Allow dynamic size for the {s,}elfboot bounce buffer.
[coreboot.git] / src / boot / selfboot.c
1 /*
2  * This file is part of the coreboot project.
3  *
4  * Copyright (C) 2003 Eric W. Biederman <ebiederm@xmission.com>
5  * Copyright (C) 2009 Ron Minnich <rminnich@gmail.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; version 2 of the License.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA, 02110-1301 USA
19  */
20
21 #include <console/console.h>
22 #include <part/fallback_boot.h>
23 #include <boot/elf.h>
24 #include <boot/elf_boot.h>
25 #include <boot/coreboot_tables.h>
26 #include <ip_checksum.h>
27 #include <stream/read_bytes.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <string.h>
31 #include <cbfs.h>
32
33 #ifndef CONFIG_BIG_ENDIAN
34 #define ntohl(x) ( ((x&0xff)<<24) | ((x&0xff00)<<8) | \
35                 ((x&0xff0000) >> 8) | ((x&0xff000000) >> 24) )
36 #else
37 #define ntohl(x) (x)
38 #endif
39
40 /* Maximum physical address we can use for the coreboot bounce buffer.
41  */
42 #ifndef MAX_ADDR
43 #define MAX_ADDR -1UL
44 #endif
45
46 extern unsigned char _ram_seg;
47 extern unsigned char _eram_seg;
48
49 struct segment {
50         struct segment *next;
51         struct segment *prev;
52         struct segment *phdr_next;
53         struct segment *phdr_prev;
54         unsigned long s_dstaddr;
55         unsigned long s_srcaddr;
56         unsigned long s_memsz;
57         unsigned long s_filesz;
58         int compression;
59 };
60
61 struct verify_callback {
62         struct verify_callback *next;
63         int (*callback)(struct verify_callback *vcb, 
64                 Elf_ehdr *ehdr, Elf_phdr *phdr, struct segment *head);
65         unsigned long desc_offset;
66         unsigned long desc_addr;
67 };
68
69 struct ip_checksum_vcb {
70         struct verify_callback data;
71         unsigned short ip_checksum;
72 };
73
74 /* The problem:  
75  * Static executables all want to share the same addresses
76  * in memory because only a few addresses are reliably present on
77  * a machine, and implementing general relocation is hard.
78  *
79  * The solution:
80  * - Allocate a buffer twice the size of the coreboot image.
81  * - Anything that would overwrite coreboot copy into the lower half of
82  *   the buffer. 
83  * - After loading an ELF image copy coreboot to the upper half of the
84  *   buffer.
85  * - Then jump to the loaded image.
86  * 
87  * Benefits:
88  * - Nearly arbitrary standalone executables can be loaded.
89  * - Coreboot is preserved, so it can be returned to.
90  * - The implementation is still relatively simple,
91  *   and much simpler then the general case implemented in kexec.
92  * 
93  */
94
95 static unsigned long bounce_size, bounce_buffer;
96
97 static void get_bounce_buffer(struct lb_memory *mem, unsigned long bounce_size)
98 {
99         unsigned long lb_size;
100         unsigned long mem_entries;
101         unsigned long buffer;
102         int i;
103         lb_size = (unsigned long)(&_eram_seg - &_ram_seg);
104         /* Double coreboot size so I have somewhere to place a copy to return to */
105         lb_size = bounce_size + lb_size;
106         mem_entries = (mem->size - sizeof(*mem))/sizeof(mem->map[0]);
107         buffer = 0;
108         for(i = 0; i < mem_entries; i++) {
109                 unsigned long mstart, mend;
110                 unsigned long msize;
111                 unsigned long tbuffer;
112                 if (mem->map[i].type != LB_MEM_RAM)
113                         continue;
114                 if (unpack_lb64(mem->map[i].start) > MAX_ADDR)
115                         continue;
116                 if (unpack_lb64(mem->map[i].size) < lb_size)
117                         continue;
118                 mstart = unpack_lb64(mem->map[i].start);
119                 msize = MAX_ADDR - mstart +1;
120                 if (msize > unpack_lb64(mem->map[i].size))
121                         msize = unpack_lb64(mem->map[i].size);
122                 mend = mstart + msize;
123                 tbuffer = mend - lb_size;
124                 if (tbuffer < buffer) 
125                         continue;
126                 buffer = tbuffer;
127         }
128         bounce_buffer = buffer;
129 }
130
131 static int valid_area(struct lb_memory *mem, unsigned long buffer,
132         unsigned long start, unsigned long len)
133 {
134         /* Check through all of the memory segments and ensure
135          * the segment that was passed in is completely contained
136          * in RAM.
