         start = pre_triple(state,
15436                                 start, OP_LABEL, &void_type, 0, 0);
15437                 }
15438                 tail = basic_block(state, bb, start);
15439                 add_block_edge(bb->first_block, tail, 0);
15440                 use_block(tail, bb->first_block);
15441         }
15442         
15443         /* Find the last basic block.
15444          */
15445         bb->last_block = block_of_triple(state, bb->first->prev);
15446
15447         /* Delete the triples not in a basic block */
15448         prune_nonblock_triples(state, bb);
15449
15450 #if 0
15451         /* If we are debugging print what I have just done */
15452         if (state->compiler->debug & DEBUG_BASIC_BLOCKS) {
15453                 print_blocks(state, state->dbgout);
15454                 print_control_flow(state, bb);
15455         }
15456 #endif
15457 }
15458
15459
15460 struct sdom_block {
15461         struct block *block;
15462         struct sdom_block *sdominates;
15463         struct sdom_block *sdom_next;
15464         struct sdom_block *sdom;
15465         struct sdom_block *label;
15466         struct sdom_block *parent;
15467         struct sdom_block *ancestor;
15468         int vertex;
15469 };
15470
15471
15472 static void unsdom_block(struct sdom_block *block)
15473 {
15474         struct sdom_block **ptr;
15475         if (!block->sdom_next) {
15476                 return;
15477         }
15478         ptr = &block->sdom->sdominates;
15479         while(*ptr) {
15480                 if ((*ptr) == block) {
15481                         *ptr = block->sdom_next;
15482                         return;
15483                 }
15484                 ptr = &(*ptr)->sdom_next;
15485         }
15486 }
15487
15488 static void sdom_block(struct sdom_block *sdom, struct sdom_block *block)
15489 {
15490         unsdom_block(block);
15491         block->sdom = sdom;
15492         block->sdom_next = sdom->sdominates;
15493         sdom->sdominates = block;
15494 }
15495
15496
15497
15498 static int initialize_sdblock(struct sdom_block *sd,
15499         struct block *parent, struct block *block, int vertex)
15500 {
15501         struct block_set *edge;
15502         if (!block || (sd[block->vertex].block == block)) {
15503                 return vertex;
15504         }
15505         vertex += 1;
15506         /* Renumber the blocks in a convinient fashion */
15507         block->vertex = vertex;
15508         sd[vertex].block    = block;
15509         sd[vertex].sdom     = &sd[vertex];
15510         sd[vertex].label    = &sd[vertex];
15511         sd[vertex].parent   = parent? &sd[parent->vertex] : 0;
15512         sd[vertex].ancestor = 0;
15513         sd[vertex].vertex   = vertex;
15514         for(edge = block->edges; edge; edge = edge->next) {
15515                 vertex = initialize_sdblock(sd, block, edge->member, vertex);
15516         }
15517         return vertex;
15518 }
15519
15520 static int initialize_spdblock(
15521         struct compile_state *state, struct sdom_block *sd,
15522         struct block *parent, struct block *block, int vertex)
15523 {
15524         struct block_set *user;
15525         if (!block || (sd[block->vertex].block == block)) {
15526                 return vertex;
15527         }
15528         vertex += 1;
15529         /* Renumber the blocks in a convinient fashion */
15530         block->vertex = vertex;
15531         sd[vertex].block    = block;
15532         sd[vertex].sdom     = &sd[vertex];
15533         sd[vertex].label    = &sd[vertex];
15534         sd[vertex].parent   = parent? &sd[parent->vertex] : 0;
15535         sd[vertex].ancestor = 0;
15536         sd[vertex].vertex   = vertex;
15537         for(user = block->use; user; user = user->next) {
15538                 vertex = initialize_spdblock(state, sd, block, user->member, vertex);
15539         }
15540         return vertex;
15541 }
15542
15543 static int setup_spdblocks(struct compile_state *state, 
15544         struct basic_blocks *bb, struct sdom_block *sd)
15545 {
15546         struct block *block;
15547         int vertex;
15548         /* Setup as many sdpblocks as possible without using fake edges */
15549         vertex = initialize_spdblock(state, sd, 0, bb->last_block, 0);
15550
15551         /* Walk through the graph and find unconnected blocks.  Add a
15552          * fake edge from the unconnected blocks to the end of the
15553          * graph. 
15554          */
15555         block = bb->first_block->last->next->u.block;
15556         for(; block && block != bb->first_block; block = block->last->next->u.block) {
15557                 if (sd[block->vertex].block == block) {
15558                         continue;
15559                 }
15560 #if DEBUG_SDP_BLOCKS
15561                 {
15562                         FILE *fp = state->errout;
15563                         fprintf(fp, "Adding %d\n", vertex +1);
15564                 }
15565 #endif
15566                 add_block_edge(block, bb->last_block, 0);
15567                 use_block(bb->last_block, block);
15568
15569                 vertex = initialize_spdblock(state, sd, bb->last_block, block, vertex);
15570         }
15571         return vertex;
15572 }
15573
15574 static void compress_ancestors(struct sdom_block *v)
15575 {
15576         /* This procedure assumes ancestor(v) != 0 */
15577         /* if (ancestor(ancestor(v)) != 0) {
15578          *      compress(ancestor(ancestor(v)));
15579          *      if (semi(label(ancestor(v))) < semi(label(v))) {
15580          *              label(v) = label(ancestor(v));
15581          *      }
15582          *      ancestor(v) = ancestor(ancestor(v));
15583          * }
15584          */
15585         if (!v->ancestor) {
15586                 return;
15587         }
15588         if (v->ancestor->ancestor) {
15589                 compress_ancestors(v->ancestor->ancestor);
15590                 if (v->ancestor->label->sdom->vertex < v->label->sdom->vertex) {
15591                         v->label = v->ancestor->label;
15592                 }
15593                 v->ancestor = v->ancestor->ancestor;
15594         }
15595 }
15596
15597 static void compute_sdom(struct compile_state *state, 
15598         struct basic_blocks *bb, struct sdom_block *sd)
15599 {
15600         int i;
15601         /* // step 2 
15602          *  for each v <= pred(w) {
15603          *      u = EVAL(v);
15604          *      if (semi[u] < semi[w] { 
15605          *              semi[w] = semi[u]; 
15606          *      } 
15607          * }
15608          * add w to bucket(vertex(semi[w]));
15609          * LINK(parent(w), w);
15610          *
15611          * // step 3
15612          * for each v <= bucket(parent(w)) {
15613          *      delete v from bucket(parent(w));
15614          *      u = EVAL(v);
15615          *      dom(v) = (semi[u] < semi[v]) ? u : parent(w);
15616          * }
15617          */
15618         for(i = bb->last_vertex; i >= 2; i--) {
15619                 struct sdom_block *v, *parent, *next;
15620                 struct block_set *user;
15621                 struct block *block;
15622                 block = sd[i].block;
15623                 parent = sd[i].parent;
15624                 /* Step 2 */
15625                 for(user = block->use; user; user = user->next) {
15626                         struct sdom_block *v, *u;
15627                         v = &sd[user->member->vertex];
15628                         u = !(v->ancestor)? v : (compress_ancestors(v), v->label);
15629                         if (u->sdom->vertex < sd[i].sdom->vertex) {
15630                                 sd[i].sdom = u->sdom;
15631                         }
15632                 }
15633                 sdom_block(sd[i].sdom, &sd[i]);
15634                 sd[i].ancestor = parent;
15635                 /* Step 3 */
15636                 for(v = parent->sdominates; v; v = next) {
15637                         struct sdom_block *u;
15638                         next = v->sdom_next;
15639                         unsdom_block(v);
15640                         u = (!v->ancestor) ? v : (compress_ancestors(v), v->label);
15641                         v->block->idom = (u->sdom->vertex < v->sdom->vertex)? 
15642                                 u->block : parent->block;
15643                 }
15644         }
15645 }
15646
15647 static void compute_spdom(struct compile_state *state, 
15648         struct basic_blocks *bb, struct sdom_block *sd)
15649 {
15650         int i;
15651         /* // step 2 
15652          *  for each v <= pred(w) {
15653          *      u = EVAL(v);
15654          *      if (semi[u] < semi[w] { 
15655          *              semi[w] = semi[u]; 
15656          *      } 
15657          * }
15658          * add w to bucket(vertex(semi[w]));
15659          * LINK(parent(w), w);
15660          *
15661          * // step 3
15662          * for each v <= bucket(parent(w)) {
15663          *      delete v from bucket(parent(w));
15664          *      u = EVAL(v);
15665          *      dom(v) = (semi[u] < semi[v]) ? u : parent(w);
15666          * }
15667          */
15668         for(i = bb->last_vertex; i >= 2; i--) {
15669                 struct sdom_block *u, *v, *parent, *next;
15670                 struct block_set *edge;
15671                 struct block *block;
15672                 block = sd[i].block;
15673                 parent = sd[i].parent;
15674                 /* Step 2 */
15675                 for(edge = block->edges; edge; edge = edge->next) {
15676                         v = &sd[edge->member->vertex];
15677                         u = !(v->ancestor)? v : (compress_ancestors(v), v->label);
15678                         if (u->sdom->vertex < sd[i].sdom->vertex) {
15679                                 sd[i].sdom = u->sdom;
15680                         }
15681                 }
15682                 sdom_block(sd[i].sdom, &sd[i]);
15683                 sd[i].ancestor = parent;
15684                 /* Step 3 */
15685                 for(v = parent->sdominates; v; v = next) {
15686                         struct sdom_block *u;
15687                         next = v->sdom_next;
15688                         unsdom_block(v);
15689                         u = (!v->ancestor) ? v : (compress_ancestors(v), v->label);
15690                         v->block->ipdom = (u->sdom->vertex < v->sdom->vertex)? 
15691                                 u->block : parent->block;
15692                 }
15693         }
15694 }
15695
15696 static void compute_idom(struct compile_state *state, 
15697         struct basic_blocks *bb, struct sdom_block *sd)
15698 {
15699         int i;
15700         for(i = 2; i <= bb->last_vertex; i++) {
15701                 struct block *block;
15702                 block = sd[i].block;
15703                 if (block->idom->vertex != sd[i].sdom->vertex) {
15704                         block->idom = block->idom->idom;
15705                 }
15706                 idom_block(block->idom, block);
15707         }
15708         sd[1].block->idom = 0;
15709 }
15710
15711 static void compute_ipdom(struct compile_state *state, 
15712         struct basic_blocks *bb, struct sdom_block *sd)
15713 {
15714         int i;
15715         for(i = 2; i <= bb->last_vertex; i++) {
15716                 struct block *block;
15717                 block = sd[i].block;
15718                 if (block->ipdom->vertex != sd[i].sdom->vertex) {
15719                         block->ipdom = block->ipdom->ipdom;
15720                 }
15721                 ipdom_block(block->ipdom, block);
15722         }
15723         sd[1].block->ipdom = 0;
15724 }
15725
15726         /* Theorem 1:
15727          *   Every vertex of a flowgraph G = (V, E, r) except r has
15728          *   a unique immediate dominator.  
15729          *   The edges {(idom(w), w) |w <= V - {r}} form a directed tree
15730          *   rooted at r, called the dominator tree of G, such that 
15731          *   v dominates w if and only if v is a proper ancestor of w in
15732          *   the dominator tree.
15733          */
15734         /* Lemma 1:  
15735          *   If v and w are vertices of G such that v <= w,
15736          *   than any path from v to w must contain a common ancestor
15737          *   of v and w in T.
15738          */
15739         /* Lemma 2:  For any vertex w != r, idom(w) -> w */
15740         /* Lemma 3:  For any vertex w != r, sdom(w) -> w */
15741         /* Lemma 4:  For any vertex w != r, idom(w) -> sdom(w) */
15742         /* Theorem 2:
15743          *   Let w != r.  Suppose every u for which sdom(w) -> u -> w satisfies
15744          *   sdom(u) >= sdom(w).  Then idom(w) = sdom(w).
15745          */
15746         /* Theorem 3:
15747          *   Let w != r and let u be a vertex for which sdom(u) is 
15748          *   minimum amoung vertices u satisfying sdom(w) -> u -> w.
15749          *   Then sdom(u) <= sdom(w) and idom(u) = idom(w).
15750          */
15751         /* Lemma 5:  Let vertices v,w satisfy v -> w.
15752          *           Then v -> idom(w) or idom(w) -> idom(v)
15753          */
15754
15755 static void find_immediate_dominators(struct compile_state *state,
15756         struct basic_blocks *bb)
15757 {
15758         struct sdom_block *sd;
15759         /* w->sdom = min{v| there is a path v = v0,v1,...,vk = w such that:
15760          *           vi > w for (1 <= i <= k - 1}
15761          */
15762         /* Theorem 4:
15763          *   For any vertex w != r.
15764          *   sdom(w) = min(
15765          *                 {v|(v,w) <= E  and v < w } U 
15766          *                 {sdom(u) | u > w and there is an edge (v, w) such that u -> v})
15767          */
15768         /* Corollary 1:
15769          *   Let w != r and let u be a vertex for which sdom(u) is 
15770          *   minimum amoung vertices u satisfying sdom(w) -> u -> w.
15771          *   Then:
15772          *                   { sdom(w) if sdom(w) = sdom(u),
15773          *        idom(w) = {
15774          *                   { idom(u) otherwise
15775          */
15776         /* The algorithm consists of the following 4 steps.
15777          * Step 1.  Carry out a depth-first search of the problem graph.  
15778          *    Number the vertices from 1 to N as they are reached during
15779          *    the search.  Initialize the variables used in succeeding steps.
15780          * Step 2.  Compute the semidominators of all vertices by applying
15781          *    theorem 4.   Carry out the computation vertex by vertex in
15782          *    decreasing order by number.
15783          * Step 3.  Implicitly define the immediate dominator of each vertex
15784          *    by applying Corollary 1.
15785          * Step 4.  Explicitly define the immediate dominator of each vertex,
15786          *    carrying out the computation vertex by vertex in increasing order
15787          *    by number.
15788          */
15789         /* Step 1 initialize the basic block information */
15790         sd = xcmalloc(sizeof(*sd) * (bb->last_vertex + 1), "sdom_state");
15791         initialize_sdblock(sd, 0, bb->first_block, 0);
15792 #if 0
15793         sd[1].size  = 0;
15794         sd[1].label = 0;
15795         sd[1].sdom  = 0;
15796 #endif
15797         /* Step 2 compute the semidominators */
15798         /* Step 3 implicitly define the immediate dominator of each vertex */
15799         compute_sdom(state, bb, sd);
15800         /* Step 4 explicitly define the immediate dominator of each vertex */
15801         compute_idom(state, bb, sd);
15802         xfree(sd);
15803 }
15804
15805 static void find_post_dominators(struct compile_state *state,
15806         struct basic_blocks *bb)
15807 {
15808         struct sdom_block *sd;
15809         int vertex;
15810         /* Step 1 initialize the basic block information */
15811         sd = xcmalloc(sizeof(*sd) * (bb->last_vertex + 1), "sdom_state");
15812
15813         vertex = setup_spdblocks(state, bb, sd);
15814         if (vertex != bb->last_vertex) {
15815                 internal_error(state, 0, "missing %d blocks",
15816                         bb->last_vertex - vertex);
15817         }
15818
15819         /* Step 2 compute the semidominators */
15820         /* Step 3 implicitly define the immediate dominator of each vertex */
15821         compute_spdom(state, bb, sd);
15822         /* Step 4 explicitly define the immediate dominator of each vertex */
15823         compute_ipdom(state, bb, sd);
15824         xfree(sd);
15825 }
15826
15827
15828
15829 static void find_block_domf(struct compile_state *state, struct block *block)
15830 {
15831         struct block *child;
15832         struct block_set *user, *edge;
15833         if (block->domfrontier != 0) {
15834                 internal_error(state, block->first, "domfrontier present?");
15835         }
15836         for(user = block->idominates; user; user = user->next) {
15837                 child = user->member;
15838                 if (child->idom != block) {
15839                         internal_error(state, block->first, "bad idom");
15840                 }
15841                 find_block_domf(state, child);
15842         }
15843         for(edge = block->edges; edge; edge = edge->next) {
15844                 if (edge->member->idom != block) {
15845                         domf_block(block, edge->member);
15846                 }
15847         }
15848         for(user = block->idominates; user; user = user->next) {
15849                 struct block_set *frontier;
15850                 child = user->member;
15851                 for(frontier = child->domfrontier; frontier; frontier = frontier->next) {
15852                         if (frontier->member->idom != block) {
15853                                 domf_block(block, frontier->member);
15854                         }
15855                 }
15856         }
15857 }
15858
15859 static void find_block_ipdomf(struct compile_state *state, struct block *block)
15860 {
15861         struct block *child;
15862         struct block_set *user;
15863         if (block->ipdomfrontier != 0) {
15864                 internal_error(state, block->first, "ipdomfrontier present?");
15865         }
15866         for(user = block->ipdominates; user; user = user->next) {
15867                 child = user->member;
15868                 if (child->ipdom != block) {
15869                         internal_error(state, block->first, "bad ipdom");
15870                 }
15871                 find_block_ipdomf(state, child);
15872         }
15873         for(user = block->use; user; user = user->next) {
15874                 if (user->member->ipdom != block) {
15875                         ipdomf_block(block, user->member);
15876                 }
15877         }
15878         for(user = block->ipdominates; user; user = user->next) {
15879                 struct block_set *frontier;
15880                 child = user->member;
15881                 for(frontier = child->ipdomfrontier; frontier; frontier = frontier->next) {
15882                         if (frontier->member->ipdom != block) {
15883                                 ipdomf_block(block, frontier->member);
15884                         }
15885                 }
15886         }
15887 }
15888
15889 static void print_dominated(
15890         struct compile_state *state, struct block *block, void *arg)
15891 {
15892         struct block_set *user;
15893         FILE *fp = arg;
15894
15895         fprintf(fp, "%d:", block->vertex);
15896         for(user = block->idominates; user; user = user->next) {
15897                 fprintf(fp, " %d", user->member->vertex);
15898                 if (user->member->idom != block) {
15899                         internal_error(state, user->member->first, "bad idom");
15900                 }
15901         }
15902         fprintf(fp,"\n");
15903 }
15904
15905 static void print_dominated2(
15906         struct compile_state *state, FILE *fp, int depth, struct block *block)
15907 {
15908         struct block_set *user;
15909         struct triple *ins;
15910         struct occurance *ptr, *ptr2;
15911         const char *filename1, *filename2;
15912         int equal_filenames;
15913         int i;
15914         for(i = 0; i < depth; i++) {
15915                 fprintf(fp, "   ");
15916         }
15917         fprintf(fp, "%3d: %p (%p - %p) @", 
15918                 block->vertex, block, block->first, block->last);
15919         ins = block->first;
15920         while(ins != block->last && (ins->occurance->line == 0)) {
15921                 ins = ins->next;
15922         }
15923         ptr = ins->occurance;
15924         ptr2 = block->last->occurance;
15925         filename1 = ptr->filename? ptr->filename : "";
15926         filename2 = ptr2->filename? ptr2->filename : "";
15927         equal_filenames = (strcmp(filename1, filename2) == 0);
15928         if ((ptr == ptr2) || (equal_filenames && ptr->line == ptr2->line)) {
15929                 fprintf(fp, " %s:%d", ptr->filename, ptr->line);
15930         } else if (equal_filenames) {
15931                 fprintf(fp, " %s:(%d - %d)",
15932                         ptr->filename, ptr->line, ptr2->line);
15933         } else {
15934                 fprintf(fp, " (%s:%d - %s:%d)",
15935                         ptr->filename, ptr->line,
15936                         ptr2->filename, ptr2->line);
15937         }
15938         fprintf(fp, "\n");
15939         for(user = block->idominates; user; user = user->next) {
15940                 print_dominated2(state, fp, depth + 1, user->member);
15941         }
15942 }
15943
15944 static void print_dominators(struct compile_state *state, FILE *fp, struct basic_blocks *bb)
15945 {
15946         fprintf(fp, "\ndominates\n");
15947         walk_blocks(state, bb, print_dominated, fp);
15948         fprintf(fp, "dominates\n");
15949         print_dominated2(state, fp, 0, bb->first_block);
15950 }
15951
15952
15953 static int print_frontiers(
15954         struct compile_state *state, FILE *fp, struct block *block, int vertex)
15955 {
15956         struct block_set *user, *edge;
15957
15958         if (!block || (block->vertex != vertex + 1)) {
15959                 return vertex;
15960         }
15961         vertex += 1;
15962
15963         fprintf(fp, "%d:", block->vertex);
15964         for(user = block->domfrontier; user; user = user->next) {
15965                 fprintf(fp, " %d", user->member->vertex);
15966         }
15967         fprintf(fp, "\n");
15968         
15969         for(edge = block->edges; edge; edge = edge->next) {
15970                 vertex = print_frontiers(state, fp, edge->member, vertex);
15971         }
15972         return vertex;
15973 }
15974 static void print_dominance_frontiers(struct compile_state *state,
15975         FILE *fp, struct basic_blocks *bb)
15976 {
15977         fprintf(fp, "\ndominance frontiers\n");
15978         print_frontiers(state, fp, bb->first_block, 0);
15979         
15980 }
15981
15982 static void analyze_idominators(struct compile_state *state, struct basic_blocks *bb)
15983 {
15984         /* Find the immediate dominators */
15985         find_immediate_dominators(state, bb);
15986         /* Find the dominance frontiers */
15987         find_block_domf(state, bb->first_block);
15988         /* If debuging print the print what I have just found */
15989         if (state->compiler->debug & DEBUG_FDOMINATORS) {
15990                 print_dominators(state, state->dbgout, bb);
15991                 print_dominance_frontiers(state, state->dbgout, bb);
15992                 print_control_flow(state, state->dbgout, bb);
15993         }
15994 }
15995
15996
15997 static void print_ipdominated(
15998         struct compile_state *state, struct block *block, void *arg)
15999 {
16000         struct block_set *user;
16001         FILE *fp = arg;
16002
16003         fprintf(fp, "%d:", block->vertex);
16004         for(user = block->ipdominates; user; user = user->next) {
16005                 fprintf(fp, " %d", user->member->vertex);
16006                 if (user->member->ipdom != block) {
16007                         internal_error(state, user->member->first, "bad ipdom");
16008                 }
16009         }
16010         fprintf(fp, "\n");
16011 }
16012
16013 static void print_ipdominators(struct compile_state *state, FILE *fp,
16014         struct basic_blocks *bb)
16015 {
16016         fprintf(fp, "\nipdominates\n");
16017         walk_blocks(state, bb, print_ipdominated, fp);
16018 }
16019
16020 static int print_pfrontiers(
16021         struct compile_state *state, FILE *fp, struct block *block, int vertex)
16022 {
16023         struct block_set *user;
16024
16025         if (!block || (block->vertex != vertex + 1)) {
16026                 return vertex;
16027         }
16028         vertex += 1;
16029
16030         fprintf(fp, "%d:", block->vertex);
16031         for(user = block->ipdomfrontier; user; user = user->next) {
16032                 fprintf(fp, " %d", user->member->vertex);
16033         }
16034         fprintf(fp, "\n");
16035         for(user = block->use; user; user = user->next) {
16036                 vertex = print_pfrontiers(state, fp, user->member, vertex);
16037         }
16038         return vertex;
16039 }
16040 static void print_ipdominance_frontiers(struct compile_state *state,
16041         FILE *fp, struct basic_blocks *bb)
16042 {
16043         fprintf(fp, "\nipdominance frontiers\n");
16044         print_pfrontiers(state, fp, bb->last_block, 0);
16045         
16046 }
16047
16048 static void analyze_ipdominators(struct compile_state *state,
16049         struct basic_blocks *bb)
16050 {
16051         /* Find the post dominators */
16052         find_post_dominators(state, bb);
16053         /* Find the control dependencies (post dominance frontiers) */
16054         find_block_ipdomf(state, bb->last_block);
16055         /* If debuging print the print what I have just found */
16056         if (state->compiler->debug & DEBUG_RDOMINATORS) {
16057                 print_ipdominators(state, state->dbgout, bb);
16058                 print_ipdominance_frontiers(state, state->dbgout, bb);
16059                 print_control_flow(state, state->dbgout, bb);
16060         }
16061 }
16062
16063 static int bdominates(struct compile_state *state,
16064         struct block *dom, struct block *sub)
16065 {
16066         while(sub && (sub != dom)) {
16067                 sub = sub->idom;
16068         }
16069         return sub == dom;
16070 }
16071
16072 static int tdominates(struct compile_state *state,
16073         struct triple *dom, struct triple *sub)
16074 {
16075         struct block *bdom, *bsub;
16076         int result;
16077         bdom = block_of_triple(state, dom);
16078         bsub = block_of_triple(state, sub);
16079         if (bdom != bsub) {
16080                 result = bdominates(state, bdom, bsub);
16081         } 
16082         else {
16083                 struct triple *ins;
16084                 if (!bdom || !bsub) {
16085                         internal_error(state, dom, "huh?");
16086                 }
16087                 ins = sub;
16088                 while((ins != bsub->first) && (ins != dom)) {
16089                         ins = ins->prev;
16090                 }
16091                 result = (ins == dom);
16092         }
16093         return result;
16094 }
16095
16096 static void analyze_basic_blocks(
16097         struct compile_state *state, struct basic_blocks *bb)
16098 {
16099         setup_basic_blocks(state, bb);
16100         analyze_idominators(state, bb);
16101         analyze_ipdominators(state, bb);
16102 }
16103
16104 static void insert_phi_operations(struct compile_state *state)
16105 {
16106         size_t size;
16107         struct triple *first;
16108         int *has_already, *work;
16109         struct block *work_list, **work_list_tail;
16110         int iter;
16111         struct triple *var, *vnext;
16112
16113         size = sizeof(int) * (state->bb.last_vertex + 1);
16114         has_already = xcmalloc(size, "has_already");
16115         work =        xcmalloc(size, "work");
16116         iter = 0;
16117
16118         first = state->first;
16119         for(var = first->next; var != first ; var = vnext) {
16120                 struct block *block;
16121                 struct triple_set *user, *unext;
16122                 vnext = var->next;
16123
16124                 if (!triple_is_auto_var(state, var) || !var->use) {
16125                         continue;
16126                 }
16127                         
16128                 iter += 1;
16129                 work_list = 0;
16130                 work_list_tail = &work_list;
16131                 for(user = var->use; user; user = unext) {
16132                         unext = user->next;
16133                         if (MISC(var, 0) == user->member) {
16134                                 continue;
16135                         }
16136                         if (user->member->op == OP_READ) {
16137                                 continue;
16138                         }
16139                         if (user->member->op != OP_WRITE) {
16140                                 internal_error(state, user->member, 
16141                                         "bad variable access");
16142                         }
16143                         block = user->member->u.block;
16144                         if (!block) {
16145                                 warning(state, user->member, "dead code");
16146                                 release_triple(state, user->member);
16147                                 continue;
16148                         }
16149                         if (work[block->vertex] >= iter) {
16150                                 continue;
16151                         }
16152                         work[block->vertex] = iter;
16153                         *work_list_tail = block;
16154                         block->work_next = 0;
16155                         work_list_tail = &block->work_next;
16156                 }
16157                 for(block = work_list; block; block = block->work_next) {
16158                         struct block_set *df;
16159                         for(df = block->domfrontier; df; df = df->next) {
16160                                 struct triple *phi;
16161                                 struct block *front;
16162                                 int in_edges;
16163                                 front = df->member;
16164
16165                                 if (has_already[front->vertex] >= iter) {
16166                                         continue;
16167                                 }
16168                                 /* Count how many edges flow into this block */
16169                                 in_edges = front->users;
16170                                 /* Insert a phi function for this variable */
16171                                 get_occurance(var->occurance);
16172                                 phi = alloc_triple(
16173                                         state, OP_PHI, var->type, -1, in_edges, 
16174                                         var->occurance);
16175                                 phi->u.block = front;
16176                                 MISC(phi, 0) = var;
16177                                 use_triple(var, phi);
16178 #if 1
16179                                 if (phi->rhs != in_edges) {
16180                                         internal_error(state, phi, "phi->rhs: %d != in_edges: %d",
16181                                                 phi->rhs, in_edges);
16182                                 }
16183 #endif
16184                                 /* Insert the phi functions immediately after the label */
16185                                 insert_triple(state, front->first->next, phi);
16186                                 if (front->first == front->last) {
16187                                         front->last = front->first->next;
16188                                 }
16189                                 has_already[front->vertex] = iter;
16190                                 transform_to_arch_instruction(state, phi);
16191
16192                                 /* If necessary plan to visit the basic block */
16193                                 if (work[front->vertex] >= iter) {
16194                                         continue;
16195                                 }
16196                                 work[front->vertex] = iter;
16197                                 *work_list_tail = front;
16198                                 front->work_next = 0;
16199                                 work_list_tail = &front->work_next;
16200                         }
16201                 }
16202         }
16203         xfree(has_already);
16204         xfree(work);
16205 }
16206
16207
16208 struct stack {
16209         struct triple_set *top;
16210         unsigned orig_id;
16211 };
16212
16213 static int count_auto_vars(struct compile_state *state)
16214 {
16215         struct triple *first, *ins;
16216         int auto_vars = 0;
16217         first = state->first;
16218         ins = first;
16219         do {
16220                 if (triple_is_auto_var(state, ins)) {
16221                         auto_vars += 1;
16222                 }
16223                 ins = ins->next;
16224         } while(ins != first);
16225         return auto_vars;
16226 }
16227
16228 static void number_auto_vars(struct compile_state *state, struct stack *stacks)
16229 {
16230         struct triple *first, *ins;
16231         int auto_vars = 0;
16232         first = state->first;
16233         ins = first;
16234         do {
16235                 if (triple_is_auto_var(state, ins)) {
16236                         auto_vars += 1;
16237                         stacks[auto_vars].orig_id = ins->id;
16238                         ins->id = auto_vars;
16239                 }
16240                 ins = ins->next;
16241         } while(ins != first);
16242 }
16243
16244 static void restore_auto_vars(struct compile_state *state, struct stack *stacks)
16245 {
16246         struct triple *first, *ins;
16247         first = state->first;
16248         ins = first;
16249         do {
16250                 if (triple_is_auto_var(state, ins)) {
16251                         ins->id = stacks[ins->id].orig_id;
16252                 }
16253                 ins = ins->next;
16254         } while(ins != first);
16255 }
16256
16257 static struct triple *peek_triple(struct stack *stacks, struct triple *var)
16258 {
16259         struct triple_set *head;
16260         struct triple *top_val;
16261         top_val = 0;
16262         head = stacks[var->id].top;
16263         if (head) {
16264                 top_val = head->member;
16265         }
16266         return top_val;
16267 }
16268
16269 static void push_triple(struct stack *stacks, struct triple *var, struct triple *val)
16270 {
16271         struct triple_set *new;
16272         /* Append new to the head of the list,
16273          * it's the only sensible behavoir for a stack.
16274          */
16275         new = xcmalloc(sizeof(*new), "triple_set");
16276         new->member = val;
16277         new->next   = stacks[var->id].top;
16278         stacks[var->id].top = new;
16279 }
16280
16281 static void pop_triple(struct stack *stacks, struct triple *var, struct triple *oldval)
16282 {
16283         struct triple_set *set, **ptr;
16284         ptr = &stacks[var->id].top;
16285         while(*ptr) {
16286                 set = *ptr;
16287                 if (set->member == oldval) {
16288                         *ptr = set->next;
16289                         xfree(set);
16290                         /* Only free one occurance from the stack */
16291                         return;
16292                 }
16293                 else {
16294                         ptr = &set->next;
16295                 }
16296         }
16297 }
16298
16299 /*
16300  * C(V)
16301  * S(V)
16302  */
16303 static void fixup_block_phi_variables(
16304         struct compile_state *state, struct stack *stacks, struct block *parent, struct block *block)
16305 {
16306         struct block_set *set;
16307         struct triple *ptr;
16308         int edge;
16309         if (!parent || !block)
16310                 return;
16311         /* Find the edge I am coming in on */
16312         edge = 0;
16313         for(set = block->use; set; set = set->next, edge++) {
16314                 if (set->member == parent) {
16315                         break;
16316                 }
16317         }
16318         if (!set) {
16319                 internal_error(state, 0, "phi input is not on a control predecessor");
16320         }
16321         for(ptr = block->first; ; ptr = ptr->next) {
16322                 if (ptr->op == OP_PHI) {
16323                         struct triple *var, *val, **slot;
16324                         var = MISC(ptr, 0);
16325                         if (!var) {
16326                                 internal_error(state, ptr, "no var???");
16327                         }
16328                         /* Find the current value of the variable */
16329                         val = peek_triple(stacks, var);
16330                         if (val && ((val->op == OP_WRITE) || (val->op == OP_READ))) {
16331                                 internal_error(state, val, "bad value in phi");
16332                         }
16333                         if (edge >= ptr->rhs) {
16334                                 internal_error(state, ptr, "edges > phi rhs");
16335                         }
16336                         slot = &RHS(ptr, edge);
16337                         if ((*slot != 0) && (*slot != val)) {
16338                                 internal_error(state, ptr, "phi already bound on this edge");
16339                         }
16340                         *slot = val;
16341                         use_triple(val, ptr);
16342                 }
16343                 if (ptr == block->last) {
16344                         break;
16345                 }
16346         }
16347 }
16348
16349
16350 static void rename_block_variables(
16351         struct compile_state *state, struct stack *stacks, struct block *block)
16352 {
16353         struct block_set *user, *edge;
16354         struct triple *ptr, *next, *last;
16355         int done;
16356         if (!block)
16357                 return;
16358         last = block->first;
16359         done = 0;
16360         for(ptr = block->first; !done; ptr = next) {
16361                 next = ptr->next;
16362                 if (ptr == block->last) {
16363                         done = 1;
16364                 }
16365                 /* RHS(A) */
16366                 if (ptr->op == OP_READ) {
16367                         struct triple *var, *val;
16368                         var = RHS(ptr, 0);
16369                         if (!triple_is_auto_var(state, var)) {
16370                                 internal_error(state, ptr, "read of non auto var!");
16371                         }
16372                         unuse_triple(var, ptr);
16373                         /* Find the current value of the variable */
16374                         val = peek_triple(stacks, var);
16375                         if (!val) {
16376                                 /* Let the optimizer at variables that are not initially
16377                                  * set.  But give it a bogus value so things seem to
16378                                  * work by accident.  This is useful for bitfields because
16379                                  * setting them always involves a read-modify-write.
16380                                  */
16381                                 if (TYPE_ARITHMETIC(ptr->type->type)) {
16382                                         val = pre_triple(state, ptr, OP_INTCONST, ptr->type, 0, 0);
16383                                         val->u.cval = 0xdeadbeaf;
16384                                 } else {
16385                                         val = pre_triple(state, ptr, OP_UNKNOWNVAL, ptr->type, 0, 0);
16386                                 }
16387                         }
16388                         if (!val) {
16389                                 error(state, ptr, "variable used without being set");
16390                         }
16391                         if ((val->op == OP_WRITE) || (val->op == OP_READ)) {
16392                                 internal_error(state, val, "bad value in read");
16393                         }
16394                         propogate_use(state, ptr, val);
16395                         release_triple(state, ptr);
16396                         continue;
16397                 }
16398                 /* LHS(A) */
16399                 if (ptr->op == OP_WRITE) {
16400                         struct triple *var, *val, *tval;
16401                         var = MISC(ptr, 0);
16402                         if (!triple_is_auto_var(state, var)) {
16403                                 internal_error(state, ptr, "write to non auto var!");
16404                         }
16405                         tval = val = RHS(ptr, 0);
16406                         if ((val->op == OP_WRITE) || (val->op == OP_READ) ||
16407                                 triple_is_auto_var(state, val)) {
16408                                 internal_error(state, ptr, "bad value in write");
16409                         }
16410                         /* Insert a cast if the types differ */
16411                         if (!is_subset_type(ptr->type, val->type)) {
16412                                 if (val->op == OP_INTCONST) {
16413                                         tval = pre_triple(state, ptr, OP_INTCONST, ptr->type, 0, 0);
16414                                         tval->u.cval = val->u.cval;
16415                                 }
16416                                 else {
16417                                         tval = pre_triple(state, ptr, OP_CONVERT, ptr->type, val, 0);
16418                                         use_triple(val, tval);
16419                                 }
16420                                 transform_to_arch_instruction(state, tval);
16421                                 unuse_triple(val, ptr);
16422                                 RHS(ptr, 0) = tval;
16423                                 use_triple(tval, ptr);
16424                         }
16425                         propogate_use(state, ptr, tval);
16426                         unuse_triple(var, ptr);
16427                         /* Push OP_WRITE ptr->right onto a stack of variable uses */
16428                         push_triple(stacks, var, tval);
16429                 }
16430                 if (ptr->op == OP_PHI) {
16431                         struct triple *var;
16432                         var = MISC(ptr, 0);
16433                         if (!triple_is_auto_var(state, var)) {
16434                                 internal_error(state, ptr, "phi references non auto var!");
16435                         }
16436                         /* Push OP_PHI onto a stack of variable uses */
16437                         push_triple(stacks, var, ptr);
16438                 }
16439                 last = ptr;
16440         }
16441         block->last = last;
16442
16443         /* Fixup PHI functions in the cf successors */
16444         for(edge = block->edges; edge; edge = edge->next) {
16445                 fixup_block_phi_variables(state, stacks, block, edge->member);
16446         }
16447         /* rename variables in the dominated nodes */
16448         for(user = block->idominates; user; user = user->next) {
16449                 rename_block_variables(state, stacks, user->member);
16450         }
16451         /* pop the renamed variable stack */
16452         last = block->first;
16453         done = 0;
16454         for(ptr = block->first; !done ; ptr = next) {
16455                 next = ptr->next;
16456                 if (ptr == block->last) {
16457                         done = 1;
16458                 }
16459                 if (ptr->op == OP_WRITE) {
16460                         struct triple *var;
16461                         var = MISC(ptr, 0);
16462                         /* Pop OP_WRITE ptr->right from the stack of variable uses */
16463                         pop_triple(stacks, var, RHS(ptr, 0));
16464                         release_triple(state, ptr);
16465                         continue;
16466                 }
16467                 if (ptr->op == OP_PHI) {
16468                         struct triple *var;
16469                         var = MISC(ptr, 0);
16470                         /* Pop OP_WRITE ptr->right from the stack of variable uses */
16471                         pop_triple(stacks, var, ptr);
16472                 }
16473                 last = ptr;
16474         }
16475         block->last = last;
16476 }
16477
16478 static void rename_variables(struct compile_state *state)
16479 {
16480         struct stack *stacks;
16481         int auto_vars;
16482
16483         /* Allocate stacks for the Variables */
16484         auto_vars = count_auto_vars(state);
16485         stacks = xcmalloc(sizeof(stacks[0])*(auto_vars + 1), "auto var stacks");
16486
16487         /* Give each auto_var a stack */
16488         number_auto_vars(state, stacks);
16489
16490         /* Rename the variables */
16491         rename_block_variables(state, stacks, state->bb.first_block);
16492
16493         /* Remove the stacks from the auto_vars */
16494         restore_auto_vars(state, stacks);
16495         xfree(stacks);
16496 }
16497
16498 static void prune_block_variables(struct compile_state *state,
16499         struct block *block)
16500 {
16501         struct block_set *user;
16502         struct triple *next, *ptr;
16503         int done;
16504
16505         done = 0;
16506         for(ptr = block->first; !done; ptr = next) {
16507                 /* Be extremely careful I am deleting the list
16508                  * as I walk trhough it.
16509                  */
16510                 next = ptr->next;
16511                 if (ptr == block->last) {
16512                         done = 1;
16513                 }
16514                 if (triple_is_auto_var(state, ptr)) {
16515                         struct triple_set *user, *next;
16516                         for(user = ptr->use; user; user = next) {
16517                                 struct triple *use;
16518                                 next = user->next;
16519                                 use = user->member;
16520                                 if (MISC(ptr, 0) == user->member) {
16521                                         continue;
16522                                 }
16523                                 if (use->op != OP_PHI) {
16524                                         internal_error(state, use, "decl still used");
16525                                 }
16526                                 if (MISC(use, 0) != ptr) {
16527                                         internal_error(state, use, "bad phi use of decl");
16528                                 }
16529                                 unuse_triple(ptr, use);
16530                                 MISC(use, 0) = 0;
16531                         }
16532                         if ((ptr->u.cval == 0) && (MISC(ptr, 0)->lhs == 1)) {
16533                                 /* Delete the adecl */
16534                                 release_triple(state, MISC(ptr, 0));
16535                                 /* And the piece */
16536                                 release_triple(state, ptr);
16537                         }
16538                         continue;
16539                 }
16540         }
16541         for(user = block->idominates; user; user = user->next) {
16542                 prune_block_variables(state, user->member);
16543         }
16544 }
16545
16546 struct phi_triple {
16547         struct triple *phi;
16548         unsigned orig_id;
16549         int alive;
16550 };
16551
16552 static void keep_phi(struct compile_state *state, struct phi_triple *live, struct triple *phi)
16553 {
16554         struct triple **slot;
16555         int zrhs, i;
16556         if (live[phi->id].alive) {
16557                 return;
16558         }
16559         live[phi->id].alive = 1;
16560         zrhs = phi->rhs;
16561         slot = &RHS(phi, 0);
16562         for(i = 0; i < zrhs; i++) {
16563                 struct triple *used;
16564                 used = slot[i];
16565                 if (used && (used->op == OP_PHI)) {
16566                         keep_phi(state, live, used);
16567                 }
16568         }
16569 }
16570
16571 static void prune_unused_phis(struct compile_state *state)
16572 {
16573         struct triple *first, *phi;
16574         struct phi_triple *live;
16575         int phis, i;
16576         
16577         /* Find the first instruction */
16578         first = state->first;
16579
16580         /* Count how many phi functions I need to process */
16581         phis = 0;
16582         for(phi = first->next; phi != first; phi = phi->next) {
16583                 if (phi->op == OP_PHI) {
16584                         phis += 1;
16585                 }
16586         }
16587         
16588         /* Mark them all dead */
16589         live = xcmalloc(sizeof(*live) * (phis + 1), "phi_triple");
16590         phis = 0;
16591         for(phi = first->next; phi != first; phi = phi->next) {
16592                 if (phi->op != OP_PHI) {
16593                         continue;
16594                 }
16595                 live[phis].alive   = 0;
16596                 live[phis].orig_id = phi->id;
16597                 live[phis].phi     = phi;
16598                 phi->id = phis;
16599                 phis += 1;
16600         }
16601         
16602         /* Mark phis alive that are used by non phis */
16603         for(i = 0; i < phis; i++) {
16604                 struct triple_set *set;
16605                 for(set = live[i].phi->use; !live[i].alive && set; set = set->next) {
16606                         if (set->member->op != OP_PHI) {
16607                                 keep_phi(state, live, live[i].phi);
16608                                 break;
16609                         }
16610                 }
16611         }
16612
16613         /* Delete the extraneous phis */
16614         for(i = 0; i < phis; i++) {
16615                 struct triple **slot;
16616                 int zrhs, j;
16617                 if (!live[i].alive) {
16618                         release_triple(state, live[i].phi);
16619                         continue;
16620                 }
16621                 phi = live[i].phi;
16622                 slot = &RHS(phi, 0);
16623                 zrhs = phi->rhs;
16624                 for(j = 0; j < zrhs; j++) {
16625                         if(!slot[j]) {
16626                                 struct triple *unknown;
16627                                 get_occurance(phi->occurance);
16628                                 unknown = flatten(state, state->global_pool,
16629                                         alloc_triple(state, OP_UNKNOWNVAL,
16630                                                 phi->type, 0, 0, phi->occurance));
16631                                 slot[j] = unknown;
16632                                 use_triple(unknown, phi);
16633                                 transform_to_arch_instruction(state, unknown);
16634 #if 0                           
16635                                 warning(state, phi, "variable not set at index %d on all paths to use", j);
16636 #endif
16637                         }
16638                 }
16639         }
16640         xfree(live);
16641 }
16642
16643 static void transform_to_ssa_form(struct compile_state *state)
16644 {
16645         insert_phi_operations(state);
16646         rename_variables(state);
16647
16648         prune_block_variables(state, state->bb.first_block);
16649         prune_unused_phis(state);
16650
16651         print_blocks(state, __func__, state->dbgout);
16652 }
16653
16654
16655 static void clear_vertex(
16656         struct compile_state *state, struct block *block, void *arg)
16657 {
16658         /* Clear the current blocks vertex and the vertex of all
16659          * of the current blocks neighbors in case there are malformed
16660          * blocks with now instructions at this point.
16661          */
16662         struct block_set *user, *edge;
16663         block->vertex = 0;
16664         for(edge = block->edges; edge; edge = edge->next) {
16665                 edge->member->vertex = 0;
16666         }
16667         for(user = block->use; user; user = user->next) {
16668                 user->member->vertex = 0;
16669         }
16670 }
16671
16672 static void mark_live_block(
16673         struct compile_state *state, struct block *block, int *next_vertex)
16674 {
16675         /* See if this is a block that has not been marked */
16676         if (block->vertex != 0) {
16677                 return;
16678         }
16679         block->vertex = *next_vertex;
16680         *next_vertex += 1;
16681         if (triple_is_branch(state, block->last)) {
16682                 struct triple **targ;
16683                 targ = triple_edge_targ(state, block->last, 0);
16684                 for(; targ; targ = triple_edge_targ(state, block->last, targ)) {
16685                         if (!*targ) {
16686                                 continue;
16687                         }
16688                         if (!triple_stores_block(state, *targ)) {
16689                                 internal_error(state, 0, "bad targ");
16690                         }
16691                         mark_live_block(state, (*targ)->u.block, next_vertex);
16692                 }
16693                 /* Ensure the last block of a function remains alive */
16694                 if (triple_is_call(state, block->last)) {
16695                         mark_live_block(state, MISC(block->last, 0)->u.block, next_vertex);
16696                 }
16697         }
16698         else if (block->last->next != state->first) {
16699                 struct triple *ins;
16700                 ins = block->last->next;
16701                 if (!triple_stores_block(state, ins)) {
16702                         internal_error(state, 0, "bad block start");
16703                 }
16704                 mark_live_block(state, ins->u.block, next_vertex);
16705         }
16706 }
16707
16708 static void transform_from_ssa_form(struct compile_state *state)
16709 {
16710         /* To get out of ssa form we insert moves on the incoming
16711          * edges to blocks containting phi functions.
