romcc: kill gcc warnings and .gitignore generated files
[coreboot.git] / util / romcc / romcc.c
1 #undef VERSION_MAJOR
2 #undef VERSION_MINOR
3 #undef RELEASE_DATE
4 #undef VERSION
5 #define VERSION_MAJOR "0"
6 #define VERSION_MINOR "72"
7 #define RELEASE_DATE "10 February 2010"
8 #define VERSION VERSION_MAJOR "." VERSION_MINOR
9
10 #include <stdarg.h>
11 #include <errno.h>
12 #include <stdint.h>
13 #include <stdlib.h>
14 #include <stdio.h>
15 #include <sys/types.h>
16 #include <sys/stat.h>
17 #include <fcntl.h>
18 #include <unistd.h>
19 #include <stdio.h>
20 #include <string.h>
21 #include <limits.h>
22 #include <locale.h>
23 #include <time.h>
24
25 #define MAX_CWD_SIZE 4096
26 #define MAX_ALLOCATION_PASSES 100
27
28 /* NOTE: Before you even start thinking to touch anything
29  * in this code, set DEBUG_ROMCC_WARNINGS to 1 to get an
30  * insight on the original author's thoughts. We introduced
31  * this switch as romcc was about the only thing producing
32  * massive warnings in our code..
33  */
34 #define DEBUG_ROMCC_WARNINGS 0
35
36 #define DEBUG_CONSISTENCY 1
37 #define DEBUG_SDP_BLOCKS 0
38 #define DEBUG_TRIPLE_COLOR 0
39
40 #define DEBUG_DISPLAY_USES 1
41 #define DEBUG_DISPLAY_TYPES 1
42 #define DEBUG_REPLACE_CLOSURE_TYPE_HIRES 0
43 #define DEBUG_DECOMPOSE_PRINT_TUPLES 0
44 #define DEBUG_DECOMPOSE_HIRES  0
45 #define DEBUG_INITIALIZER 0
46 #define DEBUG_UPDATE_CLOSURE_TYPE 0
47 #define DEBUG_LOCAL_TRIPLE 0
48 #define DEBUG_BASIC_BLOCKS_VERBOSE 0
49 #define DEBUG_CPS_RENAME_VARIABLES_HIRES 0
50 #define DEBUG_SIMPLIFY_HIRES 0
51 #define DEBUG_SHRINKING 0
52 #define DEBUG_COALESCE_HITCHES 0
53 #define DEBUG_CODE_ELIMINATION 0
54
55 #define DEBUG_EXPLICIT_CLOSURES 0
56
57 #if DEBUG_ROMCC_WARNINGS
58 #warning "FIXME give clear error messages about unused variables"
59 #warning "FIXME properly handle multi dimensional arrays"
60 #warning "FIXME handle multiple register sizes"
61 #endif
62
63 /*  Control flow graph of a loop without goto.
64  *
65  *        AAA
66  *   +---/
67  *  /
68  * / +--->CCC
69  * | |    / \
70  * | |  DDD EEE    break;
71  * | |    \    \
72  * | |    FFF   \
73  *  \|    / \    \
74  *   |\ GGG HHH   |   continue;
75  *   | \  \   |   |
76  *   |  \ III |  /
77  *   |   \ | /  /
78  *   |    vvv  /
79  *   +----BBB /
80  *         | /
81  *         vv
82  *        JJJ
83  *
84  *
85  *             AAA
86  *     +-----+  |  +----+
87  *     |      \ | /     |
88  *     |       BBB  +-+ |
89  *     |       / \ /  | |
90  *     |     CCC JJJ / /
91  *     |     / \    / /
92  *     |   DDD EEE / /
93  *     |    |   +-/ /
94  *     |   FFF     /
95  *     |   / \    /
96  *     | GGG HHH /
97  *     |  |   +-/
98  *     | III
99  *     +--+
100  *
101  *
102  * DFlocal(X) = { Y <- Succ(X) | idom(Y) != X }
103  * DFup(Z)    = { Y <- DF(Z) | idom(Y) != X }
104  *
105  *
106  * [] == DFlocal(X) U DF(X)
107  * () == DFup(X)
108  *
109  * Dominator graph of the same nodes.
110  *
111  *           AAA     AAA: [ ] ()
112  *          /   \
113  *        BBB    JJJ BBB: [ JJJ ] ( JJJ )  JJJ: [ ] ()
114  *         |
115  *        CCC        CCC: [ ] ( BBB, JJJ )
116  *        / \
117  *     DDD   EEE     DDD: [ ] ( BBB ) EEE: [ JJJ ] ()
118  *      |
119  *     FFF           FFF: [ ] ( BBB )
120  *     / \
121  *  GGG   HHH        GGG: [ ] ( BBB ) HHH: [ BBB ] ()
122  *   |
123  *  III              III: [ BBB ] ()
124  *
125  *
126  * BBB and JJJ are definitely the dominance frontier.
127  * Where do I place phi functions and how do I make that decision.
128  *
129  */
130
131 struct filelist {
132         const char *filename;
133         struct filelist *next;
134 };
135
136 struct filelist *include_filelist = NULL;
137
138 static void __attribute__((noreturn)) die(char *fmt, ...)
139 {
140         va_list args;
141
142         va_start(args, fmt);
143         vfprintf(stderr, fmt, args);
144         va_end(args);
145         fflush(stdout);
146         fflush(stderr);
147         exit(1);
148 }
149
150 static void *xmalloc(size_t size, const char *name)
151 {
152         void *buf;
153         buf = malloc(size);
154         if (!buf) {
155                 die("Cannot malloc %ld bytes to hold %s: %s\n",
156                         size + 0UL, name, strerror(errno));
157         }
158         return buf;
159 }
160
161 static void *xcmalloc(size_t size, const char *name)
162 {
163         void *buf;
164         buf = xmalloc(size, name);
165         memset(buf, 0, size);
166         return buf;
167 }
168
169 static void *xrealloc(void *ptr, size_t size, const char *name)
170 {
171         void *buf;
172         buf = realloc(ptr, size);
173         if (!buf) {
174                 die("Cannot realloc %ld bytes to hold %s: %s\n",
175                         size + 0UL, name, strerror(errno));
176         }
177         return buf;
178 }
179
180 static void xfree(const void *ptr)
181 {
182         free((void *)ptr);
183 }
184
185 static char *xstrdup(const char *str)
186 {
187         char *new;
188         int len;
189         len = strlen(str);
190         new = xmalloc(len + 1, "xstrdup string");
191         memcpy(new, str, len);
192         new[len] = '\0';
193         return new;
194 }
195
196 static void xchdir(const char *path)
197 {
198         if (chdir(path) != 0) {
199                 die("chdir to `%s' failed: %s\n",
200                         path, strerror(errno));
201         }
202 }
203
204 static int exists(const char *dirname, const char *filename)
205 {
206         char cwd[MAX_CWD_SIZE];
207         int does_exist;
208
209         if (getcwd(cwd, sizeof(cwd)) == 0) {
210                 die("cwd buffer to small");
211         }
212
213         does_exist = 1;
214         if (chdir(dirname) != 0) {
215                 does_exist = 0;
216         }
217         if (does_exist && (access(filename, O_RDONLY) < 0)) {
218                 if ((errno != EACCES) && (errno != EROFS)) {
219                         does_exist = 0;
220                 }
221         }
222         xchdir(cwd);
223         return does_exist;
224 }
225
226
227 static char *slurp_file(const char *dirname, const char *filename, off_t *r_size)
228 {
229         char cwd[MAX_CWD_SIZE];
230         char *buf;
231         off_t size, progress;
232         ssize_t result;
233         FILE* file;
234
235         if (!filename) {
236                 *r_size = 0;
237                 return 0;
238         }
239         if (getcwd(cwd, sizeof(cwd)) == 0) {
240                 die("cwd buffer to small");
241         }
242         xchdir(dirname);
243         file = fopen(filename, "rb");
244         xchdir(cwd);
245         if (file == NULL) {
246                 die("Cannot open '%s' : %s\n",
247                         filename, strerror(errno));
248         }
249         fseek(file, 0, SEEK_END);
250         size = ftell(file);
251         fseek(file, 0, SEEK_SET);
252         *r_size = size +1;
253         buf = xmalloc(size +2, filename);
254         buf[size] = '\n'; /* Make certain the file is newline terminated */
255         buf[size+1] = '\0'; /* Null terminate the file for good measure */
256         progress = 0;
257         while(progress < size) {
258                 result = fread(buf + progress, 1, size - progress, file);
259                 if (result < 0) {
260                         if ((errno == EINTR) || (errno == EAGAIN))
261                                 continue;
262                         die("read on %s of %ld bytes failed: %s\n",
263                                 filename, (size - progress)+ 0UL, strerror(errno));
264                 }
265                 progress += result;
266         }
267         fclose(file);
268         return buf;
269 }
270
271 /* Types on the destination platform */
272 #if DEBUG_ROMCC_WARNINGS
273 #warning "FIXME this assumes 32bit x86 is the destination"
274 #endif
275 typedef int8_t   schar_t;
276 typedef uint8_t  uchar_t;
277 typedef int8_t   char_t;
278 typedef int16_t  short_t;
279 typedef uint16_t ushort_t;
280 typedef int32_t  int_t;
281 typedef uint32_t uint_t;
282 typedef int32_t  long_t;
283 #define ulong_t uint32_t
284
285 #define SCHAR_T_MIN (-128)
286 #define SCHAR_T_MAX 127
287 #define UCHAR_T_MAX 255
288 #define CHAR_T_MIN  SCHAR_T_MIN
289 #define CHAR_T_MAX  SCHAR_T_MAX
290 #define SHRT_T_MIN  (-32768)
291 #define SHRT_T_MAX  32767
292 #define USHRT_T_MAX 65535
293 #define INT_T_MIN   (-LONG_T_MAX - 1)
294 #define INT_T_MAX   2147483647
295 #define UINT_T_MAX  4294967295U
296 #define LONG_T_MIN  (-LONG_T_MAX - 1)
297 #define LONG_T_MAX  2147483647
298 #define ULONG_T_MAX 4294967295U
299
300 #define SIZEOF_I8    8
301 #define SIZEOF_I16   16
302 #define SIZEOF_I32   32
303 #define SIZEOF_I64   64
304
305 #define SIZEOF_CHAR    8
306 #define SIZEOF_SHORT   16
307 #define SIZEOF_INT     32
308 #define SIZEOF_LONG    (sizeof(long_t)*SIZEOF_CHAR)
309
310
311 #define ALIGNOF_CHAR    8
312 #define ALIGNOF_SHORT   16
313 #define ALIGNOF_INT     32
314 #define ALIGNOF_LONG    (sizeof(long_t)*SIZEOF_CHAR)
315
316 #define REG_SIZEOF_REG     32
317 #define REG_SIZEOF_CHAR    REG_SIZEOF_REG
318 #define REG_SIZEOF_SHORT   REG_SIZEOF_REG
319 #define REG_SIZEOF_INT     REG_SIZEOF_REG
320 #define REG_SIZEOF_LONG    REG_SIZEOF_REG
321
322 #define REG_ALIGNOF_REG     REG_SIZEOF_REG
323 #define REG_ALIGNOF_CHAR    REG_SIZEOF_REG
324 #define REG_ALIGNOF_SHORT   REG_SIZEOF_REG
325 #define REG_ALIGNOF_INT     REG_SIZEOF_REG
326 #define REG_ALIGNOF_LONG    REG_SIZEOF_REG
327
328 /* Additional definitions for clarity.
329  * I currently assume a long is the largest native
330  * machine word and that a pointer fits into it.
331  */
332 #define SIZEOF_WORD     SIZEOF_LONG
333 #define SIZEOF_POINTER  SIZEOF_LONG
334 #define ALIGNOF_WORD    ALIGNOF_LONG
335 #define ALIGNOF_POINTER ALIGNOF_LONG
336 #define REG_SIZEOF_POINTER  REG_SIZEOF_LONG
337 #define REG_ALIGNOF_POINTER REG_ALIGNOF_LONG
338
339 struct file_state {
340         struct file_state *prev;
341         const char *basename;
342         char *dirname;
343         const char *buf;
344         off_t size;
345         const char *pos;
346         int line;
347         const char *line_start;
348         int report_line;
349         const char *report_name;
350         const char *report_dir;
351         int macro      : 1;
352         int trigraphs  : 1;
353         int join_lines : 1;
354 };
355 struct hash_entry;
356 struct token {
357         int tok;
358         struct hash_entry *ident;
359         const char *pos;
360         int str_len;
361         union {
362                 ulong_t integer;
363                 const char *str;
364                 int notmacro;
365         } val;
366 };
367
368 /* I have two classes of types:
369  * Operational types.
370  * Logical types.  (The type the C standard says the operation is of)
371  *
372  * The operational types are:
373  * chars
374  * shorts
375  * ints
376  * longs
377  *
378  * floats
379  * doubles
380  * long doubles
381  *
382  * pointer
383  */
384
385
386 /* Machine model.
387  * No memory is useable by the compiler.
388  * There is no floating point support.
389  * All operations take place in general purpose registers.
390  * There is one type of general purpose register.
391  * Unsigned longs are stored in that general purpose register.
392  */
393
394 /* Operations on general purpose registers.
395  */
396
397 #define OP_SDIVT      0
398 #define OP_UDIVT      1
399 #define OP_SMUL       2
400 #define OP_UMUL       3
401 #define OP_SDIV       4
402 #define OP_UDIV       5
403 #define OP_SMOD       6
404 #define OP_UMOD       7
405 #define OP_ADD        8
406 #define OP_SUB        9
407 #define OP_SL        10
408 #define OP_USR       11
409 #define OP_SSR       12
410 #define OP_AND       13
411 #define OP_XOR       14
412 #define OP_OR        15
413 #define OP_POS       16 /* Dummy positive operator don't use it */
414 #define OP_NEG       17
415 #define OP_INVERT    18
416
417 #define OP_EQ        20
418 #define OP_NOTEQ     21
419 #define OP_SLESS     22
420 #define OP_ULESS     23
421 #define OP_SMORE     24
422 #define OP_UMORE     25
423 #define OP_SLESSEQ   26
424 #define OP_ULESSEQ   27
425 #define OP_SMOREEQ   28
426 #define OP_UMOREEQ   29
427
428 #define OP_LFALSE    30  /* Test if the expression is logically false */
429 #define OP_LTRUE     31  /* Test if the expression is logcially true */
430
431 #define OP_LOAD      32
432 #define OP_STORE     33
433 /* For OP_STORE ->type holds the type
434  * RHS(0) holds the destination address
435  * RHS(1) holds the value to store.
436  */
437
438 #define OP_UEXTRACT  34
439 /* OP_UEXTRACT extracts an unsigned bitfield from a pseudo register
440  * RHS(0) holds the psuedo register to extract from
441  * ->type holds the size of the bitfield.
442  * ->u.bitfield.size holds the size of the bitfield.
443  * ->u.bitfield.offset holds the offset to extract from
444  */
445 #define OP_SEXTRACT  35
446 /* OP_SEXTRACT extracts a signed bitfield from a pseudo register
447  * RHS(0) holds the psuedo register to extract from
448  * ->type holds the size of the bitfield.
449  * ->u.bitfield.size holds the size of the bitfield.
450  * ->u.bitfield.offset holds the offset to extract from
451  */
452 #define OP_DEPOSIT   36
453 /* OP_DEPOSIT replaces a bitfield with a new value.
454  * RHS(0) holds the value to replace a bitifield in.
455  * RHS(1) holds the replacement value
456  * ->u.bitfield.size holds the size of the bitfield.
457  * ->u.bitfield.offset holds the deposit into
458  */
459
460 #define OP_NOOP      37
461
462 #define OP_MIN_CONST 50
463 #define OP_MAX_CONST 58
464 #define IS_CONST_OP(X) (((X) >= OP_MIN_CONST) && ((X) <= OP_MAX_CONST))
465 #define OP_INTCONST  50
466 /* For OP_INTCONST ->type holds the type.
467  * ->u.cval holds the constant value.
468  */
469 #define OP_BLOBCONST 51
470 /* For OP_BLOBCONST ->type holds the layout and size
471  * information.  u.blob holds a pointer to the raw binary
472  * data for the constant initializer.
473  */
474 #define OP_ADDRCONST 52
475 /* For OP_ADDRCONST ->type holds the type.
476  * MISC(0) holds the reference to the static variable.
477  * ->u.cval holds an offset from that value.
478  */
479 #define OP_UNKNOWNVAL 59
480 /* For OP_UNKNOWNAL ->type holds the type.
481  * For some reason we don't know what value this type has.
482  * This allows for variables that have don't have values
483  * assigned yet, or variables whose value we simply do not know.
484  */
485
486 #define OP_WRITE     60
487 /* OP_WRITE moves one pseudo register to another.
488  * MISC(0) holds the destination pseudo register, which must be an OP_DECL.
489  * RHS(0) holds the psuedo to move.
490  */
491
492 #define OP_READ      61
493 /* OP_READ reads the value of a variable and makes
494  * it available for the pseudo operation.
495  * Useful for things like def-use chains.
496  * RHS(0) holds points to the triple to read from.
497  */
498 #define OP_COPY      62
499 /* OP_COPY makes a copy of the pseudo register or constant in RHS(0).
500  */
501 #define OP_CONVERT   63
502 /* OP_CONVERT makes a copy of the pseudo register or constant in RHS(0).
503  * And then the type is converted appropriately.
504  */
505 #define OP_PIECE     64
506 /* OP_PIECE returns one piece of a instruction that returns a structure.
507  * MISC(0) is the instruction
508  * u.cval is the LHS piece of the instruction to return.
509  */
510 #define OP_ASM       65
511 /* OP_ASM holds a sequence of assembly instructions, the result
512  * of a C asm directive.
513  * RHS(x) holds input value x to the assembly sequence.
514  * LHS(x) holds the output value x from the assembly sequence.
515  * u.blob holds the string of assembly instructions.
516  */
517
518 #define OP_DEREF     66
519 /* OP_DEREF generates an lvalue from a pointer.
520  * RHS(0) holds the pointer value.
521  * OP_DEREF serves as a place holder to indicate all necessary
522  * checks have been done to indicate a value is an lvalue.
523  */
524 #define OP_DOT       67
525 /* OP_DOT references a submember of a structure lvalue.
526  * MISC(0) holds the lvalue.
527  * ->u.field holds the name of the field we want.
528  *
529  * Not seen after structures are flattened.
530  */
531 #define OP_INDEX     68
532 /* OP_INDEX references a submember of a tuple or array lvalue.
533  * MISC(0) holds the lvalue.
534  * ->u.cval holds the index into the lvalue.
535  *
536  * Not seen after structures are flattened.
537  */
538 #define OP_VAL       69
539 /* OP_VAL returns the value of a subexpression of the current expression.
540  * Useful for operators that have side effects.
541  * RHS(0) holds the expression.
542  * MISC(0) holds the subexpression of RHS(0) that is the
543  * value of the expression.
544  *
545  * Not seen outside of expressions.
546  */
547
548 #define OP_TUPLE     70
549 /* OP_TUPLE is an array of triples that are either variable
550  * or values for a structure or an array.  It is used as
551  * a place holder when flattening compound types.
552  * The value represented by an OP_TUPLE is held in N registers.
553  * LHS(0..N-1) refer to those registers.
554  * ->use is a list of statements that use the value.
555  *
556  * Although OP_TUPLE always has register sized pieces they are not
557  * used until structures are flattened/decomposed into their register
558  * components.
559  * ???? registers ????
560  */
561
562 #define OP_BITREF    71
563 /* OP_BITREF describes a bitfield as an lvalue.
564  * RHS(0) holds the register value.
565  * ->type holds the type of the bitfield.
566  * ->u.bitfield.size holds the size of the bitfield.
567  * ->u.bitfield.offset holds the offset of the bitfield in the register
568  */
569
570
571 #define OP_FCALL     72
572 /* OP_FCALL performs a procedure call.
573  * MISC(0) holds a pointer to the OP_LIST of a function
574  * RHS(x) holds argument x of a function
575  *
576  * Currently not seen outside of expressions.
577  */
578 #define OP_PROG      73
579 /* OP_PROG is an expression that holds a list of statements, or
580  * expressions.  The final expression is the value of the expression.
581  * RHS(0) holds the start of the list.
582  */
583
584 /* statements */
585 #define OP_LIST      80
586 /* OP_LIST Holds a list of statements that compose a function, and a result value.
587  * RHS(0) holds the list of statements.
588  * A list of all functions is maintained.
589  */
590
591 #define OP_BRANCH    81 /* an unconditional branch */
592 /* For branch instructions
593  * TARG(0) holds the branch target.
594  * ->next holds where to branch to if the branch is not taken.
595  * The branch target can only be a label
596  */
597
598 #define OP_CBRANCH   82 /* a conditional branch */
599 /* For conditional branch instructions
600  * RHS(0) holds the branch condition.
601  * TARG(0) holds the branch target.
602  * ->next holds where to branch to if the branch is not taken.
603  * The branch target can only be a label
604  */
605
606 #define OP_CALL      83 /* an uncontional branch that will return */
607 /* For call instructions
608  * MISC(0) holds the OP_RET that returns from the branch
609  * TARG(0) holds the branch target.
610  * ->next holds where to branch to if the branch is not taken.
611  * The branch target can only be a label
612  */
613
614 #define OP_RET       84 /* an uncontinonal branch through a variable back to an OP_CALL */
615 /* For call instructions
616  * RHS(0) holds the variable with the return address
617  * The branch target can only be a label
618  */
619
620 #define OP_LABEL     86
621 /* OP_LABEL is a triple that establishes an target for branches.
622  * ->use is the list of all branches that use this label.
623  */
624
625 #define OP_ADECL     87
626 /* OP_ADECL is a triple that establishes an lvalue for assignments.
627  * A variable takes N registers to contain.
628  * LHS(0..N-1) refer to an OP_PIECE triple that represents
629  * the Xth register that the variable is stored in.
630  * ->use is a list of statements that use the variable.
631  *
632  * Although OP_ADECL always has register sized pieces they are not
633  * used until structures are flattened/decomposed into their register
634  * components.
635  */
636
637 #define OP_SDECL     88
638 /* OP_SDECL is a triple that establishes a variable of static
639  * storage duration.
640  * ->use is a list of statements that use the variable.
641  * MISC(0) holds the initializer expression.
642  */
643
644
645 #define OP_PHI       89
646 /* OP_PHI is a triple used in SSA form code.
647  * It is used when multiple code paths merge and a variable needs
648  * a single assignment from any of those code paths.
649  * The operation is a cross between OP_DECL and OP_WRITE, which
650  * is what OP_PHI is generated from.
651  *
652  * RHS(x) points to the value from code path x
653  * The number of RHS entries is the number of control paths into the block
654  * in which OP_PHI resides.  The elements of the array point to point
655  * to the variables OP_PHI is derived from.
656  *
657  * MISC(0) holds a pointer to the orginal OP_DECL node.
658  */
659
660 #if 0
661 /* continuation helpers
662  */
663 #define OP_CPS_BRANCH    90 /* an unconditional branch */
664 /* OP_CPS_BRANCH calls a continuation
665  * RHS(x) holds argument x of the function
666  * TARG(0) holds OP_CPS_START target
667  */
668 #define OP_CPS_CBRANCH   91  /* a conditional branch */
669 /* OP_CPS_CBRANCH conditionally calls one of two continuations
670  * RHS(0) holds the branch condition
671  * RHS(x + 1) holds argument x of the function
672  * TARG(0) holds the OP_CPS_START to jump to when true
673  * ->next holds the OP_CPS_START to jump to when false
674  */
675 #define OP_CPS_CALL      92  /* an uncontional branch that will return */
676 /* For OP_CPS_CALL instructions
677  * RHS(x) holds argument x of the function
678  * MISC(0) holds the OP_CPS_RET that returns from the branch
679  * TARG(0) holds the branch target.
680  * ->next holds where the OP_CPS_RET will return to.
681  */
682 #define OP_CPS_RET       93
683 /* OP_CPS_RET conditionally calls one of two continuations
684  * RHS(0) holds the variable with the return function address
685  * RHS(x + 1) holds argument x of the function
686  * The branch target may be any OP_CPS_START
687  */
688 #define OP_CPS_END       94
689 /* OP_CPS_END is the triple at the end of the program.
690  * For most practical purposes it is a branch.
691  */
692 #define OP_CPS_START     95
693 /* OP_CPS_START is a triple at the start of a continuation
694  * The arguments variables takes N registers to contain.
695  * LHS(0..N-1) refer to an OP_PIECE triple that represents
696  * the Xth register that the arguments are stored in.
697  */
698 #endif
699
700 /* Architecture specific instructions */
701 #define OP_CMP         100
702 #define OP_TEST        101
703 #define OP_SET_EQ      102
704 #define OP_SET_NOTEQ   103
705 #define OP_SET_SLESS   104
706 #define OP_SET_ULESS   105
707 #define OP_SET_SMORE   106
708 #define OP_SET_UMORE   107
709 #define OP_SET_SLESSEQ 108
710 #define OP_SET_ULESSEQ 109
711 #define OP_SET_SMOREEQ 110
712 #define OP_SET_UMOREEQ 111
713
714 #define OP_JMP         112
715 #define OP_JMP_EQ      113
716 #define OP_JMP_NOTEQ   114
717 #define OP_JMP_SLESS   115
718 #define OP_JMP_ULESS   116
719 #define OP_JMP_SMORE   117
720 #define OP_JMP_UMORE   118
721 #define OP_JMP_SLESSEQ 119
722 #define OP_JMP_ULESSEQ 120
723 #define OP_JMP_SMOREEQ 121
724 #define OP_JMP_UMOREEQ 122
725
726 /* Builtin operators that it is just simpler to use the compiler for */
727 #define OP_INB         130
728 #define OP_INW         131
729 #define OP_INL         132
730 #define OP_OUTB        133
731 #define OP_OUTW        134
732 #define OP_OUTL        135
733 #define OP_BSF         136
734 #define OP_BSR         137
735 #define OP_RDMSR       138
736 #define OP_WRMSR       139
737 #define OP_HLT         140
738
739 struct op_info {
740         const char *name;
741         unsigned flags;
742 #define PURE       0x001 /* Triple has no side effects */
743 #define IMPURE     0x002 /* Triple has side effects */
744 #define PURE_BITS(FLAGS) ((FLAGS) & 0x3)
745 #define DEF        0x004 /* Triple is a variable definition */
746 #define BLOCK      0x008 /* Triple stores the current block */
747 #define STRUCTURAL 0x010 /* Triple does not generate a machine instruction */
748 #define BRANCH_BITS(FLAGS) ((FLAGS) & 0xe0 )
749 #define UBRANCH    0x020 /* Triple is an unconditional branch instruction */
750 #define CBRANCH    0x040 /* Triple is a conditional branch instruction */
751 #define RETBRANCH  0x060 /* Triple is a return instruction */
752 #define CALLBRANCH 0x080 /* Triple is a call instruction */
753 #define ENDBRANCH  0x0a0 /* Triple is an end instruction */
754 #define PART       0x100 /* Triple is really part of another triple */
755 #define BITFIELD   0x200 /* Triple manipulates a bitfield */
756         signed char lhs, rhs, misc, targ;
757 };
758
759 #define OP(LHS, RHS, MISC, TARG, FLAGS, NAME) { \
760         .name = (NAME), \
761         .flags = (FLAGS), \
762         .lhs = (LHS), \
763         .rhs = (RHS), \
764         .misc = (MISC), \
765         .targ = (TARG), \
766          }
767 static const struct op_info table_ops[] = {
768 [OP_SDIVT      ] = OP( 2,  2, 0, 0, PURE | BLOCK , "sdivt"),
769 [OP_UDIVT      ] = OP( 2,  2, 0, 0, PURE | BLOCK , "udivt"),
770 [OP_SMUL       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smul"),
771 [OP_UMUL       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umul"),
772 [OP_SDIV       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sdiv"),
773 [OP_UDIV       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "udiv"),
774 [OP_SMOD       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smod"),
775 [OP_UMOD       ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umod"),
776 [OP_ADD        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "add"),
777 [OP_SUB        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sub"),
778 [OP_SL         ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sl"),
779 [OP_USR        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "usr"),
780 [OP_SSR        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "ssr"),
781 [OP_AND        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "and"),
782 [OP_XOR        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "xor"),
783 [OP_OR         ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "or"),
784 [OP_POS        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "pos"),
785 [OP_NEG        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "neg"),
786 [OP_INVERT     ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "invert"),
787
788 [OP_EQ         ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "eq"),
789 [OP_NOTEQ      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "noteq"),
790 [OP_SLESS      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "sless"),
791 [OP_ULESS      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "uless"),
792 [OP_SMORE      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smore"),
793 [OP_UMORE      ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umore"),
794 [OP_SLESSEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "slesseq"),
795 [OP_ULESSEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "ulesseq"),
796 [OP_SMOREEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "smoreeq"),
797 [OP_UMOREEQ    ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK , "umoreeq"),
798 [OP_LFALSE     ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "lfalse"),
799 [OP_LTRUE      ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK , "ltrue"),
800
801 [OP_LOAD       ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "load"),
802 [OP_STORE      ] = OP( 0,  2, 0, 0, PURE | BLOCK , "store"),
803
804 [OP_UEXTRACT   ] = OP( 0,  1, 0, 0, PURE | DEF | BITFIELD, "uextract"),
805 [OP_SEXTRACT   ] = OP( 0,  1, 0, 0, PURE | DEF | BITFIELD, "sextract"),
806 [OP_DEPOSIT    ] = OP( 0,  2, 0, 0, PURE | DEF | BITFIELD, "deposit"),
807
808 [OP_NOOP       ] = OP( 0,  0, 0, 0, PURE | BLOCK | STRUCTURAL, "noop"),
809
810 [OP_INTCONST   ] = OP( 0,  0, 0, 0, PURE | DEF, "intconst"),
811 [OP_BLOBCONST  ] = OP( 0,  0, 0, 0, PURE , "blobconst"),
812 [OP_ADDRCONST  ] = OP( 0,  0, 1, 0, PURE | DEF, "addrconst"),
813 [OP_UNKNOWNVAL ] = OP( 0,  0, 0, 0, PURE | DEF, "unknown"),
814
815 #if DEBUG_ROMCC_WARNINGS
816 #warning "FIXME is it correct for OP_WRITE to be a def?  I currently use it as one..."
817 #endif
818 [OP_WRITE      ] = OP( 0,  1, 1, 0, PURE | DEF | BLOCK, "write"),
819 [OP_READ       ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "read"),
820 [OP_COPY       ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "copy"),
821 [OP_CONVERT    ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "convert"),
822 [OP_PIECE      ] = OP( 0,  0, 1, 0, PURE | DEF | STRUCTURAL | PART, "piece"),
823 [OP_ASM        ] = OP(-1, -1, 0, 0, PURE, "asm"),
824 [OP_DEREF      ] = OP( 0,  1, 0, 0, 0 | DEF | BLOCK, "deref"),
825 [OP_DOT        ] = OP( 0,  0, 1, 0, PURE | DEF | PART, "dot"),
826 [OP_INDEX      ] = OP( 0,  0, 1, 0, PURE | DEF | PART, "index"),
827
828 [OP_VAL        ] = OP( 0,  1, 1, 0, 0 | DEF | BLOCK, "val"),
829 [OP_TUPLE      ] = OP(-1,  0, 0, 0, 0 | PURE | BLOCK | STRUCTURAL, "tuple"),
830 [OP_BITREF     ] = OP( 0,  1, 0, 0, 0 | DEF | PURE | STRUCTURAL | BITFIELD, "bitref"),
831 /* Call is special most it can stand in for anything so it depends on context */
832 [OP_FCALL      ] = OP( 0, -1, 1, 0, 0 | BLOCK | CALLBRANCH, "fcall"),
833 [OP_PROG       ] = OP( 0,  1, 0, 0, 0 | IMPURE | BLOCK | STRUCTURAL, "prog"),
834 /* The sizes of OP_FCALL depends upon context */
835
836 [OP_LIST       ] = OP( 0,  1, 1, 0, 0 | DEF | STRUCTURAL, "list"),
837 [OP_BRANCH     ] = OP( 0,  0, 0, 1, PURE | BLOCK | UBRANCH, "branch"),
838 [OP_CBRANCH    ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "cbranch"),
839 [OP_CALL       ] = OP( 0,  0, 1, 1, PURE | BLOCK | CALLBRANCH, "call"),
840 [OP_RET        ] = OP( 0,  1, 0, 0, PURE | BLOCK | RETBRANCH, "ret"),
841 [OP_LABEL      ] = OP( 0,  0, 0, 0, PURE | BLOCK | STRUCTURAL, "label"),
842 [OP_ADECL      ] = OP( 0,  0, 0, 0, PURE | BLOCK | STRUCTURAL, "adecl"),
843 [OP_SDECL      ] = OP( 0,  0, 1, 0, PURE | BLOCK | STRUCTURAL, "sdecl"),
844 /* The number of RHS elements of OP_PHI depend upon context */
845 [OP_PHI        ] = OP( 0, -1, 1, 0, PURE | DEF | BLOCK, "phi"),
846
847 #if 0
848 [OP_CPS_BRANCH ] = OP( 0, -1, 0, 1, PURE | BLOCK | UBRANCH,     "cps_branch"),
849 [OP_CPS_CBRANCH] = OP( 0, -1, 0, 1, PURE | BLOCK | CBRANCH,     "cps_cbranch"),
850 [OP_CPS_CALL   ] = OP( 0, -1, 1, 1, PURE | BLOCK | CALLBRANCH,  "cps_call"),
851 [OP_CPS_RET    ] = OP( 0, -1, 0, 0, PURE | BLOCK | RETBRANCH,   "cps_ret"),
852 [OP_CPS_END    ] = OP( 0, -1, 0, 0, IMPURE | BLOCK | ENDBRANCH, "cps_end"),
853 [OP_CPS_START  ] = OP( -1, 0, 0, 0, PURE | BLOCK | STRUCTURAL,  "cps_start"),
854 #endif
855
856 [OP_CMP        ] = OP( 0,  2, 0, 0, PURE | DEF | BLOCK, "cmp"),
857 [OP_TEST       ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "test"),
858 [OP_SET_EQ     ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_eq"),
859 [OP_SET_NOTEQ  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_noteq"),
860 [OP_SET_SLESS  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_sless"),
861 [OP_SET_ULESS  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_uless"),
862 [OP_SET_SMORE  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_smore"),
863 [OP_SET_UMORE  ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_umore"),
864 [OP_SET_SLESSEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_slesseq"),
865 [OP_SET_ULESSEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_ulesseq"),
866 [OP_SET_SMOREEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_smoreq"),
867 [OP_SET_UMOREEQ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "set_umoreq"),
868 [OP_JMP        ] = OP( 0,  0, 0, 1, PURE | BLOCK | UBRANCH, "jmp"),
869 [OP_JMP_EQ     ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_eq"),
870 [OP_JMP_NOTEQ  ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_noteq"),
871 [OP_JMP_SLESS  ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_sless"),
872 [OP_JMP_ULESS  ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_uless"),
873 [OP_JMP_SMORE  ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_smore"),
874 [OP_JMP_UMORE  ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_umore"),
875 [OP_JMP_SLESSEQ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_slesseq"),
876 [OP_JMP_ULESSEQ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_ulesseq"),
877 [OP_JMP_SMOREEQ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_smoreq"),
878 [OP_JMP_UMOREEQ] = OP( 0,  1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_umoreq"),
879
880 [OP_INB        ] = OP( 0,  1, 0, 0, IMPURE | DEF | BLOCK, "__inb"),
881 [OP_INW        ] = OP( 0,  1, 0, 0, IMPURE | DEF | BLOCK, "__inw"),
882 [OP_INL        ] = OP( 0,  1, 0, 0, IMPURE | DEF | BLOCK, "__inl"),
883 [OP_OUTB       ] = OP( 0,  2, 0, 0, IMPURE| BLOCK, "__outb"),
884 [OP_OUTW       ] = OP( 0,  2, 0, 0, IMPURE| BLOCK, "__outw"),
885 [OP_OUTL       ] = OP( 0,  2, 0, 0, IMPURE| BLOCK, "__outl"),
886 [OP_BSF        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "__bsf"),
887 [OP_BSR        ] = OP( 0,  1, 0, 0, PURE | DEF | BLOCK, "__bsr"),
888 [OP_RDMSR      ] = OP( 2,  1, 0, 0, IMPURE | BLOCK, "__rdmsr"),
889 [OP_WRMSR      ] = OP( 0,  3, 0, 0, IMPURE | BLOCK, "__wrmsr"),
890 [OP_HLT        ] = OP( 0,  0, 0, 0, IMPURE | BLOCK, "__hlt"),
891 };
892 #undef OP
893 #define OP_MAX      (sizeof(table_ops)/sizeof(table_ops[0]))
894
895 static const char *tops(int index)
896 {
897         static const char unknown[] = "unknown op";
898         if (index < 0) {
899                 return unknown;
900         }
901         if (index > OP_MAX) {
902                 return unknown;
903         }
904         return table_ops[index].name;
905 }
906
907 struct asm_info;
908 struct triple;
909 struct block;
910 struct triple_set {
911         struct triple_set *next;
912         struct triple *member;
913 };
914
915 #define MAX_LHS  63
916 #define MAX_RHS  127
917 #define MAX_MISC 3
918 #define MAX_TARG 1
919
920 struct occurance {
921         int count;
922         const char *filename;
923         const char *function;
924         int line;
925         int col;
926         struct occurance *parent;
927 };
928 struct bitfield {
929         ulong_t size : 8;
930         ulong_t offset : 24;
931 };
932 struct triple {
933         struct triple *next, *prev;
934         struct triple_set *use;
935         struct type *type;
936         unsigned int op : 8;
937         unsigned int template_id : 7;
938         unsigned int lhs  : 6;
939         unsigned int rhs  : 7;
940         unsigned int misc : 2;
941         unsigned int targ : 1;
942 #define TRIPLE_SIZE(TRIPLE) \
943         ((TRIPLE)->lhs + (TRIPLE)->rhs + (TRIPLE)->misc + (TRIPLE)->targ)
944 #define TRIPLE_LHS_OFF(PTR)  (0)
945 #define TRIPLE_RHS_OFF(PTR)  (TRIPLE_LHS_OFF(PTR) + (PTR)->lhs)
946 #define TRIPLE_MISC_OFF(PTR) (TRIPLE_RHS_OFF(PTR) + (PTR)->rhs)
947 #define TRIPLE_TARG_OFF(PTR) (TRIPLE_MISC_OFF(PTR) + (PTR)->misc)
948 #define LHS(PTR,INDEX) ((PTR)->param[TRIPLE_LHS_OFF(PTR) + (INDEX)])
949 #define RHS(PTR,INDEX) ((PTR)->param[TRIPLE_RHS_OFF(PTR) + (INDEX)])
950 #define TARG(PTR,INDEX) ((PTR)->param[TRIPLE_TARG_OFF(PTR) + (INDEX)])
951 #define MISC(PTR,INDEX) ((PTR)->param[TRIPLE_MISC_OFF(PTR) + (INDEX)])
952         unsigned id; /* A scratch value and finally the register */
953 #define TRIPLE_FLAG_FLATTENED   (1 << 31)
954 #define TRIPLE_FLAG_PRE_SPLIT   (1 << 30)
955 #define TRIPLE_FLAG_POST_SPLIT  (1 << 29)
956 #define TRIPLE_FLAG_VOLATILE    (1 << 28)
957 #define TRIPLE_FLAG_INLINE      (1 << 27) /* ???? */
958 #define TRIPLE_FLAG_LOCAL       (1 << 26)
959
960 #define TRIPLE_FLAG_COPY TRIPLE_FLAG_VOLATILE
961         struct occurance *occurance;
962         union {
963                 ulong_t cval;
964                 struct bitfield bitfield;
965                 struct block  *block;
966                 void *blob;
967                 struct hash_entry *field;
968                 struct asm_info *ainfo;
969                 struct triple *func;
970                 struct symbol *symbol;
971         } u;
972         struct triple *param[2];
973 };
974
975 struct reg_info {
976         unsigned reg;
977         unsigned regcm;
978 };
979 struct ins_template {
980         struct reg_info lhs[MAX_LHS + 1], rhs[MAX_RHS + 1];
981 };
982
983 struct asm_info {
984         struct ins_template tmpl;
985         char *str;
986 };
987
988 struct block_set {
989         struct block_set *next;
990         struct block *member;
991 };
992 struct block {
993         struct block *work_next;
994         struct triple *first, *last;
995         int edge_count;
996         struct block_set *edges;
997         int users;
998         struct block_set *use;
999         struct block_set *idominates;
1000         struct block_set *domfrontier;
1001         struct block *idom;
1002         struct block_set *ipdominates;
1003         struct block_set *ipdomfrontier;
1004         struct block *ipdom;
1005         int vertex;
1006
1007 };
1008
1009 struct symbol {
1010         struct symbol *next;
1011         struct hash_entry *ident;
1012         struct triple *def;
1013         struct type *type;
1014         int scope_depth;
1015 };
1016
1017 struct macro_arg {
1018         struct macro_arg *next;
1019         struct hash_entry *ident;
1020 };
1021 struct macro {
1022         struct hash_entry *ident;
1023         const char *buf;
1024         int buf_len;
1025         struct macro_arg *args;
1026         int argc;
1027 };
1028
1029 struct hash_entry {
1030         struct hash_entry *next;
1031         const char *name;
1032         int name_len;
1033         int tok;
1034         struct macro *sym_define;
1035         struct symbol *sym_label;
1036         struct symbol *sym_tag;
1037         struct symbol *sym_ident;
1038 };
1039
1040 #define HASH_TABLE_SIZE 2048
1041
1042 struct compiler_state {
1043         const char *label_prefix;
1044         const char *ofilename;
1045         unsigned long flags;
1046         unsigned long debug;
1047         unsigned long max_allocation_passes;
1048
1049         size_t include_path_count;
1050         const char **include_paths;
1051
1052         size_t define_count;
1053         const char **defines;
1054
1055         size_t undef_count;
1056         const char **undefs;
1057 };
1058 struct arch_state {
1059         unsigned long features;
1060 };
1061 struct basic_blocks {
1062         struct triple *func;
1063         struct triple *first;
1064         struct block *first_block, *last_block;
1065         int last_vertex;
1066 };
1067 #define MAX_PP_IF_DEPTH 63
1068 struct compile_state {
1069         struct compiler_state *compiler;
1070         struct arch_state *arch;
1071         FILE *output;
1072         FILE *errout;
1073         FILE *dbgout;
1074         struct file_state *file;
1075         struct occurance *last_occurance;
1076         const char *function;
1077         int    token_base;
1078         struct token token[6];
1079         struct hash_entry *hash_table[HASH_TABLE_SIZE];
1080         struct hash_entry *i_switch;
1081         struct hash_entry *i_case;
1082         struct hash_entry *i_continue;
1083         struct hash_entry *i_break;
1084         struct hash_entry *i_default;
1085         struct hash_entry *i_return;
1086         struct hash_entry *i_noreturn;
1087         /* Additional hash entries for predefined macros */
1088         struct hash_entry *i_defined;
1089         struct hash_entry *i___VA_ARGS__;
1090         struct hash_entry *i___FILE__;
1091         struct hash_entry *i___LINE__;
1092         /* Additional hash entries for predefined identifiers */
1093         struct hash_entry *i___func__;
1094         /* Additional hash entries for attributes */
1095         struct hash_entry *i_noinline;
1096         struct hash_entry *i_always_inline;
1097         int scope_depth;
1098         unsigned char if_bytes[(MAX_PP_IF_DEPTH + CHAR_BIT -1)/CHAR_BIT];
1099         int if_depth;
1100         int eat_depth, eat_targ;
1101         struct file_state *macro_file;
1102         struct triple *functions;
1103         struct triple *main_function;
1104         struct triple *first;
1105         struct triple *global_pool;
1106         struct basic_blocks bb;
1107         int functions_joined;
1108 };
1109
1110 /* visibility global/local */
1111 /* static/auto duration */
1112 /* typedef, register, inline */
1113 #define STOR_SHIFT         0
1114 #define STOR_MASK     0x001f
1115 /* Visibility */
1116 #define STOR_GLOBAL   0x0001
1117 /* Duration */
1118 #define STOR_PERM     0x0002
1119 /* Definition locality */
1120 #define STOR_NONLOCAL 0x0004  /* The definition is not in this translation unit */
1121 /* Storage specifiers */
1122 #define STOR_AUTO     0x0000
1123 #define STOR_STATIC   0x0002
1124 #define STOR_LOCAL    0x0003
1125 #define STOR_EXTERN   0x0007
1126 #define STOR_INLINE   0x0008
1127 #define STOR_REGISTER 0x0010
1128 #define STOR_TYPEDEF  0x0018
1129
1130 #define QUAL_SHIFT         5
1131 #define QUAL_MASK     0x00e0
1132 #define QUAL_NONE     0x0000
1133 #define QUAL_CONST    0x0020
1134 #define QUAL_VOLATILE 0x0040
1135 #define QUAL_RESTRICT 0x0080
1136
1137 #define TYPE_SHIFT         8
1138 #define TYPE_MASK     0x1f00
1139 #define TYPE_INTEGER(TYPE)    ((((TYPE) >= TYPE_CHAR) && ((TYPE) <= TYPE_ULLONG)) || ((TYPE) == TYPE_ENUM) || ((TYPE) == TYPE_BITFIELD))
1140 #define TYPE_ARITHMETIC(TYPE) ((((TYPE) >= TYPE_CHAR) && ((TYPE) <= TYPE_LDOUBLE)) || ((TYPE) == TYPE_ENUM) || ((TYPE) == TYPE_BITFIELD))
1141 #define TYPE_UNSIGNED(TYPE)   ((TYPE) & 0x0100)
1142 #define TYPE_SIGNED(TYPE)     (!TYPE_UNSIGNED(TYPE))
1143 #define TYPE_MKUNSIGNED(TYPE) (((TYPE) & ~0xF000) | 0x0100)
1144 #define TYPE_RANK(TYPE)       ((TYPE) & ~0xF1FF)
1145 #define TYPE_PTR(TYPE)        (((TYPE) & TYPE_MASK) == TYPE_POINTER)
1146 #define TYPE_DEFAULT  0x0000
1147 #define TYPE_VOID     0x0100
1148 #define TYPE_CHAR     0x0200
1149 #define TYPE_UCHAR    0x0300
1150 #define TYPE_SHORT    0x0400
1151 #define TYPE_USHORT   0x0500
1152 #define TYPE_INT      0x0600
1153 #define TYPE_UINT     0x0700
1154 #define TYPE_LONG     0x0800
1155 #define TYPE_ULONG    0x0900
1156 #define TYPE_LLONG    0x0a00 /* long long */
1157 #define TYPE_ULLONG   0x0b00
1158 #define TYPE_FLOAT    0x0c00
1159 #define TYPE_DOUBLE   0x0d00
1160 #define TYPE_LDOUBLE  0x0e00 /* long double */
1161
1162 /* Note: TYPE_ENUM is chosen very carefully so TYPE_RANK works */
1163 #define TYPE_ENUM     0x1600
1164 #define TYPE_LIST     0x1700
1165 /* TYPE_LIST is a basic building block when defining enumerations
1166  * type->field_ident holds the name of this enumeration entry.
1167  * type->right holds the entry in the list.
1168  */
1169
1170 #define TYPE_STRUCT   0x1000
1171 /* For TYPE_STRUCT
1172  * type->left holds the link list of TYPE_PRODUCT entries that
1173  * make up the structure.
1174  * type->elements hold the length of the linked list
1175  */
1176 #define TYPE_UNION    0x1100
1177 /* For TYPE_UNION
1178  * type->left holds the link list of TYPE_OVERLAP entries that
1179  * make up the union.
1180  * type->elements hold the length of the linked list
1181  */
1182 #define TYPE_POINTER  0x1200
1183 /* For TYPE_POINTER:
1184  * type->left holds the type pointed to.
1185  */
1186 #define TYPE_FUNCTION 0x1300
1187 /* For TYPE_FUNCTION:
1188  * type->left holds the return type.
1189  * type->right holds the type of the arguments
1190  * type->elements holds the count of the arguments
1191  */
1192 #define TYPE_PRODUCT  0x1400
1193 /* TYPE_PRODUCT is a basic building block when defining structures
1194  * type->left holds the type that appears first in memory.
1195  * type->right holds the type that appears next in memory.
1196  */
1197 #define TYPE_OVERLAP  0x1500
1198 /* TYPE_OVERLAP is a basic building block when defining unions
1199  * type->left and type->right holds to types that overlap
1200  * each other in memory.
1201  */
1202 #define TYPE_ARRAY    0x1800
1203 /* TYPE_ARRAY is a basic building block when definitng arrays.
1204  * type->left holds the type we are an array of.
1205  * type->elements holds the number of elements.
1206  */
1207 #define TYPE_TUPLE    0x1900
1208 /* TYPE_TUPLE is a basic building block when defining
1209  * positionally reference type conglomerations. (i.e. closures)
1210  * In essence it is a wrapper for TYPE_PRODUCT, like TYPE_STRUCT
1211  * except it has no field names.
1212  * type->left holds the liked list of TYPE_PRODUCT entries that
1213  * make up the closure type.
1214  * type->elements hold the number of elements in the closure.
1215  */
1216 #define TYPE_JOIN     0x1a00
1217 /* TYPE_JOIN is a basic building block when defining
1218  * positionally reference type conglomerations. (i.e. closures)
1219  * In essence it is a wrapper for TYPE_OVERLAP, like TYPE_UNION
1220  * except it has no field names.
1221  * type->left holds the liked list of TYPE_OVERLAP entries that
1222  * make up the closure type.
1223  * type->elements hold the number of elements in the closure.
1224  */
1225 #define TYPE_BITFIELD 0x1b00
1226 /* TYPE_BITFIED is the type of a bitfield.
1227  * type->left holds the type basic type TYPE_BITFIELD is derived from.
1228  * type->elements holds the number of bits in the bitfield.
1229  */
1230 #define TYPE_UNKNOWN  0x1c00
1231 /* TYPE_UNKNOWN is the type of an unknown value.
1232  * Used on unknown consts and other places where I don't know the type.
1233  */
1234
1235 #define ATTRIB_SHIFT                 16
1236 #define ATTRIB_MASK          0xffff0000
1237 #define ATTRIB_NOINLINE      0x00010000
1238 #define ATTRIB_ALWAYS_INLINE 0x00020000
1239
1240 #define ELEMENT_COUNT_UNSPECIFIED ULONG_T_MAX
1241
1242 struct type {
1243         unsigned int type;
1244         struct type *left, *right;
1245         ulong_t elements;
1246         struct hash_entry *field_ident;
1247         struct hash_entry *type_ident;
1248 };
1249
1250 #define TEMPLATE_BITS      7
1251 #define MAX_TEMPLATES      (1<<TEMPLATE_BITS)
1252 #define MAX_REG_EQUIVS     16
1253 #define MAX_REGC           14
1254 #define MAX_REGISTERS      75
1255 #define REGISTER_BITS      7
1256 #define MAX_VIRT_REGISTERS (1<<REGISTER_BITS)
1257 #define REG_ERROR          0
1258 #define REG_UNSET          1
1259 #define REG_UNNEEDED       2
1260 #define REG_VIRT0          (MAX_REGISTERS + 0)
1261 #define REG_VIRT1          (MAX_REGISTERS + 1)
1262 #define REG_VIRT2          (MAX_REGISTERS + 2)
1263 #define REG_VIRT3          (MAX_REGISTERS + 3)
1264 #define REG_VIRT4          (MAX_REGISTERS + 4)
1265 #define REG_VIRT5          (MAX_REGISTERS + 5)
1266 #define REG_VIRT6          (MAX_REGISTERS + 6)
1267 #define REG_VIRT7          (MAX_REGISTERS + 7)
1268 #define REG_VIRT8          (MAX_REGISTERS + 8)
1269 #define REG_VIRT9          (MAX_REGISTERS + 9)
1270
1271 #if (MAX_REGISTERS + 9) > MAX_VIRT_REGISTERS
1272 #error "MAX_VIRT_REGISTERS to small"
1273 #endif
1274 #if (MAX_REGC + REGISTER_BITS) >= 26
1275 #error "Too many id bits used"
1276 #endif
1277
1278 /* Provision for 8 register classes */
1279 #define REG_SHIFT  0
1280 #define REGC_SHIFT REGISTER_BITS
1281 #define REGC_MASK (((1 << MAX_REGC) - 1) << REGISTER_BITS)
1282 #define REG_MASK (MAX_VIRT_REGISTERS -1)
1283 #define ID_REG(ID)              ((ID) & REG_MASK)
1284 #define SET_REG(ID, REG)        ((ID) = (((ID) & ~REG_MASK) | ((REG) & REG_MASK)))
1285 #define ID_REGCM(ID)            (((ID) & REGC_MASK) >> REGC_SHIFT)
1286 #define SET_REGCM(ID, REGCM)    ((ID) = (((ID) & ~REGC_MASK) | (((REGCM) << REGC_SHIFT) & REGC_MASK)))
1287 #define SET_INFO(ID, INFO)      ((ID) = (((ID) & ~(REG_MASK | REGC_MASK)) | \
1288                 (((INFO).reg) & REG_MASK) | ((((INFO).regcm) << REGC_SHIFT) & REGC_MASK)))
1289
1290 #define ARCH_INPUT_REGS 4
1291 #define ARCH_OUTPUT_REGS 4
1292
1293 static const struct reg_info arch_input_regs[ARCH_INPUT_REGS];
1294 static const struct reg_info arch_output_regs[ARCH_OUTPUT_REGS];
1295 static unsigned arch_reg_regcm(struct compile_state *state, int reg);
1296 static unsigned arch_regcm_normalize(struct compile_state *state, unsigned regcm);
1297 static unsigned arch_regcm_reg_normalize(struct compile_state *state, unsigned regcm);
1298 static void arch_reg_equivs(
1299         struct compile_state *state, unsigned *equiv, int reg);
1300 static int arch_select_free_register(
1301         struct compile_state *state, char *used, int classes);
1302 static unsigned arch_regc_size(struct compile_state *state, int class);
1303 static int arch_regcm_intersect(unsigned regcm1, unsigned regcm2);
1304 static unsigned arch_type_to_regcm(struct compile_state *state, struct type *type);
1305 static const char *arch_reg_str(int reg);
1306 static struct reg_info arch_reg_constraint(
1307         struct compile_state *state, struct type *type, const char *constraint);
1308 static struct reg_info arch_reg_clobber(
1309         struct compile_state *state, const char *clobber);
1310 static struct reg_info arch_reg_lhs(struct compile_state *state,
1311         struct triple *ins, int index);
1312 static struct reg_info arch_reg_rhs(struct compile_state *state,
1313         struct triple *ins, int index);
1314 static int arch_reg_size(int reg);
1315 static struct triple *transform_to_arch_instruction(
1316         struct compile_state *state, struct triple *ins);
1317 static struct triple *flatten(
1318         struct compile_state *state, struct triple *first, struct triple *ptr);
1319 static void print_dominators(struct compile_state *state,
1320         FILE *fp, struct basic_blocks *bb);
1321 static void print_dominance_frontiers(struct compile_state *state,
1322         FILE *fp, struct basic_blocks *bb);
1323
1324
1325
1326 #define DEBUG_ABORT_ON_ERROR    0x00000001
1327 #define DEBUG_BASIC_BLOCKS      0x00000002
1328 #define DEBUG_FDOMINATORS       0x00000004
1329 #define DEBUG_RDOMINATORS       0x00000008
1330 #define DEBUG_TRIPLES           0x00000010
1331 #define DEBUG_INTERFERENCE      0x00000020
1332 #define DEBUG_SCC_TRANSFORM     0x00000040
1333 #define DEBUG_SCC_TRANSFORM2    0x00000080
1334 #define DEBUG_REBUILD_SSA_FORM  0x00000100
1335 #define DEBUG_INLINE            0x00000200
1336 #define DEBUG_RANGE_CONFLICTS   0x00000400
1337 #define DEBUG_RANGE_CONFLICTS2  0x00000800
1338 #define DEBUG_COLOR_GRAPH       0x00001000
1339 #define DEBUG_COLOR_GRAPH2      0x00002000
1340 #define DEBUG_COALESCING        0x00004000
1341 #define DEBUG_COALESCING2       0x00008000
1342 #define DEBUG_VERIFICATION      0x00010000
1343 #define DEBUG_CALLS             0x00020000
1344 #define DEBUG_CALLS2            0x00040000
1345 #define DEBUG_TOKENS            0x80000000
1346
1347 #define DEBUG_DEFAULT ( \
1348         DEBUG_ABORT_ON_ERROR | \
1349         DEBUG_BASIC_BLOCKS | \
1350         DEBUG_FDOMINATORS | \
1351         DEBUG_RDOMINATORS | \
1352         DEBUG_TRIPLES | \
1353         0 )
1354
1355 #define DEBUG_ALL ( \
1356         DEBUG_ABORT_ON_ERROR   | \
1357         DEBUG_BASIC_BLOCKS     | \
1358         DEBUG_FDOMINATORS      | \
1359         DEBUG_RDOMINATORS      | \
1360         DEBUG_TRIPLES          | \
1361         DEBUG_INTERFERENCE     | \
1362         DEBUG_SCC_TRANSFORM    | \
1363         DEBUG_SCC_TRANSFORM2   | \
1364         DEBUG_REBUILD_SSA_FORM | \
1365         DEBUG_INLINE           | \
1366         DEBUG_RANGE_CONFLICTS  | \
1367         DEBUG_RANGE_CONFLICTS2 | \
1368         DEBUG_COLOR_GRAPH      | \
1369         DEBUG_COLOR_GRAPH2     | \
1370         DEBUG_COALESCING       | \
1371         DEBUG_COALESCING2      | \
1372         DEBUG_VERIFICATION     | \
1373         DEBUG_CALLS            | \
1374         DEBUG_CALLS2           | \
1375         DEBUG_TOKENS           | \
1376         0 )
1377
1378 #define COMPILER_INLINE_MASK               0x00000007
1379 #define COMPILER_INLINE_ALWAYS             0x00000000
1380 #define COMPILER_INLINE_NEVER              0x00000001
1381 #define COMPILER_INLINE_DEFAULTON          0x00000002
1382 #define COMPILER_INLINE_DEFAULTOFF         0x00000003
1383 #define COMPILER_INLINE_NOPENALTY          0x00000004
1384 #define COMPILER_ELIMINATE_INEFECTUAL_CODE 0x00000008
1385 #define COMPILER_SIMPLIFY                  0x00000010
1386 #define COMPILER_SCC_TRANSFORM             0x00000020
1387 #define COMPILER_SIMPLIFY_OP               0x00000040
1388 #define COMPILER_SIMPLIFY_PHI              0x00000080
1389 #define COMPILER_SIMPLIFY_LABEL            0x00000100
1390 #define COMPILER_SIMPLIFY_BRANCH           0x00000200
1391 #define COMPILER_SIMPLIFY_COPY             0x00000400
1392 #define COMPILER_SIMPLIFY_ARITH            0x00000800
1393 #define COMPILER_SIMPLIFY_SHIFT            0x00001000
1394 #define COMPILER_SIMPLIFY_BITWISE          0x00002000
1395 #define COMPILER_SIMPLIFY_LOGICAL          0x00004000
1396 #define COMPILER_SIMPLIFY_BITFIELD         0x00008000
1397
1398 #define COMPILER_TRIGRAPHS                 0x40000000
1399 #define COMPILER_PP_ONLY                   0x80000000
1400
1401 #define COMPILER_DEFAULT_FLAGS ( \
1402         COMPILER_TRIGRAPHS | \
1403         COMPILER_ELIMINATE_INEFECTUAL_CODE | \
1404         COMPILER_INLINE_DEFAULTON | \
1405         COMPILER_SIMPLIFY_OP | \
1406         COMPILER_SIMPLIFY_PHI | \
1407         COMPILER_SIMPLIFY_LABEL | \
1408         COMPILER_SIMPLIFY_BRANCH | \
1409         COMPILER_SIMPLIFY_COPY | \
1410         COMPILER_SIMPLIFY_ARITH | \
1411         COMPILER_SIMPLIFY_SHIFT | \
1412         COMPILER_SIMPLIFY_BITWISE | \
1413         COMPILER_SIMPLIFY_LOGICAL | \
1414         COMPILER_SIMPLIFY_BITFIELD | \
1415         0 )
1416
1417 #define GLOBAL_SCOPE_DEPTH   1
1418 #define FUNCTION_SCOPE_DEPTH (GLOBAL_SCOPE_DEPTH + 1)
1419
1420 static void compile_file(struct compile_state *old_state, const char *filename, int local);
1421
1422
1423
1424 static void init_compiler_state(struct compiler_state *compiler)
1425 {
1426         memset(compiler, 0, sizeof(*compiler));
1427         compiler->label_prefix = "";
1428         compiler->ofilename = "auto.inc";
1429         compiler->flags = COMPILER_DEFAULT_FLAGS;
1430         compiler->debug = 0;
1431         compiler->max_allocation_passes = MAX_ALLOCATION_PASSES;
1432         compiler->include_path_count = 1;
1433         compiler->include_paths      = xcmalloc(sizeof(char *), "include_paths");
1434         compiler->define_count       = 1;
1435         compiler->defines            = xcmalloc(sizeof(char *), "defines");
1436         compiler->undef_count        = 1;
1437         compiler->undefs             = xcmalloc(sizeof(char *), "undefs");
1438 }
1439
1440 struct compiler_flag {
1441         const char *name;
1442         unsigned long flag;
1443 };
1444
1445 struct compiler_arg {
1446         const char *name;
1447         unsigned long mask;
1448         struct compiler_flag flags[16];
1449 };
1450
1451 static int set_flag(
1452         const struct compiler_flag *ptr, unsigned long *flags,
1453         int act, const char *flag)
1454 {
1455         int result = -1;
1456         for(; ptr->name; ptr++) {
1457                 if (strcmp(ptr->name, flag) == 0) {
1458                         break;
1459                 }
1460         }
1461         if (ptr->name) {
1462                 result = 0;
1463                 *flags &= ~(ptr->flag);
1464                 if (act) {
1465                         *flags |= ptr->flag;
1466                 }
1467         }
1468         return result;
1469 }
1470
1471 static int set_arg(
1472         const struct compiler_arg *ptr, unsigned long *flags, const char *arg)
1473 {
1474         const char *val;
1475         int result = -1;
1476         int len;
1477         val = strchr(arg, '=');
1478         if (val) {
1479                 len = val - arg;
1480                 val++;
1481                 for(; ptr->name; ptr++) {
1482                         if (strncmp(ptr->name, arg, len) == 0) {
1483                                 break;
1484                         }
1485                 }
1486                 if (ptr->name) {
1487                         *flags &= ~ptr->mask;
1488                         result = set_flag(&ptr->flags[0], flags, 1, val);
1489                 }
1490         }
1491         return result;
1492 }
1493
1494
1495 static void flag_usage(FILE *fp, const struct compiler_flag *ptr,
1496         const char *prefix, const char *invert_prefix)
1497 {
1498         for(;ptr->name; ptr++) {
1499                 fprintf(fp, "%s%s\n", prefix, ptr->name);
1500                 if (invert_prefix) {
1501                         fprintf(fp, "%s%s\n", invert_prefix, ptr->name);
1502                 }
1503         }
1504 }
1505
1506 static void arg_usage(FILE *fp, const struct compiler_arg *ptr,
1507         const char *prefix)
1508 {
1509         for(;ptr->name; ptr++) {
1510                 const struct compiler_flag *flag;
1511                 for(flag = &ptr->flags[0]; flag->name; flag++) {
1512                         fprintf(fp, "%s%s=%s\n",
1513                                 prefix, ptr->name, flag->name);
1514                 }
1515         }
1516 }
1517
1518 static int append_string(size_t *max, const char ***vec, const char *str,
1519         const char *name)
1520 {
1521         size_t count;
1522         count = ++(*max);
1523         *vec = xrealloc(*vec, sizeof(char *)*count, "name");
1524         (*vec)[count -1] = 0;
1525         (*vec)[count -2] = str;
1526         return 0;
1527 }
1528
1529 static void arg_error(char *fmt, ...);
1530 static const char *identifier(const char *str, const char *end);
1531
1532 static int append_include_path(struct compiler_state *compiler, const char *str)
1533 {
1534         int result;
1535         if (!exists(str, ".")) {
1536                 arg_error("Nonexistent include path: `%s'\n",
1537                         str);
1538         }
1539         result = append_string(&compiler->include_path_count,
1540                 &compiler->include_paths, str, "include_paths");
1541         return result;
1542 }
1543
1544 static int append_define(struct compiler_state *compiler, const char *str)
1545 {
1546         const char *end, *rest;
1547         int result;
1548
1549         end = strchr(str, '=');
1550         if (!end) {
1551                 end = str + strlen(str);
1552         }
1553         rest = identifier(str, end);
1554         if (rest != end) {
1555                 int len = end - str - 1;
1556                 arg_error("Invalid name cannot define macro: `%*.*s'\n",
1557                         len, len, str);
1558         }
1559         result = append_string(&compiler->define_count,
1560                 &compiler->defines, str, "defines");
1561         return result;
1562 }
1563
1564 static int append_undef(struct compiler_state *compiler, const char *str)
1565 {
1566         const char *end, *rest;
1567         int result;
1568
1569         end = str + strlen(str);
1570         rest = identifier(str, end);
1571         if (rest != end) {
1572                 int len = end - str - 1;
1573                 arg_error("Invalid name cannot undefine macro: `%*.*s'\n",
1574                         len, len, str);
1575         }
1576         result = append_string(&compiler->undef_count,
1577                 &compiler->undefs, str, "undefs");
1578         return result;
1579 }
1580
1581 static const struct compiler_flag romcc_flags[] = {
1582         { "trigraphs",                 COMPILER_TRIGRAPHS },
1583         { "pp-only",                   COMPILER_PP_ONLY },
1584         { "eliminate-inefectual-code", COMPILER_ELIMINATE_INEFECTUAL_CODE },
1585         { "simplify",                  COMPILER_SIMPLIFY },
1586         { "scc-transform",             COMPILER_SCC_TRANSFORM },
1587         { "simplify-op",               COMPILER_SIMPLIFY_OP },
1588         { "simplify-phi",              COMPILER_SIMPLIFY_PHI },
1589         { "simplify-label",            COMPILER_SIMPLIFY_LABEL },
1590         { "simplify-branch",           COMPILER_SIMPLIFY_BRANCH },
1591         { "simplify-copy",             COMPILER_SIMPLIFY_COPY },
1592         { "simplify-arith",            COMPILER_SIMPLIFY_ARITH },
1593         { "simplify-shift",            COMPILER_SIMPLIFY_SHIFT },
1594         { "simplify-bitwise",          COMPILER_SIMPLIFY_BITWISE },
1595         { "simplify-logical",          COMPILER_SIMPLIFY_LOGICAL },
1596         { "simplify-bitfield",         COMPILER_SIMPLIFY_BITFIELD },
1597         { 0, 0 },
1598 };
1599 static const struct compiler_arg romcc_args[] = {
1600         { "inline-policy",             COMPILER_INLINE_MASK,
1601                 {
1602                         { "always",      COMPILER_INLINE_ALWAYS, },
1603                         { "never",       COMPILER_INLINE_NEVER, },
1604                         { "defaulton",   COMPILER_INLINE_DEFAULTON, },
1605                         { "defaultoff",  COMPILER_INLINE_DEFAULTOFF, },
1606                         { "nopenalty",   COMPILER_INLINE_NOPENALTY, },
1607                         { 0, 0 },
1608                 },
1609         },
1610         { 0, 0 },
1611 };
1612 static const struct compiler_flag romcc_opt_flags[] = {
1613         { "-O",  COMPILER_SIMPLIFY },
1614         { "-O2", COMPILER_SIMPLIFY | COMPILER_SCC_TRANSFORM },
1615         { "-E",  COMPILER_PP_ONLY },
1616         { 0, 0, },
1617 };
1618 static const struct compiler_flag romcc_debug_flags[] = {
1619         { "all",                   DEBUG_ALL },
1620         { "abort-on-error",        DEBUG_ABORT_ON_ERROR },
1621         { "basic-blocks",          DEBUG_BASIC_BLOCKS },
1622         { "fdominators",           DEBUG_FDOMINATORS },
1623         { "rdominators",           DEBUG_RDOMINATORS },
1624         { "triples",               DEBUG_TRIPLES },
1625         { "interference",          DEBUG_INTERFERENCE },
1626         { "scc-transform",         DEBUG_SCC_TRANSFORM },
1627         { "scc-transform2",        DEBUG_SCC_TRANSFORM2 },
1628         { "rebuild-ssa-form",      DEBUG_REBUILD_SSA_FORM },
1629         { "inline",                DEBUG_INLINE },
1630         { "live-range-conflicts",  DEBUG_RANGE_CONFLICTS },
1631         { "live-range-conflicts2", DEBUG_RANGE_CONFLICTS2 },
1632         { "color-graph",           DEBUG_COLOR_GRAPH },
1633         { "color-graph2",          DEBUG_COLOR_GRAPH2 },
1634         { "coalescing",            DEBUG_COALESCING },
1635         { "coalescing2",           DEBUG_COALESCING2 },
1636         { "verification",          DEBUG_VERIFICATION },
1637         { "calls",                 DEBUG_CALLS },
1638         { "calls2",                DEBUG_CALLS2 },
1639         { "tokens",                DEBUG_TOKENS },
1640         { 0, 0 },
1641 };
1642
1643 static int compiler_encode_flag(
1644         struct compiler_state *compiler, const char *flag)
1645 {
1646         int act;
1647         int result;
1648
1649         act = 1;
1650         result = -1;
1651         if (strncmp(flag, "no-", 3) == 0) {
1652                 flag += 3;
1653                 act = 0;
1654         }
1655         if (strncmp(flag, "-O", 2) == 0) {
1656                 result = set_flag(romcc_opt_flags, &compiler->flags, act, flag);
1657         }
1658         else if (strncmp(flag, "-E", 2) == 0) {
1659                 result = set_flag(romcc_opt_flags, &compiler->flags, act, flag);
1660         }
1661         else if (strncmp(flag, "-I", 2) == 0) {
1662                 result = append_include_path(compiler, flag + 2);
1663         }
1664         else if (strncmp(flag, "-D", 2) == 0) {
1665                 result = append_define(compiler, flag + 2);
1666         }
1667         else if (strncmp(flag, "-U", 2) == 0) {
1668                 result = append_undef(compiler, flag + 2);
1669         }
1670         else if (act && strncmp(flag, "label-prefix=", 13) == 0) {
1671                 result = 0;
1672                 compiler->label_prefix = flag + 13;
1673         }
1674         else if (act && strncmp(flag, "max-allocation-passes=", 22) == 0) {
1675                 unsigned long max_passes;
1676                 char *end;
1677                 max_passes = strtoul(flag + 22, &end, 10);
1678                 if (end[0] == '\0') {
1679                         result = 0;
1680                         compiler->max_allocation_passes = max_passes;
1681                 }
1682         }
1683         else if (act && strcmp(flag, "debug") == 0) {
1684                 result = 0;
1685                 compiler->debug |= DEBUG_DEFAULT;
1686         }
1687         else if (strncmp(flag, "debug-", 6) == 0) {
1688                 flag += 6;
1689                 result = set_flag(romcc_debug_flags, &compiler->debug, act, flag);
1690         }
1691         else {
1692                 result = set_flag(romcc_flags, &compiler->flags, act, flag);
1693                 if (result < 0) {
1694                         result = set_arg(romcc_args, &compiler->flags, flag);
1695                 }
1696         }
1697         return result;
1698 }
1699
1700 static void compiler_usage(FILE *fp)
1701 {
1702         flag_usage(fp, romcc_opt_flags, "", 0);
1703         flag_usage(fp, romcc_flags, "-f", "-fno-");
1704         arg_usage(fp,  romcc_args, "-f");
1705         flag_usage(fp, romcc_debug_flags, "-fdebug-", "-fno-debug-");
1706         fprintf(fp, "-flabel-prefix=<prefix for assembly language labels>\n");
1707         fprintf(fp, "--label-prefix=<prefix for assembly language labels>\n");
1708         fprintf(fp, "-I<include path>\n");
1709         fprintf(fp, "-D<macro>[=defn]\n");
1710         fprintf(fp, "-U<macro>\n");
1711 }
1712
1713 static void do_cleanup(struct compile_state *state)
1714 {
1715         if (state->output) {
1716                 fclose(state->output);
1717                 unlink(state->compiler->ofilename);
1718                 state->output = 0;
1719         }
1720         if (state->dbgout) {
1721                 fflush(state->dbgout);
1722         }
1723         if (state->errout) {
1724                 fflush(state->errout);
1725         }
1726 }
1727
1728 static struct compile_state *exit_state;
1729 static void exit_cleanup(void)
1730 {
1731         if (exit_state) {
1732                 do_cleanup(exit_state);
1733         }
1734 }
1735
1736 static int get_col(struct file_state *file)
1737 {
1738         int col;
1739         const char *ptr, *end;
1740         ptr = file->line_start;
1741         end = file->pos;
1742         for(col = 0; ptr < end; ptr++) {
1743                 if (*ptr != '\t') {
1744                         col++;
1745                 }
1746                 else {
1747                         col = (col & ~7) + 8;
1748                 }
1749         }
1750         return col;
1751 }
1752
1753 static void loc(FILE *fp, struct compile_state *state, struct triple *triple)
1754 {
1755         int col;
1756         if (triple && triple->occurance) {
1757                 struct occurance *spot;
1758                 for(spot = triple->occurance; spot; spot = spot->parent) {
1759                         fprintf(fp, "%s:%d.%d: ",
1760                                 spot->filename, spot->line, spot->col);
1761                 }
1762                 return;
1763         }
1764         if (!state->file) {
1765                 return;
1766         }
1767         col = get_col(state->file);
1768         fprintf(fp, "%s:%d.%d: ",
1769                 state->file->report_name, state->file->report_line, col);
1770 }
1771
1772 static void __attribute__ ((noreturn)) internal_error(struct compile_state *state, struct triple *ptr,
1773         const char *fmt, ...)
1774 {
1775         FILE *fp = state->errout;
1776         va_list args;
1777         va_start(args, fmt);
1778         loc(fp, state, ptr);
1779         fputc('\n', fp);
1780         if (ptr) {
1781                 fprintf(fp, "%p %-10s ", ptr, tops(ptr->op));
1782         }
1783         fprintf(fp, "Internal compiler error: ");
1784         vfprintf(fp, fmt, args);
1785         fprintf(fp, "\n");
1786         va_end(args);
1787         do_cleanup(state);
1788         abort();
1789 }
1790
1791
1792 static void internal_warning(struct compile_state *state, struct triple *ptr,
1793         const char *fmt, ...)
1794 {
1795         FILE *fp = state->errout;
1796         va_list args;
1797         va_start(args, fmt);
1798         loc(fp, state, ptr);
1799         if (ptr) {
1800                 fprintf(fp, "%p %-10s ", ptr, tops(ptr->op));
1801         }
1802         fprintf(fp, "Internal compiler warning: ");
1803         vfprintf(fp, fmt, args);
1804         fprintf(fp, "\n");
1805         va_end(args);
1806 }
1807
1808
1809
1810 static void __attribute__ ((noreturn)) error(struct compile_state *state, struct triple *ptr,
1811         const char *fmt, ...)
1812 {
1813         FILE *fp = state->errout;
1814         va_list args;
1815         va_start(args, fmt);
1816         loc(fp, state, ptr);
1817         fputc('\n', fp);
1818         if (ptr && (state->compiler->debug & DEBUG_ABORT_ON_ERROR)) {
1819                 fprintf(fp, "%p %-10s ", ptr, tops(ptr->op));
1820         }
1821         vfprintf(fp, fmt, args);
1822         va_end(args);
1823         fprintf(fp, "\n");
1824         do_cleanup(state);
1825         if (state->compiler->debug & DEBUG_ABORT_ON_ERROR) {
1826                 abort();
1827         }
1828         exit(1);
1829 }
1830
1831 static void warning(struct compile_state *state, struct triple *ptr,
1832         const char *fmt, ...)
1833 {
1834         FILE *fp = state->errout;
1835         va_list args;
1836         va_start(args, fmt);
1837         loc(fp, state, ptr);
1838         fprintf(fp, "warning: ");
1839         if (ptr && (state->compiler->debug & DEBUG_ABORT_ON_ERROR)) {
1840                 fprintf(fp, "%p %-10s ", ptr, tops(ptr->op));
1841         }
1842         vfprintf(fp, fmt, args);
1843         fprintf(fp, "\n");
1844         va_end(args);
1845 }
1846
1847 #define FINISHME() warning(state, 0, "FINISHME @ %s.%s:%d", __FILE__, __func__, __LINE__)
1848
1849 static void valid_op(struct compile_state *state, int op)
1850 {
1851         char *fmt = "invalid op: %d";
1852         if (op >= OP_MAX) {
1853                 internal_error(state, 0, fmt, op);
1854         }
1855         if (op < 0) {
1856                 internal_error(state, 0, fmt, op);
1857         }
1858 }
1859
1860 static void valid_ins(struct compile_state *state, struct triple *ptr)
1861 {
1862         valid_op(state, ptr->op);
1863 }
1864
1865 #if DEBUG_ROMCC_WARNING
1866 static void valid_param_count(struct compile_state *state, struct triple *ins)
1867 {
1868         int lhs, rhs, misc, targ;
1869         valid_ins(state, ins);
1870         lhs  = table_ops[ins->op].lhs;
1871         rhs  = table_ops[ins->op].rhs;
1872         misc = table_ops[ins->op].misc;
1873         targ = table_ops[ins->op].targ;
1874
1875         if ((lhs >= 0) && (ins->lhs != lhs)) {
1876                 internal_error(state, ins, "Bad lhs count");
1877         }
1878         if ((rhs >= 0) && (ins->rhs != rhs)) {
1879                 internal_error(state, ins, "Bad rhs count");
1880         }
1881         if ((misc >= 0) && (ins->misc != misc)) {
1882                 internal_error(state, ins, "Bad misc count");
1883         }
1884         if ((targ >= 0) && (ins->targ != targ)) {
1885                 internal_error(state, ins, "Bad targ count");
1886         }
1887 }
1888 #endif
1889
1890 static struct type void_type;
1891 static struct type unknown_type;
1892 static void use_triple(struct triple *used, struct triple *user)
1893 {
1894         struct triple_set **ptr, *new;
1895         if (!used)
1896                 return;
1897         if (!user)
1898                 return;
1899         ptr = &used->use;
1900         while(*ptr) {
1901                 if ((*ptr)->member == user) {
1902                         return;
1903                 }
1904                 ptr = &(*ptr)->next;
1905         }
1906         /* Append new to the head of the list,
1907          * copy_func and rename_block_variables
1908          * depends on this.
1909          */
1910         new = xcmalloc(sizeof(*new), "triple_set");
1911         new->member = user;
1912         new->next   = used->use;
1913         used->use   = new;
1914 }
1915
1916 static void unuse_triple(struct triple *used, struct triple *unuser)
1917 {
1918         struct triple_set *use, **ptr;
1919         if (!used) {
1920                 return;
1921         }
1922         ptr = &used->use;
1923         while(*ptr) {
1924                 use = *ptr;
1925                 if (use->member == unuser) {
1926                         *ptr = use->next;
1927                         xfree(use);
1928                 }
1929                 else {
1930                         ptr = &use->next;
1931                 }
1932         }
1933 }
1934
1935 static void put_occurance(struct occurance *occurance)
1936 {
1937         if (occurance) {
1938                 occurance->count -= 1;
1939                 if (occurance->count <= 0) {
1940                         if (occurance->parent) {
1941                                 put_occurance(occurance->parent);
1942                         }
1943                         xfree(occurance);
1944                 }
1945         }
1946 }
1947
1948 static void get_occurance(struct occurance *occurance)
1949 {
1950         if (occurance) {
1951                 occurance->count += 1;
1952         }
1953 }
1954
1955
1956 static struct occurance *new_occurance(struct compile_state *state)
1957 {
1958         struct occurance *result, *last;
1959         const char *filename;
1960         const char *function;
1961         int line, col;
1962
1963         function = "";
1964         filename = 0;
1965         line = 0;
1966         col  = 0;
1967         if (state->file) {
1968                 filename = state->file->report_name;
1969                 line     = state->file->report_line;
1970                 col      = get_col(state->file);
1971         }
1972         if (state->function) {
1973                 function = state->function;
1974         }
1975         last = state->last_occurance;
1976         if (last &&
1977                 (last->col == col) &&
1978                 (last->line == line) &&
1979                 (last->function == function) &&
1980                 ((last->filename == filename) ||
1981                         (strcmp(last->filename, filename) == 0)))
1982         {
1983                 get_occurance(last);
1984                 return last;
1985         }
1986         if (last) {
1987                 state->last_occurance = 0;
1988                 put_occurance(last);
1989         }
1990         result = xmalloc(sizeof(*result), "occurance");
1991         result->count    = 2;
1992         result->filename = filename;
1993         result->function = function;
1994         result->line     = line;
1995         result->col      = col;
1996         result->parent   = 0;
1997         state->last_occurance = result;
1998         return result;
1999 }
2000
2001 static struct occurance *inline_occurance(struct compile_state *state,
2002         struct occurance *base, struct occurance *top)
2003 {
2004         struct occurance *result, *last;
2005         if (top->parent) {
2006                 internal_error(state, 0, "inlining an already inlined function?");
2007         }
2008         /* If I have a null base treat it that way */
2009         if ((base->parent == 0) &&
2010                 (base->col == 0) &&
2011                 (base->line == 0) &&
2012                 (base->function[0] == '\0') &&
2013                 (base->filename[0] == '\0')) {
2014                 base = 0;
2015         }
2016         /* See if I can reuse the last occurance I had */
2017         last = state->last_occurance;
2018         if (last &&
2019                 (last->parent   == base) &&
2020                 (last->col      == top->col) &&
2021                 (last->line     == top->line) &&
2022                 (last->function == top->function) &&
2023                 (last->filename == top->filename)) {
2024                 get_occurance(last);
2025                 return last;
2026         }
2027         /* I can't reuse the last occurance so free it */
2028         if (last) {
2029                 state->last_occurance = 0;
2030                 put_occurance(last);
2031         }
2032         /* Generate a new occurance structure */
2033         get_occurance(base);
2034         result = xmalloc(sizeof(*result), "occurance");
2035         result->count    = 2;
2036         result->filename = top->filename;
2037         result->function = top->function;
2038         result->line     = top->line;
2039         result->col      = top->col;
2040         result->parent   = base;
2041         state->last_occurance = result;
2042         return result;
2043 }
2044
2045 static struct occurance dummy_occurance = {
2046         .count    = 2,
2047         .filename = __FILE__,
2048         .function = "",
2049         .line     = __LINE__,
2050         .col      = 0,
2051         .parent   = 0,
2052 };
2053
2054 /* The undef triple is used as a place holder when we are removing pointers
2055  * from a triple.  Having allows certain sanity checks to pass even
2056  * when the original triple that was pointed to is gone.
2057  */
2058 static struct triple unknown_triple = {
2059         .next      = &unknown_triple,
2060         .prev      = &unknown_triple,
2061         .use       = 0,
2062         .op        = OP_UNKNOWNVAL,
2063         .lhs       = 0,
2064         .rhs       = 0,
2065         .misc      = 0,
2066         .targ      = 0,
2067         .type      = &unknown_type,
2068         .id        = -1, /* An invalid id */
2069         .u = { .cval = 0, },
2070         .occurance = &dummy_occurance,
2071         .param = { [0] = 0, [1] = 0, },
2072 };
2073
2074
2075 static size_t registers_of(struct compile_state *state, struct type *type);
2076
2077 static struct triple *alloc_triple(struct compile_state *state,
2078         int op, struct type *type, int lhs_wanted, int rhs_wanted,
2079         struct occurance *occurance)
2080 {
2081         size_t size, extra_count, min_count;
2082         int lhs, rhs, misc, targ;
2083         struct triple *ret, dummy;
2084         dummy.op = op;
2085         dummy.occurance = occurance;
2086         valid_op(state, op);
2087         lhs = table_ops[op].lhs;
2088         rhs = table_ops[op].rhs;
2089         misc = table_ops[op].misc;
2090         targ = table_ops[op].targ;
2091
2092         switch(op) {
2093         case OP_FCALL:
2094                 rhs = rhs_wanted;
2095                 break;
2096         case OP_PHI:
2097                 rhs = rhs_wanted;
2098                 break;
2099         case OP_ADECL:
2100                 lhs = registers_of(state, type);
2101                 break;
2102         case OP_TUPLE:
2103                 lhs = registers_of(state, type);
2104                 break;
2105         case OP_ASM:
2106                 rhs = rhs_wanted;
2107                 lhs = lhs_wanted;
2108                 break;
2109         }
2110         if ((rhs < 0) || (rhs > MAX_RHS)) {
2111                 internal_error(state, &dummy, "bad rhs count %d", rhs);
2112         }
2113         if ((lhs < 0) || (lhs > MAX_LHS)) {
2114                 internal_error(state, &dummy, "bad lhs count %d", lhs);
2115         }
2116         if ((misc < 0) || (misc > MAX_MISC)) {
2117                 internal_error(state, &dummy, "bad misc count %d", misc);
2118         }
2119         if ((targ < 0) || (targ > MAX_TARG)) {
2120                 internal_error(state, &dummy, "bad targs count %d", targ);
2121         }
2122
2123         min_count = sizeof(ret->param)/sizeof(ret->param[0]);
2124         extra_count = lhs + rhs + misc + targ;
2125         extra_count = (extra_count < min_count)? 0 : extra_count - min_count;
2126
2127         size = sizeof(*ret) + sizeof(ret->param[0]) * extra_count;
2128         ret = xcmalloc(size, "tripple");
2129         ret->op        = op;
2130         ret->lhs       = lhs;
2131         ret->rhs       = rhs;
2132         ret->misc      = misc;
2133         ret->targ      = targ;
2134         ret->type      = type;
2135         ret->next      = ret;
2136         ret->prev      = ret;
2137         ret->occurance = occurance;
2138         /* A simple sanity check */
2139         if ((ret->op != op) ||
2140                 (ret->lhs != lhs) ||
2141                 (ret->rhs != rhs) ||
2142                 (ret->misc != misc) ||
2143                 (ret->targ != targ) ||
2144                 (ret->type != type) ||
2145                 (ret->next != ret) ||
2146                 (ret->prev != ret) ||
2147                 (ret->occurance != occurance)) {
2148                 internal_error(state, ret, "huh?");
2149         }
2150         return ret;
2151 }
2152
2153 struct triple *dup_triple(struct compile_state *state, struct triple *src)
2154 {
2155         struct triple *dup;
2156         int src_lhs, src_rhs, src_size;
2157         src_lhs = src->lhs;
2158         src_rhs = src->rhs;
2159         src_size = TRIPLE_SIZE(src);
2160         get_occurance(src->occurance);
2161         dup = alloc_triple(state, src->op, src->type, src_lhs, src_rhs,
2162                 src->occurance);
2163         memcpy(dup, src, sizeof(*src));
2164         memcpy(dup->param, src->param, src_size * sizeof(src->param[0]));
2165         return dup;
2166 }
2167
2168 static struct triple *copy_triple(struct compile_state *state, struct triple *src)
2169 {
2170         struct triple *copy;
2171         copy = dup_triple(state, src);
2172         copy->use = 0;
2173         copy->next = copy->prev = copy;
2174         return copy;
2175 }
2176
2177 static struct triple *new_triple(struct compile_state *state,
2178         int op, struct type *type, int lhs, int rhs)
2179 {
2180         struct triple *ret;
2181         struct occurance *occurance;
2182         occurance = new_occurance(state);
2183         ret = alloc_triple(state, op, type, lhs, rhs, occurance);
2184         return ret;
2185 }
2186
2187 static struct triple *build_triple(struct compile_state *state,
2188         int op, struct type *type, struct triple *left, struct triple *right,
2189         struct occurance *occurance)
2190 {
2191         struct triple *ret;
2192         size_t count;
2193         ret = alloc_triple(state, op, type, -1, -1, occurance);
2194         count = TRIPLE_SIZE(ret);
2195         if (count > 0) {
2196                 ret->param[0] = left;
2197         }
2198         if (count > 1) {
2199                 ret->param[1] = right;
2200         }
2201         return ret;
2202 }
2203
2204 static struct triple *triple(struct compile_state *state,
2205         int op, struct type *type, struct triple *left, struct triple *right)
2206 {
2207         struct triple *ret;
2208         size_t count;
2209         ret = new_triple(state, op, type, -1, -1);
2210         count = TRIPLE_SIZE(ret);
2211         if (count >= 1) {
2212                 ret->param[0] = left;
2213         }
2214         if (count >= 2) {
2215                 ret->param[1] = right;
2216         }
2217         return ret;
2218 }
2219
2220 static struct triple *branch(struct compile_state *state,
2221         struct triple *targ, struct triple *test)
2222 {
2223         struct triple *ret;
2224         if (test) {
2225                 ret = new_triple(state, OP_CBRANCH, &void_type, -1, 1);
2226                 RHS(ret, 0) = test;
2227         } else {
2228                 ret = new_triple(state, OP_BRANCH, &void_type, -1, 0);
2229         }
2230         TARG(ret, 0) = targ;
2231         /* record the branch target was used */
2232         if (!targ || (targ->op != OP_LABEL)) {
2233                 internal_error(state, 0, "branch not to label");
2234         }
2235         return ret;
2236 }
2237
2238 static int triple_is_label(struct compile_state *state, struct triple *ins);
2239 static int triple_is_call(struct compile_state *state, struct triple *ins);
2240 static int triple_is_cbranch(struct compile_state *state, struct triple *ins);
2241 static void insert_triple(struct compile_state *state,
2242         struct triple *first, struct triple *ptr)
2243 {
2244         if (ptr) {
2245                 if ((ptr->id & TRIPLE_FLAG_FLATTENED) || (ptr->next != ptr)) {
2246                         internal_error(state, ptr, "expression already used");
2247                 }
2248                 ptr->next       = first;
2249                 ptr->prev       = first->prev;
2250                 ptr->prev->next = ptr;
2251                 ptr->next->prev = ptr;
2252
2253                 if (triple_is_cbranch(state, ptr->prev) ||
2254                         triple_is_call(state, ptr->prev)) {
2255                         unuse_triple(first, ptr->prev);
2256                         use_triple(ptr, ptr->prev);
2257                 }
2258         }
2259 }
2260
2261 static int triple_stores_block(struct compile_state *state, struct triple *ins)
2262 {
2263         /* This function is used to determine if u.block
2264          * is utilized to store the current block number.
2265          */
2266         int stores_block;
2267         valid_ins(state, ins);
2268         stores_block = (table_ops[ins->op].flags & BLOCK) == BLOCK;
2269         return stores_block;
2270 }
2271
2272 static int triple_is_branch(struct compile_state *state, struct triple *ins);
2273 static struct block *block_of_triple(struct compile_state *state,
2274         struct triple *ins)
2275 {
2276         struct triple *first;
2277         if (!ins || ins == &unknown_triple) {
2278                 return 0;
2279         }
2280         first = state->first;
2281         while(ins != first && !triple_is_branch(state, ins->prev) &&
2282                 !triple_stores_block(state, ins))
2283         {
2284                 if (ins == ins->prev) {
2285                         internal_error(state, ins, "ins == ins->prev?");
2286                 }
2287                 ins = ins->prev;
2288         }
2289         return triple_stores_block(state, ins)? ins->u.block: 0;
2290 }
2291
2292 static void generate_lhs_pieces(struct compile_state *state, struct triple *ins);
2293 static struct triple *pre_triple(struct compile_state *state,
2294         struct triple *base,
2295         int op, struct type *type, struct triple *left, struct triple *right)
2296 {
2297         struct block *block;
2298         struct triple *ret;
2299         int i;
2300         /* If I am an OP_PIECE jump to the real instruction */
2301         if (base->op == OP_PIECE) {
2302                 base = MISC(base, 0);
2303         }
2304         block = block_of_triple(state, base);
2305         get_occurance(base->occurance);
2306         ret = build_triple(state, op, type, left, right, base->occurance);
2307         generate_lhs_pieces(state, ret);
2308         if (triple_stores_block(state, ret)) {
2309                 ret->u.block = block;
2310         }
2311         insert_triple(state, base, ret);
2312         for(i = 0; i < ret->lhs; i++) {
2313                 struct triple *piece;
2314                 piece = LHS(ret, i);
2315                 insert_triple(state, base, piece);
2316                 use_triple(ret, piece);
2317                 use_triple(piece, ret);
2318         }
2319         if (block && (block->first == base)) {
2320                 block->first = ret;
2321         }
2322         return ret;
2323 }
2324
2325 static struct triple *post_triple(struct compile_state *state,
2326         struct triple *base,
2327         int op, struct type *type, struct triple *left, struct triple *right)
2328 {
2329         struct block *block;
2330         struct triple *ret, *next;
2331         int zlhs, i;
2332         /* If I am an OP_PIECE jump to the real instruction */
2333         if (base->op == OP_PIECE) {
2334                 base = MISC(base, 0);
2335         }
2336         /* If I have a left hand side skip over it */
2337         zlhs = base->lhs;
2338         if (zlhs) {
2339                 base = LHS(base, zlhs - 1);
2340         }
2341
2342         block = block_of_triple(state, base);
2343         get_occurance(base->occurance);
2344         ret = build_triple(state, op, type, left, right, base->occurance);
2345         generate_lhs_pieces(state, ret);
2346         if (triple_stores_block(state, ret)) {
2347                 ret->u.block = block;
2348         }
2349         next = base->next;
2350         insert_triple(state, next, ret);
2351         zlhs = ret->lhs;
2352         for(i = 0; i < zlhs; i++) {
2353                 struct triple *piece;
2354                 piece = LHS(ret, i);
2355                 insert_triple(state, next, piece);
2356                 use_triple(ret, piece);
2357                 use_triple(piece, ret);
2358         }
2359         if (block && (block->last == base)) {
2360                 block->last = ret;
2361                 if (zlhs) {
2362                         block->last = LHS(ret, zlhs - 1);
2363                 }
2364         }
2365         return ret;
2366 }
2367
2368 static struct type *reg_type(
2369         struct compile_state *state, struct type *type, int reg);
2370
2371 static void generate_lhs_piece(
2372         struct compile_state *state, struct triple *ins, int index)
2373 {
2374         struct type *piece_type;
2375         struct triple *piece;
2376         get_occurance(ins->occurance);
2377         piece_type = reg_type(state, ins->type, index * REG_SIZEOF_REG);
2378
2379         if ((piece_type->type & TYPE_MASK) == TYPE_BITFIELD) {
2380                 piece_type = piece_type->left;
2381         }
2382 #if 0
2383 {
2384         static void name_of(FILE *fp, struct type *type);
2385         FILE * fp = state->errout;
2386         fprintf(fp, "piece_type(%d): ", index);
2387         name_of(fp, piece_type);
2388         fprintf(fp, "\n");
2389 }
2390 #endif
2391         piece = alloc_triple(state, OP_PIECE, piece_type, -1, -1, ins->occurance);
2392         piece->u.cval  = index;
2393         LHS(ins, piece->u.cval) = piece;
2394         MISC(piece, 0) = ins;
2395 }
2396
2397 static void generate_lhs_pieces(struct compile_state *state, struct triple *ins)
2398 {
2399         int i, zlhs;
2400         zlhs = ins->lhs;
2401         for(i = 0; i < zlhs; i++) {
2402                 generate_lhs_piece(state, ins, i);
2403         }
2404 }
2405
2406 static struct triple *label(struct compile_state *state)
2407 {
2408         /* Labels don't get a type */
2409         struct triple *result;
2410         result = triple(state, OP_LABEL, &void_type, 0, 0);
2411         return result;
2412 }
2413
2414 static struct triple *mkprog(struct compile_state *state, ...)
2415 {
2416         struct triple *prog, *head, *arg;
2417         va_list args;
2418         int i;
2419
2420         head = label(state);
2421         prog = new_triple(state, OP_PROG, &void_type, -1, -1);
2422         RHS(prog, 0) = head;
2423         va_start(args, state);
2424         i = 0;
2425         while((arg = va_arg(args, struct triple *)) != 0) {
2426                 if (++i >= 100) {
2427                         internal_error(state, 0, "too many arguments to mkprog");
2428                 }
2429                 flatten(state, head, arg);
2430         }
2431         va_end(args);
2432         prog->type = head->prev->type;
2433         return prog;
2434 }
2435 static void name_of(FILE *fp, struct type *type);
2436 static void display_triple(FILE *fp, struct triple *ins)
2437 {
2438         struct occurance *ptr;
2439         const char *reg;
2440         char pre, post, vol;
2441         pre = post = vol = ' ';
2442         if (ins) {
2443                 if (ins->id & TRIPLE_FLAG_PRE_SPLIT) {
2444                         pre = '^';
2445                 }
2446                 if (ins->id & TRIPLE_FLAG_POST_SPLIT) {
2447                         post = ',';
2448                 }
2449                 if (ins->id & TRIPLE_FLAG_VOLATILE) {
2450                         vol = 'v';
2451                 }
2452                 reg = arch_reg_str(ID_REG(ins->id));
2453         }
2454         if (ins == 0) {
2455                 fprintf(fp, "(%p) <nothing> ", ins);
2456         }
2457         else if (ins->op == OP_INTCONST) {
2458                 fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s <0x%08lx>         ",
2459                         ins, pre, post, vol, reg, ins->template_id, tops(ins->op),
2460                         (unsigned long)(ins->u.cval));
2461         }
2462         else if (ins->op == OP_ADDRCONST) {
2463                 fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s %-10p <0x%08lx>",
2464                         ins, pre, post, vol, reg, ins->template_id, tops(ins->op),
2465                         MISC(ins, 0), (unsigned long)(ins->u.cval));
2466         }
2467         else if (ins->op == OP_INDEX) {
2468                 fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s %-10p <0x%08lx>",
2469                         ins, pre, post, vol, reg, ins->template_id, tops(ins->op),
2470                         RHS(ins, 0), (unsigned long)(ins->u.cval));
2471         }
2472         else if (ins->op == OP_PIECE) {
2473                 fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s %-10p <0x%08lx>",
2474                         ins, pre, post, vol, reg, ins->template_id, tops(ins->op),
2475                         MISC(ins, 0), (unsigned long)(ins->u.cval));
2476         }
2477         else {
2478                 int i, count;
2479                 fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s",
2480                         ins, pre, post, vol, reg, ins->template_id, tops(ins->op));
2481                 if (table_ops[ins->op].flags & BITFIELD) {
2482                         fprintf(fp, " <%2d-%2d:%2d>",
2483                                 ins->u.bitfield.offset,
2484                                 ins->u.bitfield.offset + ins->u.bitfield.size,
2485                                 ins->u.bitfield.size);
2486                 }
2487                 count = TRIPLE_SIZE(ins);
2488                 for(i = 0; i < count; i++) {
2489                         fprintf(fp, " %-10p", ins->param[i]);
2490                 }
2491                 for(; i < 2; i++) {
2492                         fprintf(fp, "           ");
2493                 }
2494         }
2495         if (ins) {
2496                 struct triple_set *user;
2497 #if DEBUG_DISPLAY_TYPES
2498                 fprintf(fp, " <");
2499                 name_of(fp, ins->type);
2500                 fprintf(fp, "> ");
2501 #endif
2502 #if DEBUG_DISPLAY_USES
2503                 fprintf(fp, " [");
2504                 for(user = ins->use; user; user = user->next) {
2505                         fprintf(fp, " %-10p", user->member);
2506                 }
2507                 fprintf(fp, " ]");
2508 #endif
2509                 fprintf(fp, " @");
2510                 for(ptr = ins->occurance; ptr; ptr = ptr->parent) {
2511                         fprintf(fp, " %s,%s:%d.%d",
2512                                 ptr->function,
2513                                 ptr->filename,
2514                                 ptr->line,
2515                                 ptr->col);
2516                 }
2517                 if (ins->op == OP_ASM) {
2518                         fprintf(fp, "\n\t%s", ins->u.ainfo->str);
2519                 }
2520         }
2521         fprintf(fp, "\n");
2522         fflush(fp);
2523 }
2524
2525 static int equiv_types(struct type *left, struct type *right);
2526 static void display_triple_changes(
2527         FILE *fp, const struct triple *new, const struct triple *orig)
2528 {
2529
2530         int new_count, orig_count;
2531         new_count = TRIPLE_SIZE(new);
2532         orig_count = TRIPLE_SIZE(orig);
2533         if ((new->op != orig->op) ||
2534                 (new_count != orig_count) ||
2535                 (memcmp(orig->param, new->param,
2536                         orig_count * sizeof(orig->param[0])) != 0) ||
2537                 (memcmp(&orig->u, &new->u, sizeof(orig->u)) != 0))
2538         {
2539                 struct occurance *ptr;
2540                 int i, min_count, indent;
2541                 fprintf(fp, "(%p %p)", new, orig);
2542                 if (orig->op == new->op) {
2543                         fprintf(fp, " %-11s", tops(orig->op));
2544                 } else {
2545                         fprintf(fp, " [%-10s %-10s]",
2546                                 tops(new->op), tops(orig->op));
2547                 }
2548                 min_count = new_count;
2549                 if (min_count > orig_count) {
2550                         min_count = orig_count;
2551                 }
2552                 for(indent = i = 0; i < min_count; i++) {
2553                         if (orig->param[i] == new->param[i]) {
2554                                 fprintf(fp, " %-11p",
2555                                         orig->param[i]);
2556                                 indent += 12;
2557                         } else {
2558                                 fprintf(fp, " [%-10p %-10p]",
2559                                         new->param[i],
2560                                         orig->param[i]);
2561                                 indent += 24;
2562                         }
2563                 }
2564                 for(; i < orig_count; i++) {
2565                         fprintf(fp, " [%-9p]", orig->param[i]);
2566                         indent += 12;
2567                 }
2568                 for(; i < new_count; i++) {
2569                         fprintf(fp, " [%-9p]", new->param[i]);
2570                         indent += 12;
2571                 }
2572                 if ((new->op == OP_INTCONST)||
2573                         (new->op == OP_ADDRCONST)) {
2574                         fprintf(fp, " <0x%08lx>",
2575                                 (unsigned long)(new->u.cval));
2576                         indent += 13;
2577                 }
2578                 for(;indent < 36; indent++) {
2579                         putc(' ', fp);
2580                 }
2581
2582 #if DEBUG_DISPLAY_TYPES
2583                 fprintf(fp, " <");
2584                 name_of(fp, new->type);
2585                 if (!equiv_types(new->type, orig->type)) {
2586                         fprintf(fp, " -- ");
2587                         name_of(fp, orig->type);
2588                 }
2589                 fprintf(fp, "> ");
2590 #endif
2591
2592                 fprintf(fp, " @");
2593                 for(ptr = orig->occurance; ptr; ptr = ptr->parent) {
2594                         fprintf(fp, " %s,%s:%d.%d",
2595                                 ptr->function,
2596                                 ptr->filename,
2597                                 ptr->line,
2598                                 ptr->col);
2599
2600                 }
2601                 fprintf(fp, "\n");
2602                 fflush(fp);
2603         }
2604 }
2605
2606 static int triple_is_pure(struct compile_state *state, struct triple *ins, unsigned id)
2607 {
2608         /* Does the triple have no side effects.
2609          * I.e. Rexecuting the triple with the same arguments
2610          * gives the same value.
2611          */
2612         unsigned pure;
2613         valid_ins(state, ins);
2614         pure = PURE_BITS(table_ops[ins->op].flags);
2615         if ((pure != PURE) && (pure != IMPURE)) {
2616                 internal_error(state, 0, "Purity of %s not known",
2617                         tops(ins->op));
2618         }
2619         return (pure == PURE) && !(id & TRIPLE_FLAG_VOLATILE);
2620 }
2621
2622 static int triple_is_branch_type(struct compile_state *state,
2623         struct triple *ins, unsigned type)
2624 {
2625         /* Is this one of the passed branch types? */
2626         valid_ins(state, ins);
2627         return (BRANCH_BITS(table_ops[ins->op].flags) == type);
2628 }
2629
2630 static int triple_is_branch(struct compile_state *state, struct triple *ins)
2631 {
2632         /* Is this triple a branch instruction? */
2633         valid_ins(state, ins);
2634         return (BRANCH_BITS(table_ops[ins->op].flags) != 0);
2635 }
2636
2637 static int triple_is_cbranch(struct compile_state *state, struct triple *ins)
2638 {
2639         /* Is this triple a conditional branch instruction? */
2640         return triple_is_branch_type(state, ins, CBRANCH);
2641 }
2642
2643 static int triple_is_ubranch(struct compile_state *state, struct triple *ins)
2644 {
2645         /* Is this triple a unconditional branch instruction? */
2646         unsigned type;
2647         valid_ins(state, ins);
2648         type = BRANCH_BITS(table_ops[ins->op].flags);
2649         return (type != 0) && (type != CBRANCH);
2650 }
2651
2652 static int triple_is_call(struct compile_state *state, struct triple *ins)
2653 {
2654         /* Is this triple a call instruction? */
2655         return triple_is_branch_type(state, ins, CALLBRANCH);
2656 }
2657
2658 static int triple_is_ret(struct compile_state *state, struct triple *ins)
2659 {
2660         /* Is this triple a return instruction? */
2661         return triple_is_branch_type(state, ins, RETBRANCH);
2662 }
2663
2664 #if DEBUG_ROMCC_WARNING
2665 static int triple_is_simple_ubranch(struct compile_state *state, struct triple *ins)
2666 {
2667         /* Is this triple an unconditional branch and not a call or a
2668          * return? */
2669         return triple_is_branch_type(state, ins, UBRANCH);
2670 }
2671 #endif
2672
2673 static int triple_is_end(struct compile_state *state, struct triple *ins)
2674 {
2675         return triple_is_branch_type(state, ins, ENDBRANCH);
2676 }
2677
2678 static int triple_is_label(struct compile_state *state, struct triple *ins)
2679 {
2680         valid_ins(state, ins);
2681         return (ins->op == OP_LABEL);
2682 }
2683
2684 static struct triple *triple_to_block_start(
2685         struct compile_state *state, struct triple *start)
2686 {
2687         while(!triple_is_branch(state, start->prev) &&
2688                 (!triple_is_label(state, start) || !start->use)) {
2689                 start = start->prev;
2690         }
2691         return start;
2692 }
2693
2694 static int triple_is_def(struct compile_state *state, struct triple *ins)
2695 {
2696         /* This function is used to determine which triples need
2697          * a register.
