Fix the bounce_size global so that the bounce buffer works with CBFS.
[coreboot.git] / src / boot / selfboot.c
1 /*
2  * This file is part of the coreboot project.
3  *
4  * Copyright (C) 2003 Eric W. Biederman <ebiederm@xmission.com>
5  * Copyright (C) 2009 Ron Minnich <rminnich@gmail.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; version 2 of the License.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA, 02110-1301 USA
19  */
20
21 #include <console/console.h>
22 #include <part/fallback_boot.h>
23 #include <boot/elf.h>
24 #include <boot/elf_boot.h>
25 #include <boot/coreboot_tables.h>
26 #include <ip_checksum.h>
27 #include <stream/read_bytes.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <string.h>
31 #include <cbfs.h>
32
33 #ifndef CONFIG_BIG_ENDIAN
34 #define ntohl(x) ( ((x&0xff)<<24) | ((x&0xff00)<<8) | \
35                 ((x&0xff0000) >> 8) | ((x&0xff000000) >> 24) )
36 #else
37 #define ntohl(x) (x)
38 #endif
39
40 /* Maximum physical address we can use for the coreboot bounce buffer.
41  */
42 #ifndef MAX_ADDR
43 #define MAX_ADDR -1UL
44 #endif
45
46 extern unsigned char _ram_seg;
47 extern unsigned char _eram_seg;
48
49 struct segment {
50         struct segment *next;
51         struct segment *prev;
52         struct segment *phdr_next;
53         struct segment *phdr_prev;
54         unsigned long s_dstaddr;
55         unsigned long s_srcaddr;
56         unsigned long s_memsz;
57         unsigned long s_filesz;
58         int compression;
59 };
60
61 struct verify_callback {
62         struct verify_callback *next;
63         int (*callback)(struct verify_callback *vcb, 
64                 Elf_ehdr *ehdr, Elf_phdr *phdr, struct segment *head);
65         unsigned long desc_offset;
66         unsigned long desc_addr;
67 };
68
69 struct ip_checksum_vcb {
70         struct verify_callback data;
71         unsigned short ip_checksum;
72 };
73
74 static int selfboot(struct lb_memory *mem, struct cbfs_payload *payload);
75
76 void * cbfs_load_payload(struct lb_memory *lb_mem, const char *name)
77 {
78         struct cbfs_payload *payload;
79
80         payload = (struct cbfs_payload *)cbfs_find_file(name, CBFS_TYPE_PAYLOAD);
81         if (payload == NULL)
82                 return (void *) -1;
83         printk_debug("Got a payload\n");
84
85         selfboot(lb_mem, payload);
86         printk_emerg("SELFBOOT RETURNED!\n");
87
88         return (void *) -1;
89 }
90
91 /* The problem:  
92  * Static executables all want to share the same addresses
93  * in memory because only a few addresses are reliably present on
94  * a machine, and implementing general relocation is hard.
95  *
96  * The solution:
97  * - Allocate a buffer the size of the coreboot image plus additional
98  *   required space.
99  * - Anything that would overwrite coreboot copy into the lower part of
100  *   the buffer. 
101  * - After loading an ELF image copy coreboot to the top of the buffer.
102  * - Then jump to the loaded image.
103  * 
104  * Benefits:
105  * - Nearly arbitrary standalone executables can be loaded.
106  * - Coreboot is preserved, so it can be returned to.
107  * - The implementation is still relatively simple,
108  *   and much simpler then the general case implemented in kexec.