16712          */
16713         struct triple *first;
16714         struct triple *phi, *var, *next;
16715         int next_vertex;
16716
16717         /* Walk the control flow to see which blocks remain alive */
16718         walk_blocks(state, &state->bb, clear_vertex, 0);
16719         next_vertex = 1;
16720         mark_live_block(state, state->bb.first_block, &next_vertex);
16721
16722         /* Walk all of the operations to find the phi functions */
16723         first = state->first;
16724         for(phi = first->next; phi != first ; phi = next) {
16725                 struct block_set *set;
16726                 struct block *block;
16727                 struct triple **slot;
16728                 struct triple *var;
16729                 struct triple_set *use, *use_next;
16730                 int edge, writers, readers;
16731                 next = phi->next;
16732                 if (phi->op != OP_PHI) {
16733                         continue;
16734                 }
16735
16736                 block = phi->u.block;
16737                 slot  = &RHS(phi, 0);
16738
16739                 /* If this phi is in a dead block just forget it */
16740                 if (block->vertex == 0) {
16741                         release_triple(state, phi);
16742                         continue;
16743                 }
16744
16745                 /* Forget uses from code in dead blocks */
16746                 for(use = phi->use; use; use = use_next) {
16747                         struct block *ublock;
16748                         struct triple **expr;
16749                         use_next = use->next;
16750                         ublock = block_of_triple(state, use->member);
16751                         if ((use->member == phi) || (ublock->vertex != 0)) {
16752                                 continue;
16753                         }
16754                         expr = triple_rhs(state, use->member, 0);
16755                         for(; expr; expr = triple_rhs(state, use->member, expr)) {
16756                                 if (*expr == phi) {
16757                                         *expr = 0;
16758                                 }
16759                         }
16760                         unuse_triple(phi, use->member);
16761                 }
16762                 /* A variable to replace the phi function */
16763                 if (registers_of(state, phi->type) != 1) {
16764                         internal_error(state, phi, "phi->type does not fit in a single register!");
16765                 }
16766                 var = post_triple(state, phi, OP_ADECL, phi->type, 0, 0);
16767                 var = var->next; /* point at the var */
16768                         
16769                 /* Replaces use of phi with var */
16770                 propogate_use(state, phi, var);
16771
16772                 /* Count the readers */
16773                 readers = 0;
16774                 for(use = var->use; use; use = use->next) {
16775                         if (use->member != MISC(var, 0)) {
16776                                 readers++;
16777                         }
16778                 }
16779
16780                 /* Walk all of the incoming edges/blocks and insert moves.
16781                  */
16782                 writers = 0;
16783                 for(edge = 0, set = block->use; set; set = set->next, edge++) {
16784                         struct block *eblock, *vblock;
16785                         struct triple *move;
16786                         struct triple *val, *base;
16787                         eblock = set->member;
16788                         val = slot[edge];
16789                         slot[edge] = 0;
16790                         unuse_triple(val, phi);
16791                         vblock = block_of_triple(state, val);
16792
16793                         /* If we don't have a value that belongs in an OP_WRITE
16794                          * continue on.
16795                          */
16796                         if (!val || (val == &unknown_triple) || (val == phi)
16797                                 || (vblock && (vblock->vertex == 0))) {
16798                                 continue;
16799                         }
16800                         /* If the value should never occur error */
16801                         if (!vblock) {
16802                                 internal_error(state, val, "no vblock?");
16803                                 continue;
16804                         }
16805
16806                         /* If the value occurs in a dead block see if a replacement
16807                          * block can be found.
16808                          */
16809                         while(eblock && (eblock->vertex == 0)) {
16810                                 eblock = eblock->idom;
16811                         }
16812                         /* If not continue on with the next value. */
16813                         if (!eblock || (eblock->vertex == 0)) {
16814                                 continue;
16815                         }
16816
16817                         /* If we have an empty incoming block ignore it. */
16818                         if (!eblock->first) {
16819                                 internal_error(state, 0, "empty block?");
16820                         }
16821                         
16822                         /* Make certain the write is placed in the edge block... */
16823                         /* Walk through the edge block backwards to find an
16824                          * appropriate location for the OP_WRITE.
16825                          */
16826                         for(base = eblock->last; base != eblock->first; base = base->prev) {
16827                                 struct triple **expr;
16828                                 if (base->op == OP_PIECE) {
16829                                         base = MISC(base, 0);
16830                                 }
16831                                 if ((base == var) || (base == val)) {
16832                                         goto out;
16833                                 }
16834                                 expr = triple_lhs(state, base, 0);
16835                                 for(; expr; expr = triple_lhs(state, base, expr)) {
16836                                         if ((*expr) == val) {
16837                                                 goto out;
16838                                         }
16839                                 }
16840                                 expr = triple_rhs(state, base, 0);
16841                                 for(; expr; expr = triple_rhs(state, base, expr)) {
16842                                         if ((*expr) == var) {
16843                                                 goto out;
16844                                         }
16845                                 }
16846                         }
16847                 out:
16848                         if (triple_is_branch(state, base)) {
16849                                 internal_error(state, base,
16850                                         "Could not insert write to phi");
16851                         }
16852                         move = post_triple(state, base, OP_WRITE, var->type, val, var);
16853                         use_triple(val, move);
16854                         use_triple(var, move);
16855                         writers++;
16856                 }
16857                 if (!writers && readers) {
16858                         internal_error(state, var, "no value written to in use phi?");
16859                 }
16860                 /* If var is not used free it */
16861                 if (!writers) {
16862                         release_triple(state, MISC(var, 0));
16863                         release_triple(state, var);
16864                 }
16865                 /* Release the phi function */
16866                 release_triple(state, phi);
16867         }
16868         
16869         /* Walk all of the operations to find the adecls */
16870         for(var = first->next; var != first ; var = var->next) {
16871                 struct triple_set *use, *use_next;
16872                 if (!triple_is_auto_var(state, var)) {
16873                         continue;
16874                 }
16875
16876                 /* Walk through all of the rhs uses of var and
16877                  * replace them with read of var.
16878                  */
16879                 for(use = var->use; use; use = use_next) {
16880                         struct triple *read, *user;
16881                         struct triple **slot;
16882                         int zrhs, i, used;
16883                         use_next = use->next;
16884                         user = use->member;
16885                         
16886                         /* Generate a read of var */
16887                         read = pre_triple(state, user, OP_READ, var->type, var, 0);
16888                         use_triple(var, read);
16889
16890                         /* Find the rhs uses and see if they need to be replaced */
16891                         used = 0;
16892                         zrhs = user->rhs;
16893                         slot = &RHS(user, 0);
16894                         for(i = 0; i < zrhs; i++) {
16895                                 if (slot[i] == var) {
16896                                         slot[i] = read;
16897                                         used = 1;
16898                                 }
16899                         }
16900                         /* If we did use it cleanup the uses */
16901                         if (used) {
16902                                 unuse_triple(var, user);
16903                                 use_triple(read, user);
16904                         } 
16905                         /* If we didn't use it release the extra triple */
16906                         else {
16907                                 release_triple(state, read);
16908                         }
16909                 }
16910         }
16911 }
16912
16913 #define HI() if (state->compiler->debug & DEBUG_REBUILD_SSA_FORM) { \
16914         FILE *fp = state->dbgout; \
16915         fprintf(fp, "@ %s:%d\n", __FILE__, __LINE__); romcc_print_blocks(state, fp); \
16916         } 
16917
16918 static void rebuild_ssa_form(struct compile_state *state)
16919 {
16920 HI();
16921         transform_from_ssa_form(state);
16922 HI();
16923         state->bb.first = state->first;
16924         free_basic_blocks(state, &state->bb);
16925         analyze_basic_blocks(state, &state->bb);
16926 HI();
16927         insert_phi_operations(state);
16928 HI();
16929         rename_variables(state);
16930 HI();
16931         
16932         prune_block_variables(state, state->bb.first_block);
16933 HI();
16934         prune_unused_phis(state);
16935 HI();
16936 }
16937 #undef HI
16938
16939 /* 
16940  * Register conflict resolution
16941  * =========================================================
16942  */
16943
16944 static struct reg_info find_def_color(
16945         struct compile_state *state, struct triple *def)
16946 {
16947         struct triple_set *set;
16948         struct reg_info info;
16949         info.reg = REG_UNSET;
16950         info.regcm = 0;
16951         if (!triple_is_def(state, def)) {
16952                 return info;
16953         }
16954         info = arch_reg_lhs(state, def, 0);
16955         if (info.reg >= MAX_REGISTERS) {
16956                 info.reg = REG_UNSET;
16957         }
16958         for(set = def->use; set; set = set->next) {
16959                 struct reg_info tinfo;
16960                 int i;
16961                 i = find_rhs_use(state, set->member, def);
16962                 if (i < 0) {
16963                         continue;
16964                 }
16965                 tinfo = arch_reg_rhs(state, set->member, i);
16966                 if (tinfo.reg >= MAX_REGISTERS) {
16967                         tinfo.reg = REG_UNSET;
16968                 }
16969                 if ((tinfo.reg != REG_UNSET) && 
16970                         (info.reg != REG_UNSET) &&
16971                         (tinfo.reg != info.reg)) {
16972                         internal_error(state, def, "register conflict");
16973                 }
16974                 if ((info.regcm & tinfo.regcm) == 0) {
16975                         internal_error(state, def, "regcm conflict %x & %x == 0",
16976                                 info.regcm, tinfo.regcm);
16977                 }
16978                 if (info.reg == REG_UNSET) {
16979                         info.reg = tinfo.reg;
16980                 }
16981                 info.regcm &= tinfo.regcm;
16982         }
16983         if (info.reg >= MAX_REGISTERS) {
16984                 internal_error(state, def, "register out of range");
16985         }
16986         return info;
16987 }
16988
16989 static struct reg_info find_lhs_pre_color(
16990         struct compile_state *state, struct triple *ins, int index)
16991 {
16992         struct reg_info info;
16993         int zlhs, zrhs, i;
16994         zrhs = ins->rhs;
16995         zlhs = ins->lhs;
16996         if (!zlhs && triple_is_def(state, ins)) {
16997                 zlhs = 1;
16998         }
16999         if (index >= zlhs) {
17000                 internal_error(state, ins, "Bad lhs %d", index);
17001         }
17002         info = arch_reg_lhs(state, ins, index);
17003         for(i = 0; i < zrhs; i++) {
17004                 struct reg_info rinfo;
17005                 rinfo = arch_reg_rhs(state, ins, i);
17006                 if ((info.reg == rinfo.reg) &&
17007                         (rinfo.reg >= MAX_REGISTERS)) {
17008                         struct reg_info tinfo;
17009                         tinfo = find_lhs_pre_color(state, RHS(ins, index), 0);
17010                         info.reg = tinfo.reg;
17011                         info.regcm &= tinfo.regcm;
17012                         break;
17013                 }
17014         }
17015         if (info.reg >= MAX_REGISTERS) {
17016                 info.reg = REG_UNSET;
17017         }
17018         return info;
17019 }
17020
17021 static struct reg_info find_rhs_post_color(
17022         struct compile_state *state, struct triple *ins, int index);
17023
17024 static struct reg_info find_lhs_post_color(
17025         struct compile_state *state, struct triple *ins, int index)
17026 {
17027         struct triple_set *set;
17028         struct reg_info info;
17029         struct triple *lhs;
17030 #if DEBUG_TRIPLE_COLOR
17031         fprintf(state->errout, "find_lhs_post_color(%p, %d)\n",
17032                 ins, index);
17033 #endif
17034         if ((index == 0) && triple_is_def(state, ins)) {
17035                 lhs = ins;
17036         }
17037         else if (index < ins->lhs) {
17038                 lhs = LHS(ins, index);
17039         }
17040         else {
17041                 internal_error(state, ins, "Bad lhs %d", index);
17042                 lhs = 0;
17043         }
17044         info = arch_reg_lhs(state, ins, index);
17045         if (info.reg >= MAX_REGISTERS) {
17046                 info.reg = REG_UNSET;
17047         }
17048         for(set = lhs->use; set; set = set->next) {
17049                 struct reg_info rinfo;
17050                 struct triple *user;
17051                 int zrhs, i;
17052                 user = set->member;
17053                 zrhs = user->rhs;
17054                 for(i = 0; i < zrhs; i++) {
17055                         if (RHS(user, i) != lhs) {
17056                                 continue;
17057                         }
17058                         rinfo = find_rhs_post_color(state, user, i);
17059                         if ((info.reg != REG_UNSET) &&
17060                                 (rinfo.reg != REG_UNSET) &&
17061                                 (info.reg != rinfo.reg)) {
17062                                 internal_error(state, ins, "register conflict");
17063                         }
17064                         if ((info.regcm & rinfo.regcm) == 0) {
17065                                 internal_error(state, ins, "regcm conflict %x & %x == 0",
17066                                         info.regcm, rinfo.regcm);
17067                         }
17068                         if (info.reg == REG_UNSET) {
17069                                 info.reg = rinfo.reg;
17070                         }
17071                         info.regcm &= rinfo.regcm;
17072                 }
17073         }
17074 #if DEBUG_TRIPLE_COLOR
17075         fprintf(state->errout, "find_lhs_post_color(%p, %d) -> ( %d, %x)\n",
17076                 ins, index, info.reg, info.regcm);
17077 #endif
17078         return info;
17079 }
17080
17081 static struct reg_info find_rhs_post_color(
17082         struct compile_state *state, struct triple *ins, int index)
17083 {
17084         struct reg_info info, rinfo;
17085         int zlhs, i;
17086 #if DEBUG_TRIPLE_COLOR
17087         fprintf(state->errout, "find_rhs_post_color(%p, %d)\n",
17088                 ins, index);
17089 #endif
17090         rinfo = arch_reg_rhs(state, ins, index);
17091         zlhs = ins->lhs;
17092         if (!zlhs && triple_is_def(state, ins)) {
17093                 zlhs = 1;
17094         }
17095         info = rinfo;
17096         if (info.reg >= MAX_REGISTERS) {
17097                 info.reg = REG_UNSET;
17098         }
17099         for(i = 0; i < zlhs; i++) {
17100                 struct reg_info linfo;
17101                 linfo = arch_reg_lhs(state, ins, i);
17102                 if ((linfo.reg == rinfo.reg) &&
17103                         (linfo.reg >= MAX_REGISTERS)) {
17104                         struct reg_info tinfo;
17105                         tinfo = find_lhs_post_color(state, ins, i);
17106                         if (tinfo.reg >= MAX_REGISTERS) {
17107                                 tinfo.reg = REG_UNSET;
17108                         }
17109                         info.regcm &= linfo.regcm;
17110                         info.regcm &= tinfo.regcm;
17111                         if (info.reg != REG_UNSET) {
17112                                 internal_error(state, ins, "register conflict");
17113                         }
17114                         if (info.regcm == 0) {
17115                                 internal_error(state, ins, "regcm conflict");
17116                         }
17117                         info.reg = tinfo.reg;
17118                 }
17119         }
17120 #if DEBUG_TRIPLE_COLOR
17121         fprintf(state->errout, "find_rhs_post_color(%p, %d) -> ( %d, %x)\n",
17122                 ins, index, info.reg, info.regcm);
17123 #endif
17124         return info;
17125 }
17126
17127 static struct reg_info find_lhs_color(
17128         struct compile_state *state, struct triple *ins, int index)
17129 {
17130         struct reg_info pre, post, info;
17131 #if DEBUG_TRIPLE_COLOR
17132         fprintf(state->errout, "find_lhs_color(%p, %d)\n",
17133                 ins, index);
17134 #endif
17135         pre = find_lhs_pre_color(state, ins, index);
17136         post = find_lhs_post_color(state, ins, index);
17137         if ((pre.reg != post.reg) &&
17138                 (pre.reg != REG_UNSET) &&
17139                 (post.reg != REG_UNSET)) {
17140                 internal_error(state, ins, "register conflict");
17141         }
17142         info.regcm = pre.regcm & post.regcm;
17143         info.reg = pre.reg;
17144         if (info.reg == REG_UNSET) {
17145                 info.reg = post.reg;
17146         }
17147 #if DEBUG_TRIPLE_COLOR
17148         fprintf(state->errout, "find_lhs_color(%p, %d) -> ( %d, %x) ... (%d, %x) (%d, %x)\n",
17149                 ins, index, info.reg, info.regcm,
17150                 pre.reg, pre.regcm, post.reg, post.regcm);
17151 #endif
17152         return info;
17153 }
17154
17155 static struct triple *post_copy(struct compile_state *state, struct triple *ins)
17156 {
17157         struct triple_set *entry, *next;
17158         struct triple *out;
17159         struct reg_info info, rinfo;
17160
17161         info = arch_reg_lhs(state, ins, 0);
17162         out = post_triple(state, ins, OP_COPY, ins->type, ins, 0);
17163         use_triple(RHS(out, 0), out);
17164         /* Get the users of ins to use out instead */
17165         for(entry = ins->use; entry; entry = next) {
17166                 int i;
17167                 next = entry->next;
17168                 if (entry->member == out) {
17169                         continue;
17170                 }
17171                 i = find_rhs_use(state, entry->member, ins);
17172                 if (i < 0) {
17173                         continue;
17174                 }
17175                 rinfo = arch_reg_rhs(state, entry->member, i);
17176                 if ((info.reg == REG_UNNEEDED) && (rinfo.reg == REG_UNNEEDED)) {
17177                         continue;
17178                 }
17179                 replace_rhs_use(state, ins, out, entry->member);
17180         }
17181         transform_to_arch_instruction(state, out);
17182         return out;
17183 }
17184
17185 static struct triple *typed_pre_copy(
17186         struct compile_state *state, struct type *type, struct triple *ins, int index)
17187 {
17188         /* Carefully insert enough operations so that I can
17189          * enter any operation with a GPR32.
17190          */
17191         struct triple *in;
17192         struct triple **expr;
17193         unsigned classes;
17194         struct reg_info info;
17195         int op;
17196         if (ins->op == OP_PHI) {
17197                 internal_error(state, ins, "pre_copy on a phi?");
17198         }
17199         classes = arch_type_to_regcm(state, type);
17200         info = arch_reg_rhs(state, ins, index);
17201         expr = &RHS(ins, index);
17202         if ((info.regcm & classes) == 0) {
17203                 FILE *fp = state->errout;
17204                 fprintf(fp, "src_type: ");
17205                 name_of(fp, ins->type);
17206                 fprintf(fp, "\ndst_type: ");
17207                 name_of(fp, type);
17208                 fprintf(fp, "\n");
17209                 internal_error(state, ins, "pre_copy with no register classes");
17210         }
17211         op = OP_COPY;
17212         if (!equiv_types(type, (*expr)->type)) {
17213                 op = OP_CONVERT;
17214         }
17215         in = pre_triple(state, ins, op, type, *expr, 0);
17216         unuse_triple(*expr, ins);
17217         *expr = in;
17218         use_triple(RHS(in, 0), in);
17219         use_triple(in, ins);
17220         transform_to_arch_instruction(state, in);
17221         return in;
17222         
17223 }
17224 static struct triple *pre_copy(
17225         struct compile_state *state, struct triple *ins, int index)
17226 {
17227         return typed_pre_copy(state, RHS(ins, index)->type, ins, index);
17228 }
17229
17230
17231 static void insert_copies_to_phi(struct compile_state *state)
17232 {
17233         /* To get out of ssa form we insert moves on the incoming
17234          * edges to blocks containting phi functions.
17235          */
17236         struct triple *first;
17237         struct triple *phi;
17238
17239         /* Walk all of the operations to find the phi functions */
17240         first = state->first;
17241         for(phi = first->next; phi != first ; phi = phi->next) {
17242                 struct block_set *set;
17243                 struct block *block;
17244                 struct triple **slot, *copy;
17245                 int edge;
17246                 if (phi->op != OP_PHI) {
17247                         continue;
17248                 }
17249                 phi->id |= TRIPLE_FLAG_POST_SPLIT;
17250                 block = phi->u.block;
17251                 slot  = &RHS(phi, 0);
17252                 /* Phi's that feed into mandatory live range joins
17253                  * cause nasty complications.  Insert a copy of
17254                  * the phi value so I never have to deal with
17255                  * that in the rest of the code.
17256                  */
17257                 copy = post_copy(state, phi);
17258                 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
17259                 /* Walk all of the incoming edges/blocks and insert moves.
17260                  */
17261                 for(edge = 0, set = block->use; set; set = set->next, edge++) {
17262                         struct block *eblock;
17263                         struct triple *move;
17264                         struct triple *val;
17265                         struct triple *ptr;
17266                         eblock = set->member;
17267                         val = slot[edge];
17268
17269                         if (val == phi) {
17270                                 continue;
17271                         }
17272
17273                         get_occurance(val->occurance);
17274                         move = build_triple(state, OP_COPY, val->type, val, 0,
17275                                 val->occurance);
17276                         move->u.block = eblock;
17277                         move->id |= TRIPLE_FLAG_PRE_SPLIT;
17278                         use_triple(val, move);
17279                         
17280                         slot[edge] = move;
17281                         unuse_triple(val, phi);
17282                         use_triple(move, phi);
17283
17284                         /* Walk up the dominator tree until I have found the appropriate block */
17285                         while(eblock && !tdominates(state, val, eblock->last)) {
17286                                 eblock = eblock->idom;
17287                         }
17288                         if (!eblock) {
17289                                 internal_error(state, phi, "Cannot find block dominated by %p",
17290                                         val);
17291                         }
17292
17293                         /* Walk through the block backwards to find
17294                          * an appropriate location for the OP_COPY.
17295                          */
17296                         for(ptr = eblock->last; ptr != eblock->first; ptr = ptr->prev) {
17297                                 struct triple **expr;
17298                                 if (ptr->op == OP_PIECE) {
17299                                         ptr = MISC(ptr, 0);
17300                                 }
17301                                 if ((ptr == phi) || (ptr == val)) {
17302                                         goto out;
17303                                 }
17304                                 expr = triple_lhs(state, ptr, 0);
17305                                 for(;expr; expr = triple_lhs(state, ptr, expr)) {
17306                                         if ((*expr) == val) {
17307                                                 goto out;
17308                                         }
17309                                 }
17310                                 expr = triple_rhs(state, ptr, 0);
17311                                 for(;expr; expr = triple_rhs(state, ptr, expr)) {
17312                                         if ((*expr) == phi) {
17313                                                 goto out;
17314                                         }
17315                                 }
17316                         }
17317                 out:
17318                         if (triple_is_branch(state, ptr)) {
17319                                 internal_error(state, ptr,
17320                                         "Could not insert write to phi");
17321                         }
17322                         insert_triple(state, after_lhs(state, ptr), move);
17323                         if (eblock->last == after_lhs(state, ptr)->prev) {
17324                                 eblock->last = move;
17325                         }
17326                         transform_to_arch_instruction(state, move);
17327                 }
17328         }
17329         print_blocks(state, __func__, state->dbgout);
17330 }
17331
17332 struct triple_reg_set;
17333 struct reg_block;
17334
17335
17336 static int do_triple_set(struct triple_reg_set **head, 
17337         struct triple *member, struct triple *new_member)
17338 {
17339         struct triple_reg_set **ptr, *new;
17340         if (!member)
17341                 return 0;
17342         ptr = head;
17343         while(*ptr) {
17344                 if ((*ptr)->member == member) {
17345                         return 0;
17346                 }
17347                 ptr = &(*ptr)->next;
17348         }
17349         new = xcmalloc(sizeof(*new), "triple_set");
17350         new->member = member;
17351         new->new    = new_member;
17352         new->next   = *head;
17353         *head       = new;
17354         return 1;
17355 }
17356
17357 static void do_triple_unset(struct triple_reg_set **head, struct triple *member)
17358 {
17359         struct triple_reg_set *entry, **ptr;
17360         ptr = head;
17361         while(*ptr) {
17362                 entry = *ptr;
17363                 if (entry->member == member) {
17364                         *ptr = entry->next;
17365                         xfree(entry);
17366                         return;
17367                 }
17368                 else {
17369                         ptr = &entry->next;
17370                 }
17371         }
17372 }
17373
17374 static int in_triple(struct reg_block *rb, struct triple *in)
17375 {
17376         return do_triple_set(&rb->in, in, 0);
17377 }
17378
17379 #if DEBUG_ROMCC_WARNING
17380 static void unin_triple(struct reg_block *rb, struct triple *unin)
17381 {
17382         do_triple_unset(&rb->in, unin);
17383 }
17384 #endif
17385
17386 static int out_triple(struct reg_block *rb, struct triple *out)
17387 {
17388         return do_triple_set(&rb->out, out, 0);
17389 }
17390 #if DEBUG_ROMCC_WARNING
17391 static void unout_triple(struct reg_block *rb, struct triple *unout)
17392 {
17393         do_triple_unset(&rb->out, unout);
17394 }
17395 #endif
17396
17397 static int initialize_regblock(struct reg_block *blocks,
17398         struct block *block, int vertex)
17399 {
17400         struct block_set *user;
17401         if (!block || (blocks[block->vertex].block == block)) {
17402                 return vertex;
17403         }
17404         vertex += 1;
17405         /* Renumber the blocks in a convinient fashion */
17406         block->vertex = vertex;
17407         blocks[vertex].block    = block;
17408         blocks[vertex].vertex   = vertex;
17409         for(user = block->use; user; user = user->next) {
17410                 vertex = initialize_regblock(blocks, user->member, vertex);
17411         }
17412         return vertex;
17413 }
17414
17415 static struct triple *part_to_piece(struct compile_state *state, struct triple *ins)
17416 {
17417 /* Part to piece is a best attempt and it cannot be correct all by
17418  * itself.  If various values are read as different sizes in different
17419  * parts of the code this function cannot work.  Or rather it cannot
17420  * work in conjunction with compute_variable_liftimes.  As the
17421  * analysis will get confused.
17422  */
17423         struct triple *base;
17424         unsigned reg;
17425         if (!is_lvalue(state, ins)) {
17426                 return ins;
17427         }
17428         base = 0;
17429         reg = 0;
17430         while(ins && triple_is_part(state, ins) && (ins->op != OP_PIECE)) {
17431                 base = MISC(ins, 0);
17432                 switch(ins->op) {
17433                 case OP_INDEX:
17434                         reg += index_reg_offset(state, base->type, ins->u.cval)/REG_SIZEOF_REG;
17435                         break;
17436                 case OP_DOT:
17437                         reg += field_reg_offset(state, base->type, ins->u.field)/REG_SIZEOF_REG;
17438                         break;
17439                 default:
17440                         internal_error(state, ins, "unhandled part");
17441                         break;
17442                 }
17443                 ins = base;
17444         }
17445         if (base) {
17446                 if (reg > base->lhs) {
17447                         internal_error(state, base, "part out of range?");
17448                 }
17449                 ins = LHS(base, reg);
17450         }
17451         return ins;
17452 }
17453
17454 static int this_def(struct compile_state *state, 
17455         struct triple *ins, struct triple *other)
17456 {
17457         if (ins == other) {
17458                 return 1;
17459         }
17460         if (ins->op == OP_WRITE) {
17461                 ins = part_to_piece(state, MISC(ins, 0));
17462         }
17463         return ins == other;
17464 }
17465
17466 static int phi_in(struct compile_state *state, struct reg_block *blocks,
17467         struct reg_block *rb, struct block *suc)
17468 {
17469         /* Read the conditional input set of a successor block
17470          * (i.e. the input to the phi nodes) and place it in the
17471          * current blocks output set.
17472          */
17473         struct block_set *set;
17474         struct triple *ptr;
17475         int edge;
17476         int done, change;
17477         change = 0;
17478         /* Find the edge I am coming in on */
17479         for(edge = 0, set = suc->use; set; set = set->next, edge++) {
17480                 if (set->member == rb->block) {
17481                         break;
17482                 }
17483         }
17484         if (!set) {
17485                 internal_error(state, 0, "Not coming on a control edge?");
17486         }
17487         for(done = 0, ptr = suc->first; !done; ptr = ptr->next) {
17488                 struct triple **slot, *expr, *ptr2;
17489                 int out_change, done2;
17490                 done = (ptr == suc->last);
17491                 if (ptr->op != OP_PHI) {
17492                         continue;
17493                 }
17494                 slot = &RHS(ptr, 0);
17495                 expr = slot[edge];
17496                 out_change = out_triple(rb, expr);
17497                 if (!out_change) {
17498                         continue;
17499                 }
17500                 /* If we don't define the variable also plast it
17501                  * in the current blocks input set.
17502                  */
17503                 ptr2 = rb->block->first;
17504                 for(done2 = 0; !done2; ptr2 = ptr2->next) {
17505                         if (this_def(state, ptr2, expr)) {
17506                                 break;
17507                         }
17508                         done2 = (ptr2 == rb->block->last);
17509                 }
17510                 if (!done2) {
17511                         continue;
17512                 }
17513                 change |= in_triple(rb, expr);
17514         }
17515         return change;
17516 }
17517
17518 static int reg_in(struct compile_state *state, struct reg_block *blocks,
17519         struct reg_block *rb, struct block *suc)
17520 {
17521         struct triple_reg_set *in_set;
17522         int change;
17523         change = 0;
17524         /* Read the input set of a successor block
17525          * and place it in the current blocks output set.
17526          */
17527         in_set = blocks[suc->vertex].in;
17528         for(; in_set; in_set = in_set->next) {
17529                 int out_change, done;
17530                 struct triple *first, *last, *ptr;
17531                 out_change = out_triple(rb, in_set->member);
17532                 if (!out_change) {
17533                         continue;
17534                 }
17535                 /* If we don't define the variable also place it
17536                  * in the current blocks input set.
17537                  */
17538                 first = rb->block->first;
17539                 last = rb->block->last;
17540                 done = 0;
17541                 for(ptr = first; !done; ptr = ptr->next) {
17542                         if (this_def(state, ptr, in_set->member)) {
17543                                 break;
17544                         }
17545                         done = (ptr == last);
17546                 }
17547                 if (!done) {
17548                         continue;
17549                 }
17550                 change |= in_triple(rb, in_set->member);
17551         }
17552         change |= phi_in(state, blocks, rb, suc);
17553         return change;
17554 }
17555
17556 static int use_in(struct compile_state *state, struct reg_block *rb)
17557 {
17558         /* Find the variables we use but don't define and add
17559          * it to the current blocks input set.
17560          */
17561 #if DEBUG_ROMCC_WARNINGS
17562 #warning "FIXME is this O(N^2) algorithm bad?"
17563 #endif
17564         struct block *block;
17565         struct triple *ptr;
17566         int done;
17567         int change;
17568         block = rb->block;
17569         change = 0;
17570         for(done = 0, ptr = block->last; !done; ptr = ptr->prev) {
17571                 struct triple **expr;
17572                 done = (ptr == block->first);
17573                 /* The variable a phi function uses depends on the
17574                  * control flow, and is handled in phi_in, not
17575                  * here.
17576                  */
17577                 if (ptr->op == OP_PHI) {
17578                         continue;
17579                 }
17580                 expr = triple_rhs(state, ptr, 0);
17581                 for(;expr; expr = triple_rhs(state, ptr, expr)) {
17582                         struct triple *rhs, *test;
17583                         int tdone;
17584                         rhs = part_to_piece(state, *expr);
17585                         if (!rhs) {
17586                                 continue;
17587                         }
17588
17589                         /* See if rhs is defined in this block.
17590                          * A write counts as a definition.
17591                          */
17592                         for(tdone = 0, test = ptr; !tdone; test = test->prev) {
17593                                 tdone = (test == block->first);
17594                                 if (this_def(state, test, rhs)) {
17595                                         rhs = 0;
17596                                         break;
17597                                 }
17598                         }
17599                         /* If I still have a valid rhs add it to in */
17600                         change |= in_triple(rb, rhs);
17601                 }
17602         }
17603         return change;
17604 }
17605
17606 static struct reg_block *compute_variable_lifetimes(
17607         struct compile_state *state, struct basic_blocks *bb)
17608 {
17609         struct reg_block *blocks;
17610         int change;
17611         blocks = xcmalloc(
17612                 sizeof(*blocks)*(bb->last_vertex + 1), "reg_block");
17613         initialize_regblock(blocks, bb->last_block, 0);
17614         do {
17615                 int i;
17616                 change = 0;
17617                 for(i = 1; i <= bb->last_vertex; i++) {
17618                         struct block_set *edge;
17619                         struct reg_block *rb;
17620                         rb = &blocks[i];
17621                         /* Add the all successor's input set to in */
17622                         for(edge = rb->block->edges; edge; edge = edge->next) {
17623                                 change |= reg_in(state, blocks, rb, edge->member);
17624                         }
17625                         /* Add use to in... */
17626                         change |= use_in(state, rb);
17627                 }
17628         } while(change);
17629         return blocks;
17630 }
17631
17632 static void free_variable_lifetimes(struct compile_state *state, 
17633         struct basic_blocks *bb, struct reg_block *blocks)
17634 {
17635         int i;
17636         /* free in_set && out_set on each block */
17637         for(i = 1; i <= bb->last_vertex; i++) {
17638                 struct triple_reg_set *entry, *next;
17639                 struct reg_block *rb;
17640                 rb = &blocks[i];
17641                 for(entry = rb->in; entry ; entry = next) {
17642                         next = entry->next;
17643                         do_triple_unset(&rb->in, entry->member);
17644                 }
17645                 for(entry = rb->out; entry; entry = next) {
17646                         next = entry->next;
17647                         do_triple_unset(&rb->out, entry->member);
17648                 }
17649         }
17650         xfree(blocks);
17651
17652 }
17653
17654 typedef void (*wvl_cb_t)(
17655         struct compile_state *state, 
17656         struct reg_block *blocks, struct triple_reg_set *live, 
17657         struct reg_block *rb, struct triple *ins, void *arg);
17658
17659 static void walk_variable_lifetimes(struct compile_state *state,
17660         struct basic_blocks *bb, struct reg_block *blocks, 
17661         wvl_cb_t cb, void *arg)
17662 {
17663         int i;
17664         
17665         for(i = 1; i <= state->bb.last_vertex; i++) {
17666                 struct triple_reg_set *live;
17667                 struct triple_reg_set *entry, *next;
17668                 struct triple *ptr, *prev;
17669                 struct reg_block *rb;
17670                 struct block *block;
17671                 int done;
17672
17673                 /* Get the blocks */
17674                 rb = &blocks[i];
17675                 block = rb->block;
17676
17677                 /* Copy out into live */
17678                 live = 0;
17679                 for(entry = rb->out; entry; entry = next) {
17680                         next = entry->next;
17681                         do_triple_set(&live, entry->member, entry->new);
17682                 }
17683                 /* Walk through the basic block calculating live */
17684                 for(done = 0, ptr = block->last; !done; ptr = prev) {
17685                         struct triple **expr;
17686
17687                         prev = ptr->prev;
17688                         done = (ptr == block->first);
17689
17690                         /* Ensure the current definition is in live */
17691                         if (triple_is_def(state, ptr)) {
17692                                 do_triple_set(&live, ptr, 0);
17693                         }
17694
17695                         /* Inform the callback function of what is
17696                          * going on.
17697                          */
17698                          cb(state, blocks, live, rb, ptr, arg);
17699                         
17700                         /* Remove the current definition from live */
17701                         do_triple_unset(&live, ptr);
17702
17703                         /* Add the current uses to live.
17704                          *
17705                          * It is safe to skip phi functions because they do
17706                          * not have any block local uses, and the block
17707                          * output sets already properly account for what
17708                          * control flow depedent uses phi functions do have.
17709                          */
17710                         if (ptr->op == OP_PHI) {
17711                                 continue;
17712                         }
17713                         expr = triple_rhs(state, ptr, 0);
17714                         for(;expr; expr = triple_rhs(state, ptr, expr)) {
17715                                 /* If the triple is not a definition skip it. */
17716                                 if (!*expr || !triple_is_def(state, *expr)) {
17717                                         continue;
17718                                 }
17719                                 do_triple_set(&live, *expr, 0);
17720                         }
17721                 }
17722                 /* Free live */
17723                 for(entry = live; entry; entry = next) {
17724                         next = entry->next;
17725                         do_triple_unset(&live, entry->member);
17726                 }
17727         }
17728 }
17729
17730 struct print_live_variable_info {
17731         struct reg_block *rb;
17732         FILE *fp;
17733 };
17734 #if DEBUG_EXPLICIT_CLOSURES
17735 static void print_live_variables_block(
17736         struct compile_state *state, struct block *block, void *arg)
17737
17738 {
17739         struct print_live_variable_info *info = arg;
17740         struct block_set *edge;
17741         FILE *fp = info->fp;
17742         struct reg_block *rb;
17743         struct triple *ptr;
17744         int phi_present;
17745         int done;
17746         rb = &info->rb[block->vertex];
17747
17748         fprintf(fp, "\nblock: %p (%d),",
17749                 block,  block->vertex);
17750         for(edge = block->edges; edge; edge = edge->next) {
17751                 fprintf(fp, " %p<-%p",
17752                         edge->member, 
17753                         edge->member && edge->member->use?edge->member->use->member : 0);
17754         }
17755         fprintf(fp, "\n");
17756         if (rb->in) {
17757                 struct triple_reg_set *in_set;
17758                 fprintf(fp, "        in:");
17759                 for(in_set = rb->in; in_set; in_set = in_set->next) {
17760                         fprintf(fp, " %-10p", in_set->member);
17761                 }
17762                 fprintf(fp, "\n");
17763         }
17764         phi_present = 0;
17765         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
17766                 done = (ptr == block->last);
17767                 if (ptr->op == OP_PHI) {
17768                         phi_present = 1;
17769                         break;
17770                 }
17771         }
17772         if (phi_present) {
17773                 int edge;
17774                 for(edge = 0; edge < block->users; edge++) {
17775                         fprintf(fp, "     in(%d):", edge);
17776                         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
17777                                 struct triple **slot;
17778                                 done = (ptr == block->last);
17779                                 if (ptr->op != OP_PHI) {
17780                                         continue;
17781                                 }
17782                                 slot = &RHS(ptr, 0);
17783                                 fprintf(fp, " %-10p", slot[edge]);
17784                         }
17785                         fprintf(fp, "\n");
17786                 }
17787         }
17788         if (block->first->op == OP_LABEL) {
17789                 fprintf(fp, "%p:\n", block->first);
17790         }
17791         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
17792                 done = (ptr == block->last);
17793                 display_triple(fp, ptr);
17794         }
17795         if (rb->out) {
17796                 struct triple_reg_set *out_set;
17797                 fprintf(fp, "       out:");
17798                 for(out_set = rb->out; out_set; out_set = out_set->next) {
17799                         fprintf(fp, " %-10p", out_set->member);
17800                 }
17801                 fprintf(fp, "\n");
17802         }
17803         fprintf(fp, "\n");
17804 }
17805
17806 static void print_live_variables(struct compile_state *state, 
17807         struct basic_blocks *bb, struct reg_block *rb, FILE *fp)
17808 {
17809         struct print_live_variable_info info;
17810         info.rb = rb;
17811         info.fp = fp;
17812         fprintf(fp, "\nlive variables by block\n");
17813         walk_blocks(state, bb, print_live_variables_block, &info);
17814
17815 }
17816 #endif
17817
17818 static int count_triples(struct compile_state *state)
17819 {
17820         struct triple *first, *ins;
17821         int triples = 0;
17822         first = state->first;
17823         ins = first;
17824         do {
17825                 triples++;
17826                 ins = ins->next;
17827         } while (ins != first);
17828         return triples;
17829 }
17830
17831
17832 struct dead_triple {
17833         struct triple *triple;
17834         struct dead_triple *work_next;
17835         struct block *block;
17836         int old_id;
17837         int flags;
17838 #define TRIPLE_FLAG_ALIVE 1
17839 #define TRIPLE_FLAG_FREE  1
17840 };
17841
17842 static void print_dead_triples(struct compile_state *state, 
17843         struct dead_triple *dtriple)
17844 {
17845         struct triple *first, *ins;
17846         struct dead_triple *dt;
17847         FILE *fp;
17848         if (!(state->compiler->debug & DEBUG_TRIPLES)) {
17849                 return;
17850         }
17851         fp = state->dbgout;
17852         fprintf(fp, "--------------- dtriples ---------------\n");
17853         first = state->first;
17854         ins = first;
17855         do {
17856                 dt = &dtriple[ins->id];
17857                 if ((ins->op == OP_LABEL) && (ins->use)) {
17858                         fprintf(fp, "\n%p:\n", ins);
17859                 }
17860                 fprintf(fp, "%c", 
17861                         (dt->flags & TRIPLE_FLAG_ALIVE)?' ': '-');
17862                 display_triple(fp, ins);
17863                 if (triple_is_branch(state, ins)) {
17864                         fprintf(fp, "\n");
17865                 }
17866                 ins = ins->next;
17867         } while(ins != first);
17868         fprintf(fp, "\n");
17869 }
17870
17871
17872 static void awaken(
17873         struct compile_state *state,
17874         struct dead_triple *dtriple, struct triple **expr,
17875         struct dead_triple ***work_list_tail)
17876 {
17877         struct triple *triple;
17878         struct dead_triple *dt;
17879         if (!expr) {
17880                 return;
17881         }
17882         triple = *expr;
17883         if (!triple) {
17884                 return;
17885         }
17886         if (triple->id <= 0)  {
17887                 internal_error(state, triple, "bad triple id: %d",
17888                         triple->id);
17889         }
17890         if (triple->op == OP_NOOP) {
17891                 internal_error(state, triple, "awakening noop?");
17892                 return;
17893         }
17894         dt = &dtriple[triple->id];
17895         if (!(dt->flags & TRIPLE_FLAG_ALIVE)) {
17896                 dt->flags |= TRIPLE_FLAG_ALIVE;
17897                 if (!dt->work_next) {
17898                         **work_list_tail = dt;
17899                         *work_list_tail = &dt->work_next;
17900                 }
17901         }
17902 }
17903
17904 static void eliminate_inefectual_code(struct compile_state *state)
17905 {
17906         struct block *block;
17907         struct dead_triple *dtriple, *work_list, **work_list_tail, *dt;
17908         int triples, i;
17909         struct triple *first, *final, *ins;
17910
17911         if (!(state->compiler->flags & COMPILER_ELIMINATE_INEFECTUAL_CODE)) {
17912                 return;
17913         }
17914
17915         /* Setup the work list */
17916         work_list = 0;
17917         work_list_tail = &work_list;
17918
17919         first = state->first;
17920         final = state->first->prev;
17921
17922         /* Count how many triples I have */
17923         triples = count_triples(state);
17924
17925         /* Now put then in an array and mark all of the triples dead */
17926         dtriple = xcmalloc(sizeof(*dtriple) * (triples + 1), "dtriples");
17927         
17928         ins = first;
17929         i = 1;
17930         block = 0;
17931         do {
17932                 dtriple[i].triple = ins;
17933                 dtriple[i].block  = block_of_triple(state, ins);
17934                 dtriple[i].flags  = 0;
17935                 dtriple[i].old_id = ins->id;
17936                 ins->id = i;
17937                 /* See if it is an operation we always keep */
17938                 if (!triple_is_pure(state, ins, dtriple[i].old_id)) {
17939                         awaken(state, dtriple, &ins, &work_list_tail);
17940                 }
17941                 i++;
17942                 ins = ins->next;
17943         } while(ins != first);
17944         while(work_list) {
17945                 struct block *block;
17946                 struct dead_triple *dt;
17947                 struct block_set *user;
17948                 struct triple **expr;
17949                 dt = work_list;
17950                 work_list = dt->work_next;
17951                 if (!work_list) {
17952                         work_list_tail = &work_list;
17953                 }
17954                 /* Make certain the block the current instruction is in lives */
17955                 block = block_of_triple(state, dt->triple);
17956                 awaken(state, dtriple, &block->first, &work_list_tail);
17957                 if (triple_is_branch(state, block->last)) {
17958                         awaken(state, dtriple, &block->last, &work_list_tail);
17959                 } else {
17960                         awaken(state, dtriple, &block->last->next, &work_list_tail);
17961                 }
17962
17963                 /* Wake up the data depencencies of this triple */
17964                 expr = 0;
17965                 do {
17966                         expr = triple_rhs(state, dt->triple, expr);
17967                         awaken(state, dtriple, expr, &work_list_tail);
17968                 } while(expr);
17969                 do {
17970                         expr = triple_lhs(state, dt->triple, expr);
17971                         awaken(state, dtriple, expr, &work_list_tail);
17972                 } while(expr);
17973                 do {
17974                         expr = triple_misc(state, dt->triple, expr);
17975                         awaken(state, dtriple, expr, &work_list_tail);
17976                 } while(expr);
17977                 /* Wake up the forward control dependencies */
17978                 do {
17979                         expr = triple_targ(state, dt->triple, expr);
17980                         awaken(state, dtriple, expr, &work_list_tail);
17981                 } while(expr);
17982                 /* Wake up the reverse control dependencies of this triple */
17983                 for(user = dt->block->ipdomfrontier; user; user = user->next) {
17984                         struct triple *last;
17985                         last = user->member->last;
17986                         while((last->op == OP_NOOP) && (last != user->member->first)) {
17987 #if DEBUG_ROMCC_WARNINGS
17988 #warning "Should we bring the awakening noops back?"
17989 #endif
17990                                 // internal_warning(state, last, "awakening noop?");
17991                                 last = last->prev;
17992                         }
17993                         awaken(state, dtriple, &last, &work_list_tail);
17994                 }
17995         }
17996         print_dead_triples(state, dtriple);
17997         for(dt = &dtriple[1]; dt <= &dtriple[triples]; dt++) {
17998                 if ((dt->triple->op == OP_NOOP) && 
17999                         (dt->flags & TRIPLE_FLAG_ALIVE)) {
18000                         internal_error(state, dt->triple, "noop effective?");
18001                 }
18002                 dt->triple->id = dt->old_id;    /* Restore the color */
18003                 if (!(dt->flags & TRIPLE_FLAG_ALIVE)) {
18004                         release_triple(state, dt->triple);
18005                 }
18006         }
18007         xfree(dtriple);
18008
18009         rebuild_ssa_form(state);
18010
18011         print_blocks(state, __func__, state->dbgout);
18012 }
18013
18014
18015 static void insert_mandatory_copies(struct compile_state *state)
18016 {
18017         struct triple *ins, *first;
18018
18019         /* The object is with a minimum of inserted copies,
18020          * to resolve in fundamental register conflicts between
18021          * register value producers and consumers.
