- Massive set of cleanups/fixes for romcc. Lots of corner cases now work
[coreboot.git] / util / romcc / romcc.c
1 #include <stdarg.h>
2 #include <errno.h>
3 #include <stdint.h>
4 #include <stdlib.h>
5 #include <stdio.h>
6 #include <sys/types.h>
7 #include <sys/stat.h>
8 #include <fcntl.h>
9 #include <unistd.h>
10 #include <stdio.h>
11 #include <string.h>
12 #include <limits.h>
13
14 #define DEBUG_ERROR_MESSAGES 0
15 #define DEBUG_COLOR_GRAPH 0
16 #define DEBUG_SCC 0
17 #define DEBUG_CONSISTENCY 2
18 #define DEBUG_RANGE_CONFLICTS 0
19 #define DEBUG_COALESCING 0
20 #define DEBUG_SDP_BLOCKS 0
21 #define DEBUG_TRIPLE_COLOR 0
22
23 #warning "FIXME boundary cases with small types in larger registers"
24 #warning "FIXME give clear error messages about unused variables"
25 #warning "FIXME properly handle multi dimensional arrays"
26 #warning "FIXME fix scc_transform"
27
28 /*  Control flow graph of a loop without goto.
29  * 
30  *        AAA
31  *   +---/
32  *  /
33  * / +--->CCC
34  * | |    / \
35  * | |  DDD EEE    break;
36  * | |    \    \
37  * | |    FFF   \
38  *  \|    / \    \
39  *   |\ GGG HHH   |   continue;
40  *   | \  \   |   |
41  *   |  \ III |  /
42  *   |   \ | /  / 
43  *   |    vvv  /  
44  *   +----BBB /   
45  *         | /
46  *         vv
47  *        JJJ
48  *
49  * 
50  *             AAA
51  *     +-----+  |  +----+
52  *     |      \ | /     |
53  *     |       BBB  +-+ |
54  *     |       / \ /  | |
55  *     |     CCC JJJ / /
56  *     |     / \    / / 
57  *     |   DDD EEE / /  
58  *     |    |   +-/ /
59  *     |   FFF     /    
60  *     |   / \    /     
61  *     | GGG HHH /      
62  *     |  |   +-/
63  *     | III
64  *     +--+ 
65  *
66  * 
67  * DFlocal(X) = { Y <- Succ(X) | idom(Y) != X }
68  * DFup(Z)    = { Y <- DF(Z) | idom(Y) != X }
69  *
70  *
71  * [] == DFlocal(X) U DF(X)
72  * () == DFup(X)
73  *
74  * Dominator graph of the same nodes.
75  *
76  *           AAA     AAA: [ ] ()
77  *          /   \
78  *        BBB    JJJ BBB: [ JJJ ] ( JJJ )  JJJ: [ ] ()
79  *         |
80  *        CCC        CCC: [ ] ( BBB, JJJ )
81  *        / \
82  *     DDD   EEE     DDD: [ ] ( BBB ) EEE: [ JJJ ] ()
83  *      |
84  *     FFF           FFF: [ ] ( BBB )
85  *     / \         
86  *  GGG   HHH        GGG: [ ] ( BBB ) HHH: [ BBB ] ()
87  *   |
88  *  III              III: [ BBB ] ()
89  *
90  *
91  * BBB and JJJ are definitely the dominance frontier.
92  * Where do I place phi functions and how do I make that decision.
93  *   
94  */
95 static void die(char *fmt, ...)
96 {
97         va_list args;
98
99         va_start(args, fmt);
100         vfprintf(stderr, fmt, args);
101         va_end(args);
102         fflush(stdout);
103         fflush(stderr);
104         exit(1);
105 }
106
107 #define MALLOC_STRONG_DEBUG
108 static void *xmalloc(size_t size, const char *name)
109 {
110         void *buf;
111         buf = malloc(size);
112         if (!buf) {
113                 die("Cannot malloc %ld bytes to hold %s: %s\n",
114                         size + 0UL, name, strerror(errno));
115         }
116         return buf;
117 }
118
119 static void *xcmalloc(size_t size, const char *name)
120 {
121         void *buf;
122         buf = xmalloc(size, name);
123         memset(buf, 0, size);
124         return buf;
125 }
126
127 static void xfree(const void *ptr)
128 {
129         free((void *)ptr);
130 }
131
132 static char *xstrdup(const char *str)
133 {
134         char *new;
135         int len;
136         len = strlen(str);
137         new = xmalloc(len + 1, "xstrdup string");
138         memcpy(new, str, len);
139         new[len] = '\0';
140         return new;
141 }
142
143 static void xchdir(const char *path)
144 {
145         if (chdir(path) != 0) {
146                 die("chdir to %s failed: %s\n",
147                         path, strerror(errno));
148         }
149 }
150
151 static int exists(const char *dirname, const char *filename)
152 {
153         int does_exist = 1;
154         xchdir(dirname);
155         if (access(filename, O_RDONLY) < 0) {
156                 if ((errno != EACCES) && (errno != EROFS)) {
157                         does_exist = 0;
158                 }
159         }
160         return does_exist;
161 }
162
163
164 static char *slurp_file(const char *dirname, const char *filename, off_t *r_size)
165 {
166         int fd;
167         char *buf;
168         off_t size, progress;
169         ssize_t result;
170         struct stat stats;
171         
172         if (!filename) {
173                 *r_size = 0;
174                 return 0;
175         }
176         xchdir(dirname);
177         fd = open(filename, O_RDONLY);
178         if (fd < 0) {
179                 die("Cannot open '%s' : %s\n",
180                         filename, strerror(errno));
181         }
182         result = fstat(fd, &stats);
183         if (result < 0) {
184                 die("Cannot stat: %s: %s\n",
185                         filename, strerror(errno));
186         }
187         size = stats.st_size;
188         *r_size = size +1;
189         buf = xmalloc(size +2, filename);
190         buf[size] = '\n'; /* Make certain the file is newline terminated */
191         buf[size+1] = '\0'; /* Null terminate the file for good measure */
192         progress = 0;
193         while(progress < size) {
194                 result = read(fd, buf + progress, size - progress);
195                 if (result < 0) {
196                         if ((errno == EINTR) || (errno == EAGAIN))
197                                 continue;
198                         die("read on %s of %ld bytes failed: %s\n",
199                                 filename, (size - progress)+ 0UL, strerror(errno));
200                 }
201                 progress += result;
202         }
203         result = close(fd);
204         if (result < 0) {
205                 die("Close of %s failed: %s\n",
206                         filename, strerror(errno));
207         }
208         return buf;
209 }
210
211 /* Long on the destination platform */
212 typedef unsigned long ulong_t;
213 typedef long long_t;
214
215 struct file_state {
216         struct file_state *prev;
217         const char *basename;
218         char *dirname;
219         char *buf;
220         off_t size;
221         char *pos;
222         int line;
223         char *line_start;
224         int report_line;
225         const char *report_name;
226         const char *report_dir;
227 };
228 struct hash_entry;
229 struct token {
230         int tok;
231         struct hash_entry *ident;
232         int str_len;
233         union {
234                 ulong_t integer;
235                 const char *str;
236         } val;
237 };
238
239 /* I have two classes of types:
240  * Operational types.
241  * Logical types.  (The type the C standard says the operation is of)
242  *
243  * The operational types are:
244  * chars
245  * shorts
246  * ints
247  * longs
248  *
249  * floats
250  * doubles
251  * long doubles
252  *
253  * pointer
254  */
255
256
257 /* Machine model.
258  * No memory is useable by the compiler.
259  * There is no floating point support.
260  * All operations take place in general purpose registers.
261  * There is one type of general purpose register.
262  * Unsigned longs are stored in that general purpose register.
263  */
264
265 /* Operations on general purpose registers.
266  */
267
268 #define OP_SDIVT      0
269 #define OP_UDIVT      1
270 #define OP_SMUL       2
271 #define OP_UMUL       3
272 #define OP_SDIV       4
273 #define OP_UDIV       5
274 #define OP_SMOD       6
275 #define OP_UMOD       7
276 #define OP_ADD        8
277 #define OP_SUB        9
278 #define OP_SL        10
279 #define OP_USR       11
280 #define OP_SSR       12 
281 #define OP_AND       13 
282 #define OP_XOR       14
283 #define OP_OR        15
284 #define OP_POS       16 /* Dummy positive operator don't use it */
285 #define OP_NEG       17
286 #define OP_INVERT    18
287                      
288 #define OP_EQ        20
289 #define OP_NOTEQ     21
290 #define OP_SLESS     22
291 #define OP_ULESS     23
292 #define OP_SMORE     24
293 #define OP_UMORE     25
294 #define OP_SLESSEQ   26
295 #define OP_ULESSEQ   27
296 #define OP_SMOREEQ   28
297 #define OP_UMOREEQ   29
298                      
299 #define OP_LFALSE    30  /* Test if the expression is logically false */
300 #define OP_LTRUE     31  /* Test if the expression is logcially true */
301
302 #define OP_LOAD      32
303 #define OP_STORE     33
304 /* For OP_STORE ->type holds the type
305  * RHS(0) holds the destination address
306  * RHS(1) holds the value to store.
307  */
308
309 #define OP_NOOP      34
310
311 #define OP_MIN_CONST 50
312 #define OP_MAX_CONST 59
313 #define IS_CONST_OP(X) (((X) >= OP_MIN_CONST) && ((X) <= OP_MAX_CONST))
314 #define OP_INTCONST  50
315 /* For OP_INTCONST ->type holds the type.
316  * ->u.cval holds the constant value.
317  */
318 #define OP_BLOBCONST 51
319 /* For OP_BLOBCONST ->type holds the layout and size
320  * information.  u.blob holds a pointer to the raw binary
321  * data for the constant initializer.
322  */
323 #define OP_ADDRCONST 52
324 /* For OP_ADDRCONST ->type holds the type.
325  * MISC(0) holds the reference to the static variable.
326  * ->u.cval holds an offset from that value.
327  */
328
329 #define OP_WRITE     60 
330 /* OP_WRITE moves one pseudo register to another.
331  * RHS(0) holds the destination pseudo register, which must be an OP_DECL.
332  * RHS(1) holds the psuedo to move.
333  */
334
335 #define OP_READ      61
336 /* OP_READ reads the value of a variable and makes
337  * it available for the pseudo operation.
338  * Useful for things like def-use chains.
339  * RHS(0) holds points to the triple to read from.
340  */
341 #define OP_COPY      62
342 /* OP_COPY makes a copy of the psedo register or constant in RHS(0).
343  */
344 #define OP_PIECE     63
345 /* OP_PIECE returns one piece of a instruction that returns a structure.
346  * MISC(0) is the instruction
347  * u.cval is the LHS piece of the instruction to return.
348  */
349 #define OP_ASM       64
350 /* OP_ASM holds a sequence of assembly instructions, the result
351  * of a C asm directive.
352  * RHS(x) holds input value x to the assembly sequence.
353  * LHS(x) holds the output value x from the assembly sequence.
354  * u.blob holds the string of assembly instructions.
355  */
356
357 #define OP_DEREF     65
358 /* OP_DEREF generates an lvalue from a pointer.
359  * RHS(0) holds the pointer value.
360  * OP_DEREF serves as a place holder to indicate all necessary
361  * checks have been done to indicate a value is an lvalue.
362  */
363 #define OP_DOT       66
364 /* OP_DOT references a submember of a structure lvalue.
365  * RHS(0) holds the lvalue.
366  * ->u.field holds the name of the field we want.
367  *
368  * Not seen outside of expressions.
369  */
370 #define OP_VAL       67
371 /* OP_VAL returns the value of a subexpression of the current expression.
372  * Useful for operators that have side effects.
373  * RHS(0) holds the expression.
374  * MISC(0) holds the subexpression of RHS(0) that is the
375  * value of the expression.
376  *
377  * Not seen outside of expressions.
378  */
379 #define OP_LAND      68
380 /* OP_LAND performs a C logical and between RHS(0) and RHS(1).
381  * Not seen outside of expressions.
382  */
383 #define OP_LOR       69
384 /* OP_LOR performs a C logical or between RHS(0) and RHS(1).
385  * Not seen outside of expressions.
386  */
387 #define OP_COND      70
388 /* OP_CODE performas a C ? : operation. 
389  * RHS(0) holds the test.
390  * RHS(1) holds the expression to evaluate if the test returns true.
391  * RHS(2) holds the expression to evaluate if the test returns false.
392  * Not seen outside of expressions.
393  */
394 #define OP_COMMA     71
395 /* OP_COMMA performacs a C comma operation.
396  * That is RHS(0) is evaluated, then RHS(1)
397  * and the value of RHS(1) is returned.
398  * Not seen outside of expressions.
399  */
400
401 #define OP_CALL      72
402 /* OP_CALL performs a procedure call. 
403  * MISC(0) holds a pointer to the OP_LIST of a function
404  * RHS(x) holds argument x of a function
405  * 
406  * Currently not seen outside of expressions.
407  */
408 #define OP_VAL_VEC   74
409 /* OP_VAL_VEC is an array of triples that are either variable
410  * or values for a structure or an array.
411  * RHS(x) holds element x of the vector.
412  * triple->type->elements holds the size of the vector.
413  */
414
415 /* statements */
416 #define OP_LIST      80
417 /* OP_LIST Holds a list of statements, and a result value.
418  * RHS(0) holds the list of statements.
419  * MISC(0) holds the value of the statements.
420  */
421
422 #define OP_BRANCH    81 /* branch */
423 /* For branch instructions
424  * TARG(0) holds the branch target.
425  * RHS(0) if present holds the branch condition.
426  * ->next holds where to branch to if the branch is not taken.
427  * The branch target can only be a decl...
428  */
429
430 #define OP_LABEL     83
431 /* OP_LABEL is a triple that establishes an target for branches.
432  * ->use is the list of all branches that use this label.
433  */
434
435 #define OP_ADECL     84 
436 /* OP_DECL is a triple that establishes an lvalue for assignments.
437  * ->use is a list of statements that use the variable.
438  */
439
440 #define OP_SDECL     85
441 /* OP_SDECL is a triple that establishes a variable of static
442  * storage duration.
443  * ->use is a list of statements that use the variable.
444  * MISC(0) holds the initializer expression.
445  */
446
447
448 #define OP_PHI       86
449 /* OP_PHI is a triple used in SSA form code.  
450  * It is used when multiple code paths merge and a variable needs
451  * a single assignment from any of those code paths.
452  * The operation is a cross between OP_DECL and OP_WRITE, which
453  * is what OP_PHI is geneared from.
454  * 
455  * RHS(x) points to the value from code path x
456  * The number of RHS entries is the number of control paths into the block
457  * in which OP_PHI resides.  The elements of the array point to point
458  * to the variables OP_PHI is derived from.
459  *
460  * MISC(0) holds a pointer to the orginal OP_DECL node.
461  */
462
463 /* Architecture specific instructions */
464 #define OP_CMP         100
465 #define OP_TEST        101
466 #define OP_SET_EQ      102
467 #define OP_SET_NOTEQ   103
468 #define OP_SET_SLESS   104
469 #define OP_SET_ULESS   105
470 #define OP_SET_SMORE   106
471 #define OP_SET_UMORE   107
472 #define OP_SET_SLESSEQ 108
473 #define OP_SET_ULESSEQ 109
474 #define OP_SET_SMOREEQ 110
475 #define OP_SET_UMOREEQ 111
476
477 #define OP_JMP         112
478 #define OP_JMP_EQ      113
479 #define OP_JMP_NOTEQ   114
480 #define OP_JMP_SLESS   115
481 #define OP_JMP_ULESS   116
482 #define OP_JMP_SMORE   117
483 #define OP_JMP_UMORE   118
484 #define OP_JMP_SLESSEQ 119
485 #define OP_JMP_ULESSEQ 120
486 #define OP_JMP_SMOREEQ 121
487 #define OP_JMP_UMOREEQ 122
488
489 /* Builtin operators that it is just simpler to use the compiler for */
490 #define OP_INB         130
491 #define OP_INW         131
492 #define OP_INL         132
493 #define OP_OUTB        133
494 #define OP_OUTW        134
495 #define OP_OUTL        135
496 #define OP_BSF         136
497 #define OP_BSR         137
498 #define OP_RDMSR       138
499 #define OP_WRMSR       139
500 #define OP_HLT         140
501
502 struct op_info {
503         const char *name;
504         unsigned flags;
505 #define PURE   1
506 #define IMPURE 2
507 #define PURE_BITS(FLAGS) ((FLAGS) & 0x3)
508 #define DEF    4
509 #define BLOCK  8 /* Triple stores the current block */
510         unsigned char lhs, rhs, misc, targ;
511 };
512
513 #define OP(LHS, RHS, MISC, TARG, FLAGS, NAME) { \
514         .name = (NAME), \
515         .flags = (FLAGS), \
516         .lhs = (LHS), \
517         .rhs = (RHS), \
518         .misc = (MISC), \
519         .targ = (TARG), \
520          }
521 static const struct op_info table_ops[] = {
522 [OP_SDIVT      ] = OP( 2,  2, 0, 0, PURE | BLOCK , "sdivt"),
523 [OP_UDIVT      ] = OP( 2,  2, 0, 0, PURE | BLOCK , "udivt"),
524 [OP_SMUL       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smul"),
525 [OP_UMUL       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umul"),
526 [OP_SDIV       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sdiv"),
527 [OP_UDIV       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "udiv"),
528 [OP_SMOD       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smod"),
529 [OP_UMOD       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umod"),
530 [OP_ADD        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "add"),
531 [OP_SUB        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sub"),
532 [OP_SL         ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sl"),
533 [OP_USR        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "usr"),
534 [OP_SSR        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "ssr"),
535 [OP_AND        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "and"),
536 [OP_XOR        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "xor"),
537 [OP_OR         ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "or"),
538 [OP_POS        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "pos"),
539 [OP_NEG        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "neg"),
540 [OP_INVERT     ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "invert"),
541
542 [OP_EQ         ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "eq"),
543 [OP_NOTEQ      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "noteq"),
544 [OP_SLESS      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sless"),
545 [OP_ULESS      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "uless"),
546 [OP_SMORE      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smore"),
547 [OP_UMORE      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umore"),
548 [OP_SLESSEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "slesseq"),
549 [OP_ULESSEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "ulesseq"),
550 [OP_SMOREEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smoreeq"),
551 [OP_UMOREEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umoreeq"),
552 [OP_LFALSE     ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "lfalse"),
553 [OP_LTRUE      ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "ltrue"),
554
555 [OP_LOAD       ] = OP( 0,  1, 0, 0, IMPURE | DEF | BLOCK, "load"),
556 [OP_STORE      ] = OP( 0,  2, 0, 0, IMPURE | BLOCK , "store"),
557
558 [OP_NOOP       ] = OP( 0,  0, 0, 0, PURE | BLOCK, "noop"),
559
560 [OP_INTCONST   ] = OP( 0,  0, 0, 0, PURE | DEF, "intconst"),
561 [OP_BLOBCONST  ] = OP( 0,  0, 0, 0, PURE, "blobconst"),
562 [OP_ADDRCONST  ] = OP( 0,  0, 1, 0, PURE | DEF, "addrconst"),
563
564 [OP_WRITE      ] = OP( 0,  2, 0, 0, PURE | BLOCK, "write"),
565 [OP_READ       ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "read"),
566 [OP_COPY       ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "copy"),
567 [OP_PIECE      ] = OP( 0,  0, 1, 0, PURE | DEF, "piece"),
568 [OP_ASM        ] = OP(-1, -1, 0, 0, IMPURE, "asm"),
569 [OP_DEREF      ] = OP( 0,  1, 0, 0, 0 | DEF | BLOCK, "deref"), 
570 [OP_DOT        ] = OP( 0,  1, 0, 0, 0 | DEF | BLOCK, "dot"),
571
572 [OP_VAL        ] = OP( 0,  1, 1, 0, 0 | DEF | BLOCK, "val"),
573 [OP_LAND       ] = OP( 0,  2, 0, 0, 0 | DEF | BLOCK, "land"),
574 [OP_LOR        ] = OP( 0,  2, 0, 0, 0 | DEF | BLOCK, "lor"),
575 [OP_COND       ] = OP( 0,  3, 0, 0, 0 | DEF | BLOCK, "cond"),
576 [OP_COMMA      ] = OP( 0,  2, 0, 0, 0 | DEF | BLOCK, "comma"),
577 /* Call is special most it can stand in for anything so it depends on context */
578 [OP_CALL       ] = OP(-1, -1, 1, 0, 0 | BLOCK, "call"),
579 /* The sizes of OP_CALL and OP_VAL_VEC depend upon context */
580 [OP_VAL_VEC    ] = OP( 0, -1, 0, 0, 0 | BLOCK, "valvec"),
581
582 [OP_LIST       ] = OP( 0,  1, 1, 0, 0 | DEF, "list"),
583 /* The number of targets for OP_BRANCH depends on context */
584 [OP_BRANCH     ] = OP( 0, -1, 0, 1, PURE | BLOCK, "branch"),
585 [OP_LABEL      ] = OP( 0,  0, 0, 0, PURE | BLOCK, "label"),
586 [OP_ADECL      ] = OP( 0,  0, 0, 0, PURE | BLOCK, "adecl"),
587 [OP_SDECL      ] = OP( 0,  0, 1, 0, PURE | BLOCK, "sdecl"),
588 /* The number of RHS elements of OP_PHI depend upon context */
589 [OP_PHI        ] = OP( 0, -1, 1, 0, PURE | DEF | BLOCK, "phi"),
590
591 [OP_CMP        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK, "cmp"),
592 [OP_TEST       ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "test"),
593 [OP_SET_EQ     ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_eq"),
594 [OP_SET_NOTEQ  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_noteq"),
595 [OP_SET_SLESS  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_sless"),
596 [OP_SET_ULESS  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_uless"),
597 [OP_SET_SMORE  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_smore"),
598 [OP_SET_UMORE  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_umore"),
599 [OP_SET_SLESSEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_slesseq"),
600 [OP_SET_ULESSEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_ulesseq"),
601 [OP_SET_SMOREEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_smoreq"),
602 [OP_SET_UMOREEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_umoreq"),
603 [OP_JMP        ] = OP( 0,  0, 0, 1, PURE | BLOCK, "jmp"),
604 [OP_JMP_EQ     ] = OP( 0,  1, 0, 1, PURE | BLOCK, "jmp_eq"),
605 [OP_JMP_NOTEQ  ] = OP( 0,  1, 0, 1, PURE | BLOCK, "jmp_noteq"),
606 [OP_JMP_SLESS  ] = OP( 0,  1, 0, 1, PURE | BLOCK, "jmp_sless"),
607 [OP_JMP_ULESS  ] = OP( 0,  1, 0, 1, PURE | BLOCK, "jmp_uless"),
608 [OP_JMP_SMORE  ] = OP( 0,  1, 0, 1, PURE | BLOCK, "jmp_smore"),
609 [OP_JMP_UMORE  ] = OP( 0,  1, 0, 1, PURE | BLOCK, "jmp_umore"),
610 [OP_JMP_SLESSEQ] = OP( 0,  1, 0, 1, PURE | BLOCK, "jmp_slesseq"),
611 [OP_JMP_ULESSEQ] = OP( 0,  1, 0, 1, PURE | BLOCK, "jmp_ulesseq"),
612 [OP_JMP_SMOREEQ] = OP( 0,  1, 0, 1, PURE | BLOCK, "jmp_smoreq"),
613 [OP_JMP_UMOREEQ] = OP( 0,  1, 0, 1, PURE | BLOCK, "jmp_umoreq"),
614
615 [OP_INB        ] = OP( 0,  1, 0, 0, IMPURE | DEF | BLOCK, "__inb"),
616 [OP_INW        ] = OP( 0,  1, 0, 0, IMPURE | DEF | BLOCK, "__inw"),
617 [OP_INL        ] = OP( 0,  1, 0, 0, IMPURE | DEF | BLOCK, "__inl"),
618 [OP_OUTB       ] = OP( 0,  2, 0, 0, IMPURE| BLOCK, "__outb"),
619 [OP_OUTW       ] = OP( 0,  2, 0, 0, IMPURE| BLOCK, "__outw"),
620 [OP_OUTL       ] = OP( 0,  2, 0, 0, IMPURE| BLOCK, "__outl"),
621 [OP_BSF        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "__bsf"),
622 [OP_BSR        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "__bsr"),
623 [OP_RDMSR      ] = OP( 2,  1, 0, 0, IMPURE | BLOCK, "__rdmsr"),
624 [OP_WRMSR      ] = OP( 0,  3, 0, 0, IMPURE | BLOCK, "__wrmsr"),
625 [OP_HLT        ] = OP( 0,  0, 0, 0, IMPURE | BLOCK, "__hlt"),
626 };
627 #undef OP
628 #define OP_MAX      (sizeof(table_ops)/sizeof(table_ops[0]))
629
630 static const char *tops(int index) 
631 {
632         static const char unknown[] = "unknown op";
633         if (index < 0) {
634                 return unknown;
635         }
636         if (index > OP_MAX) {
637                 return unknown;
638         }
639         return table_ops[index].name;
640 }
641
642 struct asm_info;
643 struct triple;
644 struct block;
645 struct triple_set {
646         struct triple_set *next;
647         struct triple *member;
648 };
649
650 #define MAX_LHS  15
651 #define MAX_RHS  15
652 #define MAX_MISC 15
653 #define MAX_TARG 15
654
655 struct occurance {
656         int count;
657         const char *filename;
658         const char *function;
659         int line;
660         int col;
661         struct occurance *parent;
662 };
663 struct triple {
664         struct triple *next, *prev;
665         struct triple_set *use;
666         struct type *type;
667         unsigned char op;
668         unsigned char template_id;
669         unsigned short sizes;
670 #define TRIPLE_LHS(SIZES)  (((SIZES) >>  0) & 0x0f)
671 #define TRIPLE_RHS(SIZES)  (((SIZES) >>  4) & 0x0f)
672 #define TRIPLE_MISC(SIZES) (((SIZES) >>  8) & 0x0f)
673 #define TRIPLE_TARG(SIZES) (((SIZES) >> 12) & 0x0f)
674 #define TRIPLE_SIZE(SIZES) \
675         ((((SIZES) >> 0) & 0x0f) + \
676         (((SIZES) >>  4) & 0x0f) + \
677         (((SIZES) >>  8) & 0x0f) + \
678         (((SIZES) >> 12) & 0x0f))
679 #define TRIPLE_SIZES(LHS, RHS, MISC, TARG) \
680         ((((LHS) & 0x0f) <<  0) | \
681         (((RHS) & 0x0f)  <<  4) | \
682         (((MISC) & 0x0f) <<  8) | \
683         (((TARG) & 0x0f) << 12))
684 #define TRIPLE_LHS_OFF(SIZES)  (0)
685 #define TRIPLE_RHS_OFF(SIZES)  (TRIPLE_LHS_OFF(SIZES) + TRIPLE_LHS(SIZES))
686 #define TRIPLE_MISC_OFF(SIZES) (TRIPLE_RHS_OFF(SIZES) + TRIPLE_RHS(SIZES))
687 #define TRIPLE_TARG_OFF(SIZES) (TRIPLE_MISC_OFF(SIZES) + TRIPLE_MISC(SIZES))
688 #define LHS(PTR,INDEX) ((PTR)->param[TRIPLE_LHS_OFF((PTR)->sizes) + (INDEX)])
689 #define RHS(PTR,INDEX) ((PTR)->param[TRIPLE_RHS_OFF((PTR)->sizes) + (INDEX)])
690 #define TARG(PTR,INDEX) ((PTR)->param[TRIPLE_TARG_OFF((PTR)->sizes) + (INDEX)])
691 #define MISC(PTR,INDEX) ((PTR)->param[TRIPLE_MISC_OFF((PTR)->sizes) + (INDEX)])
692         unsigned id; /* A scratch value and finally the register */
693 #define TRIPLE_FLAG_FLATTENED   (1 << 31)
694 #define TRIPLE_FLAG_PRE_SPLIT   (1 << 30)
695 #define TRIPLE_FLAG_POST_SPLIT  (1 << 29)
696         struct occurance *occurance;
697         union {
698                 ulong_t cval;
699                 struct block  *block;
700                 void *blob;
701                 struct hash_entry *field;
702                 struct asm_info *ainfo;
703         } u;
704         struct triple *param[2];
705 };
706
707 struct reg_info {
708         unsigned reg;
709         unsigned regcm;
710 };
711 struct ins_template {
712         struct reg_info lhs[MAX_LHS + 1], rhs[MAX_RHS + 1];
713 };
714
715 struct asm_info {
716         struct ins_template tmpl;
717         char *str;
718 };
719
720 struct block_set {
721         struct block_set *next;
722         struct block *member;
723 };
724 struct block {
725         struct block *work_next;
726         struct block *left, *right;
727         struct triple *first, *last;
728         int users;
729         struct block_set *use;
730         struct block_set *idominates;
731         struct block_set *domfrontier;
732         struct block *idom;
733         struct block_set *ipdominates;
734         struct block_set *ipdomfrontier;
735         struct block *ipdom;
736         int vertex;
737         
738 };
739
740 struct symbol {
741         struct symbol *next;
742         struct hash_entry *ident;
743         struct triple *def;
744         struct type *type;
745         int scope_depth;
746 };
747
748 struct macro {
749         struct hash_entry *ident;
750         char *buf;
751         int buf_len;
752 };
753
754 struct hash_entry {
755         struct hash_entry *next;
756         const char *name;
757         int name_len;
758         int tok;
759         struct macro *sym_define;
760         struct symbol *sym_label;
761         struct symbol *sym_struct;
762         struct symbol *sym_ident;
763 };
764
765 #define HASH_TABLE_SIZE 2048
766
767 struct compile_state {
768         const char *label_prefix;
769         const char *ofilename;
770         FILE *output;
771         struct file_state *file;
772         struct occurance *last_occurance;
773         const char *function;
774         struct token token[4];
775         struct hash_entry *hash_table[HASH_TABLE_SIZE];
776         struct hash_entry *i_continue;
777         struct hash_entry *i_break;
778         int scope_depth;
779         int if_depth, if_value;
780         int macro_line;
781         struct file_state *macro_file;
782         struct triple *main_function;
783         struct block *first_block, *last_block;
784         int last_vertex;
785         int cpu;
786         int debug;
787         int optimize;
788 };
789
790 /* visibility global/local */
791 /* static/auto duration */
792 /* typedef, register, inline */
793 #define STOR_SHIFT         0
794 #define STOR_MASK     0x000f
795 /* Visibility */
796 #define STOR_GLOBAL   0x0001
797 /* Duration */
798 #define STOR_PERM     0x0002
799 /* Storage specifiers */
800 #define STOR_AUTO     0x0000
801 #define STOR_STATIC   0x0002
802 #define STOR_EXTERN   0x0003
803 #define STOR_REGISTER 0x0004
804 #define STOR_TYPEDEF  0x0008
805 #define STOR_INLINE   0x000c
806
807 #define QUAL_SHIFT         4
808 #define QUAL_MASK     0x0070
809 #define QUAL_NONE     0x0000
810 #define QUAL_CONST    0x0010
811 #define QUAL_VOLATILE 0x0020
812 #define QUAL_RESTRICT 0x0040
813
814 #define TYPE_SHIFT         8
815 #define TYPE_MASK     0x1f00
816 #define TYPE_INTEGER(TYPE)    (((TYPE) >= TYPE_CHAR) && ((TYPE) <= TYPE_ULLONG))
817 #define TYPE_ARITHMETIC(TYPE) (((TYPE) >= TYPE_CHAR) && ((TYPE) <= TYPE_LDOUBLE))
818 #define TYPE_UNSIGNED(TYPE)   ((TYPE) & 0x0100)
819 #define TYPE_SIGNED(TYPE)     (!TYPE_UNSIGNED(TYPE))
820 #define TYPE_MKUNSIGNED(TYPE) ((TYPE) | 0x0100)
821 #define TYPE_RANK(TYPE)       ((TYPE) & ~0x0100)
822 #define TYPE_PTR(TYPE)        (((TYPE) & TYPE_MASK) == TYPE_POINTER)
823 #define TYPE_DEFAULT  0x0000
824 #define TYPE_VOID     0x0100
825 #define TYPE_CHAR     0x0200
826 #define TYPE_UCHAR    0x0300
827 #define TYPE_SHORT    0x0400
828 #define TYPE_USHORT   0x0500
829 #define TYPE_INT      0x0600
830 #define TYPE_UINT     0x0700
831 #define TYPE_LONG     0x0800
832 #define TYPE_ULONG    0x0900
833 #define TYPE_LLONG    0x0a00 /* long long */
834 #define TYPE_ULLONG   0x0b00
835 #define TYPE_FLOAT    0x0c00
836 #define TYPE_DOUBLE   0x0d00
837 #define TYPE_LDOUBLE  0x0e00 /* long double */
838 #define TYPE_STRUCT   0x1000
839 #define TYPE_ENUM     0x1100
840 #define TYPE_POINTER  0x1200 
841 /* For TYPE_POINTER:
842  * type->left holds the type pointed to.
843  */
844 #define TYPE_FUNCTION 0x1300 
845 /* For TYPE_FUNCTION:
846  * type->left holds the return type.
847  * type->right holds the...
848  */
849 #define TYPE_PRODUCT  0x1400
850 /* TYPE_PRODUCT is a basic building block when defining structures
851  * type->left holds the type that appears first in memory.
852  * type->right holds the type that appears next in memory.
853  */
854 #define TYPE_OVERLAP  0x1500
855 /* TYPE_OVERLAP is a basic building block when defining unions
856  * type->left and type->right holds to types that overlap
857  * each other in memory.
858  */
859 #define TYPE_ARRAY    0x1600
860 /* TYPE_ARRAY is a basic building block when definitng arrays.
861  * type->left holds the type we are an array of.
862  * type-> holds the number of elements.
863  */
864
865 #define ELEMENT_COUNT_UNSPECIFIED (~0UL)
866
867 struct type {
868         unsigned int type;
869         struct type *left, *right;
870         ulong_t elements;
871         struct hash_entry *field_ident;
872         struct hash_entry *type_ident;
873 };
874
875 #define MAX_REGISTERS      75
876 #define MAX_REG_EQUIVS     16
877 #define REGISTER_BITS      16
878 #define MAX_VIRT_REGISTERS (1<<REGISTER_BITS)
879 #define TEMPLATE_BITS      7
880 #define MAX_TEMPLATES      (1<<TEMPLATE_BITS)
881 #define MAX_REGC           14
882 #define REG_UNSET          0
883 #define REG_UNNEEDED       1
884 #define REG_VIRT0          (MAX_REGISTERS + 0)
885 #define REG_VIRT1          (MAX_REGISTERS + 1)
886 #define REG_VIRT2          (MAX_REGISTERS + 2)
887 #define REG_VIRT3          (MAX_REGISTERS + 3)
888 #define REG_VIRT4          (MAX_REGISTERS + 4)
889 #define REG_VIRT5          (MAX_REGISTERS + 5)
890 #define REG_VIRT6          (MAX_REGISTERS + 5)
891 #define REG_VIRT7          (MAX_REGISTERS + 5)
892 #define REG_VIRT8          (MAX_REGISTERS + 5)
893 #define REG_VIRT9          (MAX_REGISTERS + 5)
894
895 /* Provision for 8 register classes */
896 #define REG_SHIFT  0
897 #define REGC_SHIFT REGISTER_BITS
898 #define REGC_MASK (((1 << MAX_REGC) - 1) << REGISTER_BITS)
899 #define REG_MASK (MAX_VIRT_REGISTERS -1)
900 #define ID_REG(ID)              ((ID) & REG_MASK)
901 #define SET_REG(ID, REG)        ((ID) = (((ID) & ~REG_MASK) | ((REG) & REG_MASK)))
902 #define ID_REGCM(ID)            (((ID) & REGC_MASK) >> REGC_SHIFT)
903 #define SET_REGCM(ID, REGCM)    ((ID) = (((ID) & ~REGC_MASK) | (((REGCM) << REGC_SHIFT) & REGC_MASK)))
904 #define SET_INFO(ID, INFO)      ((ID) = (((ID) & ~(REG_MASK | REGC_MASK)) | \
905                 (((INFO).reg) & REG_MASK) | ((((INFO).regcm) << REGC_SHIFT) & REGC_MASK)))
906
907 static unsigned arch_reg_regcm(struct compile_state *state, int reg);
908 static unsigned arch_regcm_normalize(struct compile_state *state, unsigned regcm);
909 static unsigned arch_regcm_reg_normalize(struct compile_state *state, unsigned regcm);
910 static void arch_reg_equivs(
911         struct compile_state *state, unsigned *equiv, int reg);
912 static int arch_select_free_register(
913         struct compile_state *state, char *used, int classes);
914 static unsigned arch_regc_size(struct compile_state *state, int class);
915 static int arch_regcm_intersect(unsigned regcm1, unsigned regcm2);
916 static unsigned arch_type_to_regcm(struct compile_state *state, struct type *type);
917 static const char *arch_reg_str(int reg);
918 static struct reg_info arch_reg_constraint(
919         struct compile_state *state, struct type *type, const char *constraint);
920 static struct reg_info arch_reg_clobber(
921         struct compile_state *state, const char *clobber);
922 static struct reg_info arch_reg_lhs(struct compile_state *state, 
923         struct triple *ins, int index);
924 static struct reg_info arch_reg_rhs(struct compile_state *state, 
925         struct triple *ins, int index);
926 static struct triple *transform_to_arch_instruction(
927         struct compile_state *state, struct triple *ins);
928
929
930
931 #define DEBUG_ABORT_ON_ERROR    0x0001
932 #define DEBUG_INTERMEDIATE_CODE 0x0002
933 #define DEBUG_CONTROL_FLOW      0x0004
934 #define DEBUG_BASIC_BLOCKS      0x0008
935 #define DEBUG_FDOMINATORS       0x0010
936 #define DEBUG_RDOMINATORS       0x0020
937 #define DEBUG_TRIPLES           0x0040
938 #define DEBUG_INTERFERENCE      0x0080
939 #define DEBUG_ARCH_CODE         0x0100
940 #define DEBUG_CODE_ELIMINATION  0x0200
941 #define DEBUG_INSERTED_COPIES   0x0400
942
943 #define GLOBAL_SCOPE_DEPTH   1
944 #define FUNCTION_SCOPE_DEPTH (GLOBAL_SCOPE_DEPTH + 1)
945
946 static void compile_file(struct compile_state *old_state, const char *filename, int local);
947
948 static void do_cleanup(struct compile_state *state)
949 {
950         if (state->output) {
951                 fclose(state->output);
952                 unlink(state->ofilename);
953         }
954 }
955
956 static int get_col(struct file_state *file)
957 {
958         int col;
959         char *ptr, *end;
960         ptr = file->line_start;
961         end = file->pos;
962         for(col = 0; ptr < end; ptr++) {
963                 if (*ptr != '\t') {
964                         col++;
965                 } 
966                 else {
967                         col = (col & ~7) + 8;
968                 }
969         }
970         return col;
971 }
972
973 static void loc(FILE *fp, struct compile_state *state, struct triple *triple)
974 {
975         int col;
976         if (triple && triple->occurance) {
977                 struct occurance *spot;
978                 spot = triple->occurance;
979                 while(spot->parent) {
980                         spot = spot->parent;
981                 }
982                 fprintf(fp, "%s:%d.%d: ", 
983                         spot->filename, spot->line, spot->col);
984                 return;
985         }
986         if (!state->file) {
987                 return;
988         }
989         col = get_col(state->file);
990         fprintf(fp, "%s:%d.%d: ", 
991                 state->file->report_name, state->file->report_line, col);
992 }
993
994 static void __internal_error(struct compile_state *state, struct triple *ptr, 
995         char *fmt, ...)
996 {
997         va_list args;
998         va_start(args, fmt);
999         loc(stderr, state, ptr);
1000         if (ptr) {
1001                 fprintf(stderr, "%p %s ", ptr, tops(ptr->op));
1002         }
1003         fprintf(stderr, "Internal compiler error: ");
1004         vfprintf(stderr, fmt, args);
1005         fprintf(stderr, "\n");
1006         va_end(args);
1007         do_cleanup(state);
1008         abort();
1009 }
1010
1011
1012 static void __internal_warning(struct compile_state *state, struct triple *ptr, 
1013         char *fmt, ...)
1014 {
1015         va_list args;
1016         va_start(args, fmt);
1017         loc(stderr, state, ptr);
1018         fprintf(stderr, "Internal compiler warning: ");
1019         vfprintf(stderr, fmt, args);
1020         fprintf(stderr, "\n");
1021         va_end(args);
1022 }
1023
1024
1025
1026 static void __error(struct compile_state *state, struct triple *ptr, 
1027         char *fmt, ...)
1028 {
1029         va_list args;
1030         va_start(args, fmt);
1031         loc(stderr, state, ptr);
1032         vfprintf(stderr, fmt, args);
1033         va_end(args);
1034         fprintf(stderr, "\n");
1035         do_cleanup(state);
1036         if (state->debug & DEBUG_ABORT_ON_ERROR) {
1037                 abort();
1038         }
1039         exit(1);
1040 }
1041
1042 static void __warning(struct compile_state *state, struct triple *ptr, 
1043         char *fmt, ...)
1044 {
1045         va_list args;
1046         va_start(args, fmt);
1047         loc(stderr, state, ptr);
1048         fprintf(stderr, "warning: "); 
1049         vfprintf(stderr, fmt, args);
1050         fprintf(stderr, "\n");
1051         va_end(args);
1052 }
1053
1054 #if DEBUG_ERROR_MESSAGES 
1055 #  define internal_error fprintf(stderr,  "@ %s.%s:%d \t", __FILE__, __func__, __LINE__),__internal_error
1056 #  define internal_warning fprintf(stderr,  "@ %s.%s:%d \t", __FILE__, __func__, __LINE__),__internal_warning
1057 #  define error fprintf(stderr, "@ %s.%s:%d \t", __FILE__, __func__, __LINE__),__error
1058 #  define warning fprintf(stderr, "@ %s.%s:%d \t", __FILE__, __func__, __LINE__),__warning
1059 #else
1060 #  define internal_error __internal_error
1061 #  define internal_warning __internal_warning
1062 #  define error __error
1063 #  define warning __warning
1064 #endif
1065 #define FINISHME() warning(state, 0, "FINISHME @ %s.%s:%d", __FILE__, __func__, __LINE__)
1066
1067 static void valid_op(struct compile_state *state, int op)
1068 {
1069         char *fmt = "invalid op: %d";
1070         if (op >= OP_MAX) {
1071                 internal_error(state, 0, fmt, op);
1072         }
1073         if (op < 0) {
1074                 internal_error(state, 0, fmt, op);
1075         }
1076 }
1077
1078 static void valid_ins(struct compile_state *state, struct triple *ptr)
1079 {
1080         valid_op(state, ptr->op);
1081 }
1082
1083 static void process_trigraphs(struct compile_state *state)
1084 {
1085         char *src, *dest, *end;
1086         struct file_state *file;
1087         file = state->file;
1088         src = dest = file->buf;
1089         end = file->buf + file->size;
1090         while((end - src) >= 3) {
1091                 if ((src[0] == '?') && (src[1] == '?')) {
1092                         int c = -1;
1093                         switch(src[2]) {
1094                         case '=': c = '#'; break;
1095                         case '/': c = '\\'; break;
1096                         case '\'': c = '^'; break;
1097                         case '(': c = '['; break;
1098                         case ')': c = ']'; break;
1099                         case '!': c = '!'; break;
1100                         case '<': c = '{'; break;
1101                         case '>': c = '}'; break;
1102                         case '-': c = '~'; break;
1103                         }
1104                         if (c != -1) {
1105                                 *dest++ = c;
1106                                 src += 3;
1107                         }
1108                         else {
1109                                 *dest++ = *src++;
1110                         }
1111                 }
1112                 else {
1113                         *dest++ = *src++;
1114                 }
1115         }
1116         while(src != end) {
1117                 *dest++ = *src++;
1118         }
1119         file->size = dest - file->buf;
1120 }
1121
1122 static void splice_lines(struct compile_state *state)
1123 {
1124         char *src, *dest, *end;
1125         struct file_state *file;
1126         file = state->file;
1127         src = dest = file->buf;
1128         end = file->buf + file->size;
1129         while((end - src) >= 2) {
1130                 if ((src[0] == '\\') && (src[1] == '\n')) {
1131                         src += 2;
1132                 }
1133                 else {
1134                         *dest++ = *src++;
1135                 }
1136         }
1137         while(src != end) {
1138                 *dest++ = *src++;
1139         }
1140         file->size = dest - file->buf;
1141 }
1142
1143 static struct type void_type;
1144 static void use_triple(struct triple *used, struct triple *user)
1145 {
1146         struct triple_set **ptr, *new;
1147         if (!used)
1148                 return;
1149         if (!user)
1150                 return;
1151         ptr = &used->use;
1152         while(*ptr) {
1153                 if ((*ptr)->member == user) {
1154                         return;
1155                 }
1156                 ptr = &(*ptr)->next;
1157         }
1158         /* Append new to the head of the list, 
1159          * copy_func and rename_block_variables
1160          * depends on this.
1161          */
1162         new = xcmalloc(sizeof(*new), "triple_set");
1163         new->member = user;
1164         new->next   = used->use;
1165         used->use   = new;
1166 }
1167
1168 static void unuse_triple(struct triple *used, struct triple *unuser)
1169 {
1170         struct triple_set *use, **ptr;
1171         if (!used) {
1172                 return;
1173         }
1174         ptr = &used->use;
1175         while(*ptr) {
1176                 use = *ptr;
1177                 if (use->member == unuser) {
1178                         *ptr = use->next;
1179                         xfree(use);
1180                 }
1181                 else {
1182                         ptr = &use->next;
1183                 }
1184         }
1185 }
1186
1187 static void push_triple(struct triple *used, struct triple *user)
1188 {
1189         struct triple_set *new;
1190         if (!used)
1191                 return;
1192         if (!user)
1193                 return;
1194         /* Append new to the head of the list,
1195          * it's the only sensible behavoir for a stack.
1196          */
1197         new = xcmalloc(sizeof(*new), "triple_set");
1198         new->member = user;
1199         new->next   = used->use;
1200         used->use   = new;
1201 }
1202
1203 static void pop_triple(struct triple *used, struct triple *unuser)
1204 {
1205         struct triple_set *use, **ptr;
1206         ptr = &used->use;
1207         while(*ptr) {
1208                 use = *ptr;
1209                 if (use->member == unuser) {
1210                         *ptr = use->next;
1211                         xfree(use);
1212                         /* Only free one occurance from the stack */
1213                         return;
1214                 }
1215                 else {
1216                         ptr = &use->next;
1217                 }
1218         }
1219 }
1220
1221 static void put_occurance(struct occurance *occurance)
1222 {
1223         occurance->count -= 1;
1224         if (occurance->count <= 0) {
1225                 if (occurance->parent) {
1226                         put_occurance(occurance->parent);
1227                 }
1228                 xfree(occurance);
1229         }
1230 }
1231
1232 static void get_occurance(struct occurance *occurance)
1233 {
1234         occurance->count += 1;
1235 }
1236
1237
1238 static struct occurance *new_occurance(struct compile_state *state)
1239 {
1240         struct occurance *result, *last;
1241         const char *filename;
1242         const char *function;
1243         int line, col;
1244
1245         function = "";
1246         filename = 0;
1247         line = 0;
1248         col  = 0;
1249         if (state->file) {
1250                 filename = state->file->report_name;
1251                 line     = state->file->report_line;
1252                 col      = get_col(state->file);
1253         }
1254         if (state->function) {
1255                 function = state->function;
1256         }
1257         last = state->last_occurance;
1258         if (last &&
1259                 (last->col == col) &&
1260                 (last->line == line) &&
1261                 (last->function == function) &&
1262                 (strcmp(last->filename, filename) == 0)) {
1263                 get_occurance(last);
1264                 return last;
1265         }
1266         if (last) {
1267                 state->last_occurance = 0;
1268                 put_occurance(last);
1269         }
1270         result = xmalloc(sizeof(*result), "occurance");
1271         result->count    = 2;
1272         result->filename = filename;
1273         result->function = function;
1274         result->line     = line;
1275         result->col      = col;
1276         result->parent   = 0;
1277         state->last_occurance = result;
1278         return result;
1279 }
1280
1281 static struct occurance *inline_occurance(struct compile_state *state,
1282         struct occurance *new, struct occurance *orig)
1283 {
1284         struct occurance *result, *last;
1285         last = state->last_occurance;
1286         if (last &&
1287                 (last->parent   == orig) &&
1288                 (last->col      == new->col) &&
1289                 (last->line     == new->line) &&
1290                 (last->function == new->function) &&
1291                 (last->filename == new->filename)) {
1292                 get_occurance(last);
1293                 return last;
1294         }
1295         if (last) {
1296                 state->last_occurance = 0;
1297                 put_occurance(last);
1298         }
1299         get_occurance(orig);
1300         result = xmalloc(sizeof(*result), "occurance");
1301         result->count    = 2;
1302         result->filename = new->filename;
1303         result->function = new->function;
1304         result->line     = new->line;
1305         result->col      = new->col;
1306         result->parent   = orig;
1307         state->last_occurance = result;
1308         return result;
1309 }
1310         
1311
1312 static struct occurance dummy_occurance = {
1313         .count    = 2,
1314         .filename = __FILE__,
1315         .function = "",
1316         .line     = __LINE__,
1317         .col      = 0,
1318         .parent   = 0,
1319 };
1320
1321 /* The zero triple is used as a place holder when we are removing pointers
1322  * from a triple.  Having allows certain sanity checks to pass even
1323  * when the original triple that was pointed to is gone.
1324  */
1325 static struct triple zero_triple = {
1326         .next      = &zero_triple,
1327         .prev      = &zero_triple,
1328         .use       = 0,
1329         .op        = OP_INTCONST,
1330         .sizes     = TRIPLE_SIZES(0, 0, 0, 0),
1331         .id        = -1, /* An invalid id */
1332         .u = { .cval   = 0, },
1333         .occurance = &dummy_occurance,
1334         .param { [0] = 0, [1] = 0, },
1335 };
1336
1337
1338 static unsigned short triple_sizes(struct compile_state *state,
1339         int op, struct type *type, int lhs_wanted, int rhs_wanted)
1340 {
1341         int lhs, rhs, misc, targ;
1342         valid_op(state, op);
1343         lhs = table_ops[op].lhs;
1344         rhs = table_ops[op].rhs;
1345         misc = table_ops[op].misc;
1346         targ = table_ops[op].targ;
1347         
1348         
1349         if (op == OP_CALL) {
1350                 struct type *param;
1351                 rhs = 0;
1352                 param = type->right;
1353                 while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
1354                         rhs++;
1355                         param = param->right;
1356                 }
1357                 if ((param->type & TYPE_MASK) != TYPE_VOID) {
1358                         rhs++;
1359                 }
1360                 lhs = 0;
1361                 if ((type->left->type & TYPE_MASK) == TYPE_STRUCT) {
1362                         lhs = type->left->elements;
1363                 }
1364         }
1365         else if (op == OP_VAL_VEC) {
1366                 rhs = type->elements;
1367         }
1368         else if ((op == OP_BRANCH) || (op == OP_PHI)) {
1369                 rhs = rhs_wanted;
1370         }
1371         else if (op == OP_ASM) {
1372                 rhs = rhs_wanted;
1373                 lhs = lhs_wanted;
1374         }
1375         if ((rhs < 0) || (rhs > MAX_RHS)) {
1376                 internal_error(state, 0, "bad rhs");
1377         }
1378         if ((lhs < 0) || (lhs > MAX_LHS)) {
1379                 internal_error(state, 0, "bad lhs");
1380         }
1381         if ((misc < 0) || (misc > MAX_MISC)) {
1382                 internal_error(state, 0, "bad misc");
1383         }
1384         if ((targ < 0) || (targ > MAX_TARG)) {
1385                 internal_error(state, 0, "bad targs");
1386         }
1387         return TRIPLE_SIZES(lhs, rhs, misc, targ);
1388 }
1389
1390 static struct triple *alloc_triple(struct compile_state *state, 
1391         int op, struct type *type, int lhs, int rhs,
1392         struct occurance *occurance)
1393 {
1394         size_t size, sizes, extra_count, min_count;
1395         struct triple *ret;
1396         sizes = triple_sizes(state, op, type, lhs, rhs);
1397
1398         min_count = sizeof(ret->param)/sizeof(ret->param[0]);
1399         extra_count = TRIPLE_SIZE(sizes);
1400         extra_count = (extra_count < min_count)? 0 : extra_count - min_count;
1401
1402         size = sizeof(*ret) + sizeof(ret->param[0]) * extra_count;
1403         ret = xcmalloc(size, "tripple");
1404         ret->op        = op;
1405         ret->sizes     = sizes;
1406         ret->type      = type;
1407         ret->next      = ret;
1408         ret->prev      = ret;
1409         ret->occurance = occurance;
1410         return ret;
1411 }
1412
1413 struct triple *dup_triple(struct compile_state *state, struct triple *src)
1414 {
1415         struct triple *dup;
1416         int src_lhs, src_rhs, src_size;
1417         src_lhs = TRIPLE_LHS(src->sizes);
1418         src_rhs = TRIPLE_RHS(src->sizes);
1419         src_size = TRIPLE_SIZE(src->sizes);
1420         get_occurance(src->occurance);
1421         dup = alloc_triple(state, src->op, src->type, src_lhs, src_rhs,
1422                 src->occurance);
1423         memcpy(dup, src, sizeof(*src));
1424         memcpy(dup->param, src->param, src_size * sizeof(src->param[0]));
1425         return dup;
1426 }
1427
1428 static struct triple *new_triple(struct compile_state *state, 
1429         int op, struct type *type, int lhs, int rhs)
1430 {
1431         struct triple *ret;
1432         struct occurance *occurance;
1433         occurance = new_occurance(state);
1434         ret = alloc_triple(state, op, type, lhs, rhs, occurance);
1435         return ret;
1436 }
1437
1438 static struct triple *build_triple(struct compile_state *state, 
1439         int op, struct type *type, struct triple *left, struct triple *right,
1440         struct occurance *occurance)
1441 {
1442         struct triple *ret;
1443         size_t count;
1444         ret = alloc_triple(state, op, type, -1, -1, occurance);
1445         count = TRIPLE_SIZE(ret->sizes);
1446         if (count > 0) {
1447                 ret->param[0] = left;
1448         }
1449         if (count > 1) {
1450                 ret->param[1] = right;
1451         }
1452         return ret;
1453 }
1454
1455 static struct triple *triple(struct compile_state *state, 
1456         int op, struct type *type, struct triple *left, struct triple *right)
1457 {
1458         struct triple *ret;
1459         size_t count;
1460         ret = new_triple(state, op, type, -1, -1);
1461         count = TRIPLE_SIZE(ret->sizes);
1462         if (count >= 1) {
1463                 ret->param[0] = left;
1464         }
1465         if (count >= 2) {
1466                 ret->param[1] = right;
1467         }
1468         return ret;
1469 }
1470
1471 static struct triple *branch(struct compile_state *state, 
1472         struct triple *targ, struct triple *test)
1473 {
1474         struct triple *ret;
1475         ret = new_triple(state, OP_BRANCH, &void_type, -1, test?1:0);
1476         if (test) {
1477                 RHS(ret, 0) = test;
1478         }
1479         TARG(ret, 0) = targ;
1480         /* record the branch target was used */
1481         if (!targ || (targ->op != OP_LABEL)) {
1482                 internal_error(state, 0, "branch not to label");
1483                 use_triple(targ, ret);
1484         }
1485         return ret;
1486 }
1487
1488
1489 static void insert_triple(struct compile_state *state,
1490         struct triple *first, struct triple *ptr)
1491 {
1492         if (ptr) {
1493                 if ((ptr->id & TRIPLE_FLAG_FLATTENED) || (ptr->next != ptr)) {
1494                         internal_error(state, ptr, "expression already used");
1495                 }
1496                 ptr->next       = first;
1497                 ptr->prev       = first->prev;
1498                 ptr->prev->next = ptr;
1499                 ptr->next->prev = ptr;
1500                 if ((ptr->prev->op == OP_BRANCH) && 
1501                         TRIPLE_RHS(ptr->prev->sizes)) {
1502                         unuse_triple(first, ptr->prev);
1503                         use_triple(ptr, ptr->prev);
1504                 }
1505         }
1506 }
1507
1508 static int triple_stores_block(struct compile_state *state, struct triple *ins)
1509 {
1510         /* This function is used to determine if u.block 
1511          * is utilized to store the current block number.
1512          */
1513         int stores_block;
1514         valid_ins(state, ins);
1515         stores_block = (table_ops[ins->op].flags & BLOCK) == BLOCK;
1516         return stores_block;
1517 }
1518
1519 static struct block *block_of_triple(struct compile_state *state, 
1520         struct triple *ins)
1521 {
1522         struct triple *first;
1523         first = RHS(state->main_function, 0);
1524         while(ins != first && !triple_stores_block(state, ins)) {
1525                 if (ins == ins->prev) {
1526                         internal_error(state, 0, "ins == ins->prev?");
1527                 }
1528                 ins = ins->prev;
1529         }
1530         if (!triple_stores_block(state, ins)) {
1531                 internal_error(state, ins, "Cannot find block");
1532         }
1533         return ins->u.block;
1534 }
1535
1536 static struct triple *pre_triple(struct compile_state *state,
1537         struct triple *base,
1538         int op, struct type *type, struct triple *left, struct triple *right)
1539 {
1540         struct block *block;
1541         struct triple *ret;
1542         /* If I am an OP_PIECE jump to the real instruction */
1543         if (base->op == OP_PIECE) {
1544                 base = MISC(base, 0);
1545         }
1546         block = block_of_triple(state, base);
1547         get_occurance(base->occurance);
1548         ret = build_triple(state, op, type, left, right, base->occurance);
1549         if (triple_stores_block(state, ret)) {
1550                 ret->u.block = block;
1551         }
1552         insert_triple(state, base, ret);
1553         if (block->first == base) {
1554                 block->first = ret;
1555         }
1556         return ret;
1557 }
1558
1559 static struct triple *post_triple(struct compile_state *state,
1560         struct triple *base,
1561         int op, struct type *type, struct triple *left, struct triple *right)
1562 {
1563         struct block *block;
1564         struct triple *ret;
1565         int zlhs;
1566         /* If I am an OP_PIECE jump to the real instruction */
1567         if (base->op == OP_PIECE) {
1568                 base = MISC(base, 0);
1569         }
1570         /* If I have a left hand side skip over it */
1571         zlhs = TRIPLE_LHS(base->sizes);
1572         if (zlhs) {
1573                 base = LHS(base, zlhs - 1);
1574         }
1575
1576         block = block_of_triple(state, base);
1577         get_occurance(base->occurance);
1578         ret = build_triple(state, op, type, left, right, base->occurance);
1579         if (triple_stores_block(state, ret)) {
1580                 ret->u.block = block;
1581         }
1582         insert_triple(state, base->next, ret);
1583         if (block->last == base) {
1584                 block->last = ret;
1585         }
1586         return ret;
1587 }
1588
1589 static struct triple *label(struct compile_state *state)
1590 {
1591         /* Labels don't get a type */
1592         struct triple *result;
1593         result = triple(state, OP_LABEL, &void_type, 0, 0);
1594         return result;
1595 }
1596
1597 static void display_triple(FILE *fp, struct triple *ins)
1598 {
1599         struct occurance *ptr;
1600         const char *reg;
1601         char pre, post;
1602         pre = post = ' ';
1603         if (ins->id & TRIPLE_FLAG_PRE_SPLIT) {
1604                 pre = '^';
1605         }
1606         if (ins->id & TRIPLE_FLAG_POST_SPLIT) {
1607                 post = 'v';
1608         }
1609         reg = arch_reg_str(ID_REG(ins->id));
1610         if (ins->op == OP_INTCONST) {
1611                 fprintf(fp, "(%p) %c%c %-7s %-2d %-10s <0x%08lx>         ",
1612                         ins, pre, post, reg, ins->template_id, tops(ins->op), 
1613                         ins->u.cval);
1614         }
1615         else if (ins->op == OP_ADDRCONST) {
1616                 fprintf(fp, "(%p) %c%c %-7s %-2d %-10s %-10p <0x%08lx>",
1617                         ins, pre, post, reg, ins->template_id, tops(ins->op), 
1618                         MISC(ins, 0), ins->u.cval);
1619         }
1620         else {
1621                 int i, count;
1622                 fprintf(fp, "(%p) %c%c %-7s %-2d %-10s", 
1623                         ins, pre, post, reg, ins->template_id, tops(ins->op));
1624                 count = TRIPLE_SIZE(ins->sizes);
1625                 for(i = 0; i < count; i++) {
1626                         fprintf(fp, " %-10p", ins->param[i]);
1627                 }
1628                 for(; i < 2; i++) {
1629                         fprintf(fp, "           ");
1630                 }
1631         }
1632         fprintf(fp, " @");
1633         for(ptr = ins->occurance; ptr; ptr = ptr->parent) {
1634                 fprintf(fp, " %s,%s:%d.%d",
1635                         ptr->function, 
1636                         ptr->filename,
1637                         ptr->line, 
1638                         ptr->col);
1639         }
1640         fprintf(fp, "\n");
1641 #if 0
1642         {
1643                 struct triple_set *user;
1644                 for(user = ptr->use; user; user = user->next) {
1645                         fprintf(fp, "use: %p\n", user->member);
1646                 }
1647         }
1648 #endif
1649         fflush(fp);
1650 }
1651
1652 static int triple_is_pure(struct compile_state *state, struct triple *ins)
1653 {
1654         /* Does the triple have no side effects.
1655          * I.e. Rexecuting the triple with the same arguments 
1656          * gives the same value.
1657          */
1658         unsigned pure;
1659         valid_ins(state, ins);
1660         pure = PURE_BITS(table_ops[ins->op].flags);
1661         if ((pure != PURE) && (pure != IMPURE)) {
1662                 internal_error(state, 0, "Purity of %s not known\n",
1663                         tops(ins->op));
1664         }
1665         return pure == PURE;
1666 }
1667
1668 static int triple_is_branch(struct compile_state *state, struct triple *ins)
1669 {
1670         /* This function is used to determine which triples need
1671          * a register.
1672          */
1673         int is_branch;
1674         valid_ins(state, ins);
1675         is_branch = (table_ops[ins->op].targ != 0);
1676         return is_branch;
1677 }
1678
1679 static int triple_is_cond_branch(struct compile_state *state, struct triple *ins)
1680 {
1681         /* A conditional branch has the condition argument as a single
1682          * RHS parameter.
1683          */
1684         return triple_is_branch(state, ins) &&
1685                 (TRIPLE_RHS(ins->sizes) == 1);
1686 }
1687
1688 static int triple_is_uncond_branch(struct compile_state *state, struct triple *ins)
1689 {
1690         /* A unconditional branch has no RHS parameters.
1691          */
1692         return triple_is_branch(state, ins) &&
1693                 (TRIPLE_RHS(ins->sizes) == 0);
1694 }
1695
1696 static int triple_is_def(struct compile_state *state, struct triple *ins)
1697 {
1698         /* This function is used to determine which triples need
1699          * a register.
1700          */
1701         int is_def;
1702         valid_ins(state, ins);
1703         is_def = (table_ops[ins->op].flags & DEF) == DEF;
1704         return is_def;
1705 }
1706
1707 static struct triple **triple_iter(struct compile_state *state,
1708         size_t count, struct triple **vector,
1709         struct triple *ins, struct triple **last)
1710 {
1711         struct triple **ret;
1712         ret = 0;
1713         if (count) {
1714                 if (!last) {
1715                         ret = vector;
1716                 }
1717                 else if ((last >= vector) && (last < (vector + count - 1))) {
1718                         ret = last + 1;
1719                 }
1720         }
1721         return ret;
1722         
1723 }
1724
1725 static struct triple **triple_lhs(struct compile_state *state,
1726         struct triple *ins, struct triple **last)
1727 {
1728         return triple_iter(state, TRIPLE_LHS(ins->sizes), &LHS(ins,0), 
1729                 ins, last);
1730 }
1731
1732 static struct triple **triple_rhs(struct compile_state *state,
1733         struct triple *ins, struct triple **last)
1734 {
1735         return triple_iter(state, TRIPLE_RHS(ins->sizes), &RHS(ins,0), 
1736                 ins, last);
1737 }
1738
1739 static struct triple **triple_misc(struct compile_state *state,
1740         struct triple *ins, struct triple **last)
1741 {
1742         return triple_iter(state, TRIPLE_MISC(ins->sizes), &MISC(ins,0), 
1743                 ins, last);
1744 }
1745
1746 static struct triple **triple_targ(struct compile_state *state,
1747         struct triple *ins, struct triple **last)
1748 {
1749         size_t count;
1750         struct triple **ret, **vector;
1751         ret = 0;
1752         count = TRIPLE_TARG(ins->sizes);
1753         vector = &TARG(ins, 0);
1754         if (count) {
1755                 if (!last) {
1756                         ret = vector;
1757                 }
1758                 else if ((last >= vector) && (last < (vector + count - 1))) {
1759                         ret = last + 1;
1760                 }
1761                 else if ((last == (vector + count - 1)) && 
1762                         TRIPLE_RHS(ins->sizes)) {
1763                         ret = &ins->next;
1764                 }
1765         }
1766         return ret;
1767 }
1768
1769
1770 static void verify_use(struct compile_state *state,
1771         struct triple *user, struct triple *used)
1772 {
1773         int size, i;
1774         size = TRIPLE_SIZE(user->sizes);
1775         for(i = 0; i < size; i++) {
1776                 if (user->param[i] == used) {
1777                         break;
1778                 }
1779         }
1780         if (triple_is_branch(state, user)) {
1781                 if (user->next == used) {
1782                         i = -1;
1783                 }
1784         }
1785         if (i == size) {
1786                 internal_error(state, user, "%s(%p) does not use %s(%p)",
1787                         tops(user->op), user, tops(used->op), used);
1788         }
1789 }
1790
1791 static int find_rhs_use(struct compile_state *state, 
1792         struct triple *user, struct triple *used)
1793 {
1794         struct triple **param;
1795         int size, i;
1796         verify_use(state, user, used);
1797         size = TRIPLE_RHS(user->sizes);
1798         param = &RHS(user, 0);
1799         for(i = 0; i < size; i++) {
1800                 if (param[i] == used) {
1801                         return i;
1802                 }
1803         }
1804         return -1;
1805 }
1806
1807 static void free_triple(struct compile_state *state, struct triple *ptr)
1808 {
1809         size_t size;
1810         size = sizeof(*ptr) - sizeof(ptr->param) +
1811                 (sizeof(ptr->param[0])*TRIPLE_SIZE(ptr->sizes));
1812         ptr->prev->next = ptr->next;
1813         ptr->next->prev = ptr->prev;
1814         if (ptr->use) {
1815                 internal_error(state, ptr, "ptr->use != 0");
1816         }
1817         put_occurance(ptr->occurance);
1818         memset(ptr, -1, size);
1819         xfree(ptr);
1820 }
1821
1822 static void release_triple(struct compile_state *state, struct triple *ptr)
1823 {
1824         struct triple_set *set, *next;
1825         struct triple **expr;
1826         /* Remove ptr from use chains where it is the user */
1827         expr = triple_rhs(state, ptr, 0);
1828         for(; expr; expr = triple_rhs(state, ptr, expr)) {
1829                 if (*expr) {
1830                         unuse_triple(*expr, ptr);
1831                 }
1832         }
1833         expr = triple_lhs(state, ptr, 0);
1834         for(; expr; expr = triple_lhs(state, ptr, expr)) {
1835                 if (*expr) {
1836                         unuse_triple(*expr, ptr);
1837                 }
1838         }
1839         expr = triple_misc(state, ptr, 0);
1840         for(; expr; expr = triple_misc(state, ptr, expr)) {
1841                 if (*expr) {
1842                         unuse_triple(*expr, ptr);
1843                 }
1844         }
1845         expr = triple_targ(state, ptr, 0);
1846         for(; expr; expr = triple_targ(state, ptr, expr)) {
1847                 if (*expr) {
1848                         unuse_triple(*expr, ptr);
1849                 }
1850         }
1851         /* Reomve ptr from use chains where it is used */
1852         for(set = ptr->use; set; set = next) {
1853                 next = set->next;
1854                 expr = triple_rhs(state, set->member, 0);
1855                 for(; expr; expr = triple_rhs(state, set->member, expr)) {
1856                         if (*expr == ptr) {
1857                                 *expr = &zero_triple;
1858                         }
1859                 }
1860                 expr = triple_lhs(state, set->member, 0);
1861                 for(; expr; expr = triple_lhs(state, set->member, expr)) {
1862                         if (*expr == ptr) {
1863                                 *expr = &zero_triple;
1864                         }
1865                 }
1866                 expr = triple_misc(state, set->member, 0);
1867                 for(; expr; expr = triple_misc(state, set->member, expr)) {
1868                         if (*expr == ptr) {
1869                                 *expr = &zero_triple;
1870                         }
1871                 }
1872                 expr = triple_targ(state, set->member, 0);
1873                 for(; expr; expr = triple_targ(state, set->member, expr)) {
1874                         if (*expr == ptr) {
1875                                 *expr = &zero_triple;
1876                         }
1877                 }
1878                 unuse_triple(ptr, set->member);
1879         }
1880         free_triple(state, ptr);
1881 }
1882
1883 static void print_triple(struct compile_state *state, struct triple *ptr);
1884
1885 #define TOK_UNKNOWN     0
1886 #define TOK_SPACE       1
1887 #define TOK_SEMI        2
1888 #define TOK_LBRACE      3
1889 #define TOK_RBRACE      4
1890 #define TOK_COMMA       5
1891 #define TOK_EQ          6
1892 #define TOK_COLON       7
1893 #define TOK_LBRACKET    8
1894 #define TOK_RBRACKET    9
1895 #define TOK_LPAREN      10
1896 #define TOK_RPAREN      11
1897 #define TOK_STAR        12
1898 #define TOK_DOTS        13
1899 #define TOK_MORE        14
1900 #define TOK_LESS        15
1901 #define TOK_TIMESEQ     16
1902 #define TOK_DIVEQ       17
1903 #define TOK_MODEQ       18
1904 #define TOK_PLUSEQ      19
1905 #define TOK_MINUSEQ     20
1906 #define TOK_SLEQ        21
1907 #define TOK_SREQ        22
1908 #define TOK_ANDEQ       23
1909 #define TOK_XOREQ       24
1910 #define TOK_OREQ        25
1911 #define TOK_EQEQ        26
1912 #define TOK_NOTEQ       27
1913 #define TOK_QUEST       28
1914 #define TOK_LOGOR       29
1915 #define TOK_LOGAND      30
1916 #define TOK_OR          31
1917 #define TOK_AND         32
1918 #define TOK_XOR         33
1919 #define TOK_LESSEQ      34
1920 #define TOK_MOREEQ      35
1921 #define TOK_SL          36
1922 #define TOK_SR          37
1923 #define TOK_PLUS        38
1924 #define TOK_MINUS       39
1925 #define TOK_DIV         40
1926 #define TOK_MOD         41
1927 #define TOK_PLUSPLUS    42
1928 #define TOK_MINUSMINUS  43
1929 #define TOK_BANG        44
1930 #define TOK_ARROW       45
1931 #define TOK_DOT         46
1932 #define TOK_TILDE       47
1933 #define TOK_LIT_STRING  48
1934 #define TOK_LIT_CHAR    49
1935 #define TOK_LIT_INT     50
1936 #define TOK_LIT_FLOAT   51
1937 #define TOK_MACRO       52
1938 #define TOK_CONCATENATE 53
1939
1940 #define TOK_IDENT       54
1941 #define TOK_STRUCT_NAME 55
1942 #define TOK_ENUM_CONST  56
1943 #define TOK_TYPE_NAME   57
1944
1945 #define TOK_AUTO        58
1946 #define TOK_BREAK       59
1947 #define TOK_CASE        60
1948 #define TOK_CHAR        61
1949 #define TOK_CONST       62
1950 #define TOK_CONTINUE    63
1951 #define TOK_DEFAULT     64
1952 #define TOK_DO          65
1953 #define TOK_DOUBLE      66
1954 #define TOK_ELSE        67
1955 #define TOK_ENUM        68
1956 #define TOK_EXTERN      69
1957 #define TOK_FLOAT       70
1958 #define TOK_FOR         71
1959 #define TOK_GOTO        72
1960 #define TOK_IF          73
1961 #define TOK_INLINE      74
1962 #define TOK_INT         75
1963 #define TOK_LONG        76
1964 #define TOK_REGISTER    77
1965 #define TOK_RESTRICT    78
1966 #define TOK_RETURN      79
1967 #define TOK_SHORT       80
1968 #define TOK_SIGNED      81
1969 #define TOK_SIZEOF      82
1970 #define TOK_STATIC      83
1971 #define TOK_STRUCT      84
1972 #define TOK_SWITCH      85
1973 #define TOK_TYPEDEF     86
1974 #define TOK_UNION       87
1975 #define TOK_UNSIGNED    88
1976 #define TOK_VOID        89
1977 #define TOK_VOLATILE    90
1978 #define TOK_WHILE       91
1979 #define TOK_ASM         92
1980 #define TOK_ATTRIBUTE   93
1981 #define TOK_ALIGNOF     94
1982 #define TOK_FIRST_KEYWORD TOK_AUTO
1983 #define TOK_LAST_KEYWORD  TOK_ALIGNOF
1984
1985 #define TOK_DEFINE      100
1986 #define TOK_UNDEF       101
1987 #define TOK_INCLUDE     102
1988 #define TOK_LINE        103
1989 #define TOK_ERROR       104
1990 #define TOK_WARNING     105
1991 #define TOK_PRAGMA      106
1992 #define TOK_IFDEF       107
1993 #define TOK_IFNDEF      108
1994 #define TOK_ELIF        109
1995 #define TOK_ENDIF       110
1996
1997 #define TOK_FIRST_MACRO TOK_DEFINE
1998 #define TOK_LAST_MACRO  TOK_ENDIF
1999          
2000 #define TOK_EOF         111
2001
2002 static const char *tokens[] = {
2003 [TOK_UNKNOWN     ] = "unknown",
2004 [TOK_SPACE       ] = ":space:",
2005 [TOK_SEMI        ] = ";",
2006 [TOK_LBRACE      ] = "{",
2007 [TOK_RBRACE      ] = "}",
2008 [TOK_COMMA       ] = ",",
2009 [TOK_EQ          ] = "=",
2010 [TOK_COLON       ] = ":",
2011 [TOK_LBRACKET    ] = "[",
2012 [TOK_RBRACKET    ] = "]",
2013 [TOK_LPAREN      ] = "(",
2014 [TOK_RPAREN      ] = ")",
2015 [TOK_STAR        ] = "*",
2016 [TOK_DOTS        ] = "...",
2017 [TOK_MORE        ] = ">",
2018 [TOK_LESS        ] = "<",
2019 [TOK_TIMESEQ     ] = "*=",
2020 [TOK_DIVEQ       ] = "/=",
2021 [TOK_MODEQ       ] = "%=",
2022 [TOK_PLUSEQ      ] = "+=",
2023 [TOK_MINUSEQ     ] = "-=",
2024 [TOK_SLEQ        ] = "<<=",
2025 [TOK_SREQ        ] = ">>=",
2026 [TOK_ANDEQ       ] = "&=",
2027 [TOK_XOREQ       ] = "^=",
2028 [TOK_OREQ        ] = "|=",
2029 [TOK_EQEQ        ] = "==",
2030 [TOK_NOTEQ       ] = "!=",
2031 [TOK_QUEST       ] = "?",
2032 [TOK_LOGOR       ] = "||",
2033 [TOK_LOGAND      ] = "&&",
2034 [TOK_OR          ] = "|",
2035 [TOK_AND         ] = "&",
2036 [TOK_XOR         ] = "^",
2037 [TOK_LESSEQ      ] = "<=",
2038 [TOK_MOREEQ      ] = ">=",
2039 [TOK_SL          ] = "<<",
2040 [TOK_SR          ] = ">>",
2041 [TOK_PLUS        ] = "+",
2042 [TOK_MINUS       ] = "-",
2043 [TOK_DIV         ] = "/",
2044 [TOK_MOD         ] = "%",
2045 [TOK_PLUSPLUS    ] = "++",
2046 [TOK_MINUSMINUS  ] = "--",
2047 [TOK_BANG        ] = "!",
2048 [TOK_ARROW       ] = "->",
2049 [TOK_DOT         ] = ".",
2050 [TOK_TILDE       ] = "~",
2051 [TOK_LIT_STRING  ] = ":string:",
2052 [TOK_IDENT       ] = ":ident:",
2053 [TOK_TYPE_NAME   ] = ":typename:",
2054 [TOK_LIT_CHAR    ] = ":char:",
2055 [TOK_LIT_INT     ] = ":integer:",
2056 [TOK_LIT_FLOAT   ] = ":float:",
2057 [TOK_MACRO       ] = "#",
2058 [TOK_CONCATENATE ] = "##",
2059
2060 [TOK_AUTO        ] = "auto",
2061 [TOK_BREAK       ] = "break",
2062 [TOK_CASE        ] = "case",
2063 [TOK_CHAR        ] = "char",
2064 [TOK_CONST       ] = "const",
2065 [TOK_CONTINUE    ] = "continue",
2066 [TOK_DEFAULT     ] = "default",
2067 [TOK_DO          ] = "do",
2068 [TOK_DOUBLE      ] = "double",
2069 [TOK_ELSE        ] = "else",
2070 [TOK_ENUM        ] = "enum",
2071 [TOK_EXTERN      ] = "extern",
2072 [TOK_FLOAT       ] = "float",
2073 [TOK_FOR         ] = "for",
2074 [TOK_GOTO        ] = "goto",
2075 [TOK_IF          ] = "if",
2076 [TOK_INLINE      ] = "inline",
2077 [TOK_INT         ] = "int",
2078 [TOK_LONG        ] = "long",
2079 [TOK_REGISTER    ] = "register",
2080 [TOK_RESTRICT    ] = "restrict",
2081 [TOK_RETURN      ] = "return",
2082 [TOK_SHORT       ] = "short",
2083 [TOK_SIGNED      ] = "signed",
2084 [TOK_SIZEOF      ] = "sizeof",
2085 [TOK_STATIC      ] = "static",
2086 [TOK_STRUCT      ] = "struct",
2087 [TOK_SWITCH      ] = "switch",
2088 [TOK_TYPEDEF     ] = "typedef",
2089 [TOK_UNION       ] = "union",
2090 [TOK_UNSIGNED    ] = "unsigned",
2091 [TOK_VOID        ] = "void",
2092 [TOK_VOLATILE    ] = "volatile",
2093 [TOK_WHILE       ] = "while",
2094 [TOK_ASM         ] = "asm",
2095 [TOK_ATTRIBUTE   ] = "__attribute__",
2096 [TOK_ALIGNOF     ] = "__alignof__",
2097
2098 [TOK_DEFINE      ] = "define",
2099 [TOK_UNDEF       ] = "undef",
2100 [TOK_INCLUDE     ] = "include",
2101 [TOK_LINE        ] = "line",
2102 [TOK_ERROR       ] = "error",
2103 [TOK_WARNING     ] = "warning",
2104 [TOK_PRAGMA      ] = "pragma",
2105 [TOK_IFDEF       ] = "ifdef",
2106 [TOK_IFNDEF      ] = "ifndef",
2107 [TOK_ELIF        ] = "elif",
2108 [TOK_ENDIF       ] = "endif",
2109
2110 [TOK_EOF         ] = "EOF",
2111 };
2112
2113 static unsigned int hash(const char *str, int str_len)
2114 {
2115         unsigned int hash;
2116         const char *end;
2117         end = str + str_len;
2118         hash = 0;
2119         for(; str < end; str++) {
2120                 hash = (hash *263) + *str;
2121         }
2122         hash = hash & (HASH_TABLE_SIZE -1);
2123         return hash;
2124 }
2125
2126 static struct hash_entry *lookup(
2127         struct compile_state *state, const char *name, int name_len)
2128 {
2129         struct hash_entry *entry;
2130         unsigned int index;
2131         index = hash(name, name_len);
2132         entry = state->hash_table[index];
2133         while(entry && 
2134                 ((entry->name_len != name_len) ||
2135                         (memcmp(entry->name, name, name_len) != 0))) {
2136                 entry = entry->next;
2137         }
2138         if (!entry) {
2139                 char *new_name;
2140                 /* Get a private copy of the name */
2141                 new_name = xmalloc(name_len + 1, "hash_name");
2142                 memcpy(new_name, name, name_len);
2143                 new_name[name_len] = '\0';
2144
2145                 /* Create a new hash entry */
2146                 entry = xcmalloc(sizeof(*entry), "hash_entry");
2147                 entry->next = state->hash_table[index];
2148                 entry->name = new_name;
2149                 entry->name_len = name_len;
2150
2151                 /* Place the new entry in the hash table */
2152                 state->hash_table[index] = entry;
2153         }
2154         return entry;
2155 }
2156
2157 static void ident_to_keyword(struct compile_state *state, struct token *tk)
2158 {
2159         struct hash_entry *entry;
2160         entry = tk->ident;
2161         if (entry && ((entry->tok == TOK_TYPE_NAME) ||
2162                 (entry->tok == TOK_ENUM_CONST) ||
2163                 ((entry->tok >= TOK_FIRST_KEYWORD) && 
2164                         (entry->tok <= TOK_LAST_KEYWORD)))) {
2165                 tk->tok = entry->tok;
2166         }
2167 }
2168
2169 static void ident_to_macro(struct compile_state *state, struct token *tk)
2170 {
2171         struct hash_entry *entry;
2172         entry = tk->ident;
2173         if (entry && 
2174                 (entry->tok >= TOK_FIRST_MACRO) &&
2175                 (entry->tok <= TOK_LAST_MACRO)) {
2176                 tk->tok = entry->tok;
2177         }
2178 }
2179
2180 static void hash_keyword(
2181         struct compile_state *state, const char *keyword, int tok)
2182 {
2183         struct hash_entry *entry;
2184         entry = lookup(state, keyword, strlen(keyword));
2185         if (entry && entry->tok != TOK_UNKNOWN) {
2186                 die("keyword %s already hashed", keyword);
2187         }
2188         entry->tok  = tok;
2189 }
2190
2191 static void symbol(
2192         struct compile_state *state, struct hash_entry *ident,
2193         struct symbol **chain, struct triple *def, struct type *type)
2194 {
2195         struct symbol *sym;
2196         if (*chain && ((*chain)->scope_depth == state->scope_depth)) {
2197                 error(state, 0, "%s already defined", ident->name);
2198         }
2199         sym = xcmalloc(sizeof(*sym), "symbol");
2200         sym->ident = ident;
2201         sym->def   = def;
2202         sym->type  = type;
2203         sym->scope_depth = state->scope_depth;
2204         sym->next = *chain;
2205         *chain    = sym;
2206 }
2207
2208 static void label_symbol(struct compile_state *state, 
2209         struct hash_entry *ident, struct triple *label)
2210 {
2211         struct symbol *sym;
2212         if (ident->sym_label) {
2213                 error(state, 0, "label %s already defined", ident->name);
2214         }
2215         sym = xcmalloc(sizeof(*sym), "label");
2216         sym->ident = ident;
2217         sym->def   = label;
2218         sym->type  = &void_type;
2219         sym->scope_depth = FUNCTION_SCOPE_DEPTH;
2220         sym->next  = 0;
2221         ident->sym_label = sym;
2222 }
2223
2224 static void start_scope(struct compile_state *state)
2225 {
2226         state->scope_depth++;
2227 }
2228
2229 static void end_scope_syms(struct symbol **chain, int depth)
2230 {
2231         struct symbol *sym, *next;
2232         sym = *chain;
2233         while(sym && (sym->scope_depth == depth)) {
2234                 next = sym->next;
2235                 xfree(sym);
2236                 sym = next;
2237         }
2238         *chain = sym;
2239 }
2240
2241 static void end_scope(struct compile_state *state)
2242 {
2243         int i;
2244         int depth;
2245         /* Walk through the hash table and remove all symbols
2246          * in the current scope. 