2698          */
2699         int is_def;
2700         valid_ins(state, ins);
2701         is_def = (table_ops[ins->op].flags & DEF) == DEF;
2702         if (ins->lhs >= 1) {
2703                 is_def = 0;
2704         }
2705         return is_def;
2706 }
2707
2708 static int triple_is_structural(struct compile_state *state, struct triple *ins)
2709 {
2710         int is_structural;
2711         valid_ins(state, ins);
2712         is_structural = (table_ops[ins->op].flags & STRUCTURAL) == STRUCTURAL;
2713         return is_structural;
2714 }
2715
2716 static int triple_is_part(struct compile_state *state, struct triple *ins)
2717 {
2718         int is_part;
2719         valid_ins(state, ins);
2720         is_part = (table_ops[ins->op].flags & PART) == PART;
2721         return is_part;
2722 }
2723
2724 static int triple_is_auto_var(struct compile_state *state, struct triple *ins)
2725 {
2726         return (ins->op == OP_PIECE) && (MISC(ins, 0)->op == OP_ADECL);
2727 }
2728
2729 static struct triple **triple_iter(struct compile_state *state,
2730         size_t count, struct triple **vector,
2731         struct triple *ins, struct triple **last)
2732 {
2733         struct triple **ret;
2734         ret = 0;
2735         if (count) {
2736                 if (!last) {
2737                         ret = vector;
2738                 }
2739                 else if ((last >= vector) && (last < (vector + count - 1))) {
2740                         ret = last + 1;
2741                 }
2742         }
2743         return ret;
2744
2745 }
2746
2747 static struct triple **triple_lhs(struct compile_state *state,
2748         struct triple *ins, struct triple **last)
2749 {
2750         return triple_iter(state, ins->lhs, &LHS(ins,0),
2751                 ins, last);
2752 }
2753
2754 static struct triple **triple_rhs(struct compile_state *state,
2755         struct triple *ins, struct triple **last)
2756 {
2757         return triple_iter(state, ins->rhs, &RHS(ins,0),
2758                 ins, last);
2759 }
2760
2761 static struct triple **triple_misc(struct compile_state *state,
2762         struct triple *ins, struct triple **last)
2763 {
2764         return triple_iter(state, ins->misc, &MISC(ins,0),
2765                 ins, last);
2766 }
2767
2768 static struct triple **do_triple_targ(struct compile_state *state,
2769         struct triple *ins, struct triple **last, int call_edges, int next_edges)
2770 {
2771         size_t count;
2772         struct triple **ret, **vector;
2773         int next_is_targ;
2774         ret = 0;
2775         count = ins->targ;
2776         next_is_targ = 0;
2777         if (triple_is_cbranch(state, ins)) {
2778                 next_is_targ = 1;
2779         }
2780         if (!call_edges && triple_is_call(state, ins)) {
2781                 count = 0;
2782         }
2783         if (next_edges && triple_is_call(state, ins)) {
2784                 next_is_targ = 1;
2785         }
2786         vector = &TARG(ins, 0);
2787         if (!ret && next_is_targ) {
2788                 if (!last) {
2789                         ret = &ins->next;
2790                 } else if (last == &ins->next) {
2791                         last = 0;
2792                 }
2793         }
2794         if (!ret && count) {
2795                 if (!last) {
2796                         ret = vector;
2797                 }
2798                 else if ((last >= vector) && (last < (vector + count - 1))) {
2799                         ret = last + 1;
2800                 }
2801                 else if (last == vector + count - 1) {
2802                         last = 0;
2803                 }
2804         }
2805         if (!ret && triple_is_ret(state, ins) && call_edges) {
2806                 struct triple_set *use;
2807                 for(use = ins->use; use; use = use->next) {
2808                         if (!triple_is_call(state, use->member)) {
2809                                 continue;
2810                         }
2811                         if (!last) {
2812                                 ret = &use->member->next;
2813                                 break;
2814                         }
2815                         else if (last == &use->member->next) {
2816                                 last = 0;
2817                         }
2818                 }
2819         }
2820         return ret;
2821 }
2822
2823 static struct triple **triple_targ(struct compile_state *state,
2824         struct triple *ins, struct triple **last)
2825 {
2826         return do_triple_targ(state, ins, last, 1, 1);
2827 }
2828
2829 static struct triple **triple_edge_targ(struct compile_state *state,
2830         struct triple *ins, struct triple **last)
2831 {
2832         return do_triple_targ(state, ins, last,
2833                 state->functions_joined, !state->functions_joined);
2834 }
2835
2836 static struct triple *after_lhs(struct compile_state *state, struct triple *ins)
2837 {
2838         struct triple *next;
2839         int lhs, i;
2840         lhs = ins->lhs;
2841         next = ins->next;
2842         for(i = 0; i < lhs; i++) {
2843                 struct triple *piece;
2844                 piece = LHS(ins, i);
2845                 if (next != piece) {
2846                         internal_error(state, ins, "malformed lhs on %s",
2847                                 tops(ins->op));
2848                 }
2849                 if (next->op != OP_PIECE) {
2850                         internal_error(state, ins, "bad lhs op %s at %d on %s",
2851                                 tops(next->op), i, tops(ins->op));
2852                 }
2853                 if (next->u.cval != i) {
2854                         internal_error(state, ins, "bad u.cval of %d %d expected",
2855                                 next->u.cval, i);
2856                 }
2857                 next = next->next;
2858         }
2859         return next;
2860 }
2861
2862 /* Function piece accessor functions */
2863 static struct triple *do_farg(struct compile_state *state,
2864         struct triple *func, unsigned index)
2865 {
2866         struct type *ftype;
2867         struct triple *first, *arg;
2868         unsigned i;
2869
2870         ftype = func->type;
2871         if((index < 0) || (index >= (ftype->elements + 2))) {
2872                 internal_error(state, func, "bad argument index: %d", index);
2873         }
2874         first = RHS(func, 0);
2875         arg = first->next;
2876         for(i = 0; i < index; i++, arg = after_lhs(state, arg)) {
2877                 /* do nothing */
2878         }
2879         if (arg->op != OP_ADECL) {
2880                 internal_error(state, 0, "arg not adecl?");
2881         }
2882         return arg;
2883 }
2884 static struct triple *fresult(struct compile_state *state, struct triple *func)
2885 {
2886         return do_farg(state, func, 0);
2887 }
2888 static struct triple *fretaddr(struct compile_state *state, struct triple *func)
2889 {
2890         return do_farg(state, func, 1);
2891 }
2892 static struct triple *farg(struct compile_state *state,
2893         struct triple *func, unsigned index)
2894 {
2895         return do_farg(state, func, index + 2);
2896 }
2897
2898
2899 static void display_func(struct compile_state *state, FILE *fp, struct triple *func)
2900 {
2901         struct triple *first, *ins;
2902         fprintf(fp, "display_func %s\n", func->type->type_ident->name);
2903         first = ins = RHS(func, 0);
2904         do {
2905                 if (triple_is_label(state, ins) && ins->use) {
2906                         fprintf(fp, "%p:\n", ins);
2907                 }
2908                 display_triple(fp, ins);
2909
2910                 if (triple_is_branch(state, ins)) {
2911                         fprintf(fp, "\n");
2912                 }
2913                 if (ins->next->prev != ins) {
2914                         internal_error(state, ins->next, "bad prev");
2915                 }
2916                 ins = ins->next;
2917         } while(ins != first);
2918 }
2919
2920 static void verify_use(struct compile_state *state,
2921         struct triple *user, struct triple *used)
2922 {
2923         int size, i;
2924         size = TRIPLE_SIZE(user);
2925         for(i = 0; i < size; i++) {
2926                 if (user->param[i] == used) {
2927                         break;
2928                 }
2929         }
2930         if (triple_is_branch(state, user)) {
2931                 if (user->next == used) {
2932                         i = -1;
2933                 }
2934         }
2935         if (i == size) {
2936                 internal_error(state, user, "%s(%p) does not use %s(%p)",
2937                         tops(user->op), user, tops(used->op), used);
2938         }
2939 }
2940
2941 static int find_rhs_use(struct compile_state *state,
2942         struct triple *user, struct triple *used)
2943 {
2944         struct triple **param;
2945         int size, i;
2946         verify_use(state, user, used);
2947
2948 #if DEBUG_ROMCC_WARNINGS
2949 #warning "AUDIT ME ->rhs"
2950 #endif
2951         size = user->rhs;
2952         param = &RHS(user, 0);
2953         for(i = 0; i < size; i++) {
2954                 if (param[i] == used) {
2955                         return i;
2956                 }
2957         }
2958         return -1;
2959 }
2960
2961 static void free_triple(struct compile_state *state, struct triple *ptr)
2962 {
2963         size_t size;
2964         size = sizeof(*ptr) - sizeof(ptr->param) +
2965                 (sizeof(ptr->param[0])*TRIPLE_SIZE(ptr));
2966         ptr->prev->next = ptr->next;
2967         ptr->next->prev = ptr->prev;
2968         if (ptr->use) {
2969                 internal_error(state, ptr, "ptr->use != 0");
2970         }
2971         put_occurance(ptr->occurance);
2972         memset(ptr, -1, size);
2973         xfree(ptr);
2974 }
2975
2976 static void release_triple(struct compile_state *state, struct triple *ptr)
2977 {
2978         struct triple_set *set, *next;
2979         struct triple **expr;
2980         struct block *block;
2981         if (ptr == &unknown_triple) {
2982                 return;
2983         }
2984         valid_ins(state, ptr);
2985         /* Make certain the we are not the first or last element of a block */
2986         block = block_of_triple(state, ptr);
2987         if (block) {
2988                 if ((block->last == ptr) && (block->first == ptr)) {
2989                         block->last = block->first = 0;
2990                 }
2991                 else if (block->last == ptr) {
2992                         block->last = ptr->prev;
2993                 }
2994                 else if (block->first == ptr) {
2995                         block->first = ptr->next;
2996                 }
2997         }
2998         /* Remove ptr from use chains where it is the user */
2999         expr = triple_rhs(state, ptr, 0);
3000         for(; expr; expr = triple_rhs(state, ptr, expr)) {
3001                 if (*expr) {
3002                         unuse_triple(*expr, ptr);
3003                 }
3004         }
3005         expr = triple_lhs(state, ptr, 0);
3006         for(; expr; expr = triple_lhs(state, ptr, expr)) {
3007                 if (*expr) {
3008                         unuse_triple(*expr, ptr);
3009                 }
3010         }
3011         expr = triple_misc(state, ptr, 0);
3012         for(; expr; expr = triple_misc(state, ptr, expr)) {
3013                 if (*expr) {
3014                         unuse_triple(*expr, ptr);
3015                 }
3016         }
3017         expr = triple_targ(state, ptr, 0);
3018         for(; expr; expr = triple_targ(state, ptr, expr)) {
3019                 if (*expr){
3020                         unuse_triple(*expr, ptr);
3021                 }
3022         }
3023         /* Reomve ptr from use chains where it is used */
3024         for(set = ptr->use; set; set = next) {
3025                 next = set->next;
3026                 valid_ins(state, set->member);
3027                 expr = triple_rhs(state, set->member, 0);
3028                 for(; expr; expr = triple_rhs(state, set->member, expr)) {
3029                         if (*expr == ptr) {
3030                                 *expr = &unknown_triple;
3031                         }
3032                 }
3033                 expr = triple_lhs(state, set->member, 0);
3034                 for(; expr; expr = triple_lhs(state, set->member, expr)) {
3035                         if (*expr == ptr) {
3036                                 *expr = &unknown_triple;
3037                         }
3038                 }
3039                 expr = triple_misc(state, set->member, 0);
3040                 for(; expr; expr = triple_misc(state, set->member, expr)) {
3041                         if (*expr == ptr) {
3042                                 *expr = &unknown_triple;
3043                         }
3044                 }
3045                 expr = triple_targ(state, set->member, 0);
3046                 for(; expr; expr = triple_targ(state, set->member, expr)) {
3047                         if (*expr == ptr) {
3048                                 *expr = &unknown_triple;
3049                         }
3050                 }
3051                 unuse_triple(ptr, set->member);
3052         }
3053         free_triple(state, ptr);
3054 }
3055
3056 static void print_triples(struct compile_state *state);
3057 static void print_blocks(struct compile_state *state, const char *func, FILE *fp);
3058
3059 #define TOK_UNKNOWN       0
3060 #define TOK_SPACE         1
3061 #define TOK_SEMI          2
3062 #define TOK_LBRACE        3
3063 #define TOK_RBRACE        4
3064 #define TOK_COMMA         5
3065 #define TOK_EQ            6
3066 #define TOK_COLON         7
3067 #define TOK_LBRACKET      8
3068 #define TOK_RBRACKET      9
3069 #define TOK_LPAREN        10
3070 #define TOK_RPAREN        11
3071 #define TOK_STAR          12
3072 #define TOK_DOTS          13
3073 #define TOK_MORE          14
3074 #define TOK_LESS          15
3075 #define TOK_TIMESEQ       16
3076 #define TOK_DIVEQ         17
3077 #define TOK_MODEQ         18
3078 #define TOK_PLUSEQ        19
3079 #define TOK_MINUSEQ       20
3080 #define TOK_SLEQ          21
3081 #define TOK_SREQ          22
3082 #define TOK_ANDEQ         23
3083 #define TOK_XOREQ         24
3084 #define TOK_OREQ          25
3085 #define TOK_EQEQ          26
3086 #define TOK_NOTEQ         27
3087 #define TOK_QUEST         28
3088 #define TOK_LOGOR         29
3089 #define TOK_LOGAND        30
3090 #define TOK_OR            31
3091 #define TOK_AND           32
3092 #define TOK_XOR           33
3093 #define TOK_LESSEQ        34
3094 #define TOK_MOREEQ        35
3095 #define TOK_SL            36
3096 #define TOK_SR            37
3097 #define TOK_PLUS          38
3098 #define TOK_MINUS         39
3099 #define TOK_DIV           40
3100 #define TOK_MOD           41
3101 #define TOK_PLUSPLUS      42
3102 #define TOK_MINUSMINUS    43
3103 #define TOK_BANG          44
3104 #define TOK_ARROW         45
3105 #define TOK_DOT           46
3106 #define TOK_TILDE         47
3107 #define TOK_LIT_STRING    48
3108 #define TOK_LIT_CHAR      49
3109 #define TOK_LIT_INT       50
3110 #define TOK_LIT_FLOAT     51
3111 #define TOK_MACRO         52
3112 #define TOK_CONCATENATE   53
3113
3114 #define TOK_IDENT         54
3115 #define TOK_STRUCT_NAME   55
3116 #define TOK_ENUM_CONST    56
3117 #define TOK_TYPE_NAME     57
3118
3119 #define TOK_AUTO          58
3120 #define TOK_BREAK         59
3121 #define TOK_CASE          60
3122 #define TOK_CHAR          61
3123 #define TOK_CONST         62
3124 #define TOK_CONTINUE      63
3125 #define TOK_DEFAULT       64
3126 #define TOK_DO            65
3127 #define TOK_DOUBLE        66
3128 #define TOK_ELSE          67
3129 #define TOK_ENUM          68
3130 #define TOK_EXTERN        69
3131 #define TOK_FLOAT         70
3132 #define TOK_FOR           71
3133 #define TOK_GOTO          72
3134 #define TOK_IF            73
3135 #define TOK_INLINE        74
3136 #define TOK_INT           75
3137 #define TOK_LONG          76
3138 #define TOK_REGISTER      77
3139 #define TOK_RESTRICT      78
3140 #define TOK_RETURN        79
3141 #define TOK_SHORT         80
3142 #define TOK_SIGNED        81
3143 #define TOK_SIZEOF        82
3144 #define TOK_STATIC        83
3145 #define TOK_STRUCT        84
3146 #define TOK_SWITCH        85
3147 #define TOK_TYPEDEF       86
3148 #define TOK_UNION         87
3149 #define TOK_UNSIGNED      88
3150 #define TOK_VOID          89
3151 #define TOK_VOLATILE      90
3152 #define TOK_WHILE         91
3153 #define TOK_ASM           92
3154 #define TOK_ATTRIBUTE     93
3155 #define TOK_ALIGNOF       94
3156 #define TOK_FIRST_KEYWORD TOK_AUTO
3157 #define TOK_LAST_KEYWORD  TOK_ALIGNOF
3158
3159 #define TOK_MDEFINE       100
3160 #define TOK_MDEFINED      101
3161 #define TOK_MUNDEF        102
3162 #define TOK_MINCLUDE      103
3163 #define TOK_MLINE         104
3164 #define TOK_MERROR        105
3165 #define TOK_MWARNING      106
3166 #define TOK_MPRAGMA       107
3167 #define TOK_MIFDEF        108
3168 #define TOK_MIFNDEF       109
3169 #define TOK_MELIF         110
3170 #define TOK_MENDIF        111
3171
3172 #define TOK_FIRST_MACRO   TOK_MDEFINE
3173 #define TOK_LAST_MACRO    TOK_MENDIF
3174
3175 #define TOK_MIF           112
3176 #define TOK_MELSE         113
3177 #define TOK_MIDENT        114
3178
3179 #define TOK_EOL           115
3180 #define TOK_EOF           116
3181
3182 static const char *tokens[] = {
3183 [TOK_UNKNOWN     ] = ":unknown:",
3184 [TOK_SPACE       ] = ":space:",
3185 [TOK_SEMI        ] = ";",
3186 [TOK_LBRACE      ] = "{",
3187 [TOK_RBRACE      ] = "}",
3188 [TOK_COMMA       ] = ",",
3189 [TOK_EQ          ] = "=",
3190 [TOK_COLON       ] = ":",
3191 [TOK_LBRACKET    ] = "[",
3192 [TOK_RBRACKET    ] = "]",
3193 [TOK_LPAREN      ] = "(",
3194 [TOK_RPAREN      ] = ")",
3195 [TOK_STAR        ] = "*",
3196 [TOK_DOTS        ] = "...",
3197 [TOK_MORE        ] = ">",
3198 [TOK_LESS        ] = "<",
3199 [TOK_TIMESEQ     ] = "*=",
3200 [TOK_DIVEQ       ] = "/=",
3201 [TOK_MODEQ       ] = "%=",
3202 [TOK_PLUSEQ      ] = "+=",
3203 [TOK_MINUSEQ     ] = "-=",
3204 [TOK_SLEQ        ] = "<<=",
3205 [TOK_SREQ        ] = ">>=",
3206 [TOK_ANDEQ       ] = "&=",
3207 [TOK_XOREQ       ] = "^=",
3208 [TOK_OREQ        ] = "|=",
3209 [TOK_EQEQ        ] = "==",
3210 [TOK_NOTEQ       ] = "!=",
3211 [TOK_QUEST       ] = "?",
3212 [TOK_LOGOR       ] = "||",
3213 [TOK_LOGAND      ] = "&&",
3214 [TOK_OR          ] = "|",
3215 [TOK_AND         ] = "&",
3216 [TOK_XOR         ] = "^",
3217 [TOK_LESSEQ      ] = "<=",
3218 [TOK_MOREEQ      ] = ">=",
3219 [TOK_SL          ] = "<<",
3220 [TOK_SR          ] = ">>",
3221 [TOK_PLUS        ] = "+",
3222 [TOK_MINUS       ] = "-",
3223 [TOK_DIV         ] = "/",
3224 [TOK_MOD         ] = "%",
3225 [TOK_PLUSPLUS    ] = "++",
3226 [TOK_MINUSMINUS  ] = "--",
3227 [TOK_BANG        ] = "!",
3228 [TOK_ARROW       ] = "->",
3229 [TOK_DOT         ] = ".",
3230 [TOK_TILDE       ] = "~",
3231 [TOK_LIT_STRING  ] = ":string:",
3232 [TOK_IDENT       ] = ":ident:",
3233 [TOK_TYPE_NAME   ] = ":typename:",
3234 [TOK_LIT_CHAR    ] = ":char:",
3235 [TOK_LIT_INT     ] = ":integer:",
3236 [TOK_LIT_FLOAT   ] = ":float:",
3237 [TOK_MACRO       ] = "#",
3238 [TOK_CONCATENATE ] = "##",
3239
3240 [TOK_AUTO        ] = "auto",
3241 [TOK_BREAK       ] = "break",
3242 [TOK_CASE        ] = "case",
3243 [TOK_CHAR        ] = "char",
3244 [TOK_CONST       ] = "const",
3245 [TOK_CONTINUE    ] = "continue",
3246 [TOK_DEFAULT     ] = "default",
3247 [TOK_DO          ] = "do",
3248 [TOK_DOUBLE      ] = "double",
3249 [TOK_ELSE        ] = "else",
3250 [TOK_ENUM        ] = "enum",
3251 [TOK_EXTERN      ] = "extern",
3252 [TOK_FLOAT       ] = "float",
3253 [TOK_FOR         ] = "for",
3254 [TOK_GOTO        ] = "goto",
3255 [TOK_IF          ] = "if",
3256 [TOK_INLINE      ] = "inline",
3257 [TOK_INT         ] = "int",
3258 [TOK_LONG        ] = "long",
3259 [TOK_REGISTER    ] = "register",
3260 [TOK_RESTRICT    ] = "restrict",
3261 [TOK_RETURN      ] = "return",
3262 [TOK_SHORT       ] = "short",
3263 [TOK_SIGNED      ] = "signed",
3264 [TOK_SIZEOF      ] = "sizeof",
3265 [TOK_STATIC      ] = "static",
3266 [TOK_STRUCT      ] = "struct",
3267 [TOK_SWITCH      ] = "switch",
3268 [TOK_TYPEDEF     ] = "typedef",
3269 [TOK_UNION       ] = "union",
3270 [TOK_UNSIGNED    ] = "unsigned",
3271 [TOK_VOID        ] = "void",
3272 [TOK_VOLATILE    ] = "volatile",
3273 [TOK_WHILE       ] = "while",
3274 [TOK_ASM         ] = "asm",
3275 [TOK_ATTRIBUTE   ] = "__attribute__",
3276 [TOK_ALIGNOF     ] = "__alignof__",
3277
3278 [TOK_MDEFINE     ] = "#define",
3279 [TOK_MDEFINED    ] = "#defined",
3280 [TOK_MUNDEF      ] = "#undef",
3281 [TOK_MINCLUDE    ] = "#include",
3282 [TOK_MLINE       ] = "#line",
3283 [TOK_MERROR      ] = "#error",
3284 [TOK_MWARNING    ] = "#warning",
3285 [TOK_MPRAGMA     ] = "#pragma",
3286 [TOK_MIFDEF      ] = "#ifdef",
3287 [TOK_MIFNDEF     ] = "#ifndef",
3288 [TOK_MELIF       ] = "#elif",
3289 [TOK_MENDIF      ] = "#endif",
3290
3291 [TOK_MIF         ] = "#if",
3292 [TOK_MELSE       ] = "#else",
3293 [TOK_MIDENT      ] = "#:ident:",
3294 [TOK_EOL         ] = "EOL",
3295 [TOK_EOF         ] = "EOF",
3296 };
3297
3298 static unsigned int hash(const char *str, int str_len)
3299 {
3300         unsigned int hash;
3301         const char *end;
3302         end = str + str_len;
3303         hash = 0;
3304         for(; str < end; str++) {
3305                 hash = (hash *263) + *str;
3306         }
3307         hash = hash & (HASH_TABLE_SIZE -1);
3308         return hash;
3309 }
3310
3311 static struct hash_entry *lookup(
3312         struct compile_state *state, const char *name, int name_len)
3313 {
3314         struct hash_entry *entry;
3315         unsigned int index;
3316         index = hash(name, name_len);
3317         entry = state->hash_table[index];
3318         while(entry &&
3319                 ((entry->name_len != name_len) ||
3320                         (memcmp(entry->name, name, name_len) != 0))) {
3321                 entry = entry->next;
3322         }
3323         if (!entry) {
3324                 char *new_name;
3325                 /* Get a private copy of the name */
3326                 new_name = xmalloc(name_len + 1, "hash_name");
3327                 memcpy(new_name, name, name_len);
3328                 new_name[name_len] = '\0';
3329
3330                 /* Create a new hash entry */
3331                 entry = xcmalloc(sizeof(*entry), "hash_entry");
3332                 entry->next = state->hash_table[index];
3333                 entry->name = new_name;
3334                 entry->name_len = name_len;
3335
3336                 /* Place the new entry in the hash table */
3337                 state->hash_table[index] = entry;
3338         }
3339         return entry;
3340 }
3341
3342 static void ident_to_keyword(struct compile_state *state, struct token *tk)
3343 {
3344         struct hash_entry *entry;
3345         entry = tk->ident;
3346         if (entry && ((entry->tok == TOK_TYPE_NAME) ||
3347                 (entry->tok == TOK_ENUM_CONST) ||
3348                 ((entry->tok >= TOK_FIRST_KEYWORD) &&
3349                         (entry->tok <= TOK_LAST_KEYWORD)))) {
3350                 tk->tok = entry->tok;
3351         }
3352 }
3353
3354 static void ident_to_macro(struct compile_state *state, struct token *tk)
3355 {
3356         struct hash_entry *entry;
3357         entry = tk->ident;
3358         if (!entry)
3359                 return;
3360         if ((entry->tok >= TOK_FIRST_MACRO) && (entry->tok <= TOK_LAST_MACRO)) {
3361                 tk->tok = entry->tok;
3362         }
3363         else if (entry->tok == TOK_IF) {
3364                 tk->tok = TOK_MIF;
3365         }
3366         else if (entry->tok == TOK_ELSE) {
3367                 tk->tok = TOK_MELSE;
3368         }
3369         else {
3370                 tk->tok = TOK_MIDENT;
3371         }
3372 }
3373
3374 static void hash_keyword(
3375         struct compile_state *state, const char *keyword, int tok)
3376 {
3377         struct hash_entry *entry;
3378         entry = lookup(state, keyword, strlen(keyword));
3379         if (entry && entry->tok != TOK_UNKNOWN) {
3380                 die("keyword %s already hashed", keyword);
3381         }
3382         entry->tok  = tok;
3383 }
3384
3385 static void romcc_symbol(
3386         struct compile_state *state, struct hash_entry *ident,
3387         struct symbol **chain, struct triple *def, struct type *type, int depth)
3388 {
3389         struct symbol *sym;
3390         if (*chain && ((*chain)->scope_depth >= depth)) {
3391                 error(state, 0, "%s already defined", ident->name);
3392         }
3393         sym = xcmalloc(sizeof(*sym), "symbol");
3394         sym->ident = ident;
3395         sym->def   = def;
3396         sym->type  = type;
3397         sym->scope_depth = depth;
3398         sym->next = *chain;
3399         *chain    = sym;
3400 }
3401
3402 static void symbol(
3403         struct compile_state *state, struct hash_entry *ident,
3404         struct symbol **chain, struct triple *def, struct type *type)
3405 {
3406         romcc_symbol(state, ident, chain, def, type, state->scope_depth);
3407 }
3408
3409 static void var_symbol(struct compile_state *state,
3410         struct hash_entry *ident, struct triple *def)
3411 {
3412         if ((def->type->type & TYPE_MASK) == TYPE_PRODUCT) {
3413                 internal_error(state, 0, "bad var type");
3414         }
3415         symbol(state, ident, &ident->sym_ident, def, def->type);
3416 }
3417
3418 static void label_symbol(struct compile_state *state,
3419         struct hash_entry *ident, struct triple *label, int depth)
3420 {
3421         romcc_symbol(state, ident, &ident->sym_label, label, &void_type, depth);
3422 }
3423
3424 static void start_scope(struct compile_state *state)
3425 {
3426         state->scope_depth++;
3427 }
3428
3429 static void end_scope_syms(struct compile_state *state,
3430         struct symbol **chain, int depth)
3431 {
3432         struct symbol *sym, *next;
3433         sym = *chain;
3434         while(sym && (sym->scope_depth == depth)) {
3435                 next = sym->next;
3436                 xfree(sym);
3437                 sym = next;
3438         }
3439         *chain = sym;
3440 }
3441
3442 static void end_scope(struct compile_state *state)
3443 {
3444         int i;
3445         int depth;
3446         /* Walk through the hash table and remove all symbols
3447          * in the current scope.
3448          */
3449         depth = state->scope_depth;
3450         for(i = 0; i < HASH_TABLE_SIZE; i++) {
3451                 struct hash_entry *entry;
3452                 entry = state->hash_table[i];
3453                 while(entry) {
3454                         end_scope_syms(state, &entry->sym_label, depth);
3455                         end_scope_syms(state, &entry->sym_tag,   depth);
3456                         end_scope_syms(state, &entry->sym_ident, depth);
3457                         entry = entry->next;
3458                 }
3459         }
3460         state->scope_depth = depth - 1;
3461 }
3462
3463 static void register_keywords(struct compile_state *state)
3464 {
3465         hash_keyword(state, "auto",          TOK_AUTO);
3466         hash_keyword(state, "break",         TOK_BREAK);
3467         hash_keyword(state, "case",          TOK_CASE);
3468         hash_keyword(state, "char",          TOK_CHAR);
3469         hash_keyword(state, "const",         TOK_CONST);
3470         hash_keyword(state, "continue",      TOK_CONTINUE);
3471         hash_keyword(state, "default",       TOK_DEFAULT);
3472         hash_keyword(state, "do",            TOK_DO);
3473         hash_keyword(state, "double",        TOK_DOUBLE);
3474         hash_keyword(state, "else",          TOK_ELSE);
3475         hash_keyword(state, "enum",          TOK_ENUM);
3476         hash_keyword(state, "extern",        TOK_EXTERN);
3477         hash_keyword(state, "float",         TOK_FLOAT);
3478         hash_keyword(state, "for",           TOK_FOR);
3479         hash_keyword(state, "goto",          TOK_GOTO);
3480         hash_keyword(state, "if",            TOK_IF);
3481         hash_keyword(state, "inline",        TOK_INLINE);
3482         hash_keyword(state, "int",           TOK_INT);
3483         hash_keyword(state, "long",          TOK_LONG);
3484         hash_keyword(state, "register",      TOK_REGISTER);
3485         hash_keyword(state, "restrict",      TOK_RESTRICT);
3486         hash_keyword(state, "return",        TOK_RETURN);
3487         hash_keyword(state, "short",         TOK_SHORT);
3488         hash_keyword(state, "signed",        TOK_SIGNED);
3489         hash_keyword(state, "sizeof",        TOK_SIZEOF);
3490         hash_keyword(state, "static",        TOK_STATIC);
3491         hash_keyword(state, "struct",        TOK_STRUCT);
3492         hash_keyword(state, "switch",        TOK_SWITCH);
3493         hash_keyword(state, "typedef",       TOK_TYPEDEF);
3494         hash_keyword(state, "union",         TOK_UNION);
3495         hash_keyword(state, "unsigned",      TOK_UNSIGNED);
3496         hash_keyword(state, "void",          TOK_VOID);
3497         hash_keyword(state, "volatile",      TOK_VOLATILE);
3498         hash_keyword(state, "__volatile__",  TOK_VOLATILE);
3499         hash_keyword(state, "while",         TOK_WHILE);
3500         hash_keyword(state, "asm",           TOK_ASM);
3501         hash_keyword(state, "__asm__",       TOK_ASM);
3502         hash_keyword(state, "__attribute__", TOK_ATTRIBUTE);
3503         hash_keyword(state, "__alignof__",   TOK_ALIGNOF);
3504 }
3505
3506 static void register_macro_keywords(struct compile_state *state)
3507 {
3508         hash_keyword(state, "define",        TOK_MDEFINE);
3509         hash_keyword(state, "defined",       TOK_MDEFINED);
3510         hash_keyword(state, "undef",         TOK_MUNDEF);
3511         hash_keyword(state, "include",       TOK_MINCLUDE);
3512         hash_keyword(state, "line",          TOK_MLINE);
3513         hash_keyword(state, "error",         TOK_MERROR);
3514         hash_keyword(state, "warning",       TOK_MWARNING);
3515         hash_keyword(state, "pragma",        TOK_MPRAGMA);
3516         hash_keyword(state, "ifdef",         TOK_MIFDEF);
3517         hash_keyword(state, "ifndef",        TOK_MIFNDEF);
3518         hash_keyword(state, "elif",          TOK_MELIF);
3519         hash_keyword(state, "endif",         TOK_MENDIF);
3520 }
3521
3522
3523 static void undef_macro(struct compile_state *state, struct hash_entry *ident)
3524 {
3525         if (ident->sym_define != 0) {
3526                 struct macro *macro;
3527                 struct macro_arg *arg, *anext;
3528                 macro = ident->sym_define;
3529                 ident->sym_define = 0;
3530
3531                 /* Free the macro arguments... */
3532                 anext = macro->args;
3533                 while(anext) {
3534                         arg = anext;
3535                         anext = arg->next;
3536                         xfree(arg);
3537                 }
3538
3539                 /* Free the macro buffer */
3540                 xfree(macro->buf);
3541
3542                 /* Now free the macro itself */
3543                 xfree(macro);
3544         }
3545 }
3546
3547 static void do_define_macro(struct compile_state *state,
3548         struct hash_entry *ident, const char *body,
3549         int argc, struct macro_arg *args)
3550 {
3551         struct macro *macro;
3552         struct macro_arg *arg;
3553         size_t body_len;
3554
3555         /* Find the length of the body */
3556         body_len = strlen(body);
3557         macro = ident->sym_define;
3558         if (macro != 0) {
3559                 int identical_bodies, identical_args;
3560                 struct macro_arg *oarg;
3561                 /* Explicitly allow identical redfinitions of the same macro */
3562                 identical_bodies =
3563                         (macro->buf_len == body_len) &&
3564                         (memcmp(macro->buf, body, body_len) == 0);
3565                 identical_args = macro->argc == argc;
3566                 oarg = macro->args;
3567                 arg = args;
3568                 while(identical_args && arg) {
3569                         identical_args = oarg->ident == arg->ident;
3570                         arg = arg->next;
3571                         oarg = oarg->next;
3572                 }
3573                 if (identical_bodies && identical_args) {
3574                         xfree(body);
3575                         return;
3576                 }
3577                 error(state, 0, "macro %s already defined\n", ident->name);
3578         }
3579 #if 0
3580         fprintf(state->errout, "#define %s: `%*.*s'\n",
3581                 ident->name, body_len, body_len, body);
3582 #endif
3583         macro = xmalloc(sizeof(*macro), "macro");
3584         macro->ident   = ident;
3585         macro->buf     = body;
3586         macro->buf_len = body_len;
3587         macro->args    = args;
3588         macro->argc    = argc;
3589
3590         ident->sym_define = macro;
3591 }
3592
3593 static void define_macro(
3594         struct compile_state *state,
3595         struct hash_entry *ident,
3596         const char *body, int body_len,
3597         int argc, struct macro_arg *args)
3598 {
3599         char *buf;
3600         buf = xmalloc(body_len + 1, "macro buf");
3601         memcpy(buf, body, body_len);
3602         buf[body_len] = '\0';
3603         do_define_macro(state, ident, buf, argc, args);
3604 }
3605
3606 static void register_builtin_macro(struct compile_state *state,
3607         const char *name, const char *value)
3608 {
3609         struct hash_entry *ident;
3610
3611         if (value[0] == '(') {
3612                 internal_error(state, 0, "Builtin macros with arguments not supported");
3613         }
3614         ident = lookup(state, name, strlen(name));
3615         define_macro(state, ident, value, strlen(value), -1, 0);
3616 }
3617
3618 static void register_builtin_macros(struct compile_state *state)
3619 {
3620         char buf[30];
3621         char scratch[30];
3622         time_t now;
3623         struct tm *tm;
3624         now = time(NULL);
3625         tm = localtime(&now);
3626
3627         register_builtin_macro(state, "__ROMCC__", VERSION_MAJOR);
3628         register_builtin_macro(state, "__ROMCC_MINOR__", VERSION_MINOR);
3629         register_builtin_macro(state, "__FILE__", "\"This should be the filename\"");
3630         register_builtin_macro(state, "__LINE__", "54321");
3631
3632         strftime(scratch, sizeof(scratch), "%b %e %Y", tm);
3633         sprintf(buf, "\"%s\"", scratch);
3634         register_builtin_macro(state, "__DATE__", buf);
3635
3636         strftime(scratch, sizeof(scratch), "%H:%M:%S", tm);
3637         sprintf(buf, "\"%s\"", scratch);
3638         register_builtin_macro(state, "__TIME__", buf);
3639
3640         /* I can't be a conforming implementation of C :( */
3641         register_builtin_macro(state, "__STDC__", "0");
3642         /* In particular I don't conform to C99 */
3643         register_builtin_macro(state, "__STDC_VERSION__", "199901L");
3644
3645 }
3646
3647 static void process_cmdline_macros(struct compile_state *state)
3648 {
3649         const char **macro, *name;
3650         struct hash_entry *ident;
3651         for(macro = state->compiler->defines; (name = *macro); macro++) {
3652                 const char *body;
3653                 size_t name_len;
3654
3655                 name_len = strlen(name);
3656                 body = strchr(name, '=');
3657                 if (!body) {
3658                         body = "\0";
3659                 } else {
3660                         name_len = body - name;
3661                         body++;
3662                 }
3663                 ident = lookup(state, name, name_len);
3664                 define_macro(state, ident, body, strlen(body), -1, 0);
3665         }
3666         for(macro = state->compiler->undefs; (name = *macro); macro++) {
3667                 ident = lookup(state, name, strlen(name));
3668                 undef_macro(state, ident);
3669         }
3670 }
3671
3672 static int spacep(int c)
3673 {
3674         int ret = 0;
3675         switch(c) {
3676         case ' ':
3677         case '\t':
3678         case '\f':
3679         case '\v':
3680         case '\r':
3681                 ret = 1;
3682                 break;
3683         }
3684         return ret;
3685 }
3686
3687 static int digitp(int c)
3688 {
3689         int ret = 0;
3690         switch(c) {
3691         case '0': case '1': case '2': case '3': case '4':
3692         case '5': case '6': case '7': case '8': case '9':
3693                 ret = 1;
3694                 break;
3695         }
3696         return ret;
3697 }
3698 static int digval(int c)
3699 {
3700         int val = -1;
3701         if ((c >= '0') && (c <= '9')) {
3702                 val = c - '0';
3703         }
3704         return val;
3705 }
3706
3707 static int hexdigitp(int c)
3708 {
3709         int ret = 0;
3710         switch(c) {
3711         case '0': case '1': case '2': case '3': case '4':
3712         case '5': case '6': case '7': case '8': case '9':
3713         case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
3714         case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
3715                 ret = 1;
3716                 break;
3717         }
3718         return ret;
3719 }
3720 static int hexdigval(int c)
3721 {
3722         int val = -1;
3723         if ((c >= '0') && (c <= '9')) {
3724                 val = c - '0';
3725         }
3726         else if ((c >= 'A') && (c <= 'F')) {
3727                 val = 10 + (c - 'A');
3728         }
3729         else if ((c >= 'a') && (c <= 'f')) {
3730                 val = 10 + (c - 'a');
3731         }
3732         return val;
3733 }
3734
3735 static int octdigitp(int c)
3736 {
3737         int ret = 0;
3738         switch(c) {
3739         case '0': case '1': case '2': case '3':
3740         case '4': case '5': case '6': case '7':
3741                 ret = 1;
3742                 break;
3743         }
3744         return ret;
3745 }
3746 static int octdigval(int c)
3747 {
3748         int val = -1;
3749         if ((c >= '0') && (c <= '7')) {
3750                 val = c - '0';
3751         }
3752         return val;
3753 }
3754
3755 static int letterp(int c)
3756 {
3757         int ret = 0;
3758         switch(c) {
3759         case 'a': case 'b': case 'c': case 'd': case 'e':
3760         case 'f': case 'g': case 'h': case 'i': case 'j':
3761         case 'k': case 'l': case 'm': case 'n': case 'o':
3762         case 'p': case 'q': case 'r': case 's': case 't':
3763         case 'u': case 'v': case 'w': case 'x': case 'y':
3764         case 'z':
3765         case 'A': case 'B': case 'C': case 'D': case 'E':
3766         case 'F': case 'G': case 'H': case 'I': case 'J':
3767         case 'K': case 'L': case 'M': case 'N': case 'O':
3768         case 'P': case 'Q': case 'R': case 'S': case 'T':
3769         case 'U': case 'V': case 'W': case 'X': case 'Y':
3770         case 'Z':
3771         case '_':
3772                 ret = 1;
3773                 break;
3774         }
3775         return ret;
3776 }
3777
3778 static const char *identifier(const char *str, const char *end)
3779 {
3780         if (letterp(*str)) {
3781                 for(; str < end; str++) {
3782                         int c;
3783                         c = *str;
3784                         if (!letterp(c) && !digitp(c)) {
3785                                 break;
3786                         }
3787                 }
3788         }
3789         return str;
3790 }
3791
3792 static int char_value(struct compile_state *state,
3793         const signed char **strp, const signed char *end)
3794 {
3795         const signed char *str;
3796         int c;
3797         str = *strp;
3798         c = *str++;
3799         if ((c == '\\') && (str < end)) {
3800                 switch(*str) {
3801                 case 'n':  c = '\n'; str++; break;
3802                 case 't':  c = '\t'; str++; break;
3803                 case 'v':  c = '\v'; str++; break;
3804                 case 'b':  c = '\b'; str++; break;
3805                 case 'r':  c = '\r'; str++; break;
3806                 case 'f':  c = '\f'; str++; break;
3807                 case 'a':  c = '\a'; str++; break;
3808                 case '\\': c = '\\'; str++; break;
3809                 case '?':  c = '?';  str++; break;
3810                 case '\'': c = '\''; str++; break;
3811                 case '"':  c = '"';  str++; break;
3812                 case 'x':
3813                         c = 0;
3814                         str++;
3815                         while((str < end) && hexdigitp(*str)) {
3816                                 c <<= 4;
3817                                 c += hexdigval(*str);
3818                                 str++;
3819                         }
3820                         break;
3821                 case '0': case '1': case '2': case '3':
3822                 case '4': case '5': case '6': case '7':
3823                         c = 0;
3824                         while((str < end) && octdigitp(*str)) {
3825                                 c <<= 3;
3826                                 c += octdigval(*str);
3827                                 str++;
3828                         }
3829                         break;
3830                 default:
3831                         error(state, 0, "Invalid character constant");
3832                         break;
3833                 }
3834         }
3835         *strp = str;
3836         return c;
3837 }
3838
3839 static const char *next_char(struct file_state *file, const char *pos, int index)
3840 {
3841         const char *end = file->buf + file->size;
3842         while(pos < end) {
3843                 /* Lookup the character */
3844                 int size = 1;
3845                 int c = *pos;
3846                 /* Is this a trigraph? */
3847                 if (file->trigraphs &&
3848                         (c == '?') && ((end - pos) >= 3) && (pos[1] == '?'))
3849                 {
3850                         switch(pos[2]) {
3851                         case '=': c = '#'; break;
3852                         case '/': c = '\\'; break;
3853                         case '\'': c = '^'; break;
3854                         case '(': c = '['; break;
3855                         case ')': c = ']'; break;
3856                         case '!': c = '!'; break;
3857                         case '<': c = '{'; break;
3858                         case '>': c = '}'; break;
3859                         case '-': c = '~'; break;
3860                         }
3861                         if (c != '?') {
3862                                 size = 3;
3863                         }
3864                 }
3865                 /* Is this an escaped newline? */
3866                 if (file->join_lines &&
3867                         (c == '\\') && (pos + size < end) && ((pos[1] == '\n') || ((pos[1] == '\r') && (pos[2] == '\n'))))
3868                 {
3869                         int cr_offset = ((pos[1] == '\r') && (pos[2] == '\n'))?1:0;
3870                         /* At the start of a line just eat it */
3871                         if (pos == file->pos) {
3872                                 file->line++;
3873                                 file->report_line++;
3874                                 file->line_start = pos + size + 1 + cr_offset;
3875                         }
3876                         pos += size + 1 + cr_offset;
3877                 }
3878                 /* Do I need to ga any farther? */
3879                 else if (index == 0) {
3880                         break;
3881                 }
3882                 /* Process a normal character */
3883                 else {
3884                         pos += size;
3885                         index -= 1;
3886                 }
3887         }
3888         return pos;
3889 }
3890
3891 static int get_char(struct file_state *file, const char *pos)
3892 {
3893         const char *end = file->buf + file->size;
3894         int c;
3895         c = -1;
3896         pos = next_char(file, pos, 0);
3897         if (pos < end) {
3898                 /* Lookup the character */
3899                 c = *pos;
3900                 /* If it is a trigraph get the trigraph value */
3901                 if (file->trigraphs &&
3902                         (c == '?') && ((end - pos) >= 3) && (pos[1] == '?'))
3903                 {
3904                         switch(pos[2]) {
3905                         case '=': c = '#'; break;
3906                         case '/': c = '\\'; break;
3907                         case '\'': c = '^'; break;
3908                         case '(': c = '['; break;
3909                         case ')': c = ']'; break;
3910                         case '!': c = '!'; break;
3911                         case '<': c = '{'; break;
3912                         case '>': c = '}'; break;
3913                         case '-': c = '~'; break;
3914                         }
3915                 }
3916         }
3917         return c;
3918 }
3919
3920 static void eat_chars(struct file_state *file, const char *targ)
3921 {
3922         const char *pos = file->pos;
3923         while(pos < targ) {
3924                 /* Do we have a newline? */
3925                 if (pos[0] == '\n') {
3926                         file->line++;
3927                         file->report_line++;
3928                         file->line_start = pos + 1;
3929                 }
3930                 pos++;
3931         }
3932         file->pos = pos;
3933 }
3934
3935
3936 static size_t char_strlen(struct file_state *file, const char *src, const char *end)
3937 {
3938         size_t len;
3939         len = 0;
3940         while(src < end) {
3941                 src = next_char(file, src, 1);
3942                 len++;
3943         }
3944         return len;
3945 }
3946
3947 static void char_strcpy(char *dest,
3948         struct file_state *file, const char *src, const char *end)
3949 {
3950         while(src < end) {
3951                 int c;
3952                 c = get_char(file, src);
3953                 src = next_char(file, src, 1);
3954                 *dest++ = c;
3955         }
3956 }
3957
3958 static char *char_strdup(struct file_state *file,
3959         const char *start, const char *end, const char *id)
3960 {
3961         char *str;
3962         size_t str_len;
3963         str_len = char_strlen(file, start, end);
3964         str = xcmalloc(str_len + 1, id);
3965         char_strcpy(str, file, start, end);
3966         str[str_len] = '\0';
3967         return str;
3968 }
3969
3970 static const char *after_digits(struct file_state *file, const char *ptr)
3971 {
3972         while(digitp(get_char(file, ptr))) {
3973                 ptr = next_char(file, ptr, 1);
3974         }
3975         return ptr;
3976 }
3977
3978 static const char *after_octdigits(struct file_state *file, const char *ptr)
3979 {
3980         while(octdigitp(get_char(file, ptr))) {
3981                 ptr = next_char(file, ptr, 1);
3982         }
3983         return ptr;
3984 }
3985
3986 static const char *after_hexdigits(struct file_state *file, const char *ptr)
3987 {
3988         while(hexdigitp(get_char(file, ptr))) {
3989                 ptr = next_char(file, ptr, 1);
3990         }
3991         return ptr;
3992 }
3993
3994 static const char *after_alnums(struct file_state *file, const char *ptr)
3995 {
3996         int c;
3997         c = get_char(file, ptr);
3998         while(letterp(c) || digitp(c)) {
3999                 ptr = next_char(file, ptr, 1);
4000                 c = get_char(file, ptr);
4001         }
4002         return ptr;
4003 }
4004
4005 static void save_string(struct file_state *file,
4006         struct token *tk, const char *start, const char *end, const char *id)
4007 {
4008         char *str;
4009
4010         /* Create a private copy of the string */
4011         str = char_strdup(file, start, end, id);
4012
4013         /* Store the copy in the token */
4014         tk->val.str = str;
4015         tk->str_len = strlen(str);
4016 }
4017
4018 static void raw_next_token(struct compile_state *state,
4019         struct file_state *file, struct token *tk)
4020 {
4021         const char *token;
4022         int c, c1, c2, c3;
4023         const char *tokp;
4024         int eat;
4025         int tok;
4026
4027         tk->str_len = 0;
4028         tk->ident = 0;
4029         token = tokp = next_char(file, file->pos, 0);
4030         tok = TOK_UNKNOWN;
4031         c  = get_char(file, tokp);
4032         tokp = next_char(file, tokp, 1);
4033         eat = 0;
4034         c1 = get_char(file, tokp);
4035         c2 = get_char(file, next_char(file, tokp, 1));
4036         c3 = get_char(file, next_char(file, tokp, 2));
4037
4038         /* The end of the file */
4039         if (c == -1) {
4040                 tok = TOK_EOF;
4041         }
4042         /* Whitespace */
4043         else if (spacep(c)) {
4044                 tok = TOK_SPACE;
4045                 while (spacep(get_char(file, tokp))) {
4046                         tokp = next_char(file, tokp, 1);
4047                 }
4048         }
4049         /* EOL Comments */
4050         else if ((c == '/') && (c1 == '/')) {
4051                 tok = TOK_SPACE;
4052                 tokp = next_char(file, tokp, 1);
4053                 while((c = get_char(file, tokp)) != -1) {
4054                         /* Advance to the next character only after we verify
4055                          * the current character is not a newline.
4056                          * EOL is special to the preprocessor so we don't
4057                          * want to loose any.
4058                          */
4059                         if (c == '\n') {
4060                                 break;
4061                         }
4062                         tokp = next_char(file, tokp, 1);
4063                 }
4064         }
4065         /* Comments */
4066         else if ((c == '/') && (c1 == '*')) {
4067                 tokp = next_char(file, tokp, 2);
4068                 c = c2;
4069                 while((c1 = get_char(file, tokp)) != -1) {
4070                         tokp = next_char(file, tokp, 1);
4071                         if ((c == '*') && (c1 == '/')) {
4072                                 tok = TOK_SPACE;
4073                                 break;
4074                         }
4075                         c = c1;
4076                 }
4077                 if (tok == TOK_UNKNOWN) {
4078                         error(state, 0, "unterminated comment");
4079                 }
4080         }
4081         /* string constants */
4082         else if ((c == '"') || ((c == 'L') && (c1 == '"'))) {
4083                 int multiline;
4084
4085                 multiline = 0;
4086                 if (c == 'L') {
4087                         tokp = next_char(file, tokp, 1);
4088                 }
4089                 while((c = get_char(file, tokp)) != -1) {
4090                         tokp = next_char(file, tokp, 1);
4091                         if (c == '\n') {
4092                                 multiline = 1;
4093                         }
4094                         else if (c == '\\') {
4095                                 tokp = next_char(file, tokp, 1);
4096                         }
4097                         else if (c == '"') {
4098                                 tok = TOK_LIT_STRING;
4099                                 break;
4100                         }
4101                 }
4102                 if (tok == TOK_UNKNOWN) {
4103                         error(state, 0, "unterminated string constant");
4104                 }
4105                 if (multiline) {
4106                         warning(state, 0, "multiline string constant");
4107                 }
4108
4109                 /* Save the string value */
4110                 save_string(file, tk, token, tokp, "literal string");
4111         }
4112         /* character constants */
4113         else if ((c == '\'') || ((c == 'L') && (c1 == '\''))) {
4114                 int multiline;
4115
4116                 multiline = 0;
4117                 if (c == 'L') {
4118                         tokp = next_char(file, tokp, 1);
4119                 }
4120                 while((c = get_char(file, tokp)) != -1) {
4121                         tokp = next_char(file, tokp, 1);
4122                         if (c == '\n') {
4123                                 multiline = 1;
4124                         }
4125                         else if (c == '\\') {
4126                                 tokp = next_char(file, tokp, 1);
4127                         }
4128                         else if (c == '\'') {
4129                                 tok = TOK_LIT_CHAR;
4130                                 break;
4131                         }
4132                 }
4133                 if (tok == TOK_UNKNOWN) {
4134                         error(state, 0, "unterminated character constant");
4135                 }
4136                 if (multiline) {
4137                         warning(state, 0, "multiline character constant");
4138                 }
4139
4140                 /* Save the character value */
4141                 save_string(file, tk, token, tokp, "literal character");
4142         }
4143         /* integer and floating constants
4144          * Integer Constants
4145          * {digits}
4146          * 0[Xx]{hexdigits}
4147          * 0{octdigit}+
4148          *
4149          * Floating constants
4150          * {digits}.{digits}[Ee][+-]?{digits}
4151          * {digits}.{digits}
4152          * {digits}[Ee][+-]?{digits}
4153          * .{digits}[Ee][+-]?{digits}
4154          * .{digits}
4155          */
4156         else if (digitp(c) || ((c == '.') && (digitp(c1)))) {
4157                 const char *next;
4158                 int is_float;
4159                 int cn;
4160                 is_float = 0;
4161                 if (c != '.') {
4162                         next = after_digits(file, tokp);
4163                 }
4164                 else {
4165                         next = token;
4166                 }
4167                 cn = get_char(file, next);
4168                 if (cn == '.') {
4169                         next = next_char(file, next, 1);
4170                         next = after_digits(file, next);
4171                         is_float = 1;
4172                 }
4173                 cn = get_char(file, next);
4174                 if ((cn == 'e') || (cn == 'E')) {
4175                         const char *new;
4176                         next = next_char(file, next, 1);
4177                         cn = get_char(file, next);
4178                         if ((cn == '+') || (cn == '-')) {
4179                                 next = next_char(file, next, 1);
4180                         }
4181                         new = after_digits(file, next);
4182                         is_float |= (new != next);
4183                         next = new;
4184                 }
4185                 if (is_float) {
4186                         tok = TOK_LIT_FLOAT;
4187                         cn = get_char(file, next);
4188                         if ((cn  == 'f') || (cn == 'F') || (cn == 'l') || (cn == 'L')) {
4189                                 next = next_char(file, next, 1);
4190                         }
4191                 }
4192                 if (!is_float && digitp(c)) {
4193                         tok = TOK_LIT_INT;
4194                         if ((c == '0') && ((c1 == 'x') || (c1 == 'X'))) {
4195                                 next = next_char(file, tokp, 1);
4196                                 next = after_hexdigits(file, next);
4197                         }
4198                         else if (c == '0') {
4199                                 next = after_octdigits(file, tokp);
4200                         }
4201                         else {
4202                                 next = after_digits(file, tokp);
4203                         }
4204                         /* crazy integer suffixes */
4205                         cn = get_char(file, next);
4206                         if ((cn == 'u') || (cn == 'U')) {
4207                                 next = next_char(file, next, 1);
4208                                 cn = get_char(file, next);
4209                                 if ((cn == 'l') || (cn == 'L')) {
4210                                         next = next_char(file, next, 1);
4211                                         cn = get_char(file, next);
4212                                 }
4213                                 if ((cn == 'l') || (cn == 'L')) {
4214                                         next = next_char(file, next, 1);
4215                                 }
4216                         }
4217                         else if ((cn == 'l') || (cn == 'L')) {
4218                                 next = next_char(file, next, 1);
4219                                 cn = get_char(file, next);
4220                                 if ((cn == 'l') || (cn == 'L')) {
4221                                         next = next_char(file, next, 1);
4222                                         cn = get_char(file, next);
4223                                 }
4224                                 if ((cn == 'u') || (cn == 'U')) {
4225                                         next = next_char(file, next, 1);
4226                                 }
4227                         }
4228                 }
4229                 tokp = next;
4230
4231                 /* Save the integer/floating point value */
4232                 save_string(file, tk, token, tokp, "literal number");
4233         }
4234         /* identifiers */
4235         else if (letterp(c)) {
4236                 tok = TOK_IDENT;
4237
4238                 /* Find and save the identifier string */
4239                 tokp = after_alnums(file, tokp);
4240                 save_string(file, tk, token, tokp, "identifier");
4241
4242                 /* Look up to see which identifier it is */
4243                 tk->ident = lookup(state, tk->val.str, tk->str_len);
4244
4245                 /* Free the identifier string */
4246                 tk->str_len = 0;
4247                 xfree(tk->val.str);
4248
4249                 /* See if this identifier can be macro expanded */
4250                 tk->val.notmacro = 0;
4251                 c = get_char(file, tokp);
4252                 if (c == '$') {
4253                         tokp = next_char(file, tokp, 1);
4254                         tk->val.notmacro = 1;
4255                 }
4256         }
4257         /* C99 alternate macro characters */
4258         else if ((c == '%') && (c1 == ':') && (c2 == '%') && (c3 == ':')) {
4259                 eat += 3;
4260                 tok = TOK_CONCATENATE;
4261         }
4262         else if ((c == '.') && (c1 == '.') && (c2 == '.')) { eat += 2; tok = TOK_DOTS; }
4263         else if ((c == '<') && (c1 == '<') && (c2 == '=')) { eat += 2; tok = TOK_SLEQ; }
4264         else if ((c == '>') && (c1 == '>') && (c2 == '=')) { eat += 2; tok = TOK_SREQ; }
4265         else if ((c == '*') && (c1 == '=')) { eat += 1; tok = TOK_TIMESEQ; }
4266         else if ((c == '/') && (c1 == '=')) { eat += 1; tok = TOK_DIVEQ; }
4267         else if ((c == '%') && (c1 == '=')) { eat += 1; tok = TOK_MODEQ; }
4268         else if ((c == '+') && (c1 == '=')) { eat += 1; tok = TOK_PLUSEQ; }
4269         else if ((c == '-') && (c1 == '=')) { eat += 1; tok = TOK_MINUSEQ; }
4270         else if ((c == '&') && (c1 == '=')) { eat += 1; tok = TOK_ANDEQ; }
4271         else if ((c == '^') && (c1 == '=')) { eat += 1; tok = TOK_XOREQ; }
4272         else if ((c == '|') && (c1 == '=')) { eat += 1; tok = TOK_OREQ; }
4273         else if ((c == '=') && (c1 == '=')) { eat += 1; tok = TOK_EQEQ; }
4274         else if ((c == '!') && (c1 == '=')) { eat += 1; tok = TOK_NOTEQ; }
4275         else if ((c == '|') && (c1 == '|')) { eat += 1; tok = TOK_LOGOR; }
4276         else if ((c == '&') && (c1 == '&')) { eat += 1; tok = TOK_LOGAND; }
4277         else if ((c == '<') && (c1 == '=')) { eat += 1; tok = TOK_LESSEQ; }
4278         else if ((c == '>') && (c1 == '=')) { eat += 1; tok = TOK_MOREEQ; }
4279         else if ((c == '<') && (c1 == '<')) { eat += 1; tok = TOK_SL; }
4280         else if ((c == '>') && (c1 == '>')) { eat += 1; tok = TOK_SR; }
4281         else if ((c == '+') && (c1 == '+')) { eat += 1; tok = TOK_PLUSPLUS; }
4282         else if ((c == '-') && (c1 == '-')) { eat += 1; tok = TOK_MINUSMINUS; }
4283         else if ((c == '-') && (c1 == '>')) { eat += 1; tok = TOK_ARROW; }
4284         else if ((c == '<') && (c1 == ':')) { eat += 1; tok = TOK_LBRACKET; }
4285         else if ((c == ':') && (c1 == '>')) { eat += 1; tok = TOK_RBRACKET; }
4286         else if ((c == '<') && (c1 == '%')) { eat += 1; tok = TOK_LBRACE; }
4287         else if ((c == '%') && (c1 == '>')) { eat += 1; tok = TOK_RBRACE; }
4288         else if ((c == '%') && (c1 == ':')) { eat += 1; tok = TOK_MACRO; }
4289         else if ((c == '#') && (c1 == '#')) { eat += 1; tok = TOK_CONCATENATE; }
4290         else if (c == ';') { tok = TOK_SEMI; }
4291         else if (c == '{') { tok = TOK_LBRACE; }
4292         else if (c == '}') { tok = TOK_RBRACE; }
4293         else if (c == ',') { tok = TOK_COMMA; }
4294         else if (c == '=') { tok = TOK_EQ; }
4295         else if (c == ':') { tok = TOK_COLON; }
4296         else if (c == '[') { tok = TOK_LBRACKET; }
4297         else if (c == ']') { tok = TOK_RBRACKET; }
4298         else if (c == '(') { tok = TOK_LPAREN; }
4299         else if (c == ')') { tok = TOK_RPAREN; }
4300         else if (c == '*') { tok = TOK_STAR; }
4301         else if (c == '>') { tok = TOK_MORE; }
4302         else if (c == '<') { tok = TOK_LESS; }
4303         else if (c == '?') { tok = TOK_QUEST; }
4304         else if (c == '|') { tok = TOK_OR; }
4305         else if (c == '&') { tok = TOK_AND; }
4306         else if (c == '^') { tok = TOK_XOR; }
4307         else if (c == '+') { tok = TOK_PLUS; }
4308         else if (c == '-') { tok = TOK_MINUS; }
4309         else if (c == '/') { tok = TOK_DIV; }
4310         else if (c == '%') { tok = TOK_MOD; }
4311         else if (c == '!') { tok = TOK_BANG; }
4312         else if (c == '.') { tok = TOK_DOT; }
4313         else if (c == '~') { tok = TOK_TILDE; }
4314         else if (c == '#') { tok = TOK_MACRO; }
4315         else if (c == '\n') { tok = TOK_EOL; }
4316
4317         tokp = next_char(file, tokp, eat);
4318         eat_chars(file, tokp);
4319         tk->tok = tok;
4320         tk->pos = token;
4321 }
4322
4323 static void check_tok(struct compile_state *state, struct token *tk, int tok)
4324 {
4325         if (tk->tok != tok) {
4326                 const char *name1, *name2;
4327                 name1 = tokens[tk->tok];
4328                 name2 = "";
4329                 if ((tk->tok == TOK_IDENT) || (tk->tok == TOK_MIDENT)) {
4330                         name2 = tk->ident->name;
4331                 }
4332                 error(state, 0, "\tfound %s %s expected %s",
4333                         name1, name2, tokens[tok]);
4334         }
4335 }
4336
4337 struct macro_arg_value {
4338         struct hash_entry *ident;
4339         char *value;
4340         size_t len;
4341 };
4342 static struct macro_arg_value *read_macro_args(
4343         struct compile_state *state, struct macro *macro,
4344         struct file_state *file, struct token *tk)
4345 {
4346         struct macro_arg_value *argv;
4347         struct macro_arg *arg;
4348         int paren_depth;
4349         int i;
4350
4351         if (macro->argc == 0) {
4352                 do {
4353                         raw_next_token(state, file, tk);
4354                 } while(tk->tok == TOK_SPACE);
4355                 return NULL;
4356         }
4357         argv = xcmalloc(sizeof(*argv) * macro->argc, "macro args");
4358         for(i = 0, arg = macro->args; arg; arg = arg->next, i++) {
4359                 argv[i].value = 0;
4360                 argv[i].len   = 0;
4361                 argv[i].ident = arg->ident;
4362         }
4363         paren_depth = 0;
4364         i = 0;
4365
4366         for(;;) {
4367                 const char *start;
4368                 size_t len;
4369                 start = file->pos;
4370                 raw_next_token(state, file, tk);
4371
4372                 if (!paren_depth && (tk->tok == TOK_COMMA) &&
4373                         (argv[i].ident != state->i___VA_ARGS__))
4374                 {
4375                         i++;
4376                         if (i >= macro->argc) {
4377                                 error(state, 0, "too many args to %s\n",
4378                                         macro->ident->name);
4379                         }
4380                         continue;
4381                 }
4382
4383                 if (tk->tok == TOK_LPAREN) {
4384                         paren_depth++;
4385                 }
4386
4387                 if (tk->tok == TOK_RPAREN) {
4388                         if (paren_depth == 0) {
4389                                 break;
4390                         }
4391                         paren_depth--;
4392                 }
4393                 if (tk->tok == TOK_EOF) {
4394                         error(state, 0, "End of file encountered while parsing macro arguments");
4395                 }
4396
4397                 len = char_strlen(file, start, file->pos);
4398                 argv[i].value = xrealloc(
4399                         argv[i].value, argv[i].len + len, "macro args");
4400                 char_strcpy((char *)argv[i].value + argv[i].len, file, start, file->pos);
4401                 argv[i].len += len;
4402         }
4403         if (i != macro->argc -1) {
4404                 error(state, 0, "missing %s arg %d\n",
4405                         macro->ident->name, i +2);
4406         }
4407         return argv;
4408 }
4409
4410
4411 static void free_macro_args(struct macro *macro, struct macro_arg_value *argv)
4412 {
4413         int i;
4414         for(i = 0; i < macro->argc; i++) {
4415                 xfree(argv[i].value);
4416         }
4417         xfree(argv);
4418 }
4419
4420 struct macro_buf {
4421         char *str;
4422         size_t len, pos;
4423 };
4424
4425 static void grow_macro_buf(struct compile_state *state,
4426         const char *id, struct macro_buf *buf,
4427         size_t grow)
4428 {
4429         if ((buf->pos + grow) >= buf->len) {
4430                 buf->str = xrealloc(buf->str, buf->len + grow, id);
4431                 buf->len += grow;
4432         }
4433 }
4434
4435 static void append_macro_text(struct compile_state *state,
4436         const char *id, struct macro_buf *buf,
4437         const char *fstart, size_t flen)
4438 {
4439         grow_macro_buf(state, id, buf, flen);
4440         memcpy(buf->str + buf->pos, fstart, flen);
4441 #if 0
4442         fprintf(state->errout, "append: `%*.*s' `%*.*s'\n",
4443                 buf->pos, buf->pos, buf->str,
4444                 flen, flen, buf->str + buf->pos);
4445 #endif
4446         buf->pos += flen;
4447 }
4448
4449
4450 static void append_macro_chars(struct compile_state *state,
4451         const char *id, struct macro_buf *buf,
4452         struct file_state *file, const char *start, const char *end)
4453 {
4454         size_t flen;
4455         flen = char_strlen(file, start, end);
4456         grow_macro_buf(state, id, buf, flen);
4457         char_strcpy(buf->str + buf->pos, file, start, end);
4458 #if 0
4459         fprintf(state->errout, "append: `%*.*s' `%*.*s'\n",
4460                 buf->pos, buf->pos, buf->str,
4461                 flen, flen, buf->str + buf->pos);
4462 #endif
4463         buf->pos += flen;
4464 }
4465
4466 static int compile_macro(struct compile_state *state,
4467         struct file_state **filep, struct token *tk);
4468
4469 static void macro_expand_args(struct compile_state *state,
4470         struct macro *macro, struct macro_arg_value *argv, struct token *tk)
4471 {
4472         int i;
4473
4474         for(i = 0; i < macro->argc; i++) {
4475                 struct file_state fmacro, *file;
4476                 struct macro_buf buf;
4477
4478                 fmacro.prev        = 0;
4479                 fmacro.basename    = argv[i].ident->name;
4480                 fmacro.dirname     = "";
4481                 fmacro.buf         = (char *)argv[i].value;
4482                 fmacro.size        = argv[i].len;
4483                 fmacro.pos         = fmacro.buf;
4484                 fmacro.line        = 1;
4485                 fmacro.line_start  = fmacro.buf;
4486                 fmacro.report_line = 1;
4487                 fmacro.report_name = fmacro.basename;
4488                 fmacro.report_dir  = fmacro.dirname;
4489                 fmacro.macro       = 1;
4490                 fmacro.trigraphs   = 0;
4491                 fmacro.join_lines  = 0;
4492
4493                 buf.len = argv[i].len;
4494                 buf.str = xmalloc(buf.len, argv[i].ident->name);
4495                 buf.pos = 0;
4496
4497                 file = &fmacro;
4498                 for(;;) {
4499                         raw_next_token(state, file, tk);
4500
4501                         /* If we have recursed into another macro body
4502                          * get out of it.
4503                          */
4504                         if (tk->tok == TOK_EOF) {
4505                                 struct file_state *old;
4506                                 old = file;
4507                                 file = file->prev;
4508                                 if (!file) {
4509                                         break;
4510                                 }
4511                                 /* old->basename is used keep it */
4512                                 xfree(old->dirname);
4513                                 xfree(old->buf);
4514                                 xfree(old);
4515                                 continue;
4516                         }
4517                         else if (tk->ident && tk->ident->sym_define) {
4518                                 if (compile_macro(state, &file, tk)) {
4519                                         continue;
4520                                 }
4521                         }
4522
4523                         append_macro_chars(state, macro->ident->name, &buf,
4524                                 file, tk->pos, file->pos);
4525                 }
4526
4527                 xfree(argv[i].value);
4528                 argv[i].value = buf.str;
4529                 argv[i].len   = buf.pos;
4530         }
4531         return;
4532 }
4533
4534 static void expand_macro(struct compile_state *state,
4535         struct macro *macro, struct macro_buf *buf,
4536         struct macro_arg_value *argv, struct token *tk)
4537 {
4538         struct file_state fmacro;
4539         const char space[] = " ";
4540         const char *fstart;
4541         size_t flen;
4542         int i, j;
4543
4544         /* Place the macro body in a dummy file */
4545         fmacro.prev        = 0;
4546         fmacro.basename    = macro->ident->name;
4547         fmacro.dirname     = "";
4548         fmacro.buf         = macro->buf;
4549         fmacro.size        = macro->buf_len;
4550         fmacro.pos         = fmacro.buf;
4551         fmacro.line        = 1;
4552         fmacro.line_start  = fmacro.buf;
4553         fmacro.report_line = 1;
4554         fmacro.report_name = fmacro.basename;
4555         fmacro.report_dir  = fmacro.dirname;
4556         fmacro.macro       = 1;
4557         fmacro.trigraphs   = 0;
4558         fmacro.join_lines  = 0;
4559
4560         /* Allocate a buffer to hold the macro expansion */
4561         buf->len = macro->buf_len + 3;
4562         buf->str = xmalloc(buf->len, macro->ident->name);
4563         buf->pos = 0;
4564
4565         fstart = fmacro.pos;
4566         raw_next_token(state, &fmacro, tk);
4567         while(tk->tok != TOK_EOF) {
4568                 flen = fmacro.pos - fstart;
4569                 switch(tk->tok) {
4570                 case TOK_IDENT:
4571                         for(i = 0; i < macro->argc; i++) {
4572                                 if (argv[i].ident == tk->ident) {
4573                                         break;
4574                                 }
4575                         }
4576                         if (i >= macro->argc) {
4577                                 break;
4578                         }
4579                         /* Substitute macro parameter */
4580                         fstart = argv[i].value;
4581                         flen   = argv[i].len;
4582                         break;
4583                 case TOK_MACRO:
4584                         if (macro->argc < 0) {
4585                                 break;
4586                         }
4587                         do {
4588                                 raw_next_token(state, &fmacro, tk);
4589                         } while(tk->tok == TOK_SPACE);
4590                         check_tok(state, tk, TOK_IDENT);
4591                         for(i = 0; i < macro->argc; i++) {
4592                                 if (argv[i].ident == tk->ident) {
4593                                         break;
4594                                 }
4595                         }
4596                         if (i >= macro->argc) {
4597                                 error(state, 0, "parameter `%s' not found",
4598                                         tk->ident->name);
4599                         }
4600                         /* Stringize token */
4601                         append_macro_text(state, macro->ident->name, buf, "\"", 1);
4602                         for(j = 0; j < argv[i].len; j++) {
4603                                 char *str = argv[i].value + j;
4604                                 size_t len = 1;
4605                                 if (*str == '\\') {
4606                                         str = "\\";
4607                                         len = 2;
4608                                 }
4609                                 else if (*str == '"') {
4610                                         str = "\\\"";
4611                                         len = 2;
4612                                 }
4613                                 append_macro_text(state, macro->ident->name, buf, str, len);
4614                         }
4615                         append_macro_text(state, macro->ident->name, buf, "\"", 1);
4616                         fstart = 0;
4617                         flen   = 0;
4618                         break;
4619                 case TOK_CONCATENATE:
4620                         /* Concatenate tokens */
4621                         /* Delete the previous whitespace token */
4622                         if (buf->str[buf->pos - 1] == ' ') {
4623                                 buf->pos -= 1;
4624                         }
4625                         /* Skip the next sequence of whitspace tokens */
4626                         do {
4627                                 fstart = fmacro.pos;
4628                                 raw_next_token(state, &fmacro, tk);
4629                         } while(tk->tok == TOK_SPACE);
4630                         /* Restart at the top of the loop.
4631                          * I need to process the non white space token.
4632                          */
4633                         continue;
4634                         break;
4635                 case TOK_SPACE:
4636                         /* Collapse multiple spaces into one */
4637                         if (buf->str[buf->pos - 1] != ' ') {
4638                                 fstart = space;
4639                                 flen   = 1;
4640                         } else {
4641                                 fstart = 0;
4642                                 flen   = 0;
4643                         }
4644                         break;
4645                 default:
4646                         break;
4647                 }
4648
4649                 append_macro_text(state, macro->ident->name, buf, fstart, flen);
4650
4651                 fstart = fmacro.pos;
4652                 raw_next_token(state, &fmacro, tk);
4653         }
4654 }
4655
4656 static void tag_macro_name(struct compile_state *state,
4657         struct macro *macro, struct macro_buf *buf,
4658         struct token *tk)
4659 {
4660         /* Guard all instances of the macro name in the replacement
4661          * text from further macro expansion.
4662          */
4663         struct file_state fmacro;
4664         const char *fstart;
4665         size_t flen;
4666
4667         /* Put the old macro expansion buffer in a file */
4668         fmacro.prev        = 0;
4669         fmacro.basename    = macro->ident->name;
4670         fmacro.dirname     = "";
4671         fmacro.buf         = buf->str;
4672         fmacro.size        = buf->pos;
4673         fmacro.pos         = fmacro.buf;
4674         fmacro.line        = 1;
4675         fmacro.line_start  = fmacro.buf;
4676         fmacro.report_line = 1;
4677         fmacro.report_name = fmacro.basename;
4678         fmacro.report_dir  = fmacro.dirname;
4679         fmacro.macro       = 1;
4680         fmacro.trigraphs   = 0;
4681         fmacro.join_lines  = 0;
4682
4683         /* Allocate a new macro expansion buffer */
4684         buf->len = macro->buf_len + 3;
4685         buf->str = xmalloc(buf->len, macro->ident->name);
4686         buf->pos = 0;
4687
4688         fstart = fmacro.pos;
4689         raw_next_token(state, &fmacro, tk);
4690         while(tk->tok != TOK_EOF) {
4691                 flen = fmacro.pos - fstart;
4692                 if ((tk->tok == TOK_IDENT) &&
4693                         (tk->ident == macro->ident) &&
4694                         (tk->val.notmacro == 0))
4695                 {
4696                         append_macro_text(state, macro->ident->name, buf, fstart, flen);
4697                         fstart = "$";
4698                         flen   = 1;
4699                 }
4700
4701                 append_macro_text(state, macro->ident->name, buf, fstart, flen);
4702
4703                 fstart = fmacro.pos;
4704                 raw_next_token(state, &fmacro, tk);
4705         }
4706         xfree(fmacro.buf);
4707 }
4708
4709 static int compile_macro(struct compile_state *state,
4710         struct file_state **filep, struct token *tk)
4711 {
4712         struct file_state *file;
4713         struct hash_entry *ident;
4714         struct macro *macro;
4715         struct macro_arg_value *argv;
4716         struct macro_buf buf;
4717
4718 #if 0
4719         fprintf(state->errout, "macro: %s\n", tk->ident->name);
4720 #endif
4721         ident = tk->ident;
4722         macro = ident->sym_define;
4723
4724         /* If this token comes from a macro expansion ignore it */
4725         if (tk->val.notmacro) {
4726                 return 0;
4727         }
4728         /* If I am a function like macro and the identifier is not followed
4729          * by a left parenthesis, do nothing.
4730          */
4731         if ((macro->argc >= 0) && (get_char(*filep, (*filep)->pos) != '(')) {
4732                 return 0;
4733         }
4734
4735         /* Read in the macro arguments */
4736         argv = 0;
4737         if (macro->argc >= 0) {
4738                 raw_next_token(state, *filep, tk);
4739                 check_tok(state, tk, TOK_LPAREN);
4740
4741                 argv = read_macro_args(state, macro, *filep, tk);
4742
4743                 check_tok(state, tk, TOK_RPAREN);
4744         }
4745         /* Macro expand the macro arguments */
4746         macro_expand_args(state, macro, argv, tk);
4747
4748         buf.str = 0;
4749         buf.len = 0;
4750         buf.pos = 0;
4751         if (ident == state->i___FILE__) {
4752                 buf.len = strlen(state->file->basename) + 1 + 2 + 3;
4753                 buf.str = xmalloc(buf.len, ident->name);
4754                 sprintf(buf.str, "\"%s\"", state->file->basename);
4755                 buf.pos = strlen(buf.str);
4756         }
4757         else if (ident == state->i___LINE__) {
4758                 buf.len = 30;
4759                 buf.str = xmalloc(buf.len, ident->name);
4760                 sprintf(buf.str, "%d", state->file->line);
4761                 buf.pos = strlen(buf.str);
4762         }
4763         else {
4764                 expand_macro(state, macro, &buf, argv, tk);
4765         }
4766         /* Tag the macro name with a $ so it will no longer
4767          * be regonized as a canidate for macro expansion.
4768          */
4769         tag_macro_name(state, macro, &buf, tk);
4770
4771 #if 0
4772         fprintf(state->errout, "%s: %d -> `%*.*s'\n",
4773                 ident->name, buf.pos, buf.pos, (int)(buf.pos), buf.str);
4774 #endif
4775
4776         free_macro_args(macro, argv);
4777
4778         file = xmalloc(sizeof(*file), "file_state");
4779         file->prev        = *filep;
4780         file->basename    = xstrdup(ident->name);
4781         file->dirname     = xstrdup("");
4782         file->buf         = buf.str;
4783         file->size        = buf.pos;
4784         file->pos         = file->buf;
4785         file->line        = 1;
4786         file->line_start  = file->pos;
4787         file->report_line = 1;
4788         file->report_name = file->basename;
4789         file->report_dir  = file->dirname;
4790         file->macro       = 1;
4791         file->trigraphs   = 0;
4792         file->join_lines  = 0;
4793         *filep = file;
4794         return 1;
4795 }
4796
4797 static void eat_tokens(struct compile_state *state, int targ_tok)
4798 {
4799         if (state->eat_depth > 0) {
4800                 internal_error(state, 0, "Already eating...");
4801         }
4802         state->eat_depth = state->if_depth;
4803         state->eat_targ = targ_tok;
4804 }
4805 static int if_eat(struct compile_state *state)
4806 {
4807         return state->eat_depth > 0;
4808 }
4809 static int if_value(struct compile_state *state)
4810 {
4811         int index, offset;
4812         index = state->if_depth / CHAR_BIT;
4813         offset = state->if_depth % CHAR_BIT;
4814         return !!(state->if_bytes[index] & (1 << (offset)));
4815 }
4816 static void set_if_value(struct compile_state *state, int value)
4817 {
4818         int index, offset;
4819         index = state->if_depth / CHAR_BIT;
4820         offset = state->if_depth % CHAR_BIT;
4821
4822         state->if_bytes[index] &= ~(1 << offset);
4823         if (value) {
4824                 state->if_bytes[index] |= (1 << offset);
4825         }
4826 }
4827 static void in_if(struct compile_state *state, const char *name)
4828 {
4829         if (state->if_depth <= 0) {
4830                 error(state, 0, "%s without #if", name);
4831         }
4832 }
4833 static void enter_if(struct compile_state *state)
4834 {
4835         state->if_depth += 1;
4836         if (state->if_depth > MAX_PP_IF_DEPTH) {
4837                 error(state, 0, "#if depth too great");
4838         }
4839 }
4840 static void reenter_if(struct compile_state *state, const char *name)
4841 {
4842         in_if(state, name);
4843         if ((state->eat_depth == state->if_depth) &&
4844                 (state->eat_targ == TOK_MELSE)) {
4845                 state->eat_depth = 0;
4846                 state->eat_targ = 0;
4847         }
4848 }
4849 static void enter_else(struct compile_state *state, const char *name)
4850 {
4851         in_if(state, name);
4852         if ((state->eat_depth == state->if_depth) &&
4853                 (state->eat_targ == TOK_MELSE)) {
4854                 state->eat_depth = 0;
4855                 state->eat_targ = 0;
4856         }
4857 }
4858 static void exit_if(struct compile_state *state, const char *name)
4859 {
4860         in_if(state, name);
4861         if (state->eat_depth == state->if_depth) {
4862                 state->eat_depth = 0;
4863                 state->eat_targ = 0;
4864         }
4865         state->if_depth -= 1;
4866 }
4867
4868 static void raw_token(struct compile_state *state, struct token *tk)
4869 {
4870         struct file_state *file;
4871         int rescan;
4872
4873         file = state->file;
4874         raw_next_token(state, file, tk);
4875         do {
4876                 rescan = 0;
4877                 file = state->file;
4878                 /* Exit out of an include directive or macro call */
4879                 if ((tk->tok == TOK_EOF) &&
4880                         (file != state->macro_file) && file->prev)
4881                 {
4882                         state->file = file->prev;
4883                         /* file->basename is used keep it */
4884                         xfree(file->dirname);
4885                         xfree(file->buf);
4886                         xfree(file);
4887                         file = 0;
4888                         raw_next_token(state, state->file, tk);
4889                         rescan = 1;
4890                 }
4891         } while(rescan);
4892 }
4893
4894 static void pp_token(struct compile_state *state, struct token *tk)
4895 {
4896         int rescan;
4897
4898         raw_token(state, tk);
4899         do {
4900                 rescan = 0;
4901                 if (tk->tok == TOK_SPACE) {
4902                         raw_token(state, tk);
4903                         rescan = 1;
4904                 }
4905                 else if (tk->tok == TOK_IDENT) {
4906                         if (state->token_base == 0) {
4907                                 ident_to_keyword(state, tk);
4908                         } else {
4909                                 ident_to_macro(state, tk);
4910                         }
4911                 }
4912         } while(rescan);
4913 }
4914
4915 static void preprocess(struct compile_state *state, struct token *tk);
4916
4917 static void token(struct compile_state *state, struct token *tk)
4918 {
4919         int rescan;
4920         pp_token(state, tk);
4921         do {
4922                 rescan = 0;
4923                 /* Process a macro directive */
4924                 if (tk->tok == TOK_MACRO) {
4925                         /* Only match preprocessor directives at the start of a line */
4926                         const char *ptr;
4927                         ptr = state->file->line_start;
4928                         while((ptr < tk->pos)
4929                                 && spacep(get_char(state->file, ptr)))
4930                         {
4931                                 ptr = next_char(state->file, ptr, 1);
4932                         }
4933                         if (ptr == tk->pos) {
4934                                 preprocess(state, tk);
4935                                 rescan = 1;
4936                         }
4937                 }
4938                 /* Expand a macro call */
4939                 else if (tk->ident && tk->ident->sym_define) {
4940                         rescan = compile_macro(state, &state->file, tk);
4941                         if (rescan) {
4942                                 pp_token(state, tk);
4943                         }
4944                 }
4945                 /* Eat tokens disabled by the preprocessor
4946                  * (Unless we are parsing a preprocessor directive
4947                  */
4948                 else if (if_eat(state) && (state->token_base == 0)) {
4949                         pp_token(state, tk);
4950                         rescan = 1;
4951                 }
4952                 /* Make certain EOL only shows up in preprocessor directives */
4953                 else if ((tk->tok == TOK_EOL) && (state->token_base == 0)) {
4954                         pp_token(state, tk);
4955                         rescan = 1;
4956                 }
4957                 /* Error on unknown tokens */
4958                 else if (tk->tok == TOK_UNKNOWN) {
4959                         error(state, 0, "unknown token");
4960                 }
4961         } while(rescan);
4962 }
4963
4964
4965 static inline struct token *get_token(struct compile_state *state, int offset)
4966 {
4967         int index;
4968         index = state->token_base + offset;
4969         if (index >= sizeof(state->token)/sizeof(state->token[0])) {
4970                 internal_error(state, 0, "token array to small");
4971         }
4972         return &state->token[index];
4973 }
4974
4975 static struct token *do_eat_token(struct compile_state *state, int tok)
4976 {
4977         struct token *tk;
4978         int i;
4979         check_tok(state, get_token(state, 1), tok);
4980
4981         /* Free the old token value */
4982         tk = get_token(state, 0);
4983         if (tk->str_len) {
4984                 memset((void *)tk->val.str, -1, tk->str_len);
4985                 xfree(tk->val.str);
4986         }
4987         /* Overwrite the old token with newer tokens */
4988         for(i = state->token_base; i < sizeof(state->token)/sizeof(state->token[0]) - 1; i++) {
4989                 state->token[i] = state->token[i + 1];
4990         }
4991         /* Clear the last token */
4992         memset(&state->token[i], 0, sizeof(state->token[i]));
4993         state->token[i].tok = -1;
4994
4995         /* Return the token */
4996         return tk;
4997 }
4998
4999 static int raw_peek(struct compile_state *state)
5000 {
5001         struct token *tk1;
5002         tk1 = get_token(state, 1);
5003         if (tk1->tok == -1) {
5004                 raw_token(state, tk1);
5005         }
5006         return tk1->tok;
5007 }
5008
5009 static struct token *raw_eat(struct compile_state *state, int tok)
5010 {
5011         raw_peek(state);
5012         return do_eat_token(state, tok);
5013 }
5014
5015 static int pp_peek(struct compile_state *state)
5016 {
5017         struct token *tk1;
5018         tk1 = get_token(state, 1);
5019         if (tk1->tok == -1) {
5020                 pp_token(state, tk1);
5021         }
5022         return tk1->tok;
5023 }
5024
5025 static struct token *pp_eat(struct compile_state *state, int tok)
5026 {
5027         pp_peek(state);
5028         return do_eat_token(state, tok);
5029 }
5030
5031 static int peek(struct compile_state *state)
5032 {
5033         struct token *tk1;
5034         tk1 = get_token(state, 1);
5035         if (tk1->tok == -1) {
5036                 token(state, tk1);
5037         }
5038         return tk1->tok;
5039 }
5040
5041 static int peek2(struct compile_state *state)
5042 {
5043         struct token *tk1, *tk2;
5044         tk1 = get_token(state, 1);
5045         tk2 = get_token(state, 2);
5046         if (tk1->tok == -1) {
5047                 token(state, tk1);
5048         }
5049         if (tk2->tok == -1) {
5050                 token(state, tk2);
5051         }
5052         return tk2->tok;
5053 }
5054
5055 static struct token *eat(struct compile_state *state, int tok)
5056 {
5057         peek(state);
5058         return do_eat_token(state, tok);
5059 }
5060
5061 static void compile_file(struct compile_state *state, const char *filename, int local)
5062 {
5063         char cwd[MAX_CWD_SIZE];
5064         const char *subdir, *base;
5065         int subdir_len;
5066         struct file_state *file;
5067         char *basename;
5068         file = xmalloc(sizeof(*file), "file_state");
5069
5070         base = strrchr(filename, '/');
5071         subdir = filename;
5072         if (base != 0) {
5073                 subdir_len = base - filename;
5074                 base++;
5075         }
5076         else {
5077                 base = filename;
5078                 subdir_len = 0;
5079         }
5080         basename = xmalloc(strlen(base) +1, "basename");
5081         strcpy(basename, base);
5082         file->basename = basename;
5083
5084         if (getcwd(cwd, sizeof(cwd)) == 0) {
5085                 die("cwd buffer to small");
5086         }
5087         if ((subdir[0] == '/') || ((subdir[1] == ':') && ((subdir[2] == '/') || (subdir[2] == '\\')))) {
5088                 file->dirname = xmalloc(subdir_len + 1, "dirname");
5089                 memcpy(file->dirname, subdir, subdir_len);
5090                 file->dirname[subdir_len] = '\0';
5091         }
5092         else {
5093                 const char *dir;
5094                 int dirlen;
5095                 const char **path;
5096                 /* Find the appropriate directory... */
5097                 dir = 0;
5098                 if (!state->file && exists(cwd, filename)) {
5099                         dir = cwd;
5100                 }
5101                 if (local && state->file && exists(state->file->dirname, filename)) {
5102                         dir = state->file->dirname;
5103                 }
5104                 for(path = state->compiler->include_paths; !dir && *path; path++) {
5105                         if (exists(*path, filename)) {
5106                                 dir = *path;
5107                         }
5108                 }
5109                 if (!dir) {
5110                         error(state, 0, "Cannot open `%s'\n", filename);
5111                 }
5112                 dirlen = strlen(dir);
5113                 file->dirname = xmalloc(dirlen + 1 + subdir_len + 1, "dirname");
5114                 memcpy(file->dirname, dir, dirlen);
5115                 file->dirname[dirlen] = '/';
5116                 memcpy(file->dirname + dirlen + 1, subdir, subdir_len);
5117                 file->dirname[dirlen + 1 + subdir_len] = '\0';
5118         }
5119         file->buf = slurp_file(file->dirname, file->basename, &file->size);
5120
5121         file->pos = file->buf;
5122         file->line_start = file->pos;
5123         file->line = 1;
5124
5125         file->report_line = 1;
5126         file->report_name = file->basename;
5127         file->report_dir  = file->dirname;
5128         file->macro       = 0;
5129         file->trigraphs   = (state->compiler->flags & COMPILER_TRIGRAPHS)? 1: 0;
5130         file->join_lines  = 1;
5131
5132         file->prev = state->file;
5133         state->file = file;
5134 }
5135
5136 static struct triple *constant_expr(struct compile_state *state);
5137 static void integral(struct compile_state *state, struct triple *def);
5138
5139 static int mcexpr(struct compile_state *state)
5140 {
5141         struct triple *cvalue;
5142         cvalue = constant_expr(state);
5143         integral(state, cvalue);
5144         if (cvalue->op != OP_INTCONST) {
5145                 error(state, 0, "integer constant expected");
5146         }
5147         return cvalue->u.cval != 0;
5148 }
5149
5150 static void preprocess(struct compile_state *state, struct token *current_token)
5151 {
5152         /* Doing much more with the preprocessor would require
5153          * a parser and a major restructuring.
5154          * Postpone that for later.
5155          */
5156         int old_token_base;
5157         int tok;
5158
5159         state->macro_file = state->file;
5160
5161         old_token_base = state->token_base;
5162         state->token_base = current_token - state->token;
5163
5164         tok = pp_peek(state);
5165         switch(tok) {
5166         case TOK_LIT_INT:
5167         {
5168                 struct token *tk;
5169                 int override_line;
5170                 tk = pp_eat(state, TOK_LIT_INT);
5171                 override_line = strtoul(tk->val.str, 0, 10);
5172                 /* I have a preprocessor  line marker parse it */
5173                 if (pp_peek(state) == TOK_LIT_STRING) {
5174                         const char *token, *base;
5175                         char *name, *dir;
5176                         int name_len, dir_len;
5177                         tk = pp_eat(state, TOK_LIT_STRING);
5178                         name = xmalloc(tk->str_len, "report_name");
5179                         token = tk->val.str + 1;
5180                         base = strrchr(token, '/');
5181                         name_len = tk->str_len -2;
5182                         if (base != 0) {
5183                                 dir_len = base - token;
5184                                 base++;
5185                                 name_len -= base - token;
5186                         } else {
5187                                 dir_len = 0;
5188                                 base = token;
5189                         }
5190                         memcpy(name, base, name_len);
5191                         name[name_len] = '\0';
5192                         dir = xmalloc(dir_len + 1, "report_dir");
5193                         memcpy(dir, token, dir_len);
5194                         dir[dir_len] = '\0';
5195                         state->file->report_line = override_line - 1;
5196                         state->file->report_name = name;
5197                         state->file->report_dir = dir;
5198                         state->file->macro      = 0;
5199                 }
5200                 break;
5201         }
5202         case TOK_MLINE:
5203         {
5204                 struct token *tk;
5205                 pp_eat(state, TOK_MLINE);
5206                 tk = eat(state, TOK_LIT_INT);
5207                 state->file->report_line = strtoul(tk->val.str, 0, 10) -1;
5208                 if (pp_peek(state) == TOK_LIT_STRING) {
5209                         const char *token, *base;
5210                         char *name, *dir;
5211                         int name_len, dir_len;
5212                         tk = pp_eat(state, TOK_LIT_STRING);
5213                         name = xmalloc(tk->str_len, "report_name");
5214                         token = tk->val.str + 1;
5215                         base = strrchr(token, '/');
5216                         name_len = tk->str_len - 2;
5217                         if (base != 0) {
5218                                 dir_len = base - token;
5219                                 base++;
5220                                 name_len -= base - token;
5221                         } else {
5222                                 dir_len = 0;
5223                                 base = token;
5224                         }
5225                         memcpy(name, base, name_len);
5226                         name[name_len] = '\0';
5227                         dir = xmalloc(dir_len + 1, "report_dir");
5228                         memcpy(dir, token, dir_len);
5229                         dir[dir_len] = '\0';
5230                         state->file->report_name = name;
5231                         state->file->report_dir = dir;
5232                         state->file->macro      = 0;
5233                 }
5234                 break;
5235         }
5236         case TOK_MUNDEF:
5237         {
5238                 struct hash_entry *ident;
5239                 pp_eat(state, TOK_MUNDEF);
5240                 if (if_eat(state))  /* quit early when #if'd out */
5241                         break;
5242
5243                 ident = pp_eat(state, TOK_MIDENT)->ident;
5244
5245                 undef_macro(state, ident);
5246                 break;
5247         }
5248         case TOK_MPRAGMA:
5249                 pp_eat(state, TOK_MPRAGMA);
5250                 if (if_eat(state))  /* quit early when #if'd out */
5251                         break;
5252                 warning(state, 0, "Ignoring pragma");
5253                 break;
5254         case TOK_MELIF:
5255                 pp_eat(state, TOK_MELIF);
5256                 reenter_if(state, "#elif");
5257                 if (if_eat(state))   /* quit early when #if'd out */
5258                         break;
5259                 /* If the #if was taken the #elif just disables the following code */
5260                 if (if_value(state)) {
5261                         eat_tokens(state, TOK_MENDIF);
5262                 }
5263                 /* If the previous #if was not taken see if the #elif enables the
5264                  * trailing code.
5265                  */
5266                 else {
5267                         set_if_value(state, mcexpr(state));
5268                         if (!if_value(state)) {
5269                                 eat_tokens(state, TOK_MELSE);
5270                         }
5271                 }
5272                 break;
5273         case TOK_MIF:
5274                 pp_eat(state, TOK_MIF);
5275                 enter_if(state);
5276                 if (if_eat(state))  /* quit early when #if'd out */
5277                         break;
5278                 set_if_value(state, mcexpr(state));
5279                 if (!if_value(state)) {
5280                         eat_tokens(state, TOK_MELSE);
5281                 }
5282                 break;
5283         case TOK_MIFNDEF:
5284         {
5285                 struct hash_entry *ident;
5286
5287                 pp_eat(state, TOK_MIFNDEF);
5288                 enter_if(state);
5289                 if (if_eat(state))  /* quit early when #if'd out */
5290                         break;
5291                 ident = pp_eat(state, TOK_MIDENT)->ident;
5292                 set_if_value(state, ident->sym_define == 0);
5293                 if (!if_value(state)) {
5294                         eat_tokens(state, TOK_MELSE);
5295                 }
5296                 break;
5297         }
5298         case TOK_MIFDEF:
5299         {
5300                 struct hash_entry *ident;
5301                 pp_eat(state, TOK_MIFDEF);
5302                 enter_if(state);
5303                 if (if_eat(state))  /* quit early when #if'd out */
5304                         break;
5305                 ident = pp_eat(state, TOK_MIDENT)->ident;
5306                 set_if_value(state, ident->sym_define != 0);
5307                 if (!if_value(state)) {
5308                         eat_tokens(state, TOK_MELSE);
5309                 }
5310                 break;
5311         }
5312         case TOK_MELSE:
5313                 pp_eat(state, TOK_MELSE);
5314                 enter_else(state, "#else");
5315                 if (!if_eat(state) && if_value(state)) {
5316                         eat_tokens(state, TOK_MENDIF);
5317                 }
5318                 break;
5319         case TOK_MENDIF:
5320                 pp_eat(state, TOK_MENDIF);
5321                 exit_if(state, "#endif");
5322                 break;
5323         case TOK_MDEFINE:
5324         {
5325                 struct hash_entry *ident;
5326                 struct macro_arg *args, **larg;
5327                 const char *mstart, *mend;
5328                 int argc;
5329
5330                 pp_eat(state, TOK_MDEFINE);
5331                 if (if_eat(state))  /* quit early when #if'd out */
5332                         break;
5333                 ident = pp_eat(state, TOK_MIDENT)->ident;
5334                 argc = -1;
5335                 args = 0;
5336                 larg = &args;
5337
5338                 /* Parse macro parameters */
5339                 if (raw_peek(state) == TOK_LPAREN) {
5340                         raw_eat(state, TOK_LPAREN);
5341                         argc += 1;
5342
5343                         for(;;) {
5344                                 struct macro_arg *narg, *arg;
5345                                 struct hash_entry *aident;
5346                                 int tok;
5347
5348                                 tok = pp_peek(state);
5349                                 if (!args && (tok == TOK_RPAREN)) {
5350                                         break;
5351                                 }
5352                                 else if (tok == TOK_DOTS) {
5353                                         pp_eat(state, TOK_DOTS);
5354                                         aident = state->i___VA_ARGS__;
5355                                 }
5356                                 else {
5357                                         aident = pp_eat(state, TOK_MIDENT)->ident;
5358                                 }
5359
5360                                 narg = xcmalloc(sizeof(*arg), "macro arg");
5361                                 narg->ident = aident;
5362
5363                                 /* Verify I don't have a duplicate identifier */
5364                                 for(arg = args; arg; arg = arg->next) {
5365                                         if (arg->ident == narg->ident) {
5366                                                 error(state, 0, "Duplicate macro arg `%s'",
5367                                                         narg->ident->name);
5368                                         }
5369                                 }
5370                                 /* Add the new argument to the end of the list */
5371                                 *larg = narg;
5372                                 larg = &narg->next;
5373                                 argc += 1;
5374
5375                                 if ((aident == state->i___VA_ARGS__) ||
5376                                         (pp_peek(state) != TOK_COMMA)) {
5377                                         break;
5378                                 }
5379                                 pp_eat(state, TOK_COMMA);
5380                         }
5381                         pp_eat(state, TOK_RPAREN);
5382                 }
5383                 /* Remove leading whitespace */
5384                 while(raw_peek(state) == TOK_SPACE) {
5385                         raw_eat(state, TOK_SPACE);
5386                 }
5387
5388                 /* Remember the start of the macro body */
5389                 tok = raw_peek(state);
5390                 mend = mstart = get_token(state, 1)->pos;
5391
5392                 /* Find the end of the macro */
5393                 for(tok = raw_peek(state); tok != TOK_EOL; tok = raw_peek(state)) {
5394                         raw_eat(state, tok);
5395                         /* Remember the end of the last non space token */
5396                         raw_peek(state);
5397                         if (tok != TOK_SPACE) {
5398                                 mend = get_token(state, 1)->pos;
5399                         }
5400                 }
5401
5402                 /* Now that I have found the body defined the token */
5403                 do_define_macro(state, ident,
5404                         char_strdup(state->file, mstart, mend, "macro buf"),
5405                         argc, args);
5406                 break;
5407         }
5408         case TOK_MERROR:
5409         {
5410                 const char *start, *end;
5411                 int len;
5412
5413                 pp_eat(state, TOK_MERROR);
5414                 /* Find the start of the line */
5415                 raw_peek(state);
5416                 start = get_token(state, 1)->pos;
5417
5418                 /* Find the end of the line */
5419                 while((tok = raw_peek(state)) != TOK_EOL) {
5420                         raw_eat(state, tok);
5421                 }
5422                 end = get_token(state, 1)->pos;
5423                 len = end - start;
5424                 if (!if_eat(state)) {
5425                         error(state, 0, "%*.*s", len, len, start);
5426                 }
5427                 break;
5428         }
5429         case TOK_MWARNING:
5430         {
5431                 const char *start, *end;
5432                 int len;
5433
5434                 pp_eat(state, TOK_MWARNING);
5435
5436                 /* Find the start of the line */
5437                 raw_peek(state);
5438                 start = get_token(state, 1)->pos;
5439
5440                 /* Find the end of the line */
5441                 while((tok = raw_peek(state)) != TOK_EOL) {
5442                         raw_eat(state, tok);
5443                 }
5444                 end = get_token(state, 1)->pos;
5445                 len = end - start;
5446                 if (!if_eat(state)) {
5447                         warning(state, 0, "%*.*s", len, len, start);
5448                 }
5449                 break;
5450         }
5451         case TOK_MINCLUDE:
5452         {
5453                 char *name;
5454                 int local;
5455                 local = 0;
5456                 name = 0;
5457
5458                 pp_eat(state, TOK_MINCLUDE);
5459                 if (if_eat(state)) {
5460                         /* Find the end of the line */
5461                         while((tok = raw_peek(state)) != TOK_EOL) {
5462                                 raw_eat(state, tok);
5463                         }
5464                         break;
5465                 }
5466                 tok = peek(state);
5467                 if (tok == TOK_LIT_STRING) {
5468                         struct token *tk;
5469                         const char *token;
5470                         int name_len;
5471                         tk = eat(state, TOK_LIT_STRING);
5472                         name = xmalloc(tk->str_len, "include");
5473                         token = tk->val.str +1;
5474                         name_len = tk->str_len -2;
5475                         if (*token == '"') {
5476                                 token++;
5477                                 name_len--;
5478                         }
5479                         memcpy(name, token, name_len);
5480                         name[name_len] = '\0';
5481                         local = 1;
5482                 }
5483                 else if (tok == TOK_LESS) {
5484                         struct macro_buf buf;
5485                         eat(state, TOK_LESS);
5486
5487                         buf.len = 40;
5488                         buf.str = xmalloc(buf.len, "include");
5489                         buf.pos = 0;
5490
5491                         tok = peek(state);
5492                         while((tok != TOK_MORE) &&
5493                                 (tok != TOK_EOL) && (tok != TOK_EOF))
5494                         {
5495                                 struct token *tk;
5496                                 tk = eat(state, tok);
5497                                 append_macro_chars(state, "include", &buf,
5498                                         state->file, tk->pos, state->file->pos);
5499                                 tok = peek(state);
5500                         }
5501                         append_macro_text(state, "include", &buf, "\0", 1);
5502                         if (peek(state) != TOK_MORE) {
5503                                 error(state, 0, "Unterminated include directive");
5504                         }
5505                         eat(state, TOK_MORE);
5506                         local = 0;
5507                         name = buf.str;
5508                 }
5509                 else {
5510                         error(state, 0, "Invalid include directive");
5511                 }
5512                 /* Error if there are any tokens after the include */
5513                 if (pp_peek(state) != TOK_EOL) {
5514                         error(state, 0, "garbage after include directive");
5515                 }
5516                 if (!if_eat(state)) {
5517                         compile_file(state, name, local);
5518                 }
5519                 xfree(name);
5520                 break;
5521         }
5522         case TOK_EOL:
5523                 /* Ignore # without a follwing ident */
5524                 break;
5525         default:
5526         {
5527                 const char *name1, *name2;
5528                 name1 = tokens[tok];
5529                 name2 = "";
5530                 if (tok == TOK_MIDENT) {
5531                         name2 = get_token(state, 1)->ident->name;
5532                 }
5533                 error(state, 0, "Invalid preprocessor directive: %s %s",
5534                         name1, name2);
5535                 break;
5536         }
5537         }
5538         /* Consume the rest of the macro line */
5539         do {
5540                 tok = pp_peek(state);
5541                 pp_eat(state, tok);
5542         } while((tok != TOK_EOF) && (tok != TOK_EOL));
5543         state->token_base = old_token_base;
5544         state->macro_file = NULL;
5545         return;
5546 }
5547
5548 /* Type helper functions */
5549
5550 static struct type *new_type(
5551         unsigned int type, struct type *left, struct type *right)
5552 {
5553         struct type *result;
5554         result = xmalloc(sizeof(*result), "type");
5555         result->type = type;
5556         result->left = left;
5557         result->right = right;
5558         result->field_ident = 0;
5559         result->type_ident = 0;
5560         result->elements = 0;
5561         return result;
5562 }
5563
5564 static struct type *clone_type(unsigned int specifiers, struct type *old)
5565 {
5566         struct type *result;
5567         result = xmalloc(sizeof(*result), "type");
5568         memcpy(result, old, sizeof(*result));
5569         result->type &= TYPE_MASK;
5570         result->type |= specifiers;
5571         return result;
5572 }
5573
5574 static struct type *dup_type(struct compile_state *state, struct type *orig)
5575 {
5576         struct type *new;
5577         new = xcmalloc(sizeof(*new), "type");
5578         new->type = orig->type;
5579         new->field_ident = orig->field_ident;
5580         new->type_ident  = orig->type_ident;
5581         new->elements    = orig->elements;
5582         if (orig->left) {
5583                 new->left = dup_type(state, orig->left);
5584         }
5585         if (orig->right) {
5586                 new->right = dup_type(state, orig->right);
5587         }
5588         return new;
5589 }
5590
5591
5592 static struct type *invalid_type(struct compile_state *state, struct type *type)
5593 {
5594         struct type *invalid, *member;
5595         invalid = 0;
5596         if (!type) {
5597                 internal_error(state, 0, "type missing?");
5598         }
5599         switch(type->type & TYPE_MASK) {
5600         case TYPE_VOID:
5601         case TYPE_CHAR:         case TYPE_UCHAR:
5602         case TYPE_SHORT:        case TYPE_USHORT:
5603         case TYPE_INT:          case TYPE_UINT:
5604         case TYPE_LONG:         case TYPE_ULONG:
5605         case TYPE_LLONG:        case TYPE_ULLONG:
5606         case TYPE_POINTER:
5607         case TYPE_ENUM:
5608                 break;
5609         case TYPE_BITFIELD:
5610                 invalid = invalid_type(state, type->left);
5611                 break;
5612         case TYPE_ARRAY:
5613                 invalid = invalid_type(state, type->left);
5614                 break;
5615         case TYPE_STRUCT:
5616         case TYPE_TUPLE:
5617                 member = type->left;
5618                 while(member && (invalid == 0) &&
5619                         ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
5620                         invalid = invalid_type(state, member->left);
5621                         member = member->right;
5622                 }
5623                 if (!invalid) {
5624                         invalid = invalid_type(state, member);
5625                 }
5626                 break;
5627         case TYPE_UNION:
5628         case TYPE_JOIN:
5629                 member = type->left;
5630                 while(member && (invalid == 0) &&
5631                         ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
5632                         invalid = invalid_type(state, member->left);
5633                         member = member->right;
5634                 }
5635                 if (!invalid) {
5636                         invalid = invalid_type(state, member);
5637                 }
5638                 break;
5639         default:
5640                 invalid = type;
5641                 break;
5642         }
5643         return invalid;
5644
5645 }
5646
5647 #define MASK_UCHAR(X)    ((X) & ((ulong_t)0xff))
5648 #define MASK_USHORT(X)   ((X) & (((ulong_t)1 << (SIZEOF_SHORT)) - 1))
5649 static inline ulong_t mask_uint(ulong_t x)
5650 {
5651         if (SIZEOF_INT < SIZEOF_LONG) {
5652                 ulong_t mask = (1ULL << ((ulong_t)(SIZEOF_INT))) -1;
5653                 x &= mask;
5654         }
5655         return x;
5656 }
5657 #define MASK_UINT(X)      (mask_uint(X))
5658 #define MASK_ULONG(X)    (X)
5659
5660 static struct type void_type    = { .type  = TYPE_VOID };
5661 static struct type char_type    = { .type  = TYPE_CHAR };
5662 static struct type uchar_type   = { .type  = TYPE_UCHAR };
5663 #if DEBUG_ROMCC_WARNING
5664 static struct type short_type   = { .type  = TYPE_SHORT };
5665 #endif
5666 static struct type ushort_type  = { .type  = TYPE_USHORT };
5667 static struct type int_type     = { .type  = TYPE_INT };
5668 static struct type uint_type    = { .type  = TYPE_UINT };
5669 static struct type long_type    = { .type  = TYPE_LONG };
5670 static struct type ulong_type   = { .type  = TYPE_ULONG };
5671 static struct type unknown_type = { .type  = TYPE_UNKNOWN };
5672
5673 static struct type void_ptr_type  = {
5674         .type = TYPE_POINTER,
5675         .left = &void_type,
5676 };
5677
5678 #if DEBUG_ROMCC_WARNING
5679 static struct type void_func_type = {
5680         .type  = TYPE_FUNCTION,
5681         .left  = &void_type,
5682         .right = &void_type,
5683 };
5684 #endif
5685
5686 static size_t bits_to_bytes(size_t size)
5687 {
5688         return (size + SIZEOF_CHAR - 1)/SIZEOF_CHAR;
5689 }
5690
5691 static struct triple *variable(struct compile_state *state, struct type *type)
5692 {
5693         struct triple *result;
5694         if ((type->type & STOR_MASK) != STOR_PERM) {
5695                 result = triple(state, OP_ADECL, type, 0, 0);
5696                 generate_lhs_pieces(state, result);
5697         }
5698         else {
5699                 result = triple(state, OP_SDECL, type, 0, 0);
5700         }
5701         return result;
5702 }
5703
5704 static void stor_of(FILE *fp, struct type *type)
5705 {
5706         switch(type->type & STOR_MASK) {
5707         case STOR_AUTO:
5708                 fprintf(fp, "auto ");
5709                 break;
5710         case STOR_STATIC:
5711                 fprintf(fp, "static ");
5712                 break;
5713         case STOR_LOCAL:
5714                 fprintf(fp, "local ");
5715                 break;
5716         case STOR_EXTERN:
5717                 fprintf(fp, "extern ");
5718                 break;
5719         case STOR_REGISTER:
5720                 fprintf(fp, "register ");
5721                 break;
5722         case STOR_TYPEDEF:
5723                 fprintf(fp, "typedef ");
5724                 break;
5725         case STOR_INLINE | STOR_LOCAL:
5726                 fprintf(fp, "inline ");
5727                 break;
5728         case STOR_INLINE | STOR_STATIC:
5729                 fprintf(fp, "static inline");
5730                 break;
5731         case STOR_INLINE | STOR_EXTERN:
5732                 fprintf(fp, "extern inline");
5733                 break;
5734         default:
5735                 fprintf(fp, "stor:%x", type->type & STOR_MASK);
5736                 break;
5737         }
5738 }
5739 static void qual_of(FILE *fp, struct type *type)
5740 {
5741         if (type->type & QUAL_CONST) {
5742                 fprintf(fp, " const");
5743         }
5744         if (type->type & QUAL_VOLATILE) {
5745                 fprintf(fp, " volatile");
5746         }
5747         if (type->type & QUAL_RESTRICT) {
5748                 fprintf(fp, " restrict");
5749         }
5750 }
5751
5752 static void name_of(FILE *fp, struct type *type)
5753 {
5754         unsigned int base_type;
5755         base_type = type->type & TYPE_MASK;
5756         if ((base_type != TYPE_PRODUCT) && (base_type != TYPE_OVERLAP)) {
5757                 stor_of(fp, type);
5758         }
5759         switch(base_type) {
5760         case TYPE_VOID:
5761                 fprintf(fp, "void");
5762                 qual_of(fp, type);
5763                 break;
5764         case TYPE_CHAR:
5765                 fprintf(fp, "signed char");
5766                 qual_of(fp, type);
5767                 break;
5768         case TYPE_UCHAR:
5769                 fprintf(fp, "unsigned char");
5770                 qual_of(fp, type);
5771                 break;
5772         case TYPE_SHORT:
5773                 fprintf(fp, "signed short");
5774                 qual_of(fp, type);
5775                 break;
5776         case TYPE_USHORT:
5777                 fprintf(fp, "unsigned short");
5778                 qual_of(fp, type);
5779                 break;
5780         case TYPE_INT:
5781                 fprintf(fp, "signed int");
5782                 qual_of(fp, type);
5783                 break;
5784         case TYPE_UINT:
5785                 fprintf(fp, "unsigned int");
5786                 qual_of(fp, type);
5787                 break;
5788         case TYPE_LONG:
5789                 fprintf(fp, "signed long");
5790                 qual_of(fp, type);
5791                 break;
5792         case TYPE_ULONG:
5793                 fprintf(fp, "unsigned long");
5794                 qual_of(fp, type);
5795                 break;
5796         case TYPE_POINTER:
5797                 name_of(fp, type->left);
5798                 fprintf(fp, " * ");
5799                 qual_of(fp, type);
5800                 break;
5801         case TYPE_PRODUCT:
5802                 name_of(fp, type->left);
5803                 fprintf(fp, ", ");
5804                 name_of(fp, type->right);
5805                 break;
5806         case TYPE_OVERLAP:
5807                 name_of(fp, type->left);
5808                 fprintf(fp, ",| ");
5809                 name_of(fp, type->right);
5810                 break;
5811         case TYPE_ENUM:
5812                 fprintf(fp, "enum %s",
5813                         (type->type_ident)? type->type_ident->name : "");
5814                 qual_of(fp, type);
5815                 break;
5816         case TYPE_STRUCT:
5817                 fprintf(fp, "struct %s { ",
5818                         (type->type_ident)? type->type_ident->name : "");
5819                 name_of(fp, type->left);
5820                 fprintf(fp, " } ");
5821                 qual_of(fp, type);
5822                 break;
5823         case TYPE_UNION:
5824                 fprintf(fp, "union %s { ",
5825                         (type->type_ident)? type->type_ident->name : "");
5826                 name_of(fp, type->left);
5827                 fprintf(fp, " } ");
5828                 qual_of(fp, type);
5829                 break;
5830         case TYPE_FUNCTION:
5831                 name_of(fp, type->left);
5832                 fprintf(fp, " (*)(");
5833                 name_of(fp, type->right);
5834                 fprintf(fp, ")");
5835                 break;
5836         case TYPE_ARRAY:
5837                 name_of(fp, type->left);
5838                 fprintf(fp, " [%ld]", (long)(type->elements));
5839                 break;
5840         case TYPE_TUPLE:
5841                 fprintf(fp, "tuple { ");
5842                 name_of(fp, type->left);
5843                 fprintf(fp, " } ");
5844                 qual_of(fp, type);
5845                 break;
5846         case TYPE_JOIN:
5847                 fprintf(fp, "join { ");
5848                 name_of(fp, type->left);
5849                 fprintf(fp, " } ");
5850                 qual_of(fp, type);
5851                 break;
5852         case TYPE_BITFIELD:
5853                 name_of(fp, type->left);
5854                 fprintf(fp, " : %d ", type->elements);
5855                 qual_of(fp, type);
5856                 break;
5857         case TYPE_UNKNOWN:
5858                 fprintf(fp, "unknown_t");
5859                 break;
5860         default:
5861                 fprintf(fp, "????: %x", base_type);
5862                 break;
5863         }
5864         if (type->field_ident && type->field_ident->name) {
5865                 fprintf(fp, " .%s", type->field_ident->name);
5866         }
5867 }
5868
5869 static size_t align_of(struct compile_state *state, struct type *type)
5870 {
5871         size_t align;
5872         align = 0;
5873         switch(type->type & TYPE_MASK) {
5874         case TYPE_VOID:
5875                 align = 1;
5876                 break;
5877         case TYPE_BITFIELD:
5878                 align = 1;
5879                 break;
5880         case TYPE_CHAR:
5881         case TYPE_UCHAR:
5882                 align = ALIGNOF_CHAR;
5883                 break;
5884         case TYPE_SHORT:
5885         case TYPE_USHORT:
5886                 align = ALIGNOF_SHORT;
5887                 break;
5888         case TYPE_INT:
5889         case TYPE_UINT:
5890         case TYPE_ENUM:
5891                 align = ALIGNOF_INT;
5892                 break;
5893         case TYPE_LONG:
5894         case TYPE_ULONG:
5895                 align = ALIGNOF_LONG;
5896                 break;
5897         case TYPE_POINTER:
5898                 align = ALIGNOF_POINTER;
5899                 break;
5900         case TYPE_PRODUCT:
5901         case TYPE_OVERLAP:
5902         {
5903                 size_t left_align, right_align;
5904                 left_align  = align_of(state, type->left);
5905                 right_align = align_of(state, type->right);
5906                 align = (left_align >= right_align) ? left_align : right_align;
5907                 break;
5908         }
5909         case TYPE_ARRAY:
5910                 align = align_of(state, type->left);
5911                 break;
5912         case TYPE_STRUCT:
5913         case TYPE_TUPLE:
5914         case TYPE_UNION:
5915         case TYPE_JOIN:
5916                 align = align_of(state, type->left);
5917                 break;
5918         default:
5919                 error(state, 0, "alignof not yet defined for type\n");
5920                 break;
5921         }
5922         return align;
5923 }
5924
5925 static size_t reg_align_of(struct compile_state *state, struct type *type)
5926 {
5927         size_t align;
5928         align = 0;
5929         switch(type->type & TYPE_MASK) {
5930         case TYPE_VOID:
5931                 align = 1;
5932                 break;
5933         case TYPE_BITFIELD:
5934                 align = 1;
5935                 break;
5936         case TYPE_CHAR:
5937         case TYPE_UCHAR:
5938                 align = REG_ALIGNOF_CHAR;
5939                 break;
5940         case TYPE_SHORT:
5941         case TYPE_USHORT:
5942                 align = REG_ALIGNOF_SHORT;
5943                 break;
5944         case TYPE_INT:
5945         case TYPE_UINT:
5946         case TYPE_ENUM:
5947                 align = REG_ALIGNOF_INT;
5948                 break;
5949         case TYPE_LONG:
5950         case TYPE_ULONG:
5951                 align = REG_ALIGNOF_LONG;
5952                 break;
5953         case TYPE_POINTER:
5954                 align = REG_ALIGNOF_POINTER;
5955                 break;
5956         case TYPE_PRODUCT:
5957         case TYPE_OVERLAP:
5958         {
5959                 size_t left_align, right_align;
5960                 left_align  = reg_align_of(state, type->left);
5961                 right_align = reg_align_of(state, type->right);
5962                 align = (left_align >= right_align) ? left_align : right_align;
5963                 break;
5964         }
5965         case TYPE_ARRAY:
5966                 align = reg_align_of(state, type->left);
5967                 break;
5968         case TYPE_STRUCT:
5969         case TYPE_UNION:
5970         case TYPE_TUPLE:
5971         case TYPE_JOIN:
5972                 align = reg_align_of(state, type->left);
5973                 break;
5974         default:
5975                 error(state, 0, "alignof not yet defined for type\n");
5976                 break;
5977         }
5978         return align;
5979 }
5980
5981 static size_t align_of_in_bytes(struct compile_state *state, struct type *type)
5982 {
5983         return bits_to_bytes(align_of(state, type));
5984 }
5985 static size_t size_of(struct compile_state *state, struct type *type);
5986 static size_t reg_size_of(struct compile_state *state, struct type *type);
5987
5988 static size_t needed_padding(struct compile_state *state,
5989         struct type *type, size_t offset)
5990 {
5991         size_t padding, align;
5992         align = align_of(state, type);
5993         /* Align to the next machine word if the bitfield does completely
5994          * fit into the current word.
5995          */
5996         if ((type->type & TYPE_MASK) == TYPE_BITFIELD) {
5997                 size_t size;
5998                 size = size_of(state, type);
5999                 if ((offset + type->elements)/size != offset/size) {
6000                         align = size;
6001                 }
6002         }
6003         padding = 0;
6004         if (offset % align) {
6005                 padding = align - (offset % align);
6006         }
6007         return padding;
6008 }
6009
6010 static size_t reg_needed_padding(struct compile_state *state,
6011         struct type *type, size_t offset)
6012 {
6013         size_t padding, align;
6014         align = reg_align_of(state, type);
6015         /* Align to the next register word if the bitfield does completely
6016          * fit into the current register.