18022          * Theoretically we may be greater than minimal when we
18023          * are inserting copies before instructions but that
18024          * case should be rare.
18025          */
18026         first = state->first;
18027         ins = first;
18028         do {
18029                 struct triple_set *entry, *next;
18030                 struct triple *tmp;
18031                 struct reg_info info;
18032                 unsigned reg, regcm;
18033                 int do_post_copy, do_pre_copy;
18034                 tmp = 0;
18035                 if (!triple_is_def(state, ins)) {
18036                         goto next;
18037                 }
18038                 /* Find the architecture specific color information */
18039                 info = find_lhs_pre_color(state, ins, 0);
18040                 if (info.reg >= MAX_REGISTERS) {
18041                         info.reg = REG_UNSET;
18042                 }
18043
18044                 reg = REG_UNSET;
18045                 regcm = arch_type_to_regcm(state, ins->type);
18046                 do_post_copy = do_pre_copy = 0;
18047
18048                 /* Walk through the uses of ins and check for conflicts */
18049                 for(entry = ins->use; entry; entry = next) {
18050                         struct reg_info rinfo;
18051                         int i;
18052                         next = entry->next;
18053                         i = find_rhs_use(state, entry->member, ins);
18054                         if (i < 0) {
18055                                 continue;
18056                         }
18057                         
18058                         /* Find the users color requirements */
18059                         rinfo = arch_reg_rhs(state, entry->member, i);
18060                         if (rinfo.reg >= MAX_REGISTERS) {
18061                                 rinfo.reg = REG_UNSET;
18062                         }
18063                         
18064                         /* See if I need a pre_copy */
18065                         if (rinfo.reg != REG_UNSET) {
18066                                 if ((reg != REG_UNSET) && (reg != rinfo.reg)) {
18067                                         do_pre_copy = 1;
18068                                 }
18069                                 reg = rinfo.reg;
18070                         }
18071                         regcm &= rinfo.regcm;
18072                         regcm = arch_regcm_normalize(state, regcm);
18073                         if (regcm == 0) {
18074                                 do_pre_copy = 1;
18075                         }
18076                         /* Always use pre_copies for constants.
18077                          * They do not take up any registers until a
18078                          * copy places them in one.
18079                          */
18080                         if ((info.reg == REG_UNNEEDED) && 
18081                                 (rinfo.reg != REG_UNNEEDED)) {
18082                                 do_pre_copy = 1;
18083                         }
18084                 }
18085                 do_post_copy =
18086                         !do_pre_copy &&
18087                         (((info.reg != REG_UNSET) && 
18088                                 (reg != REG_UNSET) &&
18089                                 (info.reg != reg)) ||
18090                         ((info.regcm & regcm) == 0));
18091
18092                 reg = info.reg;
18093                 regcm = info.regcm;
18094                 /* Walk through the uses of ins and do a pre_copy or see if a post_copy is warranted */
18095                 for(entry = ins->use; entry; entry = next) {
18096                         struct reg_info rinfo;
18097                         int i;
18098                         next = entry->next;
18099                         i = find_rhs_use(state, entry->member, ins);
18100                         if (i < 0) {
18101                                 continue;
18102                         }
18103                         
18104                         /* Find the users color requirements */
18105                         rinfo = arch_reg_rhs(state, entry->member, i);
18106                         if (rinfo.reg >= MAX_REGISTERS) {
18107                                 rinfo.reg = REG_UNSET;
18108                         }
18109
18110                         /* Now see if it is time to do the pre_copy */
18111                         if (rinfo.reg != REG_UNSET) {
18112                                 if (((reg != REG_UNSET) && (reg != rinfo.reg)) ||
18113                                         ((regcm & rinfo.regcm) == 0) ||
18114                                         /* Don't let a mandatory coalesce sneak
18115                                          * into a operation that is marked to prevent
18116                                          * coalescing.
18117                                          */
18118                                         ((reg != REG_UNNEEDED) &&
18119                                         ((ins->id & TRIPLE_FLAG_POST_SPLIT) ||
18120                                         (entry->member->id & TRIPLE_FLAG_PRE_SPLIT)))
18121                                         ) {
18122                                         if (do_pre_copy) {
18123                                                 struct triple *user;
18124                                                 user = entry->member;
18125                                                 if (RHS(user, i) != ins) {
18126                                                         internal_error(state, user, "bad rhs");
18127                                                 }
18128                                                 tmp = pre_copy(state, user, i);
18129                                                 tmp->id |= TRIPLE_FLAG_PRE_SPLIT;
18130                                                 continue;
18131                                         } else {
18132                                                 do_post_copy = 1;
18133                                         }
18134                                 }
18135                                 reg = rinfo.reg;
18136                         }
18137                         if ((regcm & rinfo.regcm) == 0) {
18138                                 if (do_pre_copy) {
18139                                         struct triple *user;
18140                                         user = entry->member;
18141                                         if (RHS(user, i) != ins) {
18142                                                 internal_error(state, user, "bad rhs");
18143                                         }
18144                                         tmp = pre_copy(state, user, i);
18145                                         tmp->id |= TRIPLE_FLAG_PRE_SPLIT;
18146                                         continue;
18147                                 } else {
18148                                         do_post_copy = 1;
18149                                 }
18150                         }
18151                         regcm &= rinfo.regcm;
18152                         
18153                 }
18154                 if (do_post_copy) {
18155                         struct reg_info pre, post;
18156                         tmp = post_copy(state, ins);
18157                         tmp->id |= TRIPLE_FLAG_PRE_SPLIT;
18158                         pre = arch_reg_lhs(state, ins, 0);
18159                         post = arch_reg_lhs(state, tmp, 0);
18160                         if ((pre.reg == post.reg) && (pre.regcm == post.regcm)) {
18161                                 internal_error(state, tmp, "useless copy");
18162                         }
18163                 }
18164         next:
18165                 ins = ins->next;
18166         } while(ins != first);
18167
18168         print_blocks(state, __func__, state->dbgout);
18169 }
18170
18171
18172 struct live_range_edge;
18173 struct live_range_def;
18174 struct live_range {
18175         struct live_range_edge *edges;
18176         struct live_range_def *defs;
18177 /* Note. The list pointed to by defs is kept in order.
18178  * That is baring splits in the flow control
18179  * defs dominates defs->next wich dominates defs->next->next
18180  * etc.
18181  */
18182         unsigned color;
18183         unsigned classes;
18184         unsigned degree;
18185         unsigned length;
18186         struct live_range *group_next, **group_prev;
18187 };
18188
18189 struct live_range_edge {
18190         struct live_range_edge *next;
18191         struct live_range *node;
18192 };
18193
18194 struct live_range_def {
18195         struct live_range_def *next;
18196         struct live_range_def *prev;
18197         struct live_range *lr;
18198         struct triple *def;
18199         unsigned orig_id;
18200 };
18201
18202 #define LRE_HASH_SIZE 2048
18203 struct lre_hash {
18204         struct lre_hash *next;
18205         struct live_range *left;
18206         struct live_range *right;
18207 };
18208
18209
18210 struct reg_state {
18211         struct lre_hash *hash[LRE_HASH_SIZE];
18212         struct reg_block *blocks;
18213         struct live_range_def *lrd;
18214         struct live_range *lr;
18215         struct live_range *low, **low_tail;
18216         struct live_range *high, **high_tail;
18217         unsigned defs;
18218         unsigned ranges;
18219         int passes, max_passes;
18220 };
18221
18222
18223 struct print_interference_block_info {
18224         struct reg_state *rstate;
18225         FILE *fp;
18226         int need_edges;
18227 };
18228 static void print_interference_block(
18229         struct compile_state *state, struct block *block, void *arg)
18230
18231 {
18232         struct print_interference_block_info *info = arg;
18233         struct reg_state *rstate = info->rstate;
18234         struct block_set *edge;
18235         FILE *fp = info->fp;
18236         struct reg_block *rb;
18237         struct triple *ptr;
18238         int phi_present;
18239         int done;
18240         rb = &rstate->blocks[block->vertex];
18241
18242         fprintf(fp, "\nblock: %p (%d),",
18243                 block,  block->vertex);
18244         for(edge = block->edges; edge; edge = edge->next) {
18245                 fprintf(fp, " %p<-%p",
18246                         edge->member, 
18247                         edge->member && edge->member->use?edge->member->use->member : 0);
18248         }
18249         fprintf(fp, "\n");
18250         if (rb->in) {
18251                 struct triple_reg_set *in_set;
18252                 fprintf(fp, "        in:");
18253                 for(in_set = rb->in; in_set; in_set = in_set->next) {
18254                         fprintf(fp, " %-10p", in_set->member);
18255                 }
18256                 fprintf(fp, "\n");
18257         }
18258         phi_present = 0;
18259         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
18260                 done = (ptr == block->last);
18261                 if (ptr->op == OP_PHI) {
18262                         phi_present = 1;
18263                         break;
18264                 }
18265         }
18266         if (phi_present) {
18267                 int edge;
18268                 for(edge = 0; edge < block->users; edge++) {
18269                         fprintf(fp, "     in(%d):", edge);
18270                         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
18271                                 struct triple **slot;
18272                                 done = (ptr == block->last);
18273                                 if (ptr->op != OP_PHI) {
18274                                         continue;
18275                                 }
18276                                 slot = &RHS(ptr, 0);
18277                                 fprintf(fp, " %-10p", slot[edge]);
18278                         }
18279                         fprintf(fp, "\n");
18280                 }
18281         }
18282         if (block->first->op == OP_LABEL) {
18283                 fprintf(fp, "%p:\n", block->first);
18284         }
18285         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
18286                 struct live_range *lr;
18287                 unsigned id;
18288                 int op;
18289                 op = ptr->op;
18290                 done = (ptr == block->last);
18291                 lr = rstate->lrd[ptr->id].lr;
18292                 
18293                 id = ptr->id;
18294                 ptr->id = rstate->lrd[id].orig_id;
18295                 SET_REG(ptr->id, lr->color);
18296                 display_triple(fp, ptr);
18297                 ptr->id = id;
18298
18299                 if (triple_is_def(state, ptr) && (lr->defs == 0)) {
18300                         internal_error(state, ptr, "lr has no defs!");
18301                 }
18302                 if (info->need_edges) {
18303                         if (lr->defs) {
18304                                 struct live_range_def *lrd;
18305                                 fprintf(fp, "       range:");
18306                                 lrd = lr->defs;
18307                                 do {
18308                                         fprintf(fp, " %-10p", lrd->def);
18309                                         lrd = lrd->next;
18310                                 } while(lrd != lr->defs);
18311                                 fprintf(fp, "\n");
18312                         }
18313                         if (lr->edges > 0) {
18314                                 struct live_range_edge *edge;
18315                                 fprintf(fp, "       edges:");
18316                                 for(edge = lr->edges; edge; edge = edge->next) {
18317                                         struct live_range_def *lrd;
18318                                         lrd = edge->node->defs;
18319                                         do {
18320                                                 fprintf(fp, " %-10p", lrd->def);
18321                                                 lrd = lrd->next;
18322                                         } while(lrd != edge->node->defs);
18323                                         fprintf(fp, "|");
18324                                 }
18325                                 fprintf(fp, "\n");
18326                         }
18327                 }
18328                 /* Do a bunch of sanity checks */
18329                 valid_ins(state, ptr);
18330                 if ((ptr->id < 0) || (ptr->id > rstate->defs)) {
18331                         internal_error(state, ptr, "Invalid triple id: %d",
18332                                 ptr->id);
18333                 }
18334         }
18335         if (rb->out) {
18336                 struct triple_reg_set *out_set;
18337                 fprintf(fp, "       out:");
18338                 for(out_set = rb->out; out_set; out_set = out_set->next) {
18339                         fprintf(fp, " %-10p", out_set->member);
18340                 }
18341                 fprintf(fp, "\n");
18342         }
18343         fprintf(fp, "\n");
18344 }
18345
18346 static void print_interference_blocks(
18347         struct compile_state *state, struct reg_state *rstate, FILE *fp, int need_edges)
18348 {
18349         struct print_interference_block_info info;
18350         info.rstate = rstate;
18351         info.fp = fp;
18352         info.need_edges = need_edges;
18353         fprintf(fp, "\nlive variables by block\n");
18354         walk_blocks(state, &state->bb, print_interference_block, &info);
18355
18356 }
18357
18358 static unsigned regc_max_size(struct compile_state *state, int classes)
18359 {
18360         unsigned max_size;
18361         int i;
18362         max_size = 0;
18363         for(i = 0; i < MAX_REGC; i++) {
18364                 if (classes & (1 << i)) {
18365                         unsigned size;
18366                         size = arch_regc_size(state, i);
18367                         if (size > max_size) {
18368                                 max_size = size;
18369                         }
18370                 }
18371         }
18372         return max_size;
18373 }
18374
18375 static int reg_is_reg(struct compile_state *state, int reg1, int reg2)
18376 {
18377         unsigned equivs[MAX_REG_EQUIVS];
18378         int i;
18379         if ((reg1 < 0) || (reg1 >= MAX_REGISTERS)) {
18380                 internal_error(state, 0, "invalid register");
18381         }
18382         if ((reg2 < 0) || (reg2 >= MAX_REGISTERS)) {
18383                 internal_error(state, 0, "invalid register");
18384         }
18385         arch_reg_equivs(state, equivs, reg1);
18386         for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
18387                 if (equivs[i] == reg2) {
18388                         return 1;
18389                 }
18390         }
18391         return 0;
18392 }
18393
18394 static void reg_fill_used(struct compile_state *state, char *used, int reg)
18395 {
18396         unsigned equivs[MAX_REG_EQUIVS];
18397         int i;
18398         if (reg == REG_UNNEEDED) {
18399                 return;
18400         }
18401         arch_reg_equivs(state, equivs, reg);
18402         for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
18403                 used[equivs[i]] = 1;
18404         }
18405         return;
18406 }
18407
18408 static void reg_inc_used(struct compile_state *state, char *used, int reg)
18409 {
18410         unsigned equivs[MAX_REG_EQUIVS];
18411         int i;
18412         if (reg == REG_UNNEEDED) {
18413                 return;
18414         }
18415         arch_reg_equivs(state, equivs, reg);
18416         for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
18417                 used[equivs[i]] += 1;
18418         }
18419         return;
18420 }
18421
18422 static unsigned int hash_live_edge(
18423         struct live_range *left, struct live_range *right)
18424 {
18425         unsigned int hash, val;
18426         unsigned long lval, rval;
18427         lval = ((unsigned long)left)/sizeof(struct live_range);
18428         rval = ((unsigned long)right)/sizeof(struct live_range);
18429         hash = 0;
18430         while(lval) {
18431                 val = lval & 0xff;
18432                 lval >>= 8;
18433                 hash = (hash *263) + val;
18434         }
18435         while(rval) {
18436                 val = rval & 0xff;
18437                 rval >>= 8;
18438                 hash = (hash *263) + val;
18439         }
18440         hash = hash & (LRE_HASH_SIZE - 1);
18441         return hash;
18442 }
18443
18444 static struct lre_hash **lre_probe(struct reg_state *rstate,
18445         struct live_range *left, struct live_range *right)
18446 {
18447         struct lre_hash **ptr;
18448         unsigned int index;
18449         /* Ensure left <= right */
18450         if (left > right) {
18451                 struct live_range *tmp;
18452                 tmp = left;
18453                 left = right;
18454                 right = tmp;
18455         }
18456         index = hash_live_edge(left, right);
18457         
18458         ptr = &rstate->hash[index];
18459         while(*ptr) {
18460                 if (((*ptr)->left == left) && ((*ptr)->right == right)) {
18461                         break;
18462                 }
18463                 ptr = &(*ptr)->next;
18464         }
18465         return ptr;
18466 }
18467
18468 static int interfere(struct reg_state *rstate,
18469         struct live_range *left, struct live_range *right)
18470 {
18471         struct lre_hash **ptr;
18472         ptr = lre_probe(rstate, left, right);
18473         return ptr && *ptr;
18474 }
18475
18476 static void add_live_edge(struct reg_state *rstate, 
18477         struct live_range *left, struct live_range *right)
18478 {
18479         /* FIXME the memory allocation overhead is noticeable here... */
18480         struct lre_hash **ptr, *new_hash;
18481         struct live_range_edge *edge;
18482
18483         if (left == right) {
18484                 return;
18485         }
18486         if ((left == &rstate->lr[0]) || (right == &rstate->lr[0])) {
18487                 return;
18488         }
18489         /* Ensure left <= right */
18490         if (left > right) {
18491                 struct live_range *tmp;
18492                 tmp = left;
18493                 left = right;
18494                 right = tmp;
18495         }
18496         ptr = lre_probe(rstate, left, right);
18497         if (*ptr) {
18498                 return;
18499         }
18500 #if 0
18501         fprintf(state->errout, "new_live_edge(%p, %p)\n",
18502                 left, right);
18503 #endif
18504         new_hash = xmalloc(sizeof(*new_hash), "lre_hash");
18505         new_hash->next  = *ptr;
18506         new_hash->left  = left;
18507         new_hash->right = right;
18508         *ptr = new_hash;
18509
18510         edge = xmalloc(sizeof(*edge), "live_range_edge");
18511         edge->next   = left->edges;
18512         edge->node   = right;
18513         left->edges  = edge;
18514         left->degree += 1;
18515         
18516         edge = xmalloc(sizeof(*edge), "live_range_edge");
18517         edge->next    = right->edges;
18518         edge->node    = left;
18519         right->edges  = edge;
18520         right->degree += 1;
18521 }
18522
18523 static void remove_live_edge(struct reg_state *rstate,
18524         struct live_range *left, struct live_range *right)
18525 {
18526         struct live_range_edge *edge, **ptr;
18527         struct lre_hash **hptr, *entry;
18528         hptr = lre_probe(rstate, left, right);
18529         if (!hptr || !*hptr) {
18530                 return;
18531         }
18532         entry = *hptr;
18533         *hptr = entry->next;
18534         xfree(entry);
18535
18536         for(ptr = &left->edges; *ptr; ptr = &(*ptr)->next) {
18537                 edge = *ptr;
18538                 if (edge->node == right) {
18539                         *ptr = edge->next;
18540                         memset(edge, 0, sizeof(*edge));
18541                         xfree(edge);
18542                         right->degree--;
18543                         break;
18544                 }
18545         }
18546         for(ptr = &right->edges; *ptr; ptr = &(*ptr)->next) {
18547                 edge = *ptr;
18548                 if (edge->node == left) {
18549                         *ptr = edge->next;
18550                         memset(edge, 0, sizeof(*edge));
18551                         xfree(edge);
18552                         left->degree--;
18553                         break;
18554                 }
18555         }
18556 }
18557
18558 static void remove_live_edges(struct reg_state *rstate, struct live_range *range)
18559 {
18560         struct live_range_edge *edge, *next;
18561         for(edge = range->edges; edge; edge = next) {
18562                 next = edge->next;
18563                 remove_live_edge(rstate, range, edge->node);
18564         }
18565 }
18566
18567 static void transfer_live_edges(struct reg_state *rstate, 
18568         struct live_range *dest, struct live_range *src)
18569 {
18570         struct live_range_edge *edge, *next;
18571         for(edge = src->edges; edge; edge = next) {
18572                 struct live_range *other;
18573                 next = edge->next;
18574                 other = edge->node;
18575                 remove_live_edge(rstate, src, other);
18576                 add_live_edge(rstate, dest, other);
18577         }
18578 }
18579
18580
18581 /* Interference graph...
18582  * 
18583  * new(n) --- Return a graph with n nodes but no edges.
18584  * add(g,x,y) --- Return a graph including g with an between x and y
18585  * interfere(g, x, y) --- Return true if there exists an edge between the nodes
18586  *                x and y in the graph g
18587  * degree(g, x) --- Return the degree of the node x in the graph g
18588  * neighbors(g, x, f) --- Apply function f to each neighbor of node x in the graph g
18589  *
18590  * Implement with a hash table && a set of adjcency vectors.
18591  * The hash table supports constant time implementations of add and interfere.
18592  * The adjacency vectors support an efficient implementation of neighbors.
18593  */
18594
18595 /* 
18596  *     +---------------------------------------------------+
18597  *     |         +--------------+                          |
18598  *     v         v              |                          |
18599  * renumber -> build graph -> colalesce -> spill_costs -> simplify -> select 
18600  *
18601  * -- In simplify implment optimistic coloring... (No backtracking)
18602  * -- Implement Rematerialization it is the only form of spilling we can perform
18603  *    Essentially this means dropping a constant from a register because
18604  *    we can regenerate it later.
18605  *
18606  * --- Very conservative colalescing (don't colalesce just mark the opportunities)
18607  *     coalesce at phi points...
18608  * --- Bias coloring if at all possible do the coalesing a compile time.
18609  *
18610  *
18611  */
18612
18613 #if DEBUG_ROMCC_WARNING
18614 static void different_colored(
18615         struct compile_state *state, struct reg_state *rstate, 
18616         struct triple *parent, struct triple *ins)
18617 {
18618         struct live_range *lr;
18619         struct triple **expr;
18620         lr = rstate->lrd[ins->id].lr;
18621         expr = triple_rhs(state, ins, 0);
18622         for(;expr; expr = triple_rhs(state, ins, expr)) {
18623                 struct live_range *lr2;
18624                 if (!*expr || (*expr == parent) || (*expr == ins)) {
18625                         continue;
18626                 }
18627                 lr2 = rstate->lrd[(*expr)->id].lr;
18628                 if (lr->color == lr2->color) {
18629                         internal_error(state, ins, "live range too big");
18630                 }
18631         }
18632 }
18633 #endif
18634
18635 static struct live_range *coalesce_ranges(
18636         struct compile_state *state, struct reg_state *rstate,
18637         struct live_range *lr1, struct live_range *lr2)
18638 {
18639         struct live_range_def *head, *mid1, *mid2, *end, *lrd;
18640         unsigned color;
18641         unsigned classes;
18642         if (lr1 == lr2) {
18643                 return lr1;
18644         }
18645         if (!lr1->defs || !lr2->defs) {
18646                 internal_error(state, 0,
18647                         "cannot coalese dead live ranges");
18648         }
18649         if ((lr1->color == REG_UNNEEDED) ||
18650                 (lr2->color == REG_UNNEEDED)) {
18651                 internal_error(state, 0, 
18652                         "cannot coalesce live ranges without a possible color");
18653         }
18654         if ((lr1->color != lr2->color) &&
18655                 (lr1->color != REG_UNSET) &&
18656                 (lr2->color != REG_UNSET)) {
18657                 internal_error(state, lr1->defs->def, 
18658                         "cannot coalesce live ranges of different colors");
18659         }
18660         color = lr1->color;
18661         if (color == REG_UNSET) {
18662                 color = lr2->color;
18663         }
18664         classes = lr1->classes & lr2->classes;
18665         if (!classes) {
18666                 internal_error(state, lr1->defs->def,
18667                         "cannot coalesce live ranges with dissimilar register classes");
18668         }
18669         if (state->compiler->debug & DEBUG_COALESCING) {
18670                 FILE *fp = state->errout;
18671                 fprintf(fp, "coalescing:");
18672                 lrd = lr1->defs;
18673                 do {
18674                         fprintf(fp, " %p", lrd->def);
18675                         lrd = lrd->next;
18676                 } while(lrd != lr1->defs);
18677                 fprintf(fp, " |");
18678                 lrd = lr2->defs;
18679                 do {
18680                         fprintf(fp, " %p", lrd->def);
18681                         lrd = lrd->next;
18682                 } while(lrd != lr2->defs);
18683                 fprintf(fp, "\n");
18684         }
18685         /* If there is a clear dominate live range put it in lr1,
18686          * For purposes of this test phi functions are
18687          * considered dominated by the definitions that feed into
18688          * them. 
18689          */
18690         if ((lr1->defs->prev->def->op == OP_PHI) ||
18691                 ((lr2->defs->prev->def->op != OP_PHI) &&
18692                 tdominates(state, lr2->defs->def, lr1->defs->def))) {
18693                 struct live_range *tmp;
18694                 tmp = lr1;
18695                 lr1 = lr2;
18696                 lr2 = tmp;
18697         }
18698 #if 0
18699         if (lr1->defs->orig_id  & TRIPLE_FLAG_POST_SPLIT) {
18700                 fprintf(state->errout, "lr1 post\n");
18701         }
18702         if (lr1->defs->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
18703                 fprintf(state->errout, "lr1 pre\n");
18704         }
18705         if (lr2->defs->orig_id  & TRIPLE_FLAG_POST_SPLIT) {
18706                 fprintf(state->errout, "lr2 post\n");
18707         }
18708         if (lr2->defs->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
18709                 fprintf(state->errout, "lr2 pre\n");
18710         }
18711 #endif
18712 #if 0
18713         fprintf(state->errout, "coalesce color1(%p): %3d color2(%p) %3d\n",
18714                 lr1->defs->def,
18715                 lr1->color,
18716                 lr2->defs->def,
18717                 lr2->color);
18718 #endif
18719         
18720         /* Append lr2 onto lr1 */
18721 #if DEBUG_ROMCC_WARNINGS
18722 #warning "FIXME should this be a merge instead of a splice?"
18723 #endif
18724         /* This FIXME item applies to the correctness of live_range_end 
18725          * and to the necessity of making multiple passes of coalesce_live_ranges.
18726          * A failure to find some coalesce opportunities in coaleace_live_ranges
18727          * does not impact the correct of the compiler just the efficiency with
18728          * which registers are allocated.
18729          */
18730         head = lr1->defs;
18731         mid1 = lr1->defs->prev;
18732         mid2 = lr2->defs;
18733         end  = lr2->defs->prev;
18734         
18735         head->prev = end;
18736         end->next  = head;
18737
18738         mid1->next = mid2;
18739         mid2->prev = mid1;
18740
18741         /* Fixup the live range in the added live range defs */
18742         lrd = head;
18743         do {
18744                 lrd->lr = lr1;
18745                 lrd = lrd->next;
18746         } while(lrd != head);
18747
18748         /* Mark lr2 as free. */
18749         lr2->defs = 0;
18750         lr2->color = REG_UNNEEDED;
18751         lr2->classes = 0;
18752
18753         if (!lr1->defs) {
18754                 internal_error(state, 0, "lr1->defs == 0 ?");
18755         }
18756
18757         lr1->color   = color;
18758         lr1->classes = classes;
18759
18760         /* Keep the graph in sync by transfering the edges from lr2 to lr1 */
18761         transfer_live_edges(rstate, lr1, lr2);
18762
18763         return lr1;
18764 }
18765
18766 static struct live_range_def *live_range_head(
18767         struct compile_state *state, struct live_range *lr,
18768         struct live_range_def *last)
18769 {
18770         struct live_range_def *result;
18771         result = 0;
18772         if (last == 0) {
18773                 result = lr->defs;
18774         }
18775         else if (!tdominates(state, lr->defs->def, last->next->def)) {
18776                 result = last->next;
18777         }
18778         return result;
18779 }
18780
18781 static struct live_range_def *live_range_end(
18782         struct compile_state *state, struct live_range *lr,
18783         struct live_range_def *last)
18784 {
18785         struct live_range_def *result;
18786         result = 0;
18787         if (last == 0) {
18788                 result = lr->defs->prev;
18789         }
18790         else if (!tdominates(state, last->prev->def, lr->defs->prev->def)) {
18791                 result = last->prev;
18792         }
18793         return result;
18794 }
18795
18796
18797 static void initialize_live_ranges(
18798         struct compile_state *state, struct reg_state *rstate)
18799 {
18800         struct triple *ins, *first;
18801         size_t count, size;
18802         int i, j;
18803
18804         first = state->first;
18805         /* First count how many instructions I have.
18806          */
18807         count = count_triples(state);
18808         /* Potentially I need one live range definitions for each
18809          * instruction.
18810          */
18811         rstate->defs = count;
18812         /* Potentially I need one live range for each instruction
18813          * plus an extra for the dummy live range.
18814          */
18815         rstate->ranges = count + 1;
18816         size = sizeof(rstate->lrd[0]) * rstate->defs;
18817         rstate->lrd = xcmalloc(size, "live_range_def");
18818         size = sizeof(rstate->lr[0]) * rstate->ranges;
18819         rstate->lr  = xcmalloc(size, "live_range");
18820
18821         /* Setup the dummy live range */
18822         rstate->lr[0].classes = 0;
18823         rstate->lr[0].color = REG_UNSET;
18824         rstate->lr[0].defs = 0;
18825         i = j = 0;
18826         ins = first;
18827         do {
18828                 /* If the triple is a variable give it a live range */
18829                 if (triple_is_def(state, ins)) {
18830                         struct reg_info info;
18831                         /* Find the architecture specific color information */
18832                         info = find_def_color(state, ins);
18833                         i++;
18834                         rstate->lr[i].defs    = &rstate->lrd[j];
18835                         rstate->lr[i].color   = info.reg;
18836                         rstate->lr[i].classes = info.regcm;
18837                         rstate->lr[i].degree  = 0;
18838                         rstate->lrd[j].lr = &rstate->lr[i];
18839                 } 
18840                 /* Otherwise give the triple the dummy live range. */
18841                 else {
18842                         rstate->lrd[j].lr = &rstate->lr[0];
18843                 }
18844
18845                 /* Initalize the live_range_def */
18846                 rstate->lrd[j].next    = &rstate->lrd[j];
18847                 rstate->lrd[j].prev    = &rstate->lrd[j];
18848                 rstate->lrd[j].def     = ins;
18849                 rstate->lrd[j].orig_id = ins->id;
18850                 ins->id = j;
18851
18852                 j++;
18853                 ins = ins->next;
18854         } while(ins != first);
18855         rstate->ranges = i;
18856
18857         /* Make a second pass to handle achitecture specific register
18858          * constraints.
18859          */
18860         ins = first;
18861         do {
18862                 int zlhs, zrhs, i, j;
18863                 if (ins->id > rstate->defs) {
18864                         internal_error(state, ins, "bad id");
18865                 }
18866                 
18867                 /* Walk through the template of ins and coalesce live ranges */
18868                 zlhs = ins->lhs;
18869                 if ((zlhs == 0) && triple_is_def(state, ins)) {
18870                         zlhs = 1;
18871                 }
18872                 zrhs = ins->rhs;
18873
18874                 if (state->compiler->debug & DEBUG_COALESCING2) {
18875                         fprintf(state->errout, "mandatory coalesce: %p %d %d\n",
18876                                 ins, zlhs, zrhs);
18877                 }
18878
18879                 for(i = 0; i < zlhs; i++) {
18880                         struct reg_info linfo;
18881                         struct live_range_def *lhs;
18882                         linfo = arch_reg_lhs(state, ins, i);
18883                         if (linfo.reg < MAX_REGISTERS) {
18884                                 continue;
18885                         }
18886                         if (triple_is_def(state, ins)) {
18887                                 lhs = &rstate->lrd[ins->id];
18888                         } else {
18889                                 lhs = &rstate->lrd[LHS(ins, i)->id];
18890                         }
18891
18892                         if (state->compiler->debug & DEBUG_COALESCING2) {
18893                                 fprintf(state->errout, "coalesce lhs(%d): %p %d\n",
18894                                         i, lhs, linfo.reg);
18895                         }
18896
18897                         for(j = 0; j < zrhs; j++) {
18898                                 struct reg_info rinfo;
18899                                 struct live_range_def *rhs;
18900                                 rinfo = arch_reg_rhs(state, ins, j);
18901                                 if (rinfo.reg < MAX_REGISTERS) {
18902                                         continue;
18903                                 }
18904                                 rhs = &rstate->lrd[RHS(ins, j)->id];
18905
18906                                 if (state->compiler->debug & DEBUG_COALESCING2) {
18907                                         fprintf(state->errout, "coalesce rhs(%d): %p %d\n",
18908                                                 j, rhs, rinfo.reg);
18909                                 }
18910
18911                                 if (rinfo.reg == linfo.reg) {
18912                                         coalesce_ranges(state, rstate, 
18913                                                 lhs->lr, rhs->lr);
18914                                 }
18915                         }
18916                 }
18917                 ins = ins->next;
18918         } while(ins != first);
18919 }
18920
18921 static void graph_ins(
18922         struct compile_state *state, 
18923         struct reg_block *blocks, struct triple_reg_set *live, 
18924         struct reg_block *rb, struct triple *ins, void *arg)
18925 {
18926         struct reg_state *rstate = arg;
18927         struct live_range *def;
18928         struct triple_reg_set *entry;
18929
18930         /* If the triple is not a definition
18931          * we do not have a definition to add to
18932          * the interference graph.
18933          */
18934         if (!triple_is_def(state, ins)) {
18935                 return;
18936         }
18937         def = rstate->lrd[ins->id].lr;
18938         
18939         /* Create an edge between ins and everything that is
18940          * alive, unless the live_range cannot share
18941          * a physical register with ins.
18942          */
18943         for(entry = live; entry; entry = entry->next) {
18944                 struct live_range *lr;
18945                 if ((entry->member->id < 0) || (entry->member->id > rstate->defs)) {
18946                         internal_error(state, 0, "bad entry?");
18947                 }
18948                 lr = rstate->lrd[entry->member->id].lr;
18949                 if (def == lr) {
18950                         continue;
18951                 }
18952                 if (!arch_regcm_intersect(def->classes, lr->classes)) {
18953                         continue;
18954                 }
18955                 add_live_edge(rstate, def, lr);
18956         }
18957         return;
18958 }
18959
18960 #if DEBUG_CONSISTENCY > 1
18961 static struct live_range *get_verify_live_range(
18962         struct compile_state *state, struct reg_state *rstate, struct triple *ins)
18963 {
18964         struct live_range *lr;
18965         struct live_range_def *lrd;
18966         int ins_found;
18967         if ((ins->id < 0) || (ins->id > rstate->defs)) {
18968                 internal_error(state, ins, "bad ins?");
18969         }
18970         lr = rstate->lrd[ins->id].lr;
18971         ins_found = 0;
18972         lrd = lr->defs;
18973         do {
18974                 if (lrd->def == ins) {
18975                         ins_found = 1;
18976                 }
18977                 lrd = lrd->next;
18978         } while(lrd != lr->defs);
18979         if (!ins_found) {
18980                 internal_error(state, ins, "ins not in live range");
18981         }
18982         return lr;
18983 }
18984
18985 static void verify_graph_ins(
18986         struct compile_state *state, 
18987         struct reg_block *blocks, struct triple_reg_set *live, 
18988         struct reg_block *rb, struct triple *ins, void *arg)
18989 {
18990         struct reg_state *rstate = arg;
18991         struct triple_reg_set *entry1, *entry2;
18992
18993
18994         /* Compare live against edges and make certain the code is working */
18995         for(entry1 = live; entry1; entry1 = entry1->next) {
18996                 struct live_range *lr1;
18997                 lr1 = get_verify_live_range(state, rstate, entry1->member);
18998                 for(entry2 = live; entry2; entry2 = entry2->next) {
18999                         struct live_range *lr2;
19000                         struct live_range_edge *edge2;
19001                         int lr1_found;
19002                         int lr2_degree;
19003                         if (entry2 == entry1) {
19004                                 continue;
19005                         }
19006                         lr2 = get_verify_live_range(state, rstate, entry2->member);
19007                         if (lr1 == lr2) {
19008                                 internal_error(state, entry2->member, 
19009                                         "live range with 2 values simultaneously alive");
19010                         }
19011                         if (!arch_regcm_intersect(lr1->classes, lr2->classes)) {
19012                                 continue;
19013                         }
19014                         if (!interfere(rstate, lr1, lr2)) {
19015                                 internal_error(state, entry2->member, 
19016                                         "edges don't interfere?");
19017                         }
19018                                 
19019                         lr1_found = 0;
19020                         lr2_degree = 0;
19021                         for(edge2 = lr2->edges; edge2; edge2 = edge2->next) {
19022                                 lr2_degree++;
19023                                 if (edge2->node == lr1) {
19024                                         lr1_found = 1;
19025                                 }
19026                         }
19027                         if (lr2_degree != lr2->degree) {
19028                                 internal_error(state, entry2->member,
19029                                         "computed degree: %d does not match reported degree: %d\n",
19030                                         lr2_degree, lr2->degree);
19031                         }
19032                         if (!lr1_found) {
19033                                 internal_error(state, entry2->member, "missing edge");
19034                         }
19035                 }
19036         }
19037         return;
19038 }
19039 #endif
19040
19041 static void print_interference_ins(
19042         struct compile_state *state, 
19043         struct reg_block *blocks, struct triple_reg_set *live, 
19044         struct reg_block *rb, struct triple *ins, void *arg)
19045 {
19046         struct reg_state *rstate = arg;
19047         struct live_range *lr;
19048         unsigned id;
19049         FILE *fp = state->dbgout;
19050
19051         lr = rstate->lrd[ins->id].lr;
19052         id = ins->id;
19053         ins->id = rstate->lrd[id].orig_id;
19054         SET_REG(ins->id, lr->color);
19055         display_triple(state->dbgout, ins);
19056         ins->id = id;
19057
19058         if (lr->defs) {
19059                 struct live_range_def *lrd;
19060                 fprintf(fp, "       range:");
19061                 lrd = lr->defs;
19062                 do {
19063                         fprintf(fp, " %-10p", lrd->def);
19064                         lrd = lrd->next;
19065                 } while(lrd != lr->defs);
19066                 fprintf(fp, "\n");
19067         }
19068         if (live) {
19069                 struct triple_reg_set *entry;
19070                 fprintf(fp, "        live:");
19071                 for(entry = live; entry; entry = entry->next) {
19072                         fprintf(fp, " %-10p", entry->member);
19073                 }
19074                 fprintf(fp, "\n");
19075         }
19076         if (lr->edges) {
19077                 struct live_range_edge *entry;
19078                 fprintf(fp, "       edges:");
19079                 for(entry = lr->edges; entry; entry = entry->next) {
19080                         struct live_range_def *lrd;
19081                         lrd = entry->node->defs;
19082                         do {
19083                                 fprintf(fp, " %-10p", lrd->def);
19084                                 lrd = lrd->next;
19085                         } while(lrd != entry->node->defs);
19086                         fprintf(fp, "|");
19087                 }
19088                 fprintf(fp, "\n");
19089         }
19090         if (triple_is_branch(state, ins)) {
19091                 fprintf(fp, "\n");
19092         }
19093         return;
19094 }
19095
19096 static int coalesce_live_ranges(
19097         struct compile_state *state, struct reg_state *rstate)
19098 {
19099         /* At the point where a value is moved from one
19100          * register to another that value requires two
19101          * registers, thus increasing register pressure.
19102          * Live range coaleescing reduces the register
19103          * pressure by keeping a value in one register
19104          * longer.
19105          *
19106          * In the case of a phi function all paths leading
19107          * into it must be allocated to the same register
19108          * otherwise the phi function may not be removed.
19109          *
19110          * Forcing a value to stay in a single register
19111          * for an extended period of time does have
19112          * limitations when applied to non homogenous
19113          * register pool.  
19114          *
19115          * The two cases I have identified are:
19116          * 1) Two forced register assignments may
19117          *    collide.
19118          * 2) Registers may go unused because they
19119          *    are only good for storing the value
19120          *    and not manipulating it.
19121          *
19122          * Because of this I need to split live ranges,
19123          * even outside of the context of coalesced live
19124          * ranges.  The need to split live ranges does
19125          * impose some constraints on live range coalescing.
19126          *
19127          * - Live ranges may not be coalesced across phi
19128          *   functions.  This creates a 2 headed live
19129          *   range that cannot be sanely split.
19130          *
19131          * - phi functions (coalesced in initialize_live_ranges) 
19132          *   are handled as pre split live ranges so we will
19133          *   never attempt to split them.
19134          */
19135         int coalesced;
19136         int i;
19137
19138         coalesced = 0;
19139         for(i = 0; i <= rstate->ranges; i++) {
19140                 struct live_range *lr1;
19141                 struct live_range_def *lrd1;
19142                 lr1 = &rstate->lr[i];
19143                 if (!lr1->defs) {
19144                         continue;
19145                 }
19146                 lrd1 = live_range_end(state, lr1, 0);
19147                 for(; lrd1; lrd1 = live_range_end(state, lr1, lrd1)) {
19148                         struct triple_set *set;
19149                         if (lrd1->def->op != OP_COPY) {
19150                                 continue;
19151                         }
19152                         /* Skip copies that are the result of a live range split. */
19153                         if (lrd1->orig_id & TRIPLE_FLAG_POST_SPLIT) {
19154                                 continue;
19155                         }
19156                         for(set = lrd1->def->use; set; set = set->next) {
19157                                 struct live_range_def *lrd2;
19158                                 struct live_range *lr2, *res;
19159
19160                                 lrd2 = &rstate->lrd[set->member->id];
19161
19162                                 /* Don't coalesce with instructions
19163                                  * that are the result of a live range
19164                                  * split.
19165                                  */
19166                                 if (lrd2->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
19167                                         continue;
19168                                 }
19169                                 lr2 = rstate->lrd[set->member->id].lr;
19170                                 if (lr1 == lr2) {
19171                                         continue;
19172                                 }
19173                                 if ((lr1->color != lr2->color) &&
19174                                         (lr1->color != REG_UNSET) &&
19175                                         (lr2->color != REG_UNSET)) {
19176                                         continue;
19177                                 }
19178                                 if ((lr1->classes & lr2->classes) == 0) {
19179                                         continue;
19180                                 }
19181                                 
19182                                 if (interfere(rstate, lr1, lr2)) {
19183                                         continue;
19184                                 }
19185
19186                                 res = coalesce_ranges(state, rstate, lr1, lr2);
19187                                 coalesced += 1;
19188                                 if (res != lr1) {
19189                                         goto next;
19190                                 }
19191                         }
19192                 }
19193         next:
19194                 ;
19195         }
19196         return coalesced;
19197 }
19198
19199
19200 static void fix_coalesce_conflicts(struct compile_state *state,
19201         struct reg_block *blocks, struct triple_reg_set *live,
19202         struct reg_block *rb, struct triple *ins, void *arg)
19203 {
19204         int *conflicts = arg;
19205         int zlhs, zrhs, i, j;
19206
19207         /* See if we have a mandatory coalesce operation between
19208          * a lhs and a rhs value.  If so and the rhs value is also
19209          * alive then this triple needs to be pre copied.  Otherwise
19210          * we would have two definitions in the same live range simultaneously
19211          * alive.
19212          */
19213         zlhs = ins->lhs;
19214         if ((zlhs == 0) && triple_is_def(state, ins)) {
19215                 zlhs = 1;
19216         }
19217         zrhs = ins->rhs;
19218         for(i = 0; i < zlhs; i++) {
19219                 struct reg_info linfo;
19220                 linfo = arch_reg_lhs(state, ins, i);
19221                 if (linfo.reg < MAX_REGISTERS) {
19222                         continue;
19223                 }
19224                 for(j = 0; j < zrhs; j++) {
19225                         struct reg_info rinfo;
19226                         struct triple *rhs;
19227                         struct triple_reg_set *set;
19228                         int found;
19229                         found = 0;
19230                         rinfo = arch_reg_rhs(state, ins, j);
19231                         if (rinfo.reg != linfo.reg) {
19232                                 continue;
19233                         }
19234                         rhs = RHS(ins, j);
19235                         for(set = live; set && !found; set = set->next) {
19236                                 if (set->member == rhs) {
19237                                         found = 1;
19238                                 }
19239                         }
19240                         if (found) {
19241                                 struct triple *copy;
19242                                 copy = pre_copy(state, ins, j);
19243                                 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
19244                                 (*conflicts)++;
19245                         }
19246                 }
19247         }
19248         return;
19249 }
19250
19251 static int correct_coalesce_conflicts(
19252         struct compile_state *state, struct reg_block *blocks)
19253 {
19254         int conflicts;
19255         conflicts = 0;
19256         walk_variable_lifetimes(state, &state->bb, blocks, 
19257                 fix_coalesce_conflicts, &conflicts);
19258         return conflicts;
19259 }
19260
19261 static void replace_set_use(struct compile_state *state,
19262         struct triple_reg_set *head, struct triple *orig, struct triple *new)
19263 {
19264         struct triple_reg_set *set;
19265         for(set = head; set; set = set->next) {
19266                 if (set->member == orig) {
19267                         set->member = new;
19268                 }
19269         }
19270 }
19271
19272 static void replace_block_use(struct compile_state *state, 
19273         struct reg_block *blocks, struct triple *orig, struct triple *new)
19274 {
19275         int i;
19276 #if DEBUG_ROMCC_WARNINGS
19277 #warning "WISHLIST visit just those blocks that need it *"
19278 #endif
19279         for(i = 1; i <= state->bb.last_vertex; i++) {
19280                 struct reg_block *rb;
19281                 rb = &blocks[i];
19282                 replace_set_use(state, rb->in, orig, new);
19283                 replace_set_use(state, rb->out, orig, new);
19284         }
19285 }
19286
19287 static void color_instructions(struct compile_state *state)
19288 {
19289         struct triple *ins, *first;
19290         first = state->first;
19291         ins = first;
19292         do {
19293                 if (triple_is_def(state, ins)) {
19294                         struct reg_info info;
19295                         info = find_lhs_color(state, ins, 0);
19296                         if (info.reg >= MAX_REGISTERS) {
19297                                 info.reg = REG_UNSET;
19298                         }
19299                         SET_INFO(ins->id, info);
19300                 }
19301                 ins = ins->next;
19302         } while(ins != first);
19303 }
19304
19305 static struct reg_info read_lhs_color(
19306         struct compile_state *state, struct triple *ins, int index)
19307 {
19308         struct reg_info info;
19309         if ((index == 0) && triple_is_def(state, ins)) {
19310                 info.reg   = ID_REG(ins->id);
19311                 info.regcm = ID_REGCM(ins->id);
19312         }
19313         else if (index < ins->lhs) {
19314                 info = read_lhs_color(state, LHS(ins, index), 0);
19315         }
19316         else {
19317                 internal_error(state, ins, "Bad lhs %d", index);
19318                 info.reg = REG_UNSET;
19319                 info.regcm = 0;
19320         }
19321         return info;
19322 }
19323
19324 static struct triple *resolve_tangle(
19325         struct compile_state *state, struct triple *tangle)
19326 {
19327         struct reg_info info, uinfo;
19328         struct triple_set *set, *next;
19329         struct triple *copy;
19330
19331 #if DEBUG_ROMCC_WARNINGS
19332 #warning "WISHLIST recalculate all affected instructions colors"
19333 #endif
19334         info = find_lhs_color(state, tangle, 0);
19335         for(set = tangle->use; set; set = next) {
19336                 struct triple *user;
19337                 int i, zrhs;
19338                 next = set->next;
19339                 user = set->member;
19340                 zrhs = user->rhs;
19341                 for(i = 0; i < zrhs; i++) {
19342                         if (RHS(user, i) != tangle) {
19343                                 continue;
19344                         }
19345                         uinfo = find_rhs_post_color(state, user, i);
19346                         if (uinfo.reg == info.reg) {
19347                                 copy = pre_copy(state, user, i);
19348                                 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
19349                                 SET_INFO(copy->id, uinfo);
19350                         }
19351                 }
19352         }
19353         copy = 0;
19354         uinfo = find_lhs_pre_color(state, tangle, 0);
19355         if (uinfo.reg == info.reg) {
19356                 struct reg_info linfo;
19357                 copy = post_copy(state, tangle);
19358                 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
19359                 linfo = find_lhs_color(state, copy, 0);
19360                 SET_INFO(copy->id, linfo);
19361         }
19362         info = find_lhs_color(state, tangle, 0);
19363         SET_INFO(tangle->id, info);
19364         
19365         return copy;
19366 }
19367
19368
19369 static void fix_tangles(struct compile_state *state,
19370         struct reg_block *blocks, struct triple_reg_set *live,
19371         struct reg_block *rb, struct triple *ins, void *arg)
19372 {
19373         int *tangles = arg;
19374         struct triple *tangle;
19375         do {
19376                 char used[MAX_REGISTERS];
19377                 struct triple_reg_set *set;
19378                 tangle = 0;
19379
19380                 /* Find out which registers have multiple uses at this point */
19381                 memset(used, 0, sizeof(used));
19382                 for(set = live; set; set = set->next) {
19383                         struct reg_info info;
19384                         info = read_lhs_color(state, set->member, 0);
19385                         if (info.reg == REG_UNSET) {
19386                                 continue;
19387                         }
19388                         reg_inc_used(state, used, info.reg);
19389                 }
19390                 
19391                 /* Now find the least dominated definition of a register in
19392                  * conflict I have seen so far.