2247          */
2248         depth = state->scope_depth;
2249         for(i = 0; i < HASH_TABLE_SIZE; i++) {
2250                 struct hash_entry *entry;
2251                 entry = state->hash_table[i];
2252                 while(entry) {
2253                         end_scope_syms(&entry->sym_label,  depth);
2254                         end_scope_syms(&entry->sym_struct, depth);
2255                         end_scope_syms(&entry->sym_ident,  depth);
2256                         entry = entry->next;
2257                 }
2258         }
2259         state->scope_depth = depth - 1;
2260 }
2261
2262 static void register_keywords(struct compile_state *state)
2263 {
2264         hash_keyword(state, "auto",          TOK_AUTO);
2265         hash_keyword(state, "break",         TOK_BREAK);
2266         hash_keyword(state, "case",          TOK_CASE);
2267         hash_keyword(state, "char",          TOK_CHAR);
2268         hash_keyword(state, "const",         TOK_CONST);
2269         hash_keyword(state, "continue",      TOK_CONTINUE);
2270         hash_keyword(state, "default",       TOK_DEFAULT);
2271         hash_keyword(state, "do",            TOK_DO);
2272         hash_keyword(state, "double",        TOK_DOUBLE);
2273         hash_keyword(state, "else",          TOK_ELSE);
2274         hash_keyword(state, "enum",          TOK_ENUM);
2275         hash_keyword(state, "extern",        TOK_EXTERN);
2276         hash_keyword(state, "float",         TOK_FLOAT);
2277         hash_keyword(state, "for",           TOK_FOR);
2278         hash_keyword(state, "goto",          TOK_GOTO);
2279         hash_keyword(state, "if",            TOK_IF);
2280         hash_keyword(state, "inline",        TOK_INLINE);
2281         hash_keyword(state, "int",           TOK_INT);
2282         hash_keyword(state, "long",          TOK_LONG);
2283         hash_keyword(state, "register",      TOK_REGISTER);
2284         hash_keyword(state, "restrict",      TOK_RESTRICT);
2285         hash_keyword(state, "return",        TOK_RETURN);
2286         hash_keyword(state, "short",         TOK_SHORT);
2287         hash_keyword(state, "signed",        TOK_SIGNED);
2288         hash_keyword(state, "sizeof",        TOK_SIZEOF);
2289         hash_keyword(state, "static",        TOK_STATIC);
2290         hash_keyword(state, "struct",        TOK_STRUCT);
2291         hash_keyword(state, "switch",        TOK_SWITCH);
2292         hash_keyword(state, "typedef",       TOK_TYPEDEF);
2293         hash_keyword(state, "union",         TOK_UNION);
2294         hash_keyword(state, "unsigned",      TOK_UNSIGNED);
2295         hash_keyword(state, "void",          TOK_VOID);
2296         hash_keyword(state, "volatile",      TOK_VOLATILE);
2297         hash_keyword(state, "__volatile__",  TOK_VOLATILE);
2298         hash_keyword(state, "while",         TOK_WHILE);
2299         hash_keyword(state, "asm",           TOK_ASM);
2300         hash_keyword(state, "__asm__",       TOK_ASM);
2301         hash_keyword(state, "__attribute__", TOK_ATTRIBUTE);
2302         hash_keyword(state, "__alignof__",   TOK_ALIGNOF);
2303 }
2304
2305 static void register_macro_keywords(struct compile_state *state)
2306 {
2307         hash_keyword(state, "define",        TOK_DEFINE);
2308         hash_keyword(state, "undef",         TOK_UNDEF);
2309         hash_keyword(state, "include",       TOK_INCLUDE);
2310         hash_keyword(state, "line",          TOK_LINE);
2311         hash_keyword(state, "error",         TOK_ERROR);
2312         hash_keyword(state, "warning",       TOK_WARNING);
2313         hash_keyword(state, "pragma",        TOK_PRAGMA);
2314         hash_keyword(state, "ifdef",         TOK_IFDEF);
2315         hash_keyword(state, "ifndef",        TOK_IFNDEF);
2316         hash_keyword(state, "elif",          TOK_ELIF);
2317         hash_keyword(state, "endif",         TOK_ENDIF);
2318 }
2319
2320 static int spacep(int c)
2321 {
2322         int ret = 0;
2323         switch(c) {
2324         case ' ':
2325         case '\t':
2326         case '\f':
2327         case '\v':
2328         case '\r':
2329         case '\n':
2330                 ret = 1;
2331                 break;
2332         }
2333         return ret;
2334 }
2335
2336 static int digitp(int c)
2337 {
2338         int ret = 0;
2339         switch(c) {
2340         case '0': case '1': case '2': case '3': case '4': 
2341         case '5': case '6': case '7': case '8': case '9':
2342                 ret = 1;
2343                 break;
2344         }
2345         return ret;
2346 }
2347 static int digval(int c)
2348 {
2349         int val = -1;
2350         if ((c >= '0') && (c <= '9')) {
2351                 val = c - '0';
2352         }
2353         return val;
2354 }
2355
2356 static int hexdigitp(int c)
2357 {
2358         int ret = 0;
2359         switch(c) {
2360         case '0': case '1': case '2': case '3': case '4': 
2361         case '5': case '6': case '7': case '8': case '9':
2362         case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
2363         case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
2364                 ret = 1;
2365                 break;
2366         }
2367         return ret;
2368 }
2369 static int hexdigval(int c) 
2370 {
2371         int val = -1;
2372         if ((c >= '0') && (c <= '9')) {
2373                 val = c - '0';
2374         }
2375         else if ((c >= 'A') && (c <= 'F')) {
2376                 val = 10 + (c - 'A');
2377         }
2378         else if ((c >= 'a') && (c <= 'f')) {
2379                 val = 10 + (c - 'a');
2380         }
2381         return val;
2382 }
2383
2384 static int octdigitp(int c)
2385 {
2386         int ret = 0;
2387         switch(c) {
2388         case '0': case '1': case '2': case '3': 
2389         case '4': case '5': case '6': case '7':
2390                 ret = 1;
2391                 break;
2392         }
2393         return ret;
2394 }
2395 static int octdigval(int c)
2396 {
2397         int val = -1;
2398         if ((c >= '0') && (c <= '7')) {
2399                 val = c - '0';
2400         }
2401         return val;
2402 }
2403
2404 static int letterp(int c)
2405 {
2406         int ret = 0;
2407         switch(c) {
2408         case 'a': case 'b': case 'c': case 'd': case 'e':
2409         case 'f': case 'g': case 'h': case 'i': case 'j':
2410         case 'k': case 'l': case 'm': case 'n': case 'o':
2411         case 'p': case 'q': case 'r': case 's': case 't':
2412         case 'u': case 'v': case 'w': case 'x': case 'y':
2413         case 'z':
2414         case 'A': case 'B': case 'C': case 'D': case 'E':
2415         case 'F': case 'G': case 'H': case 'I': case 'J':
2416         case 'K': case 'L': case 'M': case 'N': case 'O':
2417         case 'P': case 'Q': case 'R': case 'S': case 'T':
2418         case 'U': case 'V': case 'W': case 'X': case 'Y':
2419         case 'Z':
2420         case '_':
2421                 ret = 1;
2422                 break;
2423         }
2424         return ret;
2425 }
2426
2427 static int char_value(struct compile_state *state,
2428         const signed char **strp, const signed char *end)
2429 {
2430         const signed char *str;
2431         int c;
2432         str = *strp;
2433         c = *str++;
2434         if ((c == '\\') && (str < end)) {
2435                 switch(*str) {
2436                 case 'n':  c = '\n'; str++; break;
2437                 case 't':  c = '\t'; str++; break;
2438                 case 'v':  c = '\v'; str++; break;
2439                 case 'b':  c = '\b'; str++; break;
2440                 case 'r':  c = '\r'; str++; break;
2441                 case 'f':  c = '\f'; str++; break;
2442                 case 'a':  c = '\a'; str++; break;
2443                 case '\\': c = '\\'; str++; break;
2444                 case '?':  c = '?';  str++; break;
2445                 case '\'': c = '\''; str++; break;
2446                 case '"':  c = '"';  break;
2447                 case 'x': 
2448                         c = 0;
2449                         str++;
2450                         while((str < end) && hexdigitp(*str)) {
2451                                 c <<= 4;
2452                                 c += hexdigval(*str);
2453                                 str++;
2454                         }
2455                         break;
2456                 case '0': case '1': case '2': case '3': 
2457                 case '4': case '5': case '6': case '7':
2458                         c = 0;
2459                         while((str < end) && octdigitp(*str)) {
2460                                 c <<= 3;
2461                                 c += octdigval(*str);
2462                                 str++;
2463                         }
2464                         break;
2465                 default:
2466                         error(state, 0, "Invalid character constant");
2467                         break;
2468                 }
2469         }
2470         *strp = str;
2471         return c;
2472 }
2473
2474 static char *after_digits(char *ptr, char *end)
2475 {
2476         while((ptr < end) && digitp(*ptr)) {
2477                 ptr++;
2478         }
2479         return ptr;
2480 }
2481
2482 static char *after_octdigits(char *ptr, char *end)
2483 {
2484         while((ptr < end) && octdigitp(*ptr)) {
2485                 ptr++;
2486         }
2487         return ptr;
2488 }
2489
2490 static char *after_hexdigits(char *ptr, char *end)
2491 {
2492         while((ptr < end) && hexdigitp(*ptr)) {
2493                 ptr++;
2494         }
2495         return ptr;
2496 }
2497
2498 static void save_string(struct compile_state *state, 
2499         struct token *tk, char *start, char *end, const char *id)
2500 {
2501         char *str;
2502         int str_len;
2503         /* Create a private copy of the string */
2504         str_len = end - start + 1;
2505         str = xmalloc(str_len + 1, id);
2506         memcpy(str, start, str_len);
2507         str[str_len] = '\0';
2508
2509         /* Store the copy in the token */
2510         tk->val.str = str;
2511         tk->str_len = str_len;
2512 }
2513 static void next_token(struct compile_state *state, int index)
2514 {
2515         struct file_state *file;
2516         struct token *tk;
2517         char *token;
2518         int c, c1, c2, c3;
2519         char *tokp, *end;
2520         int tok;
2521 next_token:
2522         file = state->file;
2523         tk = &state->token[index];
2524         tk->str_len = 0;
2525         tk->ident = 0;
2526         token = tokp = file->pos;
2527         end = file->buf + file->size;
2528         tok = TOK_UNKNOWN;
2529         c = -1;
2530         if (tokp < end) {
2531                 c = *tokp;
2532         }
2533         c1 = -1;
2534         if ((tokp + 1) < end) {
2535                 c1 = tokp[1];
2536         }
2537         c2 = -1;
2538         if ((tokp + 2) < end) {
2539                 c2 = tokp[2];
2540         }
2541         c3 = -1;
2542         if ((tokp + 3) < end) {
2543                 c3 = tokp[3];
2544         }
2545         if (tokp >= end) {
2546                 tok = TOK_EOF;
2547                 tokp = end;
2548         }
2549         /* Whitespace */
2550         else if (spacep(c)) {
2551                 tok = TOK_SPACE;
2552                 while ((tokp < end) && spacep(c)) {
2553                         if (c == '\n') {
2554                                 file->line++;
2555                                 file->report_line++;
2556                                 file->line_start = tokp + 1;
2557                         }
2558                         c = *(++tokp);
2559                 }
2560                 if (!spacep(c)) {
2561                         tokp--;
2562                 }
2563         }
2564         /* EOL Comments */
2565         else if ((c == '/') && (c1 == '/')) {
2566                 tok = TOK_SPACE;
2567                 for(tokp += 2; tokp < end; tokp++) {
2568                         c = *tokp;
2569                         if (c == '\n') {
2570                                 file->line++;
2571                                 file->report_line++;
2572                                 file->line_start = tokp +1;
2573                                 break;
2574                         }
2575                 }
2576         }
2577         /* Comments */
2578         else if ((c == '/') && (c1 == '*')) {
2579                 int line;
2580                 char *line_start;
2581                 line = file->line;
2582                 line_start = file->line_start;
2583                 for(tokp += 2; (end - tokp) >= 2; tokp++) {
2584                         c = *tokp;
2585                         if (c == '\n') {
2586                                 line++;
2587                                 line_start = tokp +1;
2588                         }
2589                         else if ((c == '*') && (tokp[1] == '/')) {
2590                                 tok = TOK_SPACE;
2591                                 tokp += 1;
2592                                 break;
2593                         }
2594                 }
2595                 if (tok == TOK_UNKNOWN) {
2596                         error(state, 0, "unterminated comment");
2597                 }
2598                 file->report_line += line - file->line;
2599                 file->line = line;
2600                 file->line_start = line_start;
2601         }
2602         /* string constants */
2603         else if ((c == '"') ||
2604                 ((c == 'L') && (c1 == '"'))) {
2605                 int line;
2606                 char *line_start;
2607                 int wchar;
2608                 line = file->line;
2609                 line_start = file->line_start;
2610                 wchar = 0;
2611                 if (c == 'L') {
2612                         wchar = 1;
2613                         tokp++;
2614                 }
2615                 for(tokp += 1; tokp < end; tokp++) {
2616                         c = *tokp;
2617                         if (c == '\n') {
2618                                 line++;
2619                                 line_start = tokp + 1;
2620                         }
2621                         else if ((c == '\\') && (tokp +1 < end)) {
2622                                 tokp++;
2623                         }
2624                         else if (c == '"') {
2625                                 tok = TOK_LIT_STRING;
2626                                 break;
2627                         }
2628                 }
2629                 if (tok == TOK_UNKNOWN) {
2630                         error(state, 0, "unterminated string constant");
2631                 }
2632                 if (line != file->line) {
2633                         warning(state, 0, "multiline string constant");
2634                 }
2635                 file->report_line += line - file->line;
2636                 file->line = line;
2637                 file->line_start = line_start;
2638
2639                 /* Save the string value */
2640                 save_string(state, tk, token, tokp, "literal string");
2641         }
2642         /* character constants */
2643         else if ((c == '\'') ||
2644                 ((c == 'L') && (c1 == '\''))) {
2645                 int line;
2646                 char *line_start;
2647                 int wchar;
2648                 line = file->line;
2649                 line_start = file->line_start;
2650                 wchar = 0;
2651                 if (c == 'L') {
2652                         wchar = 1;
2653                         tokp++;
2654                 }
2655                 for(tokp += 1; tokp < end; tokp++) {
2656                         c = *tokp;
2657                         if (c == '\n') {
2658                                 line++;
2659                                 line_start = tokp + 1;
2660                         }
2661                         else if ((c == '\\') && (tokp +1 < end)) {
2662                                 tokp++;
2663                         }
2664                         else if (c == '\'') {
2665                                 tok = TOK_LIT_CHAR;
2666                                 break;
2667                         }
2668                 }
2669                 if (tok == TOK_UNKNOWN) {
2670                         error(state, 0, "unterminated character constant");
2671                 }
2672                 if (line != file->line) {
2673                         warning(state, 0, "multiline character constant");
2674                 }
2675                 file->report_line += line - file->line;
2676                 file->line = line;
2677                 file->line_start = line_start;
2678
2679                 /* Save the character value */
2680                 save_string(state, tk, token, tokp, "literal character");
2681         }
2682         /* integer and floating constants 
2683          * Integer Constants
2684          * {digits}
2685          * 0[Xx]{hexdigits}
2686          * 0{octdigit}+
2687          * 
2688          * Floating constants
2689          * {digits}.{digits}[Ee][+-]?{digits}
2690          * {digits}.{digits}
2691          * {digits}[Ee][+-]?{digits}
2692          * .{digits}[Ee][+-]?{digits}
2693          * .{digits}
2694          */
2695         
2696         else if (digitp(c) || ((c == '.') && (digitp(c1)))) {
2697                 char *next, *new;
2698                 int is_float;
2699                 is_float = 0;
2700                 if (c != '.') {
2701                         next = after_digits(tokp, end);
2702                 }
2703                 else {
2704                         next = tokp;
2705                 }
2706                 if (next[0] == '.') {
2707                         new = after_digits(next, end);
2708                         is_float = (new != next);
2709                         next = new;
2710                 }
2711                 if ((next[0] == 'e') || (next[0] == 'E')) {
2712                         if (((next + 1) < end) && 
2713                                 ((next[1] == '+') || (next[1] == '-'))) {
2714                                 next++;
2715                         }
2716                         new = after_digits(next, end);
2717                         is_float = (new != next);
2718                         next = new;
2719                 }
2720                 if (is_float) {
2721                         tok = TOK_LIT_FLOAT;
2722                         if ((next < end) && (
2723                                 (next[0] == 'f') ||
2724                                 (next[0] == 'F') ||
2725                                 (next[0] == 'l') ||
2726                                 (next[0] == 'L'))
2727                                 ) {
2728                                 next++;
2729                         }
2730                 }
2731                 if (!is_float && digitp(c)) {
2732                         tok = TOK_LIT_INT;
2733                         if ((c == '0') && ((c1 == 'x') || (c1 == 'X'))) {
2734                                 next = after_hexdigits(tokp + 2, end);
2735                         }
2736                         else if (c == '0') {
2737                                 next = after_octdigits(tokp, end);
2738                         }
2739                         else {
2740                                 next = after_digits(tokp, end);
2741                         }
2742                         /* crazy integer suffixes */
2743                         if ((next < end) && 
2744                                 ((next[0] == 'u') || (next[0] == 'U'))) { 
2745                                 next++;
2746                                 if ((next < end) &&
2747                                         ((next[0] == 'l') || (next[0] == 'L'))) {
2748                                         next++;
2749                                 }
2750                         }
2751                         else if ((next < end) &&
2752                                 ((next[0] == 'l') || (next[0] == 'L'))) {
2753                                 next++;
2754                                 if ((next < end) && 
2755                                         ((next[0] == 'u') || (next[0] == 'U'))) { 
2756                                         next++;
2757                                 }
2758                         }
2759                 }
2760                 tokp = next - 1;
2761
2762                 /* Save the integer/floating point value */
2763                 save_string(state, tk, token, tokp, "literal number");
2764         }
2765         /* identifiers */
2766         else if (letterp(c)) {
2767                 tok = TOK_IDENT;
2768                 for(tokp += 1; tokp < end; tokp++) {
2769                         c = *tokp;
2770                         if (!letterp(c) && !digitp(c)) {
2771                                 break;
2772                         }
2773                 }
2774                 tokp -= 1;
2775                 tk->ident = lookup(state, token, tokp +1 - token);
2776         }
2777         /* C99 alternate macro characters */
2778         else if ((c == '%') && (c1 == ':') && (c2 == '%') && (c3 == ':')) { 
2779                 tokp += 3; 
2780                 tok = TOK_CONCATENATE; 
2781         }
2782         else if ((c == '.') && (c1 == '.') && (c2 == '.')) { tokp += 2; tok = TOK_DOTS; }
2783         else if ((c == '<') && (c1 == '<') && (c2 == '=')) { tokp += 2; tok = TOK_SLEQ; }
2784         else if ((c == '>') && (c1 == '>') && (c2 == '=')) { tokp += 2; tok = TOK_SREQ; }
2785         else if ((c == '*') && (c1 == '=')) { tokp += 1; tok = TOK_TIMESEQ; }
2786         else if ((c == '/') && (c1 == '=')) { tokp += 1; tok = TOK_DIVEQ; }
2787         else if ((c == '%') && (c1 == '=')) { tokp += 1; tok = TOK_MODEQ; }
2788         else if ((c == '+') && (c1 == '=')) { tokp += 1; tok = TOK_PLUSEQ; }
2789         else if ((c == '-') && (c1 == '=')) { tokp += 1; tok = TOK_MINUSEQ; }
2790         else if ((c == '&') && (c1 == '=')) { tokp += 1; tok = TOK_ANDEQ; }
2791         else if ((c == '^') && (c1 == '=')) { tokp += 1; tok = TOK_XOREQ; }
2792         else if ((c == '|') && (c1 == '=')) { tokp += 1; tok = TOK_OREQ; }
2793         else if ((c == '=') && (c1 == '=')) { tokp += 1; tok = TOK_EQEQ; }
2794         else if ((c == '!') && (c1 == '=')) { tokp += 1; tok = TOK_NOTEQ; }
2795         else if ((c == '|') && (c1 == '|')) { tokp += 1; tok = TOK_LOGOR; }
2796         else if ((c == '&') && (c1 == '&')) { tokp += 1; tok = TOK_LOGAND; }
2797         else if ((c == '<') && (c1 == '=')) { tokp += 1; tok = TOK_LESSEQ; }
2798         else if ((c == '>') && (c1 == '=')) { tokp += 1; tok = TOK_MOREEQ; }
2799         else if ((c == '<') && (c1 == '<')) { tokp += 1; tok = TOK_SL; }
2800         else if ((c == '>') && (c1 == '>')) { tokp += 1; tok = TOK_SR; }
2801         else if ((c == '+') && (c1 == '+')) { tokp += 1; tok = TOK_PLUSPLUS; }
2802         else if ((c == '-') && (c1 == '-')) { tokp += 1; tok = TOK_MINUSMINUS; }
2803         else if ((c == '-') && (c1 == '>')) { tokp += 1; tok = TOK_ARROW; }
2804         else if ((c == '<') && (c1 == ':')) { tokp += 1; tok = TOK_LBRACKET; }
2805         else if ((c == ':') && (c1 == '>')) { tokp += 1; tok = TOK_RBRACKET; }
2806         else if ((c == '<') && (c1 == '%')) { tokp += 1; tok = TOK_LBRACE; }
2807         else if ((c == '%') && (c1 == '>')) { tokp += 1; tok = TOK_RBRACE; }
2808         else if ((c == '%') && (c1 == ':')) { tokp += 1; tok = TOK_MACRO; }
2809         else if ((c == '#') && (c1 == '#')) { tokp += 1; tok = TOK_CONCATENATE; }
2810         else if (c == ';') { tok = TOK_SEMI; }
2811         else if (c == '{') { tok = TOK_LBRACE; }
2812         else if (c == '}') { tok = TOK_RBRACE; }
2813         else if (c == ',') { tok = TOK_COMMA; }
2814         else if (c == '=') { tok = TOK_EQ; }
2815         else if (c == ':') { tok = TOK_COLON; }
2816         else if (c == '[') { tok = TOK_LBRACKET; }
2817         else if (c == ']') { tok = TOK_RBRACKET; }
2818         else if (c == '(') { tok = TOK_LPAREN; }
2819         else if (c == ')') { tok = TOK_RPAREN; }
2820         else if (c == '*') { tok = TOK_STAR; }
2821         else if (c == '>') { tok = TOK_MORE; }
2822         else if (c == '<') { tok = TOK_LESS; }
2823         else if (c == '?') { tok = TOK_QUEST; }
2824         else if (c == '|') { tok = TOK_OR; }
2825         else if (c == '&') { tok = TOK_AND; }
2826         else if (c == '^') { tok = TOK_XOR; }
2827         else if (c == '+') { tok = TOK_PLUS; }
2828         else if (c == '-') { tok = TOK_MINUS; }
2829         else if (c == '/') { tok = TOK_DIV; }
2830         else if (c == '%') { tok = TOK_MOD; }
2831         else if (c == '!') { tok = TOK_BANG; }
2832         else if (c == '.') { tok = TOK_DOT; }
2833         else if (c == '~') { tok = TOK_TILDE; }
2834         else if (c == '#') { tok = TOK_MACRO; }
2835         if (tok == TOK_MACRO) {
2836                 /* Only match preprocessor directives at the start of a line */
2837                 char *ptr;
2838                 for(ptr = file->line_start; spacep(*ptr); ptr++)
2839                         ;
2840                 if (ptr != tokp) {
2841                         tok = TOK_UNKNOWN;
2842                 }
2843         }
2844         if (tok == TOK_UNKNOWN) {
2845                 error(state, 0, "unknown token");
2846         }
2847
2848         file->pos = tokp + 1;
2849         tk->tok = tok;
2850         if (tok == TOK_IDENT) {
2851                 ident_to_keyword(state, tk);
2852         }
2853         /* Don't return space tokens. */
2854         if (tok == TOK_SPACE) {
2855                 goto next_token;
2856         }
2857 }
2858
2859 static void compile_macro(struct compile_state *state, struct token *tk)
2860 {
2861         struct file_state *file;
2862         struct hash_entry *ident;
2863         ident = tk->ident;
2864         file = xmalloc(sizeof(*file), "file_state");
2865         file->basename = xstrdup(tk->ident->name);
2866         file->dirname = xstrdup("");
2867         file->size = ident->sym_define->buf_len;
2868         file->buf = xmalloc(file->size +2,  file->basename);
2869         memcpy(file->buf, ident->sym_define->buf, file->size);
2870         file->buf[file->size] = '\n';
2871         file->buf[file->size + 1] = '\0';
2872         file->pos = file->buf;
2873         file->line_start = file->pos;
2874         file->line = 1;
2875         file->report_line = 1;
2876         file->report_name = file->basename;
2877         file->report_dir  = file->dirname;
2878         file->prev = state->file;
2879         state->file = file;
2880 }
2881
2882
2883 static int mpeek(struct compile_state *state, int index)
2884 {
2885         struct token *tk;
2886         int rescan;
2887         tk = &state->token[index + 1];
2888         if (tk->tok == -1) {
2889                 next_token(state, index + 1);
2890         }
2891         do {
2892                 rescan = 0;
2893                 if ((tk->tok == TOK_EOF) && 
2894                         (state->file != state->macro_file) &&
2895                         (state->file->prev)) {
2896                         struct file_state *file = state->file;
2897                         state->file = file->prev;
2898                         /* file->basename is used keep it */
2899                         if (file->report_dir != file->dirname) {
2900                                 xfree(file->report_dir);
2901                         }
2902                         xfree(file->dirname);
2903                         xfree(file->buf);
2904                         xfree(file);
2905                         next_token(state, index + 1);
2906                         rescan = 1;
2907                 }
2908                 else if (tk->ident && tk->ident->sym_define) {
2909                         compile_macro(state, tk);
2910                         next_token(state, index + 1);
2911                         rescan = 1;
2912                 }
2913         } while(rescan);
2914         /* Don't show the token on the next line */
2915         if (state->macro_line < state->macro_file->line) {
2916                 return TOK_EOF;
2917         }
2918         return state->token[index +1].tok;
2919 }
2920
2921 static void meat(struct compile_state *state, int index, int tok)
2922 {
2923         int next_tok;
2924         int i;
2925         next_tok = mpeek(state, index);
2926         if (next_tok != tok) {
2927                 const char *name1, *name2;
2928                 name1 = tokens[next_tok];
2929                 name2 = "";
2930                 if (next_tok == TOK_IDENT) {
2931                         name2 = state->token[index + 1].ident->name;
2932                 }
2933                 error(state, 0, "found %s %s expected %s", 
2934                         name1, name2, tokens[tok]);
2935         }
2936         /* Free the old token value */
2937         if (state->token[index].str_len) {
2938                 memset((void *)(state->token[index].val.str), -1, 
2939                         state->token[index].str_len);
2940                 xfree(state->token[index].val.str);
2941         }
2942         for(i = index; i < sizeof(state->token)/sizeof(state->token[0]) - 1; i++) {
2943                 state->token[i] = state->token[i + 1];
2944         }
2945         memset(&state->token[i], 0, sizeof(state->token[i]));
2946         state->token[i].tok = -1;
2947 }
2948
2949 static long_t mcexpr(struct compile_state *state, int index);
2950
2951 static long_t mprimary_expr(struct compile_state *state, int index)
2952 {
2953         long_t val;
2954         int tok;
2955         tok = mpeek(state, index);
2956         while(state->token[index + 1].ident && 
2957                 state->token[index + 1].ident->sym_define) {
2958                 meat(state, index, tok);
2959                 compile_macro(state, &state->token[index]);
2960                 tok = mpeek(state, index);
2961         }
2962         switch(tok) {
2963         case TOK_LPAREN:
2964                 meat(state, index, TOK_LPAREN);
2965                 val = mcexpr(state, index);
2966                 meat(state, index, TOK_RPAREN);
2967                 break;
2968         case TOK_LIT_INT:
2969         {
2970                 char *end;
2971                 meat(state, index, TOK_LIT_INT);
2972                 errno = 0;
2973                 val = strtol(state->token[index].val.str, &end, 0);
2974                 if (((val == LONG_MIN) || (val == LONG_MAX)) &&
2975                         (errno == ERANGE)) {
2976                         error(state, 0, "Integer constant to large");
2977                 }
2978                 break;
2979         }
2980         default:
2981                 meat(state, index, TOK_LIT_INT);
2982                 val = 0;
2983         }
2984         return val;
2985 }
2986 static long_t munary_expr(struct compile_state *state, int index)
2987 {
2988         long_t val;
2989         switch(mpeek(state, index)) {
2990         case TOK_PLUS:
2991                 meat(state, index, TOK_PLUS);
2992                 val = munary_expr(state, index);
2993                 val = + val;
2994                 break;
2995         case TOK_MINUS:
2996                 meat(state, index, TOK_MINUS);
2997                 val = munary_expr(state, index);
2998                 val = - val;
2999                 break;
3000         case TOK_TILDE:
3001                 meat(state, index, TOK_BANG);
3002                 val = munary_expr(state, index);
3003                 val = ~ val;
3004                 break;
3005         case TOK_BANG:
3006                 meat(state, index, TOK_BANG);
3007                 val = munary_expr(state, index);
3008                 val = ! val;
3009                 break;
3010         default:
3011                 val = mprimary_expr(state, index);
3012                 break;
3013         }
3014         return val;
3015         
3016 }
3017 static long_t mmul_expr(struct compile_state *state, int index)
3018 {
3019         long_t val;
3020         int done;
3021         val = munary_expr(state, index);
3022         do {
3023                 long_t right;
3024                 done = 0;
3025                 switch(mpeek(state, index)) {
3026                 case TOK_STAR:
3027                         meat(state, index, TOK_STAR);
3028                         right = munary_expr(state, index);
3029                         val = val * right;
3030                         break;
3031                 case TOK_DIV:
3032                         meat(state, index, TOK_DIV);
3033                         right = munary_expr(state, index);
3034                         val = val / right;
3035                         break;
3036                 case TOK_MOD:
3037                         meat(state, index, TOK_MOD);
3038                         right = munary_expr(state, index);
3039                         val = val % right;
3040                         break;
3041                 default:
3042                         done = 1;
3043                         break;
3044                 }
3045         } while(!done);
3046
3047         return val;
3048 }
3049
3050 static long_t madd_expr(struct compile_state *state, int index)
3051 {
3052         long_t val;
3053         int done;
3054         val = mmul_expr(state, index);
3055         do {
3056                 long_t right;
3057                 done = 0;
3058                 switch(mpeek(state, index)) {
3059                 case TOK_PLUS:
3060                         meat(state, index, TOK_PLUS);
3061                         right = mmul_expr(state, index);
3062                         val = val + right;
3063                         break;
3064                 case TOK_MINUS:
3065                         meat(state, index, TOK_MINUS);
3066                         right = mmul_expr(state, index);
3067                         val = val - right;
3068                         break;
3069                 default:
3070                         done = 1;
3071                         break;
3072                 }
3073         } while(!done);
3074
3075         return val;
3076 }
3077
3078 static long_t mshift_expr(struct compile_state *state, int index)
3079 {
3080         long_t val;
3081         int done;
3082         val = madd_expr(state, index);
3083         do {
3084                 long_t right;
3085                 done = 0;
3086                 switch(mpeek(state, index)) {
3087                 case TOK_SL:
3088                         meat(state, index, TOK_SL);
3089                         right = madd_expr(state, index);
3090                         val = val << right;
3091                         break;
3092                 case TOK_SR:
3093                         meat(state, index, TOK_SR);
3094                         right = madd_expr(state, index);
3095                         val = val >> right;
3096                         break;
3097                 default:
3098                         done = 1;
3099                         break;
3100                 }
3101         } while(!done);
3102
3103         return val;
3104 }
3105
3106 static long_t mrel_expr(struct compile_state *state, int index)
3107 {
3108         long_t val;
3109         int done;
3110         val = mshift_expr(state, index);
3111         do {
3112                 long_t right;
3113                 done = 0;
3114                 switch(mpeek(state, index)) {
3115                 case TOK_LESS:
3116                         meat(state, index, TOK_LESS);
3117                         right = mshift_expr(state, index);
3118                         val = val < right;
3119                         break;
3120                 case TOK_MORE:
3121                         meat(state, index, TOK_MORE);
3122                         right = mshift_expr(state, index);
3123                         val = val > right;
3124                         break;
3125                 case TOK_LESSEQ:
3126                         meat(state, index, TOK_LESSEQ);
3127                         right = mshift_expr(state, index);
3128                         val = val <= right;
3129                         break;
3130                 case TOK_MOREEQ:
3131                         meat(state, index, TOK_MOREEQ);
3132                         right = mshift_expr(state, index);
3133                         val = val >= right;
3134                         break;
3135                 default:
3136                         done = 1;
3137                         break;
3138                 }
3139         } while(!done);
3140         return val;
3141 }
3142
3143 static long_t meq_expr(struct compile_state *state, int index)
3144 {
3145         long_t val;
3146         int done;
3147         val = mrel_expr(state, index);
3148         do {
3149                 long_t right;
3150                 done = 0;
3151                 switch(mpeek(state, index)) {
3152                 case TOK_EQEQ:
3153                         meat(state, index, TOK_EQEQ);
3154                         right = mrel_expr(state, index);
3155                         val = val == right;
3156                         break;
3157                 case TOK_NOTEQ:
3158                         meat(state, index, TOK_NOTEQ);
3159                         right = mrel_expr(state, index);
3160                         val = val != right;
3161                         break;
3162                 default:
3163                         done = 1;
3164                         break;
3165                 }
3166         } while(!done);
3167         return val;
3168 }
3169
3170 static long_t mand_expr(struct compile_state *state, int index)
3171 {
3172         long_t val;
3173         val = meq_expr(state, index);
3174         if (mpeek(state, index) == TOK_AND) {
3175                 long_t right;
3176                 meat(state, index, TOK_AND);
3177                 right = meq_expr(state, index);
3178                 val = val & right;
3179         }
3180         return val;
3181 }
3182
3183 static long_t mxor_expr(struct compile_state *state, int index)
3184 {
3185         long_t val;
3186         val = mand_expr(state, index);
3187         if (mpeek(state, index) == TOK_XOR) {
3188                 long_t right;
3189                 meat(state, index, TOK_XOR);
3190                 right = mand_expr(state, index);
3191                 val = val ^ right;
3192         }
3193         return val;
3194 }
3195
3196 static long_t mor_expr(struct compile_state *state, int index)
3197 {
3198         long_t val;
3199         val = mxor_expr(state, index);
3200         if (mpeek(state, index) == TOK_OR) {
3201                 long_t right;
3202                 meat(state, index, TOK_OR);
3203                 right = mxor_expr(state, index);
3204                 val = val | right;
3205         }
3206         return val;
3207 }
3208
3209 static long_t mland_expr(struct compile_state *state, int index)
3210 {
3211         long_t val;
3212         val = mor_expr(state, index);
3213         if (mpeek(state, index) == TOK_LOGAND) {
3214                 long_t right;
3215                 meat(state, index, TOK_LOGAND);
3216                 right = mor_expr(state, index);
3217                 val = val && right;
3218         }
3219         return val;
3220 }
3221 static long_t mlor_expr(struct compile_state *state, int index)
3222 {
3223         long_t val;
3224         val = mland_expr(state, index);
3225         if (mpeek(state, index) == TOK_LOGOR) {
3226                 long_t right;
3227                 meat(state, index, TOK_LOGOR);
3228                 right = mland_expr(state, index);
3229                 val = val || right;
3230         }
3231         return val;
3232 }
3233
3234 static long_t mcexpr(struct compile_state *state, int index)
3235 {
3236         return mlor_expr(state, index);
3237 }
3238 static void preprocess(struct compile_state *state, int index)
3239 {
3240         /* Doing much more with the preprocessor would require
3241          * a parser and a major restructuring.
3242          * Postpone that for later.
3243          */
3244         struct file_state *file;
3245         struct token *tk;
3246         int line;
3247         int tok;
3248         
3249         file = state->file;
3250         tk = &state->token[index];
3251         state->macro_line = line = file->line;
3252         state->macro_file = file;
3253
3254         next_token(state, index);
3255         ident_to_macro(state, tk);
3256         if (tk->tok == TOK_IDENT) {
3257                 error(state, 0, "undefined preprocessing directive `%s'",
3258                         tk->ident->name);
3259         }
3260         switch(tk->tok) {
3261         case TOK_LIT_INT:
3262         {
3263                 int override_line;
3264                 override_line = strtoul(tk->val.str, 0, 10);
3265                 next_token(state, index);
3266                 /* I have a cpp line marker parse it */
3267                 if (tk->tok == TOK_LIT_STRING) {
3268                         const char *token, *base;
3269                         char *name, *dir;
3270                         int name_len, dir_len;
3271                         name = xmalloc(tk->str_len, "report_name");
3272                         token = tk->val.str + 1;
3273                         base = strrchr(token, '/');
3274                         name_len = tk->str_len -2;
3275                         if (base != 0) {
3276                                 dir_len = base - token;
3277                                 base++;
3278                                 name_len -= base - token;
3279                         } else {
3280                                 dir_len = 0;
3281                                 base = token;
3282                         }
3283                         memcpy(name, base, name_len);
3284                         name[name_len] = '\0';
3285                         dir = xmalloc(dir_len + 1, "report_dir");
3286                         memcpy(dir, token, dir_len);
3287                         dir[dir_len] = '\0';
3288                         file->report_line = override_line - 1;
3289                         file->report_name = name;
3290                         file->report_dir = dir;
3291                 }
3292         }
3293                 break;
3294         case TOK_LINE:
3295                 meat(state, index, TOK_LINE);
3296                 meat(state, index, TOK_LIT_INT);
3297                 file->report_line = strtoul(tk->val.str, 0, 10) -1;
3298                 if (mpeek(state, index) == TOK_LIT_STRING) {
3299                         const char *token, *base;
3300                         char *name, *dir;
3301                         int name_len, dir_len;
3302                         meat(state, index, TOK_LIT_STRING);
3303                         name = xmalloc(tk->str_len, "report_name");
3304                         token = tk->val.str + 1;
3305                         name_len = tk->str_len - 2;
3306                         if (base != 0) {
3307                                 dir_len = base - token;
3308                                 base++;
3309                                 name_len -= base - token;
3310                         } else {
3311                                 dir_len = 0;
3312                                 base = token;
3313                         }
3314                         memcpy(name, base, name_len);
3315                         name[name_len] = '\0';
3316                         dir = xmalloc(dir_len + 1, "report_dir");
3317                         memcpy(dir, token, dir_len);
3318                         dir[dir_len] = '\0';
3319                         file->report_name = name;
3320                         file->report_dir = dir;
3321                 }
3322                 break;
3323         case TOK_UNDEF:
3324         case TOK_PRAGMA:
3325                 if (state->if_value < 0) {
3326                         break;
3327                 }
3328                 warning(state, 0, "Ignoring preprocessor directive: %s", 
3329                         tk->ident->name);
3330                 break;
3331         case TOK_ELIF:
3332                 error(state, 0, "#elif not supported");
3333 #warning "FIXME multiple #elif and #else in an #if do not work properly"
3334                 if (state->if_depth == 0) {
3335                         error(state, 0, "#elif without #if");
3336                 }
3337                 /* If the #if was taken the #elif just disables the following code */
3338                 if (state->if_value >= 0) {
3339                         state->if_value = - state->if_value;
3340                 }
3341                 /* If the previous #if was not taken see if the #elif enables the 
3342                  * trailing code.
3343                  */
3344                 else if ((state->if_value < 0) && 
3345                         (state->if_depth == - state->if_value))
3346                 {
3347                         if (mcexpr(state, index) != 0) {
3348                                 state->if_value = state->if_depth;
3349                         }
3350                         else {
3351                                 state->if_value = - state->if_depth;
3352                         }
3353                 }
3354                 break;
3355         case TOK_IF:
3356                 state->if_depth++;
3357                 if (state->if_value < 0) {
3358                         break;
3359                 }
3360                 if (mcexpr(state, index) != 0) {
3361                         state->if_value = state->if_depth;
3362                 }
3363                 else {
3364                         state->if_value = - state->if_depth;
3365                 }
3366                 break;
3367         case TOK_IFNDEF:
3368                 state->if_depth++;
3369                 if (state->if_value < 0) {
3370                         break;
3371                 }
3372                 next_token(state, index);
3373                 if ((line != file->line) || (tk->tok != TOK_IDENT)) {
3374                         error(state, 0, "Invalid macro name");
3375                 }
3376                 if (tk->ident->sym_define == 0) {
3377                         state->if_value = state->if_depth;
3378                 } 
3379                 else {
3380                         state->if_value = - state->if_depth;
3381                 }
3382                 break;
3383         case TOK_IFDEF:
3384                 state->if_depth++;
3385                 if (state->if_value < 0) {
3386                         break;
3387                 }
3388                 next_token(state, index);
3389                 if ((line != file->line) || (tk->tok != TOK_IDENT)) {
3390                         error(state, 0, "Invalid macro name");
3391                 }
3392                 if (tk->ident->sym_define != 0) {
3393                         state->if_value = state->if_depth;
3394                 }
3395                 else {
3396                         state->if_value = - state->if_depth;
3397                 }
3398                 break;
3399         case TOK_ELSE:
3400                 if (state->if_depth == 0) {
3401                         error(state, 0, "#else without #if");
3402                 }
3403                 if ((state->if_value >= 0) ||
3404                         ((state->if_value < 0) && 
3405                                 (state->if_depth == -state->if_value)))
3406                 {
3407                         state->if_value = - state->if_value;
3408                 }
3409                 break;
3410         case TOK_ENDIF:
3411                 if (state->if_depth == 0) {
3412                         error(state, 0, "#endif without #if");
3413                 }
3414                 if ((state->if_value >= 0) ||
3415                         ((state->if_value < 0) &&
3416                                 (state->if_depth == -state->if_value))) 
3417                 {
3418                         state->if_value = state->if_depth - 1;
3419                 }
3420                 state->if_depth--;
3421                 break;
3422         case TOK_DEFINE:
3423         {
3424                 struct hash_entry *ident;
3425                 struct macro *macro;
3426                 char *ptr;
3427                 
3428                 if (state->if_value < 0) /* quit early when #if'd out */
3429                         break;
3430
3431                 meat(state, index, TOK_IDENT);
3432                 ident = tk->ident;
3433                 
3434
3435                 if (*file->pos == '(') {
3436 #warning "FIXME macros with arguments not supported"
3437                         error(state, 0, "Macros with arguments not supported");
3438                 }
3439
3440                 /* Find the end of the line to get an estimate of
3441                  * the macro's length.
3442                  */
3443                 for(ptr = file->pos; *ptr != '\n'; ptr++)  
3444                         ;
3445
3446                 if (ident->sym_define != 0) {
3447                         error(state, 0, "macro %s already defined\n", ident->name);
3448                 }
3449                 macro = xmalloc(sizeof(*macro), "macro");
3450                 macro->ident = ident;
3451                 macro->buf_len = ptr - file->pos +1;
3452                 macro->buf = xmalloc(macro->buf_len +2, "macro buf");
3453
3454                 memcpy(macro->buf, file->pos, macro->buf_len);
3455                 macro->buf[macro->buf_len] = '\n';
3456                 macro->buf[macro->buf_len +1] = '\0';
3457
3458                 ident->sym_define = macro;
3459                 break;
3460         }
3461         case TOK_ERROR:
3462         {
3463                 char *end;
3464                 int len;
3465                 /* Find the end of the line */
3466                 for(end = file->pos; *end != '\n'; end++)
3467                         ;
3468                 len = (end - file->pos);
3469                 if (state->if_value >= 0) {
3470                         error(state, 0, "%*.*s", len, len, file->pos);
3471                 }
3472                 file->pos = end;
3473                 break;
3474         }
3475         case TOK_WARNING:
3476         {
3477                 char *end;
3478                 int len;
3479                 /* Find the end of the line */
3480                 for(end = file->pos; *end != '\n'; end++)
3481                         ;
3482                 len = (end - file->pos);
3483                 if (state->if_value >= 0) {
3484                         warning(state, 0, "%*.*s", len, len, file->pos);
3485                 }
3486                 file->pos = end;
3487                 break;
3488         }
3489         case TOK_INCLUDE:
3490         {
3491                 char *name;
3492                 char *ptr;
3493                 int local;
3494                 local = 0;
3495                 name = 0;
3496                 next_token(state, index);
3497                 if (tk->tok == TOK_LIT_STRING) {
3498                         const char *token;
3499                         int name_len;
3500                         name = xmalloc(tk->str_len, "include");
3501                         token = tk->val.str +1;
3502                         name_len = tk->str_len -2;
3503                         if (*token == '"') {
3504                                 token++;
3505                                 name_len--;
3506                         }
3507                         memcpy(name, token, name_len);
3508                         name[name_len] = '\0';
3509                         local = 1;
3510                 }
3511                 else if (tk->tok == TOK_LESS) {
3512                         char *start, *end;
3513                         start = file->pos;
3514                         for(end = start; *end != '\n'; end++) {
3515                                 if (*end == '>') {
3516                                         break;
3517                                 }
3518                         }
3519                         if (*end == '\n') {
3520                                 error(state, 0, "Unterminated included directive");
3521                         }
3522                         name = xmalloc(end - start + 1, "include");
3523                         memcpy(name, start, end - start);
3524                         name[end - start] = '\0';
3525                         file->pos = end +1;
3526                         local = 0;
3527                 }
3528                 else {
3529                         error(state, 0, "Invalid include directive");
3530                 }
3531                 /* Error if there are any characters after the include */
3532                 for(ptr = file->pos; *ptr != '\n'; ptr++) {
3533                         switch(*ptr) {
3534                         case ' ':
3535                         case '\t':
3536                         case '\v':
3537                                 break;
3538                         default:
3539                                 error(state, 0, "garbage after include directive");
3540                         }
3541                 }
3542                 if (state->if_value >= 0) {
3543                         compile_file(state, name, local);
3544                 }
3545                 xfree(name);
3546                 next_token(state, index);
3547                 return;
3548         }
3549         default:
3550                 /* Ignore # without a following ident */
3551                 if (tk->tok == TOK_IDENT) {
3552                         error(state, 0, "Invalid preprocessor directive: %s", 
3553                                 tk->ident->name);
3554                 }
3555                 break;
3556         }
3557         /* Consume the rest of the macro line */
3558         do {
3559                 tok = mpeek(state, index);
3560                 meat(state, index, tok);
3561         } while(tok != TOK_EOF);
3562         return;
3563 }
3564
3565 static void token(struct compile_state *state, int index)
3566 {
3567         struct file_state *file;
3568         struct token *tk;
3569         int rescan;
3570
3571         tk = &state->token[index];
3572         next_token(state, index);
3573         do {
3574                 rescan = 0;
3575                 file = state->file;
3576                 if (tk->tok == TOK_EOF && file->prev) {
3577                         state->file = file->prev;
3578                         /* file->basename is used keep it */
3579                         xfree(file->dirname);
3580                         xfree(file->buf);
3581                         xfree(file);
3582                         next_token(state, index);
3583                         rescan = 1;
3584                 }
3585                 else if (tk->tok == TOK_MACRO) {
3586                         preprocess(state, index);
3587                         rescan = 1;
3588                 }
3589                 else if (tk->ident && tk->ident->sym_define) {
3590                         compile_macro(state, tk);
3591                         next_token(state, index);
3592                         rescan = 1;
3593                 }
3594                 else if (state->if_value < 0) {
3595                         next_token(state, index);
3596                         rescan = 1;
3597                 }
3598         } while(rescan);
3599 }
3600
3601 static int peek(struct compile_state *state)
3602 {
3603         if (state->token[1].tok == -1) {
3604                 token(state, 1);
3605         }
3606         return state->token[1].tok;
3607 }
3608
3609 static int peek2(struct compile_state *state)
3610 {
3611         if (state->token[1].tok == -1) {
3612                 token(state, 1);
3613         }
3614         if (state->token[2].tok == -1) {
3615                 token(state, 2);
3616         }
3617         return state->token[2].tok;
3618 }
3619
3620 static void eat(struct compile_state *state, int tok)
3621 {
3622         int next_tok;
3623         int i;
3624         next_tok = peek(state);
3625         if (next_tok != tok) {
3626                 const char *name1, *name2;
3627                 name1 = tokens[next_tok];
3628                 name2 = "";
3629                 if (next_tok == TOK_IDENT) {
3630                         name2 = state->token[1].ident->name;
3631                 }
3632                 error(state, 0, "\tfound %s %s expected %s",
3633                         name1, name2 ,tokens[tok]);
3634         }
3635         /* Free the old token value */
3636         if (state->token[0].str_len) {
3637                 xfree((void *)(state->token[0].val.str));
3638         }
3639         for(i = 0; i < sizeof(state->token)/sizeof(state->token[0]) - 1; i++) {
3640                 state->token[i] = state->token[i + 1];
3641         }
3642         memset(&state->token[i], 0, sizeof(state->token[i]));
3643         state->token[i].tok = -1;
3644 }
3645
3646 #warning "FIXME do not hardcode the include paths"
3647 static char *include_paths[] = {
3648         "/home/eric/projects/linuxbios/checkin/solo/freebios2/src/include",
3649         "/home/eric/projects/linuxbios/checkin/solo/freebios2/src/arch/i386/include",
3650         "/home/eric/projects/linuxbios/checkin/solo/freebios2/src",
3651         0
3652 };
3653
3654 static void compile_file(struct compile_state *state, const char *filename, int local)
3655 {
3656         char cwd[4096];
3657         const char *subdir, *base;
3658         int subdir_len;
3659         struct file_state *file;
3660         char *basename;
3661         file = xmalloc(sizeof(*file), "file_state");
3662
3663         base = strrchr(filename, '/');
3664         subdir = filename;
3665         if (base != 0) {
3666                 subdir_len = base - filename;
3667                 base++;
3668         }
3669         else {
3670                 base = filename;
3671                 subdir_len = 0;
3672         }
3673         basename = xmalloc(strlen(base) +1, "basename");
3674         strcpy(basename, base);
3675         file->basename = basename;
3676
3677         if (getcwd(cwd, sizeof(cwd)) == 0) {
3678                 die("cwd buffer to small");
3679         }
3680         
3681         if (subdir[0] == '/') {
3682                 file->dirname = xmalloc(subdir_len + 1, "dirname");
3683                 memcpy(file->dirname, subdir, subdir_len);
3684                 file->dirname[subdir_len] = '\0';
3685         }
3686         else {
3687                 char *dir;
3688                 int dirlen;
3689                 char **path;
3690                 /* Find the appropriate directory... */
3691                 dir = 0;
3692                 if (!state->file && exists(cwd, filename)) {
3693                         dir = cwd;
3694                 }
3695                 if (local && state->file && exists(state->file->dirname, filename)) {
3696                         dir = state->file->dirname;
3697                 }
3698                 for(path = include_paths; !dir && *path; path++) {
3699                         if (exists(*path, filename)) {
3700                                 dir = *path;
3701                         }
3702                 }
3703                 if (!dir) {
3704                         error(state, 0, "Cannot find `%s'\n", filename);
3705                 }
3706                 dirlen = strlen(dir);
3707                 file->dirname = xmalloc(dirlen + 1 + subdir_len + 1, "dirname");
3708                 memcpy(file->dirname, dir, dirlen);
3709                 file->dirname[dirlen] = '/';
3710                 memcpy(file->dirname + dirlen + 1, subdir, subdir_len);
3711                 file->dirname[dirlen + 1 + subdir_len] = '\0';
3712         }
3713         file->buf = slurp_file(file->dirname, file->basename, &file->size);
3714         xchdir(cwd);
3715
3716         file->pos = file->buf;
3717         file->line_start = file->pos;
3718         file->line = 1;
3719
3720         file->report_line = 1;
3721         file->report_name = file->basename;
3722         file->report_dir  = file->dirname;
3723
3724         file->prev = state->file;
3725         state->file = file;
3726         
3727         process_trigraphs(state);
3728         splice_lines(state);
3729 }
3730
3731 /* Type helper functions */
3732
3733 static struct type *new_type(
3734         unsigned int type, struct type *left, struct type *right)
3735 {
3736         struct type *result;
3737         result = xmalloc(sizeof(*result), "type");
3738         result->type = type;
3739         result->left = left;
3740         result->right = right;
3741         result->field_ident = 0;
3742         result->type_ident = 0;
3743         return result;
3744 }
3745
3746 static struct type *clone_type(unsigned int specifiers, struct type *old)
3747 {
3748         struct type *result;
3749         result = xmalloc(sizeof(*result), "type");
3750         memcpy(result, old, sizeof(*result));
3751         result->type &= TYPE_MASK;
3752         result->type |= specifiers;
3753         return result;
3754 }
3755
3756 #define SIZEOF_SHORT 2
3757 #define SIZEOF_INT   4
3758 #define SIZEOF_LONG  (sizeof(long_t))
3759
3760 #define ALIGNOF_SHORT 2
3761 #define ALIGNOF_INT   4
3762 #define ALIGNOF_LONG  (sizeof(long_t))
3763
3764 #define MASK_UCHAR(X)    ((X) & ((ulong_t)0xff))
3765 #define MASK_USHORT(X)   ((X) & (((ulong_t)1 << (SIZEOF_SHORT*8)) - 1))
3766 static inline ulong_t mask_uint(ulong_t x)
3767 {
3768         if (SIZEOF_INT < SIZEOF_LONG) {
3769                 ulong_t mask = (((ulong_t)1) << ((ulong_t)(SIZEOF_INT*8))) -1;
3770                 x &= mask;
3771         }
3772         return x;
3773 }
3774 #define MASK_UINT(X)      (mask_uint(X))
3775 #define MASK_ULONG(X)    (X)
3776
3777 static struct type void_type   = { .type  = TYPE_VOID };
3778 static struct type char_type   = { .type  = TYPE_CHAR };
3779 static struct type uchar_type  = { .type  = TYPE_UCHAR };
3780 static struct type short_type  = { .type  = TYPE_SHORT };
3781 static struct type ushort_type = { .type  = TYPE_USHORT };
3782 static struct type int_type    = { .type  = TYPE_INT };
3783 static struct type uint_type   = { .type  = TYPE_UINT };
3784 static struct type long_type   = { .type  = TYPE_LONG };
3785 static struct type ulong_type  = { .type  = TYPE_ULONG };
3786
3787 static struct triple *variable(struct compile_state *state, struct type *type)
3788 {
3789         struct triple *result;
3790         if ((type->type & STOR_MASK) != STOR_PERM) {
3791                 if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
3792                         result = triple(state, OP_ADECL, type, 0, 0);
3793                 } else {
3794                         struct type *field;
3795                         struct triple **vector;
3796                         ulong_t index;
3797                         result = new_triple(state, OP_VAL_VEC, type, -1, -1);
3798                         vector = &result->param[0];
3799
3800                         field = type->left;
3801                         index = 0;
3802                         while((field->type & TYPE_MASK) == TYPE_PRODUCT) {
3803                                 vector[index] = variable(state, field->left);
3804                                 field = field->right;
3805                                 index++;
3806                         }
3807                         vector[index] = variable(state, field);
3808                 }
3809         }
3810         else {
3811                 result = triple(state, OP_SDECL, type, 0, 0);
3812         }
3813         return result;
3814 }
3815
3816 static void stor_of(FILE *fp, struct type *type)
3817 {
3818         switch(type->type & STOR_MASK) {
3819         case STOR_AUTO:
3820                 fprintf(fp, "auto ");
3821                 break;
3822         case STOR_STATIC:
3823                 fprintf(fp, "static ");
3824                 break;
3825         case STOR_EXTERN:
3826                 fprintf(fp, "extern ");
3827                 break;
3828         case STOR_REGISTER:
3829                 fprintf(fp, "register ");
3830                 break;
3831         case STOR_TYPEDEF:
3832                 fprintf(fp, "typedef ");
3833                 break;
3834         case STOR_INLINE:
3835                 fprintf(fp, "inline ");
3836                 break;
3837         }
3838 }
3839 static void qual_of(FILE *fp, struct type *type)
3840 {
3841         if (type->type & QUAL_CONST) {
3842                 fprintf(fp, " const");
3843         }
3844         if (type->type & QUAL_VOLATILE) {
3845                 fprintf(fp, " volatile");
3846         }
3847         if (type->type & QUAL_RESTRICT) {
3848                 fprintf(fp, " restrict");
3849         }
3850 }
3851
3852 static void name_of(FILE *fp, struct type *type)
3853 {
3854         stor_of(fp, type);
3855         switch(type->type & TYPE_MASK) {
3856         case TYPE_VOID:
3857                 fprintf(fp, "void");
3858                 qual_of(fp, type);
3859                 break;
3860         case TYPE_CHAR:
3861                 fprintf(fp, "signed char");
3862                 qual_of(fp, type);
3863                 break;
3864         case TYPE_UCHAR:
3865                 fprintf(fp, "unsigned char");
3866                 qual_of(fp, type);
3867                 break;
3868         case TYPE_SHORT:
3869                 fprintf(fp, "signed short");
3870                 qual_of(fp, type);
3871                 break;
3872         case TYPE_USHORT:
3873                 fprintf(fp, "unsigned short");
3874                 qual_of(fp, type);
3875                 break;
3876         case TYPE_INT:
3877                 fprintf(fp, "signed int");
3878                 qual_of(fp, type);
3879                 break;
3880         case TYPE_UINT:
3881                 fprintf(fp, "unsigned int");
3882                 qual_of(fp, type);
3883                 break;
3884         case TYPE_LONG:
3885                 fprintf(fp, "signed long");
3886                 qual_of(fp, type);
3887                 break;
3888         case TYPE_ULONG:
3889                 fprintf(fp, "unsigned long");
3890                 qual_of(fp, type);
3891                 break;
3892         case TYPE_POINTER:
3893                 name_of(fp, type->left);
3894                 fprintf(fp, " * ");
3895                 qual_of(fp, type);
3896                 break;
3897         case TYPE_PRODUCT:
3898         case TYPE_OVERLAP:
3899                 name_of(fp, type->left);
3900                 fprintf(fp, ", ");
3901                 name_of(fp, type->right);
3902                 break;
3903         case TYPE_ENUM:
3904                 fprintf(fp, "enum %s", type->type_ident->name);
3905                 qual_of(fp, type);
3906                 break;
3907         case TYPE_STRUCT:
3908                 fprintf(fp, "struct %s", type->type_ident->name);
3909                 qual_of(fp, type);
3910                 break;
3911         case TYPE_FUNCTION:
3912         {
3913                 name_of(fp, type->left);
3914                 fprintf(fp, " (*)(");
3915                 name_of(fp, type->right);
3916                 fprintf(fp, ")");
3917                 break;
3918         }
3919         case TYPE_ARRAY:
3920                 name_of(fp, type->left);
3921                 fprintf(fp, " [%ld]", type->elements);
3922                 break;
3923         default:
3924                 fprintf(fp, "????: %x", type->type & TYPE_MASK);
3925                 break;
3926         }
3927 }
3928
3929 static size_t align_of(struct compile_state *state, struct type *type)
3930 {
3931         size_t align;
3932         align = 0;
3933         switch(type->type & TYPE_MASK) {
3934         case TYPE_VOID:
3935                 align = 1;
3936                 break;
3937         case TYPE_CHAR:
3938         case TYPE_UCHAR:
3939                 align = 1;
3940                 break;
3941         case TYPE_SHORT:
3942         case TYPE_USHORT:
3943                 align = ALIGNOF_SHORT;
3944                 break;
3945         case TYPE_INT:
3946         case TYPE_UINT:
3947         case TYPE_ENUM:
3948                 align = ALIGNOF_INT;
3949                 break;
3950         case TYPE_LONG:
3951         case TYPE_ULONG:
3952         case TYPE_POINTER:
3953                 align = ALIGNOF_LONG;
3954                 break;
3955         case TYPE_PRODUCT:
3956         case TYPE_OVERLAP:
3957         {
3958                 size_t left_align, right_align;
3959                 left_align  = align_of(state, type->left);
3960                 right_align = align_of(state, type->right);
3961                 align = (left_align >= right_align) ? left_align : right_align;
3962                 break;
3963         }
3964         case TYPE_ARRAY:
3965                 align = align_of(state, type->left);
3966                 break;
3967         case TYPE_STRUCT:
3968                 align = align_of(state, type->left);
3969                 break;
3970         default:
3971                 error(state, 0, "alignof not yet defined for type\n");
3972                 break;
3973         }
3974         return align;
3975 }
3976
3977 static size_t needed_padding(size_t offset, size_t align)
3978 {
3979         size_t padding;
3980         padding = 0;
3981         if (offset % align) {
3982                 padding = align - (offset % align);
3983         }
3984         return padding;
3985 }
3986 static size_t size_of(struct compile_state *state, struct type *type)
3987 {
3988         size_t size;
3989         size = 0;
3990         switch(type->type & TYPE_MASK) {
3991         case TYPE_VOID:
3992                 size = 0;
3993                 break;
3994         case TYPE_CHAR:
3995         case TYPE_UCHAR:
3996                 size = 1;
3997                 break;
3998         case TYPE_SHORT:
3999         case TYPE_USHORT:
4000                 size = SIZEOF_SHORT;
4001                 break;
4002         case TYPE_INT:
4003         case TYPE_UINT:
4004         case TYPE_ENUM:
4005                 size = SIZEOF_INT;
4006                 break;
4007         case TYPE_LONG:
4008         case TYPE_ULONG:
4009         case TYPE_POINTER:
4010                 size = SIZEOF_LONG;
4011                 break;
4012         case TYPE_PRODUCT:
4013         {
4014                 size_t align, pad;
4015                 size = 0;
4016                 while((type->type & TYPE_MASK) == TYPE_PRODUCT) {
4017                         align = align_of(state, type->left);
4018                         pad = needed_padding(size, align);
4019                         size = size + pad + size_of(state, type->left);
4020                         type = type->right;
4021                 }
4022                 align = align_of(state, type);
4023                 pad = needed_padding(size, align);
4024                 size = size + pad + sizeof(type);
4025                 break;
4026         }
4027         case TYPE_OVERLAP:
4028         {
4029                 size_t size_left, size_right;
4030                 size_left = size_of(state, type->left);
4031                 size_right = size_of(state, type->right);
4032                 size = (size_left >= size_right)? size_left : size_right;
4033                 break;
4034         }
4035         case TYPE_ARRAY:
4036                 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
4037                         internal_error(state, 0, "Invalid array type");
4038                 } else {
4039                         size = size_of(state, type->left) * type->elements;
4040                 }
4041                 break;
4042         case TYPE_STRUCT:
4043                 size = size_of(state, type->left);
4044                 break;
4045         default:
4046                 internal_error(state, 0, "sizeof not yet defined for type\n");
4047                 break;
4048         }
4049         return size;
4050 }
4051
4052 static size_t field_offset(struct compile_state *state, 
4053         struct type *type, struct hash_entry *field)
4054 {
4055         struct type *member;
4056         size_t size, align;
4057         if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
4058                 internal_error(state, 0, "field_offset only works on structures");
4059         }
4060         size = 0;
4061         member = type->left;
4062         while((member->type & TYPE_MASK) == TYPE_PRODUCT) {
4063                 align = align_of(state, member->left);
4064                 size += needed_padding(size, align);
4065                 if (member->left->field_ident == field) {
4066                         member = member->left;
4067                         break;
4068                 }
4069                 size += size_of(state, member->left);
4070                 member = member->right;
4071         }
4072         align = align_of(state, member);
4073         size += needed_padding(size, align);
4074         if (member->field_ident != field) {
4075                 error(state, 0, "member %s not present", field->name);
4076         }
4077         return size;
4078 }
4079
4080 static struct type *field_type(struct compile_state *state, 
4081         struct type *type, struct hash_entry *field)
4082 {
4083         struct type *member;
4084         if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
4085                 internal_error(state, 0, "field_type only works on structures");
4086         }
4087         member = type->left;
4088         while((member->type & TYPE_MASK) == TYPE_PRODUCT) {
4089                 if (member->left->field_ident == field) {
4090                         member = member->left;
4091                         break;
4092                 }
4093                 member = member->right;
4094         }
4095         if (member->field_ident != field) {
4096                 error(state, 0, "member %s not present", field->name);
4097         }
4098         return member;
4099 }
4100
4101 static struct type *next_field(struct compile_state *state,
4102         struct type *type, struct type *prev_member) 
4103 {
4104         struct type *member;
4105         if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
4106                 internal_error(state, 0, "next_field only works on structures");
4107         }
4108         member = type->left;
4109         while((member->type & TYPE_MASK) == TYPE_PRODUCT) {
4110                 if (!prev_member) {
4111                         member = member->left;
4112                         break;
4113                 }
4114                 if (member->left == prev_member) {
4115                         prev_member = 0;
4116                 }
4117                 member = member->right;
4118         }
4119         if (member == prev_member) {
4120                 prev_member = 0;
4121         }
4122         if (prev_member) {
4123                 internal_error(state, 0, "prev_member %s not present", 
4124                         prev_member->field_ident->name);
4125         }
4126         return member;
4127 }
4128
4129 static struct triple *struct_field(struct compile_state *state,
4130         struct triple *decl, struct hash_entry *field)
4131 {
4132         struct triple **vector;
4133         struct type *type;
4134         ulong_t index;
4135         type = decl->type;
4136         if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
4137                 return decl;
4138         }
4139         if (decl->op != OP_VAL_VEC) {
4140                 internal_error(state, 0, "Invalid struct variable");
4141         }
4142         if (!field) {
4143                 internal_error(state, 0, "Missing structure field");
4144         }
4145         type = type->left;
4146         vector = &RHS(decl, 0);
4147         index = 0;
4148         while((type->type & TYPE_MASK) == TYPE_PRODUCT) {
4149                 if (type->left->field_ident == field) {
4150                         type = type->left;
4151                         break;
4152                 }
4153                 index += 1;
4154                 type = type->right;
4155         }
4156         if (type->field_ident != field) {
4157                 internal_error(state, 0, "field %s not found?", field->name);
4158         }
4159         return vector[index];
4160 }
4161
4162 static void arrays_complete(struct compile_state *state, struct type *type)
4163 {
4164         if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
4165                 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
4166                         error(state, 0, "array size not specified");
4167                 }
4168                 arrays_complete(state, type->left);
4169         }
4170 }
4171
4172 static unsigned int do_integral_promotion(unsigned int type)
4173 {
4174         type &= TYPE_MASK;
4175         if (TYPE_INTEGER(type) && 
4176                 TYPE_RANK(type) < TYPE_RANK(TYPE_INT)) {
4177                 type = TYPE_INT;
4178         }
4179         return type;
4180 }
4181
4182 static unsigned int do_arithmetic_conversion(
4183         unsigned int left, unsigned int right)
4184 {
4185         left &= TYPE_MASK;
4186         right &= TYPE_MASK;
4187         if ((left == TYPE_LDOUBLE) || (right == TYPE_LDOUBLE)) {
4188                 return TYPE_LDOUBLE;
4189         }
4190         else if ((left == TYPE_DOUBLE) || (right == TYPE_DOUBLE)) {
4191                 return TYPE_DOUBLE;
4192         }
4193         else if ((left == TYPE_FLOAT) || (right == TYPE_FLOAT)) {
4194                 return TYPE_FLOAT;
4195         }
4196         left = do_integral_promotion(left);
4197         right = do_integral_promotion(right);
4198         /* If both operands have the same size done */
4199         if (left == right) {
4200                 return left;
4201         }
4202         /* If both operands have the same signedness pick the larger */
4203         else if (!!TYPE_UNSIGNED(left) == !!TYPE_UNSIGNED(right)) {
4204                 return (TYPE_RANK(left) >= TYPE_RANK(right)) ? left : right;
4205         }
4206         /* If the signed type can hold everything use it */
4207         else if (TYPE_SIGNED(left) && (TYPE_RANK(left) > TYPE_RANK(right))) {
4208                 return left;
4209         }
4210         else if (TYPE_SIGNED(right) && (TYPE_RANK(right) > TYPE_RANK(left))) {
4211                 return right;
4212         }
4213         /* Convert to the unsigned type with the same rank as the signed type */
4214         else if (TYPE_SIGNED(left)) {
4215                 return TYPE_MKUNSIGNED(left);
4216         }
4217         else {
4218                 return TYPE_MKUNSIGNED(right);
4219         }
4220 }
4221
4222 /* see if two types are the same except for qualifiers */
4223 static int equiv_types(struct type *left, struct type *right)
4224 {
4225         unsigned int type;
4226         /* Error if the basic types do not match */
4227         if ((left->type & TYPE_MASK) != (right->type & TYPE_MASK)) {
4228                 return 0;
4229         }
4230         type = left->type & TYPE_MASK;
4231         /* If the basic types match and it is a void type we are done */
4232         if (type == TYPE_VOID) {
4233                 return 1;
4234         }
4235         /* if the basic types match and it is an arithmetic type we are done */
4236         if (TYPE_ARITHMETIC(type)) {
4237                 return 1;
4238         }
4239         /* If it is a pointer type recurse and keep testing */
4240         if (type == TYPE_POINTER) {
4241                 return equiv_types(left->left, right->left);
4242         }
4243         else if (type == TYPE_ARRAY) {
4244                 return (left->elements == right->elements) &&
4245                         equiv_types(left->left, right->left);
4246         }
4247         /* test for struct/union equality */
4248         else if (type == TYPE_STRUCT) {
4249                 return left->type_ident == right->type_ident;
4250         }
4251         /* Test for equivalent functions */
4252         else if (type == TYPE_FUNCTION) {
4253                 return equiv_types(left->left, right->left) &&
4254                         equiv_types(left->right, right->right);
4255         }
4256         /* We only see TYPE_PRODUCT as part of function equivalence matching */
4257         else if (type == TYPE_PRODUCT) {
4258                 return equiv_types(left->left, right->left) &&
4259                         equiv_types(left->right, right->right);
4260         }
4261         /* We should see TYPE_OVERLAP */
4262         else {
4263                 return 0;
4264         }
4265 }
4266
4267 static int equiv_ptrs(struct type *left, struct type *right)
4268 {
4269         if (((left->type & TYPE_MASK) != TYPE_POINTER) ||
4270                 ((right->type & TYPE_MASK) != TYPE_POINTER)) {
4271                 return 0;
4272         }
4273         return equiv_types(left->left, right->left);
4274 }
4275
4276 static struct type *compatible_types(struct type *left, struct type *right)
4277 {
4278         struct type *result;
4279         unsigned int type, qual_type;
4280         /* Error if the basic types do not match */
4281         if ((left->type & TYPE_MASK) != (right->type & TYPE_MASK)) {
4282                 return 0;
4283         }
4284         type = left->type & TYPE_MASK;
4285         qual_type = (left->type & ~STOR_MASK) | (right->type & ~STOR_MASK);
4286         result = 0;
4287         /* if the basic types match and it is an arithmetic type we are done */
4288         if (TYPE_ARITHMETIC(type)) {
4289                 result = new_type(qual_type, 0, 0);
4290         }
4291         /* If it is a pointer type recurse and keep testing */
4292         else if (type == TYPE_POINTER) {
4293                 result = compatible_types(left->left, right->left);
4294                 if (result) {
4295                         result = new_type(qual_type, result, 0);
4296                 }
4297         }
4298         /* test for struct/union equality */
4299         else if (type == TYPE_STRUCT) {
4300                 if (left->type_ident == right->type_ident) {
4301                         result = left;
4302                 }
4303         }
4304         /* Test for equivalent functions */
4305         else if (type == TYPE_FUNCTION) {
4306                 struct type *lf, *rf;
4307                 lf = compatible_types(left->left, right->left);
4308                 rf = compatible_types(left->right, right->right);
4309                 if (lf && rf) {
4310                         result = new_type(qual_type, lf, rf);
4311                 }
4312         }
4313         /* We only see TYPE_PRODUCT as part of function equivalence matching */
4314         else if (type == TYPE_PRODUCT) {
4315                 struct type *lf, *rf;
4316                 lf = compatible_types(left->left, right->left);
4317                 rf = compatible_types(left->right, right->right);
4318                 if (lf && rf) {
4319                         result = new_type(qual_type, lf, rf);
4320                 }
4321         }
4322         else {
4323                 /* Nothing else is compatible */
4324         }
4325         return result;
4326 }
4327
4328 static struct type *compatible_ptrs(struct type *left, struct type *right)
4329 {
4330         struct type *result;
4331         if (((left->type & TYPE_MASK) != TYPE_POINTER) ||
4332                 ((right->type & TYPE_MASK) != TYPE_POINTER)) {
4333                 return 0;
4334         }
4335         result = compatible_types(left->left, right->left);
4336         if (result) {
4337                 unsigned int qual_type;
4338                 qual_type = (left->type & ~STOR_MASK) | (right->type & ~STOR_MASK);
4339                 result = new_type(qual_type, result, 0);
4340         }
4341         return result;
4342         
4343 }
4344 static struct triple *integral_promotion(
4345         struct compile_state *state, struct triple *def)
4346 {
4347         struct type *type;
4348         type = def->type;
4349         /* As all operations are carried out in registers
4350          * the values are converted on load I just convert
4351          * logical type of the operand.
4352          */
4353         if (TYPE_INTEGER(type->type)) {
4354                 unsigned int int_type;
4355                 int_type = type->type & ~TYPE_MASK;
4356                 int_type |= do_integral_promotion(type->type);
4357                 if (int_type != type->type) {
4358                         def->type = new_type(int_type, 0, 0);
4359                 }
4360         }
4361         return def;
4362 }
4363
4364
4365 static void arithmetic(struct compile_state *state, struct triple *def)
4366 {
4367         if (!TYPE_ARITHMETIC(def->type->type)) {
4368                 error(state, 0, "arithmetic type expexted");
4369         }
4370 }
4371
4372 static void ptr_arithmetic(struct compile_state *state, struct triple *def)
4373 {
4374         if (!TYPE_PTR(def->type->type) && !TYPE_ARITHMETIC(def->type->type)) {
4375                 error(state, def, "pointer or arithmetic type expected");
4376         }
4377 }
4378
4379 static int is_integral(struct triple *ins)
4380 {
4381         return TYPE_INTEGER(ins->type->type);
4382 }
4383
4384 static void integral(struct compile_state *state, struct triple *def)
4385 {
4386         if (!is_integral(def)) {
4387                 error(state, 0, "integral type expected");
4388         }
4389 }
4390
4391
4392 static void bool(struct compile_state *state, struct triple *def)
4393 {
4394         if (!TYPE_ARITHMETIC(def->type->type) &&
4395                 ((def->type->type & TYPE_MASK) != TYPE_POINTER)) {
4396                 error(state, 0, "arithmetic or pointer type expected");
4397         }
4398 }
4399
4400 static int is_signed(struct type *type)
4401 {
4402         return !!TYPE_SIGNED(type->type);
4403 }
4404
4405 /* Is this value located in a register otherwise it must be in memory */
4406 static int is_in_reg(struct compile_state *state, struct triple *def)
4407 {
4408         int in_reg;
4409         if (def->op == OP_ADECL) {
4410                 in_reg = 1;
4411         }
4412         else if ((def->op == OP_SDECL) || (def->op == OP_DEREF)) {
4413                 in_reg = 0;
4414         }
4415         else if (def->op == OP_VAL_VEC) {
4416                 in_reg = is_in_reg(state, RHS(def, 0));
4417         }
4418         else if (def->op == OP_DOT) {
4419                 in_reg = is_in_reg(state, RHS(def, 0));
4420         }
4421         else {
4422                 internal_error(state, 0, "unknown expr storage location");
4423                 in_reg = -1;
4424         }
4425         return in_reg;
4426 }
4427
4428 /* Is this a stable variable location otherwise it must be a temporary */
4429 static int is_stable(struct compile_state *state, struct triple *def)
4430 {
4431         int ret;
4432         ret = 0;
4433         if (!def) {
4434                 return 0;
4435         }
4436         if ((def->op == OP_ADECL) || 
4437                 (def->op == OP_SDECL) || 
4438                 (def->op == OP_DEREF) ||
4439                 (def->op == OP_BLOBCONST)) {
4440                 ret = 1;
4441         }
4442         else if (def->op == OP_DOT) {
4443                 ret = is_stable(state, RHS(def, 0));
4444         }
4445         else if (def->op == OP_VAL_VEC) {
4446                 struct triple **vector;
4447                 ulong_t i;
4448                 ret = 1;
4449                 vector = &RHS(def, 0);
4450                 for(i = 0; i < def->type->elements; i++) {
4451                         if (!is_stable(state, vector[i])) {
4452                                 ret = 0;
4453                                 break;
4454                         }
4455                 }
4456         }
4457         return ret;
4458 }
4459
4460 static int is_lvalue(struct compile_state *state, struct triple *def)
4461 {
4462         int ret;
4463         ret = 1;
4464         if (!def) {
4465                 return 0;
4466         }
4467         if (!is_stable(state, def)) {
4468                 return 0;
4469         }
4470         if (def->op == OP_DOT) {
4471                 ret = is_lvalue(state, RHS(def, 0));
4472         }
4473         return ret;
4474 }
4475
4476 static void clvalue(struct compile_state *state, struct triple *def)
4477 {
4478         if (!def) {
4479                 internal_error(state, def, "nothing where lvalue expected?");
4480         }
4481         if (!is_lvalue(state, def)) { 
4482                 error(state, def, "lvalue expected");
4483         }
4484 }
4485 static void lvalue(struct compile_state *state, struct triple *def)
4486 {
4487         clvalue(state, def);
4488         if (def->type->type & QUAL_CONST) {
4489                 error(state, def, "modifable lvalue expected");
4490         }
4491 }
4492
4493 static int is_pointer(struct triple *def)
4494 {
4495         return (def->type->type & TYPE_MASK) == TYPE_POINTER;
4496 }
4497
4498 static void pointer(struct compile_state *state, struct triple *def)
4499 {
4500         if (!is_pointer(def)) {
4501                 error(state, def, "pointer expected");
4502         }
4503 }
4504
4505 static struct triple *int_const(
4506         struct compile_state *state, struct type *type, ulong_t value)
4507 {
4508         struct triple *result;
4509         switch(type->type & TYPE_MASK) {
4510         case TYPE_CHAR:
4511         case TYPE_INT:   case TYPE_UINT:
4512         case TYPE_LONG:  case TYPE_ULONG:
4513                 break;
4514         default:
4515                 internal_error(state, 0, "constant for unkown type");
4516         }
4517         result = triple(state, OP_INTCONST, type, 0, 0);
4518         result->u.cval = value;
4519         return result;
4520 }
4521
4522
4523 static struct triple *do_mk_addr_expr(struct compile_state *state, 
4524         struct triple *expr, struct type *type, ulong_t offset)
4525 {
4526         struct triple *result;
4527         clvalue(state, expr);
4528
4529         type = new_type(TYPE_POINTER | (type->type & QUAL_MASK), type, 0);
4530
4531         result = 0;
4532         if (expr->op == OP_ADECL) {
4533                 error(state, expr, "address of auto variables not supported");
4534         }
4535         else if (expr->op == OP_SDECL) {
4536                 result = triple(state, OP_ADDRCONST, type, 0, 0);
4537                 MISC(result, 0) = expr;
4538                 result->u.cval = offset;
4539         }
4540         else if (expr->op == OP_DEREF) {
4541                 result = triple(state, OP_ADD, type,
4542                         RHS(expr, 0),
4543                         int_const(state, &ulong_type, offset));
4544         }
4545         return result;
4546 }
4547
4548 static struct triple *mk_addr_expr(
4549         struct compile_state *state, struct triple *expr, ulong_t offset)
4550 {
4551         return do_mk_addr_expr(state, expr, expr->type, offset);
4552 }
4553
4554 static struct triple *mk_deref_expr(
4555         struct compile_state *state, struct triple *expr)
4556 {
4557         struct type *base_type;
4558         pointer(state, expr);
4559         base_type = expr->type->left;
4560         return triple(state, OP_DEREF, base_type, expr, 0);
4561 }
4562
4563 static struct triple *array_to_pointer(struct compile_state *state, struct triple *def)
4564 {
4565         if ((def->type->type & TYPE_MASK) == TYPE_ARRAY) {
4566                 struct type *type;
4567                 struct triple *addrconst;
4568                 type = new_type(
4569                         TYPE_POINTER | (def->type->type & QUAL_MASK),
4570                         def->type->left, 0);
4571                 addrconst = triple(state, OP_ADDRCONST, type, 0, 0);
4572                 MISC(addrconst, 0) = def;
4573                 def = addrconst;
4574         }
4575         return def;
4576 }
4577
4578 static struct triple *deref_field(
4579         struct compile_state *state, struct triple *expr, struct hash_entry *field)
4580 {
4581         struct triple *result;
4582         struct type *type, *member;
4583         if (!field) {
4584                 internal_error(state, 0, "No field passed to deref_field");
4585         }
4586         result = 0;
4587         type = expr->type;
4588         if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
4589                 error(state, 0, "request for member %s in something not a struct or union",
4590                         field->name);
4591         }
4592         member = field_type(state, type, field);
4593         if ((type->type & STOR_MASK) == STOR_PERM) {
4594                 /* Do the pointer arithmetic to get a deref the field */
4595                 ulong_t offset;
4596                 offset = field_offset(state, type, field);
4597                 result = do_mk_addr_expr(state, expr, member, offset);
4598                 result = mk_deref_expr(state, result);
4599         }
4600         else {
4601                 /* Find the variable for the field I want. */
4602                 result = triple(state, OP_DOT, member, expr, 0);
4603                 result->u.field = field;
4604         }
4605         return result;
4606 }
4607
4608 static struct triple *read_expr(struct compile_state *state, struct triple *def)
4609 {
4610         int op;
4611         if  (!def) {
4612                 return 0;
4613         }
4614         if (!is_stable(state, def)) {
4615                 return def;
4616         }
4617         /* Tranform an array to a pointer to the first element */
4618         
4619 #warning "CHECK_ME is this the right place to transform arrays to pointers?"