109  * 
110  */
111
112 static unsigned long bounce_size, bounce_buffer;
113
114 static void get_bounce_buffer(struct lb_memory *mem, unsigned long req_size)
115 {
116         unsigned long lb_size;
117         unsigned long mem_entries;
118         unsigned long buffer;
119         int i;
120         lb_size = (unsigned long)(&_eram_seg - &_ram_seg);
121         /* Double coreboot size so I have somewhere to place a copy to return to */
122         lb_size = req_size + lb_size;
123         mem_entries = (mem->size - sizeof(*mem))/sizeof(mem->map[0]);
124         buffer = 0;
125         for(i = 0; i < mem_entries; i++) {
126                 unsigned long mstart, mend;
127                 unsigned long msize;
128                 unsigned long tbuffer;
129                 if (mem->map[i].type != LB_MEM_RAM)
130                         continue;
131                 if (unpack_lb64(mem->map[i].start) > MAX_ADDR)
132                         continue;
133                 if (unpack_lb64(mem->map[i].size) < lb_size)
134                         continue;
135                 mstart = unpack_lb64(mem->map[i].start);
136                 msize = MAX_ADDR - mstart +1;
137                 if (msize > unpack_lb64(mem->map[i].size))
138                         msize = unpack_lb64(mem->map[i].size);
139                 mend = mstart + msize;
140                 tbuffer = mend - lb_size;
141                 if (tbuffer < buffer) 
142                         continue;
143                 buffer = tbuffer;
144         }
145         bounce_buffer = buffer;
146         bounce_size = req_size;
147 }
148
149 static int valid_area(struct lb_memory *mem, unsigned long buffer,
150         unsigned long start, unsigned long len)
151 {
152         /* Check through all of the memory segments and ensure
153          * the segment that was passed in is completely contained
154          * in RAM.
155          */
156         int i;
157         unsigned long end = start + len;
158         unsigned long mem_entries = (mem->size - sizeof(*mem))/sizeof(mem->map[0]);
159
160         /* See if I conflict with the bounce buffer */
161         if (end >= buffer) {
162                 return 0;
163         }
164
165         /* Walk through the table of valid memory ranges and see if I
166          * have a match.
167          */
168         for(i = 0; i < mem_entries; i++) {
169                 uint64_t mstart, mend;
170                 uint32_t mtype;
171                 mtype = mem->map[i].type;
172                 mstart = unpack_lb64(mem->map[i].start);
173                 mend = mstart + unpack_lb64(mem->map[i].size);
174                 if ((mtype == LB_MEM_RAM) && (start < mend) && (end > mstart)) {
175                         break;
176                 }
177                 if ((mtype == LB_MEM_TABLE) && (start < mend) && (end > mstart)) {
178                         printk_err("Payload is overwriting Coreboot tables.\n");
179                         break;
180                 }
181         }
182         if (i == mem_entries) {
183                 printk_err("No matching ram area found for range:\n");
184                 printk_err("  [0x%016lx, 0x%016lx)\n", start, end);
185                 printk_err("Ram areas\n");
186                 for(i = 0; i < mem_entries; i++) {
187                         uint64_t mstart, mend;
188                         uint32_t mtype;
189                         mtype = mem->map[i].type;
190                         mstart = unpack_lb64(mem->map[i].start);
191                         mend = mstart + unpack_lb64(mem->map[i].size);
192                         printk_err("  [0x%016lx, 0x%016lx) %s\n",
193                                 (unsigned long)mstart, 
194                                 (unsigned long)mend, 
195                                 (mtype == LB_MEM_RAM)?"RAM":"Reserved");
196                         
197                 }
198                 return 0;
199         }
200         return 1;
201 }
202
203 static const unsigned long lb_start = (unsigned long)&_ram_seg;
204 static const unsigned long lb_end = (unsigned long)&_eram_seg;
205
206 static int overlaps_coreboot(struct segment *seg)
207 {
208         unsigned long start, end;
209         start = seg->s_dstaddr;
210         end = start + seg->s_memsz;
211         return !((end <= lb_start) || (start >= lb_end));
212 }
213
214 static void relocate_segment(unsigned long buffer, struct segment *seg)
215 {
216         /* Modify all segments that want to load onto coreboot
217          * to load onto the bounce buffer instead.
218          */
219         unsigned long start, middle, end;
220
221         printk_spew("lb: [0x%016lx, 0x%016lx)\n", 
222                 lb_start, lb_end);
223
224         /* I don't conflict with coreboot so get out of here */
225         if (!overlaps_coreboot(seg))
226                 return;
227
228         start = seg->s_dstaddr;
229         middle = start + seg->s_filesz;
230         end = start + seg->s_memsz;
231
232         printk_spew("segment: [0x%016lx, 0x%016lx, 0x%016lx)\n", 
233                 start, middle, end);
234
235         if (seg->compression == CBFS_COMPRESS_NONE) {
236                 /* Slice off a piece at the beginning
237                  * that doesn't conflict with coreboot.