19393                  */
19394                 for(set = live; set; set = set->next) {
19395                         struct reg_info info;
19396                         info = read_lhs_color(state, set->member, 0);
19397                         if (used[info.reg] < 2) {
19398                                 continue;
19399                         }
19400                         /* Changing copies that feed into phi functions
19401                          * is incorrect.
19402                          */
19403                         if (set->member->use && 
19404                                 (set->member->use->member->op == OP_PHI)) {
19405                                 continue;
19406                         }
19407                         if (!tangle || tdominates(state, set->member, tangle)) {
19408                                 tangle = set->member;
19409                         }
19410                 }
19411                 /* If I have found a tangle resolve it */
19412                 if (tangle) {
19413                         struct triple *post_copy;
19414                         (*tangles)++;
19415                         post_copy = resolve_tangle(state, tangle);
19416                         if (post_copy) {
19417                                 replace_block_use(state, blocks, tangle, post_copy);
19418                         }
19419                         if (post_copy && (tangle != ins)) {
19420                                 replace_set_use(state, live, tangle, post_copy);
19421                         }
19422                 }
19423         } while(tangle);
19424         return;
19425 }
19426
19427 static int correct_tangles(
19428         struct compile_state *state, struct reg_block *blocks)
19429 {
19430         int tangles;
19431         tangles = 0;
19432         color_instructions(state);
19433         walk_variable_lifetimes(state, &state->bb, blocks, 
19434                 fix_tangles, &tangles);
19435         return tangles;
19436 }
19437
19438
19439 static void ids_from_rstate(struct compile_state *state, struct reg_state *rstate);
19440 static void cleanup_rstate(struct compile_state *state, struct reg_state *rstate);
19441
19442 struct triple *find_constrained_def(
19443         struct compile_state *state, struct live_range *range, struct triple *constrained)
19444 {
19445         struct live_range_def *lrd, *lrd_next;
19446         lrd_next = range->defs;
19447         do {
19448                 struct reg_info info;
19449                 unsigned regcm;
19450
19451                 lrd = lrd_next;
19452                 lrd_next = lrd->next;
19453
19454                 regcm = arch_type_to_regcm(state, lrd->def->type);
19455                 info = find_lhs_color(state, lrd->def, 0);
19456                 regcm      = arch_regcm_reg_normalize(state, regcm);
19457                 info.regcm = arch_regcm_reg_normalize(state, info.regcm);
19458                 /* If the 2 register class masks are equal then
19459                  * the current register class is not constrained.
19460                  */
19461                 if (regcm == info.regcm) {
19462                         continue;
19463                 }
19464                 
19465                 /* If there is just one use.
19466                  * That use cannot accept a larger register class.
19467                  * There are no intervening definitions except
19468                  * definitions that feed into that use.
19469                  * Then a triple is not constrained.
19470                  * FIXME handle this case!
19471                  */
19472 #if DEBUG_ROMCC_WARNINGS
19473 #warning "FIXME ignore cases that cannot be fixed (a definition followed by a use)"
19474 #endif
19475                 
19476
19477                 /* Of the constrained live ranges deal with the
19478                  * least dominated one first.
19479                  */
19480                 if (state->compiler->debug & DEBUG_RANGE_CONFLICTS) {
19481                         fprintf(state->errout, "canidate: %p %-8s regcm: %x %x\n",
19482                                 lrd->def, tops(lrd->def->op), regcm, info.regcm);
19483                 }
19484                 if (!constrained || 
19485                         tdominates(state, lrd->def, constrained))
19486                 {
19487                         constrained = lrd->def;
19488                 }
19489         } while(lrd_next != range->defs);
19490         return constrained;
19491 }
19492
19493 static int split_constrained_ranges(
19494         struct compile_state *state, struct reg_state *rstate, 
19495         struct live_range *range)
19496 {
19497         /* Walk through the edges in conflict and our current live
19498          * range, and find definitions that are more severly constrained
19499          * than they type of data they contain require.
19500          * 
19501          * Then pick one of those ranges and relax the constraints.
19502          */
19503         struct live_range_edge *edge;
19504         struct triple *constrained;
19505
19506         constrained = 0;
19507         for(edge = range->edges; edge; edge = edge->next) {
19508                 constrained = find_constrained_def(state, edge->node, constrained);
19509         }
19510 #if DEBUG_ROMCC_WARNINGS
19511 #warning "FIXME should I call find_constrained_def here only if no previous constrained def was found?"
19512 #endif
19513         if (!constrained) {
19514                 constrained = find_constrained_def(state, range, constrained);
19515         }
19516
19517         if (state->compiler->debug & DEBUG_RANGE_CONFLICTS) {
19518                 fprintf(state->errout, "constrained: ");
19519                 display_triple(state->errout, constrained);
19520         }
19521         if (constrained) {
19522                 ids_from_rstate(state, rstate);
19523                 cleanup_rstate(state, rstate);
19524                 resolve_tangle(state, constrained);
19525         }
19526         return !!constrained;
19527 }
19528         
19529 static int split_ranges(
19530         struct compile_state *state, struct reg_state *rstate,
19531         char *used, struct live_range *range)
19532 {
19533         int split;
19534         if (state->compiler->debug & DEBUG_RANGE_CONFLICTS) {
19535                 fprintf(state->errout, "split_ranges %d %s %p\n", 
19536                         rstate->passes, tops(range->defs->def->op), range->defs->def);
19537         }
19538         if ((range->color == REG_UNNEEDED) ||
19539                 (rstate->passes >= rstate->max_passes)) {
19540                 return 0;
19541         }
19542         split = split_constrained_ranges(state, rstate, range);
19543
19544         /* Ideally I would split the live range that will not be used
19545          * for the longest period of time in hopes that this will 
19546          * (a) allow me to spill a register or
19547          * (b) allow me to place a value in another register.
19548          *
19549          * So far I don't have a test case for this, the resolving
19550          * of mandatory constraints has solved all of my
19551          * know issues.  So I have choosen not to write any
19552          * code until I cat get a better feel for cases where
19553          * it would be useful to have.
19554          *
19555          */
19556 #if DEBUG_ROMCC_WARNINGS
19557 #warning "WISHLIST implement live range splitting..."
19558 #endif
19559         
19560         if (!split && (state->compiler->debug & DEBUG_RANGE_CONFLICTS2)) {
19561                 FILE *fp = state->errout;
19562                 print_interference_blocks(state, rstate, fp, 0);
19563                 print_dominators(state, fp, &state->bb);
19564         }
19565         return split;
19566 }
19567
19568 static FILE *cgdebug_fp(struct compile_state *state)
19569 {
19570         FILE *fp;
19571         fp = 0;
19572         if (!fp && (state->compiler->debug & DEBUG_COLOR_GRAPH2)) {
19573                 fp = state->errout;
19574         }
19575         if (!fp && (state->compiler->debug & DEBUG_COLOR_GRAPH)) {
19576                 fp = state->dbgout;
19577         }
19578         return fp;
19579 }
19580
19581 static void cgdebug_printf(struct compile_state *state, const char *fmt, ...)
19582 {
19583         FILE *fp;
19584         fp = cgdebug_fp(state);
19585         if (fp) {
19586                 va_list args;
19587                 va_start(args, fmt);
19588                 vfprintf(fp, fmt, args);
19589                 va_end(args);
19590         }
19591 }
19592
19593 static void cgdebug_flush(struct compile_state *state)
19594 {
19595         FILE *fp;
19596         fp = cgdebug_fp(state);
19597         if (fp) {
19598                 fflush(fp);
19599         }
19600 }
19601
19602 static void cgdebug_loc(struct compile_state *state, struct triple *ins)
19603 {
19604         FILE *fp;
19605         fp = cgdebug_fp(state);
19606         if (fp) {
19607                 loc(fp, state, ins);
19608         }
19609 }
19610
19611 static int select_free_color(struct compile_state *state, 
19612         struct reg_state *rstate, struct live_range *range)
19613 {
19614         struct triple_set *entry;
19615         struct live_range_def *lrd;
19616         struct live_range_def *phi;
19617         struct live_range_edge *edge;
19618         char used[MAX_REGISTERS];
19619         struct triple **expr;
19620
19621         /* Instead of doing just the trivial color select here I try
19622          * a few extra things because a good color selection will help reduce
19623          * copies.
19624          */
19625
19626         /* Find the registers currently in use */
19627         memset(used, 0, sizeof(used));
19628         for(edge = range->edges; edge; edge = edge->next) {
19629                 if (edge->node->color == REG_UNSET) {
19630                         continue;
19631                 }
19632                 reg_fill_used(state, used, edge->node->color);
19633         }
19634
19635         if (state->compiler->debug & DEBUG_COLOR_GRAPH2) {
19636                 int i;
19637                 i = 0;
19638                 for(edge = range->edges; edge; edge = edge->next) {
19639                         i++;
19640                 }
19641                 cgdebug_printf(state, "\n%s edges: %d", 
19642                         tops(range->defs->def->op), i);
19643                 cgdebug_loc(state, range->defs->def);
19644                 cgdebug_printf(state, "\n");
19645                 for(i = 0; i < MAX_REGISTERS; i++) {
19646                         if (used[i]) {
19647                                 cgdebug_printf(state, "used: %s\n",
19648                                         arch_reg_str(i));
19649                         }
19650                 }
19651         }       
19652
19653         /* If a color is already assigned see if it will work */
19654         if (range->color != REG_UNSET) {
19655                 struct live_range_def *lrd;
19656                 if (!used[range->color]) {
19657                         return 1;
19658                 }
19659                 for(edge = range->edges; edge; edge = edge->next) {
19660                         if (edge->node->color != range->color) {
19661                                 continue;
19662                         }
19663                         warning(state, edge->node->defs->def, "edge: ");
19664                         lrd = edge->node->defs;
19665                         do {
19666                                 warning(state, lrd->def, " %p %s",
19667                                         lrd->def, tops(lrd->def->op));
19668                                 lrd = lrd->next;
19669                         } while(lrd != edge->node->defs);
19670                 }
19671                 lrd = range->defs;
19672                 warning(state, range->defs->def, "def: ");
19673                 do {
19674                         warning(state, lrd->def, " %p %s",
19675                                 lrd->def, tops(lrd->def->op));
19676                         lrd = lrd->next;
19677                 } while(lrd != range->defs);
19678                 internal_error(state, range->defs->def,
19679                         "live range with already used color %s",
19680                         arch_reg_str(range->color));
19681         }
19682
19683         /* If I feed into an expression reuse it's color.
19684          * This should help remove copies in the case of 2 register instructions
19685          * and phi functions.
19686          */
19687         phi = 0;
19688         lrd = live_range_end(state, range, 0);
19689         for(; (range->color == REG_UNSET) && lrd ; lrd = live_range_end(state, range, lrd)) {
19690                 entry = lrd->def->use;
19691                 for(;(range->color == REG_UNSET) && entry; entry = entry->next) {
19692                         struct live_range_def *insd;
19693                         unsigned regcm;
19694                         insd = &rstate->lrd[entry->member->id];
19695                         if (insd->lr->defs == 0) {
19696                                 continue;
19697                         }
19698                         if (!phi && (insd->def->op == OP_PHI) &&
19699                                 !interfere(rstate, range, insd->lr)) {
19700                                 phi = insd;
19701                         }
19702                         if (insd->lr->color == REG_UNSET) {
19703                                 continue;
19704                         }
19705                         regcm = insd->lr->classes;
19706                         if (((regcm & range->classes) == 0) ||
19707                                 (used[insd->lr->color])) {
19708                                 continue;
19709                         }
19710                         if (interfere(rstate, range, insd->lr)) {
19711                                 continue;
19712                         }
19713                         range->color = insd->lr->color;
19714                 }
19715         }
19716         /* If I feed into a phi function reuse it's color or the color
19717          * of something else that feeds into the phi function.
19718          */
19719         if (phi) {
19720                 if (phi->lr->color != REG_UNSET) {
19721                         if (used[phi->lr->color]) {
19722                                 range->color = phi->lr->color;
19723                         }
19724                 }
19725                 else {
19726                         expr = triple_rhs(state, phi->def, 0);
19727                         for(; expr; expr = triple_rhs(state, phi->def, expr)) {
19728                                 struct live_range *lr;
19729                                 unsigned regcm;
19730                                 if (!*expr) {
19731                                         continue;
19732                                 }
19733                                 lr = rstate->lrd[(*expr)->id].lr;
19734                                 if (lr->color == REG_UNSET) {
19735                                         continue;
19736                                 }
19737                                 regcm = lr->classes;
19738                                 if (((regcm & range->classes) == 0) ||
19739                                         (used[lr->color])) {
19740                                         continue;
19741                                 }
19742                                 if (interfere(rstate, range, lr)) {
19743                                         continue;
19744                                 }
19745                                 range->color = lr->color;
19746                         }
19747                 }
19748         }
19749         /* If I don't interfere with a rhs node reuse it's color */
19750         lrd = live_range_head(state, range, 0);
19751         for(; (range->color == REG_UNSET) && lrd ; lrd = live_range_head(state, range, lrd)) {
19752                 expr = triple_rhs(state, lrd->def, 0);
19753                 for(; expr; expr = triple_rhs(state, lrd->def, expr)) {
19754                         struct live_range *lr;
19755                         unsigned regcm;
19756                         if (!*expr) {
19757                                 continue;
19758                         }
19759                         lr = rstate->lrd[(*expr)->id].lr;
19760                         if (lr->color == REG_UNSET) {
19761                                 continue;
19762                         }
19763                         regcm = lr->classes;
19764                         if (((regcm & range->classes) == 0) ||
19765                                 (used[lr->color])) {
19766                                 continue;
19767                         }
19768                         if (interfere(rstate, range, lr)) {
19769                                 continue;
19770                         }
19771                         range->color = lr->color;
19772                         break;
19773                 }
19774         }
19775         /* If I have not opportunitically picked a useful color
19776          * pick the first color that is free.
19777          */
19778         if (range->color == REG_UNSET) {
19779                 range->color = 
19780                         arch_select_free_register(state, used, range->classes);
19781         }
19782         if (range->color == REG_UNSET) {
19783                 struct live_range_def *lrd;
19784                 int i;
19785                 if (split_ranges(state, rstate, used, range)) {
19786                         return 0;
19787                 }
19788                 for(edge = range->edges; edge; edge = edge->next) {
19789                         warning(state, edge->node->defs->def, "edge reg %s",
19790                                 arch_reg_str(edge->node->color));
19791                         lrd = edge->node->defs;
19792                         do {
19793                                 warning(state, lrd->def, " %s %p",
19794                                         tops(lrd->def->op), lrd->def);
19795                                 lrd = lrd->next;
19796                         } while(lrd != edge->node->defs);
19797                 }
19798                 warning(state, range->defs->def, "range: ");
19799                 lrd = range->defs;
19800                 do {
19801                         warning(state, lrd->def, " %s %p",
19802                                 tops(lrd->def->op), lrd->def);
19803                         lrd = lrd->next;
19804                 } while(lrd != range->defs);
19805                         
19806                 warning(state, range->defs->def, "classes: %x",
19807                         range->classes);
19808                 for(i = 0; i < MAX_REGISTERS; i++) {
19809                         if (used[i]) {
19810                                 warning(state, range->defs->def, "used: %s",
19811                                         arch_reg_str(i));
19812                         }
19813                 }
19814                 error(state, range->defs->def, "too few registers");
19815         }
19816         range->classes &= arch_reg_regcm(state, range->color);
19817         if ((range->color == REG_UNSET) || (range->classes == 0)) {
19818                 internal_error(state, range->defs->def, "select_free_color did not?");
19819         }
19820         return 1;
19821 }
19822
19823 static int color_graph(struct compile_state *state, struct reg_state *rstate)
19824 {
19825         int colored;
19826         struct live_range_edge *edge;
19827         struct live_range *range;
19828         if (rstate->low) {
19829                 cgdebug_printf(state, "Lo: ");
19830                 range = rstate->low;
19831                 if (*range->group_prev != range) {
19832                         internal_error(state, 0, "lo: *prev != range?");
19833                 }
19834                 *range->group_prev = range->group_next;
19835                 if (range->group_next) {
19836                         range->group_next->group_prev = range->group_prev;
19837                 }
19838                 if (&range->group_next == rstate->low_tail) {
19839                         rstate->low_tail = range->group_prev;
19840                 }
19841                 if (rstate->low == range) {
19842                         internal_error(state, 0, "low: next != prev?");
19843                 }
19844         }
19845         else if (rstate->high) {
19846                 cgdebug_printf(state, "Hi: ");
19847                 range = rstate->high;
19848                 if (*range->group_prev != range) {
19849                         internal_error(state, 0, "hi: *prev != range?");
19850                 }
19851                 *range->group_prev = range->group_next;
19852                 if (range->group_next) {
19853                         range->group_next->group_prev = range->group_prev;
19854                 }
19855                 if (&range->group_next == rstate->high_tail) {
19856                         rstate->high_tail = range->group_prev;
19857                 }
19858                 if (rstate->high == range) {
19859                         internal_error(state, 0, "high: next != prev?");
19860                 }
19861         }
19862         else {
19863                 return 1;
19864         }
19865         cgdebug_printf(state, " %d\n", range - rstate->lr);
19866         range->group_prev = 0;
19867         for(edge = range->edges; edge; edge = edge->next) {
19868                 struct live_range *node;
19869                 node = edge->node;
19870                 /* Move nodes from the high to the low list */
19871                 if (node->group_prev && (node->color == REG_UNSET) &&
19872                         (node->degree == regc_max_size(state, node->classes))) {
19873                         if (*node->group_prev != node) {
19874                                 internal_error(state, 0, "move: *prev != node?");
19875                         }
19876                         *node->group_prev = node->group_next;
19877                         if (node->group_next) {
19878                                 node->group_next->group_prev = node->group_prev;
19879                         }
19880                         if (&node->group_next == rstate->high_tail) {
19881                                 rstate->high_tail = node->group_prev;
19882                         }
19883                         cgdebug_printf(state, "Moving...%d to low\n", node - rstate->lr);
19884                         node->group_prev  = rstate->low_tail;
19885                         node->group_next  = 0;
19886                         *rstate->low_tail = node;
19887                         rstate->low_tail  = &node->group_next;
19888                         if (*node->group_prev != node) {
19889                                 internal_error(state, 0, "move2: *prev != node?");
19890                         }
19891                 }
19892                 node->degree -= 1;
19893         }
19894         colored = color_graph(state, rstate);
19895         if (colored) {
19896                 cgdebug_printf(state, "Coloring %d @", range - rstate->lr);
19897                 cgdebug_loc(state, range->defs->def);
19898                 cgdebug_flush(state);
19899                 colored = select_free_color(state, rstate, range);
19900                 if (colored) {
19901                         cgdebug_printf(state, " %s\n", arch_reg_str(range->color));
19902                 }
19903         }
19904         return colored;
19905 }
19906
19907 static void verify_colors(struct compile_state *state, struct reg_state *rstate)
19908 {
19909         struct live_range *lr;
19910         struct live_range_edge *edge;
19911         struct triple *ins, *first;
19912         char used[MAX_REGISTERS];
19913         first = state->first;
19914         ins = first;
19915         do {
19916                 if (triple_is_def(state, ins)) {
19917                         if ((ins->id < 0) || (ins->id > rstate->defs)) {
19918                                 internal_error(state, ins, 
19919                                         "triple without a live range def");
19920                         }
19921                         lr = rstate->lrd[ins->id].lr;
19922                         if (lr->color == REG_UNSET) {
19923                                 internal_error(state, ins,
19924                                         "triple without a color");
19925                         }
19926                         /* Find the registers used by the edges */
19927                         memset(used, 0, sizeof(used));
19928                         for(edge = lr->edges; edge; edge = edge->next) {
19929                                 if (edge->node->color == REG_UNSET) {
19930                                         internal_error(state, 0,
19931                                                 "live range without a color");
19932                         }
19933                                 reg_fill_used(state, used, edge->node->color);
19934                         }
19935                         if (used[lr->color]) {
19936                                 internal_error(state, ins,
19937                                         "triple with already used color");
19938                         }
19939                 }
19940                 ins = ins->next;
19941         } while(ins != first);
19942 }
19943
19944 static void color_triples(struct compile_state *state, struct reg_state *rstate)
19945 {
19946         struct live_range_def *lrd;
19947         struct live_range *lr;
19948         struct triple *first, *ins;
19949         first = state->first;
19950         ins = first;
19951         do {
19952                 if ((ins->id < 0) || (ins->id > rstate->defs)) {
19953                         internal_error(state, ins, 
19954                                 "triple without a live range");
19955                 }
19956                 lrd = &rstate->lrd[ins->id];
19957                 lr = lrd->lr;
19958                 ins->id = lrd->orig_id;
19959                 SET_REG(ins->id, lr->color);
19960                 ins = ins->next;
19961         } while (ins != first);
19962 }
19963
19964 static struct live_range *merge_sort_lr(
19965         struct live_range *first, struct live_range *last)
19966 {
19967         struct live_range *mid, *join, **join_tail, *pick;
19968         size_t size;
19969         size = (last - first) + 1;
19970         if (size >= 2) {
19971                 mid = first + size/2;
19972                 first = merge_sort_lr(first, mid -1);
19973                 mid   = merge_sort_lr(mid, last);
19974                 
19975                 join = 0;
19976                 join_tail = &join;
19977                 /* merge the two lists */
19978                 while(first && mid) {
19979                         if ((first->degree < mid->degree) ||
19980                                 ((first->degree == mid->degree) &&
19981                                         (first->length < mid->length))) {
19982                                 pick = first;
19983                                 first = first->group_next;
19984                                 if (first) {
19985                                         first->group_prev = 0;
19986                                 }
19987                         }
19988                         else {
19989                                 pick = mid;
19990                                 mid = mid->group_next;
19991                                 if (mid) {
19992                                         mid->group_prev = 0;
19993                                 }
19994                         }
19995                         pick->group_next = 0;
19996                         pick->group_prev = join_tail;
19997                         *join_tail = pick;
19998                         join_tail = &pick->group_next;
19999                 }
20000                 /* Splice the remaining list */
20001                 pick = (first)? first : mid;
20002                 *join_tail = pick;
20003                 if (pick) { 
20004                         pick->group_prev = join_tail;
20005                 }
20006         }
20007         else {
20008                 if (!first->defs) {
20009                         first = 0;
20010                 }
20011                 join = first;
20012         }
20013         return join;
20014 }
20015
20016 static void ids_from_rstate(struct compile_state *state, 
20017         struct reg_state *rstate)
20018 {
20019         struct triple *ins, *first;
20020         if (!rstate->defs) {
20021                 return;
20022         }
20023         /* Display the graph if desired */
20024         if (state->compiler->debug & DEBUG_INTERFERENCE) {
20025                 FILE *fp = state->dbgout;
20026                 print_interference_blocks(state, rstate, fp, 0);
20027                 print_control_flow(state, fp, &state->bb);
20028                 fflush(fp);
20029         }
20030         first = state->first;
20031         ins = first;
20032         do {
20033                 if (ins->id) {
20034                         struct live_range_def *lrd;
20035                         lrd = &rstate->lrd[ins->id];
20036                         ins->id = lrd->orig_id;
20037                 }
20038                 ins = ins->next;
20039         } while(ins != first);
20040 }
20041
20042 static void cleanup_live_edges(struct reg_state *rstate)
20043 {
20044         int i;
20045         /* Free the edges on each node */
20046         for(i = 1; i <= rstate->ranges; i++) {
20047                 remove_live_edges(rstate, &rstate->lr[i]);
20048         }
20049 }
20050
20051 static void cleanup_rstate(struct compile_state *state, struct reg_state *rstate)
20052 {
20053         cleanup_live_edges(rstate);
20054         xfree(rstate->lrd);
20055         xfree(rstate->lr);
20056
20057         /* Free the variable lifetime information */
20058         if (rstate->blocks) {
20059                 free_variable_lifetimes(state, &state->bb, rstate->blocks);
20060         }
20061         rstate->defs = 0;
20062         rstate->ranges = 0;
20063         rstate->lrd = 0;
20064         rstate->lr = 0;
20065         rstate->blocks = 0;
20066 }
20067
20068 static void verify_consistency(struct compile_state *state);
20069 static void allocate_registers(struct compile_state *state)
20070 {
20071         struct reg_state rstate;
20072         int colored;
20073
20074         /* Clear out the reg_state */
20075         memset(&rstate, 0, sizeof(rstate));
20076         rstate.max_passes = state->compiler->max_allocation_passes;
20077
20078         do {
20079                 struct live_range **point, **next;
20080                 int conflicts;
20081                 int tangles;
20082                 int coalesced;
20083
20084                 if (state->compiler->debug & DEBUG_RANGE_CONFLICTS) {
20085                         FILE *fp = state->errout;
20086                         fprintf(fp, "pass: %d\n", rstate.passes);
20087                         fflush(fp);
20088                 }
20089
20090                 /* Restore ids */
20091                 ids_from_rstate(state, &rstate);
20092
20093                 /* Cleanup the temporary data structures */
20094                 cleanup_rstate(state, &rstate);
20095
20096                 /* Compute the variable lifetimes */
20097                 rstate.blocks = compute_variable_lifetimes(state, &state->bb);
20098
20099                 /* Fix invalid mandatory live range coalesce conflicts */
20100                 conflicts = correct_coalesce_conflicts(state, rstate.blocks);
20101
20102                 /* Fix two simultaneous uses of the same register.
20103                  * In a few pathlogical cases a partial untangle moves
20104                  * the tangle to a part of the graph we won't revisit.
20105                  * So we keep looping until we have no more tangle fixes
20106                  * to apply.
20107                  */
20108                 do {
20109                         tangles = correct_tangles(state, rstate.blocks);
20110                 } while(tangles);
20111
20112                 
20113                 print_blocks(state, "resolve_tangles", state->dbgout);
20114                 verify_consistency(state);
20115                 
20116                 /* Allocate and initialize the live ranges */
20117                 initialize_live_ranges(state, &rstate);
20118
20119                 /* Note currently doing coalescing in a loop appears to 
20120                  * buys me nothing.  The code is left this way in case
20121                  * there is some value in it.  Or if a future bugfix
20122                  * yields some benefit.
20123                  */
20124                 do {
20125                         if (state->compiler->debug & DEBUG_COALESCING) {
20126                                 fprintf(state->errout, "coalescing\n");
20127                         }
20128
20129                         /* Remove any previous live edge calculations */
20130                         cleanup_live_edges(&rstate);
20131
20132                         /* Compute the interference graph */
20133                         walk_variable_lifetimes(
20134                                 state, &state->bb, rstate.blocks, 
20135                                 graph_ins, &rstate);
20136                         
20137                         /* Display the interference graph if desired */
20138                         if (state->compiler->debug & DEBUG_INTERFERENCE) {
20139                                 print_interference_blocks(state, &rstate, state->dbgout, 1);
20140                                 fprintf(state->dbgout, "\nlive variables by instruction\n");
20141                                 walk_variable_lifetimes(
20142                                         state, &state->bb, rstate.blocks, 
20143                                         print_interference_ins, &rstate);
20144                         }
20145                         
20146                         coalesced = coalesce_live_ranges(state, &rstate);
20147
20148                         if (state->compiler->debug & DEBUG_COALESCING) {
20149                                 fprintf(state->errout, "coalesced: %d\n", coalesced);
20150                         }
20151                 } while(coalesced);
20152
20153 #if DEBUG_CONSISTENCY > 1
20154 # if 0
20155                 fprintf(state->errout, "verify_graph_ins...\n");
20156 # endif
20157                 /* Verify the interference graph */
20158                 walk_variable_lifetimes(
20159                         state, &state->bb, rstate.blocks, 
20160                         verify_graph_ins, &rstate);
20161 # if 0
20162                 fprintf(state->errout, "verify_graph_ins done\n");
20163 #endif
20164 #endif
20165                         
20166                 /* Build the groups low and high.  But with the nodes
20167                  * first sorted by degree order.
20168                  */
20169                 rstate.low_tail  = &rstate.low;
20170                 rstate.high_tail = &rstate.high;
20171                 rstate.high = merge_sort_lr(&rstate.lr[1], &rstate.lr[rstate.ranges]);
20172                 if (rstate.high) {
20173                         rstate.high->group_prev = &rstate.high;
20174                 }
20175                 for(point = &rstate.high; *point; point = &(*point)->group_next)
20176                         ;
20177                 rstate.high_tail = point;
20178                 /* Walk through the high list and move everything that needs
20179                  * to be onto low.
20180                  */
20181                 for(point = &rstate.high; *point; point = next) {
20182                         struct live_range *range;
20183                         next = &(*point)->group_next;
20184                         range = *point;
20185                         
20186                         /* If it has a low degree or it already has a color
20187                          * place the node in low.
20188                          */
20189                         if ((range->degree < regc_max_size(state, range->classes)) ||
20190                                 (range->color != REG_UNSET)) {
20191                                 cgdebug_printf(state, "Lo: %5d degree %5d%s\n", 
20192                                         range - rstate.lr, range->degree,
20193                                         (range->color != REG_UNSET) ? " (colored)": "");
20194                                 *range->group_prev = range->group_next;
20195                                 if (range->group_next) {
20196                                         range->group_next->group_prev = range->group_prev;
20197                                 }
20198                                 if (&range->group_next == rstate.high_tail) {
20199                                         rstate.high_tail = range->group_prev;
20200                                 }
20201                                 range->group_prev  = rstate.low_tail;
20202                                 range->group_next  = 0;
20203                                 *rstate.low_tail   = range;
20204                                 rstate.low_tail    = &range->group_next;
20205                                 next = point;
20206                         }
20207                         else {
20208                                 cgdebug_printf(state, "hi: %5d degree %5d%s\n", 
20209                                         range - rstate.lr, range->degree,
20210                                         (range->color != REG_UNSET) ? " (colored)": "");
20211                         }
20212                 }
20213                 /* Color the live_ranges */
20214                 colored = color_graph(state, &rstate);
20215                 rstate.passes++;
20216         } while (!colored);
20217
20218         /* Verify the graph was properly colored */
20219         verify_colors(state, &rstate);
20220
20221         /* Move the colors from the graph to the triples */
20222         color_triples(state, &rstate);
20223
20224         /* Cleanup the temporary data structures */
20225         cleanup_rstate(state, &rstate);
20226
20227         /* Display the new graph */
20228         print_blocks(state, __func__, state->dbgout);
20229 }
20230
20231 /* Sparce Conditional Constant Propogation
20232  * =========================================
20233  */
20234 struct ssa_edge;
20235 struct flow_block;
20236 struct lattice_node {
20237         unsigned old_id;
20238         struct triple *def;
20239         struct ssa_edge *out;
20240         struct flow_block *fblock;
20241         struct triple *val;
20242         /* lattice high   val == def
20243          * lattice const  is_const(val)
20244          * lattice low    other
20245          */
20246 };
20247 struct ssa_edge {
20248         struct lattice_node *src;
20249         struct lattice_node *dst;
20250         struct ssa_edge *work_next;
20251         struct ssa_edge *work_prev;
20252         struct ssa_edge *out_next;
20253 };
20254 struct flow_edge {
20255         struct flow_block *src;
20256         struct flow_block *dst;
20257         struct flow_edge *work_next;
20258         struct flow_edge *work_prev;
20259         struct flow_edge *in_next;
20260         struct flow_edge *out_next;
20261         int executable;
20262 };
20263 #define MAX_FLOW_BLOCK_EDGES 3
20264 struct flow_block {
20265         struct block *block;
20266         struct flow_edge *in;
20267         struct flow_edge *out;
20268         struct flow_edge *edges;
20269 };
20270
20271 struct scc_state {
20272         int ins_count;
20273         struct lattice_node *lattice;
20274         struct ssa_edge     *ssa_edges;
20275         struct flow_block   *flow_blocks;
20276         struct flow_edge    *flow_work_list;
20277         struct ssa_edge     *ssa_work_list;
20278 };
20279
20280
20281 static int is_scc_const(struct compile_state *state, struct triple *ins)
20282 {
20283         return ins && (triple_is_ubranch(state, ins) || is_const(ins));
20284 }
20285
20286 static int is_lattice_hi(struct compile_state *state, struct lattice_node *lnode)
20287 {
20288         return !is_scc_const(state, lnode->val) && (lnode->val == lnode->def);
20289 }
20290
20291 static int is_lattice_const(struct compile_state *state, struct lattice_node *lnode)
20292 {
20293         return is_scc_const(state, lnode->val);
20294 }
20295
20296 static int is_lattice_lo(struct compile_state *state, struct lattice_node *lnode)
20297 {
20298         return (lnode->val != lnode->def) && !is_scc_const(state, lnode->val);
20299 }
20300
20301 static void scc_add_fedge(struct compile_state *state, struct scc_state *scc, 
20302         struct flow_edge *fedge)
20303 {
20304         if (state->compiler->debug & DEBUG_SCC_TRANSFORM2) {
20305                 fprintf(state->errout, "adding fedge: %p (%4d -> %5d)\n",
20306                         fedge,
20307                         fedge->src->block?fedge->src->block->last->id: 0,
20308                         fedge->dst->block?fedge->dst->block->first->id: 0);
20309         }
20310         if ((fedge == scc->flow_work_list) ||
20311                 (fedge->work_next != fedge) ||
20312                 (fedge->work_prev != fedge)) {
20313
20314                 if (state->compiler->debug & DEBUG_SCC_TRANSFORM2) {
20315                         fprintf(state->errout, "dupped fedge: %p\n",
20316                                 fedge);
20317                 }
20318                 return;
20319         }
20320         if (!scc->flow_work_list) {
20321                 scc->flow_work_list = fedge;
20322                 fedge->work_next = fedge->work_prev = fedge;
20323         }
20324         else {
20325                 struct flow_edge *ftail;
20326                 ftail = scc->flow_work_list->work_prev;
20327                 fedge->work_next = ftail->work_next;
20328                 fedge->work_prev = ftail;
20329                 fedge->work_next->work_prev = fedge;
20330                 fedge->work_prev->work_next = fedge;
20331         }
20332 }
20333
20334 static struct flow_edge *scc_next_fedge(
20335         struct compile_state *state, struct scc_state *scc)
20336 {
20337         struct flow_edge *fedge;
20338         fedge = scc->flow_work_list;
20339         if (fedge) {
20340                 fedge->work_next->work_prev = fedge->work_prev;
20341                 fedge->work_prev->work_next = fedge->work_next;
20342                 if (fedge->work_next != fedge) {
20343                         scc->flow_work_list = fedge->work_next;
20344                 } else {
20345                         scc->flow_work_list = 0;
20346                 }
20347                 fedge->work_next = fedge->work_prev = fedge;
20348         }
20349         return fedge;
20350 }
20351
20352 static void scc_add_sedge(struct compile_state *state, struct scc_state *scc,
20353         struct ssa_edge *sedge)
20354 {
20355         if (state->compiler->debug & DEBUG_SCC_TRANSFORM2) {
20356                 fprintf(state->errout, "adding sedge: %5ld (%4d -> %5d)\n",
20357                         (long)(sedge - scc->ssa_edges),
20358                         sedge->src->def->id,
20359                         sedge->dst->def->id);
20360         }
20361         if ((sedge == scc->ssa_work_list) ||
20362                 (sedge->work_next != sedge) ||
20363                 (sedge->work_prev != sedge)) {
20364
20365                 if (state->compiler->debug & DEBUG_SCC_TRANSFORM2) {
20366                         fprintf(state->errout, "dupped sedge: %5ld\n",
20367                                 (long)(sedge - scc->ssa_edges));
20368                 }
20369                 return;
20370         }
20371         if (!scc->ssa_work_list) {
20372                 scc->ssa_work_list = sedge;
20373                 sedge->work_next = sedge->work_prev = sedge;
20374         }
20375         else {
20376                 struct ssa_edge *stail;
20377                 stail = scc->ssa_work_list->work_prev;
20378                 sedge->work_next = stail->work_next;
20379                 sedge->work_prev = stail;
20380                 sedge->work_next->work_prev = sedge;
20381                 sedge->work_prev->work_next = sedge;
20382         }
20383 }
20384
20385 static struct ssa_edge *scc_next_sedge(
20386         struct compile_state *state, struct scc_state *scc)
20387 {
20388         struct ssa_edge *sedge;
20389         sedge = scc->ssa_work_list;
20390         if (sedge) {
20391                 sedge->work_next->work_prev = sedge->work_prev;
20392                 sedge->work_prev->work_next = sedge->work_next;
20393                 if (sedge->work_next != sedge) {
20394                         scc->ssa_work_list = sedge->work_next;
20395                 } else {
20396                         scc->ssa_work_list = 0;
20397                 }
20398                 sedge->work_next = sedge->work_prev = sedge;
20399         }
20400         return sedge;
20401 }
20402
20403 static void initialize_scc_state(
20404         struct compile_state *state, struct scc_state *scc)
20405 {
20406         int ins_count, ssa_edge_count;
20407         int ins_index, ssa_edge_index, fblock_index;
20408         struct triple *first, *ins;
20409         struct block *block;
20410         struct flow_block *fblock;
20411
20412         memset(scc, 0, sizeof(*scc));
20413
20414         /* Inialize pass zero find out how much memory we need */
20415         first = state->first;
20416         ins = first;
20417         ins_count = ssa_edge_count = 0;
20418         do {
20419                 struct triple_set *edge;
20420                 ins_count += 1;
20421                 for(edge = ins->use; edge; edge = edge->next) {
20422                         ssa_edge_count++;
20423                 }
20424                 ins = ins->next;
20425         } while(ins != first);
20426         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20427                 fprintf(state->errout, "ins_count: %d ssa_edge_count: %d vertex_count: %d\n",
20428                         ins_count, ssa_edge_count, state->bb.last_vertex);
20429         }
20430         scc->ins_count   = ins_count;
20431         scc->lattice     = 
20432                 xcmalloc(sizeof(*scc->lattice)*(ins_count + 1), "lattice");
20433         scc->ssa_edges   = 
20434                 xcmalloc(sizeof(*scc->ssa_edges)*(ssa_edge_count + 1), "ssa_edges");
20435         scc->flow_blocks = 
20436                 xcmalloc(sizeof(*scc->flow_blocks)*(state->bb.last_vertex + 1), 
20437                         "flow_blocks");
20438
20439         /* Initialize pass one collect up the nodes */
20440         fblock = 0;
20441         block = 0;
20442         ins_index = ssa_edge_index = fblock_index = 0;
20443         ins = first;
20444         do {
20445                 if ((ins->op == OP_LABEL) && (block != ins->u.block)) {
20446                         block = ins->u.block;
20447                         if (!block) {
20448                                 internal_error(state, ins, "label without block");
20449                         }
20450                         fblock_index += 1;
20451                         block->vertex = fblock_index;
20452                         fblock = &scc->flow_blocks[fblock_index];
20453                         fblock->block = block;
20454                         fblock->edges = xcmalloc(sizeof(*fblock->edges)*block->edge_count,
20455                                 "flow_edges");
20456                 }
20457                 {
20458                         struct lattice_node *lnode;
20459                         ins_index += 1;
20460                         lnode = &scc->lattice[ins_index];
20461                         lnode->def = ins;
20462                         lnode->out = 0;
20463                         lnode->fblock = fblock;
20464                         lnode->val = ins; /* LATTICE HIGH */
20465                         if (lnode->val->op == OP_UNKNOWNVAL) {
20466                                 lnode->val = 0; /* LATTICE LOW by definition */
20467                         }
20468                         lnode->old_id = ins->id;
20469                         ins->id = ins_index;
20470                 }
20471                 ins = ins->next;
20472         } while(ins != first);
20473         /* Initialize pass two collect up the edges */
20474         block = 0;
20475         fblock = 0;
20476         ins = first;
20477         do {
20478                 {
20479                         struct triple_set *edge;
20480                         struct ssa_edge **stail;
20481                         struct lattice_node *lnode;
20482                         lnode = &scc->lattice[ins->id];
20483                         lnode->out = 0;
20484                         stail = &lnode->out;
20485                         for(edge = ins->use; edge; edge = edge->next) {
20486                                 struct ssa_edge *sedge;
20487                                 ssa_edge_index += 1;
20488                                 sedge = &scc->ssa_edges[ssa_edge_index];
20489                                 *stail = sedge;
20490                                 stail = &sedge->out_next;
20491                                 sedge->src = lnode;
20492                                 sedge->dst = &scc->lattice[edge->member->id];
20493                                 sedge->work_next = sedge->work_prev = sedge;
20494                                 sedge->out_next = 0;
20495                         }
20496                 }
20497                 if ((ins->op == OP_LABEL) && (block != ins->u.block)) {
20498                         struct flow_edge *fedge, **ftail;
20499                         struct block_set *bedge;
20500                         block = ins->u.block;
20501                         fblock = &scc->flow_blocks[block->vertex];
20502                         fblock->in = 0;
20503                         fblock->out = 0;
20504                         ftail = &fblock->out;
20505
20506                         fedge = fblock->edges;
20507                         bedge = block->edges;
20508                         for(; bedge; bedge = bedge->next, fedge++) {
20509                                 fedge->dst = &scc->flow_blocks[bedge->member->vertex];
20510                                 if (fedge->dst->block != bedge->member) {
20511                                         internal_error(state, 0, "block mismatch");
20512                                 }
20513                                 *ftail = fedge;
20514                                 ftail = &fedge->out_next;
20515                                 fedge->out_next = 0;
20516                         }
20517                         for(fedge = fblock->out; fedge; fedge = fedge->out_next) {
20518                                 fedge->src = fblock;
20519                                 fedge->work_next = fedge->work_prev = fedge;
20520                                 fedge->executable = 0;
20521                         }
20522                 }
20523                 ins = ins->next;
20524         } while (ins != first);
20525         block = 0;
20526         fblock = 0;
20527         ins = first;
20528         do {
20529                 if ((ins->op  == OP_LABEL) && (block != ins->u.block)) {
20530                         struct flow_edge **ftail;
20531                         struct block_set *bedge;
20532                         block = ins->u.block;
20533                         fblock = &scc->flow_blocks[block->vertex];
20534                         ftail = &fblock->in;
20535                         for(bedge = block->use; bedge; bedge = bedge->next) {
20536                                 struct block *src_block;
20537                                 struct flow_block *sfblock;
20538                                 struct flow_edge *sfedge;
20539                                 src_block = bedge->member;
20540                                 sfblock = &scc->flow_blocks[src_block->vertex];
20541                                 for(sfedge = sfblock->out; sfedge; sfedge = sfedge->out_next) {
20542                                         if (sfedge->dst == fblock) {
20543                                                 break;
20544                                         }
20545                                 }
20546                                 if (!sfedge) {
20547                                         internal_error(state, 0, "edge mismatch");
20548                                 }
20549                                 *ftail = sfedge;
20550                                 ftail = &sfedge->in_next;
20551                                 sfedge->in_next = 0;
20552                         }
20553                 }
20554                 ins = ins->next;
20555         } while(ins != first);
20556         /* Setup a dummy block 0 as a node above the start node */
20557         {
20558                 struct flow_block *fblock, *dst;
20559                 struct flow_edge *fedge;
20560                 fblock = &scc->flow_blocks[0];
20561                 fblock->block = 0;
20562                 fblock->edges = xcmalloc(sizeof(*fblock->edges)*1, "flow_edges");
20563                 fblock->in = 0;
20564                 fblock->out = fblock->edges;
20565                 dst = &scc->flow_blocks[state->bb.first_block->vertex];
20566                 fedge = fblock->edges;
20567                 fedge->src        = fblock;
20568                 fedge->dst        = dst;
20569                 fedge->work_next  = fedge;
20570                 fedge->work_prev  = fedge;
20571                 fedge->in_next    = fedge->dst->in;
20572                 fedge->out_next   = 0;
20573                 fedge->executable = 0;
20574                 fedge->dst->in = fedge;
20575                 
20576                 /* Initialize the work lists */
20577                 scc->flow_work_list = 0;
20578                 scc->ssa_work_list  = 0;
20579                 scc_add_fedge(state, scc, fedge);
20580         }
20581         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20582                 fprintf(state->errout, "ins_index: %d ssa_edge_index: %d fblock_index: %d\n",
20583                         ins_index, ssa_edge_index, fblock_index);
20584         }
20585 }
20586
20587         
20588 static void free_scc_state(
20589         struct compile_state *state, struct scc_state *scc)
20590 {
20591         int i;
20592         for(i = 0; i < state->bb.last_vertex + 1; i++) {
20593                 struct flow_block *fblock;
20594                 fblock = &scc->flow_blocks[i];
20595                 if (fblock->edges) {
20596                         xfree(fblock->edges);
20597                         fblock->edges = 0;
20598                 }
20599         }
20600         xfree(scc->flow_blocks);
20601         xfree(scc->ssa_edges);
20602         xfree(scc->lattice);
20603         
20604 }
20605
20606 static struct lattice_node *triple_to_lattice(
20607         struct compile_state *state, struct scc_state *scc, struct triple *ins)
20608 {
20609         if (ins->id <= 0) {
20610                 internal_error(state, ins, "bad id");
20611         }
20612         return &scc->lattice[ins->id];
20613 }
20614
20615 static struct triple *preserve_lval(
20616         struct compile_state *state, struct lattice_node *lnode)
20617 {
20618         struct triple *old;
20619         /* Preserve the original value */
20620         if (lnode->val) {
20621                 old = dup_triple(state, lnode->val);
20622                 if (lnode->val != lnode->def) {
20623                         xfree(lnode->val);
20624                 }
20625                 lnode->val = 0;
20626         } else {
20627                 old = 0;
20628         }
20629         return old;
20630 }
20631
20632 static int lval_changed(struct compile_state *state, 
20633         struct triple *old, struct lattice_node *lnode)
20634 {
20635         int changed;
20636         /* See if the lattice value has changed */
20637         changed = 1;
20638         if (!old && !lnode->val) {
20639                 changed = 0;
20640         }
20641         if (changed &&
20642                 lnode->val && old &&
20643                 (memcmp(lnode->val->param, old->param,
20644                         TRIPLE_SIZE(lnode->val) * sizeof(lnode->val->param[0])) == 0) &&
20645                 (memcmp(&lnode->val->u, &old->u, sizeof(old->u)) == 0)) {
20646                 changed = 0;
20647         }
20648         if (old) {
20649                 xfree(old);
20650         }
20651         return changed;
20652
20653 }
20654
20655 static void scc_debug_lnode(
20656         struct compile_state *state, struct scc_state *scc,
20657         struct lattice_node *lnode, int changed)
20658 {
20659         if ((state->compiler->debug & DEBUG_SCC_TRANSFORM2) && lnode->val) {
20660                 display_triple_changes(state->errout, lnode->val, lnode->def);
20661         }
20662         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20663                 FILE *fp = state->errout;
20664                 struct triple *val, **expr;
20665                 val = lnode->val? lnode->val : lnode->def;
20666                 fprintf(fp, "%p %s %3d %10s (",
20667                         lnode->def, 
20668                         ((lnode->def->op == OP_PHI)? "phi: ": "expr:"),
20669                         lnode->def->id,
20670                         tops(lnode->def->op));
20671                 expr = triple_rhs(state, lnode->def, 0);
20672                 for(;expr;expr = triple_rhs(state, lnode->def, expr)) {
20673                         if (*expr) {
20674                                 fprintf(fp, " %d", (*expr)->id);
20675                         }
20676                 }
20677                 if (val->op == OP_INTCONST) {
20678                         fprintf(fp, " <0x%08lx>", (unsigned long)(val->u.cval));
20679                 }
20680                 fprintf(fp, " ) -> %s %s\n",
20681                         (is_lattice_hi(state, lnode)? "hi":
20682                                 is_lattice_const(state, lnode)? "const" : "lo"),
20683                         changed? "changed" : ""
20684                         );
20685         }
20686 }
20687
20688 static int compute_lnode_val(struct compile_state *state, struct scc_state *scc,
20689         struct lattice_node *lnode)
20690 {
20691         int changed;
20692         struct triple *old, *scratch;
20693         struct triple **dexpr, **vexpr;
20694         int count, i;
20695         
20696         /* Store the original value */
20697         old = preserve_lval(state, lnode);
20698
20699         /* Reinitialize the value */
20700         lnode->val = scratch = dup_triple(state, lnode->def);
20701         scratch->id = lnode->old_id;
20702         scratch->next     = scratch;
20703         scratch->prev     = scratch;
20704         scratch->use      = 0;
20705
20706         count = TRIPLE_SIZE(scratch);
20707         for(i = 0; i < count; i++) {
20708                 dexpr = &lnode->def->param[i];
20709                 vexpr = &scratch->param[i];
20710                 *vexpr = *dexpr;
20711                 if (((i < TRIPLE_MISC_OFF(scratch)) ||
20712                         (i >= TRIPLE_TARG_OFF(scratch))) &&
20713                         *dexpr) {
20714                         struct lattice_node *tmp;
20715                         tmp = triple_to_lattice(state, scc, *dexpr);
20716                         *vexpr = (tmp->val)? tmp->val : tmp->def;
20717                 }
20718         }
20719         if (triple_is_branch(state, scratch)) {
20720                 scratch->next = lnode->def->next;
20721         }
20722         /* Recompute the value */
20723 #if DEBUG_ROMCC_WARNINGS
20724 #warning "FIXME see if simplify does anything bad"
20725 #endif
20726         /* So far it looks like only the strength reduction
20727          * optimization are things I need to worry about.