4620         if ((def->type->type & TYPE_MASK) == TYPE_ARRAY) {
4621                 return array_to_pointer(state, def);
4622         }
4623         if (is_in_reg(state, def)) {
4624                 op = OP_READ;
4625         } else {
4626                 op = OP_LOAD;
4627         }
4628         return triple(state, op, def->type, def, 0);
4629 }
4630
4631 static void write_compatible(struct compile_state *state,
4632         struct type *dest, struct type *rval)
4633 {
4634         int compatible = 0;
4635         /* Both operands have arithmetic type */
4636         if (TYPE_ARITHMETIC(dest->type) && TYPE_ARITHMETIC(rval->type)) {
4637                 compatible = 1;
4638         }
4639         /* One operand is a pointer and the other is a pointer to void */
4640         else if (((dest->type & TYPE_MASK) == TYPE_POINTER) &&
4641                 ((rval->type & TYPE_MASK) == TYPE_POINTER) &&
4642                 (((dest->left->type & TYPE_MASK) == TYPE_VOID) ||
4643                         ((rval->left->type & TYPE_MASK) == TYPE_VOID))) {
4644                 compatible = 1;
4645         }
4646         /* If both types are the same without qualifiers we are good */
4647         else if (equiv_ptrs(dest, rval)) {
4648                 compatible = 1;
4649         }
4650         /* test for struct/union equality  */
4651         else if (((dest->type & TYPE_MASK) == TYPE_STRUCT) &&
4652                 ((rval->type & TYPE_MASK) == TYPE_STRUCT) &&
4653                 (dest->type_ident == rval->type_ident)) {
4654                 compatible = 1;
4655         }
4656         if (!compatible) {
4657                 error(state, 0, "Incompatible types in assignment");
4658         }
4659 }
4660
4661 static struct triple *write_expr(
4662         struct compile_state *state, struct triple *dest, struct triple *rval)
4663 {
4664         struct triple *def;
4665         int op;
4666
4667         def = 0;
4668         if (!rval) {
4669                 internal_error(state, 0, "missing rval");
4670         }
4671
4672         if (rval->op == OP_LIST) {
4673                 internal_error(state, 0, "expression of type OP_LIST?");
4674         }
4675         if (!is_lvalue(state, dest)) {
4676                 internal_error(state, 0, "writing to a non lvalue?");
4677         }
4678         if (dest->type->type & QUAL_CONST) {
4679                 internal_error(state, 0, "modifable lvalue expexted");
4680         }
4681
4682         write_compatible(state, dest->type, rval->type);
4683
4684         /* Now figure out which assignment operator to use */
4685         op = -1;
4686         if (is_in_reg(state, dest)) {
4687                 op = OP_WRITE;
4688         } else {
4689                 op = OP_STORE;
4690         }
4691         def = triple(state, op, dest->type, dest, rval);
4692         return def;
4693 }
4694
4695 static struct triple *init_expr(
4696         struct compile_state *state, struct triple *dest, struct triple *rval)
4697 {
4698         struct triple *def;
4699
4700         def = 0;
4701         if (!rval) {
4702                 internal_error(state, 0, "missing rval");
4703         }
4704         if ((dest->type->type & STOR_MASK) != STOR_PERM) {
4705                 rval = read_expr(state, rval);
4706                 def = write_expr(state, dest, rval);
4707         }
4708         else {
4709                 /* Fill in the array size if necessary */
4710                 if (((dest->type->type & TYPE_MASK) == TYPE_ARRAY) &&
4711                         ((rval->type->type & TYPE_MASK) == TYPE_ARRAY)) {
4712                         if (dest->type->elements == ELEMENT_COUNT_UNSPECIFIED) {
4713                                 dest->type->elements = rval->type->elements;
4714                         }
4715                 }
4716                 if (!equiv_types(dest->type, rval->type)) {
4717                         error(state, 0, "Incompatible types in inializer");
4718                 }
4719                 MISC(dest, 0) = rval;
4720                 insert_triple(state, dest, rval);
4721                 rval->id |= TRIPLE_FLAG_FLATTENED;
4722                 use_triple(MISC(dest, 0), dest);
4723         }
4724         return def;
4725 }
4726
4727 struct type *arithmetic_result(
4728         struct compile_state *state, struct triple *left, struct triple *right)
4729 {
4730         struct type *type;
4731         /* Sanity checks to ensure I am working with arithmetic types */
4732         arithmetic(state, left);
4733         arithmetic(state, right);
4734         type = new_type(
4735                 do_arithmetic_conversion(
4736                         left->type->type, 
4737                         right->type->type), 0, 0);
4738         return type;
4739 }
4740
4741 struct type *ptr_arithmetic_result(
4742         struct compile_state *state, struct triple *left, struct triple *right)
4743 {
4744         struct type *type;
4745         /* Sanity checks to ensure I am working with the proper types */
4746         ptr_arithmetic(state, left);
4747         arithmetic(state, right);
4748         if (TYPE_ARITHMETIC(left->type->type) && 
4749                 TYPE_ARITHMETIC(right->type->type)) {
4750                 type = arithmetic_result(state, left, right);
4751         }
4752         else if (TYPE_PTR(left->type->type)) {
4753                 type = left->type;
4754         }
4755         else {
4756                 internal_error(state, 0, "huh?");
4757                 type = 0;
4758         }
4759         return type;
4760 }
4761
4762
4763 /* boolean helper function */
4764
4765 static struct triple *ltrue_expr(struct compile_state *state, 
4766         struct triple *expr)
4767 {
4768         switch(expr->op) {
4769         case OP_LTRUE:   case OP_LFALSE:  case OP_EQ:      case OP_NOTEQ:
4770         case OP_SLESS:   case OP_ULESS:   case OP_SMORE:   case OP_UMORE:
4771         case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
4772                 /* If the expression is already boolean do nothing */
4773                 break;
4774         default:
4775                 expr = triple(state, OP_LTRUE, &int_type, expr, 0);
4776                 break;
4777         }
4778         return expr;
4779 }
4780
4781 static struct triple *lfalse_expr(struct compile_state *state, 
4782         struct triple *expr)
4783 {
4784         return triple(state, OP_LFALSE, &int_type, expr, 0);
4785 }
4786
4787 static struct triple *cond_expr(
4788         struct compile_state *state, 
4789         struct triple *test, struct triple *left, struct triple *right)
4790 {
4791         struct triple *def;
4792         struct type *result_type;
4793         unsigned int left_type, right_type;
4794         bool(state, test);
4795         left_type = left->type->type;
4796         right_type = right->type->type;
4797         result_type = 0;
4798         /* Both operands have arithmetic type */
4799         if (TYPE_ARITHMETIC(left_type) && TYPE_ARITHMETIC(right_type)) {
4800                 result_type = arithmetic_result(state, left, right);
4801         }
4802         /* Both operands have void type */
4803         else if (((left_type & TYPE_MASK) == TYPE_VOID) &&
4804                 ((right_type & TYPE_MASK) == TYPE_VOID)) {
4805                 result_type = &void_type;
4806         }
4807         /* pointers to the same type... */
4808         else if ((result_type = compatible_ptrs(left->type, right->type))) {
4809                 ;
4810         }
4811         /* Both operands are pointers and left is a pointer to void */
4812         else if (((left_type & TYPE_MASK) == TYPE_POINTER) &&
4813                 ((right_type & TYPE_MASK) == TYPE_POINTER) &&
4814                 ((left->type->left->type & TYPE_MASK) == TYPE_VOID)) {
4815                 result_type = right->type;
4816         }
4817         /* Both operands are pointers and right is a pointer to void */
4818         else if (((left_type & TYPE_MASK) == TYPE_POINTER) &&
4819                 ((right_type & TYPE_MASK) == TYPE_POINTER) &&
4820                 ((right->type->left->type & TYPE_MASK) == TYPE_VOID)) {
4821                 result_type = left->type;
4822         }
4823         if (!result_type) {
4824                 error(state, 0, "Incompatible types in conditional expression");
4825         }
4826         /* Cleanup and invert the test */
4827         test = lfalse_expr(state, read_expr(state, test));
4828         def = new_triple(state, OP_COND, result_type, 0, 3);
4829         def->param[0] = test;
4830         def->param[1] = left;
4831         def->param[2] = right;
4832         return def;
4833 }
4834
4835
4836 static int expr_depth(struct compile_state *state, struct triple *ins)
4837 {
4838         int count;
4839         count = 0;
4840         if (!ins || (ins->id & TRIPLE_FLAG_FLATTENED)) {
4841                 count = 0;
4842         }
4843         else if (ins->op == OP_DEREF) {
4844                 count = expr_depth(state, RHS(ins, 0)) - 1;
4845         }
4846         else if (ins->op == OP_VAL) {
4847                 count = expr_depth(state, RHS(ins, 0)) - 1;
4848         }
4849         else if (ins->op == OP_COMMA) {
4850                 int ldepth, rdepth;
4851                 ldepth = expr_depth(state, RHS(ins, 0));
4852                 rdepth = expr_depth(state, RHS(ins, 1));
4853                 count = (ldepth >= rdepth)? ldepth : rdepth;
4854         }
4855         else if (ins->op == OP_CALL) {
4856                 /* Don't figure the depth of a call just guess it is huge */
4857                 count = 1000;
4858         }
4859         else {
4860                 struct triple **expr;
4861                 expr = triple_rhs(state, ins, 0);
4862                 for(;expr; expr = triple_rhs(state, ins, expr)) {
4863                         if (*expr) {
4864                                 int depth;
4865                                 depth = expr_depth(state, *expr);
4866                                 if (depth > count) {
4867                                         count = depth;
4868                                 }
4869                         }
4870                 }
4871         }
4872         return count + 1;
4873 }
4874
4875 static struct triple *flatten(
4876         struct compile_state *state, struct triple *first, struct triple *ptr);
4877
4878 static struct triple *flatten_generic(
4879         struct compile_state *state, struct triple *first, struct triple *ptr)
4880 {
4881         struct rhs_vector {
4882                 int depth;
4883                 struct triple **ins;
4884         } vector[MAX_RHS];
4885         int i, rhs, lhs;
4886         /* Only operations with just a rhs should come here */
4887         rhs = TRIPLE_RHS(ptr->sizes);
4888         lhs = TRIPLE_LHS(ptr->sizes);
4889         if (TRIPLE_SIZE(ptr->sizes) != lhs + rhs) {
4890                 internal_error(state, ptr, "unexpected args for: %d %s",
4891                         ptr->op, tops(ptr->op));
4892         }
4893         /* Find the depth of the rhs elements */
4894         for(i = 0; i < rhs; i++) {
4895                 vector[i].ins = &RHS(ptr, i);
4896                 vector[i].depth = expr_depth(state, *vector[i].ins);
4897         }
4898         /* Selection sort the rhs */
4899         for(i = 0; i < rhs; i++) {
4900                 int j, max = i;
4901                 for(j = i + 1; j < rhs; j++ ) {
4902                         if (vector[j].depth > vector[max].depth) {
4903                                 max = j;
4904                         }
4905                 }
4906                 if (max != i) {
4907                         struct rhs_vector tmp;
4908                         tmp = vector[i];
4909                         vector[i] = vector[max];
4910                         vector[max] = tmp;
4911                 }
4912         }
4913         /* Now flatten the rhs elements */
4914         for(i = 0; i < rhs; i++) {
4915                 *vector[i].ins = flatten(state, first, *vector[i].ins);
4916                 use_triple(*vector[i].ins, ptr);
4917         }
4918         
4919         /* Now flatten the lhs elements */
4920         for(i = 0; i < lhs; i++) {
4921                 struct triple **ins = &LHS(ptr, i);
4922                 *ins = flatten(state, first, *ins);
4923                 use_triple(*ins, ptr);
4924         }
4925         return ptr;
4926 }
4927
4928 static struct triple *flatten_land(
4929         struct compile_state *state, struct triple *first, struct triple *ptr)
4930 {
4931         struct triple *left, *right;
4932         struct triple *val, *test, *jmp, *label1, *end;
4933
4934         /* Find the triples */
4935         left = RHS(ptr, 0);
4936         right = RHS(ptr, 1);
4937
4938         /* Generate the needed triples */
4939         end = label(state);
4940
4941         /* Thread the triples together */
4942         val          = flatten(state, first, variable(state, ptr->type));
4943         left         = flatten(state, first, write_expr(state, val, left));
4944         test         = flatten(state, first, 
4945                 lfalse_expr(state, read_expr(state, val)));
4946         jmp          = flatten(state, first, branch(state, end, test));
4947         label1       = flatten(state, first, label(state));
4948         right        = flatten(state, first, write_expr(state, val, right));
4949         TARG(jmp, 0) = flatten(state, first, end); 
4950         
4951         /* Now give the caller something to chew on */
4952         return read_expr(state, val);
4953 }
4954
4955 static struct triple *flatten_lor(
4956         struct compile_state *state, struct triple *first, struct triple *ptr)
4957 {
4958         struct triple *left, *right;
4959         struct triple *val, *jmp, *label1, *end;
4960
4961         /* Find the triples */
4962         left = RHS(ptr, 0);
4963         right = RHS(ptr, 1);
4964
4965         /* Generate the needed triples */
4966         end = label(state);
4967
4968         /* Thread the triples together */
4969         val          = flatten(state, first, variable(state, ptr->type));
4970         left         = flatten(state, first, write_expr(state, val, left));
4971         jmp          = flatten(state, first, branch(state, end, left));
4972         label1       = flatten(state, first, label(state));
4973         right        = flatten(state, first, write_expr(state, val, right));
4974         TARG(jmp, 0) = flatten(state, first, end);
4975        
4976         
4977         /* Now give the caller something to chew on */
4978         return read_expr(state, val);
4979 }
4980
4981 static struct triple *flatten_cond(
4982         struct compile_state *state, struct triple *first, struct triple *ptr)
4983 {
4984         struct triple *test, *left, *right;
4985         struct triple *val, *mv1, *jmp1, *label1, *mv2, *middle, *jmp2, *end;
4986
4987         /* Find the triples */
4988         test = RHS(ptr, 0);
4989         left = RHS(ptr, 1);
4990         right = RHS(ptr, 2);
4991
4992         /* Generate the needed triples */
4993         end = label(state);
4994         middle = label(state);
4995
4996         /* Thread the triples together */
4997         val           = flatten(state, first, variable(state, ptr->type));
4998         test          = flatten(state, first, test);
4999         jmp1          = flatten(state, first, branch(state, middle, test));
5000         label1        = flatten(state, first, label(state));
5001         left          = flatten(state, first, left);
5002         mv1           = flatten(state, first, write_expr(state, val, left));
5003         jmp2          = flatten(state, first, branch(state, end, 0));
5004         TARG(jmp1, 0) = flatten(state, first, middle);
5005         right         = flatten(state, first, right);
5006         mv2           = flatten(state, first, write_expr(state, val, right));
5007         TARG(jmp2, 0) = flatten(state, first, end);
5008         
5009         /* Now give the caller something to chew on */
5010         return read_expr(state, val);
5011 }
5012
5013 struct triple *copy_func(struct compile_state *state, struct triple *ofunc, 
5014         struct occurance *base_occurance)
5015 {
5016         struct triple *nfunc;
5017         struct triple *nfirst, *ofirst;
5018         struct triple *new, *old;
5019
5020 #if 0
5021         fprintf(stdout, "\n");
5022         loc(stdout, state, 0);
5023         fprintf(stdout, "\n__________ copy_func _________\n");
5024         print_triple(state, ofunc);
5025         fprintf(stdout, "__________ copy_func _________ done\n\n");
5026 #endif
5027
5028         /* Make a new copy of the old function */
5029         nfunc = triple(state, OP_LIST, ofunc->type, 0, 0);
5030         nfirst = 0;
5031         ofirst = old = RHS(ofunc, 0);
5032         do {
5033                 struct triple *new;
5034                 struct occurance *occurance;
5035                 int old_lhs, old_rhs;
5036                 old_lhs = TRIPLE_LHS(old->sizes);
5037                 old_rhs = TRIPLE_RHS(old->sizes);
5038                 occurance = inline_occurance(state, base_occurance, old->occurance);
5039                 new = alloc_triple(state, old->op, old->type, old_lhs, old_rhs,
5040                         occurance);
5041                 if (!triple_stores_block(state, new)) {
5042                         memcpy(&new->u, &old->u, sizeof(new->u));
5043                 }
5044                 if (!nfirst) {
5045                         RHS(nfunc, 0) = nfirst = new;
5046                 }
5047                 else {
5048                         insert_triple(state, nfirst, new);
5049                 }
5050                 new->id |= TRIPLE_FLAG_FLATTENED;
5051                 
5052                 /* During the copy remember new as user of old */
5053                 use_triple(old, new);
5054
5055                 /* Populate the return type if present */
5056                 if (old == MISC(ofunc, 0)) {
5057                         MISC(nfunc, 0) = new;
5058                 }
5059                 old = old->next;
5060         } while(old != ofirst);
5061
5062         /* Make a second pass to fix up any unresolved references */
5063         old = ofirst;
5064         new = nfirst;
5065         do {
5066                 struct triple **oexpr, **nexpr;
5067                 int count, i;
5068                 /* Lookup where the copy is, to join pointers */
5069                 count = TRIPLE_SIZE(old->sizes);
5070                 for(i = 0; i < count; i++) {
5071                         oexpr = &old->param[i];
5072                         nexpr = &new->param[i];
5073                         if (!*nexpr && *oexpr && (*oexpr)->use) {
5074                                 *nexpr = (*oexpr)->use->member;
5075                                 if (*nexpr == old) {
5076                                         internal_error(state, 0, "new == old?");
5077                                 }
5078                                 use_triple(*nexpr, new);
5079                         }
5080                         if (!*nexpr && *oexpr) {
5081                                 internal_error(state, 0, "Could not copy %d\n", i);
5082                         }
5083                 }
5084                 old = old->next;
5085                 new = new->next;
5086         } while((old != ofirst) && (new != nfirst));
5087         
5088         /* Make a third pass to cleanup the extra useses */
5089         old = ofirst;
5090         new = nfirst;
5091         do {
5092                 unuse_triple(old, new);
5093                 old = old->next;
5094                 new = new->next;
5095         } while ((old != ofirst) && (new != nfirst));
5096         return nfunc;
5097 }
5098
5099 static struct triple *flatten_call(
5100         struct compile_state *state, struct triple *first, struct triple *ptr)
5101 {
5102         /* Inline the function call */
5103         struct type *ptype;
5104         struct triple *ofunc, *nfunc, *nfirst, *param, *result;
5105         struct triple *end, *nend;
5106         int pvals, i;
5107
5108         /* Find the triples */
5109         ofunc = MISC(ptr, 0);
5110         if (ofunc->op != OP_LIST) {
5111                 internal_error(state, 0, "improper function");
5112         }
5113         nfunc = copy_func(state, ofunc, ptr->occurance);
5114         nfirst = RHS(nfunc, 0)->next;
5115         /* Prepend the parameter reading into the new function list */
5116         ptype = nfunc->type->right;
5117         param = RHS(nfunc, 0)->next;
5118         pvals = TRIPLE_RHS(ptr->sizes);
5119         for(i = 0; i < pvals; i++) {
5120                 struct type *atype;
5121                 struct triple *arg;
5122                 atype = ptype;
5123                 if ((ptype->type & TYPE_MASK) == TYPE_PRODUCT) {
5124                         atype = ptype->left;
5125                 }
5126                 while((param->type->type & TYPE_MASK) != (atype->type & TYPE_MASK)) {
5127                         param = param->next;
5128                 }
5129                 arg = RHS(ptr, i);
5130                 flatten(state, nfirst, write_expr(state, param, arg));
5131                 ptype = ptype->right;
5132                 param = param->next;
5133         }
5134         result = 0;
5135         if ((nfunc->type->left->type & TYPE_MASK) != TYPE_VOID) {
5136                 result = read_expr(state, MISC(nfunc,0));
5137         }
5138 #if 0
5139         fprintf(stdout, "\n");
5140         loc(stdout, state, 0);
5141         fprintf(stdout, "\n__________ flatten_call _________\n");
5142         print_triple(state, nfunc);
5143         fprintf(stdout, "__________ flatten_call _________ done\n\n");
5144 #endif
5145
5146         /* Get rid of the extra triples */
5147         nfirst = RHS(nfunc, 0)->next;
5148         free_triple(state, RHS(nfunc, 0));
5149         RHS(nfunc, 0) = 0;
5150         free_triple(state, nfunc);
5151
5152         /* Append the new function list onto the return list */
5153         end = first->prev;
5154         nend = nfirst->prev;
5155         end->next    = nfirst;
5156         nfirst->prev = end;
5157         nend->next   = first;
5158         first->prev  = nend;
5159
5160         return result;
5161 }
5162
5163 static struct triple *flatten(
5164         struct compile_state *state, struct triple *first, struct triple *ptr)
5165 {
5166         struct triple *orig_ptr;
5167         if (!ptr)
5168                 return 0;
5169         do {
5170                 orig_ptr = ptr;
5171                 /* Only flatten triples once */
5172                 if (ptr->id & TRIPLE_FLAG_FLATTENED) {
5173                         return ptr;
5174                 }
5175                 switch(ptr->op) {
5176                 case OP_COMMA:
5177                         RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
5178                         ptr = RHS(ptr, 1);
5179                         break;
5180                 case OP_VAL:
5181                         RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
5182                         return MISC(ptr, 0);
5183                         break;
5184                 case OP_LAND:
5185                         ptr = flatten_land(state, first, ptr);
5186                         break;
5187                 case OP_LOR:
5188                         ptr = flatten_lor(state, first, ptr);
5189                         break;
5190                 case OP_COND:
5191                         ptr = flatten_cond(state, first, ptr);
5192                         break;
5193                 case OP_CALL:
5194                         ptr = flatten_call(state, first, ptr);
5195                         break;
5196                 case OP_READ:
5197                 case OP_LOAD:
5198                         RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
5199                         use_triple(RHS(ptr, 0), ptr);
5200                         break;
5201                 case OP_BRANCH:
5202                         use_triple(TARG(ptr, 0), ptr);
5203                         if (TRIPLE_RHS(ptr->sizes)) {
5204                                 use_triple(RHS(ptr, 0), ptr);
5205                                 if (ptr->next != ptr) {
5206                                         use_triple(ptr->next, ptr);
5207                                 }
5208                         }
5209                         break;
5210                 case OP_BLOBCONST:
5211                         insert_triple(state, first, ptr);
5212                         ptr->id |= TRIPLE_FLAG_FLATTENED;
5213                         ptr = triple(state, OP_SDECL, ptr->type, ptr, 0);
5214                         use_triple(MISC(ptr, 0), ptr);
5215                         break;
5216                 case OP_DEREF:
5217                         /* Since OP_DEREF is just a marker delete it when I flatten it */
5218                         ptr = RHS(ptr, 0);
5219                         RHS(orig_ptr, 0) = 0;
5220                         free_triple(state, orig_ptr);
5221                         break;
5222                 case OP_DOT:
5223                 {
5224                         struct triple *base;
5225                         base = RHS(ptr, 0);
5226                         if (base->op == OP_DEREF) {
5227                                 struct triple *left;
5228                                 ulong_t offset;
5229                                 offset = field_offset(state, base->type, ptr->u.field);
5230                                 left = RHS(base, 0);
5231                                 ptr = triple(state, OP_ADD, left->type, 
5232                                         read_expr(state, left),
5233                                         int_const(state, &ulong_type, offset));
5234                                 free_triple(state, base);
5235                         }
5236                         else if (base->op == OP_VAL_VEC) {
5237                                 base = flatten(state, first, base);
5238                                 ptr = struct_field(state, base, ptr->u.field);
5239                         }
5240                         break;
5241                 }
5242                 case OP_PIECE:
5243                         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
5244                         use_triple(MISC(ptr, 0), ptr);
5245                         use_triple(ptr, MISC(ptr, 0));
5246                         break;
5247                 case OP_ADDRCONST:
5248                 case OP_SDECL:
5249                         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
5250                         use_triple(MISC(ptr, 0), ptr);
5251                         break;
5252                 case OP_ADECL:
5253                         break;
5254                 default:
5255                         /* Flatten the easy cases we don't override */
5256                         ptr = flatten_generic(state, first, ptr);
5257                         break;
5258                 }
5259         } while(ptr && (ptr != orig_ptr));
5260         if (ptr) {
5261                 insert_triple(state, first, ptr);
5262                 ptr->id |= TRIPLE_FLAG_FLATTENED;
5263         }
5264         return ptr;
5265 }
5266
5267 static void release_expr(struct compile_state *state, struct triple *expr)
5268 {
5269         struct triple *head;
5270         head = label(state);
5271         flatten(state, head, expr);
5272         while(head->next != head) {
5273                 release_triple(state, head->next);
5274         }
5275         free_triple(state, head);
5276 }
5277
5278 static int replace_rhs_use(struct compile_state *state,
5279         struct triple *orig, struct triple *new, struct triple *use)
5280 {
5281         struct triple **expr;
5282         int found;
5283         found = 0;
5284         expr = triple_rhs(state, use, 0);
5285         for(;expr; expr = triple_rhs(state, use, expr)) {
5286                 if (*expr == orig) {
5287                         *expr = new;
5288                         found = 1;
5289                 }
5290         }
5291         if (found) {
5292                 unuse_triple(orig, use);
5293                 use_triple(new, use);
5294         }
5295         return found;
5296 }
5297
5298 static int replace_lhs_use(struct compile_state *state,
5299         struct triple *orig, struct triple *new, struct triple *use)
5300 {
5301         struct triple **expr;
5302         int found;
5303         found = 0;
5304         expr = triple_lhs(state, use, 0);
5305         for(;expr; expr = triple_lhs(state, use, expr)) {
5306                 if (*expr == orig) {
5307                         *expr = new;
5308                         found = 1;
5309                 }
5310         }
5311         if (found) {
5312                 unuse_triple(orig, use);
5313                 use_triple(new, use);
5314         }
5315         return found;
5316 }
5317
5318 static void propogate_use(struct compile_state *state,
5319         struct triple *orig, struct triple *new)
5320 {
5321         struct triple_set *user, *next;
5322         for(user = orig->use; user; user = next) {
5323                 struct triple *use;
5324                 int found;
5325                 next = user->next;
5326                 use = user->member;
5327                 found = 0;
5328                 found |= replace_rhs_use(state, orig, new, use);
5329                 found |= replace_lhs_use(state, orig, new, use);
5330                 if (!found) {
5331                         internal_error(state, use, "use without use");
5332                 }
5333         }
5334         if (orig->use) {
5335                 internal_error(state, orig, "used after propogate_use");
5336         }
5337 }
5338
5339 /*
5340  * Code generators
5341  * ===========================
5342  */
5343
5344 static struct triple *mk_add_expr(
5345         struct compile_state *state, struct triple *left, struct triple *right)
5346 {
5347         struct type *result_type;
5348         /* Put pointer operands on the left */
5349         if (is_pointer(right)) {
5350                 struct triple *tmp;
5351                 tmp = left;
5352                 left = right;
5353                 right = tmp;
5354         }
5355         left  = read_expr(state, left);
5356         right = read_expr(state, right);
5357         result_type = ptr_arithmetic_result(state, left, right);
5358         if (is_pointer(left)) {
5359                 right = triple(state, 
5360                         is_signed(right->type)? OP_SMUL : OP_UMUL, 
5361                         &ulong_type, 
5362                         right, 
5363                         int_const(state, &ulong_type, 
5364                                 size_of(state, left->type->left)));
5365         }
5366         return triple(state, OP_ADD, result_type, left, right);
5367 }
5368
5369 static struct triple *mk_sub_expr(
5370         struct compile_state *state, struct triple *left, struct triple *right)
5371 {
5372         struct type *result_type;
5373         result_type = ptr_arithmetic_result(state, left, right);
5374         left  = read_expr(state, left);
5375         right = read_expr(state, right);
5376         if (is_pointer(left)) {
5377                 right = triple(state, 
5378                         is_signed(right->type)? OP_SMUL : OP_UMUL, 
5379                         &ulong_type, 
5380                         right, 
5381                         int_const(state, &ulong_type, 
5382                                 size_of(state, left->type->left)));
5383         }
5384         return triple(state, OP_SUB, result_type, left, right);
5385 }
5386
5387 static struct triple *mk_pre_inc_expr(
5388         struct compile_state *state, struct triple *def)
5389 {
5390         struct triple *val;
5391         lvalue(state, def);
5392         val = mk_add_expr(state, def, int_const(state, &int_type, 1));
5393         return triple(state, OP_VAL, def->type,
5394                 write_expr(state, def, val),
5395                 val);
5396 }
5397
5398 static struct triple *mk_pre_dec_expr(
5399         struct compile_state *state, struct triple *def)
5400 {
5401         struct triple *val;
5402         lvalue(state, def);
5403         val = mk_sub_expr(state, def, int_const(state, &int_type, 1));
5404         return triple(state, OP_VAL, def->type,
5405                 write_expr(state, def, val),
5406                 val);
5407 }
5408
5409 static struct triple *mk_post_inc_expr(
5410         struct compile_state *state, struct triple *def)
5411 {
5412         struct triple *val;
5413         lvalue(state, def);
5414         val = read_expr(state, def);
5415         return triple(state, OP_VAL, def->type,
5416                 write_expr(state, def,
5417                         mk_add_expr(state, val, int_const(state, &int_type, 1)))
5418                 , val);
5419 }
5420
5421 static struct triple *mk_post_dec_expr(
5422         struct compile_state *state, struct triple *def)
5423 {
5424         struct triple *val;
5425         lvalue(state, def);
5426         val = read_expr(state, def);
5427         return triple(state, OP_VAL, def->type, 
5428                 write_expr(state, def,
5429                         mk_sub_expr(state, val, int_const(state, &int_type, 1)))
5430                 , val);
5431 }
5432
5433 static struct triple *mk_subscript_expr(
5434         struct compile_state *state, struct triple *left, struct triple *right)
5435 {
5436         left  = read_expr(state, left);
5437         right = read_expr(state, right);
5438         if (!is_pointer(left) && !is_pointer(right)) {
5439                 error(state, left, "subscripted value is not a pointer");
5440         }
5441         return mk_deref_expr(state, mk_add_expr(state, left, right));
5442 }
5443
5444 /*
5445  * Compile time evaluation
5446  * ===========================
5447  */
5448 static int is_const(struct triple *ins)
5449 {
5450         return IS_CONST_OP(ins->op);
5451 }
5452
5453 static int constants_equal(struct compile_state *state, 
5454         struct triple *left, struct triple *right)
5455 {
5456         int equal;
5457         if (!is_const(left) || !is_const(right)) {
5458                 equal = 0;
5459         }
5460         else if (left->op != right->op) {
5461                 equal = 0;
5462         }
5463         else if (!equiv_types(left->type, right->type)) {
5464                 equal = 0;
5465         }
5466         else {
5467                 equal = 0;
5468                 switch(left->op) {
5469                 case OP_INTCONST:
5470                         if (left->u.cval == right->u.cval) {
5471                                 equal = 1;
5472                         }
5473                         break;
5474                 case OP_BLOBCONST:
5475                 {
5476                         size_t lsize, rsize;
5477                         lsize = size_of(state, left->type);
5478                         rsize = size_of(state, right->type);
5479                         if (lsize != rsize) {
5480                                 break;
5481                         }
5482                         if (memcmp(left->u.blob, right->u.blob, lsize) == 0) {
5483                                 equal = 1;
5484                         }
5485                         break;
5486                 }
5487                 case OP_ADDRCONST:
5488                         if ((MISC(left, 0) == MISC(right, 0)) &&
5489                                 (left->u.cval == right->u.cval)) {
5490                                 equal = 1;
5491                         }
5492                         break;
5493                 default:
5494                         internal_error(state, left, "uknown constant type");
5495                         break;
5496                 }
5497         }
5498         return equal;
5499 }
5500
5501 static int is_zero(struct triple *ins)
5502 {
5503         return is_const(ins) && (ins->u.cval == 0);
5504 }
5505
5506 static int is_one(struct triple *ins)
5507 {
5508         return is_const(ins) && (ins->u.cval == 1);
5509 }
5510
5511 static long_t bit_count(ulong_t value)
5512 {
5513         int count;
5514         int i;
5515         count = 0;
5516         for(i = (sizeof(ulong_t)*8) -1; i >= 0; i--) {
5517                 ulong_t mask;
5518                 mask = 1;
5519                 mask <<= i;
5520                 if (value & mask) {
5521                         count++;
5522                 }
5523         }
5524         return count;
5525         
5526 }
5527 static long_t bsr(ulong_t value)
5528 {
5529         int i;
5530         for(i = (sizeof(ulong_t)*8) -1; i >= 0; i--) {
5531                 ulong_t mask;
5532                 mask = 1;
5533                 mask <<= i;
5534                 if (value & mask) {
5535                         return i;
5536                 }
5537         }
5538         return -1;
5539 }
5540
5541 static long_t bsf(ulong_t value)
5542 {
5543         int i;
5544         for(i = 0; i < (sizeof(ulong_t)*8); i++) {
5545                 ulong_t mask;
5546                 mask = 1;
5547                 mask <<= 1;
5548                 if (value & mask) {
5549                         return i;
5550                 }
5551         }
5552         return -1;
5553 }
5554
5555 static long_t log2(ulong_t value)
5556 {
5557         return bsr(value);
5558 }
5559
5560 static long_t tlog2(struct triple *ins)
5561 {
5562         return log2(ins->u.cval);
5563 }
5564
5565 static int is_pow2(struct triple *ins)
5566 {
5567         ulong_t value, mask;
5568         long_t log;
5569         if (!is_const(ins)) {
5570                 return 0;
5571         }
5572         value = ins->u.cval;
5573         log = log2(value);
5574         if (log == -1) {
5575                 return 0;
5576         }
5577         mask = 1;
5578         mask <<= log;
5579         return  ((value & mask) == value);
5580 }
5581
5582 static ulong_t read_const(struct compile_state *state,
5583         struct triple *ins, struct triple **expr)
5584 {
5585         struct triple *rhs;
5586         rhs = *expr;
5587         switch(rhs->type->type &TYPE_MASK) {
5588         case TYPE_CHAR:   
5589         case TYPE_SHORT:
5590         case TYPE_INT:
5591         case TYPE_LONG:
5592         case TYPE_UCHAR:   
5593         case TYPE_USHORT:  
5594         case TYPE_UINT:
5595         case TYPE_ULONG:
5596         case TYPE_POINTER:
5597                 break;
5598         default:
5599                 internal_error(state, rhs, "bad type to read_const\n");
5600                 break;
5601         }
5602         return rhs->u.cval;
5603 }
5604
5605 static long_t read_sconst(struct triple *ins, struct triple **expr)
5606 {
5607         struct triple *rhs;
5608         rhs = *expr;
5609         return (long_t)(rhs->u.cval);
5610 }
5611
5612 static void unuse_rhs(struct compile_state *state, struct triple *ins)
5613 {
5614         struct triple **expr;
5615         expr = triple_rhs(state, ins, 0);
5616         for(;expr;expr = triple_rhs(state, ins, expr)) {
5617                 if (*expr) {
5618                         unuse_triple(*expr, ins);
5619                         *expr = 0;
5620                 }
5621         }
5622 }
5623
5624 static void unuse_lhs(struct compile_state *state, struct triple *ins)
5625 {
5626         struct triple **expr;
5627         expr = triple_lhs(state, ins, 0);
5628         for(;expr;expr = triple_lhs(state, ins, expr)) {
5629                 unuse_triple(*expr, ins);
5630                 *expr = 0;
5631         }
5632 }
5633
5634 static void check_lhs(struct compile_state *state, struct triple *ins)
5635 {
5636         struct triple **expr;
5637         expr = triple_lhs(state, ins, 0);
5638         for(;expr;expr = triple_lhs(state, ins, expr)) {
5639                 internal_error(state, ins, "unexpected lhs");
5640         }
5641         
5642 }
5643 static void check_targ(struct compile_state *state, struct triple *ins)
5644 {
5645         struct triple **expr;
5646         expr = triple_targ(state, ins, 0);
5647         for(;expr;expr = triple_targ(state, ins, expr)) {
5648                 internal_error(state, ins, "unexpected targ");
5649         }
5650 }
5651
5652 static void wipe_ins(struct compile_state *state, struct triple *ins)
5653 {
5654         /* Becareful which instructions you replace the wiped
5655          * instruction with, as there are not enough slots
5656          * in all instructions to hold all others.
5657          */
5658         check_targ(state, ins);
5659         unuse_rhs(state, ins);
5660         unuse_lhs(state, ins);
5661 }
5662
5663 static void mkcopy(struct compile_state *state, 
5664         struct triple *ins, struct triple *rhs)
5665 {
5666         wipe_ins(state, ins);
5667         ins->op = OP_COPY;
5668         ins->sizes = TRIPLE_SIZES(0, 1, 0, 0);
5669         RHS(ins, 0) = rhs;
5670         use_triple(RHS(ins, 0), ins);
5671 }
5672
5673 static void mkconst(struct compile_state *state, 
5674         struct triple *ins, ulong_t value)
5675 {
5676         if (!is_integral(ins) && !is_pointer(ins)) {
5677                 internal_error(state, ins, "unknown type to make constant\n");
5678         }
5679         wipe_ins(state, ins);
5680         ins->op = OP_INTCONST;
5681         ins->sizes = TRIPLE_SIZES(0, 0, 0, 0);
5682         ins->u.cval = value;
5683 }
5684
5685 static void mkaddr_const(struct compile_state *state,
5686         struct triple *ins, struct triple *sdecl, ulong_t value)
5687 {
5688         wipe_ins(state, ins);
5689         ins->op = OP_ADDRCONST;
5690         ins->sizes = TRIPLE_SIZES(0, 0, 1, 0);
5691         MISC(ins, 0) = sdecl;
5692         ins->u.cval = value;
5693         use_triple(sdecl, ins);
5694 }
5695
5696 /* Transform multicomponent variables into simple register variables */
5697 static void flatten_structures(struct compile_state *state)
5698 {
5699         struct triple *ins, *first;
5700         first = RHS(state->main_function, 0);
5701         ins = first;
5702         /* Pass one expand structure values into valvecs.
5703          */
5704         ins = first;
5705         do {
5706                 struct triple *next;
5707                 next = ins->next;
5708                 if ((ins->type->type & TYPE_MASK) == TYPE_STRUCT) {
5709                         if (ins->op == OP_VAL_VEC) {
5710                                 /* Do nothing */
5711                         }
5712                         else if ((ins->op == OP_LOAD) || (ins->op == OP_READ)) {
5713                                 struct triple *def, **vector;
5714                                 struct type *tptr;
5715                                 int op;
5716                                 ulong_t i;
5717
5718                                 op = ins->op;
5719                                 def = RHS(ins, 0);
5720                                 get_occurance(ins->occurance);
5721                                 next = alloc_triple(state, OP_VAL_VEC, ins->type, -1, -1,
5722                                         ins->occurance);
5723
5724                                 vector = &RHS(next, 0);
5725                                 tptr = next->type->left;
5726                                 for(i = 0; i < next->type->elements; i++) {
5727                                         struct triple *sfield;
5728                                         struct type *mtype;
5729                                         mtype = tptr;
5730                                         if ((mtype->type & TYPE_MASK) == TYPE_PRODUCT) {
5731                                                 mtype = mtype->left;
5732                                         }
5733                                         sfield = deref_field(state, def, mtype->field_ident);
5734                                         
5735                                         vector[i] = triple(
5736                                                 state, op, mtype, sfield, 0);
5737                                         put_occurance(vector[i]->occurance);
5738                                         get_occurance(next->occurance);
5739                                         vector[i]->occurance = next->occurance;
5740                                         tptr = tptr->right;
5741                                 }
5742                                 propogate_use(state, ins, next);
5743                                 flatten(state, ins, next);
5744                                 free_triple(state, ins);
5745                         }
5746                         else if ((ins->op == OP_STORE) || (ins->op == OP_WRITE)) {
5747                                 struct triple *src, *dst, **vector;
5748                                 struct type *tptr;
5749                                 int op;
5750                                 ulong_t i;
5751
5752                                 op = ins->op;
5753                                 src = RHS(ins, 1);
5754                                 dst = RHS(ins, 0);
5755                                 get_occurance(ins->occurance);
5756                                 next = alloc_triple(state, OP_VAL_VEC, ins->type, -1, -1,
5757                                         ins->occurance);
5758                                 
5759                                 vector = &RHS(next, 0);
5760                                 tptr = next->type->left;
5761                                 for(i = 0; i < ins->type->elements; i++) {
5762                                         struct triple *dfield, *sfield;
5763                                         struct type *mtype;
5764                                         mtype = tptr;
5765                                         if ((mtype->type & TYPE_MASK) == TYPE_PRODUCT) {
5766                                                 mtype = mtype->left;
5767                                         }
5768                                         sfield = deref_field(state, src, mtype->field_ident);
5769                                         dfield = deref_field(state, dst, mtype->field_ident);
5770                                         vector[i] = triple(
5771                                                 state, op, mtype, dfield, sfield);
5772                                         put_occurance(vector[i]->occurance);
5773                                         get_occurance(next->occurance);
5774                                         vector[i]->occurance = next->occurance;
5775                                         tptr = tptr->right;
5776                                 }
5777                                 propogate_use(state, ins, next);
5778                                 flatten(state, ins, next);
5779                                 free_triple(state, ins);
5780                         }
5781                 }
5782                 ins = next;
5783         } while(ins != first);
5784         /* Pass two flatten the valvecs.
5785          */
5786         ins = first;
5787         do {
5788                 struct triple *next;
5789                 next = ins->next;
5790                 if (ins->op == OP_VAL_VEC) {
5791                         release_triple(state, ins);
5792                 } 
5793                 ins = next;
5794         } while(ins != first);
5795         /* Pass three verify the state and set ->id to 0.
5796          */
5797         ins = first;
5798         do {
5799                 ins->id &= ~TRIPLE_FLAG_FLATTENED;
5800                 if ((ins->type->type & TYPE_MASK) == TYPE_STRUCT) {
5801                         internal_error(state, ins, "STRUCT_TYPE remains?");
5802                 }
5803                 if (ins->op == OP_DOT) {
5804                         internal_error(state, ins, "OP_DOT remains?");
5805                 }
5806                 if (ins->op == OP_VAL_VEC) {
5807                         internal_error(state, ins, "OP_VAL_VEC remains?");
5808                 }
5809                 ins = ins->next;
5810         } while(ins != first);
5811 }
5812
5813 /* For those operations that cannot be simplified */
5814 static void simplify_noop(struct compile_state *state, struct triple *ins)
5815 {
5816         return;
5817 }
5818
5819 static void simplify_smul(struct compile_state *state, struct triple *ins)
5820 {
5821         if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
5822                 struct triple *tmp;
5823                 tmp = RHS(ins, 0);
5824                 RHS(ins, 0) = RHS(ins, 1);
5825                 RHS(ins, 1) = tmp;
5826         }
5827         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
5828                 long_t left, right;
5829                 left  = read_sconst(ins, &RHS(ins, 0));
5830                 right = read_sconst(ins, &RHS(ins, 1));
5831                 mkconst(state, ins, left * right);
5832         }
5833         else if (is_zero(RHS(ins, 1))) {
5834                 mkconst(state, ins, 0);
5835         }
5836         else if (is_one(RHS(ins, 1))) {
5837                 mkcopy(state, ins, RHS(ins, 0));
5838         }
5839         else if (is_pow2(RHS(ins, 1))) {
5840                 struct triple *val;
5841                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
5842                 ins->op = OP_SL;
5843                 insert_triple(state, ins, val);
5844                 unuse_triple(RHS(ins, 1), ins);
5845                 use_triple(val, ins);
5846                 RHS(ins, 1) = val;
5847         }
5848 }
5849
5850 static void simplify_umul(struct compile_state *state, struct triple *ins)
5851 {
5852         if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
5853                 struct triple *tmp;
5854                 tmp = RHS(ins, 0);
5855                 RHS(ins, 0) = RHS(ins, 1);
5856                 RHS(ins, 1) = tmp;
5857         }
5858         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
5859                 ulong_t left, right;
5860                 left  = read_const(state, ins, &RHS(ins, 0));
5861                 right = read_const(state, ins, &RHS(ins, 1));
5862                 mkconst(state, ins, left * right);
5863         }
5864         else if (is_zero(RHS(ins, 1))) {
5865                 mkconst(state, ins, 0);
5866         }
5867         else if (is_one(RHS(ins, 1))) {
5868                 mkcopy(state, ins, RHS(ins, 0));
5869         }
5870         else if (is_pow2(RHS(ins, 1))) {
5871                 struct triple *val;
5872                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
5873                 ins->op = OP_SL;
5874                 insert_triple(state, ins, val);
5875                 unuse_triple(RHS(ins, 1), ins);
5876                 use_triple(val, ins);
5877                 RHS(ins, 1) = val;
5878         }
5879 }
5880
5881 static void simplify_sdiv(struct compile_state *state, struct triple *ins)
5882 {
5883         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
5884                 long_t left, right;
5885                 left  = read_sconst(ins, &RHS(ins, 0));
5886                 right = read_sconst(ins, &RHS(ins, 1));
5887                 mkconst(state, ins, left / right);
5888         }
5889         else if (is_zero(RHS(ins, 0))) {
5890                 mkconst(state, ins, 0);
5891         }
5892         else if (is_zero(RHS(ins, 1))) {
5893                 error(state, ins, "division by zero");
5894         }
5895         else if (is_one(RHS(ins, 1))) {
5896                 mkcopy(state, ins, RHS(ins, 0));
5897         }
5898         else if (is_pow2(RHS(ins, 1))) {
5899                 struct triple *val;
5900                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
5901                 ins->op = OP_SSR;
5902                 insert_triple(state, ins, val);
5903                 unuse_triple(RHS(ins, 1), ins);
5904                 use_triple(val, ins);
5905                 RHS(ins, 1) = val;
5906         }
5907 }
5908
5909 static void simplify_udiv(struct compile_state *state, struct triple *ins)
5910 {
5911         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
5912                 ulong_t left, right;
5913                 left  = read_const(state, ins, &RHS(ins, 0));
5914                 right = read_const(state, ins, &RHS(ins, 1));
5915                 mkconst(state, ins, left / right);
5916         }
5917         else if (is_zero(RHS(ins, 0))) {
5918                 mkconst(state, ins, 0);
5919         }
5920         else if (is_zero(RHS(ins, 1))) {
5921                 error(state, ins, "division by zero");
5922         }
5923         else if (is_one(RHS(ins, 1))) {
5924                 mkcopy(state, ins, RHS(ins, 0));
5925         }
5926         else if (is_pow2(RHS(ins, 1))) {
5927                 struct triple *val;
5928                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
5929                 ins->op = OP_USR;
5930                 insert_triple(state, ins, val);
5931                 unuse_triple(RHS(ins, 1), ins);
5932                 use_triple(val, ins);
5933                 RHS(ins, 1) = val;
5934         }
5935 }
5936
5937 static void simplify_smod(struct compile_state *state, struct triple *ins)
5938 {
5939         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
5940                 long_t left, right;
5941                 left  = read_const(state, ins, &RHS(ins, 0));
5942                 right = read_const(state, ins, &RHS(ins, 1));
5943                 mkconst(state, ins, left % right);
5944         }
5945         else if (is_zero(RHS(ins, 0))) {
5946                 mkconst(state, ins, 0);
5947         }
5948         else if (is_zero(RHS(ins, 1))) {
5949                 error(state, ins, "division by zero");
5950         }
5951         else if (is_one(RHS(ins, 1))) {
5952                 mkconst(state, ins, 0);
5953         }
5954         else if (is_pow2(RHS(ins, 1))) {
5955                 struct triple *val;
5956                 val = int_const(state, ins->type, RHS(ins, 1)->u.cval - 1);
5957                 ins->op = OP_AND;
5958                 insert_triple(state, ins, val);
5959                 unuse_triple(RHS(ins, 1), ins);
5960                 use_triple(val, ins);
5961                 RHS(ins, 1) = val;
5962         }
5963 }
5964 static void simplify_umod(struct compile_state *state, struct triple *ins)
5965 {
5966         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
5967                 ulong_t left, right;
5968                 left  = read_const(state, ins, &RHS(ins, 0));
5969                 right = read_const(state, ins, &RHS(ins, 1));
5970                 mkconst(state, ins, left % right);
5971         }
5972         else if (is_zero(RHS(ins, 0))) {
5973                 mkconst(state, ins, 0);
5974         }
5975         else if (is_zero(RHS(ins, 1))) {
5976                 error(state, ins, "division by zero");
5977         }
5978         else if (is_one(RHS(ins, 1))) {
5979                 mkconst(state, ins, 0);
5980         }
5981         else if (is_pow2(RHS(ins, 1))) {
5982                 struct triple *val;
5983                 val = int_const(state, ins->type, RHS(ins, 1)->u.cval - 1);
5984                 ins->op = OP_AND;
5985                 insert_triple(state, ins, val);
5986                 unuse_triple(RHS(ins, 1), ins);
5987                 use_triple(val, ins);
5988                 RHS(ins, 1) = val;
5989         }
5990 }
5991
5992 static void simplify_add(struct compile_state *state, struct triple *ins)
5993 {
5994         /* start with the pointer on the left */
5995         if (is_pointer(RHS(ins, 1))) {
5996                 struct triple *tmp;
5997                 tmp = RHS(ins, 0);
5998                 RHS(ins, 0) = RHS(ins, 1);
5999                 RHS(ins, 1) = tmp;
6000         }
6001         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6002                 if (RHS(ins, 0)->op == OP_INTCONST) {
6003                         ulong_t left, right;
6004                         left  = read_const(state, ins, &RHS(ins, 0));
6005                         right = read_const(state, ins, &RHS(ins, 1));
6006                         mkconst(state, ins, left + right);
6007                 }
6008                 else if (RHS(ins, 0)->op == OP_ADDRCONST) {
6009                         struct triple *sdecl;
6010                         ulong_t left, right;
6011                         sdecl = MISC(RHS(ins, 0), 0);
6012                         left  = RHS(ins, 0)->u.cval;
6013                         right = RHS(ins, 1)->u.cval;
6014                         mkaddr_const(state, ins, sdecl, left + right);
6015                 }
6016                 else {
6017                         internal_warning(state, ins, "Optimize me!");
6018                 }
6019         }
6020         else if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
6021                 struct triple *tmp;
6022                 tmp = RHS(ins, 1);
6023                 RHS(ins, 1) = RHS(ins, 0);
6024                 RHS(ins, 0) = tmp;
6025         }
6026 }
6027
6028 static void simplify_sub(struct compile_state *state, struct triple *ins)
6029 {
6030         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6031                 if (RHS(ins, 0)->op == OP_INTCONST) {
6032                         ulong_t left, right;
6033                         left  = read_const(state, ins, &RHS(ins, 0));
6034                         right = read_const(state, ins, &RHS(ins, 1));
6035                         mkconst(state, ins, left - right);
6036                 }
6037                 else if (RHS(ins, 0)->op == OP_ADDRCONST) {
6038                         struct triple *sdecl;
6039                         ulong_t left, right;
6040                         sdecl = MISC(RHS(ins, 0), 0);
6041                         left  = RHS(ins, 0)->u.cval;
6042                         right = RHS(ins, 1)->u.cval;
6043                         mkaddr_const(state, ins, sdecl, left - right);
6044                 }
6045                 else {
6046                         internal_warning(state, ins, "Optimize me!");
6047                 }
6048         }
6049 }
6050
6051 static void simplify_sl(struct compile_state *state, struct triple *ins)
6052 {
6053         if (is_const(RHS(ins, 1))) {
6054                 ulong_t right;
6055                 right = read_const(state, ins, &RHS(ins, 1));
6056                 if (right >= (size_of(state, ins->type)*8)) {
6057                         warning(state, ins, "left shift count >= width of type");
6058                 }
6059         }
6060         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6061                 ulong_t left, right;
6062                 left  = read_const(state, ins, &RHS(ins, 0));
6063                 right = read_const(state, ins, &RHS(ins, 1));
6064                 mkconst(state, ins,  left << right);
6065         }
6066 }
6067
6068 static void simplify_usr(struct compile_state *state, struct triple *ins)
6069 {
6070         if (is_const(RHS(ins, 1))) {
6071                 ulong_t right;
6072                 right = read_const(state, ins, &RHS(ins, 1));
6073                 if (right >= (size_of(state, ins->type)*8)) {
6074                         warning(state, ins, "right shift count >= width of type");
6075                 }
6076         }
6077         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6078                 ulong_t left, right;
6079                 left  = read_const(state, ins, &RHS(ins, 0));
6080                 right = read_const(state, ins, &RHS(ins, 1));
6081                 mkconst(state, ins, left >> right);
6082         }
6083 }
6084
6085 static void simplify_ssr(struct compile_state *state, struct triple *ins)
6086 {
6087         if (is_const(RHS(ins, 1))) {
6088                 ulong_t right;
6089                 right = read_const(state, ins, &RHS(ins, 1));
6090                 if (right >= (size_of(state, ins->type)*8)) {
6091                         warning(state, ins, "right shift count >= width of type");
6092                 }
6093         }
6094         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6095                 long_t left, right;
6096                 left  = read_sconst(ins, &RHS(ins, 0));
6097                 right = read_sconst(ins, &RHS(ins, 1));
6098                 mkconst(state, ins, left >> right);
6099         }
6100 }
6101
6102 static void simplify_and(struct compile_state *state, struct triple *ins)
6103 {
6104         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6105                 ulong_t left, right;
6106                 left  = read_const(state, ins, &RHS(ins, 0));
6107                 right = read_const(state, ins, &RHS(ins, 1));
6108                 mkconst(state, ins, left & right);
6109         }
6110 }
6111
6112 static void simplify_or(struct compile_state *state, struct triple *ins)
6113 {
6114         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6115                 ulong_t left, right;
6116                 left  = read_const(state, ins, &RHS(ins, 0));
6117                 right = read_const(state, ins, &RHS(ins, 1));
6118                 mkconst(state, ins, left | right);
6119         }
6120 }
6121
6122 static void simplify_xor(struct compile_state *state, struct triple *ins)
6123 {
6124         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6125                 ulong_t left, right;
6126                 left  = read_const(state, ins, &RHS(ins, 0));
6127                 right = read_const(state, ins, &RHS(ins, 1));
6128                 mkconst(state, ins, left ^ right);
6129         }
6130 }
6131
6132 static void simplify_pos(struct compile_state *state, struct triple *ins)
6133 {
6134         if (is_const(RHS(ins, 0))) {
6135                 mkconst(state, ins, RHS(ins, 0)->u.cval);
6136         }
6137         else {
6138                 mkcopy(state, ins, RHS(ins, 0));
6139         }
6140 }
6141
6142 static void simplify_neg(struct compile_state *state, struct triple *ins)
6143 {
6144         if (is_const(RHS(ins, 0))) {
6145                 ulong_t left;
6146                 left = read_const(state, ins, &RHS(ins, 0));
6147                 mkconst(state, ins, -left);
6148         }
6149         else if (RHS(ins, 0)->op == OP_NEG) {
6150                 mkcopy(state, ins, RHS(RHS(ins, 0), 0));
6151         }
6152 }
6153
6154 static void simplify_invert(struct compile_state *state, struct triple *ins)
6155 {
6156         if (is_const(RHS(ins, 0))) {
6157                 ulong_t left;
6158                 left = read_const(state, ins, &RHS(ins, 0));
6159                 mkconst(state, ins, ~left);
6160         }
6161 }
6162
6163 static void simplify_eq(struct compile_state *state, struct triple *ins)
6164 {
6165         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6166                 ulong_t left, right;
6167                 left  = read_const(state, ins, &RHS(ins, 0));
6168                 right = read_const(state, ins, &RHS(ins, 1));
6169                 mkconst(state, ins, left == right);
6170         }
6171         else if (RHS(ins, 0) == RHS(ins, 1)) {
6172                 mkconst(state, ins, 1);
6173         }
6174 }
6175
6176 static void simplify_noteq(struct compile_state *state, struct triple *ins)
6177 {
6178         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6179                 ulong_t left, right;
6180                 left  = read_const(state, ins, &RHS(ins, 0));
6181                 right = read_const(state, ins, &RHS(ins, 1));
6182                 mkconst(state, ins, left != right);
6183         }
6184         else if (RHS(ins, 0) == RHS(ins, 1)) {
6185                 mkconst(state, ins, 0);
6186         }
6187 }
6188
6189 static void simplify_sless(struct compile_state *state, struct triple *ins)
6190 {
6191         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6192                 long_t left, right;
6193                 left  = read_sconst(ins, &RHS(ins, 0));
6194                 right = read_sconst(ins, &RHS(ins, 1));
6195                 mkconst(state, ins, left < right);
6196         }
6197         else if (RHS(ins, 0) == RHS(ins, 1)) {
6198                 mkconst(state, ins, 0);
6199         }
6200 }
6201
6202 static void simplify_uless(struct compile_state *state, struct triple *ins)
6203 {
6204         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6205                 ulong_t left, right;
6206                 left  = read_const(state, ins, &RHS(ins, 0));
6207                 right = read_const(state, ins, &RHS(ins, 1));
6208                 mkconst(state, ins, left < right);
6209         }
6210         else if (is_zero(RHS(ins, 0))) {
6211                 mkconst(state, ins, 1);
6212         }
6213         else if (RHS(ins, 0) == RHS(ins, 1)) {
6214                 mkconst(state, ins, 0);
6215         }
6216 }
6217
6218 static void simplify_smore(struct compile_state *state, struct triple *ins)
6219 {
6220         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6221                 long_t left, right;
6222                 left  = read_sconst(ins, &RHS(ins, 0));
6223                 right = read_sconst(ins, &RHS(ins, 1));
6224                 mkconst(state, ins, left > right);
6225         }
6226         else if (RHS(ins, 0) == RHS(ins, 1)) {
6227                 mkconst(state, ins, 0);
6228         }
6229 }
6230
6231 static void simplify_umore(struct compile_state *state, struct triple *ins)
6232 {
6233         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6234                 ulong_t left, right;
6235                 left  = read_const(state, ins, &RHS(ins, 0));
6236                 right = read_const(state, ins, &RHS(ins, 1));
6237                 mkconst(state, ins, left > right);
6238         }
6239         else if (is_zero(RHS(ins, 1))) {
6240                 mkconst(state, ins, 1);
6241         }
6242         else if (RHS(ins, 0) == RHS(ins, 1)) {
6243                 mkconst(state, ins, 0);
6244         }
6245 }
6246
6247
6248 static void simplify_slesseq(struct compile_state *state, struct triple *ins)
6249 {
6250         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6251                 long_t left, right;
6252                 left  = read_sconst(ins, &RHS(ins, 0));
6253                 right = read_sconst(ins, &RHS(ins, 1));
6254                 mkconst(state, ins, left <= right);
6255         }
6256         else if (RHS(ins, 0) == RHS(ins, 1)) {
6257                 mkconst(state, ins, 1);
6258         }
6259 }
6260
6261 static void simplify_ulesseq(struct compile_state *state, struct triple *ins)
6262 {
6263         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6264                 ulong_t left, right;
6265                 left  = read_const(state, ins, &RHS(ins, 0));
6266                 right = read_const(state, ins, &RHS(ins, 1));
6267                 mkconst(state, ins, left <= right);
6268         }
6269         else if (is_zero(RHS(ins, 0))) {
6270                 mkconst(state, ins, 1);
6271         }
6272         else if (RHS(ins, 0) == RHS(ins, 1)) {
6273                 mkconst(state, ins, 1);
6274         }
6275 }
6276
6277 static void simplify_smoreeq(struct compile_state *state, struct triple *ins)
6278 {
6279         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 0))) {
6280                 long_t left, right;
6281                 left  = read_sconst(ins, &RHS(ins, 0));
6282                 right = read_sconst(ins, &RHS(ins, 1));
6283                 mkconst(state, ins, left >= right);
6284         }
6285         else if (RHS(ins, 0) == RHS(ins, 1)) {
6286                 mkconst(state, ins, 1);
6287         }
6288 }
6289
6290 static void simplify_umoreeq(struct compile_state *state, struct triple *ins)
6291 {
6292         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
6293                 ulong_t left, right;
6294                 left  = read_const(state, ins, &RHS(ins, 0));
6295                 right = read_const(state, ins, &RHS(ins, 1));
6296                 mkconst(state, ins, left >= right);
6297         }
6298         else if (is_zero(RHS(ins, 1))) {
6299                 mkconst(state, ins, 1);
6300         }
6301         else if (RHS(ins, 0) == RHS(ins, 1)) {
6302                 mkconst(state, ins, 1);
6303         }
6304 }
6305
6306 static void simplify_lfalse(struct compile_state *state, struct triple *ins)
6307 {
6308         if (is_const(RHS(ins, 0))) {
6309                 ulong_t left;
6310                 left = read_const(state, ins, &RHS(ins, 0));
6311                 mkconst(state, ins, left == 0);
6312         }
6313         /* Otherwise if I am the only user... */
6314         else if ((RHS(ins, 0)->use->member == ins) && (RHS(ins, 0)->use->next == 0)) {
6315                 int need_copy = 1;
6316                 /* Invert a boolean operation */
6317                 switch(RHS(ins, 0)->op) {
6318                 case OP_LTRUE:   RHS(ins, 0)->op = OP_LFALSE;  break;
6319                 case OP_LFALSE:  RHS(ins, 0)->op = OP_LTRUE;   break;
6320                 case OP_EQ:      RHS(ins, 0)->op = OP_NOTEQ;   break;
6321                 case OP_NOTEQ:   RHS(ins, 0)->op = OP_EQ;      break;
6322                 case OP_SLESS:   RHS(ins, 0)->op = OP_SMOREEQ; break;
6323                 case OP_ULESS:   RHS(ins, 0)->op = OP_UMOREEQ; break;
6324                 case OP_SMORE:   RHS(ins, 0)->op = OP_SLESSEQ; break;
6325                 case OP_UMORE:   RHS(ins, 0)->op = OP_ULESSEQ; break;
6326                 case OP_SLESSEQ: RHS(ins, 0)->op = OP_SMORE;   break;
6327                 case OP_ULESSEQ: RHS(ins, 0)->op = OP_UMORE;   break;
6328                 case OP_SMOREEQ: RHS(ins, 0)->op = OP_SLESS;   break;
6329                 case OP_UMOREEQ: RHS(ins, 0)->op = OP_ULESS;   break;
6330                 default:
6331                         need_copy = 0;
6332                         break;
6333                 }
6334                 if (need_copy) {
6335                         mkcopy(state, ins, RHS(ins, 0));
6336                 }
6337         }
6338 }
6339
6340 static void simplify_ltrue (struct compile_state *state, struct triple *ins)
6341 {
6342         if (is_const(RHS(ins, 0))) {
6343                 ulong_t left;
6344                 left = read_const(state, ins, &RHS(ins, 0));
6345                 mkconst(state, ins, left != 0);
6346         }
6347         else switch(RHS(ins, 0)->op) {
6348         case OP_LTRUE:   case OP_LFALSE:  case OP_EQ:      case OP_NOTEQ:
6349         case OP_SLESS:   case OP_ULESS:   case OP_SMORE:   case OP_UMORE:
6350         case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
6351                 mkcopy(state, ins, RHS(ins, 0));
6352         }
6353
6354 }
6355
6356 static void simplify_copy(struct compile_state *state, struct triple *ins)
6357 {
6358         if (is_const(RHS(ins, 0))) {
6359                 switch(RHS(ins, 0)->op) {
6360                 case OP_INTCONST:
6361                 {
6362                         ulong_t left;
6363                         left = read_const(state, ins, &RHS(ins, 0));
6364                         mkconst(state, ins, left);
6365                         break;
6366                 }
6367                 case OP_ADDRCONST:
6368                 {
6369                         struct triple *sdecl;
6370                         ulong_t offset;
6371                         sdecl  = MISC(RHS(ins, 0), 0);
6372                         offset = RHS(ins, 0)->u.cval;
6373                         mkaddr_const(state, ins, sdecl, offset);
6374                         break;
6375                 }
6376                 default:
6377                         internal_error(state, ins, "uknown constant");
6378                         break;
6379                 }
6380         }
6381 }
6382
6383 static void simplify_branch(struct compile_state *state, struct triple *ins)
6384 {
6385         struct block *block;
6386         if (ins->op != OP_BRANCH) {
6387                 internal_error(state, ins, "not branch");
6388         }
6389         if (ins->use != 0) {
6390                 internal_error(state, ins, "branch use");
6391         }
6392 #warning "FIXME implement simplify branch."
6393         /* The challenge here with simplify branch is that I need to 
6394          * make modifications to the control flow graph as well
6395          * as to the branch instruction itself.
6396          */
6397         block = ins->u.block;
6398         
6399         if (TRIPLE_RHS(ins->sizes) && is_const(RHS(ins, 0))) {
6400                 struct triple *targ;
6401                 ulong_t value;
6402                 value = read_const(state, ins, &RHS(ins, 0));
6403                 unuse_triple(RHS(ins, 0), ins);
6404                 targ = TARG(ins, 0);
6405                 ins->sizes = TRIPLE_SIZES(0, 0, 0, 1);
6406                 if (value) {
6407                         unuse_triple(ins->next, ins);
6408                         TARG(ins, 0) = targ;
6409                 }
6410                 else {
6411                         unuse_triple(targ, ins);
6412                         TARG(ins, 0) = ins->next;
6413                 }
6414 #warning "FIXME handle the case of making a branch unconditional"
6415         }
6416         if (TARG(ins, 0) == ins->next) {
6417                 unuse_triple(ins->next, ins);
6418                 if (TRIPLE_RHS(ins->sizes)) {
6419                         unuse_triple(RHS(ins, 0), ins);
6420                         unuse_triple(ins->next, ins);
6421                 }
6422                 ins->sizes = TRIPLE_SIZES(0, 0, 0, 0);
6423                 ins->op = OP_NOOP;
6424                 if (ins->use) {
6425                         internal_error(state, ins, "noop use != 0");
6426                 }
6427 #warning "FIXME handle the case of killing a branch"
6428         }
6429 }
6430
6431 int phi_present(struct block *block)
6432 {
6433         struct triple *ptr;
6434         if (!block) {
6435                 return 0;
6436         }
6437         ptr = block->first;
6438         do {
6439                 if (ptr->op == OP_PHI) {
6440                         return 1;
6441                 }
6442                 ptr = ptr->next;
6443         } while(ptr != block->last);
6444         return 0;
6445 }
6446
6447 static void simplify_label(struct compile_state *state, struct triple *ins)
6448 {
6449 #warning "FIXME enable simplify_label"
6450         struct triple *first, *last;
6451         first = RHS(state->main_function, 0);
6452         last = first->prev;
6453         /* Ignore the first and last instructions */
6454         if ((ins == first) || (ins == last)) {
6455                 return;
6456         }
6457         if (ins->use == 0) {
6458                 ins->op = OP_NOOP;
6459         }
6460         else if (ins->prev->op == OP_LABEL) {
6461                 struct block *block;
6462                 block = ins->prev->u.block;
6463                 /* In general it is not safe to merge one label that
6464                  * imediately follows another.  The problem is that the empty
6465                  * looking block may have phi functions that depend on it.
6466                  */
6467                 if (!block || 
6468                         (!phi_present(block->left) && 
6469                         !phi_present(block->right))) 
6470                 {
6471                         struct triple_set *user, *next;
6472                         ins->op = OP_NOOP;
6473                         for(user = ins->use; user; user = next) {
6474                                 struct triple *use;
6475                                 next = user->next;
6476                                 use = user->member;
6477                                 if (TARG(use, 0) == ins) {
6478                                         TARG(use, 0) = ins->prev;
6479                                         unuse_triple(ins, use);
6480                                         use_triple(ins->prev, use);
6481                                 }
6482                         }
6483                         if (ins->use) {
6484                                 internal_error(state, ins, "noop use != 0");
6485                         }
6486                 }
6487         }
6488 }
6489
6490 static void simplify_phi(struct compile_state *state, struct triple *ins)
6491 {
6492         struct triple **expr;
6493         ulong_t value;
6494         expr = triple_rhs(state, ins, 0);
6495         if (!*expr || !is_const(*expr)) {
6496                 return;
6497         }
6498         value = read_const(state, ins, expr);
6499         for(;expr;expr = triple_rhs(state, ins, expr)) {
6500                 if (!*expr || !is_const(*expr)) {
6501                         return;
6502                 }
6503                 if (value != read_const(state, ins, expr)) {
6504                         return;
6505                 }
6506         }
6507         mkconst(state, ins, value);
6508 }
6509
6510
6511 static void simplify_bsf(struct compile_state *state, struct triple *ins)
6512 {
6513         if (is_const(RHS(ins, 0))) {
6514                 ulong_t left;
6515                 left = read_const(state, ins, &RHS(ins, 0));
6516                 mkconst(state, ins, bsf(left));
6517         }
6518 }
6519
6520 static void simplify_bsr(struct compile_state *state, struct triple *ins)
6521 {
6522         if (is_const(RHS(ins, 0))) {
6523                 ulong_t left;
6524                 left = read_const(state, ins, &RHS(ins, 0));
6525                 mkconst(state, ins, bsr(left));
6526         }
6527 }
6528
6529
6530 typedef void (*simplify_t)(struct compile_state *state, struct triple *ins);
6531 static const simplify_t table_simplify[] = {
6532 #if 1
6533 #define simplify_sdivt    simplify_noop
6534 #define simplify_udivt    simplify_noop
6535 #endif
6536 #if 0
6537 #define simplify_smul     simplify_noop
6538 #define simplify_umul     simplify_noop
6539 #define simplify_sdiv     simplify_noop
6540 #define simplify_udiv     simplify_noop
6541 #define simplify_smod     simplify_noop
6542 #define simplify_umod     simplify_noop
6543 #endif
6544 #if 0
6545 #define simplify_add      simplify_noop
6546 #define simplify_sub      simplify_noop
6547 #endif
6548 #if 0
6549 #define simplify_sl       simplify_noop
6550 #define simplify_usr      simplify_noop
6551 #define simplify_ssr      simplify_noop
6552 #endif
6553 #if 0
6554 #define simplify_and      simplify_noop
6555 #define simplify_xor      simplify_noop
6556 #define simplify_or       simplify_noop
6557 #endif
6558 #if 0
6559 #define simplify_pos      simplify_noop
6560 #define simplify_neg      simplify_noop
6561 #define simplify_invert   simplify_noop
6562 #endif
6563
6564 #if 0
6565 #define simplify_eq       simplify_noop
6566 #define simplify_noteq    simplify_noop
6567 #endif
6568 #if 0
6569 #define simplify_sless    simplify_noop
6570 #define simplify_uless    simplify_noop
6571 #define simplify_smore    simplify_noop
6572 #define simplify_umore    simplify_noop
6573 #endif
6574 #if 0
6575 #define simplify_slesseq  simplify_noop
6576 #define simplify_ulesseq  simplify_noop
6577 #define simplify_smoreeq  simplify_noop
6578 #define simplify_umoreeq  simplify_noop
6579 #endif
6580 #if 0
6581 #define simplify_lfalse   simplify_noop
6582 #endif
6583 #if 0
6584 #define simplify_ltrue    simplify_noop
6585 #endif
6586
6587 #if 0
6588 #define simplify_copy     simplify_noop
6589 #endif
6590
6591 #if 0
6592 #define simplify_branch   simplify_noop
6593 #endif
6594 #if 1
6595 #define simplify_label    simplify_noop
6596 #endif
6597
6598 #if 0
6599 #define simplify_phi      simplify_noop
6600 #endif
6601
6602 #if 0
6603 #define simplify_bsf      simplify_noop
6604 #define simplify_bsr      simplify_noop
6605 #endif
6606
6607 [OP_SDIVT      ] = simplify_sdivt,
6608 [OP_UDIVT      ] = simplify_udivt,
6609 [OP_SMUL       ] = simplify_smul,
6610 [OP_UMUL       ] = simplify_umul,
6611 [OP_SDIV       ] = simplify_sdiv,
6612 [OP_UDIV       ] = simplify_udiv,
6613 [OP_SMOD       ] = simplify_smod,
6614 [OP_UMOD       ] = simplify_umod,
6615 [OP_ADD        ] = simplify_add,
6616 [OP_SUB        ] = simplify_sub,
6617 [OP_SL         ] = simplify_sl,
6618 [OP_USR        ] = simplify_usr,
6619 [OP_SSR        ] = simplify_ssr,
6620 [OP_AND        ] = simplify_and,
6621 [OP_XOR        ] = simplify_xor,
6622 [OP_OR         ] = simplify_or,
6623 [OP_POS        ] = simplify_pos,
6624 [OP_NEG        ] = simplify_neg,
6625 [OP_INVERT     ] = simplify_invert,
6626
6627 [OP_EQ         ] = simplify_eq,
6628 [OP_NOTEQ      ] = simplify_noteq,
6629 [OP_SLESS      ] = simplify_sless,
6630 [OP_ULESS      ] = simplify_uless,
6631 [OP_SMORE      ] = simplify_smore,
6632 [OP_UMORE      ] = simplify_umore,
6633 [OP_SLESSEQ    ] = simplify_slesseq,
6634 [OP_ULESSEQ    ] = simplify_ulesseq,
6635 [OP_SMOREEQ    ] = simplify_smoreeq,
6636 [OP_UMOREEQ    ] = simplify_umoreeq,
6637 [OP_LFALSE     ] = simplify_lfalse,
6638 [OP_LTRUE      ] = simplify_ltrue,
6639
6640 [OP_LOAD       ] = simplify_noop,
6641 [OP_STORE      ] = simplify_noop,
6642
6643 [OP_NOOP       ] = simplify_noop,
6644
6645 [OP_INTCONST   ] = simplify_noop,
6646 [OP_BLOBCONST  ] = simplify_noop,
6647 [OP_ADDRCONST  ] = simplify_noop,
6648
6649 [OP_WRITE      ] = simplify_noop,
6650 [OP_READ       ] = simplify_noop,
6651 [OP_COPY       ] = simplify_copy,
6652 [OP_PIECE      ] = simplify_noop,
6653 [OP_ASM        ] = simplify_noop,
6654
6655 [OP_DOT        ] = simplify_noop,
6656 [OP_VAL_VEC    ] = simplify_noop,
6657
6658 [OP_LIST       ] = simplify_noop,
6659 [OP_BRANCH     ] = simplify_branch,
6660 [OP_LABEL      ] = simplify_label,
6661 [OP_ADECL      ] = simplify_noop,
6662 [OP_SDECL      ] = simplify_noop,
6663 [OP_PHI        ] = simplify_phi,
6664
6665 [OP_INB        ] = simplify_noop,
6666 [OP_INW        ] = simplify_noop,
6667 [OP_INL        ] = simplify_noop,
6668 [OP_OUTB       ] = simplify_noop,
6669 [OP_OUTW       ] = simplify_noop,
6670 [OP_OUTL       ] = simplify_noop,
6671 [OP_BSF        ] = simplify_bsf,
6672 [OP_BSR        ] = simplify_bsr,
6673 [OP_RDMSR      ] = simplify_noop,
6674 [OP_WRMSR      ] = simplify_noop,                    
6675 [OP_HLT        ] = simplify_noop,
6676 };
6677
6678 static void simplify(struct compile_state *state, struct triple *ins)
6679 {
6680         int op;
6681         simplify_t do_simplify;
6682         do {
6683                 op = ins->op;
6684                 do_simplify = 0;
6685                 if ((op < 0) || (op > sizeof(table_simplify)/sizeof(table_simplify[0]))) {
6686                         do_simplify = 0;
6687                 }
6688                 else {
6689                         do_simplify = table_simplify[op];
6690                 }
6691                 if (!do_simplify) {
6692                         internal_error(state, ins, "cannot simplify op: %d %s\n",
6693                                 op, tops(op));
6694                         return;
6695                 }
6696                 do_simplify(state, ins);
6697         } while(ins->op != op);
6698 }
6699
6700 static void simplify_all(struct compile_state *state)
6701 {
6702         struct triple *ins, *first;
6703         first = RHS(state->main_function, 0);
6704         ins = first;
6705         do {
6706                 simplify(state, ins);
6707                 ins = ins->next;
6708         }while(ins != first);
6709 }
6710
6711 /*
6712  * Builtins....
6713  * ============================
6714  */
6715
6716 static void register_builtin_function(struct compile_state *state,
6717         const char *name, int op, struct type *rtype, ...)