238                  */
239                 if (start < lb_start) {
240                         struct segment *new;
241                         unsigned long len = lb_start - start;
242                         new = malloc(sizeof(*new));
243                         *new = *seg;
244                         new->s_memsz = len;
245                         seg->s_memsz -= len;
246                         seg->s_dstaddr += len;
247                         seg->s_srcaddr += len;
248                         if (seg->s_filesz > len) {
249                                 new->s_filesz = len;
250                                 seg->s_filesz -= len;
251                         } else {
252                                 seg->s_filesz = 0;
253                         }
254
255                         /* Order by stream offset */
256                         new->next = seg;
257                         new->prev = seg->prev;
258                         seg->prev->next = new;
259                         seg->prev = new;
260                         /* Order by original program header order */
261                         new->phdr_next = seg;
262                         new->phdr_prev = seg->phdr_prev;
263                         seg->phdr_prev->phdr_next = new;
264                         seg->phdr_prev = new;
265
266                         /* compute the new value of start */
267                         start = seg->s_dstaddr;
268                         
269                         printk_spew("   early: [0x%016lx, 0x%016lx, 0x%016lx)\n", 
270                                 new->s_dstaddr, 
271                                 new->s_dstaddr + new->s_filesz,
272                                 new->s_dstaddr + new->s_memsz);
273                 }
274                         
275                 /* Slice off a piece at the end 
276                  * that doesn't conflict with coreboot 
277                  */
278                 if (end > lb_end) {
279                         unsigned long len = lb_end - start;
280                         struct segment *new;
281                         new = malloc(sizeof(*new));
282                         *new = *seg;
283                         seg->s_memsz = len;
284                         new->s_memsz -= len;
285                         new->s_dstaddr += len;
286                         new->s_srcaddr += len;
287                         if (seg->s_filesz > len) {
288                                 seg->s_filesz = len;
289                                 new->s_filesz -= len;
290                         } else {
291                                 new->s_filesz = 0;
292                         }
293                         /* Order by stream offset */
294                         new->next = seg->next;
295                         new->prev = seg;
296                         seg->next->prev = new;
297                         seg->next = new;
298                         /* Order by original program header order */
299                         new->phdr_next = seg->phdr_next;
300                         new->phdr_prev = seg;
301                         seg->phdr_next->phdr_prev = new;
302                         seg->phdr_next = new;
303
304                         printk_spew("   late: [0x%016lx, 0x%016lx, 0x%016lx)\n", 
305                                 new->s_dstaddr, 
306                                 new->s_dstaddr + new->s_filesz,
307                                 new->s_dstaddr + new->s_memsz);
308                 }
309         }
310
311         /* Now retarget this segment onto the bounce buffer */
312         /* sort of explanation: the buffer is a 1:1 mapping to coreboot. 
313          * so you will make the dstaddr be this buffer, and it will get copied
314          * later to where coreboot lives.