6017          */
6018         if (((type->type & TYPE_MASK) == TYPE_BITFIELD) &&
6019                 (((offset + type->elements)/REG_SIZEOF_REG) != (offset/REG_SIZEOF_REG)))
6020         {
6021                 align = REG_SIZEOF_REG;
6022         }
6023         padding = 0;
6024         if (offset % align) {
6025                 padding = align - (offset % align);
6026         }
6027         return padding;
6028 }
6029
6030 static size_t size_of(struct compile_state *state, struct type *type)
6031 {
6032         size_t size;
6033         size = 0;
6034         switch(type->type & TYPE_MASK) {
6035         case TYPE_VOID:
6036                 size = 0;
6037                 break;
6038         case TYPE_BITFIELD:
6039                 size = type->elements;
6040                 break;
6041         case TYPE_CHAR:
6042         case TYPE_UCHAR:
6043                 size = SIZEOF_CHAR;
6044                 break;
6045         case TYPE_SHORT:
6046         case TYPE_USHORT:
6047                 size = SIZEOF_SHORT;
6048                 break;
6049         case TYPE_INT:
6050         case TYPE_UINT:
6051         case TYPE_ENUM:
6052                 size = SIZEOF_INT;
6053                 break;
6054         case TYPE_LONG:
6055         case TYPE_ULONG:
6056                 size = SIZEOF_LONG;
6057                 break;
6058         case TYPE_POINTER:
6059                 size = SIZEOF_POINTER;
6060                 break;
6061         case TYPE_PRODUCT:
6062         {
6063                 size_t pad;
6064                 size = 0;
6065                 while((type->type & TYPE_MASK) == TYPE_PRODUCT) {
6066                         pad = needed_padding(state, type->left, size);
6067                         size = size + pad + size_of(state, type->left);
6068                         type = type->right;
6069                 }
6070                 pad = needed_padding(state, type, size);
6071                 size = size + pad + size_of(state, type);
6072                 break;
6073         }
6074         case TYPE_OVERLAP:
6075         {
6076                 size_t size_left, size_right;
6077                 size_left = size_of(state, type->left);
6078                 size_right = size_of(state, type->right);
6079                 size = (size_left >= size_right)? size_left : size_right;
6080                 break;
6081         }
6082         case TYPE_ARRAY:
6083                 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
6084                         internal_error(state, 0, "Invalid array type");
6085                 } else {
6086                         size = size_of(state, type->left) * type->elements;
6087                 }
6088                 break;
6089         case TYPE_STRUCT:
6090         case TYPE_TUPLE:
6091         {
6092                 size_t pad;
6093                 size = size_of(state, type->left);
6094                 /* Pad structures so their size is a multiples of their alignment */
6095                 pad = needed_padding(state, type, size);
6096                 size = size + pad;
6097                 break;
6098         }
6099         case TYPE_UNION:
6100         case TYPE_JOIN:
6101         {
6102                 size_t pad;
6103                 size = size_of(state, type->left);
6104                 /* Pad unions so their size is a multiple of their alignment */
6105                 pad = needed_padding(state, type, size);
6106                 size = size + pad;
6107                 break;
6108         }
6109         default:
6110                 internal_error(state, 0, "sizeof not yet defined for type");
6111                 break;
6112         }
6113         return size;
6114 }
6115
6116 static size_t reg_size_of(struct compile_state *state, struct type *type)
6117 {
6118         size_t size;
6119         size = 0;
6120         switch(type->type & TYPE_MASK) {
6121         case TYPE_VOID:
6122                 size = 0;
6123                 break;
6124         case TYPE_BITFIELD:
6125                 size = type->elements;
6126                 break;
6127         case TYPE_CHAR:
6128         case TYPE_UCHAR:
6129                 size = REG_SIZEOF_CHAR;
6130                 break;
6131         case TYPE_SHORT:
6132         case TYPE_USHORT:
6133                 size = REG_SIZEOF_SHORT;
6134                 break;
6135         case TYPE_INT:
6136         case TYPE_UINT:
6137         case TYPE_ENUM:
6138                 size = REG_SIZEOF_INT;
6139                 break;
6140         case TYPE_LONG:
6141         case TYPE_ULONG:
6142                 size = REG_SIZEOF_LONG;
6143                 break;
6144         case TYPE_POINTER:
6145                 size = REG_SIZEOF_POINTER;
6146                 break;
6147         case TYPE_PRODUCT:
6148         {
6149                 size_t pad;
6150                 size = 0;
6151                 while((type->type & TYPE_MASK) == TYPE_PRODUCT) {
6152                         pad = reg_needed_padding(state, type->left, size);
6153                         size = size + pad + reg_size_of(state, type->left);
6154                         type = type->right;
6155                 }
6156                 pad = reg_needed_padding(state, type, size);
6157                 size = size + pad + reg_size_of(state, type);
6158                 break;
6159         }
6160         case TYPE_OVERLAP:
6161         {
6162                 size_t size_left, size_right;
6163                 size_left  = reg_size_of(state, type->left);
6164                 size_right = reg_size_of(state, type->right);
6165                 size = (size_left >= size_right)? size_left : size_right;
6166                 break;
6167         }
6168         case TYPE_ARRAY:
6169                 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
6170                         internal_error(state, 0, "Invalid array type");
6171                 } else {
6172                         size = reg_size_of(state, type->left) * type->elements;
6173                 }
6174                 break;
6175         case TYPE_STRUCT:
6176         case TYPE_TUPLE:
6177         {
6178                 size_t pad;
6179                 size = reg_size_of(state, type->left);
6180                 /* Pad structures so their size is a multiples of their alignment */
6181                 pad = reg_needed_padding(state, type, size);
6182                 size = size + pad;
6183                 break;
6184         }
6185         case TYPE_UNION:
6186         case TYPE_JOIN:
6187         {
6188                 size_t pad;
6189                 size = reg_size_of(state, type->left);
6190                 /* Pad unions so their size is a multiple of their alignment */
6191                 pad = reg_needed_padding(state, type, size);
6192                 size = size + pad;
6193                 break;
6194         }
6195         default:
6196                 internal_error(state, 0, "sizeof not yet defined for type");
6197                 break;
6198         }
6199         return size;
6200 }
6201
6202 static size_t registers_of(struct compile_state *state, struct type *type)
6203 {
6204         size_t registers;
6205         registers = reg_size_of(state, type);
6206         registers += REG_SIZEOF_REG - 1;
6207         registers /= REG_SIZEOF_REG;
6208         return registers;
6209 }
6210
6211 static size_t size_of_in_bytes(struct compile_state *state, struct type *type)
6212 {
6213         return bits_to_bytes(size_of(state, type));
6214 }
6215
6216 static size_t field_offset(struct compile_state *state,
6217         struct type *type, struct hash_entry *field)
6218 {
6219         struct type *member;
6220         size_t size;
6221
6222         size = 0;
6223         member = 0;
6224         if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
6225                 member = type->left;
6226                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6227                         size += needed_padding(state, member->left, size);
6228                         if (member->left->field_ident == field) {
6229                                 member = member->left;
6230                                 break;
6231                         }
6232                         size += size_of(state, member->left);
6233                         member = member->right;
6234                 }
6235                 size += needed_padding(state, member, size);
6236         }
6237         else if ((type->type & TYPE_MASK) == TYPE_UNION) {
6238                 member = type->left;
6239                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6240                         if (member->left->field_ident == field) {
6241                                 member = member->left;
6242                                 break;
6243                         }
6244                         member = member->right;
6245                 }
6246         }
6247         else {
6248                 internal_error(state, 0, "field_offset only works on structures and unions");
6249         }
6250
6251         if (!member || (member->field_ident != field)) {
6252                 error(state, 0, "member %s not present", field->name);
6253         }
6254         return size;
6255 }
6256
6257 static size_t field_reg_offset(struct compile_state *state,
6258         struct type *type, struct hash_entry *field)
6259 {
6260         struct type *member;
6261         size_t size;
6262
6263         size = 0;
6264         member = 0;
6265         if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
6266                 member = type->left;
6267                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6268                         size += reg_needed_padding(state, member->left, size);
6269                         if (member->left->field_ident == field) {
6270                                 member = member->left;
6271                                 break;
6272                         }
6273                         size += reg_size_of(state, member->left);
6274                         member = member->right;
6275                 }
6276         }
6277         else if ((type->type & TYPE_MASK) == TYPE_UNION) {
6278                 member = type->left;
6279                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6280                         if (member->left->field_ident == field) {
6281                                 member = member->left;
6282                                 break;
6283                         }
6284                         member = member->right;
6285                 }
6286         }
6287         else {
6288                 internal_error(state, 0, "field_reg_offset only works on structures and unions");
6289         }
6290
6291         size += reg_needed_padding(state, member, size);
6292         if (!member || (member->field_ident != field)) {
6293                 error(state, 0, "member %s not present", field->name);
6294         }
6295         return size;
6296 }
6297
6298 static struct type *field_type(struct compile_state *state,
6299         struct type *type, struct hash_entry *field)
6300 {
6301         struct type *member;
6302
6303         member = 0;
6304         if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
6305                 member = type->left;
6306                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6307                         if (member->left->field_ident == field) {
6308                                 member = member->left;
6309                                 break;
6310                         }
6311                         member = member->right;
6312                 }
6313         }
6314         else if ((type->type & TYPE_MASK) == TYPE_UNION) {
6315                 member = type->left;
6316                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6317                         if (member->left->field_ident == field) {
6318                                 member = member->left;
6319                                 break;
6320                         }
6321                         member = member->right;
6322                 }
6323         }
6324         else {
6325                 internal_error(state, 0, "field_type only works on structures and unions");
6326         }
6327
6328         if (!member || (member->field_ident != field)) {
6329                 error(state, 0, "member %s not present", field->name);
6330         }
6331         return member;
6332 }
6333
6334 static size_t index_offset(struct compile_state *state,
6335         struct type *type, ulong_t index)
6336 {
6337         struct type *member;
6338         size_t size;
6339         size = 0;
6340         if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
6341                 size = size_of(state, type->left) * index;
6342         }
6343         else if ((type->type & TYPE_MASK) == TYPE_TUPLE) {
6344                 ulong_t i;
6345                 member = type->left;
6346                 i = 0;
6347                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6348                         size += needed_padding(state, member->left, size);
6349                         if (i == index) {
6350                                 member = member->left;
6351                                 break;
6352                         }
6353                         size += size_of(state, member->left);
6354                         i++;
6355                         member = member->right;
6356                 }
6357                 size += needed_padding(state, member, size);
6358                 if (i != index) {
6359                         internal_error(state, 0, "Missing member index: %u", index);
6360                 }
6361         }
6362         else if ((type->type & TYPE_MASK) == TYPE_JOIN) {
6363                 ulong_t i;
6364                 size = 0;
6365                 member = type->left;
6366                 i = 0;
6367                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6368                         if (i == index) {
6369                                 member = member->left;
6370                                 break;
6371                         }
6372                         i++;
6373                         member = member->right;
6374                 }
6375                 if (i != index) {
6376                         internal_error(state, 0, "Missing member index: %u", index);
6377                 }
6378         }
6379         else {
6380                 internal_error(state, 0,
6381                         "request for index %u in something not an array, tuple or join",
6382                         index);
6383         }
6384         return size;
6385 }
6386
6387 static size_t index_reg_offset(struct compile_state *state,
6388         struct type *type, ulong_t index)
6389 {
6390         struct type *member;
6391         size_t size;
6392         size = 0;
6393         if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
6394                 size = reg_size_of(state, type->left) * index;
6395         }
6396         else if ((type->type & TYPE_MASK) == TYPE_TUPLE) {
6397                 ulong_t i;
6398                 member = type->left;
6399                 i = 0;
6400                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6401                         size += reg_needed_padding(state, member->left, size);
6402                         if (i == index) {
6403                                 member = member->left;
6404                                 break;
6405                         }
6406                         size += reg_size_of(state, member->left);
6407                         i++;
6408                         member = member->right;
6409                 }
6410                 size += reg_needed_padding(state, member, size);
6411                 if (i != index) {
6412                         internal_error(state, 0, "Missing member index: %u", index);
6413                 }
6414
6415         }
6416         else if ((type->type & TYPE_MASK) == TYPE_JOIN) {
6417                 ulong_t i;
6418                 size = 0;
6419                 member = type->left;
6420                 i = 0;
6421                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6422                         if (i == index) {
6423                                 member = member->left;
6424                                 break;
6425                         }
6426                         i++;
6427                         member = member->right;
6428                 }
6429                 if (i != index) {
6430                         internal_error(state, 0, "Missing member index: %u", index);
6431                 }
6432         }
6433         else {
6434                 internal_error(state, 0,
6435                         "request for index %u in something not an array, tuple or join",
6436                         index);
6437         }
6438         return size;
6439 }
6440
6441 static struct type *index_type(struct compile_state *state,
6442         struct type *type, ulong_t index)
6443 {
6444         struct type *member;
6445         if (index >= type->elements) {
6446                 internal_error(state, 0, "Invalid element %u requested", index);
6447         }
6448         if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
6449                 member = type->left;
6450         }
6451         else if ((type->type & TYPE_MASK) == TYPE_TUPLE) {
6452                 ulong_t i;
6453                 member = type->left;
6454                 i = 0;
6455                 while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6456                         if (i == index) {
6457                                 member = member->left;
6458                                 break;
6459                         }
6460                         i++;
6461                         member = member->right;
6462                 }
6463                 if (i != index) {
6464                         internal_error(state, 0, "Missing member index: %u", index);
6465                 }
6466         }
6467         else if ((type->type & TYPE_MASK) == TYPE_JOIN) {
6468                 ulong_t i;
6469                 member = type->left;
6470                 i = 0;
6471                 while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
6472                         if (i == index) {
6473                                 member = member->left;
6474                                 break;
6475                         }
6476                         i++;
6477                         member = member->right;
6478                 }
6479                 if (i != index) {
6480                         internal_error(state, 0, "Missing member index: %u", index);
6481                 }
6482         }
6483         else {
6484                 member = 0;
6485                 internal_error(state, 0,
6486                         "request for index %u in something not an array, tuple or join",
6487                         index);
6488         }
6489         return member;
6490 }
6491
6492 static struct type *unpack_type(struct compile_state *state, struct type *type)
6493 {
6494         /* If I have a single register compound type not a bit-field
6495          * find the real type.
6496          */
6497         struct type *start_type;
6498         size_t size;
6499         /* Get out early if I need multiple registers for this type */
6500         size = reg_size_of(state, type);
6501         if (size > REG_SIZEOF_REG) {
6502                 return type;
6503         }
6504         /* Get out early if I don't need any registers for this type */
6505         if (size == 0) {
6506                 return &void_type;
6507         }
6508         /* Loop until I have no more layers I can remove */
6509         do {
6510                 start_type = type;
6511                 switch(type->type & TYPE_MASK) {
6512                 case TYPE_ARRAY:
6513                         /* If I have a single element the unpacked type
6514                          * is that element.
6515                          */
6516                         if (type->elements == 1) {
6517                                 type = type->left;
6518                         }
6519                         break;
6520                 case TYPE_STRUCT:
6521                 case TYPE_TUPLE:
6522                         /* If I have a single element the unpacked type
6523                          * is that element.
6524                          */
6525                         if (type->elements == 1) {
6526                                 type = type->left;
6527                         }
6528                         /* If I have multiple elements the unpacked
6529                          * type is the non-void element.
6530                          */
6531                         else {
6532                                 struct type *next, *member;
6533                                 struct type *sub_type;
6534                                 sub_type = 0;
6535                                 next = type->left;
6536                                 while(next) {
6537                                         member = next;
6538                                         next = 0;
6539                                         if ((member->type & TYPE_MASK) == TYPE_PRODUCT) {
6540                                                 next = member->right;
6541                                                 member = member->left;
6542                                         }
6543                                         if (reg_size_of(state, member) > 0) {
6544                                                 if (sub_type) {
6545                                                         internal_error(state, 0, "true compound type in a register");
6546                                                 }
6547                                                 sub_type = member;
6548                                         }
6549                                 }
6550                                 if (sub_type) {
6551                                         type = sub_type;
6552                                 }
6553                         }
6554                         break;
6555
6556                 case TYPE_UNION:
6557                 case TYPE_JOIN:
6558                         /* If I have a single element the unpacked type
6559                          * is that element.
6560                          */
6561                         if (type->elements == 1) {
6562                                 type = type->left;
6563                         }
6564                         /* I can't in general unpack union types */
6565                         break;
6566                 default:
6567                         /* If I'm not a compound type I can't unpack it */
6568                         break;
6569                 }
6570         } while(start_type != type);
6571         switch(type->type & TYPE_MASK) {
6572         case TYPE_STRUCT:
6573         case TYPE_ARRAY:
6574         case TYPE_TUPLE:
6575                 internal_error(state, 0, "irredicible type?");
6576                 break;
6577         }
6578         return type;
6579 }
6580
6581 static int equiv_types(struct type *left, struct type *right);
6582 static int is_compound_type(struct type *type);
6583
6584 static struct type *reg_type(
6585         struct compile_state *state, struct type *type, int reg_offset)
6586 {
6587         struct type *member;
6588         size_t size;
6589 #if 1
6590         struct type *invalid;
6591         invalid = invalid_type(state, type);
6592         if (invalid) {
6593                 fprintf(state->errout, "type: ");
6594                 name_of(state->errout, type);
6595                 fprintf(state->errout, "\n");
6596                 fprintf(state->errout, "invalid: ");
6597                 name_of(state->errout, invalid);
6598                 fprintf(state->errout, "\n");
6599                 internal_error(state, 0, "bad input type?");
6600         }
6601 #endif
6602
6603         size = reg_size_of(state, type);
6604         if (reg_offset > size) {
6605                 member = 0;
6606                 fprintf(state->errout, "type: ");
6607                 name_of(state->errout, type);
6608                 fprintf(state->errout, "\n");
6609                 internal_error(state, 0, "offset outside of type");
6610         }
6611         else {
6612                 switch(type->type & TYPE_MASK) {
6613                         /* Don't do anything with the basic types */
6614                 case TYPE_VOID:
6615                 case TYPE_CHAR:         case TYPE_UCHAR:
6616                 case TYPE_SHORT:        case TYPE_USHORT:
6617                 case TYPE_INT:          case TYPE_UINT:
6618                 case TYPE_LONG:         case TYPE_ULONG:
6619                 case TYPE_LLONG:        case TYPE_ULLONG:
6620                 case TYPE_FLOAT:        case TYPE_DOUBLE:
6621                 case TYPE_LDOUBLE:
6622                 case TYPE_POINTER:
6623                 case TYPE_ENUM:
6624                 case TYPE_BITFIELD:
6625                         member = type;
6626                         break;
6627                 case TYPE_ARRAY:
6628                         member = type->left;
6629                         size = reg_size_of(state, member);
6630                         if (size > REG_SIZEOF_REG) {
6631                                 member = reg_type(state, member, reg_offset % size);
6632                         }
6633                         break;
6634                 case TYPE_STRUCT:
6635                 case TYPE_TUPLE:
6636                 {
6637                         size_t offset;
6638                         offset = 0;
6639                         member = type->left;
6640                         while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
6641                                 size = reg_size_of(state, member->left);
6642                                 offset += reg_needed_padding(state, member->left, offset);
6643                                 if ((offset + size) > reg_offset) {
6644                                         member = member->left;
6645                                         break;
6646                                 }
6647                                 offset += size;
6648                                 member = member->right;
6649                         }
6650                         offset += reg_needed_padding(state, member, offset);
6651                         member = reg_type(state, member, reg_offset - offset);
6652                         break;
6653                 }
6654                 case TYPE_UNION:
6655                 case TYPE_JOIN:
6656                 {
6657                         struct type *join, **jnext, *mnext;
6658                         join = new_type(TYPE_JOIN, 0, 0);
6659                         jnext = &join->left;
6660                         mnext = type->left;
6661                         while(mnext) {
6662                                 size_t size;
6663                                 member = mnext;
6664                                 mnext = 0;
6665                                 if ((member->type & TYPE_MASK) == TYPE_OVERLAP) {
6666                                         mnext = member->right;
6667                                         member = member->left;
6668                                 }
6669                                 size = reg_size_of(state, member);
6670                                 if (size > reg_offset) {
6671                                         struct type *part, *hunt;
6672                                         part = reg_type(state, member, reg_offset);
6673                                         /* See if this type is already in the union */
6674                                         hunt = join->left;
6675                                         while(hunt) {
6676                                                 struct type *test = hunt;
6677                                                 hunt = 0;
6678                                                 if ((test->type & TYPE_MASK) == TYPE_OVERLAP) {
6679                                                         hunt = test->right;
6680                                                         test = test->left;
6681                                                 }
6682                                                 if (equiv_types(part, test)) {
6683                                                         goto next;
6684                                                 }
6685                                         }
6686                                         /* Nope add it */
6687                                         if (!*jnext) {
6688                                                 *jnext = part;
6689                                         } else {
6690                                                 *jnext = new_type(TYPE_OVERLAP, *jnext, part);
6691                                                 jnext = &(*jnext)->right;
6692                                         }
6693                                         join->elements++;
6694                                 }
6695                         next:
6696                                 ;
6697                         }
6698                         if (join->elements == 0) {
6699                                 internal_error(state, 0, "No elements?");
6700                         }
6701                         member = join;
6702                         break;
6703                 }
6704                 default:
6705                         member = 0;
6706                         fprintf(state->errout, "type: ");
6707                         name_of(state->errout, type);
6708                         fprintf(state->errout, "\n");
6709                         internal_error(state, 0, "reg_type not yet defined for type");
6710
6711                 }
6712         }
6713         /* If I have a single register compound type not a bit-field
6714          * find the real type.
6715          */
6716         member = unpack_type(state, member);
6717                 ;
6718         size  = reg_size_of(state, member);
6719         if (size > REG_SIZEOF_REG) {
6720                 internal_error(state, 0, "Cannot find type of single register");
6721         }
6722 #if 1
6723         invalid = invalid_type(state, member);
6724         if (invalid) {
6725                 fprintf(state->errout, "type: ");
6726                 name_of(state->errout, member);
6727                 fprintf(state->errout, "\n");
6728                 fprintf(state->errout, "invalid: ");
6729                 name_of(state->errout, invalid);
6730                 fprintf(state->errout, "\n");
6731                 internal_error(state, 0, "returning bad type?");
6732         }
6733 #endif
6734         return member;
6735 }
6736
6737 static struct type *next_field(struct compile_state *state,
6738         struct type *type, struct type *prev_member)
6739 {
6740         struct type *member;
6741         if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
6742                 internal_error(state, 0, "next_field only works on structures");
6743         }
6744         member = type->left;
6745         while((member->type & TYPE_MASK) == TYPE_PRODUCT) {
6746                 if (!prev_member) {
6747                         member = member->left;
6748                         break;
6749                 }
6750                 if (member->left == prev_member) {
6751                         prev_member = 0;
6752                 }
6753                 member = member->right;
6754         }
6755         if (member == prev_member) {
6756                 prev_member = 0;
6757         }
6758         if (prev_member) {
6759                 internal_error(state, 0, "prev_member %s not present",
6760                         prev_member->field_ident->name);
6761         }
6762         return member;
6763 }
6764
6765 typedef void (*walk_type_fields_cb_t)(struct compile_state *state, struct type *type,
6766         size_t ret_offset, size_t mem_offset, void *arg);
6767
6768 static void walk_type_fields(struct compile_state *state,
6769         struct type *type, size_t reg_offset, size_t mem_offset,
6770         walk_type_fields_cb_t cb, void *arg);
6771
6772 static void walk_struct_fields(struct compile_state *state,
6773         struct type *type, size_t reg_offset, size_t mem_offset,
6774         walk_type_fields_cb_t cb, void *arg)
6775 {
6776         struct type *tptr;
6777         ulong_t i;
6778         if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
6779                 internal_error(state, 0, "walk_struct_fields only works on structures");
6780         }
6781         tptr = type->left;
6782         for(i = 0; i < type->elements; i++) {
6783                 struct type *mtype;
6784                 mtype = tptr;
6785                 if ((mtype->type & TYPE_MASK) == TYPE_PRODUCT) {
6786                         mtype = mtype->left;
6787                 }
6788                 walk_type_fields(state, mtype,
6789                         reg_offset +
6790                         field_reg_offset(state, type, mtype->field_ident),
6791                         mem_offset +
6792                         field_offset(state, type, mtype->field_ident),
6793                         cb, arg);
6794                 tptr = tptr->right;
6795         }
6796
6797 }
6798
6799 static void walk_type_fields(struct compile_state *state,
6800         struct type *type, size_t reg_offset, size_t mem_offset,
6801         walk_type_fields_cb_t cb, void *arg)
6802 {
6803         switch(type->type & TYPE_MASK) {
6804         case TYPE_STRUCT:
6805                 walk_struct_fields(state, type, reg_offset, mem_offset, cb, arg);
6806                 break;
6807         case TYPE_CHAR:
6808         case TYPE_UCHAR:
6809         case TYPE_SHORT:
6810         case TYPE_USHORT:
6811         case TYPE_INT:
6812         case TYPE_UINT:
6813         case TYPE_LONG:
6814         case TYPE_ULONG:
6815                 cb(state, type, reg_offset, mem_offset, arg);
6816                 break;
6817         case TYPE_VOID:
6818                 break;
6819         default:
6820                 internal_error(state, 0, "walk_type_fields not yet implemented for type");
6821         }
6822 }
6823
6824 static void arrays_complete(struct compile_state *state, struct type *type)
6825 {
6826         if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
6827                 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
6828                         error(state, 0, "array size not specified");
6829                 }
6830                 arrays_complete(state, type->left);
6831         }
6832 }
6833
6834 static unsigned int get_basic_type(struct type *type)
6835 {
6836         unsigned int basic;
6837         basic = type->type & TYPE_MASK;
6838         /* Convert enums to ints */
6839         if (basic == TYPE_ENUM) {
6840                 basic = TYPE_INT;
6841         }
6842         /* Convert bitfields to standard types */
6843         else if (basic == TYPE_BITFIELD) {
6844                 if (type->elements <= SIZEOF_CHAR) {
6845                         basic = TYPE_CHAR;
6846                 }
6847                 else if (type->elements <= SIZEOF_SHORT) {
6848                         basic = TYPE_SHORT;
6849                 }
6850                 else if (type->elements <= SIZEOF_INT) {
6851                         basic = TYPE_INT;
6852                 }
6853                 else if (type->elements <= SIZEOF_LONG) {
6854                         basic = TYPE_LONG;
6855                 }
6856                 if (!TYPE_SIGNED(type->left->type)) {
6857                         basic += 1;
6858                 }
6859         }
6860         return basic;
6861 }
6862
6863 static unsigned int do_integral_promotion(unsigned int type)
6864 {
6865         if (TYPE_INTEGER(type) && (TYPE_RANK(type) < TYPE_RANK(TYPE_INT))) {
6866                 type = TYPE_INT;
6867         }
6868         return type;
6869 }
6870
6871 static unsigned int do_arithmetic_conversion(
6872         unsigned int left, unsigned int right)
6873 {
6874         if ((left == TYPE_LDOUBLE) || (right == TYPE_LDOUBLE)) {
6875                 return TYPE_LDOUBLE;
6876         }
6877         else if ((left == TYPE_DOUBLE) || (right == TYPE_DOUBLE)) {
6878                 return TYPE_DOUBLE;
6879         }
6880         else if ((left == TYPE_FLOAT) || (right == TYPE_FLOAT)) {
6881                 return TYPE_FLOAT;
6882         }
6883         left = do_integral_promotion(left);
6884         right = do_integral_promotion(right);
6885         /* If both operands have the same size done */
6886         if (left == right) {
6887                 return left;
6888         }
6889         /* If both operands have the same signedness pick the larger */
6890         else if (!!TYPE_UNSIGNED(left) == !!TYPE_UNSIGNED(right)) {
6891                 return (TYPE_RANK(left) >= TYPE_RANK(right)) ? left : right;
6892         }
6893         /* If the signed type can hold everything use it */
6894         else if (TYPE_SIGNED(left) && (TYPE_RANK(left) > TYPE_RANK(right))) {
6895                 return left;
6896         }
6897         else if (TYPE_SIGNED(right) && (TYPE_RANK(right) > TYPE_RANK(left))) {
6898                 return right;
6899         }
6900         /* Convert to the unsigned type with the same rank as the signed type */
6901         else if (TYPE_SIGNED(left)) {
6902                 return TYPE_MKUNSIGNED(left);
6903         }
6904         else {
6905                 return TYPE_MKUNSIGNED(right);
6906         }
6907 }
6908
6909 /* see if two types are the same except for qualifiers */
6910 static int equiv_types(struct type *left, struct type *right)
6911 {
6912         unsigned int type;
6913         /* Error if the basic types do not match */
6914         if ((left->type & TYPE_MASK) != (right->type & TYPE_MASK)) {
6915                 return 0;
6916         }
6917         type = left->type & TYPE_MASK;
6918         /* If the basic types match and it is a void type we are done */
6919         if (type == TYPE_VOID) {
6920                 return 1;
6921         }
6922         /* For bitfields we need to compare the sizes */
6923         else if (type == TYPE_BITFIELD) {
6924                 return (left->elements == right->elements) &&
6925                         (TYPE_SIGNED(left->left->type) == TYPE_SIGNED(right->left->type));
6926         }
6927         /* if the basic types match and it is an arithmetic type we are done */
6928         else if (TYPE_ARITHMETIC(type)) {
6929                 return 1;
6930         }
6931         /* If it is a pointer type recurse and keep testing */
6932         else if (type == TYPE_POINTER) {
6933                 return equiv_types(left->left, right->left);
6934         }
6935         else if (type == TYPE_ARRAY) {
6936                 return (left->elements == right->elements) &&
6937                         equiv_types(left->left, right->left);
6938         }
6939         /* test for struct equality */
6940         else if (type == TYPE_STRUCT) {
6941                 return left->type_ident == right->type_ident;
6942         }
6943         /* test for union equality */
6944         else if (type == TYPE_UNION) {
6945                 return left->type_ident == right->type_ident;
6946         }
6947         /* Test for equivalent functions */
6948         else if (type == TYPE_FUNCTION) {
6949                 return equiv_types(left->left, right->left) &&
6950                         equiv_types(left->right, right->right);
6951         }
6952         /* We only see TYPE_PRODUCT as part of function equivalence matching */
6953         /* We also see TYPE_PRODUCT as part of of tuple equivalence matchin */
6954         else if (type == TYPE_PRODUCT) {
6955                 return equiv_types(left->left, right->left) &&
6956                         equiv_types(left->right, right->right);
6957         }
6958         /* We should see TYPE_OVERLAP when comparing joins */
6959         else if (type == TYPE_OVERLAP) {
6960                 return equiv_types(left->left, right->left) &&
6961                         equiv_types(left->right, right->right);
6962         }
6963         /* Test for equivalence of tuples */
6964         else if (type == TYPE_TUPLE) {
6965                 return (left->elements == right->elements) &&
6966                         equiv_types(left->left, right->left);
6967         }
6968         /* Test for equivalence of joins */
6969         else if (type == TYPE_JOIN) {
6970                 return (left->elements == right->elements) &&
6971                         equiv_types(left->left, right->left);
6972         }
6973         else {
6974                 return 0;
6975         }
6976 }
6977
6978 static int equiv_ptrs(struct type *left, struct type *right)
6979 {
6980         if (((left->type & TYPE_MASK) != TYPE_POINTER) ||
6981                 ((right->type & TYPE_MASK) != TYPE_POINTER)) {
6982                 return 0;
6983         }
6984         return equiv_types(left->left, right->left);
6985 }
6986
6987 static struct type *compatible_types(struct type *left, struct type *right)
6988 {
6989         struct type *result;
6990         unsigned int type, qual_type;
6991         /* Error if the basic types do not match */
6992         if ((left->type & TYPE_MASK) != (right->type & TYPE_MASK)) {
6993                 return 0;
6994         }
6995         type = left->type & TYPE_MASK;
6996         qual_type = (left->type & ~STOR_MASK) | (right->type & ~STOR_MASK);
6997         result = 0;
6998         /* if the basic types match and it is an arithmetic type we are done */
6999         if (TYPE_ARITHMETIC(type)) {
7000                 result = new_type(qual_type, 0, 0);
7001         }
7002         /* If it is a pointer type recurse and keep testing */
7003         else if (type == TYPE_POINTER) {
7004                 result = compatible_types(left->left, right->left);
7005                 if (result) {
7006                         result = new_type(qual_type, result, 0);
7007                 }
7008         }
7009         /* test for struct equality */
7010         else if (type == TYPE_STRUCT) {
7011                 if (left->type_ident == right->type_ident) {
7012                         result = left;
7013                 }
7014         }
7015         /* test for union equality */
7016         else if (type == TYPE_UNION) {
7017                 if (left->type_ident == right->type_ident) {
7018                         result = left;
7019                 }
7020         }
7021         /* Test for equivalent functions */
7022         else if (type == TYPE_FUNCTION) {
7023                 struct type *lf, *rf;
7024                 lf = compatible_types(left->left, right->left);
7025                 rf = compatible_types(left->right, right->right);
7026                 if (lf && rf) {
7027                         result = new_type(qual_type, lf, rf);
7028                 }
7029         }
7030         /* We only see TYPE_PRODUCT as part of function equivalence matching */
7031         else if (type == TYPE_PRODUCT) {
7032                 struct type *lf, *rf;
7033                 lf = compatible_types(left->left, right->left);
7034                 rf = compatible_types(left->right, right->right);
7035                 if (lf && rf) {
7036                         result = new_type(qual_type, lf, rf);
7037                 }
7038         }
7039         else {
7040                 /* Nothing else is compatible */
7041         }
7042         return result;
7043 }
7044
7045 /* See if left is a equivalent to right or right is a union member of left */
7046 static int is_subset_type(struct type *left, struct type *right)
7047 {
7048         if (equiv_types(left, right)) {
7049                 return 1;
7050         }
7051         if ((left->type & TYPE_MASK) == TYPE_JOIN) {
7052                 struct type *member, *mnext;
7053                 mnext = left->left;
7054                 while(mnext) {
7055                         member = mnext;
7056                         mnext = 0;
7057                         if ((member->type & TYPE_MASK) == TYPE_OVERLAP) {
7058                                 mnext = member->right;
7059                                 member = member->left;
7060                         }
7061                         if (is_subset_type( member, right)) {
7062                                 return 1;
7063                         }
7064                 }
7065         }
7066         return 0;
7067 }
7068
7069 static struct type *compatible_ptrs(struct type *left, struct type *right)
7070 {
7071         struct type *result;
7072         if (((left->type & TYPE_MASK) != TYPE_POINTER) ||
7073                 ((right->type & TYPE_MASK) != TYPE_POINTER)) {
7074                 return 0;
7075         }
7076         result = compatible_types(left->left, right->left);
7077         if (result) {
7078                 unsigned int qual_type;
7079                 qual_type = (left->type & ~STOR_MASK) | (right->type & ~STOR_MASK);
7080                 result = new_type(qual_type, result, 0);
7081         }
7082         return result;
7083
7084 }
7085 static struct triple *integral_promotion(
7086         struct compile_state *state, struct triple *def)
7087 {
7088         struct type *type;
7089         type = def->type;
7090         /* As all operations are carried out in registers
7091          * the values are converted on load I just convert
7092          * logical type of the operand.
7093          */
7094         if (TYPE_INTEGER(type->type)) {
7095                 unsigned int int_type;
7096                 int_type = type->type & ~TYPE_MASK;
7097                 int_type |= do_integral_promotion(get_basic_type(type));
7098                 if (int_type != type->type) {
7099                         if (def->op != OP_LOAD) {
7100                                 def->type = new_type(int_type, 0, 0);
7101                         }
7102                         else {
7103                                 def = triple(state, OP_CONVERT,
7104                                         new_type(int_type, 0, 0), def, 0);
7105                         }
7106                 }
7107         }
7108         return def;
7109 }
7110
7111
7112 static void arithmetic(struct compile_state *state, struct triple *def)
7113 {
7114         if (!TYPE_ARITHMETIC(def->type->type)) {
7115                 error(state, 0, "arithmetic type expexted");
7116         }
7117 }
7118
7119 static void ptr_arithmetic(struct compile_state *state, struct triple *def)
7120 {
7121         if (!TYPE_PTR(def->type->type) && !TYPE_ARITHMETIC(def->type->type)) {
7122                 error(state, def, "pointer or arithmetic type expected");
7123         }
7124 }
7125
7126 static int is_integral(struct triple *ins)
7127 {
7128         return TYPE_INTEGER(ins->type->type);
7129 }
7130
7131 static void integral(struct compile_state *state, struct triple *def)
7132 {
7133         if (!is_integral(def)) {
7134                 error(state, 0, "integral type expected");
7135         }
7136 }
7137
7138
7139 static void bool(struct compile_state *state, struct triple *def)
7140 {
7141         if (!TYPE_ARITHMETIC(def->type->type) &&
7142                 ((def->type->type & TYPE_MASK) != TYPE_POINTER)) {
7143                 error(state, 0, "arithmetic or pointer type expected");
7144         }
7145 }
7146
7147 static int is_signed(struct type *type)
7148 {
7149         if ((type->type & TYPE_MASK) == TYPE_BITFIELD) {
7150                 type = type->left;
7151         }
7152         return !!TYPE_SIGNED(type->type);
7153 }
7154 static int is_compound_type(struct type *type)
7155 {
7156         int is_compound;
7157         switch((type->type & TYPE_MASK)) {
7158         case TYPE_ARRAY:
7159         case TYPE_STRUCT:
7160         case TYPE_TUPLE:
7161         case TYPE_UNION:
7162         case TYPE_JOIN:
7163                 is_compound = 1;
7164                 break;
7165         default:
7166                 is_compound = 0;
7167                 break;
7168         }
7169         return is_compound;
7170 }
7171
7172 /* Is this value located in a register otherwise it must be in memory */
7173 static int is_in_reg(struct compile_state *state, struct triple *def)
7174 {
7175         int in_reg;
7176         if (def->op == OP_ADECL) {
7177                 in_reg = 1;
7178         }
7179         else if ((def->op == OP_SDECL) || (def->op == OP_DEREF)) {
7180                 in_reg = 0;
7181         }
7182         else if (triple_is_part(state, def)) {
7183                 in_reg = is_in_reg(state, MISC(def, 0));
7184         }
7185         else {
7186                 internal_error(state, def, "unknown expr storage location");
7187                 in_reg = -1;
7188         }
7189         return in_reg;
7190 }
7191
7192 /* Is this an auto or static variable location? Something that can
7193  * be assigned to.  Otherwise it must must be a pure value, a temporary.
7194  */
7195 static int is_lvalue(struct compile_state *state, struct triple *def)
7196 {
7197         int ret;
7198         ret = 0;
7199         if (!def) {
7200                 return 0;
7201         }
7202         if ((def->op == OP_ADECL) ||
7203                 (def->op == OP_SDECL) ||
7204                 (def->op == OP_DEREF) ||
7205                 (def->op == OP_BLOBCONST) ||
7206                 (def->op == OP_LIST)) {
7207                 ret = 1;
7208         }
7209         else if (triple_is_part(state, def)) {
7210                 ret = is_lvalue(state, MISC(def, 0));
7211         }
7212         return ret;
7213 }
7214
7215 static void clvalue(struct compile_state *state, struct triple *def)
7216 {
7217         if (!def) {
7218                 internal_error(state, def, "nothing where lvalue expected?");
7219         }
7220         if (!is_lvalue(state, def)) {
7221                 error(state, def, "lvalue expected");
7222         }
7223 }
7224 static void lvalue(struct compile_state *state, struct triple *def)
7225 {
7226         clvalue(state, def);
7227         if (def->type->type & QUAL_CONST) {
7228                 error(state, def, "modifable lvalue expected");
7229         }
7230 }
7231
7232 static int is_pointer(struct triple *def)
7233 {
7234         return (def->type->type & TYPE_MASK) == TYPE_POINTER;
7235 }
7236
7237 static void pointer(struct compile_state *state, struct triple *def)
7238 {
7239         if (!is_pointer(def)) {
7240                 error(state, def, "pointer expected");
7241         }
7242 }
7243
7244 static struct triple *int_const(
7245         struct compile_state *state, struct type *type, ulong_t value)
7246 {
7247         struct triple *result;
7248         switch(type->type & TYPE_MASK) {
7249         case TYPE_CHAR:
7250         case TYPE_INT:   case TYPE_UINT:
7251         case TYPE_LONG:  case TYPE_ULONG:
7252                 break;
7253         default:
7254                 internal_error(state, 0, "constant for unknown type");
7255         }
7256         result = triple(state, OP_INTCONST, type, 0, 0);
7257         result->u.cval = value;
7258         return result;
7259 }
7260
7261
7262 static struct triple *read_expr(struct compile_state *state, struct triple *def);
7263
7264 static struct triple *do_mk_addr_expr(struct compile_state *state,
7265         struct triple *expr, struct type *type, ulong_t offset)
7266 {
7267         struct triple *result;
7268         struct type *ptr_type;
7269         clvalue(state, expr);
7270
7271         ptr_type = new_type(TYPE_POINTER | (type->type & QUAL_MASK), type, 0);
7272
7273
7274         result = 0;
7275         if (expr->op == OP_ADECL) {
7276                 error(state, expr, "address of auto variables not supported");
7277         }
7278         else if (expr->op == OP_SDECL) {
7279                 result = triple(state, OP_ADDRCONST, ptr_type, 0, 0);
7280                 MISC(result, 0) = expr;
7281                 result->u.cval = offset;
7282         }
7283         else if (expr->op == OP_DEREF) {
7284                 result = triple(state, OP_ADD, ptr_type,
7285                         RHS(expr, 0),
7286                         int_const(state, &ulong_type, offset));
7287         }
7288         else if (expr->op == OP_BLOBCONST) {
7289                 FINISHME();
7290                 internal_error(state, expr, "not yet implemented");
7291         }
7292         else if (expr->op == OP_LIST) {
7293                 error(state, 0, "Function addresses not supported");
7294         }
7295         else if (triple_is_part(state, expr)) {
7296                 struct triple *part;
7297                 part = expr;
7298                 expr = MISC(expr, 0);
7299                 if (part->op == OP_DOT) {
7300                         offset += bits_to_bytes(
7301                                 field_offset(state, expr->type, part->u.field));
7302                 }
7303                 else if (part->op == OP_INDEX) {
7304                         offset += bits_to_bytes(
7305                                 index_offset(state, expr->type, part->u.cval));
7306                 }
7307                 else {
7308                         internal_error(state, part, "unhandled part type");
7309                 }
7310                 result = do_mk_addr_expr(state, expr, type, offset);
7311         }
7312         if (!result) {
7313                 internal_error(state, expr, "cannot take address of expression");
7314         }
7315         return result;
7316 }
7317
7318 static struct triple *mk_addr_expr(
7319         struct compile_state *state, struct triple *expr, ulong_t offset)
7320 {
7321         return do_mk_addr_expr(state, expr, expr->type, offset);
7322 }
7323
7324 static struct triple *mk_deref_expr(
7325         struct compile_state *state, struct triple *expr)
7326 {
7327         struct type *base_type;
7328         pointer(state, expr);
7329         base_type = expr->type->left;
7330         return triple(state, OP_DEREF, base_type, expr, 0);
7331 }
7332
7333 /* lvalue conversions always apply except when certain operators
7334  * are applied.  So I apply apply it when I know no more
7335  * operators will be applied.
7336  */
7337 static struct triple *lvalue_conversion(struct compile_state *state, struct triple *def)
7338 {
7339         /* Tranform an array to a pointer to the first element */
7340         if ((def->type->type & TYPE_MASK) == TYPE_ARRAY) {
7341                 struct type *type;
7342                 type = new_type(
7343                         TYPE_POINTER | (def->type->type & QUAL_MASK),
7344                         def->type->left, 0);
7345                 if ((def->op == OP_SDECL) || IS_CONST_OP(def->op)) {
7346                         struct triple *addrconst;
7347                         if ((def->op != OP_SDECL) && (def->op != OP_BLOBCONST)) {
7348                                 internal_error(state, def, "bad array constant");
7349                         }
7350                         addrconst = triple(state, OP_ADDRCONST, type, 0, 0);
7351                         MISC(addrconst, 0) = def;
7352                         def = addrconst;
7353                 }
7354                 else {
7355                         def = triple(state, OP_CONVERT, type, def, 0);
7356                 }
7357         }
7358         /* Transform a function to a pointer to it */
7359         else if ((def->type->type & TYPE_MASK) == TYPE_FUNCTION) {
7360                 def = mk_addr_expr(state, def, 0);
7361         }
7362         return def;
7363 }
7364
7365 static struct triple *deref_field(
7366         struct compile_state *state, struct triple *expr, struct hash_entry *field)
7367 {
7368         struct triple *result;
7369         struct type *type, *member;
7370         ulong_t offset;
7371         if (!field) {
7372                 internal_error(state, 0, "No field passed to deref_field");
7373         }
7374         result = 0;
7375         type = expr->type;
7376         if (((type->type & TYPE_MASK) != TYPE_STRUCT) &&
7377                 ((type->type & TYPE_MASK) != TYPE_UNION)) {
7378                 error(state, 0, "request for member %s in something not a struct or union",
7379                         field->name);
7380         }
7381         member = field_type(state, type, field);
7382         if ((type->type & STOR_MASK) == STOR_PERM) {
7383                 /* Do the pointer arithmetic to get a deref the field */
7384                 offset = bits_to_bytes(field_offset(state, type, field));
7385                 result = do_mk_addr_expr(state, expr, member, offset);
7386                 result = mk_deref_expr(state, result);
7387         }
7388         else {
7389                 /* Find the variable for the field I want. */
7390                 result = triple(state, OP_DOT, member, expr, 0);
7391                 result->u.field = field;
7392         }
7393         return result;
7394 }
7395
7396 static struct triple *deref_index(
7397         struct compile_state *state, struct triple *expr, size_t index)
7398 {
7399         struct triple *result;
7400         struct type *type, *member;
7401         ulong_t offset;
7402
7403         result = 0;
7404         type = expr->type;
7405         member = index_type(state, type, index);
7406
7407         if ((type->type & STOR_MASK) == STOR_PERM) {
7408                 offset = bits_to_bytes(index_offset(state, type, index));
7409                 result = do_mk_addr_expr(state, expr, member, offset);
7410                 result = mk_deref_expr(state, result);
7411         }
7412         else {
7413                 result = triple(state, OP_INDEX, member, expr, 0);
7414                 result->u.cval = index;
7415         }
7416         return result;
7417 }
7418
7419 static struct triple *read_expr(struct compile_state *state, struct triple *def)
7420 {
7421         int op;
7422         if  (!def) {
7423                 return 0;
7424         }
7425 #if DEBUG_ROMCC_WARNINGS
7426 #warning "CHECK_ME is this the only place I need to do lvalue conversions?"
7427 #endif
7428         /* Transform lvalues into something we can read */
7429         def = lvalue_conversion(state, def);
7430         if (!is_lvalue(state, def)) {
7431                 return def;
7432         }
7433         if (is_in_reg(state, def)) {
7434                 op = OP_READ;
7435         } else {
7436                 if (def->op == OP_SDECL) {
7437                         def = mk_addr_expr(state, def, 0);
7438                         def = mk_deref_expr(state, def);
7439                 }
7440                 op = OP_LOAD;
7441         }
7442         def = triple(state, op, def->type, def, 0);
7443         if (def->type->type & QUAL_VOLATILE) {
7444                 def->id |= TRIPLE_FLAG_VOLATILE;
7445         }
7446         return def;
7447 }
7448
7449 int is_write_compatible(struct compile_state *state,
7450         struct type *dest, struct type *rval)
7451 {
7452         int compatible = 0;
7453         /* Both operands have arithmetic type */
7454         if (TYPE_ARITHMETIC(dest->type) && TYPE_ARITHMETIC(rval->type)) {
7455                 compatible = 1;
7456         }
7457         /* One operand is a pointer and the other is a pointer to void */
7458         else if (((dest->type & TYPE_MASK) == TYPE_POINTER) &&
7459                 ((rval->type & TYPE_MASK) == TYPE_POINTER) &&
7460                 (((dest->left->type & TYPE_MASK) == TYPE_VOID) ||
7461                         ((rval->left->type & TYPE_MASK) == TYPE_VOID))) {
7462                 compatible = 1;
7463         }
7464         /* If both types are the same without qualifiers we are good */
7465         else if (equiv_ptrs(dest, rval)) {
7466                 compatible = 1;
7467         }
7468         /* test for struct/union equality  */
7469         else if (equiv_types(dest, rval)) {
7470                 compatible = 1;
7471         }
7472         return compatible;
7473 }
7474
7475 static void write_compatible(struct compile_state *state,
7476         struct type *dest, struct type *rval)
7477 {
7478         if (!is_write_compatible(state, dest, rval)) {
7479                 FILE *fp = state->errout;
7480                 fprintf(fp, "dest: ");
7481                 name_of(fp, dest);
7482                 fprintf(fp,"\nrval: ");
7483                 name_of(fp, rval);
7484                 fprintf(fp, "\n");
7485                 error(state, 0, "Incompatible types in assignment");
7486         }
7487 }
7488
7489 static int is_init_compatible(struct compile_state *state,
7490         struct type *dest, struct type *rval)
7491 {
7492         int compatible = 0;
7493         if (is_write_compatible(state, dest, rval)) {
7494                 compatible = 1;
7495         }
7496         else if (equiv_types(dest, rval)) {
7497                 compatible = 1;
7498         }
7499         return compatible;
7500 }
7501
7502 static struct triple *write_expr(
7503         struct compile_state *state, struct triple *dest, struct triple *rval)
7504 {
7505         struct triple *def;
7506
7507         def = 0;
7508         if (!rval) {
7509                 internal_error(state, 0, "missing rval");
7510         }
7511
7512         if (rval->op == OP_LIST) {
7513                 internal_error(state, 0, "expression of type OP_LIST?");
7514         }
7515         if (!is_lvalue(state, dest)) {
7516                 internal_error(state, 0, "writing to a non lvalue?");
7517         }
7518         if (dest->type->type & QUAL_CONST) {
7519                 internal_error(state, 0, "modifable lvalue expexted");
7520         }
7521
7522         write_compatible(state, dest->type, rval->type);
7523         if (!equiv_types(dest->type, rval->type)) {
7524                 rval = triple(state, OP_CONVERT, dest->type, rval, 0);
7525         }
7526
7527         /* Now figure out which assignment operator to use */
7528         if (is_in_reg(state, dest)) {
7529                 def = triple(state, OP_WRITE, dest->type, rval, dest);
7530                 if (MISC(def, 0) != dest) {
7531                         internal_error(state, def, "huh?");
7532                 }
7533                 if (RHS(def, 0) != rval) {
7534                         internal_error(state, def, "huh?");
7535                 }
7536         } else {
7537                 def = triple(state, OP_STORE, dest->type, dest, rval);
7538         }
7539         if (def->type->type & QUAL_VOLATILE) {
7540                 def->id |= TRIPLE_FLAG_VOLATILE;
7541         }
7542         return def;
7543 }
7544
7545 static struct triple *init_expr(
7546         struct compile_state *state, struct triple *dest, struct triple *rval)
7547 {
7548         struct triple *def;
7549
7550         def = 0;
7551         if (!rval) {
7552                 internal_error(state, 0, "missing rval");
7553         }
7554         if ((dest->type->type & STOR_MASK) != STOR_PERM) {
7555                 rval = read_expr(state, rval);
7556                 def = write_expr(state, dest, rval);
7557         }
7558         else {
7559                 /* Fill in the array size if necessary */
7560                 if (((dest->type->type & TYPE_MASK) == TYPE_ARRAY) &&
7561                         ((rval->type->type & TYPE_MASK) == TYPE_ARRAY)) {
7562                         if (dest->type->elements == ELEMENT_COUNT_UNSPECIFIED) {
7563                                 dest->type->elements = rval->type->elements;
7564                         }
7565                 }
7566                 if (!equiv_types(dest->type, rval->type)) {
7567                         error(state, 0, "Incompatible types in inializer");
7568                 }
7569                 MISC(dest, 0) = rval;
7570                 insert_triple(state, dest, rval);
7571                 rval->id |= TRIPLE_FLAG_FLATTENED;
7572                 use_triple(MISC(dest, 0), dest);
7573         }
7574         return def;
7575 }
7576
7577 struct type *arithmetic_result(
7578         struct compile_state *state, struct triple *left, struct triple *right)
7579 {
7580         struct type *type;
7581         /* Sanity checks to ensure I am working with arithmetic types */
7582         arithmetic(state, left);
7583         arithmetic(state, right);
7584         type = new_type(
7585                 do_arithmetic_conversion(
7586                         get_basic_type(left->type),
7587                         get_basic_type(right->type)),
7588                 0, 0);
7589         return type;
7590 }
7591
7592 struct type *ptr_arithmetic_result(
7593         struct compile_state *state, struct triple *left, struct triple *right)
7594 {
7595         struct type *type;
7596         /* Sanity checks to ensure I am working with the proper types */
7597         ptr_arithmetic(state, left);
7598         arithmetic(state, right);
7599         if (TYPE_ARITHMETIC(left->type->type) &&
7600                 TYPE_ARITHMETIC(right->type->type)) {
7601                 type = arithmetic_result(state, left, right);
7602         }
7603         else if (TYPE_PTR(left->type->type)) {
7604                 type = left->type;
7605         }
7606         else {
7607                 internal_error(state, 0, "huh?");
7608                 type = 0;
7609         }
7610         return type;
7611 }
7612
7613 /* boolean helper function */
7614
7615 static struct triple *ltrue_expr(struct compile_state *state,
7616         struct triple *expr)
7617 {
7618         switch(expr->op) {
7619         case OP_LTRUE:   case OP_LFALSE:  case OP_EQ:      case OP_NOTEQ:
7620         case OP_SLESS:   case OP_ULESS:   case OP_SMORE:   case OP_UMORE:
7621         case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
7622                 /* If the expression is already boolean do nothing */
7623                 break;
7624         default:
7625                 expr = triple(state, OP_LTRUE, &int_type, expr, 0);
7626                 break;
7627         }
7628         return expr;
7629 }
7630
7631 static struct triple *lfalse_expr(struct compile_state *state,
7632         struct triple *expr)
7633 {
7634         return triple(state, OP_LFALSE, &int_type, expr, 0);
7635 }
7636
7637 static struct triple *mkland_expr(
7638         struct compile_state *state,
7639         struct triple *left, struct triple *right)
7640 {
7641         struct triple *def, *val, *var, *jmp, *mid, *end;
7642         struct triple *lstore, *rstore;
7643
7644         /* Generate some intermediate triples */
7645         end = label(state);
7646         var = variable(state, &int_type);
7647
7648         /* Store the left hand side value */
7649         lstore = write_expr(state, var, left);
7650
7651         /* Jump if the value is false */
7652         jmp =  branch(state, end,
7653                 lfalse_expr(state, read_expr(state, var)));
7654         mid = label(state);
7655
7656         /* Store the right hand side value */
7657         rstore = write_expr(state, var, right);
7658
7659         /* An expression for the computed value */
7660         val = read_expr(state, var);
7661
7662         /* Generate the prog for a logical and */
7663         def = mkprog(state, var, lstore, jmp, mid, rstore, end, val, 0UL);
7664
7665         return def;
7666 }
7667
7668 static struct triple *mklor_expr(
7669         struct compile_state *state,
7670         struct triple *left, struct triple *right)
7671 {
7672         struct triple *def, *val, *var, *jmp, *mid, *end;
7673
7674         /* Generate some intermediate triples */
7675         end = label(state);
7676         var = variable(state, &int_type);
7677
7678         /* Store the left hand side value */
7679         left = write_expr(state, var, left);
7680
7681         /* Jump if the value is true */
7682         jmp = branch(state, end, read_expr(state, var));
7683         mid = label(state);
7684
7685         /* Store the right hand side value */
7686         right = write_expr(state, var, right);
7687
7688         /* An expression for the computed value*/
7689         val = read_expr(state, var);
7690
7691         /* Generate the prog for a logical or */
7692         def = mkprog(state, var, left, jmp, mid, right, end, val, 0UL);
7693
7694         return def;
7695 }
7696
7697 static struct triple *mkcond_expr(
7698         struct compile_state *state,
7699         struct triple *test, struct triple *left, struct triple *right)
7700 {
7701         struct triple *def, *val, *var, *jmp1, *jmp2, *top, *mid, *end;
7702         struct type *result_type;
7703         unsigned int left_type, right_type;
7704         bool(state, test);
7705         left_type = left->type->type;
7706         right_type = right->type->type;
7707         result_type = 0;
7708         /* Both operands have arithmetic type */
7709         if (TYPE_ARITHMETIC(left_type) && TYPE_ARITHMETIC(right_type)) {
7710                 result_type = arithmetic_result(state, left, right);
7711         }
7712         /* Both operands have void type */
7713         else if (((left_type & TYPE_MASK) == TYPE_VOID) &&
7714                 ((right_type & TYPE_MASK) == TYPE_VOID)) {
7715                 result_type = &void_type;
7716         }
7717         /* pointers to the same type... */
7718         else if ((result_type = compatible_ptrs(left->type, right->type))) {
7719                 ;
7720         }
7721         /* Both operands are pointers and left is a pointer to void */
7722         else if (((left_type & TYPE_MASK) == TYPE_POINTER) &&
7723                 ((right_type & TYPE_MASK) == TYPE_POINTER) &&
7724                 ((left->type->left->type & TYPE_MASK) == TYPE_VOID)) {
7725                 result_type = right->type;
7726         }
7727         /* Both operands are pointers and right is a pointer to void */
7728         else if (((left_type & TYPE_MASK) == TYPE_POINTER) &&
7729                 ((right_type & TYPE_MASK) == TYPE_POINTER) &&
7730                 ((right->type->left->type & TYPE_MASK) == TYPE_VOID)) {
7731                 result_type = left->type;
7732         }
7733         if (!result_type) {
7734                 error(state, 0, "Incompatible types in conditional expression");
7735         }
7736         /* Generate some intermediate triples */
7737         mid = label(state);
7738         end = label(state);
7739         var = variable(state, result_type);
7740
7741         /* Branch if the test is false */
7742         jmp1 = branch(state, mid, lfalse_expr(state, read_expr(state, test)));
7743         top = label(state);
7744
7745         /* Store the left hand side value */
7746         left = write_expr(state, var, left);
7747
7748         /* Branch to the end */
7749         jmp2 = branch(state, end, 0);
7750
7751         /* Store the right hand side value */
7752         right = write_expr(state, var, right);
7753
7754         /* An expression for the computed value */
7755         val = read_expr(state, var);
7756
7757         /* Generate the prog for a conditional expression */
7758         def = mkprog(state, var, jmp1, top, left, jmp2, mid, right, end, val, 0UL);
7759
7760         return def;
7761 }
7762
7763
7764 static int expr_depth(struct compile_state *state, struct triple *ins)
7765 {
7766 #if DEBUG_ROMCC_WARNINGS
7767 #warning "FIXME move optimal ordering of subexpressions into the optimizer"
7768 #endif
7769         int count;
7770         count = 0;
7771         if (!ins || (ins->id & TRIPLE_FLAG_FLATTENED)) {
7772                 count = 0;
7773         }
7774         else if (ins->op == OP_DEREF) {
7775                 count = expr_depth(state, RHS(ins, 0)) - 1;
7776         }
7777         else if (ins->op == OP_VAL) {
7778                 count = expr_depth(state, RHS(ins, 0)) - 1;
7779         }
7780         else if (ins->op == OP_FCALL) {
7781                 /* Don't figure the depth of a call just guess it is huge */
7782                 count = 1000;
7783         }
7784         else {
7785                 struct triple **expr;
7786                 expr = triple_rhs(state, ins, 0);
7787                 for(;expr; expr = triple_rhs(state, ins, expr)) {
7788                         if (*expr) {
7789                                 int depth;
7790                                 depth = expr_depth(state, *expr);
7791                                 if (depth > count) {
7792                                         count = depth;
7793                                 }
7794                         }
7795                 }
7796         }
7797         return count + 1;
7798 }
7799
7800 static struct triple *flatten_generic(
7801         struct compile_state *state, struct triple *first, struct triple *ptr,
7802         int ignored)
7803 {
7804         struct rhs_vector {
7805                 int depth;
7806                 struct triple **ins;
7807         } vector[MAX_RHS];
7808         int i, rhs, lhs;
7809         /* Only operations with just a rhs and a lhs should come here */
7810         rhs = ptr->rhs;
7811         lhs = ptr->lhs;
7812         if (TRIPLE_SIZE(ptr) != lhs + rhs + ignored) {
7813                 internal_error(state, ptr, "unexpected args for: %d %s",
7814                         ptr->op, tops(ptr->op));
7815         }
7816         /* Find the depth of the rhs elements */
7817         for(i = 0; i < rhs; i++) {
7818                 vector[i].ins = &RHS(ptr, i);
7819                 vector[i].depth = expr_depth(state, *vector[i].ins);
7820         }
7821         /* Selection sort the rhs */
7822         for(i = 0; i < rhs; i++) {
7823                 int j, max = i;
7824                 for(j = i + 1; j < rhs; j++ ) {
7825                         if (vector[j].depth > vector[max].depth) {
7826                                 max = j;
7827                         }
7828                 }
7829                 if (max != i) {
7830                         struct rhs_vector tmp;
7831                         tmp = vector[i];
7832                         vector[i] = vector[max];
7833                         vector[max] = tmp;
7834                 }
7835         }
7836         /* Now flatten the rhs elements */
7837         for(i = 0; i < rhs; i++) {
7838                 *vector[i].ins = flatten(state, first, *vector[i].ins);
7839                 use_triple(*vector[i].ins, ptr);
7840         }
7841         if (lhs) {
7842                 insert_triple(state, first, ptr);
7843                 ptr->id |= TRIPLE_FLAG_FLATTENED;
7844                 ptr->id &= ~TRIPLE_FLAG_LOCAL;
7845
7846                 /* Now flatten the lhs elements */
7847                 for(i = 0; i < lhs; i++) {
7848                         struct triple **ins = &LHS(ptr, i);
7849                         *ins = flatten(state, first, *ins);
7850                         use_triple(*ins, ptr);
7851                 }
7852         }
7853         return ptr;
7854 }
7855
7856 static struct triple *flatten_prog(
7857         struct compile_state *state, struct triple *first, struct triple *ptr)
7858 {
7859         struct triple *head, *body, *val;
7860         head = RHS(ptr, 0);
7861         RHS(ptr, 0) = 0;
7862         val  = head->prev;
7863         body = head->next;
7864         release_triple(state, head);
7865         release_triple(state, ptr);
7866         val->next        = first;
7867         body->prev       = first->prev;
7868         body->prev->next = body;
7869         val->next->prev  = val;
7870
7871         if (triple_is_cbranch(state, body->prev) ||
7872                 triple_is_call(state, body->prev)) {
7873                 unuse_triple(first, body->prev);
7874                 use_triple(body, body->prev);
7875         }
7876
7877         if (!(val->id & TRIPLE_FLAG_FLATTENED)) {
7878                 internal_error(state, val, "val not flattened?");
7879         }
7880
7881         return val;
7882 }
7883
7884
7885 static struct triple *flatten_part(
7886         struct compile_state *state, struct triple *first, struct triple *ptr)
7887 {
7888         if (!triple_is_part(state, ptr)) {
7889                 internal_error(state, ptr,  "not a part");
7890         }
7891         if (ptr->rhs || ptr->lhs || ptr->targ || (ptr->misc != 1)) {
7892                 internal_error(state, ptr, "unexpected args for: %d %s",
7893                         ptr->op, tops(ptr->op));
7894         }
7895         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
7896         use_triple(MISC(ptr, 0), ptr);
7897         return flatten_generic(state, first, ptr, 1);
7898 }
7899
7900 static struct triple *flatten(
7901         struct compile_state *state, struct triple *first, struct triple *ptr)
7902 {
7903         struct triple *orig_ptr;
7904         if (!ptr)
7905                 return 0;
7906         do {
7907                 orig_ptr = ptr;
7908                 /* Only flatten triples once */
7909                 if (ptr->id & TRIPLE_FLAG_FLATTENED) {
7910                         return ptr;
7911                 }
7912                 switch(ptr->op) {
7913                 case OP_VAL:
7914                         RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
7915                         return MISC(ptr, 0);
7916                         break;
7917                 case OP_PROG:
7918                         ptr = flatten_prog(state, first, ptr);
7919                         break;
7920                 case OP_FCALL:
7921                         ptr = flatten_generic(state, first, ptr, 1);
7922                         insert_triple(state, first, ptr);
7923                         ptr->id |= TRIPLE_FLAG_FLATTENED;
7924                         ptr->id &= ~TRIPLE_FLAG_LOCAL;
7925                         if (ptr->next != ptr) {
7926                                 use_triple(ptr->next, ptr);
7927                         }
7928                         break;
7929                 case OP_READ:
7930                 case OP_LOAD:
7931                         RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
7932                         use_triple(RHS(ptr, 0), ptr);
7933                         break;
7934                 case OP_WRITE:
7935                         ptr = flatten_generic(state, first, ptr, 1);
7936                         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
7937                         use_triple(MISC(ptr, 0), ptr);
7938                         break;
7939                 case OP_BRANCH:
7940                         use_triple(TARG(ptr, 0), ptr);
7941                         break;
7942                 case OP_CBRANCH:
7943                         RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
7944                         use_triple(RHS(ptr, 0), ptr);
7945                         use_triple(TARG(ptr, 0), ptr);
7946                         insert_triple(state, first, ptr);
7947                         ptr->id |= TRIPLE_FLAG_FLATTENED;
7948                         ptr->id &= ~TRIPLE_FLAG_LOCAL;
7949                         if (ptr->next != ptr) {
7950                                 use_triple(ptr->next, ptr);
7951                         }
7952                         break;
7953                 case OP_CALL:
7954                         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
7955                         use_triple(MISC(ptr, 0), ptr);
7956                         use_triple(TARG(ptr, 0), ptr);
7957                         insert_triple(state, first, ptr);
7958                         ptr->id |= TRIPLE_FLAG_FLATTENED;
7959                         ptr->id &= ~TRIPLE_FLAG_LOCAL;
7960                         if (ptr->next != ptr) {
7961                                 use_triple(ptr->next, ptr);
7962                         }
7963                         break;
7964                 case OP_RET:
7965                         RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
7966                         use_triple(RHS(ptr, 0), ptr);
7967                         break;
7968                 case OP_BLOBCONST:
7969                         insert_triple(state, state->global_pool, ptr);
7970                         ptr->id |= TRIPLE_FLAG_FLATTENED;
7971                         ptr->id &= ~TRIPLE_FLAG_LOCAL;
7972                         ptr = triple(state, OP_SDECL, ptr->type, ptr, 0);
7973                         use_triple(MISC(ptr, 0), ptr);
7974                         break;
7975                 case OP_DEREF:
7976                         /* Since OP_DEREF is just a marker delete it when I flatten it */
7977                         ptr = RHS(ptr, 0);
7978                         RHS(orig_ptr, 0) = 0;
7979                         free_triple(state, orig_ptr);
7980                         break;
7981                 case OP_DOT:
7982                         if (RHS(ptr, 0)->op == OP_DEREF) {
7983                                 struct triple *base, *left;
7984                                 ulong_t offset;
7985                                 base = MISC(ptr, 0);
7986                                 offset = bits_to_bytes(field_offset(state, base->type, ptr->u.field));
7987                                 left = RHS(base, 0);
7988                                 ptr = triple(state, OP_ADD, left->type,
7989                                         read_expr(state, left),
7990                                         int_const(state, &ulong_type, offset));
7991                                 free_triple(state, base);
7992                         }
7993                         else {
7994                                 ptr = flatten_part(state, first, ptr);
7995                         }
7996                         break;
7997                 case OP_INDEX:
7998                         if (RHS(ptr, 0)->op == OP_DEREF) {
7999                                 struct triple *base, *left;
8000                                 ulong_t offset;
8001                                 base = MISC(ptr, 0);
8002                                 offset = bits_to_bytes(index_offset(state, base->type, ptr->u.cval));
8003                                 left = RHS(base, 0);
8004                                 ptr = triple(state, OP_ADD, left->type,
8005                                         read_expr(state, left),
8006                                         int_const(state, &long_type, offset));
8007                                 free_triple(state, base);
8008                         }
8009                         else {
8010                                 ptr = flatten_part(state, first, ptr);
8011                         }
8012                         break;
8013                 case OP_PIECE:
8014                         ptr = flatten_part(state, first, ptr);
8015                         use_triple(ptr, MISC(ptr, 0));
8016                         break;
8017                 case OP_ADDRCONST:
8018                         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
8019                         use_triple(MISC(ptr, 0), ptr);
8020                         break;
8021                 case OP_SDECL:
8022                         first = state->global_pool;
8023                         MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
8024                         use_triple(MISC(ptr, 0), ptr);
8025                         insert_triple(state, first, ptr);
8026                         ptr->id |= TRIPLE_FLAG_FLATTENED;
8027                         ptr->id &= ~TRIPLE_FLAG_LOCAL;
8028                         return ptr;
8029                 case OP_ADECL:
8030                         ptr = flatten_generic(state, first, ptr, 0);
8031                         break;
8032                 default:
8033                         /* Flatten the easy cases we don't override */
8034                         ptr = flatten_generic(state, first, ptr, 0);
8035                         break;
8036                 }
8037         } while(ptr && (ptr != orig_ptr));
8038         if (ptr && !(ptr->id & TRIPLE_FLAG_FLATTENED)) {
8039                 insert_triple(state, first, ptr);
8040                 ptr->id |= TRIPLE_FLAG_FLATTENED;
8041                 ptr->id &= ~TRIPLE_FLAG_LOCAL;
8042         }
8043         return ptr;
8044 }
8045
8046 static void release_expr(struct compile_state *state, struct triple *expr)
8047 {
8048         struct triple *head;
8049         head = label(state);
8050         flatten(state, head, expr);
8051         while(head->next != head) {
8052                 release_triple(state, head->next);
8053         }
8054         free_triple(state, head);
8055 }
8056
8057 static int replace_rhs_use(struct compile_state *state,
8058         struct triple *orig, struct triple *new, struct triple *use)
8059 {
8060         struct triple **expr;
8061         int found;
8062         found = 0;
8063         expr = triple_rhs(state, use, 0);
8064         for(;expr; expr = triple_rhs(state, use, expr)) {
8065                 if (*expr == orig) {
8066                         *expr = new;
8067                         found = 1;
8068                 }
8069         }
8070         if (found) {
8071                 unuse_triple(orig, use);
8072                 use_triple(new, use);
8073         }
8074         return found;
8075 }
8076
8077 static int replace_lhs_use(struct compile_state *state,
8078         struct triple *orig, struct triple *new, struct triple *use)
8079 {
8080         struct triple **expr;
8081         int found;
8082         found = 0;
8083         expr = triple_lhs(state, use, 0);
8084         for(;expr; expr = triple_lhs(state, use, expr)) {
8085                 if (*expr == orig) {
8086                         *expr = new;
8087                         found = 1;
8088                 }
8089         }
8090         if (found) {
8091                 unuse_triple(orig, use);
8092                 use_triple(new, use);
8093         }
8094         return found;
8095 }
8096
8097 static int replace_misc_use(struct compile_state *state,
8098         struct triple *orig, struct triple *new, struct triple *use)
8099 {
8100         struct triple **expr;
8101         int found;
8102         found = 0;
8103         expr = triple_misc(state, use, 0);
8104         for(;expr; expr = triple_misc(state, use, expr)) {
8105                 if (*expr == orig) {
8106                         *expr = new;
8107                         found = 1;
8108                 }
8109         }
8110         if (found) {
8111                 unuse_triple(orig, use);
8112                 use_triple(new, use);
8113         }
8114         return found;
8115 }
8116
8117 static int replace_targ_use(struct compile_state *state,
8118         struct triple *orig, struct triple *new, struct triple *use)
8119 {
8120         struct triple **expr;
8121         int found;
8122         found = 0;
8123         expr = triple_targ(state, use, 0);
8124         for(;expr; expr = triple_targ(state, use, expr)) {
8125                 if (*expr == orig) {
8126                         *expr = new;
8127                         found = 1;
8128                 }
8129         }
8130         if (found) {
8131                 unuse_triple(orig, use);
8132                 use_triple(new, use);
8133         }
8134         return found;
8135 }
8136
8137 static void replace_use(struct compile_state *state,
8138         struct triple *orig, struct triple *new, struct triple *use)
8139 {
8140         int found;
8141         found = 0;
8142         found |= replace_rhs_use(state, orig, new, use);
8143         found |= replace_lhs_use(state, orig, new, use);
8144         found |= replace_misc_use(state, orig, new, use);
8145         found |= replace_targ_use(state, orig, new, use);
8146         if (!found) {
8147                 internal_error(state, use, "use without use");
8148         }
8149 }
8150
8151 static void propogate_use(struct compile_state *state,
8152         struct triple *orig, struct triple *new)
8153 {
8154         struct triple_set *user, *next;
8155         for(user = orig->use; user; user = next) {
8156                 /* Careful replace_use modifies the use chain and
8157                  * removes use.  So we must get a copy of the next
8158                  * entry early.
8159                  */
8160                 next = user->next;
8161                 replace_use(state, orig, new, user->member);
8162         }
8163         if (orig->use) {
8164                 internal_error(state, orig, "used after propogate_use");
8165         }
8166 }
8167
8168 /*
8169  * Code generators
8170  * ===========================
8171  */
8172
8173 static struct triple *mk_cast_expr(
8174         struct compile_state *state, struct type *type, struct triple *expr)
8175 {
8176         struct triple *def;
8177         def = read_expr(state, expr);
8178         def = triple(state, OP_CONVERT, type, def, 0);
8179         return def;
8180 }
8181
8182 static struct triple *mk_add_expr(
8183         struct compile_state *state, struct triple *left, struct triple *right)
8184 {
8185         struct type *result_type;
8186         /* Put pointer operands on the left */
8187         if (is_pointer(right)) {
8188                 struct triple *tmp;
8189                 tmp = left;
8190                 left = right;
8191                 right = tmp;
8192         }
8193         left  = read_expr(state, left);
8194         right = read_expr(state, right);
8195         result_type = ptr_arithmetic_result(state, left, right);
8196         if (is_pointer(left)) {
8197                 struct type *ptr_math;
8198                 int op;
8199                 if (is_signed(right->type)) {
8200                         ptr_math = &long_type;
8201                         op = OP_SMUL;
8202                 } else {
8203                         ptr_math = &ulong_type;
8204                         op = OP_UMUL;
8205                 }
8206                 if (!equiv_types(right->type, ptr_math)) {
8207                         right = mk_cast_expr(state, ptr_math, right);
8208                 }
8209                 right = triple(state, op, ptr_math, right,
8210                         int_const(state, ptr_math,
8211                                 size_of_in_bytes(state, left->type->left)));
8212         }
8213         return triple(state, OP_ADD, result_type, left, right);
8214 }
8215
8216 static struct triple *mk_sub_expr(
8217         struct compile_state *state, struct triple *left, struct triple *right)
8218 {
8219         struct type *result_type;
8220         result_type = ptr_arithmetic_result(state, left, right);
8221         left  = read_expr(state, left);
8222         right = read_expr(state, right);
8223         if (is_pointer(left)) {
8224                 struct type *ptr_math;
8225                 int op;
8226                 if (is_signed(right->type)) {
8227                         ptr_math = &long_type;
8228                         op = OP_SMUL;
8229                 } else {
8230                         ptr_math = &ulong_type;
8231                         op = OP_UMUL;
8232                 }
8233                 if (!equiv_types(right->type, ptr_math)) {
8234                         right = mk_cast_expr(state, ptr_math, right);
8235                 }
8236                 right = triple(state, op, ptr_math, right,
8237                         int_const(state, ptr_math,
8238                                 size_of_in_bytes(state, left->type->left)));
8239         }
8240         return triple(state, OP_SUB, result_type, left, right);
8241 }
8242
8243 static struct triple *mk_pre_inc_expr(
8244         struct compile_state *state, struct triple *def)
8245 {
8246         struct triple *val;
8247         lvalue(state, def);
8248         val = mk_add_expr(state, def, int_const(state, &int_type, 1));
8249         return triple(state, OP_VAL, def->type,
8250                 write_expr(state, def, val),
8251                 val);
8252 }
8253
8254 static struct triple *mk_pre_dec_expr(
8255         struct compile_state *state, struct triple *def)
8256 {
8257         struct triple *val;
8258         lvalue(state, def);
8259         val = mk_sub_expr(state, def, int_const(state, &int_type, 1));
8260         return triple(state, OP_VAL, def->type,
8261                 write_expr(state, def, val),
8262                 val);
8263 }
8264
8265 static struct triple *mk_post_inc_expr(
8266         struct compile_state *state, struct triple *def)
8267 {
8268         struct triple *val;
8269         lvalue(state, def);
8270         val = read_expr(state, def);
8271         return triple(state, OP_VAL, def->type,
8272                 write_expr(state, def,
8273                         mk_add_expr(state, val, int_const(state, &int_type, 1)))
8274                 , val);
8275 }
8276
8277 static struct triple *mk_post_dec_expr(
8278         struct compile_state *state, struct triple *def)
8279 {
8280         struct triple *val;
8281         lvalue(state, def);
8282         val = read_expr(state, def);
8283         return triple(state, OP_VAL, def->type,
8284                 write_expr(state, def,
8285                         mk_sub_expr(state, val, int_const(state, &int_type, 1)))
8286                 , val);
8287 }
8288
8289 static struct triple *mk_subscript_expr(
8290         struct compile_state *state, struct triple *left, struct triple *right)
8291 {
8292         left  = read_expr(state, left);
8293         right = read_expr(state, right);
8294         if (!is_pointer(left) && !is_pointer(right)) {
8295                 error(state, left, "subscripted value is not a pointer");
8296         }
8297         return mk_deref_expr(state, mk_add_expr(state, left, right));
8298 }
8299
8300
8301 /*
8302  * Compile time evaluation
8303  * ===========================
8304  */
8305 static int is_const(struct triple *ins)
8306 {
8307         return IS_CONST_OP(ins->op);
8308 }
8309
8310 static int is_simple_const(struct triple *ins)
8311 {
8312         /* Is this a constant that u.cval has the value.
8313          * Or equivalently is this a constant that read_const
8314          * works on.
8315          * So far only OP_INTCONST qualifies.
8316          */
8317         return (ins->op == OP_INTCONST);
8318 }
8319
8320 static int constants_equal(struct compile_state *state,
8321         struct triple *left, struct triple *right)
8322 {
8323         int equal;
8324         if ((left->op == OP_UNKNOWNVAL) || (right->op == OP_UNKNOWNVAL)) {
8325                 equal = 0;
8326         }
8327         else if (!is_const(left) || !is_const(right)) {
8328                 equal = 0;
8329         }
8330         else if (left->op != right->op) {
8331                 equal = 0;
8332         }
8333         else if (!equiv_types(left->type, right->type)) {
8334                 equal = 0;
8335         }
8336         else {
8337                 equal = 0;
8338                 switch(left->op) {
8339                 case OP_INTCONST:
8340                         if (left->u.cval == right->u.cval) {
8341                                 equal = 1;
8342                         }
8343                         break;
8344                 case OP_BLOBCONST:
8345                 {
8346                         size_t lsize, rsize, bytes;
8347                         lsize = size_of(state, left->type);
8348                         rsize = size_of(state, right->type);
8349                         if (lsize != rsize) {
8350                                 break;
8351                         }
8352                         bytes = bits_to_bytes(lsize);
8353                         if (memcmp(left->u.blob, right->u.blob, bytes) == 0) {
8354                                 equal = 1;
8355                         }
8356                         break;
8357                 }
8358                 case OP_ADDRCONST:
8359                         if ((MISC(left, 0) == MISC(right, 0)) &&
8360                                 (left->u.cval == right->u.cval)) {
8361                                 equal = 1;
8362                         }
8363                         break;
8364                 default:
8365                         internal_error(state, left, "uknown constant type");
8366                         break;
8367                 }
8368         }
8369         return equal;
8370 }
8371
8372 static int is_zero(struct triple *ins)
8373 {
8374         return is_simple_const(ins) && (ins->u.cval == 0);
8375 }
8376
8377 static int is_one(struct triple *ins)
8378 {
8379         return is_simple_const(ins) && (ins->u.cval == 1);
8380 }
8381
8382 #if DEBUG_ROMCC_WARNING
8383 static long_t bit_count(ulong_t value)
8384 {
8385         int count;
8386         int i;
8387         count = 0;
8388         for(i = (sizeof(ulong_t)*8) -1; i >= 0; i--) {
8389                 ulong_t mask;
8390                 mask = 1;
8391                 mask <<= i;
8392                 if (value & mask) {
8393                         count++;
8394                 }
8395         }
8396         return count;
8397
8398 }
8399 #endif
8400
8401 static long_t bsr(ulong_t value)
8402 {
8403         int i;
8404         for(i = (sizeof(ulong_t)*8) -1; i >= 0; i--) {
8405                 ulong_t mask;
8406                 mask = 1;
8407                 mask <<= i;
8408                 if (value & mask) {
8409                         return i;
8410                 }
8411         }
8412         return -1;
8413 }
8414
8415 static long_t bsf(ulong_t value)
8416 {
8417         int i;
8418         for(i = 0; i < (sizeof(ulong_t)*8); i++) {
8419                 ulong_t mask;
8420                 mask = 1;
8421                 mask <<= 1;
8422                 if (value & mask) {
8423                         return i;
8424                 }
8425         }
8426         return -1;
8427 }
8428
8429 static long_t ilog2(ulong_t value)
8430 {
8431         return bsr(value);
8432 }
8433
8434 static long_t tlog2(struct triple *ins)
8435 {
8436         return ilog2(ins->u.cval);
8437 }
8438
8439 static int is_pow2(struct triple *ins)
8440 {
8441         ulong_t value, mask;
8442         long_t log;
8443         if (!is_const(ins)) {
8444                 return 0;
8445         }
8446         value = ins->u.cval;
8447         log = ilog2(value);
8448         if (log == -1) {
8449                 return 0;
8450         }
8451         mask = 1;
8452         mask <<= log;
8453         return  ((value & mask) == value);
8454 }
8455
8456 static ulong_t read_const(struct compile_state *state,
8457         struct triple *ins, struct triple *rhs)
8458 {
8459         switch(rhs->type->type &TYPE_MASK) {
8460         case TYPE_CHAR:
8461         case TYPE_SHORT:
8462         case TYPE_INT:
8463         case TYPE_LONG:
8464         case TYPE_UCHAR:
8465         case TYPE_USHORT:
8466         case TYPE_UINT:
8467         case TYPE_ULONG:
8468         case TYPE_POINTER:
8469         case TYPE_BITFIELD:
8470                 break;
8471         default:
8472                 fprintf(state->errout, "type: ");
8473                 name_of(state->errout, rhs->type);
8474                 fprintf(state->errout, "\n");
8475                 internal_warning(state, rhs, "bad type to read_const");
8476                 break;
8477         }
8478         if (!is_simple_const(rhs)) {
8479                 internal_error(state, rhs, "bad op to read_const");
8480         }
8481         return rhs->u.cval;
8482 }
8483
8484 static long_t read_sconst(struct compile_state *state,
8485         struct triple *ins, struct triple *rhs)
8486 {
8487         return (long_t)(rhs->u.cval);
8488 }
8489
8490 int const_ltrue(struct compile_state *state, struct triple *ins, struct triple *rhs)
8491 {
8492         if (!is_const(rhs)) {
8493                 internal_error(state, 0, "non const passed to const_true");
8494         }
8495         return !is_zero(rhs);
8496 }
8497
8498 int const_eq(struct compile_state *state, struct triple *ins,
8499         struct triple *left, struct triple *right)
8500 {
8501         int result;
8502         if (!is_const(left) || !is_const(right)) {
8503                 internal_warning(state, ins, "non const passed to const_eq");
8504                 result = -1;
8505         }
8506         else if (left == right) {
8507                 result = 1;
8508         }
8509         else if (is_simple_const(left) && is_simple_const(right)) {
8510                 ulong_t lval, rval;
8511                 lval = read_const(state, ins, left);
8512                 rval = read_const(state, ins, right);
8513                 result = (lval == rval);
8514         }
8515         else if ((left->op == OP_ADDRCONST) &&
8516                 (right->op == OP_ADDRCONST)) {
8517                 result = (MISC(left, 0) == MISC(right, 0)) &&
8518                         (left->u.cval == right->u.cval);
8519         }
8520         else {
8521                 internal_warning(state, ins, "incomparable constants passed to const_eq");
8522                 result = -1;
8523         }
8524         return result;
8525
8526 }
8527
8528 int const_ucmp(struct compile_state *state, struct triple *ins,
8529         struct triple *left, struct triple *right)
8530 {
8531         int result;
8532         if (!is_const(left) || !is_const(right)) {
8533                 internal_warning(state, ins, "non const past to const_ucmp");
8534                 result = -2;
8535         }
8536         else if (left == right) {
8537                 result = 0;
8538         }
8539         else if (is_simple_const(left) && is_simple_const(right)) {
8540                 ulong_t lval, rval;
8541                 lval = read_const(state, ins, left);
8542                 rval = read_const(state, ins, right);
8543                 result = 0;
8544                 if (lval > rval) {
8545                         result = 1;
8546                 } else if (rval > lval) {
8547                         result = -1;
8548                 }
8549         }
8550         else if ((left->op == OP_ADDRCONST) &&
8551                 (right->op == OP_ADDRCONST) &&
8552                 (MISC(left, 0) == MISC(right, 0))) {
8553                 result = 0;
8554                 if (left->u.cval > right->u.cval) {
8555                         result = 1;
8556                 } else if (left->u.cval < right->u.cval) {
8557                         result = -1;
8558                 }
8559         }
8560         else {
8561                 internal_warning(state, ins, "incomparable constants passed to const_ucmp");
8562                 result = -2;
8563         }
8564         return result;
8565 }
8566
8567 int const_scmp(struct compile_state *state, struct triple *ins,
8568         struct triple *left, struct triple *right)
8569 {
8570         int result;
8571         if (!is_const(left) || !is_const(right)) {
8572                 internal_warning(state, ins, "non const past to ucmp_const");
8573                 result = -2;
8574         }
8575         else if (left == right) {
8576                 result = 0;
8577         }
8578         else if (is_simple_const(left) && is_simple_const(right)) {
8579                 long_t lval, rval;
8580                 lval = read_sconst(state, ins, left);
8581                 rval = read_sconst(state, ins, right);
8582                 result = 0;
8583                 if (lval > rval) {
8584                         result = 1;
8585                 } else if (rval > lval) {
8586                         result = -1;
8587                 }
8588         }
8589         else {
8590                 internal_warning(state, ins, "incomparable constants passed to const_scmp");
8591                 result = -2;
8592         }
8593         return result;
8594 }
8595
8596 static void unuse_rhs(struct compile_state *state, struct triple *ins)
8597 {
8598         struct triple **expr;
8599         expr = triple_rhs(state, ins, 0);
8600         for(;expr;expr = triple_rhs(state, ins, expr)) {
8601                 if (*expr) {
8602                         unuse_triple(*expr, ins);
8603                         *expr = 0;
8604                 }
8605         }
8606 }
8607
8608 static void unuse_lhs(struct compile_state *state, struct triple *ins)
8609 {
8610         struct triple **expr;
8611         expr = triple_lhs(state, ins, 0);
8612         for(;expr;expr = triple_lhs(state, ins, expr)) {
8613                 unuse_triple(*expr, ins);
8614                 *expr = 0;
8615         }
8616 }
8617
8618 #if DEBUG_ROMCC_WARNING
8619 static void unuse_misc(struct compile_state *state, struct triple *ins)
8620 {
8621         struct triple **expr;
8622         expr = triple_misc(state, ins, 0);
8623         for(;expr;expr = triple_misc(state, ins, expr)) {
8624                 unuse_triple(*expr, ins);
8625                 *expr = 0;
8626         }
8627 }
8628
8629 static void unuse_targ(struct compile_state *state, struct triple *ins)
8630 {
8631         int i;
8632         struct triple **slot;
8633         slot = &TARG(ins, 0);
8634         for(i = 0; i < ins->targ; i++) {
8635                 unuse_triple(slot[i], ins);
8636                 slot[i] = 0;
8637         }
8638 }
8639
8640 static void check_lhs(struct compile_state *state, struct triple *ins)
8641 {
8642         struct triple **expr;
8643         expr = triple_lhs(state, ins, 0);
8644         for(;expr;expr = triple_lhs(state, ins, expr)) {
8645                 internal_error(state, ins, "unexpected lhs");
8646         }
8647
8648 }
8649 #endif
8650
8651 static void check_misc(struct compile_state *state, struct triple *ins)
8652 {
8653         struct triple **expr;
8654         expr = triple_misc(state, ins, 0);
8655         for(;expr;expr = triple_misc(state, ins, expr)) {
8656                 if (*expr) {
8657                         internal_error(state, ins, "unexpected misc");
8658                 }
8659         }
8660 }
8661
8662 static void check_targ(struct compile_state *state, struct triple *ins)
8663 {
8664         struct triple **expr;
8665         expr = triple_targ(state, ins, 0);
8666         for(;expr;expr = triple_targ(state, ins, expr)) {
8667                 internal_error(state, ins, "unexpected targ");
8668         }
8669 }
8670
8671 static void wipe_ins(struct compile_state *state, struct triple *ins)
8672 {
8673         /* Becareful which instructions you replace the wiped
8674          * instruction with, as there are not enough slots
8675          * in all instructions to hold all others.
8676          */
8677         check_targ(state, ins);
8678         check_misc(state, ins);
8679         unuse_rhs(state, ins);
8680         unuse_lhs(state, ins);
8681         ins->lhs  = 0;
8682         ins->rhs  = 0;
8683         ins->misc = 0;
8684         ins->targ = 0;
8685 }
8686
8687 #if DEBUG_ROMCC_WARNING
8688 static void wipe_branch(struct compile_state *state, struct triple *ins)
8689 {
8690         /* Becareful which instructions you replace the wiped
8691          * instruction with, as there are not enough slots
8692          * in all instructions to hold all others.
8693          */
8694         unuse_rhs(state, ins);
8695         unuse_lhs(state, ins);
8696         unuse_misc(state, ins);
8697         unuse_targ(state, ins);
8698         ins->lhs  = 0;
8699         ins->rhs  = 0;
8700         ins->misc = 0;
8701         ins->targ = 0;
8702 }
8703 #endif
8704
8705 static void mkcopy(struct compile_state *state,
8706         struct triple *ins, struct triple *rhs)
8707 {
8708         struct block *block;
8709         if (!equiv_types(ins->type, rhs->type)) {
8710                 FILE *fp = state->errout;
8711                 fprintf(fp, "src type: ");
8712                 name_of(fp, rhs->type);
8713                 fprintf(fp, "\ndst type: ");
8714                 name_of(fp, ins->type);
8715                 fprintf(fp, "\n");
8716                 internal_error(state, ins, "mkcopy type mismatch");
8717         }
8718         block = block_of_triple(state, ins);
8719         wipe_ins(state, ins);
8720         ins->op = OP_COPY;
8721         ins->rhs  = 1;
8722         ins->u.block = block;
8723         RHS(ins, 0) = rhs;
8724         use_triple(RHS(ins, 0), ins);
8725 }
8726
8727 static void mkconst(struct compile_state *state,
8728         struct triple *ins, ulong_t value)
8729 {
8730         if (!is_integral(ins) && !is_pointer(ins)) {
8731                 fprintf(state->errout, "type: ");
8732                 name_of(state->errout, ins->type);
8733                 fprintf(state->errout, "\n");
8734                 internal_error(state, ins, "unknown type to make constant value: %ld",
8735                         value);
8736         }
8737         wipe_ins(state, ins);
8738         ins->op = OP_INTCONST;
8739         ins->u.cval = value;
8740 }
8741
8742 static void mkaddr_const(struct compile_state *state,
8743         struct triple *ins, struct triple *sdecl, ulong_t value)
8744 {
8745         if ((sdecl->op != OP_SDECL) && (sdecl->op != OP_LABEL)) {
8746                 internal_error(state, ins, "bad base for addrconst");
8747         }
8748         wipe_ins(state, ins);
8749         ins->op = OP_ADDRCONST;
8750         ins->misc = 1;
8751         MISC(ins, 0) = sdecl;
8752         ins->u.cval = value;
8753         use_triple(sdecl, ins);
8754 }
8755
8756 #if DEBUG_DECOMPOSE_PRINT_TUPLES
8757 static void print_tuple(struct compile_state *state,
8758         struct triple *ins, struct triple *tuple)
8759 {
8760         FILE *fp = state->dbgout;
8761         fprintf(fp, "%5s %p tuple: %p ", tops(ins->op), ins, tuple);
8762         name_of(fp, tuple->type);
8763         if (tuple->lhs > 0) {
8764                 fprintf(fp, " lhs: ");
8765                 name_of(fp, LHS(tuple, 0)->type);
8766         }
8767         fprintf(fp, "\n");
8768
8769 }
8770 #endif
8771
8772 static struct triple *decompose_with_tuple(struct compile_state *state,
8773         struct triple *ins, struct triple *tuple)
8774 {
8775         struct triple *next;
8776         next = ins->next;
8777         flatten(state, next, tuple);
8778 #if DEBUG_DECOMPOSE_PRINT_TUPLES
8779         print_tuple(state, ins, tuple);
8780 #endif
8781
8782         if (!is_compound_type(tuple->type) && (tuple->lhs > 0)) {
8783                 struct triple *tmp;
8784                 if (tuple->lhs != 1) {
8785                         internal_error(state, tuple, "plain type in multiple registers?");
8786                 }
8787                 tmp = LHS(tuple, 0);
8788                 release_triple(state, tuple);
8789                 tuple = tmp;
8790         }
8791
8792         propogate_use(state, ins, tuple);
8793         release_triple(state, ins);
8794
8795         return next;
8796 }
8797
8798 static struct triple *decompose_unknownval(struct compile_state *state,
8799         struct triple *ins)
8800 {
8801         struct triple *tuple;
8802         ulong_t i;
8803
8804 #if DEBUG_DECOMPOSE_HIRES
8805         FILE *fp = state->dbgout;
8806         fprintf(fp, "unknown type: ");
8807         name_of(fp, ins->type);
8808         fprintf(fp, "\n");
8809 #endif
8810
8811         get_occurance(ins->occurance);
8812         tuple = alloc_triple(state, OP_TUPLE, ins->type, -1, -1,
8813                 ins->occurance);
8814
8815         for(i = 0; i < tuple->lhs; i++) {
8816                 struct type *piece_type;
8817                 struct triple *unknown;
8818
8819                 piece_type = reg_type(state, ins->type, i * REG_SIZEOF_REG);
8820                 get_occurance(tuple->occurance);
8821                 unknown = alloc_triple(state, OP_UNKNOWNVAL, piece_type, 0, 0,
8822                         tuple->occurance);
8823                 LHS(tuple, i) = unknown;
8824         }
8825         return decompose_with_tuple(state, ins, tuple);
8826 }
8827
8828
8829 static struct triple *decompose_read(struct compile_state *state,
8830         struct triple *ins)
8831 {
8832         struct triple *tuple, *lval;
8833         ulong_t i;
8834
8835         lval = RHS(ins, 0);
8836
8837         if (lval->op == OP_PIECE) {
8838                 return ins->next;
8839         }
8840         get_occurance(ins->occurance);
8841         tuple = alloc_triple(state, OP_TUPLE, lval->type, -1, -1,
8842                 ins->occurance);
8843
8844         if ((tuple->lhs != lval->lhs) &&
8845                 (!triple_is_def(state, lval) || (tuple->lhs != 1)))
8846         {
8847                 internal_error(state, ins, "lhs size inconsistency?");
8848         }
8849         for(i = 0; i < tuple->lhs; i++) {
8850                 struct triple *piece, *read, *bitref;
8851                 if ((i != 0) || !triple_is_def(state, lval)) {
8852                         piece = LHS(lval, i);
8853                 } else {
8854                         piece = lval;
8855                 }
8856
8857                 /* See if the piece is really a bitref */
8858                 bitref = 0;
8859                 if (piece->op == OP_BITREF) {
8860                         bitref = piece;
8861                         piece = RHS(bitref, 0);
8862                 }
8863
8864                 get_occurance(tuple->occurance);
8865                 read = alloc_triple(state, OP_READ, piece->type, -1, -1,
8866                         tuple->occurance);
8867                 RHS(read, 0) = piece;
8868
8869                 if (bitref) {
8870                         struct triple *extract;
8871                         int op;
8872                         if (is_signed(bitref->type->left)) {
8873                                 op = OP_SEXTRACT;
8874                         } else {
8875                                 op = OP_UEXTRACT;
8876                         }
8877                         get_occurance(tuple->occurance);
8878                         extract = alloc_triple(state, op, bitref->type, -1, -1,
8879                                 tuple->occurance);
8880                         RHS(extract, 0) = read;
8881                         extract->u.bitfield.size   = bitref->u.bitfield.size;
8882                         extract->u.bitfield.offset = bitref->u.bitfield.offset;
8883
8884                         read = extract;
8885                 }
8886
8887                 LHS(tuple, i) = read;
8888         }
8889         return decompose_with_tuple(state, ins, tuple);
8890 }
8891
8892 static struct triple *decompose_write(struct compile_state *state,
8893         struct triple *ins)
8894 {
8895         struct triple *tuple, *lval, *val;
8896         ulong_t i;
8897
8898         lval = MISC(ins, 0);
8899         val = RHS(ins, 0);
8900         get_occurance(ins->occurance);
8901         tuple = alloc_triple(state, OP_TUPLE, ins->type, -1, -1,
8902                 ins->occurance);
8903
8904         if ((tuple->lhs != lval->lhs) &&
8905                 (!triple_is_def(state, lval) || tuple->lhs != 1))
8906         {
8907                 internal_error(state, ins, "lhs size inconsistency?");
8908         }
8909         for(i = 0; i < tuple->lhs; i++) {
8910                 struct triple *piece, *write, *pval, *bitref;
8911                 if ((i != 0) || !triple_is_def(state, lval)) {
8912                         piece = LHS(lval, i);
8913                 } else {
8914                         piece = lval;
8915                 }
8916                 if ((i == 0) && (tuple->lhs == 1) && (val->lhs == 0)) {
8917                         pval = val;
8918                 }
8919                 else {
8920                         if (i > val->lhs) {
8921                                 internal_error(state, ins, "lhs size inconsistency?");
8922                         }
8923                         pval = LHS(val, i);
8924                 }
8925
8926                 /* See if the piece is really a bitref */
8927                 bitref = 0;
8928                 if (piece->op == OP_BITREF) {
8929                         struct triple *read, *deposit;
8930                         bitref = piece;
8931                         piece = RHS(bitref, 0);
8932
8933                         /* Read the destination register */
8934                         get_occurance(tuple->occurance);
8935                         read = alloc_triple(state, OP_READ, piece->type, -1, -1,
8936                                 tuple->occurance);
8937                         RHS(read, 0) = piece;
8938
8939                         /* Deposit the new bitfield value */
8940                         get_occurance(tuple->occurance);
8941                         deposit = alloc_triple(state, OP_DEPOSIT, piece->type, -1, -1,
8942                                 tuple->occurance);
8943                         RHS(deposit, 0) = read;
8944                         RHS(deposit, 1) = pval;
8945                         deposit->u.bitfield.size   = bitref->u.bitfield.size;
8946                         deposit->u.bitfield.offset = bitref->u.bitfield.offset;
8947
8948                         /* Now write the newly generated value */
8949                         pval = deposit;
8950                 }
8951
8952                 get_occurance(tuple->occurance);
8953                 write = alloc_triple(state, OP_WRITE, piece->type, -1, -1,
8954                         tuple->occurance);
8955                 MISC(write, 0) = piece;
8956                 RHS(write, 0) = pval;
8957                 LHS(tuple, i) = write;
8958         }
8959         return decompose_with_tuple(state, ins, tuple);
8960 }
8961
8962 struct decompose_load_info {
8963         struct occurance *occurance;
8964         struct triple *lval;
8965         struct triple *tuple;
8966 };
8967 static void decompose_load_cb(struct compile_state *state,
8968         struct type *type, size_t reg_offset, size_t mem_offset, void *arg)
8969 {
8970         struct decompose_load_info *info = arg;
8971         struct triple *load;
8972
8973         if (reg_offset > info->tuple->lhs) {
8974                 internal_error(state, info->tuple, "lhs to small?");
8975         }
8976         get_occurance(info->occurance);
8977         load = alloc_triple(state, OP_LOAD, type, -1, -1, info->occurance);
8978         RHS(load, 0) = mk_addr_expr(state, info->lval, mem_offset);
8979         LHS(info->tuple, reg_offset/REG_SIZEOF_REG) = load;
8980 }
8981
8982 static struct triple *decompose_load(struct compile_state *state,
8983         struct triple *ins)
8984 {
8985         struct triple *tuple;
8986         struct decompose_load_info info;
8987
8988         if (!is_compound_type(ins->type)) {
8989                 return ins->next;
8990         }
8991         get_occurance(ins->occurance);
8992         tuple = alloc_triple(state, OP_TUPLE, ins->type, -1, -1,
8993                 ins->occurance);
8994
8995         info.occurance = ins->occurance;
8996         info.lval      = RHS(ins, 0);
8997         info.tuple     = tuple;
8998         walk_type_fields(state, ins->type, 0, 0, decompose_load_cb, &info);
8999
9000         return decompose_with_tuple(state, ins, tuple);
9001 }
9002
9003
9004 struct decompose_store_info {
9005         struct occurance *occurance;
9006         struct triple *lval;
9007         struct triple *val;
9008         struct triple *tuple;
9009 };
9010 static void decompose_store_cb(struct compile_state *state,
9011         struct type *type, size_t reg_offset, size_t mem_offset, void *arg)
9012 {
9013         struct decompose_store_info *info = arg;
9014         struct triple *store;
9015
9016         if (reg_offset > info->tuple->lhs) {
9017                 internal_error(state, info->tuple, "lhs to small?");
9018         }
9019         get_occurance(info->occurance);
9020         store = alloc_triple(state, OP_STORE, type, -1, -1, info->occurance);
9021         RHS(store, 0) = mk_addr_expr(state, info->lval, mem_offset);
9022         RHS(store, 1) = LHS(info->val, reg_offset);
9023         LHS(info->tuple, reg_offset/REG_SIZEOF_REG) = store;
9024 }
9025
9026 static struct triple *decompose_store(struct compile_state *state,
9027         struct triple *ins)
9028 {
9029         struct triple *tuple;
9030         struct decompose_store_info info;
9031
9032         if (!is_compound_type(ins->type)) {
9033                 return ins->next;
9034         }
9035         get_occurance(ins->occurance);
9036         tuple = alloc_triple(state, OP_TUPLE, ins->type, -1, -1,
9037                 ins->occurance);
9038
9039         info.occurance = ins->occurance;
9040         info.lval      = RHS(ins, 0);
9041         info.val       = RHS(ins, 1);
9042         info.tuple     = tuple;
9043         walk_type_fields(state, ins->type, 0, 0, decompose_store_cb, &info);
9044
9045         return decompose_with_tuple(state, ins, tuple);
9046 }
9047
9048 static struct triple *decompose_dot(struct compile_state *state,
9049         struct triple *ins)
9050 {
9051         struct triple *tuple, *lval;
9052         struct type *type;
9053         size_t reg_offset;
9054         int i, idx;
9055
9056         lval = MISC(ins, 0);
9057         reg_offset = field_reg_offset(state, lval->type, ins->u.field);
9058         idx  = reg_offset/REG_SIZEOF_REG;
9059         type = field_type(state, lval->type, ins->u.field);
9060 #if DEBUG_DECOMPOSE_HIRES
9061         {
9062                 FILE *fp = state->dbgout;
9063                 fprintf(fp, "field type: ");
9064                 name_of(fp, type);
9065                 fprintf(fp, "\n");
9066         }
9067 #endif
9068
9069         get_occurance(ins->occurance);
9070         tuple = alloc_triple(state, OP_TUPLE, type, -1, -1,
9071                 ins->occurance);
9072
9073         if (((ins->type->type & TYPE_MASK) == TYPE_BITFIELD) &&
9074                 (tuple->lhs != 1))
9075         {
9076                 internal_error(state, ins, "multi register bitfield?");
9077         }
9078
9079         for(i = 0; i < tuple->lhs; i++, idx++) {
9080                 struct triple *piece;
9081                 if (!triple_is_def(state, lval)) {
9082                         if (idx > lval->lhs) {
9083                                 internal_error(state, ins, "inconsistent lhs count");
9084                         }
9085                         piece = LHS(lval, idx);
9086                 } else {
9087                         if (idx != 0) {
9088                                 internal_error(state, ins, "bad reg_offset into def");
9089                         }
9090                         if (i != 0) {
9091                                 internal_error(state, ins, "bad reg count from def");
9092                         }
9093                         piece = lval;
9094                 }
9095
9096                 /* Remember the offset of the bitfield */
9097                 if ((type->type & TYPE_MASK) == TYPE_BITFIELD) {
9098                         get_occurance(ins->occurance);
9099                         piece = build_triple(state, OP_BITREF, type, piece, 0,
9100                                 ins->occurance);
9101                         piece->u.bitfield.size   = size_of(state, type);
9102                         piece->u.bitfield.offset = reg_offset % REG_SIZEOF_REG;
9103                 }
9104                 else if ((reg_offset % REG_SIZEOF_REG) != 0) {
9105                         internal_error(state, ins,
9106                                 "request for a nonbitfield sub register?");
9107                 }
9108
9109                 LHS(tuple, i) = piece;
9110         }
9111
9112         return decompose_with_tuple(state, ins, tuple);
9113 }
9114
9115 static struct triple *decompose_index(struct compile_state *state,
9116         struct triple *ins)
9117 {
9118         struct triple *tuple, *lval;
9119         struct type *type;
9120         int i, idx;
9121
9122         lval = MISC(ins, 0);
9123         idx = index_reg_offset(state, lval->type, ins->u.cval)/REG_SIZEOF_REG;
9124         type = index_type(state, lval->type, ins->u.cval);
9125 #if DEBUG_DECOMPOSE_HIRES
9126 {
9127         FILE *fp = state->dbgout;
9128         fprintf(fp, "index type: ");
9129         name_of(fp, type);
9130         fprintf(fp, "\n");
9131 }
9132 #endif
9133
9134         get_occurance(ins->occurance);
9135         tuple = alloc_triple(state, OP_TUPLE, type, -1, -1,
9136                 ins->occurance);
9137
9138         for(i = 0; i < tuple->lhs; i++, idx++) {
9139                 struct triple *piece;
9140                 if (!triple_is_def(state, lval)) {
9141                         if (idx > lval->lhs) {
9142                                 internal_error(state, ins, "inconsistent lhs count");
9143                         }
9144                         piece = LHS(lval, idx);
9145                 } else {
9146                         if (idx != 0) {
9147                                 internal_error(state, ins, "bad reg_offset into def");
9148                         }
9149                         if (i != 0) {
9150                                 internal_error(state, ins, "bad reg count from def");
9151                         }
9152                         piece = lval;
9153                 }
9154                 LHS(tuple, i) = piece;
9155         }
9156
9157         return decompose_with_tuple(state, ins, tuple);
9158 }
9159
9160 static void decompose_compound_types(struct compile_state *state)
9161 {
9162         struct triple *ins, *next, *first;
9163 #if DEBUG_DECOMPOSE_HIRES
9164         FILE *fp;
9165         fp = state->dbgout;
9166 #endif
9167         first = state->first;
9168         ins = first;
9169
9170         /* Pass one expand compound values into pseudo registers.
9171          */
9172         next = first;
9173         do {
9174                 ins = next;
9175                 next = ins->next;
9176                 switch(ins->op) {
9177                 case OP_UNKNOWNVAL:
9178                         next = decompose_unknownval(state, ins);
9179                         break;
9180
9181                 case OP_READ:
9182                         next = decompose_read(state, ins);
9183                         break;
9184
9185                 case OP_WRITE:
9186                         next = decompose_write(state, ins);
9187                         break;
9188
9189
9190                 /* Be very careful with the load/store logic. These
9191                  * operations must convert from the in register layout
9192                  * to the in memory layout, which is nontrivial.
9193                  */
9194                 case OP_LOAD:
9195                         next = decompose_load(state, ins);
9196                         break;
9197                 case OP_STORE:
9198                         next = decompose_store(state, ins);
9199                         break;
9200
9201                 case OP_DOT:
9202                         next = decompose_dot(state, ins);
9203                         break;
9204                 case OP_INDEX:
9205                         next = decompose_index(state, ins);
9206                         break;
9207
9208                 }
9209 #if DEBUG_DECOMPOSE_HIRES
9210                 fprintf(fp, "decompose next: %p \n", next);
9211                 fflush(fp);
9212                 fprintf(fp, "next->op: %d %s\n",
9213                         next->op, tops(next->op));
9214                 /* High resolution debugging mode */
9215                 print_triples(state);
9216 #endif
9217         } while (next != first);
9218
9219         /* Pass two remove the tuples.
9220          */
9221         ins = first;
9222         do {
9223                 next = ins->next;
9224                 if (ins->op == OP_TUPLE) {
9225                         if (ins->use) {
9226                                 internal_error(state, ins, "tuple used");
9227                         }
9228                         else {
9229                                 release_triple(state, ins);
9230                         }
9231                 }
9232                 ins = next;
9233         } while(ins != first);
9234         ins = first;
9235         do {
9236                 next = ins->next;
9237                 if (ins->op == OP_BITREF) {
9238                         if (ins->use) {
9239                                 internal_error(state, ins, "bitref used");
9240                         }
9241                         else {
9242                                 release_triple(state, ins);
9243                         }
9244                 }
9245                 ins = next;
9246         } while(ins != first);
9247
9248         /* Pass three verify the state and set ->id to 0.