20728          */
20729         simplify(state, scratch);
20730         /* Cleanup my value */
20731         if (scratch->use) {
20732                 internal_error(state, lnode->def, "scratch used?");
20733         }
20734         if ((scratch->prev != scratch) ||
20735                 ((scratch->next != scratch) &&
20736                         (!triple_is_branch(state, lnode->def) ||
20737                                 (scratch->next != lnode->def->next)))) {
20738                 internal_error(state, lnode->def, "scratch in list?");
20739         }
20740         /* undo any uses... */
20741         count = TRIPLE_SIZE(scratch);
20742         for(i = 0; i < count; i++) {
20743                 vexpr = &scratch->param[i];
20744                 if (*vexpr) {
20745                         unuse_triple(*vexpr, scratch);
20746                 }
20747         }
20748         if (lnode->val->op == OP_UNKNOWNVAL) {
20749                 lnode->val = 0; /* Lattice low by definition */
20750         }
20751         /* Find the case when I am lattice high */
20752         if (lnode->val && 
20753                 (lnode->val->op == lnode->def->op) &&
20754                 (memcmp(lnode->val->param, lnode->def->param, 
20755                         count * sizeof(lnode->val->param[0])) == 0) &&
20756                 (memcmp(&lnode->val->u, &lnode->def->u, sizeof(lnode->def->u)) == 0)) {
20757                 lnode->val = lnode->def;
20758         }
20759         /* Only allow lattice high when all of my inputs
20760          * are also lattice high.  Occassionally I can
20761          * have constants with a lattice low input, so
20762          * I do not need to check that case.
20763          */
20764         if (is_lattice_hi(state, lnode)) {
20765                 struct lattice_node *tmp;
20766                 int rhs;
20767                 rhs = lnode->val->rhs;
20768                 for(i = 0; i < rhs; i++) {
20769                         tmp = triple_to_lattice(state, scc, RHS(lnode->val, i));
20770                         if (!is_lattice_hi(state, tmp)) {
20771                                 lnode->val = 0;
20772                                 break;
20773                         }
20774                 }
20775         }
20776         /* Find the cases that are always lattice lo */
20777         if (lnode->val && 
20778                 triple_is_def(state, lnode->val) &&
20779                 !triple_is_pure(state, lnode->val, lnode->old_id)) {
20780                 lnode->val = 0;
20781         }
20782         /* See if the lattice value has changed */
20783         changed = lval_changed(state, old, lnode);
20784         /* See if this value should not change */
20785         if ((lnode->val != lnode->def) && 
20786                 ((      !triple_is_def(state, lnode->def)  &&
20787                         !triple_is_cbranch(state, lnode->def)) ||
20788                         (lnode->def->op == OP_PIECE))) {
20789 #if DEBUG_ROMCC_WARNINGS
20790 #warning "FIXME constant propogate through expressions with multiple left hand sides"
20791 #endif
20792                 if (changed) {
20793                         internal_warning(state, lnode->def, "non def changes value?");
20794                 }
20795                 lnode->val = 0;
20796         }
20797
20798         /* See if we need to free the scratch value */
20799         if (lnode->val != scratch) {
20800                 xfree(scratch);
20801         }
20802         
20803         return changed;
20804 }
20805
20806
20807 static void scc_visit_cbranch(struct compile_state *state, struct scc_state *scc,
20808         struct lattice_node *lnode)
20809 {
20810         struct lattice_node *cond;
20811         struct flow_edge *left, *right;
20812         int changed;
20813
20814         /* Update the branch value */
20815         changed = compute_lnode_val(state, scc, lnode);
20816         scc_debug_lnode(state, scc, lnode, changed);
20817
20818         /* This only applies to conditional branches */
20819         if (!triple_is_cbranch(state, lnode->def)) {
20820                 internal_error(state, lnode->def, "not a conditional branch");
20821         }
20822
20823         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20824                 struct flow_edge *fedge;
20825                 FILE *fp = state->errout;
20826                 fprintf(fp, "%s: %d (",
20827                         tops(lnode->def->op),
20828                         lnode->def->id);
20829                 
20830                 for(fedge = lnode->fblock->out; fedge; fedge = fedge->out_next) {
20831                         fprintf(fp, " %d", fedge->dst->block->vertex);
20832                 }
20833                 fprintf(fp, " )");
20834                 if (lnode->def->rhs > 0) {
20835                         fprintf(fp, " <- %d",
20836                                 RHS(lnode->def, 0)->id);
20837                 }
20838                 fprintf(fp, "\n");
20839         }
20840         cond = triple_to_lattice(state, scc, RHS(lnode->def,0));
20841         for(left = cond->fblock->out; left; left = left->out_next) {
20842                 if (left->dst->block->first == lnode->def->next) {
20843                         break;
20844                 }
20845         }
20846         if (!left) {
20847                 internal_error(state, lnode->def, "Cannot find left branch edge");
20848         }
20849         for(right = cond->fblock->out; right; right = right->out_next) {
20850                 if (right->dst->block->first == TARG(lnode->def, 0)) {
20851                         break;
20852                 }
20853         }
20854         if (!right) {
20855                 internal_error(state, lnode->def, "Cannot find right branch edge");
20856         }
20857         /* I should only come here if the controlling expressions value
20858          * has changed, which means it must be either a constant or lo.
20859          */
20860         if (is_lattice_hi(state, cond)) {
20861                 internal_error(state, cond->def, "condition high?");
20862                 return;
20863         }
20864         if (is_lattice_lo(state, cond)) {
20865                 scc_add_fedge(state, scc, left);
20866                 scc_add_fedge(state, scc, right);
20867         }
20868         else if (cond->val->u.cval) {
20869                 scc_add_fedge(state, scc, right);
20870         } else {
20871                 scc_add_fedge(state, scc, left);
20872         }
20873
20874 }
20875
20876
20877 static void scc_add_sedge_dst(struct compile_state *state, 
20878         struct scc_state *scc, struct ssa_edge *sedge)
20879 {
20880         if (triple_is_cbranch(state, sedge->dst->def)) {
20881                 scc_visit_cbranch(state, scc, sedge->dst);
20882         }
20883         else if (triple_is_def(state, sedge->dst->def)) {
20884                 scc_add_sedge(state, scc, sedge);
20885         }
20886 }
20887
20888 static void scc_visit_phi(struct compile_state *state, struct scc_state *scc, 
20889         struct lattice_node *lnode)
20890 {
20891         struct lattice_node *tmp;
20892         struct triple **slot, *old;
20893         struct flow_edge *fedge;
20894         int changed;
20895         int index;
20896         if (lnode->def->op != OP_PHI) {
20897                 internal_error(state, lnode->def, "not phi");
20898         }
20899         /* Store the original value */
20900         old = preserve_lval(state, lnode);
20901
20902         /* default to lattice high */
20903         lnode->val = lnode->def;
20904         slot = &RHS(lnode->def, 0);
20905         index = 0;
20906         for(fedge = lnode->fblock->in; fedge; index++, fedge = fedge->in_next) {
20907                 if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20908                         fprintf(state->errout, "Examining edge: %d vertex: %d executable: %d\n", 
20909                                 index,
20910                                 fedge->dst->block->vertex,
20911                                 fedge->executable
20912                                 );
20913                 }
20914                 if (!fedge->executable) {
20915                         continue;
20916                 }
20917                 if (!slot[index]) {
20918                         internal_error(state, lnode->def, "no phi value");
20919                 }
20920                 tmp = triple_to_lattice(state, scc, slot[index]);
20921                 /* meet(X, lattice low) = lattice low */
20922                 if (is_lattice_lo(state, tmp)) {
20923                         lnode->val = 0;
20924                 }
20925                 /* meet(X, lattice high) = X */
20926                 else if (is_lattice_hi(state, tmp)) {
20927                         lnode->val = lnode->val;
20928                 }
20929                 /* meet(lattice high, X) = X */
20930                 else if (is_lattice_hi(state, lnode)) {
20931                         lnode->val = dup_triple(state, tmp->val);
20932                         /* Only change the type if necessary */
20933                         if (!is_subset_type(lnode->def->type, tmp->val->type)) {
20934                                 lnode->val->type = lnode->def->type;
20935                         }
20936                 }
20937                 /* meet(const, const) = const or lattice low */
20938                 else if (!constants_equal(state, lnode->val, tmp->val)) {
20939                         lnode->val = 0;
20940                 }
20941
20942                 /* meet(lattice low, X) = lattice low */
20943                 if (is_lattice_lo(state, lnode)) {
20944                         lnode->val = 0;
20945                         break;
20946                 }
20947         }
20948         changed = lval_changed(state, old, lnode);
20949         scc_debug_lnode(state, scc, lnode, changed);
20950
20951         /* If the lattice value has changed update the work lists. */
20952         if (changed) {
20953                 struct ssa_edge *sedge;
20954                 for(sedge = lnode->out; sedge; sedge = sedge->out_next) {
20955                         scc_add_sedge_dst(state, scc, sedge);
20956                 }
20957         }
20958 }
20959
20960
20961 static void scc_visit_expr(struct compile_state *state, struct scc_state *scc,
20962         struct lattice_node *lnode)
20963 {
20964         int changed;
20965
20966         if (!triple_is_def(state, lnode->def)) {
20967                 internal_warning(state, lnode->def, "not visiting an expression?");
20968         }
20969         changed = compute_lnode_val(state, scc, lnode);
20970         scc_debug_lnode(state, scc, lnode, changed);
20971
20972         if (changed) {
20973                 struct ssa_edge *sedge;
20974                 for(sedge = lnode->out; sedge; sedge = sedge->out_next) {
20975                         scc_add_sedge_dst(state, scc, sedge);
20976                 }
20977         }
20978 }
20979
20980 static void scc_writeback_values(
20981         struct compile_state *state, struct scc_state *scc)
20982 {
20983         struct triple *first, *ins;
20984         first = state->first;
20985         ins = first;
20986         do {
20987                 struct lattice_node *lnode;
20988                 lnode = triple_to_lattice(state, scc, ins);
20989                 if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20990                         if (is_lattice_hi(state, lnode) &&
20991                                 (lnode->val->op != OP_NOOP))
20992                         {
20993                                 struct flow_edge *fedge;
20994                                 int executable;
20995                                 executable = 0;
20996                                 for(fedge = lnode->fblock->in; 
20997                                     !executable && fedge; fedge = fedge->in_next) {
20998                                         executable |= fedge->executable;
20999                                 }
21000                                 if (executable) {
21001                                         internal_warning(state, lnode->def,
21002                                                 "lattice node %d %s->%s still high?",
21003                                                 ins->id, 
21004                                                 tops(lnode->def->op),
21005                                                 tops(lnode->val->op));
21006                                 }
21007                         }
21008                 }
21009
21010                 /* Restore id */
21011                 ins->id = lnode->old_id;
21012                 if (lnode->val && (lnode->val != ins)) {
21013                         /* See if it something I know how to write back */
21014                         switch(lnode->val->op) {
21015                         case OP_INTCONST:
21016                                 mkconst(state, ins, lnode->val->u.cval);
21017                                 break;
21018                         case OP_ADDRCONST:
21019                                 mkaddr_const(state, ins, 
21020                                         MISC(lnode->val, 0), lnode->val->u.cval);
21021                                 break;
21022                         default:
21023                                 /* By default don't copy the changes,
21024                                  * recompute them in place instead.
21025                                  */
21026                                 simplify(state, ins);
21027                                 break;
21028                         }
21029                         if (is_const(lnode->val) &&
21030                                 !constants_equal(state, lnode->val, ins)) {
21031                                 internal_error(state, 0, "constants not equal");
21032                         }
21033                         /* Free the lattice nodes */
21034                         xfree(lnode->val);
21035                         lnode->val = 0;
21036                 }
21037                 ins = ins->next;
21038         } while(ins != first);
21039 }
21040
21041 static void scc_transform(struct compile_state *state)
21042 {
21043         struct scc_state scc;
21044         if (!(state->compiler->flags & COMPILER_SCC_TRANSFORM)) {
21045                 return;
21046         }
21047
21048         initialize_scc_state(state, &scc);
21049
21050         while(scc.flow_work_list || scc.ssa_work_list) {
21051                 struct flow_edge *fedge;
21052                 struct ssa_edge *sedge;
21053                 struct flow_edge *fptr;
21054                 while((fedge = scc_next_fedge(state, &scc))) {
21055                         struct block *block;
21056                         struct triple *ptr;
21057                         struct flow_block *fblock;
21058                         int reps;
21059                         int done;
21060                         if (fedge->executable) {
21061                                 continue;
21062                         }
21063                         if (!fedge->dst) {
21064                                 internal_error(state, 0, "fedge without dst");
21065                         }
21066                         if (!fedge->src) {
21067                                 internal_error(state, 0, "fedge without src");
21068                         }
21069                         fedge->executable = 1;
21070                         fblock = fedge->dst;
21071                         block = fblock->block;
21072                         reps = 0;
21073                         for(fptr = fblock->in; fptr; fptr = fptr->in_next) {
21074                                 if (fptr->executable) {
21075                                         reps++;
21076                                 }
21077                         }
21078                         
21079                         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
21080                                 fprintf(state->errout, "vertex: %d reps: %d\n", 
21081                                         block->vertex, reps);
21082                         }
21083
21084                         done = 0;
21085                         for(ptr = block->first; !done; ptr = ptr->next) {
21086                                 struct lattice_node *lnode;
21087                                 done = (ptr == block->last);
21088                                 lnode = &scc.lattice[ptr->id];
21089                                 if (ptr->op == OP_PHI) {
21090                                         scc_visit_phi(state, &scc, lnode);
21091                                 }
21092                                 else if ((reps == 1) && triple_is_def(state, ptr))
21093                                 {
21094                                         scc_visit_expr(state, &scc, lnode);
21095                                 }
21096                         }
21097                         /* Add unconditional branch edges */
21098                         if (!triple_is_cbranch(state, fblock->block->last)) {
21099                                 struct flow_edge *out;
21100                                 for(out = fblock->out; out; out = out->out_next) {
21101                                         scc_add_fedge(state, &scc, out);
21102                                 }
21103                         }
21104                 }
21105                 while((sedge = scc_next_sedge(state, &scc))) {
21106                         struct lattice_node *lnode;
21107                         struct flow_block *fblock;
21108                         lnode = sedge->dst;
21109                         fblock = lnode->fblock;
21110
21111                         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
21112                                 fprintf(state->errout, "sedge: %5ld (%5d -> %5d)\n",
21113                                         sedge - scc.ssa_edges,
21114                                         sedge->src->def->id,
21115                                         sedge->dst->def->id);
21116                         }
21117
21118                         if (lnode->def->op == OP_PHI) {
21119                                 scc_visit_phi(state, &scc, lnode);
21120                         }
21121                         else {
21122                                 for(fptr = fblock->in; fptr; fptr = fptr->in_next) {
21123                                         if (fptr->executable) {
21124                                                 break;
21125                                         }
21126                                 }
21127                                 if (fptr) {
21128                                         scc_visit_expr(state, &scc, lnode);
21129                                 }
21130                         }
21131                 }
21132         }
21133         
21134         scc_writeback_values(state, &scc);
21135         free_scc_state(state, &scc);
21136         rebuild_ssa_form(state);
21137         
21138         print_blocks(state, __func__, state->dbgout);
21139 }
21140
21141
21142 static void transform_to_arch_instructions(struct compile_state *state)
21143 {
21144         struct triple *ins, *first;
21145         first = state->first;
21146         ins = first;
21147         do {
21148                 ins = transform_to_arch_instruction(state, ins);
21149         } while(ins != first);
21150         
21151         print_blocks(state, __func__, state->dbgout);
21152 }
21153
21154 #if DEBUG_CONSISTENCY
21155 static void verify_uses(struct compile_state *state)
21156 {
21157         struct triple *first, *ins;
21158         struct triple_set *set;
21159         first = state->first;
21160         ins = first;
21161         do {
21162                 struct triple **expr;
21163                 expr = triple_rhs(state, ins, 0);
21164                 for(; expr; expr = triple_rhs(state, ins, expr)) {
21165                         struct triple *rhs;
21166                         rhs = *expr;
21167                         for(set = rhs?rhs->use:0; set; set = set->next) {
21168                                 if (set->member == ins) {
21169                                         break;
21170                                 }
21171                         }
21172                         if (!set) {
21173                                 internal_error(state, ins, "rhs not used");
21174                         }
21175                 }
21176                 expr = triple_lhs(state, ins, 0);
21177                 for(; expr; expr = triple_lhs(state, ins, expr)) {
21178                         struct triple *lhs;
21179                         lhs = *expr;
21180                         for(set =  lhs?lhs->use:0; set; set = set->next) {
21181                                 if (set->member == ins) {
21182                                         break;
21183                                 }
21184                         }
21185                         if (!set) {
21186                                 internal_error(state, ins, "lhs not used");
21187                         }
21188                 }
21189                 expr = triple_misc(state, ins, 0);
21190                 if (ins->op != OP_PHI) {
21191                         for(; expr; expr = triple_targ(state, ins, expr)) {
21192                                 struct triple *misc;
21193                                 misc = *expr;
21194                                 for(set = misc?misc->use:0; set; set = set->next) {
21195                                         if (set->member == ins) {
21196                                                 break;
21197                                         }
21198                                 }
21199                                 if (!set) {
21200                                         internal_error(state, ins, "misc not used");
21201                                 }
21202                         }
21203                 }
21204                 if (!triple_is_ret(state, ins)) {
21205                         expr = triple_targ(state, ins, 0);
21206                         for(; expr; expr = triple_targ(state, ins, expr)) {
21207                                 struct triple *targ;
21208                                 targ = *expr;
21209                                 for(set = targ?targ->use:0; set; set = set->next) {
21210                                         if (set->member == ins) {
21211                                                 break;
21212                                         }
21213                                 }
21214                                 if (!set) {
21215                                         internal_error(state, ins, "targ not used");
21216                                 }
21217                         }
21218                 }
21219                 ins = ins->next;
21220         } while(ins != first);
21221         
21222 }
21223 static void verify_blocks_present(struct compile_state *state)
21224 {
21225         struct triple *first, *ins;
21226         if (!state->bb.first_block) {
21227                 return;
21228         }
21229         first = state->first;
21230         ins = first;
21231         do {
21232                 valid_ins(state, ins);
21233                 if (triple_stores_block(state, ins)) {
21234                         if (!ins->u.block) {
21235                                 internal_error(state, ins, 
21236                                         "%p not in a block?", ins);
21237                         }
21238                 }
21239                 ins = ins->next;
21240         } while(ins != first);
21241         
21242         
21243 }
21244
21245 static int edge_present(struct compile_state *state, struct block *block, struct triple *edge)
21246 {
21247         struct block_set *bedge;
21248         struct block *targ;
21249         targ = block_of_triple(state, edge);
21250         for(bedge = block->edges; bedge; bedge = bedge->next) {
21251                 if (bedge->member == targ) {
21252                         return 1;
21253                 }
21254         }
21255         return 0;
21256 }
21257
21258 static void verify_blocks(struct compile_state *state)
21259 {
21260         struct triple *ins;
21261         struct block *block;
21262         int blocks;
21263         block = state->bb.first_block;
21264         if (!block) {
21265                 return;
21266         }
21267         blocks = 0;
21268         do {
21269                 int users;
21270                 struct block_set *user, *edge;
21271                 blocks++;
21272                 for(ins = block->first; ins != block->last->next; ins = ins->next) {
21273                         if (triple_stores_block(state, ins) && (ins->u.block != block)) {
21274                                 internal_error(state, ins, "inconsitent block specified");
21275                         }
21276                         valid_ins(state, ins);
21277                 }
21278                 users = 0;
21279                 for(user = block->use; user; user = user->next) {
21280                         users++;
21281                         if (!user->member->first) {
21282                                 internal_error(state, block->first, "user is empty");
21283                         }
21284                         if ((block == state->bb.last_block) &&
21285                                 (user->member == state->bb.first_block)) {
21286                                 continue;
21287                         }
21288                         for(edge = user->member->edges; edge; edge = edge->next) {
21289                                 if (edge->member == block) {
21290                                         break;
21291                                 }
21292                         }
21293                         if (!edge) {
21294                                 internal_error(state, user->member->first,
21295                                         "user does not use block");
21296                         }
21297                 }
21298                 if (triple_is_branch(state, block->last)) {
21299                         struct triple **expr;
21300                         expr = triple_edge_targ(state, block->last, 0);
21301                         for(;expr; expr = triple_edge_targ(state, block->last, expr)) {
21302                                 if (*expr && !edge_present(state, block, *expr)) {
21303                                         internal_error(state, block->last, "no edge to targ");
21304                                 }
21305                         }
21306                 }
21307                 if (!triple_is_ubranch(state, block->last) &&
21308                         (block != state->bb.last_block) &&
21309                         !edge_present(state, block, block->last->next)) {
21310                         internal_error(state, block->last, "no edge to block->last->next");
21311                 }
21312                 for(edge = block->edges; edge; edge = edge->next) {
21313                         for(user = edge->member->use; user; user = user->next) {
21314                                 if (user->member == block) {
21315                                         break;
21316                                 }
21317                         }
21318                         if (!user || user->member != block) {
21319                                 internal_error(state, block->first,
21320                                         "block does not use edge");
21321                         }
21322                         if (!edge->member->first) {
21323                                 internal_error(state, block->first, "edge block is empty");
21324                         }
21325                 }
21326                 if (block->users != users) {
21327                         internal_error(state, block->first, 
21328                                 "computed users %d != stored users %d",
21329                                 users, block->users);
21330                 }
21331                 if (!triple_stores_block(state, block->last->next)) {
21332                         internal_error(state, block->last->next, 
21333                                 "cannot find next block");
21334                 }
21335                 block = block->last->next->u.block;
21336                 if (!block) {
21337                         internal_error(state, block->last->next,
21338                                 "bad next block");
21339                 }
21340         } while(block != state->bb.first_block);
21341         if (blocks != state->bb.last_vertex) {
21342                 internal_error(state, 0, "computed blocks: %d != stored blocks %d",
21343                         blocks, state->bb.last_vertex);
21344         }
21345 }
21346
21347 static void verify_domination(struct compile_state *state)
21348 {
21349         struct triple *first, *ins;
21350         struct triple_set *set;
21351         if (!state->bb.first_block) {
21352                 return;
21353         }
21354         
21355         first = state->first;
21356         ins = first;
21357         do {
21358                 for(set = ins->use; set; set = set->next) {
21359                         struct triple **slot;
21360                         struct triple *use_point;
21361                         int i, zrhs;
21362                         use_point = 0;
21363                         zrhs = set->member->rhs;
21364                         slot = &RHS(set->member, 0);
21365                         /* See if the use is on the right hand side */
21366                         for(i = 0; i < zrhs; i++) {
21367                                 if (slot[i] == ins) {
21368                                         break;
21369                                 }
21370                         }
21371                         if (i < zrhs) {
21372                                 use_point = set->member;
21373                                 if (set->member->op == OP_PHI) {
21374                                         struct block_set *bset;
21375                                         int edge;
21376                                         bset = set->member->u.block->use;
21377                                         for(edge = 0; bset && (edge < i); edge++) {
21378                                                 bset = bset->next;
21379                                         }
21380                                         if (!bset) {
21381                                                 internal_error(state, set->member, 
21382                                                         "no edge for phi rhs %d", i);
21383                                         }
21384                                         use_point = bset->member->last;
21385                                 }
21386                         }
21387                         if (use_point &&
21388                                 !tdominates(state, ins, use_point)) {
21389                                 if (is_const(ins)) {
21390                                         internal_warning(state, ins, 
21391                                         "non dominated rhs use point %p?", use_point);
21392                                 }
21393                                 else {
21394                                         internal_error(state, ins, 
21395                                                 "non dominated rhs use point %p?", use_point);
21396                                 }
21397                         }
21398                 }
21399                 ins = ins->next;
21400         } while(ins != first);
21401 }
21402
21403 static void verify_rhs(struct compile_state *state)
21404 {
21405         struct triple *first, *ins;
21406         first = state->first;
21407         ins = first;
21408         do {
21409                 struct triple **slot;
21410                 int zrhs, i;
21411                 zrhs = ins->rhs;
21412                 slot = &RHS(ins, 0);
21413                 for(i = 0; i < zrhs; i++) {
21414                         if (slot[i] == 0) {
21415                                 internal_error(state, ins,
21416                                         "missing rhs %d on %s",
21417                                         i, tops(ins->op));
21418                         }
21419                         if ((ins->op != OP_PHI) && (slot[i] == ins)) {
21420                                 internal_error(state, ins,
21421                                         "ins == rhs[%d] on %s",
21422                                         i, tops(ins->op));
21423                         }
21424                 }
21425                 ins = ins->next;
21426         } while(ins != first);
21427 }
21428
21429 static void verify_piece(struct compile_state *state)
21430 {
21431         struct triple *first, *ins;
21432         first = state->first;
21433         ins = first;
21434         do {
21435                 struct triple *ptr;
21436                 int lhs, i;
21437                 lhs = ins->lhs;
21438                 for(ptr = ins->next, i = 0; i < lhs; i++, ptr = ptr->next) {
21439                         if (ptr != LHS(ins, i)) {
21440                                 internal_error(state, ins, "malformed lhs on %s",
21441                                         tops(ins->op));
21442                         }
21443                         if (ptr->op != OP_PIECE) {
21444                                 internal_error(state, ins, "bad lhs op %s at %d on %s",
21445                                         tops(ptr->op), i, tops(ins->op));
21446                         }
21447                         if (ptr->u.cval != i) {
21448                                 internal_error(state, ins, "bad u.cval of %d %d expected",
21449                                         ptr->u.cval, i);
21450                         }
21451                 }
21452                 ins = ins->next;
21453         } while(ins != first);
21454 }
21455
21456 static void verify_ins_colors(struct compile_state *state)
21457 {
21458         struct triple *first, *ins;
21459         
21460         first = state->first;
21461         ins = first;
21462         do {
21463                 ins = ins->next;
21464         } while(ins != first);
21465 }
21466
21467 static void verify_unknown(struct compile_state *state)
21468 {
21469         struct triple *first, *ins;
21470         if (    (unknown_triple.next != &unknown_triple) ||
21471                 (unknown_triple.prev != &unknown_triple) ||
21472 #if 0
21473                 (unknown_triple.use != 0) ||
21474 #endif
21475                 (unknown_triple.op != OP_UNKNOWNVAL) ||
21476                 (unknown_triple.lhs != 0) ||
21477                 (unknown_triple.rhs != 0) ||
21478                 (unknown_triple.misc != 0) ||
21479                 (unknown_triple.targ != 0) ||
21480                 (unknown_triple.template_id != 0) ||
21481                 (unknown_triple.id != -1) ||
21482                 (unknown_triple.type != &unknown_type) ||
21483                 (unknown_triple.occurance != &dummy_occurance) ||
21484                 (unknown_triple.param[0] != 0) ||
21485                 (unknown_triple.param[1] != 0)) {
21486                 internal_error(state, &unknown_triple, "unknown_triple corrupted!");
21487         }
21488         if (    (dummy_occurance.count != 2) ||
21489                 (strcmp(dummy_occurance.filename, __FILE__) != 0) ||
21490                 (strcmp(dummy_occurance.function, "") != 0) ||
21491                 (dummy_occurance.col != 0) ||
21492                 (dummy_occurance.parent != 0)) {
21493                 internal_error(state, &unknown_triple, "dummy_occurance corrupted!");
21494         }
21495         if (    (unknown_type.type != TYPE_UNKNOWN)) {
21496                 internal_error(state, &unknown_triple, "unknown_type corrupted!");
21497         }
21498         first = state->first;
21499         ins = first;
21500         do {
21501                 int params, i;
21502                 if (ins == &unknown_triple) {
21503                         internal_error(state, ins, "unknown triple in list");
21504                 }
21505                 params = TRIPLE_SIZE(ins);
21506                 for(i = 0; i < params; i++) {
21507                         if (ins->param[i] == &unknown_triple) {
21508                                 internal_error(state, ins, "unknown triple used!");
21509                         }
21510                 }
21511                 ins = ins->next;
21512         } while(ins != first);
21513 }
21514
21515 static void verify_types(struct compile_state *state)
21516 {
21517         struct triple *first, *ins;
21518         first = state->first;
21519         ins = first;
21520         do {
21521                 struct type *invalid;
21522                 invalid = invalid_type(state, ins->type);
21523                 if (invalid) {
21524                         FILE *fp = state->errout;
21525                         fprintf(fp, "type: ");
21526                         name_of(fp, ins->type);
21527                         fprintf(fp, "\n");
21528                         fprintf(fp, "invalid type: ");
21529                         name_of(fp, invalid);
21530                         fprintf(fp, "\n");
21531                         internal_error(state, ins, "invalid ins type");
21532                 }
21533         } while(ins != first);
21534 }
21535
21536 static void verify_copy(struct compile_state *state)
21537 {
21538         struct triple *first, *ins, *next;
21539         first = state->first;
21540         next = ins = first;
21541         do {
21542                 ins = next;
21543                 next = ins->next;
21544                 if (ins->op != OP_COPY) {
21545                         continue;
21546                 }
21547                 if (!equiv_types(ins->type, RHS(ins, 0)->type)) {
21548                         FILE *fp = state->errout;
21549                         fprintf(fp, "src type: ");
21550                         name_of(fp, RHS(ins, 0)->type);
21551                         fprintf(fp, "\n");
21552                         fprintf(fp, "dst type: ");
21553                         name_of(fp, ins->type);
21554                         fprintf(fp, "\n");
21555                         internal_error(state, ins, "type mismatch in copy");
21556                 }
21557         } while(next != first);
21558 }
21559
21560 static void verify_consistency(struct compile_state *state)
21561 {
21562         verify_unknown(state);
21563         verify_uses(state);
21564         verify_blocks_present(state);
21565         verify_blocks(state);
21566         verify_domination(state);
21567         verify_rhs(state);
21568         verify_piece(state);
21569         verify_ins_colors(state);
21570         verify_types(state);
21571         verify_copy(state);
21572         if (state->compiler->debug & DEBUG_VERIFICATION) {
21573                 fprintf(state->dbgout, "consistency verified\n");
21574         }
21575 }
21576 #else 
21577 static void verify_consistency(struct compile_state *state) {}
21578 #endif /* DEBUG_CONSISTENCY */
21579
21580 static void optimize(struct compile_state *state)
21581 {
21582         /* Join all of the functions into one giant function */
21583         join_functions(state);
21584
21585         /* Dump what the instruction graph intially looks like */
21586         print_triples(state);
21587
21588         /* Replace structures with simpler data types */
21589         decompose_compound_types(state);
21590         print_triples(state);
21591
21592         verify_consistency(state);
21593         /* Analyze the intermediate code */
21594         state->bb.first = state->first;
21595         analyze_basic_blocks(state, &state->bb);
21596
21597         /* Transform the code to ssa form. */
21598         /*
21599          * The transformation to ssa form puts a phi function
21600          * on each of edge of a dominance frontier where that
21601          * phi function might be needed.  At -O2 if we don't
21602          * eleminate the excess phi functions we can get an
21603          * exponential code size growth.  So I kill the extra
21604          * phi functions early and I kill them often.
21605          */
21606         transform_to_ssa_form(state);
21607         verify_consistency(state);
21608
21609         /* Remove dead code */
21610         eliminate_inefectual_code(state);
21611         verify_consistency(state);
21612
21613         /* Do strength reduction and simple constant optimizations */
21614         simplify_all(state);
21615         verify_consistency(state);
21616         /* Propogate constants throughout the code */
21617         scc_transform(state);
21618         verify_consistency(state);
21619 #if DEBUG_ROMCC_WARNINGS
21620 #warning "WISHLIST implement single use constants (least possible register pressure)"
21621 #warning "WISHLIST implement induction variable elimination"
21622 #endif
21623         /* Select architecture instructions and an initial partial
21624          * coloring based on architecture constraints.
21625          */
21626         transform_to_arch_instructions(state);
21627         verify_consistency(state);
21628
21629         /* Remove dead code */
21630         eliminate_inefectual_code(state);
21631         verify_consistency(state);
21632
21633         /* Color all of the variables to see if they will fit in registers */
21634         insert_copies_to_phi(state);
21635         verify_consistency(state);
21636
21637         insert_mandatory_copies(state);
21638         verify_consistency(state);
21639
21640         allocate_registers(state);
21641         verify_consistency(state);
21642
21643         /* Remove the optimization information.
21644          * This is more to check for memory consistency than to free memory.
21645          */
21646         free_basic_blocks(state, &state->bb);
21647 }
21648
21649 static void print_op_asm(struct compile_state *state,
21650         struct triple *ins, FILE *fp)
21651 {
21652         struct asm_info *info;
21653         const char *ptr;
21654         unsigned lhs, rhs, i;
21655         info = ins->u.ainfo;
21656         lhs = ins->lhs;
21657         rhs = ins->rhs;
21658         /* Don't count the clobbers in lhs */
21659         for(i = 0; i < lhs; i++) {
21660                 if (LHS(ins, i)->type == &void_type) {
21661                         break;
21662                 }
21663         }
21664         lhs = i;
21665         fprintf(fp, "#ASM\n");
21666         fputc('\t', fp);
21667         for(ptr = info->str; *ptr; ptr++) {
21668                 char *next;
21669                 unsigned long param;
21670                 struct triple *piece;
21671                 if (*ptr != '%') {
21672                         fputc(*ptr, fp);
21673                         continue;
21674                 }
21675                 ptr++;
21676                 if (*ptr == '%') {
21677                         fputc('%', fp);
21678                         continue;
21679                 }
21680                 param = strtoul(ptr, &next, 10);
21681                 if (ptr == next) {
21682                         error(state, ins, "Invalid asm template");
21683                 }
21684                 if (param >= (lhs + rhs)) {
21685                         error(state, ins, "Invalid param %%%u in asm template",
21686                                 param);
21687                 }
21688                 piece = (param < lhs)? LHS(ins, param) : RHS(ins, param - lhs);
21689                 fprintf(fp, "%s", 
21690                         arch_reg_str(ID_REG(piece->id)));
21691                 ptr = next -1;
21692         }
21693         fprintf(fp, "\n#NOT ASM\n");
21694 }
21695
21696
21697 /* Only use the low x86 byte registers.  This allows me
21698  * allocate the entire register when a byte register is used.