6718 {
6719         struct type *ftype, *atype, *param, **next;
6720         struct triple *def, *arg, *result, *work, *last, *first;
6721         struct hash_entry *ident;
6722         struct file_state file;
6723         int parameters;
6724         int name_len;
6725         va_list args;
6726         int i;
6727
6728         /* Dummy file state to get debug handling right */
6729         memset(&file, 0, sizeof(file));
6730         file.basename = "<built-in>";
6731         file.line = 1;
6732         file.report_line = 1;
6733         file.report_name = file.basename;
6734         file.prev = state->file;
6735         state->file = &file;
6736         state->function = name;
6737
6738         /* Find the Parameter count */
6739         valid_op(state, op);
6740         parameters = table_ops[op].rhs;
6741         if (parameters < 0 ) {
6742                 internal_error(state, 0, "Invalid builtin parameter count");
6743         }
6744
6745         /* Find the function type */
6746         ftype = new_type(TYPE_FUNCTION, rtype, 0);
6747         next = &ftype->right;
6748         va_start(args, rtype);
6749         for(i = 0; i < parameters; i++) {
6750                 atype = va_arg(args, struct type *);
6751                 if (!*next) {
6752                         *next = atype;
6753                 } else {
6754                         *next = new_type(TYPE_PRODUCT, *next, atype);
6755                         next = &((*next)->right);
6756                 }
6757         }
6758         if (!*next) {
6759                 *next = &void_type;
6760         }
6761         va_end(args);
6762
6763         /* Generate the needed triples */
6764         def = triple(state, OP_LIST, ftype, 0, 0);
6765         first = label(state);
6766         RHS(def, 0) = first;
6767
6768         /* Now string them together */
6769         param = ftype->right;
6770         for(i = 0; i < parameters; i++) {
6771                 if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
6772                         atype = param->left;
6773                 } else {
6774                         atype = param;
6775                 }
6776                 arg = flatten(state, first, variable(state, atype));
6777                 param = param->right;
6778         }
6779         result = 0;
6780         if ((rtype->type & TYPE_MASK) != TYPE_VOID) {
6781                 result = flatten(state, first, variable(state, rtype));
6782         }
6783         MISC(def, 0) = result;
6784         work = new_triple(state, op, rtype, -1, parameters);
6785         for(i = 0, arg = first->next; i < parameters; i++, arg = arg->next) {
6786                 RHS(work, i) = read_expr(state, arg);
6787         }
6788         if (result && ((rtype->type & TYPE_MASK) == TYPE_STRUCT)) {
6789                 struct triple *val;
6790                 /* Populate the LHS with the target registers */
6791                 work = flatten(state, first, work);
6792                 work->type = &void_type;
6793                 param = rtype->left;
6794                 if (rtype->elements != TRIPLE_LHS(work->sizes)) {
6795                         internal_error(state, 0, "Invalid result type");
6796                 }
6797                 val = new_triple(state, OP_VAL_VEC, rtype, -1, -1);
6798                 for(i = 0; i < rtype->elements; i++) {
6799                         struct triple *piece;
6800                         atype = param;
6801                         if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
6802                                 atype = param->left;
6803                         }
6804                         if (!TYPE_ARITHMETIC(atype->type) &&
6805                                 !TYPE_PTR(atype->type)) {
6806                                 internal_error(state, 0, "Invalid lhs type");
6807                         }
6808                         piece = triple(state, OP_PIECE, atype, work, 0);
6809                         piece->u.cval = i;
6810                         LHS(work, i) = piece;
6811                         RHS(val, i) = piece;
6812                 }
6813                 work = val;
6814         }
6815         if (result) {
6816                 work = write_expr(state, result, work);
6817         }
6818         work = flatten(state, first, work);
6819         last = flatten(state, first, label(state));
6820         name_len = strlen(name);
6821         ident = lookup(state, name, name_len);
6822         symbol(state, ident, &ident->sym_ident, def, ftype);
6823         
6824         state->file = file.prev;
6825         state->function = 0;
6826 #if 0
6827         fprintf(stdout, "\n");
6828         loc(stdout, state, 0);
6829         fprintf(stdout, "\n__________ builtin_function _________\n");
6830         print_triple(state, def);
6831         fprintf(stdout, "__________ builtin_function _________ done\n\n");
6832 #endif
6833 }
6834
6835 static struct type *partial_struct(struct compile_state *state,
6836         const char *field_name, struct type *type, struct type *rest)
6837 {
6838         struct hash_entry *field_ident;
6839         struct type *result;
6840         int field_name_len;
6841
6842         field_name_len = strlen(field_name);
6843         field_ident = lookup(state, field_name, field_name_len);
6844
6845         result = clone_type(0, type);
6846         result->field_ident = field_ident;
6847
6848         if (rest) {
6849                 result = new_type(TYPE_PRODUCT, result, rest);
6850         }
6851         return result;
6852 }
6853
6854 static struct type *register_builtin_type(struct compile_state *state,
6855         const char *name, struct type *type)
6856 {
6857         struct hash_entry *ident;
6858         int name_len;
6859
6860         name_len = strlen(name);
6861         ident = lookup(state, name, name_len);
6862         
6863         if ((type->type & TYPE_MASK) == TYPE_PRODUCT) {
6864                 ulong_t elements = 0;
6865                 struct type *field;
6866                 type = new_type(TYPE_STRUCT, type, 0);
6867                 field = type->left;
6868                 while((field->type & TYPE_MASK) == TYPE_PRODUCT) {
6869                         elements++;
6870                         field = field->right;
6871                 }
6872                 elements++;
6873                 symbol(state, ident, &ident->sym_struct, 0, type);
6874                 type->type_ident = ident;
6875                 type->elements = elements;
6876         }
6877         symbol(state, ident, &ident->sym_ident, 0, type);
6878         ident->tok = TOK_TYPE_NAME;
6879         return type;
6880 }
6881
6882
6883 static void register_builtins(struct compile_state *state)
6884 {
6885         struct type *div_type, *ldiv_type;
6886         struct type *udiv_type, *uldiv_type;
6887         struct type *msr_type;
6888
6889         div_type = register_builtin_type(state, "__builtin_div_t",
6890                 partial_struct(state, "quot", &int_type,
6891                 partial_struct(state, "rem",  &int_type, 0)));
6892         ldiv_type = register_builtin_type(state, "__builtin_ldiv_t",
6893                 partial_struct(state, "quot", &long_type,
6894                 partial_struct(state, "rem",  &long_type, 0)));
6895         udiv_type = register_builtin_type(state, "__builtin_udiv_t",
6896                 partial_struct(state, "quot", &uint_type,
6897                 partial_struct(state, "rem",  &uint_type, 0)));
6898         uldiv_type = register_builtin_type(state, "__builtin_uldiv_t",
6899                 partial_struct(state, "quot", &ulong_type,
6900                 partial_struct(state, "rem",  &ulong_type, 0)));
6901
6902         register_builtin_function(state, "__builtin_div",   OP_SDIVT, div_type,
6903                 &int_type, &int_type);
6904         register_builtin_function(state, "__builtin_ldiv",  OP_SDIVT, ldiv_type,
6905                 &long_type, &long_type);
6906         register_builtin_function(state, "__builtin_udiv",  OP_UDIVT, udiv_type,
6907                 &uint_type, &uint_type);
6908         register_builtin_function(state, "__builtin_uldiv", OP_UDIVT, uldiv_type,
6909                 &ulong_type, &ulong_type);
6910
6911         register_builtin_function(state, "__builtin_inb", OP_INB, &uchar_type, 
6912                 &ushort_type);
6913         register_builtin_function(state, "__builtin_inw", OP_INW, &ushort_type,
6914                 &ushort_type);
6915         register_builtin_function(state, "__builtin_inl", OP_INL, &uint_type,   
6916                 &ushort_type);
6917
6918         register_builtin_function(state, "__builtin_outb", OP_OUTB, &void_type, 
6919                 &uchar_type, &ushort_type);
6920         register_builtin_function(state, "__builtin_outw", OP_OUTW, &void_type, 
6921                 &ushort_type, &ushort_type);
6922         register_builtin_function(state, "__builtin_outl", OP_OUTL, &void_type, 
6923                 &uint_type, &ushort_type);
6924         
6925         register_builtin_function(state, "__builtin_bsf", OP_BSF, &int_type, 
6926                 &int_type);
6927         register_builtin_function(state, "__builtin_bsr", OP_BSR, &int_type, 
6928                 &int_type);
6929
6930         msr_type = register_builtin_type(state, "__builtin_msr_t",
6931                 partial_struct(state, "lo", &ulong_type,
6932                 partial_struct(state, "hi", &ulong_type, 0)));
6933
6934         register_builtin_function(state, "__builtin_rdmsr", OP_RDMSR, msr_type,
6935                 &ulong_type);
6936         register_builtin_function(state, "__builtin_wrmsr", OP_WRMSR, &void_type,
6937                 &ulong_type, &ulong_type, &ulong_type);
6938         
6939         register_builtin_function(state, "__builtin_hlt", OP_HLT, &void_type, 
6940                 &void_type);
6941 }
6942
6943 static struct type *declarator(
6944         struct compile_state *state, struct type *type, 
6945         struct hash_entry **ident, int need_ident);
6946 static void decl(struct compile_state *state, struct triple *first);
6947 static struct type *specifier_qualifier_list(struct compile_state *state);
6948 static int isdecl_specifier(int tok);
6949 static struct type *decl_specifiers(struct compile_state *state);
6950 static int istype(int tok);
6951 static struct triple *expr(struct compile_state *state);
6952 static struct triple *assignment_expr(struct compile_state *state);
6953 static struct type *type_name(struct compile_state *state);
6954 static void statement(struct compile_state *state, struct triple *fist);
6955
6956 static struct triple *call_expr(
6957         struct compile_state *state, struct triple *func)
6958 {
6959         struct triple *def;
6960         struct type *param, *type;
6961         ulong_t pvals, index;
6962
6963         if ((func->type->type & TYPE_MASK) != TYPE_FUNCTION) {
6964                 error(state, 0, "Called object is not a function");
6965         }
6966         if (func->op != OP_LIST) {
6967                 internal_error(state, 0, "improper function");
6968         }
6969         eat(state, TOK_LPAREN);
6970         /* Find the return type without any specifiers */
6971         type = clone_type(0, func->type->left);
6972         def = new_triple(state, OP_CALL, func->type, -1, -1);
6973         def->type = type;
6974
6975         pvals = TRIPLE_RHS(def->sizes);
6976         MISC(def, 0) = func;
6977
6978         param = func->type->right;
6979         for(index = 0; index < pvals; index++) {
6980                 struct triple *val;
6981                 struct type *arg_type;
6982                 val = read_expr(state, assignment_expr(state));
6983                 arg_type = param;
6984                 if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
6985                         arg_type = param->left;
6986                 }
6987                 write_compatible(state, arg_type, val->type);
6988                 RHS(def, index) = val;
6989                 if (index != (pvals - 1)) {
6990                         eat(state, TOK_COMMA);
6991                         param = param->right;
6992                 }
6993         }
6994         eat(state, TOK_RPAREN);
6995         return def;
6996 }
6997
6998
6999 static struct triple *character_constant(struct compile_state *state)
7000 {
7001         struct triple *def;
7002         struct token *tk;
7003         const signed char *str, *end;
7004         int c;
7005         int str_len;
7006         eat(state, TOK_LIT_CHAR);
7007         tk = &state->token[0];
7008         str = tk->val.str + 1;
7009         str_len = tk->str_len - 2;
7010         if (str_len <= 0) {
7011                 error(state, 0, "empty character constant");
7012         }
7013         end = str + str_len;
7014         c = char_value(state, &str, end);
7015         if (str != end) {
7016                 error(state, 0, "multibyte character constant not supported");
7017         }
7018         def = int_const(state, &char_type, (ulong_t)((long_t)c));
7019         return def;
7020 }
7021
7022 static struct triple *string_constant(struct compile_state *state)
7023 {
7024         struct triple *def;
7025         struct token *tk;
7026         struct type *type;
7027         const signed char *str, *end;
7028         signed char *buf, *ptr;
7029         int str_len;
7030
7031         buf = 0;
7032         type = new_type(TYPE_ARRAY, &char_type, 0);
7033         type->elements = 0;
7034         /* The while loop handles string concatenation */
7035         do {
7036                 eat(state, TOK_LIT_STRING);
7037                 tk = &state->token[0];
7038                 str = tk->val.str + 1;
7039                 str_len = tk->str_len - 2;
7040                 if (str_len < 0) {
7041                         error(state, 0, "negative string constant length");
7042                 }
7043                 end = str + str_len;
7044                 ptr = buf;
7045                 buf = xmalloc(type->elements + str_len + 1, "string_constant");
7046                 memcpy(buf, ptr, type->elements);
7047                 ptr = buf + type->elements;
7048                 do {
7049                         *ptr++ = char_value(state, &str, end);
7050                 } while(str < end);
7051                 type->elements = ptr - buf;
7052         } while(peek(state) == TOK_LIT_STRING);
7053         *ptr = '\0';
7054         type->elements += 1;
7055         def = triple(state, OP_BLOBCONST, type, 0, 0);
7056         def->u.blob = buf;
7057         return def;
7058 }
7059
7060
7061 static struct triple *integer_constant(struct compile_state *state)
7062 {
7063         struct triple *def;
7064         unsigned long val;
7065         struct token *tk;
7066         char *end;
7067         int u, l, decimal;
7068         struct type *type;
7069
7070         eat(state, TOK_LIT_INT);
7071         tk = &state->token[0];
7072         errno = 0;
7073         decimal = (tk->val.str[0] != '0');
7074         val = strtoul(tk->val.str, &end, 0);
7075         if ((val == ULONG_MAX) && (errno == ERANGE)) {
7076                 error(state, 0, "Integer constant to large");
7077         }
7078         u = l = 0;
7079         if ((*end == 'u') || (*end == 'U')) {
7080                 u = 1;
7081                         end++;
7082         }
7083         if ((*end == 'l') || (*end == 'L')) {
7084                 l = 1;
7085                 end++;
7086         }
7087         if ((*end == 'u') || (*end == 'U')) {
7088                 u = 1;
7089                 end++;
7090         }
7091         if (*end) {
7092                 error(state, 0, "Junk at end of integer constant");
7093         }
7094         if (u && l)  {
7095                 type = &ulong_type;
7096         }
7097         else if (l) {
7098                 type = &long_type;
7099                 if (!decimal && (val > LONG_MAX)) {
7100                         type = &ulong_type;
7101                 }
7102         }
7103         else if (u) {
7104                 type = &uint_type;
7105                 if (val > UINT_MAX) {
7106                         type = &ulong_type;
7107                 }
7108         }
7109         else {
7110                 type = &int_type;
7111                 if (!decimal && (val > INT_MAX) && (val <= UINT_MAX)) {
7112                         type = &uint_type;
7113                 }
7114                 else if (!decimal && (val > LONG_MAX)) {
7115                         type = &ulong_type;
7116                 }
7117                 else if (val > INT_MAX) {
7118                         type = &long_type;
7119                 }
7120         }
7121         def = int_const(state, type, val);
7122         return def;
7123 }
7124
7125 static struct triple *primary_expr(struct compile_state *state)
7126 {
7127         struct triple *def;
7128         int tok;
7129         tok = peek(state);
7130         switch(tok) {
7131         case TOK_IDENT:
7132         {
7133                 struct hash_entry *ident;
7134                 /* Here ident is either:
7135                  * a varable name
7136                  * a function name
7137                  * an enumeration constant.
7138                  */
7139                 eat(state, TOK_IDENT);
7140                 ident = state->token[0].ident;
7141                 if (!ident->sym_ident) {
7142                         error(state, 0, "%s undeclared", ident->name);
7143                 }
7144                 def = ident->sym_ident->def;
7145                 break;
7146         }
7147         case TOK_ENUM_CONST:
7148                 /* Here ident is an enumeration constant */
7149                 eat(state, TOK_ENUM_CONST);
7150                 def = 0;
7151                 FINISHME();
7152                 break;
7153         case TOK_LPAREN:
7154                 eat(state, TOK_LPAREN);
7155                 def = expr(state);
7156                 eat(state, TOK_RPAREN);
7157                 break;
7158         case TOK_LIT_INT:
7159                 def = integer_constant(state);
7160                 break;
7161         case TOK_LIT_FLOAT:
7162                 eat(state, TOK_LIT_FLOAT);
7163                 error(state, 0, "Floating point constants not supported");
7164                 def = 0;
7165                 FINISHME();
7166                 break;
7167         case TOK_LIT_CHAR:
7168                 def = character_constant(state);
7169                 break;
7170         case TOK_LIT_STRING:
7171                 def = string_constant(state);
7172                 break;
7173         default:
7174                 def = 0;
7175                 error(state, 0, "Unexpected token: %s\n", tokens[tok]);
7176         }
7177         return def;
7178 }
7179
7180 static struct triple *postfix_expr(struct compile_state *state)
7181 {
7182         struct triple *def;
7183         int postfix;
7184         def = primary_expr(state);
7185         do {
7186                 struct triple *left;
7187                 int tok;
7188                 postfix = 1;
7189                 left = def;
7190                 switch((tok = peek(state))) {
7191                 case TOK_LBRACKET:
7192                         eat(state, TOK_LBRACKET);
7193                         def = mk_subscript_expr(state, left, expr(state));
7194                         eat(state, TOK_RBRACKET);
7195                         break;
7196                 case TOK_LPAREN:
7197                         def = call_expr(state, def);
7198                         break;
7199                 case TOK_DOT:
7200                 {
7201                         struct hash_entry *field;
7202                         eat(state, TOK_DOT);
7203                         eat(state, TOK_IDENT);
7204                         field = state->token[0].ident;
7205                         def = deref_field(state, def, field);
7206                         break;
7207                 }
7208                 case TOK_ARROW:
7209                 {
7210                         struct hash_entry *field;
7211                         eat(state, TOK_ARROW);
7212                         eat(state, TOK_IDENT);
7213                         field = state->token[0].ident;
7214                         def = mk_deref_expr(state, read_expr(state, def));
7215                         def = deref_field(state, def, field);
7216                         break;
7217                 }
7218                 case TOK_PLUSPLUS:
7219                         eat(state, TOK_PLUSPLUS);
7220                         def = mk_post_inc_expr(state, left);
7221                         break;
7222                 case TOK_MINUSMINUS:
7223                         eat(state, TOK_MINUSMINUS);
7224                         def = mk_post_dec_expr(state, left);
7225                         break;
7226                 default:
7227                         postfix = 0;
7228                         break;
7229                 }
7230         } while(postfix);
7231         return def;
7232 }
7233
7234 static struct triple *cast_expr(struct compile_state *state);
7235
7236 static struct triple *unary_expr(struct compile_state *state)
7237 {
7238         struct triple *def, *right;
7239         int tok;
7240         switch((tok = peek(state))) {
7241         case TOK_PLUSPLUS:
7242                 eat(state, TOK_PLUSPLUS);
7243                 def = mk_pre_inc_expr(state, unary_expr(state));
7244                 break;
7245         case TOK_MINUSMINUS:
7246                 eat(state, TOK_MINUSMINUS);
7247                 def = mk_pre_dec_expr(state, unary_expr(state));
7248                 break;
7249         case TOK_AND:
7250                 eat(state, TOK_AND);
7251                 def = mk_addr_expr(state, cast_expr(state), 0);
7252                 break;
7253         case TOK_STAR:
7254                 eat(state, TOK_STAR);
7255                 def = mk_deref_expr(state, read_expr(state, cast_expr(state)));
7256                 break;
7257         case TOK_PLUS:
7258                 eat(state, TOK_PLUS);
7259                 right = read_expr(state, cast_expr(state));
7260                 arithmetic(state, right);
7261                 def = integral_promotion(state, right);
7262                 break;
7263         case TOK_MINUS:
7264                 eat(state, TOK_MINUS);
7265                 right = read_expr(state, cast_expr(state));
7266                 arithmetic(state, right);
7267                 def = integral_promotion(state, right);
7268                 def = triple(state, OP_NEG, def->type, def, 0);
7269                 break;
7270         case TOK_TILDE:
7271                 eat(state, TOK_TILDE);
7272                 right = read_expr(state, cast_expr(state));
7273                 integral(state, right);
7274                 def = integral_promotion(state, right);
7275                 def = triple(state, OP_INVERT, def->type, def, 0);
7276                 break;
7277         case TOK_BANG:
7278                 eat(state, TOK_BANG);
7279                 right = read_expr(state, cast_expr(state));
7280                 bool(state, right);
7281                 def = lfalse_expr(state, right);
7282                 break;
7283         case TOK_SIZEOF:
7284         {
7285                 struct type *type;
7286                 int tok1, tok2;
7287                 eat(state, TOK_SIZEOF);
7288                 tok1 = peek(state);
7289                 tok2 = peek2(state);
7290                 if ((tok1 == TOK_LPAREN) && istype(tok2)) {
7291                         eat(state, TOK_LPAREN);
7292                         type = type_name(state);
7293                         eat(state, TOK_RPAREN);
7294                 }
7295                 else {
7296                         struct triple *expr;
7297                         expr = unary_expr(state);
7298                         type = expr->type;
7299                         release_expr(state, expr);
7300                 }
7301                 def = int_const(state, &ulong_type, size_of(state, type));
7302                 break;
7303         }
7304         case TOK_ALIGNOF:
7305         {
7306                 struct type *type;
7307                 int tok1, tok2;
7308                 eat(state, TOK_ALIGNOF);
7309                 tok1 = peek(state);
7310                 tok2 = peek2(state);
7311                 if ((tok1 == TOK_LPAREN) && istype(tok2)) {
7312                         eat(state, TOK_LPAREN);
7313                         type = type_name(state);
7314                         eat(state, TOK_RPAREN);
7315                 }
7316                 else {
7317                         struct triple *expr;
7318                         expr = unary_expr(state);
7319                         type = expr->type;
7320                         release_expr(state, expr);
7321                 }
7322                 def = int_const(state, &ulong_type, align_of(state, type));
7323                 break;
7324         }
7325         default:
7326                 def = postfix_expr(state);
7327                 break;
7328         }
7329         return def;
7330 }
7331
7332 static struct triple *cast_expr(struct compile_state *state)
7333 {
7334         struct triple *def;
7335         int tok1, tok2;
7336         tok1 = peek(state);
7337         tok2 = peek2(state);
7338         if ((tok1 == TOK_LPAREN) && istype(tok2)) {
7339                 struct type *type;
7340                 eat(state, TOK_LPAREN);
7341                 type = type_name(state);
7342                 eat(state, TOK_RPAREN);
7343                 def = read_expr(state, cast_expr(state));
7344                 def = triple(state, OP_COPY, type, def, 0);
7345         }
7346         else {
7347                 def = unary_expr(state);
7348         }
7349         return def;
7350 }
7351
7352 static struct triple *mult_expr(struct compile_state *state)
7353 {
7354         struct triple *def;
7355         int done;
7356         def = cast_expr(state);
7357         do {
7358                 struct triple *left, *right;
7359                 struct type *result_type;
7360                 int tok, op, sign;
7361                 done = 0;
7362                 switch(tok = (peek(state))) {
7363                 case TOK_STAR:
7364                 case TOK_DIV:
7365                 case TOK_MOD:
7366                         left = read_expr(state, def);
7367                         arithmetic(state, left);
7368
7369                         eat(state, tok);
7370
7371                         right = read_expr(state, cast_expr(state));
7372                         arithmetic(state, right);
7373
7374                         result_type = arithmetic_result(state, left, right);
7375                         sign = is_signed(result_type);
7376                         op = -1;
7377                         switch(tok) {
7378                         case TOK_STAR: op = sign? OP_SMUL : OP_UMUL; break;
7379                         case TOK_DIV:  op = sign? OP_SDIV : OP_UDIV; break;
7380                         case TOK_MOD:  op = sign? OP_SMOD : OP_UMOD; break;
7381                         }
7382                         def = triple(state, op, result_type, left, right);
7383                         break;
7384                 default:
7385                         done = 1;
7386                         break;
7387                 }
7388         } while(!done);
7389         return def;
7390 }
7391
7392 static struct triple *add_expr(struct compile_state *state)
7393 {
7394         struct triple *def;
7395         int done;
7396         def = mult_expr(state);
7397         do {
7398                 done = 0;
7399                 switch( peek(state)) {
7400                 case TOK_PLUS:
7401                         eat(state, TOK_PLUS);
7402                         def = mk_add_expr(state, def, mult_expr(state));
7403                         break;
7404                 case TOK_MINUS:
7405                         eat(state, TOK_MINUS);
7406                         def = mk_sub_expr(state, def, mult_expr(state));
7407                         break;
7408                 default:
7409                         done = 1;
7410                         break;
7411                 }
7412         } while(!done);
7413         return def;
7414 }
7415
7416 static struct triple *shift_expr(struct compile_state *state)
7417 {
7418         struct triple *def;
7419         int done;
7420         def = add_expr(state);
7421         do {
7422                 struct triple *left, *right;
7423                 int tok, op;
7424                 done = 0;
7425                 switch((tok = peek(state))) {
7426                 case TOK_SL:
7427                 case TOK_SR:
7428                         left = read_expr(state, def);
7429                         integral(state, left);
7430                         left = integral_promotion(state, left);
7431
7432                         eat(state, tok);
7433
7434                         right = read_expr(state, add_expr(state));
7435                         integral(state, right);
7436                         right = integral_promotion(state, right);
7437                         
7438                         op = (tok == TOK_SL)? OP_SL : 
7439                                 is_signed(left->type)? OP_SSR: OP_USR;
7440
7441                         def = triple(state, op, left->type, left, right);
7442                         break;
7443                 default:
7444                         done = 1;
7445                         break;
7446                 }
7447         } while(!done);
7448         return def;
7449 }
7450
7451 static struct triple *relational_expr(struct compile_state *state)
7452 {
7453 #warning "Extend relational exprs to work on more than arithmetic types"
7454         struct triple *def;
7455         int done;
7456         def = shift_expr(state);
7457         do {
7458                 struct triple *left, *right;
7459                 struct type *arg_type;
7460                 int tok, op, sign;
7461                 done = 0;
7462                 switch((tok = peek(state))) {
7463                 case TOK_LESS:
7464                 case TOK_MORE:
7465                 case TOK_LESSEQ:
7466                 case TOK_MOREEQ:
7467                         left = read_expr(state, def);
7468                         arithmetic(state, left);
7469
7470                         eat(state, tok);
7471
7472                         right = read_expr(state, shift_expr(state));
7473                         arithmetic(state, right);
7474
7475                         arg_type = arithmetic_result(state, left, right);
7476                         sign = is_signed(arg_type);
7477                         op = -1;
7478                         switch(tok) {
7479                         case TOK_LESS:   op = sign? OP_SLESS : OP_ULESS; break;
7480                         case TOK_MORE:   op = sign? OP_SMORE : OP_UMORE; break;
7481                         case TOK_LESSEQ: op = sign? OP_SLESSEQ : OP_ULESSEQ; break;
7482                         case TOK_MOREEQ: op = sign? OP_SMOREEQ : OP_UMOREEQ; break;
7483                         }
7484                         def = triple(state, op, &int_type, left, right);
7485                         break;
7486                 default:
7487                         done = 1;
7488                         break;
7489                 }
7490         } while(!done);
7491         return def;
7492 }
7493
7494 static struct triple *equality_expr(struct compile_state *state)
7495 {
7496 #warning "Extend equality exprs to work on more than arithmetic types"
7497         struct triple *def;
7498         int done;
7499         def = relational_expr(state);
7500         do {
7501                 struct triple *left, *right;
7502                 int tok, op;
7503                 done = 0;
7504                 switch((tok = peek(state))) {
7505                 case TOK_EQEQ:
7506                 case TOK_NOTEQ:
7507                         left = read_expr(state, def);
7508                         arithmetic(state, left);
7509                         eat(state, tok);
7510                         right = read_expr(state, relational_expr(state));
7511                         arithmetic(state, right);
7512                         op = (tok == TOK_EQEQ) ? OP_EQ: OP_NOTEQ;
7513                         def = triple(state, op, &int_type, left, right);
7514                         break;
7515                 default:
7516                         done = 1;
7517                         break;
7518                 }
7519         } while(!done);
7520         return def;
7521 }
7522
7523 static struct triple *and_expr(struct compile_state *state)
7524 {
7525         struct triple *def;
7526         def = equality_expr(state);
7527         while(peek(state) == TOK_AND) {
7528                 struct triple *left, *right;
7529                 struct type *result_type;
7530                 left = read_expr(state, def);
7531                 integral(state, left);
7532                 eat(state, TOK_AND);
7533                 right = read_expr(state, equality_expr(state));
7534                 integral(state, right);
7535                 result_type = arithmetic_result(state, left, right);
7536                 def = triple(state, OP_AND, result_type, left, right);
7537         }
7538         return def;
7539 }
7540
7541 static struct triple *xor_expr(struct compile_state *state)
7542 {
7543         struct triple *def;
7544         def = and_expr(state);
7545         while(peek(state) == TOK_XOR) {
7546                 struct triple *left, *right;
7547                 struct type *result_type;
7548                 left = read_expr(state, def);
7549                 integral(state, left);
7550                 eat(state, TOK_XOR);
7551                 right = read_expr(state, and_expr(state));
7552                 integral(state, right);
7553                 result_type = arithmetic_result(state, left, right);
7554                 def = triple(state, OP_XOR, result_type, left, right);
7555         }
7556         return def;
7557 }
7558
7559 static struct triple *or_expr(struct compile_state *state)
7560 {
7561         struct triple *def;
7562         def = xor_expr(state);
7563         while(peek(state) == TOK_OR) {
7564                 struct triple *left, *right;
7565                 struct type *result_type;
7566                 left = read_expr(state, def);
7567                 integral(state, left);
7568                 eat(state, TOK_OR);
7569                 right = read_expr(state, xor_expr(state));
7570                 integral(state, right);
7571                 result_type = arithmetic_result(state, left, right);
7572                 def = triple(state, OP_OR, result_type, left, right);
7573         }
7574         return def;
7575 }
7576
7577 static struct triple *land_expr(struct compile_state *state)
7578 {
7579         struct triple *def;
7580         def = or_expr(state);
7581         while(peek(state) == TOK_LOGAND) {
7582                 struct triple *left, *right;
7583                 left = read_expr(state, def);
7584                 bool(state, left);
7585                 eat(state, TOK_LOGAND);
7586                 right = read_expr(state, or_expr(state));
7587                 bool(state, right);
7588
7589                 def = triple(state, OP_LAND, &int_type,
7590                         ltrue_expr(state, left),
7591                         ltrue_expr(state, right));
7592         }
7593         return def;
7594 }
7595
7596 static struct triple *lor_expr(struct compile_state *state)
7597 {
7598         struct triple *def;
7599         def = land_expr(state);
7600         while(peek(state) == TOK_LOGOR) {
7601                 struct triple *left, *right;
7602                 left = read_expr(state, def);
7603                 bool(state, left);
7604                 eat(state, TOK_LOGOR);
7605                 right = read_expr(state, land_expr(state));
7606                 bool(state, right);
7607                 
7608                 def = triple(state, OP_LOR, &int_type,
7609                         ltrue_expr(state, left),
7610                         ltrue_expr(state, right));
7611         }
7612         return def;
7613 }
7614
7615 static struct triple *conditional_expr(struct compile_state *state)
7616 {
7617         struct triple *def;
7618         def = lor_expr(state);
7619         if (peek(state) == TOK_QUEST) {
7620                 struct triple *test, *left, *right;
7621                 bool(state, def);
7622                 test = ltrue_expr(state, read_expr(state, def));
7623                 eat(state, TOK_QUEST);
7624                 left = read_expr(state, expr(state));
7625                 eat(state, TOK_COLON);
7626                 right = read_expr(state, conditional_expr(state));
7627
7628                 def = cond_expr(state, test, left, right);
7629         }
7630         return def;
7631 }
7632
7633 static struct triple *eval_const_expr(
7634         struct compile_state *state, struct triple *expr)
7635 {
7636         struct triple *def;
7637         if (is_const(expr)) {
7638                 def = expr;
7639         } 
7640         else {
7641                 /* If we don't start out as a constant simplify into one */
7642                 struct triple *head, *ptr;
7643                 head = label(state); /* dummy initial triple */
7644                 flatten(state, head, expr);
7645                 for(ptr = head->next; ptr != head; ptr = ptr->next) {
7646                         simplify(state, ptr);
7647                 }
7648                 /* Remove the constant value the tail of the list */
7649                 def = head->prev;
7650                 def->prev->next = def->next;
7651                 def->next->prev = def->prev;
7652                 def->next = def->prev = def;
7653                 if (!is_const(def)) {
7654                         error(state, 0, "Not a constant expression");
7655                 }
7656                 /* Free the intermediate expressions */
7657                 while(head->next != head) {
7658                         release_triple(state, head->next);
7659                 }
7660                 free_triple(state, head);
7661         }
7662         return def;
7663 }
7664
7665 static struct triple *constant_expr(struct compile_state *state)
7666 {
7667         return eval_const_expr(state, conditional_expr(state));
7668 }
7669
7670 static struct triple *assignment_expr(struct compile_state *state)
7671 {
7672         struct triple *def, *left, *right;
7673         int tok, op, sign;
7674         /* The C grammer in K&R shows assignment expressions
7675          * only taking unary expressions as input on their
7676          * left hand side.  But specifies the precedence of
7677          * assignemnt as the lowest operator except for comma.
7678          *
7679          * Allowing conditional expressions on the left hand side
7680          * of an assignement results in a grammar that accepts
7681          * a larger set of statements than standard C.   As long
7682          * as the subset of the grammar that is standard C behaves
7683          * correctly this should cause no problems.
7684          * 
7685          * For the extra token strings accepted by the grammar
7686          * none of them should produce a valid lvalue, so they
7687          * should not produce functioning programs.
7688          *
7689          * GCC has this bug as well, so surprises should be minimal.
7690          */
7691         def = conditional_expr(state);
7692         left = def;
7693         switch((tok = peek(state))) {
7694         case TOK_EQ:
7695                 lvalue(state, left);
7696                 eat(state, TOK_EQ);
7697                 def = write_expr(state, left, 
7698                         read_expr(state, assignment_expr(state)));
7699                 break;
7700         case TOK_TIMESEQ:
7701         case TOK_DIVEQ:
7702         case TOK_MODEQ:
7703                 lvalue(state, left);
7704                 arithmetic(state, left);
7705                 eat(state, tok);
7706                 right = read_expr(state, assignment_expr(state));
7707                 arithmetic(state, right);
7708
7709                 sign = is_signed(left->type);
7710                 op = -1;
7711                 switch(tok) {
7712                 case TOK_TIMESEQ: op = sign? OP_SMUL : OP_UMUL; break;
7713                 case TOK_DIVEQ:   op = sign? OP_SDIV : OP_UDIV; break;
7714                 case TOK_MODEQ:   op = sign? OP_SMOD : OP_UMOD; break;
7715                 }
7716                 def = write_expr(state, left,
7717                         triple(state, op, left->type, 
7718                                 read_expr(state, left), right));
7719                 break;
7720         case TOK_PLUSEQ:
7721                 lvalue(state, left);
7722                 eat(state, TOK_PLUSEQ);
7723                 def = write_expr(state, left,
7724                         mk_add_expr(state, left, assignment_expr(state)));
7725                 break;
7726         case TOK_MINUSEQ:
7727                 lvalue(state, left);
7728                 eat(state, TOK_MINUSEQ);
7729                 def = write_expr(state, left,
7730                         mk_sub_expr(state, left, assignment_expr(state)));
7731                 break;
7732         case TOK_SLEQ:
7733         case TOK_SREQ:
7734         case TOK_ANDEQ:
7735         case TOK_XOREQ:
7736         case TOK_OREQ:
7737                 lvalue(state, left);
7738                 integral(state, left);
7739                 eat(state, tok);
7740                 right = read_expr(state, assignment_expr(state));
7741                 integral(state, right);
7742                 right = integral_promotion(state, right);
7743                 sign = is_signed(left->type);
7744                 op = -1;
7745                 switch(tok) {
7746                 case TOK_SLEQ:  op = OP_SL; break;
7747                 case TOK_SREQ:  op = sign? OP_SSR: OP_USR; break;
7748                 case TOK_ANDEQ: op = OP_AND; break;
7749                 case TOK_XOREQ: op = OP_XOR; break;
7750                 case TOK_OREQ:  op = OP_OR; break;
7751                 }
7752                 def = write_expr(state, left,
7753                         triple(state, op, left->type, 
7754                                 read_expr(state, left), right));
7755                 break;
7756         }
7757         return def;
7758 }
7759
7760 static struct triple *expr(struct compile_state *state)
7761 {
7762         struct triple *def;
7763         def = assignment_expr(state);
7764         while(peek(state) == TOK_COMMA) {
7765                 struct triple *left, *right;
7766                 left = def;
7767                 eat(state, TOK_COMMA);
7768                 right = assignment_expr(state);
7769                 def = triple(state, OP_COMMA, right->type, left, right);
7770         }
7771         return def;
7772 }
7773
7774 static void expr_statement(struct compile_state *state, struct triple *first)
7775 {
7776         if (peek(state) != TOK_SEMI) {
7777                 flatten(state, first, expr(state));
7778         }
7779         eat(state, TOK_SEMI);
7780 }
7781
7782 static void if_statement(struct compile_state *state, struct triple *first)
7783 {
7784         struct triple *test, *jmp1, *jmp2, *middle, *end;
7785
7786         jmp1 = jmp2 = middle = 0;
7787         eat(state, TOK_IF);
7788         eat(state, TOK_LPAREN);
7789         test = expr(state);
7790         bool(state, test);
7791         /* Cleanup and invert the test */
7792         test = lfalse_expr(state, read_expr(state, test));
7793         eat(state, TOK_RPAREN);
7794         /* Generate the needed pieces */
7795         middle = label(state);
7796         jmp1 = branch(state, middle, test);
7797         /* Thread the pieces together */
7798         flatten(state, first, test);
7799         flatten(state, first, jmp1);
7800         flatten(state, first, label(state));
7801         statement(state, first);
7802         if (peek(state) == TOK_ELSE) {
7803                 eat(state, TOK_ELSE);
7804                 /* Generate the rest of the pieces */
7805                 end = label(state);
7806                 jmp2 = branch(state, end, 0);
7807                 /* Thread them together */
7808                 flatten(state, first, jmp2);
7809                 flatten(state, first, middle);
7810                 statement(state, first);
7811                 flatten(state, first, end);
7812         }
7813         else {
7814                 flatten(state, first, middle);
7815         }
7816 }
7817
7818 static void for_statement(struct compile_state *state, struct triple *first)
7819 {
7820         struct triple *head, *test, *tail, *jmp1, *jmp2, *end;
7821         struct triple *label1, *label2, *label3;
7822         struct hash_entry *ident;
7823
7824         eat(state, TOK_FOR);
7825         eat(state, TOK_LPAREN);
7826         head = test = tail = jmp1 = jmp2 = 0;
7827         if (peek(state) != TOK_SEMI) {
7828                 head = expr(state);
7829         } 
7830         eat(state, TOK_SEMI);
7831         if (peek(state) != TOK_SEMI) {
7832                 test = expr(state);
7833                 bool(state, test);
7834                 test = ltrue_expr(state, read_expr(state, test));
7835         }
7836         eat(state, TOK_SEMI);
7837         if (peek(state) != TOK_RPAREN) {
7838                 tail = expr(state);
7839         }
7840         eat(state, TOK_RPAREN);
7841         /* Generate the needed pieces */
7842         label1 = label(state);
7843         label2 = label(state);
7844         label3 = label(state);
7845         if (test) {
7846                 jmp1 = branch(state, label3, 0);
7847                 jmp2 = branch(state, label1, test);
7848         }
7849         else {
7850                 jmp2 = branch(state, label1, 0);
7851         }
7852         end = label(state);
7853         /* Remember where break and continue go */
7854         start_scope(state);
7855         ident = state->i_break;
7856         symbol(state, ident, &ident->sym_ident, end, end->type);
7857         ident = state->i_continue;
7858         symbol(state, ident, &ident->sym_ident, label2, label2->type);
7859         /* Now include the body */
7860         flatten(state, first, head);
7861         flatten(state, first, jmp1);
7862         flatten(state, first, label1);
7863         statement(state, first);
7864         flatten(state, first, label2);
7865         flatten(state, first, tail);
7866         flatten(state, first, label3);
7867         flatten(state, first, test);
7868         flatten(state, first, jmp2);
7869         flatten(state, first, end);
7870         /* Cleanup the break/continue scope */
7871         end_scope(state);
7872 }
7873
7874 static void while_statement(struct compile_state *state, struct triple *first)
7875 {
7876         struct triple *label1, *test, *label2, *jmp1, *jmp2, *end;
7877         struct hash_entry *ident;
7878         eat(state, TOK_WHILE);
7879         eat(state, TOK_LPAREN);
7880         test = expr(state);
7881         bool(state, test);
7882         test = ltrue_expr(state, read_expr(state, test));
7883         eat(state, TOK_RPAREN);
7884         /* Generate the needed pieces */
7885         label1 = label(state);
7886         label2 = label(state);
7887         jmp1 = branch(state, label2, 0);
7888         jmp2 = branch(state, label1, test);
7889         end = label(state);
7890         /* Remember where break and continue go */
7891         start_scope(state);
7892         ident = state->i_break;
7893         symbol(state, ident, &ident->sym_ident, end, end->type);
7894         ident = state->i_continue;
7895         symbol(state, ident, &ident->sym_ident, label2, label2->type);
7896         /* Thread them together */
7897         flatten(state, first, jmp1);
7898         flatten(state, first, label1);
7899         statement(state, first);
7900         flatten(state, first, label2);
7901         flatten(state, first, test);
7902         flatten(state, first, jmp2);
7903         flatten(state, first, end);
7904         /* Cleanup the break/continue scope */
7905         end_scope(state);
7906 }
7907
7908 static void do_statement(struct compile_state *state, struct triple *first)
7909 {
7910         struct triple *label1, *label2, *test, *end;
7911         struct hash_entry *ident;
7912         eat(state, TOK_DO);
7913         /* Generate the needed pieces */
7914         label1 = label(state);
7915         label2 = label(state);
7916         end = label(state);
7917         /* Remember where break and continue go */
7918         start_scope(state);
7919         ident = state->i_break;
7920         symbol(state, ident, &ident->sym_ident, end, end->type);
7921         ident = state->i_continue;
7922         symbol(state, ident, &ident->sym_ident, label2, label2->type);
7923         /* Now include the body */
7924         flatten(state, first, label1);
7925         statement(state, first);
7926         /* Cleanup the break/continue scope */
7927         end_scope(state);
7928         /* Eat the rest of the loop */
7929         eat(state, TOK_WHILE);
7930         eat(state, TOK_LPAREN);
7931         test = read_expr(state, expr(state));
7932         bool(state, test);
7933         eat(state, TOK_RPAREN);
7934         eat(state, TOK_SEMI);
7935         /* Thread the pieces together */
7936         test = ltrue_expr(state, test);
7937         flatten(state, first, label2);
7938         flatten(state, first, test);
7939         flatten(state, first, branch(state, label1, test));
7940         flatten(state, first, end);
7941 }
7942
7943
7944 static void return_statement(struct compile_state *state, struct triple *first)
7945 {
7946         struct triple *jmp, *mv, *dest, *var, *val;
7947         int last;
7948         eat(state, TOK_RETURN);
7949
7950 #warning "FIXME implement a more general excess branch elimination"
7951         val = 0;
7952         /* If we have a return value do some more work */
7953         if (peek(state) != TOK_SEMI) {
7954                 val = read_expr(state, expr(state));
7955         }
7956         eat(state, TOK_SEMI);
7957
7958         /* See if this last statement in a function */
7959         last = ((peek(state) == TOK_RBRACE) && 
7960                 (state->scope_depth == GLOBAL_SCOPE_DEPTH +2));
7961
7962         /* Find the return variable */
7963         var = MISC(state->main_function, 0);
7964         /* Find the return destination */
7965         dest = RHS(state->main_function, 0)->prev;
7966         mv = jmp = 0;
7967         /* If needed generate a jump instruction */
7968         if (!last) {
7969                 jmp = branch(state, dest, 0);
7970         }
7971         /* If needed generate an assignment instruction */
7972         if (val) {
7973                 mv = write_expr(state, var, val);
7974         }
7975         /* Now put the code together */
7976         if (mv) {
7977                 flatten(state, first, mv);
7978                 flatten(state, first, jmp);
7979         }
7980         else if (jmp) {
7981                 flatten(state, first, jmp);
7982         }
7983 }
7984
7985 static void break_statement(struct compile_state *state, struct triple *first)
7986 {
7987         struct triple *dest;
7988         eat(state, TOK_BREAK);
7989         eat(state, TOK_SEMI);
7990         if (!state->i_break->sym_ident) {
7991                 error(state, 0, "break statement not within loop or switch");
7992         }
7993         dest = state->i_break->sym_ident->def;
7994         flatten(state, first, branch(state, dest, 0));
7995 }
7996
7997 static void continue_statement(struct compile_state *state, struct triple *first)
7998 {
7999         struct triple *dest;
8000         eat(state, TOK_CONTINUE);
8001         eat(state, TOK_SEMI);
8002         if (!state->i_continue->sym_ident) {
8003                 error(state, 0, "continue statement outside of a loop");
8004         }
8005         dest = state->i_continue->sym_ident->def;
8006         flatten(state, first, branch(state, dest, 0));
8007 }
8008
8009 static void goto_statement(struct compile_state *state, struct triple *first)
8010 {
8011         struct hash_entry *ident;
8012         eat(state, TOK_GOTO);
8013         eat(state, TOK_IDENT);
8014         ident = state->token[0].ident;
8015         if (!ident->sym_label) {
8016                 /* If this is a forward branch allocate the label now,
8017                  * it will be flattend in the appropriate location later.
8018                  */
8019                 struct triple *ins;
8020                 ins = label(state);
8021                 label_symbol(state, ident, ins);
8022         }
8023         eat(state, TOK_SEMI);
8024
8025         flatten(state, first, branch(state, ident->sym_label->def, 0));
8026 }
8027
8028 static void labeled_statement(struct compile_state *state, struct triple *first)
8029 {
8030         struct triple *ins;
8031         struct hash_entry *ident;
8032         eat(state, TOK_IDENT);
8033
8034         ident = state->token[0].ident;
8035         if (ident->sym_label && ident->sym_label->def) {
8036                 ins = ident->sym_label->def;
8037                 put_occurance(ins->occurance);
8038                 ins->occurance = new_occurance(state);
8039         }
8040         else {
8041                 ins = label(state);
8042                 label_symbol(state, ident, ins);
8043         }
8044         if (ins->id & TRIPLE_FLAG_FLATTENED) {
8045                 error(state, 0, "label %s already defined", ident->name);
8046         }
8047         flatten(state, first, ins);
8048
8049         eat(state, TOK_COLON);
8050         statement(state, first);
8051 }
8052
8053 static void switch_statement(struct compile_state *state, struct triple *first)
8054 {
8055         FINISHME();
8056         eat(state, TOK_SWITCH);
8057         eat(state, TOK_LPAREN);
8058         expr(state);
8059         eat(state, TOK_RPAREN);
8060         statement(state, first);
8061         error(state, 0, "switch statements are not implemented");
8062         FINISHME();
8063 }
8064
8065 static void case_statement(struct compile_state *state, struct triple *first)
8066 {
8067         FINISHME();
8068         eat(state, TOK_CASE);
8069         constant_expr(state);
8070         eat(state, TOK_COLON);
8071         statement(state, first);
8072         error(state, 0, "case statements are not implemented");
8073         FINISHME();
8074 }
8075
8076 static void default_statement(struct compile_state *state, struct triple *first)
8077 {
8078         FINISHME();
8079         eat(state, TOK_DEFAULT);
8080         eat(state, TOK_COLON);
8081         statement(state, first);
8082         error(state, 0, "default statements are not implemented");
8083         FINISHME();
8084 }
8085
8086 static void asm_statement(struct compile_state *state, struct triple *first)
8087 {
8088         struct asm_info *info;
8089         struct {
8090                 struct triple *constraint;
8091                 struct triple *expr;
8092         } out_param[MAX_LHS], in_param[MAX_RHS], clob_param[MAX_LHS];
8093         struct triple *def, *asm_str;
8094         int out, in, clobbers, more, colons, i;
8095
8096         eat(state, TOK_ASM);
8097         /* For now ignore the qualifiers */
8098         switch(peek(state)) {
8099         case TOK_CONST:
8100                 eat(state, TOK_CONST);
8101                 break;
8102         case TOK_VOLATILE:
8103                 eat(state, TOK_VOLATILE);
8104                 break;
8105         }
8106         eat(state, TOK_LPAREN);
8107         asm_str = string_constant(state);
8108
8109         colons = 0;
8110         out = in = clobbers = 0;
8111         /* Outputs */
8112         if ((colons == 0) && (peek(state) == TOK_COLON)) {
8113                 eat(state, TOK_COLON);
8114                 colons++;
8115                 more = (peek(state) == TOK_LIT_STRING);
8116                 while(more) {
8117                         struct triple *var;
8118                         struct triple *constraint;
8119                         char *str;
8120                         more = 0;
8121                         if (out > MAX_LHS) {
8122                                 error(state, 0, "Maximum output count exceeded.");
8123                         }
8124                         constraint = string_constant(state);
8125                         str = constraint->u.blob;
8126                         if (str[0] != '=') {
8127                                 error(state, 0, "Output constraint does not start with =");
8128                         }
8129                         constraint->u.blob = str + 1;
8130                         eat(state, TOK_LPAREN);
8131                         var = conditional_expr(state);
8132                         eat(state, TOK_RPAREN);
8133
8134                         lvalue(state, var);
8135                         out_param[out].constraint = constraint;
8136                         out_param[out].expr       = var;
8137                         if (peek(state) == TOK_COMMA) {
8138                                 eat(state, TOK_COMMA);
8139                                 more = 1;
8140                         }
8141                         out++;
8142                 }
8143         }
8144         /* Inputs */
8145         if ((colons == 1) && (peek(state) == TOK_COLON)) {
8146                 eat(state, TOK_COLON);
8147                 colons++;
8148                 more = (peek(state) == TOK_LIT_STRING);
8149                 while(more) {
8150                         struct triple *val;
8151                         struct triple *constraint;
8152                         char *str;
8153                         more = 0;
8154                         if (in > MAX_RHS) {
8155                                 error(state, 0, "Maximum input count exceeded.");
8156                         }
8157                         constraint = string_constant(state);
8158                         str = constraint->u.blob;
8159                         if (digitp(str[0] && str[1] == '\0')) {
8160                                 int val;
8161                                 val = digval(str[0]);
8162                                 if ((val < 0) || (val >= out)) {
8163                                         error(state, 0, "Invalid input constraint %d", val);
8164                                 }
8165                         }
8166                         eat(state, TOK_LPAREN);
8167                         val = conditional_expr(state);
8168                         eat(state, TOK_RPAREN);
8169
8170                         in_param[in].constraint = constraint;
8171                         in_param[in].expr       = val;
8172                         if (peek(state) == TOK_COMMA) {
8173                                 eat(state, TOK_COMMA);
8174                                 more = 1;
8175                         }
8176                         in++;
8177                 }
8178         }
8179
8180         /* Clobber */
8181         if ((colons == 2) && (peek(state) == TOK_COLON)) {
8182                 eat(state, TOK_COLON);
8183                 colons++;
8184                 more = (peek(state) == TOK_LIT_STRING);
8185                 while(more) {
8186                         struct triple *clobber;
8187                         more = 0;
8188                         if ((clobbers + out) > MAX_LHS) {
8189                                 error(state, 0, "Maximum clobber limit exceeded.");
8190                         }
8191                         clobber = string_constant(state);
8192                         eat(state, TOK_RPAREN);
8193
8194                         clob_param[clobbers].constraint = clobber;
8195                         if (peek(state) == TOK_COMMA) {
8196                                 eat(state, TOK_COMMA);
8197                                 more = 1;
8198                         }
8199                         clobbers++;
8200                 }
8201         }
8202         eat(state, TOK_RPAREN);
8203         eat(state, TOK_SEMI);
8204
8205
8206         info = xcmalloc(sizeof(*info), "asm_info");
8207         info->str = asm_str->u.blob;
8208         free_triple(state, asm_str);
8209
8210         def = new_triple(state, OP_ASM, &void_type, clobbers + out, in);
8211         def->u.ainfo = info;
8212
8213         /* Find the register constraints */
8214         for(i = 0; i < out; i++) {
8215                 struct triple *constraint;
8216                 constraint = out_param[i].constraint;
8217                 info->tmpl.lhs[i] = arch_reg_constraint(state, 
8218                         out_param[i].expr->type, constraint->u.blob);
8219                 free_triple(state, constraint);
8220         }
8221         for(; i - out < clobbers; i++) {
8222                 struct triple *constraint;
8223                 constraint = clob_param[i - out].constraint;
8224                 info->tmpl.lhs[i] = arch_reg_clobber(state, constraint->u.blob);
8225                 free_triple(state, constraint);
8226         }
8227         for(i = 0; i < in; i++) {
8228                 struct triple *constraint;
8229                 const char *str;
8230                 constraint = in_param[i].constraint;
8231                 str = constraint->u.blob;
8232                 if (digitp(str[0]) && str[1] == '\0') {
8233                         struct reg_info cinfo;
8234                         int val;
8235                         val = digval(str[0]);
8236                         cinfo.reg = info->tmpl.lhs[val].reg;
8237                         cinfo.regcm = arch_type_to_regcm(state, in_param[i].expr->type);
8238                         cinfo.regcm &= info->tmpl.lhs[val].regcm;
8239                         if (cinfo.reg == REG_UNSET) {
8240                                 cinfo.reg = REG_VIRT0 + val;
8241                         }
8242                         if (cinfo.regcm == 0) {
8243                                 error(state, 0, "No registers for %d", val);
8244                         }
8245                         info->tmpl.lhs[val] = cinfo;
8246                         info->tmpl.rhs[i]   = cinfo;
8247                                 
8248                 } else {
8249                         info->tmpl.rhs[i] = arch_reg_constraint(state, 
8250                                 in_param[i].expr->type, str);
8251                 }
8252                 free_triple(state, constraint);
8253         }
8254
8255         /* Now build the helper expressions */
8256         for(i = 0; i < in; i++) {
8257                 RHS(def, i) = read_expr(state,in_param[i].expr);
8258         }
8259         flatten(state, first, def);
8260         for(i = 0; i < out; i++) {
8261                 struct triple *piece;
8262                 piece = triple(state, OP_PIECE, out_param[i].expr->type, def, 0);
8263                 piece->u.cval = i;
8264                 LHS(def, i) = piece;
8265                 flatten(state, first,
8266                         write_expr(state, out_param[i].expr, piece));
8267         }
8268         for(; i - out < clobbers; i++) {
8269                 struct triple *piece;
8270                 piece = triple(state, OP_PIECE, &void_type, def, 0);
8271                 piece->u.cval = i;
8272                 LHS(def, i) = piece;
8273                 flatten(state, first, piece);
8274         }
8275 }
8276
8277
8278 static int isdecl(int tok)
8279 {
8280         switch(tok) {
8281         case TOK_AUTO:
8282         case TOK_REGISTER:
8283         case TOK_STATIC:
8284         case TOK_EXTERN:
8285         case TOK_TYPEDEF:
8286         case TOK_CONST:
8287         case TOK_RESTRICT:
8288         case TOK_VOLATILE:
8289         case TOK_VOID:
8290         case TOK_CHAR:
8291         case TOK_SHORT:
8292         case TOK_INT:
8293         case TOK_LONG:
8294         case TOK_FLOAT:
8295         case TOK_DOUBLE:
8296         case TOK_SIGNED:
8297         case TOK_UNSIGNED:
8298         case TOK_STRUCT:
8299         case TOK_UNION:
8300         case TOK_ENUM:
8301         case TOK_TYPE_NAME: /* typedef name */
8302                 return 1;
8303         default:
8304                 return 0;
8305         }
8306 }
8307
8308 static void compound_statement(struct compile_state *state, struct triple *first)
8309 {
8310         eat(state, TOK_LBRACE);
8311         start_scope(state);
8312
8313         /* statement-list opt */
8314         while (peek(state) != TOK_RBRACE) {
8315                 statement(state, first);
8316         }
8317         end_scope(state);
8318         eat(state, TOK_RBRACE);
8319 }
8320
8321 static void statement(struct compile_state *state, struct triple *first)
8322 {
8323         int tok;
8324         tok = peek(state);
8325         if (tok == TOK_LBRACE) {
8326                 compound_statement(state, first);
8327         }
8328         else if (tok == TOK_IF) {
8329                 if_statement(state, first); 
8330         }
8331         else if (tok == TOK_FOR) {
8332                 for_statement(state, first);
8333         }
8334         else if (tok == TOK_WHILE) {
8335                 while_statement(state, first);
8336         }
8337         else if (tok == TOK_DO) {
8338                 do_statement(state, first);
8339         }
8340         else if (tok == TOK_RETURN) {
8341                 return_statement(state, first);
8342         }
8343         else if (tok == TOK_BREAK) {
8344                 break_statement(state, first);
8345         }
8346         else if (tok == TOK_CONTINUE) {
8347                 continue_statement(state, first);
8348         }
8349         else if (tok == TOK_GOTO) {
8350                 goto_statement(state, first);
8351         }
8352         else if (tok == TOK_SWITCH) {
8353                 switch_statement(state, first);
8354         }
8355         else if (tok == TOK_ASM) {
8356                 asm_statement(state, first);
8357         }
8358         else if ((tok == TOK_IDENT) && (peek2(state) == TOK_COLON)) {
8359                 labeled_statement(state, first); 
8360         }
8361         else if (tok == TOK_CASE) {
8362                 case_statement(state, first);
8363         }
8364         else if (tok == TOK_DEFAULT) {
8365                 default_statement(state, first);
8366         }
8367         else if (isdecl(tok)) {
8368                 /* This handles C99 intermixing of statements and decls */
8369                 decl(state, first);
8370         }
8371         else {
8372                 expr_statement(state, first);
8373         }
8374 }
8375
8376 static struct type *param_decl(struct compile_state *state)
8377 {
8378         struct type *type;
8379         struct hash_entry *ident;
8380         /* Cheat so the declarator will know we are not global */
8381         start_scope(state); 
8382         ident = 0;
8383         type = decl_specifiers(state);
8384         type = declarator(state, type, &ident, 0);
8385         type->field_ident = ident;
8386         end_scope(state);
8387         return type;
8388 }
8389
8390 static struct type *param_type_list(struct compile_state *state, struct type *type)
8391 {
8392         struct type *ftype, **next;
8393         ftype = new_type(TYPE_FUNCTION, type, param_decl(state));
8394         next = &ftype->right;
8395         while(peek(state) == TOK_COMMA) {
8396                 eat(state, TOK_COMMA);
8397                 if (peek(state) == TOK_DOTS) {
8398                         eat(state, TOK_DOTS);
8399                         error(state, 0, "variadic functions not supported");
8400                 }
8401                 else {
8402                         *next = new_type(TYPE_PRODUCT, *next, param_decl(state));
8403                         next = &((*next)->right);
8404                 }
8405         }
8406         return ftype;
8407 }
8408
8409
8410 static struct type *type_name(struct compile_state *state)
8411 {
8412         struct type *type;
8413         type = specifier_qualifier_list(state);
8414         /* abstract-declarator (may consume no tokens) */
8415         type = declarator(state, type, 0, 0);
8416         return type;
8417 }
8418
8419 static struct type *direct_declarator(
8420         struct compile_state *state, struct type *type, 
8421         struct hash_entry **ident, int need_ident)
8422 {
8423         struct type *outer;
8424         int op;
8425         outer = 0;
8426         arrays_complete(state, type);
8427         switch(peek(state)) {
8428         case TOK_IDENT:
8429                 eat(state, TOK_IDENT);
8430                 if (!ident) {
8431                         error(state, 0, "Unexpected identifier found");
8432                 }
8433                 /* The name of what we are declaring */
8434                 *ident = state->token[0].ident;
8435                 break;
8436         case TOK_LPAREN:
8437                 eat(state, TOK_LPAREN);
8438                 outer = declarator(state, type, ident, need_ident);
8439                 eat(state, TOK_RPAREN);
8440                 break;
8441         default:
8442                 if (need_ident) {
8443                         error(state, 0, "Identifier expected");
8444                 }
8445                 break;
8446         }
8447         do {
8448                 op = 1;
8449                 arrays_complete(state, type);
8450                 switch(peek(state)) {
8451                 case TOK_LPAREN:
8452                         eat(state, TOK_LPAREN);
8453                         type = param_type_list(state, type);
8454                         eat(state, TOK_RPAREN);
8455                         break;
8456                 case TOK_LBRACKET:
8457                 {
8458                         unsigned int qualifiers;
8459                         struct triple *value;
8460                         value = 0;
8461                         eat(state, TOK_LBRACKET);
8462                         if (peek(state) != TOK_RBRACKET) {
8463                                 value = constant_expr(state);
8464                                 integral(state, value);
8465                         }
8466                         eat(state, TOK_RBRACKET);
8467
8468                         qualifiers = type->type & (QUAL_MASK | STOR_MASK);
8469                         type = new_type(TYPE_ARRAY | qualifiers, type, 0);
8470                         if (value) {
8471                                 type->elements = value->u.cval;
8472                                 free_triple(state, value);
8473                         } else {
8474                                 type->elements = ELEMENT_COUNT_UNSPECIFIED;
8475                                 op = 0;
8476                         }
8477                 }
8478                         break;
8479                 default:
8480                         op = 0;
8481                         break;
8482                 }
8483         } while(op);
8484         if (outer) {
8485                 struct type *inner;
8486                 arrays_complete(state, type);
8487                 FINISHME();
8488                 for(inner = outer; inner->left; inner = inner->left)
8489                         ;
8490                 inner->left = type;
8491                 type = outer;
8492         }
8493         return type;
8494 }
8495
8496 static struct type *declarator(
8497         struct compile_state *state, struct type *type, 
8498         struct hash_entry **ident, int need_ident)
8499 {
8500         while(peek(state) == TOK_STAR) {
8501                 eat(state, TOK_STAR);
8502                 type = new_type(TYPE_POINTER | (type->type & STOR_MASK), type, 0);
8503         }
8504         type = direct_declarator(state, type, ident, need_ident);
8505         return type;
8506 }
8507
8508
8509 static struct type *typedef_name(
8510         struct compile_state *state, unsigned int specifiers)
8511 {
8512         struct hash_entry *ident;
8513         struct type *type;
8514         eat(state, TOK_TYPE_NAME);
8515         ident = state->token[0].ident;
8516         type = ident->sym_ident->type;
8517         specifiers |= type->type & QUAL_MASK;
8518         if ((specifiers & (STOR_MASK | QUAL_MASK)) != 
8519                 (type->type & (STOR_MASK | QUAL_MASK))) {
8520                 type = clone_type(specifiers, type);
8521         }
8522         return type;
8523 }
8524
8525 static struct type *enum_specifier(
8526         struct compile_state *state, unsigned int specifiers)
8527 {
8528         int tok;
8529         struct type *type;
8530         type = 0;
8531         FINISHME();
8532         eat(state, TOK_ENUM);
8533         tok = peek(state);
8534         if (tok == TOK_IDENT) {
8535                 eat(state, TOK_IDENT);
8536         }
8537         if ((tok != TOK_IDENT) || (peek(state) == TOK_LBRACE)) {
8538                 eat(state, TOK_LBRACE);
8539                 do {
8540                         eat(state, TOK_IDENT);
8541                         if (peek(state) == TOK_EQ) {
8542                                 eat(state, TOK_EQ);
8543                                 constant_expr(state);
8544                         }
8545                         if (peek(state) == TOK_COMMA) {
8546                                 eat(state, TOK_COMMA);
8547                         }
8548                 } while(peek(state) != TOK_RBRACE);
8549                 eat(state, TOK_RBRACE);
8550         }
8551         FINISHME();
8552         return type;
8553 }
8554
8555 static struct type *struct_declarator(
8556         struct compile_state *state, struct type *type, struct hash_entry **ident)
8557 {
8558         int tok;
8559         tok = peek(state);
8560         if (tok != TOK_COLON) {
8561                 type = declarator(state, type, ident, 1);
8562         }
8563         if ((tok == TOK_COLON) || (peek(state) == TOK_COLON)) {
8564                 struct triple *value;
8565                 eat(state, TOK_COLON);
8566                 value = constant_expr(state);
8567 #warning "FIXME implement bitfields to reduce register usage"
8568                 error(state, 0, "bitfields not yet implemented");
8569         }
8570         return type;
8571 }
8572
8573 static struct type *struct_or_union_specifier(
8574         struct compile_state *state, unsigned int spec)
8575 {
8576         struct type *struct_type;
8577         struct hash_entry *ident;
8578         unsigned int type_join;
8579         int tok;
8580         struct_type = 0;
8581         ident = 0;
8582         switch(peek(state)) {
8583         case TOK_STRUCT:
8584                 eat(state, TOK_STRUCT);
8585                 type_join = TYPE_PRODUCT;
8586                 break;
8587         case TOK_UNION:
8588                 eat(state, TOK_UNION);
8589                 type_join = TYPE_OVERLAP;
8590                 error(state, 0, "unions not yet supported\n");
8591                 break;
8592         default:
8593                 eat(state, TOK_STRUCT);
8594                 type_join = TYPE_PRODUCT;
8595                 break;
8596         }
8597         tok = peek(state);
8598         if ((tok == TOK_IDENT) || (tok == TOK_TYPE_NAME)) {
8599                 eat(state, tok);
8600                 ident = state->token[0].ident;
8601         }
8602         if (!ident || (peek(state) == TOK_LBRACE)) {
8603                 ulong_t elements;
8604                 struct type **next;
8605                 elements = 0;
8606                 eat(state, TOK_LBRACE);
8607                 next = &struct_type;
8608                 do {
8609                         struct type *base_type;
8610                         int done;
8611                         base_type = specifier_qualifier_list(state);
8612                         do {
8613                                 struct type *type;
8614                                 struct hash_entry *fident;
8615                                 done = 1;
8616                                 type = struct_declarator(state, base_type, &fident);
8617                                 elements++;
8618                                 if (peek(state) == TOK_COMMA) {
8619                                         done = 0;
8620                                         eat(state, TOK_COMMA);
8621                                 }
8622                                 type = clone_type(0, type);
8623                                 type->field_ident = fident;
8624                                 if (*next) {
8625                                         *next = new_type(type_join, *next, type);
8626                                         next = &((*next)->right);
8627                                 } else {
8628                                         *next = type;
8629                                 }
8630                         } while(!done);
8631                         eat(state, TOK_SEMI);
8632                 } while(peek(state) != TOK_RBRACE);
8633                 eat(state, TOK_RBRACE);
8634                 struct_type = new_type(TYPE_STRUCT | spec, struct_type, 0);
8635                 struct_type->type_ident = ident;
8636                 struct_type->elements = elements;
8637                 symbol(state, ident, &ident->sym_struct, 0, struct_type);
8638         }
8639         if (ident && ident->sym_struct) {
8640                 struct_type = clone_type(spec,  ident->sym_struct->type);
8641         }
8642         else if (ident && !ident->sym_struct) {
8643                 error(state, 0, "struct %s undeclared", ident->name);
8644         }
8645         return struct_type;
8646 }
8647
8648 static unsigned int storage_class_specifier_opt(struct compile_state *state)
8649 {
8650         unsigned int specifiers;
8651         switch(peek(state)) {
8652         case TOK_AUTO:
8653                 eat(state, TOK_AUTO);
8654                 specifiers = STOR_AUTO;
8655                 break;
8656         case TOK_REGISTER:
8657                 eat(state, TOK_REGISTER);
8658                 specifiers = STOR_REGISTER;
8659                 break;
8660         case TOK_STATIC:
8661                 eat(state, TOK_STATIC);
8662                 specifiers = STOR_STATIC;
8663                 break;
8664         case TOK_EXTERN:
8665                 eat(state, TOK_EXTERN);
8666                 specifiers = STOR_EXTERN;
8667                 break;
8668         case TOK_TYPEDEF:
8669                 eat(state, TOK_TYPEDEF);
8670                 specifiers = STOR_TYPEDEF;
8671                 break;
8672         default:
8673                 if (state->scope_depth <= GLOBAL_SCOPE_DEPTH) {
8674                         specifiers = STOR_STATIC;
8675                 }
8676                 else {
8677                         specifiers = STOR_AUTO;
8678                 }
8679         }
8680         return specifiers;
8681 }
8682
8683 static unsigned int function_specifier_opt(struct compile_state *state)
8684 {
8685         /* Ignore the inline keyword */
8686         unsigned int specifiers;
8687         specifiers = 0;
8688         switch(peek(state)) {
8689         case TOK_INLINE:
8690                 eat(state, TOK_INLINE);
8691                 specifiers = STOR_INLINE;
8692         }
8693         return specifiers;
8694 }
8695
8696 static unsigned int type_qualifiers(struct compile_state *state)
8697 {
8698         unsigned int specifiers;
8699         int done;
8700         done = 0;
8701         specifiers = QUAL_NONE;
8702         do {
8703                 switch(peek(state)) {
8704                 case TOK_CONST:
8705                         eat(state, TOK_CONST);
8706                         specifiers = QUAL_CONST;
8707                         break;
8708                 case TOK_VOLATILE:
8709                         eat(state, TOK_VOLATILE);
8710                         specifiers = QUAL_VOLATILE;
8711                         break;
8712                 case TOK_RESTRICT:
8713                         eat(state, TOK_RESTRICT);
8714                         specifiers = QUAL_RESTRICT;
8715                         break;
8716                 default:
8717                         done = 1;
8718                         break;
8719                 }
8720         } while(!done);
8721         return specifiers;
8722 }
8723
8724 static struct type *type_specifier(
8725         struct compile_state *state, unsigned int spec)
8726 {
8727         struct type *type;
8728         type = 0;
8729         switch(peek(state)) {
8730         case TOK_VOID:
8731                 eat(state, TOK_VOID);
8732                 type = new_type(TYPE_VOID | spec, 0, 0);
8733                 break;
8734         case TOK_CHAR:
8735                 eat(state, TOK_CHAR);
8736                 type = new_type(TYPE_CHAR | spec, 0, 0);
8737                 break;
8738         case TOK_SHORT:
8739                 eat(state, TOK_SHORT);
8740                 if (peek(state) == TOK_INT) {
8741                         eat(state, TOK_INT);
8742                 }
8743                 type = new_type(TYPE_SHORT | spec, 0, 0);
8744                 break;
8745         case TOK_INT:
8746                 eat(state, TOK_INT);
8747                 type = new_type(TYPE_INT | spec, 0, 0);
8748                 break;
8749         case TOK_LONG:
8750                 eat(state, TOK_LONG);
8751                 switch(peek(state)) {
8752                 case TOK_LONG:
8753                         eat(state, TOK_LONG);
8754                         error(state, 0, "long long not supported");
8755                         break;
8756                 case TOK_DOUBLE:
8757                         eat(state, TOK_DOUBLE);
8758                         error(state, 0, "long double not supported");
8759                         break;
8760                 case TOK_INT:
8761                         eat(state, TOK_INT);
8762                         type = new_type(TYPE_LONG | spec, 0, 0);
8763                         break;
8764                 default:
8765                         type = new_type(TYPE_LONG | spec, 0, 0);
8766                         break;
8767                 }
8768                 break;
8769         case TOK_FLOAT:
8770                 eat(state, TOK_FLOAT);
8771                 error(state, 0, "type float not supported");
8772                 break;
8773         case TOK_DOUBLE:
8774                 eat(state, TOK_DOUBLE);
8775                 error(state, 0, "type double not supported");
8776                 break;
8777         case TOK_SIGNED:
8778                 eat(state, TOK_SIGNED);
8779                 switch(peek(state)) {
8780                 case TOK_LONG:
8781                         eat(state, TOK_LONG);
8782                         switch(peek(state)) {
8783                         case TOK_LONG:
8784                                 eat(state, TOK_LONG);
8785                                 error(state, 0, "type long long not supported");
8786                                 break;
8787                         case TOK_INT:
8788                                 eat(state, TOK_INT);
8789                                 type = new_type(TYPE_LONG | spec, 0, 0);
8790                                 break;
8791                         default:
8792                                 type = new_type(TYPE_LONG | spec, 0, 0);
8793                                 break;
8794                         }
8795                         break;
8796                 case TOK_INT:
8797                         eat(state, TOK_INT);
8798                         type = new_type(TYPE_INT | spec, 0, 0);
8799                         break;
8800                 case TOK_SHORT:
8801                         eat(state, TOK_SHORT);
8802                         type = new_type(TYPE_SHORT | spec, 0, 0);
8803                         break;
8804                 case TOK_CHAR:
8805                         eat(state, TOK_CHAR);
8806                         type = new_type(TYPE_CHAR | spec, 0, 0);
8807                         break;
8808                 default:
8809                         type = new_type(TYPE_INT | spec, 0, 0);
8810                         break;
8811                 }
8812                 break;
8813         case TOK_UNSIGNED:
8814                 eat(state, TOK_UNSIGNED);
8815                 switch(peek(state)) {
8816                 case TOK_LONG:
8817                         eat(state, TOK_LONG);
8818                         switch(peek(state)) {
8819                         case TOK_LONG:
8820                                 eat(state, TOK_LONG);
8821                                 error(state, 0, "unsigned long long not supported");
8822                                 break;
8823                         case TOK_INT:
8824                                 eat(state, TOK_INT);
8825                                 type = new_type(TYPE_ULONG | spec, 0, 0);
8826                                 break;
8827                         default:
8828                                 type = new_type(TYPE_ULONG | spec, 0, 0);
8829                                 break;
8830                         }
8831                         break;
8832                 case TOK_INT:
8833                         eat(state, TOK_INT);
8834                         type = new_type(TYPE_UINT | spec, 0, 0);
8835                         break;
8836                 case TOK_SHORT:
8837                         eat(state, TOK_SHORT);
8838                         type = new_type(TYPE_USHORT | spec, 0, 0);
8839                         break;
8840                 case TOK_CHAR:
8841                         eat(state, TOK_CHAR);
8842                         type = new_type(TYPE_UCHAR | spec, 0, 0);
8843                         break;
8844                 default:
8845                         type = new_type(TYPE_UINT | spec, 0, 0);
8846                         break;
8847                 }
8848                 break;
8849                 /* struct or union specifier */
8850         case TOK_STRUCT:
8851         case TOK_UNION:
8852                 type = struct_or_union_specifier(state, spec);
8853                 break;
8854                 /* enum-spefifier */
8855         case TOK_ENUM:
8856                 type = enum_specifier(state, spec);
8857                 break;
8858                 /* typedef name */
8859         case TOK_TYPE_NAME:
8860                 type = typedef_name(state, spec);
8861                 break;
8862         default:
8863                 error(state, 0, "bad type specifier %s", 
8864                         tokens[peek(state)]);
8865                 break;
8866         }
8867         return type;
8868 }
8869
8870 static int istype(int tok)
8871 {
8872         switch(tok) {
8873         case TOK_CONST:
8874         case TOK_RESTRICT:
8875         case TOK_VOLATILE:
8876         case TOK_VOID:
8877         case TOK_CHAR:
8878         case TOK_SHORT:
8879         case TOK_INT:
8880         case TOK_LONG:
8881         case TOK_FLOAT:
8882         case TOK_DOUBLE:
8883         case TOK_SIGNED:
8884         case TOK_UNSIGNED:
8885         case TOK_STRUCT:
8886         case TOK_UNION:
8887         case TOK_ENUM:
8888         case TOK_TYPE_NAME:
8889                 return 1;
8890         default:
8891                 return 0;
8892         }
8893 }
8894
8895
8896 static struct type *specifier_qualifier_list(struct compile_state *state)
8897 {
8898         struct type *type;
8899         unsigned int specifiers = 0;
8900
8901         /* type qualifiers */
8902         specifiers |= type_qualifiers(state);
8903
8904         /* type specifier */
8905         type = type_specifier(state, specifiers);
8906
8907         return type;
8908 }
8909
8910 static int isdecl_specifier(int tok)
8911 {
8912         switch(tok) {
8913                 /* storage class specifier */
8914         case TOK_AUTO:
8915         case TOK_REGISTER:
8916         case TOK_STATIC:
8917         case TOK_EXTERN:
8918         case TOK_TYPEDEF:
8919                 /* type qualifier */
8920         case TOK_CONST:
8921         case TOK_RESTRICT:
8922         case TOK_VOLATILE:
8923                 /* type specifiers */
8924         case TOK_VOID:
8925         case TOK_CHAR:
8926         case TOK_SHORT:
8927         case TOK_INT:
8928         case TOK_LONG:
8929         case TOK_FLOAT:
8930         case TOK_DOUBLE:
8931         case TOK_SIGNED:
8932         case TOK_UNSIGNED:
8933                 /* struct or union specifier */
8934         case TOK_STRUCT:
8935         case TOK_UNION:
8936                 /* enum-spefifier */
8937         case TOK_ENUM:
8938                 /* typedef name */
8939         case TOK_TYPE_NAME:
8940                 /* function specifiers */
8941         case TOK_INLINE:
8942                 return 1;
8943         default:
8944                 return 0;
8945         }
8946 }
8947
8948 static struct type *decl_specifiers(struct compile_state *state)
8949 {
8950         struct type *type;
8951         unsigned int specifiers;
8952         /* I am overly restrictive in the arragement of specifiers supported.
8953          * C is overly flexible in this department it makes interpreting
8954          * the parse tree difficult.
8955          */
8956         specifiers = 0;
8957
8958         /* storage class specifier */
8959         specifiers |= storage_class_specifier_opt(state);
8960
8961         /* function-specifier */
8962         specifiers |= function_specifier_opt(state);
8963
8964         /* type qualifier */
8965         specifiers |= type_qualifiers(state);
8966
8967         /* type specifier */
8968         type = type_specifier(state, specifiers);
8969         return type;
8970 }
8971
8972 struct field_info {
8973         struct type *type;
8974         size_t offset;
8975 };
8976
8977 static struct field_info designator(struct compile_state *state, struct type *type)
8978 {
8979         int tok;
8980         struct field_info info;
8981         info.offset = ~0U;
8982         info.type = 0;
8983         do {
8984                 switch(peek(state)) {
8985                 case TOK_LBRACKET:
8986                 {
8987                         struct triple *value;
8988                         if ((type->type & TYPE_MASK) != TYPE_ARRAY) {
8989                                 error(state, 0, "Array designator not in array initializer");
8990                         }
8991                         eat(state, TOK_LBRACKET);
8992                         value = constant_expr(state);
8993                         eat(state, TOK_RBRACKET);
8994
8995                         info.type = type->left;
8996                         info.offset = value->u.cval * size_of(state, info.type);
8997                         break;
8998                 }
8999                 case TOK_DOT:
9000                 {
9001                         struct hash_entry *field;
9002                         if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
9003                                 error(state, 0, "Struct designator not in struct initializer");
9004                         }
9005                         eat(state, TOK_DOT);
9006                         eat(state, TOK_IDENT);
9007                         field = state->token[0].ident;
9008                         info.offset = field_offset(state, type, field);
9009                         info.type   = field_type(state, type, field);
9010                         break;
9011                 }
9012                 default:
9013                         error(state, 0, "Invalid designator");
9014                 }
9015                 tok = peek(state);
9016         } while((tok == TOK_LBRACKET) || (tok == TOK_DOT));
9017         eat(state, TOK_EQ);
9018         return info;
9019 }
9020
9021 static struct triple *initializer(
9022         struct compile_state *state, struct type *type)
9023 {
9024         struct triple *result;
9025         if (peek(state) != TOK_LBRACE) {
9026                 result = assignment_expr(state);
9027         }
9028         else {
9029                 int comma;
9030                 size_t max_offset;
9031                 struct field_info info;
9032                 void *buf;
9033                 if (((type->type & TYPE_MASK) != TYPE_ARRAY) &&
9034                         ((type->type & TYPE_MASK) != TYPE_STRUCT)) {
9035                         internal_error(state, 0, "unknown initializer type");
9036                 }
9037                 info.offset = 0;
9038                 info.type = type->left;
9039                 if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
9040                         info.type = next_field(state, type, 0);
9041                 }
9042                 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
9043                         max_offset = 0;
9044                 } else {
9045                         max_offset = size_of(state, type);
9046                 }
9047                 buf = xcmalloc(max_offset, "initializer");
9048                 eat(state, TOK_LBRACE);
9049                 do {
9050                         struct triple *value;
9051                         struct type *value_type;
9052                         size_t value_size;
9053                         void *dest;
9054                         int tok;
9055                         comma = 0;
9056                         tok = peek(state);
9057                         if ((tok == TOK_LBRACKET) || (tok == TOK_DOT)) {
9058                                 info = designator(state, type);
9059                         }
9060                         if ((type->elements != ELEMENT_COUNT_UNSPECIFIED) &&
9061                                 (info.offset >= max_offset)) {
9062                                 error(state, 0, "element beyond bounds");
9063                         }
9064                         value_type = info.type;
9065                         value = eval_const_expr(state, initializer(state, value_type));
9066                         value_size = size_of(state, value_type);
9067                         if (((type->type & TYPE_MASK) == TYPE_ARRAY) &&
9068                                 (type->elements == ELEMENT_COUNT_UNSPECIFIED) &&
9069                                 (max_offset <= info.offset)) {
9070                                 void *old_buf;
9071                                 size_t old_size;
9072                                 old_buf = buf;
9073                                 old_size = max_offset;
9074                                 max_offset = info.offset + value_size;
9075                                 buf = xmalloc(max_offset, "initializer");
9076                                 memcpy(buf, old_buf, old_size);
9077                                 xfree(old_buf);
9078                         }
9079                         dest = ((char *)buf) + info.offset;
9080                         if (value->op == OP_BLOBCONST) {
9081                                 memcpy(dest, value->u.blob, value_size);
9082                         }
9083                         else if ((value->op == OP_INTCONST) && (value_size == 1)) {
9084                                 *((uint8_t *)dest) = value->u.cval & 0xff;
9085                         }
9086                         else if ((value->op == OP_INTCONST) && (value_size == 2)) {
9087                                 *((uint16_t *)dest) = value->u.cval & 0xffff;
9088                         }
9089                         else if ((value->op == OP_INTCONST) && (value_size == 4)) {
9090                                 *((uint32_t *)dest) = value->u.cval & 0xffffffff;
9091                         }
9092                         else {
9093                                 internal_error(state, 0, "unhandled constant initializer");
9094                         }
9095                         free_triple(state, value);
9096                         if (peek(state) == TOK_COMMA) {
9097                                 eat(state, TOK_COMMA);
9098                                 comma = 1;
9099                         }
9100                         info.offset += value_size;
9101                         if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
9102                                 info.type = next_field(state, type, info.type);
9103                                 info.offset = field_offset(state, type, 
9104                                         info.type->field_ident);
9105                         }
9106                 } while(comma && (peek(state) != TOK_RBRACE));
9107                 if ((type->elements == ELEMENT_COUNT_UNSPECIFIED) &&
9108                         ((type->type & TYPE_MASK) == TYPE_ARRAY)) {
9109                         type->elements = max_offset / size_of(state, type->left);
9110                 }
9111                 eat(state, TOK_RBRACE);
9112                 result = triple(state, OP_BLOBCONST, type, 0, 0);
9113                 result->u.blob = buf;
9114         }
9115         return result;
9116 }
9117
9118 static void resolve_branches(struct compile_state *state)
9119 {
9120         /* Make a second pass and finish anything outstanding
9121          * with respect to branches.  The only outstanding item
9122          * is to see if there are goto to labels that have not
9123          * been defined and to error about them.