9249          */
9250         next = first;
9251         do {
9252                 ins = next;
9253                 next = ins->next;
9254                 ins->id &= ~TRIPLE_FLAG_FLATTENED;
9255                 if (triple_stores_block(state, ins)) {
9256                         ins->u.block = 0;
9257                 }
9258                 if (triple_is_def(state, ins)) {
9259                         if (reg_size_of(state, ins->type) > REG_SIZEOF_REG) {
9260                                 internal_error(state, ins, "multi register value remains?");
9261                         }
9262                 }
9263                 if (ins->op == OP_DOT) {
9264                         internal_error(state, ins, "OP_DOT remains?");
9265                 }
9266                 if (ins->op == OP_INDEX) {
9267                         internal_error(state, ins, "OP_INDEX remains?");
9268                 }
9269                 if (ins->op == OP_BITREF) {
9270                         internal_error(state, ins, "OP_BITREF remains?");
9271                 }
9272                 if (ins->op == OP_TUPLE) {
9273                         internal_error(state, ins, "OP_TUPLE remains?");
9274                 }
9275         } while(next != first);
9276 }
9277
9278 /* For those operations that cannot be simplified */
9279 static void simplify_noop(struct compile_state *state, struct triple *ins)
9280 {
9281         return;
9282 }
9283
9284 static void simplify_smul(struct compile_state *state, struct triple *ins)
9285 {
9286         if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
9287                 struct triple *tmp;
9288                 tmp = RHS(ins, 0);
9289                 RHS(ins, 0) = RHS(ins, 1);
9290                 RHS(ins, 1) = tmp;
9291         }
9292         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
9293                 long_t left, right;
9294                 left  = read_sconst(state, ins, RHS(ins, 0));
9295                 right = read_sconst(state, ins, RHS(ins, 1));
9296                 mkconst(state, ins, left * right);
9297         }
9298         else if (is_zero(RHS(ins, 1))) {
9299                 mkconst(state, ins, 0);
9300         }
9301         else if (is_one(RHS(ins, 1))) {
9302                 mkcopy(state, ins, RHS(ins, 0));
9303         }
9304         else if (is_pow2(RHS(ins, 1))) {
9305                 struct triple *val;
9306                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
9307                 ins->op = OP_SL;
9308                 insert_triple(state, state->global_pool, val);
9309                 unuse_triple(RHS(ins, 1), ins);
9310                 use_triple(val, ins);
9311                 RHS(ins, 1) = val;
9312         }
9313 }
9314
9315 static void simplify_umul(struct compile_state *state, struct triple *ins)
9316 {
9317         if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
9318                 struct triple *tmp;
9319                 tmp = RHS(ins, 0);
9320                 RHS(ins, 0) = RHS(ins, 1);
9321                 RHS(ins, 1) = tmp;
9322         }
9323         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9324                 ulong_t left, right;
9325                 left  = read_const(state, ins, RHS(ins, 0));
9326                 right = read_const(state, ins, RHS(ins, 1));
9327                 mkconst(state, ins, left * right);
9328         }
9329         else if (is_zero(RHS(ins, 1))) {
9330                 mkconst(state, ins, 0);
9331         }
9332         else if (is_one(RHS(ins, 1))) {
9333                 mkcopy(state, ins, RHS(ins, 0));
9334         }
9335         else if (is_pow2(RHS(ins, 1))) {
9336                 struct triple *val;
9337                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
9338                 ins->op = OP_SL;
9339                 insert_triple(state, state->global_pool, val);
9340                 unuse_triple(RHS(ins, 1), ins);
9341                 use_triple(val, ins);
9342                 RHS(ins, 1) = val;
9343         }
9344 }
9345
9346 static void simplify_sdiv(struct compile_state *state, struct triple *ins)
9347 {
9348         if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
9349                 long_t left, right;
9350                 left  = read_sconst(state, ins, RHS(ins, 0));
9351                 right = read_sconst(state, ins, RHS(ins, 1));
9352                 mkconst(state, ins, left / right);
9353         }
9354         else if (is_zero(RHS(ins, 0))) {
9355                 mkconst(state, ins, 0);
9356         }
9357         else if (is_zero(RHS(ins, 1))) {
9358                 error(state, ins, "division by zero");
9359         }
9360         else if (is_one(RHS(ins, 1))) {
9361                 mkcopy(state, ins, RHS(ins, 0));
9362         }
9363         else if (is_pow2(RHS(ins, 1))) {
9364                 struct triple *val;
9365                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
9366                 ins->op = OP_SSR;
9367                 insert_triple(state, state->global_pool, val);
9368                 unuse_triple(RHS(ins, 1), ins);
9369                 use_triple(val, ins);
9370                 RHS(ins, 1) = val;
9371         }
9372 }
9373
9374 static void simplify_udiv(struct compile_state *state, struct triple *ins)
9375 {
9376         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9377                 ulong_t left, right;
9378                 left  = read_const(state, ins, RHS(ins, 0));
9379                 right = read_const(state, ins, RHS(ins, 1));
9380                 mkconst(state, ins, left / right);
9381         }
9382         else if (is_zero(RHS(ins, 0))) {
9383                 mkconst(state, ins, 0);
9384         }
9385         else if (is_zero(RHS(ins, 1))) {
9386                 error(state, ins, "division by zero");
9387         }
9388         else if (is_one(RHS(ins, 1))) {
9389                 mkcopy(state, ins, RHS(ins, 0));
9390         }
9391         else if (is_pow2(RHS(ins, 1))) {
9392                 struct triple *val;
9393                 val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
9394                 ins->op = OP_USR;
9395                 insert_triple(state, state->global_pool, val);
9396                 unuse_triple(RHS(ins, 1), ins);
9397                 use_triple(val, ins);
9398                 RHS(ins, 1) = val;
9399         }
9400 }
9401
9402 static void simplify_smod(struct compile_state *state, struct triple *ins)
9403 {
9404         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9405                 long_t left, right;
9406                 left  = read_const(state, ins, RHS(ins, 0));
9407                 right = read_const(state, ins, RHS(ins, 1));
9408                 mkconst(state, ins, left % right);
9409         }
9410         else if (is_zero(RHS(ins, 0))) {
9411                 mkconst(state, ins, 0);
9412         }
9413         else if (is_zero(RHS(ins, 1))) {
9414                 error(state, ins, "division by zero");
9415         }
9416         else if (is_one(RHS(ins, 1))) {
9417                 mkconst(state, ins, 0);
9418         }
9419         else if (is_pow2(RHS(ins, 1))) {
9420                 struct triple *val;
9421                 val = int_const(state, ins->type, RHS(ins, 1)->u.cval - 1);
9422                 ins->op = OP_AND;
9423                 insert_triple(state, state->global_pool, val);
9424                 unuse_triple(RHS(ins, 1), ins);
9425                 use_triple(val, ins);
9426                 RHS(ins, 1) = val;
9427         }
9428 }
9429
9430 static void simplify_umod(struct compile_state *state, struct triple *ins)
9431 {
9432         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9433                 ulong_t left, right;
9434                 left  = read_const(state, ins, RHS(ins, 0));
9435                 right = read_const(state, ins, RHS(ins, 1));
9436                 mkconst(state, ins, left % right);
9437         }
9438         else if (is_zero(RHS(ins, 0))) {
9439                 mkconst(state, ins, 0);
9440         }
9441         else if (is_zero(RHS(ins, 1))) {
9442                 error(state, ins, "division by zero");
9443         }
9444         else if (is_one(RHS(ins, 1))) {
9445                 mkconst(state, ins, 0);
9446         }
9447         else if (is_pow2(RHS(ins, 1))) {
9448                 struct triple *val;
9449                 val = int_const(state, ins->type, RHS(ins, 1)->u.cval - 1);
9450                 ins->op = OP_AND;
9451                 insert_triple(state, state->global_pool, val);
9452                 unuse_triple(RHS(ins, 1), ins);
9453                 use_triple(val, ins);
9454                 RHS(ins, 1) = val;
9455         }
9456 }
9457
9458 static void simplify_add(struct compile_state *state, struct triple *ins)
9459 {
9460         /* start with the pointer on the left */
9461         if (is_pointer(RHS(ins, 1))) {
9462                 struct triple *tmp;
9463                 tmp = RHS(ins, 0);
9464                 RHS(ins, 0) = RHS(ins, 1);
9465                 RHS(ins, 1) = tmp;
9466         }
9467         if (is_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9468                 if (RHS(ins, 0)->op == OP_INTCONST) {
9469                         ulong_t left, right;
9470                         left  = read_const(state, ins, RHS(ins, 0));
9471                         right = read_const(state, ins, RHS(ins, 1));
9472                         mkconst(state, ins, left + right);
9473                 }
9474                 else if (RHS(ins, 0)->op == OP_ADDRCONST) {
9475                         struct triple *sdecl;
9476                         ulong_t left, right;
9477                         sdecl = MISC(RHS(ins, 0), 0);
9478                         left  = RHS(ins, 0)->u.cval;
9479                         right = RHS(ins, 1)->u.cval;
9480                         mkaddr_const(state, ins, sdecl, left + right);
9481                 }
9482                 else {
9483                         internal_warning(state, ins, "Optimize me!");
9484                 }
9485         }
9486         else if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
9487                 struct triple *tmp;
9488                 tmp = RHS(ins, 1);
9489                 RHS(ins, 1) = RHS(ins, 0);
9490                 RHS(ins, 0) = tmp;
9491         }
9492 }
9493
9494 static void simplify_sub(struct compile_state *state, struct triple *ins)
9495 {
9496         if (is_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9497                 if (RHS(ins, 0)->op == OP_INTCONST) {
9498                         ulong_t left, right;
9499                         left  = read_const(state, ins, RHS(ins, 0));
9500                         right = read_const(state, ins, RHS(ins, 1));
9501                         mkconst(state, ins, left - right);
9502                 }
9503                 else if (RHS(ins, 0)->op == OP_ADDRCONST) {
9504                         struct triple *sdecl;
9505                         ulong_t left, right;
9506                         sdecl = MISC(RHS(ins, 0), 0);
9507                         left  = RHS(ins, 0)->u.cval;
9508                         right = RHS(ins, 1)->u.cval;
9509                         mkaddr_const(state, ins, sdecl, left - right);
9510                 }
9511                 else {
9512                         internal_warning(state, ins, "Optimize me!");
9513                 }
9514         }
9515 }
9516
9517 static void simplify_sl(struct compile_state *state, struct triple *ins)
9518 {
9519         if (is_simple_const(RHS(ins, 1))) {
9520                 ulong_t right;
9521                 right = read_const(state, ins, RHS(ins, 1));
9522                 if (right >= (size_of(state, ins->type))) {
9523                         warning(state, ins, "left shift count >= width of type");
9524                 }
9525         }
9526         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9527                 ulong_t left, right;
9528                 left  = read_const(state, ins, RHS(ins, 0));
9529                 right = read_const(state, ins, RHS(ins, 1));
9530                 mkconst(state, ins,  left << right);
9531         }
9532 }
9533
9534 static void simplify_usr(struct compile_state *state, struct triple *ins)
9535 {
9536         if (is_simple_const(RHS(ins, 1))) {
9537                 ulong_t right;
9538                 right = read_const(state, ins, RHS(ins, 1));
9539                 if (right >= (size_of(state, ins->type))) {
9540                         warning(state, ins, "right shift count >= width of type");
9541                 }
9542         }
9543         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9544                 ulong_t left, right;
9545                 left  = read_const(state, ins, RHS(ins, 0));
9546                 right = read_const(state, ins, RHS(ins, 1));
9547                 mkconst(state, ins, left >> right);
9548         }
9549 }
9550
9551 static void simplify_ssr(struct compile_state *state, struct triple *ins)
9552 {
9553         if (is_simple_const(RHS(ins, 1))) {
9554                 ulong_t right;
9555                 right = read_const(state, ins, RHS(ins, 1));
9556                 if (right >= (size_of(state, ins->type))) {
9557                         warning(state, ins, "right shift count >= width of type");
9558                 }
9559         }
9560         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9561                 long_t left, right;
9562                 left  = read_sconst(state, ins, RHS(ins, 0));
9563                 right = read_sconst(state, ins, RHS(ins, 1));
9564                 mkconst(state, ins, left >> right);
9565         }
9566 }
9567
9568 static void simplify_and(struct compile_state *state, struct triple *ins)
9569 {
9570         struct triple *left, *right;
9571         left = RHS(ins, 0);
9572         right = RHS(ins, 1);
9573
9574         if (is_simple_const(left) && is_simple_const(right)) {
9575                 ulong_t lval, rval;
9576                 lval = read_const(state, ins, left);
9577                 rval = read_const(state, ins, right);
9578                 mkconst(state, ins, lval & rval);
9579         }
9580         else if (is_zero(right) || is_zero(left)) {
9581                 mkconst(state, ins, 0);
9582         }
9583 }
9584
9585 static void simplify_or(struct compile_state *state, struct triple *ins)
9586 {
9587         struct triple *left, *right;
9588         left = RHS(ins, 0);
9589         right = RHS(ins, 1);
9590
9591         if (is_simple_const(left) && is_simple_const(right)) {
9592                 ulong_t lval, rval;
9593                 lval = read_const(state, ins, left);
9594                 rval = read_const(state, ins, right);
9595                 mkconst(state, ins, lval | rval);
9596         }
9597 #if 0 /* I need to handle type mismatches here... */
9598         else if (is_zero(right)) {
9599                 mkcopy(state, ins, left);
9600         }
9601         else if (is_zero(left)) {
9602                 mkcopy(state, ins, right);
9603         }
9604 #endif
9605 }
9606
9607 static void simplify_xor(struct compile_state *state, struct triple *ins)
9608 {
9609         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9610                 ulong_t left, right;
9611                 left  = read_const(state, ins, RHS(ins, 0));
9612                 right = read_const(state, ins, RHS(ins, 1));
9613                 mkconst(state, ins, left ^ right);
9614         }
9615 }
9616
9617 static void simplify_pos(struct compile_state *state, struct triple *ins)
9618 {
9619         if (is_const(RHS(ins, 0))) {
9620                 mkconst(state, ins, RHS(ins, 0)->u.cval);
9621         }
9622         else {
9623                 mkcopy(state, ins, RHS(ins, 0));
9624         }
9625 }
9626
9627 static void simplify_neg(struct compile_state *state, struct triple *ins)
9628 {
9629         if (is_simple_const(RHS(ins, 0))) {
9630                 ulong_t left;
9631                 left = read_const(state, ins, RHS(ins, 0));
9632                 mkconst(state, ins, -left);
9633         }
9634         else if (RHS(ins, 0)->op == OP_NEG) {
9635                 mkcopy(state, ins, RHS(RHS(ins, 0), 0));
9636         }
9637 }
9638
9639 static void simplify_invert(struct compile_state *state, struct triple *ins)
9640 {
9641         if (is_simple_const(RHS(ins, 0))) {
9642                 ulong_t left;
9643                 left = read_const(state, ins, RHS(ins, 0));
9644                 mkconst(state, ins, ~left);
9645         }
9646 }
9647
9648 static void simplify_eq(struct compile_state *state, struct triple *ins)
9649 {
9650         struct triple *left, *right;
9651         left = RHS(ins, 0);
9652         right = RHS(ins, 1);
9653
9654         if (is_const(left) && is_const(right)) {
9655                 int val;
9656                 val = const_eq(state, ins, left, right);
9657                 if (val >= 0) {
9658                         mkconst(state, ins, val == 1);
9659                 }
9660         }
9661         else if (left == right) {
9662                 mkconst(state, ins, 1);
9663         }
9664 }
9665
9666 static void simplify_noteq(struct compile_state *state, struct triple *ins)
9667 {
9668         struct triple *left, *right;
9669         left = RHS(ins, 0);
9670         right = RHS(ins, 1);
9671
9672         if (is_const(left) && is_const(right)) {
9673                 int val;
9674                 val = const_eq(state, ins, left, right);
9675                 if (val >= 0) {
9676                         mkconst(state, ins, val != 1);
9677                 }
9678         }
9679         if (left == right) {
9680                 mkconst(state, ins, 0);
9681         }
9682 }
9683
9684 static void simplify_sless(struct compile_state *state, struct triple *ins)
9685 {
9686         struct triple *left, *right;
9687         left = RHS(ins, 0);
9688         right = RHS(ins, 1);
9689
9690         if (is_const(left) && is_const(right)) {
9691                 int val;
9692                 val = const_scmp(state, ins, left, right);
9693                 if ((val >= -1) && (val <= 1)) {
9694                         mkconst(state, ins, val < 0);
9695                 }
9696         }
9697         else if (left == right) {
9698                 mkconst(state, ins, 0);
9699         }
9700 }
9701
9702 static void simplify_uless(struct compile_state *state, struct triple *ins)
9703 {
9704         struct triple *left, *right;
9705         left = RHS(ins, 0);
9706         right = RHS(ins, 1);
9707
9708         if (is_const(left) && is_const(right)) {
9709                 int val;
9710                 val = const_ucmp(state, ins, left, right);
9711                 if ((val >= -1) && (val <= 1)) {
9712                         mkconst(state, ins, val < 0);
9713                 }
9714         }
9715         else if (is_zero(right)) {
9716                 mkconst(state, ins, 0);
9717         }
9718         else if (left == right) {
9719                 mkconst(state, ins, 0);
9720         }
9721 }
9722
9723 static void simplify_smore(struct compile_state *state, struct triple *ins)
9724 {
9725         struct triple *left, *right;
9726         left = RHS(ins, 0);
9727         right = RHS(ins, 1);
9728
9729         if (is_const(left) && is_const(right)) {
9730                 int val;
9731                 val = const_scmp(state, ins, left, right);
9732                 if ((val >= -1) && (val <= 1)) {
9733                         mkconst(state, ins, val > 0);
9734                 }
9735         }
9736         else if (left == right) {
9737                 mkconst(state, ins, 0);
9738         }
9739 }
9740
9741 static void simplify_umore(struct compile_state *state, struct triple *ins)
9742 {
9743         struct triple *left, *right;
9744         left = RHS(ins, 0);
9745         right = RHS(ins, 1);
9746
9747         if (is_const(left) && is_const(right)) {
9748                 int val;
9749                 val = const_ucmp(state, ins, left, right);
9750                 if ((val >= -1) && (val <= 1)) {
9751                         mkconst(state, ins, val > 0);
9752                 }
9753         }
9754         else if (is_zero(left)) {
9755                 mkconst(state, ins, 0);
9756         }
9757         else if (left == right) {
9758                 mkconst(state, ins, 0);
9759         }
9760 }
9761
9762
9763 static void simplify_slesseq(struct compile_state *state, struct triple *ins)
9764 {
9765         struct triple *left, *right;
9766         left = RHS(ins, 0);
9767         right = RHS(ins, 1);
9768
9769         if (is_const(left) && is_const(right)) {
9770                 int val;
9771                 val = const_scmp(state, ins, left, right);
9772                 if ((val >= -1) && (val <= 1)) {
9773                         mkconst(state, ins, val <= 0);
9774                 }
9775         }
9776         else if (left == right) {
9777                 mkconst(state, ins, 1);
9778         }
9779 }
9780
9781 static void simplify_ulesseq(struct compile_state *state, struct triple *ins)
9782 {
9783         struct triple *left, *right;
9784         left = RHS(ins, 0);
9785         right = RHS(ins, 1);
9786
9787         if (is_const(left) && is_const(right)) {
9788                 int val;
9789                 val = const_ucmp(state, ins, left, right);
9790                 if ((val >= -1) && (val <= 1)) {
9791                         mkconst(state, ins, val <= 0);
9792                 }
9793         }
9794         else if (is_zero(left)) {
9795                 mkconst(state, ins, 1);
9796         }
9797         else if (left == right) {
9798                 mkconst(state, ins, 1);
9799         }
9800 }
9801
9802 static void simplify_smoreeq(struct compile_state *state, struct triple *ins)
9803 {
9804         struct triple *left, *right;
9805         left = RHS(ins, 0);
9806         right = RHS(ins, 1);
9807
9808         if (is_const(left) && is_const(right)) {
9809                 int val;
9810                 val = const_scmp(state, ins, left, right);
9811                 if ((val >= -1) && (val <= 1)) {
9812                         mkconst(state, ins, val >= 0);
9813                 }
9814         }
9815         else if (left == right) {
9816                 mkconst(state, ins, 1);
9817         }
9818 }
9819
9820 static void simplify_umoreeq(struct compile_state *state, struct triple *ins)
9821 {
9822         struct triple *left, *right;
9823         left = RHS(ins, 0);
9824         right = RHS(ins, 1);
9825
9826         if (is_const(left) && is_const(right)) {
9827                 int val;
9828                 val = const_ucmp(state, ins, left, right);
9829                 if ((val >= -1) && (val <= 1)) {
9830                         mkconst(state, ins, val >= 0);
9831                 }
9832         }
9833         else if (is_zero(right)) {
9834                 mkconst(state, ins, 1);
9835         }
9836         else if (left == right) {
9837                 mkconst(state, ins, 1);
9838         }
9839 }
9840
9841 static void simplify_lfalse(struct compile_state *state, struct triple *ins)
9842 {
9843         struct triple *rhs;
9844         rhs = RHS(ins, 0);
9845
9846         if (is_const(rhs)) {
9847                 mkconst(state, ins, !const_ltrue(state, ins, rhs));
9848         }
9849         /* Otherwise if I am the only user... */
9850         else if ((rhs->use) &&
9851                 (rhs->use->member == ins) && (rhs->use->next == 0)) {
9852                 int need_copy = 1;
9853                 /* Invert a boolean operation */
9854                 switch(rhs->op) {
9855                 case OP_LTRUE:   rhs->op = OP_LFALSE;  break;
9856                 case OP_LFALSE:  rhs->op = OP_LTRUE;   break;
9857                 case OP_EQ:      rhs->op = OP_NOTEQ;   break;
9858                 case OP_NOTEQ:   rhs->op = OP_EQ;      break;
9859                 case OP_SLESS:   rhs->op = OP_SMOREEQ; break;
9860                 case OP_ULESS:   rhs->op = OP_UMOREEQ; break;
9861                 case OP_SMORE:   rhs->op = OP_SLESSEQ; break;
9862                 case OP_UMORE:   rhs->op = OP_ULESSEQ; break;
9863                 case OP_SLESSEQ: rhs->op = OP_SMORE;   break;
9864                 case OP_ULESSEQ: rhs->op = OP_UMORE;   break;
9865                 case OP_SMOREEQ: rhs->op = OP_SLESS;   break;
9866                 case OP_UMOREEQ: rhs->op = OP_ULESS;   break;
9867                 default:
9868                         need_copy = 0;
9869                         break;
9870                 }
9871                 if (need_copy) {
9872                         mkcopy(state, ins, rhs);
9873                 }
9874         }
9875 }
9876
9877 static void simplify_ltrue (struct compile_state *state, struct triple *ins)
9878 {
9879         struct triple *rhs;
9880         rhs = RHS(ins, 0);
9881
9882         if (is_const(rhs)) {
9883                 mkconst(state, ins, const_ltrue(state, ins, rhs));
9884         }
9885         else switch(rhs->op) {
9886         case OP_LTRUE:   case OP_LFALSE:  case OP_EQ:      case OP_NOTEQ:
9887         case OP_SLESS:   case OP_ULESS:   case OP_SMORE:   case OP_UMORE:
9888         case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
9889                 mkcopy(state, ins, rhs);
9890         }
9891
9892 }
9893
9894 static void simplify_load(struct compile_state *state, struct triple *ins)
9895 {
9896         struct triple *addr, *sdecl, *blob;
9897
9898         /* If I am doing a load with a constant pointer from a constant
9899          * table get the value.
9900          */
9901         addr = RHS(ins, 0);
9902         if ((addr->op == OP_ADDRCONST) && (sdecl = MISC(addr, 0)) &&
9903                 (sdecl->op == OP_SDECL) && (blob = MISC(sdecl, 0)) &&
9904                 (blob->op == OP_BLOBCONST)) {
9905                 unsigned char buffer[SIZEOF_WORD];
9906                 size_t reg_size, mem_size;
9907                 const char *src, *end;
9908                 ulong_t val;
9909                 reg_size = reg_size_of(state, ins->type);
9910                 if (reg_size > REG_SIZEOF_REG) {
9911                         internal_error(state, ins, "load size greater than register");
9912                 }
9913                 mem_size = size_of(state, ins->type);
9914                 end = blob->u.blob;
9915                 end += bits_to_bytes(size_of(state, sdecl->type));
9916                 src = blob->u.blob;
9917                 src += addr->u.cval;
9918
9919                 if (src > end) {
9920                         error(state, ins, "Load address out of bounds");
9921                 }
9922
9923                 memset(buffer, 0, sizeof(buffer));
9924                 memcpy(buffer, src, bits_to_bytes(mem_size));
9925
9926                 switch(mem_size) {
9927                 case SIZEOF_I8:  val = *((uint8_t *) buffer); break;
9928                 case SIZEOF_I16: val = *((uint16_t *)buffer); break;
9929                 case SIZEOF_I32: val = *((uint32_t *)buffer); break;
9930                 case SIZEOF_I64: val = *((uint64_t *)buffer); break;
9931                 default:
9932                         internal_error(state, ins, "mem_size: %d not handled",
9933                                 mem_size);
9934                         val = 0;
9935                         break;
9936                 }
9937                 mkconst(state, ins, val);
9938         }
9939 }
9940
9941 static void simplify_uextract(struct compile_state *state, struct triple *ins)
9942 {
9943         if (is_simple_const(RHS(ins, 0))) {
9944                 ulong_t val;
9945                 ulong_t mask;
9946                 val = read_const(state, ins, RHS(ins, 0));
9947                 mask = 1;
9948                 mask <<= ins->u.bitfield.size;
9949                 mask -= 1;
9950                 val >>= ins->u.bitfield.offset;
9951                 val &= mask;
9952                 mkconst(state, ins, val);
9953         }
9954 }
9955
9956 static void simplify_sextract(struct compile_state *state, struct triple *ins)
9957 {
9958         if (is_simple_const(RHS(ins, 0))) {
9959                 ulong_t val;
9960                 ulong_t mask;
9961                 long_t sval;
9962                 val = read_const(state, ins, RHS(ins, 0));
9963                 mask = 1;
9964                 mask <<= ins->u.bitfield.size;
9965                 mask -= 1;
9966                 val >>= ins->u.bitfield.offset;
9967                 val &= mask;
9968                 val <<= (SIZEOF_LONG - ins->u.bitfield.size);
9969                 sval = val;
9970                 sval >>= (SIZEOF_LONG - ins->u.bitfield.size);
9971                 mkconst(state, ins, sval);
9972         }
9973 }
9974
9975 static void simplify_deposit(struct compile_state *state, struct triple *ins)
9976 {
9977         if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
9978                 ulong_t targ, val;
9979                 ulong_t mask;
9980                 targ = read_const(state, ins, RHS(ins, 0));
9981                 val  = read_const(state, ins, RHS(ins, 1));
9982                 mask = 1;
9983                 mask <<= ins->u.bitfield.size;
9984                 mask -= 1;
9985                 mask <<= ins->u.bitfield.offset;
9986                 targ &= ~mask;
9987                 val <<= ins->u.bitfield.offset;
9988                 val &= mask;
9989                 targ |= val;
9990                 mkconst(state, ins, targ);
9991         }
9992 }
9993
9994 static void simplify_copy(struct compile_state *state, struct triple *ins)
9995 {
9996         struct triple *right;
9997         right = RHS(ins, 0);
9998         if (is_subset_type(ins->type, right->type)) {
9999                 ins->type = right->type;
10000         }
10001         if (equiv_types(ins->type, right->type)) {
10002                 ins->op = OP_COPY;/* I don't need to convert if the types match */
10003         } else {
10004                 if (ins->op == OP_COPY) {
10005                         internal_error(state, ins, "type mismatch on copy");
10006                 }
10007         }
10008         if (is_const(right) && (right->op == OP_ADDRCONST) && is_pointer(ins)) {
10009                 struct triple *sdecl;
10010                 ulong_t offset;
10011                 sdecl  = MISC(right, 0);
10012                 offset = right->u.cval;
10013                 mkaddr_const(state, ins, sdecl, offset);
10014         }
10015         else if (is_const(right) && is_write_compatible(state, ins->type, right->type)) {
10016                 switch(right->op) {
10017                 case OP_INTCONST:
10018                 {
10019                         ulong_t left;
10020                         left = read_const(state, ins, right);
10021                         /* Ensure I have not overflowed the destination. */
10022                         if (size_of(state, right->type) > size_of(state, ins->type)) {
10023                                 ulong_t mask;
10024                                 mask = 1;
10025                                 mask <<= size_of(state, ins->type);
10026                                 mask -= 1;
10027                                 left &= mask;
10028                         }
10029                         /* Ensure I am properly sign extended */
10030                         if (size_of(state, right->type) < size_of(state, ins->type) &&
10031                                 is_signed(right->type)) {
10032                                 long_t val;
10033                                 int shift;
10034                                 shift = SIZEOF_LONG - size_of(state, right->type);
10035                                 val = left;
10036                                 val <<= shift;
10037                                 val >>= shift;
10038                                 left = val;
10039                         }
10040                         mkconst(state, ins, left);
10041                         break;
10042                 }
10043                 default:
10044                         internal_error(state, ins, "uknown constant");
10045                         break;
10046                 }
10047         }
10048 }
10049
10050 static int phi_present(struct block *block)
10051 {
10052         struct triple *ptr;
10053         if (!block) {
10054                 return 0;
10055         }
10056         ptr = block->first;
10057         do {
10058                 if (ptr->op == OP_PHI) {
10059                         return 1;
10060                 }
10061                 ptr = ptr->next;
10062         } while(ptr != block->last);
10063         return 0;
10064 }
10065
10066 static int phi_dependency(struct block *block)
10067 {
10068         /* A block has a phi dependency if a phi function
10069          * depends on that block to exist, and makes a block
10070          * that is otherwise useless unsafe to remove.
10071          */
10072         if (block) {
10073                 struct block_set *edge;
10074                 for(edge = block->edges; edge; edge = edge->next) {
10075                         if (phi_present(edge->member)) {
10076                                 return 1;
10077                         }
10078                 }
10079         }
10080         return 0;
10081 }
10082
10083 static struct triple *branch_target(struct compile_state *state, struct triple *ins)
10084 {
10085         struct triple *targ;
10086         targ = TARG(ins, 0);
10087         /* During scc_transform temporary triples are allocated that
10088          * loop back onto themselves. If I see one don't advance the
10089          * target.
10090          */
10091         while(triple_is_structural(state, targ) &&
10092                 (targ->next != targ) && (targ->next != state->first)) {
10093                 targ = targ->next;
10094         }
10095         return targ;
10096 }
10097
10098
10099 static void simplify_branch(struct compile_state *state, struct triple *ins)
10100 {
10101         int simplified, loops;
10102         if ((ins->op != OP_BRANCH) && (ins->op != OP_CBRANCH)) {
10103                 internal_error(state, ins, "not branch");
10104         }
10105         if (ins->use != 0) {
10106                 internal_error(state, ins, "branch use");
10107         }
10108         /* The challenge here with simplify branch is that I need to
10109          * make modifications to the control flow graph as well
10110          * as to the branch instruction itself.  That is handled
10111          * by rebuilding the basic blocks after simplify all is called.
10112          */
10113
10114         /* If we have a branch to an unconditional branch update
10115          * our target.  But watch out for dependencies from phi
10116          * functions.
10117          * Also only do this a limited number of times so
10118          * we don't get into an infinite loop.
10119          */
10120         loops = 0;
10121         do {
10122                 struct triple *targ;
10123                 simplified = 0;
10124                 targ = branch_target(state, ins);
10125                 if ((targ != ins) && (targ->op == OP_BRANCH) &&
10126                         !phi_dependency(targ->u.block))
10127                 {
10128                         unuse_triple(TARG(ins, 0), ins);
10129                         TARG(ins, 0) = TARG(targ, 0);
10130                         use_triple(TARG(ins, 0), ins);
10131                         simplified = 1;
10132                 }
10133         } while(simplified && (++loops < 20));
10134
10135         /* If we have a conditional branch with a constant condition
10136          * make it an unconditional branch.
10137          */
10138         if ((ins->op == OP_CBRANCH) && is_simple_const(RHS(ins, 0))) {
10139                 struct triple *targ;
10140                 ulong_t value;
10141                 value = read_const(state, ins, RHS(ins, 0));
10142                 unuse_triple(RHS(ins, 0), ins);
10143                 targ = TARG(ins, 0);
10144                 ins->rhs  = 0;
10145                 ins->targ = 1;
10146                 ins->op = OP_BRANCH;
10147                 if (value) {
10148                         unuse_triple(ins->next, ins);
10149                         TARG(ins, 0) = targ;
10150                 }
10151                 else {
10152                         unuse_triple(targ, ins);
10153                         TARG(ins, 0) = ins->next;
10154                 }
10155         }
10156
10157         /* If we have a branch to the next instruction,
10158          * make it a noop.
10159          */
10160         if (TARG(ins, 0) == ins->next) {
10161                 unuse_triple(TARG(ins, 0), ins);
10162                 if (ins->op == OP_CBRANCH) {
10163                         unuse_triple(RHS(ins, 0), ins);
10164                         unuse_triple(ins->next, ins);
10165                 }
10166                 ins->lhs = 0;
10167                 ins->rhs = 0;
10168                 ins->misc = 0;
10169                 ins->targ = 0;
10170                 ins->op = OP_NOOP;
10171                 if (ins->use) {
10172                         internal_error(state, ins, "noop use != 0");
10173                 }
10174         }
10175 }
10176
10177 static void simplify_label(struct compile_state *state, struct triple *ins)
10178 {
10179         /* Ignore volatile labels */
10180         if (!triple_is_pure(state, ins, ins->id)) {
10181                 return;
10182         }
10183         if (ins->use == 0) {
10184                 ins->op = OP_NOOP;
10185         }
10186         else if (ins->prev->op == OP_LABEL) {
10187                 /* In general it is not safe to merge one label that
10188                  * imediately follows another.  The problem is that the empty
10189                  * looking block may have phi functions that depend on it.
10190                  */
10191                 if (!phi_dependency(ins->prev->u.block)) {
10192                         struct triple_set *user, *next;
10193                         ins->op = OP_NOOP;
10194                         for(user = ins->use; user; user = next) {
10195                                 struct triple *use, **expr;
10196                                 next = user->next;
10197                                 use = user->member;
10198                                 expr = triple_targ(state, use, 0);
10199                                 for(;expr; expr = triple_targ(state, use, expr)) {
10200                                         if (*expr == ins) {
10201                                                 *expr = ins->prev;
10202                                                 unuse_triple(ins, use);
10203                                                 use_triple(ins->prev, use);
10204                                         }
10205
10206                                 }
10207                         }
10208                         if (ins->use) {
10209                                 internal_error(state, ins, "noop use != 0");
10210                         }
10211                 }
10212         }
10213 }
10214
10215 static void simplify_phi(struct compile_state *state, struct triple *ins)
10216 {
10217         struct triple **slot;
10218         struct triple *value;
10219         int zrhs, i;
10220         ulong_t cvalue;
10221         slot = &RHS(ins, 0);
10222         zrhs = ins->rhs;
10223         if (zrhs == 0) {
10224                 return;
10225         }
10226         /* See if all of the rhs members of a phi have the same value */
10227         if (slot[0] && is_simple_const(slot[0])) {
10228                 cvalue = read_const(state, ins, slot[0]);
10229                 for(i = 1; i < zrhs; i++) {
10230                         if (    !slot[i] ||
10231                                 !is_simple_const(slot[i]) ||
10232                                 !equiv_types(slot[0]->type, slot[i]->type) ||
10233                                 (cvalue != read_const(state, ins, slot[i]))) {
10234                                 break;
10235                         }
10236                 }
10237                 if (i == zrhs) {
10238                         mkconst(state, ins, cvalue);
10239                         return;
10240                 }
10241         }
10242
10243         /* See if all of rhs members of a phi are the same */
10244         value = slot[0];
10245         for(i = 1; i < zrhs; i++) {
10246                 if (slot[i] != value) {
10247                         break;
10248                 }
10249         }
10250         if (i == zrhs) {
10251                 /* If the phi has a single value just copy it */
10252                 if (!is_subset_type(ins->type, value->type)) {
10253                         internal_error(state, ins, "bad input type to phi");
10254                 }
10255                 /* Make the types match */
10256                 if (!equiv_types(ins->type, value->type)) {
10257                         ins->type = value->type;
10258                 }
10259                 /* Now make the actual copy */
10260                 mkcopy(state, ins, value);
10261                 return;
10262         }
10263 }
10264
10265
10266 static void simplify_bsf(struct compile_state *state, struct triple *ins)
10267 {
10268         if (is_simple_const(RHS(ins, 0))) {
10269                 ulong_t left;
10270                 left = read_const(state, ins, RHS(ins, 0));
10271                 mkconst(state, ins, bsf(left));
10272         }
10273 }
10274
10275 static void simplify_bsr(struct compile_state *state, struct triple *ins)
10276 {
10277         if (is_simple_const(RHS(ins, 0))) {
10278                 ulong_t left;
10279                 left = read_const(state, ins, RHS(ins, 0));
10280                 mkconst(state, ins, bsr(left));
10281         }
10282 }
10283
10284
10285 typedef void (*simplify_t)(struct compile_state *state, struct triple *ins);
10286 static const struct simplify_table {
10287         simplify_t func;
10288         unsigned long flag;
10289 } table_simplify[] = {
10290 #define simplify_sdivt    simplify_noop
10291 #define simplify_udivt    simplify_noop
10292 #define simplify_piece    simplify_noop
10293
10294 [OP_SDIVT      ] = { simplify_sdivt,    COMPILER_SIMPLIFY_ARITH },
10295 [OP_UDIVT      ] = { simplify_udivt,    COMPILER_SIMPLIFY_ARITH },
10296 [OP_SMUL       ] = { simplify_smul,     COMPILER_SIMPLIFY_ARITH },
10297 [OP_UMUL       ] = { simplify_umul,     COMPILER_SIMPLIFY_ARITH },
10298 [OP_SDIV       ] = { simplify_sdiv,     COMPILER_SIMPLIFY_ARITH },
10299 [OP_UDIV       ] = { simplify_udiv,     COMPILER_SIMPLIFY_ARITH },
10300 [OP_SMOD       ] = { simplify_smod,     COMPILER_SIMPLIFY_ARITH },
10301 [OP_UMOD       ] = { simplify_umod,     COMPILER_SIMPLIFY_ARITH },
10302 [OP_ADD        ] = { simplify_add,      COMPILER_SIMPLIFY_ARITH },
10303 [OP_SUB        ] = { simplify_sub,      COMPILER_SIMPLIFY_ARITH },
10304 [OP_SL         ] = { simplify_sl,       COMPILER_SIMPLIFY_SHIFT },
10305 [OP_USR        ] = { simplify_usr,      COMPILER_SIMPLIFY_SHIFT },
10306 [OP_SSR        ] = { simplify_ssr,      COMPILER_SIMPLIFY_SHIFT },
10307 [OP_AND        ] = { simplify_and,      COMPILER_SIMPLIFY_BITWISE },
10308 [OP_XOR        ] = { simplify_xor,      COMPILER_SIMPLIFY_BITWISE },
10309 [OP_OR         ] = { simplify_or,       COMPILER_SIMPLIFY_BITWISE },
10310 [OP_POS        ] = { simplify_pos,      COMPILER_SIMPLIFY_ARITH },
10311 [OP_NEG        ] = { simplify_neg,      COMPILER_SIMPLIFY_ARITH },
10312 [OP_INVERT     ] = { simplify_invert,   COMPILER_SIMPLIFY_BITWISE },
10313
10314 [OP_EQ         ] = { simplify_eq,       COMPILER_SIMPLIFY_LOGICAL },
10315 [OP_NOTEQ      ] = { simplify_noteq,    COMPILER_SIMPLIFY_LOGICAL },
10316 [OP_SLESS      ] = { simplify_sless,    COMPILER_SIMPLIFY_LOGICAL },
10317 [OP_ULESS      ] = { simplify_uless,    COMPILER_SIMPLIFY_LOGICAL },
10318 [OP_SMORE      ] = { simplify_smore,    COMPILER_SIMPLIFY_LOGICAL },
10319 [OP_UMORE      ] = { simplify_umore,    COMPILER_SIMPLIFY_LOGICAL },
10320 [OP_SLESSEQ    ] = { simplify_slesseq,  COMPILER_SIMPLIFY_LOGICAL },
10321 [OP_ULESSEQ    ] = { simplify_ulesseq,  COMPILER_SIMPLIFY_LOGICAL },
10322 [OP_SMOREEQ    ] = { simplify_smoreeq,  COMPILER_SIMPLIFY_LOGICAL },
10323 [OP_UMOREEQ    ] = { simplify_umoreeq,  COMPILER_SIMPLIFY_LOGICAL },
10324 [OP_LFALSE     ] = { simplify_lfalse,   COMPILER_SIMPLIFY_LOGICAL },
10325 [OP_LTRUE      ] = { simplify_ltrue,    COMPILER_SIMPLIFY_LOGICAL },
10326
10327 [OP_LOAD       ] = { simplify_load,     COMPILER_SIMPLIFY_OP },
10328 [OP_STORE      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10329
10330 [OP_UEXTRACT   ] = { simplify_uextract, COMPILER_SIMPLIFY_BITFIELD },
10331 [OP_SEXTRACT   ] = { simplify_sextract, COMPILER_SIMPLIFY_BITFIELD },
10332 [OP_DEPOSIT    ] = { simplify_deposit,  COMPILER_SIMPLIFY_BITFIELD },
10333
10334 [OP_NOOP       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10335
10336 [OP_INTCONST   ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10337 [OP_BLOBCONST  ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10338 [OP_ADDRCONST  ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10339 [OP_UNKNOWNVAL ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10340
10341 [OP_WRITE      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10342 [OP_READ       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10343 [OP_COPY       ] = { simplify_copy,     COMPILER_SIMPLIFY_COPY },
10344 [OP_CONVERT    ] = { simplify_copy,     COMPILER_SIMPLIFY_COPY },
10345 [OP_PIECE      ] = { simplify_piece,    COMPILER_SIMPLIFY_OP },
10346 [OP_ASM        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10347
10348 [OP_DOT        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10349 [OP_INDEX      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10350
10351 [OP_LIST       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10352 [OP_BRANCH     ] = { simplify_branch,   COMPILER_SIMPLIFY_BRANCH },
10353 [OP_CBRANCH    ] = { simplify_branch,   COMPILER_SIMPLIFY_BRANCH },
10354 [OP_CALL       ] = { simplify_noop,     COMPILER_SIMPLIFY_BRANCH },
10355 [OP_RET        ] = { simplify_noop,     COMPILER_SIMPLIFY_BRANCH },
10356 [OP_LABEL      ] = { simplify_label,    COMPILER_SIMPLIFY_LABEL },
10357 [OP_ADECL      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10358 [OP_SDECL      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10359 [OP_PHI        ] = { simplify_phi,      COMPILER_SIMPLIFY_PHI },
10360
10361 [OP_INB        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10362 [OP_INW        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10363 [OP_INL        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10364 [OP_OUTB       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10365 [OP_OUTW       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10366 [OP_OUTL       ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10367 [OP_BSF        ] = { simplify_bsf,      COMPILER_SIMPLIFY_OP },
10368 [OP_BSR        ] = { simplify_bsr,      COMPILER_SIMPLIFY_OP },
10369 [OP_RDMSR      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10370 [OP_WRMSR      ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10371 [OP_HLT        ] = { simplify_noop,     COMPILER_SIMPLIFY_OP },
10372 };
10373
10374 static inline void debug_simplify(struct compile_state *state,
10375         simplify_t do_simplify, struct triple *ins)
10376 {
10377 #if DEBUG_SIMPLIFY_HIRES
10378                 if (state->functions_joined && (do_simplify != simplify_noop)) {
10379                         /* High resolution debugging mode */
10380                         fprintf(state->dbgout, "simplifing: ");
10381                         display_triple(state->dbgout, ins);
10382                 }
10383 #endif
10384                 do_simplify(state, ins);
10385 #if DEBUG_SIMPLIFY_HIRES
10386                 if (state->functions_joined && (do_simplify != simplify_noop)) {
10387                         /* High resolution debugging mode */
10388                         fprintf(state->dbgout, "simplified: ");
10389                         display_triple(state->dbgout, ins);
10390                 }
10391 #endif
10392 }
10393 static void simplify(struct compile_state *state, struct triple *ins)
10394 {
10395         int op;
10396         simplify_t do_simplify;
10397         if (ins == &unknown_triple) {
10398                 internal_error(state, ins, "simplifying the unknown triple?");
10399         }
10400         do {
10401                 op = ins->op;
10402                 do_simplify = 0;
10403                 if ((op < 0) || (op > sizeof(table_simplify)/sizeof(table_simplify[0]))) {
10404                         do_simplify = 0;
10405                 }
10406                 else {
10407                         do_simplify = table_simplify[op].func;
10408                 }
10409                 if (do_simplify &&
10410                         !(state->compiler->flags & table_simplify[op].flag)) {
10411                         do_simplify = simplify_noop;
10412                 }
10413                 if (do_simplify && (ins->id & TRIPLE_FLAG_VOLATILE)) {
10414                         do_simplify = simplify_noop;
10415                 }
10416
10417                 if (!do_simplify) {
10418                         internal_error(state, ins, "cannot simplify op: %d %s",
10419                                 op, tops(op));
10420                         return;
10421                 }
10422                 debug_simplify(state, do_simplify, ins);
10423         } while(ins->op != op);
10424 }
10425
10426 static void rebuild_ssa_form(struct compile_state *state);
10427
10428 static void simplify_all(struct compile_state *state)
10429 {
10430         struct triple *ins, *first;
10431         if (!(state->compiler->flags & COMPILER_SIMPLIFY)) {
10432                 return;
10433         }
10434         first = state->first;
10435         ins = first->prev;
10436         do {
10437                 simplify(state, ins);
10438                 ins = ins->prev;
10439         } while(ins != first->prev);
10440         ins = first;
10441         do {
10442                 simplify(state, ins);
10443                 ins = ins->next;
10444         }while(ins != first);
10445         rebuild_ssa_form(state);
10446
10447         print_blocks(state, __func__, state->dbgout);
10448 }
10449
10450 /*
10451  * Builtins....
10452  * ============================
10453  */
10454
10455 static void register_builtin_function(struct compile_state *state,
10456         const char *name, int op, struct type *rtype, ...)
10457 {
10458         struct type *ftype, *atype, *ctype, *crtype, *param, **next;
10459         struct triple *def, *result, *work, *first, *retvar, *ret;
10460         struct hash_entry *ident;
10461         struct file_state file;
10462         int parameters;
10463         int name_len;
10464         va_list args;
10465         int i;
10466
10467         /* Dummy file state to get debug handling right */
10468         memset(&file, 0, sizeof(file));
10469         file.basename = "<built-in>";
10470         file.line = 1;
10471         file.report_line = 1;
10472         file.report_name = file.basename;
10473         file.prev = state->file;
10474         state->file = &file;
10475         state->function = name;
10476
10477         /* Find the Parameter count */
10478         valid_op(state, op);
10479         parameters = table_ops[op].rhs;
10480         if (parameters < 0 ) {
10481                 internal_error(state, 0, "Invalid builtin parameter count");
10482         }
10483
10484         /* Find the function type */
10485         ftype = new_type(TYPE_FUNCTION | STOR_INLINE | STOR_STATIC, rtype, 0);
10486         ftype->elements = parameters;
10487         next = &ftype->right;
10488         va_start(args, rtype);
10489         for(i = 0; i < parameters; i++) {
10490                 atype = va_arg(args, struct type *);
10491                 if (!*next) {
10492                         *next = atype;
10493                 } else {
10494                         *next = new_type(TYPE_PRODUCT, *next, atype);
10495                         next = &((*next)->right);
10496                 }
10497         }
10498         if (!*next) {
10499                 *next = &void_type;
10500         }
10501         va_end(args);
10502
10503         /* Get the initial closure type */
10504         ctype = new_type(TYPE_JOIN, &void_type, 0);
10505         ctype->elements = 1;
10506
10507         /* Get the return type */
10508         crtype = new_type(TYPE_TUPLE, new_type(TYPE_PRODUCT, ctype, rtype), 0);
10509         crtype->elements = 2;
10510
10511         /* Generate the needed triples */
10512         def = triple(state, OP_LIST, ftype, 0, 0);
10513         first = label(state);
10514         RHS(def, 0) = first;
10515         result = flatten(state, first, variable(state, crtype));
10516         retvar = flatten(state, first, variable(state, &void_ptr_type));
10517         ret = triple(state, OP_RET, &void_type, read_expr(state, retvar), 0);
10518
10519         /* Now string them together */
10520         param = ftype->right;
10521         for(i = 0; i < parameters; i++) {
10522                 if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
10523                         atype = param->left;
10524                 } else {
10525                         atype = param;
10526                 }
10527                 flatten(state, first, variable(state, atype));
10528                 param = param->right;
10529         }
10530         work = new_triple(state, op, rtype, -1, parameters);
10531         generate_lhs_pieces(state, work);
10532         for(i = 0; i < parameters; i++) {
10533                 RHS(work, i) = read_expr(state, farg(state, def, i));
10534         }
10535         if ((rtype->type & TYPE_MASK) != TYPE_VOID) {
10536                 work = write_expr(state, deref_index(state, result, 1), work);
10537         }
10538         work = flatten(state, first, work);
10539         flatten(state, first, label(state));
10540         ret  = flatten(state, first, ret);
10541         name_len = strlen(name);
10542         ident = lookup(state, name, name_len);
10543         ftype->type_ident = ident;
10544         symbol(state, ident, &ident->sym_ident, def, ftype);
10545
10546         state->file = file.prev;
10547         state->function = 0;
10548         state->main_function = 0;
10549
10550         if (!state->functions) {
10551                 state->functions = def;
10552         } else {
10553                 insert_triple(state, state->functions, def);
10554         }
10555         if (state->compiler->debug & DEBUG_INLINE) {
10556                 FILE *fp = state->dbgout;
10557                 fprintf(fp, "\n");
10558                 loc(fp, state, 0);
10559                 fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
10560                 display_func(state, fp, def);
10561                 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
10562         }
10563 }
10564
10565 static struct type *partial_struct(struct compile_state *state,
10566         const char *field_name, struct type *type, struct type *rest)
10567 {
10568         struct hash_entry *field_ident;
10569         struct type *result;
10570         int field_name_len;
10571
10572         field_name_len = strlen(field_name);
10573         field_ident = lookup(state, field_name, field_name_len);
10574
10575         result = clone_type(0, type);
10576         result->field_ident = field_ident;
10577
10578         if (rest) {
10579                 result = new_type(TYPE_PRODUCT, result, rest);
10580         }
10581         return result;
10582 }
10583
10584 static struct type *register_builtin_type(struct compile_state *state,
10585         const char *name, struct type *type)
10586 {
10587         struct hash_entry *ident;
10588         int name_len;
10589
10590         name_len = strlen(name);
10591         ident = lookup(state, name, name_len);
10592
10593         if ((type->type & TYPE_MASK) == TYPE_PRODUCT) {
10594                 ulong_t elements = 0;
10595                 struct type *field;
10596                 type = new_type(TYPE_STRUCT, type, 0);
10597                 field = type->left;
10598                 while((field->type & TYPE_MASK) == TYPE_PRODUCT) {
10599                         elements++;
10600                         field = field->right;
10601                 }
10602                 elements++;
10603                 symbol(state, ident, &ident->sym_tag, 0, type);
10604                 type->type_ident = ident;
10605                 type->elements = elements;
10606         }
10607         symbol(state, ident, &ident->sym_ident, 0, type);
10608         ident->tok = TOK_TYPE_NAME;
10609         return type;
10610 }
10611
10612
10613 static void register_builtins(struct compile_state *state)
10614 {
10615         struct type *div_type, *ldiv_type;
10616         struct type *udiv_type, *uldiv_type;
10617         struct type *msr_type;
10618
10619         div_type = register_builtin_type(state, "__builtin_div_t",
10620                 partial_struct(state, "quot", &int_type,
10621                 partial_struct(state, "rem",  &int_type, 0)));
10622         ldiv_type = register_builtin_type(state, "__builtin_ldiv_t",
10623                 partial_struct(state, "quot", &long_type,
10624                 partial_struct(state, "rem",  &long_type, 0)));
10625         udiv_type = register_builtin_type(state, "__builtin_udiv_t",
10626                 partial_struct(state, "quot", &uint_type,
10627                 partial_struct(state, "rem",  &uint_type, 0)));
10628         uldiv_type = register_builtin_type(state, "__builtin_uldiv_t",
10629                 partial_struct(state, "quot", &ulong_type,
10630                 partial_struct(state, "rem",  &ulong_type, 0)));
10631
10632         register_builtin_function(state, "__builtin_div",   OP_SDIVT, div_type,
10633                 &int_type, &int_type);
10634         register_builtin_function(state, "__builtin_ldiv",  OP_SDIVT, ldiv_type,
10635                 &long_type, &long_type);
10636         register_builtin_function(state, "__builtin_udiv",  OP_UDIVT, udiv_type,
10637                 &uint_type, &uint_type);
10638         register_builtin_function(state, "__builtin_uldiv", OP_UDIVT, uldiv_type,
10639                 &ulong_type, &ulong_type);
10640
10641         register_builtin_function(state, "__builtin_inb", OP_INB, &uchar_type,
10642                 &ushort_type);
10643         register_builtin_function(state, "__builtin_inw", OP_INW, &ushort_type,
10644                 &ushort_type);
10645         register_builtin_function(state, "__builtin_inl", OP_INL, &uint_type,
10646                 &ushort_type);
10647
10648         register_builtin_function(state, "__builtin_outb", OP_OUTB, &void_type,
10649                 &uchar_type, &ushort_type);
10650         register_builtin_function(state, "__builtin_outw", OP_OUTW, &void_type,
10651                 &ushort_type, &ushort_type);
10652         register_builtin_function(state, "__builtin_outl", OP_OUTL, &void_type,
10653                 &uint_type, &ushort_type);
10654
10655         register_builtin_function(state, "__builtin_bsf", OP_BSF, &int_type,
10656                 &int_type);
10657         register_builtin_function(state, "__builtin_bsr", OP_BSR, &int_type,
10658                 &int_type);
10659
10660         msr_type = register_builtin_type(state, "__builtin_msr_t",
10661                 partial_struct(state, "lo", &ulong_type,
10662                 partial_struct(state, "hi", &ulong_type, 0)));
10663
10664         register_builtin_function(state, "__builtin_rdmsr", OP_RDMSR, msr_type,
10665                 &ulong_type);
10666         register_builtin_function(state, "__builtin_wrmsr", OP_WRMSR, &void_type,
10667                 &ulong_type, &ulong_type, &ulong_type);
10668
10669         register_builtin_function(state, "__builtin_hlt", OP_HLT, &void_type,
10670                 &void_type);
10671 }
10672
10673 static struct type *declarator(
10674         struct compile_state *state, struct type *type,
10675         struct hash_entry **ident, int need_ident);
10676 static void decl(struct compile_state *state, struct triple *first);
10677 static struct type *specifier_qualifier_list(struct compile_state *state);
10678 #if DEBUG_ROMCC_WARNING
10679 static int isdecl_specifier(int tok);
10680 #endif
10681 static struct type *decl_specifiers(struct compile_state *state);
10682 static int istype(int tok);
10683 static struct triple *expr(struct compile_state *state);
10684 static struct triple *assignment_expr(struct compile_state *state);
10685 static struct type *type_name(struct compile_state *state);
10686 static void statement(struct compile_state *state, struct triple *first);
10687
10688 static struct triple *call_expr(
10689         struct compile_state *state, struct triple *func)
10690 {
10691         struct triple *def;
10692         struct type *param, *type;
10693         ulong_t pvals, index;
10694
10695         if ((func->type->type & TYPE_MASK) != TYPE_FUNCTION) {
10696                 error(state, 0, "Called object is not a function");
10697         }
10698         if (func->op != OP_LIST) {
10699                 internal_error(state, 0, "improper function");
10700         }
10701         eat(state, TOK_LPAREN);
10702         /* Find the return type without any specifiers */
10703         type = clone_type(0, func->type->left);
10704         /* Count the number of rhs entries for OP_FCALL */
10705         param = func->type->right;
10706         pvals = 0;
10707         while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
10708                 pvals++;
10709                 param = param->right;
10710         }
10711         if ((param->type & TYPE_MASK) != TYPE_VOID) {
10712                 pvals++;
10713         }
10714         def = new_triple(state, OP_FCALL, type, -1, pvals);
10715         MISC(def, 0) = func;
10716
10717         param = func->type->right;
10718         for(index = 0; index < pvals; index++) {
10719                 struct triple *val;
10720                 struct type *arg_type;
10721                 val = read_expr(state, assignment_expr(state));
10722                 arg_type = param;
10723                 if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
10724                         arg_type = param->left;
10725                 }
10726                 write_compatible(state, arg_type, val->type);
10727                 RHS(def, index) = val;
10728                 if (index != (pvals - 1)) {
10729                         eat(state, TOK_COMMA);
10730                         param = param->right;
10731                 }
10732         }
10733         eat(state, TOK_RPAREN);
10734         return def;
10735 }
10736
10737
10738 static struct triple *character_constant(struct compile_state *state)
10739 {
10740         struct triple *def;
10741         struct token *tk;
10742         const signed char *str, *end;
10743         int c;
10744         int str_len;
10745         tk = eat(state, TOK_LIT_CHAR);
10746         str = (signed char *)tk->val.str + 1;
10747         str_len = tk->str_len - 2;
10748         if (str_len <= 0) {
10749                 error(state, 0, "empty character constant");
10750         }
10751         end = str + str_len;
10752         c = char_value(state, &str, end);
10753         if (str != end) {
10754                 error(state, 0, "multibyte character constant not supported");
10755         }
10756         def = int_const(state, &char_type, (ulong_t)((long_t)c));
10757         return def;
10758 }
10759
10760 static struct triple *string_constant(struct compile_state *state)
10761 {
10762         struct triple *def;
10763         struct token *tk;
10764         struct type *type;
10765         const signed char *str, *end;
10766         signed char *buf, *ptr;
10767         int str_len;
10768
10769         buf = 0;
10770         type = new_type(TYPE_ARRAY, &char_type, 0);
10771         type->elements = 0;
10772         /* The while loop handles string concatenation */
10773         do {
10774                 tk = eat(state, TOK_LIT_STRING);
10775                 str = (signed char *)tk->val.str + 1;
10776                 str_len = tk->str_len - 2;
10777                 if (str_len < 0) {
10778                         error(state, 0, "negative string constant length");
10779                 }
10780                 /* ignore empty string tokens */
10781                 if ('"' == *str && 0 == str[1])
10782                         continue;
10783                 end = str + str_len;
10784                 ptr = buf;
10785                 buf = xmalloc(type->elements + str_len + 1, "string_constant");
10786                 memcpy(buf, ptr, type->elements);
10787                 ptr = buf + type->elements;
10788                 do {
10789                         *ptr++ = char_value(state, &str, end);
10790                 } while(str < end);
10791                 type->elements = ptr - buf;
10792         } while(peek(state) == TOK_LIT_STRING);
10793         *ptr = '\0';
10794         type->elements += 1;
10795         def = triple(state, OP_BLOBCONST, type, 0, 0);
10796         def->u.blob = buf;
10797
10798         return def;
10799 }
10800
10801
10802 static struct triple *integer_constant(struct compile_state *state)
10803 {
10804         struct triple *def;
10805         unsigned long val;
10806         struct token *tk;
10807         char *end;
10808         int u, l, decimal;
10809         struct type *type;
10810
10811         tk = eat(state, TOK_LIT_INT);
10812         errno = 0;
10813         decimal = (tk->val.str[0] != '0');
10814         val = strtoul(tk->val.str, &end, 0);
10815         if ((val > ULONG_T_MAX) || ((val == ULONG_MAX) && (errno == ERANGE))) {
10816                 error(state, 0, "Integer constant to large");
10817         }
10818         u = l = 0;
10819         if ((*end == 'u') || (*end == 'U')) {
10820                 u = 1;
10821                         end++;
10822         }
10823         if ((*end == 'l') || (*end == 'L')) {
10824                 l = 1;
10825                 end++;
10826         }
10827         if ((*end == 'u') || (*end == 'U')) {
10828                 u = 1;
10829                 end++;
10830         }
10831         if (*end) {
10832                 error(state, 0, "Junk at end of integer constant");
10833         }
10834         if (u && l)  {
10835                 type = &ulong_type;
10836         }
10837         else if (l) {
10838                 type = &long_type;
10839                 if (!decimal && (val > LONG_T_MAX)) {
10840                         type = &ulong_type;
10841                 }
10842         }
10843         else if (u) {
10844                 type = &uint_type;
10845                 if (val > UINT_T_MAX) {
10846                         type = &ulong_type;
10847                 }
10848         }
10849         else {
10850                 type = &int_type;
10851                 if (!decimal && (val > INT_T_MAX) && (val <= UINT_T_MAX)) {
10852                         type = &uint_type;
10853                 }
10854                 else if (!decimal && (val > LONG_T_MAX)) {
10855                         type = &ulong_type;
10856                 }
10857                 else if (val > INT_T_MAX) {
10858                         type = &long_type;
10859                 }
10860         }
10861         def = int_const(state, type, val);
10862         return def;
10863 }
10864
10865 static struct triple *primary_expr(struct compile_state *state)
10866 {
10867         struct triple *def;
10868         int tok;
10869         tok = peek(state);
10870         switch(tok) {
10871         case TOK_IDENT:
10872         {
10873                 struct hash_entry *ident;
10874                 /* Here ident is either:
10875                  * a varable name
10876                  * a function name
10877                  */
10878                 ident = eat(state, TOK_IDENT)->ident;
10879                 if (!ident->sym_ident) {
10880                         error(state, 0, "%s undeclared", ident->name);
10881                 }
10882                 def = ident->sym_ident->def;
10883                 break;
10884         }
10885         case TOK_ENUM_CONST:
10886         {
10887                 struct hash_entry *ident;
10888                 /* Here ident is an enumeration constant */
10889                 ident = eat(state, TOK_ENUM_CONST)->ident;
10890                 if (!ident->sym_ident) {
10891                         error(state, 0, "%s undeclared", ident->name);
10892                 }
10893                 def = ident->sym_ident->def;
10894                 break;
10895         }
10896         case TOK_MIDENT:
10897         {
10898                 struct hash_entry *ident;
10899                 ident = eat(state, TOK_MIDENT)->ident;
10900                 warning(state, 0, "Replacing undefined macro: %s with 0",
10901                         ident->name);
10902                 def = int_const(state, &int_type, 0);
10903                 break;
10904         }
10905         case TOK_LPAREN:
10906                 eat(state, TOK_LPAREN);
10907                 def = expr(state);
10908                 eat(state, TOK_RPAREN);
10909                 break;
10910         case TOK_LIT_INT:
10911                 def = integer_constant(state);
10912                 break;
10913         case TOK_LIT_FLOAT:
10914                 eat(state, TOK_LIT_FLOAT);
10915                 error(state, 0, "Floating point constants not supported");
10916                 def = 0;
10917                 FINISHME();
10918                 break;
10919         case TOK_LIT_CHAR:
10920                 def = character_constant(state);
10921                 break;
10922         case TOK_LIT_STRING:
10923                 def = string_constant(state);
10924                 break;
10925         default:
10926                 def = 0;
10927                 error(state, 0, "Unexpected token: %s\n", tokens[tok]);
10928         }
10929         return def;
10930 }
10931
10932 static struct triple *postfix_expr(struct compile_state *state)
10933 {
10934         struct triple *def;
10935         int postfix;
10936         def = primary_expr(state);
10937         do {
10938                 struct triple *left;
10939                 int tok;
10940                 postfix = 1;
10941                 left = def;
10942                 switch((tok = peek(state))) {
10943                 case TOK_LBRACKET:
10944                         eat(state, TOK_LBRACKET);
10945                         def = mk_subscript_expr(state, left, expr(state));
10946                         eat(state, TOK_RBRACKET);
10947                         break;
10948                 case TOK_LPAREN:
10949                         def = call_expr(state, def);
10950                         break;
10951                 case TOK_DOT:
10952                 {
10953                         struct hash_entry *field;
10954                         eat(state, TOK_DOT);
10955                         field = eat(state, TOK_IDENT)->ident;
10956                         def = deref_field(state, def, field);
10957                         break;
10958                 }
10959                 case TOK_ARROW:
10960                 {
10961                         struct hash_entry *field;
10962                         eat(state, TOK_ARROW);
10963                         field = eat(state, TOK_IDENT)->ident;
10964                         def = mk_deref_expr(state, read_expr(state, def));
10965                         def = deref_field(state, def, field);
10966                         break;
10967                 }
10968                 case TOK_PLUSPLUS:
10969                         eat(state, TOK_PLUSPLUS);
10970                         def = mk_post_inc_expr(state, left);
10971                         break;
10972                 case TOK_MINUSMINUS:
10973                         eat(state, TOK_MINUSMINUS);
10974                         def = mk_post_dec_expr(state, left);
10975                         break;
10976                 default:
10977                         postfix = 0;
10978                         break;
10979                 }
10980         } while(postfix);
10981         return def;
10982 }
10983
10984 static struct triple *cast_expr(struct compile_state *state);
10985
10986 static struct triple *unary_expr(struct compile_state *state)
10987 {
10988         struct triple *def, *right;
10989         int tok;
10990         switch((tok = peek(state))) {
10991         case TOK_PLUSPLUS:
10992                 eat(state, TOK_PLUSPLUS);
10993                 def = mk_pre_inc_expr(state, unary_expr(state));
10994                 break;
10995         case TOK_MINUSMINUS:
10996                 eat(state, TOK_MINUSMINUS);
10997                 def = mk_pre_dec_expr(state, unary_expr(state));
10998                 break;
10999         case TOK_AND:
11000                 eat(state, TOK_AND);
11001                 def = mk_addr_expr(state, cast_expr(state), 0);
11002                 break;
11003         case TOK_STAR:
11004                 eat(state, TOK_STAR);
11005                 def = mk_deref_expr(state, read_expr(state, cast_expr(state)));
11006                 break;
11007         case TOK_PLUS:
11008                 eat(state, TOK_PLUS);
11009                 right = read_expr(state, cast_expr(state));
11010                 arithmetic(state, right);
11011                 def = integral_promotion(state, right);
11012                 break;
11013         case TOK_MINUS:
11014                 eat(state, TOK_MINUS);
11015                 right = read_expr(state, cast_expr(state));
11016                 arithmetic(state, right);
11017                 def = integral_promotion(state, right);
11018                 def = triple(state, OP_NEG, def->type, def, 0);
11019                 break;
11020         case TOK_TILDE:
11021                 eat(state, TOK_TILDE);
11022                 right = read_expr(state, cast_expr(state));
11023                 integral(state, right);
11024                 def = integral_promotion(state, right);
11025                 def = triple(state, OP_INVERT, def->type, def, 0);
11026                 break;
11027         case TOK_BANG:
11028                 eat(state, TOK_BANG);
11029                 right = read_expr(state, cast_expr(state));
11030                 bool(state, right);
11031                 def = lfalse_expr(state, right);
11032                 break;
11033         case TOK_SIZEOF:
11034         {
11035                 struct type *type;
11036                 int tok1, tok2;
11037                 eat(state, TOK_SIZEOF);
11038                 tok1 = peek(state);
11039                 tok2 = peek2(state);
11040                 if ((tok1 == TOK_LPAREN) && istype(tok2)) {
11041                         eat(state, TOK_LPAREN);
11042                         type = type_name(state);
11043                         eat(state, TOK_RPAREN);
11044                 }
11045                 else {
11046                         struct triple *expr;
11047                         expr = unary_expr(state);
11048                         type = expr->type;
11049                         release_expr(state, expr);
11050                 }
11051                 def = int_const(state, &ulong_type, size_of_in_bytes(state, type));
11052                 break;
11053         }
11054         case TOK_ALIGNOF:
11055         {
11056                 struct type *type;
11057                 int tok1, tok2;
11058                 eat(state, TOK_ALIGNOF);
11059                 tok1 = peek(state);
11060                 tok2 = peek2(state);
11061                 if ((tok1 == TOK_LPAREN) && istype(tok2)) {
11062                         eat(state, TOK_LPAREN);
11063                         type = type_name(state);
11064                         eat(state, TOK_RPAREN);
11065                 }
11066                 else {
11067                         struct triple *expr;
11068                         expr = unary_expr(state);
11069                         type = expr->type;
11070                         release_expr(state, expr);
11071                 }
11072                 def = int_const(state, &ulong_type, align_of_in_bytes(state, type));
11073                 break;
11074         }
11075         case TOK_MDEFINED:
11076         {
11077                 /* We only come here if we are called from the preprocessor */
11078                 struct hash_entry *ident;
11079                 int parens;
11080                 eat(state, TOK_MDEFINED);
11081                 parens = 0;
11082                 if (pp_peek(state) == TOK_LPAREN) {
11083                         pp_eat(state, TOK_LPAREN);
11084                         parens = 1;
11085                 }
11086                 ident = pp_eat(state, TOK_MIDENT)->ident;
11087                 if (parens) {
11088                         eat(state, TOK_RPAREN);
11089                 }
11090                 def = int_const(state, &int_type, ident->sym_define != 0);
11091                 break;
11092         }
11093         default:
11094                 def = postfix_expr(state);
11095                 break;
11096         }
11097         return def;
11098 }
11099
11100 static struct triple *cast_expr(struct compile_state *state)
11101 {
11102         struct triple *def;
11103         int tok1, tok2;
11104         tok1 = peek(state);
11105         tok2 = peek2(state);
11106         if ((tok1 == TOK_LPAREN) && istype(tok2)) {
11107                 struct type *type;
11108                 eat(state, TOK_LPAREN);
11109                 type = type_name(state);
11110                 eat(state, TOK_RPAREN);
11111                 def = mk_cast_expr(state, type, cast_expr(state));
11112         }
11113         else {
11114                 def = unary_expr(state);
11115         }
11116         return def;
11117 }
11118
11119 static struct triple *mult_expr(struct compile_state *state)
11120 {
11121         struct triple *def;
11122         int done;
11123         def = cast_expr(state);
11124         do {
11125                 struct triple *left, *right;
11126                 struct type *result_type;
11127                 int tok, op, sign;
11128                 done = 0;
11129                 tok = peek(state);
11130                 switch(tok) {
11131                 case TOK_STAR:
11132                 case TOK_DIV:
11133                 case TOK_MOD:
11134                         left = read_expr(state, def);
11135                         arithmetic(state, left);
11136
11137                         eat(state, tok);
11138
11139                         right = read_expr(state, cast_expr(state));
11140                         arithmetic(state, right);
11141
11142                         result_type = arithmetic_result(state, left, right);
11143                         sign = is_signed(result_type);
11144                         op = -1;
11145                         switch(tok) {
11146                         case TOK_STAR: op = sign? OP_SMUL : OP_UMUL; break;
11147                         case TOK_DIV:  op = sign? OP_SDIV : OP_UDIV; break;
11148                         case TOK_MOD:  op = sign? OP_SMOD : OP_UMOD; break;
11149                         }
11150                         def = triple(state, op, result_type, left, right);
11151                         break;
11152                 default:
11153                         done = 1;
11154                         break;
11155                 }
11156         } while(!done);
11157         return def;
11158 }
11159
11160 static struct triple *add_expr(struct compile_state *state)
11161 {
11162         struct triple *def;
11163         int done;
11164         def = mult_expr(state);
11165         do {
11166                 done = 0;
11167                 switch( peek(state)) {
11168                 case TOK_PLUS:
11169                         eat(state, TOK_PLUS);
11170                         def = mk_add_expr(state, def, mult_expr(state));
11171                         break;
11172                 case TOK_MINUS:
11173                         eat(state, TOK_MINUS);
11174                         def = mk_sub_expr(state, def, mult_expr(state));
11175                         break;
11176                 default:
11177                         done = 1;
11178                         break;
11179                 }
11180         } while(!done);
11181         return def;
11182 }
11183
11184 static struct triple *shift_expr(struct compile_state *state)
11185 {
11186         struct triple *def;
11187         int done;
11188         def = add_expr(state);
11189         do {
11190                 struct triple *left, *right;
11191                 int tok, op;
11192                 done = 0;
11193                 switch((tok = peek(state))) {
11194                 case TOK_SL:
11195                 case TOK_SR:
11196                         left = read_expr(state, def);
11197                         integral(state, left);
11198                         left = integral_promotion(state, left);
11199
11200                         eat(state, tok);
11201
11202                         right = read_expr(state, add_expr(state));
11203                         integral(state, right);
11204                         right = integral_promotion(state, right);
11205
11206                         op = (tok == TOK_SL)? OP_SL :
11207                                 is_signed(left->type)? OP_SSR: OP_USR;
11208
11209                         def = triple(state, op, left->type, left, right);
11210                         break;
11211                 default:
11212                         done = 1;
11213                         break;
11214                 }
11215         } while(!done);
11216         return def;
11217 }
11218
11219 static struct triple *relational_expr(struct compile_state *state)
11220 {
11221 #if DEBUG_ROMCC_WARNINGS
11222 #warning "Extend relational exprs to work on more than arithmetic types"
11223 #endif
11224         struct triple *def;
11225         int done;
11226         def = shift_expr(state);
11227         do {
11228                 struct triple *left, *right;
11229                 struct type *arg_type;
11230                 int tok, op, sign;
11231                 done = 0;
11232                 switch((tok = peek(state))) {
11233                 case TOK_LESS:
11234                 case TOK_MORE:
11235                 case TOK_LESSEQ:
11236                 case TOK_MOREEQ:
11237                         left = read_expr(state, def);
11238                         arithmetic(state, left);
11239
11240                         eat(state, tok);
11241
11242                         right = read_expr(state, shift_expr(state));
11243                         arithmetic(state, right);
11244
11245                         arg_type = arithmetic_result(state, left, right);
11246                         sign = is_signed(arg_type);
11247                         op = -1;
11248                         switch(tok) {
11249                         case TOK_LESS:   op = sign? OP_SLESS : OP_ULESS; break;
11250                         case TOK_MORE:   op = sign? OP_SMORE : OP_UMORE; break;
11251                         case TOK_LESSEQ: op = sign? OP_SLESSEQ : OP_ULESSEQ; break;
11252                         case TOK_MOREEQ: op = sign? OP_SMOREEQ : OP_UMOREEQ; break;
11253                         }
11254                         def = triple(state, op, &int_type, left, right);
11255                         break;
11256                 default:
11257                         done = 1;
11258                         break;
11259                 }
11260         } while(!done);
11261         return def;
11262 }
11263
11264 static struct triple *equality_expr(struct compile_state *state)
11265 {
11266 #if DEBUG_ROMCC_WARNINGS
11267 #warning "Extend equality exprs to work on more than arithmetic types"
11268 #endif
11269         struct triple *def;
11270         int done;
11271         def = relational_expr(state);
11272         do {
11273                 struct triple *left, *right;
11274                 int tok, op;
11275                 done = 0;
11276                 switch((tok = peek(state))) {
11277                 case TOK_EQEQ:
11278                 case TOK_NOTEQ:
11279                         left = read_expr(state, def);
11280                         arithmetic(state, left);
11281                         eat(state, tok);
11282                         right = read_expr(state, relational_expr(state));
11283                         arithmetic(state, right);
11284                         op = (tok == TOK_EQEQ) ? OP_EQ: OP_NOTEQ;
11285                         def = triple(state, op, &int_type, left, right);
11286                         break;
11287                 default:
11288                         done = 1;
11289                         break;
11290                 }
11291         } while(!done);
11292         return def;
11293 }
11294
11295 static struct triple *and_expr(struct compile_state *state)
11296 {
11297         struct triple *def;
11298         def = equality_expr(state);
11299         while(peek(state) == TOK_AND) {
11300                 struct triple *left, *right;
11301                 struct type *result_type;
11302                 left = read_expr(state, def);
11303                 integral(state, left);
11304                 eat(state, TOK_AND);
11305                 right = read_expr(state, equality_expr(state));
11306                 integral(state, right);
11307                 result_type = arithmetic_result(state, left, right);
11308                 def = triple(state, OP_AND, result_type, left, right);
11309         }
11310         return def;
11311 }
11312
11313 static struct triple *xor_expr(struct compile_state *state)
11314 {
11315         struct triple *def;
11316         def = and_expr(state);
11317         while(peek(state) == TOK_XOR) {
11318                 struct triple *left, *right;
11319                 struct type *result_type;
11320                 left = read_expr(state, def);
11321                 integral(state, left);
11322                 eat(state, TOK_XOR);
11323                 right = read_expr(state, and_expr(state));
11324                 integral(state, right);
11325                 result_type = arithmetic_result(state, left, right);
11326                 def = triple(state, OP_XOR, result_type, left, right);
11327         }
11328         return def;
11329 }
11330
11331 static struct triple *or_expr(struct compile_state *state)
11332 {
11333         struct triple *def;
11334         def = xor_expr(state);
11335         while(peek(state) == TOK_OR) {
11336                 struct triple *left, *right;
11337                 struct type *result_type;
11338                 left = read_expr(state, def);
11339                 integral(state, left);
11340                 eat(state, TOK_OR);
11341                 right = read_expr(state, xor_expr(state));
11342                 integral(state, right);
11343                 result_type = arithmetic_result(state, left, right);
11344                 def = triple(state, OP_OR, result_type, left, right);
11345         }
11346         return def;
11347 }
11348
11349 static struct triple *land_expr(struct compile_state *state)
11350 {
11351         struct triple *def;
11352         def = or_expr(state);
11353         while(peek(state) == TOK_LOGAND) {
11354                 struct triple *left, *right;
11355                 left = read_expr(state, def);
11356                 bool(state, left);
11357                 eat(state, TOK_LOGAND);
11358                 right = read_expr(state, or_expr(state));
11359                 bool(state, right);
11360
11361                 def = mkland_expr(state,
11362                         ltrue_expr(state, left),
11363                         ltrue_expr(state, right));
11364         }
11365         return def;
11366 }
11367
11368 static struct triple *lor_expr(struct compile_state *state)
11369 {
11370         struct triple *def;
11371         def = land_expr(state);
11372         while(peek(state) == TOK_LOGOR) {
11373                 struct triple *left, *right;
11374                 left = read_expr(state, def);
11375                 bool(state, left);
11376                 eat(state, TOK_LOGOR);
11377                 right = read_expr(state, land_expr(state));
11378                 bool(state, right);
11379
11380                 def = mklor_expr(state,
11381                         ltrue_expr(state, left),
11382                         ltrue_expr(state, right));
11383         }
11384         return def;
11385 }
11386
11387 static struct triple *conditional_expr(struct compile_state *state)
11388 {
11389         struct triple *def;
11390         def = lor_expr(state);
11391         if (peek(state) == TOK_QUEST) {
11392                 struct triple *test, *left, *right;
11393                 bool(state, def);
11394                 test = ltrue_expr(state, read_expr(state, def));
11395                 eat(state, TOK_QUEST);
11396                 left = read_expr(state, expr(state));
11397                 eat(state, TOK_COLON);
11398                 right = read_expr(state, conditional_expr(state));
11399
11400                 def = mkcond_expr(state, test, left, right);
11401         }
11402         return def;
11403 }
11404
11405 struct cv_triple {
11406         struct triple *val;
11407         int id;
11408 };
11409
11410 static void set_cv(struct compile_state *state, struct cv_triple *cv,
11411         struct triple *dest, struct triple *val)
11412 {
11413         if (cv[dest->id].val) {
11414                 free_triple(state, cv[dest->id].val);
11415         }
11416         cv[dest->id].val = val;
11417 }
11418 static struct triple *get_cv(struct compile_state *state, struct cv_triple *cv,
11419         struct triple *src)
11420 {
11421         return cv[src->id].val;
11422 }
11423
11424 static struct triple *eval_const_expr(
11425         struct compile_state *state, struct triple *expr)
11426 {
11427         struct triple *def;
11428         if (is_const(expr)) {
11429                 def = expr;
11430         }
11431         else {
11432                 /* If we don't start out as a constant simplify into one */
11433                 struct triple *head, *ptr;
11434                 struct cv_triple *cv;
11435                 int i, count;
11436                 head = label(state); /* dummy initial triple */
11437                 flatten(state, head, expr);
11438                 count = 1;
11439                 for(ptr = head->next; ptr != head; ptr = ptr->next) {
11440                         count++;
11441                 }
11442                 cv = xcmalloc(sizeof(struct cv_triple)*count, "const value vector");
11443                 i = 1;
11444                 for(ptr = head->next; ptr != head; ptr = ptr->next) {
11445                         cv[i].val = 0;
11446                         cv[i].id  = ptr->id;
11447                         ptr->id   = i;
11448                         i++;
11449                 }
11450                 ptr = head->next;
11451                 do {
11452                         valid_ins(state, ptr);
11453                         if ((ptr->op == OP_PHI) || (ptr->op == OP_LIST)) {
11454                                 internal_error(state, ptr,
11455                                         "unexpected %s in constant expression",
11456                                         tops(ptr->op));
11457                         }
11458                         else if (ptr->op == OP_LIST) {
11459                         }
11460                         else if (triple_is_structural(state, ptr)) {
11461                                 ptr = ptr->next;
11462                         }
11463                         else if (triple_is_ubranch(state, ptr)) {
11464                                 ptr = TARG(ptr, 0);
11465                         }
11466                         else if (triple_is_cbranch(state, ptr)) {
11467                                 struct triple *cond_val;
11468                                 cond_val = get_cv(state, cv, RHS(ptr, 0));
11469                                 if (!cond_val || !is_const(cond_val) ||
11470                                         (cond_val->op != OP_INTCONST))
11471                                 {
11472                                         internal_error(state, ptr, "bad branch condition");
11473                                 }
11474                                 if (cond_val->u.cval == 0) {
11475                                         ptr = ptr->next;
11476                                 } else {
11477                                         ptr = TARG(ptr, 0);
11478                                 }
11479                         }
11480                         else if (triple_is_branch(state, ptr)) {
11481                                 error(state, ptr, "bad branch type in constant expression");
11482                         }
11483                         else if (ptr->op == OP_WRITE) {
11484                                 struct triple *val;
11485                                 val = get_cv(state, cv, RHS(ptr, 0));
11486
11487                                 set_cv(state, cv, MISC(ptr, 0),
11488                                         copy_triple(state, val));
11489                                 set_cv(state, cv, ptr,
11490                                         copy_triple(state, val));
11491                                 ptr = ptr->next;
11492                         }
11493                         else if (ptr->op == OP_READ) {
11494                                 set_cv(state, cv, ptr,
11495                                         copy_triple(state,
11496                                                 get_cv(state, cv, RHS(ptr, 0))));
11497                                 ptr = ptr->next;
11498                         }
11499                         else if (triple_is_pure(state, ptr, cv[ptr->id].id)) {
11500                                 struct triple *val, **rhs;
11501                                 val = copy_triple(state, ptr);
11502                                 rhs = triple_rhs(state, val, 0);
11503                                 for(; rhs; rhs = triple_rhs(state, val, rhs)) {
11504                                         if (!*rhs) {
11505                                                 internal_error(state, ptr, "Missing rhs");
11506                                         }
11507                                         *rhs = get_cv(state, cv, *rhs);
11508                                 }
11509                                 simplify(state, val);
11510                                 set_cv(state, cv, ptr, val);
11511                                 ptr = ptr->next;
11512                         }
11513                         else {
11514                                 error(state, ptr, "impure operation in constant expression");
11515                         }
11516
11517                 } while(ptr != head);
11518
11519                 /* Get the result value */
11520                 def = get_cv(state, cv, head->prev);
11521                 cv[head->prev->id].val = 0;
11522
11523                 /* Free the temporary values */
11524                 for(i = 0; i < count; i++) {
11525                         if (cv[i].val) {
11526                                 free_triple(state, cv[i].val);
11527                                 cv[i].val = 0;
11528                         }
11529                 }
11530                 xfree(cv);
11531                 /* Free the intermediate expressions */
11532                 while(head->next != head) {
11533                         release_triple(state, head->next);
11534                 }
11535                 free_triple(state, head);
11536         }
11537         if (!is_const(def)) {
11538                 error(state, expr, "Not a constant expression");
11539         }
11540         return def;
11541 }
11542
11543 static struct triple *constant_expr(struct compile_state *state)
11544 {
11545         return eval_const_expr(state, conditional_expr(state));
11546 }
11547
11548 static struct triple *assignment_expr(struct compile_state *state)
11549 {
11550         struct triple *def, *left, *right;
11551         int tok, op, sign;
11552         /* The C grammer in K&R shows assignment expressions
11553          * only taking unary expressions as input on their
11554          * left hand side.  But specifies the precedence of
11555          * assignemnt as the lowest operator except for comma.
11556          *
11557          * Allowing conditional expressions on the left hand side
11558          * of an assignement results in a grammar that accepts
11559          * a larger set of statements than standard C.   As long
11560          * as the subset of the grammar that is standard C behaves
11561          * correctly this should cause no problems.
11562          *
11563          * For the extra token strings accepted by the grammar
11564          * none of them should produce a valid lvalue, so they
11565          * should not produce functioning programs.
11566          *
11567          * GCC has this bug as well, so surprises should be minimal.
11568          */
11569         def = conditional_expr(state);
11570         left = def;
11571         switch((tok = peek(state))) {
11572         case TOK_EQ:
11573                 lvalue(state, left);
11574                 eat(state, TOK_EQ);
11575                 def = write_expr(state, left,
11576                         read_expr(state, assignment_expr(state)));
11577                 break;
11578         case TOK_TIMESEQ:
11579         case TOK_DIVEQ:
11580         case TOK_MODEQ:
11581                 lvalue(state, left);
11582                 arithmetic(state, left);
11583                 eat(state, tok);
11584                 right = read_expr(state, assignment_expr(state));
11585                 arithmetic(state, right);
11586
11587                 sign = is_signed(left->type);
11588                 op = -1;
11589                 switch(tok) {
11590                 case TOK_TIMESEQ: op = sign? OP_SMUL : OP_UMUL; break;
11591                 case TOK_DIVEQ:   op = sign? OP_SDIV : OP_UDIV; break;
11592                 case TOK_MODEQ:   op = sign? OP_SMOD : OP_UMOD; break;
11593                 }
11594                 def = write_expr(state, left,
11595                         triple(state, op, left->type,
11596                                 read_expr(state, left), right));
11597                 break;
11598         case TOK_PLUSEQ:
11599                 lvalue(state, left);
11600                 eat(state, TOK_PLUSEQ);
11601                 def = write_expr(state, left,
11602                         mk_add_expr(state, left, assignment_expr(state)));
11603                 break;
11604         case TOK_MINUSEQ:
11605                 lvalue(state, left);
11606                 eat(state, TOK_MINUSEQ);
11607                 def = write_expr(state, left,
11608                         mk_sub_expr(state, left, assignment_expr(state)));
11609                 break;
11610         case TOK_SLEQ:
11611         case TOK_SREQ:
11612         case TOK_ANDEQ:
11613         case TOK_XOREQ:
11614         case TOK_OREQ:
11615                 lvalue(state, left);
11616                 integral(state, left);
11617                 eat(state, tok);
11618                 right = read_expr(state, assignment_expr(state));
11619                 integral(state, right);
11620                 right = integral_promotion(state, right);
11621                 sign = is_signed(left->type);
11622                 op = -1;
11623                 switch(tok) {
11624                 case TOK_SLEQ:  op = OP_SL; break;
11625                 case TOK_SREQ:  op = sign? OP_SSR: OP_USR; break;
11626                 case TOK_ANDEQ: op = OP_AND; break;
11627                 case TOK_XOREQ: op = OP_XOR; break;
11628                 case TOK_OREQ:  op = OP_OR; break;
11629                 }
11630                 def = write_expr(state, left,
11631                         triple(state, op, left->type,
11632                                 read_expr(state, left), right));
11633                 break;
11634         }
11635         return def;
11636 }
11637
11638 static struct triple *expr(struct compile_state *state)
11639 {
11640         struct triple *def;
11641         def = assignment_expr(state);
11642         while(peek(state) == TOK_COMMA) {
11643                 eat(state, TOK_COMMA);
11644                 def = mkprog(state, def, assignment_expr(state), 0UL);
11645         }
11646         return def;
11647 }
11648
11649 static void expr_statement(struct compile_state *state, struct triple *first)
11650 {
11651         if (peek(state) != TOK_SEMI) {
11652                 /* lvalue conversions always apply except when certian operators
11653                  * are applied.  I apply the lvalue conversions here
11654                  * as I know no more operators will be applied.
11655                  */
11656                 flatten(state, first, lvalue_conversion(state, expr(state)));
11657         }
11658         eat(state, TOK_SEMI);
11659 }
11660
11661 static void if_statement(struct compile_state *state, struct triple *first)
11662 {
11663         struct triple *test, *jmp1, *jmp2, *middle, *end;
11664
11665         jmp1 = jmp2 = middle = 0;
11666         eat(state, TOK_IF);
11667         eat(state, TOK_LPAREN);
11668         test = expr(state);
11669         bool(state, test);
11670         /* Cleanup and invert the test */
11671         test = lfalse_expr(state, read_expr(state, test));
11672         eat(state, TOK_RPAREN);
11673         /* Generate the needed pieces */
11674         middle = label(state);
11675         jmp1 = branch(state, middle, test);
11676         /* Thread the pieces together */
11677         flatten(state, first, test);
11678         flatten(state, first, jmp1);
11679         flatten(state, first, label(state));
11680         statement(state, first);
11681         if (peek(state) == TOK_ELSE) {
11682                 eat(state, TOK_ELSE);
11683                 /* Generate the rest of the pieces */
11684                 end = label(state);
11685                 jmp2 = branch(state, end, 0);
11686                 /* Thread them together */
11687                 flatten(state, first, jmp2);
11688                 flatten(state, first, middle);
11689                 statement(state, first);
11690                 flatten(state, first, end);
11691         }
11692         else {
11693                 flatten(state, first, middle);
11694         }
11695 }
11696
11697 static void for_statement(struct compile_state *state, struct triple *first)
11698 {
11699         struct triple *head, *test, *tail, *jmp1, *jmp2, *end;
11700         struct triple *label1, *label2, *label3;
11701         struct hash_entry *ident;
11702
11703         eat(state, TOK_FOR);
11704         eat(state, TOK_LPAREN);
11705         head = test = tail = jmp1 = jmp2 = 0;
11706         if (peek(state) != TOK_SEMI) {
11707                 head = expr(state);
11708         }
11709         eat(state, TOK_SEMI);
11710         if (peek(state) != TOK_SEMI) {
11711                 test = expr(state);
11712                 bool(state, test);
11713                 test = ltrue_expr(state, read_expr(state, test));
11714         }
11715         eat(state, TOK_SEMI);
11716         if (peek(state) != TOK_RPAREN) {
11717                 tail = expr(state);
11718         }
11719         eat(state, TOK_RPAREN);
11720         /* Generate the needed pieces */
11721         label1 = label(state);
11722         label2 = label(state);
11723         label3 = label(state);
11724         if (test) {
11725                 jmp1 = branch(state, label3, 0);
11726                 jmp2 = branch(state, label1, test);
11727         }
11728         else {
11729                 jmp2 = branch(state, label1, 0);
11730         }
11731         end = label(state);
11732         /* Remember where break and continue go */
11733         start_scope(state);
11734         ident = state->i_break;
11735         symbol(state, ident, &ident->sym_ident, end, end->type);
11736         ident = state->i_continue;
11737         symbol(state, ident, &ident->sym_ident, label2, label2->type);
11738         /* Now include the body */
11739         flatten(state, first, head);
11740         flatten(state, first, jmp1);
11741         flatten(state, first, label1);
11742         statement(state, first);
11743         flatten(state, first, label2);
11744         flatten(state, first, tail);
11745         flatten(state, first, label3);
11746         flatten(state, first, test);
11747         flatten(state, first, jmp2);
11748         flatten(state, first, end);
11749         /* Cleanup the break/continue scope */
11750         end_scope(state);
11751 }
11752
11753 static void while_statement(struct compile_state *state, struct triple *first)
11754 {
11755         struct triple *label1, *test, *label2, *jmp1, *jmp2, *end;
11756         struct hash_entry *ident;
11757         eat(state, TOK_WHILE);
11758         eat(state, TOK_LPAREN);
11759         test = expr(state);
11760         bool(state, test);
11761         test = ltrue_expr(state, read_expr(state, test));
11762         eat(state, TOK_RPAREN);
11763         /* Generate the needed pieces */
11764         label1 = label(state);
11765         label2 = label(state);
11766         jmp1 = branch(state, label2, 0);
11767         jmp2 = branch(state, label1, test);
11768         end = label(state);
11769         /* Remember where break and continue go */
11770         start_scope(state);
11771         ident = state->i_break;
11772         symbol(state, ident, &ident->sym_ident, end, end->type);
11773         ident = state->i_continue;
11774         symbol(state, ident, &ident->sym_ident, label2, label2->type);
11775         /* Thread them together */
11776         flatten(state, first, jmp1);
11777         flatten(state, first, label1);
11778         statement(state, first);
11779         flatten(state, first, label2);
11780         flatten(state, first, test);
11781         flatten(state, first, jmp2);
11782         flatten(state, first, end);
11783         /* Cleanup the break/continue scope */
11784         end_scope(state);
11785 }
11786
11787 static void do_statement(struct compile_state *state, struct triple *first)
11788 {
11789         struct triple *label1, *label2, *test, *end;
11790         struct hash_entry *ident;
11791         eat(state, TOK_DO);
11792         /* Generate the needed pieces */
11793         label1 = label(state);
11794         label2 = label(state);
11795         end = label(state);
11796         /* Remember where break and continue go */
11797         start_scope(state);
11798         ident = state->i_break;
11799         symbol(state, ident, &ident->sym_ident, end, end->type);
11800         ident = state->i_continue;
11801         symbol(state, ident, &ident->sym_ident, label2, label2->type);
11802         /* Now include the body */
11803         flatten(state, first, label1);
11804         statement(state, first);
11805         /* Cleanup the break/continue scope */
11806         end_scope(state);
11807         /* Eat the rest of the loop */
11808         eat(state, TOK_WHILE);
11809         eat(state, TOK_LPAREN);
11810         test = read_expr(state, expr(state));
11811         bool(state, test);
11812         eat(state, TOK_RPAREN);
11813         eat(state, TOK_SEMI);
11814         /* Thread the pieces together */
11815         test = ltrue_expr(state, test);
11816         flatten(state, first, label2);
11817         flatten(state, first, test);
11818         flatten(state, first, branch(state, label1, test));
11819         flatten(state, first, end);
11820 }
11821
11822
11823 static void return_statement(struct compile_state *state, struct triple *first)
11824 {
11825         struct triple *jmp, *mv, *dest, *var, *val;
11826         int last;
11827         eat(state, TOK_RETURN);
11828
11829 #if DEBUG_ROMCC_WARNINGS
11830 #warning "FIXME implement a more general excess branch elimination"
11831 #endif
11832         val = 0;
11833         /* If we have a return value do some more work */
11834         if (peek(state) != TOK_SEMI) {
11835                 val = read_expr(state, expr(state));
11836         }
11837         eat(state, TOK_SEMI);
11838
11839         /* See if this last statement in a function */
11840         last = ((peek(state) == TOK_RBRACE) &&
11841                 (state->scope_depth == GLOBAL_SCOPE_DEPTH +2));
11842
11843         /* Find the return variable */
11844         var = fresult(state, state->main_function);
11845
11846         /* Find the return destination */
11847         dest = state->i_return->sym_ident->def;
11848         mv = jmp = 0;
11849         /* If needed generate a jump instruction */
11850         if (!last) {
11851                 jmp = branch(state, dest, 0);
11852         }
11853         /* If needed generate an assignment instruction */
11854         if (val) {
11855                 mv = write_expr(state, deref_index(state, var, 1), val);
11856         }
11857         /* Now put the code together */
11858         if (mv) {
11859                 flatten(state, first, mv);
11860                 flatten(state, first, jmp);
11861         }
11862         else if (jmp) {
11863                 flatten(state, first, jmp);
11864         }
11865 }
11866
11867 static void break_statement(struct compile_state *state, struct triple *first)
11868 {
11869         struct triple *dest;
11870         eat(state, TOK_BREAK);
11871         eat(state, TOK_SEMI);
11872         if (!state->i_break->sym_ident) {
11873                 error(state, 0, "break statement not within loop or switch");
11874         }
11875         dest = state->i_break->sym_ident->def;
11876         flatten(state, first, branch(state, dest, 0));
11877 }
11878
11879 static void continue_statement(struct compile_state *state, struct triple *first)
11880 {
11881         struct triple *dest;
11882         eat(state, TOK_CONTINUE);
11883         eat(state, TOK_SEMI);
11884         if (!state->i_continue->sym_ident) {
11885                 error(state, 0, "continue statement outside of a loop");
11886         }
11887         dest = state->i_continue->sym_ident->def;
11888         flatten(state, first, branch(state, dest, 0));
11889 }
11890
11891 static void goto_statement(struct compile_state *state, struct triple *first)
11892 {
11893         struct hash_entry *ident;
11894         eat(state, TOK_GOTO);
11895         ident = eat(state, TOK_IDENT)->ident;
11896         if (!ident->sym_label) {
11897                 /* If this is a forward branch allocate the label now,
11898                  * it will be flattend in the appropriate location later.
11899                  */
11900                 struct triple *ins;
11901                 ins = label(state);
11902                 label_symbol(state, ident, ins, FUNCTION_SCOPE_DEPTH);
11903         }
11904         eat(state, TOK_SEMI);
11905
11906         flatten(state, first, branch(state, ident->sym_label->def, 0));
11907 }
11908
11909 static void labeled_statement(struct compile_state *state, struct triple *first)
11910 {
11911         struct triple *ins;
11912         struct hash_entry *ident;
11913
11914         ident = eat(state, TOK_IDENT)->ident;
11915         if (ident->sym_label && ident->sym_label->def) {
11916                 ins = ident->sym_label->def;
11917                 put_occurance(ins->occurance);
11918                 ins->occurance = new_occurance(state);
11919         }
11920         else {
11921                 ins = label(state);
11922                 label_symbol(state, ident, ins, FUNCTION_SCOPE_DEPTH);
11923         }
11924         if (ins->id & TRIPLE_FLAG_FLATTENED) {
11925                 error(state, 0, "label %s already defined", ident->name);
11926         }
11927         flatten(state, first, ins);
11928
11929         eat(state, TOK_COLON);
11930         statement(state, first);
11931 }
11932
11933 static void switch_statement(struct compile_state *state, struct triple *first)
11934 {
11935         struct triple *value, *top, *end, *dbranch;
11936         struct hash_entry *ident;
11937
11938         /* See if we have a valid switch statement */
11939         eat(state, TOK_SWITCH);
11940         eat(state, TOK_LPAREN);
11941         value = expr(state);
11942         integral(state, value);
11943         value = read_expr(state, value);
11944         eat(state, TOK_RPAREN);
11945         /* Generate the needed pieces */
11946         top = label(state);
11947         end = label(state);
11948         dbranch = branch(state, end, 0);
11949         /* Remember where case branches and break goes */
11950         start_scope(state);
11951         ident = state->i_switch;
11952         symbol(state, ident, &ident->sym_ident, value, value->type);
11953         ident = state->i_case;
11954         symbol(state, ident, &ident->sym_ident, top, top->type);
11955         ident = state->i_break;
11956         symbol(state, ident, &ident->sym_ident, end, end->type);
11957         ident = state->i_default;
11958         symbol(state, ident, &ident->sym_ident, dbranch, dbranch->type);
11959         /* Thread them together */
11960         flatten(state, first, value);
11961         flatten(state, first, top);
11962         flatten(state, first, dbranch);
11963         statement(state, first);
11964         flatten(state, first, end);
11965         /* Cleanup the switch scope */
11966         end_scope(state);
11967 }
11968
11969 static void case_statement(struct compile_state *state, struct triple *first)
11970 {
11971         struct triple *cvalue, *dest, *test, *jmp;
11972         struct triple *ptr, *value, *top, *dbranch;
11973
11974         /* See if w have a valid case statement */
11975         eat(state, TOK_CASE);
11976         cvalue = constant_expr(state);
11977         integral(state, cvalue);
11978         if (cvalue->op != OP_INTCONST) {
11979                 error(state, 0, "integer constant expected");
11980         }
11981         eat(state, TOK_COLON);
11982         if (!state->i_case->sym_ident) {
11983                 error(state, 0, "case statement not within a switch");
11984         }
11985
11986         /* Lookup the interesting pieces */
11987         top = state->i_case->sym_ident->def;
11988         value = state->i_switch->sym_ident->def;
11989         dbranch = state->i_default->sym_ident->def;
11990
11991         /* See if this case label has already been used */
11992         for(ptr = top; ptr != dbranch; ptr = ptr->next) {
11993                 if (ptr->op != OP_EQ) {
11994                         continue;
11995                 }
11996                 if (RHS(ptr, 1)->u.cval == cvalue->u.cval) {
11997                         error(state, 0, "duplicate case %d statement",
11998                                 cvalue->u.cval);
11999                 }
12000         }
12001         /* Generate the needed pieces */
12002         dest = label(state);
12003         test = triple(state, OP_EQ, &int_type, value, cvalue);
12004         jmp = branch(state, dest, test);
12005         /* Thread the pieces together */
12006         flatten(state, dbranch, test);
12007         flatten(state, dbranch, jmp);
12008         flatten(state, dbranch, label(state));
12009         flatten(state, first, dest);
12010         statement(state, first);
12011 }
12012
12013 static void default_statement(struct compile_state *state, struct triple *first)
12014 {
12015         struct triple *dest;
12016         struct triple *dbranch, *end;
12017
12018         /* See if we have a valid default statement */
12019         eat(state, TOK_DEFAULT);
12020         eat(state, TOK_COLON);
12021
12022         if (!state->i_case->sym_ident) {
12023                 error(state, 0, "default statement not within a switch");
12024         }
12025
12026         /* Lookup the interesting pieces */
12027         dbranch = state->i_default->sym_ident->def;
12028         end = state->i_break->sym_ident->def;
12029
12030         /* See if a default statement has already happened */
12031         if (TARG(dbranch, 0) != end) {
12032                 error(state, 0, "duplicate default statement");
12033         }
12034
12035         /* Generate the needed pieces */
12036         dest = label(state);
12037
12038         /* Blame the branch on the default statement */
12039         put_occurance(dbranch->occurance);
12040         dbranch->occurance = new_occurance(state);
12041
12042         /* Thread the pieces together */
12043         TARG(dbranch, 0) = dest;
12044         use_triple(dest, dbranch);
12045         flatten(state, first, dest);
12046         statement(state, first);
12047 }
12048
12049 static void asm_statement(struct compile_state *state, struct triple *first)
12050 {
12051         struct asm_info *info;
12052         struct {
12053                 struct triple *constraint;
12054                 struct triple *expr;
12055         } out_param[MAX_LHS], in_param[MAX_RHS], clob_param[MAX_LHS];
12056         struct triple *def, *asm_str;
12057         int out, in, clobbers, more, colons, i;
12058         int flags;
12059
12060         flags = 0;
12061         eat(state, TOK_ASM);
12062         /* For now ignore the qualifiers */
12063         switch(peek(state)) {
12064         case TOK_CONST:
12065                 eat(state, TOK_CONST);
12066                 break;
12067         case TOK_VOLATILE:
12068                 eat(state, TOK_VOLATILE);
12069                 flags |= TRIPLE_FLAG_VOLATILE;
12070                 break;
12071         }
12072         eat(state, TOK_LPAREN);
12073         asm_str = string_constant(state);
12074
12075         colons = 0;
12076         out = in = clobbers = 0;
12077         /* Outputs */
12078         if ((colons == 0) && (peek(state) == TOK_COLON)) {
12079                 eat(state, TOK_COLON);
12080                 colons++;
12081                 more = (peek(state) == TOK_LIT_STRING);
12082                 while(more) {
12083                         struct triple *var;
12084                         struct triple *constraint;
12085                         char *str;
12086                         more = 0;
12087                         if (out > MAX_LHS) {
12088                                 error(state, 0, "Maximum output count exceeded.");
12089                         }
12090                         constraint = string_constant(state);
12091                         str = constraint->u.blob;
12092                         if (str[0] != '=') {
12093                                 error(state, 0, "Output constraint does not start with =");
12094                         }
12095                         constraint->u.blob = str + 1;
12096                         eat(state, TOK_LPAREN);
12097                         var = conditional_expr(state);
12098                         eat(state, TOK_RPAREN);
12099
12100                         lvalue(state, var);
12101                         out_param[out].constraint = constraint;
12102                         out_param[out].expr       = var;
12103                         if (peek(state) == TOK_COMMA) {
12104                                 eat(state, TOK_COMMA);
12105                                 more = 1;
12106                         }
12107                         out++;
12108                 }
12109         }
12110         /* Inputs */
12111         if ((colons == 1) && (peek(state) == TOK_COLON)) {
12112                 eat(state, TOK_COLON);
12113                 colons++;
12114                 more = (peek(state) == TOK_LIT_STRING);
12115                 while(more) {
12116                         struct triple *val;
12117                         struct triple *constraint;
12118                         char *str;
12119                         more = 0;
12120                         if (in > MAX_RHS) {
12121                                 error(state, 0, "Maximum input count exceeded.");
12122                         }
12123                         constraint = string_constant(state);
12124                         str = constraint->u.blob;
12125                         if (digitp(str[0] && str[1] == '\0')) {
12126                                 int val;
12127                                 val = digval(str[0]);
12128                                 if ((val < 0) || (val >= out)) {
12129                                         error(state, 0, "Invalid input constraint %d", val);
12130                                 }
12131                         }
12132                         eat(state, TOK_LPAREN);
12133                         val = conditional_expr(state);
12134                         eat(state, TOK_RPAREN);
12135
12136                         in_param[in].constraint = constraint;
12137                         in_param[in].expr       = val;
12138                         if (peek(state) == TOK_COMMA) {
12139                                 eat(state, TOK_COMMA);
12140                                 more = 1;
12141                         }
12142                         in++;
12143                 }
12144         }
12145
12146         /* Clobber */
12147         if ((colons == 2) && (peek(state) == TOK_COLON)) {
12148                 eat(state, TOK_COLON);
12149                 colons++;
12150                 more = (peek(state) == TOK_LIT_STRING);
12151                 while(more) {
12152                         struct triple *clobber;
12153                         more = 0;
12154                         if ((clobbers + out) > MAX_LHS) {
12155                                 error(state, 0, "Maximum clobber limit exceeded.");
12156                         }
12157                         clobber = string_constant(state);
12158
12159                         clob_param[clobbers].constraint = clobber;
12160                         if (peek(state) == TOK_COMMA) {
12161                                 eat(state, TOK_COMMA);
12162                                 more = 1;
12163                         }
12164                         clobbers++;
12165                 }
12166         }
12167         eat(state, TOK_RPAREN);
12168         eat(state, TOK_SEMI);
12169
12170
12171         info = xcmalloc(sizeof(*info), "asm_info");
12172         info->str = asm_str->u.blob;
12173         free_triple(state, asm_str);
12174
12175         def = new_triple(state, OP_ASM, &void_type, clobbers + out, in);
12176         def->u.ainfo = info;
12177         def->id |= flags;
12178
12179         /* Find the register constraints */
12180         for(i = 0; i < out; i++) {
12181                 struct triple *constraint;
12182                 constraint = out_param[i].constraint;
12183                 info->tmpl.lhs[i] = arch_reg_constraint(state,
12184                         out_param[i].expr->type, constraint->u.blob);
12185                 free_triple(state, constraint);
12186         }
12187         for(; i - out < clobbers; i++) {
12188                 struct triple *constraint;
12189                 constraint = clob_param[i - out].constraint;
12190                 info->tmpl.lhs[i] = arch_reg_clobber(state, constraint->u.blob);
12191                 free_triple(state, constraint);
12192         }
12193         for(i = 0; i < in; i++) {
12194                 struct triple *constraint;
12195                 const char *str;
12196                 constraint = in_param[i].constraint;
12197                 str = constraint->u.blob;
12198                 if (digitp(str[0]) && str[1] == '\0') {
12199                         struct reg_info cinfo;
12200                         int val;
12201                         val = digval(str[0]);
12202                         cinfo.reg = info->tmpl.lhs[val].reg;
12203                         cinfo.regcm = arch_type_to_regcm(state, in_param[i].expr->type);
12204                         cinfo.regcm &= info->tmpl.lhs[val].regcm;
12205                         if (cinfo.reg == REG_UNSET) {
12206                                 cinfo.reg = REG_VIRT0 + val;
12207                         }
12208                         if (cinfo.regcm == 0) {
12209                                 error(state, 0, "No registers for %d", val);
12210                         }
12211                         info->tmpl.lhs[val] = cinfo;
12212                         info->tmpl.rhs[i]   = cinfo;
12213
12214                 } else {
12215                         info->tmpl.rhs[i] = arch_reg_constraint(state,
12216                                 in_param[i].expr->type, str);
12217                 }
12218                 free_triple(state, constraint);
12219         }
12220
12221         /* Now build the helper expressions */
12222         for(i = 0; i < in; i++) {
12223                 RHS(def, i) = read_expr(state, in_param[i].expr);
12224         }
12225         flatten(state, first, def);
12226         for(i = 0; i < (out + clobbers); i++) {
12227                 struct type *type;
12228                 struct triple *piece;
12229                 if (i < out) {
12230                         type = out_param[i].expr->type;
12231                 } else {
12232                         size_t size = arch_reg_size(info->tmpl.lhs[i].reg);
12233                         if (size >= SIZEOF_LONG) {
12234                                 type = &ulong_type;
12235                         }
12236                         else if (size >= SIZEOF_INT) {
12237                                 type = &uint_type;
12238                         }
12239                         else if (size >= SIZEOF_SHORT) {
12240                                 type = &ushort_type;
12241                         }
12242                         else {
12243                                 type = &uchar_type;
12244                         }
12245                 }
12246                 piece = triple(state, OP_PIECE, type, def, 0);
12247                 piece->u.cval = i;
12248                 LHS(def, i) = piece;
12249                 flatten(state, first, piece);
12250         }
12251         /* And write the helpers to their destinations */
12252         for(i = 0; i < out; i++) {
12253                 struct triple *piece;
12254                 piece = LHS(def, i);
12255                 flatten(state, first,
12256                         write_expr(state, out_param[i].expr, piece));
12257         }
12258 }
12259
12260
12261 static int isdecl(int tok)
12262 {
12263         switch(tok) {
12264         case TOK_AUTO:
12265         case TOK_REGISTER:
12266         case TOK_STATIC:
12267         case TOK_EXTERN:
12268         case TOK_TYPEDEF:
12269         case TOK_CONST:
12270         case TOK_RESTRICT:
12271         case TOK_VOLATILE:
12272         case TOK_VOID:
12273         case TOK_CHAR:
12274         case TOK_SHORT:
12275         case TOK_INT:
12276         case TOK_LONG:
12277         case TOK_FLOAT:
12278         case TOK_DOUBLE:
12279         case TOK_SIGNED:
12280         case TOK_UNSIGNED:
12281         case TOK_STRUCT:
12282         case TOK_UNION:
12283         case TOK_ENUM:
12284         case TOK_TYPE_NAME: /* typedef name */
12285                 return 1;
12286         default:
12287                 return 0;
12288         }
12289 }
12290
12291 static void compound_statement(struct compile_state *state, struct triple *first)
12292 {
12293         eat(state, TOK_LBRACE);
12294         start_scope(state);
12295
12296         /* statement-list opt */
12297         while (peek(state) != TOK_RBRACE) {
12298                 statement(state, first);
12299         }
12300         end_scope(state);
12301         eat(state, TOK_RBRACE);
12302 }
12303
12304 static void statement(struct compile_state *state, struct triple *first)
12305 {
12306         int tok;
12307         tok = peek(state);
12308         if (tok == TOK_LBRACE) {
12309                 compound_statement(state, first);
12310         }
12311         else if (tok == TOK_IF) {
12312                 if_statement(state, first);
12313         }
12314         else if (tok == TOK_FOR) {
12315                 for_statement(state, first);
12316         }
12317         else if (tok == TOK_WHILE) {
12318                 while_statement(state, first);
12319         }
12320         else if (tok == TOK_DO) {
12321                 do_statement(state, first);
12322         }
12323         else if (tok == TOK_RETURN) {
12324                 return_statement(state, first);
12325         }
12326         else if (tok == TOK_BREAK) {
12327                 break_statement(state, first);
12328         }
12329         else if (tok == TOK_CONTINUE) {
12330                 continue_statement(state, first);
12331         }
12332         else if (tok == TOK_GOTO) {
12333                 goto_statement(state, first);
12334         }
12335         else if (tok == TOK_SWITCH) {
12336                 switch_statement(state, first);
12337         }
12338         else if (tok == TOK_ASM) {
12339                 asm_statement(state, first);
12340         }
12341         else if ((tok == TOK_IDENT) && (peek2(state) == TOK_COLON)) {
12342                 labeled_statement(state, first);
12343         }
12344         else if (tok == TOK_CASE) {
12345                 case_statement(state, first);
12346         }
12347         else if (tok == TOK_DEFAULT) {
12348                 default_statement(state, first);
12349         }
12350         else if (isdecl(tok)) {
12351                 /* This handles C99 intermixing of statements and decls */
12352                 decl(state, first);
12353         }
12354         else {
12355                 expr_statement(state, first);
12356         }
12357 }
12358
12359 static struct type *param_decl(struct compile_state *state)
12360 {
12361         struct type *type;
12362         struct hash_entry *ident;
12363         /* Cheat so the declarator will know we are not global */
12364         start_scope(state);
12365         ident = 0;
12366         type = decl_specifiers(state);
12367         type = declarator(state, type, &ident, 0);
12368         type->field_ident = ident;
12369         end_scope(state);
12370         return type;
12371 }
12372
12373 static struct type *param_type_list(struct compile_state *state, struct type *type)
12374 {
12375         struct type *ftype, **next;
12376         ftype = new_type(TYPE_FUNCTION | (type->type & STOR_MASK), type, param_decl(state));
12377         next = &ftype->right;
12378         ftype->elements = 1;
12379         while(peek(state) == TOK_COMMA) {
12380                 eat(state, TOK_COMMA);
12381                 if (peek(state) == TOK_DOTS) {
12382                         eat(state, TOK_DOTS);
12383                         error(state, 0, "variadic functions not supported");
12384                 }
12385                 else {
12386                         *next = new_type(TYPE_PRODUCT, *next, param_decl(state));
12387                         next = &((*next)->right);
12388                         ftype->elements++;
12389                 }
12390         }
12391         return ftype;
12392 }
12393
12394 static struct type *type_name(struct compile_state *state)
12395 {
12396         struct type *type;
12397         type = specifier_qualifier_list(state);
12398         /* abstract-declarator (may consume no tokens) */
12399         type = declarator(state, type, 0, 0);
12400         return type;
12401 }
12402
12403 static struct type *direct_declarator(
12404         struct compile_state *state, struct type *type,
12405         struct hash_entry **pident, int need_ident)
12406 {
12407         struct hash_entry *ident;
12408         struct type *outer;
12409         int op;
12410         outer = 0;
12411         arrays_complete(state, type);
12412         switch(peek(state)) {
12413         case TOK_IDENT:
12414                 ident = eat(state, TOK_IDENT)->ident;
12415                 if (!ident) {
12416                         error(state, 0, "Unexpected identifier found");
12417                 }
12418                 /* The name of what we are declaring */
12419                 *pident = ident;
12420                 break;
12421         case TOK_LPAREN:
12422                 eat(state, TOK_LPAREN);
12423                 outer = declarator(state, type, pident, need_ident);
12424                 eat(state, TOK_RPAREN);
12425                 break;
12426         default:
12427                 if (need_ident) {
12428                         error(state, 0, "Identifier expected");
12429                 }
12430                 break;
12431         }
12432         do {
12433                 op = 1;
12434                 arrays_complete(state, type);
12435                 switch(peek(state)) {
12436                 case TOK_LPAREN:
12437                         eat(state, TOK_LPAREN);
12438                         type = param_type_list(state, type);
12439                         eat(state, TOK_RPAREN);
12440                         break;
12441                 case TOK_LBRACKET:
12442                 {
12443                         unsigned int qualifiers;
12444                         struct triple *value;
12445                         value = 0;
12446                         eat(state, TOK_LBRACKET);
12447                         if (peek(state) != TOK_RBRACKET) {
12448                                 value = constant_expr(state);
12449                                 integral(state, value);
12450                         }
12451                         eat(state, TOK_RBRACKET);
12452
12453                         qualifiers = type->type & (QUAL_MASK | STOR_MASK);
12454                         type = new_type(TYPE_ARRAY | qualifiers, type, 0);
12455                         if (value) {
12456                                 type->elements = value->u.cval;
12457                                 free_triple(state, value);
12458                         } else {
12459                                 type->elements = ELEMENT_COUNT_UNSPECIFIED;
12460                                 op = 0;
12461                         }
12462                 }
12463                         break;
12464                 default:
12465                         op = 0;
12466                         break;
12467                 }
12468         } while(op);
12469         if (outer) {
12470                 struct type *inner;
12471                 arrays_complete(state, type);
12472                 FINISHME();
12473                 for(inner = outer; inner->left; inner = inner->left)
12474                         ;
12475                 inner->left = type;
12476                 type = outer;
12477         }
12478         return type;
12479 }
12480
12481 static struct type *declarator(
12482         struct compile_state *state, struct type *type,
12483         struct hash_entry **pident, int need_ident)
12484 {
12485         while(peek(state) == TOK_STAR) {
12486                 eat(state, TOK_STAR);
12487                 type = new_type(TYPE_POINTER | (type->type & STOR_MASK), type, 0);
12488         }
12489         type = direct_declarator(state, type, pident, need_ident);
12490         return type;
12491 }
12492
12493 static struct type *typedef_name(
12494         struct compile_state *state, unsigned int specifiers)
12495 {
12496         struct hash_entry *ident;
12497         struct type *type;
12498         ident = eat(state, TOK_TYPE_NAME)->ident;
12499         type = ident->sym_ident->type;
12500         specifiers |= type->type & QUAL_MASK;
12501         if ((specifiers & (STOR_MASK | QUAL_MASK)) !=
12502                 (type->type & (STOR_MASK | QUAL_MASK))) {
12503                 type = clone_type(specifiers, type);
12504         }
12505         return type;
12506 }
12507
12508 static struct type *enum_specifier(
12509         struct compile_state *state, unsigned int spec)
12510 {
12511         struct hash_entry *ident;
12512         ulong_t base;
12513         int tok;
12514         struct type *enum_type;
12515         enum_type = 0;
12516         ident = 0;
12517         eat(state, TOK_ENUM);
12518         tok = peek(state);
12519         if ((tok == TOK_IDENT) || (tok == TOK_ENUM_CONST) || (tok == TOK_TYPE_NAME)) {
12520                 ident = eat(state, tok)->ident;
12521         }
12522         base = 0;
12523         if (!ident || (peek(state) == TOK_LBRACE)) {
12524                 struct type **next;
12525                 eat(state, TOK_LBRACE);
12526                 enum_type = new_type(TYPE_ENUM | spec, 0, 0);
12527                 enum_type->type_ident = ident;
12528                 next = &enum_type->right;
12529                 do {
12530                         struct hash_entry *eident;
12531                         struct triple *value;
12532                         struct type *entry;
12533                         eident = eat(state, TOK_IDENT)->ident;
12534                         if (eident->sym_ident) {
12535                                 error(state, 0, "%s already declared",
12536                                         eident->name);
12537                         }
12538                         eident->tok = TOK_ENUM_CONST;
12539                         if (peek(state) == TOK_EQ) {
12540                                 struct triple *val;
12541                                 eat(state, TOK_EQ);
12542                                 val = constant_expr(state);
12543                                 integral(state, val);
12544                                 base = val->u.cval;
12545                         }
12546                         value = int_const(state, &int_type, base);
12547                         symbol(state, eident, &eident->sym_ident, value, &int_type);
12548                         entry = new_type(TYPE_LIST, 0, 0);
12549                         entry->field_ident = eident;
12550                         *next = entry;
12551                         next = &entry->right;
12552                         base += 1;
12553                         if (peek(state) == TOK_COMMA) {
12554                                 eat(state, TOK_COMMA);
12555                         }
12556                 } while(peek(state) != TOK_RBRACE);
12557                 eat(state, TOK_RBRACE);
12558                 if (ident) {
12559                         symbol(state, ident, &ident->sym_tag, 0, enum_type);
12560                 }
12561         }
12562         if (ident && ident->sym_tag &&
12563                 ident->sym_tag->type &&
12564                 ((ident->sym_tag->type->type & TYPE_MASK) == TYPE_ENUM)) {
12565                 enum_type = clone_type(spec, ident->sym_tag->type);
12566         }
12567         else if (ident && !enum_type) {
12568                 error(state, 0, "enum %s undeclared", ident->name);
12569         }
12570         return enum_type;
12571 }
12572
12573 static struct type *struct_declarator(
12574         struct compile_state *state, struct type *type, struct hash_entry **ident)
12575 {
12576         if (peek(state) != TOK_COLON) {
12577                 type = declarator(state, type, ident, 1);
12578         }
12579         if (peek(state) == TOK_COLON) {
12580                 struct triple *value;
12581                 eat(state, TOK_COLON);
12582                 value = constant_expr(state);
12583                 if (value->op != OP_INTCONST) {
12584                         error(state, 0, "Invalid constant expression");
12585                 }
12586                 if (value->u.cval > size_of(state, type)) {
12587                         error(state, 0, "bitfield larger than base type");
12588                 }
12589                 if (!TYPE_INTEGER(type->type) || ((type->type & TYPE_MASK) == TYPE_BITFIELD)) {
12590                         error(state, 0, "bitfield base not an integer type");
12591                 }
12592                 type = new_type(TYPE_BITFIELD, type, 0);
12593                 type->elements = value->u.cval;
12594         }
12595         return type;
12596 }
12597
12598 static struct type *struct_or_union_specifier(
12599         struct compile_state *state, unsigned int spec)
12600 {
12601         struct type *struct_type;
12602         struct hash_entry *ident;
12603         unsigned int type_main;
12604         unsigned int type_join;
12605         int tok;
12606         struct_type = 0;
12607         ident = 0;
12608         switch(peek(state)) {
12609         case TOK_STRUCT:
12610                 eat(state, TOK_STRUCT);
12611                 type_main = TYPE_STRUCT;
12612                 type_join = TYPE_PRODUCT;
12613                 break;
12614         case TOK_UNION:
12615                 eat(state, TOK_UNION);
12616                 type_main = TYPE_UNION;
12617                 type_join = TYPE_OVERLAP;
12618                 break;
12619         default:
12620                 eat(state, TOK_STRUCT);
12621                 type_main = TYPE_STRUCT;
12622                 type_join = TYPE_PRODUCT;
12623                 break;
12624         }
12625         tok = peek(state);
12626         if ((tok == TOK_IDENT) || (tok == TOK_ENUM_CONST) || (tok == TOK_TYPE_NAME)) {
12627                 ident = eat(state, tok)->ident;
12628         }
12629         if (!ident || (peek(state) == TOK_LBRACE)) {
12630                 ulong_t elements;
12631                 struct type **next;
12632                 elements = 0;
12633                 eat(state, TOK_LBRACE);
12634                 next = &struct_type;
12635                 do {
12636                         struct type *base_type;
12637                         int done;
12638                         base_type = specifier_qualifier_list(state);
12639                         do {
12640                                 struct type *type;
12641                                 struct hash_entry *fident;
12642                                 done = 1;
12643                                 type = struct_declarator(state, base_type, &fident);
12644                                 elements++;
12645                                 if (peek(state) == TOK_COMMA) {
12646                                         done = 0;
12647                                         eat(state, TOK_COMMA);
12648                                 }
12649                                 type = clone_type(0, type);
12650                                 type->field_ident = fident;
12651                                 if (*next) {
12652                                         *next = new_type(type_join, *next, type);
12653                                         next = &((*next)->right);
12654                                 } else {
12655                                         *next = type;
12656                                 }
12657                         } while(!done);
12658                         eat(state, TOK_SEMI);
12659                 } while(peek(state) != TOK_RBRACE);
12660                 eat(state, TOK_RBRACE);
12661                 struct_type = new_type(type_main | spec, struct_type, 0);
12662                 struct_type->type_ident = ident;
12663                 struct_type->elements = elements;
12664                 if (ident) {
12665                         symbol(state, ident, &ident->sym_tag, 0, struct_type);
12666                 }
12667         }
12668         if (ident && ident->sym_tag &&
12669                 ident->sym_tag->type &&
12670                 ((ident->sym_tag->type->type & TYPE_MASK) == type_main)) {
12671                 struct_type = clone_type(spec, ident->sym_tag->type);
12672         }
12673         else if (ident && !struct_type) {
12674                 error(state, 0, "%s %s undeclared",
12675                         (type_main == TYPE_STRUCT)?"struct" : "union",
12676                         ident->name);
12677         }
12678         return struct_type;
12679 }
12680
12681 static unsigned int storage_class_specifier_opt(struct compile_state *state)
12682 {
12683         unsigned int specifiers;
12684         switch(peek(state)) {
12685         case TOK_AUTO:
12686                 eat(state, TOK_AUTO);
12687                 specifiers = STOR_AUTO;
12688                 break;
12689         case TOK_REGISTER:
12690                 eat(state, TOK_REGISTER);
12691                 specifiers = STOR_REGISTER;
12692                 break;
12693         case TOK_STATIC:
12694                 eat(state, TOK_STATIC);
12695                 specifiers = STOR_STATIC;
12696                 break;
12697         case TOK_EXTERN:
12698                 eat(state, TOK_EXTERN);
12699                 specifiers = STOR_EXTERN;
12700                 break;
12701         case TOK_TYPEDEF:
12702                 eat(state, TOK_TYPEDEF);
12703                 specifiers = STOR_TYPEDEF;
12704                 break;
12705         default:
12706                 if (state->scope_depth <= GLOBAL_SCOPE_DEPTH) {
12707                         specifiers = STOR_LOCAL;
12708                 }
12709                 else {
12710                         specifiers = STOR_AUTO;
12711                 }
12712         }
12713         return specifiers;
12714 }
12715
12716 static unsigned int function_specifier_opt(struct compile_state *state)
12717 {
12718         /* Ignore the inline keyword */
12719         unsigned int specifiers;
12720         specifiers = 0;
12721         switch(peek(state)) {
12722         case TOK_INLINE:
12723                 eat(state, TOK_INLINE);
12724                 specifiers = STOR_INLINE;
12725         }
12726         return specifiers;
12727 }
12728
12729 static unsigned int attrib(struct compile_state *state, unsigned int attributes)
12730 {
12731         int tok = peek(state);
12732         switch(tok) {
12733         case TOK_COMMA:
12734         case TOK_LPAREN:
12735                 /* The empty attribute ignore it */
12736                 break;
12737         case TOK_IDENT:
12738         case TOK_ENUM_CONST:
12739         case TOK_TYPE_NAME:
12740         {
12741                 struct hash_entry *ident;
12742                 ident = eat(state, TOK_IDENT)->ident;
12743
12744                 if (ident == state->i_noinline) {
12745                         if (attributes & ATTRIB_ALWAYS_INLINE) {
12746                                 error(state, 0, "both always_inline and noinline attribtes");
12747                         }
12748                         attributes |= ATTRIB_NOINLINE;
12749                 }
12750                 else if (ident == state->i_always_inline) {
12751                         if (attributes & ATTRIB_NOINLINE) {
12752                                 error(state, 0, "both noinline and always_inline attribtes");
12753                         }
12754                         attributes |= ATTRIB_ALWAYS_INLINE;
12755                 }
12756                 else if (ident == state->i_noreturn) {
12757                         // attribute((noreturn)) does nothing (yet?)