315          */
316         seg->s_dstaddr = buffer + (seg->s_dstaddr - lb_start);
317
318         printk_spew(" bounce: [0x%016lx, 0x%016lx, 0x%016lx)\n", 
319                 seg->s_dstaddr, 
320                 seg->s_dstaddr + seg->s_filesz, 
321                 seg->s_dstaddr + seg->s_memsz);
322 }
323
324
325 static int build_self_segment_list(
326         struct segment *head, 
327         struct lb_memory *mem,
328         struct cbfs_payload *payload, u32 *entry)
329 {
330         struct segment *new;
331         struct segment *ptr;
332         struct cbfs_payload_segment *segment, *first_segment;
333         memset(head, 0, sizeof(*head));
334         head->phdr_next = head->phdr_prev = head;
335         head->next = head->prev = head;
336         first_segment = segment = &payload->segments;
337
338         while(1) {
339                 printk_debug("Loading segment from rom address 0x%p\n", segment);
340                 switch(segment->type) {
341                 case PAYLOAD_SEGMENT_PARAMS:
342                         printk_debug("  parameter section (skipped)\n");
343                         segment++;
344                         continue;
345
346                 case PAYLOAD_SEGMENT_CODE:
347                 case PAYLOAD_SEGMENT_DATA:
348                         printk_debug("  %s (compression=%x)\n", 
349                                         segment->type == PAYLOAD_SEGMENT_CODE ?  "code" : "data",
350                                         ntohl(segment->compression));
351                         new = malloc(sizeof(*new));
352                         new->s_dstaddr = ntohl((u32) segment->load_addr);
353                         new->s_memsz = ntohl(segment->mem_len);
354                         new->compression = ntohl(segment->compression);
355
356                         new->s_srcaddr = (u32) ((unsigned char *) first_segment) + ntohl(segment->offset);
357                         new->s_filesz = ntohl(segment->len);
358                         printk_debug("  New segment dstaddr 0x%lx memsize 0x%lx srcaddr 0x%lx filesize 0x%lx\n",
359                                 new->s_dstaddr, new->s_memsz, new->s_srcaddr, new->s_filesz);
360                         /* Clean up the values */
361                         if (new->s_filesz > new->s_memsz)  {
362                                 new->s_filesz = new->s_memsz;
363                         }
364                         printk_debug("  (cleaned up) New segment addr 0x%lx size 0x%lx offset 0x%lx filesize 0x%lx\n",
365                                 new->s_dstaddr, new->s_memsz, new->s_srcaddr, new->s_filesz);
366                         break;
367
368                 case PAYLOAD_SEGMENT_BSS:
369                         printk_debug("  BSS 0x%p (%d byte)\n", (void *) ntohl((u32) segment->load_addr),
370                                  ntohl(segment->mem_len));
371                         new = malloc(sizeof(*new));
372                         new->s_filesz = 0;
373                         new->s_dstaddr = ntohl((u32) segment->load_addr);
374                         new->s_memsz = ntohl(segment->mem_len);
375                         break;
376
377                 case PAYLOAD_SEGMENT_ENTRY:
378                         printk_debug("  Entry Point 0x%p\n", (void *) ntohl((u32) segment->load_addr));
379                         *entry =  ntohl((u32) segment->load_addr);
380                         /* Per definition, a payload always has the entry point
381                          * as last segment. Thus, we use the occurence of the
382                          * entry point as break condition for the loop.
383                          * Can we actually just look at the number of section?
384                          */
385                         return 1;
386
387                 default:
388                         /* We found something that we don't know about. Throw
389                          * hands into the sky and run away!
390                          */
391                         printk_emerg("Bad segment type %x\n", segment->type);
392                         return -1;
393                 }
394
395                 segment++;
396
397                 for(ptr = head->next; ptr != head; ptr = ptr->next) {
398                         if (new->s_srcaddr < ntohl((u32) segment->load_addr))
399                                 break;
400                 }
401
402                 /* Order by stream offset */
403                 new->next = ptr;
404                 new->prev = ptr->prev;
405                 ptr->prev->next = new;
406                 ptr->prev = new;
407
408                 /* Order by original program header order */
409                 new->phdr_next = head;
410                 new->phdr_prev = head->phdr_prev;
411                 head->phdr_prev->phdr_next  = new;
412                 head->phdr_prev = new;
413         }
414
415         return 1;
416 }
417
418 static int load_self_segments(
419         struct segment *head,
420         struct lb_memory *mem,
421         struct cbfs_payload *payload)
422 {
423         struct segment *ptr;
424         
425         unsigned long required_bounce_size = lb_end - lb_start;
426         for(ptr = head->next; ptr != head; ptr = ptr->next) {
427                 if (!overlaps_coreboot(ptr)) continue;
428                 unsigned long bounce = ptr->s_dstaddr + ptr->s_memsz - lb_start;
429                 if (bounce > required_bounce_size)
430                         required_bounce_size = bounce;
431         }
432         get_bounce_buffer(mem, required_bounce_size);
433         if (!bounce_buffer) {
434                 printk_err("Could not find a bounce buffer...\n");
435                 return 0;
436         }
437         for(ptr = head->next; ptr != head; ptr = ptr->next) {
438                 /* Verify the memory addresses in the segment are valid */
439                 if (!valid_area(mem, bounce_buffer, ptr->s_dstaddr, ptr->s_memsz))
440                         return 0;
441         }
442         for(ptr = head->next; ptr != head; ptr = ptr->next) {
443                 unsigned char *dest, *src;
444                 printk_debug("Loading Segment: addr: 0x%016lx memsz: 0x%016lx filesz: 0x%016lx\n",
445                         ptr->s_dstaddr, ptr->s_memsz, ptr->s_filesz);
446                 
447                 /* Modify the segment to load onto the bounce_buffer if necessary.