9124          */
9125         int i;
9126         for(i = 0; i < HASH_TABLE_SIZE; i++) {
9127                 struct hash_entry *entry;
9128                 for(entry = state->hash_table[i]; entry; entry = entry->next) {
9129                         struct triple *ins;
9130                         if (!entry->sym_label) {
9131                                 continue;
9132                         }
9133                         ins = entry->sym_label->def;
9134                         if (!(ins->id & TRIPLE_FLAG_FLATTENED)) {
9135                                 error(state, ins, "label `%s' used but not defined",
9136                                         entry->name);
9137                         }
9138                 }
9139         }
9140 }
9141
9142 static struct triple *function_definition(
9143         struct compile_state *state, struct type *type)
9144 {
9145         struct triple *def, *tmp, *first, *end;
9146         struct hash_entry *ident;
9147         struct type *param;
9148         int i;
9149         if ((type->type &TYPE_MASK) != TYPE_FUNCTION) {
9150                 error(state, 0, "Invalid function header");
9151         }
9152
9153         /* Verify the function type */
9154         if (((type->right->type & TYPE_MASK) != TYPE_VOID)  &&
9155                 ((type->right->type & TYPE_MASK) != TYPE_PRODUCT) &&
9156                 (type->right->field_ident == 0)) {
9157                 error(state, 0, "Invalid function parameters");
9158         }
9159         param = type->right;
9160         i = 0;
9161         while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
9162                 i++;
9163                 if (!param->left->field_ident) {
9164                         error(state, 0, "No identifier for parameter %d\n", i);
9165                 }
9166                 param = param->right;
9167         }
9168         i++;
9169         if (((param->type & TYPE_MASK) != TYPE_VOID) && !param->field_ident) {
9170                 error(state, 0, "No identifier for paramter %d\n", i);
9171         }
9172         
9173         /* Get a list of statements for this function. */
9174         def = triple(state, OP_LIST, type, 0, 0);
9175
9176         /* Start a new scope for the passed parameters */
9177         start_scope(state);
9178
9179         /* Put a label at the very start of a function */
9180         first = label(state);
9181         RHS(def, 0) = first;
9182
9183         /* Put a label at the very end of a function */
9184         end = label(state);
9185         flatten(state, first, end);
9186
9187         /* Walk through the parameters and create symbol table entries
9188          * for them.
9189          */
9190         param = type->right;
9191         while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
9192                 ident = param->left->field_ident;
9193                 tmp = variable(state, param->left);
9194                 symbol(state, ident, &ident->sym_ident, tmp, tmp->type);
9195                 flatten(state, end, tmp);
9196                 param = param->right;
9197         }
9198         if ((param->type & TYPE_MASK) != TYPE_VOID) {
9199                 /* And don't forget the last parameter */
9200                 ident = param->field_ident;
9201                 tmp = variable(state, param);
9202                 symbol(state, ident, &ident->sym_ident, tmp, tmp->type);
9203                 flatten(state, end, tmp);
9204         }
9205         /* Add a variable for the return value */
9206         MISC(def, 0) = 0;
9207         if ((type->left->type & TYPE_MASK) != TYPE_VOID) {
9208                 /* Remove all type qualifiers from the return type */
9209                 tmp = variable(state, clone_type(0, type->left));
9210                 flatten(state, end, tmp);
9211                 /* Remember where the return value is */
9212                 MISC(def, 0) = tmp;
9213         }
9214
9215         /* Remember which function I am compiling.
9216          * Also assume the last defined function is the main function.
9217          */
9218         state->main_function = def;
9219
9220         /* Now get the actual function definition */
9221         compound_statement(state, end);
9222
9223         /* Finish anything unfinished with branches */
9224         resolve_branches(state);
9225
9226         /* Remove the parameter scope */
9227         end_scope(state);
9228
9229 #if 0
9230         fprintf(stdout, "\n");
9231         loc(stdout, state, 0);
9232         fprintf(stdout, "\n__________ function_definition _________\n");
9233         print_triple(state, def);
9234         fprintf(stdout, "__________ function_definition _________ done\n\n");
9235 #endif
9236
9237         return def;
9238 }
9239
9240 static struct triple *do_decl(struct compile_state *state, 
9241         struct type *type, struct hash_entry *ident)
9242 {
9243         struct triple *def;
9244         def = 0;
9245         /* Clean up the storage types used */
9246         switch (type->type & STOR_MASK) {
9247         case STOR_AUTO:
9248         case STOR_STATIC:
9249                 /* These are the good types I am aiming for */
9250                 break;
9251         case STOR_REGISTER:
9252                 type->type &= ~STOR_MASK;
9253                 type->type |= STOR_AUTO;
9254                 break;
9255         case STOR_EXTERN:
9256                 type->type &= ~STOR_MASK;
9257                 type->type |= STOR_STATIC;
9258                 break;
9259         case STOR_TYPEDEF:
9260                 if (!ident) {
9261                         error(state, 0, "typedef without name");
9262                 }
9263                 symbol(state, ident, &ident->sym_ident, 0, type);
9264                 ident->tok = TOK_TYPE_NAME;
9265                 return 0;
9266                 break;
9267         default:
9268                 internal_error(state, 0, "Undefined storage class");
9269         }
9270         if ((type->type & TYPE_MASK) == TYPE_FUNCTION) {
9271                 error(state, 0, "Function prototypes not supported");
9272         }
9273         if (ident && 
9274                 ((type->type & STOR_MASK) == STOR_STATIC) &&
9275                 ((type->type & QUAL_CONST) == 0)) {
9276                 error(state, 0, "non const static variables not supported");
9277         }
9278         if (ident) {
9279                 def = variable(state, type);
9280                 symbol(state, ident, &ident->sym_ident, def, type);
9281         }
9282         return def;
9283 }
9284
9285 static void decl(struct compile_state *state, struct triple *first)
9286 {
9287         struct type *base_type, *type;
9288         struct hash_entry *ident;
9289         struct triple *def;
9290         int global;
9291         global = (state->scope_depth <= GLOBAL_SCOPE_DEPTH);
9292         base_type = decl_specifiers(state);
9293         ident = 0;
9294         type = declarator(state, base_type, &ident, 0);
9295         if (global && ident && (peek(state) == TOK_LBRACE)) {
9296                 /* function */
9297                 state->function = ident->name;
9298                 def = function_definition(state, type);
9299                 symbol(state, ident, &ident->sym_ident, def, type);
9300                 state->function = 0;
9301         }
9302         else {
9303                 int done;
9304                 flatten(state, first, do_decl(state, type, ident));
9305                 /* type or variable definition */
9306                 do {
9307                         done = 1;
9308                         if (peek(state) == TOK_EQ) {
9309                                 if (!ident) {
9310                                         error(state, 0, "cannot assign to a type");
9311                                 }
9312                                 eat(state, TOK_EQ);
9313                                 flatten(state, first,
9314                                         init_expr(state, 
9315                                                 ident->sym_ident->def, 
9316                                                 initializer(state, type)));
9317                         }
9318                         arrays_complete(state, type);
9319                         if (peek(state) == TOK_COMMA) {
9320                                 eat(state, TOK_COMMA);
9321                                 ident = 0;
9322                                 type = declarator(state, base_type, &ident, 0);
9323                                 flatten(state, first, do_decl(state, type, ident));
9324                                 done = 0;
9325                         }
9326                 } while(!done);
9327                 eat(state, TOK_SEMI);
9328         }
9329 }
9330
9331 static void decls(struct compile_state *state)
9332 {
9333         struct triple *list;
9334         int tok;
9335         list = label(state);
9336         while(1) {
9337                 tok = peek(state);
9338                 if (tok == TOK_EOF) {
9339                         return;
9340                 }
9341                 if (tok == TOK_SPACE) {
9342                         eat(state, TOK_SPACE);
9343                 }
9344                 decl(state, list);
9345                 if (list->next != list) {
9346                         error(state, 0, "global variables not supported");
9347                 }
9348         }
9349 }
9350
9351 /*
9352  * Data structurs for optimation.
9353  */
9354
9355 static void do_use_block(
9356         struct block *used, struct block_set **head, struct block *user, 
9357         int front)
9358 {
9359         struct block_set **ptr, *new;
9360         if (!used)
9361                 return;
9362         if (!user)
9363                 return;
9364         ptr = head;
9365         while(*ptr) {
9366                 if ((*ptr)->member == user) {
9367                         return;
9368                 }
9369                 ptr = &(*ptr)->next;
9370         }
9371         new = xcmalloc(sizeof(*new), "block_set");
9372         new->member = user;
9373         if (front) {
9374                 new->next = *head;
9375                 *head = new;
9376         }
9377         else {
9378                 new->next = 0;
9379                 *ptr = new;
9380         }
9381 }
9382 static void do_unuse_block(
9383         struct block *used, struct block_set **head, struct block *unuser)
9384 {
9385         struct block_set *use, **ptr;
9386         ptr = head;
9387         while(*ptr) {
9388                 use = *ptr;
9389                 if (use->member == unuser) {
9390                         *ptr = use->next;
9391                         memset(use, -1, sizeof(*use));
9392                         xfree(use);
9393                 }
9394                 else {
9395                         ptr = &use->next;
9396                 }
9397         }
9398 }
9399
9400 static void use_block(struct block *used, struct block *user)
9401 {
9402         /* Append new to the head of the list, print_block
9403          * depends on this.
9404          */
9405         do_use_block(used, &used->use, user, 1); 
9406         used->users++;
9407 }
9408 static void unuse_block(struct block *used, struct block *unuser)
9409 {
9410         do_unuse_block(used, &used->use, unuser); 
9411         used->users--;
9412 }
9413
9414 static void idom_block(struct block *idom, struct block *user)
9415 {
9416         do_use_block(idom, &idom->idominates, user, 0);
9417 }
9418
9419 static void unidom_block(struct block *idom, struct block *unuser)
9420 {
9421         do_unuse_block(idom, &idom->idominates, unuser);
9422 }
9423
9424 static void domf_block(struct block *block, struct block *domf)
9425 {
9426         do_use_block(block, &block->domfrontier, domf, 0);
9427 }
9428
9429 static void undomf_block(struct block *block, struct block *undomf)
9430 {
9431         do_unuse_block(block, &block->domfrontier, undomf);
9432 }
9433
9434 static void ipdom_block(struct block *ipdom, struct block *user)
9435 {
9436         do_use_block(ipdom, &ipdom->ipdominates, user, 0);
9437 }
9438
9439 static void unipdom_block(struct block *ipdom, struct block *unuser)
9440 {
9441         do_unuse_block(ipdom, &ipdom->ipdominates, unuser);
9442 }
9443
9444 static void ipdomf_block(struct block *block, struct block *ipdomf)
9445 {
9446         do_use_block(block, &block->ipdomfrontier, ipdomf, 0);
9447 }
9448
9449 static void unipdomf_block(struct block *block, struct block *unipdomf)
9450 {
9451         do_unuse_block(block, &block->ipdomfrontier, unipdomf);
9452 }
9453
9454
9455
9456 static int do_walk_triple(struct compile_state *state,
9457         struct triple *ptr, int depth,
9458         int (*cb)(struct compile_state *state, struct triple *ptr, int depth)) 
9459 {
9460         int result;
9461         result = cb(state, ptr, depth);
9462         if ((result == 0) && (ptr->op == OP_LIST)) {
9463                 struct triple *list;
9464                 list = ptr;
9465                 ptr = RHS(list, 0);
9466                 do {
9467                         result = do_walk_triple(state, ptr, depth + 1, cb);
9468                         if (ptr->next->prev != ptr) {
9469                                 internal_error(state, ptr->next, "bad prev");
9470                         }
9471                         ptr = ptr->next;
9472                         
9473                 } while((result == 0) && (ptr != RHS(list, 0)));
9474         }
9475         return result;
9476 }
9477
9478 static int walk_triple(
9479         struct compile_state *state, 
9480         struct triple *ptr, 
9481         int (*cb)(struct compile_state *state, struct triple *ptr, int depth))
9482 {
9483         return do_walk_triple(state, ptr, 0, cb);
9484 }
9485
9486 static void do_print_prefix(int depth)
9487 {
9488         int i;
9489         for(i = 0; i < depth; i++) {
9490                 printf("  ");
9491         }
9492 }
9493
9494 #define PRINT_LIST 1
9495 static int do_print_triple(struct compile_state *state, struct triple *ins, int depth)
9496 {
9497         int op;
9498         op = ins->op;
9499         if (op == OP_LIST) {
9500 #if !PRINT_LIST
9501                 return 0;
9502 #endif
9503         }
9504         if ((op == OP_LABEL) && (ins->use)) {
9505                 printf("\n%p:\n", ins);
9506         }
9507         do_print_prefix(depth);
9508         display_triple(stdout, ins);
9509
9510         if ((ins->op == OP_BRANCH) && ins->use) {
9511                 internal_error(state, ins, "branch used?");
9512         }
9513         if (triple_is_branch(state, ins)) {
9514                 printf("\n");
9515         }
9516         return 0;
9517 }
9518
9519 static void print_triple(struct compile_state *state, struct triple *ins)
9520 {
9521         walk_triple(state, ins, do_print_triple);
9522 }
9523
9524 static void print_triples(struct compile_state *state)
9525 {
9526         print_triple(state, state->main_function);
9527 }
9528
9529 struct cf_block {
9530         struct block *block;
9531 };
9532 static void find_cf_blocks(struct cf_block *cf, struct block *block)
9533 {
9534         if (!block || (cf[block->vertex].block == block)) {
9535                 return;
9536         }
9537         cf[block->vertex].block = block;
9538         find_cf_blocks(cf, block->left);
9539         find_cf_blocks(cf, block->right);
9540 }
9541
9542 static void print_control_flow(struct compile_state *state)
9543 {
9544         struct cf_block *cf;
9545         int i;
9546         printf("\ncontrol flow\n");
9547         cf = xcmalloc(sizeof(*cf) * (state->last_vertex + 1), "cf_block");
9548         find_cf_blocks(cf, state->first_block);
9549
9550         for(i = 1; i <= state->last_vertex; i++) {
9551                 struct block *block;
9552                 block = cf[i].block;
9553                 if (!block)
9554                         continue;
9555                 printf("(%p) %d:", block, block->vertex);
9556                 if (block->left) {
9557                         printf(" %d", block->left->vertex);
9558                 }
9559                 if (block->right && (block->right != block->left)) {
9560                         printf(" %d", block->right->vertex);
9561                 }
9562                 printf("\n");
9563         }
9564
9565         xfree(cf);
9566 }
9567
9568
9569 static struct block *basic_block(struct compile_state *state,
9570         struct triple *first)
9571 {
9572         struct block *block;
9573         struct triple *ptr;
9574         int op;
9575         if (first->op != OP_LABEL) {
9576                 internal_error(state, 0, "block does not start with a label");
9577         }
9578         /* See if this basic block has already been setup */
9579         if (first->u.block != 0) {
9580                 return first->u.block;
9581         }
9582         /* Allocate another basic block structure */
9583         state->last_vertex += 1;
9584         block = xcmalloc(sizeof(*block), "block");
9585         block->first = block->last = first;
9586         block->vertex = state->last_vertex;
9587         ptr = first;
9588         do {
9589                 if ((ptr != first) && (ptr->op == OP_LABEL) && ptr->use) {
9590                         break;
9591                 }
9592                 block->last = ptr;
9593                 /* If ptr->u is not used remember where the baic block is */
9594                 if (triple_stores_block(state, ptr)) {
9595                         ptr->u.block = block;
9596                 }
9597                 if (ptr->op == OP_BRANCH) {
9598                         break;
9599                 }
9600                 ptr = ptr->next;
9601         } while (ptr != RHS(state->main_function, 0));
9602         if (ptr == RHS(state->main_function, 0))
9603                 return block;
9604         op = ptr->op;
9605         if (op == OP_LABEL) {
9606                 block->left = basic_block(state, ptr);
9607                 block->right = 0;
9608                 use_block(block->left, block);
9609         }
9610         else if (op == OP_BRANCH) {
9611                 block->left = 0;
9612                 /* Trace the branch target */
9613                 block->right = basic_block(state, TARG(ptr, 0));
9614                 use_block(block->right, block);
9615                 /* If there is a test trace the branch as well */
9616                 if (TRIPLE_RHS(ptr->sizes)) {
9617                         block->left = basic_block(state, ptr->next);
9618                         use_block(block->left, block);
9619                 }
9620         }
9621         else {
9622                 internal_error(state, 0, "Bad basic block split");
9623         }
9624         return block;
9625 }
9626
9627
9628 static void walk_blocks(struct compile_state *state,
9629         void (*cb)(struct compile_state *state, struct block *block, void *arg),
9630         void *arg)
9631 {
9632         struct triple *ptr, *first;
9633         struct block *last_block;
9634         last_block = 0;
9635         first = RHS(state->main_function, 0);
9636         ptr = first;
9637         do {
9638                 struct block *block;
9639                 if (triple_stores_block(state, ptr)) {
9640                         block = ptr->u.block;
9641                         if (block && (block != last_block)) {
9642                                 cb(state, block, arg);
9643                         }
9644                         last_block = block;
9645                 }
9646                 if (block && (block->last == ptr)) {
9647                         block = 0;
9648                 }
9649                 ptr = ptr->next;
9650         } while(ptr != first);
9651 }
9652
9653 static void print_block(
9654         struct compile_state *state, struct block *block, void *arg)
9655 {
9656         struct block_set *user;
9657         struct triple *ptr;
9658         FILE *fp = arg;
9659
9660         fprintf(fp, "\nblock: %p (%d)  %p<-%p %p<-%p\n", 
9661                 block, 
9662                 block->vertex,
9663                 block->left, 
9664                 block->left && block->left->use?block->left->use->member : 0,
9665                 block->right, 
9666                 block->right && block->right->use?block->right->use->member : 0);
9667         if (block->first->op == OP_LABEL) {
9668                 fprintf(fp, "%p:\n", block->first);
9669         }
9670         for(ptr = block->first; ; ptr = ptr->next) {
9671                 display_triple(fp, ptr);
9672                 if (ptr == block->last)
9673                         break;
9674         }
9675         fprintf(fp, "users %d: ", block->users);
9676         for(user = block->use; user; user = user->next) {
9677                 fprintf(fp, "%p (%d) ", 
9678                         user->member,
9679                         user->member->vertex);
9680         }
9681         fprintf(fp,"\n\n");
9682 }
9683
9684
9685 static void print_blocks(struct compile_state *state, FILE *fp)
9686 {
9687         fprintf(fp, "--------------- blocks ---------------\n");
9688         walk_blocks(state, print_block, fp);
9689 }
9690
9691 static void prune_nonblock_triples(struct compile_state *state)
9692 {
9693         struct block *block;
9694         struct triple *first, *ins, *next;
9695         /* Delete the triples not in a basic block */
9696         first = RHS(state->main_function, 0);
9697         block = 0;
9698         ins = first;
9699         do {
9700                 next = ins->next;
9701                 if (ins->op == OP_LABEL) {
9702                         block = ins->u.block;
9703                 }
9704                 if (!block) {
9705                         release_triple(state, ins);
9706                 }
9707                 if (block && block->last == ins) {
9708                         block = 0;
9709                 }
9710                 ins = next;
9711         } while(ins != first);
9712 }
9713
9714 static void setup_basic_blocks(struct compile_state *state)
9715 {
9716         if (!triple_stores_block(state, RHS(state->main_function, 0)) ||
9717                 !triple_stores_block(state, RHS(state->main_function,0)->prev)) {
9718                 internal_error(state, 0, "ins will not store block?");
9719         }
9720         /* Find the basic blocks */
9721         state->last_vertex = 0;
9722         state->first_block = basic_block(state, RHS(state->main_function,0));
9723         /* Delete the triples not in a basic block */
9724         prune_nonblock_triples(state);
9725         /* Find the last basic block */
9726         state->last_block = RHS(state->main_function, 0)->prev->u.block;
9727         if (!state->last_block) {
9728                 internal_error(state, 0, "end not used?");
9729         }
9730         /* If we are debugging print what I have just done */
9731         if (state->debug & DEBUG_BASIC_BLOCKS) {
9732                 print_blocks(state, stdout);
9733                 print_control_flow(state);
9734         }
9735 }
9736
9737 static void free_basic_block(struct compile_state *state, struct block *block)
9738 {
9739         struct block_set *entry, *next;
9740         struct block *child;
9741         if (!block) {
9742                 return;
9743         }
9744         if (block->vertex == -1) {
9745                 return;
9746         }
9747         block->vertex = -1;
9748         if (block->left) {
9749                 unuse_block(block->left, block);
9750         }
9751         if (block->right) {
9752                 unuse_block(block->right, block);
9753         }
9754         if (block->idom) {
9755                 unidom_block(block->idom, block);
9756         }
9757         block->idom = 0;
9758         if (block->ipdom) {
9759                 unipdom_block(block->ipdom, block);
9760         }
9761         block->ipdom = 0;
9762         for(entry = block->use; entry; entry = next) {
9763                 next = entry->next;
9764                 child = entry->member;
9765                 unuse_block(block, child);
9766                 if (child->left == block) {
9767                         child->left = 0;
9768                 }
9769                 if (child->right == block) {
9770                         child->right = 0;
9771                 }
9772         }
9773         for(entry = block->idominates; entry; entry = next) {
9774                 next = entry->next;
9775                 child = entry->member;
9776                 unidom_block(block, child);
9777                 child->idom = 0;
9778         }
9779         for(entry = block->domfrontier; entry; entry = next) {
9780                 next = entry->next;
9781                 child = entry->member;
9782                 undomf_block(block, child);
9783         }
9784         for(entry = block->ipdominates; entry; entry = next) {
9785                 next = entry->next;
9786                 child = entry->member;
9787                 unipdom_block(block, child);
9788                 child->ipdom = 0;
9789         }
9790         for(entry = block->ipdomfrontier; entry; entry = next) {
9791                 next = entry->next;
9792                 child = entry->member;
9793                 unipdomf_block(block, child);
9794         }
9795         if (block->users != 0) {
9796                 internal_error(state, 0, "block still has users");
9797         }
9798         free_basic_block(state, block->left);
9799         block->left = 0;
9800         free_basic_block(state, block->right);
9801         block->right = 0;
9802         memset(block, -1, sizeof(*block));
9803         xfree(block);
9804 }
9805
9806 static void free_basic_blocks(struct compile_state *state)
9807 {
9808         struct triple *first, *ins;
9809         free_basic_block(state, state->first_block);
9810         state->last_vertex = 0;
9811         state->first_block = state->last_block = 0;
9812         first = RHS(state->main_function, 0);
9813         ins = first;
9814         do {
9815                 if (triple_stores_block(state, ins)) {
9816                         ins->u.block = 0;
9817                 }
9818                 ins = ins->next;
9819         } while(ins != first);
9820         
9821 }
9822
9823 struct sdom_block {
9824         struct block *block;
9825         struct sdom_block *sdominates;
9826         struct sdom_block *sdom_next;
9827         struct sdom_block *sdom;
9828         struct sdom_block *label;
9829         struct sdom_block *parent;
9830         struct sdom_block *ancestor;
9831         int vertex;
9832 };
9833
9834
9835 static void unsdom_block(struct sdom_block *block)
9836 {
9837         struct sdom_block **ptr;
9838         if (!block->sdom_next) {
9839                 return;
9840         }
9841         ptr = &block->sdom->sdominates;
9842         while(*ptr) {
9843                 if ((*ptr) == block) {
9844                         *ptr = block->sdom_next;
9845                         return;
9846                 }
9847                 ptr = &(*ptr)->sdom_next;
9848         }
9849 }
9850
9851 static void sdom_block(struct sdom_block *sdom, struct sdom_block *block)
9852 {
9853         unsdom_block(block);
9854         block->sdom = sdom;
9855         block->sdom_next = sdom->sdominates;
9856         sdom->sdominates = block;
9857 }
9858
9859
9860
9861 static int initialize_sdblock(struct sdom_block *sd,
9862         struct block *parent, struct block *block, int vertex)
9863 {
9864         if (!block || (sd[block->vertex].block == block)) {
9865                 return vertex;
9866         }
9867         vertex += 1;
9868         /* Renumber the blocks in a convinient fashion */
9869         block->vertex = vertex;
9870         sd[vertex].block    = block;
9871         sd[vertex].sdom     = &sd[vertex];
9872         sd[vertex].label    = &sd[vertex];
9873         sd[vertex].parent   = parent? &sd[parent->vertex] : 0;
9874         sd[vertex].ancestor = 0;
9875         sd[vertex].vertex   = vertex;
9876         vertex = initialize_sdblock(sd, block, block->left, vertex);
9877         vertex = initialize_sdblock(sd, block, block->right, vertex);
9878         return vertex;
9879 }
9880
9881 static int initialize_sdpblock(
9882         struct compile_state *state, struct sdom_block *sd,
9883         struct block *parent, struct block *block, int vertex)
9884 {
9885         struct block_set *user;
9886         if (!block || (sd[block->vertex].block == block)) {
9887                 return vertex;
9888         }
9889         vertex += 1;
9890         /* Renumber the blocks in a convinient fashion */
9891         block->vertex = vertex;
9892         sd[vertex].block    = block;
9893         sd[vertex].sdom     = &sd[vertex];
9894         sd[vertex].label    = &sd[vertex];
9895         sd[vertex].parent   = parent? &sd[parent->vertex] : 0;
9896         sd[vertex].ancestor = 0;
9897         sd[vertex].vertex   = vertex;
9898         for(user = block->use; user; user = user->next) {
9899                 vertex = initialize_sdpblock(state, sd, block, user->member, vertex);
9900         }
9901         return vertex;
9902 }
9903
9904 static int setup_sdpblocks(struct compile_state *state, struct sdom_block *sd)
9905 {
9906         struct block *block;
9907         int vertex;
9908         /* Setup as many sdpblocks as possible without using fake edges */
9909         vertex = initialize_sdpblock(state, sd, 0, state->last_block, 0);
9910
9911         /* Walk through the graph and find unconnected blocks.  If 
9912          * we can, add a fake edge from the unconnected blocks to the
9913          * end of the graph.
9914          */
9915         block = state->first_block->last->next->u.block;
9916         for(; block && block != state->first_block; block =  block->last->next->u.block) {
9917                 if (sd[block->vertex].block == block) {
9918                         continue;
9919                 }
9920                 if (block->left != 0) {
9921                         continue;
9922                 }
9923
9924 #if DEBUG_SDP_BLOCKS
9925                 fprintf(stderr, "Adding %d\n", vertex +1);
9926 #endif
9927
9928                 block->left = state->last_block;
9929                 use_block(block->left, block);
9930                 vertex = initialize_sdpblock(state, sd, state->last_block, block, vertex);
9931         }
9932         return vertex;
9933 }
9934
9935 static void compress_ancestors(struct sdom_block *v)
9936 {
9937         /* This procedure assumes ancestor(v) != 0 */
9938         /* if (ancestor(ancestor(v)) != 0) {
9939          *      compress(ancestor(ancestor(v)));
9940          *      if (semi(label(ancestor(v))) < semi(label(v))) {
9941          *              label(v) = label(ancestor(v));
9942          *      }
9943          *      ancestor(v) = ancestor(ancestor(v));
9944          * }
9945          */
9946         if (!v->ancestor) {
9947                 return;
9948         }
9949         if (v->ancestor->ancestor) {
9950                 compress_ancestors(v->ancestor->ancestor);
9951                 if (v->ancestor->label->sdom->vertex < v->label->sdom->vertex) {
9952                         v->label = v->ancestor->label;
9953                 }
9954                 v->ancestor = v->ancestor->ancestor;
9955         }
9956 }
9957
9958 static void compute_sdom(struct compile_state *state, struct sdom_block *sd)
9959 {
9960         int i;
9961         /* // step 2 
9962          *  for each v <= pred(w) {
9963          *      u = EVAL(v);
9964          *      if (semi[u] < semi[w] { 
9965          *              semi[w] = semi[u]; 
9966          *      } 
9967          * }
9968          * add w to bucket(vertex(semi[w]));
9969          * LINK(parent(w), w);
9970          *
9971          * // step 3
9972          * for each v <= bucket(parent(w)) {
9973          *      delete v from bucket(parent(w));
9974          *      u = EVAL(v);
9975          *      dom(v) = (semi[u] < semi[v]) ? u : parent(w);
9976          * }
9977          */
9978         for(i = state->last_vertex; i >= 2; i--) {
9979                 struct sdom_block *v, *parent, *next;
9980                 struct block_set *user;
9981                 struct block *block;
9982                 block = sd[i].block;
9983                 parent = sd[i].parent;
9984                 /* Step 2 */
9985                 for(user = block->use; user; user = user->next) {
9986                         struct sdom_block *v, *u;
9987                         v = &sd[user->member->vertex];
9988                         u = !(v->ancestor)? v : (compress_ancestors(v), v->label);
9989                         if (u->sdom->vertex < sd[i].sdom->vertex) {
9990                                 sd[i].sdom = u->sdom;
9991                         }
9992                 }
9993                 sdom_block(sd[i].sdom, &sd[i]);
9994                 sd[i].ancestor = parent;
9995                 /* Step 3 */
9996                 for(v = parent->sdominates; v; v = next) {
9997                         struct sdom_block *u;
9998                         next = v->sdom_next;
9999                         unsdom_block(v);
10000                         u = (!v->ancestor) ? v : (compress_ancestors(v), v->label);
10001                         v->block->idom = (u->sdom->vertex < v->sdom->vertex)? 
10002                                 u->block : parent->block;
10003                 }
10004         }
10005 }
10006
10007 static void compute_spdom(struct compile_state *state, struct sdom_block *sd)
10008 {
10009         int i;
10010         /* // step 2 
10011          *  for each v <= pred(w) {
10012          *      u = EVAL(v);
10013          *      if (semi[u] < semi[w] { 
10014          *              semi[w] = semi[u]; 
10015          *      } 
10016          * }
10017          * add w to bucket(vertex(semi[w]));
10018          * LINK(parent(w), w);
10019          *
10020          * // step 3
10021          * for each v <= bucket(parent(w)) {
10022          *      delete v from bucket(parent(w));
10023          *      u = EVAL(v);
10024          *      dom(v) = (semi[u] < semi[v]) ? u : parent(w);
10025          * }
10026          */
10027         for(i = state->last_vertex; i >= 2; i--) {
10028                 struct sdom_block *u, *v, *parent, *next;
10029                 struct block *block;
10030                 block = sd[i].block;
10031                 parent = sd[i].parent;
10032                 /* Step 2 */
10033                 if (block->left) {
10034                         v = &sd[block->left->vertex];
10035                         u = !(v->ancestor)? v : (compress_ancestors(v), v->label);
10036                         if (u->sdom->vertex < sd[i].sdom->vertex) {
10037                                 sd[i].sdom = u->sdom;
10038                         }
10039                 }
10040                 if (block->right && (block->right != block->left)) {
10041                         v = &sd[block->right->vertex];
10042                         u = !(v->ancestor)? v : (compress_ancestors(v), v->label);
10043                         if (u->sdom->vertex < sd[i].sdom->vertex) {
10044                                 sd[i].sdom = u->sdom;
10045                         }
10046                 }
10047                 sdom_block(sd[i].sdom, &sd[i]);
10048                 sd[i].ancestor = parent;
10049                 /* Step 3 */
10050                 for(v = parent->sdominates; v; v = next) {
10051                         struct sdom_block *u;
10052                         next = v->sdom_next;
10053                         unsdom_block(v);
10054                         u = (!v->ancestor) ? v : (compress_ancestors(v), v->label);
10055                         v->block->ipdom = (u->sdom->vertex < v->sdom->vertex)? 
10056                                 u->block : parent->block;
10057                 }
10058         }
10059 }
10060
10061 static void compute_idom(struct compile_state *state, struct sdom_block *sd)
10062 {
10063         int i;
10064         for(i = 2; i <= state->last_vertex; i++) {
10065                 struct block *block;
10066                 block = sd[i].block;
10067                 if (block->idom->vertex != sd[i].sdom->vertex) {
10068                         block->idom = block->idom->idom;
10069                 }
10070                 idom_block(block->idom, block);
10071         }
10072         sd[1].block->idom = 0;
10073 }
10074
10075 static void compute_ipdom(struct compile_state *state, struct sdom_block *sd)
10076 {
10077         int i;
10078         for(i = 2; i <= state->last_vertex; i++) {
10079                 struct block *block;
10080                 block = sd[i].block;
10081                 if (block->ipdom->vertex != sd[i].sdom->vertex) {
10082                         block->ipdom = block->ipdom->ipdom;
10083                 }
10084                 ipdom_block(block->ipdom, block);
10085         }
10086         sd[1].block->ipdom = 0;
10087 }
10088
10089         /* Theorem 1:
10090          *   Every vertex of a flowgraph G = (V, E, r) except r has
10091          *   a unique immediate dominator.  
10092          *   The edges {(idom(w), w) |w <= V - {r}} form a directed tree
10093          *   rooted at r, called the dominator tree of G, such that 
10094          *   v dominates w if and only if v is a proper ancestor of w in
10095          *   the dominator tree.
10096          */
10097         /* Lemma 1:  
10098          *   If v and w are vertices of G such that v <= w,
10099          *   than any path from v to w must contain a common ancestor
10100          *   of v and w in T.
10101          */
10102         /* Lemma 2:  For any vertex w != r, idom(w) -> w */
10103         /* Lemma 3:  For any vertex w != r, sdom(w) -> w */
10104         /* Lemma 4:  For any vertex w != r, idom(w) -> sdom(w) */
10105         /* Theorem 2:
10106          *   Let w != r.  Suppose every u for which sdom(w) -> u -> w satisfies
10107          *   sdom(u) >= sdom(w).  Then idom(w) = sdom(w).
10108          */
10109         /* Theorem 3:
10110          *   Let w != r and let u be a vertex for which sdom(u) is 
10111          *   minimum amoung vertices u satisfying sdom(w) -> u -> w.
10112          *   Then sdom(u) <= sdom(w) and idom(u) = idom(w).
10113          */
10114         /* Lemma 5:  Let vertices v,w satisfy v -> w.
10115          *           Then v -> idom(w) or idom(w) -> idom(v)
10116          */
10117
10118 static void find_immediate_dominators(struct compile_state *state)
10119 {
10120         struct sdom_block *sd;
10121         /* w->sdom = min{v| there is a path v = v0,v1,...,vk = w such that:
10122          *           vi > w for (1 <= i <= k - 1}
10123          */
10124         /* Theorem 4:
10125          *   For any vertex w != r.
10126          *   sdom(w) = min(
10127          *                 {v|(v,w) <= E  and v < w } U 
10128          *                 {sdom(u) | u > w and there is an edge (v, w) such that u -> v})
10129          */
10130         /* Corollary 1:
10131          *   Let w != r and let u be a vertex for which sdom(u) is 
10132          *   minimum amoung vertices u satisfying sdom(w) -> u -> w.
10133          *   Then:
10134          *                   { sdom(w) if sdom(w) = sdom(u),
10135          *        idom(w) = {
10136          *                   { idom(u) otherwise
10137          */
10138         /* The algorithm consists of the following 4 steps.
10139          * Step 1.  Carry out a depth-first search of the problem graph.  
10140          *    Number the vertices from 1 to N as they are reached during
10141          *    the search.  Initialize the variables used in succeeding steps.
10142          * Step 2.  Compute the semidominators of all vertices by applying
10143          *    theorem 4.   Carry out the computation vertex by vertex in
10144          *    decreasing order by number.
10145          * Step 3.  Implicitly define the immediate dominator of each vertex
10146          *    by applying Corollary 1.
10147          * Step 4.  Explicitly define the immediate dominator of each vertex,
10148          *    carrying out the computation vertex by vertex in increasing order
10149          *    by number.
10150          */
10151         /* Step 1 initialize the basic block information */
10152         sd = xcmalloc(sizeof(*sd) * (state->last_vertex + 1), "sdom_state");
10153         initialize_sdblock(sd, 0, state->first_block, 0);
10154 #if 0
10155         sd[1].size  = 0;
10156         sd[1].label = 0;
10157         sd[1].sdom  = 0;
10158 #endif
10159         /* Step 2 compute the semidominators */
10160         /* Step 3 implicitly define the immediate dominator of each vertex */
10161         compute_sdom(state, sd);
10162         /* Step 4 explicitly define the immediate dominator of each vertex */
10163         compute_idom(state, sd);
10164         xfree(sd);
10165 }
10166
10167 static void find_post_dominators(struct compile_state *state)
10168 {
10169         struct sdom_block *sd;
10170         int vertex;
10171         /* Step 1 initialize the basic block information */
10172         sd = xcmalloc(sizeof(*sd) * (state->last_vertex + 1), "sdom_state");
10173
10174         vertex = setup_sdpblocks(state, sd);
10175         if (vertex != state->last_vertex) {
10176                 internal_error(state, 0, "missing %d blocks\n",
10177                         state->last_vertex - vertex);
10178         }
10179
10180         /* Step 2 compute the semidominators */
10181         /* Step 3 implicitly define the immediate dominator of each vertex */
10182         compute_spdom(state, sd);
10183         /* Step 4 explicitly define the immediate dominator of each vertex */
10184         compute_ipdom(state, sd);
10185         xfree(sd);
10186 }
10187
10188
10189
10190 static void find_block_domf(struct compile_state *state, struct block *block)
10191 {
10192         struct block *child;
10193         struct block_set *user;
10194         if (block->domfrontier != 0) {
10195                 internal_error(state, block->first, "domfrontier present?");
10196         }
10197         for(user = block->idominates; user; user = user->next) {
10198                 child = user->member;
10199                 if (child->idom != block) {
10200                         internal_error(state, block->first, "bad idom");
10201                 }
10202                 find_block_domf(state, child);
10203         }
10204         if (block->left && block->left->idom != block) {
10205                 domf_block(block, block->left);
10206         }
10207         if (block->right && block->right->idom != block) {
10208                 domf_block(block, block->right);
10209         }
10210         for(user = block->idominates; user; user = user->next) {
10211                 struct block_set *frontier;
10212                 child = user->member;
10213                 for(frontier = child->domfrontier; frontier; frontier = frontier->next) {
10214                         if (frontier->member->idom != block) {
10215                                 domf_block(block, frontier->member);
10216                         }
10217                 }
10218         }
10219 }
10220
10221 static void find_block_ipdomf(struct compile_state *state, struct block *block)
10222 {
10223         struct block *child;
10224         struct block_set *user;
10225         if (block->ipdomfrontier != 0) {
10226                 internal_error(state, block->first, "ipdomfrontier present?");
10227         }
10228         for(user = block->ipdominates; user; user = user->next) {
10229                 child = user->member;
10230                 if (child->ipdom != block) {
10231                         internal_error(state, block->first, "bad ipdom");
10232                 }
10233                 find_block_ipdomf(state, child);
10234         }
10235         if (block->left && block->left->ipdom != block) {
10236                 ipdomf_block(block, block->left);
10237         }
10238         if (block->right && block->right->ipdom != block) {
10239                 ipdomf_block(block, block->right);
10240         }
10241         for(user = block->idominates; user; user = user->next) {
10242                 struct block_set *frontier;
10243                 child = user->member;
10244                 for(frontier = child->ipdomfrontier; frontier; frontier = frontier->next) {
10245                         if (frontier->member->ipdom != block) {
10246                                 ipdomf_block(block, frontier->member);
10247                         }
10248                 }
10249         }
10250 }
10251
10252 static void print_dominated(
10253         struct compile_state *state, struct block *block, void *arg)
10254 {
10255         struct block_set *user;
10256         FILE *fp = arg;
10257
10258         fprintf(fp, "%d:", block->vertex);
10259         for(user = block->idominates; user; user = user->next) {
10260                 fprintf(fp, " %d", user->member->vertex);
10261                 if (user->member->idom != block) {
10262                         internal_error(state, user->member->first, "bad idom");
10263                 }
10264         }
10265         fprintf(fp,"\n");
10266 }
10267
10268 static void print_dominators(struct compile_state *state, FILE *fp)
10269 {
10270         fprintf(fp, "\ndominates\n");
10271         walk_blocks(state, print_dominated, fp);
10272 }
10273
10274
10275 static int print_frontiers(
10276         struct compile_state *state, struct block *block, int vertex)
10277 {
10278         struct block_set *user;
10279
10280         if (!block || (block->vertex != vertex + 1)) {
10281                 return vertex;
10282         }
10283         vertex += 1;
10284
10285         printf("%d:", block->vertex);
10286         for(user = block->domfrontier; user; user = user->next) {
10287                 printf(" %d", user->member->vertex);
10288         }
10289         printf("\n");
10290
10291         vertex = print_frontiers(state, block->left, vertex);
10292         vertex = print_frontiers(state, block->right, vertex);
10293         return vertex;
10294 }
10295 static void print_dominance_frontiers(struct compile_state *state)
10296 {
10297         printf("\ndominance frontiers\n");
10298         print_frontiers(state, state->first_block, 0);
10299         
10300 }
10301
10302 static void analyze_idominators(struct compile_state *state)
10303 {
10304         /* Find the immediate dominators */
10305         find_immediate_dominators(state);
10306         /* Find the dominance frontiers */
10307         find_block_domf(state, state->first_block);
10308         /* If debuging print the print what I have just found */
10309         if (state->debug & DEBUG_FDOMINATORS) {
10310                 print_dominators(state, stdout);
10311                 print_dominance_frontiers(state);
10312                 print_control_flow(state);
10313         }
10314 }
10315
10316
10317
10318 static void print_ipdominated(
10319         struct compile_state *state, struct block *block, void *arg)
10320 {
10321         struct block_set *user;
10322         FILE *fp = arg;
10323
10324         fprintf(fp, "%d:", block->vertex);
10325         for(user = block->ipdominates; user; user = user->next) {
10326                 fprintf(fp, " %d", user->member->vertex);
10327                 if (user->member->ipdom != block) {
10328                         internal_error(state, user->member->first, "bad ipdom");
10329                 }
10330         }
10331         fprintf(fp, "\n");
10332 }
10333
10334 static void print_ipdominators(struct compile_state *state, FILE *fp)
10335 {
10336         fprintf(fp, "\nipdominates\n");
10337         walk_blocks(state, print_ipdominated, fp);
10338 }
10339
10340 static int print_pfrontiers(
10341         struct compile_state *state, struct block *block, int vertex)
10342 {
10343         struct block_set *user;
10344
10345         if (!block || (block->vertex != vertex + 1)) {
10346                 return vertex;
10347         }
10348         vertex += 1;
10349
10350         printf("%d:", block->vertex);
10351         for(user = block->ipdomfrontier; user; user = user->next) {
10352                 printf(" %d", user->member->vertex);
10353         }
10354         printf("\n");
10355         for(user = block->use; user; user = user->next) {
10356                 vertex = print_pfrontiers(state, user->member, vertex);
10357         }
10358         return vertex;
10359 }
10360 static void print_ipdominance_frontiers(struct compile_state *state)
10361 {
10362         printf("\nipdominance frontiers\n");
10363         print_pfrontiers(state, state->last_block, 0);
10364         
10365 }
10366
10367 static void analyze_ipdominators(struct compile_state *state)
10368 {
10369         /* Find the post dominators */
10370         find_post_dominators(state);
10371         /* Find the control dependencies (post dominance frontiers) */
10372         find_block_ipdomf(state, state->last_block);
10373         /* If debuging print the print what I have just found */
10374         if (state->debug & DEBUG_RDOMINATORS) {
10375                 print_ipdominators(state, stdout);
10376                 print_ipdominance_frontiers(state);
10377                 print_control_flow(state);
10378         }
10379 }
10380
10381 static int bdominates(struct compile_state *state,
10382         struct block *dom, struct block *sub)
10383 {
10384         while(sub && (sub != dom)) {
10385                 sub = sub->idom;
10386         }
10387         return sub == dom;
10388 }
10389
10390 static int tdominates(struct compile_state *state,
10391         struct triple *dom, struct triple *sub)
10392 {
10393         struct block *bdom, *bsub;
10394         int result;
10395         bdom = block_of_triple(state, dom);
10396         bsub = block_of_triple(state, sub);
10397         if (bdom != bsub) {
10398                 result = bdominates(state, bdom, bsub);
10399         } 
10400         else {
10401                 struct triple *ins;
10402                 ins = sub;
10403                 while((ins != bsub->first) && (ins != dom)) {
10404                         ins = ins->prev;
10405                 }
10406                 result = (ins == dom);
10407         }
10408         return result;
10409 }
10410
10411 static void insert_phi_operations(struct compile_state *state)
10412 {
10413         size_t size;
10414         struct triple *first;
10415         int *has_already, *work;
10416         struct block *work_list, **work_list_tail;
10417         int iter;
10418         struct triple *var, *vnext;
10419
10420         size = sizeof(int) * (state->last_vertex + 1);
10421         has_already = xcmalloc(size, "has_already");
10422         work =        xcmalloc(size, "work");
10423         iter = 0;
10424
10425         first = RHS(state->main_function, 0);
10426         for(var = first->next; var != first ; var = vnext) {
10427                 struct block *block;
10428                 struct triple_set *user, *unext;
10429                 vnext = var->next;
10430                 if ((var->op != OP_ADECL) || !var->use) {
10431                         continue;
10432                 }
10433                 iter += 1;
10434                 work_list = 0;
10435                 work_list_tail = &work_list;
10436                 for(user = var->use; user; user = unext) {
10437                         unext = user->next;
10438                         if (user->member->op == OP_READ) {
10439                                 continue;
10440                         }
10441                         if (user->member->op != OP_WRITE) {
10442                                 internal_error(state, user->member, 
10443                                         "bad variable access");
10444                         }
10445                         block = user->member->u.block;
10446                         if (!block) {
10447                                 warning(state, user->member, "dead code");
10448                                 release_triple(state, user->member);
10449                                 continue;
10450                         }
10451                         if (work[block->vertex] >= iter) {
10452                                 continue;
10453                         }
10454                         work[block->vertex] = iter;
10455                         *work_list_tail = block;
10456                         block->work_next = 0;
10457                         work_list_tail = &block->work_next;
10458                 }
10459                 for(block = work_list; block; block = block->work_next) {
10460                         struct block_set *df;
10461                         for(df = block->domfrontier; df; df = df->next) {
10462                                 struct triple *phi;
10463                                 struct block *front;
10464                                 int in_edges;
10465                                 front = df->member;
10466
10467                                 if (has_already[front->vertex] >= iter) {
10468                                         continue;
10469                                 }
10470                                 /* Count how many edges flow into this block */
10471                                 in_edges = front->users;
10472                                 /* Insert a phi function for this variable */
10473                                 get_occurance(front->first->occurance);
10474                                 phi = alloc_triple(
10475                                         state, OP_PHI, var->type, -1, in_edges, 
10476                                         front->first->occurance);
10477                                 phi->u.block = front;
10478                                 MISC(phi, 0) = var;
10479                                 use_triple(var, phi);
10480                                 /* Insert the phi functions immediately after the label */
10481                                 insert_triple(state, front->first->next, phi);
10482                                 if (front->first == front->last) {
10483                                         front->last = front->first->next;
10484                                 }
10485                                 has_already[front->vertex] = iter;
10486
10487                                 /* If necessary plan to visit the basic block */
10488                                 if (work[front->vertex] >= iter) {
10489                                         continue;
10490                                 }
10491                                 work[front->vertex] = iter;
10492                                 *work_list_tail = front;
10493                                 front->work_next = 0;
10494                                 work_list_tail = &front->work_next;
10495                         }
10496                 }
10497         }
10498         xfree(has_already);
10499         xfree(work);
10500 }
10501
10502 /*
10503  * C(V)
10504  * S(V)
10505  */
10506 static void fixup_block_phi_variables(
10507         struct compile_state *state, struct block *parent, struct block *block)
10508 {
10509         struct block_set *set;
10510         struct triple *ptr;
10511         int edge;
10512         if (!parent || !block)
10513                 return;
10514         /* Find the edge I am coming in on */
10515         edge = 0;
10516         for(set = block->use; set; set = set->next, edge++) {
10517                 if (set->member == parent) {
10518                         break;
10519                 }
10520         }
10521         if (!set) {
10522                 internal_error(state, 0, "phi input is not on a control predecessor");
10523         }
10524         for(ptr = block->first; ; ptr = ptr->next) {
10525                 if (ptr->op == OP_PHI) {
10526                         struct triple *var, *val, **slot;
10527                         var = MISC(ptr, 0);
10528                         if (!var) {
10529                                 internal_error(state, ptr, "no var???");
10530                         }
10531                         /* Find the current value of the variable */
10532                         val = var->use->member;
10533                         if ((val->op == OP_WRITE) || (val->op == OP_READ)) {
10534                                 internal_error(state, val, "bad value in phi");
10535                         }
10536                         if (edge >= TRIPLE_RHS(ptr->sizes)) {
10537                                 internal_error(state, ptr, "edges > phi rhs");
10538                         }
10539                         slot = &RHS(ptr, edge);
10540                         if ((*slot != 0) && (*slot != val)) {
10541                                 internal_error(state, ptr, "phi already bound on this edge");
10542                         }
10543                         *slot = val;
10544                         use_triple(val, ptr);
10545                 }
10546                 if (ptr == block->last) {
10547                         break;
10548                 }
10549         }
10550 }
10551
10552
10553 static void rename_block_variables(
10554         struct compile_state *state, struct block *block)
10555 {
10556         struct block_set *user;
10557         struct triple *ptr, *next, *last;
10558         int done;
10559         if (!block)
10560                 return;
10561         last = block->first;
10562         done = 0;
10563         for(ptr = block->first; !done; ptr = next) {
10564                 next = ptr->next;
10565                 if (ptr == block->last) {
10566                         done = 1;
10567                 }
10568                 /* RHS(A) */
10569                 if (ptr->op == OP_READ) {
10570                         struct triple *var, *val;
10571                         var = RHS(ptr, 0);
10572                         unuse_triple(var, ptr);
10573                         if (!var->use) {
10574                                 error(state, ptr, "variable used without being set");
10575                         }
10576                         /* Find the current value of the variable */
10577                         val = var->use->member;
10578                         if ((val->op == OP_WRITE) || (val->op == OP_READ)) {
10579                                 internal_error(state, val, "bad value in read");
10580                         }
10581                         propogate_use(state, ptr, val);
10582                         release_triple(state, ptr);
10583                         continue;
10584                 }
10585                 /* LHS(A) */
10586                 if (ptr->op == OP_WRITE) {
10587                         struct triple *var, *val, *tval;
10588                         var = RHS(ptr, 0);
10589                         tval = val = RHS(ptr, 1);
10590                         if ((val->op == OP_WRITE) || (val->op == OP_READ)) {
10591                                 internal_error(state, val, "bad value in write");
10592                         }
10593                         /* Insert a copy if the types differ */
10594                         if (!equiv_types(ptr->type, val->type)) {
10595                                 if (val->op == OP_INTCONST) {
10596                                         tval = pre_triple(state, ptr, OP_INTCONST, ptr->type, 0, 0);
10597                                         tval->u.cval = val->u.cval;
10598                                 }
10599                                 else {
10600                                         tval = pre_triple(state, ptr, OP_COPY, ptr->type, val, 0);
10601                                         use_triple(val, tval);
10602                                 }
10603                                 unuse_triple(val, ptr);
10604                                 RHS(ptr, 1) = tval;
10605                                 use_triple(tval, ptr);
10606                         }
10607                         propogate_use(state, ptr, tval);
10608                         unuse_triple(var, ptr);
10609                         /* Push OP_WRITE ptr->right onto a stack of variable uses */
10610                         push_triple(var, tval);
10611                 }
10612                 if (ptr->op == OP_PHI) {
10613                         struct triple *var;
10614                         var = MISC(ptr, 0);
10615                         /* Push OP_PHI onto a stack of variable uses */
10616                         push_triple(var, ptr);
10617                 }
10618                 last = ptr;
10619         }
10620         block->last = last;
10621
10622         /* Fixup PHI functions in the cf successors */
10623         fixup_block_phi_variables(state, block, block->left);
10624         fixup_block_phi_variables(state, block, block->right);
10625         /* rename variables in the dominated nodes */
10626         for(user = block->idominates; user; user = user->next) {
10627                 rename_block_variables(state, user->member);
10628         }
10629         /* pop the renamed variable stack */
10630         last = block->first;
10631         done = 0;
10632         for(ptr = block->first; !done ; ptr = next) {
10633                 next = ptr->next;
10634                 if (ptr == block->last) {
10635                         done = 1;
10636                 }
10637                 if (ptr->op == OP_WRITE) {
10638                         struct triple *var;
10639                         var = RHS(ptr, 0);
10640                         /* Pop OP_WRITE ptr->right from the stack of variable uses */
10641                         pop_triple(var, RHS(ptr, 1));
10642                         release_triple(state, ptr);
10643                         continue;
10644                 }
10645                 if (ptr->op == OP_PHI) {
10646                         struct triple *var;
10647                         var = MISC(ptr, 0);
10648                         /* Pop OP_WRITE ptr->right from the stack of variable uses */
10649                         pop_triple(var, ptr);
10650                 }
10651                 last = ptr;
10652         }
10653         block->last = last;
10654 }
10655
10656 static void prune_block_variables(struct compile_state *state,
10657         struct block *block)
10658 {
10659         struct block_set *user;
10660         struct triple *next, *last, *ptr;
10661         int done;
10662         last = block->first;
10663         done = 0;
10664         for(ptr = block->first; !done; ptr = next) {
10665                 next = ptr->next;
10666                 if (ptr == block->last) {
10667                         done = 1;
10668                 }
10669                 if (ptr->op == OP_ADECL) {
10670                         struct triple_set *user, *next;
10671                         for(user = ptr->use; user; user = next) {
10672                                 struct triple *use;
10673                                 next = user->next;
10674                                 use = user->member;
10675                                 if (use->op != OP_PHI) {
10676                                         internal_error(state, use, "decl still used");
10677                                 }
10678                                 if (MISC(use, 0) != ptr) {
10679                                         internal_error(state, use, "bad phi use of decl");
10680                                 }
10681                                 unuse_triple(ptr, use);
10682                                 MISC(use, 0) = 0;
10683                         }
10684                         release_triple(state, ptr);
10685                         continue;
10686                 }
10687                 last = ptr;
10688         }
10689         block->last = last;
10690         for(user = block->idominates; user; user = user->next) {
10691                 prune_block_variables(state, user->member);
10692         }
10693 }
10694
10695 static void transform_to_ssa_form(struct compile_state *state)
10696 {
10697         insert_phi_operations(state);
10698 #if 0
10699         printf("@%s:%d\n", __FILE__, __LINE__);
10700         print_blocks(state, stdout);
10701 #endif
10702         rename_block_variables(state, state->first_block);
10703         prune_block_variables(state, state->first_block);
10704 }
10705
10706
10707 static void clear_vertex(
10708         struct compile_state *state, struct block *block, void *arg)
10709 {
10710         block->vertex = 0;
10711 }
10712
10713 static void mark_live_block(
10714         struct compile_state *state, struct block *block, int *next_vertex)
10715 {
10716         /* See if this is a block that has not been marked */
10717         if (block->vertex != 0) {
10718                 return;
10719         }
10720         block->vertex = *next_vertex;
10721         *next_vertex += 1;
10722         if (triple_is_branch(state, block->last)) {
10723                 struct triple **targ;
10724                 targ = triple_targ(state, block->last, 0);
10725                 for(; targ; targ = triple_targ(state, block->last, targ)) {
10726                         if (!*targ) {
10727                                 continue;
10728                         }
10729                         if (!triple_stores_block(state, *targ)) {
10730                                 internal_error(state, 0, "bad targ");
10731                         }
10732                         mark_live_block(state, (*targ)->u.block, next_vertex);
10733                 }
10734         }
10735         else if (block->last->next != RHS(state->main_function, 0)) {
10736                 struct triple *ins;
10737                 ins = block->last->next;
10738                 if (!triple_stores_block(state, ins)) {
10739                         internal_error(state, 0, "bad block start");
10740                 }
10741                 mark_live_block(state, ins->u.block, next_vertex);
10742         }
10743 }
10744
10745 static void transform_from_ssa_form(struct compile_state *state)
10746 {
10747         /* To get out of ssa form we insert moves on the incoming
10748          * edges to blocks containting phi functions.
10749          */
10750         struct triple *first;
10751         struct triple *phi, *next;
10752         int next_vertex;
10753
10754         /* Walk the control flow to see which blocks remain alive */
10755         walk_blocks(state, clear_vertex, 0);
10756         next_vertex = 1;
10757         mark_live_block(state, state->first_block, &next_vertex);
10758
10759         /* Walk all of the operations to find the phi functions */
10760         first = RHS(state->main_function, 0);
10761         for(phi = first->next; phi != first ; phi = next) {
10762                 struct block_set *set;
10763                 struct block *block;
10764                 struct triple **slot;
10765                 struct triple *var, *read;
10766                 struct triple_set *use, *use_next;
10767                 int edge, used;
10768                 next = phi->next;
10769                 if (phi->op != OP_PHI) {
10770                         continue;
10771                 }
10772                 block = phi->u.block;
10773                 slot  = &RHS(phi, 0);
10774
10775                 /* Forget uses from code in dead blocks */
10776                 for(use = phi->use; use; use = use_next) {
10777                         struct block *ublock;
10778                         struct triple **expr;
10779                         use_next = use->next;
10780                         ublock = block_of_triple(state, use->member);
10781                         if ((use->member == phi) || (ublock->vertex != 0)) {
10782                                 continue;
10783                         }
10784                         expr = triple_rhs(state, use->member, 0);
10785                         for(; expr; expr = triple_rhs(state, use->member, expr)) {
10786                                 if (*expr == phi) {
10787                                         *expr = 0;
10788                                 }
10789                         }
10790                         unuse_triple(phi, use->member);
10791                 }
10792
10793 #warning "CHECK_ME does the OP_ADECL need to be placed somewhere that dominates all of the incoming phi edges?"
10794                 /* A variable to replace the phi function */
10795                 var = post_triple(state, phi, OP_ADECL, phi->type, 0,0);
10796                 /* A read of the single value that is set into the variable */
10797                 read = post_triple(state, var, OP_READ, phi->type, var, 0);
10798                 use_triple(var, read);
10799
10800                 /* Replaces uses of the phi with variable reads */
10801                 propogate_use(state, phi, read);
10802
10803                 /* Walk all of the incoming edges/blocks and insert moves.
10804                  */
10805                 for(edge = 0, set = block->use; set; set = set->next, edge++) {
10806                         struct block *eblock;
10807                         struct triple *move;
10808                         struct triple *val, *base;
10809                         eblock = set->member;
10810                         val = slot[edge];
10811                         slot[edge] = 0;
10812                         unuse_triple(val, phi);
10813
10814                         if (!val || (val == &zero_triple) ||
10815                                 (block->vertex == 0) || (eblock->vertex == 0) ||
10816                                 (val == phi) || (val == read)) {
10817                                 continue;
10818                         }
10819                         
10820                         /* Make certain the write is placed in the edge block... */
10821                         base = eblock->first;
10822                         if (block_of_triple(state, val) == eblock) {
10823                                 base = val;
10824                         }
10825                         move = post_triple(state, base, OP_WRITE, phi->type, var, val);
10826                         use_triple(val, move);
10827                         use_triple(var, move);
10828                 }               
10829                 /* See if there are any writers of var */
10830                 used = 0;
10831                 for(use = var->use; use; use = use->next) {
10832                         if ((use->member->op == OP_WRITE) &&
10833                                 (RHS(use->member, 0) == var)) {
10834                                 used = 1;
10835                         }
10836                 }
10837                 /* If var is not used free it */
10838                 if (!used) {
10839                         unuse_triple(var, read);
10840                         free_triple(state, read);
10841                         free_triple(state, var);
10842                 }
10843
10844                 /* Release the phi function */
10845                 release_triple(state, phi);
10846         }
10847         
10848 }
10849
10850
10851 /* 
10852  * Register conflict resolution
10853  * =========================================================
10854  */
10855
10856 static struct reg_info find_def_color(
10857         struct compile_state *state, struct triple *def)
10858 {
10859         struct triple_set *set;
10860         struct reg_info info;
10861         info.reg = REG_UNSET;
10862         info.regcm = 0;
10863         if (!triple_is_def(state, def)) {
10864                 return info;
10865         }
10866         info = arch_reg_lhs(state, def, 0);
10867         if (info.reg >= MAX_REGISTERS) {
10868                 info.reg = REG_UNSET;
10869         }
10870         for(set = def->use; set; set = set->next) {
10871                 struct reg_info tinfo;
10872                 int i;
10873                 i = find_rhs_use(state, set->member, def);
10874                 if (i < 0) {
10875                         continue;
10876                 }
10877                 tinfo = arch_reg_rhs(state, set->member, i);
10878                 if (tinfo.reg >= MAX_REGISTERS) {
10879                         tinfo.reg = REG_UNSET;
10880                 }
10881                 if ((tinfo.reg != REG_UNSET) && 
10882                         (info.reg != REG_UNSET) &&
10883                         (tinfo.reg != info.reg)) {
10884                         internal_error(state, def, "register conflict");
10885                 }
10886                 if ((info.regcm & tinfo.regcm) == 0) {
10887                         internal_error(state, def, "regcm conflict %x & %x == 0",
10888                                 info.regcm, tinfo.regcm);
10889                 }
10890                 if (info.reg == REG_UNSET) {
10891                         info.reg = tinfo.reg;
10892                 }
10893                 info.regcm &= tinfo.regcm;
10894         }
10895         if (info.reg >= MAX_REGISTERS) {
10896                 internal_error(state, def, "register out of range");
10897         }
10898         return info;
10899 }
10900
10901 static struct reg_info find_lhs_pre_color(
10902         struct compile_state *state, struct triple *ins, int index)
10903 {
10904         struct reg_info info;
10905         int zlhs, zrhs, i;
10906         zrhs = TRIPLE_RHS(ins->sizes);
10907         zlhs = TRIPLE_LHS(ins->sizes);
10908         if (!zlhs && triple_is_def(state, ins)) {
10909                 zlhs = 1;
10910         }
10911         if (index >= zlhs) {
10912                 internal_error(state, ins, "Bad lhs %d", index);
10913         }
10914         info = arch_reg_lhs(state, ins, index);
10915         for(i = 0; i < zrhs; i++) {
10916                 struct reg_info rinfo;
10917                 rinfo = arch_reg_rhs(state, ins, i);
10918                 if ((info.reg == rinfo.reg) &&
10919                         (rinfo.reg >= MAX_REGISTERS)) {
10920                         struct reg_info tinfo;
10921                         tinfo = find_lhs_pre_color(state, RHS(ins, index), 0);
10922                         info.reg = tinfo.reg;
10923                         info.regcm &= tinfo.regcm;
10924                         break;
10925                 }
10926         }
10927         if (info.reg >= MAX_REGISTERS) {
10928                 info.reg = REG_UNSET;
10929         }
10930         return info;
10931 }
10932
10933 static struct reg_info find_rhs_post_color(
10934         struct compile_state *state, struct triple *ins, int index);
10935
10936 static struct reg_info find_lhs_post_color(
10937         struct compile_state *state, struct triple *ins, int index)
10938 {
10939         struct triple_set *set;
10940         struct reg_info info;
10941         struct triple *lhs;
10942 #if DEBUG_TRIPLE_COLOR
10943         fprintf(stderr, "find_lhs_post_color(%p, %d)\n",
10944                 ins, index);
10945 #endif
10946         if ((index == 0) && triple_is_def(state, ins)) {
10947                 lhs = ins;
10948         }
10949         else if (index < TRIPLE_LHS(ins->sizes)) {
10950                 lhs = LHS(ins, index);
10951         }
10952         else {
10953                 internal_error(state, ins, "Bad lhs %d", index);
10954                 lhs = 0;
10955         }
10956         info = arch_reg_lhs(state, ins, index);
10957         if (info.reg >= MAX_REGISTERS) {
10958                 info.reg = REG_UNSET;
10959         }
10960         for(set = lhs->use; set; set = set->next) {
10961                 struct reg_info rinfo;
10962                 struct triple *user;
10963                 int zrhs, i;
10964                 user = set->member;
10965                 zrhs = TRIPLE_RHS(user->sizes);
10966                 for(i = 0; i < zrhs; i++) {
10967                         if (RHS(user, i) != lhs) {
10968                                 continue;
10969                         }
10970                         rinfo = find_rhs_post_color(state, user, i);
10971                         if ((info.reg != REG_UNSET) &&
10972                                 (rinfo.reg != REG_UNSET) &&
10973                                 (info.reg != rinfo.reg)) {
10974                                 internal_error(state, ins, "register conflict");
10975                         }
10976                         if ((info.regcm & rinfo.regcm) == 0) {
10977                                 internal_error(state, ins, "regcm conflict %x & %x == 0",
10978                                         info.regcm, rinfo.regcm);
10979                         }
10980                         if (info.reg == REG_UNSET) {
10981                                 info.reg = rinfo.reg;
10982                         }
10983                         info.regcm &= rinfo.regcm;
10984                 }
10985         }
10986 #if DEBUG_TRIPLE_COLOR
10987         fprintf(stderr, "find_lhs_post_color(%p, %d) -> ( %d, %x)\n",
10988                 ins, index, info.reg, info.regcm);
10989 #endif
10990         return info;
10991 }
10992
10993 static struct reg_info find_rhs_post_color(
10994         struct compile_state *state, struct triple *ins, int index)
10995 {
10996         struct reg_info info, rinfo;
10997         int zlhs, i;
10998 #if DEBUG_TRIPLE_COLOR
10999         fprintf(stderr, "find_rhs_post_color(%p, %d)\n",
11000                 ins, index);
11001 #endif
11002         rinfo = arch_reg_rhs(state, ins, index);
11003         zlhs = TRIPLE_LHS(ins->sizes);
11004         if (!zlhs && triple_is_def(state, ins)) {
11005                 zlhs = 1;
11006         }
11007         info = rinfo;
11008         if (info.reg >= MAX_REGISTERS) {
11009                 info.reg = REG_UNSET;
11010         }
11011         for(i = 0; i < zlhs; i++) {
11012                 struct reg_info linfo;
11013                 linfo = arch_reg_lhs(state, ins, i);
11014                 if ((linfo.reg == rinfo.reg) &&
11015                         (linfo.reg >= MAX_REGISTERS)) {
11016                         struct reg_info tinfo;
11017                         tinfo = find_lhs_post_color(state, ins, i);
11018                         if (tinfo.reg >= MAX_REGISTERS) {
11019                                 tinfo.reg = REG_UNSET;
11020                         }
11021                         info.regcm &= linfo.regcm;
11022                         info.regcm &= tinfo.regcm;
11023                         if (info.reg != REG_UNSET) {
11024                                 internal_error(state, ins, "register conflict");
11025                         }
11026                         if (info.regcm == 0) {
11027                                 internal_error(state, ins, "regcm conflict");
11028                         }
11029                         info.reg = tinfo.reg;
11030                 }
11031         }
11032 #if DEBUG_TRIPLE_COLOR
11033         fprintf(stderr, "find_rhs_post_color(%p, %d) -> ( %d, %x)\n",
11034                 ins, index, info.reg, info.regcm);
11035 #endif
11036         return info;
11037 }
11038
11039 static struct reg_info find_lhs_color(
11040         struct compile_state *state, struct triple *ins, int index)
11041 {
11042         struct reg_info pre, post, info;
11043 #if DEBUG_TRIPLE_COLOR
11044         fprintf(stderr, "find_lhs_color(%p, %d)\n",
11045                 ins, index);
11046 #endif
11047         pre = find_lhs_pre_color(state, ins, index);
11048         post = find_lhs_post_color(state, ins, index);
11049         if ((pre.reg != post.reg) &&
11050                 (pre.reg != REG_UNSET) &&
11051                 (post.reg != REG_UNSET)) {
11052                 internal_error(state, ins, "register conflict");
11053         }
11054         info.regcm = pre.regcm & post.regcm;
11055         info.reg = pre.reg;
11056         if (info.reg == REG_UNSET) {
11057                 info.reg = post.reg;
11058         }
11059 #if DEBUG_TRIPLE_COLOR
11060         fprintf(stderr, "find_lhs_color(%p, %d) -> ( %d, %x) ... (%d, %x) (%d, %x)\n",
11061                 ins, index, info.reg, info.regcm,
11062                 pre.reg, pre.regcm, post.reg, post.regcm);
11063 #endif
11064         return info;
11065 }
11066
11067 static struct triple *post_copy(struct compile_state *state, struct triple *ins)
11068 {
11069         struct triple_set *entry, *next;
11070         struct triple *out;
11071         struct reg_info info, rinfo;
11072
11073         info = arch_reg_lhs(state, ins, 0);
11074         out = post_triple(state, ins, OP_COPY, ins->type, ins, 0);
11075         use_triple(RHS(out, 0), out);
11076         /* Get the users of ins to use out instead */
11077         for(entry = ins->use; entry; entry = next) {
11078                 int i;
11079                 next = entry->next;
11080                 if (entry->member == out) {
11081                         continue;
11082                 }
11083                 i = find_rhs_use(state, entry->member, ins);
11084                 if (i < 0) {
11085                         continue;
11086                 }
11087                 rinfo = arch_reg_rhs(state, entry->member, i);
11088                 if ((info.reg == REG_UNNEEDED) && (rinfo.reg == REG_UNNEEDED)) {
11089                         continue;
11090                 }
11091                 replace_rhs_use(state, ins, out, entry->member);
11092         }
11093         transform_to_arch_instruction(state, out);
11094         return out;
11095 }
11096
11097 static struct triple *typed_pre_copy(
11098         struct compile_state *state, struct type *type, struct triple *ins, int index)
11099 {
11100         /* Carefully insert enough operations so that I can
11101          * enter any operation with a GPR32.
11102          */
11103         struct triple *in;
11104         struct triple **expr;
11105         unsigned classes;
11106         struct reg_info info;
11107         if (ins->op == OP_PHI) {
11108                 internal_error(state, ins, "pre_copy on a phi?");
11109         }
11110         classes = arch_type_to_regcm(state, type);
11111         info = arch_reg_rhs(state, ins, index);
11112         expr = &RHS(ins, index);
11113         if ((info.regcm & classes) == 0) {
11114                 internal_error(state, ins, "pre_copy with no register classes");
11115         }
11116         in = pre_triple(state, ins, OP_COPY, type, *expr, 0);
11117         unuse_triple(*expr, ins);
11118         *expr = in;
11119         use_triple(RHS(in, 0), in);
11120         use_triple(in, ins);
11121         transform_to_arch_instruction(state, in);
11122         return in;
11123         
11124 }
11125 static struct triple *pre_copy(
11126         struct compile_state *state, struct triple *ins, int index)
11127 {
11128         return typed_pre_copy(state, RHS(ins, index)->type, ins, index);
11129 }
11130
11131
11132 static void insert_copies_to_phi(struct compile_state *state)
11133 {
11134         /* To get out of ssa form we insert moves on the incoming
11135          * edges to blocks containting phi functions.
11136          */
11137         struct triple *first;
11138         struct triple *phi;
11139
11140         /* Walk all of the operations to find the phi functions */
11141         first = RHS(state->main_function, 0);
11142         for(phi = first->next; phi != first ; phi = phi->next) {
11143                 struct block_set *set;
11144                 struct block *block;
11145                 struct triple **slot, *copy;
11146                 int edge;
11147                 if (phi->op != OP_PHI) {
11148                         continue;
11149                 }
11150                 phi->id |= TRIPLE_FLAG_POST_SPLIT;
11151                 block = phi->u.block;
11152                 slot  = &RHS(phi, 0);
11153                 /* Phi's that feed into mandatory live range joins
11154                  * cause nasty complications.  Insert a copy of
11155                  * the phi value so I never have to deal with
11156                  * that in the rest of the code.
11157                  */
11158                 copy = post_copy(state, phi);
11159                 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
11160                 /* Walk all of the incoming edges/blocks and insert moves.
11161                  */
11162                 for(edge = 0, set = block->use; set; set = set->next, edge++) {
11163                         struct block *eblock;
11164                         struct triple *move;
11165                         struct triple *val;
11166                         struct triple *ptr;
11167                         eblock = set->member;
11168                         val = slot[edge];
11169
11170                         if (val == phi) {
11171                                 continue;
11172                         }
11173
11174                         get_occurance(val->occurance);
11175                         move = build_triple(state, OP_COPY, phi->type, val, 0,
11176                                 val->occurance);
11177                         move->u.block = eblock;
11178                         move->id |= TRIPLE_FLAG_PRE_SPLIT;
11179                         use_triple(val, move);
11180                         
11181                         slot[edge] = move;
11182                         unuse_triple(val, phi);
11183                         use_triple(move, phi);
11184
11185                         /* Walk through the block backwards to find
11186                          * an appropriate location for the OP_COPY.
11187                          */
11188                         for(ptr = eblock->last; ptr != eblock->first; ptr = ptr->prev) {
11189                                 struct triple **expr;
11190                                 if ((ptr == phi) || (ptr == val)) {
11191                                         goto out;
11192                                 }
11193                                 expr = triple_rhs(state, ptr, 0);
11194                                 for(;expr; expr = triple_rhs(state, ptr, expr)) {
11195                                         if ((*expr) == phi) {
11196                                                 goto out;
11197                                         }
11198                                 }
11199                         }
11200                 out:
11201                         if (triple_is_branch(state, ptr)) {
11202                                 internal_error(state, ptr,
11203                                         "Could not insert write to phi");
11204                         }
11205                         insert_triple(state, ptr->next, move);
11206                         if (eblock->last == ptr) {
11207                                 eblock->last = move;
11208                         }
11209                         transform_to_arch_instruction(state, move);
11210                 }
11211         }
11212 }
11213
11214 struct triple_reg_set {
11215         struct triple_reg_set *next;
11216         struct triple *member;
11217         struct triple *new;
11218 };
11219
11220 struct reg_block {
11221         struct block *block;
11222         struct triple_reg_set *in;
11223         struct triple_reg_set *out;
11224         int vertex;
11225 };
11226
11227 static int do_triple_set(struct triple_reg_set **head, 
11228         struct triple *member, struct triple *new_member)
11229 {
11230         struct triple_reg_set **ptr, *new;
11231         if (!member)
11232                 return 0;
11233         ptr = head;
11234         while(*ptr) {
11235                 if ((*ptr)->member == member) {
11236                         return 0;
11237                 }
11238                 ptr = &(*ptr)->next;
11239         }
11240         new = xcmalloc(sizeof(*new), "triple_set");
11241         new->member = member;
11242         new->new    = new_member;
11243         new->next   = *head;
11244         *head       = new;
11245         return 1;
11246 }
11247
11248 static void do_triple_unset(struct triple_reg_set **head, struct triple *member)
11249 {
11250         struct triple_reg_set *entry, **ptr;
11251         ptr = head;
11252         while(*ptr) {
11253                 entry = *ptr;
11254                 if (entry->member == member) {
11255                         *ptr = entry->next;
11256                         xfree(entry);
11257                         return;
11258                 }
11259                 else {
11260                         ptr = &entry->next;
11261                 }
11262         }
11263 }
11264
11265 static int in_triple(struct reg_block *rb, struct triple *in)
11266 {
11267         return do_triple_set(&rb->in, in, 0);
11268 }
11269 static void unin_triple(struct reg_block *rb, struct triple *unin)
11270 {
11271         do_triple_unset(&rb->in, unin);
11272 }
11273
11274 static int out_triple(struct reg_block *rb, struct triple *out)
11275 {
11276         return do_triple_set(&rb->out, out, 0);
11277 }
11278 static void unout_triple(struct reg_block *rb, struct triple *unout)
11279 {
11280         do_triple_unset(&rb->out, unout);
11281 }
11282
11283 static int initialize_regblock(struct reg_block *blocks,
11284         struct block *block, int vertex)
11285 {
11286         struct block_set *user;
11287         if (!block || (blocks[block->vertex].block == block)) {
11288                 return vertex;
11289         }
11290         vertex += 1;
11291         /* Renumber the blocks in a convinient fashion */
11292         block->vertex = vertex;
11293         blocks[vertex].block    = block;
11294         blocks[vertex].vertex   = vertex;
11295         for(user = block->use; user; user = user->next) {
11296                 vertex = initialize_regblock(blocks, user->member, vertex);
11297         }
11298         return vertex;
11299 }
11300
11301 static int phi_in(struct compile_state *state, struct reg_block *blocks,
11302         struct reg_block *rb, struct block *suc)
11303 {
11304         /* Read the conditional input set of a successor block
11305          * (i.e. the input to the phi nodes) and place it in the
11306          * current blocks output set.
11307          */
11308         struct block_set *set;
11309         struct triple *ptr;
11310         int edge;
11311         int done, change;
11312         change = 0;
11313         /* Find the edge I am coming in on */
11314         for(edge = 0, set = suc->use; set; set = set->next, edge++) {
11315                 if (set->member == rb->block) {
11316                         break;
11317                 }
11318         }
11319         if (!set) {
11320                 internal_error(state, 0, "Not coming on a control edge?");
11321         }
11322         for(done = 0, ptr = suc->first; !done; ptr = ptr->next) {
11323                 struct triple **slot, *expr, *ptr2;
11324                 int out_change, done2;
11325                 done = (ptr == suc->last);
11326                 if (ptr->op != OP_PHI) {
11327                         continue;
11328                 }
11329                 slot = &RHS(ptr, 0);
11330                 expr = slot[edge];
11331                 out_change = out_triple(rb, expr);
11332                 if (!out_change) {
11333                         continue;
11334                 }
11335                 /* If we don't define the variable also plast it
11336                  * in the current blocks input set.
11337                  */
11338                 ptr2 = rb->block->first;
11339                 for(done2 = 0; !done2; ptr2 = ptr2->next) {
11340                         if (ptr2 == expr) {
11341                                 break;
11342                         }
11343                         done2 = (ptr2 == rb->block->last);
11344                 }
11345                 if (!done2) {
11346                         continue;
11347                 }
11348                 change |= in_triple(rb, expr);
11349         }
11350         return change;
11351 }
11352
11353 static int reg_in(struct compile_state *state, struct reg_block *blocks,
11354         struct reg_block *rb, struct block *suc)
11355 {
11356         struct triple_reg_set *in_set;
11357         int change;
11358         change = 0;
11359         /* Read the input set of a successor block
11360          * and place it in the current blocks output set.
11361          */
11362         in_set = blocks[suc->vertex].in;
11363         for(; in_set; in_set = in_set->next) {
11364                 int out_change, done;
11365                 struct triple *first, *last, *ptr;
11366                 out_change = out_triple(rb, in_set->member);
11367                 if (!out_change) {
11368                         continue;
11369                 }
11370                 /* If we don't define the variable also place it
11371                  * in the current blocks input set.
11372                  */
11373                 first = rb->block->first;
11374                 last = rb->block->last;
11375                 done = 0;
11376                 for(ptr = first; !done; ptr = ptr->next) {
11377                         if (ptr == in_set->member) {
11378                                 break;
11379                         }
11380                         done = (ptr == last);
11381                 }
11382                 if (!done) {
11383                         continue;
11384                 }
11385                 change |= in_triple(rb, in_set->member);
11386         }
11387         change |= phi_in(state, blocks, rb, suc);
11388         return change;
11389 }
11390
11391
11392 static int use_in(struct compile_state *state, struct reg_block *rb)
11393 {
11394         /* Find the variables we use but don't define and add
11395          * it to the current blocks input set.
11396          */
11397 #warning "FIXME is this O(N^2) algorithm bad?"
11398         struct block *block;
11399         struct triple *ptr;
11400         int done;
11401         int change;
11402         block = rb->block;
11403         change = 0;
11404         for(done = 0, ptr = block->last; !done; ptr = ptr->prev) {
11405                 struct triple **expr;
11406                 done = (ptr == block->first);
11407                 /* The variable a phi function uses depends on the
11408                  * control flow, and is handled in phi_in, not
11409                  * here.
11410                  */
11411                 if (ptr->op == OP_PHI) {
11412                         continue;
11413                 }
11414                 expr = triple_rhs(state, ptr, 0);
11415                 for(;expr; expr = triple_rhs(state, ptr, expr)) {
11416                         struct triple *rhs, *test;
11417                         int tdone;
11418                         rhs = *expr;
11419                         if (!rhs) {
11420                                 continue;
11421                         }
11422                         /* See if rhs is defined in this block */
11423                         for(tdone = 0, test = ptr; !tdone; test = test->prev) {
11424                                 tdone = (test == block->first);
11425                                 if (test == rhs) {
11426                                         rhs = 0;
11427                                         break;
11428                                 }
11429                         }
11430                         /* If I still have a valid rhs add it to in */
11431                         change |= in_triple(rb, rhs);
11432                 }
11433         }
11434         return change;
11435 }
11436
11437 static struct reg_block *compute_variable_lifetimes(
11438         struct compile_state *state)
11439 {
11440         struct reg_block *blocks;
11441         int change;
11442         blocks = xcmalloc(
11443                 sizeof(*blocks)*(state->last_vertex + 1), "reg_block");
11444         initialize_regblock(blocks, state->last_block, 0);
11445         do {
11446                 int i;
11447                 change = 0;
11448                 for(i = 1; i <= state->last_vertex; i++) {
11449                         struct reg_block *rb;
11450                         rb = &blocks[i];
11451                         /* Add the left successor's input set to in */
11452                         if (rb->block->left) {
11453                                 change |= reg_in(state, blocks, rb, rb->block->left);
11454                         }
11455                         /* Add the right successor's input set to in */
11456                         if ((rb->block->right) && 
11457                                 (rb->block->right != rb->block->left)) {
11458                                 change |= reg_in(state, blocks, rb, rb->block->right);
11459                         }
11460                         /* Add use to in... */
11461                         change |= use_in(state, rb);
11462                 }
11463         } while(change);
11464         return blocks;
11465 }
11466
11467 static void free_variable_lifetimes(
11468         struct compile_state *state, struct reg_block *blocks)
11469 {
11470         int i;
11471         /* free in_set && out_set on each block */
11472         for(i = 1; i <= state->last_vertex; i++) {
11473                 struct triple_reg_set *entry, *next;
11474                 struct reg_block *rb;
11475                 rb = &blocks[i];
11476                 for(entry = rb->in; entry ; entry = next) {
11477                         next = entry->next;
11478                         do_triple_unset(&rb->in, entry->member);
11479                 }
11480                 for(entry = rb->out; entry; entry = next) {
11481                         next = entry->next;
11482                         do_triple_unset(&rb->out, entry->member);
11483                 }
11484         }
11485         xfree(blocks);
11486
11487 }
11488
11489 typedef void (*wvl_cb_t)(
11490         struct compile_state *state, 
11491         struct reg_block *blocks, struct triple_reg_set *live, 
11492         struct reg_block *rb, struct triple *ins, void *arg);
11493
11494 static void walk_variable_lifetimes(struct compile_state *state,
11495         struct reg_block *blocks, wvl_cb_t cb, void *arg)
11496 {
11497         int i;
11498         
11499         for(i = 1; i <= state->last_vertex; i++) {
11500                 struct triple_reg_set *live;
11501                 struct triple_reg_set *entry, *next;
11502                 struct triple *ptr, *prev;
11503                 struct reg_block *rb;
11504                 struct block *block;
11505                 int done;
11506
11507                 /* Get the blocks */
11508                 rb = &blocks[i];
11509                 block = rb->block;
11510
11511                 /* Copy out into live */
11512                 live = 0;
11513                 for(entry = rb->out; entry; entry = next) {
11514                         next = entry->next;
11515                         do_triple_set(&live, entry->member, entry->new);
11516                 }
11517                 /* Walk through the basic block calculating live */
11518                 for(done = 0, ptr = block->last; !done; ptr = prev) {
11519                         struct triple **expr;
11520
11521                         prev = ptr->prev;
11522                         done = (ptr == block->first);
11523
11524                         /* Ensure the current definition is in live */
11525                         if (triple_is_def(state, ptr)) {
11526                                 do_triple_set(&live, ptr, 0);
11527                         }
11528
11529                         /* Inform the callback function of what is
11530                          * going on.