21699  */
21700 #define X86_4_8BIT_GPRS 1
21701
21702 /* x86 featrues */
21703 #define X86_MMX_REGS  (1<<0)
21704 #define X86_XMM_REGS  (1<<1)
21705 #define X86_NOOP_COPY (1<<2)
21706
21707 /* The x86 register classes */
21708 #define REGC_FLAGS       0
21709 #define REGC_GPR8        1
21710 #define REGC_GPR16       2
21711 #define REGC_GPR32       3
21712 #define REGC_DIVIDEND64  4
21713 #define REGC_DIVIDEND32  5
21714 #define REGC_MMX         6
21715 #define REGC_XMM         7
21716 #define REGC_GPR32_8     8
21717 #define REGC_GPR16_8     9
21718 #define REGC_GPR8_LO    10
21719 #define REGC_IMM32      11
21720 #define REGC_IMM16      12
21721 #define REGC_IMM8       13
21722 #define LAST_REGC  REGC_IMM8
21723 #if LAST_REGC >= MAX_REGC
21724 #error "MAX_REGC is to low"
21725 #endif
21726
21727 /* Register class masks */
21728 #define REGCM_FLAGS      (1 << REGC_FLAGS)
21729 #define REGCM_GPR8       (1 << REGC_GPR8)
21730 #define REGCM_GPR16      (1 << REGC_GPR16)
21731 #define REGCM_GPR32      (1 << REGC_GPR32)
21732 #define REGCM_DIVIDEND64 (1 << REGC_DIVIDEND64)
21733 #define REGCM_DIVIDEND32 (1 << REGC_DIVIDEND32)
21734 #define REGCM_MMX        (1 << REGC_MMX)
21735 #define REGCM_XMM        (1 << REGC_XMM)
21736 #define REGCM_GPR32_8    (1 << REGC_GPR32_8)
21737 #define REGCM_GPR16_8    (1 << REGC_GPR16_8)
21738 #define REGCM_GPR8_LO    (1 << REGC_GPR8_LO)
21739 #define REGCM_IMM32      (1 << REGC_IMM32)
21740 #define REGCM_IMM16      (1 << REGC_IMM16)
21741 #define REGCM_IMM8       (1 << REGC_IMM8)
21742 #define REGCM_ALL        ((1 << (LAST_REGC + 1)) - 1)
21743 #define REGCM_IMMALL    (REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)
21744
21745 /* The x86 registers */
21746 #define REG_EFLAGS  2
21747 #define REGC_FLAGS_FIRST REG_EFLAGS
21748 #define REGC_FLAGS_LAST  REG_EFLAGS
21749 #define REG_AL      3
21750 #define REG_BL      4
21751 #define REG_CL      5
21752 #define REG_DL      6
21753 #define REG_AH      7
21754 #define REG_BH      8
21755 #define REG_CH      9
21756 #define REG_DH      10
21757 #define REGC_GPR8_LO_FIRST REG_AL
21758 #define REGC_GPR8_LO_LAST  REG_DL
21759 #define REGC_GPR8_FIRST  REG_AL
21760 #define REGC_GPR8_LAST   REG_DH
21761 #define REG_AX     11
21762 #define REG_BX     12
21763 #define REG_CX     13
21764 #define REG_DX     14
21765 #define REG_SI     15
21766 #define REG_DI     16
21767 #define REG_BP     17
21768 #define REG_SP     18
21769 #define REGC_GPR16_FIRST REG_AX
21770 #define REGC_GPR16_LAST  REG_SP
21771 #define REG_EAX    19
21772 #define REG_EBX    20
21773 #define REG_ECX    21
21774 #define REG_EDX    22
21775 #define REG_ESI    23
21776 #define REG_EDI    24
21777 #define REG_EBP    25
21778 #define REG_ESP    26
21779 #define REGC_GPR32_FIRST REG_EAX
21780 #define REGC_GPR32_LAST  REG_ESP
21781 #define REG_EDXEAX 27
21782 #define REGC_DIVIDEND64_FIRST REG_EDXEAX
21783 #define REGC_DIVIDEND64_LAST  REG_EDXEAX
21784 #define REG_DXAX   28
21785 #define REGC_DIVIDEND32_FIRST REG_DXAX
21786 #define REGC_DIVIDEND32_LAST  REG_DXAX
21787 #define REG_MMX0   29
21788 #define REG_MMX1   30
21789 #define REG_MMX2   31
21790 #define REG_MMX3   32
21791 #define REG_MMX4   33
21792 #define REG_MMX5   34
21793 #define REG_MMX6   35
21794 #define REG_MMX7   36
21795 #define REGC_MMX_FIRST REG_MMX0
21796 #define REGC_MMX_LAST  REG_MMX7
21797 #define REG_XMM0   37
21798 #define REG_XMM1   38
21799 #define REG_XMM2   39
21800 #define REG_XMM3   40
21801 #define REG_XMM4   41
21802 #define REG_XMM5   42
21803 #define REG_XMM6   43
21804 #define REG_XMM7   44
21805 #define REGC_XMM_FIRST REG_XMM0
21806 #define REGC_XMM_LAST  REG_XMM7
21807
21808 #if DEBUG_ROMCC_WARNINGS
21809 #warning "WISHLIST figure out how to use pinsrw and pextrw to better use extended regs"
21810 #endif
21811
21812 #define LAST_REG   REG_XMM7
21813
21814 #define REGC_GPR32_8_FIRST REG_EAX
21815 #define REGC_GPR32_8_LAST  REG_EDX
21816 #define REGC_GPR16_8_FIRST REG_AX
21817 #define REGC_GPR16_8_LAST  REG_DX
21818
21819 #define REGC_IMM8_FIRST    -1
21820 #define REGC_IMM8_LAST     -1
21821 #define REGC_IMM16_FIRST   -2
21822 #define REGC_IMM16_LAST    -1
21823 #define REGC_IMM32_FIRST   -4
21824 #define REGC_IMM32_LAST    -1
21825
21826 #if LAST_REG >= MAX_REGISTERS
21827 #error "MAX_REGISTERS to low"
21828 #endif
21829
21830
21831 static unsigned regc_size[LAST_REGC +1] = {
21832         [REGC_FLAGS]      = REGC_FLAGS_LAST      - REGC_FLAGS_FIRST + 1,
21833         [REGC_GPR8]       = REGC_GPR8_LAST       - REGC_GPR8_FIRST + 1,
21834         [REGC_GPR16]      = REGC_GPR16_LAST      - REGC_GPR16_FIRST + 1,
21835         [REGC_GPR32]      = REGC_GPR32_LAST      - REGC_GPR32_FIRST + 1,
21836         [REGC_DIVIDEND64] = REGC_DIVIDEND64_LAST - REGC_DIVIDEND64_FIRST + 1,
21837         [REGC_DIVIDEND32] = REGC_DIVIDEND32_LAST - REGC_DIVIDEND32_FIRST + 1,
21838         [REGC_MMX]        = REGC_MMX_LAST        - REGC_MMX_FIRST + 1,
21839         [REGC_XMM]        = REGC_XMM_LAST        - REGC_XMM_FIRST + 1,
21840         [REGC_GPR32_8]    = REGC_GPR32_8_LAST    - REGC_GPR32_8_FIRST + 1,
21841         [REGC_GPR16_8]    = REGC_GPR16_8_LAST    - REGC_GPR16_8_FIRST + 1,
21842         [REGC_GPR8_LO]    = REGC_GPR8_LO_LAST    - REGC_GPR8_LO_FIRST + 1,
21843         [REGC_IMM32]      = 0,
21844         [REGC_IMM16]      = 0,
21845         [REGC_IMM8]       = 0,
21846 };
21847
21848 static const struct {
21849         int first, last;
21850 } regcm_bound[LAST_REGC + 1] = {
21851         [REGC_FLAGS]      = { REGC_FLAGS_FIRST,      REGC_FLAGS_LAST },
21852         [REGC_GPR8]       = { REGC_GPR8_FIRST,       REGC_GPR8_LAST },
21853         [REGC_GPR16]      = { REGC_GPR16_FIRST,      REGC_GPR16_LAST },
21854         [REGC_GPR32]      = { REGC_GPR32_FIRST,      REGC_GPR32_LAST },
21855         [REGC_DIVIDEND64] = { REGC_DIVIDEND64_FIRST, REGC_DIVIDEND64_LAST },
21856         [REGC_DIVIDEND32] = { REGC_DIVIDEND32_FIRST, REGC_DIVIDEND32_LAST },
21857         [REGC_MMX]        = { REGC_MMX_FIRST,        REGC_MMX_LAST },
21858         [REGC_XMM]        = { REGC_XMM_FIRST,        REGC_XMM_LAST },
21859         [REGC_GPR32_8]    = { REGC_GPR32_8_FIRST,    REGC_GPR32_8_LAST },
21860         [REGC_GPR16_8]    = { REGC_GPR16_8_FIRST,    REGC_GPR16_8_LAST },
21861         [REGC_GPR8_LO]    = { REGC_GPR8_LO_FIRST,    REGC_GPR8_LO_LAST },
21862         [REGC_IMM32]      = { REGC_IMM32_FIRST,      REGC_IMM32_LAST },
21863         [REGC_IMM16]      = { REGC_IMM16_FIRST,      REGC_IMM16_LAST },
21864         [REGC_IMM8]       = { REGC_IMM8_FIRST,       REGC_IMM8_LAST },
21865 };
21866
21867 #if ARCH_INPUT_REGS != 4
21868 #error ARCH_INPUT_REGS size mismatch
21869 #endif
21870 static const struct reg_info arch_input_regs[ARCH_INPUT_REGS] = {
21871         { .reg = REG_EAX, .regcm = REGCM_GPR32 },
21872         { .reg = REG_EBX, .regcm = REGCM_GPR32 },
21873         { .reg = REG_ECX, .regcm = REGCM_GPR32 },
21874         { .reg = REG_EDX, .regcm = REGCM_GPR32 },
21875 };
21876
21877 #if ARCH_OUTPUT_REGS != 4
21878 #error ARCH_INPUT_REGS size mismatch
21879 #endif
21880 static const struct reg_info arch_output_regs[ARCH_OUTPUT_REGS] = {
21881         { .reg = REG_EAX, .regcm = REGCM_GPR32 },
21882         { .reg = REG_EBX, .regcm = REGCM_GPR32 },
21883         { .reg = REG_ECX, .regcm = REGCM_GPR32 },
21884         { .reg = REG_EDX, .regcm = REGCM_GPR32 },
21885 };
21886
21887 static void init_arch_state(struct arch_state *arch)
21888 {
21889         memset(arch, 0, sizeof(*arch));
21890         arch->features = 0;
21891 }
21892
21893 static const struct compiler_flag arch_flags[] = {
21894         { "mmx",       X86_MMX_REGS },
21895         { "sse",       X86_XMM_REGS },
21896         { "noop-copy", X86_NOOP_COPY },
21897         { 0,     0 },
21898 };
21899 static const struct compiler_flag arch_cpus[] = {
21900         { "i386", 0 },
21901         { "p2",   X86_MMX_REGS },
21902         { "p3",   X86_MMX_REGS | X86_XMM_REGS },
21903         { "p4",   X86_MMX_REGS | X86_XMM_REGS },
21904         { "k7",   X86_MMX_REGS },
21905         { "k8",   X86_MMX_REGS | X86_XMM_REGS },
21906         { "c3",   X86_MMX_REGS },
21907         { "c3-2", X86_MMX_REGS | X86_XMM_REGS }, /* Nehemiah */
21908         {  0,     0 }
21909 };
21910 static int arch_encode_flag(struct arch_state *arch, const char *flag)
21911 {
21912         int result;
21913         int act;
21914
21915         act = 1;
21916         result = -1;
21917         if (strncmp(flag, "no-", 3) == 0) {
21918                 flag += 3;
21919                 act = 0;
21920         }
21921         if (act && strncmp(flag, "cpu=", 4) == 0) {
21922                 flag += 4;
21923                 result = set_flag(arch_cpus, &arch->features, 1, flag);
21924         }
21925         else {
21926                 result = set_flag(arch_flags, &arch->features, act, flag);
21927         }
21928         return result;
21929 }
21930
21931 static void arch_usage(FILE *fp)
21932 {
21933         flag_usage(fp, arch_flags, "-m", "-mno-");
21934         flag_usage(fp, arch_cpus, "-mcpu=", 0);
21935 }
21936
21937 static unsigned arch_regc_size(struct compile_state *state, int class)
21938 {
21939         if ((class < 0) || (class > LAST_REGC)) {
21940                 return 0;
21941         }
21942         return regc_size[class];
21943 }
21944
21945 static int arch_regcm_intersect(unsigned regcm1, unsigned regcm2)
21946 {
21947         /* See if two register classes may have overlapping registers */
21948         unsigned gpr_mask = REGCM_GPR8 | REGCM_GPR8_LO | REGCM_GPR16_8 | REGCM_GPR16 |
21949                 REGCM_GPR32_8 | REGCM_GPR32 | 
21950                 REGCM_DIVIDEND32 | REGCM_DIVIDEND64;
21951
21952         /* Special case for the immediates */
21953         if ((regcm1 & (REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) &&
21954                 ((regcm1 & ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) == 0) &&
21955                 (regcm2 & (REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) &&
21956                 ((regcm2 & ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) == 0)) { 
21957                 return 0;
21958         }
21959         return (regcm1 & regcm2) ||
21960                 ((regcm1 & gpr_mask) && (regcm2 & gpr_mask));
21961 }
21962
21963 static void arch_reg_equivs(
21964         struct compile_state *state, unsigned *equiv, int reg)
21965 {
21966         if ((reg < 0) || (reg > LAST_REG)) {
21967                 internal_error(state, 0, "invalid register");
21968         }
21969         *equiv++ = reg;
21970         switch(reg) {
21971         case REG_AL:
21972 #if X86_4_8BIT_GPRS
21973                 *equiv++ = REG_AH;
21974 #endif
21975                 *equiv++ = REG_AX;
21976                 *equiv++ = REG_EAX;
21977                 *equiv++ = REG_DXAX;
21978                 *equiv++ = REG_EDXEAX;
21979                 break;
21980         case REG_AH:
21981 #if X86_4_8BIT_GPRS
21982                 *equiv++ = REG_AL;
21983 #endif
21984                 *equiv++ = REG_AX;
21985                 *equiv++ = REG_EAX;
21986                 *equiv++ = REG_DXAX;
21987                 *equiv++ = REG_EDXEAX;
21988                 break;
21989         case REG_BL:  
21990 #if X86_4_8BIT_GPRS
21991                 *equiv++ = REG_BH;
21992 #endif
21993                 *equiv++ = REG_BX;
21994                 *equiv++ = REG_EBX;
21995                 break;
21996
21997         case REG_BH:
21998 #if X86_4_8BIT_GPRS
21999                 *equiv++ = REG_BL;
22000 #endif
22001                 *equiv++ = REG_BX;
22002                 *equiv++ = REG_EBX;
22003                 break;
22004         case REG_CL:
22005 #if X86_4_8BIT_GPRS
22006                 *equiv++ = REG_CH;
22007 #endif
22008                 *equiv++ = REG_CX;
22009                 *equiv++ = REG_ECX;
22010                 break;
22011
22012         case REG_CH:
22013 #if X86_4_8BIT_GPRS
22014                 *equiv++ = REG_CL;
22015 #endif
22016                 *equiv++ = REG_CX;
22017                 *equiv++ = REG_ECX;
22018                 break;
22019         case REG_DL:
22020 #if X86_4_8BIT_GPRS
22021                 *equiv++ = REG_DH;
22022 #endif
22023                 *equiv++ = REG_DX;
22024                 *equiv++ = REG_EDX;
22025                 *equiv++ = REG_DXAX;
22026                 *equiv++ = REG_EDXEAX;
22027                 break;
22028         case REG_DH:
22029 #if X86_4_8BIT_GPRS
22030                 *equiv++ = REG_DL;
22031 #endif
22032                 *equiv++ = REG_DX;
22033                 *equiv++ = REG_EDX;
22034                 *equiv++ = REG_DXAX;
22035                 *equiv++ = REG_EDXEAX;
22036                 break;
22037         case REG_AX:
22038                 *equiv++ = REG_AL;
22039                 *equiv++ = REG_AH;
22040                 *equiv++ = REG_EAX;
22041                 *equiv++ = REG_DXAX;
22042                 *equiv++ = REG_EDXEAX;
22043                 break;
22044         case REG_BX:
22045                 *equiv++ = REG_BL;
22046                 *equiv++ = REG_BH;
22047                 *equiv++ = REG_EBX;
22048                 break;
22049         case REG_CX:  
22050                 *equiv++ = REG_CL;
22051                 *equiv++ = REG_CH;
22052                 *equiv++ = REG_ECX;
22053                 break;
22054         case REG_DX:  
22055                 *equiv++ = REG_DL;
22056                 *equiv++ = REG_DH;
22057                 *equiv++ = REG_EDX;
22058                 *equiv++ = REG_DXAX;
22059                 *equiv++ = REG_EDXEAX;
22060                 break;
22061         case REG_SI:  
22062                 *equiv++ = REG_ESI;
22063                 break;
22064         case REG_DI:
22065                 *equiv++ = REG_EDI;
22066                 break;
22067         case REG_BP:
22068                 *equiv++ = REG_EBP;
22069                 break;
22070         case REG_SP:
22071                 *equiv++ = REG_ESP;
22072                 break;
22073         case REG_EAX:
22074                 *equiv++ = REG_AL;
22075                 *equiv++ = REG_AH;
22076                 *equiv++ = REG_AX;
22077                 *equiv++ = REG_DXAX;
22078                 *equiv++ = REG_EDXEAX;
22079                 break;
22080         case REG_EBX:
22081                 *equiv++ = REG_BL;
22082                 *equiv++ = REG_BH;
22083                 *equiv++ = REG_BX;
22084                 break;
22085         case REG_ECX:
22086                 *equiv++ = REG_CL;
22087                 *equiv++ = REG_CH;
22088                 *equiv++ = REG_CX;
22089                 break;
22090         case REG_EDX:
22091                 *equiv++ = REG_DL;
22092                 *equiv++ = REG_DH;
22093                 *equiv++ = REG_DX;
22094                 *equiv++ = REG_DXAX;
22095                 *equiv++ = REG_EDXEAX;
22096                 break;
22097         case REG_ESI: 
22098                 *equiv++ = REG_SI;
22099                 break;
22100         case REG_EDI: 
22101                 *equiv++ = REG_DI;
22102                 break;
22103         case REG_EBP: 
22104                 *equiv++ = REG_BP;
22105                 break;
22106         case REG_ESP: 
22107                 *equiv++ = REG_SP;
22108                 break;
22109         case REG_DXAX: 
22110                 *equiv++ = REG_AL;
22111                 *equiv++ = REG_AH;
22112                 *equiv++ = REG_DL;
22113                 *equiv++ = REG_DH;
22114                 *equiv++ = REG_AX;
22115                 *equiv++ = REG_DX;
22116                 *equiv++ = REG_EAX;
22117                 *equiv++ = REG_EDX;
22118                 *equiv++ = REG_EDXEAX;
22119                 break;
22120         case REG_EDXEAX: 
22121                 *equiv++ = REG_AL;
22122                 *equiv++ = REG_AH;
22123                 *equiv++ = REG_DL;
22124                 *equiv++ = REG_DH;
22125                 *equiv++ = REG_AX;
22126                 *equiv++ = REG_DX;
22127                 *equiv++ = REG_EAX;
22128                 *equiv++ = REG_EDX;
22129                 *equiv++ = REG_DXAX;
22130                 break;
22131         }
22132         *equiv++ = REG_UNSET; 
22133 }
22134
22135 static unsigned arch_avail_mask(struct compile_state *state)
22136 {
22137         unsigned avail_mask;
22138         /* REGCM_GPR8 is not available */
22139         avail_mask = REGCM_GPR8_LO | REGCM_GPR16_8 | REGCM_GPR16 | 
22140                 REGCM_GPR32 | REGCM_GPR32_8 | 
22141                 REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
22142                 REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8 | REGCM_FLAGS;
22143         if (state->arch->features & X86_MMX_REGS) {
22144                 avail_mask |= REGCM_MMX;
22145         }
22146         if (state->arch->features & X86_XMM_REGS) {
22147                 avail_mask |= REGCM_XMM;
22148         }
22149         return avail_mask;
22150 }
22151
22152 static unsigned arch_regcm_normalize(struct compile_state *state, unsigned regcm)
22153 {
22154         unsigned mask, result;
22155         int class, class2;
22156         result = regcm;
22157
22158         for(class = 0, mask = 1; mask; mask <<= 1, class++) {
22159                 if ((result & mask) == 0) {
22160                         continue;
22161                 }
22162                 if (class > LAST_REGC) {
22163                         result &= ~mask;
22164                 }
22165                 for(class2 = 0; class2 <= LAST_REGC; class2++) {
22166                         if ((regcm_bound[class2].first >= regcm_bound[class].first) &&
22167                                 (regcm_bound[class2].last <= regcm_bound[class].last)) {
22168                                 result |= (1 << class2);
22169                         }
22170                 }
22171         }
22172         result &= arch_avail_mask(state);
22173         return result;
22174 }
22175
22176 static unsigned arch_regcm_reg_normalize(struct compile_state *state, unsigned regcm)
22177 {
22178         /* Like arch_regcm_normalize except immediate register classes are excluded */
22179         regcm = arch_regcm_normalize(state, regcm);
22180         /* Remove the immediate register classes */
22181         regcm &= ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8);
22182         return regcm;
22183         
22184 }
22185
22186 static unsigned arch_reg_regcm(struct compile_state *state, int reg)
22187 {
22188         unsigned mask;
22189         int class;
22190         mask = 0;
22191         for(class = 0; class <= LAST_REGC; class++) {
22192                 if ((reg >= regcm_bound[class].first) &&
22193                         (reg <= regcm_bound[class].last)) {
22194                         mask |= (1 << class);
22195                 }
22196         }
22197         if (!mask) {
22198                 internal_error(state, 0, "reg %d not in any class", reg);
22199         }
22200         return mask;
22201 }
22202
22203 static struct reg_info arch_reg_constraint(
22204         struct compile_state *state, struct type *type, const char *constraint)
22205 {
22206         static const struct {
22207                 char class;
22208                 unsigned int mask;
22209                 unsigned int reg;
22210         } constraints[] = {
22211                 { 'r', REGCM_GPR32,   REG_UNSET },
22212                 { 'g', REGCM_GPR32,   REG_UNSET },
22213                 { 'p', REGCM_GPR32,   REG_UNSET },
22214                 { 'q', REGCM_GPR8_LO, REG_UNSET },
22215                 { 'Q', REGCM_GPR32_8, REG_UNSET },
22216                 { 'x', REGCM_XMM,     REG_UNSET },
22217                 { 'y', REGCM_MMX,     REG_UNSET },
22218                 { 'a', REGCM_GPR32,   REG_EAX },
22219                 { 'b', REGCM_GPR32,   REG_EBX },
22220                 { 'c', REGCM_GPR32,   REG_ECX },
22221                 { 'd', REGCM_GPR32,   REG_EDX },
22222                 { 'D', REGCM_GPR32,   REG_EDI },
22223                 { 'S', REGCM_GPR32,   REG_ESI },
22224                 { '\0', 0, REG_UNSET },
22225         };
22226         unsigned int regcm;
22227         unsigned int mask, reg;
22228         struct reg_info result;
22229         const char *ptr;
22230         regcm = arch_type_to_regcm(state, type);
22231         reg = REG_UNSET;
22232         mask = 0;
22233         for(ptr = constraint; *ptr; ptr++) {
22234                 int i;
22235                 if (*ptr ==  ' ') {
22236                         continue;
22237                 }
22238                 for(i = 0; constraints[i].class != '\0'; i++) {
22239                         if (constraints[i].class == *ptr) {
22240                                 break;
22241                         }
22242                 }
22243                 if (constraints[i].class == '\0') {
22244                         error(state, 0, "invalid register constraint ``%c''", *ptr);
22245                         break;
22246                 }
22247                 if ((constraints[i].mask & regcm) == 0) {
22248                         error(state, 0, "invalid register class %c specified",
22249                                 *ptr);
22250                 }
22251                 mask |= constraints[i].mask;
22252                 if (constraints[i].reg != REG_UNSET) {
22253                         if ((reg != REG_UNSET) && (reg != constraints[i].reg)) {
22254                                 error(state, 0, "Only one register may be specified");
22255                         }
22256                         reg = constraints[i].reg;
22257                 }
22258         }
22259         result.reg = reg;
22260         result.regcm = mask;
22261         return result;
22262 }
22263
22264 static struct reg_info arch_reg_clobber(
22265         struct compile_state *state, const char *clobber)
22266 {
22267         struct reg_info result;
22268         if (strcmp(clobber, "memory") == 0) {
22269                 result.reg = REG_UNSET;
22270                 result.regcm = 0;
22271         }
22272         else if (strcmp(clobber, "eax") == 0) {
22273                 result.reg = REG_EAX;
22274                 result.regcm = REGCM_GPR32;
22275         }
22276         else if (strcmp(clobber, "ebx") == 0) {
22277                 result.reg = REG_EBX;
22278                 result.regcm = REGCM_GPR32;
22279         }
22280         else if (strcmp(clobber, "ecx") == 0) {
22281                 result.reg = REG_ECX;
22282                 result.regcm = REGCM_GPR32;
22283         }
22284         else if (strcmp(clobber, "edx") == 0) {
22285                 result.reg = REG_EDX;
22286                 result.regcm = REGCM_GPR32;
22287         }
22288         else if (strcmp(clobber, "esi") == 0) {
22289                 result.reg = REG_ESI;
22290                 result.regcm = REGCM_GPR32;
22291         }
22292         else if (strcmp(clobber, "edi") == 0) {
22293                 result.reg = REG_EDI;
22294                 result.regcm = REGCM_GPR32;
22295         }
22296         else if (strcmp(clobber, "ebp") == 0) {
22297                 result.reg = REG_EBP;
22298                 result.regcm = REGCM_GPR32;
22299         }
22300         else if (strcmp(clobber, "esp") == 0) {
22301                 result.reg = REG_ESP;
22302                 result.regcm = REGCM_GPR32;
22303         }
22304         else if (strcmp(clobber, "cc") == 0) {
22305                 result.reg = REG_EFLAGS;
22306                 result.regcm = REGCM_FLAGS;
22307         }
22308         else if ((strncmp(clobber, "xmm", 3) == 0)  &&
22309                 octdigitp(clobber[3]) && (clobber[4] == '\0')) {
22310                 result.reg = REG_XMM0 + octdigval(clobber[3]);
22311                 result.regcm = REGCM_XMM;
22312         }
22313         else if ((strncmp(clobber, "mm", 2) == 0) &&
22314                 octdigitp(clobber[3]) && (clobber[4] == '\0')) {
22315                 result.reg = REG_MMX0 + octdigval(clobber[3]);
22316                 result.regcm = REGCM_MMX;
22317         }
22318         else {
22319                 error(state, 0, "unknown register name `%s' in asm",
22320                         clobber);
22321                 result.reg = REG_UNSET;
22322                 result.regcm = 0;
22323         }
22324         return result;
22325 }
22326
22327 static int do_select_reg(struct compile_state *state, 
22328         char *used, int reg, unsigned classes)
22329 {
22330         unsigned mask;
22331         if (used[reg]) {
22332                 return REG_UNSET;
22333         }
22334         mask = arch_reg_regcm(state, reg);
22335         return (classes & mask) ? reg : REG_UNSET;
22336 }
22337
22338 static int arch_select_free_register(
22339         struct compile_state *state, char *used, int classes)
22340 {
22341         /* Live ranges with the most neighbors are colored first.
22342          *
22343          * Generally it does not matter which colors are given
22344          * as the register allocator attempts to color live ranges
22345          * in an order where you are guaranteed not to run out of colors.
22346          *
22347          * Occasionally the register allocator cannot find an order
22348          * of register selection that will find a free color.  To
22349          * increase the odds the register allocator will work when
22350          * it guesses first give out registers from register classes
22351          * least likely to run out of registers.
22352          * 
22353          */
22354         int i, reg;
22355         reg = REG_UNSET;
22356         for(i = REGC_XMM_FIRST; (reg == REG_UNSET) && (i <= REGC_XMM_LAST); i++) {
22357                 reg = do_select_reg(state, used, i, classes);
22358         }
22359         for(i = REGC_MMX_FIRST; (reg == REG_UNSET) && (i <= REGC_MMX_LAST); i++) {
22360                 reg = do_select_reg(state, used, i, classes);
22361         }
22362         for(i = REGC_GPR32_LAST; (reg == REG_UNSET) && (i >= REGC_GPR32_FIRST); i--) {
22363                 reg = do_select_reg(state, used, i, classes);
22364         }
22365         for(i = REGC_GPR16_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR16_LAST); i++) {
22366                 reg = do_select_reg(state, used, i, classes);
22367         }
22368         for(i = REGC_GPR8_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR8_LAST); i++) {
22369                 reg = do_select_reg(state, used, i, classes);
22370         }
22371         for(i = REGC_GPR8_LO_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR8_LO_LAST); i++) {
22372                 reg = do_select_reg(state, used, i, classes);
22373         }
22374         for(i = REGC_DIVIDEND32_FIRST; (reg == REG_UNSET) && (i <= REGC_DIVIDEND32_LAST); i++) {
22375                 reg = do_select_reg(state, used, i, classes);
22376         }
22377         for(i = REGC_DIVIDEND64_FIRST; (reg == REG_UNSET) && (i <= REGC_DIVIDEND64_LAST); i++) {
22378                 reg = do_select_reg(state, used, i, classes);
22379         }
22380         for(i = REGC_FLAGS_FIRST; (reg == REG_UNSET) && (i <= REGC_FLAGS_LAST); i++) {
22381                 reg = do_select_reg(state, used, i, classes);
22382         }
22383         return reg;
22384 }
22385
22386
22387 static unsigned arch_type_to_regcm(struct compile_state *state, struct type *type) 
22388 {
22389
22390 #if DEBUG_ROMCC_WARNINGS
22391 #warning "FIXME force types smaller (if legal) before I get here"
22392 #endif
22393         unsigned mask;
22394         mask = 0;
22395         switch(type->type & TYPE_MASK) {
22396         case TYPE_ARRAY:
22397         case TYPE_VOID: 
22398                 mask = 0; 
22399                 break;
22400         case TYPE_CHAR:
22401         case TYPE_UCHAR:
22402                 mask = REGCM_GPR8 | REGCM_GPR8_LO |
22403                         REGCM_GPR16 | REGCM_GPR16_8 | 
22404                         REGCM_GPR32 | REGCM_GPR32_8 |
22405                         REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
22406                         REGCM_MMX | REGCM_XMM |
22407                         REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8;
22408                 break;
22409         case TYPE_SHORT:
22410         case TYPE_USHORT:
22411                 mask =  REGCM_GPR16 | REGCM_GPR16_8 |
22412                         REGCM_GPR32 | REGCM_GPR32_8 |
22413                         REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
22414                         REGCM_MMX | REGCM_XMM |
22415                         REGCM_IMM32 | REGCM_IMM16;
22416                 break;
22417         case TYPE_ENUM:
22418         case TYPE_INT:
22419         case TYPE_UINT:
22420         case TYPE_LONG:
22421         case TYPE_ULONG:
22422         case TYPE_POINTER:
22423                 mask =  REGCM_GPR32 | REGCM_GPR32_8 |
22424                         REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
22425                         REGCM_MMX | REGCM_XMM |
22426                         REGCM_IMM32;
22427                 break;
22428         case TYPE_JOIN:
22429         case TYPE_UNION:
22430                 mask = arch_type_to_regcm(state, type->left);
22431                 break;
22432         case TYPE_OVERLAP:
22433                 mask = arch_type_to_regcm(state, type->left) &
22434                         arch_type_to_regcm(state, type->right);
22435                 break;
22436         case TYPE_BITFIELD:
22437                 mask = arch_type_to_regcm(state, type->left);
22438                 break;
22439         default:
22440                 fprintf(state->errout, "type: ");
22441                 name_of(state->errout, type);
22442                 fprintf(state->errout, "\n");
22443                 internal_error(state, 0, "no register class for type");
22444                 break;
22445         }
22446         mask = arch_regcm_normalize(state, mask);
22447         return mask;
22448 }
22449
22450 static int is_imm32(struct triple *imm)
22451 {
22452         return ((imm->op == OP_INTCONST) && (imm->u.cval <= 0xffffffffUL)) ||
22453                 (imm->op == OP_ADDRCONST);
22454         
22455 }
22456 static int is_imm16(struct triple *imm)
22457 {
22458         return ((imm->op == OP_INTCONST) && (imm->u.cval <= 0xffff));
22459 }
22460 static int is_imm8(struct triple *imm)
22461 {
22462         return ((imm->op == OP_INTCONST) && (imm->u.cval <= 0xff));
22463 }
22464
22465 static int get_imm32(struct triple *ins, struct triple **expr)
22466 {
22467         struct triple *imm;
22468         imm = *expr;
22469         while(imm->op == OP_COPY) {
22470                 imm = RHS(imm, 0);
22471         }
22472         if (!is_imm32(imm)) {
22473                 return 0;
22474         }
22475         unuse_triple(*expr, ins);
22476         use_triple(imm, ins);
22477         *expr = imm;
22478         return 1;
22479 }
22480
22481 static int get_imm8(struct triple *ins, struct triple **expr)
22482 {
22483         struct triple *imm;
22484         imm = *expr;
22485         while(imm->op == OP_COPY) {
22486                 imm = RHS(imm, 0);
22487         }
22488         if (!is_imm8(imm)) {
22489                 return 0;
22490         }
22491         unuse_triple(*expr, ins);
22492         use_triple(imm, ins);
22493         *expr = imm;
22494         return 1;
22495 }
22496
22497 #define TEMPLATE_NOP           0
22498 #define TEMPLATE_INTCONST8     1
22499 #define TEMPLATE_INTCONST32    2
22500 #define TEMPLATE_UNKNOWNVAL    3
22501 #define TEMPLATE_COPY8_REG     5
22502 #define TEMPLATE_COPY16_REG    6
22503 #define TEMPLATE_COPY32_REG    7
22504 #define TEMPLATE_COPY_IMM8     8
22505 #define TEMPLATE_COPY_IMM16    9
22506 #define TEMPLATE_COPY_IMM32   10
22507 #define TEMPLATE_PHI8         11
22508 #define TEMPLATE_PHI16        12
22509 #define TEMPLATE_PHI32        13
22510 #define TEMPLATE_STORE8       14
22511 #define TEMPLATE_STORE16      15
22512 #define TEMPLATE_STORE32      16
22513 #define TEMPLATE_LOAD8        17
22514 #define TEMPLATE_LOAD16       18
22515 #define TEMPLATE_LOAD32       19
22516 #define TEMPLATE_BINARY8_REG  20
22517 #define TEMPLATE_BINARY16_REG 21
22518 #define TEMPLATE_BINARY32_REG 22
22519 #define TEMPLATE_BINARY8_IMM  23
22520 #define TEMPLATE_BINARY16_IMM 24
22521 #define TEMPLATE_BINARY32_IMM 25
22522 #define TEMPLATE_SL8_CL       26
22523 #define TEMPLATE_SL16_CL      27
22524 #define TEMPLATE_SL32_CL      28
22525 #define TEMPLATE_SL8_IMM      29
22526 #define TEMPLATE_SL16_IMM     30
22527 #define TEMPLATE_SL32_IMM     31
22528 #define TEMPLATE_UNARY8       32
22529 #define TEMPLATE_UNARY16      33
22530 #define TEMPLATE_UNARY32      34
22531 #define TEMPLATE_CMP8_REG     35
22532 #define TEMPLATE_CMP16_REG    36
22533 #define TEMPLATE_CMP32_REG    37
22534 #define TEMPLATE_CMP8_IMM     38
22535 #define TEMPLATE_CMP16_IMM    39
22536 #define TEMPLATE_CMP32_IMM    40
22537 #define TEMPLATE_TEST8        41
22538 #define TEMPLATE_TEST16       42
22539 #define TEMPLATE_TEST32       43
22540 #define TEMPLATE_SET          44
22541 #define TEMPLATE_JMP          45
22542 #define TEMPLATE_RET          46
22543 #define TEMPLATE_INB_DX       47
22544 #define TEMPLATE_INB_IMM      48
22545 #define TEMPLATE_INW_DX       49
22546 #define TEMPLATE_INW_IMM      50
22547 #define TEMPLATE_INL_DX       51
22548 #define TEMPLATE_INL_IMM      52
22549 #define TEMPLATE_OUTB_DX      53
22550 #define TEMPLATE_OUTB_IMM     54
22551 #define TEMPLATE_OUTW_DX      55
22552 #define TEMPLATE_OUTW_IMM     56
22553 #define TEMPLATE_OUTL_DX      57
22554 #define TEMPLATE_OUTL_IMM     58
22555 #define TEMPLATE_BSF          59
22556 #define TEMPLATE_RDMSR        60
22557 #define TEMPLATE_WRMSR        61
22558 #define TEMPLATE_UMUL8        62
22559 #define TEMPLATE_UMUL16       63
22560 #define TEMPLATE_UMUL32       64
22561 #define TEMPLATE_DIV8         65
22562 #define TEMPLATE_DIV16        66
22563 #define TEMPLATE_DIV32        67
22564 #define LAST_TEMPLATE       TEMPLATE_DIV32
22565 #if LAST_TEMPLATE >= MAX_TEMPLATES
22566 #error "MAX_TEMPLATES to low"
22567 #endif
22568
22569 #define COPY8_REGCM     (REGCM_DIVIDEND64 | REGCM_DIVIDEND32 | REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO | REGCM_MMX | REGCM_XMM)
22570 #define COPY16_REGCM    (REGCM_DIVIDEND64 | REGCM_DIVIDEND32 | REGCM_GPR32 | REGCM_GPR16 | REGCM_MMX | REGCM_XMM)  
22571 #define COPY32_REGCM    (REGCM_DIVIDEND64 | REGCM_DIVIDEND32 | REGCM_GPR32 | REGCM_MMX | REGCM_XMM)
22572
22573
22574 static struct ins_template templates[] = {
22575         [TEMPLATE_NOP]      = {
22576                 .lhs = { 
22577                         [ 0] = { REG_UNNEEDED, REGCM_IMMALL },
22578                         [ 1] = { REG_UNNEEDED, REGCM_IMMALL },
22579                         [ 2] = { REG_UNNEEDED, REGCM_IMMALL },
22580                         [ 3] = { REG_UNNEEDED, REGCM_IMMALL },
22581                         [ 4] = { REG_UNNEEDED, REGCM_IMMALL },
22582                         [ 5] = { REG_UNNEEDED, REGCM_IMMALL },
22583                         [ 6] = { REG_UNNEEDED, REGCM_IMMALL },
22584                         [ 7] = { REG_UNNEEDED, REGCM_IMMALL },
22585                         [ 8] = { REG_UNNEEDED, REGCM_IMMALL },
22586                         [ 9] = { REG_UNNEEDED, REGCM_IMMALL },
22587                         [10] = { REG_UNNEEDED, REGCM_IMMALL },
22588                         [11] = { REG_UNNEEDED, REGCM_IMMALL },
22589                         [12] = { REG_UNNEEDED, REGCM_IMMALL },
22590                         [13] = { REG_UNNEEDED, REGCM_IMMALL },
22591                         [14] = { REG_UNNEEDED, REGCM_IMMALL },
22592                         [15] = { REG_UNNEEDED, REGCM_IMMALL },
22593                         [16] = { REG_UNNEEDED, REGCM_IMMALL },
22594                         [17] = { REG_UNNEEDED, REGCM_IMMALL },
22595                         [18] = { REG_UNNEEDED, REGCM_IMMALL },
22596                         [19] = { REG_UNNEEDED, REGCM_IMMALL },
22597                         [20] = { REG_UNNEEDED, REGCM_IMMALL },
22598                         [21] = { REG_UNNEEDED, REGCM_IMMALL },
22599                         [22] = { REG_UNNEEDED, REGCM_IMMALL },
22600                         [23] = { REG_UNNEEDED, REGCM_IMMALL },
22601                         [24] = { REG_UNNEEDED, REGCM_IMMALL },
22602                         [25] = { REG_UNNEEDED, REGCM_IMMALL },
22603                         [26] = { REG_UNNEEDED, REGCM_IMMALL },
22604                         [27] = { REG_UNNEEDED, REGCM_IMMALL },
22605                         [28] = { REG_UNNEEDED, REGCM_IMMALL },
22606                         [29] = { REG_UNNEEDED, REGCM_IMMALL },
22607                         [30] = { REG_UNNEEDED, REGCM_IMMALL },
22608                         [31] = { REG_UNNEEDED, REGCM_IMMALL },
22609                         [32] = { REG_UNNEEDED, REGCM_IMMALL },
22610                         [33] = { REG_UNNEEDED, REGCM_IMMALL },
22611                         [34] = { REG_UNNEEDED, REGCM_IMMALL },
22612                         [35] = { REG_UNNEEDED, REGCM_IMMALL },
22613                         [36] = { REG_UNNEEDED, REGCM_IMMALL },
22614                         [37] = { REG_UNNEEDED, REGCM_IMMALL },
22615                         [38] = { REG_UNNEEDED, REGCM_IMMALL },
22616                         [39] = { REG_UNNEEDED, REGCM_IMMALL },
22617                         [40] = { REG_UNNEEDED, REGCM_IMMALL },
22618                         [41] = { REG_UNNEEDED, REGCM_IMMALL },
22619                         [42] = { REG_UNNEEDED, REGCM_IMMALL },
22620                         [43] = { REG_UNNEEDED, REGCM_IMMALL },
22621                         [44] = { REG_UNNEEDED, REGCM_IMMALL },
22622                         [45] = { REG_UNNEEDED, REGCM_IMMALL },
22623                         [46] = { REG_UNNEEDED, REGCM_IMMALL },
22624                         [47] = { REG_UNNEEDED, REGCM_IMMALL },
22625                         [48] = { REG_UNNEEDED, REGCM_IMMALL },
22626                         [49] = { REG_UNNEEDED, REGCM_IMMALL },
22627                         [50] = { REG_UNNEEDED, REGCM_IMMALL },
22628                         [51] = { REG_UNNEEDED, REGCM_IMMALL },
22629                         [52] = { REG_UNNEEDED, REGCM_IMMALL },
22630                         [53] = { REG_UNNEEDED, REGCM_IMMALL },
22631                         [54] = { REG_UNNEEDED, REGCM_IMMALL },
22632                         [55] = { REG_UNNEEDED, REGCM_IMMALL },
22633                         [56] = { REG_UNNEEDED, REGCM_IMMALL },
22634                         [57] = { REG_UNNEEDED, REGCM_IMMALL },
22635                         [58] = { REG_UNNEEDED, REGCM_IMMALL },
22636                         [59] = { REG_UNNEEDED, REGCM_IMMALL },
22637                         [60] = { REG_UNNEEDED, REGCM_IMMALL },
22638                         [61] = { REG_UNNEEDED, REGCM_IMMALL },
22639                         [62] = { REG_UNNEEDED, REGCM_IMMALL },
22640                         [63] = { REG_UNNEEDED, REGCM_IMMALL },
22641                 },
22642         },
22643         [TEMPLATE_INTCONST8] = { 
22644                 .lhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
22645         },
22646         [TEMPLATE_INTCONST32] = { 
22647                 .lhs = { [0] = { REG_UNNEEDED, REGCM_IMM32 } },
22648         },
22649         [TEMPLATE_UNKNOWNVAL] = {
22650                 .lhs = { [0] = { REG_UNSET, COPY32_REGCM } },
22651         },
22652         [TEMPLATE_COPY8_REG] = {
22653                 .lhs = { [0] = { REG_UNSET, COPY8_REGCM } },
22654                 .rhs = { [0] = { REG_UNSET, COPY8_REGCM }  },
22655         },
22656         [TEMPLATE_COPY16_REG] = {
22657                 .lhs = { [0] = { REG_UNSET, COPY16_REGCM } },
22658                 .rhs = { [0] = { REG_UNSET, COPY16_REGCM }  },
22659         },
22660         [TEMPLATE_COPY32_REG] = {
22661                 .lhs = { [0] = { REG_UNSET, COPY32_REGCM } },
22662                 .rhs = { [0] = { REG_UNSET, COPY32_REGCM }  },
22663         },
22664         [TEMPLATE_COPY_IMM8] = {
22665                 .lhs = { [0] = { REG_UNSET, COPY8_REGCM } },
22666                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
22667         },
22668         [TEMPLATE_COPY_IMM16] = {
22669                 .lhs = { [0] = { REG_UNSET, COPY16_REGCM } },
22670                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM16 | REGCM_IMM8 } },
22671         },
22672         [TEMPLATE_COPY_IMM32] = {
22673                 .lhs = { [0] = { REG_UNSET, COPY32_REGCM } },
22674                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8 } },
22675         },
22676         [TEMPLATE_PHI8] = { 
22677                 .lhs = { [0] = { REG_VIRT0, COPY8_REGCM } },
22678                 .rhs = { [0] = { REG_VIRT0, COPY8_REGCM } },
22679         },
22680         [TEMPLATE_PHI16] = { 
22681                 .lhs = { [0] = { REG_VIRT0, COPY16_REGCM } },
22682                 .rhs = { [0] = { REG_VIRT0, COPY16_REGCM } }, 
22683         },
22684         [TEMPLATE_PHI32] = { 
22685                 .lhs = { [0] = { REG_VIRT0, COPY32_REGCM } },
22686                 .rhs = { [0] = { REG_VIRT0, COPY32_REGCM } }, 
22687         },
22688         [TEMPLATE_STORE8] = {
22689                 .rhs = { 
22690                         [0] = { REG_UNSET, REGCM_GPR32 },
22691                         [1] = { REG_UNSET, REGCM_GPR8_LO },
22692                 },
22693         },
22694         [TEMPLATE_STORE16] = {
22695                 .rhs = { 
22696                         [0] = { REG_UNSET, REGCM_GPR32 },
22697                         [1] = { REG_UNSET, REGCM_GPR16 },
22698                 },
22699         },
22700         [TEMPLATE_STORE32] = {
22701                 .rhs = { 
22702                         [0] = { REG_UNSET, REGCM_GPR32 },
22703                         [1] = { REG_UNSET, REGCM_GPR32 },
22704                 },
22705         },
22706         [TEMPLATE_LOAD8] = {
22707                 .lhs = { [0] = { REG_UNSET, REGCM_GPR8_LO } },
22708                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22709         },
22710         [TEMPLATE_LOAD16] = {
22711                 .lhs = { [0] = { REG_UNSET, REGCM_GPR16 } },
22712                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22713         },
22714         [TEMPLATE_LOAD32] = {
22715                 .lhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22716                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22717         },
22718         [TEMPLATE_BINARY8_REG] = {
22719                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22720                 .rhs = { 
22721                         [0] = { REG_VIRT0, REGCM_GPR8_LO },
22722                         [1] = { REG_UNSET, REGCM_GPR8_LO },
22723                 },
22724         },
22725         [TEMPLATE_BINARY16_REG] = {
22726                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22727                 .rhs = { 
22728                         [0] = { REG_VIRT0, REGCM_GPR16 },
22729                         [1] = { REG_UNSET, REGCM_GPR16 },
22730                 },
22731         },
22732         [TEMPLATE_BINARY32_REG] = {
22733                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22734                 .rhs = { 
22735                         [0] = { REG_VIRT0, REGCM_GPR32 },
22736                         [1] = { REG_UNSET, REGCM_GPR32 },
22737                 },
22738         },
22739         [TEMPLATE_BINARY8_IMM] = {
22740                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22741                 .rhs = { 
22742                         [0] = { REG_VIRT0,    REGCM_GPR8_LO },
22743                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22744                 },
22745         },
22746         [TEMPLATE_BINARY16_IMM] = {
22747                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22748                 .rhs = { 
22749                         [0] = { REG_VIRT0,    REGCM_GPR16 },
22750                         [1] = { REG_UNNEEDED, REGCM_IMM16 },
22751                 },
22752         },
22753         [TEMPLATE_BINARY32_IMM] = {
22754                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22755                 .rhs = { 
22756                         [0] = { REG_VIRT0,    REGCM_GPR32 },
22757                         [1] = { REG_UNNEEDED, REGCM_IMM32 },
22758                 },
22759         },
22760         [TEMPLATE_SL8_CL] = {
22761                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22762                 .rhs = { 
22763                         [0] = { REG_VIRT0, REGCM_GPR8_LO },
22764                         [1] = { REG_CL, REGCM_GPR8_LO },
22765                 },
22766         },
22767         [TEMPLATE_SL16_CL] = {
22768                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22769                 .rhs = { 
22770                         [0] = { REG_VIRT0, REGCM_GPR16 },
22771                         [1] = { REG_CL, REGCM_GPR8_LO },
22772                 },
22773         },
22774         [TEMPLATE_SL32_CL] = {
22775                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22776                 .rhs = { 
22777                         [0] = { REG_VIRT0, REGCM_GPR32 },
22778                         [1] = { REG_CL, REGCM_GPR8_LO },
22779                 },
22780         },
22781         [TEMPLATE_SL8_IMM] = {
22782                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22783                 .rhs = { 
22784                         [0] = { REG_VIRT0,    REGCM_GPR8_LO },
22785                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22786                 },
22787         },
22788         [TEMPLATE_SL16_IMM] = {
22789                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22790                 .rhs = { 
22791                         [0] = { REG_VIRT0,    REGCM_GPR16 },
22792                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22793                 },
22794         },
22795         [TEMPLATE_SL32_IMM] = {
22796                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22797                 .rhs = { 
22798                         [0] = { REG_VIRT0,    REGCM_GPR32 },
22799                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22800                 },
22801         },
22802         [TEMPLATE_UNARY8] = {
22803                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22804                 .rhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22805         },
22806         [TEMPLATE_UNARY16] = {
22807                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22808                 .rhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22809         },
22810         [TEMPLATE_UNARY32] = {
22811                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22812                 .rhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22813         },
22814         [TEMPLATE_CMP8_REG] = {
22815                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22816                 .rhs = {
22817                         [0] = { REG_UNSET, REGCM_GPR8_LO },
22818                         [1] = { REG_UNSET, REGCM_GPR8_LO },
22819                 },
22820         },
22821         [TEMPLATE_CMP16_REG] = {
22822                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22823                 .rhs = {
22824                         [0] = { REG_UNSET, REGCM_GPR16 },
22825                         [1] = { REG_UNSET, REGCM_GPR16 },
22826                 },
22827         },
22828         [TEMPLATE_CMP32_REG] = {
22829                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22830                 .rhs = {
22831                         [0] = { REG_UNSET, REGCM_GPR32 },
22832                         [1] = { REG_UNSET, REGCM_GPR32 },
22833                 },
22834         },
22835         [TEMPLATE_CMP8_IMM] = {
22836                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22837                 .rhs = {
22838                         [0] = { REG_UNSET, REGCM_GPR8_LO },
22839                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22840                 },
22841         },
22842         [TEMPLATE_CMP16_IMM] = {
22843                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22844                 .rhs = {
22845                         [0] = { REG_UNSET, REGCM_GPR16 },
22846                         [1] = { REG_UNNEEDED, REGCM_IMM16 },
22847                 },
22848         },
22849         [TEMPLATE_CMP32_IMM] = {
22850                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22851                 .rhs = {
22852                         [0] = { REG_UNSET, REGCM_GPR32 },
22853                         [1] = { REG_UNNEEDED, REGCM_IMM32 },
22854                 },
22855         },
22856         [TEMPLATE_TEST8] = {
22857                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22858                 .rhs = { [0] = { REG_UNSET, REGCM_GPR8_LO } },
22859         },
22860         [TEMPLATE_TEST16] = {
22861                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22862                 .rhs = { [0] = { REG_UNSET, REGCM_GPR16 } },
22863         },
22864         [TEMPLATE_TEST32] = {
22865                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22866                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22867         },
22868         [TEMPLATE_SET] = {
22869                 .lhs = { [0] = { REG_UNSET, REGCM_GPR8_LO } },
22870                 .rhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22871         },
22872         [TEMPLATE_JMP] = {
22873                 .rhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22874         },
22875         [TEMPLATE_RET] = {
22876                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22877         },
22878         [TEMPLATE_INB_DX] = {
22879                 .lhs = { [0] = { REG_AL,  REGCM_GPR8_LO } },  
22880                 .rhs = { [0] = { REG_DX, REGCM_GPR16 } },
22881         },
22882         [TEMPLATE_INB_IMM] = {
22883                 .lhs = { [0] = { REG_AL,  REGCM_GPR8_LO } },  
22884                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
22885         },
22886         [TEMPLATE_INW_DX]  = { 
22887                 .lhs = { [0] = { REG_AX,  REGCM_GPR16 } }, 
22888                 .rhs = { [0] = { REG_DX, REGCM_GPR16 } },
22889         },
22890         [TEMPLATE_INW_IMM] = { 
22891                 .lhs = { [0] = { REG_AX,  REGCM_GPR16 } }, 
22892                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
22893         },
22894         [TEMPLATE_INL_DX]  = {
22895                 .lhs = { [0] = { REG_EAX, REGCM_GPR32 } },
22896                 .rhs = { [0] = { REG_DX, REGCM_GPR16 } },
22897         },
22898         [TEMPLATE_INL_IMM] = {
22899                 .lhs = { [0] = { REG_EAX, REGCM_GPR32 } },
22900                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
22901         },
22902         [TEMPLATE_OUTB_DX] = { 
22903                 .rhs = {
22904                         [0] = { REG_AL,  REGCM_GPR8_LO },
22905                         [1] = { REG_DX, REGCM_GPR16 },
22906                 },
22907         },
22908         [TEMPLATE_OUTB_IMM] = { 
22909                 .rhs = {
22910                         [0] = { REG_AL,  REGCM_GPR8_LO },  
22911                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22912                 },
22913         },
22914         [TEMPLATE_OUTW_DX] = { 
22915                 .rhs = {
22916                         [0] = { REG_AX,  REGCM_GPR16 },
22917                         [1] = { REG_DX, REGCM_GPR16 },
22918                 },
22919         },
22920         [TEMPLATE_OUTW_IMM] = {
22921                 .rhs = {
22922                         [0] = { REG_AX,  REGCM_GPR16 }, 
22923                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22924                 },
22925         },
22926         [TEMPLATE_OUTL_DX] = { 
22927                 .rhs = {
22928                         [0] = { REG_EAX, REGCM_GPR32 },
22929                         [1] = { REG_DX, REGCM_GPR16 },
22930                 },
22931         },
22932         [TEMPLATE_OUTL_IMM] = { 
22933                 .rhs = {
22934                         [0] = { REG_EAX, REGCM_GPR32 }, 
22935                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22936                 },
22937         },
22938         [TEMPLATE_BSF] = {
22939                 .lhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22940                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22941         },
22942         [TEMPLATE_RDMSR] = {
22943                 .lhs = { 
22944                         [0] = { REG_EAX, REGCM_GPR32 },
22945                         [1] = { REG_EDX, REGCM_GPR32 },
22946                 },
22947                 .rhs = { [0] = { REG_ECX, REGCM_GPR32 } },
22948         },
22949         [TEMPLATE_WRMSR] = {
22950                 .rhs = {
22951                         [0] = { REG_ECX, REGCM_GPR32 },
22952                         [1] = { REG_EAX, REGCM_GPR32 },
22953                         [2] = { REG_EDX, REGCM_GPR32 },
22954                 },
22955         },
22956         [TEMPLATE_UMUL8] = {
22957                 .lhs = { [0] = { REG_AX, REGCM_GPR16 } },
22958                 .rhs = { 
22959                         [0] = { REG_AL, REGCM_GPR8_LO },
22960                         [1] = { REG_UNSET, REGCM_GPR8_LO },
22961                 },
22962         },
22963         [TEMPLATE_UMUL16] = {
22964                 .lhs = { [0] = { REG_DXAX, REGCM_DIVIDEND32 } },
22965                 .rhs = { 
22966                         [0] = { REG_AX, REGCM_GPR16 },
22967                         [1] = { REG_UNSET, REGCM_GPR16 },
22968                 },
22969         },
22970         [TEMPLATE_UMUL32] = {
22971                 .lhs = { [0] = { REG_EDXEAX, REGCM_DIVIDEND64 } },
22972                 .rhs = { 
22973                         [0] = { REG_EAX, REGCM_GPR32 },
22974                         [1] = { REG_UNSET, REGCM_GPR32 },
22975                 },
22976         },
22977         [TEMPLATE_DIV8] = {
22978                 .lhs = { 
22979                         [0] = { REG_AL, REGCM_GPR8_LO },
22980                         [1] = { REG_AH, REGCM_GPR8 },
22981                 },
22982                 .rhs = {
22983                         [0] = { REG_AX, REGCM_GPR16 },
22984                         [1] = { REG_UNSET, REGCM_GPR8_LO },
22985                 },
22986         },
22987         [TEMPLATE_DIV16] = {
22988                 .lhs = { 
22989                         [0] = { REG_AX, REGCM_GPR16 },
22990                         [1] = { REG_DX, REGCM_GPR16 },
22991                 },
22992                 .rhs = {
22993                         [0] = { REG_DXAX, REGCM_DIVIDEND32 },
22994                         [1] = { REG_UNSET, REGCM_GPR16 },
22995                 },
22996         },
22997         [TEMPLATE_DIV32] = {
22998                 .lhs = { 
22999                         [0] = { REG_EAX, REGCM_GPR32 },
23000                         [1] = { REG_EDX, REGCM_GPR32 },
23001                 },
23002                 .rhs = {
23003                         [0] = { REG_EDXEAX, REGCM_DIVIDEND64 },
23004                         [1] = { REG_UNSET, REGCM_GPR32 },
23005                 },
23006         },
23007 };
23008
23009 static void fixup_branch(struct compile_state *state,
23010         struct triple *branch, int jmp_op, int cmp_op, struct type *cmp_type,
23011         struct triple *left, struct triple *right)
23012 {
23013         struct triple *test;
23014         if (!left) {
23015                 internal_error(state, branch, "no branch test?");
23016         }
23017         test = pre_triple(state, branch,
23018                 cmp_op, cmp_type, left, right);
23019         test->template_id = TEMPLATE_TEST32; 
23020         if (cmp_op == OP_CMP) {
23021                 test->template_id = TEMPLATE_CMP32_REG;
23022                 if (get_imm32(test, &RHS(test, 1))) {
23023                         test->template_id = TEMPLATE_CMP32_IMM;
23024                 }
23025         }
23026         use_triple(RHS(test, 0), test);
23027         use_triple(RHS(test, 1), test);
23028         unuse_triple(RHS(branch, 0), branch);
23029         RHS(branch, 0) = test;
23030         branch->op = jmp_op;
23031         branch->template_id = TEMPLATE_JMP;
23032         use_triple(RHS(branch, 0), branch);
23033 }
23034
23035 static void fixup_branches(struct compile_state *state,
23036         struct triple *cmp, struct triple *use, int jmp_op)
23037 {
23038         struct triple_set *entry, *next;
23039         for(entry = use->use; entry; entry = next) {
23040                 next = entry->next;
23041                 if (entry->member->op == OP_COPY) {
23042                         fixup_branches(state, cmp, entry->member, jmp_op);
23043                 }
23044                 else if (entry->member->op == OP_CBRANCH) {
23045                         struct triple *branch;
23046                         struct triple *left, *right;
23047                         left = right = 0;
23048                         left = RHS(cmp, 0);
23049                         if (cmp->rhs > 1) {
23050                                 right = RHS(cmp, 1);
23051                         }
23052                         branch = entry->member;
23053                         fixup_branch(state, branch, jmp_op, 
23054                                 cmp->op, cmp->type, left, right);
23055                 }
23056         }
23057 }
23058
23059 static void bool_cmp(struct compile_state *state, 
23060         struct triple *ins, int cmp_op, int jmp_op, int set_op)
23061 {
23062         struct triple_set *entry, *next;
23063         struct triple *set, *convert;
23064
23065         /* Put a barrier up before the cmp which preceeds the
23066          * copy instruction.  If a set actually occurs this gives
23067          * us a chance to move variables in registers out of the way.