12758                 }
12759                 else {
12760                         error(state, 0, "Unknown attribute:%s", ident->name);
12761                 }
12762                 break;
12763         }
12764         default:
12765                 error(state, 0, "Unexpected token: %s\n", tokens[tok]);
12766                 break;
12767         }
12768         return attributes;
12769 }
12770
12771 static unsigned int attribute_list(struct compile_state *state, unsigned type)
12772 {
12773         type = attrib(state, type);
12774         while(peek(state) == TOK_COMMA) {
12775                 eat(state, TOK_COMMA);
12776                 type = attrib(state, type);
12777         }
12778         return type;
12779 }
12780
12781 static unsigned int attributes_opt(struct compile_state *state, unsigned type)
12782 {
12783         if (peek(state) == TOK_ATTRIBUTE) {
12784                 eat(state, TOK_ATTRIBUTE);
12785                 eat(state, TOK_LPAREN);
12786                 eat(state, TOK_LPAREN);
12787                 type = attribute_list(state, type);
12788                 eat(state, TOK_RPAREN);
12789                 eat(state, TOK_RPAREN);
12790         }
12791         return type;
12792 }
12793
12794 static unsigned int type_qualifiers(struct compile_state *state)
12795 {
12796         unsigned int specifiers;
12797         int done;
12798         done = 0;
12799         specifiers = QUAL_NONE;
12800         do {
12801                 switch(peek(state)) {
12802                 case TOK_CONST:
12803                         eat(state, TOK_CONST);
12804                         specifiers |= QUAL_CONST;
12805                         break;
12806                 case TOK_VOLATILE:
12807                         eat(state, TOK_VOLATILE);
12808                         specifiers |= QUAL_VOLATILE;
12809                         break;
12810                 case TOK_RESTRICT:
12811                         eat(state, TOK_RESTRICT);
12812                         specifiers |= QUAL_RESTRICT;
12813                         break;
12814                 default:
12815                         done = 1;
12816                         break;
12817                 }
12818         } while(!done);
12819         return specifiers;
12820 }
12821
12822 static struct type *type_specifier(
12823         struct compile_state *state, unsigned int spec)
12824 {
12825         struct type *type;
12826         int tok;
12827         type = 0;
12828         switch((tok = peek(state))) {
12829         case TOK_VOID:
12830                 eat(state, TOK_VOID);
12831                 type = new_type(TYPE_VOID | spec, 0, 0);
12832                 break;
12833         case TOK_CHAR:
12834                 eat(state, TOK_CHAR);
12835                 type = new_type(TYPE_CHAR | spec, 0, 0);
12836                 break;
12837         case TOK_SHORT:
12838                 eat(state, TOK_SHORT);
12839                 if (peek(state) == TOK_INT) {
12840                         eat(state, TOK_INT);
12841                 }
12842                 type = new_type(TYPE_SHORT | spec, 0, 0);
12843                 break;
12844         case TOK_INT:
12845                 eat(state, TOK_INT);
12846                 type = new_type(TYPE_INT | spec, 0, 0);
12847                 break;
12848         case TOK_LONG:
12849                 eat(state, TOK_LONG);
12850                 switch(peek(state)) {
12851                 case TOK_LONG:
12852                         eat(state, TOK_LONG);
12853                         error(state, 0, "long long not supported");
12854                         break;
12855                 case TOK_DOUBLE:
12856                         eat(state, TOK_DOUBLE);
12857                         error(state, 0, "long double not supported");
12858                         break;
12859                 case TOK_INT:
12860                         eat(state, TOK_INT);
12861                         type = new_type(TYPE_LONG | spec, 0, 0);
12862                         break;
12863                 default:
12864                         type = new_type(TYPE_LONG | spec, 0, 0);
12865                         break;
12866                 }
12867                 break;
12868         case TOK_FLOAT:
12869                 eat(state, TOK_FLOAT);
12870                 error(state, 0, "type float not supported");
12871                 break;
12872         case TOK_DOUBLE:
12873                 eat(state, TOK_DOUBLE);
12874                 error(state, 0, "type double not supported");
12875                 break;
12876         case TOK_SIGNED:
12877                 eat(state, TOK_SIGNED);
12878                 switch(peek(state)) {
12879                 case TOK_LONG:
12880                         eat(state, TOK_LONG);
12881                         switch(peek(state)) {
12882                         case TOK_LONG:
12883                                 eat(state, TOK_LONG);
12884                                 error(state, 0, "type long long not supported");
12885                                 break;
12886                         case TOK_INT:
12887                                 eat(state, TOK_INT);
12888                                 type = new_type(TYPE_LONG | spec, 0, 0);
12889                                 break;
12890                         default:
12891                                 type = new_type(TYPE_LONG | spec, 0, 0);
12892                                 break;
12893                         }
12894                         break;
12895                 case TOK_INT:
12896                         eat(state, TOK_INT);
12897                         type = new_type(TYPE_INT | spec, 0, 0);
12898                         break;
12899                 case TOK_SHORT:
12900                         eat(state, TOK_SHORT);
12901                         type = new_type(TYPE_SHORT | spec, 0, 0);
12902                         break;
12903                 case TOK_CHAR:
12904                         eat(state, TOK_CHAR);
12905                         type = new_type(TYPE_CHAR | spec, 0, 0);
12906                         break;
12907                 default:
12908                         type = new_type(TYPE_INT | spec, 0, 0);
12909                         break;
12910                 }
12911                 break;
12912         case TOK_UNSIGNED:
12913                 eat(state, TOK_UNSIGNED);
12914                 switch(peek(state)) {
12915                 case TOK_LONG:
12916                         eat(state, TOK_LONG);
12917                         switch(peek(state)) {
12918                         case TOK_LONG:
12919                                 eat(state, TOK_LONG);
12920                                 error(state, 0, "unsigned long long not supported");
12921                                 break;
12922                         case TOK_INT:
12923                                 eat(state, TOK_INT);
12924                                 type = new_type(TYPE_ULONG | spec, 0, 0);
12925                                 break;
12926                         default:
12927                                 type = new_type(TYPE_ULONG | spec, 0, 0);
12928                                 break;
12929                         }
12930                         break;
12931                 case TOK_INT:
12932                         eat(state, TOK_INT);
12933                         type = new_type(TYPE_UINT | spec, 0, 0);
12934                         break;
12935                 case TOK_SHORT:
12936                         eat(state, TOK_SHORT);
12937                         type = new_type(TYPE_USHORT | spec, 0, 0);
12938                         break;
12939                 case TOK_CHAR:
12940                         eat(state, TOK_CHAR);
12941                         type = new_type(TYPE_UCHAR | spec, 0, 0);
12942                         break;
12943                 default:
12944                         type = new_type(TYPE_UINT | spec, 0, 0);
12945                         break;
12946                 }
12947                 break;
12948                 /* struct or union specifier */
12949         case TOK_STRUCT:
12950         case TOK_UNION:
12951                 type = struct_or_union_specifier(state, spec);
12952                 break;
12953                 /* enum-spefifier */
12954         case TOK_ENUM:
12955                 type = enum_specifier(state, spec);
12956                 break;
12957                 /* typedef name */
12958         case TOK_TYPE_NAME:
12959                 type = typedef_name(state, spec);
12960                 break;
12961         default:
12962                 error(state, 0, "bad type specifier %s",
12963                         tokens[tok]);
12964                 break;
12965         }
12966         return type;
12967 }
12968
12969 static int istype(int tok)
12970 {
12971         switch(tok) {
12972         case TOK_CONST:
12973         case TOK_RESTRICT:
12974         case TOK_VOLATILE:
12975         case TOK_VOID:
12976         case TOK_CHAR:
12977         case TOK_SHORT:
12978         case TOK_INT:
12979         case TOK_LONG:
12980         case TOK_FLOAT:
12981         case TOK_DOUBLE:
12982         case TOK_SIGNED:
12983         case TOK_UNSIGNED:
12984         case TOK_STRUCT:
12985         case TOK_UNION:
12986         case TOK_ENUM:
12987         case TOK_TYPE_NAME:
12988                 return 1;
12989         default:
12990                 return 0;
12991         }
12992 }
12993
12994
12995 static struct type *specifier_qualifier_list(struct compile_state *state)
12996 {
12997         struct type *type;
12998         unsigned int specifiers = 0;
12999
13000         /* type qualifiers */
13001         specifiers |= type_qualifiers(state);
13002
13003         /* type specifier */
13004         type = type_specifier(state, specifiers);
13005
13006         return type;
13007 }
13008
13009 #if DEBUG_ROMCC_WARNING
13010 static int isdecl_specifier(int tok)
13011 {
13012         switch(tok) {
13013                 /* storage class specifier */
13014         case TOK_AUTO:
13015         case TOK_REGISTER:
13016         case TOK_STATIC:
13017         case TOK_EXTERN:
13018         case TOK_TYPEDEF:
13019                 /* type qualifier */
13020         case TOK_CONST:
13021         case TOK_RESTRICT:
13022         case TOK_VOLATILE:
13023                 /* type specifiers */
13024         case TOK_VOID:
13025         case TOK_CHAR:
13026         case TOK_SHORT:
13027         case TOK_INT:
13028         case TOK_LONG:
13029         case TOK_FLOAT:
13030         case TOK_DOUBLE:
13031         case TOK_SIGNED:
13032         case TOK_UNSIGNED:
13033                 /* struct or union specifier */
13034         case TOK_STRUCT:
13035         case TOK_UNION:
13036                 /* enum-spefifier */
13037         case TOK_ENUM:
13038                 /* typedef name */
13039         case TOK_TYPE_NAME:
13040                 /* function specifiers */
13041         case TOK_INLINE:
13042                 return 1;
13043         default:
13044                 return 0;
13045         }
13046 }
13047 #endif
13048
13049 static struct type *decl_specifiers(struct compile_state *state)
13050 {
13051         struct type *type;
13052         unsigned int specifiers;
13053         /* I am overly restrictive in the arragement of specifiers supported.
13054          * C is overly flexible in this department it makes interpreting
13055          * the parse tree difficult.
13056          */
13057         specifiers = 0;
13058
13059         /* storage class specifier */
13060         specifiers |= storage_class_specifier_opt(state);
13061
13062         /* function-specifier */
13063         specifiers |= function_specifier_opt(state);
13064
13065         /* attributes */
13066         specifiers |= attributes_opt(state, 0);
13067
13068         /* type qualifier */
13069         specifiers |= type_qualifiers(state);
13070
13071         /* type specifier */
13072         type = type_specifier(state, specifiers);
13073         return type;
13074 }
13075
13076 struct field_info {
13077         struct type *type;
13078         size_t offset;
13079 };
13080
13081 static struct field_info designator(struct compile_state *state, struct type *type)
13082 {
13083         int tok;
13084         struct field_info info;
13085         info.offset = ~0U;
13086         info.type = 0;
13087         do {
13088                 switch(peek(state)) {
13089                 case TOK_LBRACKET:
13090                 {
13091                         struct triple *value;
13092                         if ((type->type & TYPE_MASK) != TYPE_ARRAY) {
13093                                 error(state, 0, "Array designator not in array initializer");
13094                         }
13095                         eat(state, TOK_LBRACKET);
13096                         value = constant_expr(state);
13097                         eat(state, TOK_RBRACKET);
13098
13099                         info.type = type->left;
13100                         info.offset = value->u.cval * size_of(state, info.type);
13101                         break;
13102                 }
13103                 case TOK_DOT:
13104                 {
13105                         struct hash_entry *field;
13106                         if (((type->type & TYPE_MASK) != TYPE_STRUCT) &&
13107                                 ((type->type & TYPE_MASK) != TYPE_UNION))
13108                         {
13109                                 error(state, 0, "Struct designator not in struct initializer");
13110                         }
13111                         eat(state, TOK_DOT);
13112                         field = eat(state, TOK_IDENT)->ident;
13113                         info.offset = field_offset(state, type, field);
13114                         info.type   = field_type(state, type, field);
13115                         break;
13116                 }
13117                 default:
13118                         error(state, 0, "Invalid designator");
13119                 }
13120                 tok = peek(state);
13121         } while((tok == TOK_LBRACKET) || (tok == TOK_DOT));
13122         eat(state, TOK_EQ);
13123         return info;
13124 }
13125
13126 static struct triple *initializer(
13127         struct compile_state *state, struct type *type)
13128 {
13129         struct triple *result;
13130 #if DEBUG_ROMCC_WARNINGS
13131 #warning "FIXME more consistent initializer handling (where should eval_const_expr go?"
13132 #endif
13133         if (peek(state) != TOK_LBRACE) {
13134                 result = assignment_expr(state);
13135                 if (((type->type & TYPE_MASK) == TYPE_ARRAY) &&
13136                         (type->elements == ELEMENT_COUNT_UNSPECIFIED) &&
13137                         ((result->type->type & TYPE_MASK) == TYPE_ARRAY) &&
13138                         (result->type->elements != ELEMENT_COUNT_UNSPECIFIED) &&
13139                         (equiv_types(type->left, result->type->left))) {
13140                         type->elements = result->type->elements;
13141                 }
13142                 if (is_lvalue(state, result) &&
13143                         ((result->type->type & TYPE_MASK) == TYPE_ARRAY) &&
13144                         (type->type & TYPE_MASK) != TYPE_ARRAY)
13145                 {
13146                         result = lvalue_conversion(state, result);
13147                 }
13148                 if (!is_init_compatible(state, type, result->type)) {
13149                         error(state, 0, "Incompatible types in initializer");
13150                 }
13151                 if (!equiv_types(type, result->type)) {
13152                         result = mk_cast_expr(state, type, result);
13153                 }
13154         }
13155         else {
13156                 int comma;
13157                 size_t max_offset;
13158                 struct field_info info;
13159                 void *buf;
13160                 if (((type->type & TYPE_MASK) != TYPE_ARRAY) &&
13161                         ((type->type & TYPE_MASK) != TYPE_STRUCT)) {
13162                         internal_error(state, 0, "unknown initializer type");
13163                 }
13164                 info.offset = 0;
13165                 info.type = type->left;
13166                 if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
13167                         info.type = next_field(state, type, 0);
13168                 }
13169                 if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
13170                         max_offset = 0;
13171                 } else {
13172                         max_offset = size_of(state, type);
13173                 }
13174                 buf = xcmalloc(bits_to_bytes(max_offset), "initializer");
13175                 eat(state, TOK_LBRACE);
13176                 do {
13177                         struct triple *value;
13178                         struct type *value_type;
13179                         size_t value_size;
13180                         void *dest;
13181                         int tok;
13182                         comma = 0;
13183                         tok = peek(state);
13184                         if ((tok == TOK_LBRACKET) || (tok == TOK_DOT)) {
13185                                 info = designator(state, type);
13186                         }
13187                         if ((type->elements != ELEMENT_COUNT_UNSPECIFIED) &&
13188                                 (info.offset >= max_offset)) {
13189                                 error(state, 0, "element beyond bounds");
13190                         }
13191                         value_type = info.type;
13192                         value = eval_const_expr(state, initializer(state, value_type));
13193                         value_size = size_of(state, value_type);
13194                         if (((type->type & TYPE_MASK) == TYPE_ARRAY) &&
13195                                 (type->elements == ELEMENT_COUNT_UNSPECIFIED) &&
13196                                 (max_offset <= info.offset)) {
13197                                 void *old_buf;
13198                                 size_t old_size;
13199                                 old_buf = buf;
13200                                 old_size = max_offset;
13201                                 max_offset = info.offset + value_size;
13202                                 buf = xmalloc(bits_to_bytes(max_offset), "initializer");
13203                                 memcpy(buf, old_buf, bits_to_bytes(old_size));
13204                                 xfree(old_buf);
13205                         }
13206                         dest = ((char *)buf) + bits_to_bytes(info.offset);
13207 #if DEBUG_INITIALIZER
13208                         fprintf(state->errout, "dest = buf + %d max_offset: %d value_size: %d op: %d\n",
13209                                 dest - buf,
13210                                 bits_to_bytes(max_offset),
13211                                 bits_to_bytes(value_size),
13212                                 value->op);
13213 #endif
13214                         if (value->op == OP_BLOBCONST) {
13215                                 memcpy(dest, value->u.blob, bits_to_bytes(value_size));
13216                         }
13217                         else if ((value->op == OP_INTCONST) && (value_size == SIZEOF_I8)) {
13218 #if DEBUG_INITIALIZER
13219                                 fprintf(state->errout, "byte: %02x\n", value->u.cval & 0xff);
13220 #endif
13221                                 *((uint8_t *)dest) = value->u.cval & 0xff;
13222                         }
13223                         else if ((value->op == OP_INTCONST) && (value_size == SIZEOF_I16)) {
13224                                 *((uint16_t *)dest) = value->u.cval & 0xffff;
13225                         }
13226                         else if ((value->op == OP_INTCONST) && (value_size == SIZEOF_I32)) {
13227                                 *((uint32_t *)dest) = value->u.cval & 0xffffffff;
13228                         }
13229                         else {
13230                                 internal_error(state, 0, "unhandled constant initializer");
13231                         }
13232                         free_triple(state, value);
13233                         if (peek(state) == TOK_COMMA) {
13234                                 eat(state, TOK_COMMA);
13235                                 comma = 1;
13236                         }
13237                         info.offset += value_size;
13238                         if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
13239                                 info.type = next_field(state, type, info.type);
13240                                 info.offset = field_offset(state, type,
13241                                         info.type->field_ident);
13242                         }
13243                 } while(comma && (peek(state) != TOK_RBRACE));
13244                 if ((type->elements == ELEMENT_COUNT_UNSPECIFIED) &&
13245                         ((type->type & TYPE_MASK) == TYPE_ARRAY)) {
13246                         type->elements = max_offset / size_of(state, type->left);
13247                 }
13248                 eat(state, TOK_RBRACE);
13249                 result = triple(state, OP_BLOBCONST, type, 0, 0);
13250                 result->u.blob = buf;
13251         }
13252         return result;
13253 }
13254
13255 static void resolve_branches(struct compile_state *state, struct triple *first)
13256 {
13257         /* Make a second pass and finish anything outstanding
13258          * with respect to branches.  The only outstanding item
13259          * is to see if there are goto to labels that have not
13260          * been defined and to error about them.
13261          */
13262         int i;
13263         struct triple *ins;
13264         /* Also error on branches that do not use their targets */
13265         ins = first;
13266         do {
13267                 if (!triple_is_ret(state, ins)) {
13268                         struct triple **expr ;
13269                         struct triple_set *set;
13270                         expr = triple_targ(state, ins, 0);
13271                         for(; expr; expr = triple_targ(state, ins, expr)) {
13272                                 struct triple *targ;
13273                                 targ = *expr;
13274                                 for(set = targ?targ->use:0; set; set = set->next) {
13275                                         if (set->member == ins) {
13276                                                 break;
13277                                         }
13278                                 }
13279                                 if (!set) {
13280                                         internal_error(state, ins, "targ not used");
13281                                 }
13282                         }
13283                 }
13284                 ins = ins->next;
13285         } while(ins != first);
13286         /* See if there are goto to labels that have not been defined */
13287         for(i = 0; i < HASH_TABLE_SIZE; i++) {
13288                 struct hash_entry *entry;
13289                 for(entry = state->hash_table[i]; entry; entry = entry->next) {
13290                         struct triple *ins;
13291                         if (!entry->sym_label) {
13292                                 continue;
13293                         }
13294                         ins = entry->sym_label->def;
13295                         if (!(ins->id & TRIPLE_FLAG_FLATTENED)) {
13296                                 error(state, ins, "label `%s' used but not defined",
13297                                         entry->name);
13298                         }
13299                 }
13300         }
13301 }
13302
13303 static struct triple *function_definition(
13304         struct compile_state *state, struct type *type)
13305 {
13306         struct triple *def, *tmp, *first, *end, *retvar, *ret;
13307         struct triple *fname;
13308         struct type *fname_type;
13309         struct hash_entry *ident;
13310         struct type *param, *crtype, *ctype;
13311         int i;
13312         if ((type->type &TYPE_MASK) != TYPE_FUNCTION) {
13313                 error(state, 0, "Invalid function header");
13314         }
13315
13316         /* Verify the function type */
13317         if (((type->right->type & TYPE_MASK) != TYPE_VOID)  &&
13318                 ((type->right->type & TYPE_MASK) != TYPE_PRODUCT) &&
13319                 (type->right->field_ident == 0)) {
13320                 error(state, 0, "Invalid function parameters");
13321         }
13322         param = type->right;
13323         i = 0;
13324         while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
13325                 i++;
13326                 if (!param->left->field_ident) {
13327                         error(state, 0, "No identifier for parameter %d\n", i);
13328                 }
13329                 param = param->right;
13330         }
13331         i++;
13332         if (((param->type & TYPE_MASK) != TYPE_VOID) && !param->field_ident) {
13333                 error(state, 0, "No identifier for paramter %d\n", i);
13334         }
13335
13336         /* Get a list of statements for this function. */
13337         def = triple(state, OP_LIST, type, 0, 0);
13338
13339         /* Start a new scope for the passed parameters */
13340         start_scope(state);
13341
13342         /* Put a label at the very start of a function */
13343         first = label(state);
13344         RHS(def, 0) = first;
13345
13346         /* Put a label at the very end of a function */
13347         end = label(state);
13348         flatten(state, first, end);
13349         /* Remember where return goes */
13350         ident = state->i_return;
13351         symbol(state, ident, &ident->sym_ident, end, end->type);
13352
13353         /* Get the initial closure type */
13354         ctype = new_type(TYPE_JOIN, &void_type, 0);
13355         ctype->elements = 1;
13356
13357         /* Add a variable for the return value */
13358         crtype = new_type(TYPE_TUPLE,
13359                 /* Remove all type qualifiers from the return type */
13360                 new_type(TYPE_PRODUCT, ctype, clone_type(0, type->left)), 0);
13361         crtype->elements = 2;
13362         flatten(state, end, variable(state, crtype));
13363
13364         /* Allocate a variable for the return address */
13365         retvar = flatten(state, end, variable(state, &void_ptr_type));
13366
13367         /* Add in the return instruction */
13368         ret = triple(state, OP_RET, &void_type, read_expr(state, retvar), 0);
13369         ret = flatten(state, first, ret);
13370
13371         /* Walk through the parameters and create symbol table entries
13372          * for them.
13373          */
13374         param = type->right;
13375         while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
13376                 ident = param->left->field_ident;
13377                 tmp = variable(state, param->left);
13378                 var_symbol(state, ident, tmp);
13379                 flatten(state, end, tmp);
13380                 param = param->right;
13381         }
13382         if ((param->type & TYPE_MASK) != TYPE_VOID) {
13383                 /* And don't forget the last parameter */
13384                 ident = param->field_ident;
13385                 tmp = variable(state, param);
13386                 symbol(state, ident, &ident->sym_ident, tmp, tmp->type);
13387                 flatten(state, end, tmp);
13388         }
13389
13390         /* Add the declaration static const char __func__ [] = "func-name"  */
13391         fname_type = new_type(TYPE_ARRAY,
13392                 clone_type(QUAL_CONST | STOR_STATIC, &char_type), 0);
13393         fname_type->type |= QUAL_CONST | STOR_STATIC;
13394         fname_type->elements = strlen(state->function) + 1;
13395
13396         fname = triple(state, OP_BLOBCONST, fname_type, 0, 0);
13397         fname->u.blob = (void *)state->function;
13398         fname = flatten(state, end, fname);
13399
13400         ident = state->i___func__;
13401         symbol(state, ident, &ident->sym_ident, fname, fname_type);
13402
13403         /* Remember which function I am compiling.
13404          * Also assume the last defined function is the main function.
13405          */
13406         state->main_function = def;
13407
13408         /* Now get the actual function definition */
13409         compound_statement(state, end);
13410
13411         /* Finish anything unfinished with branches */
13412         resolve_branches(state, first);
13413
13414         /* Remove the parameter scope */
13415         end_scope(state);
13416
13417
13418         /* Remember I have defined a function */
13419         if (!state->functions) {
13420                 state->functions = def;
13421         } else {
13422                 insert_triple(state, state->functions, def);
13423         }
13424         if (state->compiler->debug & DEBUG_INLINE) {
13425                 FILE *fp = state->dbgout;
13426                 fprintf(fp, "\n");
13427                 loc(fp, state, 0);
13428                 fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
13429                 display_func(state, fp, def);
13430                 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
13431         }
13432
13433         return def;
13434 }
13435
13436 static struct triple *do_decl(struct compile_state *state,
13437         struct type *type, struct hash_entry *ident)
13438 {
13439         struct triple *def;
13440         def = 0;
13441         /* Clean up the storage types used */
13442         switch (type->type & STOR_MASK) {
13443         case STOR_AUTO:
13444         case STOR_STATIC:
13445                 /* These are the good types I am aiming for */
13446                 break;
13447         case STOR_REGISTER:
13448                 type->type &= ~STOR_MASK;
13449                 type->type |= STOR_AUTO;
13450                 break;
13451         case STOR_LOCAL:
13452         case STOR_EXTERN:
13453                 type->type &= ~STOR_MASK;
13454                 type->type |= STOR_STATIC;
13455                 break;
13456         case STOR_TYPEDEF:
13457                 if (!ident) {
13458                         error(state, 0, "typedef without name");
13459                 }
13460                 symbol(state, ident, &ident->sym_ident, 0, type);
13461                 ident->tok = TOK_TYPE_NAME;
13462                 return 0;
13463                 break;
13464         default:
13465                 internal_error(state, 0, "Undefined storage class");
13466         }
13467         if ((type->type & TYPE_MASK) == TYPE_FUNCTION) {
13468                 error(state, 0, "Function prototypes not supported");
13469         }
13470         if (ident &&
13471                 ((type->type & TYPE_MASK) == TYPE_ARRAY) &&
13472                 ((type->type & STOR_MASK) != STOR_STATIC))
13473                 error(state, 0, "non static arrays not supported");
13474         if (ident &&
13475                 ((type->type & STOR_MASK) == STOR_STATIC) &&
13476                 ((type->type & QUAL_CONST) == 0)) {
13477                 error(state, 0, "non const static variables not supported");
13478         }
13479         if (ident) {
13480                 def = variable(state, type);
13481                 var_symbol(state, ident, def);
13482         }
13483         return def;
13484 }
13485
13486 static void decl(struct compile_state *state, struct triple *first)
13487 {
13488         struct type *base_type, *type;
13489         struct hash_entry *ident;
13490         struct triple *def;
13491         int global;
13492         global = (state->scope_depth <= GLOBAL_SCOPE_DEPTH);
13493         base_type = decl_specifiers(state);
13494         ident = 0;
13495         type = declarator(state, base_type, &ident, 0);
13496         type->type = attributes_opt(state, type->type);
13497         if (global && ident && (peek(state) == TOK_LBRACE)) {
13498                 /* function */
13499                 type->type_ident = ident;
13500                 state->function = ident->name;
13501                 def = function_definition(state, type);
13502                 symbol(state, ident, &ident->sym_ident, def, type);
13503                 state->function = 0;
13504         }
13505         else {
13506                 int done;
13507                 flatten(state, first, do_decl(state, type, ident));
13508                 /* type or variable definition */
13509                 do {
13510                         done = 1;
13511                         if (peek(state) == TOK_EQ) {
13512                                 if (!ident) {
13513                                         error(state, 0, "cannot assign to a type");
13514                                 }
13515                                 eat(state, TOK_EQ);
13516                                 flatten(state, first,
13517                                         init_expr(state,
13518                                                 ident->sym_ident->def,
13519                                                 initializer(state, type)));
13520                         }
13521                         arrays_complete(state, type);
13522                         if (peek(state) == TOK_COMMA) {
13523                                 eat(state, TOK_COMMA);
13524                                 ident = 0;
13525                                 type = declarator(state, base_type, &ident, 0);
13526                                 flatten(state, first, do_decl(state, type, ident));
13527                                 done = 0;
13528                         }
13529                 } while(!done);
13530                 eat(state, TOK_SEMI);
13531         }
13532 }
13533
13534 static void decls(struct compile_state *state)
13535 {
13536         struct triple *list;
13537         int tok;
13538         list = label(state);
13539         while(1) {
13540                 tok = peek(state);
13541                 if (tok == TOK_EOF) {
13542                         return;
13543                 }
13544                 if (tok == TOK_SPACE) {
13545                         eat(state, TOK_SPACE);
13546                 }
13547                 decl(state, list);
13548                 if (list->next != list) {
13549                         error(state, 0, "global variables not supported");
13550                 }
13551         }
13552 }
13553
13554 /*
13555  * Function inlining
13556  */
13557 struct triple_reg_set {
13558         struct triple_reg_set *next;
13559         struct triple *member;
13560         struct triple *new;
13561 };
13562 struct reg_block {
13563         struct block *block;
13564         struct triple_reg_set *in;
13565         struct triple_reg_set *out;
13566         int vertex;
13567 };
13568 static void setup_basic_blocks(struct compile_state *, struct basic_blocks *bb);
13569 static void analyze_basic_blocks(struct compile_state *state, struct basic_blocks *bb);
13570 static void free_basic_blocks(struct compile_state *, struct basic_blocks *bb);
13571 static int tdominates(struct compile_state *state, struct triple *dom, struct triple *sub);
13572 static void walk_blocks(struct compile_state *state, struct basic_blocks *bb,
13573         void (*cb)(struct compile_state *state, struct block *block, void *arg),
13574         void *arg);
13575 static void print_block(
13576         struct compile_state *state, struct block *block, void *arg);
13577 static int do_triple_set(struct triple_reg_set **head,
13578         struct triple *member, struct triple *new_member);
13579 static void do_triple_unset(struct triple_reg_set **head, struct triple *member);
13580 static struct reg_block *compute_variable_lifetimes(
13581         struct compile_state *state, struct basic_blocks *bb);
13582 static void free_variable_lifetimes(struct compile_state *state,
13583         struct basic_blocks *bb, struct reg_block *blocks);
13584 #if DEBUG_EXPLICIT_CLOSURES
13585 static void print_live_variables(struct compile_state *state,
13586         struct basic_blocks *bb, struct reg_block *rb, FILE *fp);
13587 #endif
13588
13589
13590 static struct triple *call(struct compile_state *state,
13591         struct triple *retvar, struct triple *ret_addr,
13592         struct triple *targ, struct triple *ret)
13593 {
13594         struct triple *call;
13595
13596         if (!retvar || !is_lvalue(state, retvar)) {
13597                 internal_error(state, 0, "writing to a non lvalue?");
13598         }
13599         write_compatible(state, retvar->type, &void_ptr_type);
13600
13601         call = new_triple(state, OP_CALL, &void_type, 1, 0);
13602         TARG(call, 0) = targ;
13603         MISC(call, 0) = ret;
13604         if (!targ || (targ->op != OP_LABEL)) {
13605                 internal_error(state, 0, "call not to a label");
13606         }
13607         if (!ret || (ret->op != OP_RET)) {
13608                 internal_error(state, 0, "call not matched with return");
13609         }
13610         return call;
13611 }
13612
13613 static void walk_functions(struct compile_state *state,
13614         void (*cb)(struct compile_state *state, struct triple *func, void *arg),
13615         void *arg)
13616 {
13617         struct triple *func, *first;
13618         func = first = state->functions;
13619         do {
13620                 cb(state, func, arg);
13621                 func = func->next;
13622         } while(func != first);
13623 }
13624
13625 static void reverse_walk_functions(struct compile_state *state,
13626         void (*cb)(struct compile_state *state, struct triple *func, void *arg),
13627         void *arg)
13628 {
13629         struct triple *func, *first;
13630         func = first = state->functions;
13631         do {
13632                 func = func->prev;
13633                 cb(state, func, arg);
13634         } while(func != first);
13635 }
13636
13637
13638 static void mark_live(struct compile_state *state, struct triple *func, void *arg)
13639 {
13640         struct triple *ptr, *first;
13641         if (func->u.cval == 0) {
13642                 return;
13643         }
13644         ptr = first = RHS(func, 0);
13645         do {
13646                 if (ptr->op == OP_FCALL) {
13647                         struct triple *called_func;
13648                         called_func = MISC(ptr, 0);
13649                         /* Mark the called function as used */
13650                         if (!(func->id & TRIPLE_FLAG_FLATTENED)) {
13651                                 called_func->u.cval++;
13652                         }
13653                         /* Remove the called function from the list */
13654                         called_func->prev->next = called_func->next;
13655                         called_func->next->prev = called_func->prev;
13656
13657                         /* Place the called function before me on the list */
13658                         called_func->next       = func;
13659                         called_func->prev       = func->prev;
13660                         called_func->prev->next = called_func;
13661                         called_func->next->prev = called_func;
13662                 }
13663                 ptr = ptr->next;
13664         } while(ptr != first);
13665         func->id |= TRIPLE_FLAG_FLATTENED;
13666 }
13667
13668 static void mark_live_functions(struct compile_state *state)
13669 {
13670         /* Ensure state->main_function is the last function in
13671          * the list of functions.
13672          */
13673         if ((state->main_function->next != state->functions) ||
13674                 (state->functions->prev != state->main_function)) {
13675                 internal_error(state, 0,
13676                         "state->main_function is not at the end of the function list ");
13677         }
13678         state->main_function->u.cval = 1;
13679         reverse_walk_functions(state, mark_live, 0);
13680 }
13681
13682 static int local_triple(struct compile_state *state,
13683         struct triple *func, struct triple *ins)
13684 {
13685         int local = (ins->id & TRIPLE_FLAG_LOCAL);
13686 #if 0
13687         if (!local) {
13688                 FILE *fp = state->errout;
13689                 fprintf(fp, "global: ");
13690                 display_triple(fp, ins);
13691         }
13692 #endif
13693         return local;
13694 }
13695
13696 struct triple *copy_func(struct compile_state *state, struct triple *ofunc,
13697         struct occurance *base_occurance)
13698 {
13699         struct triple *nfunc;
13700         struct triple *nfirst, *ofirst;
13701         struct triple *new, *old;
13702
13703         if (state->compiler->debug & DEBUG_INLINE) {
13704                 FILE *fp = state->dbgout;
13705                 fprintf(fp, "\n");
13706                 loc(fp, state, 0);
13707                 fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
13708                 display_func(state, fp, ofunc);
13709                 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
13710         }
13711
13712         /* Make a new copy of the old function */
13713         nfunc = triple(state, OP_LIST, ofunc->type, 0, 0);
13714         nfirst = 0;
13715         ofirst = old = RHS(ofunc, 0);
13716         do {
13717                 struct triple *new;
13718                 struct occurance *occurance;
13719                 int old_lhs, old_rhs;
13720                 old_lhs = old->lhs;
13721                 old_rhs = old->rhs;
13722                 occurance = inline_occurance(state, base_occurance, old->occurance);
13723                 if (ofunc->u.cval && (old->op == OP_FCALL)) {
13724                         MISC(old, 0)->u.cval += 1;
13725                 }
13726                 new = alloc_triple(state, old->op, old->type, old_lhs, old_rhs,
13727                         occurance);
13728                 if (!triple_stores_block(state, new)) {
13729                         memcpy(&new->u, &old->u, sizeof(new->u));
13730                 }
13731                 if (!nfirst) {
13732                         RHS(nfunc, 0) = nfirst = new;
13733                 }
13734                 else {
13735                         insert_triple(state, nfirst, new);
13736                 }
13737                 new->id |= TRIPLE_FLAG_FLATTENED;
13738                 new->id |= old->id & TRIPLE_FLAG_COPY;
13739
13740                 /* During the copy remember new as user of old */
13741                 use_triple(old, new);
13742
13743                 /* Remember which instructions are local */
13744                 old->id |= TRIPLE_FLAG_LOCAL;
13745                 old = old->next;
13746         } while(old != ofirst);
13747
13748         /* Make a second pass to fix up any unresolved references */
13749         old = ofirst;
13750         new = nfirst;
13751         do {
13752                 struct triple **oexpr, **nexpr;
13753                 int count, i;
13754                 /* Lookup where the copy is, to join pointers */
13755                 count = TRIPLE_SIZE(old);
13756                 for(i = 0; i < count; i++) {
13757                         oexpr = &old->param[i];
13758                         nexpr = &new->param[i];
13759                         if (*oexpr && !*nexpr) {
13760                                 if (!local_triple(state, ofunc, *oexpr)) {
13761                                         *nexpr = *oexpr;
13762                                 }
13763                                 else if ((*oexpr)->use) {
13764                                         *nexpr = (*oexpr)->use->member;
13765                                 }
13766                                 if (*nexpr == old) {
13767                                         internal_error(state, 0, "new == old?");
13768                                 }
13769                                 use_triple(*nexpr, new);
13770                         }
13771                         if (!*nexpr && *oexpr) {
13772                                 internal_error(state, 0, "Could not copy %d", i);
13773                         }
13774                 }
13775                 old = old->next;
13776                 new = new->next;
13777         } while((old != ofirst) && (new != nfirst));
13778
13779         /* Make a third pass to cleanup the extra useses */
13780         old = ofirst;
13781         new = nfirst;
13782         do {
13783                 unuse_triple(old, new);
13784                 /* Forget which instructions are local */
13785                 old->id &= ~TRIPLE_FLAG_LOCAL;
13786                 old = old->next;
13787                 new = new->next;
13788         } while ((old != ofirst) && (new != nfirst));
13789         return nfunc;
13790 }
13791
13792 static void expand_inline_call(
13793         struct compile_state *state, struct triple *me, struct triple *fcall)
13794 {
13795         /* Inline the function call */
13796         struct type *ptype;
13797         struct triple *ofunc, *nfunc, *nfirst, *result, *retvar, *ins;
13798         struct triple *end, *nend;
13799         int pvals, i;
13800
13801         /* Find the triples */
13802         ofunc = MISC(fcall, 0);
13803         if (ofunc->op != OP_LIST) {
13804                 internal_error(state, 0, "improper function");
13805         }
13806         nfunc = copy_func(state, ofunc, fcall->occurance);
13807         /* Prepend the parameter reading into the new function list */
13808         ptype = nfunc->type->right;
13809         pvals = fcall->rhs;
13810         for(i = 0; i < pvals; i++) {
13811                 struct type *atype;
13812                 struct triple *arg, *param;
13813                 atype = ptype;
13814                 if ((ptype->type & TYPE_MASK) == TYPE_PRODUCT) {
13815                         atype = ptype->left;
13816                 }
13817                 param = farg(state, nfunc, i);
13818                 if ((param->type->type & TYPE_MASK) != (atype->type & TYPE_MASK)) {
13819                         internal_error(state, fcall, "param %d type mismatch", i);
13820                 }
13821                 arg = RHS(fcall, i);
13822                 flatten(state, fcall, write_expr(state, param, arg));
13823                 ptype = ptype->right;
13824         }
13825         result = 0;
13826         if ((nfunc->type->left->type & TYPE_MASK) != TYPE_VOID) {
13827                 result = read_expr(state,
13828                         deref_index(state, fresult(state, nfunc), 1));
13829         }
13830         if (state->compiler->debug & DEBUG_INLINE) {
13831                 FILE *fp = state->dbgout;
13832                 fprintf(fp, "\n");
13833                 loc(fp, state, 0);
13834                 fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
13835                 display_func(state, fp, nfunc);
13836                 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
13837         }
13838
13839         /*
13840          * Get rid of the extra triples
13841          */
13842         /* Remove the read of the return address */
13843         ins = RHS(nfunc, 0)->prev->prev;
13844         if ((ins->op != OP_READ) || (RHS(ins, 0) != fretaddr(state, nfunc))) {
13845                 internal_error(state, ins, "Not return addres read?");
13846         }
13847         release_triple(state, ins);
13848         /* Remove the return instruction */
13849         ins = RHS(nfunc, 0)->prev;
13850         if (ins->op != OP_RET) {
13851                 internal_error(state, ins, "Not return?");
13852         }
13853         release_triple(state, ins);
13854         /* Remove the retaddres variable */
13855         retvar = fretaddr(state, nfunc);
13856         if ((retvar->lhs != 1) ||
13857                 (retvar->op != OP_ADECL) ||
13858                 (retvar->next->op != OP_PIECE) ||
13859                 (MISC(retvar->next, 0) != retvar)) {
13860                 internal_error(state, retvar, "Not the return address?");
13861         }
13862         release_triple(state, retvar->next);
13863         release_triple(state, retvar);
13864
13865         /* Remove the label at the start of the function */
13866         ins = RHS(nfunc, 0);
13867         if (ins->op != OP_LABEL) {
13868                 internal_error(state, ins, "Not label?");
13869         }
13870         nfirst = ins->next;
13871         free_triple(state, ins);
13872         /* Release the new function header */
13873         RHS(nfunc, 0) = 0;
13874         free_triple(state, nfunc);
13875
13876         /* Append the new function list onto the return list */
13877         end = fcall->prev;
13878         nend = nfirst->prev;
13879         end->next    = nfirst;
13880         nfirst->prev = end;
13881         nend->next   = fcall;
13882         fcall->prev  = nend;
13883
13884         /* Now the result reading code */
13885         if (result) {
13886                 result = flatten(state, fcall, result);
13887                 propogate_use(state, fcall, result);
13888         }
13889
13890         /* Release the original fcall instruction */
13891         release_triple(state, fcall);
13892
13893         return;
13894 }
13895
13896 /*
13897  *
13898  * Type of the result variable.
13899  *
13900  *                                     result
13901  *                                        |
13902  *                             +----------+------------+
13903  *                             |                       |
13904  *                     union of closures         result_type
13905  *                             |
13906  *          +------------------+---------------+
13907  *          |                                  |
13908  *       closure1                    ...   closuerN
13909  *          |                                  |
13910  *  +----+--+-+--------+-----+       +----+----+---+-----+
13911  *  |    |    |        |     |       |    |        |     |
13912  * var1 var2 var3 ... varN result   var1 var2 ... varN result
13913  *                           |
13914  *                  +--------+---------+
13915  *                  |                  |
13916  *          union of closures     result_type
13917  *                  |
13918  *            +-----+-------------------+
13919  *            |                         |
13920  *         closure1            ...  closureN
13921  *            |                         |
13922  *  +-----+---+----+----+      +----+---+----+-----+
13923  *  |     |        |    |      |    |        |     |
13924  * var1 var2 ... varN result  var1 var2 ... varN result
13925  */
13926
13927 static int add_closure_type(struct compile_state *state,
13928         struct triple *func, struct type *closure_type)
13929 {
13930         struct type *type, *ctype, **next;
13931         struct triple *var, *new_var;
13932         int i;
13933
13934 #if 0
13935         FILE *fp = state->errout;
13936         fprintf(fp, "original_type: ");
13937         name_of(fp, fresult(state, func)->type);
13938         fprintf(fp, "\n");
13939 #endif
13940         /* find the original type */
13941         var = fresult(state, func);
13942         type = var->type;
13943         if (type->elements != 2) {
13944                 internal_error(state, var, "bad return type");
13945         }
13946
13947         /* Find the complete closure type and update it */
13948         ctype = type->left->left;
13949         next = &ctype->left;
13950         while(((*next)->type & TYPE_MASK) == TYPE_OVERLAP) {
13951                 next = &(*next)->right;
13952         }
13953         *next = new_type(TYPE_OVERLAP, *next, dup_type(state, closure_type));
13954         ctype->elements += 1;
13955
13956 #if 0
13957         fprintf(fp, "new_type: ");
13958         name_of(fp, type);
13959         fprintf(fp, "\n");
13960         fprintf(fp, "ctype: %p %d bits: %d ",
13961                 ctype, ctype->elements, reg_size_of(state, ctype));
13962         name_of(fp, ctype);
13963         fprintf(fp, "\n");
13964 #endif
13965
13966         /* Regenerate the variable with the new type definition */
13967         new_var = pre_triple(state, var, OP_ADECL, type, 0, 0);
13968         new_var->id |= TRIPLE_FLAG_FLATTENED;
13969         for(i = 0; i < new_var->lhs; i++) {
13970                 LHS(new_var, i)->id |= TRIPLE_FLAG_FLATTENED;
13971         }
13972
13973         /* Point everyone at the new variable */
13974         propogate_use(state, var, new_var);
13975
13976         /* Release the original variable */
13977         for(i = 0; i < var->lhs; i++) {
13978                 release_triple(state, LHS(var, i));
13979         }
13980         release_triple(state, var);
13981
13982         /* Return the index of the added closure type */
13983         return ctype->elements - 1;
13984 }
13985
13986 static struct triple *closure_expr(struct compile_state *state,
13987         struct triple *func, int closure_idx, int var_idx)
13988 {
13989         return deref_index(state,
13990                 deref_index(state,
13991                         deref_index(state, fresult(state, func), 0),
13992                         closure_idx),
13993                 var_idx);
13994 }
13995
13996
13997 static void insert_triple_set(
13998         struct triple_reg_set **head, struct triple *member)
13999 {
14000         struct triple_reg_set *new;
14001         new = xcmalloc(sizeof(*new), "triple_set");
14002         new->member = member;
14003         new->new    = 0;
14004         new->next   = *head;
14005         *head       = new;
14006 }
14007
14008 static int ordered_triple_set(
14009         struct triple_reg_set **head, struct triple *member)
14010 {
14011         struct triple_reg_set **ptr;
14012         if (!member)
14013                 return 0;
14014         ptr = head;
14015         while(*ptr) {
14016                 if (member == (*ptr)->member) {
14017                         return 0;
14018                 }
14019                 /* keep the list ordered */
14020                 if (member->id < (*ptr)->member->id) {
14021                         break;
14022                 }
14023                 ptr = &(*ptr)->next;
14024         }
14025         insert_triple_set(ptr, member);
14026         return 1;
14027 }
14028
14029
14030 static void free_closure_variables(struct compile_state *state,
14031         struct triple_reg_set **enclose)
14032 {
14033         struct triple_reg_set *entry, *next;
14034         for(entry = *enclose; entry; entry = next) {
14035                 next = entry->next;
14036                 do_triple_unset(enclose, entry->member);
14037         }
14038 }
14039
14040 static int lookup_closure_index(struct compile_state *state,
14041         struct triple *me, struct triple *val)
14042 {
14043         struct triple *first, *ins, *next;
14044         first = RHS(me, 0);
14045         ins = next = first;
14046         do {
14047                 struct triple *result;
14048                 struct triple *index0, *index1, *index2, *read, *write;
14049                 ins = next;
14050                 next = ins->next;
14051                 if (ins->op != OP_CALL) {
14052                         continue;
14053                 }
14054                 /* I am at a previous call point examine it closely */
14055                 if (ins->next->op != OP_LABEL) {
14056                         internal_error(state, ins, "call not followed by label");
14057                 }
14058                 /* Does this call does not enclose any variables? */
14059                 if ((ins->next->next->op != OP_INDEX) ||
14060                         (ins->next->next->u.cval != 0) ||
14061                         (result = MISC(ins->next->next, 0)) ||
14062                         (result->id & TRIPLE_FLAG_LOCAL)) {
14063                         continue;
14064                 }
14065                 index0 = ins->next->next;
14066                 /* The pattern is:
14067                  * 0 index result < 0 >
14068                  * 1 index 0 < ? >
14069                  * 2 index 1 < ? >
14070                  * 3 read  2
14071                  * 4 write 3 var
14072                  */
14073                 for(index0 = ins->next->next;
14074                         (index0->op == OP_INDEX) &&
14075                                 (MISC(index0, 0) == result) &&
14076                                 (index0->u.cval == 0) ;
14077                         index0 = write->next)
14078                 {
14079                         index1 = index0->next;
14080                         index2 = index1->next;
14081                         read   = index2->next;
14082                         write  = read->next;
14083                         if ((index0->op != OP_INDEX) ||
14084                                 (index1->op != OP_INDEX) ||
14085                                 (index2->op != OP_INDEX) ||
14086                                 (read->op != OP_READ) ||
14087                                 (write->op != OP_WRITE) ||
14088                                 (MISC(index1, 0) != index0) ||
14089                                 (MISC(index2, 0) != index1) ||
14090                                 (RHS(read, 0) != index2) ||
14091                                 (RHS(write, 0) != read)) {
14092                                 internal_error(state, index0, "bad var read");
14093                         }
14094                         if (MISC(write, 0) == val) {
14095                                 return index2->u.cval;
14096                         }
14097                 }
14098         } while(next != first);
14099         return -1;
14100 }
14101
14102 static inline int enclose_triple(struct triple *ins)
14103 {
14104         return (ins && ((ins->type->type & TYPE_MASK) != TYPE_VOID));
14105 }
14106
14107 static void compute_closure_variables(struct compile_state *state,
14108         struct triple *me, struct triple *fcall, struct triple_reg_set **enclose)
14109 {
14110         struct triple_reg_set *set, *vars, **last_var;
14111         struct basic_blocks bb;
14112         struct reg_block *rb;
14113         struct block *block;
14114         struct triple *old_result, *first, *ins;
14115         size_t count, idx;
14116         unsigned long used_indicies;
14117         int i, max_index;
14118 #define MAX_INDICIES (sizeof(used_indicies)*CHAR_BIT)
14119 #define ID_BITS(X) ((X) & (TRIPLE_FLAG_LOCAL -1))
14120         struct {
14121                 unsigned id;
14122                 int index;
14123         } *info;
14124
14125
14126         /* Find the basic blocks of this function */
14127         bb.func = me;
14128         bb.first = RHS(me, 0);
14129         old_result = 0;
14130         if (!triple_is_ret(state, bb.first->prev)) {
14131                 bb.func = 0;
14132         } else {
14133                 old_result = fresult(state, me);
14134         }
14135         analyze_basic_blocks(state, &bb);
14136
14137         /* Find which variables are currently alive in a given block */
14138         rb = compute_variable_lifetimes(state, &bb);
14139
14140         /* Find the variables that are currently alive */
14141         block = block_of_triple(state, fcall);
14142         if (!block || (block->vertex <= 0) || (block->vertex > bb.last_vertex)) {
14143                 internal_error(state, fcall, "No reg block? block: %p", block);
14144         }
14145
14146 #if DEBUG_EXPLICIT_CLOSURES
14147         print_live_variables(state, &bb, rb, state->dbgout);
14148         fflush(state->dbgout);
14149 #endif
14150
14151         /* Count the number of triples in the function */
14152         first = RHS(me, 0);
14153         ins = first;
14154         count = 0;
14155         do {
14156                 count++;
14157                 ins = ins->next;
14158         } while(ins != first);
14159
14160         /* Allocate some memory to temorary hold the id info */
14161         info = xcmalloc(sizeof(*info) * (count +1), "info");
14162
14163         /* Mark the local function */
14164         first = RHS(me, 0);
14165         ins = first;
14166         idx = 1;
14167         do {
14168                 info[idx].id = ins->id;
14169                 ins->id = TRIPLE_FLAG_LOCAL | idx;
14170                 idx++;
14171                 ins = ins->next;
14172         } while(ins != first);
14173
14174         /*
14175          * Build the list of variables to enclose.
14176          *
14177          * A target it to put the same variable in the
14178          * same slot for ever call of a given function.
14179          * After coloring this removes all of the variable
14180          * manipulation code.
14181          *
14182          * The list of variables to enclose is built ordered
14183          * program order because except in corner cases this
14184          * gives me the stability of assignment I need.
14185          *
14186          * To gurantee that stability I lookup the variables
14187          * to see where they have been used before and
14188          * I build my final list with the assigned indicies.
14189          */
14190         vars = 0;
14191         if (enclose_triple(old_result)) {
14192                 ordered_triple_set(&vars, old_result);
14193         }
14194         for(set = rb[block->vertex].out; set; set = set->next) {
14195                 if (!enclose_triple(set->member)) {
14196                         continue;
14197                 }
14198                 if ((set->member == fcall) || (set->member == old_result)) {
14199                         continue;
14200                 }
14201                 if (!local_triple(state, me, set->member)) {
14202                         internal_error(state, set->member, "not local?");
14203                 }
14204                 ordered_triple_set(&vars, set->member);
14205         }
14206
14207         /* Lookup the current indicies of the live varialbe */
14208         used_indicies = 0;
14209         max_index = -1;
14210         for(set = vars; set ; set = set->next) {
14211                 struct triple *ins;
14212                 int index;
14213                 ins = set->member;
14214                 index  = lookup_closure_index(state, me, ins);
14215                 info[ID_BITS(ins->id)].index = index;
14216                 if (index < 0) {
14217                         continue;
14218                 }
14219                 if (index >= MAX_INDICIES) {
14220                         internal_error(state, ins, "index unexpectedly large");
14221                 }
14222                 if (used_indicies & (1 << index)) {
14223                         internal_error(state, ins, "index previously used?");
14224                 }
14225                 /* Remember which indicies have been used */
14226                 used_indicies |= (1 << index);
14227                 if (index > max_index) {
14228                         max_index = index;
14229                 }
14230         }
14231
14232         /* Walk through the live variables and make certain
14233          * everything is assigned an index.
14234          */
14235         for(set = vars; set; set = set->next) {
14236                 struct triple *ins;
14237                 int index;
14238                 ins = set->member;
14239                 index = info[ID_BITS(ins->id)].index;
14240                 if (index >= 0) {
14241                         continue;
14242                 }
14243                 /* Find the lowest unused index value */
14244                 for(index = 0; index < MAX_INDICIES; index++) {
14245                         if (!(used_indicies & (1 << index))) {
14246                                 break;
14247                         }
14248                 }
14249                 if (index == MAX_INDICIES) {
14250                         internal_error(state, ins, "no free indicies?");
14251                 }
14252                 info[ID_BITS(ins->id)].index = index;
14253                 /* Remember which indicies have been used */
14254                 used_indicies |= (1 << index);
14255                 if (index > max_index) {
14256                         max_index = index;
14257                 }
14258         }
14259
14260         /* Build the return list of variables with positions matching
14261          * their indicies.
14262          */
14263         *enclose = 0;
14264         last_var = enclose;
14265         for(i = 0; i <= max_index; i++) {
14266                 struct triple *var;
14267                 var = 0;
14268                 if (used_indicies & (1 << i)) {
14269                         for(set = vars; set; set = set->next) {
14270                                 int index;
14271                                 index = info[ID_BITS(set->member->id)].index;
14272                                 if (index == i) {
14273                                         var = set->member;
14274                                         break;
14275                                 }
14276                         }
14277                         if (!var) {
14278                                 internal_error(state, me, "missing variable");
14279                         }
14280                 }
14281                 insert_triple_set(last_var, var);
14282                 last_var = &(*last_var)->next;
14283         }
14284
14285 #if DEBUG_EXPLICIT_CLOSURES
14286         /* Print out the variables to be enclosed */
14287         loc(state->dbgout, state, fcall);
14288         fprintf(state->dbgout, "Alive: \n");
14289         for(set = *enclose; set; set = set->next) {
14290                 display_triple(state->dbgout, set->member);
14291         }
14292         fflush(state->dbgout);
14293 #endif
14294
14295         /* Clear the marks */
14296         ins = first;
14297         do {
14298                 ins->id = info[ID_BITS(ins->id)].id;
14299                 ins = ins->next;
14300         } while(ins != first);
14301
14302         /* Release the ordered list of live variables */
14303         free_closure_variables(state, &vars);
14304
14305         /* Release the storage of the old ids */
14306         xfree(info);
14307
14308         /* Release the variable lifetime information */
14309         free_variable_lifetimes(state, &bb, rb);
14310
14311         /* Release the basic blocks of this function */
14312         free_basic_blocks(state, &bb);
14313 }
14314
14315 static void expand_function_call(
14316         struct compile_state *state, struct triple *me, struct triple *fcall)
14317 {
14318         /* Generate an ordinary function call */
14319         struct type *closure_type, **closure_next;
14320         struct triple *func, *func_first, *func_last, *retvar;
14321         struct triple *first;
14322         struct type *ptype, *rtype;
14323         struct triple *ret_addr, *ret_loc;
14324         struct triple_reg_set *enclose, *set;
14325         int closure_idx, pvals, i;
14326
14327 #if DEBUG_EXPLICIT_CLOSURES
14328         FILE *fp = state->dbgout;
14329         fprintf(fp, "\ndisplay_func(me) ptr: %p\n", fcall);
14330         display_func(state, fp, MISC(fcall, 0));
14331         display_func(state, fp, me);
14332         fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
14333 #endif
14334
14335         /* Find the triples */
14336         func = MISC(fcall, 0);
14337         func_first = RHS(func, 0);
14338         retvar = fretaddr(state, func);
14339         func_last  = func_first->prev;
14340         first = fcall->next;
14341
14342         /* Find what I need to enclose */
14343         compute_closure_variables(state, me, fcall, &enclose);
14344
14345         /* Compute the closure type */
14346         closure_type = new_type(TYPE_TUPLE, 0, 0);
14347         closure_type->elements = 0;
14348         closure_next = &closure_type->left;
14349         for(set = enclose; set ; set = set->next) {
14350                 struct type *type;
14351                 type = &void_type;
14352                 if (set->member) {
14353                         type = set->member->type;
14354                 }
14355                 if (!*closure_next) {
14356                         *closure_next = type;
14357                 } else {
14358                         *closure_next = new_type(TYPE_PRODUCT, *closure_next,
14359                                 type);
14360                         closure_next = &(*closure_next)->right;
14361                 }
14362                 closure_type->elements += 1;
14363         }
14364         if (closure_type->elements == 0) {
14365                 closure_type->type = TYPE_VOID;
14366         }
14367
14368
14369 #if DEBUG_EXPLICIT_CLOSURES
14370         fprintf(state->dbgout, "closure type: ");
14371         name_of(state->dbgout, closure_type);
14372         fprintf(state->dbgout, "\n");
14373 #endif
14374
14375         /* Update the called functions closure variable */
14376         closure_idx = add_closure_type(state, func, closure_type);
14377
14378         /* Generate some needed triples */
14379         ret_loc = label(state);
14380         ret_addr = triple(state, OP_ADDRCONST, &void_ptr_type, ret_loc, 0);
14381
14382         /* Pass the parameters to the new function */
14383         ptype = func->type->right;
14384         pvals = fcall->rhs;
14385         for(i = 0; i < pvals; i++) {
14386                 struct type *atype;
14387                 struct triple *arg, *param;
14388                 atype = ptype;
14389                 if ((ptype->type & TYPE_MASK) == TYPE_PRODUCT) {
14390                         atype = ptype->left;
14391                 }
14392                 param = farg(state, func, i);
14393                 if ((param->type->type & TYPE_MASK) != (atype->type & TYPE_MASK)) {
14394                         internal_error(state, fcall, "param type mismatch");
14395                 }
14396                 arg = RHS(fcall, i);
14397                 flatten(state, first, write_expr(state, param, arg));
14398                 ptype = ptype->right;
14399         }
14400         rtype = func->type->left;
14401
14402         /* Thread the triples together */
14403         ret_loc       = flatten(state, first, ret_loc);
14404
14405         /* Save the active variables in the result variable */
14406         for(i = 0, set = enclose; set ; set = set->next, i++) {
14407                 if (!set->member) {
14408                         continue;
14409                 }
14410                 flatten(state, ret_loc,
14411                         write_expr(state,
14412                                 closure_expr(state, func, closure_idx, i),
14413                                 read_expr(state, set->member)));
14414         }
14415
14416         /* Initialize the return value */
14417         if ((rtype->type & TYPE_MASK) != TYPE_VOID) {
14418                 flatten(state, ret_loc,
14419                         write_expr(state,
14420                                 deref_index(state, fresult(state, func), 1),
14421                                 new_triple(state, OP_UNKNOWNVAL, rtype,  0, 0)));
14422         }
14423
14424         ret_addr      = flatten(state, ret_loc, ret_addr);
14425         flatten(state, ret_loc, write_expr(state, retvar, ret_addr));
14426         flatten(state, ret_loc,
14427                 call(state, retvar, ret_addr, func_first, func_last));
14428
14429         /* Find the result */
14430         if ((rtype->type & TYPE_MASK) != TYPE_VOID) {
14431                 struct triple * result;
14432                 result = flatten(state, first,
14433                         read_expr(state,
14434                                 deref_index(state, fresult(state, func), 1)));
14435
14436                 propogate_use(state, fcall, result);
14437         }
14438
14439         /* Release the original fcall instruction */
14440         release_triple(state, fcall);
14441
14442         /* Restore the active variables from the result variable */
14443         for(i = 0, set = enclose; set ; set = set->next, i++) {
14444                 struct triple_set *use, *next;
14445                 struct triple *new;
14446                 struct basic_blocks bb;
14447                 if (!set->member || (set->member == fcall)) {
14448                         continue;
14449                 }
14450                 /* Generate an expression for the value */
14451                 new = flatten(state, first,
14452                         read_expr(state,
14453                                 closure_expr(state, func, closure_idx, i)));
14454
14455
14456                 /* If the original is an lvalue restore the preserved value */
14457                 if (is_lvalue(state, set->member)) {
14458                         flatten(state, first,
14459                                 write_expr(state, set->member, new));
14460                         continue;
14461                 }
14462                 /*
14463                  * If the original is a value update the dominated uses.
14464                  */
14465
14466                 /* Analyze the basic blocks so I can see who dominates whom */
14467                 bb.func = me;
14468                 bb.first = RHS(me, 0);
14469                 if (!triple_is_ret(state, bb.first->prev)) {
14470                         bb.func = 0;
14471                 }
14472                 analyze_basic_blocks(state, &bb);
14473
14474
14475 #if DEBUG_EXPLICIT_CLOSURES
14476                 fprintf(state->errout, "Updating domindated uses: %p -> %p\n",
14477                         set->member, new);
14478 #endif
14479                 /* If fcall dominates the use update the expression */
14480                 for(use = set->member->use; use; use = next) {
14481                         /* Replace use modifies the use chain and
14482                          * removes use, so I must take a copy of the
14483                          * next entry early.
14484                          */
14485                         next = use->next;
14486                         if (!tdominates(state, fcall, use->member)) {
14487                                 continue;
14488                         }
14489                         replace_use(state, set->member, new, use->member);
14490                 }
14491
14492                 /* Release the basic blocks, the instructions will be
14493                  * different next time, and flatten/insert_triple does
14494                  * not update the block values so I can't cache the analysis.
14495                  */
14496                 free_basic_blocks(state, &bb);
14497         }
14498
14499         /* Release the closure variable list */
14500         free_closure_variables(state, &enclose);
14501
14502         if (state->compiler->debug & DEBUG_INLINE) {
14503                 FILE *fp = state->dbgout;
14504                 fprintf(fp, "\n");
14505                 loc(fp, state, 0);
14506                 fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
14507                 display_func(state, fp, func);
14508                 display_func(state, fp, me);
14509                 fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
14510         }
14511
14512         return;
14513 }
14514
14515 static int do_inline(struct compile_state *state, struct triple *func)
14516 {
14517         int do_inline;
14518         int policy;
14519
14520         policy = state->compiler->flags & COMPILER_INLINE_MASK;
14521         switch(policy) {
14522         case COMPILER_INLINE_ALWAYS:
14523                 do_inline = 1;
14524                 if (func->type->type & ATTRIB_NOINLINE) {
14525                         error(state, func, "noinline with always_inline compiler option");
14526                 }
14527                 break;
14528         case COMPILER_INLINE_NEVER:
14529                 do_inline = 0;
14530                 if (func->type->type & ATTRIB_ALWAYS_INLINE) {
14531                         error(state, func, "always_inline with noinline compiler option");
14532                 }
14533                 break;
14534         case COMPILER_INLINE_DEFAULTON:
14535                 switch(func->type->type & STOR_MASK) {
14536                 case STOR_STATIC | STOR_INLINE:
14537                 case STOR_LOCAL  | STOR_INLINE:
14538                 case STOR_EXTERN | STOR_INLINE:
14539                         do_inline = 1;
14540                         break;
14541                 default:
14542                         do_inline = 1;
14543                         break;
14544                 }
14545                 break;
14546         case COMPILER_INLINE_DEFAULTOFF:
14547                 switch(func->type->type & STOR_MASK) {
14548                 case STOR_STATIC | STOR_INLINE:
14549                 case STOR_LOCAL  | STOR_INLINE:
14550                 case STOR_EXTERN | STOR_INLINE:
14551                         do_inline = 1;
14552                         break;
14553                 default:
14554                         do_inline = 0;
14555                         break;
14556                 }
14557                 break;
14558         case COMPILER_INLINE_NOPENALTY:
14559                 switch(func->type->type & STOR_MASK) {
14560                 case STOR_STATIC | STOR_INLINE:
14561                 case STOR_LOCAL  | STOR_INLINE:
14562                 case STOR_EXTERN | STOR_INLINE:
14563                         do_inline = 1;
14564                         break;
14565                 default:
14566                         do_inline = (func->u.cval == 1);
14567                         break;
14568                 }
14569                 break;
14570         default:
14571                 do_inline = 0;
14572                 internal_error(state, 0, "Unimplemented inline policy");
14573                 break;
14574         }
14575         /* Force inlining */
14576         if (func->type->type & ATTRIB_NOINLINE) {
14577                 do_inline = 0;
14578         }
14579         if (func->type->type & ATTRIB_ALWAYS_INLINE) {
14580                 do_inline = 1;
14581         }
14582         return do_inline;
14583 }
14584
14585 static void inline_function(struct compile_state *state, struct triple *me, void *arg)
14586 {
14587         struct triple *first, *ptr, *next;
14588         /* If the function is not used don't bother */
14589         if (me->u.cval <= 0) {
14590                 return;
14591         }
14592         if (state->compiler->debug & DEBUG_CALLS2) {
14593                 FILE *fp = state->dbgout;
14594                 fprintf(fp, "in: %s\n",
14595                         me->type->type_ident->name);
14596         }
14597
14598         first = RHS(me, 0);
14599         ptr = next = first;
14600         do {
14601                 struct triple *func, *prev;
14602                 ptr = next;
14603                 prev = ptr->prev;
14604                 next = ptr->next;
14605                 if (ptr->op != OP_FCALL) {
14606                         continue;
14607                 }
14608                 func = MISC(ptr, 0);
14609                 /* See if the function should be inlined */
14610                 if (!do_inline(state, func)) {
14611                         /* Put a label after the fcall */
14612                         post_triple(state, ptr, OP_LABEL, &void_type, 0, 0);
14613                         continue;
14614                 }
14615                 if (state->compiler->debug & DEBUG_CALLS) {
14616                         FILE *fp = state->dbgout;
14617                         if (state->compiler->debug & DEBUG_CALLS2) {
14618                                 loc(fp, state, ptr);
14619                         }
14620                         fprintf(fp, "inlining %s\n",
14621                                 func->type->type_ident->name);
14622                         fflush(fp);
14623                 }
14624
14625                 /* Update the function use counts */
14626                 func->u.cval -= 1;
14627
14628                 /* Replace the fcall with the called function */
14629                 expand_inline_call(state, me, ptr);
14630
14631                 next = prev->next;
14632         } while (next != first);
14633
14634         ptr = next = first;
14635         do {
14636                 struct triple *prev, *func;
14637                 ptr = next;
14638                 prev = ptr->prev;
14639                 next = ptr->next;
14640                 if (ptr->op != OP_FCALL) {
14641                         continue;
14642                 }
14643                 func = MISC(ptr, 0);
14644                 if (state->compiler->debug & DEBUG_CALLS) {
14645                         FILE *fp = state->dbgout;
14646                         if (state->compiler->debug & DEBUG_CALLS2) {
14647                                 loc(fp, state, ptr);
14648                         }
14649                         fprintf(fp, "calling %s\n",
14650                                 func->type->type_ident->name);
14651                         fflush(fp);
14652                 }
14653                 /* Replace the fcall with the instruction sequence
14654                  * needed to make the call.
14655                  */
14656                 expand_function_call(state, me, ptr);
14657                 next = prev->next;
14658         } while(next != first);
14659 }
14660
14661 static void inline_functions(struct compile_state *state, struct triple *func)
14662 {
14663         inline_function(state, func, 0);
14664         reverse_walk_functions(state, inline_function, 0);
14665 }
14666
14667 static void insert_function(struct compile_state *state,
14668         struct triple *func, void *arg)
14669 {
14670         struct triple *first, *end, *ffirst, *fend;
14671
14672         if (state->compiler->debug & DEBUG_INLINE) {
14673                 FILE *fp = state->errout;
14674                 fprintf(fp, "%s func count: %d\n",
14675                         func->type->type_ident->name, func->u.cval);
14676         }
14677         if (func->u.cval == 0) {
14678                 return;
14679         }
14680
14681         /* Find the end points of the lists */
14682         first  = arg;
14683         end    = first->prev;
14684         ffirst = RHS(func, 0);
14685         fend   = ffirst->prev;
14686
14687         /* splice the lists together */
14688         end->next    = ffirst;
14689         ffirst->prev = end;
14690         fend->next   = first;
14691         first->prev  = fend;
14692 }
14693
14694 struct triple *input_asm(struct compile_state *state)
14695 {
14696         struct asm_info *info;
14697         struct triple *def;
14698         int i, out;
14699
14700         info = xcmalloc(sizeof(*info), "asm_info");
14701         info->str = "";
14702
14703         out = sizeof(arch_input_regs)/sizeof(arch_input_regs[0]);
14704         memcpy(&info->tmpl.lhs, arch_input_regs, sizeof(arch_input_regs));
14705
14706         def = new_triple(state, OP_ASM, &void_type, out, 0);
14707         def->u.ainfo = info;
14708         def->id |= TRIPLE_FLAG_VOLATILE;
14709
14710         for(i = 0; i < out; i++) {
14711                 struct triple *piece;
14712                 piece = triple(state, OP_PIECE, &int_type, def, 0);
14713                 piece->u.cval = i;
14714                 LHS(def, i) = piece;
14715         }
14716
14717         return def;
14718 }
14719
14720 struct triple *output_asm(struct compile_state *state)
14721 {
14722         struct asm_info *info;
14723         struct triple *def;
14724         int in;
14725
14726         info = xcmalloc(sizeof(*info), "asm_info");
14727         info->str = "";
14728
14729         in = sizeof(arch_output_regs)/sizeof(arch_output_regs[0]);
14730         memcpy(&info->tmpl.rhs, arch_output_regs, sizeof(arch_output_regs));
14731
14732         def = new_triple(state, OP_ASM, &void_type, 0, in);
14733         def->u.ainfo = info;
14734         def->id |= TRIPLE_FLAG_VOLATILE;
14735
14736         return def;
14737 }
14738
14739 static void join_functions(struct compile_state *state)
14740 {
14741         struct triple *start, *end, *call, *in, *out, *func;
14742         struct file_state file;
14743         struct type *pnext, *param;
14744         struct type *result_type, *args_type;
14745         int idx;
14746
14747         /* Be clear the functions have not been joined yet */
14748         state->functions_joined = 0;
14749
14750         /* Dummy file state to get debug handing right */
14751         memset(&file, 0, sizeof(file));
14752         file.basename = "";
14753         file.line = 0;
14754         file.report_line = 0;
14755         file.report_name = file.basename;
14756         file.prev = state->file;
14757         state->file = &file;
14758         state->function = "";
14759
14760         if (!state->main_function) {
14761                 error(state, 0, "No functions to compile\n");
14762         }
14763
14764         /* The type of arguments */
14765         args_type   = state->main_function->type->right;
14766         /* The return type without any specifiers */
14767         result_type = clone_type(0, state->main_function->type->left);
14768
14769
14770         /* Verify the external arguments */
14771         if (registers_of(state, args_type) > ARCH_INPUT_REGS) {
14772                 error(state, state->main_function,
14773                         "Too many external input arguments");
14774         }
14775         if (registers_of(state, result_type) > ARCH_OUTPUT_REGS) {
14776                 error(state, state->main_function,
14777                         "Too many external output arguments");
14778         }
14779
14780         /* Lay down the basic program structure */
14781         end           = label(state);
14782         start         = label(state);
14783         start         = flatten(state, state->first, start);
14784         end           = flatten(state, state->first, end);
14785         in            = input_asm(state);
14786         out           = output_asm(state);
14787         call          = new_triple(state, OP_FCALL, result_type, -1, registers_of(state, args_type));
14788         MISC(call, 0) = state->main_function;
14789         in            = flatten(state, state->first, in);
14790         call          = flatten(state, state->first, call);
14791         out           = flatten(state, state->first, out);
14792
14793
14794         /* Read the external input arguments */
14795         pnext = args_type;
14796         idx = 0;
14797         while(pnext && ((pnext->type & TYPE_MASK) != TYPE_VOID)) {
14798                 struct triple *expr;
14799                 param = pnext;
14800                 pnext = 0;
14801                 if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
14802                         pnext = param->right;
14803                         param = param->left;
14804                 }
14805                 if (registers_of(state, param) != 1) {
14806                         error(state, state->main_function,
14807                                 "Arg: %d %s requires multiple registers",
14808                                 idx + 1, param->field_ident->name);
14809                 }
14810                 expr = read_expr(state, LHS(in, idx));
14811                 RHS(call, idx) = expr;
14812                 expr = flatten(state, call, expr);
14813                 use_triple(expr, call);
14814
14815                 idx++;
14816         }
14817
14818
14819         /* Write the external output arguments */
14820         pnext = result_type;
14821         if ((pnext->type & TYPE_MASK) == TYPE_STRUCT) {
14822                 pnext = result_type->left;
14823         }
14824         for(idx = 0; idx < out->rhs; idx++) {
14825                 struct triple *expr;
14826                 param = pnext;
14827                 pnext = 0;
14828                 if (param && ((param->type & TYPE_MASK) == TYPE_PRODUCT)) {
14829                         pnext = param->right;
14830                         param = param->left;
14831                 }
14832                 if (param && ((param->type & TYPE_MASK) == TYPE_VOID)) {
14833                         param = 0;
14834                 }
14835                 if (param) {
14836                         if (registers_of(state, param) != 1) {
14837                                 error(state, state->main_function,
14838                                         "Result: %d %s requires multiple registers",
14839                                         idx, param->field_ident->name);
14840                         }
14841                         expr = read_expr(state, call);
14842                         if ((result_type->type & TYPE_MASK) == TYPE_STRUCT) {
14843                                 expr = deref_field(state, expr, param->field_ident);
14844                         }
14845                 } else {
14846                         expr = triple(state, OP_UNKNOWNVAL, &int_type, 0, 0);
14847                 }
14848                 flatten(state, out, expr);
14849                 RHS(out, idx) = expr;
14850                 use_triple(expr, out);
14851         }
14852
14853         /* Allocate a dummy containing function */
14854         func = triple(state, OP_LIST,
14855                 new_type(TYPE_FUNCTION, &void_type, &void_type), 0, 0);
14856         func->type->type_ident = lookup(state, "", 0);
14857         RHS(func, 0) = state->first;
14858         func->u.cval = 1;
14859
14860         /* See which functions are called, and how often */
14861         mark_live_functions(state);
14862         inline_functions(state, func);
14863         walk_functions(state, insert_function, end);
14864
14865         if (start->next != end) {
14866                 flatten(state, start, branch(state, end, 0));
14867         }
14868
14869         /* OK now the functions have been joined. */
14870         state->functions_joined = 1;
14871
14872         /* Done now cleanup */
14873         state->file = file.prev;
14874         state->function = 0;
14875 }
14876
14877 /*
14878  * Data structurs for optimation.
14879  */
14880
14881
14882 static int do_use_block(
14883         struct block *used, struct block_set **head, struct block *user,
14884         int front)
14885 {
14886         struct block_set **ptr, *new;
14887         if (!used)
14888                 return 0;
14889         if (!user)
14890                 return 0;
14891         ptr = head;
14892         while(*ptr) {
14893                 if ((*ptr)->member == user) {
14894                         return 0;
14895                 }
14896                 ptr = &(*ptr)->next;
14897         }
14898         new = xcmalloc(sizeof(*new), "block_set");
14899         new->member = user;
14900         if (front) {
14901                 new->next = *head;
14902                 *head = new;
14903         }
14904         else {
14905                 new->next = 0;
14906                 *ptr = new;
14907         }
14908         return 1;
14909 }
14910 static int do_unuse_block(
14911         struct block *used, struct block_set **head, struct block *unuser)
14912 {
14913         struct block_set *use, **ptr;
14914         int count;
14915         count = 0;
14916         ptr = head;
14917         while(*ptr) {
14918                 use = *ptr;
14919                 if (use->member == unuser) {
14920                         *ptr = use->next;
14921                         memset(use, -1, sizeof(*use));
14922                         xfree(use);
14923                         count += 1;
14924                 }
14925                 else {
14926                         ptr = &use->next;
14927                 }
14928         }
14929         return count;
14930 }
14931
14932 static void use_block(struct block *used, struct block *user)
14933 {
14934         int count;
14935         /* Append new to the head of the list, print_block
14936          * depends on this.
14937          */
14938         count = do_use_block(used, &used->use, user, 1);
14939         used->users += count;
14940 }
14941 static void unuse_block(struct block *used, struct block *unuser)
14942 {
14943         int count;
14944         count = do_unuse_block(used, &used->use, unuser);
14945         used->users -= count;
14946 }
14947
14948 static void add_block_edge(struct block *block, struct block *edge, int front)
14949 {
14950         int count;
14951         count = do_use_block(block, &block->edges, edge, front);
14952         block->edge_count += count;
14953 }
14954
14955 static void remove_block_edge(struct block *block, struct block *edge)
14956 {
14957         int count;
14958         count = do_unuse_block(block, &block->edges, edge);
14959         block->edge_count -= count;
14960 }
14961
14962 static void idom_block(struct block *idom, struct block *user)
14963 {
14964         do_use_block(idom, &idom->idominates, user, 0);
14965 }
14966
14967 static void unidom_block(struct block *idom, struct block *unuser)
14968 {
14969         do_unuse_block(idom, &idom->idominates, unuser);
14970 }
14971
14972 static void domf_block(struct block *block, struct block *domf)
14973 {
14974         do_use_block(block, &block->domfrontier, domf, 0);
14975 }
14976
14977 static void undomf_block(struct block *block, struct block *undomf)
14978 {
14979         do_unuse_block(block, &block->domfrontier, undomf);
14980 }
14981
14982 static void ipdom_block(struct block *ipdom, struct block *user)
14983 {
14984         do_use_block(ipdom, &ipdom->ipdominates, user, 0);
14985 }
14986
14987 static void unipdom_block(struct block *ipdom, struct block *unuser)
14988 {
14989         do_unuse_block(ipdom, &ipdom->ipdominates, unuser);
14990 }
14991
14992 static void ipdomf_block(struct block *block, struct block *ipdomf)
14993 {
14994         do_use_block(block, &block->ipdomfrontier, ipdomf, 0);
14995 }
14996
14997 static void unipdomf_block(struct block *block, struct block *unipdomf)
14998 {
14999         do_unuse_block(block, &block->ipdomfrontier, unipdomf);
15000 }
15001
15002 static int walk_triples(
15003         struct compile_state *state,
15004         int (*cb)(struct compile_state *state, struct triple *ptr, void *arg),
15005         void *arg)
15006 {
15007         struct triple *ptr;
15008         int result;
15009         ptr = state->first;
15010         do {
15011                 result = cb(state, ptr, arg);
15012                 if (ptr->next->prev != ptr) {
15013                         internal_error(state, ptr->next, "bad prev");
15014                 }
15015                 ptr = ptr->next;
15016         } while((result == 0) && (ptr != state->first));
15017         return result;
15018 }
15019
15020 #define PRINT_LIST 1
15021 static int do_print_triple(struct compile_state *state, struct triple *ins, void *arg)
15022 {
15023         FILE *fp = arg;
15024         int op;
15025         op = ins->op;
15026         if (op == OP_LIST) {
15027 #if !PRINT_LIST
15028                 return 0;
15029 #endif
15030         }
15031         if ((op == OP_LABEL) && (ins->use)) {
15032                 fprintf(fp, "\n%p:\n", ins);
15033         }
15034         display_triple(fp, ins);
15035
15036         if (triple_is_branch(state, ins) && ins->use &&
15037                 (ins->op != OP_RET) && (ins->op != OP_FCALL)) {
15038                 internal_error(state, ins, "branch used?");
15039         }
15040         if (triple_is_branch(state, ins)) {
15041                 fprintf(fp, "\n");
15042         }
15043         return 0;
15044 }
15045
15046 static void print_triples(struct compile_state *state)
15047 {
15048         if (state->compiler->debug & DEBUG_TRIPLES) {
15049                 FILE *fp = state->dbgout;
15050                 fprintf(fp, "--------------- triples ---------------\n");
15051                 walk_triples(state, do_print_triple, fp);
15052                 fprintf(fp, "\n");
15053         }
15054 }
15055
15056 struct cf_block {
15057         struct block *block;
15058 };
15059 static void find_cf_blocks(struct cf_block *cf, struct block *block)
15060 {
15061         struct block_set *edge;
15062         if (!block || (cf[block->vertex].block == block)) {
15063                 return;
15064         }
15065         cf[block->vertex].block = block;
15066         for(edge = block->edges; edge; edge = edge->next) {
15067                 find_cf_blocks(cf, edge->member);
15068         }
15069 }
15070
15071 static void print_control_flow(struct compile_state *state,
15072         FILE *fp, struct basic_blocks *bb)
15073 {
15074         struct cf_block *cf;
15075         int i;
15076         fprintf(fp, "\ncontrol flow\n");
15077         cf = xcmalloc(sizeof(*cf) * (bb->last_vertex + 1), "cf_block");
15078         find_cf_blocks(cf, bb->first_block);
15079
15080         for(i = 1; i <= bb->last_vertex; i++) {
15081                 struct block *block;
15082                 struct block_set *edge;
15083                 block = cf[i].block;
15084                 if (!block)
15085                         continue;
15086                 fprintf(fp, "(%p) %d:", block, block->vertex);
15087                 for(edge = block->edges; edge; edge = edge->next) {
15088                         fprintf(fp, " %d", edge->member->vertex);
15089                 }
15090                 fprintf(fp, "\n");
15091         }
15092
15093         xfree(cf);
15094 }
15095
15096 static void free_basic_block(struct compile_state *state, struct block *block)
15097 {
15098         struct block_set *edge, *entry;
15099         struct block *child;
15100         if (!block) {
15101                 return;
15102         }
15103         if (block->vertex == -1) {
15104                 return;
15105         }
15106         block->vertex = -1;
15107         for(edge = block->edges; edge; edge = edge->next) {
15108                 if (edge->member) {
15109                         unuse_block(edge->member, block);
15110                 }
15111         }
15112         if (block->idom) {
15113                 unidom_block(block->idom, block);
15114         }
15115         block->idom = 0;
15116         if (block->ipdom) {
15117                 unipdom_block(block->ipdom, block);
15118         }
15119         block->ipdom = 0;
15120         while((entry = block->use)) {
15121                 child = entry->member;
15122                 unuse_block(block, child);
15123                 if (child && (child->vertex != -1)) {
15124                         for(edge = child->edges; edge; edge = edge->next) {
15125                                 edge->member = 0;
15126                         }
15127                 }
15128         }
15129         while((entry = block->idominates)) {
15130                 child = entry->member;
15131                 unidom_block(block, child);
15132                 if (child && (child->vertex != -1)) {
15133                         child->idom = 0;
15134                 }
15135         }
15136         while((entry = block->domfrontier)) {
15137                 child = entry->member;
15138                 undomf_block(block, child);
15139         }
15140         while((entry = block->ipdominates)) {
15141                 child = entry->member;
15142                 unipdom_block(block, child);
15143                 if (child && (child->vertex != -1)) {
15144                         child->ipdom = 0;
15145                 }
15146         }
15147         while((entry = block->ipdomfrontier)) {
15148                 child = entry->member;
15149                 unipdomf_block(block, child);
15150         }
15151         if (block->users != 0) {
15152                 internal_error(state, 0, "block still has users");
15153         }
15154         while((edge = block->edges)) {
15155                 child = edge->member;
15156                 remove_block_edge(block, child);
15157
15158                 if (child && (child->vertex != -1)) {
15159                         free_basic_block(state, child);
15160                 }
15161         }
15162         memset(block, -1, sizeof(*block));
15163 #ifndef WIN32
15164         xfree(block);
15165 #endif
15166 }
15167
15168 static void free_basic_blocks(struct compile_state *state,
15169         struct basic_blocks *bb)
15170 {
15171         struct triple *first, *ins;
15172         free_basic_block(state, bb->first_block);
15173         bb->last_vertex = 0;
15174         bb->first_block = bb->last_block = 0;
15175         first = bb->first;
15176         ins = first;
15177         do {
15178                 if (triple_stores_block(state, ins)) {
15179                         ins->u.block = 0;
15180                 }
15181                 ins = ins->next;
15182         } while(ins != first);
15183
15184 }
15185
15186 static struct block *basic_block(struct compile_state *state,
15187         struct basic_blocks *bb, struct triple *first)
15188 {
15189         struct block *block;
15190         struct triple *ptr;
15191         if (!triple_is_label(state, first)) {
15192                 internal_error(state, first, "block does not start with a label");
15193         }
15194         /* See if this basic block has already been setup */
15195         if (first->u.block != 0) {
15196                 return first->u.block;
15197         }
15198         /* Allocate another basic block structure */
15199         bb->last_vertex += 1;
15200         block = xcmalloc(sizeof(*block), "block");
15201         block->first = block->last = first;
15202         block->vertex = bb->last_vertex;
15203         ptr = first;
15204         do {
15205                 if ((ptr != first) && triple_is_label(state, ptr) && (ptr->use)) {
15206                         break;
15207                 }
15208                 block->last = ptr;
15209                 /* If ptr->u is not used remember where the baic block is */
15210                 if (triple_stores_block(state, ptr)) {
15211                         ptr->u.block = block;
15212                 }
15213                 if (triple_is_branch(state, ptr)) {
15214                         break;
15215                 }
15216                 ptr = ptr->next;
15217         } while (ptr != bb->first);
15218         if ((ptr == bb->first) ||
15219                 ((ptr->next == bb->first) && (
15220                         triple_is_end(state, ptr) ||
15221                         triple_is_ret(state, ptr))))
15222         {
15223                 /* The block has no outflowing edges */
15224         }
15225         else if (triple_is_label(state, ptr)) {
15226                 struct block *next;
15227                 next = basic_block(state, bb, ptr);
15228                 add_block_edge(block, next, 0);
15229                 use_block(next, block);
15230         }
15231         else if (triple_is_branch(state, ptr)) {
15232                 struct triple **expr, *first;
15233                 struct block *child;
15234                 /* Find the branch targets.
15235                  * I special case the first branch as that magically
15236                  * avoids some difficult cases for the register allocator.
15237                  */
15238                 expr = triple_edge_targ(state, ptr, 0);
15239                 if (!expr) {
15240                         internal_error(state, ptr, "branch without targets");
15241                 }
15242                 first = *expr;
15243                 expr = triple_edge_targ(state, ptr, expr);
15244                 for(; expr; expr = triple_edge_targ(state, ptr, expr)) {
15245                         if (!*expr) continue;
15246                         child = basic_block(state, bb, *expr);
15247                         use_block(child, block);
15248                         add_block_edge(block, child, 0);
15249                 }
15250                 if (first) {
15251                         child = basic_block(state, bb, first);
15252                         use_block(child, block);
15253                         add_block_edge(block, child, 1);
15254
15255                         /* Be certain the return block of a call is
15256                          * in a basic block.  When it is not find
15257                          * start of the block, insert a label if
15258                          * necessary and build the basic block.
15259                          * Then add a fake edge from the start block
15260                          * to the return block of the function.
15261                          */
15262                         if (state->functions_joined && triple_is_call(state, ptr)
15263                                 && !block_of_triple(state, MISC(ptr, 0))) {
15264                                 struct block *tail;
15265                                 struct triple *start;
15266                                 start = triple_to_block_start(state, MISC(ptr, 0));
15267                                 if (!triple_is_label(state, start)) {
15268                                         start = pre_triple(state,
15269                                                 start, OP_LABEL, &void_type, 0, 0);
15270                                 }
15271                                 tail = basic_block(state, bb, start);
15272                                 add_block_edge(child, tail, 0);
15273                                 use_block(tail, child);
15274                         }
15275                 }
15276         }
15277         else {
15278                 internal_error(state, 0, "Bad basic block split");
15279         }
15280 #if 0
15281 {
15282         struct block_set *edge;
15283         FILE *fp = state->errout;
15284         fprintf(fp, "basic_block: %10p [%2d] ( %10p - %10p )",
15285                 block, block->vertex,
15286                 block->first, block->last);
15287         for(edge = block->edges; edge; edge = edge->next) {
15288                 fprintf(fp, " %10p [%2d]",
15289                         edge->member ? edge->member->first : 0,
15290                         edge->member ? edge->member->vertex : -1);
15291         }
15292         fprintf(fp, "\n");
15293 }
15294 #endif
15295         return block;
15296 }
15297
15298
15299 static void walk_blocks(struct compile_state *state, struct basic_blocks *bb,
15300         void (*cb)(struct compile_state *state, struct block *block, void *arg),
15301         void *arg)
15302 {
15303         struct triple *ptr, *first;
15304         struct block *last_block;
15305         last_block = 0;
15306         first = bb->first;
15307         ptr = first;
15308         do {
15309                 if (triple_stores_block(state, ptr)) {
15310                         struct block *block;
15311                         block = ptr->u.block;
15312                         if (block && (block != last_block)) {
15313                                 cb(state, block, arg);
15314                         }
15315                         last_block = block;
15316                 }
15317                 ptr = ptr->next;
15318         } while(ptr != first);
15319 }
15320
15321 static void print_block(
15322         struct compile_state *state, struct block *block, void *arg)
15323 {
15324         struct block_set *user, *edge;
15325         struct triple *ptr;
15326         FILE *fp = arg;
15327
15328         fprintf(fp, "\nblock: %p (%d) ",
15329                 block,
15330                 block->vertex);
15331
15332         for(edge = block->edges; edge; edge = edge->next) {
15333                 fprintf(fp, " %p<-%p",
15334                         edge->member,
15335                         (edge->member && edge->member->use)?
15336                         edge->member->use->member : 0);
15337         }
15338         fprintf(fp, "\n");
15339         if (block->first->op == OP_LABEL) {
15340                 fprintf(fp, "%p:\n", block->first);
15341         }
15342         for(ptr = block->first; ; ) {
15343                 display_triple(fp, ptr);
15344                 if (ptr == block->last)
15345                         break;
15346                 ptr = ptr->next;
15347                 if (ptr == block->first) {
15348                         internal_error(state, 0, "missing block last?");
15349                 }
15350         }
15351         fprintf(fp, "users %d: ", block->users);
15352         for(user = block->use; user; user = user->next) {
15353                 fprintf(fp, "%p (%d) ",
15354                         user->member,
15355                         user->member->vertex);
15356         }
15357         fprintf(fp,"\n\n");
15358 }
15359
15360
15361 static void romcc_print_blocks(struct compile_state *state, FILE *fp)
15362 {
15363         fprintf(fp, "--------------- blocks ---------------\n");
15364         walk_blocks(state, &state->bb, print_block, fp);
15365 }
15366 static void print_blocks(struct compile_state *state, const char *func, FILE *fp)
15367 {
15368         if (state->compiler->debug & DEBUG_BASIC_BLOCKS) {
15369                 fprintf(fp, "After %s\n", func);
15370                 romcc_print_blocks(state, fp);
15371                 if (state->compiler->debug & DEBUG_FDOMINATORS) {
15372                         print_dominators(state, fp, &state->bb);
15373                         print_dominance_frontiers(state, fp, &state->bb);
15374                 }
15375                 print_control_flow(state, fp, &state->bb);
15376         }
15377 }
15378
15379 static void prune_nonblock_triples(struct compile_state *state,
15380         struct basic_blocks *bb)
15381 {
15382         struct block *block;
15383         struct triple *first, *ins, *next;
15384         /* Delete the triples not in a basic block */
15385         block = 0;
15386         first = bb->first;
15387         ins = first;
15388         do {
15389                 next = ins->next;
15390                 if (ins->op == OP_LABEL) {
15391                         block = ins->u.block;
15392                 }
15393                 if (!block) {
15394                         struct triple_set *use;
15395                         for(use = ins->use; use; use = use->next) {
15396                                 struct block *block;
15397                                 block = block_of_triple(state, use->member);
15398                                 if (block != 0) {
15399                                         internal_error(state, ins, "pruning used ins?");
15400                                 }
15401                         }
15402                         release_triple(state, ins);
15403                 }
15404                 if (block && block->last == ins) {
15405                         block = 0;
15406                 }
15407                 ins = next;
15408         } while(ins != first);
15409 }
15410
15411 static void setup_basic_blocks(struct compile_state *state,
15412         struct basic_blocks *bb)
15413 {
15414         if (!triple_stores_block(state, bb->first)) {
15415                 internal_error(state, 0, "ins will not store block?");
15416         }
15417         /* Initialize the state */
15418         bb->first_block = bb->last_block = 0;
15419         bb->last_vertex = 0;
15420         free_basic_blocks(state, bb);
15421
15422         /* Find the basic blocks */
15423         bb->first_block = basic_block(state, bb, bb->first);
15424
15425         /* Be certain the last instruction of a function, or the
15426          * entire program is in a basic block.  When it is not find
15427          * the start of the block, insert a label if necessary and build
15428          * basic block.  Then add a fake edge from the start block
15429          * to the final block.
15430          */
15431         if (!block_of_triple(state, bb->first->prev)) {
15432                 struct triple *start;
15433                 struct block *tail;
15434                 start = triple_to_block_start(state, bb->first->prev);
15435                 if (!triple_is_label(state, start)) {
15436                         start = pre_triple(state,
15437                                 start, OP_LABEL, &void_type, 0, 0);
15438                 }
15439                 tail = basic_block(state, bb, start);
15440                 add_block_edge(bb->first_block, tail, 0);
15441                 use_block(tail, bb->first_block);
15442         }
15443
15444         /* Find the last basic block.
15445          */
15446         bb->last_block = block_of_triple(state, bb->first->prev);
15447
15448         /* Delete the triples not in a basic block */
15449         prune_nonblock_triples(state, bb);
15450
15451 #if 0
15452         /* If we are debugging print what I have just done */
15453         if (state->compiler->debug & DEBUG_BASIC_BLOCKS) {
15454                 print_blocks(state, state->dbgout);
15455                 print_control_flow(state, bb);
15456         }
15457 #endif
15458 }
15459
15460
15461 struct sdom_block {
15462         struct block *block;
15463         struct sdom_block *sdominates;
15464         struct sdom_block *sdom_next;
15465         struct sdom_block *sdom;
15466         struct sdom_block *label;
15467         struct sdom_block *parent;
15468         struct sdom_block *ancestor;
15469         int vertex;
15470 };
15471
15472
15473 static void unsdom_block(struct sdom_block *block)
15474 {
15475         struct sdom_block **ptr;
15476         if (!block->sdom_next) {
15477                 return;
15478         }
15479         ptr = &block->sdom->sdominates;
15480         while(*ptr) {
15481                 if ((*ptr) == block) {
15482                         *ptr = block->sdom_next;
15483                         return;
15484                 }
15485                 ptr = &(*ptr)->sdom_next;
15486         }
15487 }
15488
15489 static void sdom_block(struct sdom_block *sdom, struct sdom_block *block)
15490 {
15491         unsdom_block(block);
15492         block->sdom = sdom;
15493         block->sdom_next = sdom->sdominates;
15494         sdom->sdominates = block;
15495 }
15496
15497
15498
15499 static int initialize_sdblock(struct sdom_block *sd,
15500         struct block *parent, struct block *block, int vertex)
15501 {
15502         struct block_set *edge;
15503         if (!block || (sd[block->vertex].block == block)) {
15504                 return vertex;
15505         }
15506         vertex += 1;
15507         /* Renumber the blocks in a convinient fashion */
15508         block->vertex = vertex;
15509         sd[vertex].block    = block;
15510         sd[vertex].sdom     = &sd[vertex];
15511         sd[vertex].label    = &sd[vertex];
15512         sd[vertex].parent   = parent? &sd[parent->vertex] : 0;
15513         sd[vertex].ancestor = 0;
15514         sd[vertex].vertex   = vertex;
15515         for(edge = block->edges; edge; edge = edge->next) {
15516                 vertex = initialize_sdblock(sd, block, edge->member, vertex);
15517         }
15518         return vertex;
15519 }
15520
15521 static int initialize_spdblock(
15522         struct compile_state *state, struct sdom_block *sd,
15523         struct block *parent, struct block *block, int vertex)
15524 {
15525         struct block_set *user;
15526         if (!block || (sd[block->vertex].block == block)) {
15527                 return vertex;
15528         }
15529         vertex += 1;
15530         /* Renumber the blocks in a convinient fashion */
15531         block->vertex = vertex;
15532         sd[vertex].block    = block;
15533         sd[vertex].sdom     = &sd[vertex];
15534         sd[vertex].label    = &sd[vertex];
15535         sd[vertex].parent   = parent? &sd[parent->vertex] : 0;
15536         sd[vertex].ancestor = 0;
15537         sd[vertex].vertex   = vertex;
15538         for(user = block->use; user; user = user->next) {
15539                 vertex = initialize_spdblock(state, sd, block, user->member, vertex);
15540         }
15541         return vertex;
15542 }
15543
15544 static int setup_spdblocks(struct compile_state *state,
15545         struct basic_blocks *bb, struct sdom_block *sd)
15546 {
15547         struct block *block;
15548         int vertex;
15549         /* Setup as many sdpblocks as possible without using fake edges */
15550         vertex = initialize_spdblock(state, sd, 0, bb->last_block, 0);
15551
15552         /* Walk through the graph and find unconnected blocks.  Add a
15553          * fake edge from the unconnected blocks to the end of the
15554          * graph.
15555          */
15556         block = bb->first_block->last->next->u.block;
15557         for(; block && block != bb->first_block; block = block->last->next->u.block) {
15558                 if (sd[block->vertex].block == block) {
15559                         continue;
15560                 }
15561 #if DEBUG_SDP_BLOCKS
15562                 {
15563                         FILE *fp = state->errout;
15564                         fprintf(fp, "Adding %d\n", vertex +1);
15565                 }
15566 #endif
15567                 add_block_edge(block, bb->last_block, 0);
15568                 use_block(bb->last_block, block);
15569
15570                 vertex = initialize_spdblock(state, sd, bb->last_block, block, vertex);
15571         }
15572         return vertex;
15573 }
15574
15575 static void compress_ancestors(struct sdom_block *v)
15576 {
15577         /* This procedure assumes ancestor(v) != 0 */
15578         /* if (ancestor(ancestor(v)) != 0) {
15579          *      compress(ancestor(ancestor(v)));
15580          *      if (semi(label(ancestor(v))) < semi(label(v))) {
15581          *              label(v) = label(ancestor(v));
15582          *      }
15583          *      ancestor(v) = ancestor(ancestor(v));
15584          * }
15585          */
15586         if (!v->ancestor) {
15587                 return;
15588         }
15589         if (v->ancestor->ancestor) {
15590                 compress_ancestors(v->ancestor->ancestor);
15591                 if (v->ancestor->label->sdom->vertex < v->label->sdom->vertex) {
15592                         v->label = v->ancestor->label;
15593                 }
15594                 v->ancestor = v->ancestor->ancestor;
15595         }
15596 }
15597
15598 static void compute_sdom(struct compile_state *state,
15599         struct basic_blocks *bb, struct sdom_block *sd)
15600 {
15601         int i;
15602         /* // step 2
15603          *  for each v <= pred(w) {
15604          *      u = EVAL(v);
15605          *      if (semi[u] < semi[w] {
15606          *              semi[w] = semi[u];
15607          *      }
15608          * }
15609          * add w to bucket(vertex(semi[w]));
15610          * LINK(parent(w), w);
15611          *
15612          * // step 3
15613          * for each v <= bucket(parent(w)) {
15614          *      delete v from bucket(parent(w));
15615          *      u = EVAL(v);
15616          *      dom(v) = (semi[u] < semi[v]) ? u : parent(w);
15617          * }
15618          */
15619         for(i = bb->last_vertex; i >= 2; i--) {
15620                 struct sdom_block *v, *parent, *next;
15621                 struct block_set *user;
15622                 struct block *block;
15623                 block = sd[i].block;
15624                 parent = sd[i].parent;
15625                 /* Step 2 */
15626                 for(user = block->use; user; user = user->next) {
15627                         struct sdom_block *v, *u;
15628                         v = &sd[user->member->vertex];
15629                         u = !(v->ancestor)? v : (compress_ancestors(v), v->label);
15630                         if (u->sdom->vertex < sd[i].sdom->vertex) {
15631                                 sd[i].sdom = u->sdom;
15632                         }
15633                 }
15634                 sdom_block(sd[i].sdom, &sd[i]);
15635                 sd[i].ancestor = parent;
15636                 /* Step 3 */
15637                 for(v = parent->sdominates; v; v = next) {
15638                         struct sdom_block *u;
15639                         next = v->sdom_next;
15640                         unsdom_block(v);
15641                         u = (!v->ancestor) ? v : (compress_ancestors(v), v->label);
15642                         v->block->idom = (u->sdom->vertex < v->sdom->vertex)?
15643                                 u->block : parent->block;
15644                 }
15645         }
15646 }
15647
15648 static void compute_spdom(struct compile_state *state,
15649         struct basic_blocks *bb, struct sdom_block *sd)
15650 {
15651         int i;
15652         /* // step 2
15653          *  for each v <= pred(w) {
15654          *      u = EVAL(v);
15655          *      if (semi[u] < semi[w] {
15656          *              semi[w] = semi[u];
15657          *      }
15658          * }
15659          * add w to bucket(vertex(semi[w]));
15660          * LINK(parent(w), w);
15661          *
15662          * // step 3
15663          * for each v <= bucket(parent(w)) {
15664          *      delete v from bucket(parent(w));
15665          *      u = EVAL(v);
15666          *      dom(v) = (semi[u] < semi[v]) ? u : parent(w);
15667          * }
15668          */
15669         for(i = bb->last_vertex; i >= 2; i--) {
15670                 struct sdom_block *u, *v, *parent, *next;
15671                 struct block_set *edge;
15672                 struct block *block;
15673                 block = sd[i].block;
15674                 parent = sd[i].parent;
15675                 /* Step 2 */
15676                 for(edge = block->edges; edge; edge = edge->next) {
15677                         v = &sd[edge->member->vertex];
15678                         u = !(v->ancestor)? v : (compress_ancestors(v), v->label);
15679                         if (u->sdom->vertex < sd[i].sdom->vertex) {
15680                                 sd[i].sdom = u->sdom;
15681                         }
15682                 }
15683                 sdom_block(sd[i].sdom, &sd[i]);
15684                 sd[i].ancestor = parent;
15685                 /* Step 3 */
15686                 for(v = parent->sdominates; v; v = next) {
15687                         struct sdom_block *u;
15688                         next = v->sdom_next;
15689                         unsdom_block(v);
15690                         u = (!v->ancestor) ? v : (compress_ancestors(v), v->label);
15691                         v->block->ipdom = (u->sdom->vertex < v->sdom->vertex)?
15692                                 u->block : parent->block;
15693                 }
15694         }
15695 }
15696
15697 static void compute_idom(struct compile_state *state,
15698         struct basic_blocks *bb, struct sdom_block *sd)
15699 {
15700         int i;
15701         for(i = 2; i <= bb->last_vertex; i++) {
15702                 struct block *block;
15703                 block = sd[i].block;
15704                 if (block->idom->vertex != sd[i].sdom->vertex) {
15705                         block->idom = block->idom->idom;
15706                 }
15707                 idom_block(block->idom, block);
15708         }
15709         sd[1].block->idom = 0;
15710 }
15711
15712 static void compute_ipdom(struct compile_state *state,
15713         struct basic_blocks *bb, struct sdom_block *sd)
15714 {
15715         int i;
15716         for(i = 2; i <= bb->last_vertex; i++) {
15717                 struct block *block;
15718                 block = sd[i].block;
15719                 if (block->ipdom->vertex != sd[i].sdom->vertex) {
15720                         block->ipdom = block->ipdom->ipdom;
15721                 }
15722                 ipdom_block(block->ipdom, block);
15723         }
15724         sd[1].block->ipdom = 0;
15725 }
15726
15727         /* Theorem 1:
15728          *   Every vertex of a flowgraph G = (V, E, r) except r has
15729          *   a unique immediate dominator.
15730          *   The edges {(idom(w), w) |w <= V - {r}} form a directed tree
15731          *   rooted at r, called the dominator tree of G, such that
15732          *   v dominates w if and only if v is a proper ancestor of w in
15733          *   the dominator tree.
15734          */
15735         /* Lemma 1:
15736          *   If v and w are vertices of G such that v <= w,
15737          *   than any path from v to w must contain a common ancestor
15738          *   of v and w in T.
15739          */
15740         /* Lemma 2:  For any vertex w != r, idom(w) -> w */
15741         /* Lemma 3:  For any vertex w != r, sdom(w) -> w */
15742         /* Lemma 4:  For any vertex w != r, idom(w) -> sdom(w) */
15743         /* Theorem 2:
15744          *   Let w != r.  Suppose every u for which sdom(w) -> u -> w satisfies
15745          *   sdom(u) >= sdom(w).  Then idom(w) = sdom(w).
15746          */
15747         /* Theorem 3:
15748          *   Let w != r and let u be a vertex for which sdom(u) is
15749          *   minimum amoung vertices u satisfying sdom(w) -> u -> w.
15750          *   Then sdom(u) <= sdom(w) and idom(u) = idom(w).
15751          */
15752         /* Lemma 5:  Let vertices v,w satisfy v -> w.
15753          *           Then v -> idom(w) or idom(w) -> idom(v)
15754          */
15755
15756 static void find_immediate_dominators(struct compile_state *state,
15757         struct basic_blocks *bb)
15758 {
15759         struct sdom_block *sd;
15760         /* w->sdom = min{v| there is a path v = v0,v1,...,vk = w such that:
15761          *           vi > w for (1 <= i <= k - 1}
15762          */
15763         /* Theorem 4:
15764          *   For any vertex w != r.
15765          *   sdom(w) = min(
15766          *                 {v|(v,w) <= E  and v < w } U
15767          *                 {sdom(u) | u > w and there is an edge (v, w) such that u -> v})
15768          */
15769         /* Corollary 1:
15770          *   Let w != r and let u be a vertex for which sdom(u) is
15771          *   minimum amoung vertices u satisfying sdom(w) -> u -> w.
15772          *   Then:
15773          *                   { sdom(w) if sdom(w) = sdom(u),
15774          *        idom(w) = {
15775          *                   { idom(u) otherwise
15776          */
15777         /* The algorithm consists of the following 4 steps.
15778          * Step 1.  Carry out a depth-first search of the problem graph.
15779          *    Number the vertices from 1 to N as they are reached during
15780          *    the search.  Initialize the variables used in succeeding steps.
15781          * Step 2.  Compute the semidominators of all vertices by applying
15782          *    theorem 4.   Carry out the computation vertex by vertex in
15783          *    decreasing order by number.
15784          * Step 3.  Implicitly define the immediate dominator of each vertex
15785          *    by applying Corollary 1.
15786          * Step 4.  Explicitly define the immediate dominator of each vertex,
15787          *    carrying out the computation vertex by vertex in increasing order
15788          *    by number.