11531                          */
11532                          cb(state, blocks, live, rb, ptr, arg);
11533                         
11534                         /* Remove the current definition from live */
11535                         do_triple_unset(&live, ptr);
11536
11537                         /* Add the current uses to live.
11538                          *
11539                          * It is safe to skip phi functions because they do
11540                          * not have any block local uses, and the block
11541                          * output sets already properly account for what
11542                          * control flow depedent uses phi functions do have.
11543                          */
11544                         if (ptr->op == OP_PHI) {
11545                                 continue;
11546                         }
11547                         expr = triple_rhs(state, ptr, 0);
11548                         for(;expr; expr = triple_rhs(state, ptr, expr)) {
11549                                 /* If the triple is not a definition skip it. */
11550                                 if (!*expr || !triple_is_def(state, *expr)) {
11551                                         continue;
11552                                 }
11553                                 do_triple_set(&live, *expr, 0);
11554                         }
11555                 }
11556                 /* Free live */
11557                 for(entry = live; entry; entry = next) {
11558                         next = entry->next;
11559                         do_triple_unset(&live, entry->member);
11560                 }
11561         }
11562 }
11563
11564 static int count_triples(struct compile_state *state)
11565 {
11566         struct triple *first, *ins;
11567         int triples = 0;
11568         first = RHS(state->main_function, 0);
11569         ins = first;
11570         do {
11571                 triples++;
11572                 ins = ins->next;
11573         } while (ins != first);
11574         return triples;
11575 }
11576 struct dead_triple {
11577         struct triple *triple;
11578         struct dead_triple *work_next;
11579         struct block *block;
11580         int color;
11581         int flags;
11582 #define TRIPLE_FLAG_ALIVE 1
11583 };
11584
11585
11586 static void awaken(
11587         struct compile_state *state,
11588         struct dead_triple *dtriple, struct triple **expr,
11589         struct dead_triple ***work_list_tail)
11590 {
11591         struct triple *triple;
11592         struct dead_triple *dt;
11593         if (!expr) {
11594                 return;
11595         }
11596         triple = *expr;
11597         if (!triple) {
11598                 return;
11599         }
11600         if (triple->id <= 0)  {
11601                 internal_error(state, triple, "bad triple id: %d",
11602                         triple->id);
11603         }
11604         if (triple->op == OP_NOOP) {
11605                 internal_warning(state, triple, "awakening noop?");
11606                 return;
11607         }
11608         dt = &dtriple[triple->id];
11609         if (!(dt->flags & TRIPLE_FLAG_ALIVE)) {
11610                 dt->flags |= TRIPLE_FLAG_ALIVE;
11611                 if (!dt->work_next) {
11612                         **work_list_tail = dt;
11613                         *work_list_tail = &dt->work_next;
11614                 }
11615         }
11616 }
11617
11618 static void eliminate_inefectual_code(struct compile_state *state)
11619 {
11620         struct block *block;
11621         struct dead_triple *dtriple, *work_list, **work_list_tail, *dt;
11622         int triples, i;
11623         struct triple *first, *ins;
11624
11625         /* Setup the work list */
11626         work_list = 0;
11627         work_list_tail = &work_list;
11628
11629         first = RHS(state->main_function, 0);
11630
11631         /* Count how many triples I have */
11632         triples = count_triples(state);
11633
11634         /* Now put then in an array and mark all of the triples dead */
11635         dtriple = xcmalloc(sizeof(*dtriple) * (triples + 1), "dtriples");
11636         
11637         ins = first;
11638         i = 1;
11639         block = 0;
11640         do {
11641                 if (ins->op == OP_LABEL) {
11642                         block = ins->u.block;
11643                 }
11644                 dtriple[i].triple = ins;
11645                 dtriple[i].block  = block;
11646                 dtriple[i].flags  = 0;
11647                 dtriple[i].color  = ins->id;
11648                 ins->id = i;
11649                 /* See if it is an operation we always keep */
11650 #warning "FIXME handle the case of killing a branch instruction"
11651                 if (!triple_is_pure(state, ins) || triple_is_branch(state, ins)) {
11652                         awaken(state, dtriple, &ins, &work_list_tail);
11653                 }
11654 #if 1
11655                 /* Unconditionally keep the very last instruction */
11656                 else if (ins->next == first) {
11657                         awaken(state, dtriple, &ins, &work_list_tail);
11658                 }
11659 #endif
11660                 i++;
11661                 ins = ins->next;
11662         } while(ins != first);
11663         while(work_list) {
11664                 struct dead_triple *dt;
11665                 struct block_set *user;
11666                 struct triple **expr;
11667                 dt = work_list;
11668                 work_list = dt->work_next;
11669                 if (!work_list) {
11670                         work_list_tail = &work_list;
11671                 }
11672                 /* Wake up the data depencencies of this triple */
11673                 expr = 0;
11674                 do {
11675                         expr = triple_rhs(state, dt->triple, expr);
11676                         awaken(state, dtriple, expr, &work_list_tail);
11677                 } while(expr);
11678                 do {
11679                         expr = triple_lhs(state, dt->triple, expr);
11680                         awaken(state, dtriple, expr, &work_list_tail);
11681                 } while(expr);
11682                 do {
11683                         expr = triple_misc(state, dt->triple, expr);
11684                         awaken(state, dtriple, expr, &work_list_tail);
11685                 } while(expr);
11686                 /* Wake up the forward control dependencies */
11687                 do {
11688                         expr = triple_targ(state, dt->triple, expr);
11689                         awaken(state, dtriple, expr, &work_list_tail);
11690                 } while(expr);
11691                 /* Wake up the reverse control dependencies of this triple */
11692                 for(user = dt->block->ipdomfrontier; user; user = user->next) {
11693                         awaken(state, dtriple, &user->member->last, &work_list_tail);
11694                 }
11695         }
11696         for(dt = &dtriple[1]; dt <= &dtriple[triples]; dt++) {
11697                 if ((dt->triple->op == OP_NOOP) && 
11698                         (dt->flags & TRIPLE_FLAG_ALIVE)) {
11699                         internal_error(state, dt->triple, "noop effective?");
11700                 }
11701                 dt->triple->id = dt->color;     /* Restore the color */
11702                 if (!(dt->flags & TRIPLE_FLAG_ALIVE)) {
11703 #warning "FIXME handle the case of killing a basic block"
11704                         if (dt->block->first == dt->triple) {
11705                                 continue;
11706                         }
11707                         if (dt->block->last == dt->triple) {
11708                                 dt->block->last = dt->triple->prev;
11709                         }
11710                         release_triple(state, dt->triple);
11711                 }
11712         }
11713         xfree(dtriple);
11714 }
11715
11716
11717 static void insert_mandatory_copies(struct compile_state *state)
11718 {
11719         struct triple *ins, *first;
11720
11721         /* The object is with a minimum of inserted copies,
11722          * to resolve in fundamental register conflicts between
11723          * register value producers and consumers.
11724          * Theoretically we may be greater than minimal when we
11725          * are inserting copies before instructions but that
11726          * case should be rare.
11727          */
11728         first = RHS(state->main_function, 0);
11729         ins = first;
11730         do {
11731                 struct triple_set *entry, *next;
11732                 struct triple *tmp;
11733                 struct reg_info info;
11734                 unsigned reg, regcm;
11735                 int do_post_copy, do_pre_copy;
11736                 tmp = 0;
11737                 if (!triple_is_def(state, ins)) {
11738                         goto next;
11739                 }
11740                 /* Find the architecture specific color information */
11741                 info = arch_reg_lhs(state, ins, 0);
11742                 if (info.reg >= MAX_REGISTERS) {
11743                         info.reg = REG_UNSET;
11744                 }
11745                 
11746                 reg = REG_UNSET;
11747                 regcm = arch_type_to_regcm(state, ins->type);
11748                 do_post_copy = do_pre_copy = 0;
11749
11750                 /* Walk through the uses of ins and check for conflicts */
11751                 for(entry = ins->use; entry; entry = next) {
11752                         struct reg_info rinfo;
11753                         int i;
11754                         next = entry->next;
11755                         i = find_rhs_use(state, entry->member, ins);
11756                         if (i < 0) {
11757                                 continue;
11758                         }
11759                         
11760                         /* Find the users color requirements */
11761                         rinfo = arch_reg_rhs(state, entry->member, i);
11762                         if (rinfo.reg >= MAX_REGISTERS) {
11763                                 rinfo.reg = REG_UNSET;
11764                         }
11765                         
11766                         /* See if I need a pre_copy */
11767                         if (rinfo.reg != REG_UNSET) {
11768                                 if ((reg != REG_UNSET) && (reg != rinfo.reg)) {
11769                                         do_pre_copy = 1;
11770                                 }
11771                                 reg = rinfo.reg;
11772                         }
11773                         regcm &= rinfo.regcm;
11774                         regcm = arch_regcm_normalize(state, regcm);
11775                         if (regcm == 0) {
11776                                 do_pre_copy = 1;
11777                         }
11778                         /* Always use pre_copies for constants.
11779                          * They do not take up any registers until a
11780                          * copy places them in one.
11781                          */
11782                         if ((info.reg == REG_UNNEEDED) && 
11783                                 (rinfo.reg != REG_UNNEEDED)) {
11784                                 do_pre_copy = 1;
11785                         }
11786                 }
11787                 do_post_copy =
11788                         !do_pre_copy &&
11789                         (((info.reg != REG_UNSET) && 
11790                                 (reg != REG_UNSET) &&
11791                                 (info.reg != reg)) ||
11792                         ((info.regcm & regcm) == 0));
11793
11794                 reg = info.reg;
11795                 regcm = info.regcm;
11796                 /* Walk through the uses of ins and do a pre_copy or see if a post_copy is warranted */
11797                 for(entry = ins->use; entry; entry = next) {
11798                         struct reg_info rinfo;
11799                         int i;
11800                         next = entry->next;
11801                         i = find_rhs_use(state, entry->member, ins);
11802                         if (i < 0) {
11803                                 continue;
11804                         }
11805                         
11806                         /* Find the users color requirements */
11807                         rinfo = arch_reg_rhs(state, entry->member, i);
11808                         if (rinfo.reg >= MAX_REGISTERS) {
11809                                 rinfo.reg = REG_UNSET;
11810                         }
11811
11812                         /* Now see if it is time to do the pre_copy */
11813                         if (rinfo.reg != REG_UNSET) {
11814                                 if (((reg != REG_UNSET) && (reg != rinfo.reg)) ||
11815                                         ((regcm & rinfo.regcm) == 0) ||
11816                                         /* Don't let a mandatory coalesce sneak
11817                                          * into a operation that is marked to prevent
11818                                          * coalescing.
11819                                          */
11820                                         ((reg != REG_UNNEEDED) &&
11821                                         ((ins->id & TRIPLE_FLAG_POST_SPLIT) ||
11822                                         (entry->member->id & TRIPLE_FLAG_PRE_SPLIT)))
11823                                         ) {
11824                                         if (do_pre_copy) {
11825                                                 struct triple *user;
11826                                                 user = entry->member;
11827                                                 if (RHS(user, i) != ins) {
11828                                                         internal_error(state, user, "bad rhs");
11829                                                 }
11830                                                 tmp = pre_copy(state, user, i);
11831                                                 tmp->id |= TRIPLE_FLAG_PRE_SPLIT;
11832                                                 continue;
11833                                         } else {
11834                                                 do_post_copy = 1;
11835                                         }
11836                                 }
11837                                 reg = rinfo.reg;
11838                         }
11839                         if ((regcm & rinfo.regcm) == 0) {
11840                                 if (do_pre_copy) {
11841                                         struct triple *user;
11842                                         user = entry->member;
11843                                         if (RHS(user, i) != ins) {
11844                                                 internal_error(state, user, "bad rhs");
11845                                         }
11846                                         tmp = pre_copy(state, user, i);
11847                                         tmp->id |= TRIPLE_FLAG_PRE_SPLIT;
11848                                         continue;
11849                                 } else {
11850                                         do_post_copy = 1;
11851                                 }
11852                         }
11853                         regcm &= rinfo.regcm;
11854                         
11855                 }
11856                 if (do_post_copy) {
11857                         struct reg_info pre, post;
11858                         tmp = post_copy(state, ins);
11859                         tmp->id |= TRIPLE_FLAG_PRE_SPLIT;
11860                         pre = arch_reg_lhs(state, ins, 0);
11861                         post = arch_reg_lhs(state, tmp, 0);
11862                         if ((pre.reg == post.reg) && (pre.regcm == post.regcm)) {
11863                                 internal_error(state, tmp, "useless copy");
11864                         }
11865                 }
11866         next:
11867                 ins = ins->next;
11868         } while(ins != first);
11869 }
11870
11871
11872 struct live_range_edge;
11873 struct live_range_def;
11874 struct live_range {
11875         struct live_range_edge *edges;
11876         struct live_range_def *defs;
11877 /* Note. The list pointed to by defs is kept in order.
11878  * That is baring splits in the flow control
11879  * defs dominates defs->next wich dominates defs->next->next
11880  * etc.
11881  */
11882         unsigned color;
11883         unsigned classes;
11884         unsigned degree;
11885         unsigned length;
11886         struct live_range *group_next, **group_prev;
11887 };
11888
11889 struct live_range_edge {
11890         struct live_range_edge *next;
11891         struct live_range *node;
11892 };
11893
11894 struct live_range_def {
11895         struct live_range_def *next;
11896         struct live_range_def *prev;
11897         struct live_range *lr;
11898         struct triple *def;
11899         unsigned orig_id;
11900 };
11901
11902 #define LRE_HASH_SIZE 2048
11903 struct lre_hash {
11904         struct lre_hash *next;
11905         struct live_range *left;
11906         struct live_range *right;
11907 };
11908
11909
11910 struct reg_state {
11911         struct lre_hash *hash[LRE_HASH_SIZE];
11912         struct reg_block *blocks;
11913         struct live_range_def *lrd;
11914         struct live_range *lr;
11915         struct live_range *low, **low_tail;
11916         struct live_range *high, **high_tail;
11917         unsigned defs;
11918         unsigned ranges;
11919         int passes, max_passes;
11920 #define MAX_ALLOCATION_PASSES 100
11921 };
11922
11923
11924
11925 struct print_interference_block_info {
11926         struct reg_state *rstate;
11927         FILE *fp;
11928         int need_edges;
11929 };
11930 static void print_interference_block(
11931         struct compile_state *state, struct block *block, void *arg)
11932
11933 {
11934         struct print_interference_block_info *info = arg;
11935         struct reg_state *rstate = info->rstate;
11936         FILE *fp = info->fp;
11937         struct reg_block *rb;
11938         struct triple *ptr;
11939         int phi_present;
11940         int done;
11941         rb = &rstate->blocks[block->vertex];
11942
11943         fprintf(fp, "\nblock: %p (%d), %p<-%p %p<-%p\n", 
11944                 block, 
11945                 block->vertex,
11946                 block->left, 
11947                 block->left && block->left->use?block->left->use->member : 0,
11948                 block->right, 
11949                 block->right && block->right->use?block->right->use->member : 0);
11950         if (rb->in) {
11951                 struct triple_reg_set *in_set;
11952                 fprintf(fp, "        in:");
11953                 for(in_set = rb->in; in_set; in_set = in_set->next) {
11954                         fprintf(fp, " %-10p", in_set->member);
11955                 }
11956                 fprintf(fp, "\n");
11957         }
11958         phi_present = 0;
11959         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
11960                 done = (ptr == block->last);
11961                 if (ptr->op == OP_PHI) {
11962                         phi_present = 1;
11963                         break;
11964                 }
11965         }
11966         if (phi_present) {
11967                 int edge;
11968                 for(edge = 0; edge < block->users; edge++) {
11969                         fprintf(fp, "     in(%d):", edge);
11970                         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
11971                                 struct triple **slot;
11972                                 done = (ptr == block->last);
11973                                 if (ptr->op != OP_PHI) {
11974                                         continue;
11975                                 }
11976                                 slot = &RHS(ptr, 0);
11977                                 fprintf(fp, " %-10p", slot[edge]);
11978                         }
11979                         fprintf(fp, "\n");
11980                 }
11981         }
11982         if (block->first->op == OP_LABEL) {
11983                 fprintf(fp, "%p:\n", block->first);
11984         }
11985         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
11986                 struct live_range *lr;
11987                 unsigned id;
11988                 int op;
11989                 op = ptr->op;
11990                 done = (ptr == block->last);
11991                 lr = rstate->lrd[ptr->id].lr;
11992                 
11993                 id = ptr->id;
11994                 ptr->id = rstate->lrd[id].orig_id;
11995                 SET_REG(ptr->id, lr->color);
11996                 display_triple(fp, ptr);
11997                 ptr->id = id;
11998
11999                 if (triple_is_def(state, ptr) && (lr->defs == 0)) {
12000                         internal_error(state, ptr, "lr has no defs!");
12001                 }
12002                 if (info->need_edges) {
12003                         if (lr->defs) {
12004                                 struct live_range_def *lrd;
12005                                 fprintf(fp, "       range:");
12006                                 lrd = lr->defs;
12007                                 do {
12008                                         fprintf(fp, " %-10p", lrd->def);
12009                                         lrd = lrd->next;
12010                                 } while(lrd != lr->defs);
12011                                 fprintf(fp, "\n");
12012                         }
12013                         if (lr->edges > 0) {
12014                                 struct live_range_edge *edge;
12015                                 fprintf(fp, "       edges:");
12016                                 for(edge = lr->edges; edge; edge = edge->next) {
12017                                         struct live_range_def *lrd;
12018                                         lrd = edge->node->defs;
12019                                         do {
12020                                                 fprintf(fp, " %-10p", lrd->def);
12021                                                 lrd = lrd->next;
12022                                         } while(lrd != edge->node->defs);
12023                                         fprintf(fp, "|");
12024                                 }
12025                                 fprintf(fp, "\n");
12026                         }
12027                 }
12028                 /* Do a bunch of sanity checks */
12029                 valid_ins(state, ptr);
12030                 if ((ptr->id < 0) || (ptr->id > rstate->defs)) {
12031                         internal_error(state, ptr, "Invalid triple id: %d",
12032                                 ptr->id);
12033                 }
12034         }
12035         if (rb->out) {
12036                 struct triple_reg_set *out_set;
12037                 fprintf(fp, "       out:");
12038                 for(out_set = rb->out; out_set; out_set = out_set->next) {
12039                         fprintf(fp, " %-10p", out_set->member);
12040                 }
12041                 fprintf(fp, "\n");
12042         }
12043         fprintf(fp, "\n");
12044 }
12045
12046 static void print_interference_blocks(
12047         struct compile_state *state, struct reg_state *rstate, FILE *fp, int need_edges)
12048 {
12049         struct print_interference_block_info info;
12050         info.rstate = rstate;
12051         info.fp = fp;
12052         info.need_edges = need_edges;
12053         fprintf(fp, "\nlive variables by block\n");
12054         walk_blocks(state, print_interference_block, &info);
12055
12056 }
12057
12058 static unsigned regc_max_size(struct compile_state *state, int classes)
12059 {
12060         unsigned max_size;
12061         int i;
12062         max_size = 0;
12063         for(i = 0; i < MAX_REGC; i++) {
12064                 if (classes & (1 << i)) {
12065                         unsigned size;
12066                         size = arch_regc_size(state, i);
12067                         if (size > max_size) {
12068                                 max_size = size;
12069                         }
12070                 }
12071         }
12072         return max_size;
12073 }
12074
12075 static int reg_is_reg(struct compile_state *state, int reg1, int reg2)
12076 {
12077         unsigned equivs[MAX_REG_EQUIVS];
12078         int i;
12079         if ((reg1 < 0) || (reg1 >= MAX_REGISTERS)) {
12080                 internal_error(state, 0, "invalid register");
12081         }
12082         if ((reg2 < 0) || (reg2 >= MAX_REGISTERS)) {
12083                 internal_error(state, 0, "invalid register");
12084         }
12085         arch_reg_equivs(state, equivs, reg1);
12086         for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
12087                 if (equivs[i] == reg2) {
12088                         return 1;
12089                 }
12090         }
12091         return 0;
12092 }
12093
12094 static void reg_fill_used(struct compile_state *state, char *used, int reg)
12095 {
12096         unsigned equivs[MAX_REG_EQUIVS];
12097         int i;
12098         if (reg == REG_UNNEEDED) {
12099                 return;
12100         }
12101         arch_reg_equivs(state, equivs, reg);
12102         for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
12103                 used[equivs[i]] = 1;
12104         }
12105         return;
12106 }
12107
12108 static void reg_inc_used(struct compile_state *state, char *used, int reg)
12109 {
12110         unsigned equivs[MAX_REG_EQUIVS];
12111         int i;
12112         if (reg == REG_UNNEEDED) {
12113                 return;
12114         }
12115         arch_reg_equivs(state, equivs, reg);
12116         for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
12117                 used[equivs[i]] += 1;
12118         }
12119         return;
12120 }
12121
12122 static unsigned int hash_live_edge(
12123         struct live_range *left, struct live_range *right)
12124 {
12125         unsigned int hash, val;
12126         unsigned long lval, rval;
12127         lval = ((unsigned long)left)/sizeof(struct live_range);
12128         rval = ((unsigned long)right)/sizeof(struct live_range);
12129         hash = 0;
12130         while(lval) {
12131                 val = lval & 0xff;
12132                 lval >>= 8;
12133                 hash = (hash *263) + val;
12134         }
12135         while(rval) {
12136                 val = rval & 0xff;
12137                 rval >>= 8;
12138                 hash = (hash *263) + val;
12139         }
12140         hash = hash & (LRE_HASH_SIZE - 1);
12141         return hash;
12142 }
12143
12144 static struct lre_hash **lre_probe(struct reg_state *rstate,
12145         struct live_range *left, struct live_range *right)
12146 {
12147         struct lre_hash **ptr;
12148         unsigned int index;
12149         /* Ensure left <= right */
12150         if (left > right) {
12151                 struct live_range *tmp;
12152                 tmp = left;
12153                 left = right;
12154                 right = tmp;
12155         }
12156         index = hash_live_edge(left, right);
12157         
12158         ptr = &rstate->hash[index];
12159         while(*ptr) {
12160                 if (((*ptr)->left == left) && ((*ptr)->right == right)) {
12161                         break;
12162                 }
12163                 ptr = &(*ptr)->next;
12164         }
12165         return ptr;
12166 }
12167
12168 static int interfere(struct reg_state *rstate,
12169         struct live_range *left, struct live_range *right)
12170 {
12171         struct lre_hash **ptr;
12172         ptr = lre_probe(rstate, left, right);
12173         return ptr && *ptr;
12174 }
12175
12176 static void add_live_edge(struct reg_state *rstate, 
12177         struct live_range *left, struct live_range *right)
12178 {
12179         /* FIXME the memory allocation overhead is noticeable here... */
12180         struct lre_hash **ptr, *new_hash;
12181         struct live_range_edge *edge;
12182
12183         if (left == right) {
12184                 return;
12185         }
12186         if ((left == &rstate->lr[0]) || (right == &rstate->lr[0])) {
12187                 return;
12188         }
12189         /* Ensure left <= right */
12190         if (left > right) {
12191                 struct live_range *tmp;
12192                 tmp = left;
12193                 left = right;
12194                 right = tmp;
12195         }
12196         ptr = lre_probe(rstate, left, right);
12197         if (*ptr) {
12198                 return;
12199         }
12200 #if 0
12201         fprintf(stderr, "new_live_edge(%p, %p)\n",
12202                 left, right);
12203 #endif
12204         new_hash = xmalloc(sizeof(*new_hash), "lre_hash");
12205         new_hash->next  = *ptr;
12206         new_hash->left  = left;
12207         new_hash->right = right;
12208         *ptr = new_hash;
12209
12210         edge = xmalloc(sizeof(*edge), "live_range_edge");
12211         edge->next   = left->edges;
12212         edge->node   = right;
12213         left->edges  = edge;
12214         left->degree += 1;
12215         
12216         edge = xmalloc(sizeof(*edge), "live_range_edge");
12217         edge->next    = right->edges;
12218         edge->node    = left;
12219         right->edges  = edge;
12220         right->degree += 1;
12221 }
12222
12223 static void remove_live_edge(struct reg_state *rstate,
12224         struct live_range *left, struct live_range *right)
12225 {
12226         struct live_range_edge *edge, **ptr;
12227         struct lre_hash **hptr, *entry;
12228         hptr = lre_probe(rstate, left, right);
12229         if (!hptr || !*hptr) {
12230                 return;
12231         }
12232         entry = *hptr;
12233         *hptr = entry->next;
12234         xfree(entry);
12235
12236         for(ptr = &left->edges; *ptr; ptr = &(*ptr)->next) {
12237                 edge = *ptr;
12238                 if (edge->node == right) {
12239                         *ptr = edge->next;
12240                         memset(edge, 0, sizeof(*edge));
12241                         xfree(edge);
12242                         right->degree--;
12243                         break;
12244                 }
12245         }
12246         for(ptr = &right->edges; *ptr; ptr = &(*ptr)->next) {
12247                 edge = *ptr;
12248                 if (edge->node == left) {
12249                         *ptr = edge->next;
12250                         memset(edge, 0, sizeof(*edge));
12251                         xfree(edge);
12252                         left->degree--;
12253                         break;
12254                 }
12255         }
12256 }
12257
12258 static void remove_live_edges(struct reg_state *rstate, struct live_range *range)
12259 {
12260         struct live_range_edge *edge, *next;
12261         for(edge = range->edges; edge; edge = next) {
12262                 next = edge->next;
12263                 remove_live_edge(rstate, range, edge->node);
12264         }
12265 }
12266
12267 static void transfer_live_edges(struct reg_state *rstate, 
12268         struct live_range *dest, struct live_range *src)
12269 {
12270         struct live_range_edge *edge, *next;
12271         for(edge = src->edges; edge; edge = next) {
12272                 struct live_range *other;
12273                 next = edge->next;
12274                 other = edge->node;
12275                 remove_live_edge(rstate, src, other);
12276                 add_live_edge(rstate, dest, other);
12277         }
12278 }
12279
12280
12281 /* Interference graph...
12282  * 
12283  * new(n) --- Return a graph with n nodes but no edges.
12284  * add(g,x,y) --- Return a graph including g with an between x and y
12285  * interfere(g, x, y) --- Return true if there exists an edge between the nodes
12286  *                x and y in the graph g
12287  * degree(g, x) --- Return the degree of the node x in the graph g
12288  * neighbors(g, x, f) --- Apply function f to each neighbor of node x in the graph g
12289  *
12290  * Implement with a hash table && a set of adjcency vectors.
12291  * The hash table supports constant time implementations of add and interfere.
12292  * The adjacency vectors support an efficient implementation of neighbors.
12293  */
12294
12295 /* 
12296  *     +---------------------------------------------------+
12297  *     |         +--------------+                          |
12298  *     v         v              |                          |
12299  * renumber -> build graph -> colalesce -> spill_costs -> simplify -> select 
12300  *
12301  * -- In simplify implment optimistic coloring... (No backtracking)
12302  * -- Implement Rematerialization it is the only form of spilling we can perform
12303  *    Essentially this means dropping a constant from a register because
12304  *    we can regenerate it later.
12305  *
12306  * --- Very conservative colalescing (don't colalesce just mark the opportunities)
12307  *     coalesce at phi points...
12308  * --- Bias coloring if at all possible do the coalesing a compile time.
12309  *
12310  *
12311  */
12312
12313 static void different_colored(
12314         struct compile_state *state, struct reg_state *rstate, 
12315         struct triple *parent, struct triple *ins)
12316 {
12317         struct live_range *lr;
12318         struct triple **expr;
12319         lr = rstate->lrd[ins->id].lr;
12320         expr = triple_rhs(state, ins, 0);
12321         for(;expr; expr = triple_rhs(state, ins, expr)) {
12322                 struct live_range *lr2;
12323                 if (!*expr || (*expr == parent) || (*expr == ins)) {
12324                         continue;
12325                 }
12326                 lr2 = rstate->lrd[(*expr)->id].lr;
12327                 if (lr->color == lr2->color) {
12328                         internal_error(state, ins, "live range too big");
12329                 }
12330         }
12331 }
12332
12333
12334 static struct live_range *coalesce_ranges(
12335         struct compile_state *state, struct reg_state *rstate,
12336         struct live_range *lr1, struct live_range *lr2)
12337 {
12338         struct live_range_def *head, *mid1, *mid2, *end, *lrd;
12339         unsigned color;
12340         unsigned classes;
12341         if (lr1 == lr2) {
12342                 return lr1;
12343         }
12344         if (!lr1->defs || !lr2->defs) {
12345                 internal_error(state, 0,
12346                         "cannot coalese dead live ranges");
12347         }
12348         if ((lr1->color == REG_UNNEEDED) ||
12349                 (lr2->color == REG_UNNEEDED)) {
12350                 internal_error(state, 0, 
12351                         "cannot coalesce live ranges without a possible color");
12352         }
12353         if ((lr1->color != lr2->color) &&
12354                 (lr1->color != REG_UNSET) &&
12355                 (lr2->color != REG_UNSET)) {
12356                 internal_error(state, lr1->defs->def, 
12357                         "cannot coalesce live ranges of different colors");
12358         }
12359         color = lr1->color;
12360         if (color == REG_UNSET) {
12361                 color = lr2->color;
12362         }
12363         classes = lr1->classes & lr2->classes;
12364         if (!classes) {
12365                 internal_error(state, lr1->defs->def,
12366                         "cannot coalesce live ranges with dissimilar register classes");
12367         }
12368 #if DEBUG_COALESCING
12369         fprintf(stderr, "coalescing:");
12370         lrd = lr1->defs;
12371         do {
12372                 fprintf(stderr, " %p", lrd->def);
12373                 lrd = lrd->next;
12374         } while(lrd != lr1->defs);
12375         fprintf(stderr, " |");
12376         lrd = lr2->defs;
12377         do {
12378                 fprintf(stderr, " %p", lrd->def);
12379                 lrd = lrd->next;
12380         } while(lrd != lr2->defs);
12381         fprintf(stderr, "\n");
12382 #endif
12383         /* If there is a clear dominate live range put it in lr1,
12384          * For purposes of this test phi functions are
12385          * considered dominated by the definitions that feed into
12386          * them. 
12387          */
12388         if ((lr1->defs->prev->def->op == OP_PHI) ||
12389                 ((lr2->defs->prev->def->op != OP_PHI) &&
12390                 tdominates(state, lr2->defs->def, lr1->defs->def))) {
12391                 struct live_range *tmp;
12392                 tmp = lr1;
12393                 lr1 = lr2;
12394                 lr2 = tmp;
12395         }
12396 #if 0
12397         if (lr1->defs->orig_id  & TRIPLE_FLAG_POST_SPLIT) {
12398                 fprintf(stderr, "lr1 post\n");
12399         }
12400         if (lr1->defs->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
12401                 fprintf(stderr, "lr1 pre\n");
12402         }
12403         if (lr2->defs->orig_id  & TRIPLE_FLAG_POST_SPLIT) {
12404                 fprintf(stderr, "lr2 post\n");
12405         }
12406         if (lr2->defs->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
12407                 fprintf(stderr, "lr2 pre\n");
12408         }
12409 #endif
12410 #if 0
12411         fprintf(stderr, "coalesce color1(%p): %3d color2(%p) %3d\n",
12412                 lr1->defs->def,
12413                 lr1->color,
12414                 lr2->defs->def,
12415                 lr2->color);
12416 #endif
12417         
12418         /* Append lr2 onto lr1 */
12419 #warning "FIXME should this be a merge instead of a splice?"
12420         /* This FIXME item applies to the correctness of live_range_end 
12421          * and to the necessity of making multiple passes of coalesce_live_ranges.
12422          * A failure to find some coalesce opportunities in coaleace_live_ranges
12423          * does not impact the correct of the compiler just the efficiency with
12424          * which registers are allocated.
12425          */
12426         head = lr1->defs;
12427         mid1 = lr1->defs->prev;
12428         mid2 = lr2->defs;
12429         end  = lr2->defs->prev;
12430         
12431         head->prev = end;
12432         end->next  = head;
12433
12434         mid1->next = mid2;
12435         mid2->prev = mid1;
12436
12437         /* Fixup the live range in the added live range defs */
12438         lrd = head;
12439         do {
12440                 lrd->lr = lr1;
12441                 lrd = lrd->next;
12442         } while(lrd != head);
12443
12444         /* Mark lr2 as free. */
12445         lr2->defs = 0;
12446         lr2->color = REG_UNNEEDED;
12447         lr2->classes = 0;
12448
12449         if (!lr1->defs) {
12450                 internal_error(state, 0, "lr1->defs == 0 ?");
12451         }
12452
12453         lr1->color   = color;
12454         lr1->classes = classes;
12455
12456         /* Keep the graph in sync by transfering the edges from lr2 to lr1 */
12457         transfer_live_edges(rstate, lr1, lr2);
12458
12459         return lr1;
12460 }
12461
12462 static struct live_range_def *live_range_head(
12463         struct compile_state *state, struct live_range *lr,
12464         struct live_range_def *last)
12465 {
12466         struct live_range_def *result;
12467         result = 0;
12468         if (last == 0) {
12469                 result = lr->defs;
12470         }
12471         else if (!tdominates(state, lr->defs->def, last->next->def)) {
12472                 result = last->next;
12473         }
12474         return result;
12475 }
12476
12477 static struct live_range_def *live_range_end(
12478         struct compile_state *state, struct live_range *lr,
12479         struct live_range_def *last)
12480 {
12481         struct live_range_def *result;
12482         result = 0;
12483         if (last == 0) {
12484                 result = lr->defs->prev;
12485         }
12486         else if (!tdominates(state, last->prev->def, lr->defs->prev->def)) {
12487                 result = last->prev;
12488         }
12489         return result;
12490 }
12491
12492
12493 static void initialize_live_ranges(
12494         struct compile_state *state, struct reg_state *rstate)
12495 {
12496         struct triple *ins, *first;
12497         size_t count, size;
12498         int i, j;
12499
12500         first = RHS(state->main_function, 0);
12501         /* First count how many instructions I have.
12502          */
12503         count = count_triples(state);
12504         /* Potentially I need one live range definitions for each
12505          * instruction.
12506          */
12507         rstate->defs = count;
12508         /* Potentially I need one live range for each instruction
12509          * plus an extra for the dummy live range.
12510          */
12511         rstate->ranges = count + 1;
12512         size = sizeof(rstate->lrd[0]) * rstate->defs;
12513         rstate->lrd = xcmalloc(size, "live_range_def");
12514         size = sizeof(rstate->lr[0]) * rstate->ranges;
12515         rstate->lr  = xcmalloc(size, "live_range");
12516
12517         /* Setup the dummy live range */
12518         rstate->lr[0].classes = 0;
12519         rstate->lr[0].color = REG_UNSET;
12520         rstate->lr[0].defs = 0;
12521         i = j = 0;
12522         ins = first;
12523         do {
12524                 /* If the triple is a variable give it a live range */
12525                 if (triple_is_def(state, ins)) {
12526                         struct reg_info info;
12527                         /* Find the architecture specific color information */
12528                         info = find_def_color(state, ins);
12529                         i++;
12530                         rstate->lr[i].defs    = &rstate->lrd[j];
12531                         rstate->lr[i].color   = info.reg;
12532                         rstate->lr[i].classes = info.regcm;
12533                         rstate->lr[i].degree  = 0;
12534                         rstate->lrd[j].lr = &rstate->lr[i];
12535                 } 
12536                 /* Otherwise give the triple the dummy live range. */
12537                 else {
12538                         rstate->lrd[j].lr = &rstate->lr[0];
12539                 }
12540
12541                 /* Initalize the live_range_def */
12542                 rstate->lrd[j].next    = &rstate->lrd[j];
12543                 rstate->lrd[j].prev    = &rstate->lrd[j];
12544                 rstate->lrd[j].def     = ins;
12545                 rstate->lrd[j].orig_id = ins->id;
12546                 ins->id = j;
12547
12548                 j++;
12549                 ins = ins->next;
12550         } while(ins != first);
12551         rstate->ranges = i;
12552
12553         /* Make a second pass to handle achitecture specific register
12554          * constraints.
12555          */
12556         ins = first;
12557         do {
12558                 int zlhs, zrhs, i, j;
12559                 if (ins->id > rstate->defs) {
12560                         internal_error(state, ins, "bad id");
12561                 }
12562                 
12563                 /* Walk through the template of ins and coalesce live ranges */
12564                 zlhs = TRIPLE_LHS(ins->sizes);
12565                 if ((zlhs == 0) && triple_is_def(state, ins)) {
12566                         zlhs = 1;
12567                 }
12568                 zrhs = TRIPLE_RHS(ins->sizes);
12569
12570 #if DEBUG_COALESCING > 1
12571                 fprintf(stderr, "mandatory coalesce: %p %d %d\n",
12572                         ins, zlhs, zrhs);
12573 #endif          
12574                 for(i = 0; i < zlhs; i++) {
12575                         struct reg_info linfo;
12576                         struct live_range_def *lhs;
12577                         linfo = arch_reg_lhs(state, ins, i);
12578                         if (linfo.reg < MAX_REGISTERS) {
12579                                 continue;
12580                         }
12581                         if (triple_is_def(state, ins)) {
12582                                 lhs = &rstate->lrd[ins->id];
12583                         } else {
12584                                 lhs = &rstate->lrd[LHS(ins, i)->id];
12585                         }
12586 #if DEBUG_COALESCING > 1
12587                         fprintf(stderr, "coalesce lhs(%d): %p %d\n",
12588                                 i, lhs, linfo.reg);
12589                 
12590 #endif          
12591                         for(j = 0; j < zrhs; j++) {
12592                                 struct reg_info rinfo;
12593                                 struct live_range_def *rhs;
12594                                 rinfo = arch_reg_rhs(state, ins, j);
12595                                 if (rinfo.reg < MAX_REGISTERS) {
12596                                         continue;
12597                                 }
12598                                 rhs = &rstate->lrd[RHS(ins, j)->id];
12599 #if DEBUG_COALESCING > 1
12600                                 fprintf(stderr, "coalesce rhs(%d): %p %d\n",
12601                                         j, rhs, rinfo.reg);
12602                 
12603 #endif          
12604                                 if (rinfo.reg == linfo.reg) {
12605                                         coalesce_ranges(state, rstate, 
12606                                                 lhs->lr, rhs->lr);
12607                                 }
12608                         }
12609                 }
12610                 ins = ins->next;
12611         } while(ins != first);
12612 }
12613
12614 static void graph_ins(
12615         struct compile_state *state, 
12616         struct reg_block *blocks, struct triple_reg_set *live, 
12617         struct reg_block *rb, struct triple *ins, void *arg)
12618 {
12619         struct reg_state *rstate = arg;
12620         struct live_range *def;
12621         struct triple_reg_set *entry;
12622
12623         /* If the triple is not a definition
12624          * we do not have a definition to add to
12625          * the interference graph.
12626          */
12627         if (!triple_is_def(state, ins)) {
12628                 return;
12629         }
12630         def = rstate->lrd[ins->id].lr;
12631         
12632         /* Create an edge between ins and everything that is
12633          * alive, unless the live_range cannot share
12634          * a physical register with ins.
12635          */
12636         for(entry = live; entry; entry = entry->next) {
12637                 struct live_range *lr;
12638                 if ((entry->member->id < 0) || (entry->member->id > rstate->defs)) {
12639                         internal_error(state, 0, "bad entry?");
12640                 }
12641                 lr = rstate->lrd[entry->member->id].lr;
12642                 if (def == lr) {
12643                         continue;
12644                 }
12645                 if (!arch_regcm_intersect(def->classes, lr->classes)) {
12646                         continue;
12647                 }
12648                 add_live_edge(rstate, def, lr);
12649         }
12650         return;
12651 }
12652
12653 static struct live_range *get_verify_live_range(
12654         struct compile_state *state, struct reg_state *rstate, struct triple *ins)
12655 {
12656         struct live_range *lr;
12657         struct live_range_def *lrd;
12658         int ins_found;
12659         if ((ins->id < 0) || (ins->id > rstate->defs)) {
12660                 internal_error(state, ins, "bad ins?");
12661         }
12662         lr = rstate->lrd[ins->id].lr;
12663         ins_found = 0;
12664         lrd = lr->defs;
12665         do {
12666                 if (lrd->def == ins) {
12667                         ins_found = 1;
12668                 }
12669                 lrd = lrd->next;
12670         } while(lrd != lr->defs);
12671         if (!ins_found) {
12672                 internal_error(state, ins, "ins not in live range");
12673         }
12674         return lr;
12675 }
12676
12677 static void verify_graph_ins(
12678         struct compile_state *state, 
12679         struct reg_block *blocks, struct triple_reg_set *live, 
12680         struct reg_block *rb, struct triple *ins, void *arg)
12681 {
12682         struct reg_state *rstate = arg;
12683         struct triple_reg_set *entry1, *entry2;
12684
12685
12686         /* Compare live against edges and make certain the code is working */
12687         for(entry1 = live; entry1; entry1 = entry1->next) {
12688                 struct live_range *lr1;
12689                 lr1 = get_verify_live_range(state, rstate, entry1->member);
12690                 for(entry2 = live; entry2; entry2 = entry2->next) {
12691                         struct live_range *lr2;
12692                         struct live_range_edge *edge2;
12693                         int lr1_found;
12694                         int lr2_degree;
12695                         if (entry2 == entry1) {
12696                                 continue;
12697                         }
12698                         lr2 = get_verify_live_range(state, rstate, entry2->member);
12699                         if (lr1 == lr2) {
12700                                 internal_error(state, entry2->member, 
12701                                         "live range with 2 values simultaneously alive");
12702                         }
12703                         if (!arch_regcm_intersect(lr1->classes, lr2->classes)) {
12704                                 continue;
12705                         }
12706                         if (!interfere(rstate, lr1, lr2)) {
12707                                 internal_error(state, entry2->member, 
12708                                         "edges don't interfere?");
12709                         }
12710                                 
12711                         lr1_found = 0;
12712                         lr2_degree = 0;
12713                         for(edge2 = lr2->edges; edge2; edge2 = edge2->next) {
12714                                 lr2_degree++;
12715                                 if (edge2->node == lr1) {
12716                                         lr1_found = 1;
12717                                 }
12718                         }
12719                         if (lr2_degree != lr2->degree) {
12720                                 internal_error(state, entry2->member,
12721                                         "computed degree: %d does not match reported degree: %d\n",
12722                                         lr2_degree, lr2->degree);
12723                         }
12724                         if (!lr1_found) {
12725                                 internal_error(state, entry2->member, "missing edge");
12726                         }
12727                 }
12728         }
12729         return;
12730 }
12731
12732
12733 static void print_interference_ins(
12734         struct compile_state *state, 
12735         struct reg_block *blocks, struct triple_reg_set *live, 
12736         struct reg_block *rb, struct triple *ins, void *arg)
12737 {
12738         struct reg_state *rstate = arg;
12739         struct live_range *lr;
12740         unsigned id;
12741
12742         lr = rstate->lrd[ins->id].lr;
12743         id = ins->id;
12744         ins->id = rstate->lrd[id].orig_id;
12745         SET_REG(ins->id, lr->color);
12746         display_triple(stdout, ins);
12747         ins->id = id;
12748
12749         if (lr->defs) {
12750                 struct live_range_def *lrd;
12751                 printf("       range:");
12752                 lrd = lr->defs;
12753                 do {
12754                         printf(" %-10p", lrd->def);
12755                         lrd = lrd->next;
12756                 } while(lrd != lr->defs);
12757                 printf("\n");
12758         }
12759         if (live) {
12760                 struct triple_reg_set *entry;
12761                 printf("        live:");
12762                 for(entry = live; entry; entry = entry->next) {
12763                         printf(" %-10p", entry->member);
12764                 }
12765                 printf("\n");
12766         }
12767         if (lr->edges) {
12768                 struct live_range_edge *entry;
12769                 printf("       edges:");
12770                 for(entry = lr->edges; entry; entry = entry->next) {
12771                         struct live_range_def *lrd;
12772                         lrd = entry->node->defs;
12773                         do {
12774                                 printf(" %-10p", lrd->def);
12775                                 lrd = lrd->next;
12776                         } while(lrd != entry->node->defs);
12777                         printf("|");
12778                 }
12779                 printf("\n");
12780         }
12781         if (triple_is_branch(state, ins)) {
12782                 printf("\n");
12783         }
12784         return;
12785 }
12786
12787 static int coalesce_live_ranges(
12788         struct compile_state *state, struct reg_state *rstate)
12789 {
12790         /* At the point where a value is moved from one
12791          * register to another that value requires two
12792          * registers, thus increasing register pressure.
12793          * Live range coaleescing reduces the register
12794          * pressure by keeping a value in one register
12795          * longer.
12796          *
12797          * In the case of a phi function all paths leading
12798          * into it must be allocated to the same register
12799          * otherwise the phi function may not be removed.
12800          *
12801          * Forcing a value to stay in a single register
12802          * for an extended period of time does have
12803          * limitations when applied to non homogenous
12804          * register pool.  
12805          *
12806          * The two cases I have identified are:
12807          * 1) Two forced register assignments may
12808          *    collide.
12809          * 2) Registers may go unused because they
12810          *    are only good for storing the value
12811          *    and not manipulating it.
12812          *
12813          * Because of this I need to split live ranges,
12814          * even outside of the context of coalesced live
12815          * ranges.  The need to split live ranges does
12816          * impose some constraints on live range coalescing.
12817          *
12818          * - Live ranges may not be coalesced across phi
12819          *   functions.  This creates a 2 headed live
12820          *   range that cannot be sanely split.
12821          *
12822          * - phi functions (coalesced in initialize_live_ranges) 
12823          *   are handled as pre split live ranges so we will
12824          *   never attempt to split them.
12825          */
12826         int coalesced;
12827         int i;
12828
12829         coalesced = 0;
12830         for(i = 0; i <= rstate->ranges; i++) {
12831                 struct live_range *lr1;
12832                 struct live_range_def *lrd1;
12833                 lr1 = &rstate->lr[i];
12834                 if (!lr1->defs) {
12835                         continue;
12836                 }
12837                 lrd1 = live_range_end(state, lr1, 0);
12838                 for(; lrd1; lrd1 = live_range_end(state, lr1, lrd1)) {
12839                         struct triple_set *set;
12840                         if (lrd1->def->op != OP_COPY) {
12841                                 continue;
12842                         }
12843                         /* Skip copies that are the result of a live range split. */
12844                         if (lrd1->orig_id & TRIPLE_FLAG_POST_SPLIT) {
12845                                 continue;
12846                         }
12847                         for(set = lrd1->def->use; set; set = set->next) {
12848                                 struct live_range_def *lrd2;
12849                                 struct live_range *lr2, *res;
12850
12851                                 lrd2 = &rstate->lrd[set->member->id];
12852
12853                                 /* Don't coalesce with instructions
12854                                  * that are the result of a live range
12855                                  * split.
12856                                  */
12857                                 if (lrd2->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
12858                                         continue;
12859                                 }
12860                                 lr2 = rstate->lrd[set->member->id].lr;
12861                                 if (lr1 == lr2) {
12862                                         continue;
12863                                 }
12864                                 if ((lr1->color != lr2->color) &&
12865                                         (lr1->color != REG_UNSET) &&
12866                                         (lr2->color != REG_UNSET)) {
12867                                         continue;
12868                                 }
12869                                 if ((lr1->classes & lr2->classes) == 0) {
12870                                         continue;
12871                                 }
12872                                 
12873                                 if (interfere(rstate, lr1, lr2)) {
12874                                         continue;
12875                                 }
12876
12877                                 res = coalesce_ranges(state, rstate, lr1, lr2);
12878                                 coalesced += 1;
12879                                 if (res != lr1) {
12880                                         goto next;
12881                                 }
12882                         }
12883                 }
12884         next:
12885                 ;
12886         }
12887         return coalesced;
12888 }
12889
12890
12891 static void fix_coalesce_conflicts(struct compile_state *state,
12892         struct reg_block *blocks, struct triple_reg_set *live,
12893         struct reg_block *rb, struct triple *ins, void *arg)
12894 {
12895         int *conflicts = arg;
12896         int zlhs, zrhs, i, j;
12897
12898         /* See if we have a mandatory coalesce operation between
12899          * a lhs and a rhs value.  If so and the rhs value is also
12900          * alive then this triple needs to be pre copied.  Otherwise
12901          * we would have two definitions in the same live range simultaneously
12902          * alive.
12903          */
12904         zlhs = TRIPLE_LHS(ins->sizes);
12905         if ((zlhs == 0) && triple_is_def(state, ins)) {
12906                 zlhs = 1;
12907         }
12908         zrhs = TRIPLE_RHS(ins->sizes);
12909         for(i = 0; i < zlhs; i++) {
12910                 struct reg_info linfo;
12911                 linfo = arch_reg_lhs(state, ins, i);
12912                 if (linfo.reg < MAX_REGISTERS) {
12913                         continue;
12914                 }
12915                 for(j = 0; j < zrhs; j++) {
12916                         struct reg_info rinfo;
12917                         struct triple *rhs;
12918                         struct triple_reg_set *set;
12919                         int found;
12920                         found = 0;
12921                         rinfo = arch_reg_rhs(state, ins, j);
12922                         if (rinfo.reg != linfo.reg) {
12923                                 continue;
12924                         }
12925                         rhs = RHS(ins, j);
12926                         for(set = live; set && !found; set = set->next) {
12927                                 if (set->member == rhs) {
12928                                         found = 1;
12929                                 }
12930                         }
12931                         if (found) {
12932                                 struct triple *copy;
12933                                 copy = pre_copy(state, ins, j);
12934                                 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
12935                                 (*conflicts)++;
12936                         }
12937                 }
12938         }
12939         return;
12940 }
12941
12942 static int correct_coalesce_conflicts(
12943         struct compile_state *state, struct reg_block *blocks)
12944 {
12945         int conflicts;
12946         conflicts = 0;
12947         walk_variable_lifetimes(state, blocks, fix_coalesce_conflicts, &conflicts);
12948         return conflicts;
12949 }
12950
12951 static void replace_set_use(struct compile_state *state,
12952         struct triple_reg_set *head, struct triple *orig, struct triple *new)
12953 {
12954         struct triple_reg_set *set;
12955         for(set = head; set; set = set->next) {
12956                 if (set->member == orig) {
12957                         set->member = new;
12958                 }
12959         }
12960 }
12961
12962 static void replace_block_use(struct compile_state *state, 
12963         struct reg_block *blocks, struct triple *orig, struct triple *new)
12964 {
12965         int i;
12966 #warning "WISHLIST visit just those blocks that need it *"
12967         for(i = 1; i <= state->last_vertex; i++) {
12968                 struct reg_block *rb;
12969                 rb = &blocks[i];
12970                 replace_set_use(state, rb->in, orig, new);
12971                 replace_set_use(state, rb->out, orig, new);
12972         }
12973 }
12974
12975 static void color_instructions(struct compile_state *state)
12976 {
12977         struct triple *ins, *first;
12978         first = RHS(state->main_function, 0);
12979         ins = first;
12980         do {
12981                 if (triple_is_def(state, ins)) {
12982                         struct reg_info info;
12983                         info = find_lhs_color(state, ins, 0);
12984                         if (info.reg >= MAX_REGISTERS) {
12985                                 info.reg = REG_UNSET;
12986                         }
12987                         SET_INFO(ins->id, info);
12988                 }
12989                 ins = ins->next;
12990         } while(ins != first);
12991 }
12992
12993 static struct reg_info read_lhs_color(
12994         struct compile_state *state, struct triple *ins, int index)
12995 {
12996         struct reg_info info;
12997         if ((index == 0) && triple_is_def(state, ins)) {
12998                 info.reg   = ID_REG(ins->id);
12999                 info.regcm = ID_REGCM(ins->id);
13000         }
13001         else if (index < TRIPLE_LHS(ins->sizes)) {
13002                 info = read_lhs_color(state, LHS(ins, index), 0);
13003         }
13004         else {
13005                 internal_error(state, ins, "Bad lhs %d", index);
13006                 info.reg = REG_UNSET;
13007                 info.regcm = 0;
13008         }
13009         return info;
13010 }
13011
13012 static struct triple *resolve_tangle(
13013         struct compile_state *state, struct triple *tangle)
13014 {
13015         struct reg_info info, uinfo;
13016         struct triple_set *set, *next;
13017         struct triple *copy;
13018
13019 #warning "WISHLIST recalculate all affected instructions colors"
13020         info = find_lhs_color(state, tangle, 0);
13021         for(set = tangle->use; set; set = next) {
13022                 struct triple *user;
13023                 int i, zrhs;
13024                 next = set->next;
13025                 user = set->member;
13026                 zrhs = TRIPLE_RHS(user->sizes);
13027                 for(i = 0; i < zrhs; i++) {
13028                         if (RHS(user, i) != tangle) {
13029                                 continue;
13030                         }
13031                         uinfo = find_rhs_post_color(state, user, i);
13032                         if (uinfo.reg == info.reg) {
13033                                 copy = pre_copy(state, user, i);
13034                                 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
13035                                 SET_INFO(copy->id, uinfo);
13036                         }
13037                 }
13038         }
13039         copy = 0;
13040         uinfo = find_lhs_pre_color(state, tangle, 0);
13041         if (uinfo.reg == info.reg) {
13042                 struct reg_info linfo;
13043                 copy = post_copy(state, tangle);
13044                 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
13045                 linfo = find_lhs_color(state, copy, 0);
13046                 SET_INFO(copy->id, linfo);
13047         }
13048         info = find_lhs_color(state, tangle, 0);
13049         SET_INFO(tangle->id, info);
13050         
13051         return copy;
13052 }
13053
13054
13055 static void fix_tangles(struct compile_state *state,
13056         struct reg_block *blocks, struct triple_reg_set *live,
13057         struct reg_block *rb, struct triple *ins, void *arg)
13058 {
13059         int *tangles = arg;
13060         struct triple *tangle;
13061         do {
13062                 char used[MAX_REGISTERS];
13063                 struct triple_reg_set *set;
13064                 tangle = 0;
13065
13066                 /* Find out which registers have multiple uses at this point */
13067                 memset(used, 0, sizeof(used));
13068                 for(set = live; set; set = set->next) {
13069                         struct reg_info info;
13070                         info = read_lhs_color(state, set->member, 0);
13071                         if (info.reg == REG_UNSET) {
13072                                 continue;
13073                         }
13074                         reg_inc_used(state, used, info.reg);
13075                 }
13076                 
13077                 /* Now find the least dominated definition of a register in
13078                  * conflict I have seen so far.
13079                  */
13080                 for(set = live; set; set = set->next) {
13081                         struct reg_info info;
13082                         info = read_lhs_color(state, set->member, 0);
13083                         if (used[info.reg] < 2) {
13084                                 continue;
13085                         }
13086                         /* Changing copies that feed into phi functions
13087                          * is incorrect.
13088                          */
13089                         if (set->member->use && 
13090                                 (set->member->use->member->op == OP_PHI)) {
13091                                 continue;
13092                         }
13093                         if (!tangle || tdominates(state, set->member, tangle)) {
13094                                 tangle = set->member;
13095                         }
13096                 }
13097                 /* If I have found a tangle resolve it */
13098                 if (tangle) {
13099                         struct triple *post_copy;
13100                         (*tangles)++;
13101                         post_copy = resolve_tangle(state, tangle);
13102                         if (post_copy) {
13103                                 replace_block_use(state, blocks, tangle, post_copy);
13104                         }
13105                         if (post_copy && (tangle != ins)) {
13106                                 replace_set_use(state, live, tangle, post_copy);
13107                         }
13108                 }
13109         } while(tangle);
13110         return;
13111 }
13112
13113 static int correct_tangles(
13114         struct compile_state *state, struct reg_block *blocks)
13115 {
13116         int tangles;
13117         tangles = 0;
13118         color_instructions(state);
13119         walk_variable_lifetimes(state, blocks, fix_tangles, &tangles);
13120         return tangles;
13121 }
13122
13123
13124 static void ids_from_rstate(struct compile_state *state, struct reg_state *rstate);
13125 static void cleanup_rstate(struct compile_state *state, struct reg_state *rstate);
13126
13127 struct triple *find_constrained_def(
13128         struct compile_state *state, struct live_range *range, struct triple *constrained)
13129 {
13130         struct live_range_def *lrd;
13131         lrd = range->defs;
13132         do {
13133                 struct reg_info info;
13134                 unsigned regcm;
13135                 int is_constrained;
13136                 regcm = arch_type_to_regcm(state, lrd->def->type);
13137                 info = find_lhs_color(state, lrd->def, 0);
13138                 regcm      = arch_regcm_reg_normalize(state, regcm);
13139                 info.regcm = arch_regcm_reg_normalize(state, info.regcm);
13140                 /* If the 2 register class masks are not equal the
13141                  * the current register class is constrained.
13142                  */
13143                 is_constrained = regcm != info.regcm;
13144                 
13145                 /* Of the constrained live ranges deal with the
13146                  * least dominated one first.
13147                  */
13148                 if (is_constrained) {
13149 #if DEBUG_RANGE_CONFLICTS
13150                         fprintf(stderr, "canidate: %p %-8s regcm: %x %x\n",
13151                                 lrd->def, tops(lrd->def->op), regcm, info.regcm);
13152 #endif
13153                         if (!constrained || 
13154                                 tdominates(state, lrd->def, constrained))
13155                         {
13156                                 constrained = lrd->def;
13157                         }
13158                 }
13159                 lrd = lrd->next;
13160         } while(lrd != range->defs);
13161         return constrained;
13162 }
13163
13164 static int split_constrained_ranges(
13165         struct compile_state *state, struct reg_state *rstate, 
13166         struct live_range *range)
13167 {
13168         /* Walk through the edges in conflict and our current live
13169          * range, and find definitions that are more severly constrained
13170          * than they type of data they contain require.
13171          * 
13172          * Then pick one of those ranges and relax the constraints.
13173          */
13174         struct live_range_edge *edge;
13175         struct triple *constrained;
13176
13177         constrained = 0;
13178         for(edge = range->edges; edge; edge = edge->next) {
13179                 constrained = find_constrained_def(state, edge->node, constrained);
13180         }
13181         if (!constrained) {
13182                 constrained = find_constrained_def(state, range, constrained);
13183         }
13184 #if DEBUG_RANGE_CONFLICTS
13185         fprintf(stderr, "constrained: %p %-8s\n",
13186                 constrained, tops(constrained->op));
13187 #endif
13188         if (constrained) {
13189                 ids_from_rstate(state, rstate);
13190                 cleanup_rstate(state, rstate);
13191                 resolve_tangle(state, constrained);
13192         }
13193         return !!constrained;
13194 }
13195         
13196 static int split_ranges(
13197         struct compile_state *state, struct reg_state *rstate,
13198         char *used, struct live_range *range)
13199 {
13200         int split;
13201 #if DEBUG_RANGE_CONFLICTS
13202         fprintf(stderr, "split_ranges %d %s %p\n", 
13203                 rstate->passes, tops(range->defs->def->op), range->defs->def);
13204 #endif
13205         if ((range->color == REG_UNNEEDED) ||
13206                 (rstate->passes >= rstate->max_passes)) {
13207                 return 0;
13208         }
13209         split = split_constrained_ranges(state, rstate, range);
13210
13211         /* Ideally I would split the live range that will not be used
13212          * for the longest period of time in hopes that this will 
13213          * (a) allow me to spill a register or
13214          * (b) allow me to place a value in another register.
13215          *
13216          * So far I don't have a test case for this, the resolving
13217          * of mandatory constraints has solved all of my
13218          * know issues.  So I have choosen not to write any
13219          * code until I cat get a better feel for cases where
13220          * it would be useful to have.
13221          *
13222          */
13223 #warning "WISHLIST implement live range splitting..."
13224         if ((DEBUG_RANGE_CONFLICTS > 1) && 
13225                 (!split || (DEBUG_RANGE_CONFLICTS > 2))) {
13226                 print_interference_blocks(state, rstate, stderr, 0);
13227                 print_dominators(state, stderr);
13228         }
13229         return split;
13230 }
13231
13232 #if DEBUG_COLOR_GRAPH > 1
13233 #define cgdebug_printf(...) fprintf(stdout, __VA_ARGS__)
13234 #define cgdebug_flush() fflush(stdout)
13235 #define cgdebug_loc(STATE, TRIPLE) loc(stdout, STATE, TRIPLE)
13236 #elif DEBUG_COLOR_GRAPH == 1
13237 #define cgdebug_printf(...) fprintf(stderr, __VA_ARGS__)
13238 #define cgdebug_flush() fflush(stderr)
13239 #define cgdebug_loc(STATE, TRIPLE) loc(stderr, STATE, TRIPLE)
13240 #else
13241 #define cgdebug_printf(...)
13242 #define cgdebug_flush()
13243 #define cgdebug_loc(STATE, TRIPLE)
13244 #endif
13245
13246         
13247 static int select_free_color(struct compile_state *state, 
13248         struct reg_state *rstate, struct live_range *range)
13249 {
13250         struct triple_set *entry;
13251         struct live_range_def *lrd;
13252         struct live_range_def *phi;
13253         struct live_range_edge *edge;
13254         char used[MAX_REGISTERS];
13255         struct triple **expr;
13256
13257         /* Instead of doing just the trivial color select here I try
13258          * a few extra things because a good color selection will help reduce
13259          * copies.
13260          */
13261
13262         /* Find the registers currently in use */
13263         memset(used, 0, sizeof(used));
13264         for(edge = range->edges; edge; edge = edge->next) {
13265                 if (edge->node->color == REG_UNSET) {
13266                         continue;
13267                 }
13268                 reg_fill_used(state, used, edge->node->color);
13269         }
13270 #if DEBUG_COLOR_GRAPH > 1
13271         {
13272                 int i;
13273                 i = 0;
13274                 for(edge = range->edges; edge; edge = edge->next) {
13275                         i++;
13276                 }
13277                 cgdebug_printf("\n%s edges: %d @%s:%d.%d\n", 
13278                         tops(range->def->op), i, 
13279                         range->def->filename, range->def->line, range->def->col);
13280                 for(i = 0; i < MAX_REGISTERS; i++) {
13281                         if (used[i]) {
13282                                 cgdebug_printf("used: %s\n",
13283                                         arch_reg_str(i));
13284                         }
13285                 }
13286         }       
13287 #endif
13288
13289         /* If a color is already assigned see if it will work */
13290         if (range->color != REG_UNSET) {
13291                 struct live_range_def *lrd;
13292                 if (!used[range->color]) {
13293                         return 1;
13294                 }
13295                 for(edge = range->edges; edge; edge = edge->next) {
13296                         if (edge->node->color != range->color) {
13297                                 continue;
13298                         }
13299                         warning(state, edge->node->defs->def, "edge: ");
13300                         lrd = edge->node->defs;
13301                         do {
13302                                 warning(state, lrd->def, " %p %s",
13303                                         lrd->def, tops(lrd->def->op));
13304                                 lrd = lrd->next;
13305                         } while(lrd != edge->node->defs);
13306                 }
13307                 lrd = range->defs;
13308                 warning(state, range->defs->def, "def: ");
13309                 do {
13310                         warning(state, lrd->def, " %p %s",
13311                                 lrd->def, tops(lrd->def->op));
13312                         lrd = lrd->next;
13313                 } while(lrd != range->defs);
13314                 internal_error(state, range->defs->def,
13315                         "live range with already used color %s",
13316                         arch_reg_str(range->color));
13317         }
13318
13319         /* If I feed into an expression reuse it's color.
13320          * This should help remove copies in the case of 2 register instructions
13321          * and phi functions.
13322          */
13323         phi = 0;
13324         lrd = live_range_end(state, range, 0);
13325         for(; (range->color == REG_UNSET) && lrd ; lrd = live_range_end(state, range, lrd)) {
13326                 entry = lrd->def->use;
13327                 for(;(range->color == REG_UNSET) && entry; entry = entry->next) {
13328                         struct live_range_def *insd;
13329                         unsigned regcm;
13330                         insd = &rstate->lrd[entry->member->id];
13331                         if (insd->lr->defs == 0) {
13332                                 continue;
13333                         }
13334                         if (!phi && (insd->def->op == OP_PHI) &&
13335                                 !interfere(rstate, range, insd->lr)) {
13336                                 phi = insd;
13337                         }
13338                         if (insd->lr->color == REG_UNSET) {
13339                                 continue;
13340                         }
13341                         regcm = insd->lr->classes;
13342                         if (((regcm & range->classes) == 0) ||
13343                                 (used[insd->lr->color])) {
13344                                 continue;
13345                         }
13346                         if (interfere(rstate, range, insd->lr)) {
13347                                 continue;
13348                         }
13349                         range->color = insd->lr->color;
13350                 }
13351         }
13352         /* If I feed into a phi function reuse it's color or the color
13353          * of something else that feeds into the phi function.
13354          */
13355         if (phi) {
13356                 if (phi->lr->color != REG_UNSET) {
13357                         if (used[phi->lr->color]) {
13358                                 range->color = phi->lr->color;
13359                         }
13360                 }
13361                 else {
13362                         expr = triple_rhs(state, phi->def, 0);
13363                         for(; expr; expr = triple_rhs(state, phi->def, expr)) {
13364                                 struct live_range *lr;
13365                                 unsigned regcm;
13366                                 if (!*expr) {
13367                                         continue;
13368                                 }
13369                                 lr = rstate->lrd[(*expr)->id].lr;
13370                                 if (lr->color == REG_UNSET) {
13371                                         continue;
13372                                 }
13373                                 regcm = lr->classes;
13374                                 if (((regcm & range->classes) == 0) ||
13375                                         (used[lr->color])) {
13376                                         continue;
13377                                 }
13378                                 if (interfere(rstate, range, lr)) {
13379                                         continue;
13380                                 }
13381                                 range->color = lr->color;
13382                         }
13383                 }
13384         }
13385         /* If I don't interfere with a rhs node reuse it's color */
13386         lrd = live_range_head(state, range, 0);
13387         for(; (range->color == REG_UNSET) && lrd ; lrd = live_range_head(state, range, lrd)) {
13388                 expr = triple_rhs(state, lrd->def, 0);
13389                 for(; expr; expr = triple_rhs(state, lrd->def, expr)) {
13390                         struct live_range *lr;
13391                         unsigned regcm;
13392                         if (!*expr) {
13393                                 continue;
13394                         }
13395                         lr = rstate->lrd[(*expr)->id].lr;
13396                         if (lr->color == REG_UNSET) {
13397                                 continue;
13398                         }
13399                         regcm = lr->classes;
13400                         if (((regcm & range->classes) == 0) ||
13401                                 (used[lr->color])) {
13402                                 continue;
13403                         }
13404                         if (interfere(rstate, range, lr)) {
13405                                 continue;
13406                         }
13407                         range->color = lr->color;
13408                         break;
13409                 }
13410         }
13411         /* If I have not opportunitically picked a useful color
13412          * pick the first color that is free.
13413          */
13414         if (range->color == REG_UNSET) {
13415                 range->color = 
13416                         arch_select_free_register(state, used, range->classes);
13417         }
13418         if (range->color == REG_UNSET) {
13419                 struct live_range_def *lrd;
13420                 int i;
13421                 if (split_ranges(state, rstate, used, range)) {
13422                         return 0;
13423                 }
13424                 for(edge = range->edges; edge; edge = edge->next) {
13425                         warning(state, edge->node->defs->def, "edge reg %s",
13426                                 arch_reg_str(edge->node->color));
13427                         lrd = edge->node->defs;
13428                         do {
13429                                 warning(state, lrd->def, " %s %p",
13430                                         tops(lrd->def->op), lrd->def);
13431                                 lrd = lrd->next;
13432                         } while(lrd != edge->node->defs);
13433                 }
13434                 warning(state, range->defs->def, "range: ");
13435                 lrd = range->defs;
13436                 do {
13437                         warning(state, lrd->def, " %s %p",
13438                                 tops(lrd->def->op), lrd->def);
13439                         lrd = lrd->next;
13440                 } while(lrd != range->defs);
13441                         
13442                 warning(state, range->defs->def, "classes: %x",
13443                         range->classes);
13444                 for(i = 0; i < MAX_REGISTERS; i++) {
13445                         if (used[i]) {
13446                                 warning(state, range->defs->def, "used: %s",
13447                                         arch_reg_str(i));
13448                         }
13449                 }
13450 #if DEBUG_COLOR_GRAPH < 2
13451                 error(state, range->defs->def, "too few registers");
13452 #else
13453                 internal_error(state, range->defs->def, "too few registers");
13454 #endif
13455         }
13456         range->classes &= arch_reg_regcm(state, range->color);
13457         if ((range->color == REG_UNSET) || (range->classes == 0)) {
13458                 internal_error(state, range->defs->def, "select_free_color did not?");
13459         }
13460         return 1;
13461 }
13462
13463 static int color_graph(struct compile_state *state, struct reg_state *rstate)
13464 {
13465         int colored;
13466         struct live_range_edge *edge;
13467         struct live_range *range;
13468         if (rstate->low) {
13469                 cgdebug_printf("Lo: ");
13470                 range = rstate->low;
13471                 if (*range->group_prev != range) {
13472                         internal_error(state, 0, "lo: *prev != range?");
13473                 }
13474                 *range->group_prev = range->group_next;
13475                 if (range->group_next) {
13476                         range->group_next->group_prev = range->group_prev;
13477                 }
13478                 if (&range->group_next == rstate->low_tail) {
13479                         rstate->low_tail = range->group_prev;
13480                 }
13481                 if (rstate->low == range) {
13482                         internal_error(state, 0, "low: next != prev?");
13483                 }
13484         }
13485         else if (rstate->high) {
13486                 cgdebug_printf("Hi: ");
13487                 range = rstate->high;
13488                 if (*range->group_prev != range) {
13489                         internal_error(state, 0, "hi: *prev != range?");
13490                 }
13491                 *range->group_prev = range->group_next;
13492                 if (range->group_next) {
13493                         range->group_next->group_prev = range->group_prev;
13494                 }
13495                 if (&range->group_next == rstate->high_tail) {
13496                         rstate->high_tail = range->group_prev;
13497                 }
13498                 if (rstate->high == range) {
13499                         internal_error(state, 0, "high: next != prev?");
13500                 }
13501         }
13502         else {
13503                 return 1;
13504         }
13505         cgdebug_printf(" %d\n", range - rstate->lr);
13506         range->group_prev = 0;
13507         for(edge = range->edges; edge; edge = edge->next) {
13508                 struct live_range *node;
13509                 node = edge->node;
13510                 /* Move nodes from the high to the low list */
13511                 if (node->group_prev && (node->color == REG_UNSET) &&
13512                         (node->degree == regc_max_size(state, node->classes))) {
13513                         if (*node->group_prev != node) {
13514                                 internal_error(state, 0, "move: *prev != node?");
13515                         }
13516                         *node->group_prev = node->group_next;
13517                         if (node->group_next) {
13518                                 node->group_next->group_prev = node->group_prev;
13519                         }
13520                         if (&node->group_next == rstate->high_tail) {
13521                                 rstate->high_tail = node->group_prev;
13522                         }
13523                         cgdebug_printf("Moving...%d to low\n", node - rstate->lr);
13524                         node->group_prev  = rstate->low_tail;
13525                         node->group_next  = 0;
13526                         *rstate->low_tail = node;
13527                         rstate->low_tail  = &node->group_next;
13528                         if (*node->group_prev != node) {
13529                                 internal_error(state, 0, "move2: *prev != node?");
13530                         }
13531                 }
13532                 node->degree -= 1;
13533         }
13534         colored = color_graph(state, rstate);
13535         if (colored) {
13536                 cgdebug_printf("Coloring %d @", range - rstate->lr);
13537                 cgdebug_loc(state, range->defs->def);
13538                 cgdebug_flush();
13539                 colored = select_free_color(state, rstate, range);
13540                 cgdebug_printf(" %s\n", arch_reg_str(range->color));
13541         }
13542         return colored;
13543 }
13544
13545 static void verify_colors(struct compile_state *state, struct reg_state *rstate)
13546 {
13547         struct live_range *lr;
13548         struct live_range_edge *edge;
13549         struct triple *ins, *first;
13550         char used[MAX_REGISTERS];
13551         first = RHS(state->main_function, 0);
13552         ins = first;
13553         do {
13554                 if (triple_is_def(state, ins)) {
13555                         if ((ins->id < 0) || (ins->id > rstate->defs)) {
13556                                 internal_error(state, ins, 
13557                                         "triple without a live range def");
13558                         }
13559                         lr = rstate->lrd[ins->id].lr;
13560                         if (lr->color == REG_UNSET) {
13561                                 internal_error(state, ins,
13562                                         "triple without a color");
13563                         }
13564                         /* Find the registers used by the edges */
13565                         memset(used, 0, sizeof(used));
13566                         for(edge = lr->edges; edge; edge = edge->next) {
13567                                 if (edge->node->color == REG_UNSET) {
13568                                         internal_error(state, 0,
13569                                                 "live range without a color");
13570                         }
13571                                 reg_fill_used(state, used, edge->node->color);
13572                         }
13573                         if (used[lr->color]) {
13574                                 internal_error(state, ins,
13575                                         "triple with already used color");
13576                         }
13577                 }
13578                 ins = ins->next;
13579         } while(ins != first);
13580 }
13581
13582 static void color_triples(struct compile_state *state, struct reg_state *rstate)
13583 {
13584         struct live_range *lr;
13585         struct triple *first, *ins;
13586         first = RHS(state->main_function, 0);
13587         ins = first;
13588         do {
13589                 if ((ins->id < 0) || (ins->id > rstate->defs)) {
13590                         internal_error(state, ins, 
13591                                 "triple without a live range");
13592                 }
13593                 lr = rstate->lrd[ins->id].lr;
13594                 SET_REG(ins->id, lr->color);
13595                 ins = ins->next;
13596         } while (ins != first);
13597 }
13598
13599 static struct live_range *merge_sort_lr(
13600         struct live_range *first, struct live_range *last)
13601 {
13602         struct live_range *mid, *join, **join_tail, *pick;
13603         size_t size;
13604         size = (last - first) + 1;
13605         if (size >= 2) {
13606                 mid = first + size/2;
13607                 first = merge_sort_lr(first, mid -1);
13608                 mid   = merge_sort_lr(mid, last);
13609                 
13610                 join = 0;
13611                 join_tail = &join;
13612                 /* merge the two lists */
13613                 while(first && mid) {
13614                         if ((first->degree < mid->degree) ||
13615                                 ((first->degree == mid->degree) &&
13616                                         (first->length < mid->length))) {
13617                                 pick = first;
13618                                 first = first->group_next;
13619                                 if (first) {
13620                                         first->group_prev = 0;
13621                                 }
13622                         }
13623                         else {
13624                                 pick = mid;
13625                                 mid = mid->group_next;
13626                                 if (mid) {
13627                                         mid->group_prev = 0;
13628                                 }
13629                         }
13630                         pick->group_next = 0;
13631                         pick->group_prev = join_tail;
13632                         *join_tail = pick;
13633                         join_tail = &pick->group_next;
13634                 }
13635                 /* Splice the remaining list */
13636                 pick = (first)? first : mid;
13637                 *join_tail = pick;
13638                 if (pick) { 
13639                         pick->group_prev = join_tail;
13640                 }
13641         }
13642         else {
13643                 if (!first->defs) {
13644                         first = 0;
13645                 }
13646                 join = first;
13647         }
13648         return join;
13649 }
13650
13651 static void ids_from_rstate(struct compile_state *state, 
13652         struct reg_state *rstate)
13653 {
13654         struct triple *ins, *first;
13655         if (!rstate->defs) {
13656                 return;
13657         }
13658         /* Display the graph if desired */
13659         if (state->debug & DEBUG_INTERFERENCE) {
13660                 print_blocks(state, stdout);
13661                 print_control_flow(state);
13662         }
13663         first = RHS(state->main_function, 0);
13664         ins = first;
13665         do {
13666                 if (ins->id) {
13667                         struct live_range_def *lrd;
13668                         lrd = &rstate->lrd[ins->id];
13669                         ins->id = lrd->orig_id;
13670                 }
13671                 ins = ins->next;
13672         } while(ins != first);
13673 }
13674
13675 static void cleanup_live_edges(struct reg_state *rstate)
13676 {
13677         int i;
13678         /* Free the edges on each node */
13679         for(i = 1; i <= rstate->ranges; i++) {
13680                 remove_live_edges(rstate, &rstate->lr[i]);
13681         }
13682 }
13683
13684 static void cleanup_rstate(struct compile_state *state, struct reg_state *rstate)
13685 {
13686         cleanup_live_edges(rstate);
13687         xfree(rstate->lrd);
13688         xfree(rstate->lr);
13689
13690         /* Free the variable lifetime information */
13691         if (rstate->blocks) {
13692                 free_variable_lifetimes(state, rstate->blocks);
13693         }
13694         rstate->defs = 0;
13695         rstate->ranges = 0;
13696         rstate->lrd = 0;
13697         rstate->lr = 0;
13698         rstate->blocks = 0;
13699 }
13700
13701 static void verify_consistency(struct compile_state *state);
13702 static void allocate_registers(struct compile_state *state)
13703 {
13704         struct reg_state rstate;
13705         int colored;
13706
13707         /* Clear out the reg_state */
13708         memset(&rstate, 0, sizeof(rstate));
13709         rstate.max_passes = MAX_ALLOCATION_PASSES;
13710
13711         do {
13712                 struct live_range **point, **next;
13713                 int conflicts;
13714                 int tangles;
13715                 int coalesced;
13716
13717 #if DEBUG_RANGE_CONFLICTS
13718                 fprintf(stderr, "pass: %d\n", rstate.passes);
13719 #endif
13720
13721                 /* Restore ids */
13722                 ids_from_rstate(state, &rstate);
13723
13724                 /* Cleanup the temporary data structures */
13725                 cleanup_rstate(state, &rstate);
13726
13727                 /* Compute the variable lifetimes */
13728                 rstate.blocks = compute_variable_lifetimes(state);
13729
13730                 /* Fix invalid mandatory live range coalesce conflicts */
13731                 conflicts = correct_coalesce_conflicts(state, rstate.blocks);
13732
13733                 /* Fix two simultaneous uses of the same register.
13734                  * In a few pathlogical cases a partial untangle moves
13735                  * the tangle to a part of the graph we won't revisit.
13736                  * So we keep looping until we have no more tangle fixes
13737                  * to apply.
13738                  */
13739                 do {
13740                         tangles = correct_tangles(state, rstate.blocks);
13741                 } while(tangles);
13742
13743                 if (state->debug & DEBUG_INSERTED_COPIES) {
13744                         printf("After resolve_tangles\n");
13745                         print_blocks(state, stdout);
13746                         print_control_flow(state);
13747                 }
13748                 verify_consistency(state);
13749                 
13750                 /* Allocate and initialize the live ranges */
13751                 initialize_live_ranges(state, &rstate);
13752
13753                 /* Note current doing coalescing in a loop appears to 
13754                  * buys me nothing.  The code is left this way in case
13755                  * there is some value in it.  Or if a future bugfix
13756                  *  yields some benefit.