23068          */
23069
23070         /* Modify the comparison operator */
23071         ins->op = cmp_op;
23072         ins->template_id = TEMPLATE_TEST32;
23073         if (cmp_op == OP_CMP) {
23074                 ins->template_id = TEMPLATE_CMP32_REG;
23075                 if (get_imm32(ins, &RHS(ins, 1))) {
23076                         ins->template_id =  TEMPLATE_CMP32_IMM;
23077                 }
23078         }
23079         /* Generate the instruction sequence that will transform the
23080          * result of the comparison into a logical value.
23081          */
23082         set = post_triple(state, ins, set_op, &uchar_type, ins, 0);
23083         use_triple(ins, set);
23084         set->template_id = TEMPLATE_SET;
23085
23086         convert = set;
23087         if (!equiv_types(ins->type, set->type)) {
23088                 convert = post_triple(state, set, OP_CONVERT, ins->type, set, 0);
23089                 use_triple(set, convert);
23090                 convert->template_id = TEMPLATE_COPY32_REG;
23091         }
23092
23093         for(entry = ins->use; entry; entry = next) {
23094                 next = entry->next;
23095                 if (entry->member == set) {
23096                         continue;
23097                 }
23098                 replace_rhs_use(state, ins, convert, entry->member);
23099         }
23100         fixup_branches(state, ins, convert, jmp_op);
23101 }
23102
23103 struct reg_info arch_reg_lhs(struct compile_state *state, struct triple *ins, int index)
23104 {
23105         struct ins_template *template;
23106         struct reg_info result;
23107         int zlhs;
23108         if (ins->op == OP_PIECE) {
23109                 index = ins->u.cval;
23110                 ins = MISC(ins, 0);
23111         }
23112         zlhs = ins->lhs;
23113         if (triple_is_def(state, ins)) {
23114                 zlhs = 1;
23115         }
23116         if (index >= zlhs) {
23117                 internal_error(state, ins, "index %d out of range for %s",
23118                         index, tops(ins->op));
23119         }
23120         switch(ins->op) {
23121         case OP_ASM:
23122                 template = &ins->u.ainfo->tmpl;
23123                 break;
23124         default:
23125                 if (ins->template_id > LAST_TEMPLATE) {
23126                         internal_error(state, ins, "bad template number %d", 
23127                                 ins->template_id);
23128                 }
23129                 template = &templates[ins->template_id];
23130                 break;
23131         }
23132         result = template->lhs[index];
23133         result.regcm = arch_regcm_normalize(state, result.regcm);
23134         if (result.reg != REG_UNNEEDED) {
23135                 result.regcm &= ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8);
23136         }
23137         if (result.regcm == 0) {
23138                 internal_error(state, ins, "lhs %d regcm == 0", index);
23139         }
23140         return result;
23141 }
23142
23143 struct reg_info arch_reg_rhs(struct compile_state *state, struct triple *ins, int index)
23144 {
23145         struct reg_info result;
23146         struct ins_template *template;
23147         if ((index > ins->rhs) ||
23148                 (ins->op == OP_PIECE)) {
23149                 internal_error(state, ins, "index %d out of range for %s\n",
23150                         index, tops(ins->op));
23151         }
23152         switch(ins->op) {
23153         case OP_ASM:
23154                 template = &ins->u.ainfo->tmpl;
23155                 break;
23156         case OP_PHI:
23157                 index = 0;
23158                 /* Fall through */
23159         default:
23160                 if (ins->template_id > LAST_TEMPLATE) {
23161                         internal_error(state, ins, "bad template number %d", 
23162                                 ins->template_id);
23163                 }
23164                 template = &templates[ins->template_id];
23165                 break;
23166         }
23167         result = template->rhs[index];
23168         result.regcm = arch_regcm_normalize(state, result.regcm);
23169         if (result.regcm == 0) {
23170                 internal_error(state, ins, "rhs %d regcm == 0", index);
23171         }
23172         return result;
23173 }
23174
23175 static struct triple *mod_div(struct compile_state *state,
23176         struct triple *ins, int div_op, int index)
23177 {
23178         struct triple *div, *piece0, *piece1;
23179         
23180         /* Generate the appropriate division instruction */
23181         div = post_triple(state, ins, div_op, ins->type, 0, 0);
23182         RHS(div, 0) = RHS(ins, 0);
23183         RHS(div, 1) = RHS(ins, 1);
23184         piece0 = LHS(div, 0);
23185         piece1 = LHS(div, 1);
23186         div->template_id  = TEMPLATE_DIV32;
23187         use_triple(RHS(div, 0), div);
23188         use_triple(RHS(div, 1), div);
23189         use_triple(LHS(div, 0), div);
23190         use_triple(LHS(div, 1), div);
23191
23192         /* Replate uses of ins with the appropriate piece of the div */
23193         propogate_use(state, ins, LHS(div, index));
23194         release_triple(state, ins);
23195
23196         /* Return the address of the next instruction */
23197         return piece1->next;
23198 }
23199
23200 static int noop_adecl(struct triple *adecl)
23201 {
23202         struct triple_set *use;
23203         /* It's a noop if it doesn't specify stoorage */
23204         if (adecl->lhs == 0) {
23205                 return 1;
23206         }
23207         /* Is the adecl used? If not it's a noop */
23208         for(use = adecl->use; use ; use = use->next) {
23209                 if ((use->member->op != OP_PIECE) ||
23210                         (MISC(use->member, 0) != adecl)) {
23211                         return 0;
23212                 }
23213         }
23214         return 1;
23215 }
23216
23217 static struct triple *x86_deposit(struct compile_state *state, struct triple *ins)
23218 {
23219         struct triple *mask, *nmask, *shift;
23220         struct triple *val, *val_mask, *val_shift;
23221         struct triple *targ, *targ_mask;
23222         struct triple *new;
23223         ulong_t the_mask, the_nmask;
23224
23225         targ = RHS(ins, 0);
23226         val = RHS(ins, 1);
23227
23228         /* Get constant for the mask value */
23229         the_mask = 1;
23230         the_mask <<= ins->u.bitfield.size;
23231         the_mask -= 1;
23232         the_mask <<= ins->u.bitfield.offset;
23233         mask = pre_triple(state, ins, OP_INTCONST, &uint_type, 0, 0);
23234         mask->u.cval = the_mask;
23235
23236         /* Get the inverted mask value */
23237         the_nmask = ~the_mask;
23238         nmask = pre_triple(state, ins, OP_INTCONST, &uint_type, 0, 0);
23239         nmask->u.cval = the_nmask;
23240
23241         /* Get constant for the shift value */
23242         shift = pre_triple(state, ins, OP_INTCONST, &uint_type, 0, 0);
23243         shift->u.cval = ins->u.bitfield.offset;
23244
23245         /* Shift and mask the source value */
23246         val_shift = val;
23247         if (shift->u.cval != 0) {
23248                 val_shift = pre_triple(state, ins, OP_SL, val->type, val, shift);
23249                 use_triple(val, val_shift);
23250                 use_triple(shift, val_shift);
23251         }
23252         val_mask = val_shift;
23253         if (is_signed(val->type)) {
23254                 val_mask = pre_triple(state, ins, OP_AND, val->type, val_shift, mask);
23255                 use_triple(val_shift, val_mask);
23256                 use_triple(mask, val_mask);
23257         }
23258
23259         /* Mask the target value */
23260         targ_mask = pre_triple(state, ins, OP_AND, targ->type, targ, nmask);
23261         use_triple(targ, targ_mask);
23262         use_triple(nmask, targ_mask);
23263
23264         /* Now combined them together */
23265         new = pre_triple(state, ins, OP_OR, targ->type, targ_mask, val_mask);
23266         use_triple(targ_mask, new);
23267         use_triple(val_mask, new);
23268
23269         /* Move all of the users over to the new expression */
23270         propogate_use(state, ins, new);
23271
23272         /* Delete the original triple */
23273         release_triple(state, ins);
23274
23275         /* Restart the transformation at mask */
23276         return mask;
23277 }
23278
23279 static struct triple *x86_extract(struct compile_state *state, struct triple *ins)
23280 {
23281         struct triple *mask, *shift;
23282         struct triple *val, *val_mask, *val_shift;
23283         ulong_t the_mask;
23284
23285         val = RHS(ins, 0);
23286
23287         /* Get constant for the mask value */
23288         the_mask = 1;
23289         the_mask <<= ins->u.bitfield.size;
23290         the_mask -= 1;
23291         mask = pre_triple(state, ins, OP_INTCONST, &int_type, 0, 0);
23292         mask->u.cval = the_mask;
23293
23294         /* Get constant for the right shift value */
23295         shift = pre_triple(state, ins, OP_INTCONST, &int_type, 0, 0);
23296         shift->u.cval = ins->u.bitfield.offset;
23297
23298         /* Shift arithmetic right, to correct the sign */
23299         val_shift = val;
23300         if (shift->u.cval != 0) {
23301                 int op;
23302                 if (ins->op == OP_SEXTRACT) {
23303                         op = OP_SSR;
23304                 } else {
23305                         op = OP_USR;
23306                 }
23307                 val_shift = pre_triple(state, ins, op, val->type, val, shift);
23308                 use_triple(val, val_shift);
23309                 use_triple(shift, val_shift);
23310         }
23311
23312         /* Finally mask the value */
23313         val_mask = pre_triple(state, ins, OP_AND, ins->type, val_shift, mask);
23314         use_triple(val_shift, val_mask);
23315         use_triple(mask,      val_mask);
23316
23317         /* Move all of the users over to the new expression */
23318         propogate_use(state, ins, val_mask);
23319
23320         /* Release the original instruction */
23321         release_triple(state, ins);
23322
23323         return mask;
23324
23325 }
23326
23327 static struct triple *transform_to_arch_instruction(
23328         struct compile_state *state, struct triple *ins)
23329 {
23330         /* Transform from generic 3 address instructions
23331          * to archtecture specific instructions.
23332          * And apply architecture specific constraints to instructions.
23333          * Copies are inserted to preserve the register flexibility
23334          * of 3 address instructions.
23335          */
23336         struct triple *next, *value;
23337         size_t size;
23338         next = ins->next;
23339         switch(ins->op) {
23340         case OP_INTCONST:
23341                 ins->template_id = TEMPLATE_INTCONST32;
23342                 if (ins->u.cval < 256) {
23343                         ins->template_id = TEMPLATE_INTCONST8;
23344                 }
23345                 break;
23346         case OP_ADDRCONST:
23347                 ins->template_id = TEMPLATE_INTCONST32;
23348                 break;
23349         case OP_UNKNOWNVAL:
23350                 ins->template_id = TEMPLATE_UNKNOWNVAL;
23351                 break;
23352         case OP_NOOP:
23353         case OP_SDECL:
23354         case OP_BLOBCONST:
23355         case OP_LABEL:
23356                 ins->template_id = TEMPLATE_NOP;
23357                 break;
23358         case OP_COPY:
23359         case OP_CONVERT:
23360                 size = size_of(state, ins->type);
23361                 value = RHS(ins, 0);
23362                 if (is_imm8(value) && (size <= SIZEOF_I8)) {
23363                         ins->template_id = TEMPLATE_COPY_IMM8;
23364                 }
23365                 else if (is_imm16(value) && (size <= SIZEOF_I16)) {
23366                         ins->template_id = TEMPLATE_COPY_IMM16;
23367                 }
23368                 else if (is_imm32(value) && (size <= SIZEOF_I32)) {
23369                         ins->template_id = TEMPLATE_COPY_IMM32;
23370                 }
23371                 else if (is_const(value)) {
23372                         internal_error(state, ins, "bad constant passed to copy");
23373                 }
23374                 else if (size <= SIZEOF_I8) {
23375                         ins->template_id = TEMPLATE_COPY8_REG;
23376                 }
23377                 else if (size <= SIZEOF_I16) {
23378                         ins->template_id = TEMPLATE_COPY16_REG;
23379                 }
23380                 else if (size <= SIZEOF_I32) {
23381                         ins->template_id = TEMPLATE_COPY32_REG;
23382                 }
23383                 else {
23384                         internal_error(state, ins, "bad type passed to copy");
23385                 }
23386                 break;
23387         case OP_PHI:
23388                 size = size_of(state, ins->type);
23389                 if (size <= SIZEOF_I8) {
23390                         ins->template_id = TEMPLATE_PHI8;
23391                 }
23392                 else if (size <= SIZEOF_I16) {
23393                         ins->template_id = TEMPLATE_PHI16;
23394                 }
23395                 else if (size <= SIZEOF_I32) {
23396                         ins->template_id = TEMPLATE_PHI32;
23397                 }
23398                 else {
23399                         internal_error(state, ins, "bad type passed to phi");
23400                 }
23401                 break;
23402         case OP_ADECL:
23403                 /* Adecls should always be treated as dead code and
23404                  * removed.  If we are not optimizing they may linger.
23405                  */
23406                 if (!noop_adecl(ins)) {
23407                         internal_error(state, ins, "adecl remains?");
23408                 }
23409                 ins->template_id = TEMPLATE_NOP;
23410                 next = after_lhs(state, ins);
23411                 break;
23412         case OP_STORE:
23413                 switch(ins->type->type & TYPE_MASK) {
23414                 case TYPE_CHAR:    case TYPE_UCHAR:
23415                         ins->template_id = TEMPLATE_STORE8;
23416                         break;
23417                 case TYPE_SHORT:   case TYPE_USHORT:
23418                         ins->template_id = TEMPLATE_STORE16;
23419                         break;
23420                 case TYPE_INT:     case TYPE_UINT:
23421                 case TYPE_LONG:    case TYPE_ULONG:
23422                 case TYPE_POINTER:
23423                         ins->template_id = TEMPLATE_STORE32;
23424                         break;
23425                 default:
23426                         internal_error(state, ins, "unknown type in store");
23427                         break;
23428                 }
23429                 break;
23430         case OP_LOAD:
23431                 switch(ins->type->type & TYPE_MASK) {
23432                 case TYPE_CHAR:   case TYPE_UCHAR:
23433                 case TYPE_SHORT:  case TYPE_USHORT:
23434                 case TYPE_INT:    case TYPE_UINT:
23435                 case TYPE_LONG:   case TYPE_ULONG:
23436                 case TYPE_POINTER:
23437                         break;
23438                 default:
23439                         internal_error(state, ins, "unknown type in load");
23440                         break;
23441                 }
23442                 ins->template_id = TEMPLATE_LOAD32;
23443                 break;
23444         case OP_ADD:
23445         case OP_SUB:
23446         case OP_AND:
23447         case OP_XOR:
23448         case OP_OR:
23449         case OP_SMUL:
23450                 ins->template_id = TEMPLATE_BINARY32_REG;
23451                 if (get_imm32(ins, &RHS(ins, 1))) {
23452                         ins->template_id = TEMPLATE_BINARY32_IMM;
23453                 }
23454                 break;
23455         case OP_SDIVT:
23456         case OP_UDIVT:
23457                 ins->template_id = TEMPLATE_DIV32;
23458                 next = after_lhs(state, ins);
23459                 break;
23460         case OP_UMUL:
23461                 ins->template_id = TEMPLATE_UMUL32;
23462                 break;
23463         case OP_UDIV:
23464                 next = mod_div(state, ins, OP_UDIVT, 0);
23465                 break;
23466         case OP_SDIV:
23467                 next = mod_div(state, ins, OP_SDIVT, 0);
23468                 break;
23469         case OP_UMOD:
23470                 next = mod_div(state, ins, OP_UDIVT, 1);
23471                 break;
23472         case OP_SMOD:
23473                 next = mod_div(state, ins, OP_SDIVT, 1);
23474                 break;
23475         case OP_SL:
23476         case OP_SSR:
23477         case OP_USR:
23478                 ins->template_id = TEMPLATE_SL32_CL;
23479                 if (get_imm8(ins, &RHS(ins, 1))) {
23480                         ins->template_id = TEMPLATE_SL32_IMM;
23481                 } else if (size_of(state, RHS(ins, 1)->type) > SIZEOF_CHAR) {
23482                         typed_pre_copy(state, &uchar_type, ins, 1);
23483                 }
23484                 break;
23485         case OP_INVERT:
23486         case OP_NEG:
23487                 ins->template_id = TEMPLATE_UNARY32;
23488                 break;
23489         case OP_EQ: 
23490                 bool_cmp(state, ins, OP_CMP, OP_JMP_EQ, OP_SET_EQ); 
23491                 break;
23492         case OP_NOTEQ:
23493                 bool_cmp(state, ins, OP_CMP, OP_JMP_NOTEQ, OP_SET_NOTEQ);
23494                 break;
23495         case OP_SLESS:
23496                 bool_cmp(state, ins, OP_CMP, OP_JMP_SLESS, OP_SET_SLESS);
23497                 break;
23498         case OP_ULESS:
23499                 bool_cmp(state, ins, OP_CMP, OP_JMP_ULESS, OP_SET_ULESS);
23500                 break;
23501         case OP_SMORE:
23502                 bool_cmp(state, ins, OP_CMP, OP_JMP_SMORE, OP_SET_SMORE);
23503                 break;
23504         case OP_UMORE:
23505                 bool_cmp(state, ins, OP_CMP, OP_JMP_UMORE, OP_SET_UMORE);
23506                 break;
23507         case OP_SLESSEQ:
23508                 bool_cmp(state, ins, OP_CMP, OP_JMP_SLESSEQ, OP_SET_SLESSEQ);
23509                 break;
23510         case OP_ULESSEQ:
23511                 bool_cmp(state, ins, OP_CMP, OP_JMP_ULESSEQ, OP_SET_ULESSEQ);
23512                 break;
23513         case OP_SMOREEQ:
23514                 bool_cmp(state, ins, OP_CMP, OP_JMP_SMOREEQ, OP_SET_SMOREEQ);
23515                 break;
23516         case OP_UMOREEQ:
23517                 bool_cmp(state, ins, OP_CMP, OP_JMP_UMOREEQ, OP_SET_UMOREEQ);
23518                 break;
23519         case OP_LTRUE:
23520                 bool_cmp(state, ins, OP_TEST, OP_JMP_NOTEQ, OP_SET_NOTEQ);
23521                 break;
23522         case OP_LFALSE:
23523                 bool_cmp(state, ins, OP_TEST, OP_JMP_EQ, OP_SET_EQ);
23524                 break;
23525         case OP_BRANCH:
23526                 ins->op = OP_JMP;
23527                 ins->template_id = TEMPLATE_NOP;
23528                 break;
23529         case OP_CBRANCH:
23530                 fixup_branch(state, ins, OP_JMP_NOTEQ, OP_TEST, 
23531                         RHS(ins, 0)->type, RHS(ins, 0), 0);
23532                 break;
23533         case OP_CALL:
23534                 ins->template_id = TEMPLATE_NOP;
23535                 break;
23536         case OP_RET:
23537                 ins->template_id = TEMPLATE_RET;
23538                 break;
23539         case OP_INB:
23540         case OP_INW:
23541         case OP_INL:
23542                 switch(ins->op) {
23543                 case OP_INB: ins->template_id = TEMPLATE_INB_DX; break;
23544                 case OP_INW: ins->template_id = TEMPLATE_INW_DX; break;
23545                 case OP_INL: ins->template_id = TEMPLATE_INL_DX; break;
23546                 }
23547                 if (get_imm8(ins, &RHS(ins, 0))) {
23548                         ins->template_id += 1;
23549                 }
23550                 break;
23551         case OP_OUTB:
23552         case OP_OUTW:
23553         case OP_OUTL:
23554                 switch(ins->op) {
23555                 case OP_OUTB: ins->template_id = TEMPLATE_OUTB_DX; break;
23556                 case OP_OUTW: ins->template_id = TEMPLATE_OUTW_DX; break;
23557                 case OP_OUTL: ins->template_id = TEMPLATE_OUTL_DX; break;
23558                 }
23559                 if (get_imm8(ins, &RHS(ins, 1))) {
23560                         ins->template_id += 1;
23561                 }
23562                 break;
23563         case OP_BSF:
23564         case OP_BSR:
23565                 ins->template_id = TEMPLATE_BSF;
23566                 break;
23567         case OP_RDMSR:
23568                 ins->template_id = TEMPLATE_RDMSR;
23569                 next = after_lhs(state, ins);
23570                 break;
23571         case OP_WRMSR:
23572                 ins->template_id = TEMPLATE_WRMSR;
23573                 break;
23574         case OP_HLT:
23575                 ins->template_id = TEMPLATE_NOP;
23576                 break;
23577         case OP_ASM:
23578                 ins->template_id = TEMPLATE_NOP;
23579                 next = after_lhs(state, ins);
23580                 break;
23581                 /* Already transformed instructions */
23582         case OP_TEST:
23583                 ins->template_id = TEMPLATE_TEST32;
23584                 break;
23585         case OP_CMP:
23586                 ins->template_id = TEMPLATE_CMP32_REG;
23587                 if (get_imm32(ins, &RHS(ins, 1))) {
23588                         ins->template_id = TEMPLATE_CMP32_IMM;
23589                 }
23590                 break;
23591         case OP_JMP:
23592                 ins->template_id = TEMPLATE_NOP;
23593                 break;
23594         case OP_JMP_EQ:      case OP_JMP_NOTEQ:
23595         case OP_JMP_SLESS:   case OP_JMP_ULESS:
23596         case OP_JMP_SMORE:   case OP_JMP_UMORE:
23597         case OP_JMP_SLESSEQ: case OP_JMP_ULESSEQ:
23598         case OP_JMP_SMOREEQ: case OP_JMP_UMOREEQ:
23599                 ins->template_id = TEMPLATE_JMP;
23600                 break;
23601         case OP_SET_EQ:      case OP_SET_NOTEQ:
23602         case OP_SET_SLESS:   case OP_SET_ULESS:
23603         case OP_SET_SMORE:   case OP_SET_UMORE:
23604         case OP_SET_SLESSEQ: case OP_SET_ULESSEQ:
23605         case OP_SET_SMOREEQ: case OP_SET_UMOREEQ:
23606                 ins->template_id = TEMPLATE_SET;
23607                 break;
23608         case OP_DEPOSIT:
23609                 next = x86_deposit(state, ins);
23610                 break;
23611         case OP_SEXTRACT:
23612         case OP_UEXTRACT:
23613                 next = x86_extract(state, ins);
23614                 break;
23615                 /* Unhandled instructions */
23616         case OP_PIECE:
23617         default:
23618                 internal_error(state, ins, "unhandled ins: %d %s",
23619                         ins->op, tops(ins->op));
23620                 break;
23621         }
23622         return next;
23623 }
23624
23625 static long next_label(struct compile_state *state)
23626 {
23627         static long label_counter = 1000;
23628         return ++label_counter;
23629 }
23630 static void generate_local_labels(struct compile_state *state)
23631 {
23632         struct triple *first, *label;
23633         first = state->first;
23634         label = first;
23635         do {
23636                 if ((label->op == OP_LABEL) || 
23637                         (label->op == OP_SDECL)) {
23638                         if (label->use) {
23639                                 label->u.cval = next_label(state);
23640                         } else {
23641                                 label->u.cval = 0;
23642                         }
23643                         
23644                 }
23645                 label = label->next;
23646         } while(label != first);
23647 }
23648
23649 static int check_reg(struct compile_state *state, 
23650         struct triple *triple, int classes)
23651 {
23652         unsigned mask;
23653         int reg;
23654         reg = ID_REG(triple->id);
23655         if (reg == REG_UNSET) {
23656                 internal_error(state, triple, "register not set");
23657         }
23658         mask = arch_reg_regcm(state, reg);
23659         if (!(classes & mask)) {
23660                 internal_error(state, triple, "reg %d in wrong class",
23661                         reg);
23662         }
23663         return reg;
23664 }
23665
23666
23667 #if REG_XMM7 != 44
23668 #error "Registers have renumberd fix arch_reg_str"
23669 #endif
23670 static const char *arch_regs[] = {
23671         "%unset",
23672         "%unneeded",
23673         "%eflags",
23674         "%al", "%bl", "%cl", "%dl", "%ah", "%bh", "%ch", "%dh",
23675         "%ax", "%bx", "%cx", "%dx", "%si", "%di", "%bp", "%sp",
23676         "%eax", "%ebx", "%ecx", "%edx", "%esi", "%edi", "%ebp", "%esp",
23677         "%edx:%eax",
23678         "%dx:%ax",
23679         "%mm0", "%mm1", "%mm2", "%mm3", "%mm4", "%mm5", "%mm6", "%mm7",
23680         "%xmm0", "%xmm1", "%xmm2", "%xmm3", 
23681         "%xmm4", "%xmm5", "%xmm6", "%xmm7",
23682 };
23683 static const char *arch_reg_str(int reg)
23684 {
23685         if (!((reg >= REG_EFLAGS) && (reg <= REG_XMM7))) {
23686                 reg = 0;
23687         }
23688         return arch_regs[reg];
23689 }
23690
23691 static const char *reg(struct compile_state *state, struct triple *triple,
23692         int classes)
23693 {
23694         int reg;
23695         reg = check_reg(state, triple, classes);
23696         return arch_reg_str(reg);
23697 }
23698
23699 static int arch_reg_size(int reg)
23700 {
23701         int size;
23702         size = 0;
23703         if (reg == REG_EFLAGS) {
23704                 size = 32;
23705         }
23706         else if ((reg >= REG_AL) && (reg <= REG_DH)) {
23707                 size = 8;
23708         }
23709         else if ((reg >= REG_AX) && (reg <= REG_SP)) {
23710                 size = 16;
23711         }
23712         else if ((reg >= REG_EAX) && (reg <= REG_ESP)) {
23713                 size = 32;
23714         }
23715         else if (reg == REG_EDXEAX) {
23716                 size = 64;
23717         }
23718         else if (reg == REG_DXAX) {
23719                 size = 32;
23720         }
23721         else if ((reg >= REG_MMX0) && (reg <= REG_MMX7)) {
23722                 size = 64;
23723         }
23724         else if ((reg >= REG_XMM0) && (reg <= REG_XMM7)) {
23725                 size = 128;
23726         }
23727         return size;
23728 }
23729
23730 static int reg_size(struct compile_state *state, struct triple *ins)
23731 {
23732         int reg;
23733         reg = ID_REG(ins->id);
23734         if (reg == REG_UNSET) {
23735                 internal_error(state, ins, "register not set");
23736         }
23737         return arch_reg_size(reg);
23738 }
23739         
23740
23741
23742 const char *type_suffix(struct compile_state *state, struct type *type)
23743 {
23744         const char *suffix;
23745         switch(size_of(state, type)) {
23746         case SIZEOF_I8:  suffix = "b"; break;
23747         case SIZEOF_I16: suffix = "w"; break;
23748         case SIZEOF_I32: suffix = "l"; break;
23749         default:
23750                 internal_error(state, 0, "unknown suffix");
23751                 suffix = 0;
23752                 break;
23753         }
23754         return suffix;
23755 }
23756
23757 static void print_const_val(
23758         struct compile_state *state, struct triple *ins, FILE *fp)
23759 {
23760         switch(ins->op) {
23761         case OP_INTCONST:
23762                 fprintf(fp, " $%ld ", 
23763                         (long)(ins->u.cval));
23764                 break;
23765         case OP_ADDRCONST:
23766                 if ((MISC(ins, 0)->op != OP_SDECL) &&
23767                         (MISC(ins, 0)->op != OP_LABEL))
23768                 {
23769                         internal_error(state, ins, "bad base for addrconst");
23770                 }
23771                 if (MISC(ins, 0)->u.cval <= 0) {
23772                         internal_error(state, ins, "unlabeled constant");
23773                 }
23774                 fprintf(fp, " $L%s%lu+%lu ",
23775                         state->compiler->label_prefix, 
23776                         (unsigned long)(MISC(ins, 0)->u.cval),
23777                         (unsigned long)(ins->u.cval));
23778                 break;
23779         default:
23780                 internal_error(state, ins, "unknown constant type");
23781                 break;
23782         }
23783 }
23784
23785 static void print_const(struct compile_state *state,
23786         struct triple *ins, FILE *fp)
23787 {
23788         switch(ins->op) {
23789         case OP_INTCONST:
23790                 switch(ins->type->type & TYPE_MASK) {
23791                 case TYPE_CHAR:
23792                 case TYPE_UCHAR:
23793                         fprintf(fp, ".byte 0x%02lx\n", 
23794                                 (unsigned long)(ins->u.cval));
23795                         break;
23796                 case TYPE_SHORT:
23797                 case TYPE_USHORT:
23798                         fprintf(fp, ".short 0x%04lx\n", 
23799                                 (unsigned long)(ins->u.cval));
23800                         break;
23801                 case TYPE_INT:
23802                 case TYPE_UINT:
23803                 case TYPE_LONG:
23804                 case TYPE_ULONG:
23805                 case TYPE_POINTER:
23806                         fprintf(fp, ".int %lu\n", 
23807                                 (unsigned long)(ins->u.cval));
23808                         break;
23809                 default:
23810                         fprintf(state->errout, "type: ");
23811                         name_of(state->errout, ins->type);
23812                         fprintf(state->errout, "\n");
23813                         internal_error(state, ins, "Unknown constant type. Val: %lu",
23814                                 (unsigned long)(ins->u.cval));
23815                 }
23816                 
23817                 break;
23818         case OP_ADDRCONST:
23819                 if ((MISC(ins, 0)->op != OP_SDECL) &&
23820                         (MISC(ins, 0)->op != OP_LABEL)) {
23821                         internal_error(state, ins, "bad base for addrconst");
23822                 }
23823                 if (MISC(ins, 0)->u.cval <= 0) {
23824                         internal_error(state, ins, "unlabeled constant");
23825                 }
23826                 fprintf(fp, ".int L%s%lu+%lu\n",
23827                         state->compiler->label_prefix,
23828                         (unsigned long)(MISC(ins, 0)->u.cval),
23829                         (unsigned long)(ins->u.cval));
23830                 break;
23831         case OP_BLOBCONST:
23832         {
23833                 unsigned char *blob;
23834                 size_t size, i;
23835                 size = size_of_in_bytes(state, ins->type);
23836                 blob = ins->u.blob;
23837                 for(i = 0; i < size; i++) {
23838                         fprintf(fp, ".byte 0x%02x\n",
23839                                 blob[i]);
23840                 }
23841                 break;
23842         }
23843         default:
23844                 internal_error(state, ins, "Unknown constant type");
23845                 break;
23846         }
23847 }
23848
23849 #define TEXT_SECTION ".rom.text"
23850 #define DATA_SECTION ".rom.data"
23851
23852 static long get_const_pool_ref(
23853         struct compile_state *state, struct triple *ins, size_t size, FILE *fp)
23854 {
23855         size_t fill_bytes;
23856         long ref;
23857         ref = next_label(state);
23858         fprintf(fp, ".section \"" DATA_SECTION "\"\n");
23859         fprintf(fp, ".balign %ld\n", (long int)align_of_in_bytes(state, ins->type));
23860         fprintf(fp, "L%s%lu:\n", state->compiler->label_prefix, ref);
23861         print_const(state, ins, fp);
23862         fill_bytes = bits_to_bytes(size - size_of(state, ins->type));
23863         if (fill_bytes) {
23864                 fprintf(fp, ".fill %ld, 1, 0\n", (long int)fill_bytes);
23865         }
23866         fprintf(fp, ".section \"" TEXT_SECTION "\"\n");
23867         return ref;
23868 }
23869
23870 static long get_mask_pool_ref(
23871         struct compile_state *state, struct triple *ins, unsigned long mask, FILE *fp)
23872 {
23873         long ref;
23874         if (mask == 0xff) {
23875                 ref = 1;
23876         }
23877         else if (mask == 0xffff) {
23878                 ref = 2;
23879         }
23880         else {
23881                 ref = 0;
23882                 internal_error(state, ins, "unhandled mask value");
23883         }
23884         return ref;
23885 }
23886
23887 static void print_binary_op(struct compile_state *state,
23888         const char *op, struct triple *ins, FILE *fp) 
23889 {
23890         unsigned mask;
23891         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
23892         if (ID_REG(RHS(ins, 0)->id) != ID_REG(ins->id)) {
23893                 internal_error(state, ins, "invalid register assignment");
23894         }
23895         if (is_const(RHS(ins, 1))) {
23896                 fprintf(fp, "\t%s ", op);
23897                 print_const_val(state, RHS(ins, 1), fp);
23898                 fprintf(fp, ", %s\n",
23899                         reg(state, RHS(ins, 0), mask));
23900         }
23901         else {
23902                 unsigned lmask, rmask;
23903                 int lreg, rreg;
23904                 lreg = check_reg(state, RHS(ins, 0), mask);
23905                 rreg = check_reg(state, RHS(ins, 1), mask);
23906                 lmask = arch_reg_regcm(state, lreg);
23907                 rmask = arch_reg_regcm(state, rreg);
23908                 mask = lmask & rmask;
23909                 fprintf(fp, "\t%s %s, %s\n",
23910                         op,
23911                         reg(state, RHS(ins, 1), mask),
23912                         reg(state, RHS(ins, 0), mask));
23913         }
23914 }
23915 static void print_unary_op(struct compile_state *state, 
23916         const char *op, struct triple *ins, FILE *fp)
23917 {
23918         unsigned mask;
23919         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
23920         fprintf(fp, "\t%s %s\n",
23921                 op,
23922                 reg(state, RHS(ins, 0), mask));
23923 }
23924
23925 static void print_op_shift(struct compile_state *state,
23926         const char *op, struct triple *ins, FILE *fp)
23927 {
23928         unsigned mask;
23929         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
23930         if (ID_REG(RHS(ins, 0)->id) != ID_REG(ins->id)) {
23931                 internal_error(state, ins, "invalid register assignment");
23932         }
23933         if (is_const(RHS(ins, 1))) {
23934                 fprintf(fp, "\t%s ", op);
23935                 print_const_val(state, RHS(ins, 1), fp);
23936                 fprintf(fp, ", %s\n",
23937                         reg(state, RHS(ins, 0), mask));
23938         }
23939         else {
23940                 fprintf(fp, "\t%s %s, %s\n",
23941                         op,
23942                         reg(state, RHS(ins, 1), REGCM_GPR8_LO),
23943                         reg(state, RHS(ins, 0), mask));
23944         }
23945 }
23946
23947 static void print_op_in(struct compile_state *state, struct triple *ins, FILE *fp)
23948 {
23949         const char *op;
23950         int mask;
23951         int dreg;
23952         mask = 0;
23953         switch(ins->op) {
23954         case OP_INB: op = "inb", mask = REGCM_GPR8_LO; break;
23955         case OP_INW: op = "inw", mask = REGCM_GPR16; break;
23956         case OP_INL: op = "inl", mask = REGCM_GPR32; break;
23957         default:
23958                 internal_error(state, ins, "not an in operation");
23959                 op = 0;
23960                 break;
23961         }
23962         dreg = check_reg(state, ins, mask);
23963         if (!reg_is_reg(state, dreg, REG_EAX)) {
23964                 internal_error(state, ins, "dst != %%eax");
23965         }
23966         if (is_const(RHS(ins, 0))) {
23967                 fprintf(fp, "\t%s ", op);
23968                 print_const_val(state, RHS(ins, 0), fp);
23969                 fprintf(fp, ", %s\n",
23970                         reg(state, ins, mask));
23971         }
23972         else {
23973                 int addr_reg;
23974                 addr_reg = check_reg(state, RHS(ins, 0), REGCM_GPR16);
23975                 if (!reg_is_reg(state, addr_reg, REG_DX)) {
23976                         internal_error(state, ins, "src != %%dx");
23977                 }
23978                 fprintf(fp, "\t%s %s, %s\n",
23979                         op, 
23980                         reg(state, RHS(ins, 0), REGCM_GPR16),
23981                         reg(state, ins, mask));
23982         }
23983 }
23984
23985 static void print_op_out(struct compile_state *state, struct triple *ins, FILE *fp)
23986 {
23987         const char *op;
23988         int mask;
23989         int lreg;
23990         mask = 0;
23991         switch(ins->op) {
23992         case OP_OUTB: op = "outb", mask = REGCM_GPR8_LO; break;
23993         case OP_OUTW: op = "outw", mask = REGCM_GPR16; break;
23994         case OP_OUTL: op = "outl", mask = REGCM_GPR32; break;
23995         default:
23996                 internal_error(state, ins, "not an out operation");
23997                 op = 0;
23998                 break;
23999         }
24000         lreg = check_reg(state, RHS(ins, 0), mask);
24001         if (!reg_is_reg(state, lreg, REG_EAX)) {
24002                 internal_error(state, ins, "src != %%eax");
24003         }
24004         if (is_const(RHS(ins, 1))) {
24005                 fprintf(fp, "\t%s %s,", 
24006                         op, reg(state, RHS(ins, 0), mask));
24007                 print_const_val(state, RHS(ins, 1), fp);
24008                 fprintf(fp, "\n");
24009         }
24010         else {
24011                 int addr_reg;
24012                 addr_reg = check_reg(state, RHS(ins, 1), REGCM_GPR16);
24013                 if (!reg_is_reg(state, addr_reg, REG_DX)) {
24014                         internal_error(state, ins, "dst != %%dx");
24015                 }
24016                 fprintf(fp, "\t%s %s, %s\n",
24017                         op, 
24018                         reg(state, RHS(ins, 0), mask),
24019                         reg(state, RHS(ins, 1), REGCM_GPR16));
24020         }
24021 }
24022
24023 static void print_op_move(struct compile_state *state,
24024         struct triple *ins, FILE *fp)
24025 {
24026         /* op_move is complex because there are many types
24027          * of registers we can move between.
24028          * Because OP_COPY will be introduced in arbitrary locations
24029          * OP_COPY must not affect flags.
24030          * OP_CONVERT can change the flags and it is the only operation
24031          * where it is expected the types in the registers can change.