137          */
138         int i;
139         unsigned long end = start + len;
140         unsigned long mem_entries = (mem->size - sizeof(*mem))/sizeof(mem->map[0]);
141
142         /* See if I conflict with the bounce buffer */
143         if (end >= buffer) {
144                 return 0;
145         }
146
147         /* Walk through the table of valid memory ranges and see if I
148          * have a match.
149          */
150         for(i = 0; i < mem_entries; i++) {
151                 uint64_t mstart, mend;
152                 uint32_t mtype;
153                 mtype = mem->map[i].type;
154                 mstart = unpack_lb64(mem->map[i].start);
155                 mend = mstart + unpack_lb64(mem->map[i].size);
156                 if ((mtype == LB_MEM_RAM) && (start < mend) && (end > mstart)) {
157                         break;
158                 }
159                 if ((mtype == LB_MEM_TABLE) && (start < mend) && (end > mstart)) {
160                         printk_err("Payload is overwriting Coreboot tables.\n");
161                         break;
162                 }
163         }
164         if (i == mem_entries) {
165                 printk_err("No matching ram area found for range:\n");
166                 printk_err("  [0x%016lx, 0x%016lx)\n", start, end);
167                 printk_err("Ram areas\n");
168                 for(i = 0; i < mem_entries; i++) {
169                         uint64_t mstart, mend;
170                         uint32_t mtype;
171                         mtype = mem->map[i].type;
172                         mstart = unpack_lb64(mem->map[i].start);
173                         mend = mstart + unpack_lb64(mem->map[i].size);
174                         printk_err("  [0x%016lx, 0x%016lx) %s\n",
175                                 (unsigned long)mstart, 
176                                 (unsigned long)mend, 
177                                 (mtype == LB_MEM_RAM)?"RAM":"Reserved");
178                         
179                 }
180                 return 0;
181         }
182         return 1;
183 }
184
185 static const unsigned long lb_start = (unsigned long)&_ram_seg;
186 static const unsigned long lb_end = (unsigned long)&_eram_seg;
187
188 static int overlaps_coreboot(struct segment *seg)
189 {
190         unsigned long start, end;
191         start = seg->s_dstaddr;
192         end = start + seg->s_memsz;
193         return !((end <= lb_start) || (start >= lb_end));
194 }
195
196 static void relocate_segment(unsigned long buffer, struct segment *seg)
197 {
198         /* Modify all segments that want to load onto coreboot
199          * to load onto the bounce buffer instead.
200          */
201         unsigned long start, middle, end;
202
203         printk_spew("lb: [0x%016lx, 0x%016lx)\n", 
204                 lb_start, lb_end);
205
206         /* I don't conflict with coreboot so get out of here */
207         if (!overlaps_coreboot(seg))
208                 return;
209
210         start = seg->s_dstaddr;
211         middle = start + seg->s_filesz;
212         end = start + seg->s_memsz;
213
214         printk_spew("segment: [0x%016lx, 0x%016lx, 0x%016lx)\n", 
215                 start, middle, end);
216
217         if (seg->compression == CBFS_COMPRESS_NONE) {
218                 /* Slice off a piece at the beginning
219                  * that doesn't conflict with coreboot.