13757                  */
13758                 do {
13759 #if DEBUG_COALESCING
13760                         fprintf(stderr, "coalescing\n");
13761 #endif                  
13762                         /* Remove any previous live edge calculations */
13763                         cleanup_live_edges(&rstate);
13764
13765                         /* Compute the interference graph */
13766                         walk_variable_lifetimes(
13767                                 state, rstate.blocks, graph_ins, &rstate);
13768                         
13769                         /* Display the interference graph if desired */
13770                         if (state->debug & DEBUG_INTERFERENCE) {
13771                                 print_interference_blocks(state, &rstate, stdout, 1);
13772                                 printf("\nlive variables by instruction\n");
13773                                 walk_variable_lifetimes(
13774                                         state, rstate.blocks, 
13775                                         print_interference_ins, &rstate);
13776                         }
13777                         
13778                         coalesced = coalesce_live_ranges(state, &rstate);
13779
13780 #if DEBUG_COALESCING
13781                         fprintf(stderr, "coalesced: %d\n", coalesced);
13782 #endif
13783                 } while(coalesced);
13784
13785 #if DEBUG_CONSISTENCY > 1
13786 # if 0
13787                 fprintf(stderr, "verify_graph_ins...\n");
13788 # endif
13789                 /* Verify the interference graph */
13790                 walk_variable_lifetimes(
13791                         state, rstate.blocks, verify_graph_ins, &rstate);
13792 # if 0
13793                 fprintf(stderr, "verify_graph_ins done\n");
13794 #endif
13795 #endif
13796                         
13797                 /* Build the groups low and high.  But with the nodes
13798                  * first sorted by degree order.
13799                  */
13800                 rstate.low_tail  = &rstate.low;
13801                 rstate.high_tail = &rstate.high;
13802                 rstate.high = merge_sort_lr(&rstate.lr[1], &rstate.lr[rstate.ranges]);
13803                 if (rstate.high) {
13804                         rstate.high->group_prev = &rstate.high;
13805                 }
13806                 for(point = &rstate.high; *point; point = &(*point)->group_next)
13807                         ;
13808                 rstate.high_tail = point;
13809                 /* Walk through the high list and move everything that needs
13810                  * to be onto low.
13811                  */
13812                 for(point = &rstate.high; *point; point = next) {
13813                         struct live_range *range;
13814                         next = &(*point)->group_next;
13815                         range = *point;
13816                         
13817                         /* If it has a low degree or it already has a color
13818                          * place the node in low.
13819                          */
13820                         if ((range->degree < regc_max_size(state, range->classes)) ||
13821                                 (range->color != REG_UNSET)) {
13822                                 cgdebug_printf("Lo: %5d degree %5d%s\n", 
13823                                         range - rstate.lr, range->degree,
13824                                         (range->color != REG_UNSET) ? " (colored)": "");
13825                                 *range->group_prev = range->group_next;
13826                                 if (range->group_next) {
13827                                         range->group_next->group_prev = range->group_prev;
13828                                 }
13829                                 if (&range->group_next == rstate.high_tail) {
13830                                         rstate.high_tail = range->group_prev;
13831                                 }
13832                                 range->group_prev  = rstate.low_tail;
13833                                 range->group_next  = 0;
13834                                 *rstate.low_tail   = range;
13835                                 rstate.low_tail    = &range->group_next;
13836                                 next = point;
13837                         }
13838                         else {
13839                                 cgdebug_printf("hi: %5d degree %5d%s\n", 
13840                                         range - rstate.lr, range->degree,
13841                                         (range->color != REG_UNSET) ? " (colored)": "");
13842                         }
13843                 }
13844                 /* Color the live_ranges */
13845                 colored = color_graph(state, &rstate);
13846                 rstate.passes++;
13847         } while (!colored);
13848
13849         /* Verify the graph was properly colored */
13850         verify_colors(state, &rstate);
13851
13852         /* Move the colors from the graph to the triples */
13853         color_triples(state, &rstate);
13854
13855         /* Cleanup the temporary data structures */
13856         cleanup_rstate(state, &rstate);
13857 }
13858
13859 /* Sparce Conditional Constant Propogation
13860  * =========================================
13861  */
13862 struct ssa_edge;
13863 struct flow_block;
13864 struct lattice_node {
13865         unsigned old_id;
13866         struct triple *def;
13867         struct ssa_edge *out;
13868         struct flow_block *fblock;
13869         struct triple *val;
13870         /* lattice high   val && !is_const(val) 
13871          * lattice const  is_const(val)
13872          * lattice low    val == 0
13873          */
13874 };
13875 struct ssa_edge {
13876         struct lattice_node *src;
13877         struct lattice_node *dst;
13878         struct ssa_edge *work_next;
13879         struct ssa_edge *work_prev;
13880         struct ssa_edge *out_next;
13881 };
13882 struct flow_edge {
13883         struct flow_block *src;
13884         struct flow_block *dst;
13885         struct flow_edge *work_next;
13886         struct flow_edge *work_prev;
13887         struct flow_edge *in_next;
13888         struct flow_edge *out_next;
13889         int executable;
13890 };
13891 struct flow_block {
13892         struct block *block;
13893         struct flow_edge *in;
13894         struct flow_edge *out;
13895         struct flow_edge left, right;
13896 };
13897
13898 struct scc_state {
13899         int ins_count;
13900         struct lattice_node *lattice;
13901         struct ssa_edge     *ssa_edges;
13902         struct flow_block   *flow_blocks;
13903         struct flow_edge    *flow_work_list;
13904         struct ssa_edge     *ssa_work_list;
13905 };
13906
13907
13908 static void scc_add_fedge(struct compile_state *state, struct scc_state *scc, 
13909         struct flow_edge *fedge)
13910 {
13911         if (!scc->flow_work_list) {
13912                 scc->flow_work_list = fedge;
13913                 fedge->work_next = fedge->work_prev = fedge;
13914         }
13915         else {
13916                 struct flow_edge *ftail;
13917                 ftail = scc->flow_work_list->work_prev;
13918                 fedge->work_next = ftail->work_next;
13919                 fedge->work_prev = ftail;
13920                 fedge->work_next->work_prev = fedge;
13921                 fedge->work_prev->work_next = fedge;
13922         }
13923 }
13924
13925 static struct flow_edge *scc_next_fedge(
13926         struct compile_state *state, struct scc_state *scc)
13927 {
13928         struct flow_edge *fedge;
13929         fedge = scc->flow_work_list;
13930         if (fedge) {
13931                 fedge->work_next->work_prev = fedge->work_prev;
13932                 fedge->work_prev->work_next = fedge->work_next;
13933                 if (fedge->work_next != fedge) {
13934                         scc->flow_work_list = fedge->work_next;
13935                 } else {
13936                         scc->flow_work_list = 0;
13937                 }
13938         }
13939         return fedge;
13940 }
13941
13942 static void scc_add_sedge(struct compile_state *state, struct scc_state *scc,
13943         struct ssa_edge *sedge)
13944 {
13945         if (!scc->ssa_work_list) {
13946                 scc->ssa_work_list = sedge;
13947                 sedge->work_next = sedge->work_prev = sedge;
13948         }
13949         else {
13950                 struct ssa_edge *stail;
13951                 stail = scc->ssa_work_list->work_prev;
13952                 sedge->work_next = stail->work_next;
13953                 sedge->work_prev = stail;
13954                 sedge->work_next->work_prev = sedge;
13955                 sedge->work_prev->work_next = sedge;
13956         }
13957 }
13958
13959 static struct ssa_edge *scc_next_sedge(
13960         struct compile_state *state, struct scc_state *scc)
13961 {
13962         struct ssa_edge *sedge;
13963         sedge = scc->ssa_work_list;
13964         if (sedge) {
13965                 sedge->work_next->work_prev = sedge->work_prev;
13966                 sedge->work_prev->work_next = sedge->work_next;
13967                 if (sedge->work_next != sedge) {
13968                         scc->ssa_work_list = sedge->work_next;
13969                 } else {
13970                         scc->ssa_work_list = 0;
13971                 }
13972         }
13973         return sedge;
13974 }
13975
13976 static void initialize_scc_state(
13977         struct compile_state *state, struct scc_state *scc)
13978 {
13979         int ins_count, ssa_edge_count;
13980         int ins_index, ssa_edge_index, fblock_index;
13981         struct triple *first, *ins;
13982         struct block *block;
13983         struct flow_block *fblock;
13984
13985         memset(scc, 0, sizeof(*scc));
13986
13987         /* Inialize pass zero find out how much memory we need */
13988         first = RHS(state->main_function, 0);
13989         ins = first;
13990         ins_count = ssa_edge_count = 0;
13991         do {
13992                 struct triple_set *edge;
13993                 ins_count += 1;
13994                 for(edge = ins->use; edge; edge = edge->next) {
13995                         ssa_edge_count++;
13996                 }
13997                 ins = ins->next;
13998         } while(ins != first);
13999 #if DEBUG_SCC
14000         fprintf(stderr, "ins_count: %d ssa_edge_count: %d vertex_count: %d\n",
14001                 ins_count, ssa_edge_count, state->last_vertex);
14002 #endif
14003         scc->ins_count   = ins_count;
14004         scc->lattice     = 
14005                 xcmalloc(sizeof(*scc->lattice)*(ins_count + 1), "lattice");
14006         scc->ssa_edges   = 
14007                 xcmalloc(sizeof(*scc->ssa_edges)*(ssa_edge_count + 1), "ssa_edges");
14008         scc->flow_blocks = 
14009                 xcmalloc(sizeof(*scc->flow_blocks)*(state->last_vertex + 1), 
14010                         "flow_blocks");
14011
14012         /* Initialize pass one collect up the nodes */
14013         fblock = 0;
14014         block = 0;
14015         ins_index = ssa_edge_index = fblock_index = 0;
14016         ins = first;
14017         do {
14018                 if ((ins->op == OP_LABEL) && (block != ins->u.block)) {
14019                         block = ins->u.block;
14020                         if (!block) {
14021                                 internal_error(state, ins, "label without block");
14022                         }
14023                         fblock_index += 1;
14024                         block->vertex = fblock_index;
14025                         fblock = &scc->flow_blocks[fblock_index];
14026                         fblock->block = block;
14027                 }
14028                 {
14029                         struct lattice_node *lnode;
14030                         ins_index += 1;
14031                         lnode = &scc->lattice[ins_index];
14032                         lnode->def = ins;
14033                         lnode->out = 0;
14034                         lnode->fblock = fblock;
14035                         lnode->val = ins; /* LATTICE HIGH */
14036                         lnode->old_id = ins->id;
14037                         ins->id = ins_index;
14038                 }
14039                 ins = ins->next;
14040         } while(ins != first);
14041         /* Initialize pass two collect up the edges */
14042         block = 0;
14043         fblock = 0;
14044         ins = first;
14045         do {
14046                 if ((ins->op == OP_LABEL) && (block != ins->u.block)) {
14047                         struct flow_edge *fedge, **ftail;
14048                         struct block_set *bedge;
14049                         block = ins->u.block;
14050                         fblock = &scc->flow_blocks[block->vertex];
14051                         fblock->in = 0;
14052                         fblock->out = 0;
14053                         ftail = &fblock->out;
14054                         if (block->left) {
14055                                 fblock->left.dst = &scc->flow_blocks[block->left->vertex];
14056                                 if (fblock->left.dst->block != block->left) {
14057                                         internal_error(state, 0, "block mismatch");
14058                                 }
14059                                 fblock->left.out_next = 0;
14060                                 *ftail = &fblock->left;
14061                                 ftail = &fblock->left.out_next;
14062                         }
14063                         if (block->right) {
14064                                 fblock->right.dst = &scc->flow_blocks[block->right->vertex];
14065                                 if (fblock->right.dst->block != block->right) {
14066                                         internal_error(state, 0, "block mismatch");
14067                                 }
14068                                 fblock->right.out_next = 0;
14069                                 *ftail = &fblock->right;
14070                                 ftail = &fblock->right.out_next;
14071                         }
14072                         for(fedge = fblock->out; fedge; fedge = fedge->out_next) {
14073                                 fedge->src = fblock;
14074                                 fedge->work_next = fedge->work_prev = fedge;
14075                                 fedge->executable = 0;
14076                         }
14077                         ftail = &fblock->in;
14078                         for(bedge = block->use; bedge; bedge = bedge->next) {
14079                                 struct block *src_block;
14080                                 struct flow_block *sfblock;
14081                                 struct flow_edge *sfedge;
14082                                 src_block = bedge->member;
14083                                 sfblock = &scc->flow_blocks[src_block->vertex];
14084                                 sfedge = 0;
14085                                 if (src_block->left == block) {
14086                                         sfedge = &sfblock->left;
14087                                 } else {
14088                                         sfedge = &sfblock->right;
14089                                 }
14090                                 *ftail = sfedge;
14091                                 ftail = &sfedge->in_next;
14092                                 sfedge->in_next = 0;
14093                         }
14094                 }
14095                 {
14096                         struct triple_set *edge;
14097                         struct ssa_edge **stail;
14098                         struct lattice_node *lnode;
14099                         lnode = &scc->lattice[ins->id];
14100                         lnode->out = 0;
14101                         stail = &lnode->out;
14102                         for(edge = ins->use; edge; edge = edge->next) {
14103                                 struct ssa_edge *sedge;
14104                                 ssa_edge_index += 1;
14105                                 sedge = &scc->ssa_edges[ssa_edge_index];
14106                                 *stail = sedge;
14107                                 stail = &sedge->out_next;
14108                                 sedge->src = lnode;
14109                                 sedge->dst = &scc->lattice[edge->member->id];
14110                                 sedge->work_next = sedge->work_prev = sedge;
14111                                 sedge->out_next = 0;
14112                         }
14113                 }
14114                 ins = ins->next;
14115         } while(ins != first);
14116         /* Setup a dummy block 0 as a node above the start node */
14117         {
14118                 struct flow_block *fblock, *dst;
14119                 struct flow_edge *fedge;
14120                 fblock = &scc->flow_blocks[0];
14121                 fblock->block = 0;
14122                 fblock->in = 0;
14123                 fblock->out = &fblock->left;
14124                 dst = &scc->flow_blocks[state->first_block->vertex];
14125                 fedge = &fblock->left;
14126                 fedge->src        = fblock;
14127                 fedge->dst        = dst;
14128                 fedge->work_next  = fedge;
14129                 fedge->work_prev  = fedge;
14130                 fedge->in_next    = fedge->dst->in;
14131                 fedge->out_next   = 0;
14132                 fedge->executable = 0;
14133                 fedge->dst->in = fedge;
14134                 
14135                 /* Initialize the work lists */
14136                 scc->flow_work_list = 0;
14137                 scc->ssa_work_list  = 0;
14138                 scc_add_fedge(state, scc, fedge);
14139         }
14140 #if DEBUG_SCC
14141         fprintf(stderr, "ins_index: %d ssa_edge_index: %d fblock_index: %d\n",
14142                 ins_index, ssa_edge_index, fblock_index);
14143 #endif
14144 }
14145
14146         
14147 static void free_scc_state(
14148         struct compile_state *state, struct scc_state *scc)
14149 {
14150         xfree(scc->flow_blocks);
14151         xfree(scc->ssa_edges);
14152         xfree(scc->lattice);
14153         
14154 }
14155
14156 static struct lattice_node *triple_to_lattice(
14157         struct compile_state *state, struct scc_state *scc, struct triple *ins)
14158 {
14159         if (ins->id <= 0) {
14160                 internal_error(state, ins, "bad id");
14161         }
14162         return &scc->lattice[ins->id];
14163 }
14164
14165 static struct triple *preserve_lval(
14166         struct compile_state *state, struct lattice_node *lnode)
14167 {
14168         struct triple *old;
14169         /* Preserve the original value */
14170         if (lnode->val) {
14171                 old = dup_triple(state, lnode->val);
14172                 if (lnode->val != lnode->def) {
14173                         xfree(lnode->val);
14174                 }
14175                 lnode->val = 0;
14176         } else {
14177                 old = 0;
14178         }
14179         return old;
14180 }
14181
14182 static int lval_changed(struct compile_state *state, 
14183         struct triple *old, struct lattice_node *lnode)
14184 {
14185         int changed;
14186         /* See if the lattice value has changed */
14187         changed = 1;
14188         if (!old && !lnode->val) {
14189                 changed = 0;
14190         }
14191         if (changed && lnode->val && !is_const(lnode->val)) {
14192                 changed = 0;
14193         }
14194         if (changed &&
14195                 lnode->val && old &&
14196                 (memcmp(lnode->val->param, old->param,
14197                         TRIPLE_SIZE(lnode->val->sizes) * sizeof(lnode->val->param[0])) == 0) &&
14198                 (memcmp(&lnode->val->u, &old->u, sizeof(old->u)) == 0)) {
14199                 changed = 0;
14200         }
14201         if (old) {
14202                 xfree(old);
14203         }
14204         return changed;
14205
14206 }
14207
14208 static void scc_visit_phi(struct compile_state *state, struct scc_state *scc, 
14209         struct lattice_node *lnode)
14210 {
14211         struct lattice_node *tmp;
14212         struct triple **slot, *old;
14213         struct flow_edge *fedge;
14214         int index;
14215         if (lnode->def->op != OP_PHI) {
14216                 internal_error(state, lnode->def, "not phi");
14217         }
14218         /* Store the original value */
14219         old = preserve_lval(state, lnode);
14220
14221         /* default to lattice high */
14222         lnode->val = lnode->def;
14223         slot = &RHS(lnode->def, 0);
14224         index = 0;
14225         for(fedge = lnode->fblock->in; fedge; index++, fedge = fedge->in_next) {
14226                 if (!fedge->executable) {
14227                         continue;
14228                 }
14229                 if (!slot[index]) {
14230                         internal_error(state, lnode->def, "no phi value");
14231                 }
14232                 tmp = triple_to_lattice(state, scc, slot[index]);
14233                 /* meet(X, lattice low) = lattice low */
14234                 if (!tmp->val) {
14235                         lnode->val = 0;
14236                 }
14237                 /* meet(X, lattice high) = X */
14238                 else if (!tmp->val) {
14239                         lnode->val = lnode->val;
14240                 }
14241                 /* meet(lattice high, X) = X */
14242                 else if (!is_const(lnode->val)) {
14243                         lnode->val = dup_triple(state, tmp->val);
14244                         lnode->val->type = lnode->def->type;
14245                 }
14246                 /* meet(const, const) = const or lattice low */
14247                 else if (!constants_equal(state, lnode->val, tmp->val)) {
14248                         lnode->val = 0;
14249                 }
14250                 if (!lnode->val) {
14251                         break;
14252                 }
14253         }
14254 #if DEBUG_SCC
14255         fprintf(stderr, "phi: %d -> %s\n",
14256                 lnode->def->id,
14257                 (!lnode->val)? "lo": is_const(lnode->val)? "const": "hi");
14258 #endif
14259         /* If the lattice value has changed update the work lists. */
14260         if (lval_changed(state, old, lnode)) {
14261                 struct ssa_edge *sedge;
14262                 for(sedge = lnode->out; sedge; sedge = sedge->out_next) {
14263                         scc_add_sedge(state, scc, sedge);
14264                 }
14265         }
14266 }
14267
14268 static int compute_lnode_val(struct compile_state *state, struct scc_state *scc,
14269         struct lattice_node *lnode)
14270 {
14271         int changed;
14272         struct triple *old, *scratch;
14273         struct triple **dexpr, **vexpr;
14274         int count, i;
14275         
14276         /* Store the original value */
14277         old = preserve_lval(state, lnode);
14278
14279         /* Reinitialize the value */
14280         lnode->val = scratch = dup_triple(state, lnode->def);
14281         scratch->id = lnode->old_id;
14282         scratch->next     = scratch;
14283         scratch->prev     = scratch;
14284         scratch->use      = 0;
14285
14286         count = TRIPLE_SIZE(scratch->sizes);
14287         for(i = 0; i < count; i++) {
14288                 dexpr = &lnode->def->param[i];
14289                 vexpr = &scratch->param[i];
14290                 *vexpr = *dexpr;
14291                 if (((i < TRIPLE_MISC_OFF(scratch->sizes)) ||
14292                         (i >= TRIPLE_TARG_OFF(scratch->sizes))) &&
14293                         *dexpr) {
14294                         struct lattice_node *tmp;
14295                         tmp = triple_to_lattice(state, scc, *dexpr);
14296                         *vexpr = (tmp->val)? tmp->val : tmp->def;
14297                 }
14298         }
14299         if (scratch->op == OP_BRANCH) {
14300                 scratch->next = lnode->def->next;
14301         }
14302         /* Recompute the value */
14303 #warning "FIXME see if simplify does anything bad"
14304         /* So far it looks like only the strength reduction
14305          * optimization are things I need to worry about.
14306          */
14307         simplify(state, scratch);
14308         /* Cleanup my value */
14309         if (scratch->use) {
14310                 internal_error(state, lnode->def, "scratch used?");
14311         }
14312         if ((scratch->prev != scratch) ||
14313                 ((scratch->next != scratch) &&
14314                         ((lnode->def->op != OP_BRANCH) ||
14315                                 (scratch->next != lnode->def->next)))) {
14316                 internal_error(state, lnode->def, "scratch in list?");
14317         }
14318         /* undo any uses... */
14319         count = TRIPLE_SIZE(scratch->sizes);
14320         for(i = 0; i < count; i++) {
14321                 vexpr = &scratch->param[i];
14322                 if (*vexpr) {
14323                         unuse_triple(*vexpr, scratch);
14324                 }
14325         }
14326         if (!is_const(scratch)) {
14327                 for(i = 0; i < count; i++) {
14328                         dexpr = &lnode->def->param[i];
14329                         if (((i < TRIPLE_MISC_OFF(scratch->sizes)) ||
14330                                 (i >= TRIPLE_TARG_OFF(scratch->sizes))) &&
14331                                 *dexpr) {
14332                                 struct lattice_node *tmp;
14333                                 tmp = triple_to_lattice(state, scc, *dexpr);
14334                                 if (!tmp->val) {
14335                                         lnode->val = 0;
14336                                 }
14337                         }
14338                 }
14339         }
14340         if (lnode->val && 
14341                 (lnode->val->op == lnode->def->op) &&
14342                 (memcmp(lnode->val->param, lnode->def->param, 
14343                         count * sizeof(lnode->val->param[0])) == 0) &&
14344                 (memcmp(&lnode->val->u, &lnode->def->u, sizeof(lnode->def->u)) == 0)) {
14345                 lnode->val = lnode->def;
14346         }
14347         /* Find the cases that are always lattice lo */
14348         if (lnode->val && 
14349                 triple_is_def(state, lnode->val) &&
14350                 !triple_is_pure(state, lnode->val)) {
14351                 lnode->val = 0;
14352         }
14353         if (lnode->val && 
14354                 (lnode->val->op == OP_SDECL) && 
14355                 (lnode->val != lnode->def)) {
14356                 internal_error(state, lnode->def, "bad sdecl");
14357         }
14358         /* See if the lattice value has changed */
14359         changed = lval_changed(state, old, lnode);
14360         if (lnode->val != scratch) {
14361                 xfree(scratch);
14362         }
14363         return changed;
14364 }
14365
14366 static void scc_visit_branch(struct compile_state *state, struct scc_state *scc,
14367         struct lattice_node *lnode)
14368 {
14369         struct lattice_node *cond;
14370 #if DEBUG_SCC
14371         {
14372                 struct flow_edge *fedge;
14373                 fprintf(stderr, "branch: %d (",
14374                         lnode->def->id);
14375                 
14376                 for(fedge = lnode->fblock->out; fedge; fedge = fedge->out_next) {
14377                         fprintf(stderr, " %d", fedge->dst->block->vertex);
14378                 }
14379                 fprintf(stderr, " )");
14380                 if (TRIPLE_RHS(lnode->def->sizes) > 0) {
14381                         fprintf(stderr, " <- %d",
14382                                 RHS(lnode->def, 0)->id);
14383                 }
14384                 fprintf(stderr, "\n");
14385         }
14386 #endif
14387         if (lnode->def->op != OP_BRANCH) {
14388                 internal_error(state, lnode->def, "not branch");
14389         }
14390         /* This only applies to conditional branches */
14391         if (TRIPLE_RHS(lnode->def->sizes) == 0) {
14392                 return;
14393         }
14394         cond = triple_to_lattice(state, scc, RHS(lnode->def,0));
14395         if (cond->val && !is_const(cond->val)) {
14396 #warning "FIXME do I need to do something here?"
14397                 warning(state, cond->def, "condition not constant?");
14398                 return;
14399         }
14400         if (cond->val == 0) {
14401                 scc_add_fedge(state, scc, cond->fblock->out);
14402                 scc_add_fedge(state, scc, cond->fblock->out->out_next);
14403         }
14404         else if (cond->val->u.cval) {
14405                 scc_add_fedge(state, scc, cond->fblock->out->out_next);
14406                 
14407         } else {
14408                 scc_add_fedge(state, scc, cond->fblock->out);
14409         }
14410
14411 }
14412
14413 static void scc_visit_expr(struct compile_state *state, struct scc_state *scc,
14414         struct lattice_node *lnode)
14415 {
14416         int changed;
14417
14418         changed = compute_lnode_val(state, scc, lnode);
14419 #if DEBUG_SCC
14420         {
14421                 struct triple **expr;
14422                 fprintf(stderr, "expr: %3d %10s (",
14423                         lnode->def->id, tops(lnode->def->op));
14424                 expr = triple_rhs(state, lnode->def, 0);
14425                 for(;expr;expr = triple_rhs(state, lnode->def, expr)) {
14426                         if (*expr) {
14427                                 fprintf(stderr, " %d", (*expr)->id);
14428                         }
14429                 }
14430                 fprintf(stderr, " ) -> %s\n",
14431                         (!lnode->val)? "lo": is_const(lnode->val)? "const": "hi");
14432         }
14433 #endif
14434         if (lnode->def->op == OP_BRANCH) {
14435                 scc_visit_branch(state, scc, lnode);
14436
14437         }
14438         else if (changed) {
14439                 struct ssa_edge *sedge;
14440                 for(sedge = lnode->out; sedge; sedge = sedge->out_next) {
14441                         scc_add_sedge(state, scc, sedge);
14442                 }
14443         }
14444 }
14445
14446 static void scc_writeback_values(
14447         struct compile_state *state, struct scc_state *scc)
14448 {
14449         struct triple *first, *ins;
14450         first = RHS(state->main_function, 0);
14451         ins = first;
14452         do {
14453                 struct lattice_node *lnode;
14454                 lnode = triple_to_lattice(state, scc, ins);
14455                 /* Restore id */
14456                 ins->id = lnode->old_id;
14457 #if DEBUG_SCC
14458                 if (lnode->val && !is_const(lnode->val)) {
14459                         warning(state, lnode->def, 
14460                                 "lattice node still high?");
14461                 }
14462 #endif
14463                 if (lnode->val && (lnode->val != ins)) {
14464                         /* See if it something I know how to write back */
14465                         switch(lnode->val->op) {
14466                         case OP_INTCONST:
14467                                 mkconst(state, ins, lnode->val->u.cval);
14468                                 break;
14469                         case OP_ADDRCONST:
14470                                 mkaddr_const(state, ins, 
14471                                         MISC(lnode->val, 0), lnode->val->u.cval);
14472                                 break;
14473                         default:
14474                                 /* By default don't copy the changes,
14475                                  * recompute them in place instead.
14476                                  */
14477                                 simplify(state, ins);
14478                                 break;
14479                         }
14480                         if (is_const(lnode->val) &&
14481                                 !constants_equal(state, lnode->val, ins)) {
14482                                 internal_error(state, 0, "constants not equal");
14483                         }
14484                         /* Free the lattice nodes */
14485                         xfree(lnode->val);
14486                         lnode->val = 0;
14487                 }
14488                 ins = ins->next;
14489         } while(ins != first);
14490 }
14491
14492 static void scc_transform(struct compile_state *state)
14493 {
14494         struct scc_state scc;
14495
14496         initialize_scc_state(state, &scc);
14497
14498         while(scc.flow_work_list || scc.ssa_work_list) {
14499                 struct flow_edge *fedge;
14500                 struct ssa_edge *sedge;
14501                 struct flow_edge *fptr;
14502                 while((fedge = scc_next_fedge(state, &scc))) {
14503                         struct block *block;
14504                         struct triple *ptr;
14505                         struct flow_block *fblock;
14506                         int time;
14507                         int done;
14508                         if (fedge->executable) {
14509                                 continue;
14510                         }
14511                         if (!fedge->dst) {
14512                                 internal_error(state, 0, "fedge without dst");
14513                         }
14514                         if (!fedge->src) {
14515                                 internal_error(state, 0, "fedge without src");
14516                         }
14517                         fedge->executable = 1;
14518                         fblock = fedge->dst;
14519                         block = fblock->block;
14520                         time = 0;
14521                         for(fptr = fblock->in; fptr; fptr = fptr->in_next) {
14522                                 if (fptr->executable) {
14523                                         time++;
14524                                 }
14525                         }
14526 #if DEBUG_SCC
14527                         fprintf(stderr, "vertex: %d time: %d\n", 
14528                                 block->vertex, time);
14529                         
14530 #endif
14531                         done = 0;
14532                         for(ptr = block->first; !done; ptr = ptr->next) {
14533                                 struct lattice_node *lnode;
14534                                 done = (ptr == block->last);
14535                                 lnode = &scc.lattice[ptr->id];
14536                                 if (ptr->op == OP_PHI) {
14537                                         scc_visit_phi(state, &scc, lnode);
14538                                 }
14539                                 else if (time == 1) {
14540                                         scc_visit_expr(state, &scc, lnode);
14541                                 }
14542                         }
14543                         if (fblock->out && !fblock->out->out_next) {
14544                                 scc_add_fedge(state, &scc, fblock->out);
14545                         }
14546                 }
14547                 while((sedge = scc_next_sedge(state, &scc))) {
14548                         struct lattice_node *lnode;
14549                         struct flow_block *fblock;
14550                         lnode = sedge->dst;
14551                         fblock = lnode->fblock;
14552 #if DEBUG_SCC
14553                         fprintf(stderr, "sedge: %5d (%5d -> %5d)\n",
14554                                 sedge - scc.ssa_edges,
14555                                 sedge->src->def->id,
14556                                 sedge->dst->def->id);
14557 #endif
14558                         if (lnode->def->op == OP_PHI) {
14559                                 scc_visit_phi(state, &scc, lnode);
14560                         }
14561                         else {
14562                                 for(fptr = fblock->in; fptr; fptr = fptr->in_next) {
14563                                         if (fptr->executable) {
14564                                                 break;
14565                                         }
14566                                 }
14567                                 if (fptr) {
14568                                         scc_visit_expr(state, &scc, lnode);
14569                                 }
14570                         }
14571                 }
14572         }
14573         
14574         scc_writeback_values(state, &scc);
14575         free_scc_state(state, &scc);
14576 }
14577
14578
14579 static void transform_to_arch_instructions(struct compile_state *state)
14580 {
14581         struct triple *ins, *first;
14582         first = RHS(state->main_function, 0);
14583         ins = first;
14584         do {
14585                 ins = transform_to_arch_instruction(state, ins);
14586         } while(ins != first);
14587 }
14588
14589 #if DEBUG_CONSISTENCY
14590 static void verify_uses(struct compile_state *state)
14591 {
14592         struct triple *first, *ins;
14593         struct triple_set *set;
14594         first = RHS(state->main_function, 0);
14595         ins = first;
14596         do {
14597                 struct triple **expr;
14598                 expr = triple_rhs(state, ins, 0);
14599                 for(; expr; expr = triple_rhs(state, ins, expr)) {
14600                         struct triple *rhs;
14601                         rhs = *expr;
14602                         for(set = rhs?rhs->use:0; set; set = set->next) {
14603                                 if (set->member == ins) {
14604                                         break;
14605                                 }
14606                         }
14607                         if (!set) {
14608                                 internal_error(state, ins, "rhs not used");
14609                         }
14610                 }
14611                 expr = triple_lhs(state, ins, 0);
14612                 for(; expr; expr = triple_lhs(state, ins, expr)) {
14613                         struct triple *lhs;
14614                         lhs = *expr;
14615                         for(set =  lhs?lhs->use:0; set; set = set->next) {
14616                                 if (set->member == ins) {
14617                                         break;
14618                                 }
14619                         }
14620                         if (!set) {
14621                                 internal_error(state, ins, "lhs not used");
14622                         }
14623                 }
14624                 ins = ins->next;
14625         } while(ins != first);
14626         
14627 }
14628 static void verify_blocks_present(struct compile_state *state)
14629 {
14630         struct triple *first, *ins;
14631         if (!state->first_block) {
14632                 return;
14633         }
14634         first = RHS(state->main_function, 0);
14635         ins = first;
14636         do {
14637                 valid_ins(state, ins);
14638                 if (triple_stores_block(state, ins)) {
14639                         if (!ins->u.block) {
14640                                 internal_error(state, ins, 
14641                                         "%p not in a block?\n", ins);
14642                         }
14643                 }
14644                 ins = ins->next;
14645         } while(ins != first);
14646         
14647         
14648 }
14649 static void verify_blocks(struct compile_state *state)
14650 {
14651         struct triple *ins;
14652         struct block *block;
14653         int blocks;
14654         block = state->first_block;
14655         if (!block) {
14656                 return;
14657         }
14658         blocks = 0;
14659         do {
14660                 int users;
14661                 struct block_set *user;
14662                 blocks++;
14663                 for(ins = block->first; ins != block->last->next; ins = ins->next) {
14664                         if (triple_stores_block(state, ins) && (ins->u.block != block)) {
14665                                 internal_error(state, ins, "inconsitent block specified");
14666                         }
14667                         valid_ins(state, ins);
14668                 }
14669                 users = 0;
14670                 for(user = block->use; user; user = user->next) {
14671                         users++;
14672                         if ((block == state->last_block) &&
14673                                 (user->member == state->first_block)) {
14674                                 continue;
14675                         }
14676                         if ((user->member->left != block) &&
14677                                 (user->member->right != block)) {
14678                                 internal_error(state, user->member->first,
14679                                         "user does not use block");
14680                         }
14681                 }
14682                 if (triple_is_branch(state, block->last) &&
14683                         (block->right != block_of_triple(state, TARG(block->last, 0))))
14684                 {
14685                         internal_error(state, block->last, "block->right != TARG(0)");
14686                 }
14687                 if (!triple_is_uncond_branch(state, block->last) &&
14688                         (block != state->last_block) &&
14689                         (block->left != block_of_triple(state, block->last->next)))
14690                 {
14691                         internal_error(state, block->last, "block->left != block->last->next");
14692                 }
14693                 if (block->left) {
14694                         for(user = block->left->use; user; user = user->next) {
14695                                 if (user->member == block) {
14696                                         break;
14697                                 }
14698                         }
14699                         if (!user || user->member != block) {
14700                                 internal_error(state, block->first,
14701                                         "block does not use left");
14702                         }
14703                 }
14704                 if (block->right) {
14705                         for(user = block->right->use; user; user = user->next) {
14706                                 if (user->member == block) {
14707                                         break;
14708                                 }
14709                         }
14710                         if (!user || user->member != block) {
14711                                 internal_error(state, block->first,
14712                                         "block does not use right");
14713                         }
14714                 }
14715                 if (block->users != users) {
14716                         internal_error(state, block->first, 
14717                                 "computed users %d != stored users %d\n",
14718                                 users, block->users);
14719                 }
14720                 if (!triple_stores_block(state, block->last->next)) {
14721                         internal_error(state, block->last->next, 
14722                                 "cannot find next block");
14723                 }
14724                 block = block->last->next->u.block;
14725                 if (!block) {
14726                         internal_error(state, block->last->next,
14727                                 "bad next block");
14728                 }
14729         } while(block != state->first_block);
14730         if (blocks != state->last_vertex) {
14731                 internal_error(state, 0, "computed blocks != stored blocks %d\n",
14732                         blocks, state->last_vertex);
14733         }
14734 }
14735
14736 static void verify_domination(struct compile_state *state)
14737 {
14738         struct triple *first, *ins;
14739         struct triple_set *set;
14740         if (!state->first_block) {
14741                 return;
14742         }
14743         
14744         first = RHS(state->main_function, 0);
14745         ins = first;
14746         do {
14747                 for(set = ins->use; set; set = set->next) {
14748                         struct triple **expr;
14749                         if (set->member->op == OP_PHI) {
14750                                 continue;
14751                         }
14752                         /* See if the use is on the righ hand side */
14753                         expr = triple_rhs(state, set->member, 0);
14754                         for(; expr ; expr = triple_rhs(state, set->member, expr)) {
14755                                 if (*expr == ins) {
14756                                         break;
14757                                 }
14758                         }
14759                         if (expr &&
14760                                 !tdominates(state, ins, set->member)) {
14761                                 internal_error(state, set->member, 
14762                                         "non dominated rhs use?");
14763                         }
14764                 }
14765                 ins = ins->next;
14766         } while(ins != first);
14767 }
14768
14769 static void verify_piece(struct compile_state *state)
14770 {
14771         struct triple *first, *ins;
14772         first = RHS(state->main_function, 0);
14773         ins = first;
14774         do {
14775                 struct triple *ptr;
14776                 int lhs, i;
14777                 lhs = TRIPLE_LHS(ins->sizes);
14778                 for(ptr = ins->next, i = 0; i < lhs; i++, ptr = ptr->next) {
14779                         if (ptr != LHS(ins, i)) {
14780                                 internal_error(state, ins, "malformed lhs on %s",
14781                                         tops(ins->op));
14782                         }
14783                         if (ptr->op != OP_PIECE) {
14784                                 internal_error(state, ins, "bad lhs op %s at %d on %s",
14785                                         tops(ptr->op), i, tops(ins->op));
14786                         }
14787                         if (ptr->u.cval != i) {
14788                                 internal_error(state, ins, "bad u.cval of %d %d expected",
14789                                         ptr->u.cval, i);
14790                         }
14791                 }
14792                 ins = ins->next;
14793         } while(ins != first);
14794 }
14795 static void verify_ins_colors(struct compile_state *state)
14796 {
14797         struct triple *first, *ins;
14798         
14799         first = RHS(state->main_function, 0);
14800         ins = first;
14801         do {
14802                 ins = ins->next;
14803         } while(ins != first);
14804 }
14805 static void verify_consistency(struct compile_state *state)
14806 {
14807         verify_uses(state);
14808         verify_blocks_present(state);
14809         verify_blocks(state);
14810         verify_domination(state);
14811         verify_piece(state);
14812         verify_ins_colors(state);
14813 }
14814 #else 
14815 static void verify_consistency(struct compile_state *state) {}
14816 #endif /* DEBUG_USES */
14817
14818 static void optimize(struct compile_state *state)
14819 {
14820         if (state->debug & DEBUG_TRIPLES) {
14821                 print_triples(state);
14822         }
14823         /* Replace structures with simpler data types */
14824         flatten_structures(state);
14825         if (state->debug & DEBUG_TRIPLES) {
14826                 print_triples(state);
14827         }
14828         verify_consistency(state);
14829         /* Analize the intermediate code */
14830         setup_basic_blocks(state);
14831         analyze_idominators(state);
14832         analyze_ipdominators(state);
14833
14834         /* Transform the code to ssa form. */
14835         /*
14836          * The transformation to ssa form puts a phi function
14837          * on each of edge of a dominance frontier where that
14838          * phi function might be needed.  At -O2 if we don't
14839          * eleminate the excess phi functions we can get an
14840          * exponential code size growth.  So I kill the extra
14841          * phi functions early and I kill them often.
14842          */
14843         transform_to_ssa_form(state);
14844         eliminate_inefectual_code(state);
14845
14846         verify_consistency(state);
14847         if (state->debug & DEBUG_CODE_ELIMINATION) {
14848                 fprintf(stdout, "After transform_to_ssa_form\n");
14849                 print_blocks(state, stdout);
14850         }
14851         /* Do strength reduction and simple constant optimizations */
14852         if (state->optimize >= 1) {
14853                 simplify_all(state);
14854                 transform_from_ssa_form(state);
14855                 free_basic_blocks(state);
14856                 setup_basic_blocks(state);
14857                 analyze_idominators(state);
14858                 analyze_ipdominators(state);
14859                 transform_to_ssa_form(state);
14860                 eliminate_inefectual_code(state);
14861         }
14862         if (state->debug & DEBUG_CODE_ELIMINATION) {
14863                 fprintf(stdout, "After simplify_all\n");
14864                 print_blocks(state, stdout);
14865         }
14866         verify_consistency(state);
14867         /* Propogate constants throughout the code */
14868         if (state->optimize >= 2) {
14869                 scc_transform(state);
14870                 transform_from_ssa_form(state);
14871                 free_basic_blocks(state);
14872                 setup_basic_blocks(state);
14873                 analyze_idominators(state);
14874                 analyze_ipdominators(state);
14875                 transform_to_ssa_form(state);
14876                 eliminate_inefectual_code(state);
14877         }
14878         verify_consistency(state);
14879 #warning "WISHLIST implement single use constants (least possible register pressure)"
14880 #warning "WISHLIST implement induction variable elimination"
14881         /* Select architecture instructions and an initial partial
14882          * coloring based on architecture constraints.
14883          */
14884         transform_to_arch_instructions(state);
14885         verify_consistency(state);
14886         if (state->debug & DEBUG_ARCH_CODE) {
14887                 printf("After transform_to_arch_instructions\n");
14888                 print_blocks(state, stdout);
14889                 print_control_flow(state);
14890         }
14891         eliminate_inefectual_code(state);
14892         verify_consistency(state);
14893         if (state->debug & DEBUG_CODE_ELIMINATION) {
14894                 printf("After eliminate_inefectual_code\n");
14895                 print_blocks(state, stdout);
14896                 print_control_flow(state);
14897         }
14898         verify_consistency(state);
14899         /* Color all of the variables to see if they will fit in registers */
14900         insert_copies_to_phi(state);
14901         if (state->debug & DEBUG_INSERTED_COPIES) {
14902                 printf("After insert_copies_to_phi\n");
14903                 print_blocks(state, stdout);
14904                 print_control_flow(state);
14905         }
14906         verify_consistency(state);
14907         insert_mandatory_copies(state);
14908         if (state->debug & DEBUG_INSERTED_COPIES) {
14909                 printf("After insert_mandatory_copies\n");
14910                 print_blocks(state, stdout);
14911                 print_control_flow(state);
14912         }
14913         verify_consistency(state);
14914         allocate_registers(state);
14915         verify_consistency(state);
14916         if (state->debug & DEBUG_INTERMEDIATE_CODE) {
14917                 print_blocks(state, stdout);
14918         }
14919         if (state->debug & DEBUG_CONTROL_FLOW) {
14920                 print_control_flow(state);
14921         }
14922         /* Remove the optimization information.
14923          * This is more to check for memory consistency than to free memory.
14924          */
14925         free_basic_blocks(state);
14926 }
14927
14928 static void print_op_asm(struct compile_state *state,
14929         struct triple *ins, FILE *fp)
14930 {
14931         struct asm_info *info;
14932         const char *ptr;
14933         unsigned lhs, rhs, i;
14934         info = ins->u.ainfo;
14935         lhs = TRIPLE_LHS(ins->sizes);
14936         rhs = TRIPLE_RHS(ins->sizes);
14937         /* Don't count the clobbers in lhs */
14938         for(i = 0; i < lhs; i++) {
14939                 if (LHS(ins, i)->type == &void_type) {
14940                         break;
14941                 }
14942         }
14943         lhs = i;
14944         fprintf(fp, "#ASM\n");
14945         fputc('\t', fp);
14946         for(ptr = info->str; *ptr; ptr++) {
14947                 char *next;
14948                 unsigned long param;
14949                 struct triple *piece;
14950                 if (*ptr != '%') {
14951                         fputc(*ptr, fp);
14952                         continue;
14953                 }
14954                 ptr++;
14955                 if (*ptr == '%') {
14956                         fputc('%', fp);
14957                         continue;
14958                 }
14959                 param = strtoul(ptr, &next, 10);
14960                 if (ptr == next) {
14961                         error(state, ins, "Invalid asm template");
14962                 }
14963                 if (param >= (lhs + rhs)) {
14964                         error(state, ins, "Invalid param %%%u in asm template",
14965                                 param);
14966                 }
14967                 piece = (param < lhs)? LHS(ins, param) : RHS(ins, param - lhs);
14968                 fprintf(fp, "%s", 
14969                         arch_reg_str(ID_REG(piece->id)));
14970                 ptr = next -1;
14971         }
14972         fprintf(fp, "\n#NOT ASM\n");
14973 }
14974
14975
14976 /* Only use the low x86 byte registers.  This allows me
14977  * allocate the entire register when a byte register is used.
14978  */
14979 #define X86_4_8BIT_GPRS 1
14980
14981 /* Recognized x86 cpu variants */
14982 #define BAD_CPU      0
14983 #define CPU_I386     1
14984 #define CPU_P3       2
14985 #define CPU_P4       3
14986 #define CPU_K7       4
14987 #define CPU_K8       5
14988
14989 #define CPU_DEFAULT  CPU_I386
14990
14991 /* The x86 register classes */
14992 #define REGC_FLAGS       0
14993 #define REGC_GPR8        1
14994 #define REGC_GPR16       2
14995 #define REGC_GPR32       3
14996 #define REGC_DIVIDEND64  4
14997 #define REGC_DIVIDEND32  5
14998 #define REGC_MMX         6
14999 #define REGC_XMM         7
15000 #define REGC_GPR32_8     8
15001 #define REGC_GPR16_8     9
15002 #define REGC_GPR8_LO    10
15003 #define REGC_IMM32      11
15004 #define REGC_IMM16      12
15005 #define REGC_IMM8       13
15006 #define LAST_REGC  REGC_IMM8
15007 #if LAST_REGC >= MAX_REGC
15008 #error "MAX_REGC is to low"
15009 #endif
15010
15011 /* Register class masks */
15012 #define REGCM_FLAGS      (1 << REGC_FLAGS)
15013 #define REGCM_GPR8       (1 << REGC_GPR8)
15014 #define REGCM_GPR16      (1 << REGC_GPR16)
15015 #define REGCM_GPR32      (1 << REGC_GPR32)
15016 #define REGCM_DIVIDEND64 (1 << REGC_DIVIDEND64)
15017 #define REGCM_DIVIDEND32 (1 << REGC_DIVIDEND32)
15018 #define REGCM_MMX        (1 << REGC_MMX)
15019 #define REGCM_XMM        (1 << REGC_XMM)
15020 #define REGCM_GPR32_8    (1 << REGC_GPR32_8)
15021 #define REGCM_GPR16_8    (1 << REGC_GPR16_8)
15022 #define REGCM_GPR8_LO    (1 << REGC_GPR8_LO)
15023 #define REGCM_IMM32      (1 << REGC_IMM32)
15024 #define REGCM_IMM16      (1 << REGC_IMM16)
15025 #define REGCM_IMM8       (1 << REGC_IMM8)
15026 #define REGCM_ALL        ((1 << (LAST_REGC + 1)) - 1)
15027
15028 /* The x86 registers */
15029 #define REG_EFLAGS  2
15030 #define REGC_FLAGS_FIRST REG_EFLAGS
15031 #define REGC_FLAGS_LAST  REG_EFLAGS
15032 #define REG_AL      3
15033 #define REG_BL      4
15034 #define REG_CL      5
15035 #define REG_DL      6
15036 #define REG_AH      7
15037 #define REG_BH      8
15038 #define REG_CH      9
15039 #define REG_DH      10
15040 #define REGC_GPR8_LO_FIRST REG_AL
15041 #define REGC_GPR8_LO_LAST  REG_DL
15042 #define REGC_GPR8_FIRST  REG_AL
15043 #define REGC_GPR8_LAST   REG_DH
15044 #define REG_AX     11
15045 #define REG_BX     12
15046 #define REG_CX     13
15047 #define REG_DX     14
15048 #define REG_SI     15
15049 #define REG_DI     16
15050 #define REG_BP     17
15051 #define REG_SP     18
15052 #define REGC_GPR16_FIRST REG_AX
15053 #define REGC_GPR16_LAST  REG_SP
15054 #define REG_EAX    19
15055 #define REG_EBX    20
15056 #define REG_ECX    21
15057 #define REG_EDX    22
15058 #define REG_ESI    23
15059 #define REG_EDI    24
15060 #define REG_EBP    25
15061 #define REG_ESP    26
15062 #define REGC_GPR32_FIRST REG_EAX
15063 #define REGC_GPR32_LAST  REG_ESP
15064 #define REG_EDXEAX 27
15065 #define REGC_DIVIDEND64_FIRST REG_EDXEAX
15066 #define REGC_DIVIDEND64_LAST  REG_EDXEAX
15067 #define REG_DXAX   28
15068 #define REGC_DIVIDEND32_FIRST REG_DXAX
15069 #define REGC_DIVIDEND32_LAST  REG_DXAX
15070 #define REG_MMX0   29
15071 #define REG_MMX1   30
15072 #define REG_MMX2   31
15073 #define REG_MMX3   32
15074 #define REG_MMX4   33
15075 #define REG_MMX5   34
15076 #define REG_MMX6   35
15077 #define REG_MMX7   36
15078 #define REGC_MMX_FIRST REG_MMX0
15079 #define REGC_MMX_LAST  REG_MMX7
15080 #define REG_XMM0   37
15081 #define REG_XMM1   38
15082 #define REG_XMM2   39
15083 #define REG_XMM3   40
15084 #define REG_XMM4   41
15085 #define REG_XMM5   42
15086 #define REG_XMM6   43
15087 #define REG_XMM7   44
15088 #define REGC_XMM_FIRST REG_XMM0
15089 #define REGC_XMM_LAST  REG_XMM7
15090 #warning "WISHLIST figure out how to use pinsrw and pextrw to better use extended regs"
15091 #define LAST_REG   REG_XMM7
15092
15093 #define REGC_GPR32_8_FIRST REG_EAX
15094 #define REGC_GPR32_8_LAST  REG_EDX
15095 #define REGC_GPR16_8_FIRST REG_AX
15096 #define REGC_GPR16_8_LAST  REG_DX
15097
15098 #define REGC_IMM8_FIRST    -1
15099 #define REGC_IMM8_LAST     -1
15100 #define REGC_IMM16_FIRST   -2
15101 #define REGC_IMM16_LAST    -1
15102 #define REGC_IMM32_FIRST   -4
15103 #define REGC_IMM32_LAST    -1
15104
15105 #if LAST_REG >= MAX_REGISTERS
15106 #error "MAX_REGISTERS to low"
15107 #endif
15108
15109
15110 static unsigned regc_size[LAST_REGC +1] = {
15111         [REGC_FLAGS]      = REGC_FLAGS_LAST      - REGC_FLAGS_FIRST + 1,
15112         [REGC_GPR8]       = REGC_GPR8_LAST       - REGC_GPR8_FIRST + 1,
15113         [REGC_GPR16]      = REGC_GPR16_LAST      - REGC_GPR16_FIRST + 1,
15114         [REGC_GPR32]      = REGC_GPR32_LAST      - REGC_GPR32_FIRST + 1,
15115         [REGC_DIVIDEND64] = REGC_DIVIDEND64_LAST - REGC_DIVIDEND64_FIRST + 1,
15116         [REGC_DIVIDEND32] = REGC_DIVIDEND32_LAST - REGC_DIVIDEND32_FIRST + 1,
15117         [REGC_MMX]        = REGC_MMX_LAST        - REGC_MMX_FIRST + 1,
15118         [REGC_XMM]        = REGC_XMM_LAST        - REGC_XMM_FIRST + 1,
15119         [REGC_GPR32_8]    = REGC_GPR32_8_LAST    - REGC_GPR32_8_FIRST + 1,
15120         [REGC_GPR16_8]    = REGC_GPR16_8_LAST    - REGC_GPR16_8_FIRST + 1,
15121         [REGC_GPR8_LO]    = REGC_GPR8_LO_LAST    - REGC_GPR8_LO_FIRST + 1,
15122         [REGC_IMM32]      = 0,
15123         [REGC_IMM16]      = 0,
15124         [REGC_IMM8]       = 0,
15125 };
15126
15127 static const struct {
15128         int first, last;
15129 } regcm_bound[LAST_REGC + 1] = {
15130         [REGC_FLAGS]      = { REGC_FLAGS_FIRST,      REGC_FLAGS_LAST },
15131         [REGC_GPR8]       = { REGC_GPR8_FIRST,       REGC_GPR8_LAST },
15132         [REGC_GPR16]      = { REGC_GPR16_FIRST,      REGC_GPR16_LAST },
15133         [REGC_GPR32]      = { REGC_GPR32_FIRST,      REGC_GPR32_LAST },
15134         [REGC_DIVIDEND64] = { REGC_DIVIDEND64_FIRST, REGC_DIVIDEND64_LAST },
15135         [REGC_DIVIDEND32] = { REGC_DIVIDEND32_FIRST, REGC_DIVIDEND32_LAST },
15136         [REGC_MMX]        = { REGC_MMX_FIRST,        REGC_MMX_LAST },
15137         [REGC_XMM]        = { REGC_XMM_FIRST,        REGC_XMM_LAST },
15138         [REGC_GPR32_8]    = { REGC_GPR32_8_FIRST,    REGC_GPR32_8_LAST },
15139         [REGC_GPR16_8]    = { REGC_GPR16_8_FIRST,    REGC_GPR16_8_LAST },
15140         [REGC_GPR8_LO]    = { REGC_GPR8_LO_FIRST,    REGC_GPR8_LO_LAST },
15141         [REGC_IMM32]      = { REGC_IMM32_FIRST,      REGC_IMM32_LAST },
15142         [REGC_IMM16]      = { REGC_IMM16_FIRST,      REGC_IMM16_LAST },
15143         [REGC_IMM8]       = { REGC_IMM8_FIRST,       REGC_IMM8_LAST },
15144 };
15145
15146 static int arch_encode_cpu(const char *cpu)
15147 {
15148         struct cpu {
15149                 const char *name;
15150                 int cpu;
15151         } cpus[] = {
15152                 { "i386", CPU_I386 },
15153                 { "p3",   CPU_P3 },
15154                 { "p4",   CPU_P4 },
15155                 { "k7",   CPU_K7 },
15156                 { "k8",   CPU_K8 },
15157                 {  0,     BAD_CPU }
15158         };
15159         struct cpu *ptr;
15160         for(ptr = cpus; ptr->name; ptr++) {
15161                 if (strcmp(ptr->name, cpu) == 0) {
15162                         break;
15163                 }
15164         }
15165         return ptr->cpu;
15166 }
15167
15168 static unsigned arch_regc_size(struct compile_state *state, int class)
15169 {
15170         if ((class < 0) || (class > LAST_REGC)) {
15171                 return 0;
15172         }
15173         return regc_size[class];
15174 }
15175
15176 static int arch_regcm_intersect(unsigned regcm1, unsigned regcm2)
15177 {
15178         /* See if two register classes may have overlapping registers */
15179         unsigned gpr_mask = REGCM_GPR8 | REGCM_GPR8_LO | REGCM_GPR16_8 | REGCM_GPR16 |
15180                 REGCM_GPR32_8 | REGCM_GPR32 | 
15181                 REGCM_DIVIDEND32 | REGCM_DIVIDEND64;
15182
15183         /* Special case for the immediates */
15184         if ((regcm1 & (REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) &&
15185                 ((regcm1 & ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) == 0) &&
15186                 (regcm2 & (REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) &&
15187                 ((regcm2 & ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) == 0)) { 
15188                 return 0;
15189         }
15190         return (regcm1 & regcm2) ||
15191                 ((regcm1 & gpr_mask) && (regcm2 & gpr_mask));
15192 }
15193
15194 static void arch_reg_equivs(
15195         struct compile_state *state, unsigned *equiv, int reg)
15196 {
15197         if ((reg < 0) || (reg > LAST_REG)) {
15198                 internal_error(state, 0, "invalid register");
15199         }
15200         *equiv++ = reg;
15201         switch(reg) {
15202         case REG_AL:
15203 #if X86_4_8BIT_GPRS
15204                 *equiv++ = REG_AH;
15205 #endif
15206                 *equiv++ = REG_AX;
15207                 *equiv++ = REG_EAX;
15208                 *equiv++ = REG_DXAX;
15209                 *equiv++ = REG_EDXEAX;
15210                 break;
15211         case REG_AH:
15212 #if X86_4_8BIT_GPRS
15213                 *equiv++ = REG_AL;
15214 #endif
15215                 *equiv++ = REG_AX;
15216                 *equiv++ = REG_EAX;
15217                 *equiv++ = REG_DXAX;
15218                 *equiv++ = REG_EDXEAX;
15219                 break;
15220         case REG_BL:  
15221 #if X86_4_8BIT_GPRS
15222                 *equiv++ = REG_BH;
15223 #endif
15224                 *equiv++ = REG_BX;
15225                 *equiv++ = REG_EBX;
15226                 break;
15227
15228         case REG_BH:
15229 #if X86_4_8BIT_GPRS
15230                 *equiv++ = REG_BL;
15231 #endif
15232                 *equiv++ = REG_BX;
15233                 *equiv++ = REG_EBX;
15234                 break;
15235         case REG_CL:
15236 #if X86_4_8BIT_GPRS
15237                 *equiv++ = REG_CH;
15238 #endif
15239                 *equiv++ = REG_CX;
15240                 *equiv++ = REG_ECX;
15241                 break;
15242
15243         case REG_CH:
15244 #if X86_4_8BIT_GPRS
15245                 *equiv++ = REG_CL;
15246 #endif
15247                 *equiv++ = REG_CX;
15248                 *equiv++ = REG_ECX;
15249                 break;
15250         case REG_DL:
15251 #if X86_4_8BIT_GPRS
15252                 *equiv++ = REG_DH;
15253 #endif
15254                 *equiv++ = REG_DX;
15255                 *equiv++ = REG_EDX;
15256                 *equiv++ = REG_DXAX;
15257                 *equiv++ = REG_EDXEAX;
15258                 break;
15259         case REG_DH:
15260 #if X86_4_8BIT_GPRS
15261                 *equiv++ = REG_DL;
15262 #endif
15263                 *equiv++ = REG_DX;
15264                 *equiv++ = REG_EDX;
15265                 *equiv++ = REG_DXAX;
15266                 *equiv++ = REG_EDXEAX;
15267                 break;
15268         case REG_AX:
15269                 *equiv++ = REG_AL;
15270                 *equiv++ = REG_AH;
15271                 *equiv++ = REG_EAX;
15272                 *equiv++ = REG_DXAX;
15273                 *equiv++ = REG_EDXEAX;
15274                 break;
15275         case REG_BX:
15276                 *equiv++ = REG_BL;
15277                 *equiv++ = REG_BH;
15278                 *equiv++ = REG_EBX;
15279                 break;
15280         case REG_CX:  
15281                 *equiv++ = REG_CL;
15282                 *equiv++ = REG_CH;
15283                 *equiv++ = REG_ECX;
15284                 break;
15285         case REG_DX:  
15286                 *equiv++ = REG_DL;
15287                 *equiv++ = REG_DH;
15288                 *equiv++ = REG_EDX;
15289                 *equiv++ = REG_DXAX;
15290                 *equiv++ = REG_EDXEAX;
15291                 break;
15292         case REG_SI:  
15293                 *equiv++ = REG_ESI;
15294                 break;
15295         case REG_DI:
15296                 *equiv++ = REG_EDI;
15297                 break;
15298         case REG_BP:
15299                 *equiv++ = REG_EBP;
15300                 break;
15301         case REG_SP:
15302                 *equiv++ = REG_ESP;
15303                 break;
15304         case REG_EAX:
15305                 *equiv++ = REG_AL;
15306                 *equiv++ = REG_AH;
15307                 *equiv++ = REG_AX;
15308                 *equiv++ = REG_DXAX;
15309                 *equiv++ = REG_EDXEAX;
15310                 break;
15311         case REG_EBX:
15312                 *equiv++ = REG_BL;
15313                 *equiv++ = REG_BH;
15314                 *equiv++ = REG_BX;
15315                 break;
15316         case REG_ECX:
15317                 *equiv++ = REG_CL;
15318                 *equiv++ = REG_CH;
15319                 *equiv++ = REG_CX;
15320                 break;
15321         case REG_EDX:
15322                 *equiv++ = REG_DL;
15323                 *equiv++ = REG_DH;
15324                 *equiv++ = REG_DX;
15325                 *equiv++ = REG_DXAX;
15326                 *equiv++ = REG_EDXEAX;
15327                 break;
15328         case REG_ESI: 
15329                 *equiv++ = REG_SI;
15330                 break;
15331         case REG_EDI: 
15332                 *equiv++ = REG_DI;
15333                 break;
15334         case REG_EBP: 
15335                 *equiv++ = REG_BP;
15336                 break;
15337         case REG_ESP: 
15338                 *equiv++ = REG_SP;
15339                 break;
15340         case REG_DXAX: 
15341                 *equiv++ = REG_AL;
15342                 *equiv++ = REG_AH;
15343                 *equiv++ = REG_DL;
15344                 *equiv++ = REG_DH;
15345                 *equiv++ = REG_AX;
15346                 *equiv++ = REG_DX;
15347                 *equiv++ = REG_EAX;
15348                 *equiv++ = REG_EDX;
15349                 *equiv++ = REG_EDXEAX;
15350                 break;
15351         case REG_EDXEAX: 
15352                 *equiv++ = REG_AL;
15353                 *equiv++ = REG_AH;
15354                 *equiv++ = REG_DL;
15355                 *equiv++ = REG_DH;
15356                 *equiv++ = REG_AX;
15357                 *equiv++ = REG_DX;
15358                 *equiv++ = REG_EAX;
15359                 *equiv++ = REG_EDX;
15360                 *equiv++ = REG_DXAX;
15361                 break;
15362         }
15363         *equiv++ = REG_UNSET; 
15364 }
15365
15366 static unsigned arch_avail_mask(struct compile_state *state)
15367 {
15368         unsigned avail_mask;
15369         /* REGCM_GPR8 is not available */
15370         avail_mask = REGCM_GPR8_LO | REGCM_GPR16_8 | REGCM_GPR16 | 
15371                 REGCM_GPR32 | REGCM_GPR32_8 | 
15372                 REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
15373                 REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8 | REGCM_FLAGS;
15374         switch(state->cpu) {
15375         case CPU_P3:
15376         case CPU_K7:
15377                 avail_mask |= REGCM_MMX;
15378                 break;
15379         case CPU_P4:
15380         case CPU_K8:
15381                 avail_mask |= REGCM_MMX | REGCM_XMM;
15382                 break;
15383         }
15384         return avail_mask;
15385 }
15386
15387 static unsigned arch_regcm_normalize(struct compile_state *state, unsigned regcm)
15388 {
15389         unsigned mask, result;
15390         int class, class2;
15391         result = regcm;
15392
15393         for(class = 0, mask = 1; mask; mask <<= 1, class++) {
15394                 if ((result & mask) == 0) {
15395                         continue;
15396                 }
15397                 if (class > LAST_REGC) {
15398                         result &= ~mask;
15399                 }
15400                 for(class2 = 0; class2 <= LAST_REGC; class2++) {
15401                         if ((regcm_bound[class2].first >= regcm_bound[class].first) &&
15402                                 (regcm_bound[class2].last <= regcm_bound[class].last)) {
15403                                 result |= (1 << class2);
15404                         }
15405                 }
15406         }
15407         result &= arch_avail_mask(state);
15408         return result;
15409 }
15410
15411 static unsigned arch_regcm_reg_normalize(struct compile_state *state, unsigned regcm)
15412 {
15413         /* Like arch_regcm_normalize except immediate register classes are excluded */
15414         regcm = arch_regcm_normalize(state, regcm);
15415         /* Remove the immediate register classes */
15416         regcm &= ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8);
15417         return regcm;
15418         
15419 }
15420
15421 static unsigned arch_reg_regcm(struct compile_state *state, int reg)
15422 {
15423         unsigned mask;
15424         int class;
15425         mask = 0;
15426         for(class = 0; class <= LAST_REGC; class++) {
15427                 if ((reg >= regcm_bound[class].first) &&
15428                         (reg <= regcm_bound[class].last)) {
15429                         mask |= (1 << class);
15430                 }
15431         }
15432         if (!mask) {
15433                 internal_error(state, 0, "reg %d not in any class", reg);
15434         }
15435         return mask;
15436 }
15437
15438 static struct reg_info arch_reg_constraint(
15439         struct compile_state *state, struct type *type, const char *constraint)
15440 {
15441         static const struct {
15442                 char class;
15443                 unsigned int mask;
15444                 unsigned int reg;
15445         } constraints[] = {
15446                 { 'r', REGCM_GPR32,   REG_UNSET },
15447                 { 'g', REGCM_GPR32,   REG_UNSET },
15448                 { 'p', REGCM_GPR32,   REG_UNSET },
15449                 { 'q', REGCM_GPR8_LO, REG_UNSET },
15450                 { 'Q', REGCM_GPR32_8, REG_UNSET },
15451                 { 'x', REGCM_XMM,     REG_UNSET },
15452                 { 'y', REGCM_MMX,     REG_UNSET },
15453                 { 'a', REGCM_GPR32,   REG_EAX },
15454                 { 'b', REGCM_GPR32,   REG_EBX },
15455                 { 'c', REGCM_GPR32,   REG_ECX },
15456                 { 'd', REGCM_GPR32,   REG_EDX },
15457                 { 'D', REGCM_GPR32,   REG_EDI },
15458                 { 'S', REGCM_GPR32,   REG_ESI },
15459                 { '\0', 0, REG_UNSET },
15460         };
15461         unsigned int regcm;
15462         unsigned int mask, reg;
15463         struct reg_info result;
15464         const char *ptr;
15465         regcm = arch_type_to_regcm(state, type);
15466         reg = REG_UNSET;
15467         mask = 0;
15468         for(ptr = constraint; *ptr; ptr++) {
15469                 int i;
15470                 if (*ptr ==  ' ') {
15471                         continue;
15472                 }
15473                 for(i = 0; constraints[i].class != '\0'; i++) {
15474                         if (constraints[i].class == *ptr) {
15475                                 break;
15476                         }
15477                 }
15478                 if (constraints[i].class == '\0') {
15479                         error(state, 0, "invalid register constraint ``%c''", *ptr);
15480                         break;
15481                 }
15482                 if ((constraints[i].mask & regcm) == 0) {
15483                         error(state, 0, "invalid register class %c specified",
15484                                 *ptr);
15485                 }
15486                 mask |= constraints[i].mask;
15487                 if (constraints[i].reg != REG_UNSET) {
15488                         if ((reg != REG_UNSET) && (reg != constraints[i].reg)) {
15489                                 error(state, 0, "Only one register may be specified");
15490                         }
15491                         reg = constraints[i].reg;
15492                 }
15493         }
15494         result.reg = reg;
15495         result.regcm = mask;
15496         return result;
15497 }
15498
15499 static struct reg_info arch_reg_clobber(
15500         struct compile_state *state, const char *clobber)
15501 {
15502         struct reg_info result;
15503         if (strcmp(clobber, "memory") == 0) {
15504                 result.reg = REG_UNSET;
15505                 result.regcm = 0;
15506         }
15507         else if (strcmp(clobber, "%eax") == 0) {
15508                 result.reg = REG_EAX;
15509                 result.regcm = REGCM_GPR32;
15510         }
15511         else if (strcmp(clobber, "%ebx") == 0) {
15512                 result.reg = REG_EBX;
15513                 result.regcm = REGCM_GPR32;
15514         }
15515         else if (strcmp(clobber, "%ecx") == 0) {
15516                 result.reg = REG_ECX;
15517                 result.regcm = REGCM_GPR32;
15518         }
15519         else if (strcmp(clobber, "%edx") == 0) {
15520                 result.reg = REG_EDX;
15521                 result.regcm = REGCM_GPR32;
15522         }
15523         else if (strcmp(clobber, "%esi") == 0) {
15524                 result.reg = REG_ESI;
15525                 result.regcm = REGCM_GPR32;
15526         }
15527         else if (strcmp(clobber, "%edi") == 0) {
15528                 result.reg = REG_EDI;
15529                 result.regcm = REGCM_GPR32;
15530         }
15531         else if (strcmp(clobber, "%ebp") == 0) {
15532                 result.reg = REG_EBP;
15533                 result.regcm = REGCM_GPR32;
15534         }
15535         else if (strcmp(clobber, "%esp") == 0) {
15536                 result.reg = REG_ESP;
15537                 result.regcm = REGCM_GPR32;
15538         }
15539         else if (strcmp(clobber, "cc") == 0) {
15540                 result.reg = REG_EFLAGS;
15541                 result.regcm = REGCM_FLAGS;
15542         }
15543         else if ((strncmp(clobber, "xmm", 3) == 0)  &&
15544                 octdigitp(clobber[3]) && (clobber[4] == '\0')) {
15545                 result.reg = REG_XMM0 + octdigval(clobber[3]);
15546                 result.regcm = REGCM_XMM;
15547         }
15548         else if ((strncmp(clobber, "mmx", 3) == 0) &&
15549                 octdigitp(clobber[3]) && (clobber[4] == '\0')) {
15550                 result.reg = REG_MMX0 + octdigval(clobber[3]);
15551                 result.regcm = REGCM_MMX;
15552         }
15553         else {
15554                 error(state, 0, "Invalid register clobber");
15555                 result.reg = REG_UNSET;
15556                 result.regcm = 0;
15557         }
15558         return result;
15559 }
15560
15561 static int do_select_reg(struct compile_state *state, 
15562         char *used, int reg, unsigned classes)
15563 {
15564         unsigned mask;
15565         if (used[reg]) {
15566                 return REG_UNSET;
15567         }
15568         mask = arch_reg_regcm(state, reg);
15569         return (classes & mask) ? reg : REG_UNSET;
15570 }
15571
15572 static int arch_select_free_register(
15573         struct compile_state *state, char *used, int classes)
15574 {
15575         /* Live ranges with the most neighbors are colored first.
15576          *
15577          * Generally it does not matter which colors are given
15578          * as the register allocator attempts to color live ranges
15579          * in an order where you are guaranteed not to run out of colors.
15580          *
15581          * Occasionally the register allocator cannot find an order
15582          * of register selection that will find a free color.  To
15583          * increase the odds the register allocator will work when
15584          * it guesses first give out registers from register classes
15585          * least likely to run out of registers.