24032          */
24033         int omit_copy = 1; /* Is it o.k. to omit a noop copy? */
24034         struct triple *dst, *src;
24035         if (state->arch->features & X86_NOOP_COPY) {
24036                 omit_copy = 0;
24037         }
24038         if ((ins->op == OP_COPY) || (ins->op == OP_CONVERT)) {
24039                 src = RHS(ins, 0);
24040                 dst = ins;
24041         }
24042         else {
24043                 internal_error(state, ins, "unknown move operation");
24044                 src = dst = 0;
24045         }
24046         if (reg_size(state, dst) < size_of(state, dst->type)) {
24047                 internal_error(state, ins, "Invalid destination register");
24048         }
24049         if (!equiv_types(src->type, dst->type) && (dst->op == OP_COPY)) {
24050                 fprintf(state->errout, "src type: ");
24051                 name_of(state->errout, src->type);
24052                 fprintf(state->errout, "\n");
24053                 fprintf(state->errout, "dst type: ");
24054                 name_of(state->errout, dst->type);
24055                 fprintf(state->errout, "\n");
24056                 internal_error(state, ins, "Type mismatch for OP_COPY");
24057         }
24058
24059         if (!is_const(src)) {
24060                 int src_reg, dst_reg;
24061                 int src_regcm, dst_regcm;
24062                 src_reg   = ID_REG(src->id);
24063                 dst_reg   = ID_REG(dst->id);
24064                 src_regcm = arch_reg_regcm(state, src_reg);
24065                 dst_regcm = arch_reg_regcm(state, dst_reg);
24066                 /* If the class is the same just move the register */
24067                 if (src_regcm & dst_regcm & 
24068                         (REGCM_GPR8_LO | REGCM_GPR16 | REGCM_GPR32)) {
24069                         if ((src_reg != dst_reg) || !omit_copy) {
24070                                 fprintf(fp, "\tmov %s, %s\n",
24071                                         reg(state, src, src_regcm),
24072                                         reg(state, dst, dst_regcm));
24073                         }
24074                 }
24075                 /* Move 32bit to 16bit */
24076                 else if ((src_regcm & REGCM_GPR32) &&
24077                         (dst_regcm & REGCM_GPR16)) {
24078                         src_reg = (src_reg - REGC_GPR32_FIRST) + REGC_GPR16_FIRST;
24079                         if ((src_reg != dst_reg) || !omit_copy) {
24080                                 fprintf(fp, "\tmovw %s, %s\n",
24081                                         arch_reg_str(src_reg), 
24082                                         arch_reg_str(dst_reg));
24083                         }
24084                 }
24085                 /* Move from 32bit gprs to 16bit gprs */
24086                 else if ((src_regcm & REGCM_GPR32) &&
24087                         (dst_regcm & REGCM_GPR16)) {
24088                         dst_reg = (dst_reg - REGC_GPR16_FIRST) + REGC_GPR32_FIRST;
24089                         if ((src_reg != dst_reg) || !omit_copy) {
24090                                 fprintf(fp, "\tmov %s, %s\n",
24091                                         arch_reg_str(src_reg),
24092                                         arch_reg_str(dst_reg));
24093                         }
24094                 }
24095                 /* Move 32bit to 8bit */
24096                 else if ((src_regcm & REGCM_GPR32_8) &&
24097                         (dst_regcm & REGCM_GPR8_LO))
24098                 {
24099                         src_reg = (src_reg - REGC_GPR32_8_FIRST) + REGC_GPR8_FIRST;
24100                         if ((src_reg != dst_reg) || !omit_copy) {
24101                                 fprintf(fp, "\tmovb %s, %s\n",
24102                                         arch_reg_str(src_reg),
24103                                         arch_reg_str(dst_reg));
24104                         }
24105                 }
24106                 /* Move 16bit to 8bit */
24107                 else if ((src_regcm & REGCM_GPR16_8) &&
24108                         (dst_regcm & REGCM_GPR8_LO))
24109                 {
24110                         src_reg = (src_reg - REGC_GPR16_8_FIRST) + REGC_GPR8_FIRST;
24111                         if ((src_reg != dst_reg) || !omit_copy) {
24112                                 fprintf(fp, "\tmovb %s, %s\n",
24113                                         arch_reg_str(src_reg),
24114                                         arch_reg_str(dst_reg));
24115                         }
24116                 }
24117                 /* Move 8/16bit to 16/32bit */
24118                 else if ((src_regcm & (REGCM_GPR8_LO | REGCM_GPR16)) && 
24119                         (dst_regcm & (REGCM_GPR16 | REGCM_GPR32))) {
24120                         const char *op;
24121                         op = is_signed(src->type)? "movsx": "movzx";
24122                         fprintf(fp, "\t%s %s, %s\n",
24123                                 op,
24124                                 reg(state, src, src_regcm),
24125                                 reg(state, dst, dst_regcm));
24126                 }
24127                 /* Move between sse registers */
24128                 else if ((src_regcm & dst_regcm & REGCM_XMM)) {
24129                         if ((src_reg != dst_reg) || !omit_copy) {
24130                                 fprintf(fp, "\tmovdqa %s, %s\n",
24131                                         reg(state, src, src_regcm),
24132                                         reg(state, dst, dst_regcm));
24133                         }
24134                 }
24135                 /* Move between mmx registers */
24136                 else if ((src_regcm & dst_regcm & REGCM_MMX)) {
24137                         if ((src_reg != dst_reg) || !omit_copy) {
24138                                 fprintf(fp, "\tmovq %s, %s\n",
24139                                         reg(state, src, src_regcm),
24140                                         reg(state, dst, dst_regcm));
24141                         }
24142                 }
24143                 /* Move from sse to mmx registers */
24144                 else if ((src_regcm & REGCM_XMM) && (dst_regcm & REGCM_MMX)) {
24145                         fprintf(fp, "\tmovdq2q %s, %s\n",
24146                                 reg(state, src, src_regcm),
24147                                 reg(state, dst, dst_regcm));
24148                 }
24149                 /* Move from mmx to sse registers */
24150                 else if ((src_regcm & REGCM_MMX) && (dst_regcm & REGCM_XMM)) {
24151                         fprintf(fp, "\tmovq2dq %s, %s\n",
24152                                 reg(state, src, src_regcm),
24153                                 reg(state, dst, dst_regcm));
24154                 }
24155                 /* Move between 32bit gprs & mmx/sse registers */
24156                 else if ((src_regcm & (REGCM_GPR32 | REGCM_MMX | REGCM_XMM)) &&
24157                         (dst_regcm & (REGCM_GPR32 | REGCM_MMX | REGCM_XMM))) {
24158                         fprintf(fp, "\tmovd %s, %s\n",
24159                                 reg(state, src, src_regcm),
24160                                 reg(state, dst, dst_regcm));
24161                 }
24162                 /* Move from 16bit gprs &  mmx/sse registers */
24163                 else if ((src_regcm & REGCM_GPR16) &&
24164                         (dst_regcm & (REGCM_MMX | REGCM_XMM))) {
24165                         const char *op;
24166                         int mid_reg;
24167                         op = is_signed(src->type)? "movsx":"movzx";
24168                         mid_reg = (src_reg - REGC_GPR16_FIRST) + REGC_GPR32_FIRST;
24169                         fprintf(fp, "\t%s %s, %s\n\tmovd %s, %s\n",
24170                                 op,
24171                                 arch_reg_str(src_reg),
24172                                 arch_reg_str(mid_reg),
24173                                 arch_reg_str(mid_reg),
24174                                 arch_reg_str(dst_reg));
24175                 }
24176                 /* Move from mmx/sse registers to 16bit gprs */
24177                 else if ((src_regcm & (REGCM_MMX | REGCM_XMM)) &&
24178                         (dst_regcm & REGCM_GPR16)) {
24179                         dst_reg = (dst_reg - REGC_GPR16_FIRST) + REGC_GPR32_FIRST;
24180                         fprintf(fp, "\tmovd %s, %s\n",
24181                                 arch_reg_str(src_reg),
24182                                 arch_reg_str(dst_reg));
24183                 }
24184                 /* Move from gpr to 64bit dividend */
24185                 else if ((src_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO))  &&
24186                         (dst_regcm & REGCM_DIVIDEND64)) {
24187                         const char *extend;
24188                         extend = is_signed(src->type)? "cltd":"movl $0, %edx";
24189                         fprintf(fp, "\tmov %s, %%eax\n\t%s\n",
24190                                 arch_reg_str(src_reg), 
24191                                 extend);
24192                 }
24193                 /* Move from 64bit gpr to gpr */
24194                 else if ((src_regcm & REGCM_DIVIDEND64) &&
24195                         (dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO))) {
24196                         if (dst_regcm & REGCM_GPR32) {
24197                                 src_reg = REG_EAX;
24198                         } 
24199                         else if (dst_regcm & REGCM_GPR16) {
24200                                 src_reg = REG_AX;
24201                         }
24202                         else if (dst_regcm & REGCM_GPR8_LO) {
24203                                 src_reg = REG_AL;
24204                         }
24205                         fprintf(fp, "\tmov %s, %s\n",
24206                                 arch_reg_str(src_reg),
24207                                 arch_reg_str(dst_reg));
24208                 }
24209                 /* Move from mmx/sse registers to 64bit gpr */
24210                 else if ((src_regcm & (REGCM_MMX | REGCM_XMM)) &&
24211                         (dst_regcm & REGCM_DIVIDEND64)) {
24212                         const char *extend;
24213                         extend = is_signed(src->type)? "cltd": "movl $0, %edx";
24214                         fprintf(fp, "\tmovd %s, %%eax\n\t%s\n",
24215                                 arch_reg_str(src_reg),
24216                                 extend);
24217                 }
24218                 /* Move from 64bit gpr to mmx/sse register */
24219                 else if ((src_regcm & REGCM_DIVIDEND64) &&
24220                         (dst_regcm & (REGCM_XMM | REGCM_MMX))) {
24221                         fprintf(fp, "\tmovd %%eax, %s\n",
24222                                 arch_reg_str(dst_reg));
24223                 }
24224 #if X86_4_8BIT_GPRS
24225                 /* Move from 8bit gprs to  mmx/sse registers */
24226                 else if ((src_regcm & REGCM_GPR8_LO) && (src_reg <= REG_DL) &&
24227                         (dst_regcm & (REGCM_MMX | REGCM_XMM))) {
24228                         const char *op;
24229                         int mid_reg;
24230                         op = is_signed(src->type)? "movsx":"movzx";
24231                         mid_reg = (src_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
24232                         fprintf(fp, "\t%s %s, %s\n\tmovd %s, %s\n",
24233                                 op,
24234                                 reg(state, src, src_regcm),
24235                                 arch_reg_str(mid_reg),
24236                                 arch_reg_str(mid_reg),
24237                                 reg(state, dst, dst_regcm));
24238                 }
24239                 /* Move from mmx/sse registers and 8bit gprs */
24240                 else if ((src_regcm & (REGCM_MMX | REGCM_XMM)) &&
24241                         (dst_regcm & REGCM_GPR8_LO) && (dst_reg <= REG_DL)) {
24242                         int mid_reg;
24243                         mid_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
24244                         fprintf(fp, "\tmovd %s, %s\n",
24245                                 reg(state, src, src_regcm),
24246                                 arch_reg_str(mid_reg));
24247                 }
24248                 /* Move from 32bit gprs to 8bit gprs */
24249                 else if ((src_regcm & REGCM_GPR32) &&
24250                         (dst_regcm & REGCM_GPR8_LO)) {
24251                         dst_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
24252                         if ((src_reg != dst_reg) || !omit_copy) {
24253                                 fprintf(fp, "\tmov %s, %s\n",
24254                                         arch_reg_str(src_reg),
24255                                         arch_reg_str(dst_reg));
24256                         }
24257                 }
24258                 /* Move from 16bit gprs to 8bit gprs */
24259                 else if ((src_regcm & REGCM_GPR16) &&
24260                         (dst_regcm & REGCM_GPR8_LO)) {
24261                         dst_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR16_FIRST;
24262                         if ((src_reg != dst_reg) || !omit_copy) {
24263                                 fprintf(fp, "\tmov %s, %s\n",
24264                                         arch_reg_str(src_reg),
24265                                         arch_reg_str(dst_reg));
24266                         }
24267                 }
24268 #endif /* X86_4_8BIT_GPRS */
24269                 /* Move from %eax:%edx to %eax:%edx */
24270                 else if ((src_regcm & REGCM_DIVIDEND64) &&
24271                         (dst_regcm & REGCM_DIVIDEND64) &&
24272                         (src_reg == dst_reg)) {
24273                         if (!omit_copy) {
24274                                 fprintf(fp, "\t/*mov %s, %s*/\n",
24275                                         arch_reg_str(src_reg),
24276                                         arch_reg_str(dst_reg));
24277                         }
24278                 }
24279                 else {
24280                         if ((src_regcm & ~REGCM_FLAGS) == 0) {
24281                                 internal_error(state, ins, "attempt to copy from %%eflags!");
24282                         }
24283                         internal_error(state, ins, "unknown copy type");
24284                 }
24285         }
24286         else {
24287                 size_t dst_size;
24288                 int dst_reg;
24289                 int dst_regcm;
24290                 dst_size = size_of(state, dst->type);
24291                 dst_reg = ID_REG(dst->id);
24292                 dst_regcm = arch_reg_regcm(state, dst_reg);
24293                 if (dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO)) {
24294                         fprintf(fp, "\tmov ");
24295                         print_const_val(state, src, fp);
24296                         fprintf(fp, ", %s\n",
24297                                 reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO));
24298                 }
24299                 else if (dst_regcm & REGCM_DIVIDEND64) {
24300                         if (dst_size > SIZEOF_I32) {
24301                                 internal_error(state, ins, "%dbit constant...", dst_size);
24302                         }
24303                         fprintf(fp, "\tmov $0, %%edx\n");
24304                         fprintf(fp, "\tmov ");
24305                         print_const_val(state, src, fp);
24306                         fprintf(fp, ", %%eax\n");
24307                 }
24308                 else if (dst_regcm & REGCM_DIVIDEND32) {
24309                         if (dst_size > SIZEOF_I16) {
24310                                 internal_error(state, ins, "%dbit constant...", dst_size);
24311                         }
24312                         fprintf(fp, "\tmov $0, %%dx\n");
24313                         fprintf(fp, "\tmov ");
24314                         print_const_val(state, src, fp);
24315                         fprintf(fp, ", %%ax");
24316                 }
24317                 else if (dst_regcm & (REGCM_XMM | REGCM_MMX)) {
24318                         long ref;
24319                         if (dst_size > SIZEOF_I32) {
24320                                 internal_error(state, ins, "%d bit constant...", dst_size);
24321                         }
24322                         ref = get_const_pool_ref(state, src, SIZEOF_I32, fp);
24323                         fprintf(fp, "\tmovd L%s%lu, %s\n",
24324                                 state->compiler->label_prefix, ref,
24325                                 reg(state, dst, (REGCM_XMM | REGCM_MMX)));
24326                 }
24327                 else {
24328                         internal_error(state, ins, "unknown copy immediate type");
24329                 }
24330         }
24331         /* Leave now if this is not a type conversion */
24332         if (ins->op != OP_CONVERT) {
24333                 return;
24334         }
24335         /* Now make certain I have not logically overflowed the destination */
24336         if ((size_of(state, src->type) > size_of(state, dst->type)) &&
24337                 (size_of(state, dst->type) < reg_size(state, dst)))
24338         {
24339                 unsigned long mask;
24340                 int dst_reg;
24341                 int dst_regcm;
24342                 if (size_of(state, dst->type) >= 32) {
24343                         fprintf(state->errout, "dst type: ");
24344                         name_of(state->errout, dst->type);
24345                         fprintf(state->errout, "\n");
24346                         internal_error(state, dst, "unhandled dst type size");
24347                 }
24348                 mask = 1;
24349                 mask <<= size_of(state, dst->type);
24350                 mask -= 1;
24351
24352                 dst_reg = ID_REG(dst->id);
24353                 dst_regcm = arch_reg_regcm(state, dst_reg);
24354
24355                 if (dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO)) {
24356                         fprintf(fp, "\tand $0x%lx, %s\n",
24357                                 mask, reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO));
24358                 }
24359                 else if (dst_regcm & REGCM_MMX) {
24360                         long ref;
24361                         ref = get_mask_pool_ref(state, dst, mask, fp);
24362                         fprintf(fp, "\tpand L%s%lu, %s\n",
24363                                 state->compiler->label_prefix, ref,
24364                                 reg(state, dst, REGCM_MMX));
24365                 }
24366                 else if (dst_regcm & REGCM_XMM) {
24367                         long ref;
24368                         ref = get_mask_pool_ref(state, dst, mask, fp);
24369                         fprintf(fp, "\tpand L%s%lu, %s\n",
24370                                 state->compiler->label_prefix, ref,
24371                                 reg(state, dst, REGCM_XMM));
24372                 }
24373                 else {
24374                         fprintf(state->errout, "dst type: ");
24375                         name_of(state->errout, dst->type);
24376                         fprintf(state->errout, "\n");
24377                         fprintf(state->errout, "dst: %s\n", reg(state, dst, REGCM_ALL));
24378                         internal_error(state, dst, "failed to trunc value: mask %lx", mask);
24379                 }
24380         }
24381         /* Make certain I am properly sign extended */
24382         if ((size_of(state, src->type) < size_of(state, dst->type)) &&
24383                 (is_signed(src->type)))
24384         {
24385                 int bits, reg_bits, shift_bits;
24386                 int dst_reg;
24387                 int dst_regcm;
24388
24389                 bits = size_of(state, src->type);
24390                 reg_bits = reg_size(state, dst);
24391                 if (reg_bits > 32) {
24392                         reg_bits = 32;
24393                 }
24394                 shift_bits = reg_bits - size_of(state, src->type);
24395                 dst_reg = ID_REG(dst->id);
24396                 dst_regcm = arch_reg_regcm(state, dst_reg);
24397
24398                 if (shift_bits < 0) {
24399                         internal_error(state, dst, "negative shift?");
24400                 }
24401
24402                 if (dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO)) {
24403                         fprintf(fp, "\tshl $%d, %s\n", 
24404                                 shift_bits, 
24405                                 reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO));
24406                         fprintf(fp, "\tsar $%d, %s\n", 
24407                                 shift_bits, 
24408                                 reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO));
24409                 }
24410                 else if (dst_regcm & (REGCM_MMX | REGCM_XMM)) {
24411                         fprintf(fp, "\tpslld $%d, %s\n",
24412                                 shift_bits, 
24413                                 reg(state, dst, REGCM_MMX | REGCM_XMM));
24414                         fprintf(fp, "\tpsrad $%d, %s\n",
24415                                 shift_bits, 
24416                                 reg(state, dst, REGCM_MMX | REGCM_XMM));
24417                 }
24418                 else {
24419                         fprintf(state->errout, "dst type: ");
24420                         name_of(state->errout, dst->type);
24421                         fprintf(state->errout, "\n");
24422                         fprintf(state->errout, "dst: %s\n", reg(state, dst, REGCM_ALL));
24423                         internal_error(state, dst, "failed to signed extend value");
24424                 }
24425         }
24426 }
24427
24428 static void print_op_load(struct compile_state *state,
24429         struct triple *ins, FILE *fp)
24430 {
24431         struct triple *dst, *src;
24432         const char *op;
24433         dst = ins;
24434         src = RHS(ins, 0);
24435         if (is_const(src) || is_const(dst)) {
24436                 internal_error(state, ins, "unknown load operation");
24437         }
24438         switch(ins->type->type & TYPE_MASK) {
24439         case TYPE_CHAR:   op = "movsbl"; break;
24440         case TYPE_UCHAR:  op = "movzbl"; break;
24441         case TYPE_SHORT:  op = "movswl"; break;
24442         case TYPE_USHORT: op = "movzwl"; break;
24443         case TYPE_INT:    case TYPE_UINT:
24444         case TYPE_LONG:   case TYPE_ULONG:
24445         case TYPE_POINTER:
24446                 op = "movl"; 
24447                 break;
24448         default:
24449                 internal_error(state, ins, "unknown type in load");
24450                 op = "<invalid opcode>";
24451                 break;
24452         }
24453         fprintf(fp, "\t%s (%s), %s\n",
24454                 op, 
24455                 reg(state, src, REGCM_GPR32),
24456                 reg(state, dst, REGCM_GPR32));
24457 }
24458
24459
24460 static void print_op_store(struct compile_state *state,
24461         struct triple *ins, FILE *fp)
24462 {
24463         struct triple *dst, *src;
24464         dst = RHS(ins, 0);
24465         src = RHS(ins, 1);
24466         if (is_const(src) && (src->op == OP_INTCONST)) {
24467                 long_t value;
24468                 value = (long_t)(src->u.cval);
24469                 fprintf(fp, "\tmov%s $%ld, (%s)\n",
24470                         type_suffix(state, src->type),
24471                         (long)(value),
24472                         reg(state, dst, REGCM_GPR32));
24473         }
24474         else if (is_const(dst) && (dst->op == OP_INTCONST)) {
24475                 fprintf(fp, "\tmov%s %s, 0x%08lx\n",
24476                         type_suffix(state, src->type),
24477                         reg(state, src, REGCM_GPR8_LO | REGCM_GPR16 | REGCM_GPR32),
24478                         (unsigned long)(dst->u.cval));
24479         }
24480         else {
24481                 if (is_const(src) || is_const(dst)) {
24482                         internal_error(state, ins, "unknown store operation");
24483                 }
24484                 fprintf(fp, "\tmov%s %s, (%s)\n",
24485                         type_suffix(state, src->type),
24486                         reg(state, src, REGCM_GPR8_LO | REGCM_GPR16 | REGCM_GPR32),
24487                         reg(state, dst, REGCM_GPR32));
24488         }
24489         
24490         
24491 }
24492
24493 static void print_op_smul(struct compile_state *state,
24494         struct triple *ins, FILE *fp)
24495 {
24496         if (!is_const(RHS(ins, 1))) {
24497                 fprintf(fp, "\timul %s, %s\n",
24498                         reg(state, RHS(ins, 1), REGCM_GPR32),
24499                         reg(state, RHS(ins, 0), REGCM_GPR32));
24500         }
24501         else {
24502                 fprintf(fp, "\timul ");
24503                 print_const_val(state, RHS(ins, 1), fp);
24504                 fprintf(fp, ", %s\n", reg(state, RHS(ins, 0), REGCM_GPR32));
24505         }
24506 }
24507
24508 static void print_op_cmp(struct compile_state *state,
24509         struct triple *ins, FILE *fp)
24510 {
24511         unsigned mask;
24512         int dreg;
24513         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
24514         dreg = check_reg(state, ins, REGCM_FLAGS);
24515         if (!reg_is_reg(state, dreg, REG_EFLAGS)) {
24516                 internal_error(state, ins, "bad dest register for cmp");
24517         }
24518         if (is_const(RHS(ins, 1))) {
24519                 fprintf(fp, "\tcmp ");
24520                 print_const_val(state, RHS(ins, 1), fp);
24521                 fprintf(fp, ", %s\n", reg(state, RHS(ins, 0), mask));
24522         }
24523         else {
24524                 unsigned lmask, rmask;
24525                 int lreg, rreg;
24526                 lreg = check_reg(state, RHS(ins, 0), mask);
24527                 rreg = check_reg(state, RHS(ins, 1), mask);
24528                 lmask = arch_reg_regcm(state, lreg);
24529                 rmask = arch_reg_regcm(state, rreg);
24530                 mask = lmask & rmask;
24531                 fprintf(fp, "\tcmp %s, %s\n",
24532                         reg(state, RHS(ins, 1), mask),
24533                         reg(state, RHS(ins, 0), mask));
24534         }
24535 }
24536
24537 static void print_op_test(struct compile_state *state,
24538         struct triple *ins, FILE *fp)
24539 {
24540         unsigned mask;
24541         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
24542         fprintf(fp, "\ttest %s, %s\n",
24543                 reg(state, RHS(ins, 0), mask),
24544                 reg(state, RHS(ins, 0), mask));
24545 }
24546
24547 static void print_op_branch(struct compile_state *state,
24548         struct triple *branch, FILE *fp)
24549 {
24550         const char *bop = "j";
24551         if ((branch->op == OP_JMP) || (branch->op == OP_CALL)) {
24552                 if (branch->rhs != 0) {
24553                         internal_error(state, branch, "jmp with condition?");
24554                 }
24555                 bop = "jmp";
24556         }
24557         else {
24558                 struct triple *ptr;
24559                 if (branch->rhs != 1) {
24560                         internal_error(state, branch, "jmpcc without condition?");
24561                 }
24562                 check_reg(state, RHS(branch, 0), REGCM_FLAGS);
24563                 if ((RHS(branch, 0)->op != OP_CMP) &&
24564                         (RHS(branch, 0)->op != OP_TEST)) {
24565                         internal_error(state, branch, "bad branch test");
24566                 }
24567 #if DEBUG_ROMCC_WARNINGS
24568 #warning "FIXME I have observed instructions between the test and branch instructions"
24569 #endif
24570                 ptr = RHS(branch, 0);
24571                 for(ptr = RHS(branch, 0)->next; ptr != branch; ptr = ptr->next) {
24572                         if (ptr->op != OP_COPY) {
24573                                 internal_error(state, branch, "branch does not follow test");
24574                         }
24575                 }
24576                 switch(branch->op) {
24577                 case OP_JMP_EQ:       bop = "jz";  break;
24578                 case OP_JMP_NOTEQ:    bop = "jnz"; break;
24579                 case OP_JMP_SLESS:    bop = "jl";  break;
24580                 case OP_JMP_ULESS:    bop = "jb";  break;
24581                 case OP_JMP_SMORE:    bop = "jg";  break;
24582                 case OP_JMP_UMORE:    bop = "ja";  break;
24583                 case OP_JMP_SLESSEQ:  bop = "jle"; break;
24584                 case OP_JMP_ULESSEQ:  bop = "jbe"; break;
24585                 case OP_JMP_SMOREEQ:  bop = "jge"; break;
24586                 case OP_JMP_UMOREEQ:  bop = "jae"; break;
24587                 default:
24588                         internal_error(state, branch, "Invalid branch op");
24589                         break;
24590                 }
24591                 
24592         }
24593 #if 1
24594         if (branch->op == OP_CALL) {
24595                 fprintf(fp, "\t/* call */\n");
24596         }
24597 #endif
24598         fprintf(fp, "\t%s L%s%lu\n",
24599                 bop, 
24600                 state->compiler->label_prefix,
24601                 (unsigned long)(TARG(branch, 0)->u.cval));
24602 }
24603
24604 static void print_op_ret(struct compile_state *state,
24605         struct triple *branch, FILE *fp)
24606 {
24607         fprintf(fp, "\tjmp *%s\n",
24608                 reg(state, RHS(branch, 0), REGCM_GPR32));
24609 }
24610
24611 static void print_op_set(struct compile_state *state,
24612         struct triple *set, FILE *fp)
24613 {
24614         const char *sop = "set";
24615         if (set->rhs != 1) {
24616                 internal_error(state, set, "setcc without condition?");
24617         }
24618         check_reg(state, RHS(set, 0), REGCM_FLAGS);
24619         if ((RHS(set, 0)->op != OP_CMP) &&
24620                 (RHS(set, 0)->op != OP_TEST)) {
24621                 internal_error(state, set, "bad set test");
24622         }
24623         if (RHS(set, 0)->next != set) {
24624                 internal_error(state, set, "set does not follow test");
24625         }
24626         switch(set->op) {
24627         case OP_SET_EQ:       sop = "setz";  break;
24628         case OP_SET_NOTEQ:    sop = "setnz"; break;
24629         case OP_SET_SLESS:    sop = "setl";  break;
24630         case OP_SET_ULESS:    sop = "setb";  break;
24631         case OP_SET_SMORE:    sop = "setg";  break;
24632         case OP_SET_UMORE:    sop = "seta";  break;
24633         case OP_SET_SLESSEQ:  sop = "setle"; break;
24634         case OP_SET_ULESSEQ:  sop = "setbe"; break;
24635         case OP_SET_SMOREEQ:  sop = "setge"; break;
24636         case OP_SET_UMOREEQ:  sop = "setae"; break;
24637         default:
24638                 internal_error(state, set, "Invalid set op");
24639                 break;
24640         }
24641         fprintf(fp, "\t%s %s\n",
24642                 sop, reg(state, set, REGCM_GPR8_LO));
24643 }
24644
24645 static void print_op_bit_scan(struct compile_state *state, 
24646         struct triple *ins, FILE *fp) 
24647 {
24648         const char *op;
24649         switch(ins->op) {
24650         case OP_BSF: op = "bsf"; break;
24651         case OP_BSR: op = "bsr"; break;
24652         default: 
24653                 internal_error(state, ins, "unknown bit scan");
24654                 op = 0;
24655                 break;
24656         }
24657         fprintf(fp, 
24658                 "\t%s %s, %s\n"
24659                 "\tjnz 1f\n"
24660                 "\tmovl $-1, %s\n"
24661                 "1:\n",
24662                 op,
24663                 reg(state, RHS(ins, 0), REGCM_GPR32),
24664                 reg(state, ins, REGCM_GPR32),
24665                 reg(state, ins, REGCM_GPR32));
24666 }
24667
24668
24669 static void print_sdecl(struct compile_state *state,
24670         struct triple *ins, FILE *fp)
24671 {
24672         fprintf(fp, ".section \"" DATA_SECTION "\"\n");
24673         fprintf(fp, ".balign %ld\n", (long int)align_of_in_bytes(state, ins->type));
24674         fprintf(fp, "L%s%lu:\n", 
24675                 state->compiler->label_prefix, (unsigned long)(ins->u.cval));
24676         print_const(state, MISC(ins, 0), fp);
24677         fprintf(fp, ".section \"" TEXT_SECTION "\"\n");
24678                 
24679 }
24680
24681 static void print_instruction(struct compile_state *state,
24682         struct triple *ins, FILE *fp)
24683 {
24684         /* Assumption: after I have exted the register allocator
24685          * everything is in a valid register. 
24686          */
24687         switch(ins->op) {
24688         case OP_ASM:
24689                 print_op_asm(state, ins, fp);
24690                 break;
24691         case OP_ADD:    print_binary_op(state, "add", ins, fp); break;
24692         case OP_SUB:    print_binary_op(state, "sub", ins, fp); break;
24693         case OP_AND:    print_binary_op(state, "and", ins, fp); break;
24694         case OP_XOR:    print_binary_op(state, "xor", ins, fp); break;
24695         case OP_OR:     print_binary_op(state, "or",  ins, fp); break;
24696         case OP_SL:     print_op_shift(state, "shl", ins, fp); break;
24697         case OP_USR:    print_op_shift(state, "shr", ins, fp); break;
24698         case OP_SSR:    print_op_shift(state, "sar", ins, fp); break;
24699         case OP_POS:    break;
24700         case OP_NEG:    print_unary_op(state, "neg", ins, fp); break;
24701         case OP_INVERT: print_unary_op(state, "not", ins, fp); break;
24702         case OP_NOOP:
24703         case OP_INTCONST:
24704         case OP_ADDRCONST:
24705         case OP_BLOBCONST:
24706                 /* Don't generate anything here for constants */
24707         case OP_PHI:
24708                 /* Don't generate anything for variable declarations. */
24709                 break;
24710         case OP_UNKNOWNVAL:
24711                 fprintf(fp, " /* unknown %s */\n",
24712                         reg(state, ins, REGCM_ALL));
24713                 break;
24714         case OP_SDECL:
24715                 print_sdecl(state, ins, fp);
24716                 break;
24717         case OP_COPY:   
24718         case OP_CONVERT:
24719                 print_op_move(state, ins, fp);
24720                 break;
24721         case OP_LOAD:
24722                 print_op_load(state, ins, fp);
24723                 break;
24724         case OP_STORE:
24725                 print_op_store(state, ins, fp);
24726                 break;
24727         case OP_SMUL:
24728                 print_op_smul(state, ins, fp);
24729                 break;
24730         case OP_CMP:    print_op_cmp(state, ins, fp); break;
24731         case OP_TEST:   print_op_test(state, ins, fp); break;
24732         case OP_JMP:
24733         case OP_JMP_EQ:      case OP_JMP_NOTEQ:
24734         case OP_JMP_SLESS:   case OP_JMP_ULESS:
24735         case OP_JMP_SMORE:   case OP_JMP_UMORE:
24736         case OP_JMP_SLESSEQ: case OP_JMP_ULESSEQ:
24737         case OP_JMP_SMOREEQ: case OP_JMP_UMOREEQ:
24738         case OP_CALL:
24739                 print_op_branch(state, ins, fp);
24740                 break;
24741         case OP_RET:
24742                 print_op_ret(state, ins, fp);
24743                 break;
24744         case OP_SET_EQ:      case OP_SET_NOTEQ:
24745         case OP_SET_SLESS:   case OP_SET_ULESS:
24746         case OP_SET_SMORE:   case OP_SET_UMORE:
24747         case OP_SET_SLESSEQ: case OP_SET_ULESSEQ:
24748         case OP_SET_SMOREEQ: case OP_SET_UMOREEQ:
24749                 print_op_set(state, ins, fp);
24750                 break;
24751         case OP_INB:  case OP_INW:  case OP_INL:
24752                 print_op_in(state, ins, fp); 
24753                 break;
24754         case OP_OUTB: case OP_OUTW: case OP_OUTL:
24755                 print_op_out(state, ins, fp); 
24756                 break;
24757         case OP_BSF:
24758         case OP_BSR:
24759                 print_op_bit_scan(state, ins, fp);
24760                 break;
24761         case OP_RDMSR:
24762                 after_lhs(state, ins);
24763                 fprintf(fp, "\trdmsr\n");
24764                 break;
24765         case OP_WRMSR:
24766                 fprintf(fp, "\twrmsr\n");
24767                 break;
24768         case OP_HLT:
24769                 fprintf(fp, "\thlt\n");
24770                 break;
24771         case OP_SDIVT:
24772                 fprintf(fp, "\tidiv %s\n", reg(state, RHS(ins, 1), REGCM_GPR32));
24773                 break;
24774         case OP_UDIVT:
24775                 fprintf(fp, "\tdiv %s\n", reg(state, RHS(ins, 1), REGCM_GPR32));
24776                 break;
24777         case OP_UMUL:
24778                 fprintf(fp, "\tmul %s\n", reg(state, RHS(ins, 1), REGCM_GPR32));
24779                 break;
24780         case OP_LABEL:
24781                 if (!ins->use) {
24782                         return;
24783                 }
24784                 fprintf(fp, "L%s%lu:\n", 
24785                         state->compiler->label_prefix, (unsigned long)(ins->u.cval));
24786                 break;
24787         case OP_ADECL:
24788                 /* Ignore adecls with no registers error otherwise */
24789                 if (!noop_adecl(ins)) {
24790                         internal_error(state, ins, "adecl remains?");
24791                 }
24792                 break;
24793                 /* Ignore OP_PIECE */
24794         case OP_PIECE:
24795                 break;
24796                 /* Operations that should never get here */
24797         case OP_SDIV: case OP_UDIV:
24798         case OP_SMOD: case OP_UMOD:
24799         case OP_LTRUE:   case OP_LFALSE:  case OP_EQ:      case OP_NOTEQ:
24800         case OP_SLESS:   case OP_ULESS:   case OP_SMORE:   case OP_UMORE:
24801         case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
24802         default:
24803                 internal_error(state, ins, "unknown op: %d %s",
24804                         ins->op, tops(ins->op));
24805                 break;
24806         }
24807 }
24808
24809 static void print_instructions(struct compile_state *state)
24810 {
24811         struct triple *first, *ins;
24812         int print_location;
24813         struct occurance *last_occurance;
24814         FILE *fp;
24815         int max_inline_depth;
24816         max_inline_depth = 0;
24817         print_location = 1;
24818         last_occurance = 0;
24819         fp = state->output;
24820         /* Masks for common sizes */
24821         fprintf(fp, ".section \"" DATA_SECTION "\"\n");
24822         fprintf(fp, ".balign 16\n");
24823         fprintf(fp, "L%s1:\n", state->compiler->label_prefix);
24824         fprintf(fp, ".int 0xff, 0, 0, 0\n");
24825         fprintf(fp, "L%s2:\n", state->compiler->label_prefix);
24826         fprintf(fp, ".int 0xffff, 0, 0, 0\n");
24827         fprintf(fp, ".section \"" TEXT_SECTION "\"\n");
24828         first = state->first;
24829         ins = first;
24830         do {
24831                 if (print_location && 
24832                         last_occurance != ins->occurance) {
24833                         if (!ins->occurance->parent) {
24834                                 fprintf(fp, "\t/* %s,%s:%d.%d */\n",
24835                                         ins->occurance->function?ins->occurance->function:"(null)",
24836                                         ins->occurance->filename?ins->occurance->filename:"(null)",
24837                                         ins->occurance->line,
24838                                         ins->occurance->col);
24839                         }
24840                         else {
24841                                 struct occurance *ptr;
24842                                 int inline_depth;
24843                                 fprintf(fp, "\t/*\n");
24844                                 inline_depth = 0;
24845                                 for(ptr = ins->occurance; ptr; ptr = ptr->parent) {
24846                                         inline_depth++;
24847                                         fprintf(fp, "\t * %s,%s:%d.%d\n",
24848                                                 ptr->function,
24849                                                 ptr->filename,
24850                                                 ptr->line,
24851                                                 ptr->col);
24852                                 }
24853                                 fprintf(fp, "\t */\n");
24854                                 if (inline_depth > max_inline_depth) {
24855                                         max_inline_depth = inline_depth;
24856                                 }
24857                         }
24858                         if (last_occurance) {
24859                                 put_occurance(last_occurance);
24860                         }
24861                         get_occurance(ins->occurance);
24862                         last_occurance = ins->occurance;
24863                 }
24864
24865                 print_instruction(state, ins, fp);
24866                 ins = ins->next;
24867         } while(ins != first);
24868         if (print_location) {
24869                 fprintf(fp, "/* max inline depth %d */\n",
24870                         max_inline_depth);
24871         }
24872 }
24873
24874 static void generate_code(struct compile_state *state)
24875 {
24876         generate_local_labels(state);
24877         print_instructions(state);
24878         
24879 }
24880
24881 static void print_preprocessed_tokens(struct compile_state *state)
24882 {
24883         int tok;
24884         FILE *fp;
24885         int line;
24886         const char *filename;
24887         fp = state->output;
24888         filename = 0;
24889         line = 0;
24890         for(;;) {
24891                 struct file_state *file;
24892                 struct token *tk;
24893                 const char *token_str;
24894                 tok = peek(state);
24895                 if (tok == TOK_EOF) {
24896                         break;
24897                 }
24898                 tk = eat(state, tok);
24899                 token_str = 
24900                         tk->ident ? tk->ident->name :
24901                         tk->str_len ? tk->val.str :
24902                         tokens[tk->tok];
24903
24904                 file = state->file;
24905                 while(file->macro && file->prev) {
24906                         file = file->prev;
24907                 }
24908                 if (!file->macro && 
24909                         ((file->line != line) || (file->basename != filename))) 
24910                 {
24911                         int i, col;
24912                         if ((file->basename == filename) &&
24913                                 (line < file->line)) {
24914                                 while(line < file->line) {
24915                                         fprintf(fp, "\n");
24916                                         line++;
24917                                 }
24918                         }
24919                         else {
24920                                 fprintf(fp, "\n#line %d \"%s\"\n",
24921                                         file->line, file->basename);
24922                         }
24923                         line = file->line;
24924                         filename = file->basename;
24925                         col = get_col(file) - strlen(token_str);
24926                         for(i = 0; i < col; i++) {
24927                                 fprintf(fp, " ");
24928                         }
24929                 }
24930                 
24931                 fprintf(fp, "%s ", token_str);
24932                 
24933                 if (state->compiler->debug & DEBUG_TOKENS) {
24934                         loc(state->dbgout, state, 0);
24935                         fprintf(state->dbgout, "%s <- `%s'\n",
24936                                 tokens[tok], token_str);
24937                 }
24938         }
24939 }
24940
24941 static void compile(const char *filename,
24942         struct compiler_state *compiler, struct arch_state *arch)
24943 {
24944         int i;
24945         struct compile_state state;
24946         struct triple *ptr;
24947         struct filelist *includes = include_filelist;
24948         memset(&state, 0, sizeof(state));
24949         state.compiler = compiler;
24950         state.arch     = arch;
24951         state.file = 0;
24952         for(i = 0; i < sizeof(state.token)/sizeof(state.token[0]); i++) {
24953                 memset(&state.token[i], 0, sizeof(state.token[i]));
24954                 state.token[i].tok = -1;
24955         }
24956         /* Remember the output descriptors */
24957         state.errout = stderr;
24958         state.dbgout = stdout;
24959         /* Remember the output filename */
24960         state.output    = fopen(state.compiler->ofilename, "w");
24961         if (!state.output) {
24962                 error(&state, 0, "Cannot open output file %s\n",
24963                         state.compiler->ofilename);
24964         }
24965         /* Make certain a good cleanup happens */
24966         exit_state = &state;
24967         atexit(exit_cleanup);
24968
24969         /* Prep the preprocessor */
24970         state.if_depth = 0;
24971         memset(state.if_bytes, 0, sizeof(state.if_bytes));
24972         /* register the C keywords */
24973         register_keywords(&state);
24974         /* register the keywords the macro preprocessor knows */
24975         register_macro_keywords(&state);
24976         /* generate some builtin macros */
24977         register_builtin_macros(&state);
24978         /* Memorize where some special keywords are. */
24979         state.i_switch        = lookup(&state, "switch", 6);
24980         state.i_case          = lookup(&state, "case", 4);
24981         state.i_continue      = lookup(&state, "continue", 8);
24982         state.i_break         = lookup(&state, "break", 5);
24983         state.i_default       = lookup(&state, "default", 7);
24984         state.i_return        = lookup(&state, "return", 6);
24985         /* Memorize where predefined macros are. */
24986         state.i___VA_ARGS__   = lookup(&state, "__VA_ARGS__", 11);
24987         state.i___FILE__      = lookup(&state, "__FILE__", 8);
24988         state.i___LINE__      = lookup(&state, "__LINE__", 8);
24989         /* Memorize where predefined identifiers are. */
24990         state.i___func__      = lookup(&state, "__func__", 8);
24991         /* Memorize where some attribute keywords are. */
24992         state.i_noinline      = lookup(&state, "noinline", 8);
24993         state.i_always_inline = lookup(&state, "always_inline", 13);
24994
24995         /* Process the command line macros */
24996         process_cmdline_macros(&state);
24997
24998         /* Allocate beginning bounding labels for the function list */
24999         state.first = label(&state);
25000         state.first->id |= TRIPLE_FLAG_VOLATILE;
25001         use_triple(state.first, state.first);
25002         ptr = label(&state);
25003         ptr->id |= TRIPLE_FLAG_VOLATILE;
25004         use_triple(ptr, ptr);
25005         flatten(&state, state.first, ptr);
25006
25007         /* Allocate a label for the pool of global variables */
25008         state.global_pool = label(&state);
25009         state.global_pool->id |= TRIPLE_FLAG_VOLATILE;
25010         flatten(&state, state.first, state.global_pool);
25011
25012         /* Enter the globl definition scope */
25013         start_scope(&state);
25014         register_builtins(&state);
25015
25016         compile_file(&state, filename, 1);
25017         
25018         while (includes) {
25019                 compile_file(&state, includes->filename, 1);
25020                 includes=includes->next;
25021         }
25022
25023         /* Stop if all we want is preprocessor output */
25024         if (state.compiler->flags & COMPILER_PP_ONLY) {
25025                 print_preprocessed_tokens(&state);
25026                 return;
25027         }
25028
25029         decls(&state);
25030
25031         /* Exit the global definition scope */
25032         end_scope(&state);
25033
25034         /* Now that basic compilation has happened 
25035          * optimize the intermediate code 
25036          */
25037         optimize(&state);
25038
25039         generate_code(&state);
25040         if (state.compiler->debug) {
25041                 fprintf(state.errout, "done\n");
25042         }
25043         exit_state = 0;
25044 }
25045
25046 static void version(FILE *fp)
25047 {
25048         fprintf(fp, "romcc " VERSION " released " RELEASE_DATE "\n");
25049 }
25050
25051 static void usage(void)
25052 {
25053         FILE *fp = stdout;
25054         version(fp);
25055         fprintf(fp,
25056                 "\nUsage: romcc [options] <source>.c\n"
25057                 "Compile a C source file generating a binary that does not implicilty use RAM\n"
25058                 "Options: \n"
25059                 "-o <output file name>\n"
25060                 "-f<option>            Specify a generic compiler option\n"
25061                 "-m<option>            Specify a arch dependent option\n"
25062                 "--                    Specify this is the last option\n"
25063                 "\nGeneric compiler options:\n"
25064         );
25065         compiler_usage(fp);
25066         fprintf(fp,
25067                 "\nArchitecture compiler options:\n"
25068         );
25069         arch_usage(fp);
25070         fprintf(fp,
25071                 "\n"
25072         );
25073 }
25074
25075 static void arg_error(char *fmt, ...)
25076 {
25077         va_list args;
25078         va_start(args, fmt);
25079         vfprintf(stderr, fmt, args);
25080         va_end(args);
25081         usage();
25082         exit(1);
25083 }
25084
25085 int main(int argc, char **argv)
25086 {
25087         const char *filename;
25088         struct compiler_state compiler;
25089         struct arch_state arch;
25090         int all_opts;
25091         
25092         
25093         /* I don't want any surprises */
25094         setlocale(LC_ALL, "C");
25095
25096         init_compiler_state(&compiler);
25097         init_arch_state(&arch);
25098         filename = 0;
25099         all_opts = 0;
25100         while(argc > 1) {
25101                 if (!all_opts && (strcmp(argv[1], "-o") == 0) && (argc > 2)) {
25102                         compiler.ofilename = argv[2];
25103                         argv += 2;
25104                         argc -= 2;
25105                 }
25106                 else if (!all_opts && argv[1][0] == '-') {
25107                         int result;
25108                         result = -1;
25109                         if (strcmp(argv[1], "--") == 0) {
25110                                 result = 0;
25111                                 all_opts = 1;
25112                         }
25113                         else if (strncmp(argv[1], "-E", 2) == 0) {
25114                                 result = compiler_encode_flag(&compiler, argv[1]);
25115                         }
25116                         else if (strncmp(argv[1], "-O", 2) == 0) {
25117                                 result = compiler_encode_flag(&compiler, argv[1]);
25118                         }
25119                         else if (strncmp(argv[1], "-I", 2) == 0) {
25120                                 result = compiler_encode_flag(&compiler, argv[1]);
25121                         }
25122                         else if (strncmp(argv[1], "-D", 2) == 0) {
25123                                 result = compiler_encode_flag(&compiler, argv[1]);
25124                         }
25125                         else if (strncmp(argv[1], "-U", 2) == 0) {
25126                                 result = compiler_encode_flag(&compiler, argv[1]);
25127                         }
25128                         else if (strncmp(argv[1], "--label-prefix=", 15) == 0) {
25129                                 result = compiler_encode_flag(&compiler, argv[1]+2);
25130                         }
25131                         else if (strncmp(argv[1], "-f", 2) == 0) {
25132                                 result = compiler_encode_flag(&compiler, argv[1]+2);
25133                         }
25134                         else if (strncmp(argv[1], "-m", 2) == 0) {
25135                                 result = arch_encode_flag(&arch, argv[1]+2);
25136                         }
25137                         else if (strncmp(argv[1], "-include", 10) == 0) {
25138                                 struct filelist *old_head = include_filelist;
25139                                 include_filelist = malloc(sizeof(struct filelist));
25140                                 if (!include_filelist) {
25141                                         die("Out of memory.\n");
25142                                 }
25143                                 argv++;
25144                                 argc--;
25145                                 include_filelist->filename = argv[1];
25146                                 include_filelist->next = old_head;
25147                                 result = 0;
25148                         }
25149                         if (result < 0) {
25150                                 arg_error("Invalid option specified: %s\n",
25151                                         argv[1]);
25152                         }
25153                         argv++;
25154                         argc--;
25155                 }
25156                 else {
25157                         if (filename) {
25158                                 arg_error("Only one filename may be specified\n");
25159                         }
25160                         filename = argv[1];
25161                         argv++;
25162                         argc--;
25163                 }
25164         }
25165         if (!filename) {
25166                 arg_error("No filename specified\n");
25167         }
25168         compile(filename, &compiler, &arch);
25169
25170         return 0;
25171 }