15789          */
15790         /* Step 1 initialize the basic block information */
15791         sd = xcmalloc(sizeof(*sd) * (bb->last_vertex + 1), "sdom_state");
15792         initialize_sdblock(sd, 0, bb->first_block, 0);
15793 #if 0
15794         sd[1].size  = 0;
15795         sd[1].label = 0;
15796         sd[1].sdom  = 0;
15797 #endif
15798         /* Step 2 compute the semidominators */
15799         /* Step 3 implicitly define the immediate dominator of each vertex */
15800         compute_sdom(state, bb, sd);
15801         /* Step 4 explicitly define the immediate dominator of each vertex */
15802         compute_idom(state, bb, sd);
15803         xfree(sd);
15804 }
15805
15806 static void find_post_dominators(struct compile_state *state,
15807         struct basic_blocks *bb)
15808 {
15809         struct sdom_block *sd;
15810         int vertex;
15811         /* Step 1 initialize the basic block information */
15812         sd = xcmalloc(sizeof(*sd) * (bb->last_vertex + 1), "sdom_state");
15813
15814         vertex = setup_spdblocks(state, bb, sd);
15815         if (vertex != bb->last_vertex) {
15816                 internal_error(state, 0, "missing %d blocks",
15817                         bb->last_vertex - vertex);
15818         }
15819
15820         /* Step 2 compute the semidominators */
15821         /* Step 3 implicitly define the immediate dominator of each vertex */
15822         compute_spdom(state, bb, sd);
15823         /* Step 4 explicitly define the immediate dominator of each vertex */
15824         compute_ipdom(state, bb, sd);
15825         xfree(sd);
15826 }
15827
15828
15829
15830 static void find_block_domf(struct compile_state *state, struct block *block)
15831 {
15832         struct block *child;
15833         struct block_set *user, *edge;
15834         if (block->domfrontier != 0) {
15835                 internal_error(state, block->first, "domfrontier present?");
15836         }
15837         for(user = block->idominates; user; user = user->next) {
15838                 child = user->member;
15839                 if (child->idom != block) {
15840                         internal_error(state, block->first, "bad idom");
15841                 }
15842                 find_block_domf(state, child);
15843         }
15844         for(edge = block->edges; edge; edge = edge->next) {
15845                 if (edge->member->idom != block) {
15846                         domf_block(block, edge->member);
15847                 }
15848         }
15849         for(user = block->idominates; user; user = user->next) {
15850                 struct block_set *frontier;
15851                 child = user->member;
15852                 for(frontier = child->domfrontier; frontier; frontier = frontier->next) {
15853                         if (frontier->member->idom != block) {
15854                                 domf_block(block, frontier->member);
15855                         }
15856                 }
15857         }
15858 }
15859
15860 static void find_block_ipdomf(struct compile_state *state, struct block *block)
15861 {
15862         struct block *child;
15863         struct block_set *user;
15864         if (block->ipdomfrontier != 0) {
15865                 internal_error(state, block->first, "ipdomfrontier present?");
15866         }
15867         for(user = block->ipdominates; user; user = user->next) {
15868                 child = user->member;
15869                 if (child->ipdom != block) {
15870                         internal_error(state, block->first, "bad ipdom");
15871                 }
15872                 find_block_ipdomf(state, child);
15873         }
15874         for(user = block->use; user; user = user->next) {
15875                 if (user->member->ipdom != block) {
15876                         ipdomf_block(block, user->member);
15877                 }
15878         }
15879         for(user = block->ipdominates; user; user = user->next) {
15880                 struct block_set *frontier;
15881                 child = user->member;
15882                 for(frontier = child->ipdomfrontier; frontier; frontier = frontier->next) {
15883                         if (frontier->member->ipdom != block) {
15884                                 ipdomf_block(block, frontier->member);
15885                         }
15886                 }
15887         }
15888 }
15889
15890 static void print_dominated(
15891         struct compile_state *state, struct block *block, void *arg)
15892 {
15893         struct block_set *user;
15894         FILE *fp = arg;
15895
15896         fprintf(fp, "%d:", block->vertex);
15897         for(user = block->idominates; user; user = user->next) {
15898                 fprintf(fp, " %d", user->member->vertex);
15899                 if (user->member->idom != block) {
15900                         internal_error(state, user->member->first, "bad idom");
15901                 }
15902         }
15903         fprintf(fp,"\n");
15904 }
15905
15906 static void print_dominated2(
15907         struct compile_state *state, FILE *fp, int depth, struct block *block)
15908 {
15909         struct block_set *user;
15910         struct triple *ins;
15911         struct occurance *ptr, *ptr2;
15912         const char *filename1, *filename2;
15913         int equal_filenames;
15914         int i;
15915         for(i = 0; i < depth; i++) {
15916                 fprintf(fp, "   ");
15917         }
15918         fprintf(fp, "%3d: %p (%p - %p) @",
15919                 block->vertex, block, block->first, block->last);
15920         ins = block->first;
15921         while(ins != block->last && (ins->occurance->line == 0)) {
15922                 ins = ins->next;
15923         }
15924         ptr = ins->occurance;
15925         ptr2 = block->last->occurance;
15926         filename1 = ptr->filename? ptr->filename : "";
15927         filename2 = ptr2->filename? ptr2->filename : "";
15928         equal_filenames = (strcmp(filename1, filename2) == 0);
15929         if ((ptr == ptr2) || (equal_filenames && ptr->line == ptr2->line)) {
15930                 fprintf(fp, " %s:%d", ptr->filename, ptr->line);
15931         } else if (equal_filenames) {
15932                 fprintf(fp, " %s:(%d - %d)",
15933                         ptr->filename, ptr->line, ptr2->line);
15934         } else {
15935                 fprintf(fp, " (%s:%d - %s:%d)",
15936                         ptr->filename, ptr->line,
15937                         ptr2->filename, ptr2->line);
15938         }
15939         fprintf(fp, "\n");
15940         for(user = block->idominates; user; user = user->next) {
15941                 print_dominated2(state, fp, depth + 1, user->member);
15942         }
15943 }
15944
15945 static void print_dominators(struct compile_state *state, FILE *fp, struct basic_blocks *bb)
15946 {
15947         fprintf(fp, "\ndominates\n");
15948         walk_blocks(state, bb, print_dominated, fp);
15949         fprintf(fp, "dominates\n");
15950         print_dominated2(state, fp, 0, bb->first_block);
15951 }
15952
15953
15954 static int print_frontiers(
15955         struct compile_state *state, FILE *fp, struct block *block, int vertex)
15956 {
15957         struct block_set *user, *edge;
15958
15959         if (!block || (block->vertex != vertex + 1)) {
15960                 return vertex;
15961         }
15962         vertex += 1;
15963
15964         fprintf(fp, "%d:", block->vertex);
15965         for(user = block->domfrontier; user; user = user->next) {
15966                 fprintf(fp, " %d", user->member->vertex);
15967         }
15968         fprintf(fp, "\n");
15969
15970         for(edge = block->edges; edge; edge = edge->next) {
15971                 vertex = print_frontiers(state, fp, edge->member, vertex);
15972         }
15973         return vertex;
15974 }
15975 static void print_dominance_frontiers(struct compile_state *state,
15976         FILE *fp, struct basic_blocks *bb)
15977 {
15978         fprintf(fp, "\ndominance frontiers\n");
15979         print_frontiers(state, fp, bb->first_block, 0);
15980
15981 }
15982
15983 static void analyze_idominators(struct compile_state *state, struct basic_blocks *bb)
15984 {
15985         /* Find the immediate dominators */
15986         find_immediate_dominators(state, bb);
15987         /* Find the dominance frontiers */
15988         find_block_domf(state, bb->first_block);
15989         /* If debuging print the print what I have just found */
15990         if (state->compiler->debug & DEBUG_FDOMINATORS) {
15991                 print_dominators(state, state->dbgout, bb);
15992                 print_dominance_frontiers(state, state->dbgout, bb);
15993                 print_control_flow(state, state->dbgout, bb);
15994         }
15995 }
15996
15997
15998 static void print_ipdominated(
15999         struct compile_state *state, struct block *block, void *arg)
16000 {
16001         struct block_set *user;
16002         FILE *fp = arg;
16003
16004         fprintf(fp, "%d:", block->vertex);
16005         for(user = block->ipdominates; user; user = user->next) {
16006                 fprintf(fp, " %d", user->member->vertex);
16007                 if (user->member->ipdom != block) {
16008                         internal_error(state, user->member->first, "bad ipdom");
16009                 }
16010         }
16011         fprintf(fp, "\n");
16012 }
16013
16014 static void print_ipdominators(struct compile_state *state, FILE *fp,
16015         struct basic_blocks *bb)
16016 {
16017         fprintf(fp, "\nipdominates\n");
16018         walk_blocks(state, bb, print_ipdominated, fp);
16019 }
16020
16021 static int print_pfrontiers(
16022         struct compile_state *state, FILE *fp, struct block *block, int vertex)
16023 {
16024         struct block_set *user;
16025
16026         if (!block || (block->vertex != vertex + 1)) {
16027                 return vertex;
16028         }
16029         vertex += 1;
16030
16031         fprintf(fp, "%d:", block->vertex);
16032         for(user = block->ipdomfrontier; user; user = user->next) {
16033                 fprintf(fp, " %d", user->member->vertex);
16034         }
16035         fprintf(fp, "\n");
16036         for(user = block->use; user; user = user->next) {
16037                 vertex = print_pfrontiers(state, fp, user->member, vertex);
16038         }
16039         return vertex;
16040 }
16041 static void print_ipdominance_frontiers(struct compile_state *state,
16042         FILE *fp, struct basic_blocks *bb)
16043 {
16044         fprintf(fp, "\nipdominance frontiers\n");
16045         print_pfrontiers(state, fp, bb->last_block, 0);
16046
16047 }
16048
16049 static void analyze_ipdominators(struct compile_state *state,
16050         struct basic_blocks *bb)
16051 {
16052         /* Find the post dominators */
16053         find_post_dominators(state, bb);
16054         /* Find the control dependencies (post dominance frontiers) */
16055         find_block_ipdomf(state, bb->last_block);
16056         /* If debuging print the print what I have just found */
16057         if (state->compiler->debug & DEBUG_RDOMINATORS) {
16058                 print_ipdominators(state, state->dbgout, bb);
16059                 print_ipdominance_frontiers(state, state->dbgout, bb);
16060                 print_control_flow(state, state->dbgout, bb);
16061         }
16062 }
16063
16064 static int bdominates(struct compile_state *state,
16065         struct block *dom, struct block *sub)
16066 {
16067         while(sub && (sub != dom)) {
16068                 sub = sub->idom;
16069         }
16070         return sub == dom;
16071 }
16072
16073 static int tdominates(struct compile_state *state,
16074         struct triple *dom, struct triple *sub)
16075 {
16076         struct block *bdom, *bsub;
16077         int result;
16078         bdom = block_of_triple(state, dom);
16079         bsub = block_of_triple(state, sub);
16080         if (bdom != bsub) {
16081                 result = bdominates(state, bdom, bsub);
16082         }
16083         else {
16084                 struct triple *ins;
16085                 if (!bdom || !bsub) {
16086                         internal_error(state, dom, "huh?");
16087                 }
16088                 ins = sub;
16089                 while((ins != bsub->first) && (ins != dom)) {
16090                         ins = ins->prev;
16091                 }
16092                 result = (ins == dom);
16093         }
16094         return result;
16095 }
16096
16097 static void analyze_basic_blocks(
16098         struct compile_state *state, struct basic_blocks *bb)
16099 {
16100         setup_basic_blocks(state, bb);
16101         analyze_idominators(state, bb);
16102         analyze_ipdominators(state, bb);
16103 }
16104
16105 static void insert_phi_operations(struct compile_state *state)
16106 {
16107         size_t size;
16108         struct triple *first;
16109         int *has_already, *work;
16110         struct block *work_list, **work_list_tail;
16111         int iter;
16112         struct triple *var, *vnext;
16113
16114         size = sizeof(int) * (state->bb.last_vertex + 1);
16115         has_already = xcmalloc(size, "has_already");
16116         work =        xcmalloc(size, "work");
16117         iter = 0;
16118
16119         first = state->first;
16120         for(var = first->next; var != first ; var = vnext) {
16121                 struct block *block;
16122                 struct triple_set *user, *unext;
16123                 vnext = var->next;
16124
16125                 if (!triple_is_auto_var(state, var) || !var->use) {
16126                         continue;
16127                 }
16128
16129                 iter += 1;
16130                 work_list = 0;
16131                 work_list_tail = &work_list;
16132                 for(user = var->use; user; user = unext) {
16133                         unext = user->next;
16134                         if (MISC(var, 0) == user->member) {
16135                                 continue;
16136                         }
16137                         if (user->member->op == OP_READ) {
16138                                 continue;
16139                         }
16140                         if (user->member->op != OP_WRITE) {
16141                                 internal_error(state, user->member,
16142                                         "bad variable access");
16143                         }
16144                         block = user->member->u.block;
16145                         if (!block) {
16146                                 warning(state, user->member, "dead code");
16147                                 release_triple(state, user->member);
16148                                 continue;
16149                         }
16150                         if (work[block->vertex] >= iter) {
16151                                 continue;
16152                         }
16153                         work[block->vertex] = iter;
16154                         *work_list_tail = block;
16155                         block->work_next = 0;
16156                         work_list_tail = &block->work_next;
16157                 }
16158                 for(block = work_list; block; block = block->work_next) {
16159                         struct block_set *df;
16160                         for(df = block->domfrontier; df; df = df->next) {
16161                                 struct triple *phi;
16162                                 struct block *front;
16163                                 int in_edges;
16164                                 front = df->member;
16165
16166                                 if (has_already[front->vertex] >= iter) {
16167                                         continue;
16168                                 }
16169                                 /* Count how many edges flow into this block */
16170                                 in_edges = front->users;
16171                                 /* Insert a phi function for this variable */
16172                                 get_occurance(var->occurance);
16173                                 phi = alloc_triple(
16174                                         state, OP_PHI, var->type, -1, in_edges,
16175                                         var->occurance);
16176                                 phi->u.block = front;
16177                                 MISC(phi, 0) = var;
16178                                 use_triple(var, phi);
16179 #if 1
16180                                 if (phi->rhs != in_edges) {
16181                                         internal_error(state, phi, "phi->rhs: %d != in_edges: %d",
16182                                                 phi->rhs, in_edges);
16183                                 }
16184 #endif
16185                                 /* Insert the phi functions immediately after the label */
16186                                 insert_triple(state, front->first->next, phi);
16187                                 if (front->first == front->last) {
16188                                         front->last = front->first->next;
16189                                 }
16190                                 has_already[front->vertex] = iter;
16191                                 transform_to_arch_instruction(state, phi);
16192
16193                                 /* If necessary plan to visit the basic block */
16194                                 if (work[front->vertex] >= iter) {
16195                                         continue;
16196                                 }
16197                                 work[front->vertex] = iter;
16198                                 *work_list_tail = front;
16199                                 front->work_next = 0;
16200                                 work_list_tail = &front->work_next;
16201                         }
16202                 }
16203         }
16204         xfree(has_already);
16205         xfree(work);
16206 }
16207
16208
16209 struct stack {
16210         struct triple_set *top;
16211         unsigned orig_id;
16212 };
16213
16214 static int count_auto_vars(struct compile_state *state)
16215 {
16216         struct triple *first, *ins;
16217         int auto_vars = 0;
16218         first = state->first;
16219         ins = first;
16220         do {
16221                 if (triple_is_auto_var(state, ins)) {
16222                         auto_vars += 1;
16223                 }
16224                 ins = ins->next;
16225         } while(ins != first);
16226         return auto_vars;
16227 }
16228
16229 static void number_auto_vars(struct compile_state *state, struct stack *stacks)
16230 {
16231         struct triple *first, *ins;
16232         int auto_vars = 0;
16233         first = state->first;
16234         ins = first;
16235         do {
16236                 if (triple_is_auto_var(state, ins)) {
16237                         auto_vars += 1;
16238                         stacks[auto_vars].orig_id = ins->id;
16239                         ins->id = auto_vars;
16240                 }
16241                 ins = ins->next;
16242         } while(ins != first);
16243 }
16244
16245 static void restore_auto_vars(struct compile_state *state, struct stack *stacks)
16246 {
16247         struct triple *first, *ins;
16248         first = state->first;
16249         ins = first;
16250         do {
16251                 if (triple_is_auto_var(state, ins)) {
16252                         ins->id = stacks[ins->id].orig_id;
16253                 }
16254                 ins = ins->next;
16255         } while(ins != first);
16256 }
16257
16258 static struct triple *peek_triple(struct stack *stacks, struct triple *var)
16259 {
16260         struct triple_set *head;
16261         struct triple *top_val;
16262         top_val = 0;
16263         head = stacks[var->id].top;
16264         if (head) {
16265                 top_val = head->member;
16266         }
16267         return top_val;
16268 }
16269
16270 static void push_triple(struct stack *stacks, struct triple *var, struct triple *val)
16271 {
16272         struct triple_set *new;
16273         /* Append new to the head of the list,
16274          * it's the only sensible behavoir for a stack.
16275          */
16276         new = xcmalloc(sizeof(*new), "triple_set");
16277         new->member = val;
16278         new->next   = stacks[var->id].top;
16279         stacks[var->id].top = new;
16280 }
16281
16282 static void pop_triple(struct stack *stacks, struct triple *var, struct triple *oldval)
16283 {
16284         struct triple_set *set, **ptr;
16285         ptr = &stacks[var->id].top;
16286         while(*ptr) {
16287                 set = *ptr;
16288                 if (set->member == oldval) {
16289                         *ptr = set->next;
16290                         xfree(set);
16291                         /* Only free one occurance from the stack */
16292                         return;
16293                 }
16294                 else {
16295                         ptr = &set->next;
16296                 }
16297         }
16298 }
16299
16300 /*
16301  * C(V)
16302  * S(V)
16303  */
16304 static void fixup_block_phi_variables(
16305         struct compile_state *state, struct stack *stacks, struct block *parent, struct block *block)
16306 {
16307         struct block_set *set;
16308         struct triple *ptr;
16309         int edge;
16310         if (!parent || !block)
16311                 return;
16312         /* Find the edge I am coming in on */
16313         edge = 0;
16314         for(set = block->use; set; set = set->next, edge++) {
16315                 if (set->member == parent) {
16316                         break;
16317                 }
16318         }
16319         if (!set) {
16320                 internal_error(state, 0, "phi input is not on a control predecessor");
16321         }
16322         for(ptr = block->first; ; ptr = ptr->next) {
16323                 if (ptr->op == OP_PHI) {
16324                         struct triple *var, *val, **slot;
16325                         var = MISC(ptr, 0);
16326                         if (!var) {
16327                                 internal_error(state, ptr, "no var???");
16328                         }
16329                         /* Find the current value of the variable */
16330                         val = peek_triple(stacks, var);
16331                         if (val && ((val->op == OP_WRITE) || (val->op == OP_READ))) {
16332                                 internal_error(state, val, "bad value in phi");
16333                         }
16334                         if (edge >= ptr->rhs) {
16335                                 internal_error(state, ptr, "edges > phi rhs");
16336                         }
16337                         slot = &RHS(ptr, edge);
16338                         if ((*slot != 0) && (*slot != val)) {
16339                                 internal_error(state, ptr, "phi already bound on this edge");
16340                         }
16341                         *slot = val;
16342                         use_triple(val, ptr);
16343                 }
16344                 if (ptr == block->last) {
16345                         break;
16346                 }
16347         }
16348 }
16349
16350
16351 static void rename_block_variables(
16352         struct compile_state *state, struct stack *stacks, struct block *block)
16353 {
16354         struct block_set *user, *edge;
16355         struct triple *ptr, *next, *last;
16356         int done;
16357         if (!block)
16358                 return;
16359         last = block->first;
16360         done = 0;
16361         for(ptr = block->first; !done; ptr = next) {
16362                 next = ptr->next;
16363                 if (ptr == block->last) {
16364                         done = 1;
16365                 }
16366                 /* RHS(A) */
16367                 if (ptr->op == OP_READ) {
16368                         struct triple *var, *val;
16369                         var = RHS(ptr, 0);
16370                         if (!triple_is_auto_var(state, var)) {
16371                                 internal_error(state, ptr, "read of non auto var!");
16372                         }
16373                         unuse_triple(var, ptr);
16374                         /* Find the current value of the variable */
16375                         val = peek_triple(stacks, var);
16376                         if (!val) {
16377                                 /* Let the optimizer at variables that are not initially
16378                                  * set.  But give it a bogus value so things seem to
16379                                  * work by accident.  This is useful for bitfields because
16380                                  * setting them always involves a read-modify-write.
16381                                  */
16382                                 if (TYPE_ARITHMETIC(ptr->type->type)) {
16383                                         val = pre_triple(state, ptr, OP_INTCONST, ptr->type, 0, 0);
16384                                         val->u.cval = 0xdeadbeaf;
16385                                 } else {
16386                                         val = pre_triple(state, ptr, OP_UNKNOWNVAL, ptr->type, 0, 0);
16387                                 }
16388                         }
16389                         if (!val) {
16390                                 error(state, ptr, "variable used without being set");
16391                         }
16392                         if ((val->op == OP_WRITE) || (val->op == OP_READ)) {
16393                                 internal_error(state, val, "bad value in read");
16394                         }
16395                         propogate_use(state, ptr, val);
16396                         release_triple(state, ptr);
16397                         continue;
16398                 }
16399                 /* LHS(A) */
16400                 if (ptr->op == OP_WRITE) {
16401                         struct triple *var, *val, *tval;
16402                         var = MISC(ptr, 0);
16403                         if (!triple_is_auto_var(state, var)) {
16404                                 internal_error(state, ptr, "write to non auto var!");
16405                         }
16406                         tval = val = RHS(ptr, 0);
16407                         if ((val->op == OP_WRITE) || (val->op == OP_READ) ||
16408                                 triple_is_auto_var(state, val)) {
16409                                 internal_error(state, ptr, "bad value in write");
16410                         }
16411                         /* Insert a cast if the types differ */
16412                         if (!is_subset_type(ptr->type, val->type)) {
16413                                 if (val->op == OP_INTCONST) {
16414                                         tval = pre_triple(state, ptr, OP_INTCONST, ptr->type, 0, 0);
16415                                         tval->u.cval = val->u.cval;
16416                                 }
16417                                 else {
16418                                         tval = pre_triple(state, ptr, OP_CONVERT, ptr->type, val, 0);
16419                                         use_triple(val, tval);
16420                                 }
16421                                 transform_to_arch_instruction(state, tval);
16422                                 unuse_triple(val, ptr);
16423                                 RHS(ptr, 0) = tval;
16424                                 use_triple(tval, ptr);
16425                         }
16426                         propogate_use(state, ptr, tval);
16427                         unuse_triple(var, ptr);
16428                         /* Push OP_WRITE ptr->right onto a stack of variable uses */
16429                         push_triple(stacks, var, tval);
16430                 }
16431                 if (ptr->op == OP_PHI) {
16432                         struct triple *var;
16433                         var = MISC(ptr, 0);
16434                         if (!triple_is_auto_var(state, var)) {
16435                                 internal_error(state, ptr, "phi references non auto var!");
16436                         }
16437                         /* Push OP_PHI onto a stack of variable uses */
16438                         push_triple(stacks, var, ptr);
16439                 }
16440                 last = ptr;
16441         }
16442         block->last = last;
16443
16444         /* Fixup PHI functions in the cf successors */
16445         for(edge = block->edges; edge; edge = edge->next) {
16446                 fixup_block_phi_variables(state, stacks, block, edge->member);
16447         }
16448         /* rename variables in the dominated nodes */
16449         for(user = block->idominates; user; user = user->next) {
16450                 rename_block_variables(state, stacks, user->member);
16451         }
16452         /* pop the renamed variable stack */
16453         last = block->first;
16454         done = 0;
16455         for(ptr = block->first; !done ; ptr = next) {
16456                 next = ptr->next;
16457                 if (ptr == block->last) {
16458                         done = 1;
16459                 }
16460                 if (ptr->op == OP_WRITE) {
16461                         struct triple *var;
16462                         var = MISC(ptr, 0);
16463                         /* Pop OP_WRITE ptr->right from the stack of variable uses */
16464                         pop_triple(stacks, var, RHS(ptr, 0));
16465                         release_triple(state, ptr);
16466                         continue;
16467                 }
16468                 if (ptr->op == OP_PHI) {
16469                         struct triple *var;
16470                         var = MISC(ptr, 0);
16471                         /* Pop OP_WRITE ptr->right from the stack of variable uses */
16472                         pop_triple(stacks, var, ptr);
16473                 }
16474                 last = ptr;
16475         }
16476         block->last = last;
16477 }
16478
16479 static void rename_variables(struct compile_state *state)
16480 {
16481         struct stack *stacks;
16482         int auto_vars;
16483
16484         /* Allocate stacks for the Variables */
16485         auto_vars = count_auto_vars(state);
16486         stacks = xcmalloc(sizeof(stacks[0])*(auto_vars + 1), "auto var stacks");
16487
16488         /* Give each auto_var a stack */
16489         number_auto_vars(state, stacks);
16490
16491         /* Rename the variables */
16492         rename_block_variables(state, stacks, state->bb.first_block);
16493
16494         /* Remove the stacks from the auto_vars */
16495         restore_auto_vars(state, stacks);
16496         xfree(stacks);
16497 }
16498
16499 static void prune_block_variables(struct compile_state *state,
16500         struct block *block)
16501 {
16502         struct block_set *user;
16503         struct triple *next, *ptr;
16504         int done;
16505
16506         done = 0;
16507         for(ptr = block->first; !done; ptr = next) {
16508                 /* Be extremely careful I am deleting the list
16509                  * as I walk trhough it.
16510                  */
16511                 next = ptr->next;
16512                 if (ptr == block->last) {
16513                         done = 1;
16514                 }
16515                 if (triple_is_auto_var(state, ptr)) {
16516                         struct triple_set *user, *next;
16517                         for(user = ptr->use; user; user = next) {
16518                                 struct triple *use;
16519                                 next = user->next;
16520                                 use = user->member;
16521                                 if (MISC(ptr, 0) == user->member) {
16522                                         continue;
16523                                 }
16524                                 if (use->op != OP_PHI) {
16525                                         internal_error(state, use, "decl still used");
16526                                 }
16527                                 if (MISC(use, 0) != ptr) {
16528                                         internal_error(state, use, "bad phi use of decl");
16529                                 }
16530                                 unuse_triple(ptr, use);
16531                                 MISC(use, 0) = 0;
16532                         }
16533                         if ((ptr->u.cval == 0) && (MISC(ptr, 0)->lhs == 1)) {
16534                                 /* Delete the adecl */
16535                                 release_triple(state, MISC(ptr, 0));
16536                                 /* And the piece */
16537                                 release_triple(state, ptr);
16538                         }
16539                         continue;
16540                 }
16541         }
16542         for(user = block->idominates; user; user = user->next) {
16543                 prune_block_variables(state, user->member);
16544         }
16545 }
16546
16547 struct phi_triple {
16548         struct triple *phi;
16549         unsigned orig_id;
16550         int alive;
16551 };
16552
16553 static void keep_phi(struct compile_state *state, struct phi_triple *live, struct triple *phi)
16554 {
16555         struct triple **slot;
16556         int zrhs, i;
16557         if (live[phi->id].alive) {
16558                 return;
16559         }
16560         live[phi->id].alive = 1;
16561         zrhs = phi->rhs;
16562         slot = &RHS(phi, 0);
16563         for(i = 0; i < zrhs; i++) {
16564                 struct triple *used;
16565                 used = slot[i];
16566                 if (used && (used->op == OP_PHI)) {
16567                         keep_phi(state, live, used);
16568                 }
16569         }
16570 }
16571
16572 static void prune_unused_phis(struct compile_state *state)
16573 {
16574         struct triple *first, *phi;
16575         struct phi_triple *live;
16576         int phis, i;
16577
16578         /* Find the first instruction */
16579         first = state->first;
16580
16581         /* Count how many phi functions I need to process */
16582         phis = 0;
16583         for(phi = first->next; phi != first; phi = phi->next) {
16584                 if (phi->op == OP_PHI) {
16585                         phis += 1;
16586                 }
16587         }
16588
16589         /* Mark them all dead */
16590         live = xcmalloc(sizeof(*live) * (phis + 1), "phi_triple");
16591         phis = 0;
16592         for(phi = first->next; phi != first; phi = phi->next) {
16593                 if (phi->op != OP_PHI) {
16594                         continue;
16595                 }
16596                 live[phis].alive   = 0;
16597                 live[phis].orig_id = phi->id;
16598                 live[phis].phi     = phi;
16599                 phi->id = phis;
16600                 phis += 1;
16601         }
16602
16603         /* Mark phis alive that are used by non phis */
16604         for(i = 0; i < phis; i++) {
16605                 struct triple_set *set;
16606                 for(set = live[i].phi->use; !live[i].alive && set; set = set->next) {
16607                         if (set->member->op != OP_PHI) {
16608                                 keep_phi(state, live, live[i].phi);
16609                                 break;
16610                         }
16611                 }
16612         }
16613
16614         /* Delete the extraneous phis */
16615         for(i = 0; i < phis; i++) {
16616                 struct triple **slot;
16617                 int zrhs, j;
16618                 if (!live[i].alive) {
16619                         release_triple(state, live[i].phi);
16620                         continue;
16621                 }
16622                 phi = live[i].phi;
16623                 slot = &RHS(phi, 0);
16624                 zrhs = phi->rhs;
16625                 for(j = 0; j < zrhs; j++) {
16626                         if(!slot[j]) {
16627                                 struct triple *unknown;
16628                                 get_occurance(phi->occurance);
16629                                 unknown = flatten(state, state->global_pool,
16630                                         alloc_triple(state, OP_UNKNOWNVAL,
16631                                                 phi->type, 0, 0, phi->occurance));
16632                                 slot[j] = unknown;
16633                                 use_triple(unknown, phi);
16634                                 transform_to_arch_instruction(state, unknown);
16635 #if 0
16636                                 warning(state, phi, "variable not set at index %d on all paths to use", j);
16637 #endif
16638                         }
16639                 }
16640         }
16641         xfree(live);
16642 }
16643
16644 static void transform_to_ssa_form(struct compile_state *state)
16645 {
16646         insert_phi_operations(state);
16647         rename_variables(state);
16648
16649         prune_block_variables(state, state->bb.first_block);
16650         prune_unused_phis(state);
16651
16652         print_blocks(state, __func__, state->dbgout);
16653 }
16654
16655
16656 static void clear_vertex(
16657         struct compile_state *state, struct block *block, void *arg)
16658 {
16659         /* Clear the current blocks vertex and the vertex of all
16660          * of the current blocks neighbors in case there are malformed
16661          * blocks with now instructions at this point.
16662          */
16663         struct block_set *user, *edge;
16664         block->vertex = 0;
16665         for(edge = block->edges; edge; edge = edge->next) {
16666                 edge->member->vertex = 0;
16667         }
16668         for(user = block->use; user; user = user->next) {
16669                 user->member->vertex = 0;
16670         }
16671 }
16672
16673 static void mark_live_block(
16674         struct compile_state *state, struct block *block, int *next_vertex)
16675 {
16676         /* See if this is a block that has not been marked */
16677         if (block->vertex != 0) {
16678                 return;
16679         }
16680         block->vertex = *next_vertex;
16681         *next_vertex += 1;
16682         if (triple_is_branch(state, block->last)) {
16683                 struct triple **targ;
16684                 targ = triple_edge_targ(state, block->last, 0);
16685                 for(; targ; targ = triple_edge_targ(state, block->last, targ)) {
16686                         if (!*targ) {
16687                                 continue;
16688                         }
16689                         if (!triple_stores_block(state, *targ)) {
16690                                 internal_error(state, 0, "bad targ");
16691                         }
16692                         mark_live_block(state, (*targ)->u.block, next_vertex);
16693                 }
16694                 /* Ensure the last block of a function remains alive */
16695                 if (triple_is_call(state, block->last)) {
16696                         mark_live_block(state, MISC(block->last, 0)->u.block, next_vertex);
16697                 }
16698         }
16699         else if (block->last->next != state->first) {
16700                 struct triple *ins;
16701                 ins = block->last->next;
16702                 if (!triple_stores_block(state, ins)) {
16703                         internal_error(state, 0, "bad block start");
16704                 }
16705                 mark_live_block(state, ins->u.block, next_vertex);
16706         }
16707 }
16708
16709 static void transform_from_ssa_form(struct compile_state *state)
16710 {
16711         /* To get out of ssa form we insert moves on the incoming
16712          * edges to blocks containting phi functions.
16713          */
16714         struct triple *first;
16715         struct triple *phi, *var, *next;
16716         int next_vertex;
16717
16718         /* Walk the control flow to see which blocks remain alive */
16719         walk_blocks(state, &state->bb, clear_vertex, 0);
16720         next_vertex = 1;
16721         mark_live_block(state, state->bb.first_block, &next_vertex);
16722
16723         /* Walk all of the operations to find the phi functions */
16724         first = state->first;
16725         for(phi = first->next; phi != first ; phi = next) {
16726                 struct block_set *set;
16727                 struct block *block;
16728                 struct triple **slot;
16729                 struct triple *var;
16730                 struct triple_set *use, *use_next;
16731                 int edge, writers, readers;
16732                 next = phi->next;
16733                 if (phi->op != OP_PHI) {
16734                         continue;
16735                 }
16736
16737                 block = phi->u.block;
16738                 slot  = &RHS(phi, 0);
16739
16740                 /* If this phi is in a dead block just forget it */
16741                 if (block->vertex == 0) {
16742                         release_triple(state, phi);
16743                         continue;
16744                 }
16745
16746                 /* Forget uses from code in dead blocks */
16747                 for(use = phi->use; use; use = use_next) {
16748                         struct block *ublock;
16749                         struct triple **expr;
16750                         use_next = use->next;
16751                         ublock = block_of_triple(state, use->member);
16752                         if ((use->member == phi) || (ublock->vertex != 0)) {
16753                                 continue;
16754                         }
16755                         expr = triple_rhs(state, use->member, 0);
16756                         for(; expr; expr = triple_rhs(state, use->member, expr)) {
16757                                 if (*expr == phi) {
16758                                         *expr = 0;
16759                                 }
16760                         }
16761                         unuse_triple(phi, use->member);
16762                 }
16763                 /* A variable to replace the phi function */
16764                 if (registers_of(state, phi->type) != 1) {
16765                         internal_error(state, phi, "phi->type does not fit in a single register!");
16766                 }
16767                 var = post_triple(state, phi, OP_ADECL, phi->type, 0, 0);
16768                 var = var->next; /* point at the var */
16769
16770                 /* Replaces use of phi with var */
16771                 propogate_use(state, phi, var);
16772
16773                 /* Count the readers */
16774                 readers = 0;
16775                 for(use = var->use; use; use = use->next) {
16776                         if (use->member != MISC(var, 0)) {
16777                                 readers++;
16778                         }
16779                 }
16780
16781                 /* Walk all of the incoming edges/blocks and insert moves.
16782                  */
16783                 writers = 0;
16784                 for(edge = 0, set = block->use; set; set = set->next, edge++) {
16785                         struct block *eblock, *vblock;
16786                         struct triple *move;
16787                         struct triple *val, *base;
16788                         eblock = set->member;
16789                         val = slot[edge];
16790                         slot[edge] = 0;
16791                         unuse_triple(val, phi);
16792                         vblock = block_of_triple(state, val);
16793
16794                         /* If we don't have a value that belongs in an OP_WRITE
16795                          * continue on.
16796                          */
16797                         if (!val || (val == &unknown_triple) || (val == phi)
16798                                 || (vblock && (vblock->vertex == 0))) {
16799                                 continue;
16800                         }
16801                         /* If the value should never occur error */
16802                         if (!vblock) {
16803                                 internal_error(state, val, "no vblock?");
16804                                 continue;
16805                         }
16806
16807                         /* If the value occurs in a dead block see if a replacement
16808                          * block can be found.
16809                          */
16810                         while(eblock && (eblock->vertex == 0)) {
16811                                 eblock = eblock->idom;
16812                         }
16813                         /* If not continue on with the next value. */
16814                         if (!eblock || (eblock->vertex == 0)) {
16815                                 continue;
16816                         }
16817
16818                         /* If we have an empty incoming block ignore it. */
16819                         if (!eblock->first) {
16820                                 internal_error(state, 0, "empty block?");
16821                         }
16822
16823                         /* Make certain the write is placed in the edge block... */
16824                         /* Walk through the edge block backwards to find an
16825                          * appropriate location for the OP_WRITE.
16826                          */
16827                         for(base = eblock->last; base != eblock->first; base = base->prev) {
16828                                 struct triple **expr;
16829                                 if (base->op == OP_PIECE) {
16830                                         base = MISC(base, 0);
16831                                 }
16832                                 if ((base == var) || (base == val)) {
16833                                         goto out;
16834                                 }
16835                                 expr = triple_lhs(state, base, 0);
16836                                 for(; expr; expr = triple_lhs(state, base, expr)) {
16837                                         if ((*expr) == val) {
16838                                                 goto out;
16839                                         }
16840                                 }
16841                                 expr = triple_rhs(state, base, 0);
16842                                 for(; expr; expr = triple_rhs(state, base, expr)) {
16843                                         if ((*expr) == var) {
16844                                                 goto out;
16845                                         }
16846                                 }
16847                         }
16848                 out:
16849                         if (triple_is_branch(state, base)) {
16850                                 internal_error(state, base,
16851                                         "Could not insert write to phi");
16852                         }
16853                         move = post_triple(state, base, OP_WRITE, var->type, val, var);
16854                         use_triple(val, move);
16855                         use_triple(var, move);
16856                         writers++;
16857                 }
16858                 if (!writers && readers) {
16859                         internal_error(state, var, "no value written to in use phi?");
16860                 }
16861                 /* If var is not used free it */
16862                 if (!writers) {
16863                         release_triple(state, MISC(var, 0));
16864                         release_triple(state, var);
16865                 }
16866                 /* Release the phi function */
16867                 release_triple(state, phi);
16868         }
16869
16870         /* Walk all of the operations to find the adecls */
16871         for(var = first->next; var != first ; var = var->next) {
16872                 struct triple_set *use, *use_next;
16873                 if (!triple_is_auto_var(state, var)) {
16874                         continue;
16875                 }
16876
16877                 /* Walk through all of the rhs uses of var and
16878                  * replace them with read of var.
16879                  */
16880                 for(use = var->use; use; use = use_next) {
16881                         struct triple *read, *user;
16882                         struct triple **slot;
16883                         int zrhs, i, used;
16884                         use_next = use->next;
16885                         user = use->member;
16886
16887                         /* Generate a read of var */
16888                         read = pre_triple(state, user, OP_READ, var->type, var, 0);
16889                         use_triple(var, read);
16890
16891                         /* Find the rhs uses and see if they need to be replaced */
16892                         used = 0;
16893                         zrhs = user->rhs;
16894                         slot = &RHS(user, 0);
16895                         for(i = 0; i < zrhs; i++) {
16896                                 if (slot[i] == var) {
16897                                         slot[i] = read;
16898                                         used = 1;
16899                                 }
16900                         }
16901                         /* If we did use it cleanup the uses */
16902                         if (used) {
16903                                 unuse_triple(var, user);
16904                                 use_triple(read, user);
16905                         }
16906                         /* If we didn't use it release the extra triple */
16907                         else {
16908                                 release_triple(state, read);
16909                         }
16910                 }
16911         }
16912 }
16913
16914 #define HI() if (state->compiler->debug & DEBUG_REBUILD_SSA_FORM) { \
16915         FILE *fp = state->dbgout; \
16916         fprintf(fp, "@ %s:%d\n", __FILE__, __LINE__); romcc_print_blocks(state, fp); \
16917         }
16918
16919 static void rebuild_ssa_form(struct compile_state *state)
16920 {
16921 HI();
16922         transform_from_ssa_form(state);
16923 HI();
16924         state->bb.first = state->first;
16925         free_basic_blocks(state, &state->bb);
16926         analyze_basic_blocks(state, &state->bb);
16927 HI();
16928         insert_phi_operations(state);
16929 HI();
16930         rename_variables(state);
16931 HI();
16932
16933         prune_block_variables(state, state->bb.first_block);
16934 HI();
16935         prune_unused_phis(state);
16936 HI();
16937 }
16938 #undef HI
16939
16940 /*
16941  * Register conflict resolution
16942  * =========================================================
16943  */
16944
16945 static struct reg_info find_def_color(
16946         struct compile_state *state, struct triple *def)
16947 {
16948         struct triple_set *set;
16949         struct reg_info info;
16950         info.reg = REG_UNSET;
16951         info.regcm = 0;
16952         if (!triple_is_def(state, def)) {
16953                 return info;
16954         }
16955         info = arch_reg_lhs(state, def, 0);
16956         if (info.reg >= MAX_REGISTERS) {
16957                 info.reg = REG_UNSET;
16958         }
16959         for(set = def->use; set; set = set->next) {
16960                 struct reg_info tinfo;
16961                 int i;
16962                 i = find_rhs_use(state, set->member, def);
16963                 if (i < 0) {
16964                         continue;
16965                 }
16966                 tinfo = arch_reg_rhs(state, set->member, i);
16967                 if (tinfo.reg >= MAX_REGISTERS) {
16968                         tinfo.reg = REG_UNSET;
16969                 }
16970                 if ((tinfo.reg != REG_UNSET) &&
16971                         (info.reg != REG_UNSET) &&
16972                         (tinfo.reg != info.reg)) {
16973                         internal_error(state, def, "register conflict");
16974                 }
16975                 if ((info.regcm & tinfo.regcm) == 0) {
16976                         internal_error(state, def, "regcm conflict %x & %x == 0",
16977                                 info.regcm, tinfo.regcm);
16978                 }
16979                 if (info.reg == REG_UNSET) {
16980                         info.reg = tinfo.reg;
16981                 }
16982                 info.regcm &= tinfo.regcm;
16983         }
16984         if (info.reg >= MAX_REGISTERS) {
16985                 internal_error(state, def, "register out of range");
16986         }
16987         return info;
16988 }
16989
16990 static struct reg_info find_lhs_pre_color(
16991         struct compile_state *state, struct triple *ins, int index)
16992 {
16993         struct reg_info info;
16994         int zlhs, zrhs, i;
16995         zrhs = ins->rhs;
16996         zlhs = ins->lhs;
16997         if (!zlhs && triple_is_def(state, ins)) {
16998                 zlhs = 1;
16999         }
17000         if (index >= zlhs) {
17001                 internal_error(state, ins, "Bad lhs %d", index);
17002         }
17003         info = arch_reg_lhs(state, ins, index);
17004         for(i = 0; i < zrhs; i++) {
17005                 struct reg_info rinfo;
17006                 rinfo = arch_reg_rhs(state, ins, i);
17007                 if ((info.reg == rinfo.reg) &&
17008                         (rinfo.reg >= MAX_REGISTERS)) {
17009                         struct reg_info tinfo;
17010                         tinfo = find_lhs_pre_color(state, RHS(ins, index), 0);
17011                         info.reg = tinfo.reg;
17012                         info.regcm &= tinfo.regcm;
17013                         break;
17014                 }
17015         }
17016         if (info.reg >= MAX_REGISTERS) {
17017                 info.reg = REG_UNSET;
17018         }
17019         return info;
17020 }
17021
17022 static struct reg_info find_rhs_post_color(
17023         struct compile_state *state, struct triple *ins, int index);
17024
17025 static struct reg_info find_lhs_post_color(
17026         struct compile_state *state, struct triple *ins, int index)
17027 {
17028         struct triple_set *set;
17029         struct reg_info info;
17030         struct triple *lhs;
17031 #if DEBUG_TRIPLE_COLOR
17032         fprintf(state->errout, "find_lhs_post_color(%p, %d)\n",
17033                 ins, index);
17034 #endif
17035         if ((index == 0) && triple_is_def(state, ins)) {
17036                 lhs = ins;
17037         }
17038         else if (index < ins->lhs) {
17039                 lhs = LHS(ins, index);
17040         }
17041         else {
17042                 internal_error(state, ins, "Bad lhs %d", index);
17043                 lhs = 0;
17044         }
17045         info = arch_reg_lhs(state, ins, index);
17046         if (info.reg >= MAX_REGISTERS) {
17047                 info.reg = REG_UNSET;
17048         }
17049         for(set = lhs->use; set; set = set->next) {
17050                 struct reg_info rinfo;
17051                 struct triple *user;
17052                 int zrhs, i;
17053                 user = set->member;
17054                 zrhs = user->rhs;
17055                 for(i = 0; i < zrhs; i++) {
17056                         if (RHS(user, i) != lhs) {
17057                                 continue;
17058                         }
17059                         rinfo = find_rhs_post_color(state, user, i);
17060                         if ((info.reg != REG_UNSET) &&
17061                                 (rinfo.reg != REG_UNSET) &&
17062                                 (info.reg != rinfo.reg)) {
17063                                 internal_error(state, ins, "register conflict");
17064                         }
17065                         if ((info.regcm & rinfo.regcm) == 0) {
17066                                 internal_error(state, ins, "regcm conflict %x & %x == 0",
17067                                         info.regcm, rinfo.regcm);
17068                         }
17069                         if (info.reg == REG_UNSET) {
17070                                 info.reg = rinfo.reg;
17071                         }
17072                         info.regcm &= rinfo.regcm;
17073                 }
17074         }
17075 #if DEBUG_TRIPLE_COLOR
17076         fprintf(state->errout, "find_lhs_post_color(%p, %d) -> ( %d, %x)\n",
17077                 ins, index, info.reg, info.regcm);
17078 #endif
17079         return info;
17080 }
17081
17082 static struct reg_info find_rhs_post_color(
17083         struct compile_state *state, struct triple *ins, int index)
17084 {
17085         struct reg_info info, rinfo;
17086         int zlhs, i;
17087 #if DEBUG_TRIPLE_COLOR
17088         fprintf(state->errout, "find_rhs_post_color(%p, %d)\n",
17089                 ins, index);
17090 #endif
17091         rinfo = arch_reg_rhs(state, ins, index);
17092         zlhs = ins->lhs;
17093         if (!zlhs && triple_is_def(state, ins)) {
17094                 zlhs = 1;
17095         }
17096         info = rinfo;
17097         if (info.reg >= MAX_REGISTERS) {
17098                 info.reg = REG_UNSET;
17099         }
17100         for(i = 0; i < zlhs; i++) {
17101                 struct reg_info linfo;
17102                 linfo = arch_reg_lhs(state, ins, i);
17103                 if ((linfo.reg == rinfo.reg) &&
17104                         (linfo.reg >= MAX_REGISTERS)) {
17105                         struct reg_info tinfo;
17106                         tinfo = find_lhs_post_color(state, ins, i);
17107                         if (tinfo.reg >= MAX_REGISTERS) {
17108                                 tinfo.reg = REG_UNSET;
17109                         }
17110                         info.regcm &= linfo.regcm;
17111                         info.regcm &= tinfo.regcm;
17112                         if (info.reg != REG_UNSET) {
17113                                 internal_error(state, ins, "register conflict");
17114                         }
17115                         if (info.regcm == 0) {
17116                                 internal_error(state, ins, "regcm conflict");
17117                         }
17118                         info.reg = tinfo.reg;
17119                 }
17120         }
17121 #if DEBUG_TRIPLE_COLOR
17122         fprintf(state->errout, "find_rhs_post_color(%p, %d) -> ( %d, %x)\n",
17123                 ins, index, info.reg, info.regcm);
17124 #endif
17125         return info;
17126 }
17127
17128 static struct reg_info find_lhs_color(
17129         struct compile_state *state, struct triple *ins, int index)
17130 {
17131         struct reg_info pre, post, info;
17132 #if DEBUG_TRIPLE_COLOR
17133         fprintf(state->errout, "find_lhs_color(%p, %d)\n",
17134                 ins, index);
17135 #endif
17136         pre = find_lhs_pre_color(state, ins, index);
17137         post = find_lhs_post_color(state, ins, index);
17138         if ((pre.reg != post.reg) &&
17139                 (pre.reg != REG_UNSET) &&
17140                 (post.reg != REG_UNSET)) {
17141                 internal_error(state, ins, "register conflict");
17142         }
17143         info.regcm = pre.regcm & post.regcm;
17144         info.reg = pre.reg;
17145         if (info.reg == REG_UNSET) {
17146                 info.reg = post.reg;
17147         }
17148 #if DEBUG_TRIPLE_COLOR
17149         fprintf(state->errout, "find_lhs_color(%p, %d) -> ( %d, %x) ... (%d, %x) (%d, %x)\n",
17150                 ins, index, info.reg, info.regcm,
17151                 pre.reg, pre.regcm, post.reg, post.regcm);
17152 #endif
17153         return info;
17154 }
17155
17156 static struct triple *post_copy(struct compile_state *state, struct triple *ins)
17157 {
17158         struct triple_set *entry, *next;
17159         struct triple *out;
17160         struct reg_info info, rinfo;
17161
17162         info = arch_reg_lhs(state, ins, 0);
17163         out = post_triple(state, ins, OP_COPY, ins->type, ins, 0);
17164         use_triple(RHS(out, 0), out);
17165         /* Get the users of ins to use out instead */
17166         for(entry = ins->use; entry; entry = next) {
17167                 int i;
17168                 next = entry->next;
17169                 if (entry->member == out) {
17170                         continue;
17171                 }
17172                 i = find_rhs_use(state, entry->member, ins);
17173                 if (i < 0) {
17174                         continue;
17175                 }
17176                 rinfo = arch_reg_rhs(state, entry->member, i);
17177                 if ((info.reg == REG_UNNEEDED) && (rinfo.reg == REG_UNNEEDED)) {
17178                         continue;
17179                 }
17180                 replace_rhs_use(state, ins, out, entry->member);
17181         }
17182         transform_to_arch_instruction(state, out);
17183         return out;
17184 }
17185
17186 static struct triple *typed_pre_copy(
17187         struct compile_state *state, struct type *type, struct triple *ins, int index)
17188 {
17189         /* Carefully insert enough operations so that I can
17190          * enter any operation with a GPR32.
17191          */
17192         struct triple *in;
17193         struct triple **expr;
17194         unsigned classes;
17195         struct reg_info info;
17196         int op;
17197         if (ins->op == OP_PHI) {
17198                 internal_error(state, ins, "pre_copy on a phi?");
17199         }
17200         classes = arch_type_to_regcm(state, type);
17201         info = arch_reg_rhs(state, ins, index);
17202         expr = &RHS(ins, index);
17203         if ((info.regcm & classes) == 0) {
17204                 FILE *fp = state->errout;
17205                 fprintf(fp, "src_type: ");
17206                 name_of(fp, ins->type);
17207                 fprintf(fp, "\ndst_type: ");
17208                 name_of(fp, type);
17209                 fprintf(fp, "\n");
17210                 internal_error(state, ins, "pre_copy with no register classes");
17211         }
17212         op = OP_COPY;
17213         if (!equiv_types(type, (*expr)->type)) {
17214                 op = OP_CONVERT;
17215         }
17216         in = pre_triple(state, ins, op, type, *expr, 0);
17217         unuse_triple(*expr, ins);
17218         *expr = in;
17219         use_triple(RHS(in, 0), in);
17220         use_triple(in, ins);
17221         transform_to_arch_instruction(state, in);
17222         return in;
17223
17224 }
17225 static struct triple *pre_copy(
17226         struct compile_state *state, struct triple *ins, int index)
17227 {
17228         return typed_pre_copy(state, RHS(ins, index)->type, ins, index);
17229 }
17230
17231
17232 static void insert_copies_to_phi(struct compile_state *state)
17233 {
17234         /* To get out of ssa form we insert moves on the incoming
17235          * edges to blocks containting phi functions.
17236          */
17237         struct triple *first;
17238         struct triple *phi;
17239
17240         /* Walk all of the operations to find the phi functions */
17241         first = state->first;
17242         for(phi = first->next; phi != first ; phi = phi->next) {
17243                 struct block_set *set;
17244                 struct block *block;
17245                 struct triple **slot, *copy;
17246                 int edge;
17247                 if (phi->op != OP_PHI) {
17248                         continue;
17249                 }
17250                 phi->id |= TRIPLE_FLAG_POST_SPLIT;
17251                 block = phi->u.block;
17252                 slot  = &RHS(phi, 0);
17253                 /* Phi's that feed into mandatory live range joins
17254                  * cause nasty complications.  Insert a copy of
17255                  * the phi value so I never have to deal with
17256                  * that in the rest of the code.
17257                  */
17258                 copy = post_copy(state, phi);
17259                 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
17260                 /* Walk all of the incoming edges/blocks and insert moves.
17261                  */
17262                 for(edge = 0, set = block->use; set; set = set->next, edge++) {
17263                         struct block *eblock;
17264                         struct triple *move;
17265                         struct triple *val;
17266                         struct triple *ptr;
17267                         eblock = set->member;
17268                         val = slot[edge];
17269
17270                         if (val == phi) {
17271                                 continue;
17272                         }
17273
17274                         get_occurance(val->occurance);
17275                         move = build_triple(state, OP_COPY, val->type, val, 0,
17276                                 val->occurance);
17277                         move->u.block = eblock;
17278                         move->id |= TRIPLE_FLAG_PRE_SPLIT;
17279                         use_triple(val, move);
17280
17281                         slot[edge] = move;
17282                         unuse_triple(val, phi);
17283                         use_triple(move, phi);
17284
17285                         /* Walk up the dominator tree until I have found the appropriate block */
17286                         while(eblock && !tdominates(state, val, eblock->last)) {
17287                                 eblock = eblock->idom;
17288                         }
17289                         if (!eblock) {
17290                                 internal_error(state, phi, "Cannot find block dominated by %p",
17291                                         val);
17292                         }
17293
17294                         /* Walk through the block backwards to find
17295                          * an appropriate location for the OP_COPY.
17296                          */
17297                         for(ptr = eblock->last; ptr != eblock->first; ptr = ptr->prev) {
17298                                 struct triple **expr;
17299                                 if (ptr->op == OP_PIECE) {
17300                                         ptr = MISC(ptr, 0);
17301                                 }
17302                                 if ((ptr == phi) || (ptr == val)) {
17303                                         goto out;
17304                                 }
17305                                 expr = triple_lhs(state, ptr, 0);
17306                                 for(;expr; expr = triple_lhs(state, ptr, expr)) {
17307                                         if ((*expr) == val) {
17308                                                 goto out;
17309                                         }
17310                                 }
17311                                 expr = triple_rhs(state, ptr, 0);
17312                                 for(;expr; expr = triple_rhs(state, ptr, expr)) {
17313                                         if ((*expr) == phi) {
17314                                                 goto out;
17315                                         }
17316                                 }
17317                         }
17318                 out:
17319                         if (triple_is_branch(state, ptr)) {
17320                                 internal_error(state, ptr,
17321                                         "Could not insert write to phi");
17322                         }
17323                         insert_triple(state, after_lhs(state, ptr), move);
17324                         if (eblock->last == after_lhs(state, ptr)->prev) {
17325                                 eblock->last = move;
17326                         }
17327                         transform_to_arch_instruction(state, move);
17328                 }
17329         }
17330         print_blocks(state, __func__, state->dbgout);
17331 }
17332
17333 struct triple_reg_set;
17334 struct reg_block;
17335
17336
17337 static int do_triple_set(struct triple_reg_set **head,
17338         struct triple *member, struct triple *new_member)
17339 {
17340         struct triple_reg_set **ptr, *new;
17341         if (!member)
17342                 return 0;
17343         ptr = head;
17344         while(*ptr) {
17345                 if ((*ptr)->member == member) {
17346                         return 0;
17347                 }
17348                 ptr = &(*ptr)->next;
17349         }
17350         new = xcmalloc(sizeof(*new), "triple_set");
17351         new->member = member;
17352         new->new    = new_member;
17353         new->next   = *head;
17354         *head       = new;
17355         return 1;
17356 }
17357
17358 static void do_triple_unset(struct triple_reg_set **head, struct triple *member)
17359 {
17360         struct triple_reg_set *entry, **ptr;
17361         ptr = head;
17362         while(*ptr) {
17363                 entry = *ptr;
17364                 if (entry->member == member) {
17365                         *ptr = entry->next;
17366                         xfree(entry);
17367                         return;
17368                 }
17369                 else {
17370                         ptr = &entry->next;
17371                 }
17372         }
17373 }
17374
17375 static int in_triple(struct reg_block *rb, struct triple *in)
17376 {
17377         return do_triple_set(&rb->in, in, 0);
17378 }
17379
17380 #if DEBUG_ROMCC_WARNING
17381 static void unin_triple(struct reg_block *rb, struct triple *unin)
17382 {
17383         do_triple_unset(&rb->in, unin);
17384 }
17385 #endif
17386
17387 static int out_triple(struct reg_block *rb, struct triple *out)
17388 {
17389         return do_triple_set(&rb->out, out, 0);
17390 }
17391 #if DEBUG_ROMCC_WARNING
17392 static void unout_triple(struct reg_block *rb, struct triple *unout)
17393 {
17394         do_triple_unset(&rb->out, unout);
17395 }
17396 #endif
17397
17398 static int initialize_regblock(struct reg_block *blocks,
17399         struct block *block, int vertex)
17400 {
17401         struct block_set *user;
17402         if (!block || (blocks[block->vertex].block == block)) {
17403                 return vertex;
17404         }
17405         vertex += 1;
17406         /* Renumber the blocks in a convinient fashion */
17407         block->vertex = vertex;
17408         blocks[vertex].block    = block;
17409         blocks[vertex].vertex   = vertex;
17410         for(user = block->use; user; user = user->next) {
17411                 vertex = initialize_regblock(blocks, user->member, vertex);
17412         }
17413         return vertex;
17414 }
17415
17416 static struct triple *part_to_piece(struct compile_state *state, struct triple *ins)
17417 {
17418 /* Part to piece is a best attempt and it cannot be correct all by
17419  * itself.  If various values are read as different sizes in different
17420  * parts of the code this function cannot work.  Or rather it cannot
17421  * work in conjunction with compute_variable_liftimes.  As the
17422  * analysis will get confused.
17423  */
17424         struct triple *base;
17425         unsigned reg;
17426         if (!is_lvalue(state, ins)) {
17427                 return ins;
17428         }
17429         base = 0;
17430         reg = 0;
17431         while(ins && triple_is_part(state, ins) && (ins->op != OP_PIECE)) {
17432                 base = MISC(ins, 0);
17433                 switch(ins->op) {
17434                 case OP_INDEX:
17435                         reg += index_reg_offset(state, base->type, ins->u.cval)/REG_SIZEOF_REG;
17436                         break;
17437                 case OP_DOT:
17438                         reg += field_reg_offset(state, base->type, ins->u.field)/REG_SIZEOF_REG;
17439                         break;
17440                 default:
17441                         internal_error(state, ins, "unhandled part");
17442                         break;
17443                 }
17444                 ins = base;
17445         }
17446         if (base) {
17447                 if (reg > base->lhs) {
17448                         internal_error(state, base, "part out of range?");
17449                 }
17450                 ins = LHS(base, reg);
17451         }
17452         return ins;
17453 }
17454
17455 static int this_def(struct compile_state *state,
17456         struct triple *ins, struct triple *other)
17457 {
17458         if (ins == other) {
17459                 return 1;
17460         }
17461         if (ins->op == OP_WRITE) {
17462                 ins = part_to_piece(state, MISC(ins, 0));
17463         }
17464         return ins == other;
17465 }
17466
17467 static int phi_in(struct compile_state *state, struct reg_block *blocks,
17468         struct reg_block *rb, struct block *suc)
17469 {
17470         /* Read the conditional input set of a successor block
17471          * (i.e. the input to the phi nodes) and place it in the
17472          * current blocks output set.
17473          */
17474         struct block_set *set;
17475         struct triple *ptr;
17476         int edge;
17477         int done, change;
17478         change = 0;
17479         /* Find the edge I am coming in on */
17480         for(edge = 0, set = suc->use; set; set = set->next, edge++) {
17481                 if (set->member == rb->block) {
17482                         break;
17483                 }
17484         }
17485         if (!set) {
17486                 internal_error(state, 0, "Not coming on a control edge?");
17487         }
17488         for(done = 0, ptr = suc->first; !done; ptr = ptr->next) {
17489                 struct triple **slot, *expr, *ptr2;
17490                 int out_change, done2;
17491                 done = (ptr == suc->last);
17492                 if (ptr->op != OP_PHI) {
17493                         continue;
17494                 }
17495                 slot = &RHS(ptr, 0);
17496                 expr = slot[edge];
17497                 out_change = out_triple(rb, expr);
17498                 if (!out_change) {
17499                         continue;
17500                 }
17501                 /* If we don't define the variable also plast it
17502                  * in the current blocks input set.
17503                  */
17504                 ptr2 = rb->block->first;
17505                 for(done2 = 0; !done2; ptr2 = ptr2->next) {
17506                         if (this_def(state, ptr2, expr)) {
17507                                 break;
17508                         }
17509                         done2 = (ptr2 == rb->block->last);
17510                 }
17511                 if (!done2) {
17512                         continue;
17513                 }
17514                 change |= in_triple(rb, expr);
17515         }
17516         return change;
17517 }
17518
17519 static int reg_in(struct compile_state *state, struct reg_block *blocks,
17520         struct reg_block *rb, struct block *suc)
17521 {
17522         struct triple_reg_set *in_set;
17523         int change;
17524         change = 0;
17525         /* Read the input set of a successor block
17526          * and place it in the current blocks output set.
17527          */
17528         in_set = blocks[suc->vertex].in;
17529         for(; in_set; in_set = in_set->next) {
17530                 int out_change, done;
17531                 struct triple *first, *last, *ptr;
17532                 out_change = out_triple(rb, in_set->member);
17533                 if (!out_change) {
17534                         continue;
17535                 }
17536                 /* If we don't define the variable also place it
17537                  * in the current blocks input set.
17538                  */
17539                 first = rb->block->first;
17540                 last = rb->block->last;
17541                 done = 0;
17542                 for(ptr = first; !done; ptr = ptr->next) {
17543                         if (this_def(state, ptr, in_set->member)) {
17544                                 break;
17545                         }
17546                         done = (ptr == last);
17547                 }
17548                 if (!done) {
17549                         continue;
17550                 }
17551                 change |= in_triple(rb, in_set->member);
17552         }
17553         change |= phi_in(state, blocks, rb, suc);
17554         return change;
17555 }
17556
17557 static int use_in(struct compile_state *state, struct reg_block *rb)
17558 {
17559         /* Find the variables we use but don't define and add
17560          * it to the current blocks input set.
17561          */
17562 #if DEBUG_ROMCC_WARNINGS
17563 #warning "FIXME is this O(N^2) algorithm bad?"
17564 #endif
17565         struct block *block;
17566         struct triple *ptr;
17567         int done;
17568         int change;
17569         block = rb->block;
17570         change = 0;
17571         for(done = 0, ptr = block->last; !done; ptr = ptr->prev) {
17572                 struct triple **expr;
17573                 done = (ptr == block->first);
17574                 /* The variable a phi function uses depends on the
17575                  * control flow, and is handled in phi_in, not
17576                  * here.
17577                  */
17578                 if (ptr->op == OP_PHI) {
17579                         continue;
17580                 }
17581                 expr = triple_rhs(state, ptr, 0);
17582                 for(;expr; expr = triple_rhs(state, ptr, expr)) {
17583                         struct triple *rhs, *test;
17584                         int tdone;
17585                         rhs = part_to_piece(state, *expr);
17586                         if (!rhs) {
17587                                 continue;
17588                         }
17589
17590                         /* See if rhs is defined in this block.
17591                          * A write counts as a definition.
17592                          */
17593                         for(tdone = 0, test = ptr; !tdone; test = test->prev) {
17594                                 tdone = (test == block->first);
17595                                 if (this_def(state, test, rhs)) {
17596                                         rhs = 0;
17597                                         break;
17598                                 }
17599                         }
17600                         /* If I still have a valid rhs add it to in */
17601                         change |= in_triple(rb, rhs);
17602                 }
17603         }
17604         return change;
17605 }
17606
17607 static struct reg_block *compute_variable_lifetimes(
17608         struct compile_state *state, struct basic_blocks *bb)
17609 {
17610         struct reg_block *blocks;
17611         int change;
17612         blocks = xcmalloc(
17613                 sizeof(*blocks)*(bb->last_vertex + 1), "reg_block");
17614         initialize_regblock(blocks, bb->last_block, 0);
17615         do {
17616                 int i;
17617                 change = 0;
17618                 for(i = 1; i <= bb->last_vertex; i++) {
17619                         struct block_set *edge;
17620                         struct reg_block *rb;
17621                         rb = &blocks[i];
17622                         /* Add the all successor's input set to in */
17623                         for(edge = rb->block->edges; edge; edge = edge->next) {
17624                                 change |= reg_in(state, blocks, rb, edge->member);
17625                         }
17626                         /* Add use to in... */
17627                         change |= use_in(state, rb);
17628                 }
17629         } while(change);
17630         return blocks;
17631 }
17632
17633 static void free_variable_lifetimes(struct compile_state *state,
17634         struct basic_blocks *bb, struct reg_block *blocks)
17635 {
17636         int i;
17637         /* free in_set && out_set on each block */
17638         for(i = 1; i <= bb->last_vertex; i++) {
17639                 struct triple_reg_set *entry, *next;
17640                 struct reg_block *rb;
17641                 rb = &blocks[i];
17642                 for(entry = rb->in; entry ; entry = next) {
17643                         next = entry->next;
17644                         do_triple_unset(&rb->in, entry->member);
17645                 }
17646                 for(entry = rb->out; entry; entry = next) {
17647                         next = entry->next;
17648                         do_triple_unset(&rb->out, entry->member);
17649                 }
17650         }
17651         xfree(blocks);
17652
17653 }
17654
17655 typedef void (*wvl_cb_t)(
17656         struct compile_state *state,
17657         struct reg_block *blocks, struct triple_reg_set *live,
17658         struct reg_block *rb, struct triple *ins, void *arg);
17659
17660 static void walk_variable_lifetimes(struct compile_state *state,
17661         struct basic_blocks *bb, struct reg_block *blocks,
17662         wvl_cb_t cb, void *arg)
17663 {
17664         int i;
17665
17666         for(i = 1; i <= state->bb.last_vertex; i++) {
17667                 struct triple_reg_set *live;
17668                 struct triple_reg_set *entry, *next;
17669                 struct triple *ptr, *prev;
17670                 struct reg_block *rb;
17671                 struct block *block;
17672                 int done;
17673
17674                 /* Get the blocks */
17675                 rb = &blocks[i];
17676                 block = rb->block;
17677
17678                 /* Copy out into live */
17679                 live = 0;
17680                 for(entry = rb->out; entry; entry = next) {
17681                         next = entry->next;
17682                         do_triple_set(&live, entry->member, entry->new);
17683                 }
17684                 /* Walk through the basic block calculating live */
17685                 for(done = 0, ptr = block->last; !done; ptr = prev) {
17686                         struct triple **expr;
17687
17688                         prev = ptr->prev;
17689                         done = (ptr == block->first);
17690
17691                         /* Ensure the current definition is in live */
17692                         if (triple_is_def(state, ptr)) {
17693                                 do_triple_set(&live, ptr, 0);
17694                         }
17695
17696                         /* Inform the callback function of what is
17697                          * going on.
17698                          */
17699                          cb(state, blocks, live, rb, ptr, arg);
17700
17701                         /* Remove the current definition from live */
17702                         do_triple_unset(&live, ptr);
17703
17704                         /* Add the current uses to live.
17705                          *
17706                          * It is safe to skip phi functions because they do
17707                          * not have any block local uses, and the block
17708                          * output sets already properly account for what
17709                          * control flow depedent uses phi functions do have.
17710                          */
17711                         if (ptr->op == OP_PHI) {
17712                                 continue;
17713                         }
17714                         expr = triple_rhs(state, ptr, 0);
17715                         for(;expr; expr = triple_rhs(state, ptr, expr)) {
17716                                 /* If the triple is not a definition skip it. */
17717                                 if (!*expr || !triple_is_def(state, *expr)) {
17718                                         continue;
17719                                 }
17720                                 do_triple_set(&live, *expr, 0);
17721                         }
17722                 }
17723                 /* Free live */
17724                 for(entry = live; entry; entry = next) {
17725                         next = entry->next;
17726                         do_triple_unset(&live, entry->member);
17727                 }
17728         }
17729 }
17730
17731 struct print_live_variable_info {
17732         struct reg_block *rb;
17733         FILE *fp;
17734 };
17735 #if DEBUG_EXPLICIT_CLOSURES
17736 static void print_live_variables_block(
17737         struct compile_state *state, struct block *block, void *arg)
17738
17739 {
17740         struct print_live_variable_info *info = arg;
17741         struct block_set *edge;
17742         FILE *fp = info->fp;
17743         struct reg_block *rb;
17744         struct triple *ptr;
17745         int phi_present;
17746         int done;
17747         rb = &info->rb[block->vertex];
17748
17749         fprintf(fp, "\nblock: %p (%d),",
17750                 block,  block->vertex);
17751         for(edge = block->edges; edge; edge = edge->next) {
17752                 fprintf(fp, " %p<-%p",
17753                         edge->member,
17754                         edge->member && edge->member->use?edge->member->use->member : 0);
17755         }
17756         fprintf(fp, "\n");
17757         if (rb->in) {
17758                 struct triple_reg_set *in_set;
17759                 fprintf(fp, "        in:");
17760                 for(in_set = rb->in; in_set; in_set = in_set->next) {
17761                         fprintf(fp, " %-10p", in_set->member);
17762                 }
17763                 fprintf(fp, "\n");
17764         }
17765         phi_present = 0;
17766         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
17767                 done = (ptr == block->last);
17768                 if (ptr->op == OP_PHI) {
17769                         phi_present = 1;
17770                         break;
17771                 }
17772         }
17773         if (phi_present) {
17774                 int edge;
17775                 for(edge = 0; edge < block->users; edge++) {
17776                         fprintf(fp, "     in(%d):", edge);
17777                         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
17778                                 struct triple **slot;
17779                                 done = (ptr == block->last);
17780                                 if (ptr->op != OP_PHI) {
17781                                         continue;
17782                                 }
17783                                 slot = &RHS(ptr, 0);
17784                                 fprintf(fp, " %-10p", slot[edge]);
17785                         }
17786                         fprintf(fp, "\n");
17787                 }
17788         }
17789         if (block->first->op == OP_LABEL) {
17790                 fprintf(fp, "%p:\n", block->first);
17791         }
17792         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
17793                 done = (ptr == block->last);
17794                 display_triple(fp, ptr);
17795         }
17796         if (rb->out) {
17797                 struct triple_reg_set *out_set;
17798                 fprintf(fp, "       out:");
17799                 for(out_set = rb->out; out_set; out_set = out_set->next) {
17800                         fprintf(fp, " %-10p", out_set->member);
17801                 }
17802                 fprintf(fp, "\n");
17803         }
17804         fprintf(fp, "\n");
17805 }
17806
17807 static void print_live_variables(struct compile_state *state,
17808         struct basic_blocks *bb, struct reg_block *rb, FILE *fp)
17809 {
17810         struct print_live_variable_info info;
17811         info.rb = rb;
17812         info.fp = fp;
17813         fprintf(fp, "\nlive variables by block\n");
17814         walk_blocks(state, bb, print_live_variables_block, &info);
17815
17816 }
17817 #endif
17818
17819 static int count_triples(struct compile_state *state)
17820 {
17821         struct triple *first, *ins;
17822         int triples = 0;
17823         first = state->first;
17824         ins = first;
17825         do {
17826                 triples++;
17827                 ins = ins->next;
17828         } while (ins != first);
17829         return triples;
17830 }
17831
17832
17833 struct dead_triple {
17834         struct triple *triple;
17835         struct dead_triple *work_next;
17836         struct block *block;
17837         int old_id;
17838         int flags;
17839 #define TRIPLE_FLAG_ALIVE 1
17840 #define TRIPLE_FLAG_FREE  1
17841 };
17842
17843 static void print_dead_triples(struct compile_state *state,
17844         struct dead_triple *dtriple)
17845 {
17846         struct triple *first, *ins;
17847         struct dead_triple *dt;
17848         FILE *fp;
17849         if (!(state->compiler->debug & DEBUG_TRIPLES)) {
17850                 return;
17851         }
17852         fp = state->dbgout;
17853         fprintf(fp, "--------------- dtriples ---------------\n");
17854         first = state->first;
17855         ins = first;
17856         do {
17857                 dt = &dtriple[ins->id];
17858                 if ((ins->op == OP_LABEL) && (ins->use)) {
17859                         fprintf(fp, "\n%p:\n", ins);
17860                 }
17861                 fprintf(fp, "%c",
17862                         (dt->flags & TRIPLE_FLAG_ALIVE)?' ': '-');
17863                 display_triple(fp, ins);
17864                 if (triple_is_branch(state, ins)) {
17865                         fprintf(fp, "\n");
17866                 }
17867                 ins = ins->next;
17868         } while(ins != first);
17869         fprintf(fp, "\n");
17870 }
17871
17872
17873 static void awaken(
17874         struct compile_state *state,
17875         struct dead_triple *dtriple, struct triple **expr,
17876         struct dead_triple ***work_list_tail)
17877 {
17878         struct triple *triple;
17879         struct dead_triple *dt;
17880         if (!expr) {
17881                 return;
17882         }
17883         triple = *expr;
17884         if (!triple) {
17885                 return;
17886         }
17887         if (triple->id <= 0)  {
17888                 internal_error(state, triple, "bad triple id: %d",
17889                         triple->id);
17890         }
17891         if (triple->op == OP_NOOP) {
17892                 internal_error(state, triple, "awakening noop?");
17893                 return;
17894         }
17895         dt = &dtriple[triple->id];
17896         if (!(dt->flags & TRIPLE_FLAG_ALIVE)) {
17897                 dt->flags |= TRIPLE_FLAG_ALIVE;
17898                 if (!dt->work_next) {
17899                         **work_list_tail = dt;
17900                         *work_list_tail = &dt->work_next;
17901                 }
17902         }
17903 }
17904
17905 static void eliminate_inefectual_code(struct compile_state *state)
17906 {
17907         struct dead_triple *dtriple, *work_list, **work_list_tail, *dt;
17908         int triples, i;
17909         struct triple *first, *ins;
17910
17911         if (!(state->compiler->flags & COMPILER_ELIMINATE_INEFECTUAL_CODE)) {
17912                 return;
17913         }
17914
17915         /* Setup the work list */
17916         work_list = 0;
17917         work_list_tail = &work_list;
17918
17919         first = state->first;
17920
17921         /* Count how many triples I have */
17922         triples = count_triples(state);
17923
17924         /* Now put then in an array and mark all of the triples dead */
17925         dtriple = xcmalloc(sizeof(*dtriple) * (triples + 1), "dtriples");
17926
17927         ins = first;
17928         i = 1;
17929         do {
17930                 dtriple[i].triple = ins;
17931                 dtriple[i].block  = block_of_triple(state, ins);
17932                 dtriple[i].flags  = 0;
17933                 dtriple[i].old_id = ins->id;
17934                 ins->id = i;
17935                 /* See if it is an operation we always keep */
17936                 if (!triple_is_pure(state, ins, dtriple[i].old_id)) {
17937                         awaken(state, dtriple, &ins, &work_list_tail);
17938                 }
17939                 i++;
17940                 ins = ins->next;
17941         } while(ins != first);
17942         while(work_list) {
17943                 struct block *block;
17944                 struct dead_triple *dt;
17945                 struct block_set *user;
17946                 struct triple **expr;
17947                 dt = work_list;
17948                 work_list = dt->work_next;
17949                 if (!work_list) {
17950                         work_list_tail = &work_list;
17951                 }
17952                 /* Make certain the block the current instruction is in lives */
17953                 block = block_of_triple(state, dt->triple);
17954                 awaken(state, dtriple, &block->first, &work_list_tail);
17955                 if (triple_is_branch(state, block->last)) {
17956                         awaken(state, dtriple, &block->last, &work_list_tail);
17957                 } else {
17958                         awaken(state, dtriple, &block->last->next, &work_list_tail);
17959                 }
17960
17961                 /* Wake up the data depencencies of this triple */
17962                 expr = 0;
17963                 do {
17964                         expr = triple_rhs(state, dt->triple, expr);
17965                         awaken(state, dtriple, expr, &work_list_tail);
17966                 } while(expr);
17967                 do {
17968                         expr = triple_lhs(state, dt->triple, expr);
17969                         awaken(state, dtriple, expr, &work_list_tail);
17970                 } while(expr);
17971                 do {
17972                         expr = triple_misc(state, dt->triple, expr);
17973                         awaken(state, dtriple, expr, &work_list_tail);
17974                 } while(expr);
17975                 /* Wake up the forward control dependencies */
17976                 do {
17977                         expr = triple_targ(state, dt->triple, expr);
17978                         awaken(state, dtriple, expr, &work_list_tail);
17979                 } while(expr);
17980                 /* Wake up the reverse control dependencies of this triple */
17981                 for(user = dt->block->ipdomfrontier; user; user = user->next) {
17982                         struct triple *last;
17983                         last = user->member->last;
17984                         while((last->op == OP_NOOP) && (last != user->member->first)) {
17985 #if DEBUG_ROMCC_WARNINGS
17986 #warning "Should we bring the awakening noops back?"
17987 #endif
17988                                 // internal_warning(state, last, "awakening noop?");
17989                                 last = last->prev;
17990                         }
17991                         awaken(state, dtriple, &last, &work_list_tail);
17992                 }
17993         }
17994         print_dead_triples(state, dtriple);
17995         for(dt = &dtriple[1]; dt <= &dtriple[triples]; dt++) {
17996                 if ((dt->triple->op == OP_NOOP) &&
17997                         (dt->flags & TRIPLE_FLAG_ALIVE)) {
17998                         internal_error(state, dt->triple, "noop effective?");
17999                 }
18000                 dt->triple->id = dt->old_id;    /* Restore the color */
18001                 if (!(dt->flags & TRIPLE_FLAG_ALIVE)) {
18002                         release_triple(state, dt->triple);
18003                 }
18004         }
18005         xfree(dtriple);
18006
18007         rebuild_ssa_form(state);
18008
18009         print_blocks(state, __func__, state->dbgout);
18010 }
18011
18012
18013 static void insert_mandatory_copies(struct compile_state *state)
18014 {
18015         struct triple *ins, *first;
18016
18017         /* The object is with a minimum of inserted copies,
18018          * to resolve in fundamental register conflicts between
18019          * register value producers and consumers.
18020          * Theoretically we may be greater than minimal when we
18021          * are inserting copies before instructions but that
18022          * case should be rare.
18023          */
18024         first = state->first;
18025         ins = first;
18026         do {
18027                 struct triple_set *entry, *next;
18028                 struct triple *tmp;
18029                 struct reg_info info;
18030                 unsigned reg, regcm;
18031                 int do_post_copy, do_pre_copy;
18032                 tmp = 0;
18033                 if (!triple_is_def(state, ins)) {
18034                         goto next;
18035                 }
18036                 /* Find the architecture specific color information */
18037                 info = find_lhs_pre_color(state, ins, 0);
18038                 if (info.reg >= MAX_REGISTERS) {
18039                         info.reg = REG_UNSET;
18040                 }
18041
18042                 reg = REG_UNSET;
18043                 regcm = arch_type_to_regcm(state, ins->type);
18044                 do_post_copy = do_pre_copy = 0;
18045
18046                 /* Walk through the uses of ins and check for conflicts */
18047                 for(entry = ins->use; entry; entry = next) {
18048                         struct reg_info rinfo;
18049                         int i;
18050                         next = entry->next;
18051                         i = find_rhs_use(state, entry->member, ins);
18052                         if (i < 0) {
18053                                 continue;
18054                         }
18055
18056                         /* Find the users color requirements */
18057                         rinfo = arch_reg_rhs(state, entry->member, i);
18058                         if (rinfo.reg >= MAX_REGISTERS) {
18059                                 rinfo.reg = REG_UNSET;
18060                         }
18061
18062                         /* See if I need a pre_copy */
18063                         if (rinfo.reg != REG_UNSET) {
18064                                 if ((reg != REG_UNSET) && (reg != rinfo.reg)) {
18065                                         do_pre_copy = 1;
18066                                 }
18067                                 reg = rinfo.reg;
18068                         }
18069                         regcm &= rinfo.regcm;
18070                         regcm = arch_regcm_normalize(state, regcm);
18071                         if (regcm == 0) {
18072                                 do_pre_copy = 1;
18073                         }
18074                         /* Always use pre_copies for constants.
18075                          * They do not take up any registers until a
18076                          * copy places them in one.
18077                          */
18078                         if ((info.reg == REG_UNNEEDED) &&
18079                                 (rinfo.reg != REG_UNNEEDED)) {
18080                                 do_pre_copy = 1;
18081                         }
18082                 }
18083                 do_post_copy =
18084                         !do_pre_copy &&
18085                         (((info.reg != REG_UNSET) &&
18086                                 (reg != REG_UNSET) &&
18087                                 (info.reg != reg)) ||
18088                         ((info.regcm & regcm) == 0));
18089
18090                 reg = info.reg;
18091                 regcm = info.regcm;
18092                 /* Walk through the uses of ins and do a pre_copy or see if a post_copy is warranted */
18093                 for(entry = ins->use; entry; entry = next) {
18094                         struct reg_info rinfo;
18095                         int i;
18096                         next = entry->next;
18097                         i = find_rhs_use(state, entry->member, ins);
18098                         if (i < 0) {
18099                                 continue;
18100                         }
18101
18102                         /* Find the users color requirements */
18103                         rinfo = arch_reg_rhs(state, entry->member, i);
18104                         if (rinfo.reg >= MAX_REGISTERS) {
18105                                 rinfo.reg = REG_UNSET;
18106                         }
18107
18108                         /* Now see if it is time to do the pre_copy */
18109                         if (rinfo.reg != REG_UNSET) {
18110                                 if (((reg != REG_UNSET) && (reg != rinfo.reg)) ||
18111                                         ((regcm & rinfo.regcm) == 0) ||
18112                                         /* Don't let a mandatory coalesce sneak
18113                                          * into a operation that is marked to prevent
18114                                          * coalescing.
18115                                          */
18116                                         ((reg != REG_UNNEEDED) &&
18117                                         ((ins->id & TRIPLE_FLAG_POST_SPLIT) ||
18118                                         (entry->member->id & TRIPLE_FLAG_PRE_SPLIT)))
18119                                         ) {
18120                                         if (do_pre_copy) {
18121                                                 struct triple *user;
18122                                                 user = entry->member;
18123                                                 if (RHS(user, i) != ins) {
18124                                                         internal_error(state, user, "bad rhs");
18125                                                 }
18126                                                 tmp = pre_copy(state, user, i);
18127                                                 tmp->id |= TRIPLE_FLAG_PRE_SPLIT;
18128                                                 continue;
18129                                         } else {
18130                                                 do_post_copy = 1;
18131                                         }
18132                                 }
18133                                 reg = rinfo.reg;
18134                         }
18135                         if ((regcm & rinfo.regcm) == 0) {
18136                                 if (do_pre_copy) {
18137                                         struct triple *user;
18138                                         user = entry->member;
18139                                         if (RHS(user, i) != ins) {
18140                                                 internal_error(state, user, "bad rhs");
18141                                         }
18142                                         tmp = pre_copy(state, user, i);
18143                                         tmp->id |= TRIPLE_FLAG_PRE_SPLIT;
18144                                         continue;
18145                                 } else {
18146                                         do_post_copy = 1;
18147                                 }
18148                         }
18149                         regcm &= rinfo.regcm;
18150
18151                 }
18152                 if (do_post_copy) {
18153                         struct reg_info pre, post;
18154                         tmp = post_copy(state, ins);
18155                         tmp->id |= TRIPLE_FLAG_PRE_SPLIT;
18156                         pre = arch_reg_lhs(state, ins, 0);
18157                         post = arch_reg_lhs(state, tmp, 0);
18158                         if ((pre.reg == post.reg) && (pre.regcm == post.regcm)) {
18159                                 internal_error(state, tmp, "useless copy");
18160                         }
18161                 }
18162         next:
18163                 ins = ins->next;
18164         } while(ins != first);
18165
18166         print_blocks(state, __func__, state->dbgout);
18167 }
18168
18169
18170 struct live_range_edge;
18171 struct live_range_def;
18172 struct live_range {
18173         struct live_range_edge *edges;
18174         struct live_range_def *defs;
18175 /* Note. The list pointed to by defs is kept in order.
18176  * That is baring splits in the flow control
18177  * defs dominates defs->next wich dominates defs->next->next
18178  * etc.
18179  */
18180         unsigned color;
18181         unsigned classes;
18182         unsigned degree;
18183         unsigned length;
18184         struct live_range *group_next, **group_prev;
18185 };
18186
18187 struct live_range_edge {
18188         struct live_range_edge *next;
18189         struct live_range *node;
18190 };
18191
18192 struct live_range_def {
18193         struct live_range_def *next;
18194         struct live_range_def *prev;
18195         struct live_range *lr;
18196         struct triple *def;
18197         unsigned orig_id;
18198 };
18199
18200 #define LRE_HASH_SIZE 2048
18201 struct lre_hash {
18202         struct lre_hash *next;
18203         struct live_range *left;
18204         struct live_range *right;
18205 };
18206
18207
18208 struct reg_state {
18209         struct lre_hash *hash[LRE_HASH_SIZE];
18210         struct reg_block *blocks;
18211         struct live_range_def *lrd;
18212         struct live_range *lr;
18213         struct live_range *low, **low_tail;
18214         struct live_range *high, **high_tail;
18215         unsigned defs;
18216         unsigned ranges;
18217         int passes, max_passes;
18218 };
18219
18220
18221 struct print_interference_block_info {
18222         struct reg_state *rstate;
18223         FILE *fp;
18224         int need_edges;
18225 };
18226 static void print_interference_block(
18227         struct compile_state *state, struct block *block, void *arg)
18228
18229 {
18230         struct print_interference_block_info *info = arg;
18231         struct reg_state *rstate = info->rstate;
18232         struct block_set *edge;
18233         FILE *fp = info->fp;
18234         struct reg_block *rb;
18235         struct triple *ptr;
18236         int phi_present;
18237         int done;
18238         rb = &rstate->blocks[block->vertex];
18239
18240         fprintf(fp, "\nblock: %p (%d),",
18241                 block,  block->vertex);
18242         for(edge = block->edges; edge; edge = edge->next) {
18243                 fprintf(fp, " %p<-%p",
18244                         edge->member,
18245                         edge->member && edge->member->use?edge->member->use->member : 0);
18246         }
18247         fprintf(fp, "\n");
18248         if (rb->in) {
18249                 struct triple_reg_set *in_set;
18250                 fprintf(fp, "        in:");
18251                 for(in_set = rb->in; in_set; in_set = in_set->next) {
18252                         fprintf(fp, " %-10p", in_set->member);
18253                 }
18254                 fprintf(fp, "\n");
18255         }
18256         phi_present = 0;
18257         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
18258                 done = (ptr == block->last);
18259                 if (ptr->op == OP_PHI) {
18260                         phi_present = 1;
18261                         break;
18262                 }
18263         }
18264         if (phi_present) {
18265                 int edge;
18266                 for(edge = 0; edge < block->users; edge++) {
18267                         fprintf(fp, "     in(%d):", edge);
18268                         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
18269                                 struct triple **slot;
18270                                 done = (ptr == block->last);
18271                                 if (ptr->op != OP_PHI) {
18272                                         continue;
18273                                 }
18274                                 slot = &RHS(ptr, 0);
18275                                 fprintf(fp, " %-10p", slot[edge]);
18276                         }
18277                         fprintf(fp, "\n");
18278                 }
18279         }
18280         if (block->first->op == OP_LABEL) {
18281                 fprintf(fp, "%p:\n", block->first);
18282         }
18283         for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
18284                 struct live_range *lr;
18285                 unsigned id;
18286                 done = (ptr == block->last);
18287                 lr = rstate->lrd[ptr->id].lr;
18288
18289                 id = ptr->id;
18290                 ptr->id = rstate->lrd[id].orig_id;
18291                 SET_REG(ptr->id, lr->color);
18292                 display_triple(fp, ptr);
18293                 ptr->id = id;
18294
18295                 if (triple_is_def(state, ptr) && (lr->defs == 0)) {
18296                         internal_error(state, ptr, "lr has no defs!");
18297                 }
18298                 if (info->need_edges) {
18299                         if (lr->defs) {
18300                                 struct live_range_def *lrd;
18301                                 fprintf(fp, "       range:");
18302                                 lrd = lr->defs;
18303                                 do {
18304                                         fprintf(fp, " %-10p", lrd->def);
18305                                         lrd = lrd->next;
18306                                 } while(lrd != lr->defs);
18307                                 fprintf(fp, "\n");
18308                         }
18309                         if (lr->edges > 0) {
18310                                 struct live_range_edge *edge;
18311                                 fprintf(fp, "       edges:");
18312                                 for(edge = lr->edges; edge; edge = edge->next) {
18313                                         struct live_range_def *lrd;
18314                                         lrd = edge->node->defs;
18315                                         do {
18316                                                 fprintf(fp, " %-10p", lrd->def);
18317                                                 lrd = lrd->next;
18318                                         } while(lrd != edge->node->defs);
18319                                         fprintf(fp, "|");
18320                                 }
18321                                 fprintf(fp, "\n");
18322                         }
18323                 }
18324                 /* Do a bunch of sanity checks */
18325                 valid_ins(state, ptr);
18326                 if ((ptr->id < 0) || (ptr->id > rstate->defs)) {
18327                         internal_error(state, ptr, "Invalid triple id: %d",
18328                                 ptr->id);
18329                 }
18330         }
18331         if (rb->out) {
18332                 struct triple_reg_set *out_set;
18333                 fprintf(fp, "       out:");
18334                 for(out_set = rb->out; out_set; out_set = out_set->next) {
18335                         fprintf(fp, " %-10p", out_set->member);
18336                 }
18337                 fprintf(fp, "\n");
18338         }
18339         fprintf(fp, "\n");
18340 }
18341
18342 static void print_interference_blocks(
18343         struct compile_state *state, struct reg_state *rstate, FILE *fp, int need_edges)
18344 {
18345         struct print_interference_block_info info;
18346         info.rstate = rstate;
18347         info.fp = fp;
18348         info.need_edges = need_edges;
18349         fprintf(fp, "\nlive variables by block\n");
18350         walk_blocks(state, &state->bb, print_interference_block, &info);
18351
18352 }
18353
18354 static unsigned regc_max_size(struct compile_state *state, int classes)
18355 {
18356         unsigned max_size;
18357         int i;
18358         max_size = 0;
18359         for(i = 0; i < MAX_REGC; i++) {
18360                 if (classes & (1 << i)) {
18361                         unsigned size;
18362                         size = arch_regc_size(state, i);
18363                         if (size > max_size) {
18364                                 max_size = size;
18365                         }
18366                 }
18367         }
18368         return max_size;
18369 }
18370
18371 static int reg_is_reg(struct compile_state *state, int reg1, int reg2)
18372 {
18373         unsigned equivs[MAX_REG_EQUIVS];
18374         int i;
18375         if ((reg1 < 0) || (reg1 >= MAX_REGISTERS)) {
18376                 internal_error(state, 0, "invalid register");
18377         }
18378         if ((reg2 < 0) || (reg2 >= MAX_REGISTERS)) {
18379                 internal_error(state, 0, "invalid register");
18380         }
18381         arch_reg_equivs(state, equivs, reg1);
18382         for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
18383                 if (equivs[i] == reg2) {
18384                         return 1;
18385                 }
18386         }
18387         return 0;
18388 }
18389
18390 static void reg_fill_used(struct compile_state *state, char *used, int reg)
18391 {
18392         unsigned equivs[MAX_REG_EQUIVS];
18393         int i;
18394         if (reg == REG_UNNEEDED) {
18395                 return;
18396         }
18397         arch_reg_equivs(state, equivs, reg);
18398         for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
18399                 used[equivs[i]] = 1;
18400         }
18401         return;
18402 }
18403
18404 static void reg_inc_used(struct compile_state *state, char *used, int reg)
18405 {
18406         unsigned equivs[MAX_REG_EQUIVS];
18407         int i;
18408         if (reg == REG_UNNEEDED) {
18409                 return;
18410         }
18411         arch_reg_equivs(state, equivs, reg);
18412         for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
18413                 used[equivs[i]] += 1;
18414         }
18415         return;
18416 }
18417
18418 static unsigned int hash_live_edge(
18419         struct live_range *left, struct live_range *right)
18420 {
18421         unsigned int hash, val;
18422         unsigned long lval, rval;
18423         lval = ((unsigned long)left)/sizeof(struct live_range);
18424         rval = ((unsigned long)right)/sizeof(struct live_range);
18425         hash = 0;
18426         while(lval) {
18427                 val = lval & 0xff;
18428                 lval >>= 8;
18429                 hash = (hash *263) + val;
18430         }
18431         while(rval) {
18432                 val = rval & 0xff;
18433                 rval >>= 8;
18434                 hash = (hash *263) + val;
18435         }
18436         hash = hash & (LRE_HASH_SIZE - 1);
18437         return hash;
18438 }
18439
18440 static struct lre_hash **lre_probe(struct reg_state *rstate,
18441         struct live_range *left, struct live_range *right)
18442 {
18443         struct lre_hash **ptr;
18444         unsigned int index;
18445         /* Ensure left <= right */
18446         if (left > right) {
18447                 struct live_range *tmp;
18448                 tmp = left;
18449                 left = right;
18450                 right = tmp;
18451         }
18452         index = hash_live_edge(left, right);
18453
18454         ptr = &rstate->hash[index];
18455         while(*ptr) {
18456                 if (((*ptr)->left == left) && ((*ptr)->right == right)) {
18457                         break;
18458                 }
18459                 ptr = &(*ptr)->next;
18460         }
18461         return ptr;
18462 }
18463
18464 static int interfere(struct reg_state *rstate,
18465         struct live_range *left, struct live_range *right)
18466 {
18467         struct lre_hash **ptr;
18468         ptr = lre_probe(rstate, left, right);
18469         return ptr && *ptr;
18470 }
18471
18472 static void add_live_edge(struct reg_state *rstate,
18473         struct live_range *left, struct live_range *right)
18474 {
18475         /* FIXME the memory allocation overhead is noticeable here... */
18476         struct lre_hash **ptr, *new_hash;
18477         struct live_range_edge *edge;
18478
18479         if (left == right) {
18480                 return;
18481         }
18482         if ((left == &rstate->lr[0]) || (right == &rstate->lr[0])) {
18483                 return;
18484         }
18485         /* Ensure left <= right */
18486         if (left > right) {
18487                 struct live_range *tmp;
18488                 tmp = left;
18489                 left = right;
18490                 right = tmp;
18491         }
18492         ptr = lre_probe(rstate, left, right);
18493         if (*ptr) {
18494                 return;
18495         }
18496 #if 0
18497         fprintf(state->errout, "new_live_edge(%p, %p)\n",
18498                 left, right);
18499 #endif
18500         new_hash = xmalloc(sizeof(*new_hash), "lre_hash");
18501         new_hash->next  = *ptr;
18502         new_hash->left  = left;
18503         new_hash->right = right;
18504         *ptr = new_hash;
18505
18506         edge = xmalloc(sizeof(*edge), "live_range_edge");
18507         edge->next   = left->edges;
18508         edge->node   = right;
18509         left->edges  = edge;
18510         left->degree += 1;
18511
18512         edge = xmalloc(sizeof(*edge), "live_range_edge");
18513         edge->next    = right->edges;
18514         edge->node    = left;
18515         right->edges  = edge;
18516         right->degree += 1;
18517 }
18518
18519 static void remove_live_edge(struct reg_state *rstate,
18520         struct live_range *left, struct live_range *right)
18521 {
18522         struct live_range_edge *edge, **ptr;
18523         struct lre_hash **hptr, *entry;
18524         hptr = lre_probe(rstate, left, right);
18525         if (!hptr || !*hptr) {
18526                 return;
18527         }
18528         entry = *hptr;
18529         *hptr = entry->next;
18530         xfree(entry);
18531
18532         for(ptr = &left->edges; *ptr; ptr = &(*ptr)->next) {
18533                 edge = *ptr;
18534                 if (edge->node == right) {
18535                         *ptr = edge->next;
18536                         memset(edge, 0, sizeof(*edge));
18537                         xfree(edge);
18538                         right->degree--;
18539                         break;
18540                 }
18541         }
18542         for(ptr = &right->edges; *ptr; ptr = &(*ptr)->next) {
18543                 edge = *ptr;
18544                 if (edge->node == left) {
18545                         *ptr = edge->next;
18546                         memset(edge, 0, sizeof(*edge));
18547                         xfree(edge);
18548                         left->degree--;
18549                         break;
18550                 }
18551         }
18552 }
18553
18554 static void remove_live_edges(struct reg_state *rstate, struct live_range *range)
18555 {
18556         struct live_range_edge *edge, *next;
18557         for(edge = range->edges; edge; edge = next) {
18558                 next = edge->next;
18559                 remove_live_edge(rstate, range, edge->node);
18560         }
18561 }
18562
18563 static void transfer_live_edges(struct reg_state *rstate,
18564         struct live_range *dest, struct live_range *src)
18565 {
18566         struct live_range_edge *edge, *next;
18567         for(edge = src->edges; edge; edge = next) {
18568                 struct live_range *other;
18569                 next = edge->next;
18570                 other = edge->node;
18571                 remove_live_edge(rstate, src, other);
18572                 add_live_edge(rstate, dest, other);
18573         }
18574 }
18575
18576
18577 /* Interference graph...
18578  *
18579  * new(n) --- Return a graph with n nodes but no edges.
18580  * add(g,x,y) --- Return a graph including g with an between x and y
18581  * interfere(g, x, y) --- Return true if there exists an edge between the nodes
18582  *                x and y in the graph g
18583  * degree(g, x) --- Return the degree of the node x in the graph g
18584  * neighbors(g, x, f) --- Apply function f to each neighbor of node x in the graph g
18585  *
18586  * Implement with a hash table && a set of adjcency vectors.
18587  * The hash table supports constant time implementations of add and interfere.
18588  * The adjacency vectors support an efficient implementation of neighbors.
18589  */
18590
18591 /*
18592  *     +---------------------------------------------------+
18593  *     |         +--------------+                          |
18594  *     v         v              |                          |
18595  * renumber -> build graph -> colalesce -> spill_costs -> simplify -> select
18596  *
18597  * -- In simplify implment optimistic coloring... (No backtracking)
18598  * -- Implement Rematerialization it is the only form of spilling we can perform
18599  *    Essentially this means dropping a constant from a register because
18600  *    we can regenerate it later.
18601  *
18602  * --- Very conservative colalescing (don't colalesce just mark the opportunities)
18603  *     coalesce at phi points...
18604  * --- Bias coloring if at all possible do the coalesing a compile time.
18605  *
18606  *
18607  */
18608
18609 #if DEBUG_ROMCC_WARNING
18610 static void different_colored(
18611         struct compile_state *state, struct reg_state *rstate,
18612         struct triple *parent, struct triple *ins)
18613 {
18614         struct live_range *lr;
18615         struct triple **expr;
18616         lr = rstate->lrd[ins->id].lr;
18617         expr = triple_rhs(state, ins, 0);
18618         for(;expr; expr = triple_rhs(state, ins, expr)) {
18619                 struct live_range *lr2;
18620                 if (!*expr || (*expr == parent) || (*expr == ins)) {
18621                         continue;
18622                 }
18623                 lr2 = rstate->lrd[(*expr)->id].lr;
18624                 if (lr->color == lr2->color) {
18625                         internal_error(state, ins, "live range too big");
18626                 }
18627         }
18628 }
18629 #endif
18630
18631 static struct live_range *coalesce_ranges(
18632         struct compile_state *state, struct reg_state *rstate,
18633         struct live_range *lr1, struct live_range *lr2)
18634 {
18635         struct live_range_def *head, *mid1, *mid2, *end, *lrd;
18636         unsigned color;
18637         unsigned classes;
18638         if (lr1 == lr2) {
18639                 return lr1;
18640         }
18641         if (!lr1->defs || !lr2->defs) {
18642                 internal_error(state, 0,
18643                         "cannot coalese dead live ranges");
18644         }
18645         if ((lr1->color == REG_UNNEEDED) ||
18646                 (lr2->color == REG_UNNEEDED)) {
18647                 internal_error(state, 0,
18648                         "cannot coalesce live ranges without a possible color");
18649         }
18650         if ((lr1->color != lr2->color) &&
18651                 (lr1->color != REG_UNSET) &&
18652                 (lr2->color != REG_UNSET)) {
18653                 internal_error(state, lr1->defs->def,
18654                         "cannot coalesce live ranges of different colors");
18655         }
18656         color = lr1->color;
18657         if (color == REG_UNSET) {
18658                 color = lr2->color;
18659         }
18660         classes = lr1->classes & lr2->classes;
18661         if (!classes) {
18662                 internal_error(state, lr1->defs->def,
18663                         "cannot coalesce live ranges with dissimilar register classes");
18664         }
18665         if (state->compiler->debug & DEBUG_COALESCING) {
18666                 FILE *fp = state->errout;
18667                 fprintf(fp, "coalescing:");
18668                 lrd = lr1->defs;
18669                 do {
18670                         fprintf(fp, " %p", lrd->def);
18671                         lrd = lrd->next;
18672                 } while(lrd != lr1->defs);
18673                 fprintf(fp, " |");
18674                 lrd = lr2->defs;
18675                 do {
18676                         fprintf(fp, " %p", lrd->def);
18677                         lrd = lrd->next;
18678                 } while(lrd != lr2->defs);
18679                 fprintf(fp, "\n");
18680         }
18681         /* If there is a clear dominate live range put it in lr1,
18682          * For purposes of this test phi functions are
18683          * considered dominated by the definitions that feed into
18684          * them.
18685          */
18686         if ((lr1->defs->prev->def->op == OP_PHI) ||
18687                 ((lr2->defs->prev->def->op != OP_PHI) &&
18688                 tdominates(state, lr2->defs->def, lr1->defs->def))) {
18689                 struct live_range *tmp;
18690                 tmp = lr1;
18691                 lr1 = lr2;
18692                 lr2 = tmp;
18693         }
18694 #if 0
18695         if (lr1->defs->orig_id  & TRIPLE_FLAG_POST_SPLIT) {
18696                 fprintf(state->errout, "lr1 post\n");
18697         }
18698         if (lr1->defs->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
18699                 fprintf(state->errout, "lr1 pre\n");
18700         }
18701         if (lr2->defs->orig_id  & TRIPLE_FLAG_POST_SPLIT) {
18702                 fprintf(state->errout, "lr2 post\n");
18703         }
18704         if (lr2->defs->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
18705                 fprintf(state->errout, "lr2 pre\n");
18706         }
18707 #endif
18708 #if 0
18709         fprintf(state->errout, "coalesce color1(%p): %3d color2(%p) %3d\n",
18710                 lr1->defs->def,
18711                 lr1->color,
18712                 lr2->defs->def,
18713                 lr2->color);
18714 #endif
18715
18716         /* Append lr2 onto lr1 */
18717 #if DEBUG_ROMCC_WARNINGS
18718 #warning "FIXME should this be a merge instead of a splice?"
18719 #endif
18720         /* This FIXME item applies to the correctness of live_range_end
18721          * and to the necessity of making multiple passes of coalesce_live_ranges.
18722          * A failure to find some coalesce opportunities in coaleace_live_ranges
18723          * does not impact the correct of the compiler just the efficiency with
18724          * which registers are allocated.
18725          */
18726         head = lr1->defs;
18727         mid1 = lr1->defs->prev;
18728         mid2 = lr2->defs;
18729         end  = lr2->defs->prev;
18730
18731         head->prev = end;
18732         end->next  = head;
18733
18734         mid1->next = mid2;
18735         mid2->prev = mid1;
18736
18737         /* Fixup the live range in the added live range defs */
18738         lrd = head;
18739         do {
18740                 lrd->lr = lr1;
18741                 lrd = lrd->next;
18742         } while(lrd != head);
18743
18744         /* Mark lr2 as free. */
18745         lr2->defs = 0;
18746         lr2->color = REG_UNNEEDED;
18747         lr2->classes = 0;
18748
18749         if (!lr1->defs) {
18750                 internal_error(state, 0, "lr1->defs == 0 ?");
18751         }
18752
18753         lr1->color   = color;
18754         lr1->classes = classes;
18755
18756         /* Keep the graph in sync by transfering the edges from lr2 to lr1 */
18757         transfer_live_edges(rstate, lr1, lr2);
18758
18759         return lr1;
18760 }
18761
18762 static struct live_range_def *live_range_head(
18763         struct compile_state *state, struct live_range *lr,
18764         struct live_range_def *last)
18765 {
18766         struct live_range_def *result;
18767         result = 0;
18768         if (last == 0) {
18769                 result = lr->defs;
18770         }
18771         else if (!tdominates(state, lr->defs->def, last->next->def)) {
18772                 result = last->next;
18773         }
18774         return result;
18775 }
18776
18777 static struct live_range_def *live_range_end(
18778         struct compile_state *state, struct live_range *lr,
18779         struct live_range_def *last)
18780 {
18781         struct live_range_def *result;
18782         result = 0;
18783         if (last == 0) {
18784                 result = lr->defs->prev;
18785         }
18786         else if (!tdominates(state, last->prev->def, lr->defs->prev->def)) {
18787                 result = last->prev;
18788         }
18789         return result;
18790 }
18791
18792
18793 static void initialize_live_ranges(
18794         struct compile_state *state, struct reg_state *rstate)
18795 {
18796         struct triple *ins, *first;
18797         size_t count, size;
18798         int i, j;
18799
18800         first = state->first;
18801         /* First count how many instructions I have.
18802          */
18803         count = count_triples(state);
18804         /* Potentially I need one live range definitions for each
18805          * instruction.
18806          */
18807         rstate->defs = count;
18808         /* Potentially I need one live range for each instruction
18809          * plus an extra for the dummy live range.
18810          */
18811         rstate->ranges = count + 1;
18812         size = sizeof(rstate->lrd[0]) * rstate->defs;
18813         rstate->lrd = xcmalloc(size, "live_range_def");
18814         size = sizeof(rstate->lr[0]) * rstate->ranges;
18815         rstate->lr  = xcmalloc(size, "live_range");
18816
18817         /* Setup the dummy live range */
18818         rstate->lr[0].classes = 0;
18819         rstate->lr[0].color = REG_UNSET;
18820         rstate->lr[0].defs = 0;
18821         i = j = 0;
18822         ins = first;
18823         do {
18824                 /* If the triple is a variable give it a live range */
18825                 if (triple_is_def(state, ins)) {
18826                         struct reg_info info;
18827                         /* Find the architecture specific color information */
18828                         info = find_def_color(state, ins);
18829                         i++;
18830                         rstate->lr[i].defs    = &rstate->lrd[j];
18831                         rstate->lr[i].color   = info.reg;
18832                         rstate->lr[i].classes = info.regcm;
18833                         rstate->lr[i].degree  = 0;
18834                         rstate->lrd[j].lr = &rstate->lr[i];
18835                 }
18836                 /* Otherwise give the triple the dummy live range. */
18837                 else {
18838                         rstate->lrd[j].lr = &rstate->lr[0];
18839                 }
18840
18841                 /* Initalize the live_range_def */
18842                 rstate->lrd[j].next    = &rstate->lrd[j];
18843                 rstate->lrd[j].prev    = &rstate->lrd[j];
18844                 rstate->lrd[j].def     = ins;
18845                 rstate->lrd[j].orig_id = ins->id;
18846                 ins->id = j;
18847
18848                 j++;
18849                 ins = ins->next;
18850         } while(ins != first);
18851         rstate->ranges = i;
18852
18853         /* Make a second pass to handle achitecture specific register
18854          * constraints.
18855          */
18856         ins = first;
18857         do {
18858                 int zlhs, zrhs, i, j;
18859                 if (ins->id > rstate->defs) {
18860                         internal_error(state, ins, "bad id");
18861                 }
18862
18863                 /* Walk through the template of ins and coalesce live ranges */
18864                 zlhs = ins->lhs;
18865                 if ((zlhs == 0) && triple_is_def(state, ins)) {
18866                         zlhs = 1;
18867                 }
18868                 zrhs = ins->rhs;
18869
18870                 if (state->compiler->debug & DEBUG_COALESCING2) {
18871                         fprintf(state->errout, "mandatory coalesce: %p %d %d\n",
18872                                 ins, zlhs, zrhs);
18873                 }
18874
18875                 for(i = 0; i < zlhs; i++) {
18876                         struct reg_info linfo;
18877                         struct live_range_def *lhs;
18878                         linfo = arch_reg_lhs(state, ins, i);
18879                         if (linfo.reg < MAX_REGISTERS) {
18880                                 continue;
18881                         }
18882                         if (triple_is_def(state, ins)) {
18883                                 lhs = &rstate->lrd[ins->id];
18884                         } else {
18885                                 lhs = &rstate->lrd[LHS(ins, i)->id];
18886                         }
18887
18888                         if (state->compiler->debug & DEBUG_COALESCING2) {
18889                                 fprintf(state->errout, "coalesce lhs(%d): %p %d\n",
18890                                         i, lhs, linfo.reg);
18891                         }
18892
18893                         for(j = 0; j < zrhs; j++) {
18894                                 struct reg_info rinfo;
18895                                 struct live_range_def *rhs;
18896                                 rinfo = arch_reg_rhs(state, ins, j);
18897                                 if (rinfo.reg < MAX_REGISTERS) {
18898                                         continue;
18899                                 }
18900                                 rhs = &rstate->lrd[RHS(ins, j)->id];
18901
18902                                 if (state->compiler->debug & DEBUG_COALESCING2) {
18903                                         fprintf(state->errout, "coalesce rhs(%d): %p %d\n",
18904                                                 j, rhs, rinfo.reg);
18905                                 }
18906
18907                                 if (rinfo.reg == linfo.reg) {
18908                                         coalesce_ranges(state, rstate,
18909                                                 lhs->lr, rhs->lr);
18910                                 }
18911                         }
18912                 }
18913                 ins = ins->next;
18914         } while(ins != first);
18915 }
18916
18917 static void graph_ins(
18918         struct compile_state *state,
18919         struct reg_block *blocks, struct triple_reg_set *live,
18920         struct reg_block *rb, struct triple *ins, void *arg)
18921 {
18922         struct reg_state *rstate = arg;
18923         struct live_range *def;
18924         struct triple_reg_set *entry;
18925
18926         /* If the triple is not a definition
18927          * we do not have a definition to add to
18928          * the interference graph.
18929          */
18930         if (!triple_is_def(state, ins)) {
18931                 return;
18932         }
18933         def = rstate->lrd[ins->id].lr;
18934
18935         /* Create an edge between ins and everything that is
18936          * alive, unless the live_range cannot share
18937          * a physical register with ins.
18938          */
18939         for(entry = live; entry; entry = entry->next) {
18940                 struct live_range *lr;
18941                 if ((entry->member->id < 0) || (entry->member->id > rstate->defs)) {
18942                         internal_error(state, 0, "bad entry?");
18943                 }
18944                 lr = rstate->lrd[entry->member->id].lr;
18945                 if (def == lr) {
18946                         continue;
18947                 }
18948                 if (!arch_regcm_intersect(def->classes, lr->classes)) {
18949                         continue;
18950                 }
18951                 add_live_edge(rstate, def, lr);
18952         }
18953         return;
18954 }
18955
18956 #if DEBUG_CONSISTENCY > 1
18957 static struct live_range *get_verify_live_range(
18958         struct compile_state *state, struct reg_state *rstate, struct triple *ins)
18959 {
18960         struct live_range *lr;
18961         struct live_range_def *lrd;
18962         int ins_found;
18963         if ((ins->id < 0) || (ins->id > rstate->defs)) {
18964                 internal_error(state, ins, "bad ins?");
18965         }
18966         lr = rstate->lrd[ins->id].lr;
18967         ins_found = 0;
18968         lrd = lr->defs;
18969         do {
18970                 if (lrd->def == ins) {
18971                         ins_found = 1;
18972                 }
18973                 lrd = lrd->next;
18974         } while(lrd != lr->defs);
18975         if (!ins_found) {
18976                 internal_error(state, ins, "ins not in live range");
18977         }
18978         return lr;
18979 }
18980
18981 static void verify_graph_ins(
18982         struct compile_state *state,
18983         struct reg_block *blocks, struct triple_reg_set *live,
18984         struct reg_block *rb, struct triple *ins, void *arg)
18985 {
18986         struct reg_state *rstate = arg;
18987         struct triple_reg_set *entry1, *entry2;
18988
18989
18990         /* Compare live against edges and make certain the code is working */
18991         for(entry1 = live; entry1; entry1 = entry1->next) {
18992                 struct live_range *lr1;
18993                 lr1 = get_verify_live_range(state, rstate, entry1->member);
18994                 for(entry2 = live; entry2; entry2 = entry2->next) {
18995                         struct live_range *lr2;
18996                         struct live_range_edge *edge2;
18997                         int lr1_found;
18998                         int lr2_degree;
18999                         if (entry2 == entry1) {
19000                                 continue;
19001                         }
19002                         lr2 = get_verify_live_range(state, rstate, entry2->member);
19003                         if (lr1 == lr2) {
19004                                 internal_error(state, entry2->member,
19005                                         "live range with 2 values simultaneously alive");
19006                         }
19007                         if (!arch_regcm_intersect(lr1->classes, lr2->classes)) {
19008                                 continue;
19009                         }
19010                         if (!interfere(rstate, lr1, lr2)) {
19011                                 internal_error(state, entry2->member,
19012                                         "edges don't interfere?");
19013                         }
19014
19015                         lr1_found = 0;
19016                         lr2_degree = 0;
19017                         for(edge2 = lr2->edges; edge2; edge2 = edge2->next) {
19018                                 lr2_degree++;
19019                                 if (edge2->node == lr1) {
19020                                         lr1_found = 1;
19021                                 }
19022                         }
19023                         if (lr2_degree != lr2->degree) {
19024                                 internal_error(state, entry2->member,
19025                                         "computed degree: %d does not match reported degree: %d\n",
19026                                         lr2_degree, lr2->degree);
19027                         }
19028                         if (!lr1_found) {
19029                                 internal_error(state, entry2->member, "missing edge");
19030                         }
19031                 }
19032         }
19033         return;
19034 }
19035 #endif
19036
19037 static void print_interference_ins(
19038         struct compile_state *state,
19039         struct reg_block *blocks, struct triple_reg_set *live,
19040         struct reg_block *rb, struct triple *ins, void *arg)
19041 {
19042         struct reg_state *rstate = arg;
19043         struct live_range *lr;
19044         unsigned id;
19045         FILE *fp = state->dbgout;
19046
19047         lr = rstate->lrd[ins->id].lr;
19048         id = ins->id;
19049         ins->id = rstate->lrd[id].orig_id;
19050         SET_REG(ins->id, lr->color);
19051         display_triple(state->dbgout, ins);
19052         ins->id = id;
19053
19054         if (lr->defs) {
19055                 struct live_range_def *lrd;
19056                 fprintf(fp, "       range:");
19057                 lrd = lr->defs;
19058                 do {
19059                         fprintf(fp, " %-10p", lrd->def);
19060                         lrd = lrd->next;
19061                 } while(lrd != lr->defs);
19062                 fprintf(fp, "\n");
19063         }
19064         if (live) {
19065                 struct triple_reg_set *entry;
19066                 fprintf(fp, "        live:");
19067                 for(entry = live; entry; entry = entry->next) {
19068                         fprintf(fp, " %-10p", entry->member);
19069                 }
19070                 fprintf(fp, "\n");
19071         }
19072         if (lr->edges) {
19073                 struct live_range_edge *entry;
19074                 fprintf(fp, "       edges:");
19075                 for(entry = lr->edges; entry; entry = entry->next) {
19076                         struct live_range_def *lrd;
19077                         lrd = entry->node->defs;
19078                         do {
19079                                 fprintf(fp, " %-10p", lrd->def);
19080                                 lrd = lrd->next;
19081                         } while(lrd != entry->node->defs);
19082                         fprintf(fp, "|");
19083                 }
19084                 fprintf(fp, "\n");
19085         }
19086         if (triple_is_branch(state, ins)) {
19087                 fprintf(fp, "\n");
19088         }
19089         return;
19090 }
19091
19092 static int coalesce_live_ranges(
19093         struct compile_state *state, struct reg_state *rstate)
19094 {
19095         /* At the point where a value is moved from one
19096          * register to another that value requires two
19097          * registers, thus increasing register pressure.
19098          * Live range coaleescing reduces the register
19099          * pressure by keeping a value in one register
19100          * longer.
19101          *
19102          * In the case of a phi function all paths leading
19103          * into it must be allocated to the same register
19104          * otherwise the phi function may not be removed.
19105          *
19106          * Forcing a value to stay in a single register
19107          * for an extended period of time does have
19108          * limitations when applied to non homogenous
19109          * register pool.
19110          *
19111          * The two cases I have identified are:
19112          * 1) Two forced register assignments may
19113          *    collide.
19114          * 2) Registers may go unused because they
19115          *    are only good for storing the value
19116          *    and not manipulating it.
19117          *
19118          * Because of this I need to split live ranges,
19119          * even outside of the context of coalesced live
19120          * ranges.  The need to split live ranges does
19121          * impose some constraints on live range coalescing.
19122          *
19123          * - Live ranges may not be coalesced across phi
19124          *   functions.  This creates a 2 headed live
19125          *   range that cannot be sanely split.
19126          *
19127          * - phi functions (coalesced in initialize_live_ranges)
19128          *   are handled as pre split live ranges so we will
19129          *   never attempt to split them.
19130          */
19131         int coalesced;
19132         int i;
19133
19134         coalesced = 0;
19135         for(i = 0; i <= rstate->ranges; i++) {
19136                 struct live_range *lr1;
19137                 struct live_range_def *lrd1;
19138                 lr1 = &rstate->lr[i];
19139                 if (!lr1->defs) {
19140                         continue;
19141                 }
19142                 lrd1 = live_range_end(state, lr1, 0);
19143                 for(; lrd1; lrd1 = live_range_end(state, lr1, lrd1)) {
19144                         struct triple_set *set;
19145                         if (lrd1->def->op != OP_COPY) {
19146                                 continue;
19147                         }
19148                         /* Skip copies that are the result of a live range split. */
19149                         if (lrd1->orig_id & TRIPLE_FLAG_POST_SPLIT) {
19150                                 continue;
19151                         }
19152                         for(set = lrd1->def->use; set; set = set->next) {
19153                                 struct live_range_def *lrd2;
19154                                 struct live_range *lr2, *res;
19155
19156                                 lrd2 = &rstate->lrd[set->member->id];
19157
19158                                 /* Don't coalesce with instructions
19159                                  * that are the result of a live range
19160                                  * split.
19161                                  */
19162                                 if (lrd2->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
19163                                         continue;
19164                                 }
19165                                 lr2 = rstate->lrd[set->member->id].lr;
19166                                 if (lr1 == lr2) {
19167                                         continue;
19168                                 }
19169                                 if ((lr1->color != lr2->color) &&
19170                                         (lr1->color != REG_UNSET) &&
19171                                         (lr2->color != REG_UNSET)) {
19172                                         continue;
19173                                 }
19174                                 if ((lr1->classes & lr2->classes) == 0) {
19175                                         continue;
19176                                 }
19177
19178                                 if (interfere(rstate, lr1, lr2)) {
19179                                         continue;
19180                                 }
19181
19182                                 res = coalesce_ranges(state, rstate, lr1, lr2);
19183                                 coalesced += 1;
19184                                 if (res != lr1) {
19185                                         goto next;
19186                                 }
19187                         }
19188                 }
19189         next:
19190                 ;
19191         }
19192         return coalesced;
19193 }
19194
19195
19196 static void fix_coalesce_conflicts(struct compile_state *state,
19197         struct reg_block *blocks, struct triple_reg_set *live,
19198         struct reg_block *rb, struct triple *ins, void *arg)
19199 {
19200         int *conflicts = arg;
19201         int zlhs, zrhs, i, j;
19202
19203         /* See if we have a mandatory coalesce operation between
19204          * a lhs and a rhs value.  If so and the rhs value is also
19205          * alive then this triple needs to be pre copied.  Otherwise
19206          * we would have two definitions in the same live range simultaneously
19207          * alive.
19208          */
19209         zlhs = ins->lhs;
19210         if ((zlhs == 0) && triple_is_def(state, ins)) {
19211                 zlhs = 1;
19212         }
19213         zrhs = ins->rhs;
19214         for(i = 0; i < zlhs; i++) {
19215                 struct reg_info linfo;
19216                 linfo = arch_reg_lhs(state, ins, i);
19217                 if (linfo.reg < MAX_REGISTERS) {
19218                         continue;
19219                 }
19220                 for(j = 0; j < zrhs; j++) {
19221                         struct reg_info rinfo;
19222                         struct triple *rhs;
19223                         struct triple_reg_set *set;
19224                         int found;
19225                         found = 0;
19226                         rinfo = arch_reg_rhs(state, ins, j);
19227                         if (rinfo.reg != linfo.reg) {
19228                                 continue;
19229                         }
19230                         rhs = RHS(ins, j);
19231                         for(set = live; set && !found; set = set->next) {
19232                                 if (set->member == rhs) {
19233                                         found = 1;
19234                                 }
19235                         }
19236                         if (found) {
19237                                 struct triple *copy;
19238                                 copy = pre_copy(state, ins, j);
19239                                 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
19240                                 (*conflicts)++;
19241                         }
19242                 }
19243         }
19244         return;
19245 }
19246
19247 static int correct_coalesce_conflicts(
19248         struct compile_state *state, struct reg_block *blocks)
19249 {
19250         int conflicts;
19251         conflicts = 0;
19252         walk_variable_lifetimes(state, &state->bb, blocks,
19253                 fix_coalesce_conflicts, &conflicts);
19254         return conflicts;
19255 }
19256
19257 static void replace_set_use(struct compile_state *state,
19258         struct triple_reg_set *head, struct triple *orig, struct triple *new)
19259 {
19260         struct triple_reg_set *set;
19261         for(set = head; set; set = set->next) {
19262                 if (set->member == orig) {
19263                         set->member = new;
19264                 }
19265         }
19266 }
19267
19268 static void replace_block_use(struct compile_state *state,
19269         struct reg_block *blocks, struct triple *orig, struct triple *new)
19270 {
19271         int i;
19272 #if DEBUG_ROMCC_WARNINGS
19273 #warning "WISHLIST visit just those blocks that need it *"
19274 #endif
19275         for(i = 1; i <= state->bb.last_vertex; i++) {
19276                 struct reg_block *rb;
19277                 rb = &blocks[i];
19278                 replace_set_use(state, rb->in, orig, new);
19279                 replace_set_use(state, rb->out, orig, new);
19280         }
19281 }
19282
19283 static void color_instructions(struct compile_state *state)
19284 {
19285         struct triple *ins, *first;
19286         first = state->first;
19287         ins = first;
19288         do {
19289                 if (triple_is_def(state, ins)) {
19290                         struct reg_info info;
19291                         info = find_lhs_color(state, ins, 0);
19292                         if (info.reg >= MAX_REGISTERS) {
19293                                 info.reg = REG_UNSET;
19294                         }
19295                         SET_INFO(ins->id, info);
19296                 }
19297                 ins = ins->next;
19298         } while(ins != first);
19299 }
19300
19301 static struct reg_info read_lhs_color(
19302         struct compile_state *state, struct triple *ins, int index)
19303 {
19304         struct reg_info info;
19305         if ((index == 0) && triple_is_def(state, ins)) {
19306                 info.reg   = ID_REG(ins->id);
19307                 info.regcm = ID_REGCM(ins->id);
19308         }
19309         else if (index < ins->lhs) {
19310                 info = read_lhs_color(state, LHS(ins, index), 0);
19311         }
19312         else {
19313                 internal_error(state, ins, "Bad lhs %d", index);
19314                 info.reg = REG_UNSET;
19315                 info.regcm = 0;
19316         }
19317         return info;
19318 }
19319
19320 static struct triple *resolve_tangle(
19321         struct compile_state *state, struct triple *tangle)
19322 {
19323         struct reg_info info, uinfo;
19324         struct triple_set *set, *next;
19325         struct triple *copy;
19326
19327 #if DEBUG_ROMCC_WARNINGS
19328 #warning "WISHLIST recalculate all affected instructions colors"
19329 #endif
19330         info = find_lhs_color(state, tangle, 0);
19331         for(set = tangle->use; set; set = next) {
19332                 struct triple *user;
19333                 int i, zrhs;
19334                 next = set->next;
19335                 user = set->member;
19336                 zrhs = user->rhs;
19337                 for(i = 0; i < zrhs; i++) {
19338                         if (RHS(user, i) != tangle) {
19339                                 continue;
19340                         }
19341                         uinfo = find_rhs_post_color(state, user, i);
19342                         if (uinfo.reg == info.reg) {
19343                                 copy = pre_copy(state, user, i);
19344                                 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
19345                                 SET_INFO(copy->id, uinfo);
19346                         }
19347                 }
19348         }
19349         copy = 0;
19350         uinfo = find_lhs_pre_color(state, tangle, 0);
19351         if (uinfo.reg == info.reg) {
19352                 struct reg_info linfo;
19353                 copy = post_copy(state, tangle);
19354                 copy->id |= TRIPLE_FLAG_PRE_SPLIT;
19355                 linfo = find_lhs_color(state, copy, 0);
19356                 SET_INFO(copy->id, linfo);
19357         }
19358         info = find_lhs_color(state, tangle, 0);
19359         SET_INFO(tangle->id, info);
19360
19361         return copy;
19362 }
19363
19364
19365 static void fix_tangles(struct compile_state *state,
19366         struct reg_block *blocks, struct triple_reg_set *live,
19367         struct reg_block *rb, struct triple *ins, void *arg)
19368 {
19369         int *tangles = arg;
19370         struct triple *tangle;
19371         do {
19372                 char used[MAX_REGISTERS];
19373                 struct triple_reg_set *set;
19374                 tangle = 0;
19375
19376                 /* Find out which registers have multiple uses at this point */
19377                 memset(used, 0, sizeof(used));
19378                 for(set = live; set; set = set->next) {
19379                         struct reg_info info;
19380                         info = read_lhs_color(state, set->member, 0);
19381                         if (info.reg == REG_UNSET) {
19382                                 continue;
19383                         }
19384                         reg_inc_used(state, used, info.reg);
19385                 }
19386
19387                 /* Now find the least dominated definition of a register in
19388                  * conflict I have seen so far.