15586          * 
15587          */
15588         int i, reg;
15589         reg = REG_UNSET;
15590         for(i = REGC_XMM_FIRST; (reg == REG_UNSET) && (i <= REGC_XMM_LAST); i++) {
15591                 reg = do_select_reg(state, used, i, classes);
15592         }
15593         for(i = REGC_MMX_FIRST; (reg == REG_UNSET) && (i <= REGC_MMX_LAST); i++) {
15594                 reg = do_select_reg(state, used, i, classes);
15595         }
15596         for(i = REGC_GPR32_LAST; (reg == REG_UNSET) && (i >= REGC_GPR32_FIRST); i--) {
15597                 reg = do_select_reg(state, used, i, classes);
15598         }
15599         for(i = REGC_GPR16_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR16_LAST); i++) {
15600                 reg = do_select_reg(state, used, i, classes);
15601         }
15602         for(i = REGC_GPR8_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR8_LAST); i++) {
15603                 reg = do_select_reg(state, used, i, classes);
15604         }
15605         for(i = REGC_GPR8_LO_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR8_LO_LAST); i++) {
15606                 reg = do_select_reg(state, used, i, classes);
15607         }
15608         for(i = REGC_DIVIDEND32_FIRST; (reg == REG_UNSET) && (i <= REGC_DIVIDEND32_LAST); i++) {
15609                 reg = do_select_reg(state, used, i, classes);
15610         }
15611         for(i = REGC_DIVIDEND64_FIRST; (reg == REG_UNSET) && (i <= REGC_DIVIDEND64_LAST); i++) {
15612                 reg = do_select_reg(state, used, i, classes);
15613         }
15614         for(i = REGC_FLAGS_FIRST; (reg == REG_UNSET) && (i <= REGC_FLAGS_LAST); i++) {
15615                 reg = do_select_reg(state, used, i, classes);
15616         }
15617         return reg;
15618 }
15619
15620
15621 static unsigned arch_type_to_regcm(struct compile_state *state, struct type *type) 
15622 {
15623 #warning "FIXME force types smaller (if legal) before I get here"
15624         unsigned mask;
15625         mask = 0;
15626         switch(type->type & TYPE_MASK) {
15627         case TYPE_ARRAY:
15628         case TYPE_VOID: 
15629                 mask = 0; 
15630                 break;
15631         case TYPE_CHAR:
15632         case TYPE_UCHAR:
15633                 mask = REGCM_GPR8 | REGCM_GPR8_LO |
15634                         REGCM_GPR16 | REGCM_GPR16_8 | 
15635                         REGCM_GPR32 | REGCM_GPR32_8 |
15636                         REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
15637                         REGCM_MMX | REGCM_XMM |
15638                         REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8;
15639                 break;
15640         case TYPE_SHORT:
15641         case TYPE_USHORT:
15642                 mask =  REGCM_GPR16 | REGCM_GPR16_8 |
15643                         REGCM_GPR32 | REGCM_GPR32_8 |
15644                         REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
15645                         REGCM_MMX | REGCM_XMM |
15646                         REGCM_IMM32 | REGCM_IMM16;
15647                 break;
15648         case TYPE_INT:
15649         case TYPE_UINT:
15650         case TYPE_LONG:
15651         case TYPE_ULONG:
15652         case TYPE_POINTER:
15653                 mask =  REGCM_GPR32 | REGCM_GPR32_8 |
15654                         REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
15655                         REGCM_MMX | REGCM_XMM |
15656                         REGCM_IMM32;
15657                 break;
15658         default:
15659                 internal_error(state, 0, "no register class for type");
15660                 break;
15661         }
15662         mask = arch_regcm_normalize(state, mask);
15663         return mask;
15664 }
15665
15666 static int is_imm32(struct triple *imm)
15667 {
15668         return ((imm->op == OP_INTCONST) && (imm->u.cval <= 0xffffffffUL)) ||
15669                 (imm->op == OP_ADDRCONST);
15670         
15671 }
15672 static int is_imm16(struct triple *imm)
15673 {
15674         return ((imm->op == OP_INTCONST) && (imm->u.cval <= 0xffff));
15675 }
15676 static int is_imm8(struct triple *imm)
15677 {
15678         return ((imm->op == OP_INTCONST) && (imm->u.cval <= 0xff));
15679 }
15680
15681 static int get_imm32(struct triple *ins, struct triple **expr)
15682 {
15683         struct triple *imm;
15684         imm = *expr;
15685         while(imm->op == OP_COPY) {
15686                 imm = RHS(imm, 0);
15687         }
15688         if (!is_imm32(imm)) {
15689                 return 0;
15690         }
15691         unuse_triple(*expr, ins);
15692         use_triple(imm, ins);
15693         *expr = imm;
15694         return 1;
15695 }
15696
15697 static int get_imm8(struct triple *ins, struct triple **expr)
15698 {
15699         struct triple *imm;
15700         imm = *expr;
15701         while(imm->op == OP_COPY) {
15702                 imm = RHS(imm, 0);
15703         }
15704         if (!is_imm8(imm)) {
15705                 return 0;
15706         }
15707         unuse_triple(*expr, ins);
15708         use_triple(imm, ins);
15709         *expr = imm;
15710         return 1;
15711 }
15712
15713 #define TEMPLATE_NOP           0
15714 #define TEMPLATE_INTCONST8     1
15715 #define TEMPLATE_INTCONST32    2
15716 #define TEMPLATE_COPY8_REG     3
15717 #define TEMPLATE_COPY16_REG    4
15718 #define TEMPLATE_COPY32_REG    5
15719 #define TEMPLATE_COPY_IMM8     6
15720 #define TEMPLATE_COPY_IMM16    7
15721 #define TEMPLATE_COPY_IMM32    8
15722 #define TEMPLATE_PHI8          9
15723 #define TEMPLATE_PHI16        10
15724 #define TEMPLATE_PHI32        11
15725 #define TEMPLATE_STORE8       12
15726 #define TEMPLATE_STORE16      13
15727 #define TEMPLATE_STORE32      14
15728 #define TEMPLATE_LOAD8        15
15729 #define TEMPLATE_LOAD16       16
15730 #define TEMPLATE_LOAD32       17
15731 #define TEMPLATE_BINARY8_REG  18
15732 #define TEMPLATE_BINARY16_REG 19
15733 #define TEMPLATE_BINARY32_REG 20
15734 #define TEMPLATE_BINARY8_IMM  21
15735 #define TEMPLATE_BINARY16_IMM 22
15736 #define TEMPLATE_BINARY32_IMM 23
15737 #define TEMPLATE_SL8_CL       24
15738 #define TEMPLATE_SL16_CL      25
15739 #define TEMPLATE_SL32_CL      26
15740 #define TEMPLATE_SL8_IMM      27
15741 #define TEMPLATE_SL16_IMM     28
15742 #define TEMPLATE_SL32_IMM     29
15743 #define TEMPLATE_UNARY8       30
15744 #define TEMPLATE_UNARY16      31
15745 #define TEMPLATE_UNARY32      32
15746 #define TEMPLATE_CMP8_REG     33
15747 #define TEMPLATE_CMP16_REG    34
15748 #define TEMPLATE_CMP32_REG    35
15749 #define TEMPLATE_CMP8_IMM     36
15750 #define TEMPLATE_CMP16_IMM    37
15751 #define TEMPLATE_CMP32_IMM    38
15752 #define TEMPLATE_TEST8        39
15753 #define TEMPLATE_TEST16       40
15754 #define TEMPLATE_TEST32       41
15755 #define TEMPLATE_SET          42
15756 #define TEMPLATE_JMP          43
15757 #define TEMPLATE_INB_DX       44
15758 #define TEMPLATE_INB_IMM      45
15759 #define TEMPLATE_INW_DX       46
15760 #define TEMPLATE_INW_IMM      47
15761 #define TEMPLATE_INL_DX       48
15762 #define TEMPLATE_INL_IMM      49
15763 #define TEMPLATE_OUTB_DX      50
15764 #define TEMPLATE_OUTB_IMM     51
15765 #define TEMPLATE_OUTW_DX      52
15766 #define TEMPLATE_OUTW_IMM     53
15767 #define TEMPLATE_OUTL_DX      54
15768 #define TEMPLATE_OUTL_IMM     55
15769 #define TEMPLATE_BSF          56
15770 #define TEMPLATE_RDMSR        57
15771 #define TEMPLATE_WRMSR        58
15772 #define TEMPLATE_UMUL8        59
15773 #define TEMPLATE_UMUL16       60
15774 #define TEMPLATE_UMUL32       61
15775 #define TEMPLATE_DIV8         62
15776 #define TEMPLATE_DIV16        63
15777 #define TEMPLATE_DIV32        64
15778 #define LAST_TEMPLATE       TEMPLATE_DIV32
15779 #if LAST_TEMPLATE >= MAX_TEMPLATES
15780 #error "MAX_TEMPLATES to low"
15781 #endif
15782
15783 #define COPY8_REGCM     (REGCM_DIVIDEND64 | REGCM_DIVIDEND32 | REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO | REGCM_MMX | REGCM_XMM)
15784 #define COPY16_REGCM    (REGCM_DIVIDEND64 | REGCM_DIVIDEND32 | REGCM_GPR32 | REGCM_GPR16 | REGCM_MMX | REGCM_XMM)  
15785 #define COPY32_REGCM    (REGCM_DIVIDEND64 | REGCM_DIVIDEND32 | REGCM_GPR32 | REGCM_MMX | REGCM_XMM)
15786
15787
15788 static struct ins_template templates[] = {
15789         [TEMPLATE_NOP]      = {},
15790         [TEMPLATE_INTCONST8] = { 
15791                 .lhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
15792         },
15793         [TEMPLATE_INTCONST32] = { 
15794                 .lhs = { [0] = { REG_UNNEEDED, REGCM_IMM32 } },
15795         },
15796         [TEMPLATE_COPY8_REG] = {
15797                 .lhs = { [0] = { REG_UNSET, COPY8_REGCM } },
15798                 .rhs = { [0] = { REG_UNSET, COPY8_REGCM }  },
15799         },
15800         [TEMPLATE_COPY16_REG] = {
15801                 .lhs = { [0] = { REG_UNSET, COPY16_REGCM } },
15802                 .rhs = { [0] = { REG_UNSET, COPY16_REGCM }  },
15803         },
15804         [TEMPLATE_COPY32_REG] = {
15805                 .lhs = { [0] = { REG_UNSET, COPY32_REGCM } },
15806                 .rhs = { [0] = { REG_UNSET, COPY32_REGCM }  },
15807         },
15808         [TEMPLATE_COPY_IMM8] = {
15809                 .lhs = { [0] = { REG_UNSET, COPY8_REGCM } },
15810                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
15811         },
15812         [TEMPLATE_COPY_IMM16] = {
15813                 .lhs = { [0] = { REG_UNSET, COPY16_REGCM } },
15814                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM16 | REGCM_IMM8 } },
15815         },
15816         [TEMPLATE_COPY_IMM32] = {
15817                 .lhs = { [0] = { REG_UNSET, COPY32_REGCM } },
15818                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8 } },
15819         },
15820         [TEMPLATE_PHI8] = { 
15821                 .lhs = { [0] = { REG_VIRT0, COPY8_REGCM } },
15822                 .rhs = { 
15823                         [ 0] = { REG_VIRT0, COPY8_REGCM },
15824                         [ 1] = { REG_VIRT0, COPY8_REGCM },
15825                         [ 2] = { REG_VIRT0, COPY8_REGCM },
15826                         [ 3] = { REG_VIRT0, COPY8_REGCM },
15827                         [ 4] = { REG_VIRT0, COPY8_REGCM },
15828                         [ 5] = { REG_VIRT0, COPY8_REGCM },
15829                         [ 6] = { REG_VIRT0, COPY8_REGCM },
15830                         [ 7] = { REG_VIRT0, COPY8_REGCM },
15831                         [ 8] = { REG_VIRT0, COPY8_REGCM },
15832                         [ 9] = { REG_VIRT0, COPY8_REGCM },
15833                         [10] = { REG_VIRT0, COPY8_REGCM },
15834                         [11] = { REG_VIRT0, COPY8_REGCM },
15835                         [12] = { REG_VIRT0, COPY8_REGCM },
15836                         [13] = { REG_VIRT0, COPY8_REGCM },
15837                         [14] = { REG_VIRT0, COPY8_REGCM },
15838                         [15] = { REG_VIRT0, COPY8_REGCM },
15839                 }, },
15840         [TEMPLATE_PHI16] = { 
15841                 .lhs = { [0] = { REG_VIRT0, COPY16_REGCM } },
15842                 .rhs = { 
15843                         [ 0] = { REG_VIRT0, COPY16_REGCM },
15844                         [ 1] = { REG_VIRT0, COPY16_REGCM },
15845                         [ 2] = { REG_VIRT0, COPY16_REGCM },
15846                         [ 3] = { REG_VIRT0, COPY16_REGCM },
15847                         [ 4] = { REG_VIRT0, COPY16_REGCM },
15848                         [ 5] = { REG_VIRT0, COPY16_REGCM },
15849                         [ 6] = { REG_VIRT0, COPY16_REGCM },
15850                         [ 7] = { REG_VIRT0, COPY16_REGCM },
15851                         [ 8] = { REG_VIRT0, COPY16_REGCM },
15852                         [ 9] = { REG_VIRT0, COPY16_REGCM },
15853                         [10] = { REG_VIRT0, COPY16_REGCM },
15854                         [11] = { REG_VIRT0, COPY16_REGCM },
15855                         [12] = { REG_VIRT0, COPY16_REGCM },
15856                         [13] = { REG_VIRT0, COPY16_REGCM },
15857                         [14] = { REG_VIRT0, COPY16_REGCM },
15858                         [15] = { REG_VIRT0, COPY16_REGCM },
15859                 }, },
15860         [TEMPLATE_PHI32] = { 
15861                 .lhs = { [0] = { REG_VIRT0, COPY32_REGCM } },
15862                 .rhs = { 
15863                         [ 0] = { REG_VIRT0, COPY32_REGCM },
15864                         [ 1] = { REG_VIRT0, COPY32_REGCM },
15865                         [ 2] = { REG_VIRT0, COPY32_REGCM },
15866                         [ 3] = { REG_VIRT0, COPY32_REGCM },
15867                         [ 4] = { REG_VIRT0, COPY32_REGCM },
15868                         [ 5] = { REG_VIRT0, COPY32_REGCM },
15869                         [ 6] = { REG_VIRT0, COPY32_REGCM },
15870                         [ 7] = { REG_VIRT0, COPY32_REGCM },
15871                         [ 8] = { REG_VIRT0, COPY32_REGCM },
15872                         [ 9] = { REG_VIRT0, COPY32_REGCM },
15873                         [10] = { REG_VIRT0, COPY32_REGCM },
15874                         [11] = { REG_VIRT0, COPY32_REGCM },
15875                         [12] = { REG_VIRT0, COPY32_REGCM },
15876                         [13] = { REG_VIRT0, COPY32_REGCM },
15877                         [14] = { REG_VIRT0, COPY32_REGCM },
15878                         [15] = { REG_VIRT0, COPY32_REGCM },
15879                 }, },
15880         [TEMPLATE_STORE8] = {
15881                 .rhs = { 
15882                         [0] = { REG_UNSET, REGCM_GPR32 },
15883                         [1] = { REG_UNSET, REGCM_GPR8_LO },
15884                 },
15885         },
15886         [TEMPLATE_STORE16] = {
15887                 .rhs = { 
15888                         [0] = { REG_UNSET, REGCM_GPR32 },
15889                         [1] = { REG_UNSET, REGCM_GPR16 },
15890                 },
15891         },
15892         [TEMPLATE_STORE32] = {
15893                 .rhs = { 
15894                         [0] = { REG_UNSET, REGCM_GPR32 },
15895                         [1] = { REG_UNSET, REGCM_GPR32 },
15896                 },
15897         },
15898         [TEMPLATE_LOAD8] = {
15899                 .lhs = { [0] = { REG_UNSET, REGCM_GPR8_LO } },
15900                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
15901         },
15902         [TEMPLATE_LOAD16] = {
15903                 .lhs = { [0] = { REG_UNSET, REGCM_GPR16 } },
15904                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
15905         },
15906         [TEMPLATE_LOAD32] = {
15907                 .lhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
15908                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
15909         },
15910         [TEMPLATE_BINARY8_REG] = {
15911                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
15912                 .rhs = { 
15913                         [0] = { REG_VIRT0, REGCM_GPR8_LO },
15914                         [1] = { REG_UNSET, REGCM_GPR8_LO },
15915                 },
15916         },
15917         [TEMPLATE_BINARY16_REG] = {
15918                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
15919                 .rhs = { 
15920                         [0] = { REG_VIRT0, REGCM_GPR16 },
15921                         [1] = { REG_UNSET, REGCM_GPR16 },
15922                 },
15923         },
15924         [TEMPLATE_BINARY32_REG] = {
15925                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
15926                 .rhs = { 
15927                         [0] = { REG_VIRT0, REGCM_GPR32 },
15928                         [1] = { REG_UNSET, REGCM_GPR32 },
15929                 },
15930         },
15931         [TEMPLATE_BINARY8_IMM] = {
15932                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
15933                 .rhs = { 
15934                         [0] = { REG_VIRT0,    REGCM_GPR8_LO },
15935                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
15936                 },
15937         },
15938         [TEMPLATE_BINARY16_IMM] = {
15939                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
15940                 .rhs = { 
15941                         [0] = { REG_VIRT0,    REGCM_GPR16 },
15942                         [1] = { REG_UNNEEDED, REGCM_IMM16 },
15943                 },
15944         },
15945         [TEMPLATE_BINARY32_IMM] = {
15946                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
15947                 .rhs = { 
15948                         [0] = { REG_VIRT0,    REGCM_GPR32 },
15949                         [1] = { REG_UNNEEDED, REGCM_IMM32 },
15950                 },
15951         },
15952         [TEMPLATE_SL8_CL] = {
15953                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
15954                 .rhs = { 
15955                         [0] = { REG_VIRT0, REGCM_GPR8_LO },
15956                         [1] = { REG_CL, REGCM_GPR8_LO },
15957                 },
15958         },
15959         [TEMPLATE_SL16_CL] = {
15960                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
15961                 .rhs = { 
15962                         [0] = { REG_VIRT0, REGCM_GPR16 },
15963                         [1] = { REG_CL, REGCM_GPR8_LO },
15964                 },
15965         },
15966         [TEMPLATE_SL32_CL] = {
15967                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
15968                 .rhs = { 
15969                         [0] = { REG_VIRT0, REGCM_GPR32 },
15970                         [1] = { REG_CL, REGCM_GPR8_LO },
15971                 },
15972         },
15973         [TEMPLATE_SL8_IMM] = {
15974                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
15975                 .rhs = { 
15976                         [0] = { REG_VIRT0,    REGCM_GPR8_LO },
15977                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
15978                 },
15979         },
15980         [TEMPLATE_SL16_IMM] = {
15981                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
15982                 .rhs = { 
15983                         [0] = { REG_VIRT0,    REGCM_GPR16 },
15984                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
15985                 },
15986         },
15987         [TEMPLATE_SL32_IMM] = {
15988                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
15989                 .rhs = { 
15990                         [0] = { REG_VIRT0,    REGCM_GPR32 },
15991                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
15992                 },
15993         },
15994         [TEMPLATE_UNARY8] = {
15995                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
15996                 .rhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
15997         },
15998         [TEMPLATE_UNARY16] = {
15999                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
16000                 .rhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
16001         },
16002         [TEMPLATE_UNARY32] = {
16003                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
16004                 .rhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
16005         },
16006         [TEMPLATE_CMP8_REG] = {
16007                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
16008                 .rhs = {
16009                         [0] = { REG_UNSET, REGCM_GPR8_LO },
16010                         [1] = { REG_UNSET, REGCM_GPR8_LO },
16011                 },
16012         },
16013         [TEMPLATE_CMP16_REG] = {
16014                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
16015                 .rhs = {
16016                         [0] = { REG_UNSET, REGCM_GPR16 },
16017                         [1] = { REG_UNSET, REGCM_GPR16 },
16018                 },
16019         },
16020         [TEMPLATE_CMP32_REG] = {
16021                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
16022                 .rhs = {
16023                         [0] = { REG_UNSET, REGCM_GPR32 },
16024                         [1] = { REG_UNSET, REGCM_GPR32 },
16025                 },
16026         },
16027         [TEMPLATE_CMP8_IMM] = {
16028                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
16029                 .rhs = {
16030                         [0] = { REG_UNSET, REGCM_GPR8_LO },
16031                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
16032                 },
16033         },
16034         [TEMPLATE_CMP16_IMM] = {
16035                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
16036                 .rhs = {
16037                         [0] = { REG_UNSET, REGCM_GPR16 },
16038                         [1] = { REG_UNNEEDED, REGCM_IMM16 },
16039                 },
16040         },
16041         [TEMPLATE_CMP32_IMM] = {
16042                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
16043                 .rhs = {
16044                         [0] = { REG_UNSET, REGCM_GPR32 },
16045                         [1] = { REG_UNNEEDED, REGCM_IMM32 },
16046                 },
16047         },
16048         [TEMPLATE_TEST8] = {
16049                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
16050                 .rhs = { [0] = { REG_UNSET, REGCM_GPR8_LO } },
16051         },
16052         [TEMPLATE_TEST16] = {
16053                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
16054                 .rhs = { [0] = { REG_UNSET, REGCM_GPR16 } },
16055         },
16056         [TEMPLATE_TEST32] = {
16057                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
16058                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
16059         },
16060         [TEMPLATE_SET] = {
16061                 .lhs = { [0] = { REG_UNSET, REGCM_GPR8_LO } },
16062                 .rhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
16063         },
16064         [TEMPLATE_JMP] = {
16065                 .rhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
16066         },
16067         [TEMPLATE_INB_DX] = {
16068                 .lhs = { [0] = { REG_AL,  REGCM_GPR8_LO } },  
16069                 .rhs = { [0] = { REG_DX, REGCM_GPR16 } },
16070         },
16071         [TEMPLATE_INB_IMM] = {
16072                 .lhs = { [0] = { REG_AL,  REGCM_GPR8_LO } },  
16073                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
16074         },
16075         [TEMPLATE_INW_DX]  = { 
16076                 .lhs = { [0] = { REG_AX,  REGCM_GPR16 } }, 
16077                 .rhs = { [0] = { REG_DX, REGCM_GPR16 } },
16078         },
16079         [TEMPLATE_INW_IMM] = { 
16080                 .lhs = { [0] = { REG_AX,  REGCM_GPR16 } }, 
16081                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
16082         },
16083         [TEMPLATE_INL_DX]  = {
16084                 .lhs = { [0] = { REG_EAX, REGCM_GPR32 } },
16085                 .rhs = { [0] = { REG_DX, REGCM_GPR16 } },
16086         },
16087         [TEMPLATE_INL_IMM] = {
16088                 .lhs = { [0] = { REG_EAX, REGCM_GPR32 } },
16089                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
16090         },
16091         [TEMPLATE_OUTB_DX] = { 
16092                 .rhs = {
16093                         [0] = { REG_AL,  REGCM_GPR8_LO },
16094                         [1] = { REG_DX, REGCM_GPR16 },
16095                 },
16096         },
16097         [TEMPLATE_OUTB_IMM] = { 
16098                 .rhs = {
16099                         [0] = { REG_AL,  REGCM_GPR8_LO },  
16100                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
16101                 },
16102         },
16103         [TEMPLATE_OUTW_DX] = { 
16104                 .rhs = {
16105                         [0] = { REG_AX,  REGCM_GPR16 },
16106                         [1] = { REG_DX, REGCM_GPR16 },
16107                 },
16108         },
16109         [TEMPLATE_OUTW_IMM] = {
16110                 .rhs = {
16111                         [0] = { REG_AX,  REGCM_GPR16 }, 
16112                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
16113                 },
16114         },
16115         [TEMPLATE_OUTL_DX] = { 
16116                 .rhs = {
16117                         [0] = { REG_EAX, REGCM_GPR32 },
16118                         [1] = { REG_DX, REGCM_GPR16 },
16119                 },
16120         },
16121         [TEMPLATE_OUTL_IMM] = { 
16122                 .rhs = {
16123                         [0] = { REG_EAX, REGCM_GPR32 }, 
16124                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
16125                 },
16126         },
16127         [TEMPLATE_BSF] = {
16128                 .lhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
16129                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
16130         },
16131         [TEMPLATE_RDMSR] = {
16132                 .lhs = { 
16133                         [0] = { REG_EAX, REGCM_GPR32 },
16134                         [1] = { REG_EDX, REGCM_GPR32 },
16135                 },
16136                 .rhs = { [0] = { REG_ECX, REGCM_GPR32 } },
16137         },
16138         [TEMPLATE_WRMSR] = {
16139                 .rhs = {
16140                         [0] = { REG_ECX, REGCM_GPR32 },
16141                         [1] = { REG_EAX, REGCM_GPR32 },
16142                         [2] = { REG_EDX, REGCM_GPR32 },
16143                 },
16144         },
16145         [TEMPLATE_UMUL8] = {
16146                 .lhs = { [0] = { REG_AX, REGCM_GPR16 } },
16147                 .rhs = { 
16148                         [0] = { REG_AL, REGCM_GPR8_LO },
16149                         [1] = { REG_UNSET, REGCM_GPR8_LO },
16150                 },
16151         },
16152         [TEMPLATE_UMUL16] = {
16153                 .lhs = { [0] = { REG_DXAX, REGCM_DIVIDEND32 } },
16154                 .rhs = { 
16155                         [0] = { REG_AX, REGCM_GPR16 },
16156                         [1] = { REG_UNSET, REGCM_GPR16 },
16157                 },
16158         },
16159         [TEMPLATE_UMUL32] = {
16160                 .lhs = { [0] = { REG_EDXEAX, REGCM_DIVIDEND64 } },
16161                 .rhs = { 
16162                         [0] = { REG_EAX, REGCM_GPR32 },
16163                         [1] = { REG_UNSET, REGCM_GPR32 },
16164                 },
16165         },
16166         [TEMPLATE_DIV8] = {
16167                 .lhs = { 
16168                         [0] = { REG_AL, REGCM_GPR8_LO },
16169                         [1] = { REG_AH, REGCM_GPR8 },
16170                 },
16171                 .rhs = {
16172                         [0] = { REG_AX, REGCM_GPR16 },
16173                         [1] = { REG_UNSET, REGCM_GPR8_LO },
16174                 },
16175         },
16176         [TEMPLATE_DIV16] = {
16177                 .lhs = { 
16178                         [0] = { REG_AX, REGCM_GPR16 },
16179                         [1] = { REG_DX, REGCM_GPR16 },
16180                 },
16181                 .rhs = {
16182                         [0] = { REG_DXAX, REGCM_DIVIDEND32 },
16183                         [1] = { REG_UNSET, REGCM_GPR16 },
16184                 },
16185         },
16186         [TEMPLATE_DIV32] = {
16187                 .lhs = { 
16188                         [0] = { REG_EAX, REGCM_GPR32 },
16189                         [1] = { REG_EDX, REGCM_GPR32 },
16190                 },
16191                 .rhs = {
16192                         [0] = { REG_EDXEAX, REGCM_DIVIDEND64 },
16193                         [1] = { REG_UNSET, REGCM_GPR32 },
16194                 },
16195         },
16196 };
16197
16198 static void fixup_branches(struct compile_state *state,
16199         struct triple *cmp, struct triple *use, int jmp_op)
16200 {
16201         struct triple_set *entry, *next;
16202         for(entry = use->use; entry; entry = next) {
16203                 next = entry->next;
16204                 if (entry->member->op == OP_COPY) {
16205                         fixup_branches(state, cmp, entry->member, jmp_op);
16206                 }
16207                 else if (entry->member->op == OP_BRANCH) {
16208                         struct triple *branch, *test;
16209                         struct triple *left, *right;
16210                         left = right = 0;
16211                         left = RHS(cmp, 0);
16212                         if (TRIPLE_RHS(cmp->sizes) > 1) {
16213                                 right = RHS(cmp, 1);
16214                         }
16215                         branch = entry->member;
16216                         test = pre_triple(state, branch,
16217                                 cmp->op, cmp->type, left, right);
16218                         test->template_id = TEMPLATE_TEST32; 
16219                         if (cmp->op == OP_CMP) {
16220                                 test->template_id = TEMPLATE_CMP32_REG;
16221                                 if (get_imm32(test, &RHS(test, 1))) {
16222                                         test->template_id = TEMPLATE_CMP32_IMM;
16223                                 }
16224                         }
16225                         use_triple(RHS(test, 0), test);
16226                         use_triple(RHS(test, 1), test);
16227                         unuse_triple(RHS(branch, 0), branch);
16228                         RHS(branch, 0) = test;
16229                         branch->op = jmp_op;
16230                         branch->template_id = TEMPLATE_JMP;
16231                         use_triple(RHS(branch, 0), branch);
16232                 }
16233         }
16234 }
16235
16236 static void bool_cmp(struct compile_state *state, 
16237         struct triple *ins, int cmp_op, int jmp_op, int set_op)
16238 {
16239         struct triple_set *entry, *next;
16240         struct triple *set;
16241
16242         /* Put a barrier up before the cmp which preceeds the
16243          * copy instruction.  If a set actually occurs this gives
16244          * us a chance to move variables in registers out of the way.
16245          */
16246
16247         /* Modify the comparison operator */
16248         ins->op = cmp_op;
16249         ins->template_id = TEMPLATE_TEST32;
16250         if (cmp_op == OP_CMP) {
16251                 ins->template_id = TEMPLATE_CMP32_REG;
16252                 if (get_imm32(ins, &RHS(ins, 1))) {
16253                         ins->template_id =  TEMPLATE_CMP32_IMM;
16254                 }
16255         }
16256         /* Generate the instruction sequence that will transform the
16257          * result of the comparison into a logical value.
16258          */
16259         set = post_triple(state, ins, set_op, &char_type, ins, 0);
16260         use_triple(ins, set);
16261         set->template_id = TEMPLATE_SET;
16262
16263         for(entry = ins->use; entry; entry = next) {
16264                 next = entry->next;
16265                 if (entry->member == set) {
16266                         continue;
16267                 }
16268                 replace_rhs_use(state, ins, set, entry->member);
16269         }
16270         fixup_branches(state, ins, set, jmp_op);
16271 }
16272
16273 static struct triple *after_lhs(struct compile_state *state, struct triple *ins)
16274 {
16275         struct triple *next;
16276         int lhs, i;
16277         lhs = TRIPLE_LHS(ins->sizes);
16278         for(next = ins->next, i = 0; i < lhs; i++, next = next->next) {
16279                 if (next != LHS(ins, i)) {
16280                         internal_error(state, ins, "malformed lhs on %s",
16281                                 tops(ins->op));
16282                 }
16283                 if (next->op != OP_PIECE) {
16284                         internal_error(state, ins, "bad lhs op %s at %d on %s",
16285                                 tops(next->op), i, tops(ins->op));
16286                 }
16287                 if (next->u.cval != i) {
16288                         internal_error(state, ins, "bad u.cval of %d %d expected",
16289                                 next->u.cval, i);
16290                 }
16291         }
16292         return next;
16293 }
16294
16295 struct reg_info arch_reg_lhs(struct compile_state *state, struct triple *ins, int index)
16296 {
16297         struct ins_template *template;
16298         struct reg_info result;
16299         int zlhs;
16300         if (ins->op == OP_PIECE) {
16301                 index = ins->u.cval;
16302                 ins = MISC(ins, 0);
16303         }
16304         zlhs = TRIPLE_LHS(ins->sizes);
16305         if (triple_is_def(state, ins)) {
16306                 zlhs = 1;
16307         }
16308         if (index >= zlhs) {
16309                 internal_error(state, ins, "index %d out of range for %s\n",
16310                         index, tops(ins->op));
16311         }
16312         switch(ins->op) {
16313         case OP_ASM:
16314                 template = &ins->u.ainfo->tmpl;
16315                 break;
16316         default:
16317                 if (ins->template_id > LAST_TEMPLATE) {
16318                         internal_error(state, ins, "bad template number %d", 
16319                                 ins->template_id);
16320                 }
16321                 template = &templates[ins->template_id];
16322                 break;
16323         }
16324         result = template->lhs[index];
16325         result.regcm = arch_regcm_normalize(state, result.regcm);
16326         if (result.reg != REG_UNNEEDED) {
16327                 result.regcm &= ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8);
16328         }
16329         if (result.regcm == 0) {
16330                 internal_error(state, ins, "lhs %d regcm == 0", index);
16331         }
16332         return result;
16333 }
16334
16335 struct reg_info arch_reg_rhs(struct compile_state *state, struct triple *ins, int index)
16336 {
16337         struct reg_info result;
16338         struct ins_template *template;
16339         if ((index > TRIPLE_RHS(ins->sizes)) ||
16340                 (ins->op == OP_PIECE)) {
16341                 internal_error(state, ins, "index %d out of range for %s\n",
16342                         index, tops(ins->op));
16343         }
16344         switch(ins->op) {
16345         case OP_ASM:
16346                 template = &ins->u.ainfo->tmpl;
16347                 break;
16348         default:
16349                 if (ins->template_id > LAST_TEMPLATE) {
16350                         internal_error(state, ins, "bad template number %d", 
16351                                 ins->template_id);
16352                 }
16353                 template = &templates[ins->template_id];
16354                 break;
16355         }
16356         result = template->rhs[index];
16357         result.regcm = arch_regcm_normalize(state, result.regcm);
16358         if (result.regcm == 0) {
16359                 internal_error(state, ins, "rhs %d regcm == 0", index);
16360         }
16361         return result;
16362 }
16363
16364 static struct triple *mod_div(struct compile_state *state,
16365         struct triple *ins, int div_op, int index)
16366 {
16367         struct triple *div, *piece0, *piece1;
16368         
16369         /* Generate a piece to hold the remainder */
16370         piece1 = post_triple(state, ins, OP_PIECE, ins->type, 0, 0);
16371         piece1->u.cval = 1;
16372
16373         /* Generate a piece to hold the quotient */
16374         piece0 = post_triple(state, ins, OP_PIECE, ins->type, 0, 0);
16375         piece0->u.cval = 0;
16376
16377         /* Generate the appropriate division instruction */
16378         div = post_triple(state, ins, div_op, ins->type, 0, 0);
16379         RHS(div, 0) = RHS(ins, 0);
16380         RHS(div, 1) = RHS(ins, 1);
16381         LHS(div, 0) = piece0;
16382         LHS(div, 1) = piece1;
16383         div->template_id  = TEMPLATE_DIV32;
16384         use_triple(RHS(div, 0), div);
16385         use_triple(RHS(div, 1), div);
16386         use_triple(LHS(div, 0), div);
16387         use_triple(LHS(div, 1), div);
16388
16389         /* Hook on piece0 */
16390         MISC(piece0, 0) = div;
16391         use_triple(div, piece0);
16392
16393         /* Hook on piece1 */
16394         MISC(piece1, 0) = div;
16395         use_triple(div, piece1);
16396         
16397         /* Replate uses of ins with the appropriate piece of the div */
16398         propogate_use(state, ins, LHS(div, index));
16399         release_triple(state, ins);
16400
16401         /* Return the address of the next instruction */
16402         return piece1->next;
16403 }
16404
16405 static struct triple *transform_to_arch_instruction(
16406         struct compile_state *state, struct triple *ins)
16407 {
16408         /* Transform from generic 3 address instructions
16409          * to archtecture specific instructions.
16410          * And apply architecture specific constraints to instructions.
16411          * Copies are inserted to preserve the register flexibility
16412          * of 3 address instructions.
16413          */
16414         struct triple *next;
16415         size_t size;
16416         next = ins->next;
16417         switch(ins->op) {
16418         case OP_INTCONST:
16419                 ins->template_id = TEMPLATE_INTCONST32;
16420                 if (ins->u.cval < 256) {
16421                         ins->template_id = TEMPLATE_INTCONST8;
16422                 }
16423                 break;
16424         case OP_ADDRCONST:
16425                 ins->template_id = TEMPLATE_INTCONST32;
16426                 break;
16427         case OP_NOOP:
16428         case OP_SDECL:
16429         case OP_BLOBCONST:
16430         case OP_LABEL:
16431                 ins->template_id = TEMPLATE_NOP;
16432                 break;
16433         case OP_COPY:
16434                 size = size_of(state, ins->type);
16435                 if (is_imm8(RHS(ins, 0)) && (size <= 1)) {
16436                         ins->template_id = TEMPLATE_COPY_IMM8;
16437                 }
16438                 else if (is_imm16(RHS(ins, 0)) && (size <= 2)) {
16439                         ins->template_id = TEMPLATE_COPY_IMM16;
16440                 }
16441                 else if (is_imm32(RHS(ins, 0)) && (size <= 4)) {
16442                         ins->template_id = TEMPLATE_COPY_IMM32;
16443                 }
16444                 else if (is_const(RHS(ins, 0))) {
16445                         internal_error(state, ins, "bad constant passed to copy");
16446                 }
16447                 else if (size <= 1) {
16448                         ins->template_id = TEMPLATE_COPY8_REG;
16449                 }
16450                 else if (size <= 2) {
16451                         ins->template_id = TEMPLATE_COPY16_REG;
16452                 }
16453                 else if (size <= 4) {
16454                         ins->template_id = TEMPLATE_COPY32_REG;
16455                 }
16456                 else {
16457                         internal_error(state, ins, "bad type passed to copy");
16458                 }
16459                 break;
16460         case OP_PHI:
16461                 size = size_of(state, ins->type);
16462                 if (size <= 1) {
16463                         ins->template_id = TEMPLATE_PHI8;
16464                 }
16465                 else if (size <= 2) {
16466                         ins->template_id = TEMPLATE_PHI16;
16467                 }
16468                 else if (size <= 4) {
16469                         ins->template_id = TEMPLATE_PHI32;
16470                 }
16471                 else {
16472                         internal_error(state, ins, "bad type passed to phi");
16473                 }
16474                 break;
16475         case OP_STORE:
16476                 switch(ins->type->type & TYPE_MASK) {
16477                 case TYPE_CHAR:    case TYPE_UCHAR:
16478                         ins->template_id = TEMPLATE_STORE8;
16479                         break;
16480                 case TYPE_SHORT:   case TYPE_USHORT:
16481                         ins->template_id = TEMPLATE_STORE16;
16482                         break;
16483                 case TYPE_INT:     case TYPE_UINT:
16484                 case TYPE_LONG:    case TYPE_ULONG:
16485                 case TYPE_POINTER:
16486                         ins->template_id = TEMPLATE_STORE32;
16487                         break;
16488                 default:
16489                         internal_error(state, ins, "unknown type in store");
16490                         break;
16491                 }
16492                 break;
16493         case OP_LOAD:
16494                 switch(ins->type->type & TYPE_MASK) {
16495                 case TYPE_CHAR:   case TYPE_UCHAR:
16496                         ins->template_id = TEMPLATE_LOAD8;
16497                         break;
16498                 case TYPE_SHORT:
16499                 case TYPE_USHORT:
16500                         ins->template_id = TEMPLATE_LOAD16;
16501                         break;
16502                 case TYPE_INT:
16503                 case TYPE_UINT:
16504                 case TYPE_LONG:
16505                 case TYPE_ULONG:
16506                 case TYPE_POINTER:
16507                         ins->template_id = TEMPLATE_LOAD32;
16508                         break;
16509                 default:
16510                         internal_error(state, ins, "unknown type in load");
16511                         break;
16512                 }
16513                 break;
16514         case OP_ADD:
16515         case OP_SUB:
16516         case OP_AND:
16517         case OP_XOR:
16518         case OP_OR:
16519         case OP_SMUL:
16520                 ins->template_id = TEMPLATE_BINARY32_REG;
16521                 if (get_imm32(ins, &RHS(ins, 1))) {
16522                         ins->template_id = TEMPLATE_BINARY32_IMM;
16523                 }
16524                 break;
16525         case OP_SDIVT:
16526         case OP_UDIVT:
16527                 ins->template_id = TEMPLATE_DIV32;
16528                 next = after_lhs(state, ins);
16529                 break;
16530                 /* FIXME UMUL does not work yet.. */
16531         case OP_UMUL:
16532                 ins->template_id = TEMPLATE_UMUL32;
16533                 break;
16534         case OP_UDIV:
16535                 next = mod_div(state, ins, OP_UDIVT, 0);
16536                 break;
16537         case OP_SDIV:
16538                 next = mod_div(state, ins, OP_SDIVT, 0);
16539                 break;
16540         case OP_UMOD:
16541                 next = mod_div(state, ins, OP_UDIVT, 1);
16542                 break;
16543         case OP_SMOD:
16544                 next = mod_div(state, ins, OP_SDIVT, 1);
16545                 break;
16546         case OP_SL:
16547         case OP_SSR:
16548         case OP_USR:
16549                 ins->template_id = TEMPLATE_SL32_CL;
16550                 if (get_imm8(ins, &RHS(ins, 1))) {
16551                         ins->template_id = TEMPLATE_SL32_IMM;
16552                 } else if (size_of(state, RHS(ins, 1)->type) > 1) {
16553                         typed_pre_copy(state, &char_type, ins, 1);
16554                 }
16555                 break;
16556         case OP_INVERT:
16557         case OP_NEG:
16558                 ins->template_id = TEMPLATE_UNARY32;
16559                 break;
16560         case OP_EQ: 
16561                 bool_cmp(state, ins, OP_CMP, OP_JMP_EQ, OP_SET_EQ); 
16562                 break;
16563         case OP_NOTEQ:
16564                 bool_cmp(state, ins, OP_CMP, OP_JMP_NOTEQ, OP_SET_NOTEQ);
16565                 break;
16566         case OP_SLESS:
16567                 bool_cmp(state, ins, OP_CMP, OP_JMP_SLESS, OP_SET_SLESS);
16568                 break;
16569         case OP_ULESS:
16570                 bool_cmp(state, ins, OP_CMP, OP_JMP_ULESS, OP_SET_ULESS);
16571                 break;
16572         case OP_SMORE:
16573                 bool_cmp(state, ins, OP_CMP, OP_JMP_SMORE, OP_SET_SMORE);
16574                 break;
16575         case OP_UMORE:
16576                 bool_cmp(state, ins, OP_CMP, OP_JMP_UMORE, OP_SET_UMORE);
16577                 break;
16578         case OP_SLESSEQ:
16579                 bool_cmp(state, ins, OP_CMP, OP_JMP_SLESSEQ, OP_SET_SLESSEQ);
16580                 break;
16581         case OP_ULESSEQ:
16582                 bool_cmp(state, ins, OP_CMP, OP_JMP_ULESSEQ, OP_SET_ULESSEQ);
16583                 break;
16584         case OP_SMOREEQ:
16585                 bool_cmp(state, ins, OP_CMP, OP_JMP_SMOREEQ, OP_SET_SMOREEQ);
16586                 break;
16587         case OP_UMOREEQ:
16588                 bool_cmp(state, ins, OP_CMP, OP_JMP_UMOREEQ, OP_SET_UMOREEQ);
16589                 break;
16590         case OP_LTRUE:
16591                 bool_cmp(state, ins, OP_TEST, OP_JMP_NOTEQ, OP_SET_NOTEQ);
16592                 break;
16593         case OP_LFALSE:
16594                 bool_cmp(state, ins, OP_TEST, OP_JMP_EQ, OP_SET_EQ);
16595                 break;
16596         case OP_BRANCH:
16597                 if (TRIPLE_RHS(ins->sizes) > 0) {
16598                         internal_error(state, ins, "bad branch test");
16599                 }
16600                 ins->op = OP_JMP;
16601                 ins->template_id = TEMPLATE_NOP;
16602                 break;
16603         case OP_INB:
16604         case OP_INW:
16605         case OP_INL:
16606                 switch(ins->op) {
16607                 case OP_INB: ins->template_id = TEMPLATE_INB_DX; break;
16608                 case OP_INW: ins->template_id = TEMPLATE_INW_DX; break;
16609                 case OP_INL: ins->template_id = TEMPLATE_INL_DX; break;
16610                 }
16611                 if (get_imm8(ins, &RHS(ins, 0))) {
16612                         ins->template_id += 1;
16613                 }
16614                 break;
16615         case OP_OUTB:
16616         case OP_OUTW:
16617         case OP_OUTL:
16618                 switch(ins->op) {
16619                 case OP_OUTB: ins->template_id = TEMPLATE_OUTB_DX; break;
16620                 case OP_OUTW: ins->template_id = TEMPLATE_OUTW_DX; break;
16621                 case OP_OUTL: ins->template_id = TEMPLATE_OUTL_DX; break;
16622                 }
16623                 if (get_imm8(ins, &RHS(ins, 1))) {
16624                         ins->template_id += 1;
16625                 }
16626                 break;
16627         case OP_BSF:
16628         case OP_BSR:
16629                 ins->template_id = TEMPLATE_BSF;
16630                 break;
16631         case OP_RDMSR:
16632                 ins->template_id = TEMPLATE_RDMSR;
16633                 next = after_lhs(state, ins);
16634                 break;
16635         case OP_WRMSR:
16636                 ins->template_id = TEMPLATE_WRMSR;
16637                 break;
16638         case OP_HLT:
16639                 ins->template_id = TEMPLATE_NOP;
16640                 break;
16641         case OP_ASM:
16642                 ins->template_id = TEMPLATE_NOP;
16643                 next = after_lhs(state, ins);
16644                 break;
16645                 /* Already transformed instructions */
16646         case OP_TEST:
16647                 ins->template_id = TEMPLATE_TEST32;
16648                 break;
16649         case OP_CMP:
16650                 ins->template_id = TEMPLATE_CMP32_REG;
16651                 if (get_imm32(ins, &RHS(ins, 1))) {
16652                         ins->template_id = TEMPLATE_CMP32_IMM;
16653                 }
16654                 break;
16655         case OP_JMP_EQ:      case OP_JMP_NOTEQ:
16656         case OP_JMP_SLESS:   case OP_JMP_ULESS:
16657         case OP_JMP_SMORE:   case OP_JMP_UMORE:
16658         case OP_JMP_SLESSEQ: case OP_JMP_ULESSEQ:
16659         case OP_JMP_SMOREEQ: case OP_JMP_UMOREEQ:
16660                 ins->template_id = TEMPLATE_JMP;
16661                 break;
16662         case OP_SET_EQ:      case OP_SET_NOTEQ:
16663         case OP_SET_SLESS:   case OP_SET_ULESS:
16664         case OP_SET_SMORE:   case OP_SET_UMORE:
16665         case OP_SET_SLESSEQ: case OP_SET_ULESSEQ:
16666         case OP_SET_SMOREEQ: case OP_SET_UMOREEQ:
16667                 ins->template_id = TEMPLATE_SET;
16668                 break;
16669                 /* Unhandled instructions */
16670         case OP_PIECE:
16671         default:
16672                 internal_error(state, ins, "unhandled ins: %d %s\n",
16673                         ins->op, tops(ins->op));
16674                 break;
16675         }
16676         return next;
16677 }
16678
16679 static long next_label(struct compile_state *state)
16680 {
16681         static long label_counter = 0;
16682         return ++label_counter;
16683 }
16684 static void generate_local_labels(struct compile_state *state)
16685 {
16686         struct triple *first, *label;
16687         first = RHS(state->main_function, 0);
16688         label = first;
16689         do {
16690                 if ((label->op == OP_LABEL) || 
16691                         (label->op == OP_SDECL)) {
16692                         if (label->use) {
16693                                 label->u.cval = next_label(state);
16694                         } else {
16695                                 label->u.cval = 0;
16696                         }
16697                         
16698                 }
16699                 label = label->next;
16700         } while(label != first);
16701 }
16702
16703 static int check_reg(struct compile_state *state, 
16704         struct triple *triple, int classes)
16705 {
16706         unsigned mask;
16707         int reg;
16708         reg = ID_REG(triple->id);
16709         if (reg == REG_UNSET) {
16710                 internal_error(state, triple, "register not set");
16711         }
16712         mask = arch_reg_regcm(state, reg);
16713         if (!(classes & mask)) {
16714                 internal_error(state, triple, "reg %d in wrong class",
16715                         reg);
16716         }
16717         return reg;
16718 }
16719
16720 static const char *arch_reg_str(int reg)
16721 {
16722 #if REG_XMM7 != 44
16723 #error "Registers have renumberd fix arch_reg_str"
16724 #endif
16725         static const char *regs[] = {
16726                 "%unset",
16727                 "%unneeded",
16728                 "%eflags",
16729                 "%al", "%bl", "%cl", "%dl", "%ah", "%bh", "%ch", "%dh",
16730                 "%ax", "%bx", "%cx", "%dx", "%si", "%di", "%bp", "%sp",
16731                 "%eax", "%ebx", "%ecx", "%edx", "%esi", "%edi", "%ebp", "%esp",
16732                 "%edx:%eax",
16733                 "%dx:%ax",
16734                 "%mm0", "%mm1", "%mm2", "%mm3", "%mm4", "%mm5", "%mm6", "%mm7",
16735                 "%xmm0", "%xmm1", "%xmm2", "%xmm3", 
16736                 "%xmm4", "%xmm5", "%xmm6", "%xmm7",
16737         };
16738         if (!((reg >= REG_EFLAGS) && (reg <= REG_XMM7))) {
16739                 reg = 0;
16740         }
16741         return regs[reg];
16742 }
16743
16744
16745 static const char *reg(struct compile_state *state, struct triple *triple,
16746         int classes)
16747 {
16748         int reg;
16749         reg = check_reg(state, triple, classes);
16750         return arch_reg_str(reg);
16751 }
16752
16753 const char *type_suffix(struct compile_state *state, struct type *type)
16754 {
16755         const char *suffix;
16756         switch(size_of(state, type)) {
16757         case 1: suffix = "b"; break;
16758         case 2: suffix = "w"; break;
16759         case 4: suffix = "l"; break;
16760         default:
16761                 internal_error(state, 0, "unknown suffix");
16762                 suffix = 0;
16763                 break;
16764         }
16765         return suffix;
16766 }
16767
16768 static void print_const_val(
16769         struct compile_state *state, struct triple *ins, FILE *fp)
16770 {
16771         switch(ins->op) {
16772         case OP_INTCONST:
16773                 fprintf(fp, " $%ld ", 
16774                         (long_t)(ins->u.cval));
16775                 break;
16776         case OP_ADDRCONST:
16777                 fprintf(fp, " $L%s%lu+%lu ",
16778                         state->label_prefix, 
16779                         MISC(ins, 0)->u.cval,
16780                         ins->u.cval);
16781                 break;
16782         default:
16783                 internal_error(state, ins, "unknown constant type");
16784                 break;
16785         }
16786 }
16787
16788 static void print_const(struct compile_state *state,
16789         struct triple *ins, FILE *fp)
16790 {
16791         switch(ins->op) {
16792         case OP_INTCONST:
16793                 switch(ins->type->type & TYPE_MASK) {
16794                 case TYPE_CHAR:
16795                 case TYPE_UCHAR:
16796                         fprintf(fp, ".byte 0x%02lx\n", ins->u.cval);
16797                         break;
16798                 case TYPE_SHORT:
16799                 case TYPE_USHORT:
16800                         fprintf(fp, ".short 0x%04lx\n", ins->u.cval);
16801                         break;
16802                 case TYPE_INT:
16803                 case TYPE_UINT:
16804                 case TYPE_LONG:
16805                 case TYPE_ULONG:
16806                         fprintf(fp, ".int %lu\n", ins->u.cval);
16807                         break;
16808                 default:
16809                         internal_error(state, ins, "Unknown constant type");
16810                 }
16811                 break;
16812         case OP_ADDRCONST:
16813                 fprintf(fp, " .int L%s%lu+%lu ",
16814                         state->label_prefix,
16815                         MISC(ins, 0)->u.cval,
16816                         ins->u.cval);
16817                 break;
16818         case OP_BLOBCONST:
16819         {
16820                 unsigned char *blob;
16821                 size_t size, i;
16822                 size = size_of(state, ins->type);
16823                 blob = ins->u.blob;
16824                 for(i = 0; i < size; i++) {
16825                         fprintf(fp, ".byte 0x%02x\n",
16826                                 blob[i]);
16827                 }
16828                 break;
16829         }
16830         default:
16831                 internal_error(state, ins, "Unknown constant type");
16832                 break;
16833         }
16834 }
16835
16836 #define TEXT_SECTION ".rom.text"
16837 #define DATA_SECTION ".rom.data"
16838
16839 static long get_const_pool_ref(
16840         struct compile_state *state, struct triple *ins, FILE *fp)
16841 {
16842         long ref;
16843         ref = next_label(state);
16844         fprintf(fp, ".section \"" DATA_SECTION "\"\n");
16845         fprintf(fp, ".balign %d\n", align_of(state, ins->type));
16846         fprintf(fp, "L%s%lu:\n", state->label_prefix, ref);
16847         print_const(state, ins, fp);
16848         fprintf(fp, ".section \"" TEXT_SECTION "\"\n");
16849         return ref;
16850 }
16851
16852 static void print_binary_op(struct compile_state *state,
16853         const char *op, struct triple *ins, FILE *fp) 
16854 {
16855         unsigned mask;
16856         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
16857         if (RHS(ins, 0)->id != ins->id) {
16858                 internal_error(state, ins, "invalid register assignment");
16859         }
16860         if (is_const(RHS(ins, 1))) {
16861                 fprintf(fp, "\t%s ", op);
16862                 print_const_val(state, RHS(ins, 1), fp);
16863                 fprintf(fp, ", %s\n",
16864                         reg(state, RHS(ins, 0), mask));
16865         }
16866         else {
16867                 unsigned lmask, rmask;
16868                 int lreg, rreg;
16869                 lreg = check_reg(state, RHS(ins, 0), mask);
16870                 rreg = check_reg(state, RHS(ins, 1), mask);
16871                 lmask = arch_reg_regcm(state, lreg);
16872                 rmask = arch_reg_regcm(state, rreg);
16873                 mask = lmask & rmask;
16874                 fprintf(fp, "\t%s %s, %s\n",
16875                         op,
16876                         reg(state, RHS(ins, 1), mask),
16877                         reg(state, RHS(ins, 0), mask));
16878         }
16879 }
16880 static void print_unary_op(struct compile_state *state, 
16881         const char *op, struct triple *ins, FILE *fp)
16882 {
16883         unsigned mask;
16884         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
16885         fprintf(fp, "\t%s %s\n",
16886                 op,
16887                 reg(state, RHS(ins, 0), mask));
16888 }
16889
16890 static void print_op_shift(struct compile_state *state,
16891         const char *op, struct triple *ins, FILE *fp)
16892 {
16893         unsigned mask;
16894         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
16895         if (RHS(ins, 0)->id != ins->id) {
16896                 internal_error(state, ins, "invalid register assignment");
16897         }
16898         if (is_const(RHS(ins, 1))) {
16899                 fprintf(fp, "\t%s ", op);
16900                 print_const_val(state, RHS(ins, 1), fp);
16901                 fprintf(fp, ", %s\n",
16902                         reg(state, RHS(ins, 0), mask));
16903         }
16904         else {
16905                 fprintf(fp, "\t%s %s, %s\n",
16906                         op,
16907                         reg(state, RHS(ins, 1), REGCM_GPR8_LO),
16908                         reg(state, RHS(ins, 0), mask));
16909         }
16910 }
16911
16912 static void print_op_in(struct compile_state *state, struct triple *ins, FILE *fp)
16913 {
16914         const char *op;
16915         int mask;
16916         int dreg;
16917         mask = 0;
16918         switch(ins->op) {
16919         case OP_INB: op = "inb", mask = REGCM_GPR8_LO; break;
16920         case OP_INW: op = "inw", mask = REGCM_GPR16; break;
16921         case OP_INL: op = "inl", mask = REGCM_GPR32; break;
16922         default:
16923                 internal_error(state, ins, "not an in operation");
16924                 op = 0;
16925                 break;
16926         }
16927         dreg = check_reg(state, ins, mask);
16928         if (!reg_is_reg(state, dreg, REG_EAX)) {
16929                 internal_error(state, ins, "dst != %%eax");
16930         }
16931         if (is_const(RHS(ins, 0))) {
16932                 fprintf(fp, "\t%s ", op);
16933                 print_const_val(state, RHS(ins, 0), fp);
16934                 fprintf(fp, ", %s\n",
16935                         reg(state, ins, mask));
16936         }
16937         else {
16938                 int addr_reg;
16939                 addr_reg = check_reg(state, RHS(ins, 0), REGCM_GPR16);
16940                 if (!reg_is_reg(state, addr_reg, REG_DX)) {
16941                         internal_error(state, ins, "src != %%dx");
16942                 }
16943                 fprintf(fp, "\t%s %s, %s\n",
16944                         op, 
16945                         reg(state, RHS(ins, 0), REGCM_GPR16),
16946                         reg(state, ins, mask));
16947         }
16948 }
16949
16950 static void print_op_out(struct compile_state *state, struct triple *ins, FILE *fp)
16951 {
16952         const char *op;
16953         int mask;
16954         int lreg;
16955         mask = 0;
16956         switch(ins->op) {
16957         case OP_OUTB: op = "outb", mask = REGCM_GPR8_LO; break;
16958         case OP_OUTW: op = "outw", mask = REGCM_GPR16; break;
16959         case OP_OUTL: op = "outl", mask = REGCM_GPR32; break;
16960         default:
16961                 internal_error(state, ins, "not an out operation");
16962                 op = 0;
16963                 break;
16964         }
16965         lreg = check_reg(state, RHS(ins, 0), mask);
16966         if (!reg_is_reg(state, lreg, REG_EAX)) {
16967                 internal_error(state, ins, "src != %%eax");
16968         }
16969         if (is_const(RHS(ins, 1))) {
16970                 fprintf(fp, "\t%s %s,", 
16971                         op, reg(state, RHS(ins, 0), mask));
16972                 print_const_val(state, RHS(ins, 1), fp);
16973                 fprintf(fp, "\n");
16974         }
16975         else {
16976                 int addr_reg;
16977                 addr_reg = check_reg(state, RHS(ins, 1), REGCM_GPR16);
16978                 if (!reg_is_reg(state, addr_reg, REG_DX)) {
16979                         internal_error(state, ins, "dst != %%dx");
16980                 }
16981                 fprintf(fp, "\t%s %s, %s\n",
16982                         op, 
16983                         reg(state, RHS(ins, 0), mask),
16984                         reg(state, RHS(ins, 1), REGCM_GPR16));
16985         }
16986 }
16987
16988 static void print_op_move(struct compile_state *state,
16989         struct triple *ins, FILE *fp)
16990 {
16991         /* op_move is complex because there are many types
16992          * of registers we can move between.
16993          * Because OP_COPY will be introduced in arbitrary locations
16994          * OP_COPY must not affect flags.
16995          */
16996         int omit_copy = 1; /* Is it o.k. to omit a noop copy? */
16997         struct triple *dst, *src;
16998         if (ins->op == OP_COPY) {
16999                 src = RHS(ins, 0);
17000                 dst = ins;
17001         }
17002         else {
17003                 internal_error(state, ins, "unknown move operation");
17004                 src = dst = 0;
17005         }
17006         if (!is_const(src)) {
17007                 int src_reg, dst_reg;
17008                 int src_regcm, dst_regcm;
17009                 src_reg   = ID_REG(src->id);
17010                 dst_reg   = ID_REG(dst->id);
17011                 src_regcm = arch_reg_regcm(state, src_reg);
17012                 dst_regcm = arch_reg_regcm(state, dst_reg);
17013                 /* If the class is the same just move the register */
17014                 if (src_regcm & dst_regcm & 
17015                         (REGCM_GPR8_LO | REGCM_GPR16 | REGCM_GPR32)) {
17016                         if ((src_reg != dst_reg) || !omit_copy) {
17017                                 fprintf(fp, "\tmov %s, %s\n",
17018                                         reg(state, src, src_regcm),
17019                                         reg(state, dst, dst_regcm));
17020                         }
17021                 }
17022                 /* Move 32bit to 16bit */
17023                 else if ((src_regcm & REGCM_GPR32) &&
17024                         (dst_regcm & REGCM_GPR16)) {
17025                         src_reg = (src_reg - REGC_GPR32_FIRST) + REGC_GPR16_FIRST;
17026                         if ((src_reg != dst_reg) || !omit_copy) {
17027                                 fprintf(fp, "\tmovw %s, %s\n",
17028                                         arch_reg_str(src_reg), 
17029                                         arch_reg_str(dst_reg));
17030                         }
17031                 }
17032                 /* Move from 32bit gprs to 16bit gprs */
17033                 else if ((src_regcm & REGCM_GPR32) &&
17034                         (dst_regcm & REGCM_GPR16)) {
17035                         dst_reg = (dst_reg - REGC_GPR16_FIRST) + REGC_GPR32_FIRST;
17036                         if ((src_reg != dst_reg) || !omit_copy) {
17037                                 fprintf(fp, "\tmov %s, %s\n",
17038                                         arch_reg_str(src_reg),
17039                                         arch_reg_str(dst_reg));
17040                         }
17041                 }
17042                 /* Move 32bit to 8bit */
17043                 else if ((src_regcm & REGCM_GPR32_8) &&
17044                         (dst_regcm & REGCM_GPR8_LO))
17045                 {
17046                         src_reg = (src_reg - REGC_GPR32_8_FIRST) + REGC_GPR8_FIRST;
17047                         if ((src_reg != dst_reg) || !omit_copy) {
17048                                 fprintf(fp, "\tmovb %s, %s\n",
17049                                         arch_reg_str(src_reg),
17050                                         arch_reg_str(dst_reg));
17051                         }
17052                 }
17053                 /* Move 16bit to 8bit */
17054                 else if ((src_regcm & REGCM_GPR16_8) &&
17055                         (dst_regcm & REGCM_GPR8_LO))
17056                 {
17057                         src_reg = (src_reg - REGC_GPR16_8_FIRST) + REGC_GPR8_FIRST;
17058                         if ((src_reg != dst_reg) || !omit_copy) {
17059                                 fprintf(fp, "\tmovb %s, %s\n",
17060                                         arch_reg_str(src_reg),
17061                                         arch_reg_str(dst_reg));
17062                         }
17063                 }
17064                 /* Move 8/16bit to 16/32bit */
17065                 else if ((src_regcm & (REGCM_GPR8_LO | REGCM_GPR16)) && 
17066                         (dst_regcm & (REGCM_GPR16 | REGCM_GPR32))) {
17067                         const char *op;
17068                         op = is_signed(src->type)? "movsx": "movzx";
17069                         fprintf(fp, "\t%s %s, %s\n",
17070                                 op,
17071                                 reg(state, src, src_regcm),
17072                                 reg(state, dst, dst_regcm));
17073                 }
17074                 /* Move between sse registers */
17075                 else if ((src_regcm & dst_regcm & REGCM_XMM)) {
17076                         if ((src_reg != dst_reg) || !omit_copy) {
17077                                 fprintf(fp, "\tmovdqa %s, %s\n",
17078                                         reg(state, src, src_regcm),
17079                                         reg(state, dst, dst_regcm));
17080                         }
17081                 }
17082                 /* Move between mmx registers */
17083                 else if ((src_regcm & dst_regcm & REGCM_MMX)) {
17084                         if ((src_reg != dst_reg) || !omit_copy) {
17085                                 fprintf(fp, "\tmovq %s, %s\n",
17086                                         reg(state, src, src_regcm),
17087                                         reg(state, dst, dst_regcm));
17088                         }
17089                 }
17090                 /* Move from sse to mmx registers */
17091                 else if ((src_regcm & REGCM_XMM) && (dst_regcm & REGCM_MMX)) {
17092                         fprintf(fp, "\tmovdq2q %s, %s\n",
17093                                 reg(state, src, src_regcm),
17094                                 reg(state, dst, dst_regcm));
17095                 }
17096                 /* Move from mmx to sse registers */
17097                 else if ((src_regcm & REGCM_MMX) && (dst_regcm & REGCM_XMM)) {
17098                         fprintf(fp, "\tmovq2dq %s, %s\n",
17099                                 reg(state, src, src_regcm),
17100                                 reg(state, dst, dst_regcm));
17101                 }
17102                 /* Move between 32bit gprs & mmx/sse registers */
17103                 else if ((src_regcm & (REGCM_GPR32 | REGCM_MMX | REGCM_XMM)) &&
17104                         (dst_regcm & (REGCM_GPR32 | REGCM_MMX | REGCM_XMM))) {
17105                         fprintf(fp, "\tmovd %s, %s\n",
17106                                 reg(state, src, src_regcm),
17107                                 reg(state, dst, dst_regcm));
17108                 }
17109                 /* Move from 16bit gprs &  mmx/sse registers */
17110                 else if ((src_regcm & REGCM_GPR16) &&
17111                         (dst_regcm & (REGCM_MMX | REGCM_XMM))) {
17112                         const char *op;
17113                         int mid_reg;
17114                         op = is_signed(src->type)? "movsx":"movxz";
17115                         mid_reg = (src_reg - REGC_GPR16_FIRST) + REGC_GPR32_FIRST;
17116                         fprintf(fp, "\t%s %s, %s\n\tmovd %s, %s\n",
17117                                 op,
17118                                 arch_reg_str(src_reg),
17119                                 arch_reg_str(mid_reg),
17120                                 arch_reg_str(mid_reg),
17121                                 arch_reg_str(dst_reg));
17122                 }
17123                 /* Move from mmx/sse registers to 16bit gprs */
17124                 else if ((src_regcm & (REGCM_MMX | REGCM_XMM)) &&
17125                         (dst_regcm & REGCM_GPR16)) {
17126                         dst_reg = (dst_reg - REGC_GPR16_FIRST) + REGC_GPR32_FIRST;
17127                         fprintf(fp, "\tmovd %s, %s\n",
17128                                 arch_reg_str(src_reg),
17129                                 arch_reg_str(dst_reg));
17130                 }
17131                 /* Move from gpr to 64bit dividend */
17132                 else if ((src_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO))  &&
17133                         (dst_regcm & REGCM_DIVIDEND64)) {
17134                         const char *extend;
17135                         extend = is_signed(src->type)? "cltd":"movl $0, %edx";
17136                         fprintf(fp, "\tmov %s, %%eax\n\t%s\n",
17137                                 arch_reg_str(src_reg), 
17138                                 extend);
17139                 }
17140                 /* Move from 64bit gpr to gpr */
17141                 else if ((src_regcm & REGCM_DIVIDEND64) &&
17142                         (dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO))) {
17143                         if (dst_regcm & REGCM_GPR32) {
17144                                 src_reg = REG_EAX;
17145                         } 
17146                         else if (dst_regcm & REGCM_GPR16) {
17147                                 src_reg = REG_AX;
17148                         }
17149                         else if (dst_regcm & REGCM_GPR8_LO) {
17150                                 src_reg = REG_AL;
17151                         }
17152                         fprintf(fp, "\tmov %s, %s\n",
17153                                 arch_reg_str(src_reg),
17154                                 arch_reg_str(dst_reg));
17155                 }
17156                 /* Move from mmx/sse registers to 64bit gpr */
17157                 else if ((src_regcm & (REGCM_MMX | REGCM_XMM)) &&
17158                         (dst_regcm & REGCM_DIVIDEND64)) {
17159                         const char *extend;
17160                         extend = is_signed(src->type)? "cltd": "movl $0, %edx";
17161                         fprintf(fp, "\tmovd %s, %%eax\n\t%s\n",
17162                                 arch_reg_str(src_reg),
17163                                 extend);
17164                 }
17165                 /* Move from 64bit gpr to mmx/sse register */
17166                 else if ((src_regcm & REGCM_DIVIDEND64) &&
17167                         (dst_regcm & (REGCM_XMM | REGCM_MMX))) {
17168                         fprintf(fp, "\tmovd %%eax, %s\n",
17169                                 arch_reg_str(dst_reg));
17170                 }
17171 #if X86_4_8BIT_GPRS
17172                 /* Move from 8bit gprs to  mmx/sse registers */
17173                 else if ((src_regcm & REGCM_GPR8_LO) && (src_reg <= REG_DL) &&
17174                         (dst_regcm & (REGCM_MMX | REGCM_XMM))) {
17175                         const char *op;
17176                         int mid_reg;
17177                         op = is_signed(src->type)? "movsx":"movzx";
17178                         mid_reg = (src_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
17179                         fprintf(fp, "\t%s %s, %s\n\tmovd %s, %s\n",
17180                                 op,
17181                                 reg(state, src, src_regcm),
17182                                 arch_reg_str(mid_reg),
17183                                 arch_reg_str(mid_reg),
17184                                 reg(state, dst, dst_regcm));
17185                 }
17186                 /* Move from mmx/sse registers and 8bit gprs */
17187                 else if ((src_regcm & (REGCM_MMX | REGCM_XMM)) &&
17188                         (dst_regcm & REGCM_GPR8_LO) && (dst_reg <= REG_DL)) {
17189                         int mid_reg;
17190                         mid_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
17191                         fprintf(fp, "\tmovd %s, %s\n",
17192                                 reg(state, src, src_regcm),
17193                                 arch_reg_str(mid_reg));
17194                 }
17195                 /* Move from 32bit gprs to 8bit gprs */
17196                 else if ((src_regcm & REGCM_GPR32) &&
17197                         (dst_regcm & REGCM_GPR8_LO)) {
17198                         dst_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
17199                         if ((src_reg != dst_reg) || !omit_copy) {
17200                                 fprintf(fp, "\tmov %s, %s\n",
17201                                         arch_reg_str(src_reg),
17202                                         arch_reg_str(dst_reg));
17203                         }
17204                 }
17205                 /* Move from 16bit gprs to 8bit gprs */
17206                 else if ((src_regcm & REGCM_GPR16) &&
17207                         (dst_regcm & REGCM_GPR8_LO)) {
17208                         dst_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR16_FIRST;
17209                         if ((src_reg != dst_reg) || !omit_copy) {
17210                                 fprintf(fp, "\tmov %s, %s\n",
17211                                         arch_reg_str(src_reg),
17212                                         arch_reg_str(dst_reg));
17213                         }
17214                 }
17215 #endif /* X86_4_8BIT_GPRS */
17216                 else {
17217                         internal_error(state, ins, "unknown copy type");
17218                 }
17219         }
17220         else {
17221                 int dst_reg;
17222                 int dst_regcm;
17223                 dst_reg = ID_REG(dst->id);
17224                 dst_regcm = arch_reg_regcm(state, dst_reg);
17225                 if (dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO)) {
17226                         fprintf(fp, "\tmov ");
17227                         print_const_val(state, src, fp);
17228                         fprintf(fp, ", %s\n",
17229                                 reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO));
17230                 }
17231                 else if (dst_regcm & REGCM_DIVIDEND64) {
17232                         if (size_of(state, dst->type) > 4) {
17233                                 internal_error(state, ins, "64bit constant...");
17234                         }
17235                         fprintf(fp, "\tmov $0, %%edx\n");
17236                         fprintf(fp, "\tmov ");
17237                         print_const_val(state, src, fp);
17238                         fprintf(fp, ", %%eax\n");
17239                 }
17240                 else if (dst_regcm & REGCM_DIVIDEND32) {
17241                         if (size_of(state, dst->type) > 2) {
17242                                 internal_error(state, ins, "32bit constant...");
17243                         }
17244                         fprintf(fp, "\tmov $0, %%dx\n");
17245                         fprintf(fp, "\tmov ");
17246                         print_const_val(state, src, fp);
17247                         fprintf(fp, ", %%ax");
17248                 }
17249                 else if (dst_regcm & (REGCM_XMM | REGCM_MMX)) {
17250                         long ref;
17251                         ref = get_const_pool_ref(state, src, fp);
17252                         fprintf(fp, "\tmovq L%s%lu, %s\n",
17253                                 state->label_prefix, ref,
17254                                 reg(state, dst, (REGCM_XMM | REGCM_MMX)));
17255                 }
17256                 else {
17257                         internal_error(state, ins, "unknown copy immediate type");
17258                 }
17259         }
17260 }
17261
17262 static void print_op_load(struct compile_state *state,
17263         struct triple *ins, FILE *fp)
17264 {
17265         struct triple *dst, *src;
17266         dst = ins;
17267         src = RHS(ins, 0);
17268         if (is_const(src) || is_const(dst)) {
17269                 internal_error(state, ins, "unknown load operation");
17270         }
17271         fprintf(fp, "\tmov (%s), %s\n",
17272                 reg(state, src, REGCM_GPR32),
17273                 reg(state, dst, REGCM_GPR8_LO | REGCM_GPR16 | REGCM_GPR32));
17274 }
17275
17276
17277 static void print_op_store(struct compile_state *state,
17278         struct triple *ins, FILE *fp)
17279 {
17280         struct triple *dst, *src;
17281         dst = RHS(ins, 0);
17282         src = RHS(ins, 1);
17283         if (is_const(src) && (src->op == OP_INTCONST)) {
17284                 long_t value;
17285                 value = (long_t)(src->u.cval);
17286                 fprintf(fp, "\tmov%s $%ld, (%s)\n",
17287                         type_suffix(state, src->type),
17288                         value,
17289                         reg(state, dst, REGCM_GPR32));
17290         }
17291         else if (is_const(dst) && (dst->op == OP_INTCONST)) {
17292                 fprintf(fp, "\tmov%s %s, 0x%08lx\n",
17293                         type_suffix(state, src->type),
17294                         reg(state, src, REGCM_GPR8_LO | REGCM_GPR16 | REGCM_GPR32),
17295                         dst->u.cval);
17296         }
17297         else {
17298                 if (is_const(src) || is_const(dst)) {
17299                         internal_error(state, ins, "unknown store operation");
17300                 }
17301                 fprintf(fp, "\tmov%s %s, (%s)\n",
17302                         type_suffix(state, src->type),
17303                         reg(state, src, REGCM_GPR8_LO | REGCM_GPR16 | REGCM_GPR32),
17304                         reg(state, dst, REGCM_GPR32));
17305         }
17306         
17307         
17308 }
17309
17310 static void print_op_smul(struct compile_state *state,
17311         struct triple *ins, FILE *fp)
17312 {
17313         if (!is_const(RHS(ins, 1))) {
17314                 fprintf(fp, "\timul %s, %s\n",
17315                         reg(state, RHS(ins, 1), REGCM_GPR32),
17316                         reg(state, RHS(ins, 0), REGCM_GPR32));
17317         }
17318         else {
17319                 fprintf(fp, "\timul ");
17320                 print_const_val(state, RHS(ins, 1), fp);
17321                 fprintf(fp, ", %s\n", reg(state, RHS(ins, 0), REGCM_GPR32));
17322         }
17323 }
17324
17325 static void print_op_cmp(struct compile_state *state,
17326         struct triple *ins, FILE *fp)
17327 {
17328         unsigned mask;
17329         int dreg;
17330         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
17331         dreg = check_reg(state, ins, REGCM_FLAGS);
17332         if (!reg_is_reg(state, dreg, REG_EFLAGS)) {
17333                 internal_error(state, ins, "bad dest register for cmp");
17334         }
17335         if (is_const(RHS(ins, 1))) {
17336                 fprintf(fp, "\tcmp ");
17337                 print_const_val(state, RHS(ins, 1), fp);
17338                 fprintf(fp, ", %s\n", reg(state, RHS(ins, 0), mask));
17339         }
17340         else {
17341                 unsigned lmask, rmask;
17342                 int lreg, rreg;
17343                 lreg = check_reg(state, RHS(ins, 0), mask);
17344                 rreg = check_reg(state, RHS(ins, 1), mask);
17345                 lmask = arch_reg_regcm(state, lreg);
17346                 rmask = arch_reg_regcm(state, rreg);
17347                 mask = lmask & rmask;
17348                 fprintf(fp, "\tcmp %s, %s\n",
17349                         reg(state, RHS(ins, 1), mask),
17350                         reg(state, RHS(ins, 0), mask));
17351         }
17352 }
17353
17354 static void print_op_test(struct compile_state *state,
17355         struct triple *ins, FILE *fp)
17356 {
17357         unsigned mask;
17358         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
17359         fprintf(fp, "\ttest %s, %s\n",
17360                 reg(state, RHS(ins, 0), mask),
17361                 reg(state, RHS(ins, 0), mask));
17362 }
17363
17364 static void print_op_branch(struct compile_state *state,
17365         struct triple *branch, FILE *fp)
17366 {
17367         const char *bop = "j";
17368         if (branch->op == OP_JMP) {
17369                 if (TRIPLE_RHS(branch->sizes) != 0) {
17370                         internal_error(state, branch, "jmp with condition?");
17371                 }
17372                 bop = "jmp";
17373         }
17374         else {
17375                 struct triple *ptr;
17376                 if (TRIPLE_RHS(branch->sizes) != 1) {
17377                         internal_error(state, branch, "jmpcc without condition?");
17378                 }
17379                 check_reg(state, RHS(branch, 0), REGCM_FLAGS);
17380                 if ((RHS(branch, 0)->op != OP_CMP) &&
17381                         (RHS(branch, 0)->op != OP_TEST)) {
17382                         internal_error(state, branch, "bad branch test");
17383                 }
17384 #warning "FIXME I have observed instructions between the test and branch instructions"
17385                 ptr = RHS(branch, 0);
17386                 for(ptr = RHS(branch, 0)->next; ptr != branch; ptr = ptr->next) {
17387                         if (ptr->op != OP_COPY) {
17388                                 internal_error(state, branch, "branch does not follow test");
17389                         }
17390                 }
17391                 switch(branch->op) {
17392                 case OP_JMP_EQ:       bop = "jz";  break;
17393                 case OP_JMP_NOTEQ:    bop = "jnz"; break;
17394                 case OP_JMP_SLESS:    bop = "jl";  break;
17395                 case OP_JMP_ULESS:    bop = "jb";  break;
17396                 case OP_JMP_SMORE:    bop = "jg";  break;
17397                 case OP_JMP_UMORE:    bop = "ja";  break;
17398                 case OP_JMP_SLESSEQ:  bop = "jle"; break;
17399                 case OP_JMP_ULESSEQ:  bop = "jbe"; break;
17400                 case OP_JMP_SMOREEQ:  bop = "jge"; break;
17401                 case OP_JMP_UMOREEQ:  bop = "jae"; break;
17402                 default:
17403                         internal_error(state, branch, "Invalid branch op");
17404                         break;
17405                 }
17406                 
17407         }
17408         fprintf(fp, "\t%s L%s%lu\n",
17409                 bop, 
17410                 state->label_prefix,
17411                 TARG(branch, 0)->u.cval);
17412 }
17413
17414 static void print_op_set(struct compile_state *state,
17415         struct triple *set, FILE *fp)
17416 {
17417         const char *sop = "set";
17418         if (TRIPLE_RHS(set->sizes) != 1) {
17419                 internal_error(state, set, "setcc without condition?");
17420         }
17421         check_reg(state, RHS(set, 0), REGCM_FLAGS);
17422         if ((RHS(set, 0)->op != OP_CMP) &&
17423                 (RHS(set, 0)->op != OP_TEST)) {
17424                 internal_error(state, set, "bad set test");
17425         }
17426         if (RHS(set, 0)->next != set) {
17427                 internal_error(state, set, "set does not follow test");
17428         }
17429         switch(set->op) {
17430         case OP_SET_EQ:       sop = "setz";  break;
17431         case OP_SET_NOTEQ:    sop = "setnz"; break;
17432         case OP_SET_SLESS:    sop = "setl";  break;
17433         case OP_SET_ULESS:    sop = "setb";  break;
17434         case OP_SET_SMORE:    sop = "setg";  break;
17435         case OP_SET_UMORE:    sop = "seta";  break;
17436         case OP_SET_SLESSEQ:  sop = "setle"; break;
17437         case OP_SET_ULESSEQ:  sop = "setbe"; break;
17438         case OP_SET_SMOREEQ:  sop = "setge"; break;
17439         case OP_SET_UMOREEQ:  sop = "setae"; break;
17440         default:
17441                 internal_error(state, set, "Invalid set op");
17442                 break;
17443         }
17444         fprintf(fp, "\t%s %s\n",
17445                 sop, reg(state, set, REGCM_GPR8_LO));
17446 }
17447
17448 static void print_op_bit_scan(struct compile_state *state, 
17449         struct triple *ins, FILE *fp) 
17450 {
17451         const char *op;
17452         switch(ins->op) {
17453         case OP_BSF: op = "bsf"; break;
17454         case OP_BSR: op = "bsr"; break;
17455         default: 
17456                 internal_error(state, ins, "unknown bit scan");
17457                 op = 0;
17458                 break;
17459         }
17460         fprintf(fp, 
17461                 "\t%s %s, %s\n"
17462                 "\tjnz 1f\n"
17463                 "\tmovl $-1, %s\n"
17464                 "1:\n",
17465                 op,
17466                 reg(state, RHS(ins, 0), REGCM_GPR32),
17467                 reg(state, ins, REGCM_GPR32),
17468                 reg(state, ins, REGCM_GPR32));
17469 }
17470
17471
17472 static void print_sdecl(struct compile_state *state,
17473         struct triple *ins, FILE *fp)
17474 {
17475         fprintf(fp, ".section \"" DATA_SECTION "\"\n");
17476         fprintf(fp, ".balign %d\n", align_of(state, ins->type));
17477         fprintf(fp, "L%s%lu:\n", state->label_prefix, ins->u.cval);
17478         print_const(state, MISC(ins, 0), fp);
17479         fprintf(fp, ".section \"" TEXT_SECTION "\"\n");
17480                 
17481 }
17482
17483 static void print_instruction(struct compile_state *state,
17484         struct triple *ins, FILE *fp)
17485 {
17486         /* Assumption: after I have exted the register allocator
17487          * everything is in a valid register. 
17488          */
17489         switch(ins->op) {
17490         case OP_ASM:
17491                 print_op_asm(state, ins, fp);
17492                 break;
17493         case OP_ADD:    print_binary_op(state, "add", ins, fp); break;
17494         case OP_SUB:    print_binary_op(state, "sub", ins, fp); break;
17495         case OP_AND:    print_binary_op(state, "and", ins, fp); break;
17496         case OP_XOR:    print_binary_op(state, "xor", ins, fp); break;
17497         case OP_OR:     print_binary_op(state, "or",  ins, fp); break;
17498         case OP_SL:     print_op_shift(state, "shl", ins, fp); break;
17499         case OP_USR:    print_op_shift(state, "shr", ins, fp); break;
17500         case OP_SSR:    print_op_shift(state, "sar", ins, fp); break;
17501         case OP_POS:    break;
17502         case OP_NEG:    print_unary_op(state, "neg", ins, fp); break;
17503         case OP_INVERT: print_unary_op(state, "not", ins, fp); break;
17504         case OP_INTCONST:
17505         case OP_ADDRCONST:
17506         case OP_BLOBCONST:
17507                 /* Don't generate anything here for constants */
17508         case OP_PHI:
17509                 /* Don't generate anything for variable declarations. */
17510                 break;
17511         case OP_SDECL:
17512                 print_sdecl(state, ins, fp);
17513                 break;
17514         case OP_COPY:   
17515                 print_op_move(state, ins, fp);
17516                 break;
17517         case OP_LOAD:
17518                 print_op_load(state, ins, fp);
17519                 break;
17520         case OP_STORE:
17521                 print_op_store(state, ins, fp);
17522                 break;
17523         case OP_SMUL:
17524                 print_op_smul(state, ins, fp);
17525                 break;
17526         case OP_CMP:    print_op_cmp(state, ins, fp); break;
17527         case OP_TEST:   print_op_test(state, ins, fp); break;
17528         case OP_JMP:
17529         case OP_JMP_EQ:      case OP_JMP_NOTEQ:
17530         case OP_JMP_SLESS:   case OP_JMP_ULESS:
17531         case OP_JMP_SMORE:   case OP_JMP_UMORE:
17532         case OP_JMP_SLESSEQ: case OP_JMP_ULESSEQ:
17533         case OP_JMP_SMOREEQ: case OP_JMP_UMOREEQ:
17534                 print_op_branch(state, ins, fp);
17535                 break;
17536         case OP_SET_EQ:      case OP_SET_NOTEQ:
17537         case OP_SET_SLESS:   case OP_SET_ULESS:
17538         case OP_SET_SMORE:   case OP_SET_UMORE:
17539         case OP_SET_SLESSEQ: case OP_SET_ULESSEQ:
17540         case OP_SET_SMOREEQ: case OP_SET_UMOREEQ:
17541                 print_op_set(state, ins, fp);
17542                 break;
17543         case OP_INB:  case OP_INW:  case OP_INL:
17544                 print_op_in(state, ins, fp); 
17545                 break;
17546         case OP_OUTB: case OP_OUTW: case OP_OUTL:
17547                 print_op_out(state, ins, fp); 
17548                 break;
17549         case OP_BSF:
17550         case OP_BSR:
17551                 print_op_bit_scan(state, ins, fp);
17552                 break;
17553         case OP_RDMSR:
17554                 after_lhs(state, ins);
17555                 fprintf(fp, "\trdmsr\n");
17556                 break;
17557         case OP_WRMSR:
17558                 fprintf(fp, "\twrmsr\n");
17559                 break;
17560         case OP_HLT:
17561                 fprintf(fp, "\thlt\n");
17562                 break;
17563         case OP_SDIVT:
17564                 fprintf(fp, "\tidiv %s\n", reg(state, RHS(ins, 1), REGCM_GPR32));
17565                 break;
17566         case OP_UDIVT:
17567                 fprintf(fp, "\tdiv %s\n", reg(state, RHS(ins, 1), REGCM_GPR32));
17568                 break;
17569         case OP_UMUL:
17570                 fprintf(fp, "\tmul %s\n", reg(state, RHS(ins, 1), REGCM_GPR32));
17571                 break;
17572         case OP_LABEL:
17573                 if (!ins->use) {
17574                         return;
17575                 }
17576                 fprintf(fp, "L%s%lu:\n", state->label_prefix, ins->u.cval);
17577                 break;
17578                 /* Ignore OP_PIECE */
17579         case OP_PIECE:
17580                 break;
17581                 /* Operations that should never get here */
17582         case OP_SDIV: case OP_UDIV:
17583         case OP_SMOD: case OP_UMOD:
17584         case OP_LTRUE:   case OP_LFALSE:  case OP_EQ:      case OP_NOTEQ:
17585         case OP_SLESS:   case OP_ULESS:   case OP_SMORE:   case OP_UMORE:
17586         case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
17587         default:
17588                 internal_error(state, ins, "unknown op: %d %s",
17589                         ins->op, tops(ins->op));
17590                 break;
17591         }
17592 }
17593
17594 static void print_instructions(struct compile_state *state)
17595 {
17596         struct triple *first, *ins;
17597         int print_location;
17598         struct occurance *last_occurance;
17599         FILE *fp;
17600         int max_inline_depth;
17601         max_inline_depth = 0;
17602         print_location = 1;
17603         last_occurance = 0;
17604         fp = state->output;
17605         fprintf(fp, ".section \"" TEXT_SECTION "\"\n");
17606         first = RHS(state->main_function, 0);
17607         ins = first;
17608         do {
17609                 if (print_location && 
17610                         last_occurance != ins->occurance) {
17611                         if (!ins->occurance->parent) {
17612                                 fprintf(fp, "\t/* %s,%s:%d.%d */\n",
17613                                         ins->occurance->function,
17614                                         ins->occurance->filename,
17615                                         ins->occurance->line,
17616                                         ins->occurance->col);
17617                         }
17618                         else {
17619                                 struct occurance *ptr;
17620                                 int inline_depth;
17621                                 fprintf(fp, "\t/*\n");
17622                                 inline_depth = 0;
17623                                 for(ptr = ins->occurance; ptr; ptr = ptr->parent) {
17624                                         inline_depth++;
17625                                         fprintf(fp, "\t * %s,%s:%d.%d\n",
17626                                                 ptr->function,
17627                                                 ptr->filename,
17628                                                 ptr->line,
17629                                                 ptr->col);
17630                                 }
17631                                 fprintf(fp, "\t */\n");
17632                                 if (inline_depth > max_inline_depth) {
17633                                         max_inline_depth = inline_depth;
17634                                 }
17635                         }
17636                         if (last_occurance) {
17637                                 put_occurance(last_occurance);
17638                         }
17639                         get_occurance(ins->occurance);
17640                         last_occurance = ins->occurance;
17641                 }
17642
17643                 print_instruction(state, ins, fp);
17644                 ins = ins->next;
17645         } while(ins != first);
17646         if (print_location) {
17647                 fprintf(fp, "/* max inline depth %d */\n",
17648                         max_inline_depth);
17649         }
17650 }
17651
17652 static void generate_code(struct compile_state *state)
17653 {
17654         generate_local_labels(state);
17655         print_instructions(state);
17656         
17657 }
17658
17659 static void print_tokens(struct compile_state *state)
17660 {
17661         struct token *tk;
17662         tk = &state->token[0];
17663         do {
17664 #if 1
17665                 token(state, 0);
17666 #else
17667                 next_token(state, 0);
17668 #endif
17669                 loc(stdout, state, 0);
17670                 printf("%s <- `%s'\n",
17671                         tokens[tk->tok],
17672                         tk->ident ? tk->ident->name :
17673                         tk->str_len ? tk->val.str : "");
17674                 
17675         } while(tk->tok != TOK_EOF);
17676 }
17677
17678 static void compile(const char *filename, const char *ofilename, 
17679         int cpu, int debug, int opt, const char *label_prefix)
17680 {
17681         int i;
17682         struct compile_state state;
17683         memset(&state, 0, sizeof(state));
17684         state.file = 0;
17685         for(i = 0; i < sizeof(state.token)/sizeof(state.token[0]); i++) {
17686                 memset(&state.token[i], 0, sizeof(state.token[i]));
17687                 state.token[i].tok = -1;
17688         }
17689         /* Remember the debug settings */
17690         state.cpu      = cpu;
17691         state.debug    = debug;
17692         state.optimize = opt;
17693         /* Remember the output filename */
17694         state.ofilename = ofilename;
17695         state.output    = fopen(state.ofilename, "w");
17696         if (!state.output) {
17697                 error(&state, 0, "Cannot open output file %s\n",
17698                         ofilename);
17699         }
17700         /* Remember the label prefix */
17701         state.label_prefix = label_prefix;
17702         /* Prep the preprocessor */
17703         state.if_depth = 0;
17704         state.if_value = 0;
17705         /* register the C keywords */
17706         register_keywords(&state);
17707         /* register the keywords the macro preprocessor knows */
17708         register_macro_keywords(&state);
17709         /* Memorize where some special keywords are. */
17710         state.i_continue = lookup(&state, "continue", 8);
17711         state.i_break    = lookup(&state, "break", 5);
17712         /* Enter the globl definition scope */
17713         start_scope(&state);
17714         register_builtins(&state);
17715         compile_file(&state, filename, 1);
17716 #if 0
17717         print_tokens(&state);
17718 #endif  
17719         decls(&state);
17720         /* Exit the global definition scope */
17721         end_scope(&state);
17722
17723         /* Now that basic compilation has happened 
17724          * optimize the intermediate code 
17725          */
17726         optimize(&state);
17727
17728         generate_code(&state);
17729         if (state.debug) {
17730                 fprintf(stderr, "done\n");
17731         }
17732 }
17733
17734 static void version(void)
17735 {
17736         printf("romcc " VERSION " released " RELEASE_DATE "\n");
17737 }
17738
17739 static void usage(void)
17740 {
17741         version();
17742         printf(
17743                 "Usage: romcc <source>.c\n"
17744                 "Compile a C source file without using ram\n"
17745         );
17746 }
17747
17748 static void arg_error(char *fmt, ...)
17749 {
17750         va_list args;
17751         va_start(args, fmt);
17752         vfprintf(stderr, fmt, args);
17753         va_end(args);
17754         usage();
17755         exit(1);
17756 }
17757
17758 int main(int argc, char **argv)
17759 {
17760         const char *filename;
17761         const char *ofilename;
17762         const char *label_prefix;
17763         int cpu;
17764         int last_argc;
17765         int debug;
17766         int optimize;
17767         cpu = CPU_DEFAULT;
17768         label_prefix = "";
17769         ofilename = "auto.inc";
17770         optimize = 0;
17771         debug = 0;
17772         last_argc = -1;
17773         while((argc > 1) && (argc != last_argc)) {
17774                 last_argc = argc;
17775                 if (strncmp(argv[1], "--debug=", 8) == 0) {
17776                         debug = atoi(argv[1] + 8);
17777                         argv++;
17778                         argc--;
17779                 }
17780                 else if (strncmp(argv[1], "--label-prefix=", 15) == 0) {
17781                         label_prefix= argv[1] + 15;
17782                         argv++;
17783                         argc--;
17784                 }
17785                 else if ((strcmp(argv[1],"-O") == 0) ||
17786                         (strcmp(argv[1], "-O1") == 0)) {
17787                         optimize = 1;
17788                         argv++;
17789                         argc--;
17790                 }
17791                 else if (strcmp(argv[1],"-O2") == 0) {
17792                         optimize = 2;
17793                         argv++;
17794                         argc--;
17795                 }
17796                 else if ((strcmp(argv[1], "-o") == 0) && (argc > 2)) {
17797                         ofilename = argv[2];
17798                         argv += 2;
17799                         argc -= 2;
17800                 }
17801                 else if (strncmp(argv[1], "-mcpu=", 6) == 0) {
17802                         cpu = arch_encode_cpu(argv[1] + 6);
17803                         if (cpu == BAD_CPU) {
17804                                 arg_error("Invalid cpu specified: %s\n",
17805                                         argv[1] + 6);
17806                         }
17807                         argv++;
17808                         argc--;
17809                 }
17810         }
17811         if (argc != 2) {
17812                 arg_error("Wrong argument count %d\n", argc);
17813         }
17814         filename = argv[1];
17815         compile(filename, ofilename, cpu, debug, optimize, label_prefix);
17816
17817         return 0;
17818 }