448                  */
449                 relocate_segment(bounce_buffer, ptr);
450
451                 printk_debug("Post relocation: addr: 0x%016lx memsz: 0x%016lx filesz: 0x%016lx\n",
452                         ptr->s_dstaddr, ptr->s_memsz, ptr->s_filesz);
453
454                 /* Compute the boundaries of the segment */
455                 dest = (unsigned char *)(ptr->s_dstaddr);
456                 src = (unsigned char *)(ptr->s_srcaddr);
457                 
458                 /* Copy data from the initial buffer */
459                 if (ptr->s_filesz) {
460                         unsigned char *middle, *end;
461                         size_t len;
462                         len = ptr->s_filesz;
463                         switch(ptr->compression) {
464                                 case CBFS_COMPRESS_LZMA: {
465                                         printk_debug("using LZMA\n");
466                                         unsigned long ulzma(unsigned char *src, unsigned char *dst);            
467                                         len = ulzma(src, dest);
468                                         break;
469                                 }
470 #if CONFIG_COMPRESSED_PAYLOAD_NRV2B==1
471                                 case CBFS_COMPRESS_NRV2B: {
472                                         printk_debug("using NRV2B\n");
473                                         unsigned long unrv2b(u8 *src, u8 *dst, unsigned long *ilen_p);
474                                         unsigned long tmp;
475                                         len = unrv2b(src, dest, &tmp);
476                                         break;
477                                 }
478 #endif
479                                 case CBFS_COMPRESS_NONE: {
480                                         printk_debug("it's not compressed!\n");
481                                         memcpy(dest, src, len);
482                                         break;
483                                 }
484                                 default:
485                                         printk_info( "CBFS:  Unknown compression type %d\n", ptr->compression);
486                                         return -1;
487                         }
488                         end = dest + ptr->s_memsz;
489                         middle = dest + len;
490                         printk_spew("[ 0x%016lx, %016lx, 0x%016lx) <- %016lx\n",
491                                 (unsigned long)dest,
492                                 (unsigned long)middle,
493                                 (unsigned long)end,
494                                 (unsigned long)src);
495
496                         /* Zero the extra bytes between middle & end */
497                         if (middle < end) {
498                                 printk_debug("Clearing Segment: addr: 0x%016lx memsz: 0x%016lx\n",
499                                         (unsigned long)middle, (unsigned long)(end - middle));
500                         
501                                 /* Zero the extra bytes */
502                                 memset(middle, 0, end - middle);
503                         }
504                 }
505         }
506         return 1;
507 }
508
509 static int selfboot(struct lb_memory *mem, struct cbfs_payload *payload)
510 {
511         u32 entry=0;
512         struct segment head;
513
514         /* Preprocess the self segments */
515         if (!build_self_segment_list(&head, mem, payload, &entry))
516                 goto out;
517
518         /* Load the segments */
519         if (!load_self_segments(&head, mem, payload))
520                 goto out;
521
522         printk_spew("Loaded segments\n");
523
524         /* Reset to booting from this image as late as possible */
525         boot_successful();
526
527         printk_debug("Jumping to boot code at %x\n", entry);
528         post_code(0xfe);
529
530         /* Jump to kernel */
531         jmp_to_elf_entry((void*)entry, bounce_buffer, bounce_size);
532         return 1;
533
534  out:
535         return 0;
536 }
537