19389                  */
19390                 for(set = live; set; set = set->next) {
19391                         struct reg_info info;
19392                         info = read_lhs_color(state, set->member, 0);
19393                         if (used[info.reg] < 2) {
19394                                 continue;
19395                         }
19396                         /* Changing copies that feed into phi functions
19397                          * is incorrect.
19398                          */
19399                         if (set->member->use &&
19400                                 (set->member->use->member->op == OP_PHI)) {
19401                                 continue;
19402                         }
19403                         if (!tangle || tdominates(state, set->member, tangle)) {
19404                                 tangle = set->member;
19405                         }
19406                 }
19407                 /* If I have found a tangle resolve it */
19408                 if (tangle) {
19409                         struct triple *post_copy;
19410                         (*tangles)++;
19411                         post_copy = resolve_tangle(state, tangle);
19412                         if (post_copy) {
19413                                 replace_block_use(state, blocks, tangle, post_copy);
19414                         }
19415                         if (post_copy && (tangle != ins)) {
19416                                 replace_set_use(state, live, tangle, post_copy);
19417                         }
19418                 }
19419         } while(tangle);
19420         return;
19421 }
19422
19423 static int correct_tangles(
19424         struct compile_state *state, struct reg_block *blocks)
19425 {
19426         int tangles;
19427         tangles = 0;
19428         color_instructions(state);
19429         walk_variable_lifetimes(state, &state->bb, blocks,
19430                 fix_tangles, &tangles);
19431         return tangles;
19432 }
19433
19434
19435 static void ids_from_rstate(struct compile_state *state, struct reg_state *rstate);
19436 static void cleanup_rstate(struct compile_state *state, struct reg_state *rstate);
19437
19438 struct triple *find_constrained_def(
19439         struct compile_state *state, struct live_range *range, struct triple *constrained)
19440 {
19441         struct live_range_def *lrd, *lrd_next;
19442         lrd_next = range->defs;
19443         do {
19444                 struct reg_info info;
19445                 unsigned regcm;
19446
19447                 lrd = lrd_next;
19448                 lrd_next = lrd->next;
19449
19450                 regcm = arch_type_to_regcm(state, lrd->def->type);
19451                 info = find_lhs_color(state, lrd->def, 0);
19452                 regcm      = arch_regcm_reg_normalize(state, regcm);
19453                 info.regcm = arch_regcm_reg_normalize(state, info.regcm);
19454                 /* If the 2 register class masks are equal then
19455                  * the current register class is not constrained.
19456                  */
19457                 if (regcm == info.regcm) {
19458                         continue;
19459                 }
19460
19461                 /* If there is just one use.
19462                  * That use cannot accept a larger register class.
19463                  * There are no intervening definitions except
19464                  * definitions that feed into that use.
19465                  * Then a triple is not constrained.
19466                  * FIXME handle this case!
19467                  */
19468 #if DEBUG_ROMCC_WARNINGS
19469 #warning "FIXME ignore cases that cannot be fixed (a definition followed by a use)"
19470 #endif
19471
19472
19473                 /* Of the constrained live ranges deal with the
19474                  * least dominated one first.
19475                  */
19476                 if (state->compiler->debug & DEBUG_RANGE_CONFLICTS) {
19477                         fprintf(state->errout, "canidate: %p %-8s regcm: %x %x\n",
19478                                 lrd->def, tops(lrd->def->op), regcm, info.regcm);
19479                 }
19480                 if (!constrained ||
19481                         tdominates(state, lrd->def, constrained))
19482                 {
19483                         constrained = lrd->def;
19484                 }
19485         } while(lrd_next != range->defs);
19486         return constrained;
19487 }
19488
19489 static int split_constrained_ranges(
19490         struct compile_state *state, struct reg_state *rstate,
19491         struct live_range *range)
19492 {
19493         /* Walk through the edges in conflict and our current live
19494          * range, and find definitions that are more severly constrained
19495          * than they type of data they contain require.
19496          *
19497          * Then pick one of those ranges and relax the constraints.
19498          */
19499         struct live_range_edge *edge;
19500         struct triple *constrained;
19501
19502         constrained = 0;
19503         for(edge = range->edges; edge; edge = edge->next) {
19504                 constrained = find_constrained_def(state, edge->node, constrained);
19505         }
19506 #if DEBUG_ROMCC_WARNINGS
19507 #warning "FIXME should I call find_constrained_def here only if no previous constrained def was found?"
19508 #endif
19509         if (!constrained) {
19510                 constrained = find_constrained_def(state, range, constrained);
19511         }
19512
19513         if (state->compiler->debug & DEBUG_RANGE_CONFLICTS) {
19514                 fprintf(state->errout, "constrained: ");
19515                 display_triple(state->errout, constrained);
19516         }
19517         if (constrained) {
19518                 ids_from_rstate(state, rstate);
19519                 cleanup_rstate(state, rstate);
19520                 resolve_tangle(state, constrained);
19521         }
19522         return !!constrained;
19523 }
19524
19525 static int split_ranges(
19526         struct compile_state *state, struct reg_state *rstate,
19527         char *used, struct live_range *range)
19528 {
19529         int split;
19530         if (state->compiler->debug & DEBUG_RANGE_CONFLICTS) {
19531                 fprintf(state->errout, "split_ranges %d %s %p\n",
19532                         rstate->passes, tops(range->defs->def->op), range->defs->def);
19533         }
19534         if ((range->color == REG_UNNEEDED) ||
19535                 (rstate->passes >= rstate->max_passes)) {
19536                 return 0;
19537         }
19538         split = split_constrained_ranges(state, rstate, range);
19539
19540         /* Ideally I would split the live range that will not be used
19541          * for the longest period of time in hopes that this will
19542          * (a) allow me to spill a register or
19543          * (b) allow me to place a value in another register.
19544          *
19545          * So far I don't have a test case for this, the resolving
19546          * of mandatory constraints has solved all of my
19547          * know issues.  So I have choosen not to write any
19548          * code until I cat get a better feel for cases where
19549          * it would be useful to have.
19550          *
19551          */
19552 #if DEBUG_ROMCC_WARNINGS
19553 #warning "WISHLIST implement live range splitting..."
19554 #endif
19555
19556         if (!split && (state->compiler->debug & DEBUG_RANGE_CONFLICTS2)) {
19557                 FILE *fp = state->errout;
19558                 print_interference_blocks(state, rstate, fp, 0);
19559                 print_dominators(state, fp, &state->bb);
19560         }
19561         return split;
19562 }
19563
19564 static FILE *cgdebug_fp(struct compile_state *state)
19565 {
19566         FILE *fp;
19567         fp = 0;
19568         if (!fp && (state->compiler->debug & DEBUG_COLOR_GRAPH2)) {
19569                 fp = state->errout;
19570         }
19571         if (!fp && (state->compiler->debug & DEBUG_COLOR_GRAPH)) {
19572                 fp = state->dbgout;
19573         }
19574         return fp;
19575 }
19576
19577 static void cgdebug_printf(struct compile_state *state, const char *fmt, ...)
19578 {
19579         FILE *fp;
19580         fp = cgdebug_fp(state);
19581         if (fp) {
19582                 va_list args;
19583                 va_start(args, fmt);
19584                 vfprintf(fp, fmt, args);
19585                 va_end(args);
19586         }
19587 }
19588
19589 static void cgdebug_flush(struct compile_state *state)
19590 {
19591         FILE *fp;
19592         fp = cgdebug_fp(state);
19593         if (fp) {
19594                 fflush(fp);
19595         }
19596 }
19597
19598 static void cgdebug_loc(struct compile_state *state, struct triple *ins)
19599 {
19600         FILE *fp;
19601         fp = cgdebug_fp(state);
19602         if (fp) {
19603                 loc(fp, state, ins);
19604         }
19605 }
19606
19607 static int select_free_color(struct compile_state *state,
19608         struct reg_state *rstate, struct live_range *range)
19609 {
19610         struct triple_set *entry;
19611         struct live_range_def *lrd;
19612         struct live_range_def *phi;
19613         struct live_range_edge *edge;
19614         char used[MAX_REGISTERS];
19615         struct triple **expr;
19616
19617         /* Instead of doing just the trivial color select here I try
19618          * a few extra things because a good color selection will help reduce
19619          * copies.
19620          */
19621
19622         /* Find the registers currently in use */
19623         memset(used, 0, sizeof(used));
19624         for(edge = range->edges; edge; edge = edge->next) {
19625                 if (edge->node->color == REG_UNSET) {
19626                         continue;
19627                 }
19628                 reg_fill_used(state, used, edge->node->color);
19629         }
19630
19631         if (state->compiler->debug & DEBUG_COLOR_GRAPH2) {
19632                 int i;
19633                 i = 0;
19634                 for(edge = range->edges; edge; edge = edge->next) {
19635                         i++;
19636                 }
19637                 cgdebug_printf(state, "\n%s edges: %d",
19638                         tops(range->defs->def->op), i);
19639                 cgdebug_loc(state, range->defs->def);
19640                 cgdebug_printf(state, "\n");
19641                 for(i = 0; i < MAX_REGISTERS; i++) {
19642                         if (used[i]) {
19643                                 cgdebug_printf(state, "used: %s\n",
19644                                         arch_reg_str(i));
19645                         }
19646                 }
19647         }
19648
19649         /* If a color is already assigned see if it will work */
19650         if (range->color != REG_UNSET) {
19651                 struct live_range_def *lrd;
19652                 if (!used[range->color]) {
19653                         return 1;
19654                 }
19655                 for(edge = range->edges; edge; edge = edge->next) {
19656                         if (edge->node->color != range->color) {
19657                                 continue;
19658                         }
19659                         warning(state, edge->node->defs->def, "edge: ");
19660                         lrd = edge->node->defs;
19661                         do {
19662                                 warning(state, lrd->def, " %p %s",
19663                                         lrd->def, tops(lrd->def->op));
19664                                 lrd = lrd->next;
19665                         } while(lrd != edge->node->defs);
19666                 }
19667                 lrd = range->defs;
19668                 warning(state, range->defs->def, "def: ");
19669                 do {
19670                         warning(state, lrd->def, " %p %s",
19671                                 lrd->def, tops(lrd->def->op));
19672                         lrd = lrd->next;
19673                 } while(lrd != range->defs);
19674                 internal_error(state, range->defs->def,
19675                         "live range with already used color %s",
19676                         arch_reg_str(range->color));
19677         }
19678
19679         /* If I feed into an expression reuse it's color.
19680          * This should help remove copies in the case of 2 register instructions
19681          * and phi functions.
19682          */
19683         phi = 0;
19684         lrd = live_range_end(state, range, 0);
19685         for(; (range->color == REG_UNSET) && lrd ; lrd = live_range_end(state, range, lrd)) {
19686                 entry = lrd->def->use;
19687                 for(;(range->color == REG_UNSET) && entry; entry = entry->next) {
19688                         struct live_range_def *insd;
19689                         unsigned regcm;
19690                         insd = &rstate->lrd[entry->member->id];
19691                         if (insd->lr->defs == 0) {
19692                                 continue;
19693                         }
19694                         if (!phi && (insd->def->op == OP_PHI) &&
19695                                 !interfere(rstate, range, insd->lr)) {
19696                                 phi = insd;
19697                         }
19698                         if (insd->lr->color == REG_UNSET) {
19699                                 continue;
19700                         }
19701                         regcm = insd->lr->classes;
19702                         if (((regcm & range->classes) == 0) ||
19703                                 (used[insd->lr->color])) {
19704                                 continue;
19705                         }
19706                         if (interfere(rstate, range, insd->lr)) {
19707                                 continue;
19708                         }
19709                         range->color = insd->lr->color;
19710                 }
19711         }
19712         /* If I feed into a phi function reuse it's color or the color
19713          * of something else that feeds into the phi function.
19714          */
19715         if (phi) {
19716                 if (phi->lr->color != REG_UNSET) {
19717                         if (used[phi->lr->color]) {
19718                                 range->color = phi->lr->color;
19719                         }
19720                 }
19721                 else {
19722                         expr = triple_rhs(state, phi->def, 0);
19723                         for(; expr; expr = triple_rhs(state, phi->def, expr)) {
19724                                 struct live_range *lr;
19725                                 unsigned regcm;
19726                                 if (!*expr) {
19727                                         continue;
19728                                 }
19729                                 lr = rstate->lrd[(*expr)->id].lr;
19730                                 if (lr->color == REG_UNSET) {
19731                                         continue;
19732                                 }
19733                                 regcm = lr->classes;
19734                                 if (((regcm & range->classes) == 0) ||
19735                                         (used[lr->color])) {
19736                                         continue;
19737                                 }
19738                                 if (interfere(rstate, range, lr)) {
19739                                         continue;
19740                                 }
19741                                 range->color = lr->color;
19742                         }
19743                 }
19744         }
19745         /* If I don't interfere with a rhs node reuse it's color */
19746         lrd = live_range_head(state, range, 0);
19747         for(; (range->color == REG_UNSET) && lrd ; lrd = live_range_head(state, range, lrd)) {
19748                 expr = triple_rhs(state, lrd->def, 0);
19749                 for(; expr; expr = triple_rhs(state, lrd->def, expr)) {
19750                         struct live_range *lr;
19751                         unsigned regcm;
19752                         if (!*expr) {
19753                                 continue;
19754                         }
19755                         lr = rstate->lrd[(*expr)->id].lr;
19756                         if (lr->color == REG_UNSET) {
19757                                 continue;
19758                         }
19759                         regcm = lr->classes;
19760                         if (((regcm & range->classes) == 0) ||
19761                                 (used[lr->color])) {
19762                                 continue;
19763                         }
19764                         if (interfere(rstate, range, lr)) {
19765                                 continue;
19766                         }
19767                         range->color = lr->color;
19768                         break;
19769                 }
19770         }
19771         /* If I have not opportunitically picked a useful color
19772          * pick the first color that is free.
19773          */
19774         if (range->color == REG_UNSET) {
19775                 range->color =
19776                         arch_select_free_register(state, used, range->classes);
19777         }
19778         if (range->color == REG_UNSET) {
19779                 struct live_range_def *lrd;
19780                 int i;
19781                 if (split_ranges(state, rstate, used, range)) {
19782                         return 0;
19783                 }
19784                 for(edge = range->edges; edge; edge = edge->next) {
19785                         warning(state, edge->node->defs->def, "edge reg %s",
19786                                 arch_reg_str(edge->node->color));
19787                         lrd = edge->node->defs;
19788                         do {
19789                                 warning(state, lrd->def, " %s %p",
19790                                         tops(lrd->def->op), lrd->def);
19791                                 lrd = lrd->next;
19792                         } while(lrd != edge->node->defs);
19793                 }
19794                 warning(state, range->defs->def, "range: ");
19795                 lrd = range->defs;
19796                 do {
19797                         warning(state, lrd->def, " %s %p",
19798                                 tops(lrd->def->op), lrd->def);
19799                         lrd = lrd->next;
19800                 } while(lrd != range->defs);
19801
19802                 warning(state, range->defs->def, "classes: %x",
19803                         range->classes);
19804                 for(i = 0; i < MAX_REGISTERS; i++) {
19805                         if (used[i]) {
19806                                 warning(state, range->defs->def, "used: %s",
19807                                         arch_reg_str(i));
19808                         }
19809                 }
19810                 error(state, range->defs->def, "too few registers");
19811         }
19812         range->classes &= arch_reg_regcm(state, range->color);
19813         if ((range->color == REG_UNSET) || (range->classes == 0)) {
19814                 internal_error(state, range->defs->def, "select_free_color did not?");
19815         }
19816         return 1;
19817 }
19818
19819 static int color_graph(struct compile_state *state, struct reg_state *rstate)
19820 {
19821         int colored;
19822         struct live_range_edge *edge;
19823         struct live_range *range;
19824         if (rstate->low) {
19825                 cgdebug_printf(state, "Lo: ");
19826                 range = rstate->low;
19827                 if (*range->group_prev != range) {
19828                         internal_error(state, 0, "lo: *prev != range?");
19829                 }
19830                 *range->group_prev = range->group_next;
19831                 if (range->group_next) {
19832                         range->group_next->group_prev = range->group_prev;
19833                 }
19834                 if (&range->group_next == rstate->low_tail) {
19835                         rstate->low_tail = range->group_prev;
19836                 }
19837                 if (rstate->low == range) {
19838                         internal_error(state, 0, "low: next != prev?");
19839                 }
19840         }
19841         else if (rstate->high) {
19842                 cgdebug_printf(state, "Hi: ");
19843                 range = rstate->high;
19844                 if (*range->group_prev != range) {
19845                         internal_error(state, 0, "hi: *prev != range?");
19846                 }
19847                 *range->group_prev = range->group_next;
19848                 if (range->group_next) {
19849                         range->group_next->group_prev = range->group_prev;
19850                 }
19851                 if (&range->group_next == rstate->high_tail) {
19852                         rstate->high_tail = range->group_prev;
19853                 }
19854                 if (rstate->high == range) {
19855                         internal_error(state, 0, "high: next != prev?");
19856                 }
19857         }
19858         else {
19859                 return 1;
19860         }
19861         cgdebug_printf(state, " %d\n", range - rstate->lr);
19862         range->group_prev = 0;
19863         for(edge = range->edges; edge; edge = edge->next) {
19864                 struct live_range *node;
19865                 node = edge->node;
19866                 /* Move nodes from the high to the low list */
19867                 if (node->group_prev && (node->color == REG_UNSET) &&
19868                         (node->degree == regc_max_size(state, node->classes))) {
19869                         if (*node->group_prev != node) {
19870                                 internal_error(state, 0, "move: *prev != node?");
19871                         }
19872                         *node->group_prev = node->group_next;
19873                         if (node->group_next) {
19874                                 node->group_next->group_prev = node->group_prev;
19875                         }
19876                         if (&node->group_next == rstate->high_tail) {
19877                                 rstate->high_tail = node->group_prev;
19878                         }
19879                         cgdebug_printf(state, "Moving...%d to low\n", node - rstate->lr);
19880                         node->group_prev  = rstate->low_tail;
19881                         node->group_next  = 0;
19882                         *rstate->low_tail = node;
19883                         rstate->low_tail  = &node->group_next;
19884                         if (*node->group_prev != node) {
19885                                 internal_error(state, 0, "move2: *prev != node?");
19886                         }
19887                 }
19888                 node->degree -= 1;
19889         }
19890         colored = color_graph(state, rstate);
19891         if (colored) {
19892                 cgdebug_printf(state, "Coloring %d @", range - rstate->lr);
19893                 cgdebug_loc(state, range->defs->def);
19894                 cgdebug_flush(state);
19895                 colored = select_free_color(state, rstate, range);
19896                 if (colored) {
19897                         cgdebug_printf(state, " %s\n", arch_reg_str(range->color));
19898                 }
19899         }
19900         return colored;
19901 }
19902
19903 static void verify_colors(struct compile_state *state, struct reg_state *rstate)
19904 {
19905         struct live_range *lr;
19906         struct live_range_edge *edge;
19907         struct triple *ins, *first;
19908         char used[MAX_REGISTERS];
19909         first = state->first;
19910         ins = first;
19911         do {
19912                 if (triple_is_def(state, ins)) {
19913                         if ((ins->id < 0) || (ins->id > rstate->defs)) {
19914                                 internal_error(state, ins,
19915                                         "triple without a live range def");
19916                         }
19917                         lr = rstate->lrd[ins->id].lr;
19918                         if (lr->color == REG_UNSET) {
19919                                 internal_error(state, ins,
19920                                         "triple without a color");
19921                         }
19922                         /* Find the registers used by the edges */
19923                         memset(used, 0, sizeof(used));
19924                         for(edge = lr->edges; edge; edge = edge->next) {
19925                                 if (edge->node->color == REG_UNSET) {
19926                                         internal_error(state, 0,
19927                                                 "live range without a color");
19928                         }
19929                                 reg_fill_used(state, used, edge->node->color);
19930                         }
19931                         if (used[lr->color]) {
19932                                 internal_error(state, ins,
19933                                         "triple with already used color");
19934                         }
19935                 }
19936                 ins = ins->next;
19937         } while(ins != first);
19938 }
19939
19940 static void color_triples(struct compile_state *state, struct reg_state *rstate)
19941 {
19942         struct live_range_def *lrd;
19943         struct live_range *lr;
19944         struct triple *first, *ins;
19945         first = state->first;
19946         ins = first;
19947         do {
19948                 if ((ins->id < 0) || (ins->id > rstate->defs)) {
19949                         internal_error(state, ins,
19950                                 "triple without a live range");
19951                 }
19952                 lrd = &rstate->lrd[ins->id];
19953                 lr = lrd->lr;
19954                 ins->id = lrd->orig_id;
19955                 SET_REG(ins->id, lr->color);
19956                 ins = ins->next;
19957         } while (ins != first);
19958 }
19959
19960 static struct live_range *merge_sort_lr(
19961         struct live_range *first, struct live_range *last)
19962 {
19963         struct live_range *mid, *join, **join_tail, *pick;
19964         size_t size;
19965         size = (last - first) + 1;
19966         if (size >= 2) {
19967                 mid = first + size/2;
19968                 first = merge_sort_lr(first, mid -1);
19969                 mid   = merge_sort_lr(mid, last);
19970
19971                 join = 0;
19972                 join_tail = &join;
19973                 /* merge the two lists */
19974                 while(first && mid) {
19975                         if ((first->degree < mid->degree) ||
19976                                 ((first->degree == mid->degree) &&
19977                                         (first->length < mid->length))) {
19978                                 pick = first;
19979                                 first = first->group_next;
19980                                 if (first) {
19981                                         first->group_prev = 0;
19982                                 }
19983                         }
19984                         else {
19985                                 pick = mid;
19986                                 mid = mid->group_next;
19987                                 if (mid) {
19988                                         mid->group_prev = 0;
19989                                 }
19990                         }
19991                         pick->group_next = 0;
19992                         pick->group_prev = join_tail;
19993                         *join_tail = pick;
19994                         join_tail = &pick->group_next;
19995                 }
19996                 /* Splice the remaining list */
19997                 pick = (first)? first : mid;
19998                 *join_tail = pick;
19999                 if (pick) {
20000                         pick->group_prev = join_tail;
20001                 }
20002         }
20003         else {
20004                 if (!first->defs) {
20005                         first = 0;
20006                 }
20007                 join = first;
20008         }
20009         return join;
20010 }
20011
20012 static void ids_from_rstate(struct compile_state *state,
20013         struct reg_state *rstate)
20014 {
20015         struct triple *ins, *first;
20016         if (!rstate->defs) {
20017                 return;
20018         }
20019         /* Display the graph if desired */
20020         if (state->compiler->debug & DEBUG_INTERFERENCE) {
20021                 FILE *fp = state->dbgout;
20022                 print_interference_blocks(state, rstate, fp, 0);
20023                 print_control_flow(state, fp, &state->bb);
20024                 fflush(fp);
20025         }
20026         first = state->first;
20027         ins = first;
20028         do {
20029                 if (ins->id) {
20030                         struct live_range_def *lrd;
20031                         lrd = &rstate->lrd[ins->id];
20032                         ins->id = lrd->orig_id;
20033                 }
20034                 ins = ins->next;
20035         } while(ins != first);
20036 }
20037
20038 static void cleanup_live_edges(struct reg_state *rstate)
20039 {
20040         int i;
20041         /* Free the edges on each node */
20042         for(i = 1; i <= rstate->ranges; i++) {
20043                 remove_live_edges(rstate, &rstate->lr[i]);
20044         }
20045 }
20046
20047 static void cleanup_rstate(struct compile_state *state, struct reg_state *rstate)
20048 {
20049         cleanup_live_edges(rstate);
20050         xfree(rstate->lrd);
20051         xfree(rstate->lr);
20052
20053         /* Free the variable lifetime information */
20054         if (rstate->blocks) {
20055                 free_variable_lifetimes(state, &state->bb, rstate->blocks);
20056         }
20057         rstate->defs = 0;
20058         rstate->ranges = 0;
20059         rstate->lrd = 0;
20060         rstate->lr = 0;
20061         rstate->blocks = 0;
20062 }
20063
20064 static void verify_consistency(struct compile_state *state);
20065 static void allocate_registers(struct compile_state *state)
20066 {
20067         struct reg_state rstate;
20068         int colored;
20069
20070         /* Clear out the reg_state */
20071         memset(&rstate, 0, sizeof(rstate));
20072         rstate.max_passes = state->compiler->max_allocation_passes;
20073
20074         do {
20075                 struct live_range **point, **next;
20076                 int tangles;
20077                 int coalesced;
20078
20079                 if (state->compiler->debug & DEBUG_RANGE_CONFLICTS) {
20080                         FILE *fp = state->errout;
20081                         fprintf(fp, "pass: %d\n", rstate.passes);
20082                         fflush(fp);
20083                 }
20084
20085                 /* Restore ids */
20086                 ids_from_rstate(state, &rstate);
20087
20088                 /* Cleanup the temporary data structures */
20089                 cleanup_rstate(state, &rstate);
20090
20091                 /* Compute the variable lifetimes */
20092                 rstate.blocks = compute_variable_lifetimes(state, &state->bb);
20093
20094                 /* Fix invalid mandatory live range coalesce conflicts */
20095                 correct_coalesce_conflicts(state, rstate.blocks);
20096
20097                 /* Fix two simultaneous uses of the same register.
20098                  * In a few pathlogical cases a partial untangle moves
20099                  * the tangle to a part of the graph we won't revisit.
20100                  * So we keep looping until we have no more tangle fixes
20101                  * to apply.
20102                  */
20103                 do {
20104                         tangles = correct_tangles(state, rstate.blocks);
20105                 } while(tangles);
20106
20107
20108                 print_blocks(state, "resolve_tangles", state->dbgout);
20109                 verify_consistency(state);
20110
20111                 /* Allocate and initialize the live ranges */
20112                 initialize_live_ranges(state, &rstate);
20113
20114                 /* Note currently doing coalescing in a loop appears to
20115                  * buys me nothing.  The code is left this way in case
20116                  * there is some value in it.  Or if a future bugfix
20117                  * yields some benefit.
20118                  */
20119                 do {
20120                         if (state->compiler->debug & DEBUG_COALESCING) {
20121                                 fprintf(state->errout, "coalescing\n");
20122                         }
20123
20124                         /* Remove any previous live edge calculations */
20125                         cleanup_live_edges(&rstate);
20126
20127                         /* Compute the interference graph */
20128                         walk_variable_lifetimes(
20129                                 state, &state->bb, rstate.blocks,
20130                                 graph_ins, &rstate);
20131
20132                         /* Display the interference graph if desired */
20133                         if (state->compiler->debug & DEBUG_INTERFERENCE) {
20134                                 print_interference_blocks(state, &rstate, state->dbgout, 1);
20135                                 fprintf(state->dbgout, "\nlive variables by instruction\n");
20136                                 walk_variable_lifetimes(
20137                                         state, &state->bb, rstate.blocks,
20138                                         print_interference_ins, &rstate);
20139                         }
20140
20141                         coalesced = coalesce_live_ranges(state, &rstate);
20142
20143                         if (state->compiler->debug & DEBUG_COALESCING) {
20144                                 fprintf(state->errout, "coalesced: %d\n", coalesced);
20145                         }
20146                 } while(coalesced);
20147
20148 #if DEBUG_CONSISTENCY > 1
20149 # if 0
20150                 fprintf(state->errout, "verify_graph_ins...\n");
20151 # endif
20152                 /* Verify the interference graph */
20153                 walk_variable_lifetimes(
20154                         state, &state->bb, rstate.blocks,
20155                         verify_graph_ins, &rstate);
20156 # if 0
20157                 fprintf(state->errout, "verify_graph_ins done\n");
20158 #endif
20159 #endif
20160
20161                 /* Build the groups low and high.  But with the nodes
20162                  * first sorted by degree order.
20163                  */
20164                 rstate.low_tail  = &rstate.low;
20165                 rstate.high_tail = &rstate.high;
20166                 rstate.high = merge_sort_lr(&rstate.lr[1], &rstate.lr[rstate.ranges]);
20167                 if (rstate.high) {
20168                         rstate.high->group_prev = &rstate.high;
20169                 }
20170                 for(point = &rstate.high; *point; point = &(*point)->group_next)
20171                         ;
20172                 rstate.high_tail = point;
20173                 /* Walk through the high list and move everything that needs
20174                  * to be onto low.
20175                  */
20176                 for(point = &rstate.high; *point; point = next) {
20177                         struct live_range *range;
20178                         next = &(*point)->group_next;
20179                         range = *point;
20180
20181                         /* If it has a low degree or it already has a color
20182                          * place the node in low.
20183                          */
20184                         if ((range->degree < regc_max_size(state, range->classes)) ||
20185                                 (range->color != REG_UNSET)) {
20186                                 cgdebug_printf(state, "Lo: %5d degree %5d%s\n",
20187                                         range - rstate.lr, range->degree,
20188                                         (range->color != REG_UNSET) ? " (colored)": "");
20189                                 *range->group_prev = range->group_next;
20190                                 if (range->group_next) {
20191                                         range->group_next->group_prev = range->group_prev;
20192                                 }
20193                                 if (&range->group_next == rstate.high_tail) {
20194                                         rstate.high_tail = range->group_prev;
20195                                 }
20196                                 range->group_prev  = rstate.low_tail;
20197                                 range->group_next  = 0;
20198                                 *rstate.low_tail   = range;
20199                                 rstate.low_tail    = &range->group_next;
20200                                 next = point;
20201                         }
20202                         else {
20203                                 cgdebug_printf(state, "hi: %5d degree %5d%s\n",
20204                                         range - rstate.lr, range->degree,
20205                                         (range->color != REG_UNSET) ? " (colored)": "");
20206                         }
20207                 }
20208                 /* Color the live_ranges */
20209                 colored = color_graph(state, &rstate);
20210                 rstate.passes++;
20211         } while (!colored);
20212
20213         /* Verify the graph was properly colored */
20214         verify_colors(state, &rstate);
20215
20216         /* Move the colors from the graph to the triples */
20217         color_triples(state, &rstate);
20218
20219         /* Cleanup the temporary data structures */
20220         cleanup_rstate(state, &rstate);
20221
20222         /* Display the new graph */
20223         print_blocks(state, __func__, state->dbgout);
20224 }
20225
20226 /* Sparce Conditional Constant Propogation
20227  * =========================================
20228  */
20229 struct ssa_edge;
20230 struct flow_block;
20231 struct lattice_node {
20232         unsigned old_id;
20233         struct triple *def;
20234         struct ssa_edge *out;
20235         struct flow_block *fblock;
20236         struct triple *val;
20237         /* lattice high   val == def
20238          * lattice const  is_const(val)
20239          * lattice low    other
20240          */
20241 };
20242 struct ssa_edge {
20243         struct lattice_node *src;
20244         struct lattice_node *dst;
20245         struct ssa_edge *work_next;
20246         struct ssa_edge *work_prev;
20247         struct ssa_edge *out_next;
20248 };
20249 struct flow_edge {
20250         struct flow_block *src;
20251         struct flow_block *dst;
20252         struct flow_edge *work_next;
20253         struct flow_edge *work_prev;
20254         struct flow_edge *in_next;
20255         struct flow_edge *out_next;
20256         int executable;
20257 };
20258 #define MAX_FLOW_BLOCK_EDGES 3
20259 struct flow_block {
20260         struct block *block;
20261         struct flow_edge *in;
20262         struct flow_edge *out;
20263         struct flow_edge *edges;
20264 };
20265
20266 struct scc_state {
20267         int ins_count;
20268         struct lattice_node *lattice;
20269         struct ssa_edge     *ssa_edges;
20270         struct flow_block   *flow_blocks;
20271         struct flow_edge    *flow_work_list;
20272         struct ssa_edge     *ssa_work_list;
20273 };
20274
20275
20276 static int is_scc_const(struct compile_state *state, struct triple *ins)
20277 {
20278         return ins && (triple_is_ubranch(state, ins) || is_const(ins));
20279 }
20280
20281 static int is_lattice_hi(struct compile_state *state, struct lattice_node *lnode)
20282 {
20283         return !is_scc_const(state, lnode->val) && (lnode->val == lnode->def);
20284 }
20285
20286 static int is_lattice_const(struct compile_state *state, struct lattice_node *lnode)
20287 {
20288         return is_scc_const(state, lnode->val);
20289 }
20290
20291 static int is_lattice_lo(struct compile_state *state, struct lattice_node *lnode)
20292 {
20293         return (lnode->val != lnode->def) && !is_scc_const(state, lnode->val);
20294 }
20295
20296 static void scc_add_fedge(struct compile_state *state, struct scc_state *scc,
20297         struct flow_edge *fedge)
20298 {
20299         if (state->compiler->debug & DEBUG_SCC_TRANSFORM2) {
20300                 fprintf(state->errout, "adding fedge: %p (%4d -> %5d)\n",
20301                         fedge,
20302                         fedge->src->block?fedge->src->block->last->id: 0,
20303                         fedge->dst->block?fedge->dst->block->first->id: 0);
20304         }
20305         if ((fedge == scc->flow_work_list) ||
20306                 (fedge->work_next != fedge) ||
20307                 (fedge->work_prev != fedge)) {
20308
20309                 if (state->compiler->debug & DEBUG_SCC_TRANSFORM2) {
20310                         fprintf(state->errout, "dupped fedge: %p\n",
20311                                 fedge);
20312                 }
20313                 return;
20314         }
20315         if (!scc->flow_work_list) {
20316                 scc->flow_work_list = fedge;
20317                 fedge->work_next = fedge->work_prev = fedge;
20318         }
20319         else {
20320                 struct flow_edge *ftail;
20321                 ftail = scc->flow_work_list->work_prev;
20322                 fedge->work_next = ftail->work_next;
20323                 fedge->work_prev = ftail;
20324                 fedge->work_next->work_prev = fedge;
20325                 fedge->work_prev->work_next = fedge;
20326         }
20327 }
20328
20329 static struct flow_edge *scc_next_fedge(
20330         struct compile_state *state, struct scc_state *scc)
20331 {
20332         struct flow_edge *fedge;
20333         fedge = scc->flow_work_list;
20334         if (fedge) {
20335                 fedge->work_next->work_prev = fedge->work_prev;
20336                 fedge->work_prev->work_next = fedge->work_next;
20337                 if (fedge->work_next != fedge) {
20338                         scc->flow_work_list = fedge->work_next;
20339                 } else {
20340                         scc->flow_work_list = 0;
20341                 }
20342                 fedge->work_next = fedge->work_prev = fedge;
20343         }
20344         return fedge;
20345 }
20346
20347 static void scc_add_sedge(struct compile_state *state, struct scc_state *scc,
20348         struct ssa_edge *sedge)
20349 {
20350         if (state->compiler->debug & DEBUG_SCC_TRANSFORM2) {
20351                 fprintf(state->errout, "adding sedge: %5ld (%4d -> %5d)\n",
20352                         (long)(sedge - scc->ssa_edges),
20353                         sedge->src->def->id,
20354                         sedge->dst->def->id);
20355         }
20356         if ((sedge == scc->ssa_work_list) ||
20357                 (sedge->work_next != sedge) ||
20358                 (sedge->work_prev != sedge)) {
20359
20360                 if (state->compiler->debug & DEBUG_SCC_TRANSFORM2) {
20361                         fprintf(state->errout, "dupped sedge: %5ld\n",
20362                                 (long)(sedge - scc->ssa_edges));
20363                 }
20364                 return;
20365         }
20366         if (!scc->ssa_work_list) {
20367                 scc->ssa_work_list = sedge;
20368                 sedge->work_next = sedge->work_prev = sedge;
20369         }
20370         else {
20371                 struct ssa_edge *stail;
20372                 stail = scc->ssa_work_list->work_prev;
20373                 sedge->work_next = stail->work_next;
20374                 sedge->work_prev = stail;
20375                 sedge->work_next->work_prev = sedge;
20376                 sedge->work_prev->work_next = sedge;
20377         }
20378 }
20379
20380 static struct ssa_edge *scc_next_sedge(
20381         struct compile_state *state, struct scc_state *scc)
20382 {
20383         struct ssa_edge *sedge;
20384         sedge = scc->ssa_work_list;
20385         if (sedge) {
20386                 sedge->work_next->work_prev = sedge->work_prev;
20387                 sedge->work_prev->work_next = sedge->work_next;
20388                 if (sedge->work_next != sedge) {
20389                         scc->ssa_work_list = sedge->work_next;
20390                 } else {
20391                         scc->ssa_work_list = 0;
20392                 }
20393                 sedge->work_next = sedge->work_prev = sedge;
20394         }
20395         return sedge;
20396 }
20397
20398 static void initialize_scc_state(
20399         struct compile_state *state, struct scc_state *scc)
20400 {
20401         int ins_count, ssa_edge_count;
20402         int ins_index, ssa_edge_index, fblock_index;
20403         struct triple *first, *ins;
20404         struct block *block;
20405         struct flow_block *fblock;
20406
20407         memset(scc, 0, sizeof(*scc));
20408
20409         /* Inialize pass zero find out how much memory we need */
20410         first = state->first;
20411         ins = first;
20412         ins_count = ssa_edge_count = 0;
20413         do {
20414                 struct triple_set *edge;
20415                 ins_count += 1;
20416                 for(edge = ins->use; edge; edge = edge->next) {
20417                         ssa_edge_count++;
20418                 }
20419                 ins = ins->next;
20420         } while(ins != first);
20421         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20422                 fprintf(state->errout, "ins_count: %d ssa_edge_count: %d vertex_count: %d\n",
20423                         ins_count, ssa_edge_count, state->bb.last_vertex);
20424         }
20425         scc->ins_count   = ins_count;
20426         scc->lattice     =
20427                 xcmalloc(sizeof(*scc->lattice)*(ins_count + 1), "lattice");
20428         scc->ssa_edges   =
20429                 xcmalloc(sizeof(*scc->ssa_edges)*(ssa_edge_count + 1), "ssa_edges");
20430         scc->flow_blocks =
20431                 xcmalloc(sizeof(*scc->flow_blocks)*(state->bb.last_vertex + 1),
20432                         "flow_blocks");
20433
20434         /* Initialize pass one collect up the nodes */
20435         fblock = 0;
20436         block = 0;
20437         ins_index = ssa_edge_index = fblock_index = 0;
20438         ins = first;
20439         do {
20440                 if ((ins->op == OP_LABEL) && (block != ins->u.block)) {
20441                         block = ins->u.block;
20442                         if (!block) {
20443                                 internal_error(state, ins, "label without block");
20444                         }
20445                         fblock_index += 1;
20446                         block->vertex = fblock_index;
20447                         fblock = &scc->flow_blocks[fblock_index];
20448                         fblock->block = block;
20449                         fblock->edges = xcmalloc(sizeof(*fblock->edges)*block->edge_count,
20450                                 "flow_edges");
20451                 }
20452                 {
20453                         struct lattice_node *lnode;
20454                         ins_index += 1;
20455                         lnode = &scc->lattice[ins_index];
20456                         lnode->def = ins;
20457                         lnode->out = 0;
20458                         lnode->fblock = fblock;
20459                         lnode->val = ins; /* LATTICE HIGH */
20460                         if (lnode->val->op == OP_UNKNOWNVAL) {
20461                                 lnode->val = 0; /* LATTICE LOW by definition */
20462                         }
20463                         lnode->old_id = ins->id;
20464                         ins->id = ins_index;
20465                 }
20466                 ins = ins->next;
20467         } while(ins != first);
20468         /* Initialize pass two collect up the edges */
20469         block = 0;
20470         fblock = 0;
20471         ins = first;
20472         do {
20473                 {
20474                         struct triple_set *edge;
20475                         struct ssa_edge **stail;
20476                         struct lattice_node *lnode;
20477                         lnode = &scc->lattice[ins->id];
20478                         lnode->out = 0;
20479                         stail = &lnode->out;
20480                         for(edge = ins->use; edge; edge = edge->next) {
20481                                 struct ssa_edge *sedge;
20482                                 ssa_edge_index += 1;
20483                                 sedge = &scc->ssa_edges[ssa_edge_index];
20484                                 *stail = sedge;
20485                                 stail = &sedge->out_next;
20486                                 sedge->src = lnode;
20487                                 sedge->dst = &scc->lattice[edge->member->id];
20488                                 sedge->work_next = sedge->work_prev = sedge;
20489                                 sedge->out_next = 0;
20490                         }
20491                 }
20492                 if ((ins->op == OP_LABEL) && (block != ins->u.block)) {
20493                         struct flow_edge *fedge, **ftail;
20494                         struct block_set *bedge;
20495                         block = ins->u.block;
20496                         fblock = &scc->flow_blocks[block->vertex];
20497                         fblock->in = 0;
20498                         fblock->out = 0;
20499                         ftail = &fblock->out;
20500
20501                         fedge = fblock->edges;
20502                         bedge = block->edges;
20503                         for(; bedge; bedge = bedge->next, fedge++) {
20504                                 fedge->dst = &scc->flow_blocks[bedge->member->vertex];
20505                                 if (fedge->dst->block != bedge->member) {
20506                                         internal_error(state, 0, "block mismatch");
20507                                 }
20508                                 *ftail = fedge;
20509                                 ftail = &fedge->out_next;
20510                                 fedge->out_next = 0;
20511                         }
20512                         for(fedge = fblock->out; fedge; fedge = fedge->out_next) {
20513                                 fedge->src = fblock;
20514                                 fedge->work_next = fedge->work_prev = fedge;
20515                                 fedge->executable = 0;
20516                         }
20517                 }
20518                 ins = ins->next;
20519         } while (ins != first);
20520         block = 0;
20521         fblock = 0;
20522         ins = first;
20523         do {
20524                 if ((ins->op  == OP_LABEL) && (block != ins->u.block)) {
20525                         struct flow_edge **ftail;
20526                         struct block_set *bedge;
20527                         block = ins->u.block;
20528                         fblock = &scc->flow_blocks[block->vertex];
20529                         ftail = &fblock->in;
20530                         for(bedge = block->use; bedge; bedge = bedge->next) {
20531                                 struct block *src_block;
20532                                 struct flow_block *sfblock;
20533                                 struct flow_edge *sfedge;
20534                                 src_block = bedge->member;
20535                                 sfblock = &scc->flow_blocks[src_block->vertex];
20536                                 for(sfedge = sfblock->out; sfedge; sfedge = sfedge->out_next) {
20537                                         if (sfedge->dst == fblock) {
20538                                                 break;
20539                                         }
20540                                 }
20541                                 if (!sfedge) {
20542                                         internal_error(state, 0, "edge mismatch");
20543                                 }
20544                                 *ftail = sfedge;
20545                                 ftail = &sfedge->in_next;
20546                                 sfedge->in_next = 0;
20547                         }
20548                 }
20549                 ins = ins->next;
20550         } while(ins != first);
20551         /* Setup a dummy block 0 as a node above the start node */
20552         {
20553                 struct flow_block *fblock, *dst;
20554                 struct flow_edge *fedge;
20555                 fblock = &scc->flow_blocks[0];
20556                 fblock->block = 0;
20557                 fblock->edges = xcmalloc(sizeof(*fblock->edges)*1, "flow_edges");
20558                 fblock->in = 0;
20559                 fblock->out = fblock->edges;
20560                 dst = &scc->flow_blocks[state->bb.first_block->vertex];
20561                 fedge = fblock->edges;
20562                 fedge->src        = fblock;
20563                 fedge->dst        = dst;
20564                 fedge->work_next  = fedge;
20565                 fedge->work_prev  = fedge;
20566                 fedge->in_next    = fedge->dst->in;
20567                 fedge->out_next   = 0;
20568                 fedge->executable = 0;
20569                 fedge->dst->in = fedge;
20570
20571                 /* Initialize the work lists */
20572                 scc->flow_work_list = 0;
20573                 scc->ssa_work_list  = 0;
20574                 scc_add_fedge(state, scc, fedge);
20575         }
20576         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20577                 fprintf(state->errout, "ins_index: %d ssa_edge_index: %d fblock_index: %d\n",
20578                         ins_index, ssa_edge_index, fblock_index);
20579         }
20580 }
20581
20582
20583 static void free_scc_state(
20584         struct compile_state *state, struct scc_state *scc)
20585 {
20586         int i;
20587         for(i = 0; i < state->bb.last_vertex + 1; i++) {
20588                 struct flow_block *fblock;
20589                 fblock = &scc->flow_blocks[i];
20590                 if (fblock->edges) {
20591                         xfree(fblock->edges);
20592                         fblock->edges = 0;
20593                 }
20594         }
20595         xfree(scc->flow_blocks);
20596         xfree(scc->ssa_edges);
20597         xfree(scc->lattice);
20598
20599 }
20600
20601 static struct lattice_node *triple_to_lattice(
20602         struct compile_state *state, struct scc_state *scc, struct triple *ins)
20603 {
20604         if (ins->id <= 0) {
20605                 internal_error(state, ins, "bad id");
20606         }
20607         return &scc->lattice[ins->id];
20608 }
20609
20610 static struct triple *preserve_lval(
20611         struct compile_state *state, struct lattice_node *lnode)
20612 {
20613         struct triple *old;
20614         /* Preserve the original value */
20615         if (lnode->val) {
20616                 old = dup_triple(state, lnode->val);
20617                 if (lnode->val != lnode->def) {
20618                         xfree(lnode->val);
20619                 }
20620                 lnode->val = 0;
20621         } else {
20622                 old = 0;
20623         }
20624         return old;
20625 }
20626
20627 static int lval_changed(struct compile_state *state,
20628         struct triple *old, struct lattice_node *lnode)
20629 {
20630         int changed;
20631         /* See if the lattice value has changed */
20632         changed = 1;
20633         if (!old && !lnode->val) {
20634                 changed = 0;
20635         }
20636         if (changed &&
20637                 lnode->val && old &&
20638                 (memcmp(lnode->val->param, old->param,
20639                         TRIPLE_SIZE(lnode->val) * sizeof(lnode->val->param[0])) == 0) &&
20640                 (memcmp(&lnode->val->u, &old->u, sizeof(old->u)) == 0)) {
20641                 changed = 0;
20642         }
20643         if (old) {
20644                 xfree(old);
20645         }
20646         return changed;
20647
20648 }
20649
20650 static void scc_debug_lnode(
20651         struct compile_state *state, struct scc_state *scc,
20652         struct lattice_node *lnode, int changed)
20653 {
20654         if ((state->compiler->debug & DEBUG_SCC_TRANSFORM2) && lnode->val) {
20655                 display_triple_changes(state->errout, lnode->val, lnode->def);
20656         }
20657         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20658                 FILE *fp = state->errout;
20659                 struct triple *val, **expr;
20660                 val = lnode->val? lnode->val : lnode->def;
20661                 fprintf(fp, "%p %s %3d %10s (",
20662                         lnode->def,
20663                         ((lnode->def->op == OP_PHI)? "phi: ": "expr:"),
20664                         lnode->def->id,
20665                         tops(lnode->def->op));
20666                 expr = triple_rhs(state, lnode->def, 0);
20667                 for(;expr;expr = triple_rhs(state, lnode->def, expr)) {
20668                         if (*expr) {
20669                                 fprintf(fp, " %d", (*expr)->id);
20670                         }
20671                 }
20672                 if (val->op == OP_INTCONST) {
20673                         fprintf(fp, " <0x%08lx>", (unsigned long)(val->u.cval));
20674                 }
20675                 fprintf(fp, " ) -> %s %s\n",
20676                         (is_lattice_hi(state, lnode)? "hi":
20677                                 is_lattice_const(state, lnode)? "const" : "lo"),
20678                         changed? "changed" : ""
20679                         );
20680         }
20681 }
20682
20683 static int compute_lnode_val(struct compile_state *state, struct scc_state *scc,
20684         struct lattice_node *lnode)
20685 {
20686         int changed;
20687         struct triple *old, *scratch;
20688         struct triple **dexpr, **vexpr;
20689         int count, i;
20690
20691         /* Store the original value */
20692         old = preserve_lval(state, lnode);
20693
20694         /* Reinitialize the value */
20695         lnode->val = scratch = dup_triple(state, lnode->def);
20696         scratch->id = lnode->old_id;
20697         scratch->next     = scratch;
20698         scratch->prev     = scratch;
20699         scratch->use      = 0;
20700
20701         count = TRIPLE_SIZE(scratch);
20702         for(i = 0; i < count; i++) {
20703                 dexpr = &lnode->def->param[i];
20704                 vexpr = &scratch->param[i];
20705                 *vexpr = *dexpr;
20706                 if (((i < TRIPLE_MISC_OFF(scratch)) ||
20707                         (i >= TRIPLE_TARG_OFF(scratch))) &&
20708                         *dexpr) {
20709                         struct lattice_node *tmp;
20710                         tmp = triple_to_lattice(state, scc, *dexpr);
20711                         *vexpr = (tmp->val)? tmp->val : tmp->def;
20712                 }
20713         }
20714         if (triple_is_branch(state, scratch)) {
20715                 scratch->next = lnode->def->next;
20716         }
20717         /* Recompute the value */
20718 #if DEBUG_ROMCC_WARNINGS
20719 #warning "FIXME see if simplify does anything bad"
20720 #endif
20721         /* So far it looks like only the strength reduction
20722          * optimization are things I need to worry about.
20723          */
20724         simplify(state, scratch);
20725         /* Cleanup my value */
20726         if (scratch->use) {
20727                 internal_error(state, lnode->def, "scratch used?");
20728         }
20729         if ((scratch->prev != scratch) ||
20730                 ((scratch->next != scratch) &&
20731                         (!triple_is_branch(state, lnode->def) ||
20732                                 (scratch->next != lnode->def->next)))) {
20733                 internal_error(state, lnode->def, "scratch in list?");
20734         }
20735         /* undo any uses... */
20736         count = TRIPLE_SIZE(scratch);
20737         for(i = 0; i < count; i++) {
20738                 vexpr = &scratch->param[i];
20739                 if (*vexpr) {
20740                         unuse_triple(*vexpr, scratch);
20741                 }
20742         }
20743         if (lnode->val->op == OP_UNKNOWNVAL) {
20744                 lnode->val = 0; /* Lattice low by definition */
20745         }
20746         /* Find the case when I am lattice high */
20747         if (lnode->val &&
20748                 (lnode->val->op == lnode->def->op) &&
20749                 (memcmp(lnode->val->param, lnode->def->param,
20750                         count * sizeof(lnode->val->param[0])) == 0) &&
20751                 (memcmp(&lnode->val->u, &lnode->def->u, sizeof(lnode->def->u)) == 0)) {
20752                 lnode->val = lnode->def;
20753         }
20754         /* Only allow lattice high when all of my inputs
20755          * are also lattice high.  Occassionally I can
20756          * have constants with a lattice low input, so
20757          * I do not need to check that case.
20758          */
20759         if (is_lattice_hi(state, lnode)) {
20760                 struct lattice_node *tmp;
20761                 int rhs;
20762                 rhs = lnode->val->rhs;
20763                 for(i = 0; i < rhs; i++) {
20764                         tmp = triple_to_lattice(state, scc, RHS(lnode->val, i));
20765                         if (!is_lattice_hi(state, tmp)) {
20766                                 lnode->val = 0;
20767                                 break;
20768                         }
20769                 }
20770         }
20771         /* Find the cases that are always lattice lo */
20772         if (lnode->val &&
20773                 triple_is_def(state, lnode->val) &&
20774                 !triple_is_pure(state, lnode->val, lnode->old_id)) {
20775                 lnode->val = 0;
20776         }
20777         /* See if the lattice value has changed */
20778         changed = lval_changed(state, old, lnode);
20779         /* See if this value should not change */
20780         if ((lnode->val != lnode->def) &&
20781                 ((      !triple_is_def(state, lnode->def)  &&
20782                         !triple_is_cbranch(state, lnode->def)) ||
20783                         (lnode->def->op == OP_PIECE))) {
20784 #if DEBUG_ROMCC_WARNINGS
20785 #warning "FIXME constant propogate through expressions with multiple left hand sides"
20786 #endif
20787                 if (changed) {
20788                         internal_warning(state, lnode->def, "non def changes value?");
20789                 }
20790                 lnode->val = 0;
20791         }
20792
20793         /* See if we need to free the scratch value */
20794         if (lnode->val != scratch) {
20795                 xfree(scratch);
20796         }
20797
20798         return changed;
20799 }
20800
20801
20802 static void scc_visit_cbranch(struct compile_state *state, struct scc_state *scc,
20803         struct lattice_node *lnode)
20804 {
20805         struct lattice_node *cond;
20806         struct flow_edge *left, *right;
20807         int changed;
20808
20809         /* Update the branch value */
20810         changed = compute_lnode_val(state, scc, lnode);
20811         scc_debug_lnode(state, scc, lnode, changed);
20812
20813         /* This only applies to conditional branches */
20814         if (!triple_is_cbranch(state, lnode->def)) {
20815                 internal_error(state, lnode->def, "not a conditional branch");
20816         }
20817
20818         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20819                 struct flow_edge *fedge;
20820                 FILE *fp = state->errout;
20821                 fprintf(fp, "%s: %d (",
20822                         tops(lnode->def->op),
20823                         lnode->def->id);
20824
20825                 for(fedge = lnode->fblock->out; fedge; fedge = fedge->out_next) {
20826                         fprintf(fp, " %d", fedge->dst->block->vertex);
20827                 }
20828                 fprintf(fp, " )");
20829                 if (lnode->def->rhs > 0) {
20830                         fprintf(fp, " <- %d",
20831                                 RHS(lnode->def, 0)->id);
20832                 }
20833                 fprintf(fp, "\n");
20834         }
20835         cond = triple_to_lattice(state, scc, RHS(lnode->def,0));
20836         for(left = cond->fblock->out; left; left = left->out_next) {
20837                 if (left->dst->block->first == lnode->def->next) {
20838                         break;
20839                 }
20840         }
20841         if (!left) {
20842                 internal_error(state, lnode->def, "Cannot find left branch edge");
20843         }
20844         for(right = cond->fblock->out; right; right = right->out_next) {
20845                 if (right->dst->block->first == TARG(lnode->def, 0)) {
20846                         break;
20847                 }
20848         }
20849         if (!right) {
20850                 internal_error(state, lnode->def, "Cannot find right branch edge");
20851         }
20852         /* I should only come here if the controlling expressions value
20853          * has changed, which means it must be either a constant or lo.
20854          */
20855         if (is_lattice_hi(state, cond)) {
20856                 internal_error(state, cond->def, "condition high?");
20857                 return;
20858         }
20859         if (is_lattice_lo(state, cond)) {
20860                 scc_add_fedge(state, scc, left);
20861                 scc_add_fedge(state, scc, right);
20862         }
20863         else if (cond->val->u.cval) {
20864                 scc_add_fedge(state, scc, right);
20865         } else {
20866                 scc_add_fedge(state, scc, left);
20867         }
20868
20869 }
20870
20871
20872 static void scc_add_sedge_dst(struct compile_state *state,
20873         struct scc_state *scc, struct ssa_edge *sedge)
20874 {
20875         if (triple_is_cbranch(state, sedge->dst->def)) {
20876                 scc_visit_cbranch(state, scc, sedge->dst);
20877         }
20878         else if (triple_is_def(state, sedge->dst->def)) {
20879                 scc_add_sedge(state, scc, sedge);
20880         }
20881 }
20882
20883 static void scc_visit_phi(struct compile_state *state, struct scc_state *scc,
20884         struct lattice_node *lnode)
20885 {
20886         struct lattice_node *tmp;
20887         struct triple **slot, *old;
20888         struct flow_edge *fedge;
20889         int changed;
20890         int index;
20891         if (lnode->def->op != OP_PHI) {
20892                 internal_error(state, lnode->def, "not phi");
20893         }
20894         /* Store the original value */
20895         old = preserve_lval(state, lnode);
20896
20897         /* default to lattice high */
20898         lnode->val = lnode->def;
20899         slot = &RHS(lnode->def, 0);
20900         index = 0;
20901         for(fedge = lnode->fblock->in; fedge; index++, fedge = fedge->in_next) {
20902                 if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20903                         fprintf(state->errout, "Examining edge: %d vertex: %d executable: %d\n",
20904                                 index,
20905                                 fedge->dst->block->vertex,
20906                                 fedge->executable
20907                                 );
20908                 }
20909                 if (!fedge->executable) {
20910                         continue;
20911                 }
20912                 if (!slot[index]) {
20913                         internal_error(state, lnode->def, "no phi value");
20914                 }
20915                 tmp = triple_to_lattice(state, scc, slot[index]);
20916                 /* meet(X, lattice low) = lattice low */
20917                 if (is_lattice_lo(state, tmp)) {
20918                         lnode->val = 0;
20919                 }
20920                 /* meet(X, lattice high) = X */
20921                 else if (is_lattice_hi(state, tmp)) {
20922                         lnode->val = lnode->val;
20923                 }
20924                 /* meet(lattice high, X) = X */
20925                 else if (is_lattice_hi(state, lnode)) {
20926                         lnode->val = dup_triple(state, tmp->val);
20927                         /* Only change the type if necessary */
20928                         if (!is_subset_type(lnode->def->type, tmp->val->type)) {
20929                                 lnode->val->type = lnode->def->type;
20930                         }
20931                 }
20932                 /* meet(const, const) = const or lattice low */
20933                 else if (!constants_equal(state, lnode->val, tmp->val)) {
20934                         lnode->val = 0;
20935                 }
20936
20937                 /* meet(lattice low, X) = lattice low */
20938                 if (is_lattice_lo(state, lnode)) {
20939                         lnode->val = 0;
20940                         break;
20941                 }
20942         }
20943         changed = lval_changed(state, old, lnode);
20944         scc_debug_lnode(state, scc, lnode, changed);
20945
20946         /* If the lattice value has changed update the work lists. */
20947         if (changed) {
20948                 struct ssa_edge *sedge;
20949                 for(sedge = lnode->out; sedge; sedge = sedge->out_next) {
20950                         scc_add_sedge_dst(state, scc, sedge);
20951                 }
20952         }
20953 }
20954
20955
20956 static void scc_visit_expr(struct compile_state *state, struct scc_state *scc,
20957         struct lattice_node *lnode)
20958 {
20959         int changed;
20960
20961         if (!triple_is_def(state, lnode->def)) {
20962                 internal_warning(state, lnode->def, "not visiting an expression?");
20963         }
20964         changed = compute_lnode_val(state, scc, lnode);
20965         scc_debug_lnode(state, scc, lnode, changed);
20966
20967         if (changed) {
20968                 struct ssa_edge *sedge;
20969                 for(sedge = lnode->out; sedge; sedge = sedge->out_next) {
20970                         scc_add_sedge_dst(state, scc, sedge);
20971                 }
20972         }
20973 }
20974
20975 static void scc_writeback_values(
20976         struct compile_state *state, struct scc_state *scc)
20977 {
20978         struct triple *first, *ins;
20979         first = state->first;
20980         ins = first;
20981         do {
20982                 struct lattice_node *lnode;
20983                 lnode = triple_to_lattice(state, scc, ins);
20984                 if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
20985                         if (is_lattice_hi(state, lnode) &&
20986                                 (lnode->val->op != OP_NOOP))
20987                         {
20988                                 struct flow_edge *fedge;
20989                                 int executable;
20990                                 executable = 0;
20991                                 for(fedge = lnode->fblock->in;
20992                                     !executable && fedge; fedge = fedge->in_next) {
20993                                         executable |= fedge->executable;
20994                                 }
20995                                 if (executable) {
20996                                         internal_warning(state, lnode->def,
20997                                                 "lattice node %d %s->%s still high?",
20998                                                 ins->id,
20999                                                 tops(lnode->def->op),
21000                                                 tops(lnode->val->op));
21001                                 }
21002                         }
21003                 }
21004
21005                 /* Restore id */
21006                 ins->id = lnode->old_id;
21007                 if (lnode->val && (lnode->val != ins)) {
21008                         /* See if it something I know how to write back */
21009                         switch(lnode->val->op) {
21010                         case OP_INTCONST:
21011                                 mkconst(state, ins, lnode->val->u.cval);
21012                                 break;
21013                         case OP_ADDRCONST:
21014                                 mkaddr_const(state, ins,
21015                                         MISC(lnode->val, 0), lnode->val->u.cval);
21016                                 break;
21017                         default:
21018                                 /* By default don't copy the changes,
21019                                  * recompute them in place instead.
21020                                  */
21021                                 simplify(state, ins);
21022                                 break;
21023                         }
21024                         if (is_const(lnode->val) &&
21025                                 !constants_equal(state, lnode->val, ins)) {
21026                                 internal_error(state, 0, "constants not equal");
21027                         }
21028                         /* Free the lattice nodes */
21029                         xfree(lnode->val);
21030                         lnode->val = 0;
21031                 }
21032                 ins = ins->next;
21033         } while(ins != first);
21034 }
21035
21036 static void scc_transform(struct compile_state *state)
21037 {
21038         struct scc_state scc;
21039         if (!(state->compiler->flags & COMPILER_SCC_TRANSFORM)) {
21040                 return;
21041         }
21042
21043         initialize_scc_state(state, &scc);
21044
21045         while(scc.flow_work_list || scc.ssa_work_list) {
21046                 struct flow_edge *fedge;
21047                 struct ssa_edge *sedge;
21048                 struct flow_edge *fptr;
21049                 while((fedge = scc_next_fedge(state, &scc))) {
21050                         struct block *block;
21051                         struct triple *ptr;
21052                         struct flow_block *fblock;
21053                         int reps;
21054                         int done;
21055                         if (fedge->executable) {
21056                                 continue;
21057                         }
21058                         if (!fedge->dst) {
21059                                 internal_error(state, 0, "fedge without dst");
21060                         }
21061                         if (!fedge->src) {
21062                                 internal_error(state, 0, "fedge without src");
21063                         }
21064                         fedge->executable = 1;
21065                         fblock = fedge->dst;
21066                         block = fblock->block;
21067                         reps = 0;
21068                         for(fptr = fblock->in; fptr; fptr = fptr->in_next) {
21069                                 if (fptr->executable) {
21070                                         reps++;
21071                                 }
21072                         }
21073
21074                         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
21075                                 fprintf(state->errout, "vertex: %d reps: %d\n",
21076                                         block->vertex, reps);
21077                         }
21078
21079                         done = 0;
21080                         for(ptr = block->first; !done; ptr = ptr->next) {
21081                                 struct lattice_node *lnode;
21082                                 done = (ptr == block->last);
21083                                 lnode = &scc.lattice[ptr->id];
21084                                 if (ptr->op == OP_PHI) {
21085                                         scc_visit_phi(state, &scc, lnode);
21086                                 }
21087                                 else if ((reps == 1) && triple_is_def(state, ptr))
21088                                 {
21089                                         scc_visit_expr(state, &scc, lnode);
21090                                 }
21091                         }
21092                         /* Add unconditional branch edges */
21093                         if (!triple_is_cbranch(state, fblock->block->last)) {
21094                                 struct flow_edge *out;
21095                                 for(out = fblock->out; out; out = out->out_next) {
21096                                         scc_add_fedge(state, &scc, out);
21097                                 }
21098                         }
21099                 }
21100                 while((sedge = scc_next_sedge(state, &scc))) {
21101                         struct lattice_node *lnode;
21102                         struct flow_block *fblock;
21103                         lnode = sedge->dst;
21104                         fblock = lnode->fblock;
21105
21106                         if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
21107                                 fprintf(state->errout, "sedge: %5ld (%5d -> %5d)\n",
21108                                         (unsigned long)sedge - (unsigned long)scc.ssa_edges,
21109                                         sedge->src->def->id,
21110                                         sedge->dst->def->id);
21111                         }
21112
21113                         if (lnode->def->op == OP_PHI) {
21114                                 scc_visit_phi(state, &scc, lnode);
21115                         }
21116                         else {
21117                                 for(fptr = fblock->in; fptr; fptr = fptr->in_next) {
21118                                         if (fptr->executable) {
21119                                                 break;
21120                                         }
21121                                 }
21122                                 if (fptr) {
21123                                         scc_visit_expr(state, &scc, lnode);
21124                                 }
21125                         }
21126                 }
21127         }
21128
21129         scc_writeback_values(state, &scc);
21130         free_scc_state(state, &scc);
21131         rebuild_ssa_form(state);
21132
21133         print_blocks(state, __func__, state->dbgout);
21134 }
21135
21136
21137 static void transform_to_arch_instructions(struct compile_state *state)
21138 {
21139         struct triple *ins, *first;
21140         first = state->first;
21141         ins = first;
21142         do {
21143                 ins = transform_to_arch_instruction(state, ins);
21144         } while(ins != first);
21145
21146         print_blocks(state, __func__, state->dbgout);
21147 }
21148
21149 #if DEBUG_CONSISTENCY
21150 static void verify_uses(struct compile_state *state)
21151 {
21152         struct triple *first, *ins;
21153         struct triple_set *set;
21154         first = state->first;
21155         ins = first;
21156         do {
21157                 struct triple **expr;
21158                 expr = triple_rhs(state, ins, 0);
21159                 for(; expr; expr = triple_rhs(state, ins, expr)) {
21160                         struct triple *rhs;
21161                         rhs = *expr;
21162                         for(set = rhs?rhs->use:0; set; set = set->next) {
21163                                 if (set->member == ins) {
21164                                         break;
21165                                 }
21166                         }
21167                         if (!set) {
21168                                 internal_error(state, ins, "rhs not used");
21169                         }
21170                 }
21171                 expr = triple_lhs(state, ins, 0);
21172                 for(; expr; expr = triple_lhs(state, ins, expr)) {
21173                         struct triple *lhs;
21174                         lhs = *expr;
21175                         for(set =  lhs?lhs->use:0; set; set = set->next) {
21176                                 if (set->member == ins) {
21177                                         break;
21178                                 }
21179                         }
21180                         if (!set) {
21181                                 internal_error(state, ins, "lhs not used");
21182                         }
21183                 }
21184                 expr = triple_misc(state, ins, 0);
21185                 if (ins->op != OP_PHI) {
21186                         for(; expr; expr = triple_targ(state, ins, expr)) {
21187                                 struct triple *misc;
21188                                 misc = *expr;
21189                                 for(set = misc?misc->use:0; set; set = set->next) {
21190                                         if (set->member == ins) {
21191                                                 break;
21192                                         }
21193                                 }
21194                                 if (!set) {
21195                                         internal_error(state, ins, "misc not used");
21196                                 }
21197                         }
21198                 }
21199                 if (!triple_is_ret(state, ins)) {
21200                         expr = triple_targ(state, ins, 0);
21201                         for(; expr; expr = triple_targ(state, ins, expr)) {
21202                                 struct triple *targ;
21203                                 targ = *expr;
21204                                 for(set = targ?targ->use:0; set; set = set->next) {
21205                                         if (set->member == ins) {
21206                                                 break;
21207                                         }
21208                                 }
21209                                 if (!set) {
21210                                         internal_error(state, ins, "targ not used");
21211                                 }
21212                         }
21213                 }
21214                 ins = ins->next;
21215         } while(ins != first);
21216
21217 }
21218 static void verify_blocks_present(struct compile_state *state)
21219 {
21220         struct triple *first, *ins;
21221         if (!state->bb.first_block) {
21222                 return;
21223         }
21224         first = state->first;
21225         ins = first;
21226         do {
21227                 valid_ins(state, ins);
21228                 if (triple_stores_block(state, ins)) {
21229                         if (!ins->u.block) {
21230                                 internal_error(state, ins,
21231                                         "%p not in a block?", ins);
21232                         }
21233                 }
21234                 ins = ins->next;
21235         } while(ins != first);
21236
21237
21238 }
21239
21240 static int edge_present(struct compile_state *state, struct block *block, struct triple *edge)
21241 {
21242         struct block_set *bedge;
21243         struct block *targ;
21244         targ = block_of_triple(state, edge);
21245         for(bedge = block->edges; bedge; bedge = bedge->next) {
21246                 if (bedge->member == targ) {
21247                         return 1;
21248                 }
21249         }
21250         return 0;
21251 }
21252
21253 static void verify_blocks(struct compile_state *state)
21254 {
21255         struct triple *ins;
21256         struct block *block;
21257         int blocks;
21258         block = state->bb.first_block;
21259         if (!block) {
21260                 return;
21261         }
21262         blocks = 0;
21263         do {
21264                 int users;
21265                 struct block_set *user, *edge;
21266                 blocks++;
21267                 for(ins = block->first; ins != block->last->next; ins = ins->next) {
21268                         if (triple_stores_block(state, ins) && (ins->u.block != block)) {
21269                                 internal_error(state, ins, "inconsitent block specified");
21270                         }
21271                         valid_ins(state, ins);
21272                 }
21273                 users = 0;
21274                 for(user = block->use; user; user = user->next) {
21275                         users++;
21276                         if (!user->member->first) {
21277                                 internal_error(state, block->first, "user is empty");
21278                         }
21279                         if ((block == state->bb.last_block) &&
21280                                 (user->member == state->bb.first_block)) {
21281                                 continue;
21282                         }
21283                         for(edge = user->member->edges; edge; edge = edge->next) {
21284                                 if (edge->member == block) {
21285                                         break;
21286                                 }
21287                         }
21288                         if (!edge) {
21289                                 internal_error(state, user->member->first,
21290                                         "user does not use block");
21291                         }
21292                 }
21293                 if (triple_is_branch(state, block->last)) {
21294                         struct triple **expr;
21295                         expr = triple_edge_targ(state, block->last, 0);
21296                         for(;expr; expr = triple_edge_targ(state, block->last, expr)) {
21297                                 if (*expr && !edge_present(state, block, *expr)) {
21298                                         internal_error(state, block->last, "no edge to targ");
21299                                 }
21300                         }
21301                 }
21302                 if (!triple_is_ubranch(state, block->last) &&
21303                         (block != state->bb.last_block) &&
21304                         !edge_present(state, block, block->last->next)) {
21305                         internal_error(state, block->last, "no edge to block->last->next");
21306                 }
21307                 for(edge = block->edges; edge; edge = edge->next) {
21308                         for(user = edge->member->use; user; user = user->next) {
21309                                 if (user->member == block) {
21310                                         break;
21311                                 }
21312                         }
21313                         if (!user || user->member != block) {
21314                                 internal_error(state, block->first,
21315                                         "block does not use edge");
21316                         }
21317                         if (!edge->member->first) {
21318                                 internal_error(state, block->first, "edge block is empty");
21319                         }
21320                 }
21321                 if (block->users != users) {
21322                         internal_error(state, block->first,
21323                                 "computed users %d != stored users %d",
21324                                 users, block->users);
21325                 }
21326                 if (!triple_stores_block(state, block->last->next)) {
21327                         internal_error(state, block->last->next,
21328                                 "cannot find next block");
21329                 }
21330                 block = block->last->next->u.block;
21331                 if (!block) {
21332                         internal_error(state, block->last->next,
21333                                 "bad next block");
21334                 }
21335         } while(block != state->bb.first_block);
21336         if (blocks != state->bb.last_vertex) {
21337                 internal_error(state, 0, "computed blocks: %d != stored blocks %d",
21338                         blocks, state->bb.last_vertex);
21339         }
21340 }
21341
21342 static void verify_domination(struct compile_state *state)
21343 {
21344         struct triple *first, *ins;
21345         struct triple_set *set;
21346         if (!state->bb.first_block) {
21347                 return;
21348         }
21349
21350         first = state->first;
21351         ins = first;
21352         do {
21353                 for(set = ins->use; set; set = set->next) {
21354                         struct triple **slot;
21355                         struct triple *use_point;
21356                         int i, zrhs;
21357                         use_point = 0;
21358                         zrhs = set->member->rhs;
21359                         slot = &RHS(set->member, 0);
21360                         /* See if the use is on the right hand side */
21361                         for(i = 0; i < zrhs; i++) {
21362                                 if (slot[i] == ins) {
21363                                         break;
21364                                 }
21365                         }
21366                         if (i < zrhs) {
21367                                 use_point = set->member;
21368                                 if (set->member->op == OP_PHI) {
21369                                         struct block_set *bset;
21370                                         int edge;
21371                                         bset = set->member->u.block->use;
21372                                         for(edge = 0; bset && (edge < i); edge++) {
21373                                                 bset = bset->next;
21374                                         }
21375                                         if (!bset) {
21376                                                 internal_error(state, set->member,
21377                                                         "no edge for phi rhs %d", i);
21378                                         }
21379                                         use_point = bset->member->last;
21380                                 }
21381                         }
21382                         if (use_point &&
21383                                 !tdominates(state, ins, use_point)) {
21384                                 if (is_const(ins)) {
21385                                         internal_warning(state, ins,
21386                                         "non dominated rhs use point %p?", use_point);
21387                                 }
21388                                 else {
21389                                         internal_error(state, ins,
21390                                                 "non dominated rhs use point %p?", use_point);
21391                                 }
21392                         }
21393                 }
21394                 ins = ins->next;
21395         } while(ins != first);
21396 }
21397
21398 static void verify_rhs(struct compile_state *state)
21399 {
21400         struct triple *first, *ins;
21401         first = state->first;
21402         ins = first;
21403         do {
21404                 struct triple **slot;
21405                 int zrhs, i;
21406                 zrhs = ins->rhs;
21407                 slot = &RHS(ins, 0);
21408                 for(i = 0; i < zrhs; i++) {
21409                         if (slot[i] == 0) {
21410                                 internal_error(state, ins,
21411                                         "missing rhs %d on %s",
21412                                         i, tops(ins->op));
21413                         }
21414                         if ((ins->op != OP_PHI) && (slot[i] == ins)) {
21415                                 internal_error(state, ins,
21416                                         "ins == rhs[%d] on %s",
21417                                         i, tops(ins->op));
21418                         }
21419                 }
21420                 ins = ins->next;
21421         } while(ins != first);
21422 }
21423
21424 static void verify_piece(struct compile_state *state)
21425 {
21426         struct triple *first, *ins;
21427         first = state->first;
21428         ins = first;
21429         do {
21430                 struct triple *ptr;
21431                 int lhs, i;
21432                 lhs = ins->lhs;
21433                 for(ptr = ins->next, i = 0; i < lhs; i++, ptr = ptr->next) {
21434                         if (ptr != LHS(ins, i)) {
21435                                 internal_error(state, ins, "malformed lhs on %s",
21436                                         tops(ins->op));
21437                         }
21438                         if (ptr->op != OP_PIECE) {
21439                                 internal_error(state, ins, "bad lhs op %s at %d on %s",
21440                                         tops(ptr->op), i, tops(ins->op));
21441                         }
21442                         if (ptr->u.cval != i) {
21443                                 internal_error(state, ins, "bad u.cval of %d %d expected",
21444                                         ptr->u.cval, i);
21445                         }
21446                 }
21447                 ins = ins->next;
21448         } while(ins != first);
21449 }
21450
21451 static void verify_ins_colors(struct compile_state *state)
21452 {
21453         struct triple *first, *ins;
21454
21455         first = state->first;
21456         ins = first;
21457         do {
21458                 ins = ins->next;
21459         } while(ins != first);
21460 }
21461
21462 static void verify_unknown(struct compile_state *state)
21463 {
21464         struct triple *first, *ins;
21465         if (    (unknown_triple.next != &unknown_triple) ||
21466                 (unknown_triple.prev != &unknown_triple) ||
21467 #if 0
21468                 (unknown_triple.use != 0) ||
21469 #endif
21470                 (unknown_triple.op != OP_UNKNOWNVAL) ||
21471                 (unknown_triple.lhs != 0) ||
21472                 (unknown_triple.rhs != 0) ||
21473                 (unknown_triple.misc != 0) ||
21474                 (unknown_triple.targ != 0) ||
21475                 (unknown_triple.template_id != 0) ||
21476                 (unknown_triple.id != -1) ||
21477                 (unknown_triple.type != &unknown_type) ||
21478                 (unknown_triple.occurance != &dummy_occurance) ||
21479                 (unknown_triple.param[0] != 0) ||
21480                 (unknown_triple.param[1] != 0)) {
21481                 internal_error(state, &unknown_triple, "unknown_triple corrupted!");
21482         }
21483         if (    (dummy_occurance.count != 2) ||
21484                 (strcmp(dummy_occurance.filename, __FILE__) != 0) ||
21485                 (strcmp(dummy_occurance.function, "") != 0) ||
21486                 (dummy_occurance.col != 0) ||
21487                 (dummy_occurance.parent != 0)) {
21488                 internal_error(state, &unknown_triple, "dummy_occurance corrupted!");
21489         }
21490         if (    (unknown_type.type != TYPE_UNKNOWN)) {
21491                 internal_error(state, &unknown_triple, "unknown_type corrupted!");
21492         }
21493         first = state->first;
21494         ins = first;
21495         do {
21496                 int params, i;
21497                 if (ins == &unknown_triple) {
21498                         internal_error(state, ins, "unknown triple in list");
21499                 }
21500                 params = TRIPLE_SIZE(ins);
21501                 for(i = 0; i < params; i++) {
21502                         if (ins->param[i] == &unknown_triple) {
21503                                 internal_error(state, ins, "unknown triple used!");
21504                         }
21505                 }
21506                 ins = ins->next;
21507         } while(ins != first);
21508 }
21509
21510 static void verify_types(struct compile_state *state)
21511 {
21512         struct triple *first, *ins;
21513         first = state->first;
21514         ins = first;
21515         do {
21516                 struct type *invalid;
21517                 invalid = invalid_type(state, ins->type);
21518                 if (invalid) {
21519                         FILE *fp = state->errout;
21520                         fprintf(fp, "type: ");
21521                         name_of(fp, ins->type);
21522                         fprintf(fp, "\n");
21523                         fprintf(fp, "invalid type: ");
21524                         name_of(fp, invalid);
21525                         fprintf(fp, "\n");
21526                         internal_error(state, ins, "invalid ins type");
21527                 }
21528         } while(ins != first);
21529 }
21530
21531 static void verify_copy(struct compile_state *state)
21532 {
21533         struct triple *first, *ins, *next;
21534         first = state->first;
21535         next = ins = first;
21536         do {
21537                 ins = next;
21538                 next = ins->next;
21539                 if (ins->op != OP_COPY) {
21540                         continue;
21541                 }
21542                 if (!equiv_types(ins->type, RHS(ins, 0)->type)) {
21543                         FILE *fp = state->errout;
21544                         fprintf(fp, "src type: ");
21545                         name_of(fp, RHS(ins, 0)->type);
21546                         fprintf(fp, "\n");
21547                         fprintf(fp, "dst type: ");
21548                         name_of(fp, ins->type);
21549                         fprintf(fp, "\n");
21550                         internal_error(state, ins, "type mismatch in copy");
21551                 }
21552         } while(next != first);
21553 }
21554
21555 static void verify_consistency(struct compile_state *state)
21556 {
21557         verify_unknown(state);
21558         verify_uses(state);
21559         verify_blocks_present(state);
21560         verify_blocks(state);
21561         verify_domination(state);
21562         verify_rhs(state);
21563         verify_piece(state);
21564         verify_ins_colors(state);
21565         verify_types(state);
21566         verify_copy(state);
21567         if (state->compiler->debug & DEBUG_VERIFICATION) {
21568                 fprintf(state->dbgout, "consistency verified\n");
21569         }
21570 }
21571 #else
21572 static void verify_consistency(struct compile_state *state) {}
21573 #endif /* DEBUG_CONSISTENCY */
21574
21575 static void optimize(struct compile_state *state)
21576 {
21577         /* Join all of the functions into one giant function */
21578         join_functions(state);
21579
21580         /* Dump what the instruction graph intially looks like */
21581         print_triples(state);
21582
21583         /* Replace structures with simpler data types */
21584         decompose_compound_types(state);
21585         print_triples(state);
21586
21587         verify_consistency(state);
21588         /* Analyze the intermediate code */
21589         state->bb.first = state->first;
21590         analyze_basic_blocks(state, &state->bb);
21591
21592         /* Transform the code to ssa form. */
21593         /*
21594          * The transformation to ssa form puts a phi function
21595          * on each of edge of a dominance frontier where that
21596          * phi function might be needed.  At -O2 if we don't
21597          * eleminate the excess phi functions we can get an
21598          * exponential code size growth.  So I kill the extra
21599          * phi functions early and I kill them often.
21600          */
21601         transform_to_ssa_form(state);
21602         verify_consistency(state);
21603
21604         /* Remove dead code */
21605         eliminate_inefectual_code(state);
21606         verify_consistency(state);
21607
21608         /* Do strength reduction and simple constant optimizations */
21609         simplify_all(state);
21610         verify_consistency(state);
21611         /* Propogate constants throughout the code */
21612         scc_transform(state);
21613         verify_consistency(state);
21614 #if DEBUG_ROMCC_WARNINGS
21615 #warning "WISHLIST implement single use constants (least possible register pressure)"
21616 #warning "WISHLIST implement induction variable elimination"
21617 #endif
21618         /* Select architecture instructions and an initial partial
21619          * coloring based on architecture constraints.
21620          */
21621         transform_to_arch_instructions(state);
21622         verify_consistency(state);
21623
21624         /* Remove dead code */
21625         eliminate_inefectual_code(state);
21626         verify_consistency(state);
21627
21628         /* Color all of the variables to see if they will fit in registers */
21629         insert_copies_to_phi(state);
21630         verify_consistency(state);
21631
21632         insert_mandatory_copies(state);
21633         verify_consistency(state);
21634
21635         allocate_registers(state);
21636         verify_consistency(state);
21637
21638         /* Remove the optimization information.
21639          * This is more to check for memory consistency than to free memory.
21640          */
21641         free_basic_blocks(state, &state->bb);
21642 }
21643
21644 static void print_op_asm(struct compile_state *state,
21645         struct triple *ins, FILE *fp)
21646 {
21647         struct asm_info *info;
21648         const char *ptr;
21649         unsigned lhs, rhs, i;
21650         info = ins->u.ainfo;
21651         lhs = ins->lhs;
21652         rhs = ins->rhs;
21653         /* Don't count the clobbers in lhs */
21654         for(i = 0; i < lhs; i++) {
21655                 if (LHS(ins, i)->type == &void_type) {
21656                         break;
21657                 }
21658         }
21659         lhs = i;
21660         fprintf(fp, "#ASM\n");
21661         fputc('\t', fp);
21662         for(ptr = info->str; *ptr; ptr++) {
21663                 char *next;
21664                 unsigned long param;
21665                 struct triple *piece;
21666                 if (*ptr != '%') {
21667                         fputc(*ptr, fp);
21668                         continue;
21669                 }
21670                 ptr++;
21671                 if (*ptr == '%') {
21672                         fputc('%', fp);
21673                         continue;
21674                 }
21675                 param = strtoul(ptr, &next, 10);
21676                 if (ptr == next) {
21677                         error(state, ins, "Invalid asm template");
21678                 }
21679                 if (param >= (lhs + rhs)) {
21680                         error(state, ins, "Invalid param %%%u in asm template",
21681                                 param);
21682                 }
21683                 piece = (param < lhs)? LHS(ins, param) : RHS(ins, param - lhs);
21684                 fprintf(fp, "%s",
21685                         arch_reg_str(ID_REG(piece->id)));
21686                 ptr = next -1;
21687         }
21688         fprintf(fp, "\n#NOT ASM\n");
21689 }
21690
21691
21692 /* Only use the low x86 byte registers.  This allows me
21693  * allocate the entire register when a byte register is used.
21694  */
21695 #define X86_4_8BIT_GPRS 1
21696
21697 /* x86 featrues */
21698 #define X86_MMX_REGS  (1<<0)
21699 #define X86_XMM_REGS  (1<<1)
21700 #define X86_NOOP_COPY (1<<2)
21701
21702 /* The x86 register classes */
21703 #define REGC_FLAGS       0
21704 #define REGC_GPR8        1
21705 #define REGC_GPR16       2
21706 #define REGC_GPR32       3
21707 #define REGC_DIVIDEND64  4
21708 #define REGC_DIVIDEND32  5
21709 #define REGC_MMX         6
21710 #define REGC_XMM         7
21711 #define REGC_GPR32_8     8
21712 #define REGC_GPR16_8     9
21713 #define REGC_GPR8_LO    10
21714 #define REGC_IMM32      11
21715 #define REGC_IMM16      12
21716 #define REGC_IMM8       13
21717 #define LAST_REGC  REGC_IMM8
21718 #if LAST_REGC >= MAX_REGC
21719 #error "MAX_REGC is to low"
21720 #endif
21721
21722 /* Register class masks */
21723 #define REGCM_FLAGS      (1 << REGC_FLAGS)
21724 #define REGCM_GPR8       (1 << REGC_GPR8)
21725 #define REGCM_GPR16      (1 << REGC_GPR16)
21726 #define REGCM_GPR32      (1 << REGC_GPR32)
21727 #define REGCM_DIVIDEND64 (1 << REGC_DIVIDEND64)
21728 #define REGCM_DIVIDEND32 (1 << REGC_DIVIDEND32)
21729 #define REGCM_MMX        (1 << REGC_MMX)
21730 #define REGCM_XMM        (1 << REGC_XMM)
21731 #define REGCM_GPR32_8    (1 << REGC_GPR32_8)
21732 #define REGCM_GPR16_8    (1 << REGC_GPR16_8)
21733 #define REGCM_GPR8_LO    (1 << REGC_GPR8_LO)
21734 #define REGCM_IMM32      (1 << REGC_IMM32)
21735 #define REGCM_IMM16      (1 << REGC_IMM16)
21736 #define REGCM_IMM8       (1 << REGC_IMM8)
21737 #define REGCM_ALL        ((1 << (LAST_REGC + 1)) - 1)
21738 #define REGCM_IMMALL    (REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)
21739
21740 /* The x86 registers */
21741 #define REG_EFLAGS  2
21742 #define REGC_FLAGS_FIRST REG_EFLAGS
21743 #define REGC_FLAGS_LAST  REG_EFLAGS
21744 #define REG_AL      3
21745 #define REG_BL      4
21746 #define REG_CL      5
21747 #define REG_DL      6
21748 #define REG_AH      7
21749 #define REG_BH      8
21750 #define REG_CH      9
21751 #define REG_DH      10
21752 #define REGC_GPR8_LO_FIRST REG_AL
21753 #define REGC_GPR8_LO_LAST  REG_DL
21754 #define REGC_GPR8_FIRST  REG_AL
21755 #define REGC_GPR8_LAST   REG_DH
21756 #define REG_AX     11
21757 #define REG_BX     12
21758 #define REG_CX     13
21759 #define REG_DX     14
21760 #define REG_SI     15
21761 #define REG_DI     16
21762 #define REG_BP     17
21763 #define REG_SP     18
21764 #define REGC_GPR16_FIRST REG_AX
21765 #define REGC_GPR16_LAST  REG_SP
21766 #define REG_EAX    19
21767 #define REG_EBX    20
21768 #define REG_ECX    21
21769 #define REG_EDX    22
21770 #define REG_ESI    23
21771 #define REG_EDI    24
21772 #define REG_EBP    25
21773 #define REG_ESP    26
21774 #define REGC_GPR32_FIRST REG_EAX
21775 #define REGC_GPR32_LAST  REG_ESP
21776 #define REG_EDXEAX 27
21777 #define REGC_DIVIDEND64_FIRST REG_EDXEAX
21778 #define REGC_DIVIDEND64_LAST  REG_EDXEAX
21779 #define REG_DXAX   28
21780 #define REGC_DIVIDEND32_FIRST REG_DXAX
21781 #define REGC_DIVIDEND32_LAST  REG_DXAX
21782 #define REG_MMX0   29
21783 #define REG_MMX1   30
21784 #define REG_MMX2   31
21785 #define REG_MMX3   32
21786 #define REG_MMX4   33
21787 #define REG_MMX5   34
21788 #define REG_MMX6   35
21789 #define REG_MMX7   36
21790 #define REGC_MMX_FIRST REG_MMX0
21791 #define REGC_MMX_LAST  REG_MMX7
21792 #define REG_XMM0   37
21793 #define REG_XMM1   38
21794 #define REG_XMM2   39
21795 #define REG_XMM3   40
21796 #define REG_XMM4   41
21797 #define REG_XMM5   42
21798 #define REG_XMM6   43
21799 #define REG_XMM7   44
21800 #define REGC_XMM_FIRST REG_XMM0
21801 #define REGC_XMM_LAST  REG_XMM7
21802
21803 #if DEBUG_ROMCC_WARNINGS
21804 #warning "WISHLIST figure out how to use pinsrw and pextrw to better use extended regs"
21805 #endif
21806
21807 #define LAST_REG   REG_XMM7
21808
21809 #define REGC_GPR32_8_FIRST REG_EAX
21810 #define REGC_GPR32_8_LAST  REG_EDX
21811 #define REGC_GPR16_8_FIRST REG_AX
21812 #define REGC_GPR16_8_LAST  REG_DX
21813
21814 #define REGC_IMM8_FIRST    -1
21815 #define REGC_IMM8_LAST     -1
21816 #define REGC_IMM16_FIRST   -2
21817 #define REGC_IMM16_LAST    -1
21818 #define REGC_IMM32_FIRST   -4
21819 #define REGC_IMM32_LAST    -1
21820
21821 #if LAST_REG >= MAX_REGISTERS
21822 #error "MAX_REGISTERS to low"
21823 #endif
21824
21825
21826 static unsigned regc_size[LAST_REGC +1] = {
21827         [REGC_FLAGS]      = REGC_FLAGS_LAST      - REGC_FLAGS_FIRST + 1,
21828         [REGC_GPR8]       = REGC_GPR8_LAST       - REGC_GPR8_FIRST + 1,
21829         [REGC_GPR16]      = REGC_GPR16_LAST      - REGC_GPR16_FIRST + 1,
21830         [REGC_GPR32]      = REGC_GPR32_LAST      - REGC_GPR32_FIRST + 1,
21831         [REGC_DIVIDEND64] = REGC_DIVIDEND64_LAST - REGC_DIVIDEND64_FIRST + 1,
21832         [REGC_DIVIDEND32] = REGC_DIVIDEND32_LAST - REGC_DIVIDEND32_FIRST + 1,
21833         [REGC_MMX]        = REGC_MMX_LAST        - REGC_MMX_FIRST + 1,
21834         [REGC_XMM]        = REGC_XMM_LAST        - REGC_XMM_FIRST + 1,
21835         [REGC_GPR32_8]    = REGC_GPR32_8_LAST    - REGC_GPR32_8_FIRST + 1,
21836         [REGC_GPR16_8]    = REGC_GPR16_8_LAST    - REGC_GPR16_8_FIRST + 1,
21837         [REGC_GPR8_LO]    = REGC_GPR8_LO_LAST    - REGC_GPR8_LO_FIRST + 1,
21838         [REGC_IMM32]      = 0,
21839         [REGC_IMM16]      = 0,
21840         [REGC_IMM8]       = 0,
21841 };
21842
21843 static const struct {
21844         int first, last;
21845 } regcm_bound[LAST_REGC + 1] = {
21846         [REGC_FLAGS]      = { REGC_FLAGS_FIRST,      REGC_FLAGS_LAST },
21847         [REGC_GPR8]       = { REGC_GPR8_FIRST,       REGC_GPR8_LAST },
21848         [REGC_GPR16]      = { REGC_GPR16_FIRST,      REGC_GPR16_LAST },
21849         [REGC_GPR32]      = { REGC_GPR32_FIRST,      REGC_GPR32_LAST },
21850         [REGC_DIVIDEND64] = { REGC_DIVIDEND64_FIRST, REGC_DIVIDEND64_LAST },
21851         [REGC_DIVIDEND32] = { REGC_DIVIDEND32_FIRST, REGC_DIVIDEND32_LAST },
21852         [REGC_MMX]        = { REGC_MMX_FIRST,        REGC_MMX_LAST },
21853         [REGC_XMM]        = { REGC_XMM_FIRST,        REGC_XMM_LAST },
21854         [REGC_GPR32_8]    = { REGC_GPR32_8_FIRST,    REGC_GPR32_8_LAST },
21855         [REGC_GPR16_8]    = { REGC_GPR16_8_FIRST,    REGC_GPR16_8_LAST },
21856         [REGC_GPR8_LO]    = { REGC_GPR8_LO_FIRST,    REGC_GPR8_LO_LAST },
21857         [REGC_IMM32]      = { REGC_IMM32_FIRST,      REGC_IMM32_LAST },
21858         [REGC_IMM16]      = { REGC_IMM16_FIRST,      REGC_IMM16_LAST },
21859         [REGC_IMM8]       = { REGC_IMM8_FIRST,       REGC_IMM8_LAST },
21860 };
21861
21862 #if ARCH_INPUT_REGS != 4
21863 #error ARCH_INPUT_REGS size mismatch
21864 #endif
21865 static const struct reg_info arch_input_regs[ARCH_INPUT_REGS] = {
21866         { .reg = REG_EAX, .regcm = REGCM_GPR32 },
21867         { .reg = REG_EBX, .regcm = REGCM_GPR32 },
21868         { .reg = REG_ECX, .regcm = REGCM_GPR32 },
21869         { .reg = REG_EDX, .regcm = REGCM_GPR32 },
21870 };
21871
21872 #if ARCH_OUTPUT_REGS != 4
21873 #error ARCH_INPUT_REGS size mismatch
21874 #endif
21875 static const struct reg_info arch_output_regs[ARCH_OUTPUT_REGS] = {
21876         { .reg = REG_EAX, .regcm = REGCM_GPR32 },
21877         { .reg = REG_EBX, .regcm = REGCM_GPR32 },
21878         { .reg = REG_ECX, .regcm = REGCM_GPR32 },
21879         { .reg = REG_EDX, .regcm = REGCM_GPR32 },
21880 };
21881
21882 static void init_arch_state(struct arch_state *arch)
21883 {
21884         memset(arch, 0, sizeof(*arch));
21885         arch->features = 0;
21886 }
21887
21888 static const struct compiler_flag arch_flags[] = {
21889         { "mmx",       X86_MMX_REGS },
21890         { "sse",       X86_XMM_REGS },
21891         { "noop-copy", X86_NOOP_COPY },
21892         { 0,     0 },
21893 };
21894 static const struct compiler_flag arch_cpus[] = {
21895         { "i386", 0 },
21896         { "p2",   X86_MMX_REGS },
21897         { "p3",   X86_MMX_REGS | X86_XMM_REGS },
21898         { "p4",   X86_MMX_REGS | X86_XMM_REGS },
21899         { "k7",   X86_MMX_REGS },
21900         { "k8",   X86_MMX_REGS | X86_XMM_REGS },
21901         { "c3",   X86_MMX_REGS },
21902         { "c3-2", X86_MMX_REGS | X86_XMM_REGS }, /* Nehemiah */
21903         {  0,     0 }
21904 };
21905 static int arch_encode_flag(struct arch_state *arch, const char *flag)
21906 {
21907         int result;
21908         int act;
21909
21910         act = 1;
21911         result = -1;
21912         if (strncmp(flag, "no-", 3) == 0) {
21913                 flag += 3;
21914                 act = 0;
21915         }
21916         if (act && strncmp(flag, "cpu=", 4) == 0) {
21917                 flag += 4;
21918                 result = set_flag(arch_cpus, &arch->features, 1, flag);
21919         }
21920         else {
21921                 result = set_flag(arch_flags, &arch->features, act, flag);
21922         }
21923         return result;
21924 }
21925
21926 static void arch_usage(FILE *fp)
21927 {
21928         flag_usage(fp, arch_flags, "-m", "-mno-");
21929         flag_usage(fp, arch_cpus, "-mcpu=", 0);
21930 }
21931
21932 static unsigned arch_regc_size(struct compile_state *state, int class)
21933 {
21934         if ((class < 0) || (class > LAST_REGC)) {
21935                 return 0;
21936         }
21937         return regc_size[class];
21938 }
21939
21940 static int arch_regcm_intersect(unsigned regcm1, unsigned regcm2)
21941 {
21942         /* See if two register classes may have overlapping registers */
21943         unsigned gpr_mask = REGCM_GPR8 | REGCM_GPR8_LO | REGCM_GPR16_8 | REGCM_GPR16 |
21944                 REGCM_GPR32_8 | REGCM_GPR32 |
21945                 REGCM_DIVIDEND32 | REGCM_DIVIDEND64;
21946
21947         /* Special case for the immediates */
21948         if ((regcm1 & (REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) &&
21949                 ((regcm1 & ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) == 0) &&
21950                 (regcm2 & (REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) &&
21951                 ((regcm2 & ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) == 0)) {
21952                 return 0;
21953         }
21954         return (regcm1 & regcm2) ||
21955                 ((regcm1 & gpr_mask) && (regcm2 & gpr_mask));
21956 }
21957
21958 static void arch_reg_equivs(
21959         struct compile_state *state, unsigned *equiv, int reg)
21960 {
21961         if ((reg < 0) || (reg > LAST_REG)) {
21962                 internal_error(state, 0, "invalid register");
21963         }
21964         *equiv++ = reg;
21965         switch(reg) {
21966         case REG_AL:
21967 #if X86_4_8BIT_GPRS
21968                 *equiv++ = REG_AH;
21969 #endif
21970                 *equiv++ = REG_AX;
21971                 *equiv++ = REG_EAX;
21972                 *equiv++ = REG_DXAX;
21973                 *equiv++ = REG_EDXEAX;
21974                 break;
21975         case REG_AH:
21976 #if X86_4_8BIT_GPRS
21977                 *equiv++ = REG_AL;
21978 #endif
21979                 *equiv++ = REG_AX;
21980                 *equiv++ = REG_EAX;
21981                 *equiv++ = REG_DXAX;
21982                 *equiv++ = REG_EDXEAX;
21983                 break;
21984         case REG_BL:
21985 #if X86_4_8BIT_GPRS
21986                 *equiv++ = REG_BH;
21987 #endif
21988                 *equiv++ = REG_BX;
21989                 *equiv++ = REG_EBX;
21990                 break;
21991
21992         case REG_BH:
21993 #if X86_4_8BIT_GPRS
21994                 *equiv++ = REG_BL;
21995 #endif
21996                 *equiv++ = REG_BX;
21997                 *equiv++ = REG_EBX;
21998                 break;
21999         case REG_CL:
22000 #if X86_4_8BIT_GPRS
22001                 *equiv++ = REG_CH;
22002 #endif
22003                 *equiv++ = REG_CX;
22004                 *equiv++ = REG_ECX;
22005                 break;
22006
22007         case REG_CH:
22008 #if X86_4_8BIT_GPRS
22009                 *equiv++ = REG_CL;
22010 #endif
22011                 *equiv++ = REG_CX;
22012                 *equiv++ = REG_ECX;
22013                 break;
22014         case REG_DL:
22015 #if X86_4_8BIT_GPRS
22016                 *equiv++ = REG_DH;
22017 #endif
22018                 *equiv++ = REG_DX;
22019                 *equiv++ = REG_EDX;
22020                 *equiv++ = REG_DXAX;
22021                 *equiv++ = REG_EDXEAX;
22022                 break;
22023         case REG_DH:
22024 #if X86_4_8BIT_GPRS
22025                 *equiv++ = REG_DL;
22026 #endif
22027                 *equiv++ = REG_DX;
22028                 *equiv++ = REG_EDX;
22029                 *equiv++ = REG_DXAX;
22030                 *equiv++ = REG_EDXEAX;
22031                 break;
22032         case REG_AX:
22033                 *equiv++ = REG_AL;
22034                 *equiv++ = REG_AH;
22035                 *equiv++ = REG_EAX;
22036                 *equiv++ = REG_DXAX;
22037                 *equiv++ = REG_EDXEAX;
22038                 break;
22039         case REG_BX:
22040                 *equiv++ = REG_BL;
22041                 *equiv++ = REG_BH;
22042                 *equiv++ = REG_EBX;
22043                 break;
22044         case REG_CX:
22045                 *equiv++ = REG_CL;
22046                 *equiv++ = REG_CH;
22047                 *equiv++ = REG_ECX;
22048                 break;
22049         case REG_DX:
22050                 *equiv++ = REG_DL;
22051                 *equiv++ = REG_DH;
22052                 *equiv++ = REG_EDX;
22053                 *equiv++ = REG_DXAX;
22054                 *equiv++ = REG_EDXEAX;
22055                 break;
22056         case REG_SI:
22057                 *equiv++ = REG_ESI;
22058                 break;
22059         case REG_DI:
22060                 *equiv++ = REG_EDI;
22061                 break;
22062         case REG_BP:
22063                 *equiv++ = REG_EBP;
22064                 break;
22065         case REG_SP:
22066                 *equiv++ = REG_ESP;
22067                 break;
22068         case REG_EAX:
22069                 *equiv++ = REG_AL;
22070                 *equiv++ = REG_AH;
22071                 *equiv++ = REG_AX;
22072                 *equiv++ = REG_DXAX;
22073                 *equiv++ = REG_EDXEAX;
22074                 break;
22075         case REG_EBX:
22076                 *equiv++ = REG_BL;
22077                 *equiv++ = REG_BH;
22078                 *equiv++ = REG_BX;
22079                 break;
22080         case REG_ECX:
22081                 *equiv++ = REG_CL;
22082                 *equiv++ = REG_CH;
22083                 *equiv++ = REG_CX;
22084                 break;
22085         case REG_EDX:
22086                 *equiv++ = REG_DL;
22087                 *equiv++ = REG_DH;
22088                 *equiv++ = REG_DX;
22089                 *equiv++ = REG_DXAX;
22090                 *equiv++ = REG_EDXEAX;
22091                 break;
22092         case REG_ESI:
22093                 *equiv++ = REG_SI;
22094                 break;
22095         case REG_EDI:
22096                 *equiv++ = REG_DI;
22097                 break;
22098         case REG_EBP:
22099                 *equiv++ = REG_BP;
22100                 break;
22101         case REG_ESP:
22102                 *equiv++ = REG_SP;
22103                 break;
22104         case REG_DXAX:
22105                 *equiv++ = REG_AL;
22106                 *equiv++ = REG_AH;
22107                 *equiv++ = REG_DL;
22108                 *equiv++ = REG_DH;
22109                 *equiv++ = REG_AX;
22110                 *equiv++ = REG_DX;
22111                 *equiv++ = REG_EAX;
22112                 *equiv++ = REG_EDX;
22113                 *equiv++ = REG_EDXEAX;
22114                 break;
22115         case REG_EDXEAX:
22116                 *equiv++ = REG_AL;
22117                 *equiv++ = REG_AH;
22118                 *equiv++ = REG_DL;
22119                 *equiv++ = REG_DH;
22120                 *equiv++ = REG_AX;
22121                 *equiv++ = REG_DX;
22122                 *equiv++ = REG_EAX;
22123                 *equiv++ = REG_EDX;
22124                 *equiv++ = REG_DXAX;
22125                 break;
22126         }
22127         *equiv++ = REG_UNSET;
22128 }
22129
22130 static unsigned arch_avail_mask(struct compile_state *state)
22131 {
22132         unsigned avail_mask;
22133         /* REGCM_GPR8 is not available */
22134         avail_mask = REGCM_GPR8_LO | REGCM_GPR16_8 | REGCM_GPR16 |
22135                 REGCM_GPR32 | REGCM_GPR32_8 |
22136                 REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
22137                 REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8 | REGCM_FLAGS;
22138         if (state->arch->features & X86_MMX_REGS) {
22139                 avail_mask |= REGCM_MMX;
22140         }
22141         if (state->arch->features & X86_XMM_REGS) {
22142                 avail_mask |= REGCM_XMM;
22143         }
22144         return avail_mask;
22145 }
22146
22147 static unsigned arch_regcm_normalize(struct compile_state *state, unsigned regcm)
22148 {
22149         unsigned mask, result;
22150         int class, class2;
22151         result = regcm;
22152
22153         for(class = 0, mask = 1; mask; mask <<= 1, class++) {
22154                 if ((result & mask) == 0) {
22155                         continue;
22156                 }
22157                 if (class > LAST_REGC) {
22158                         result &= ~mask;
22159                 }
22160                 for(class2 = 0; class2 <= LAST_REGC; class2++) {
22161                         if ((regcm_bound[class2].first >= regcm_bound[class].first) &&
22162                                 (regcm_bound[class2].last <= regcm_bound[class].last)) {
22163                                 result |= (1 << class2);
22164                         }
22165                 }
22166         }
22167         result &= arch_avail_mask(state);
22168         return result;
22169 }
22170
22171 static unsigned arch_regcm_reg_normalize(struct compile_state *state, unsigned regcm)
22172 {
22173         /* Like arch_regcm_normalize except immediate register classes are excluded */
22174         regcm = arch_regcm_normalize(state, regcm);
22175         /* Remove the immediate register classes */
22176         regcm &= ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8);
22177         return regcm;
22178
22179 }
22180
22181 static unsigned arch_reg_regcm(struct compile_state *state, int reg)
22182 {
22183         unsigned mask;
22184         int class;
22185         mask = 0;
22186         for(class = 0; class <= LAST_REGC; class++) {
22187                 if ((reg >= regcm_bound[class].first) &&
22188                         (reg <= regcm_bound[class].last)) {
22189                         mask |= (1 << class);
22190                 }
22191         }
22192         if (!mask) {
22193                 internal_error(state, 0, "reg %d not in any class", reg);
22194         }
22195         return mask;
22196 }
22197
22198 static struct reg_info arch_reg_constraint(
22199         struct compile_state *state, struct type *type, const char *constraint)
22200 {
22201         static const struct {
22202                 char class;
22203                 unsigned int mask;
22204                 unsigned int reg;
22205         } constraints[] = {
22206                 { 'r', REGCM_GPR32,   REG_UNSET },
22207                 { 'g', REGCM_GPR32,   REG_UNSET },
22208                 { 'p', REGCM_GPR32,   REG_UNSET },
22209                 { 'q', REGCM_GPR8_LO, REG_UNSET },
22210                 { 'Q', REGCM_GPR32_8, REG_UNSET },
22211                 { 'x', REGCM_XMM,     REG_UNSET },
22212                 { 'y', REGCM_MMX,     REG_UNSET },
22213                 { 'a', REGCM_GPR32,   REG_EAX },
22214                 { 'b', REGCM_GPR32,   REG_EBX },
22215                 { 'c', REGCM_GPR32,   REG_ECX },
22216                 { 'd', REGCM_GPR32,   REG_EDX },
22217                 { 'D', REGCM_GPR32,   REG_EDI },
22218                 { 'S', REGCM_GPR32,   REG_ESI },
22219                 { '\0', 0, REG_UNSET },
22220         };
22221         unsigned int regcm;
22222         unsigned int mask, reg;
22223         struct reg_info result;
22224         const char *ptr;
22225         regcm = arch_type_to_regcm(state, type);
22226         reg = REG_UNSET;
22227         mask = 0;
22228         for(ptr = constraint; *ptr; ptr++) {
22229                 int i;
22230                 if (*ptr ==  ' ') {
22231                         continue;
22232                 }
22233                 for(i = 0; constraints[i].class != '\0'; i++) {
22234                         if (constraints[i].class == *ptr) {
22235                                 break;
22236                         }
22237                 }
22238                 if (constraints[i].class == '\0') {
22239                         error(state, 0, "invalid register constraint ``%c''", *ptr);
22240                         break;
22241                 }
22242                 if ((constraints[i].mask & regcm) == 0) {
22243                         error(state, 0, "invalid register class %c specified",
22244                                 *ptr);
22245                 }
22246                 mask |= constraints[i].mask;
22247                 if (constraints[i].reg != REG_UNSET) {
22248                         if ((reg != REG_UNSET) && (reg != constraints[i].reg)) {
22249                                 error(state, 0, "Only one register may be specified");
22250                         }
22251                         reg = constraints[i].reg;
22252                 }
22253         }
22254         result.reg = reg;
22255         result.regcm = mask;
22256         return result;
22257 }
22258
22259 static struct reg_info arch_reg_clobber(
22260         struct compile_state *state, const char *clobber)
22261 {
22262         struct reg_info result;
22263         if (strcmp(clobber, "memory") == 0) {
22264                 result.reg = REG_UNSET;
22265                 result.regcm = 0;
22266         }
22267         else if (strcmp(clobber, "eax") == 0) {
22268                 result.reg = REG_EAX;
22269                 result.regcm = REGCM_GPR32;
22270         }
22271         else if (strcmp(clobber, "ebx") == 0) {
22272                 result.reg = REG_EBX;
22273                 result.regcm = REGCM_GPR32;
22274         }
22275         else if (strcmp(clobber, "ecx") == 0) {
22276                 result.reg = REG_ECX;
22277                 result.regcm = REGCM_GPR32;
22278         }
22279         else if (strcmp(clobber, "edx") == 0) {
22280                 result.reg = REG_EDX;
22281                 result.regcm = REGCM_GPR32;
22282         }
22283         else if (strcmp(clobber, "esi") == 0) {
22284                 result.reg = REG_ESI;
22285                 result.regcm = REGCM_GPR32;
22286         }
22287         else if (strcmp(clobber, "edi") == 0) {
22288                 result.reg = REG_EDI;
22289                 result.regcm = REGCM_GPR32;
22290         }
22291         else if (strcmp(clobber, "ebp") == 0) {
22292                 result.reg = REG_EBP;
22293                 result.regcm = REGCM_GPR32;
22294         }
22295         else if (strcmp(clobber, "esp") == 0) {
22296                 result.reg = REG_ESP;
22297                 result.regcm = REGCM_GPR32;
22298         }
22299         else if (strcmp(clobber, "cc") == 0) {
22300                 result.reg = REG_EFLAGS;
22301                 result.regcm = REGCM_FLAGS;
22302         }
22303         else if ((strncmp(clobber, "xmm", 3) == 0)  &&
22304                 octdigitp(clobber[3]) && (clobber[4] == '\0')) {
22305                 result.reg = REG_XMM0 + octdigval(clobber[3]);
22306                 result.regcm = REGCM_XMM;
22307         }
22308         else if ((strncmp(clobber, "mm", 2) == 0) &&
22309                 octdigitp(clobber[3]) && (clobber[4] == '\0')) {
22310                 result.reg = REG_MMX0 + octdigval(clobber[3]);
22311                 result.regcm = REGCM_MMX;
22312         }
22313         else {
22314                 error(state, 0, "unknown register name `%s' in asm",
22315                         clobber);
22316                 result.reg = REG_UNSET;
22317                 result.regcm = 0;
22318         }
22319         return result;
22320 }
22321
22322 static int do_select_reg(struct compile_state *state,
22323         char *used, int reg, unsigned classes)
22324 {
22325         unsigned mask;
22326         if (used[reg]) {
22327                 return REG_UNSET;
22328         }
22329         mask = arch_reg_regcm(state, reg);
22330         return (classes & mask) ? reg : REG_UNSET;
22331 }
22332
22333 static int arch_select_free_register(
22334         struct compile_state *state, char *used, int classes)
22335 {
22336         /* Live ranges with the most neighbors are colored first.
22337          *
22338          * Generally it does not matter which colors are given
22339          * as the register allocator attempts to color live ranges
22340          * in an order where you are guaranteed not to run out of colors.
22341          *
22342          * Occasionally the register allocator cannot find an order
22343          * of register selection that will find a free color.  To
22344          * increase the odds the register allocator will work when
22345          * it guesses first give out registers from register classes
22346          * least likely to run out of registers.
22347          *
22348          */
22349         int i, reg;
22350         reg = REG_UNSET;
22351         for(i = REGC_XMM_FIRST; (reg == REG_UNSET) && (i <= REGC_XMM_LAST); i++) {
22352                 reg = do_select_reg(state, used, i, classes);
22353         }
22354         for(i = REGC_MMX_FIRST; (reg == REG_UNSET) && (i <= REGC_MMX_LAST); i++) {
22355                 reg = do_select_reg(state, used, i, classes);
22356         }
22357         for(i = REGC_GPR32_LAST; (reg == REG_UNSET) && (i >= REGC_GPR32_FIRST); i--) {
22358                 reg = do_select_reg(state, used, i, classes);
22359         }
22360         for(i = REGC_GPR16_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR16_LAST); i++) {
22361                 reg = do_select_reg(state, used, i, classes);
22362         }
22363         for(i = REGC_GPR8_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR8_LAST); i++) {
22364                 reg = do_select_reg(state, used, i, classes);
22365         }
22366         for(i = REGC_GPR8_LO_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR8_LO_LAST); i++) {
22367                 reg = do_select_reg(state, used, i, classes);
22368         }
22369         for(i = REGC_DIVIDEND32_FIRST; (reg == REG_UNSET) && (i <= REGC_DIVIDEND32_LAST); i++) {
22370                 reg = do_select_reg(state, used, i, classes);
22371         }
22372         for(i = REGC_DIVIDEND64_FIRST; (reg == REG_UNSET) && (i <= REGC_DIVIDEND64_LAST); i++) {
22373                 reg = do_select_reg(state, used, i, classes);
22374         }
22375         for(i = REGC_FLAGS_FIRST; (reg == REG_UNSET) && (i <= REGC_FLAGS_LAST); i++) {
22376                 reg = do_select_reg(state, used, i, classes);
22377         }
22378         return reg;
22379 }
22380
22381
22382 static unsigned arch_type_to_regcm(struct compile_state *state, struct type *type)
22383 {
22384
22385 #if DEBUG_ROMCC_WARNINGS
22386 #warning "FIXME force types smaller (if legal) before I get here"
22387 #endif
22388         unsigned mask;
22389         mask = 0;
22390         switch(type->type & TYPE_MASK) {
22391         case TYPE_ARRAY:
22392         case TYPE_VOID:
22393                 mask = 0;
22394                 break;
22395         case TYPE_CHAR:
22396         case TYPE_UCHAR:
22397                 mask = REGCM_GPR8 | REGCM_GPR8_LO |
22398                         REGCM_GPR16 | REGCM_GPR16_8 |
22399                         REGCM_GPR32 | REGCM_GPR32_8 |
22400                         REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
22401                         REGCM_MMX | REGCM_XMM |
22402                         REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8;
22403                 break;
22404         case TYPE_SHORT:
22405         case TYPE_USHORT:
22406                 mask =  REGCM_GPR16 | REGCM_GPR16_8 |
22407                         REGCM_GPR32 | REGCM_GPR32_8 |
22408                         REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
22409                         REGCM_MMX | REGCM_XMM |
22410                         REGCM_IMM32 | REGCM_IMM16;
22411                 break;
22412         case TYPE_ENUM:
22413         case TYPE_INT:
22414         case TYPE_UINT:
22415         case TYPE_LONG:
22416         case TYPE_ULONG:
22417         case TYPE_POINTER:
22418                 mask =  REGCM_GPR32 | REGCM_GPR32_8 |
22419                         REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
22420                         REGCM_MMX | REGCM_XMM |
22421                         REGCM_IMM32;
22422                 break;
22423         case TYPE_JOIN:
22424         case TYPE_UNION:
22425                 mask = arch_type_to_regcm(state, type->left);
22426                 break;
22427         case TYPE_OVERLAP:
22428                 mask = arch_type_to_regcm(state, type->left) &
22429                         arch_type_to_regcm(state, type->right);
22430                 break;
22431         case TYPE_BITFIELD:
22432                 mask = arch_type_to_regcm(state, type->left);
22433                 break;
22434         default:
22435                 fprintf(state->errout, "type: ");
22436                 name_of(state->errout, type);
22437                 fprintf(state->errout, "\n");
22438                 internal_error(state, 0, "no register class for type");
22439                 break;
22440         }
22441         mask = arch_regcm_normalize(state, mask);
22442         return mask;
22443 }
22444
22445 static int is_imm32(struct triple *imm)
22446 {
22447         // second condition commented out to prevent compiler warning:
22448         // imm->u.cval is always 32bit unsigned, so the comparison is
22449         // always true.
22450         return ((imm->op == OP_INTCONST) /* && (imm->u.cval <= 0xffffffffUL) */ ) ||
22451                 (imm->op == OP_ADDRCONST);
22452
22453 }
22454 static int is_imm16(struct triple *imm)
22455 {
22456         return ((imm->op == OP_INTCONST) && (imm->u.cval <= 0xffff));
22457 }
22458 static int is_imm8(struct triple *imm)
22459 {
22460         return ((imm->op == OP_INTCONST) && (imm->u.cval <= 0xff));
22461 }
22462
22463 static int get_imm32(struct triple *ins, struct triple **expr)
22464 {
22465         struct triple *imm;
22466         imm = *expr;
22467         while(imm->op == OP_COPY) {
22468                 imm = RHS(imm, 0);
22469         }
22470         if (!is_imm32(imm)) {
22471                 return 0;
22472         }
22473         unuse_triple(*expr, ins);
22474         use_triple(imm, ins);
22475         *expr = imm;
22476         return 1;
22477 }
22478
22479 static int get_imm8(struct triple *ins, struct triple **expr)
22480 {
22481         struct triple *imm;
22482         imm = *expr;
22483         while(imm->op == OP_COPY) {
22484                 imm = RHS(imm, 0);
22485         }
22486         if (!is_imm8(imm)) {
22487                 return 0;
22488         }
22489         unuse_triple(*expr, ins);
22490         use_triple(imm, ins);
22491         *expr = imm;
22492         return 1;
22493 }
22494
22495 #define TEMPLATE_NOP           0
22496 #define TEMPLATE_INTCONST8     1
22497 #define TEMPLATE_INTCONST32    2
22498 #define TEMPLATE_UNKNOWNVAL    3
22499 #define TEMPLATE_COPY8_REG     5
22500 #define TEMPLATE_COPY16_REG    6
22501 #define TEMPLATE_COPY32_REG    7
22502 #define TEMPLATE_COPY_IMM8     8
22503 #define TEMPLATE_COPY_IMM16    9
22504 #define TEMPLATE_COPY_IMM32   10
22505 #define TEMPLATE_PHI8         11
22506 #define TEMPLATE_PHI16        12
22507 #define TEMPLATE_PHI32        13
22508 #define TEMPLATE_STORE8       14
22509 #define TEMPLATE_STORE16      15
22510 #define TEMPLATE_STORE32      16
22511 #define TEMPLATE_LOAD8        17
22512 #define TEMPLATE_LOAD16       18
22513 #define TEMPLATE_LOAD32       19
22514 #define TEMPLATE_BINARY8_REG  20
22515 #define TEMPLATE_BINARY16_REG 21
22516 #define TEMPLATE_BINARY32_REG 22
22517 #define TEMPLATE_BINARY8_IMM  23
22518 #define TEMPLATE_BINARY16_IMM 24
22519 #define TEMPLATE_BINARY32_IMM 25
22520 #define TEMPLATE_SL8_CL       26
22521 #define TEMPLATE_SL16_CL      27
22522 #define TEMPLATE_SL32_CL      28
22523 #define TEMPLATE_SL8_IMM      29
22524 #define TEMPLATE_SL16_IMM     30
22525 #define TEMPLATE_SL32_IMM     31
22526 #define TEMPLATE_UNARY8       32
22527 #define TEMPLATE_UNARY16      33
22528 #define TEMPLATE_UNARY32      34
22529 #define TEMPLATE_CMP8_REG     35
22530 #define TEMPLATE_CMP16_REG    36
22531 #define TEMPLATE_CMP32_REG    37
22532 #define TEMPLATE_CMP8_IMM     38
22533 #define TEMPLATE_CMP16_IMM    39
22534 #define TEMPLATE_CMP32_IMM    40
22535 #define TEMPLATE_TEST8        41
22536 #define TEMPLATE_TEST16       42
22537 #define TEMPLATE_TEST32       43
22538 #define TEMPLATE_SET          44
22539 #define TEMPLATE_JMP          45
22540 #define TEMPLATE_RET          46
22541 #define TEMPLATE_INB_DX       47
22542 #define TEMPLATE_INB_IMM      48
22543 #define TEMPLATE_INW_DX       49
22544 #define TEMPLATE_INW_IMM      50
22545 #define TEMPLATE_INL_DX       51
22546 #define TEMPLATE_INL_IMM      52
22547 #define TEMPLATE_OUTB_DX      53
22548 #define TEMPLATE_OUTB_IMM     54
22549 #define TEMPLATE_OUTW_DX      55
22550 #define TEMPLATE_OUTW_IMM     56
22551 #define TEMPLATE_OUTL_DX      57
22552 #define TEMPLATE_OUTL_IMM     58
22553 #define TEMPLATE_BSF          59
22554 #define TEMPLATE_RDMSR        60
22555 #define TEMPLATE_WRMSR        61
22556 #define TEMPLATE_UMUL8        62
22557 #define TEMPLATE_UMUL16       63
22558 #define TEMPLATE_UMUL32       64
22559 #define TEMPLATE_DIV8         65
22560 #define TEMPLATE_DIV16        66
22561 #define TEMPLATE_DIV32        67
22562 #define LAST_TEMPLATE       TEMPLATE_DIV32
22563 #if LAST_TEMPLATE >= MAX_TEMPLATES
22564 #error "MAX_TEMPLATES to low"
22565 #endif
22566
22567 #define COPY8_REGCM     (REGCM_DIVIDEND64 | REGCM_DIVIDEND32 | REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO | REGCM_MMX | REGCM_XMM)
22568 #define COPY16_REGCM    (REGCM_DIVIDEND64 | REGCM_DIVIDEND32 | REGCM_GPR32 | REGCM_GPR16 | REGCM_MMX | REGCM_XMM)
22569 #define COPY32_REGCM    (REGCM_DIVIDEND64 | REGCM_DIVIDEND32 | REGCM_GPR32 | REGCM_MMX | REGCM_XMM)
22570
22571
22572 static struct ins_template templates[] = {
22573         [TEMPLATE_NOP]      = {
22574                 .lhs = {
22575                         [ 0] = { REG_UNNEEDED, REGCM_IMMALL },
22576                         [ 1] = { REG_UNNEEDED, REGCM_IMMALL },
22577                         [ 2] = { REG_UNNEEDED, REGCM_IMMALL },
22578                         [ 3] = { REG_UNNEEDED, REGCM_IMMALL },
22579                         [ 4] = { REG_UNNEEDED, REGCM_IMMALL },
22580                         [ 5] = { REG_UNNEEDED, REGCM_IMMALL },
22581                         [ 6] = { REG_UNNEEDED, REGCM_IMMALL },
22582                         [ 7] = { REG_UNNEEDED, REGCM_IMMALL },
22583                         [ 8] = { REG_UNNEEDED, REGCM_IMMALL },
22584                         [ 9] = { REG_UNNEEDED, REGCM_IMMALL },
22585                         [10] = { REG_UNNEEDED, REGCM_IMMALL },
22586                         [11] = { REG_UNNEEDED, REGCM_IMMALL },
22587                         [12] = { REG_UNNEEDED, REGCM_IMMALL },
22588                         [13] = { REG_UNNEEDED, REGCM_IMMALL },
22589                         [14] = { REG_UNNEEDED, REGCM_IMMALL },
22590                         [15] = { REG_UNNEEDED, REGCM_IMMALL },
22591                         [16] = { REG_UNNEEDED, REGCM_IMMALL },
22592                         [17] = { REG_UNNEEDED, REGCM_IMMALL },
22593                         [18] = { REG_UNNEEDED, REGCM_IMMALL },
22594                         [19] = { REG_UNNEEDED, REGCM_IMMALL },
22595                         [20] = { REG_UNNEEDED, REGCM_IMMALL },
22596                         [21] = { REG_UNNEEDED, REGCM_IMMALL },
22597                         [22] = { REG_UNNEEDED, REGCM_IMMALL },
22598                         [23] = { REG_UNNEEDED, REGCM_IMMALL },
22599                         [24] = { REG_UNNEEDED, REGCM_IMMALL },
22600                         [25] = { REG_UNNEEDED, REGCM_IMMALL },
22601                         [26] = { REG_UNNEEDED, REGCM_IMMALL },
22602                         [27] = { REG_UNNEEDED, REGCM_IMMALL },
22603                         [28] = { REG_UNNEEDED, REGCM_IMMALL },
22604                         [29] = { REG_UNNEEDED, REGCM_IMMALL },
22605                         [30] = { REG_UNNEEDED, REGCM_IMMALL },
22606                         [31] = { REG_UNNEEDED, REGCM_IMMALL },
22607                         [32] = { REG_UNNEEDED, REGCM_IMMALL },
22608                         [33] = { REG_UNNEEDED, REGCM_IMMALL },
22609                         [34] = { REG_UNNEEDED, REGCM_IMMALL },
22610                         [35] = { REG_UNNEEDED, REGCM_IMMALL },
22611                         [36] = { REG_UNNEEDED, REGCM_IMMALL },
22612                         [37] = { REG_UNNEEDED, REGCM_IMMALL },
22613                         [38] = { REG_UNNEEDED, REGCM_IMMALL },
22614                         [39] = { REG_UNNEEDED, REGCM_IMMALL },
22615                         [40] = { REG_UNNEEDED, REGCM_IMMALL },
22616                         [41] = { REG_UNNEEDED, REGCM_IMMALL },
22617                         [42] = { REG_UNNEEDED, REGCM_IMMALL },
22618                         [43] = { REG_UNNEEDED, REGCM_IMMALL },
22619                         [44] = { REG_UNNEEDED, REGCM_IMMALL },
22620                         [45] = { REG_UNNEEDED, REGCM_IMMALL },
22621                         [46] = { REG_UNNEEDED, REGCM_IMMALL },
22622                         [47] = { REG_UNNEEDED, REGCM_IMMALL },
22623                         [48] = { REG_UNNEEDED, REGCM_IMMALL },
22624                         [49] = { REG_UNNEEDED, REGCM_IMMALL },
22625                         [50] = { REG_UNNEEDED, REGCM_IMMALL },
22626                         [51] = { REG_UNNEEDED, REGCM_IMMALL },
22627                         [52] = { REG_UNNEEDED, REGCM_IMMALL },
22628                         [53] = { REG_UNNEEDED, REGCM_IMMALL },
22629                         [54] = { REG_UNNEEDED, REGCM_IMMALL },
22630                         [55] = { REG_UNNEEDED, REGCM_IMMALL },
22631                         [56] = { REG_UNNEEDED, REGCM_IMMALL },
22632                         [57] = { REG_UNNEEDED, REGCM_IMMALL },
22633                         [58] = { REG_UNNEEDED, REGCM_IMMALL },
22634                         [59] = { REG_UNNEEDED, REGCM_IMMALL },
22635                         [60] = { REG_UNNEEDED, REGCM_IMMALL },
22636                         [61] = { REG_UNNEEDED, REGCM_IMMALL },
22637                         [62] = { REG_UNNEEDED, REGCM_IMMALL },
22638                         [63] = { REG_UNNEEDED, REGCM_IMMALL },
22639                 },
22640         },
22641         [TEMPLATE_INTCONST8] = {
22642                 .lhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
22643         },
22644         [TEMPLATE_INTCONST32] = {
22645                 .lhs = { [0] = { REG_UNNEEDED, REGCM_IMM32 } },
22646         },
22647         [TEMPLATE_UNKNOWNVAL] = {
22648                 .lhs = { [0] = { REG_UNSET, COPY32_REGCM } },
22649         },
22650         [TEMPLATE_COPY8_REG] = {
22651                 .lhs = { [0] = { REG_UNSET, COPY8_REGCM } },
22652                 .rhs = { [0] = { REG_UNSET, COPY8_REGCM }  },
22653         },
22654         [TEMPLATE_COPY16_REG] = {
22655                 .lhs = { [0] = { REG_UNSET, COPY16_REGCM } },
22656                 .rhs = { [0] = { REG_UNSET, COPY16_REGCM }  },
22657         },
22658         [TEMPLATE_COPY32_REG] = {
22659                 .lhs = { [0] = { REG_UNSET, COPY32_REGCM } },
22660                 .rhs = { [0] = { REG_UNSET, COPY32_REGCM }  },
22661         },
22662         [TEMPLATE_COPY_IMM8] = {
22663                 .lhs = { [0] = { REG_UNSET, COPY8_REGCM } },
22664                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
22665         },
22666         [TEMPLATE_COPY_IMM16] = {
22667                 .lhs = { [0] = { REG_UNSET, COPY16_REGCM } },
22668                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM16 | REGCM_IMM8 } },
22669         },
22670         [TEMPLATE_COPY_IMM32] = {
22671                 .lhs = { [0] = { REG_UNSET, COPY32_REGCM } },
22672                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8 } },
22673         },
22674         [TEMPLATE_PHI8] = {
22675                 .lhs = { [0] = { REG_VIRT0, COPY8_REGCM } },
22676                 .rhs = { [0] = { REG_VIRT0, COPY8_REGCM } },
22677         },
22678         [TEMPLATE_PHI16] = {
22679                 .lhs = { [0] = { REG_VIRT0, COPY16_REGCM } },
22680                 .rhs = { [0] = { REG_VIRT0, COPY16_REGCM } },
22681         },
22682         [TEMPLATE_PHI32] = {
22683                 .lhs = { [0] = { REG_VIRT0, COPY32_REGCM } },
22684                 .rhs = { [0] = { REG_VIRT0, COPY32_REGCM } },
22685         },
22686         [TEMPLATE_STORE8] = {
22687                 .rhs = {
22688                         [0] = { REG_UNSET, REGCM_GPR32 },
22689                         [1] = { REG_UNSET, REGCM_GPR8_LO },
22690                 },
22691         },
22692         [TEMPLATE_STORE16] = {
22693                 .rhs = {
22694                         [0] = { REG_UNSET, REGCM_GPR32 },
22695                         [1] = { REG_UNSET, REGCM_GPR16 },
22696                 },
22697         },
22698         [TEMPLATE_STORE32] = {
22699                 .rhs = {
22700                         [0] = { REG_UNSET, REGCM_GPR32 },
22701                         [1] = { REG_UNSET, REGCM_GPR32 },
22702                 },
22703         },
22704         [TEMPLATE_LOAD8] = {
22705                 .lhs = { [0] = { REG_UNSET, REGCM_GPR8_LO } },
22706                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22707         },
22708         [TEMPLATE_LOAD16] = {
22709                 .lhs = { [0] = { REG_UNSET, REGCM_GPR16 } },
22710                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22711         },
22712         [TEMPLATE_LOAD32] = {
22713                 .lhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22714                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22715         },
22716         [TEMPLATE_BINARY8_REG] = {
22717                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22718                 .rhs = {
22719                         [0] = { REG_VIRT0, REGCM_GPR8_LO },
22720                         [1] = { REG_UNSET, REGCM_GPR8_LO },
22721                 },
22722         },
22723         [TEMPLATE_BINARY16_REG] = {
22724                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22725                 .rhs = {
22726                         [0] = { REG_VIRT0, REGCM_GPR16 },
22727                         [1] = { REG_UNSET, REGCM_GPR16 },
22728                 },
22729         },
22730         [TEMPLATE_BINARY32_REG] = {
22731                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22732                 .rhs = {
22733                         [0] = { REG_VIRT0, REGCM_GPR32 },
22734                         [1] = { REG_UNSET, REGCM_GPR32 },
22735                 },
22736         },
22737         [TEMPLATE_BINARY8_IMM] = {
22738                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22739                 .rhs = {
22740                         [0] = { REG_VIRT0,    REGCM_GPR8_LO },
22741                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22742                 },
22743         },
22744         [TEMPLATE_BINARY16_IMM] = {
22745                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22746                 .rhs = {
22747                         [0] = { REG_VIRT0,    REGCM_GPR16 },
22748                         [1] = { REG_UNNEEDED, REGCM_IMM16 },
22749                 },
22750         },
22751         [TEMPLATE_BINARY32_IMM] = {
22752                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22753                 .rhs = {
22754                         [0] = { REG_VIRT0,    REGCM_GPR32 },
22755                         [1] = { REG_UNNEEDED, REGCM_IMM32 },
22756                 },
22757         },
22758         [TEMPLATE_SL8_CL] = {
22759                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22760                 .rhs = {
22761                         [0] = { REG_VIRT0, REGCM_GPR8_LO },
22762                         [1] = { REG_CL, REGCM_GPR8_LO },
22763                 },
22764         },
22765         [TEMPLATE_SL16_CL] = {
22766                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22767                 .rhs = {
22768                         [0] = { REG_VIRT0, REGCM_GPR16 },
22769                         [1] = { REG_CL, REGCM_GPR8_LO },
22770                 },
22771         },
22772         [TEMPLATE_SL32_CL] = {
22773                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22774                 .rhs = {
22775                         [0] = { REG_VIRT0, REGCM_GPR32 },
22776                         [1] = { REG_CL, REGCM_GPR8_LO },
22777                 },
22778         },
22779         [TEMPLATE_SL8_IMM] = {
22780                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22781                 .rhs = {
22782                         [0] = { REG_VIRT0,    REGCM_GPR8_LO },
22783                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22784                 },
22785         },
22786         [TEMPLATE_SL16_IMM] = {
22787                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22788                 .rhs = {
22789                         [0] = { REG_VIRT0,    REGCM_GPR16 },
22790                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22791                 },
22792         },
22793         [TEMPLATE_SL32_IMM] = {
22794                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22795                 .rhs = {
22796                         [0] = { REG_VIRT0,    REGCM_GPR32 },
22797                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22798                 },
22799         },
22800         [TEMPLATE_UNARY8] = {
22801                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22802                 .rhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
22803         },
22804         [TEMPLATE_UNARY16] = {
22805                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22806                 .rhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
22807         },
22808         [TEMPLATE_UNARY32] = {
22809                 .lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22810                 .rhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
22811         },
22812         [TEMPLATE_CMP8_REG] = {
22813                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22814                 .rhs = {
22815                         [0] = { REG_UNSET, REGCM_GPR8_LO },
22816                         [1] = { REG_UNSET, REGCM_GPR8_LO },
22817                 },
22818         },
22819         [TEMPLATE_CMP16_REG] = {
22820                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22821                 .rhs = {
22822                         [0] = { REG_UNSET, REGCM_GPR16 },
22823                         [1] = { REG_UNSET, REGCM_GPR16 },
22824                 },
22825         },
22826         [TEMPLATE_CMP32_REG] = {
22827                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22828                 .rhs = {
22829                         [0] = { REG_UNSET, REGCM_GPR32 },
22830                         [1] = { REG_UNSET, REGCM_GPR32 },
22831                 },
22832         },
22833         [TEMPLATE_CMP8_IMM] = {
22834                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22835                 .rhs = {
22836                         [0] = { REG_UNSET, REGCM_GPR8_LO },
22837                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22838                 },
22839         },
22840         [TEMPLATE_CMP16_IMM] = {
22841                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22842                 .rhs = {
22843                         [0] = { REG_UNSET, REGCM_GPR16 },
22844                         [1] = { REG_UNNEEDED, REGCM_IMM16 },
22845                 },
22846         },
22847         [TEMPLATE_CMP32_IMM] = {
22848                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22849                 .rhs = {
22850                         [0] = { REG_UNSET, REGCM_GPR32 },
22851                         [1] = { REG_UNNEEDED, REGCM_IMM32 },
22852                 },
22853         },
22854         [TEMPLATE_TEST8] = {
22855                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22856                 .rhs = { [0] = { REG_UNSET, REGCM_GPR8_LO } },
22857         },
22858         [TEMPLATE_TEST16] = {
22859                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22860                 .rhs = { [0] = { REG_UNSET, REGCM_GPR16 } },
22861         },
22862         [TEMPLATE_TEST32] = {
22863                 .lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22864                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22865         },
22866         [TEMPLATE_SET] = {
22867                 .lhs = { [0] = { REG_UNSET, REGCM_GPR8_LO } },
22868                 .rhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22869         },
22870         [TEMPLATE_JMP] = {
22871                 .rhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
22872         },
22873         [TEMPLATE_RET] = {
22874                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22875         },
22876         [TEMPLATE_INB_DX] = {
22877                 .lhs = { [0] = { REG_AL,  REGCM_GPR8_LO } },
22878                 .rhs = { [0] = { REG_DX, REGCM_GPR16 } },
22879         },
22880         [TEMPLATE_INB_IMM] = {
22881                 .lhs = { [0] = { REG_AL,  REGCM_GPR8_LO } },
22882                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
22883         },
22884         [TEMPLATE_INW_DX]  = {
22885                 .lhs = { [0] = { REG_AX,  REGCM_GPR16 } },
22886                 .rhs = { [0] = { REG_DX, REGCM_GPR16 } },
22887         },
22888         [TEMPLATE_INW_IMM] = {
22889                 .lhs = { [0] = { REG_AX,  REGCM_GPR16 } },
22890                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
22891         },
22892         [TEMPLATE_INL_DX]  = {
22893                 .lhs = { [0] = { REG_EAX, REGCM_GPR32 } },
22894                 .rhs = { [0] = { REG_DX, REGCM_GPR16 } },
22895         },
22896         [TEMPLATE_INL_IMM] = {
22897                 .lhs = { [0] = { REG_EAX, REGCM_GPR32 } },
22898                 .rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
22899         },
22900         [TEMPLATE_OUTB_DX] = {
22901                 .rhs = {
22902                         [0] = { REG_AL,  REGCM_GPR8_LO },
22903                         [1] = { REG_DX, REGCM_GPR16 },
22904                 },
22905         },
22906         [TEMPLATE_OUTB_IMM] = {
22907                 .rhs = {
22908                         [0] = { REG_AL,  REGCM_GPR8_LO },
22909                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22910                 },
22911         },
22912         [TEMPLATE_OUTW_DX] = {
22913                 .rhs = {
22914                         [0] = { REG_AX,  REGCM_GPR16 },
22915                         [1] = { REG_DX, REGCM_GPR16 },
22916                 },
22917         },
22918         [TEMPLATE_OUTW_IMM] = {
22919                 .rhs = {
22920                         [0] = { REG_AX,  REGCM_GPR16 },
22921                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22922                 },
22923         },
22924         [TEMPLATE_OUTL_DX] = {
22925                 .rhs = {
22926                         [0] = { REG_EAX, REGCM_GPR32 },
22927                         [1] = { REG_DX, REGCM_GPR16 },
22928                 },
22929         },
22930         [TEMPLATE_OUTL_IMM] = {
22931                 .rhs = {
22932                         [0] = { REG_EAX, REGCM_GPR32 },
22933                         [1] = { REG_UNNEEDED, REGCM_IMM8 },
22934                 },
22935         },
22936         [TEMPLATE_BSF] = {
22937                 .lhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22938                 .rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
22939         },
22940         [TEMPLATE_RDMSR] = {
22941                 .lhs = {
22942                         [0] = { REG_EAX, REGCM_GPR32 },
22943                         [1] = { REG_EDX, REGCM_GPR32 },
22944                 },
22945                 .rhs = { [0] = { REG_ECX, REGCM_GPR32 } },
22946         },
22947         [TEMPLATE_WRMSR] = {
22948                 .rhs = {
22949                         [0] = { REG_ECX, REGCM_GPR32 },
22950                         [1] = { REG_EAX, REGCM_GPR32 },
22951                         [2] = { REG_EDX, REGCM_GPR32 },
22952                 },
22953         },
22954         [TEMPLATE_UMUL8] = {
22955                 .lhs = { [0] = { REG_AX, REGCM_GPR16 } },
22956                 .rhs = {
22957                         [0] = { REG_AL, REGCM_GPR8_LO },
22958                         [1] = { REG_UNSET, REGCM_GPR8_LO },
22959                 },
22960         },
22961         [TEMPLATE_UMUL16] = {
22962                 .lhs = { [0] = { REG_DXAX, REGCM_DIVIDEND32 } },
22963                 .rhs = {
22964                         [0] = { REG_AX, REGCM_GPR16 },
22965                         [1] = { REG_UNSET, REGCM_GPR16 },
22966                 },
22967         },
22968         [TEMPLATE_UMUL32] = {
22969                 .lhs = { [0] = { REG_EDXEAX, REGCM_DIVIDEND64 } },
22970                 .rhs = {
22971                         [0] = { REG_EAX, REGCM_GPR32 },
22972                         [1] = { REG_UNSET, REGCM_GPR32 },
22973                 },
22974         },
22975         [TEMPLATE_DIV8] = {
22976                 .lhs = {
22977                         [0] = { REG_AL, REGCM_GPR8_LO },
22978                         [1] = { REG_AH, REGCM_GPR8 },
22979                 },
22980                 .rhs = {
22981                         [0] = { REG_AX, REGCM_GPR16 },
22982                         [1] = { REG_UNSET, REGCM_GPR8_LO },
22983                 },
22984         },
22985         [TEMPLATE_DIV16] = {
22986                 .lhs = {
22987                         [0] = { REG_AX, REGCM_GPR16 },
22988                         [1] = { REG_DX, REGCM_GPR16 },
22989                 },
22990                 .rhs = {
22991                         [0] = { REG_DXAX, REGCM_DIVIDEND32 },
22992                         [1] = { REG_UNSET, REGCM_GPR16 },
22993                 },
22994         },
22995         [TEMPLATE_DIV32] = {
22996                 .lhs = {
22997                         [0] = { REG_EAX, REGCM_GPR32 },
22998                         [1] = { REG_EDX, REGCM_GPR32 },
22999                 },
23000                 .rhs = {
23001                         [0] = { REG_EDXEAX, REGCM_DIVIDEND64 },
23002                         [1] = { REG_UNSET, REGCM_GPR32 },
23003                 },
23004         },
23005 };
23006
23007 static void fixup_branch(struct compile_state *state,
23008         struct triple *branch, int jmp_op, int cmp_op, struct type *cmp_type,
23009         struct triple *left, struct triple *right)
23010 {
23011         struct triple *test;
23012         if (!left) {
23013                 internal_error(state, branch, "no branch test?");
23014         }
23015         test = pre_triple(state, branch,
23016                 cmp_op, cmp_type, left, right);
23017         test->template_id = TEMPLATE_TEST32;
23018         if (cmp_op == OP_CMP) {
23019                 test->template_id = TEMPLATE_CMP32_REG;
23020                 if (get_imm32(test, &RHS(test, 1))) {
23021                         test->template_id = TEMPLATE_CMP32_IMM;
23022                 }
23023         }
23024         use_triple(RHS(test, 0), test);
23025         use_triple(RHS(test, 1), test);
23026         unuse_triple(RHS(branch, 0), branch);
23027         RHS(branch, 0) = test;
23028         branch->op = jmp_op;
23029         branch->template_id = TEMPLATE_JMP;
23030         use_triple(RHS(branch, 0), branch);
23031 }
23032
23033 static void fixup_branches(struct compile_state *state,
23034         struct triple *cmp, struct triple *use, int jmp_op)
23035 {
23036         struct triple_set *entry, *next;
23037         for(entry = use->use; entry; entry = next) {
23038                 next = entry->next;
23039                 if (entry->member->op == OP_COPY) {
23040                         fixup_branches(state, cmp, entry->member, jmp_op);
23041                 }
23042                 else if (entry->member->op == OP_CBRANCH) {
23043                         struct triple *branch;
23044                         struct triple *left, *right;
23045                         left = right = 0;
23046                         left = RHS(cmp, 0);
23047                         if (cmp->rhs > 1) {
23048                                 right = RHS(cmp, 1);
23049                         }
23050                         branch = entry->member;
23051                         fixup_branch(state, branch, jmp_op,
23052                                 cmp->op, cmp->type, left, right);
23053                 }
23054         }
23055 }
23056
23057 static void bool_cmp(struct compile_state *state,
23058         struct triple *ins, int cmp_op, int jmp_op, int set_op)
23059 {
23060         struct triple_set *entry, *next;
23061         struct triple *set, *convert;
23062
23063         /* Put a barrier up before the cmp which preceeds the
23064          * copy instruction.  If a set actually occurs this gives
23065          * us a chance to move variables in registers out of the way.
23066          */
23067
23068         /* Modify the comparison operator */
23069         ins->op = cmp_op;
23070         ins->template_id = TEMPLATE_TEST32;
23071         if (cmp_op == OP_CMP) {
23072                 ins->template_id = TEMPLATE_CMP32_REG;
23073                 if (get_imm32(ins, &RHS(ins, 1))) {
23074                         ins->template_id =  TEMPLATE_CMP32_IMM;
23075                 }
23076         }
23077         /* Generate the instruction sequence that will transform the
23078          * result of the comparison into a logical value.
23079          */
23080         set = post_triple(state, ins, set_op, &uchar_type, ins, 0);
23081         use_triple(ins, set);
23082         set->template_id = TEMPLATE_SET;
23083
23084         convert = set;
23085         if (!equiv_types(ins->type, set->type)) {
23086                 convert = post_triple(state, set, OP_CONVERT, ins->type, set, 0);
23087                 use_triple(set, convert);
23088                 convert->template_id = TEMPLATE_COPY32_REG;
23089         }
23090
23091         for(entry = ins->use; entry; entry = next) {
23092                 next = entry->next;
23093                 if (entry->member == set) {
23094                         continue;
23095                 }
23096                 replace_rhs_use(state, ins, convert, entry->member);
23097         }
23098         fixup_branches(state, ins, convert, jmp_op);
23099 }
23100
23101 struct reg_info arch_reg_lhs(struct compile_state *state, struct triple *ins, int index)
23102 {
23103         struct ins_template *template;
23104         struct reg_info result;
23105         int zlhs;
23106         if (ins->op == OP_PIECE) {
23107                 index = ins->u.cval;
23108                 ins = MISC(ins, 0);
23109         }
23110         zlhs = ins->lhs;
23111         if (triple_is_def(state, ins)) {
23112                 zlhs = 1;
23113         }
23114         if (index >= zlhs) {
23115                 internal_error(state, ins, "index %d out of range for %s",
23116                         index, tops(ins->op));
23117         }
23118         switch(ins->op) {
23119         case OP_ASM:
23120                 template = &ins->u.ainfo->tmpl;
23121                 break;
23122         default:
23123                 if (ins->template_id > LAST_TEMPLATE) {
23124                         internal_error(state, ins, "bad template number %d",
23125                                 ins->template_id);
23126                 }
23127                 template = &templates[ins->template_id];
23128                 break;
23129         }
23130         result = template->lhs[index];
23131         result.regcm = arch_regcm_normalize(state, result.regcm);
23132         if (result.reg != REG_UNNEEDED) {
23133                 result.regcm &= ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8);
23134         }
23135         if (result.regcm == 0) {
23136                 internal_error(state, ins, "lhs %d regcm == 0", index);
23137         }
23138         return result;
23139 }
23140
23141 struct reg_info arch_reg_rhs(struct compile_state *state, struct triple *ins, int index)
23142 {
23143         struct reg_info result;
23144         struct ins_template *template;
23145         if ((index > ins->rhs) ||
23146                 (ins->op == OP_PIECE)) {
23147                 internal_error(state, ins, "index %d out of range for %s\n",
23148                         index, tops(ins->op));
23149         }
23150         switch(ins->op) {
23151         case OP_ASM:
23152                 template = &ins->u.ainfo->tmpl;
23153                 break;
23154         case OP_PHI:
23155                 index = 0;
23156                 /* Fall through */
23157         default:
23158                 if (ins->template_id > LAST_TEMPLATE) {
23159                         internal_error(state, ins, "bad template number %d",
23160                                 ins->template_id);
23161                 }
23162                 template = &templates[ins->template_id];
23163                 break;
23164         }
23165         result = template->rhs[index];
23166         result.regcm = arch_regcm_normalize(state, result.regcm);
23167         if (result.regcm == 0) {
23168                 internal_error(state, ins, "rhs %d regcm == 0", index);
23169         }
23170         return result;
23171 }
23172
23173 static struct triple *mod_div(struct compile_state *state,
23174         struct triple *ins, int div_op, int index)
23175 {
23176         struct triple *div, *piece1;
23177
23178         /* Generate the appropriate division instruction */
23179         div = post_triple(state, ins, div_op, ins->type, 0, 0);
23180         RHS(div, 0) = RHS(ins, 0);
23181         RHS(div, 1) = RHS(ins, 1);
23182         piece1 = LHS(div, 1);
23183         div->template_id  = TEMPLATE_DIV32;
23184         use_triple(RHS(div, 0), div);
23185         use_triple(RHS(div, 1), div);
23186         use_triple(LHS(div, 0), div);
23187         use_triple(LHS(div, 1), div);
23188
23189         /* Replate uses of ins with the appropriate piece of the div */
23190         propogate_use(state, ins, LHS(div, index));
23191         release_triple(state, ins);
23192
23193         /* Return the address of the next instruction */
23194         return piece1->next;
23195 }
23196
23197 static int noop_adecl(struct triple *adecl)
23198 {
23199         struct triple_set *use;
23200         /* It's a noop if it doesn't specify stoorage */
23201         if (adecl->lhs == 0) {
23202                 return 1;
23203         }
23204         /* Is the adecl used? If not it's a noop */
23205         for(use = adecl->use; use ; use = use->next) {
23206                 if ((use->member->op != OP_PIECE) ||
23207                         (MISC(use->member, 0) != adecl)) {
23208                         return 0;
23209                 }
23210         }
23211         return 1;
23212 }
23213
23214 static struct triple *x86_deposit(struct compile_state *state, struct triple *ins)
23215 {
23216         struct triple *mask, *nmask, *shift;
23217         struct triple *val, *val_mask, *val_shift;
23218         struct triple *targ, *targ_mask;
23219         struct triple *new;
23220         ulong_t the_mask, the_nmask;
23221
23222         targ = RHS(ins, 0);
23223         val = RHS(ins, 1);
23224
23225         /* Get constant for the mask value */
23226         the_mask = 1;
23227         the_mask <<= ins->u.bitfield.size;
23228         the_mask -= 1;
23229         the_mask <<= ins->u.bitfield.offset;
23230         mask = pre_triple(state, ins, OP_INTCONST, &uint_type, 0, 0);
23231         mask->u.cval = the_mask;
23232
23233         /* Get the inverted mask value */
23234         the_nmask = ~the_mask;
23235         nmask = pre_triple(state, ins, OP_INTCONST, &uint_type, 0, 0);
23236         nmask->u.cval = the_nmask;
23237
23238         /* Get constant for the shift value */
23239         shift = pre_triple(state, ins, OP_INTCONST, &uint_type, 0, 0);
23240         shift->u.cval = ins->u.bitfield.offset;
23241
23242         /* Shift and mask the source value */
23243         val_shift = val;
23244         if (shift->u.cval != 0) {
23245                 val_shift = pre_triple(state, ins, OP_SL, val->type, val, shift);
23246                 use_triple(val, val_shift);
23247                 use_triple(shift, val_shift);
23248         }
23249         val_mask = val_shift;
23250         if (is_signed(val->type)) {
23251                 val_mask = pre_triple(state, ins, OP_AND, val->type, val_shift, mask);
23252                 use_triple(val_shift, val_mask);
23253                 use_triple(mask, val_mask);
23254         }
23255
23256         /* Mask the target value */
23257         targ_mask = pre_triple(state, ins, OP_AND, targ->type, targ, nmask);
23258         use_triple(targ, targ_mask);
23259         use_triple(nmask, targ_mask);
23260
23261         /* Now combined them together */
23262         new = pre_triple(state, ins, OP_OR, targ->type, targ_mask, val_mask);
23263         use_triple(targ_mask, new);
23264         use_triple(val_mask, new);
23265
23266         /* Move all of the users over to the new expression */
23267         propogate_use(state, ins, new);
23268
23269         /* Delete the original triple */
23270         release_triple(state, ins);
23271
23272         /* Restart the transformation at mask */
23273         return mask;
23274 }
23275
23276 static struct triple *x86_extract(struct compile_state *state, struct triple *ins)
23277 {
23278         struct triple *mask, *shift;
23279         struct triple *val, *val_mask, *val_shift;
23280         ulong_t the_mask;
23281
23282         val = RHS(ins, 0);
23283
23284         /* Get constant for the mask value */
23285         the_mask = 1;
23286         the_mask <<= ins->u.bitfield.size;
23287         the_mask -= 1;
23288         mask = pre_triple(state, ins, OP_INTCONST, &int_type, 0, 0);
23289         mask->u.cval = the_mask;
23290
23291         /* Get constant for the right shift value */
23292         shift = pre_triple(state, ins, OP_INTCONST, &int_type, 0, 0);
23293         shift->u.cval = ins->u.bitfield.offset;
23294
23295         /* Shift arithmetic right, to correct the sign */
23296         val_shift = val;
23297         if (shift->u.cval != 0) {
23298                 int op;
23299                 if (ins->op == OP_SEXTRACT) {
23300                         op = OP_SSR;
23301                 } else {
23302                         op = OP_USR;
23303                 }
23304                 val_shift = pre_triple(state, ins, op, val->type, val, shift);
23305                 use_triple(val, val_shift);
23306                 use_triple(shift, val_shift);
23307         }
23308
23309         /* Finally mask the value */
23310         val_mask = pre_triple(state, ins, OP_AND, ins->type, val_shift, mask);
23311         use_triple(val_shift, val_mask);
23312         use_triple(mask,      val_mask);
23313
23314         /* Move all of the users over to the new expression */
23315         propogate_use(state, ins, val_mask);
23316
23317         /* Release the original instruction */
23318         release_triple(state, ins);
23319
23320         return mask;
23321
23322 }
23323
23324 static struct triple *transform_to_arch_instruction(
23325         struct compile_state *state, struct triple *ins)
23326 {
23327         /* Transform from generic 3 address instructions
23328          * to archtecture specific instructions.
23329          * And apply architecture specific constraints to instructions.
23330          * Copies are inserted to preserve the register flexibility
23331          * of 3 address instructions.
23332          */
23333         struct triple *next, *value;
23334         size_t size;
23335         next = ins->next;
23336         switch(ins->op) {
23337         case OP_INTCONST:
23338                 ins->template_id = TEMPLATE_INTCONST32;
23339                 if (ins->u.cval < 256) {
23340                         ins->template_id = TEMPLATE_INTCONST8;
23341                 }
23342                 break;
23343         case OP_ADDRCONST:
23344                 ins->template_id = TEMPLATE_INTCONST32;
23345                 break;
23346         case OP_UNKNOWNVAL:
23347                 ins->template_id = TEMPLATE_UNKNOWNVAL;
23348                 break;
23349         case OP_NOOP:
23350         case OP_SDECL:
23351         case OP_BLOBCONST:
23352         case OP_LABEL:
23353                 ins->template_id = TEMPLATE_NOP;
23354                 break;
23355         case OP_COPY:
23356         case OP_CONVERT:
23357                 size = size_of(state, ins->type);
23358                 value = RHS(ins, 0);
23359                 if (is_imm8(value) && (size <= SIZEOF_I8)) {
23360                         ins->template_id = TEMPLATE_COPY_IMM8;
23361                 }
23362                 else if (is_imm16(value) && (size <= SIZEOF_I16)) {
23363                         ins->template_id = TEMPLATE_COPY_IMM16;
23364                 }
23365                 else if (is_imm32(value) && (size <= SIZEOF_I32)) {
23366                         ins->template_id = TEMPLATE_COPY_IMM32;
23367                 }
23368                 else if (is_const(value)) {
23369                         internal_error(state, ins, "bad constant passed to copy");
23370                 }
23371                 else if (size <= SIZEOF_I8) {
23372                         ins->template_id = TEMPLATE_COPY8_REG;
23373                 }
23374                 else if (size <= SIZEOF_I16) {
23375                         ins->template_id = TEMPLATE_COPY16_REG;
23376                 }
23377                 else if (size <= SIZEOF_I32) {
23378                         ins->template_id = TEMPLATE_COPY32_REG;
23379                 }
23380                 else {
23381                         internal_error(state, ins, "bad type passed to copy");
23382                 }
23383                 break;
23384         case OP_PHI:
23385                 size = size_of(state, ins->type);
23386                 if (size <= SIZEOF_I8) {
23387                         ins->template_id = TEMPLATE_PHI8;
23388                 }
23389                 else if (size <= SIZEOF_I16) {
23390                         ins->template_id = TEMPLATE_PHI16;
23391                 }
23392                 else if (size <= SIZEOF_I32) {
23393                         ins->template_id = TEMPLATE_PHI32;
23394                 }
23395                 else {
23396                         internal_error(state, ins, "bad type passed to phi");
23397                 }
23398                 break;
23399         case OP_ADECL:
23400                 /* Adecls should always be treated as dead code and
23401                  * removed.  If we are not optimizing they may linger.
23402                  */
23403                 if (!noop_adecl(ins)) {
23404                         internal_error(state, ins, "adecl remains?");
23405                 }
23406                 ins->template_id = TEMPLATE_NOP;
23407                 next = after_lhs(state, ins);
23408                 break;
23409         case OP_STORE:
23410                 switch(ins->type->type & TYPE_MASK) {
23411                 case TYPE_CHAR:    case TYPE_UCHAR:
23412                         ins->template_id = TEMPLATE_STORE8;
23413                         break;
23414                 case TYPE_SHORT:   case TYPE_USHORT:
23415                         ins->template_id = TEMPLATE_STORE16;
23416                         break;
23417                 case TYPE_INT:     case TYPE_UINT:
23418                 case TYPE_LONG:    case TYPE_ULONG:
23419                 case TYPE_POINTER:
23420                         ins->template_id = TEMPLATE_STORE32;
23421                         break;
23422                 default:
23423                         internal_error(state, ins, "unknown type in store");
23424                         break;
23425                 }
23426                 break;
23427         case OP_LOAD:
23428                 switch(ins->type->type & TYPE_MASK) {
23429                 case TYPE_CHAR:   case TYPE_UCHAR:
23430                 case TYPE_SHORT:  case TYPE_USHORT:
23431                 case TYPE_INT:    case TYPE_UINT:
23432                 case TYPE_LONG:   case TYPE_ULONG:
23433                 case TYPE_POINTER:
23434                         break;
23435                 default:
23436                         internal_error(state, ins, "unknown type in load");
23437                         break;
23438                 }
23439                 ins->template_id = TEMPLATE_LOAD32;
23440                 break;
23441         case OP_ADD:
23442         case OP_SUB:
23443         case OP_AND:
23444         case OP_XOR:
23445         case OP_OR:
23446         case OP_SMUL:
23447                 ins->template_id = TEMPLATE_BINARY32_REG;
23448                 if (get_imm32(ins, &RHS(ins, 1))) {
23449                         ins->template_id = TEMPLATE_BINARY32_IMM;
23450                 }
23451                 break;
23452         case OP_SDIVT:
23453         case OP_UDIVT:
23454                 ins->template_id = TEMPLATE_DIV32;
23455                 next = after_lhs(state, ins);
23456                 break;
23457         case OP_UMUL:
23458                 ins->template_id = TEMPLATE_UMUL32;
23459                 break;
23460         case OP_UDIV:
23461                 next = mod_div(state, ins, OP_UDIVT, 0);
23462                 break;
23463         case OP_SDIV:
23464                 next = mod_div(state, ins, OP_SDIVT, 0);
23465                 break;
23466         case OP_UMOD:
23467                 next = mod_div(state, ins, OP_UDIVT, 1);
23468                 break;
23469         case OP_SMOD:
23470                 next = mod_div(state, ins, OP_SDIVT, 1);
23471                 break;
23472         case OP_SL:
23473         case OP_SSR:
23474         case OP_USR:
23475                 ins->template_id = TEMPLATE_SL32_CL;
23476                 if (get_imm8(ins, &RHS(ins, 1))) {
23477                         ins->template_id = TEMPLATE_SL32_IMM;
23478                 } else if (size_of(state, RHS(ins, 1)->type) > SIZEOF_CHAR) {
23479                         typed_pre_copy(state, &uchar_type, ins, 1);
23480                 }
23481                 break;
23482         case OP_INVERT:
23483         case OP_NEG:
23484                 ins->template_id = TEMPLATE_UNARY32;
23485                 break;
23486         case OP_EQ:
23487                 bool_cmp(state, ins, OP_CMP, OP_JMP_EQ, OP_SET_EQ);
23488                 break;
23489         case OP_NOTEQ:
23490                 bool_cmp(state, ins, OP_CMP, OP_JMP_NOTEQ, OP_SET_NOTEQ);
23491                 break;
23492         case OP_SLESS:
23493                 bool_cmp(state, ins, OP_CMP, OP_JMP_SLESS, OP_SET_SLESS);
23494                 break;
23495         case OP_ULESS:
23496                 bool_cmp(state, ins, OP_CMP, OP_JMP_ULESS, OP_SET_ULESS);
23497                 break;
23498         case OP_SMORE:
23499                 bool_cmp(state, ins, OP_CMP, OP_JMP_SMORE, OP_SET_SMORE);
23500                 break;
23501         case OP_UMORE:
23502                 bool_cmp(state, ins, OP_CMP, OP_JMP_UMORE, OP_SET_UMORE);
23503                 break;
23504         case OP_SLESSEQ:
23505                 bool_cmp(state, ins, OP_CMP, OP_JMP_SLESSEQ, OP_SET_SLESSEQ);
23506                 break;
23507         case OP_ULESSEQ:
23508                 bool_cmp(state, ins, OP_CMP, OP_JMP_ULESSEQ, OP_SET_ULESSEQ);
23509                 break;
23510         case OP_SMOREEQ:
23511                 bool_cmp(state, ins, OP_CMP, OP_JMP_SMOREEQ, OP_SET_SMOREEQ);
23512                 break;
23513         case OP_UMOREEQ:
23514                 bool_cmp(state, ins, OP_CMP, OP_JMP_UMOREEQ, OP_SET_UMOREEQ);
23515                 break;
23516         case OP_LTRUE:
23517                 bool_cmp(state, ins, OP_TEST, OP_JMP_NOTEQ, OP_SET_NOTEQ);
23518                 break;
23519         case OP_LFALSE:
23520                 bool_cmp(state, ins, OP_TEST, OP_JMP_EQ, OP_SET_EQ);
23521                 break;
23522         case OP_BRANCH:
23523                 ins->op = OP_JMP;
23524                 ins->template_id = TEMPLATE_NOP;
23525                 break;
23526         case OP_CBRANCH:
23527                 fixup_branch(state, ins, OP_JMP_NOTEQ, OP_TEST,
23528                         RHS(ins, 0)->type, RHS(ins, 0), 0);
23529                 break;
23530         case OP_CALL:
23531                 ins->template_id = TEMPLATE_NOP;
23532                 break;
23533         case OP_RET:
23534                 ins->template_id = TEMPLATE_RET;
23535                 break;
23536         case OP_INB:
23537         case OP_INW:
23538         case OP_INL:
23539                 switch(ins->op) {
23540                 case OP_INB: ins->template_id = TEMPLATE_INB_DX; break;
23541                 case OP_INW: ins->template_id = TEMPLATE_INW_DX; break;
23542                 case OP_INL: ins->template_id = TEMPLATE_INL_DX; break;
23543                 }
23544                 if (get_imm8(ins, &RHS(ins, 0))) {
23545                         ins->template_id += 1;
23546                 }
23547                 break;
23548         case OP_OUTB:
23549         case OP_OUTW:
23550         case OP_OUTL:
23551                 switch(ins->op) {
23552                 case OP_OUTB: ins->template_id = TEMPLATE_OUTB_DX; break;
23553                 case OP_OUTW: ins->template_id = TEMPLATE_OUTW_DX; break;
23554                 case OP_OUTL: ins->template_id = TEMPLATE_OUTL_DX; break;
23555                 }
23556                 if (get_imm8(ins, &RHS(ins, 1))) {
23557                         ins->template_id += 1;
23558                 }
23559                 break;
23560         case OP_BSF:
23561         case OP_BSR:
23562                 ins->template_id = TEMPLATE_BSF;
23563                 break;
23564         case OP_RDMSR:
23565                 ins->template_id = TEMPLATE_RDMSR;
23566                 next = after_lhs(state, ins);
23567                 break;
23568         case OP_WRMSR:
23569                 ins->template_id = TEMPLATE_WRMSR;
23570                 break;
23571         case OP_HLT:
23572                 ins->template_id = TEMPLATE_NOP;
23573                 break;
23574         case OP_ASM:
23575                 ins->template_id = TEMPLATE_NOP;
23576                 next = after_lhs(state, ins);
23577                 break;
23578                 /* Already transformed instructions */
23579         case OP_TEST:
23580                 ins->template_id = TEMPLATE_TEST32;
23581                 break;
23582         case OP_CMP:
23583                 ins->template_id = TEMPLATE_CMP32_REG;
23584                 if (get_imm32(ins, &RHS(ins, 1))) {
23585                         ins->template_id = TEMPLATE_CMP32_IMM;
23586                 }
23587                 break;
23588         case OP_JMP:
23589                 ins->template_id = TEMPLATE_NOP;
23590                 break;
23591         case OP_JMP_EQ:      case OP_JMP_NOTEQ:
23592         case OP_JMP_SLESS:   case OP_JMP_ULESS:
23593         case OP_JMP_SMORE:   case OP_JMP_UMORE:
23594         case OP_JMP_SLESSEQ: case OP_JMP_ULESSEQ:
23595         case OP_JMP_SMOREEQ: case OP_JMP_UMOREEQ:
23596                 ins->template_id = TEMPLATE_JMP;
23597                 break;
23598         case OP_SET_EQ:      case OP_SET_NOTEQ:
23599         case OP_SET_SLESS:   case OP_SET_ULESS:
23600         case OP_SET_SMORE:   case OP_SET_UMORE:
23601         case OP_SET_SLESSEQ: case OP_SET_ULESSEQ:
23602         case OP_SET_SMOREEQ: case OP_SET_UMOREEQ:
23603                 ins->template_id = TEMPLATE_SET;
23604                 break;
23605         case OP_DEPOSIT:
23606                 next = x86_deposit(state, ins);
23607                 break;
23608         case OP_SEXTRACT:
23609         case OP_UEXTRACT:
23610                 next = x86_extract(state, ins);
23611                 break;
23612                 /* Unhandled instructions */
23613         case OP_PIECE:
23614         default:
23615                 internal_error(state, ins, "unhandled ins: %d %s",
23616                         ins->op, tops(ins->op));
23617                 break;
23618         }
23619         return next;
23620 }
23621
23622 static long next_label(struct compile_state *state)
23623 {
23624         static long label_counter = 1000;
23625         return ++label_counter;
23626 }
23627 static void generate_local_labels(struct compile_state *state)
23628 {
23629         struct triple *first, *label;
23630         first = state->first;
23631         label = first;
23632         do {
23633                 if ((label->op == OP_LABEL) ||
23634                         (label->op == OP_SDECL)) {
23635                         if (label->use) {
23636                                 label->u.cval = next_label(state);
23637                         } else {
23638                                 label->u.cval = 0;
23639                         }
23640
23641                 }
23642                 label = label->next;
23643         } while(label != first);
23644 }
23645
23646 static int check_reg(struct compile_state *state,
23647         struct triple *triple, int classes)
23648 {
23649         unsigned mask;
23650         int reg;
23651         reg = ID_REG(triple->id);
23652         if (reg == REG_UNSET) {
23653                 internal_error(state, triple, "register not set");
23654         }
23655         mask = arch_reg_regcm(state, reg);
23656         if (!(classes & mask)) {
23657                 internal_error(state, triple, "reg %d in wrong class",
23658                         reg);
23659         }
23660         return reg;
23661 }
23662
23663
23664 #if REG_XMM7 != 44
23665 #error "Registers have renumberd fix arch_reg_str"
23666 #endif
23667 static const char *arch_regs[] = {
23668         "%unset",
23669         "%unneeded",
23670         "%eflags",
23671         "%al", "%bl", "%cl", "%dl", "%ah", "%bh", "%ch", "%dh",
23672         "%ax", "%bx", "%cx", "%dx", "%si", "%di", "%bp", "%sp",
23673         "%eax", "%ebx", "%ecx", "%edx", "%esi", "%edi", "%ebp", "%esp",
23674         "%edx:%eax",
23675         "%dx:%ax",
23676         "%mm0", "%mm1", "%mm2", "%mm3", "%mm4", "%mm5", "%mm6", "%mm7",
23677         "%xmm0", "%xmm1", "%xmm2", "%xmm3",
23678         "%xmm4", "%xmm5", "%xmm6", "%xmm7",
23679 };
23680 static const char *arch_reg_str(int reg)
23681 {
23682         if (!((reg >= REG_EFLAGS) && (reg <= REG_XMM7))) {
23683                 reg = 0;
23684         }
23685         return arch_regs[reg];
23686 }
23687
23688 static const char *reg(struct compile_state *state, struct triple *triple,
23689         int classes)
23690 {
23691         int reg;
23692         reg = check_reg(state, triple, classes);
23693         return arch_reg_str(reg);
23694 }
23695
23696 static int arch_reg_size(int reg)
23697 {
23698         int size;
23699         size = 0;
23700         if (reg == REG_EFLAGS) {
23701                 size = 32;
23702         }
23703         else if ((reg >= REG_AL) && (reg <= REG_DH)) {
23704                 size = 8;
23705         }
23706         else if ((reg >= REG_AX) && (reg <= REG_SP)) {
23707                 size = 16;
23708         }
23709         else if ((reg >= REG_EAX) && (reg <= REG_ESP)) {
23710                 size = 32;
23711         }
23712         else if (reg == REG_EDXEAX) {
23713                 size = 64;
23714         }
23715         else if (reg == REG_DXAX) {
23716                 size = 32;
23717         }
23718         else if ((reg >= REG_MMX0) && (reg <= REG_MMX7)) {
23719                 size = 64;
23720         }
23721         else if ((reg >= REG_XMM0) && (reg <= REG_XMM7)) {
23722                 size = 128;
23723         }
23724         return size;
23725 }
23726
23727 static int reg_size(struct compile_state *state, struct triple *ins)
23728 {
23729         int reg;
23730         reg = ID_REG(ins->id);
23731         if (reg == REG_UNSET) {
23732                 internal_error(state, ins, "register not set");
23733         }
23734         return arch_reg_size(reg);
23735 }
23736
23737
23738
23739 const char *type_suffix(struct compile_state *state, struct type *type)
23740 {
23741         const char *suffix;
23742         switch(size_of(state, type)) {
23743         case SIZEOF_I8:  suffix = "b"; break;
23744         case SIZEOF_I16: suffix = "w"; break;
23745         case SIZEOF_I32: suffix = "l"; break;
23746         default:
23747                 internal_error(state, 0, "unknown suffix");
23748                 suffix = 0;
23749                 break;
23750         }
23751         return suffix;
23752 }
23753
23754 static void print_const_val(
23755         struct compile_state *state, struct triple *ins, FILE *fp)
23756 {
23757         switch(ins->op) {
23758         case OP_INTCONST:
23759                 fprintf(fp, " $%ld ",
23760                         (long)(ins->u.cval));
23761                 break;
23762         case OP_ADDRCONST:
23763                 if ((MISC(ins, 0)->op != OP_SDECL) &&
23764                         (MISC(ins, 0)->op != OP_LABEL))
23765                 {
23766                         internal_error(state, ins, "bad base for addrconst");
23767                 }
23768                 if (MISC(ins, 0)->u.cval <= 0) {
23769                         internal_error(state, ins, "unlabeled constant");
23770                 }
23771                 fprintf(fp, " $L%s%lu+%lu ",
23772                         state->compiler->label_prefix,
23773                         (unsigned long)(MISC(ins, 0)->u.cval),
23774                         (unsigned long)(ins->u.cval));
23775                 break;
23776         default:
23777                 internal_error(state, ins, "unknown constant type");
23778                 break;
23779         }
23780 }
23781
23782 static void print_const(struct compile_state *state,
23783         struct triple *ins, FILE *fp)
23784 {
23785         switch(ins->op) {
23786         case OP_INTCONST:
23787                 switch(ins->type->type & TYPE_MASK) {
23788                 case TYPE_CHAR:
23789                 case TYPE_UCHAR:
23790                         fprintf(fp, ".byte 0x%02lx\n",
23791                                 (unsigned long)(ins->u.cval));
23792                         break;
23793                 case TYPE_SHORT:
23794                 case TYPE_USHORT:
23795                         fprintf(fp, ".short 0x%04lx\n",
23796                                 (unsigned long)(ins->u.cval));
23797                         break;
23798                 case TYPE_INT:
23799                 case TYPE_UINT:
23800                 case TYPE_LONG:
23801                 case TYPE_ULONG:
23802                 case TYPE_POINTER:
23803                         fprintf(fp, ".int %lu\n",
23804                                 (unsigned long)(ins->u.cval));
23805                         break;
23806                 default:
23807                         fprintf(state->errout, "type: ");
23808                         name_of(state->errout, ins->type);
23809                         fprintf(state->errout, "\n");
23810                         internal_error(state, ins, "Unknown constant type. Val: %lu",
23811                                 (unsigned long)(ins->u.cval));
23812                 }
23813
23814                 break;
23815         case OP_ADDRCONST:
23816                 if ((MISC(ins, 0)->op != OP_SDECL) &&
23817                         (MISC(ins, 0)->op != OP_LABEL)) {
23818                         internal_error(state, ins, "bad base for addrconst");
23819                 }
23820                 if (MISC(ins, 0)->u.cval <= 0) {
23821                         internal_error(state, ins, "unlabeled constant");
23822                 }
23823                 fprintf(fp, ".int L%s%lu+%lu\n",
23824                         state->compiler->label_prefix,
23825                         (unsigned long)(MISC(ins, 0)->u.cval),
23826                         (unsigned long)(ins->u.cval));
23827                 break;
23828         case OP_BLOBCONST:
23829         {
23830                 unsigned char *blob;
23831                 size_t size, i;
23832                 size = size_of_in_bytes(state, ins->type);
23833                 blob = ins->u.blob;
23834                 for(i = 0; i < size; i++) {
23835                         fprintf(fp, ".byte 0x%02x\n",
23836                                 blob[i]);
23837                 }
23838                 break;
23839         }
23840         default:
23841                 internal_error(state, ins, "Unknown constant type");
23842                 break;
23843         }
23844 }
23845
23846 #define TEXT_SECTION ".rom.text"
23847 #define DATA_SECTION ".rom.data"
23848
23849 static long get_const_pool_ref(
23850         struct compile_state *state, struct triple *ins, size_t size, FILE *fp)
23851 {
23852         size_t fill_bytes;
23853         long ref;
23854         ref = next_label(state);
23855         fprintf(fp, ".section \"" DATA_SECTION "\"\n");
23856         fprintf(fp, ".balign %ld\n", (long int)align_of_in_bytes(state, ins->type));
23857         fprintf(fp, "L%s%lu:\n", state->compiler->label_prefix, ref);
23858         print_const(state, ins, fp);
23859         fill_bytes = bits_to_bytes(size - size_of(state, ins->type));
23860         if (fill_bytes) {
23861                 fprintf(fp, ".fill %ld, 1, 0\n", (long int)fill_bytes);
23862         }
23863         fprintf(fp, ".section \"" TEXT_SECTION "\"\n");
23864         return ref;
23865 }
23866
23867 static long get_mask_pool_ref(
23868         struct compile_state *state, struct triple *ins, unsigned long mask, FILE *fp)
23869 {
23870         long ref;
23871         if (mask == 0xff) {
23872                 ref = 1;
23873         }
23874         else if (mask == 0xffff) {
23875                 ref = 2;
23876         }
23877         else {
23878                 ref = 0;
23879                 internal_error(state, ins, "unhandled mask value");
23880         }
23881         return ref;
23882 }
23883
23884 static void print_binary_op(struct compile_state *state,
23885         const char *op, struct triple *ins, FILE *fp)
23886 {
23887         unsigned mask;
23888         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
23889         if (ID_REG(RHS(ins, 0)->id) != ID_REG(ins->id)) {
23890                 internal_error(state, ins, "invalid register assignment");
23891         }
23892         if (is_const(RHS(ins, 1))) {
23893                 fprintf(fp, "\t%s ", op);
23894                 print_const_val(state, RHS(ins, 1), fp);
23895                 fprintf(fp, ", %s\n",
23896                         reg(state, RHS(ins, 0), mask));
23897         }
23898         else {
23899                 unsigned lmask, rmask;
23900                 int lreg, rreg;
23901                 lreg = check_reg(state, RHS(ins, 0), mask);
23902                 rreg = check_reg(state, RHS(ins, 1), mask);
23903                 lmask = arch_reg_regcm(state, lreg);
23904                 rmask = arch_reg_regcm(state, rreg);
23905                 mask = lmask & rmask;
23906                 fprintf(fp, "\t%s %s, %s\n",
23907                         op,
23908                         reg(state, RHS(ins, 1), mask),
23909                         reg(state, RHS(ins, 0), mask));
23910         }
23911 }
23912 static void print_unary_op(struct compile_state *state,
23913         const char *op, struct triple *ins, FILE *fp)
23914 {
23915         unsigned mask;
23916         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
23917         fprintf(fp, "\t%s %s\n",
23918                 op,
23919                 reg(state, RHS(ins, 0), mask));
23920 }
23921
23922 static void print_op_shift(struct compile_state *state,
23923         const char *op, struct triple *ins, FILE *fp)
23924 {
23925         unsigned mask;
23926         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
23927         if (ID_REG(RHS(ins, 0)->id) != ID_REG(ins->id)) {
23928                 internal_error(state, ins, "invalid register assignment");
23929         }
23930         if (is_const(RHS(ins, 1))) {
23931                 fprintf(fp, "\t%s ", op);
23932                 print_const_val(state, RHS(ins, 1), fp);
23933                 fprintf(fp, ", %s\n",
23934                         reg(state, RHS(ins, 0), mask));
23935         }
23936         else {
23937                 fprintf(fp, "\t%s %s, %s\n",
23938                         op,
23939                         reg(state, RHS(ins, 1), REGCM_GPR8_LO),
23940                         reg(state, RHS(ins, 0), mask));
23941         }
23942 }
23943
23944 static void print_op_in(struct compile_state *state, struct triple *ins, FILE *fp)
23945 {
23946         const char *op;
23947         int mask;
23948         int dreg;
23949         mask = 0;
23950         switch(ins->op) {
23951         case OP_INB: op = "inb", mask = REGCM_GPR8_LO; break;
23952         case OP_INW: op = "inw", mask = REGCM_GPR16; break;
23953         case OP_INL: op = "inl", mask = REGCM_GPR32; break;
23954         default:
23955                 internal_error(state, ins, "not an in operation");
23956                 op = 0;
23957                 break;
23958         }
23959         dreg = check_reg(state, ins, mask);
23960         if (!reg_is_reg(state, dreg, REG_EAX)) {
23961                 internal_error(state, ins, "dst != %%eax");
23962         }
23963         if (is_const(RHS(ins, 0))) {
23964                 fprintf(fp, "\t%s ", op);
23965                 print_const_val(state, RHS(ins, 0), fp);
23966                 fprintf(fp, ", %s\n",
23967                         reg(state, ins, mask));
23968         }
23969         else {
23970                 int addr_reg;
23971                 addr_reg = check_reg(state, RHS(ins, 0), REGCM_GPR16);
23972                 if (!reg_is_reg(state, addr_reg, REG_DX)) {
23973                         internal_error(state, ins, "src != %%dx");
23974                 }
23975                 fprintf(fp, "\t%s %s, %s\n",
23976                         op,
23977                         reg(state, RHS(ins, 0), REGCM_GPR16),
23978                         reg(state, ins, mask));
23979         }
23980 }
23981
23982 static void print_op_out(struct compile_state *state, struct triple *ins, FILE *fp)
23983 {
23984         const char *op;
23985         int mask;
23986         int lreg;
23987         mask = 0;
23988         switch(ins->op) {
23989         case OP_OUTB: op = "outb", mask = REGCM_GPR8_LO; break;
23990         case OP_OUTW: op = "outw", mask = REGCM_GPR16; break;
23991         case OP_OUTL: op = "outl", mask = REGCM_GPR32; break;
23992         default:
23993                 internal_error(state, ins, "not an out operation");
23994                 op = 0;
23995                 break;
23996         }
23997         lreg = check_reg(state, RHS(ins, 0), mask);
23998         if (!reg_is_reg(state, lreg, REG_EAX)) {
23999                 internal_error(state, ins, "src != %%eax");
24000         }
24001         if (is_const(RHS(ins, 1))) {
24002                 fprintf(fp, "\t%s %s,",
24003                         op, reg(state, RHS(ins, 0), mask));
24004                 print_const_val(state, RHS(ins, 1), fp);
24005                 fprintf(fp, "\n");
24006         }
24007         else {
24008                 int addr_reg;
24009                 addr_reg = check_reg(state, RHS(ins, 1), REGCM_GPR16);
24010                 if (!reg_is_reg(state, addr_reg, REG_DX)) {
24011                         internal_error(state, ins, "dst != %%dx");
24012                 }
24013                 fprintf(fp, "\t%s %s, %s\n",
24014                         op,
24015                         reg(state, RHS(ins, 0), mask),
24016                         reg(state, RHS(ins, 1), REGCM_GPR16));
24017         }
24018 }
24019
24020 static void print_op_move(struct compile_state *state,
24021         struct triple *ins, FILE *fp)
24022 {
24023         /* op_move is complex because there are many types
24024          * of registers we can move between.
24025          * Because OP_COPY will be introduced in arbitrary locations
24026          * OP_COPY must not affect flags.
24027          * OP_CONVERT can change the flags and it is the only operation
24028          * where it is expected the types in the registers can change.
24029          */
24030         int omit_copy = 1; /* Is it o.k. to omit a noop copy? */
24031         struct triple *dst, *src;
24032         if (state->arch->features & X86_NOOP_COPY) {
24033                 omit_copy = 0;
24034         }
24035         if ((ins->op == OP_COPY) || (ins->op == OP_CONVERT)) {
24036                 src = RHS(ins, 0);
24037                 dst = ins;
24038         }
24039         else {
24040                 internal_error(state, ins, "unknown move operation");
24041                 src = dst = 0;
24042         }
24043         if (reg_size(state, dst) < size_of(state, dst->type)) {
24044                 internal_error(state, ins, "Invalid destination register");
24045         }
24046         if (!equiv_types(src->type, dst->type) && (dst->op == OP_COPY)) {
24047                 fprintf(state->errout, "src type: ");
24048                 name_of(state->errout, src->type);
24049                 fprintf(state->errout, "\n");
24050                 fprintf(state->errout, "dst type: ");
24051                 name_of(state->errout, dst->type);
24052                 fprintf(state->errout, "\n");
24053                 internal_error(state, ins, "Type mismatch for OP_COPY");
24054         }
24055
24056         if (!is_const(src)) {
24057                 int src_reg, dst_reg;
24058                 int src_regcm, dst_regcm;
24059                 src_reg   = ID_REG(src->id);
24060                 dst_reg   = ID_REG(dst->id);
24061                 src_regcm = arch_reg_regcm(state, src_reg);
24062                 dst_regcm = arch_reg_regcm(state, dst_reg);
24063                 /* If the class is the same just move the register */
24064                 if (src_regcm & dst_regcm &
24065                         (REGCM_GPR8_LO | REGCM_GPR16 | REGCM_GPR32)) {
24066                         if ((src_reg != dst_reg) || !omit_copy) {
24067                                 fprintf(fp, "\tmov %s, %s\n",
24068                                         reg(state, src, src_regcm),
24069                                         reg(state, dst, dst_regcm));
24070                         }
24071                 }
24072                 /* Move 32bit to 16bit */
24073                 else if ((src_regcm & REGCM_GPR32) &&
24074                         (dst_regcm & REGCM_GPR16)) {
24075                         src_reg = (src_reg - REGC_GPR32_FIRST) + REGC_GPR16_FIRST;
24076                         if ((src_reg != dst_reg) || !omit_copy) {
24077                                 fprintf(fp, "\tmovw %s, %s\n",
24078                                         arch_reg_str(src_reg),
24079                                         arch_reg_str(dst_reg));
24080                         }
24081                 }
24082                 /* Move from 32bit gprs to 16bit gprs */
24083                 else if ((src_regcm & REGCM_GPR32) &&
24084                         (dst_regcm & REGCM_GPR16)) {
24085                         dst_reg = (dst_reg - REGC_GPR16_FIRST) + REGC_GPR32_FIRST;
24086                         if ((src_reg != dst_reg) || !omit_copy) {
24087                                 fprintf(fp, "\tmov %s, %s\n",
24088                                         arch_reg_str(src_reg),
24089                                         arch_reg_str(dst_reg));
24090                         }
24091                 }
24092                 /* Move 32bit to 8bit */
24093                 else if ((src_regcm & REGCM_GPR32_8) &&
24094                         (dst_regcm & REGCM_GPR8_LO))
24095                 {
24096                         src_reg = (src_reg - REGC_GPR32_8_FIRST) + REGC_GPR8_FIRST;
24097                         if ((src_reg != dst_reg) || !omit_copy) {
24098                                 fprintf(fp, "\tmovb %s, %s\n",
24099                                         arch_reg_str(src_reg),
24100                                         arch_reg_str(dst_reg));
24101                         }
24102                 }
24103                 /* Move 16bit to 8bit */
24104                 else if ((src_regcm & REGCM_GPR16_8) &&
24105                         (dst_regcm & REGCM_GPR8_LO))
24106                 {
24107                         src_reg = (src_reg - REGC_GPR16_8_FIRST) + REGC_GPR8_FIRST;
24108                         if ((src_reg != dst_reg) || !omit_copy) {
24109                                 fprintf(fp, "\tmovb %s, %s\n",
24110                                         arch_reg_str(src_reg),
24111                                         arch_reg_str(dst_reg));
24112                         }
24113                 }
24114                 /* Move 8/16bit to 16/32bit */
24115                 else if ((src_regcm & (REGCM_GPR8_LO | REGCM_GPR16)) &&
24116                         (dst_regcm & (REGCM_GPR16 | REGCM_GPR32))) {
24117                         const char *op;
24118                         op = is_signed(src->type)? "movsx": "movzx";
24119                         fprintf(fp, "\t%s %s, %s\n",
24120                                 op,
24121                                 reg(state, src, src_regcm),
24122                                 reg(state, dst, dst_regcm));
24123                 }
24124                 /* Move between sse registers */
24125                 else if ((src_regcm & dst_regcm & REGCM_XMM)) {
24126                         if ((src_reg != dst_reg) || !omit_copy) {
24127                                 fprintf(fp, "\tmovdqa %s, %s\n",
24128                                         reg(state, src, src_regcm),
24129                                         reg(state, dst, dst_regcm));
24130                         }
24131                 }
24132                 /* Move between mmx registers */
24133                 else if ((src_regcm & dst_regcm & REGCM_MMX)) {
24134                         if ((src_reg != dst_reg) || !omit_copy) {
24135                                 fprintf(fp, "\tmovq %s, %s\n",
24136                                         reg(state, src, src_regcm),
24137                                         reg(state, dst, dst_regcm));
24138                         }
24139                 }
24140                 /* Move from sse to mmx registers */
24141                 else if ((src_regcm & REGCM_XMM) && (dst_regcm & REGCM_MMX)) {
24142                         fprintf(fp, "\tmovdq2q %s, %s\n",
24143                                 reg(state, src, src_regcm),
24144                                 reg(state, dst, dst_regcm));
24145                 }
24146                 /* Move from mmx to sse registers */
24147                 else if ((src_regcm & REGCM_MMX) && (dst_regcm & REGCM_XMM)) {
24148                         fprintf(fp, "\tmovq2dq %s, %s\n",
24149                                 reg(state, src, src_regcm),
24150                                 reg(state, dst, dst_regcm));
24151                 }
24152                 /* Move between 32bit gprs & mmx/sse registers */
24153                 else if ((src_regcm & (REGCM_GPR32 | REGCM_MMX | REGCM_XMM)) &&
24154                         (dst_regcm & (REGCM_GPR32 | REGCM_MMX | REGCM_XMM))) {
24155                         fprintf(fp, "\tmovd %s, %s\n",
24156                                 reg(state, src, src_regcm),
24157                                 reg(state, dst, dst_regcm));
24158                 }
24159                 /* Move from 16bit gprs &  mmx/sse registers */
24160                 else if ((src_regcm & REGCM_GPR16) &&
24161                         (dst_regcm & (REGCM_MMX | REGCM_XMM))) {
24162                         const char *op;
24163                         int mid_reg;
24164                         op = is_signed(src->type)? "movsx":"movzx";
24165                         mid_reg = (src_reg - REGC_GPR16_FIRST) + REGC_GPR32_FIRST;
24166                         fprintf(fp, "\t%s %s, %s\n\tmovd %s, %s\n",
24167                                 op,
24168                                 arch_reg_str(src_reg),
24169                                 arch_reg_str(mid_reg),
24170                                 arch_reg_str(mid_reg),
24171                                 arch_reg_str(dst_reg));
24172                 }
24173                 /* Move from mmx/sse registers to 16bit gprs */
24174                 else if ((src_regcm & (REGCM_MMX | REGCM_XMM)) &&
24175                         (dst_regcm & REGCM_GPR16)) {
24176                         dst_reg = (dst_reg - REGC_GPR16_FIRST) + REGC_GPR32_FIRST;
24177                         fprintf(fp, "\tmovd %s, %s\n",
24178                                 arch_reg_str(src_reg),
24179                                 arch_reg_str(dst_reg));
24180                 }
24181                 /* Move from gpr to 64bit dividend */
24182                 else if ((src_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO))  &&
24183                         (dst_regcm & REGCM_DIVIDEND64)) {
24184                         const char *extend;
24185                         extend = is_signed(src->type)? "cltd":"movl $0, %edx";
24186                         fprintf(fp, "\tmov %s, %%eax\n\t%s\n",
24187                                 arch_reg_str(src_reg),
24188                                 extend);
24189                 }
24190                 /* Move from 64bit gpr to gpr */
24191                 else if ((src_regcm & REGCM_DIVIDEND64) &&
24192                         (dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO))) {
24193                         if (dst_regcm & REGCM_GPR32) {
24194                                 src_reg = REG_EAX;
24195                         }
24196                         else if (dst_regcm & REGCM_GPR16) {
24197                                 src_reg = REG_AX;
24198                         }
24199                         else if (dst_regcm & REGCM_GPR8_LO) {
24200                                 src_reg = REG_AL;
24201                         }
24202                         fprintf(fp, "\tmov %s, %s\n",
24203                                 arch_reg_str(src_reg),
24204                                 arch_reg_str(dst_reg));
24205                 }
24206                 /* Move from mmx/sse registers to 64bit gpr */
24207                 else if ((src_regcm & (REGCM_MMX | REGCM_XMM)) &&
24208                         (dst_regcm & REGCM_DIVIDEND64)) {
24209                         const char *extend;
24210                         extend = is_signed(src->type)? "cltd": "movl $0, %edx";
24211                         fprintf(fp, "\tmovd %s, %%eax\n\t%s\n",
24212                                 arch_reg_str(src_reg),
24213                                 extend);
24214                 }
24215                 /* Move from 64bit gpr to mmx/sse register */
24216                 else if ((src_regcm & REGCM_DIVIDEND64) &&
24217                         (dst_regcm & (REGCM_XMM | REGCM_MMX))) {
24218                         fprintf(fp, "\tmovd %%eax, %s\n",
24219                                 arch_reg_str(dst_reg));
24220                 }
24221 #if X86_4_8BIT_GPRS
24222                 /* Move from 8bit gprs to  mmx/sse registers */
24223                 else if ((src_regcm & REGCM_GPR8_LO) && (src_reg <= REG_DL) &&
24224                         (dst_regcm & (REGCM_MMX | REGCM_XMM))) {
24225                         const char *op;
24226                         int mid_reg;
24227                         op = is_signed(src->type)? "movsx":"movzx";
24228                         mid_reg = (src_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
24229                         fprintf(fp, "\t%s %s, %s\n\tmovd %s, %s\n",
24230                                 op,
24231                                 reg(state, src, src_regcm),
24232                                 arch_reg_str(mid_reg),
24233                                 arch_reg_str(mid_reg),
24234                                 reg(state, dst, dst_regcm));
24235                 }
24236                 /* Move from mmx/sse registers and 8bit gprs */
24237                 else if ((src_regcm & (REGCM_MMX | REGCM_XMM)) &&
24238                         (dst_regcm & REGCM_GPR8_LO) && (dst_reg <= REG_DL)) {
24239                         int mid_reg;
24240                         mid_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
24241                         fprintf(fp, "\tmovd %s, %s\n",
24242                                 reg(state, src, src_regcm),
24243                                 arch_reg_str(mid_reg));
24244                 }
24245                 /* Move from 32bit gprs to 8bit gprs */
24246                 else if ((src_regcm & REGCM_GPR32) &&
24247                         (dst_regcm & REGCM_GPR8_LO)) {
24248                         dst_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
24249                         if ((src_reg != dst_reg) || !omit_copy) {
24250                                 fprintf(fp, "\tmov %s, %s\n",
24251                                         arch_reg_str(src_reg),
24252                                         arch_reg_str(dst_reg));
24253                         }
24254                 }
24255                 /* Move from 16bit gprs to 8bit gprs */
24256                 else if ((src_regcm & REGCM_GPR16) &&
24257                         (dst_regcm & REGCM_GPR8_LO)) {
24258                         dst_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR16_FIRST;
24259                         if ((src_reg != dst_reg) || !omit_copy) {
24260                                 fprintf(fp, "\tmov %s, %s\n",
24261                                         arch_reg_str(src_reg),
24262                                         arch_reg_str(dst_reg));
24263                         }
24264                 }
24265 #endif /* X86_4_8BIT_GPRS */
24266                 /* Move from %eax:%edx to %eax:%edx */
24267                 else if ((src_regcm & REGCM_DIVIDEND64) &&
24268                         (dst_regcm & REGCM_DIVIDEND64) &&
24269                         (src_reg == dst_reg)) {
24270                         if (!omit_copy) {
24271                                 fprintf(fp, "\t/*mov %s, %s*/\n",
24272                                         arch_reg_str(src_reg),
24273                                         arch_reg_str(dst_reg));
24274                         }
24275                 }
24276                 else {
24277                         if ((src_regcm & ~REGCM_FLAGS) == 0) {
24278                                 internal_error(state, ins, "attempt to copy from %%eflags!");
24279                         }
24280                         internal_error(state, ins, "unknown copy type");
24281                 }
24282         }
24283         else {
24284                 size_t dst_size;
24285                 int dst_reg;
24286                 int dst_regcm;
24287                 dst_size = size_of(state, dst->type);
24288                 dst_reg = ID_REG(dst->id);
24289                 dst_regcm = arch_reg_regcm(state, dst_reg);
24290                 if (dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO)) {
24291                         fprintf(fp, "\tmov ");
24292                         print_const_val(state, src, fp);
24293                         fprintf(fp, ", %s\n",
24294                                 reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO));
24295                 }
24296                 else if (dst_regcm & REGCM_DIVIDEND64) {
24297                         if (dst_size > SIZEOF_I32) {
24298                                 internal_error(state, ins, "%dbit constant...", dst_size);
24299                         }
24300                         fprintf(fp, "\tmov $0, %%edx\n");
24301                         fprintf(fp, "\tmov ");
24302                         print_const_val(state, src, fp);
24303                         fprintf(fp, ", %%eax\n");
24304                 }
24305                 else if (dst_regcm & REGCM_DIVIDEND32) {
24306                         if (dst_size > SIZEOF_I16) {
24307                                 internal_error(state, ins, "%dbit constant...", dst_size);
24308                         }
24309                         fprintf(fp, "\tmov $0, %%dx\n");
24310                         fprintf(fp, "\tmov ");
24311                         print_const_val(state, src, fp);
24312                         fprintf(fp, ", %%ax");
24313                 }
24314                 else if (dst_regcm & (REGCM_XMM | REGCM_MMX)) {
24315                         long ref;
24316                         if (dst_size > SIZEOF_I32) {
24317                                 internal_error(state, ins, "%d bit constant...", dst_size);
24318                         }
24319                         ref = get_const_pool_ref(state, src, SIZEOF_I32, fp);
24320                         fprintf(fp, "\tmovd L%s%lu, %s\n",
24321                                 state->compiler->label_prefix, ref,
24322                                 reg(state, dst, (REGCM_XMM | REGCM_MMX)));
24323                 }
24324                 else {
24325                         internal_error(state, ins, "unknown copy immediate type");
24326                 }
24327         }
24328         /* Leave now if this is not a type conversion */
24329         if (ins->op != OP_CONVERT) {
24330                 return;
24331         }
24332         /* Now make certain I have not logically overflowed the destination */
24333         if ((size_of(state, src->type) > size_of(state, dst->type)) &&
24334                 (size_of(state, dst->type) < reg_size(state, dst)))
24335         {
24336                 unsigned long mask;
24337                 int dst_reg;
24338                 int dst_regcm;
24339                 if (size_of(state, dst->type) >= 32) {
24340                         fprintf(state->errout, "dst type: ");
24341                         name_of(state->errout, dst->type);
24342                         fprintf(state->errout, "\n");
24343                         internal_error(state, dst, "unhandled dst type size");
24344                 }
24345                 mask = 1;
24346                 mask <<= size_of(state, dst->type);
24347                 mask -= 1;
24348
24349                 dst_reg = ID_REG(dst->id);
24350                 dst_regcm = arch_reg_regcm(state, dst_reg);
24351
24352                 if (dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO)) {
24353                         fprintf(fp, "\tand $0x%lx, %s\n",
24354                                 mask, reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO));
24355                 }
24356                 else if (dst_regcm & REGCM_MMX) {
24357                         long ref;
24358                         ref = get_mask_pool_ref(state, dst, mask, fp);
24359                         fprintf(fp, "\tpand L%s%lu, %s\n",
24360                                 state->compiler->label_prefix, ref,
24361                                 reg(state, dst, REGCM_MMX));
24362                 }
24363                 else if (dst_regcm & REGCM_XMM) {
24364                         long ref;
24365                         ref = get_mask_pool_ref(state, dst, mask, fp);
24366                         fprintf(fp, "\tpand L%s%lu, %s\n",
24367                                 state->compiler->label_prefix, ref,
24368                                 reg(state, dst, REGCM_XMM));
24369                 }
24370                 else {
24371                         fprintf(state->errout, "dst type: ");
24372                         name_of(state->errout, dst->type);
24373                         fprintf(state->errout, "\n");
24374                         fprintf(state->errout, "dst: %s\n", reg(state, dst, REGCM_ALL));
24375                         internal_error(state, dst, "failed to trunc value: mask %lx", mask);
24376                 }
24377         }
24378         /* Make certain I am properly sign extended */
24379         if ((size_of(state, src->type) < size_of(state, dst->type)) &&
24380                 (is_signed(src->type)))
24381         {
24382                 int reg_bits, shift_bits;
24383                 int dst_reg;
24384                 int dst_regcm;
24385
24386                 reg_bits = reg_size(state, dst);
24387                 if (reg_bits > 32) {
24388                         reg_bits = 32;
24389                 }
24390                 shift_bits = reg_bits - size_of(state, src->type);
24391                 dst_reg = ID_REG(dst->id);
24392                 dst_regcm = arch_reg_regcm(state, dst_reg);
24393
24394                 if (shift_bits < 0) {
24395                         internal_error(state, dst, "negative shift?");
24396                 }
24397
24398                 if (dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO)) {
24399                         fprintf(fp, "\tshl $%d, %s\n",
24400                                 shift_bits,
24401                                 reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO));
24402                         fprintf(fp, "\tsar $%d, %s\n",
24403                                 shift_bits,
24404                                 reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO));
24405                 }
24406                 else if (dst_regcm & (REGCM_MMX | REGCM_XMM)) {
24407                         fprintf(fp, "\tpslld $%d, %s\n",
24408                                 shift_bits,
24409                                 reg(state, dst, REGCM_MMX | REGCM_XMM));
24410                         fprintf(fp, "\tpsrad $%d, %s\n",
24411                                 shift_bits,
24412                                 reg(state, dst, REGCM_MMX | REGCM_XMM));
24413                 }
24414                 else {
24415                         fprintf(state->errout, "dst type: ");
24416                         name_of(state->errout, dst->type);
24417                         fprintf(state->errout, "\n");
24418                         fprintf(state->errout, "dst: %s\n", reg(state, dst, REGCM_ALL));
24419                         internal_error(state, dst, "failed to signed extend value");
24420                 }
24421         }
24422 }
24423
24424 static void print_op_load(struct compile_state *state,
24425         struct triple *ins, FILE *fp)
24426 {
24427         struct triple *dst, *src;
24428         const char *op;
24429         dst = ins;
24430         src = RHS(ins, 0);
24431         if (is_const(src) || is_const(dst)) {
24432                 internal_error(state, ins, "unknown load operation");
24433         }
24434         switch(ins->type->type & TYPE_MASK) {
24435         case TYPE_CHAR:   op = "movsbl"; break;
24436         case TYPE_UCHAR:  op = "movzbl"; break;
24437         case TYPE_SHORT:  op = "movswl"; break;
24438         case TYPE_USHORT: op = "movzwl"; break;
24439         case TYPE_INT:    case TYPE_UINT:
24440         case TYPE_LONG:   case TYPE_ULONG:
24441         case TYPE_POINTER:
24442                 op = "movl";
24443                 break;
24444         default:
24445                 internal_error(state, ins, "unknown type in load");
24446                 op = "<invalid opcode>";
24447                 break;
24448         }
24449         fprintf(fp, "\t%s (%s), %s\n",
24450                 op,
24451                 reg(state, src, REGCM_GPR32),
24452                 reg(state, dst, REGCM_GPR32));
24453 }
24454
24455
24456 static void print_op_store(struct compile_state *state,
24457         struct triple *ins, FILE *fp)
24458 {
24459         struct triple *dst, *src;
24460         dst = RHS(ins, 0);
24461         src = RHS(ins, 1);
24462         if (is_const(src) && (src->op == OP_INTCONST)) {
24463                 long_t value;
24464                 value = (long_t)(src->u.cval);
24465                 fprintf(fp, "\tmov%s $%ld, (%s)\n",
24466                         type_suffix(state, src->type),
24467                         (long)(value),
24468                         reg(state, dst, REGCM_GPR32));
24469         }
24470         else if (is_const(dst) && (dst->op == OP_INTCONST)) {
24471                 fprintf(fp, "\tmov%s %s, 0x%08lx\n",
24472                         type_suffix(state, src->type),
24473                         reg(state, src, REGCM_GPR8_LO | REGCM_GPR16 | REGCM_GPR32),
24474                         (unsigned long)(dst->u.cval));
24475         }
24476         else {
24477                 if (is_const(src) || is_const(dst)) {
24478                         internal_error(state, ins, "unknown store operation");
24479                 }
24480                 fprintf(fp, "\tmov%s %s, (%s)\n",
24481                         type_suffix(state, src->type),
24482                         reg(state, src, REGCM_GPR8_LO | REGCM_GPR16 | REGCM_GPR32),
24483                         reg(state, dst, REGCM_GPR32));
24484         }
24485
24486
24487 }
24488
24489 static void print_op_smul(struct compile_state *state,
24490         struct triple *ins, FILE *fp)
24491 {
24492         if (!is_const(RHS(ins, 1))) {
24493                 fprintf(fp, "\timul %s, %s\n",
24494                         reg(state, RHS(ins, 1), REGCM_GPR32),
24495                         reg(state, RHS(ins, 0), REGCM_GPR32));
24496         }
24497         else {
24498                 fprintf(fp, "\timul ");
24499                 print_const_val(state, RHS(ins, 1), fp);
24500                 fprintf(fp, ", %s\n", reg(state, RHS(ins, 0), REGCM_GPR32));
24501         }
24502 }
24503
24504 static void print_op_cmp(struct compile_state *state,
24505         struct triple *ins, FILE *fp)
24506 {
24507         unsigned mask;
24508         int dreg;
24509         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
24510         dreg = check_reg(state, ins, REGCM_FLAGS);
24511         if (!reg_is_reg(state, dreg, REG_EFLAGS)) {
24512                 internal_error(state, ins, "bad dest register for cmp");
24513         }
24514         if (is_const(RHS(ins, 1))) {
24515                 fprintf(fp, "\tcmp ");
24516                 print_const_val(state, RHS(ins, 1), fp);
24517                 fprintf(fp, ", %s\n", reg(state, RHS(ins, 0), mask));
24518         }
24519         else {
24520                 unsigned lmask, rmask;
24521                 int lreg, rreg;
24522                 lreg = check_reg(state, RHS(ins, 0), mask);
24523                 rreg = check_reg(state, RHS(ins, 1), mask);
24524                 lmask = arch_reg_regcm(state, lreg);
24525                 rmask = arch_reg_regcm(state, rreg);
24526                 mask = lmask & rmask;
24527                 fprintf(fp, "\tcmp %s, %s\n",
24528                         reg(state, RHS(ins, 1), mask),
24529                         reg(state, RHS(ins, 0), mask));
24530         }
24531 }
24532
24533 static void print_op_test(struct compile_state *state,
24534         struct triple *ins, FILE *fp)
24535 {
24536         unsigned mask;
24537         mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
24538         fprintf(fp, "\ttest %s, %s\n",
24539                 reg(state, RHS(ins, 0), mask),
24540                 reg(state, RHS(ins, 0), mask));
24541 }
24542
24543 static void print_op_branch(struct compile_state *state,
24544         struct triple *branch, FILE *fp)
24545 {
24546         const char *bop = "j";
24547         if ((branch->op == OP_JMP) || (branch->op == OP_CALL)) {
24548                 if (branch->rhs != 0) {
24549                         internal_error(state, branch, "jmp with condition?");
24550                 }
24551                 bop = "jmp";
24552         }
24553         else {
24554                 struct triple *ptr;
24555                 if (branch->rhs != 1) {
24556                         internal_error(state, branch, "jmpcc without condition?");
24557                 }
24558                 check_reg(state, RHS(branch, 0), REGCM_FLAGS);
24559                 if ((RHS(branch, 0)->op != OP_CMP) &&
24560                         (RHS(branch, 0)->op != OP_TEST)) {
24561                         internal_error(state, branch, "bad branch test");
24562                 }
24563 #if DEBUG_ROMCC_WARNINGS
24564 #warning "FIXME I have observed instructions between the test and branch instructions"
24565 #endif
24566                 ptr = RHS(branch, 0);
24567                 for(ptr = RHS(branch, 0)->next; ptr != branch; ptr = ptr->next) {
24568                         if (ptr->op != OP_COPY) {
24569                                 internal_error(state, branch, "branch does not follow test");
24570                         }
24571                 }
24572                 switch(branch->op) {
24573                 case OP_JMP_EQ:       bop = "jz";  break;
24574                 case OP_JMP_NOTEQ:    bop = "jnz"; break;
24575                 case OP_JMP_SLESS:    bop = "jl";  break;
24576                 case OP_JMP_ULESS:    bop = "jb";  break;
24577                 case OP_JMP_SMORE:    bop = "jg";  break;
24578                 case OP_JMP_UMORE:    bop = "ja";  break;
24579                 case OP_JMP_SLESSEQ:  bop = "jle"; break;
24580                 case OP_JMP_ULESSEQ:  bop = "jbe"; break;
24581                 case OP_JMP_SMOREEQ:  bop = "jge"; break;
24582                 case OP_JMP_UMOREEQ:  bop = "jae"; break;
24583                 default:
24584                         internal_error(state, branch, "Invalid branch op");
24585                         break;
24586                 }
24587
24588         }
24589 #if 1
24590         if (branch->op == OP_CALL) {
24591                 fprintf(fp, "\t/* call */\n");
24592         }
24593 #endif
24594         fprintf(fp, "\t%s L%s%lu\n",
24595                 bop,
24596                 state->compiler->label_prefix,
24597                 (unsigned long)(TARG(branch, 0)->u.cval));
24598 }
24599
24600 static void print_op_ret(struct compile_state *state,
24601         struct triple *branch, FILE *fp)
24602 {
24603         fprintf(fp, "\tjmp *%s\n",
24604                 reg(state, RHS(branch, 0), REGCM_GPR32));
24605 }
24606
24607 static void print_op_set(struct compile_state *state,
24608         struct triple *set, FILE *fp)
24609 {
24610         const char *sop = "set";
24611         if (set->rhs != 1) {
24612                 internal_error(state, set, "setcc without condition?");
24613         }
24614         check_reg(state, RHS(set, 0), REGCM_FLAGS);
24615         if ((RHS(set, 0)->op != OP_CMP) &&
24616                 (RHS(set, 0)->op != OP_TEST)) {
24617                 internal_error(state, set, "bad set test");
24618         }
24619         if (RHS(set, 0)->next != set) {
24620                 internal_error(state, set, "set does not follow test");
24621         }
24622         switch(set->op) {
24623         case OP_SET_EQ:       sop = "setz";  break;
24624         case OP_SET_NOTEQ:    sop = "setnz"; break;
24625         case OP_SET_SLESS:    sop = "setl";  break;
24626         case OP_SET_ULESS:    sop = "setb";  break;
24627         case OP_SET_SMORE:    sop = "setg";  break;
24628         case OP_SET_UMORE:    sop = "seta";  break;
24629         case OP_SET_SLESSEQ:  sop = "setle"; break;
24630         case OP_SET_ULESSEQ:  sop = "setbe"; break;
24631         case OP_SET_SMOREEQ:  sop = "setge"; break;
24632         case OP_SET_UMOREEQ:  sop = "setae"; break;
24633         default:
24634                 internal_error(state, set, "Invalid set op");
24635                 break;
24636         }
24637         fprintf(fp, "\t%s %s\n",
24638                 sop, reg(state, set, REGCM_GPR8_LO));
24639 }
24640
24641 static void print_op_bit_scan(struct compile_state *state,
24642         struct triple *ins, FILE *fp)
24643 {
24644         const char *op;
24645         switch(ins->op) {
24646         case OP_BSF: op = "bsf"; break;
24647         case OP_BSR: op = "bsr"; break;
24648         default:
24649                 internal_error(state, ins, "unknown bit scan");
24650                 op = 0;
24651                 break;
24652         }
24653         fprintf(fp,
24654                 "\t%s %s, %s\n"
24655                 "\tjnz 1f\n"
24656                 "\tmovl $-1, %s\n"
24657                 "1:\n",
24658                 op,
24659                 reg(state, RHS(ins, 0), REGCM_GPR32),
24660                 reg(state, ins, REGCM_GPR32),
24661                 reg(state, ins, REGCM_GPR32));
24662 }
24663
24664
24665 static void print_sdecl(struct compile_state *state,
24666         struct triple *ins, FILE *fp)
24667 {
24668         fprintf(fp, ".section \"" DATA_SECTION "\"\n");
24669         fprintf(fp, ".balign %ld\n", (long int)align_of_in_bytes(state, ins->type));
24670         fprintf(fp, "L%s%lu:\n",
24671                 state->compiler->label_prefix, (unsigned long)(ins->u.cval));
24672         print_const(state, MISC(ins, 0), fp);
24673         fprintf(fp, ".section \"" TEXT_SECTION "\"\n");
24674
24675 }
24676
24677 static void print_instruction(struct compile_state *state,
24678         struct triple *ins, FILE *fp)
24679 {
24680         /* Assumption: after I have exted the register allocator
24681          * everything is in a valid register.
24682          */
24683         switch(ins->op) {
24684         case OP_ASM:
24685                 print_op_asm(state, ins, fp);
24686                 break;
24687         case OP_ADD:    print_binary_op(state, "add", ins, fp); break;
24688         case OP_SUB:    print_binary_op(state, "sub", ins, fp); break;
24689         case OP_AND:    print_binary_op(state, "and", ins, fp); break;
24690         case OP_XOR:    print_binary_op(state, "xor", ins, fp); break;
24691         case OP_OR:     print_binary_op(state, "or",  ins, fp); break;
24692         case OP_SL:     print_op_shift(state, "shl", ins, fp); break;
24693         case OP_USR:    print_op_shift(state, "shr", ins, fp); break;
24694         case OP_SSR:    print_op_shift(state, "sar", ins, fp); break;
24695         case OP_POS:    break;
24696         case OP_NEG:    print_unary_op(state, "neg", ins, fp); break;
24697         case OP_INVERT: print_unary_op(state, "not", ins, fp); break;
24698         case OP_NOOP:
24699         case OP_INTCONST:
24700         case OP_ADDRCONST:
24701         case OP_BLOBCONST:
24702                 /* Don't generate anything here for constants */
24703         case OP_PHI:
24704                 /* Don't generate anything for variable declarations. */
24705                 break;
24706         case OP_UNKNOWNVAL:
24707                 fprintf(fp, " /* unknown %s */\n",
24708                         reg(state, ins, REGCM_ALL));
24709                 break;
24710         case OP_SDECL:
24711                 print_sdecl(state, ins, fp);
24712                 break;
24713         case OP_COPY:
24714         case OP_CONVERT:
24715                 print_op_move(state, ins, fp);
24716                 break;
24717         case OP_LOAD:
24718                 print_op_load(state, ins, fp);
24719                 break;
24720         case OP_STORE:
24721                 print_op_store(state, ins, fp);
24722                 break;
24723         case OP_SMUL:
24724                 print_op_smul(state, ins, fp);
24725                 break;
24726         case OP_CMP:    print_op_cmp(state, ins, fp); break;
24727         case OP_TEST:   print_op_test(state, ins, fp); break;
24728         case OP_JMP:
24729         case OP_JMP_EQ:      case OP_JMP_NOTEQ:
24730         case OP_JMP_SLESS:   case OP_JMP_ULESS:
24731         case OP_JMP_SMORE:   case OP_JMP_UMORE:
24732         case OP_JMP_SLESSEQ: case OP_JMP_ULESSEQ:
24733         case OP_JMP_SMOREEQ: case OP_JMP_UMOREEQ:
24734         case OP_CALL:
24735                 print_op_branch(state, ins, fp);
24736                 break;
24737         case OP_RET:
24738                 print_op_ret(state, ins, fp);
24739                 break;
24740         case OP_SET_EQ:      case OP_SET_NOTEQ:
24741         case OP_SET_SLESS:   case OP_SET_ULESS:
24742         case OP_SET_SMORE:   case OP_SET_UMORE:
24743         case OP_SET_SLESSEQ: case OP_SET_ULESSEQ:
24744         case OP_SET_SMOREEQ: case OP_SET_UMOREEQ:
24745                 print_op_set(state, ins, fp);
24746                 break;
24747         case OP_INB:  case OP_INW:  case OP_INL:
24748                 print_op_in(state, ins, fp);
24749                 break;
24750         case OP_OUTB: case OP_OUTW: case OP_OUTL:
24751                 print_op_out(state, ins, fp);
24752                 break;
24753         case OP_BSF:
24754         case OP_BSR:
24755                 print_op_bit_scan(state, ins, fp);
24756                 break;
24757         case OP_RDMSR:
24758                 after_lhs(state, ins);
24759                 fprintf(fp, "\trdmsr\n");
24760                 break;
24761         case OP_WRMSR:
24762                 fprintf(fp, "\twrmsr\n");
24763                 break;
24764         case OP_HLT:
24765                 fprintf(fp, "\thlt\n");
24766                 break;
24767         case OP_SDIVT:
24768                 fprintf(fp, "\tidiv %s\n", reg(state, RHS(ins, 1), REGCM_GPR32));
24769                 break;
24770         case OP_UDIVT:
24771                 fprintf(fp, "\tdiv %s\n", reg(state, RHS(ins, 1), REGCM_GPR32));
24772                 break;
24773         case OP_UMUL:
24774                 fprintf(fp, "\tmul %s\n", reg(state, RHS(ins, 1), REGCM_GPR32));
24775                 break;
24776         case OP_LABEL:
24777                 if (!ins->use) {
24778                         return;
24779                 }
24780                 fprintf(fp, "L%s%lu:\n",
24781                         state->compiler->label_prefix, (unsigned long)(ins->u.cval));
24782                 break;
24783         case OP_ADECL:
24784                 /* Ignore adecls with no registers error otherwise */
24785                 if (!noop_adecl(ins)) {
24786                         internal_error(state, ins, "adecl remains?");
24787                 }
24788                 break;
24789                 /* Ignore OP_PIECE */
24790         case OP_PIECE:
24791                 break;
24792                 /* Operations that should never get here */
24793         case OP_SDIV: case OP_UDIV:
24794         case OP_SMOD: case OP_UMOD:
24795         case OP_LTRUE:   case OP_LFALSE:  case OP_EQ:      case OP_NOTEQ:
24796         case OP_SLESS:   case OP_ULESS:   case OP_SMORE:   case OP_UMORE:
24797         case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
24798         default:
24799                 internal_error(state, ins, "unknown op: %d %s",
24800                         ins->op, tops(ins->op));
24801                 break;
24802         }
24803 }
24804
24805 static void print_instructions(struct compile_state *state)
24806 {
24807         struct triple *first, *ins;
24808         int print_location;
24809         struct occurance *last_occurance;
24810         FILE *fp;
24811         int max_inline_depth;
24812         max_inline_depth = 0;
24813         print_location = 1;
24814         last_occurance = 0;
24815         fp = state->output;
24816         /* Masks for common sizes */
24817         fprintf(fp, ".section \"" DATA_SECTION "\"\n");
24818         fprintf(fp, ".balign 16\n");
24819         fprintf(fp, "L%s1:\n", state->compiler->label_prefix);
24820         fprintf(fp, ".int 0xff, 0, 0, 0\n");
24821         fprintf(fp, "L%s2:\n", state->compiler->label_prefix);
24822         fprintf(fp, ".int 0xffff, 0, 0, 0\n");
24823         fprintf(fp, ".section \"" TEXT_SECTION "\"\n");
24824         first = state->first;
24825         ins = first;
24826         do {
24827                 if (print_location &&
24828                         last_occurance != ins->occurance) {
24829                         if (!ins->occurance->parent) {
24830                                 fprintf(fp, "\t/* %s,%s:%d.%d */\n",
24831                                         ins->occurance->function?ins->occurance->function:"(null)",
24832                                         ins->occurance->filename?ins->occurance->filename:"(null)",
24833                                         ins->occurance->line,
24834                                         ins->occurance->col);
24835                         }
24836                         else {
24837                                 struct occurance *ptr;
24838                                 int inline_depth;
24839                                 fprintf(fp, "\t/*\n");
24840                                 inline_depth = 0;
24841                                 for(ptr = ins->occurance; ptr; ptr = ptr->parent) {
24842                                         inline_depth++;
24843                                         fprintf(fp, "\t * %s,%s:%d.%d\n",
24844                                                 ptr->function,
24845                                                 ptr->filename,
24846                                                 ptr->line,
24847                                                 ptr->col);
24848                                 }
24849                                 fprintf(fp, "\t */\n");
24850                                 if (inline_depth > max_inline_depth) {
24851                                         max_inline_depth = inline_depth;
24852                                 }
24853                         }
24854                         if (last_occurance) {
24855                                 put_occurance(last_occurance);
24856                         }
24857                         get_occurance(ins->occurance);
24858                         last_occurance = ins->occurance;
24859                 }
24860
24861                 print_instruction(state, ins, fp);
24862                 ins = ins->next;
24863         } while(ins != first);
24864         if (print_location) {
24865                 fprintf(fp, "/* max inline depth %d */\n",
24866                         max_inline_depth);
24867         }
24868 }
24869
24870 static void generate_code(struct compile_state *state)
24871 {
24872         generate_local_labels(state);
24873         print_instructions(state);
24874
24875 }
24876
24877 static void print_preprocessed_tokens(struct compile_state *state)
24878 {
24879         int tok;
24880         FILE *fp;
24881         int line;
24882         const char *filename;
24883         fp = state->output;
24884         filename = 0;
24885         line = 0;
24886         for(;;) {
24887                 struct file_state *file;
24888                 struct token *tk;
24889                 const char *token_str;
24890                 tok = peek(state);
24891                 if (tok == TOK_EOF) {
24892                         break;
24893                 }
24894                 tk = eat(state, tok);
24895                 token_str =
24896                         tk->ident ? tk->ident->name :
24897                         tk->str_len ? tk->val.str :
24898                         tokens[tk->tok];
24899
24900                 file = state->file;
24901                 while(file->macro && file->prev) {
24902                         file = file->prev;
24903                 }
24904                 if (!file->macro &&
24905                         ((file->line != line) || (file->basename != filename)))
24906                 {
24907                         int i, col;
24908                         if ((file->basename == filename) &&
24909                                 (line < file->line)) {
24910                                 while(line < file->line) {
24911                                         fprintf(fp, "\n");
24912                                         line++;
24913                                 }
24914                         }
24915                         else {
24916                                 fprintf(fp, "\n#line %d \"%s\"\n",
24917                                         file->line, file->basename);
24918                         }
24919                         line = file->line;
24920                         filename = file->basename;
24921                         col = get_col(file) - strlen(token_str);
24922                         for(i = 0; i < col; i++) {
24923                                 fprintf(fp, " ");
24924                         }
24925                 }
24926
24927                 fprintf(fp, "%s ", token_str);
24928
24929                 if (state->compiler->debug & DEBUG_TOKENS) {
24930                         loc(state->dbgout, state, 0);
24931                         fprintf(state->dbgout, "%s <- `%s'\n",
24932                                 tokens[tok], token_str);
24933                 }
24934         }
24935 }
24936
24937 static void compile(const char *filename,
24938         struct compiler_state *compiler, struct arch_state *arch)
24939 {
24940         int i;
24941         struct compile_state state;
24942         struct triple *ptr;
24943         struct filelist *includes = include_filelist;
24944         memset(&state, 0, sizeof(state));
24945         state.compiler = compiler;
24946         state.arch     = arch;
24947         state.file = 0;
24948         for(i = 0; i < sizeof(state.token)/sizeof(state.token[0]); i++) {
24949                 memset(&state.token[i], 0, sizeof(state.token[i]));
24950                 state.token[i].tok = -1;
24951         }
24952         /* Remember the output descriptors */
24953         state.errout = stderr;
24954         state.dbgout = stdout;
24955         /* Remember the output filename */
24956         if ((state.compiler->flags & COMPILER_PP_ONLY) && (strcmp("auto.inc",state.compiler->ofilename) == 0)) {
24957                 state.output    = stdout;
24958         } else {
24959                 state.output    = fopen(state.compiler->ofilename, "w");
24960                 if (!state.output) {
24961                         error(&state, 0, "Cannot open output file %s\n",
24962                                 state.compiler->ofilename);
24963                 }
24964         }
24965         /* Make certain a good cleanup happens */
24966         exit_state = &state;
24967         atexit(exit_cleanup);
24968
24969         /* Prep the preprocessor */
24970         state.if_depth = 0;
24971         memset(state.if_bytes, 0, sizeof(state.if_bytes));
24972         /* register the C keywords */
24973         register_keywords(&state);
24974         /* register the keywords the macro preprocessor knows */
24975         register_macro_keywords(&state);
24976         /* generate some builtin macros */
24977         register_builtin_macros(&state);
24978         /* Memorize where some special keywords are. */
24979         state.i_switch        = lookup(&state, "switch", 6);
24980         state.i_case          = lookup(&state, "case", 4);
24981         state.i_continue      = lookup(&state, "continue", 8);
24982         state.i_break         = lookup(&state, "break", 5);
24983         state.i_default       = lookup(&state, "default", 7);
24984         state.i_return        = lookup(&state, "return", 6);
24985         /* Memorize where predefined macros are. */
24986         state.i___VA_ARGS__   = lookup(&state, "__VA_ARGS__", 11);
24987         state.i___FILE__      = lookup(&state, "__FILE__", 8);
24988         state.i___LINE__      = lookup(&state, "__LINE__", 8);
24989         /* Memorize where predefined identifiers are. */
24990         state.i___func__      = lookup(&state, "__func__", 8);
24991         /* Memorize where some attribute keywords are. */
24992         state.i_noinline      = lookup(&state, "noinline", 8);
24993         state.i_always_inline = lookup(&state, "always_inline", 13);
24994         state.i_noreturn      = lookup(&state, "noreturn", 8);
24995
24996         /* Process the command line macros */
24997         process_cmdline_macros(&state);
24998
24999         /* Allocate beginning bounding labels for the function list */
25000         state.first = label(&state);
25001         state.first->id |= TRIPLE_FLAG_VOLATILE;
25002         use_triple(state.first, state.first);
25003         ptr = label(&state);
25004         ptr->id |= TRIPLE_FLAG_VOLATILE;
25005         use_triple(ptr, ptr);
25006         flatten(&state, state.first, ptr);
25007
25008         /* Allocate a label for the pool of global variables */
25009         state.global_pool = label(&state);
25010         state.global_pool->id |= TRIPLE_FLAG_VOLATILE;
25011         flatten(&state, state.first, state.global_pool);
25012
25013         /* Enter the globl definition scope */
25014         start_scope(&state);
25015         register_builtins(&state);
25016
25017         compile_file(&state, filename, 1);
25018
25019         while (includes) {
25020                 compile_file(&state, includes->filename, 1);
25021                 includes=includes->next;
25022         }
25023
25024         /* Stop if all we want is preprocessor output */
25025         if (state.compiler->flags & COMPILER_PP_ONLY) {
25026                 print_preprocessed_tokens(&state);
25027                 return;
25028         }
25029
25030         decls(&state);
25031
25032         /* Exit the global definition scope */
25033         end_scope(&state);
25034
25035         /* Now that basic compilation has happened
25036          * optimize the intermediate code
25037          */
25038         optimize(&state);
25039
25040         generate_code(&state);
25041         if (state.compiler->debug) {
25042                 fprintf(state.errout, "done\n");
25043         }
25044         exit_state = 0;
25045 }
25046
25047 static void version(FILE *fp)
25048 {
25049         fprintf(fp, "romcc " VERSION " released " RELEASE_DATE "\n");
25050 }
25051
25052 static void usage(void)
25053 {
25054         FILE *fp = stdout;
25055         version(fp);
25056         fprintf(fp,
25057                 "\nUsage: romcc [options] <source>.c\n"
25058                 "Compile a C source file generating a binary that does not implicilty use RAM\n"
25059                 "Options: \n"
25060                 "-o <output file name>\n"
25061                 "-f<option>            Specify a generic compiler option\n"
25062                 "-m<option>            Specify a arch dependent option\n"
25063                 "--                    Specify this is the last option\n"
25064                 "\nGeneric compiler options:\n"
25065         );
25066         compiler_usage(fp);
25067         fprintf(fp,
25068                 "\nArchitecture compiler options:\n"
25069         );
25070         arch_usage(fp);
25071         fprintf(fp,
25072                 "\n"
25073         );
25074 }
25075
25076 static void arg_error(char *fmt, ...)
25077 {
25078         va_list args;
25079         va_start(args, fmt);
25080         vfprintf(stderr, fmt, args);
25081         va_end(args);
25082         usage();
25083         exit(1);
25084 }
25085
25086 int main(int argc, char **argv)
25087 {
25088         const char *filename;
25089         struct compiler_state compiler;
25090         struct arch_state arch;
25091         int all_opts;
25092
25093
25094         /* I don't want any surprises */
25095         setlocale(LC_ALL, "C");
25096
25097         init_compiler_state(&compiler);
25098         init_arch_state(&arch);
25099         filename = 0;
25100         all_opts = 0;
25101         while(argc > 1) {
25102                 if (!all_opts && (strcmp(argv[1], "-o") == 0) && (argc > 2)) {
25103                         compiler.ofilename = argv[2];
25104                         argv += 2;
25105                         argc -= 2;
25106                 }
25107                 else if (!all_opts && argv[1][0] == '-') {
25108                         int result;
25109                         result = -1;
25110                         if (strcmp(argv[1], "--") == 0) {
25111                                 result = 0;
25112                                 all_opts = 1;
25113                         }
25114                         else if (strncmp(argv[1], "-E", 2) == 0) {
25115                                 result = compiler_encode_flag(&compiler, argv[1]);
25116                         }
25117                         else if (strncmp(argv[1], "-O", 2) == 0) {
25118                                 result = compiler_encode_flag(&compiler, argv[1]);
25119                         }
25120                         else if (strncmp(argv[1], "-I", 2) == 0) {
25121                                 result = compiler_encode_flag(&compiler, argv[1]);
25122                         }
25123                         else if (strncmp(argv[1], "-D", 2) == 0) {
25124                                 result = compiler_encode_flag(&compiler, argv[1]);
25125                         }
25126                         else if (strncmp(argv[1], "-U", 2) == 0) {
25127                                 result = compiler_encode_flag(&compiler, argv[1]);
25128                         }
25129                         else if (strncmp(argv[1], "--label-prefix=", 15) == 0) {
25130                                 result = compiler_encode_flag(&compiler, argv[1]+2);
25131                         }
25132                         else if (strncmp(argv[1], "-f", 2) == 0) {
25133                                 result = compiler_encode_flag(&compiler, argv[1]+2);
25134                         }
25135                         else if (strncmp(argv[1], "-m", 2) == 0) {
25136                                 result = arch_encode_flag(&arch, argv[1]+2);
25137                         }
25138                         else if (strncmp(argv[1], "-c", 2) == 0) {
25139                                 result = 0;
25140                         }
25141                         else if (strncmp(argv[1], "-S", 2) == 0) {
25142                                 result = 0;
25143                         }
25144                         else if (strncmp(argv[1], "-include", 10) == 0) {
25145                                 struct filelist *old_head = include_filelist;
25146                                 include_filelist = malloc(sizeof(struct filelist));
25147                                 if (!include_filelist) {
25148                                         die("Out of memory.\n");
25149                                 }
25150                                 argv++;
25151                                 argc--;
25152                                 include_filelist->filename = strdup(argv[1]);
25153                                 include_filelist->next = old_head;
25154                                 result = 0;
25155                         }
25156                         if (result < 0) {
25157                                 arg_error("Invalid option specified: %s\n",
25158                                         argv[1]);
25159                         }
25160                         argv++;
25161                         argc--;
25162                 }
25163                 else {
25164                         if (filename) {
25165                                 arg_error("Only one filename may be specified\n");
25166                         }
25167                         filename = argv[1];
25168                         argv++;
25169                         argc--;
25170                 }
25171         }
25172         if (!filename) {
25173                 arg_error("No filename specified\n");
25174         }
25175         compile(filename, &compiler, &arch);
25176
25177         return 0;
25178 }