220                  */
221                 if (start < lb_start) {
222                         struct segment *new;
223                         unsigned long len = lb_start - start;
224                         new = malloc(sizeof(*new));
225                         *new = *seg;
226                         new->s_memsz = len;
227                         seg->s_memsz -= len;
228                         seg->s_dstaddr += len;
229                         seg->s_srcaddr += len;
230                         if (seg->s_filesz > len) {
231                                 new->s_filesz = len;
232                                 seg->s_filesz -= len;
233                         } else {
234                                 seg->s_filesz = 0;
235                         }
236
237                         /* Order by stream offset */
238                         new->next = seg;
239                         new->prev = seg->prev;
240                         seg->prev->next = new;
241                         seg->prev = new;
242                         /* Order by original program header order */
243                         new->phdr_next = seg;
244                         new->phdr_prev = seg->phdr_prev;
245                         seg->phdr_prev->phdr_next = new;
246                         seg->phdr_prev = new;
247
248                         /* compute the new value of start */
249                         start = seg->s_dstaddr;
250                         
251                         printk_spew("   early: [0x%016lx, 0x%016lx, 0x%016lx)\n", 
252                                 new->s_dstaddr, 
253                                 new->s_dstaddr + new->s_filesz,
254                                 new->s_dstaddr + new->s_memsz);
255                         }
256                         
257                         /* Slice off a piece at the end 
258                  * that doesn't conflict with coreboot 
259                  */
260                 if (end > lb_end) {
261                         unsigned long len = lb_end - start;
262                         struct segment *new;
263                         new = malloc(sizeof(*new));
264                         *new = *seg;
265                         seg->s_memsz = len;
266                         new->s_memsz -= len;
267                         new->s_dstaddr += len;
268                         new->s_srcaddr += len;
269                         if (seg->s_filesz > len) {
270                                 seg->s_filesz = len;
271                                 new->s_filesz -= len;
272                         } else {
273                                 new->s_filesz = 0;
274                         }
275                         /* Order by stream offset */
276                         new->next = seg->next;
277                         new->prev = seg;
278                         seg->next->prev = new;
279                         seg->next = new;
280                         /* Order by original program header order */
281                         new->phdr_next = seg->phdr_next;
282                         new->phdr_prev = seg;
283                         seg->phdr_next->phdr_prev = new;
284                         seg->phdr_next = new;
285
286                         /* compute the new value of end */
287                         end = start + len;
288                         
289                         printk_spew("   late: [0x%016lx, 0x%016lx, 0x%016lx)\n", 
290                                 new->s_dstaddr, 
291                                 new->s_dstaddr + new->s_filesz,
292                                 new->s_dstaddr + new->s_memsz);
293                         
294                 }
295         }
296         /* Now retarget this segment onto the bounce buffer */
297         /* sort of explanation: the buffer is a 1:1 mapping to coreboot. 
298          * so you will make the dstaddr be this buffer, and it will get copied
299          * later to where coreboot lives.
300          */
301         seg->s_dstaddr = buffer + (seg->s_dstaddr - lb_start);
302
303         printk_spew(" bounce: [0x%016lx, 0x%016lx, 0x%016lx)\n", 
304                 seg->s_dstaddr, 
305                 seg->s_dstaddr + seg->s_filesz, 
306                 seg->s_dstaddr + seg->s_memsz);
307 }
308
309
310 static int build_self_segment_list(
311         struct segment *head, 
312         struct lb_memory *mem,
313         struct cbfs_payload *payload, u32 *entry)
314 {
315         struct segment *new;
316         struct segment *ptr;
317         int datasize;
318         struct cbfs_payload_segment *segment, *first_segment;
319         memset(head, 0, sizeof(*head));
320         head->phdr_next = head->phdr_prev = head;
321         head->next = head->prev = head;
322         first_segment = segment = &payload->segments;
323
324         while(1) {
325                 printk_debug("Segment %p\n", segment);
326                 switch(segment->type) {
327                 default: printk_emerg("Bad segment type %x\n", segment->type);
328                         return -1;
329                 case PAYLOAD_SEGMENT_PARAMS:
330                         printk_info("found param section\n");
331                         segment++;
332                         continue;
333                 case PAYLOAD_SEGMENT_CODE:
334                 case PAYLOAD_SEGMENT_DATA:
335                         printk_info( "%s: ", segment->type == PAYLOAD_SEGMENT_CODE ? 
336                                 "code" : "data");
337                 new = malloc(sizeof(*new));
338                 new->s_dstaddr = ntohl((u32) segment->load_addr);
339                 new->s_memsz = ntohl(segment->mem_len);
340                 new->compression = ntohl(segment->compression);
341
342                 datasize = ntohl(segment->len);
343                 new->s_srcaddr = (u32) ((unsigned char *) first_segment) + ntohl(segment->offset);
344                 new->s_filesz = ntohl(segment->len);
345                 printk_debug("New segment dstaddr 0x%lx memsize 0x%lx srcaddr 0x%lx filesize 0x%lx\n",
346                         new->s_dstaddr, new->s_memsz, new->s_srcaddr, new->s_filesz);
347                 /* Clean up the values */
348                 if (new->s_filesz > new->s_memsz)  {
349                         new->s_filesz = new->s_memsz;
350                 }
351                 printk_debug("(cleaned up) New segment addr 0x%lx size 0x%lx offset 0x%lx filesize 0x%lx\n",
352                         new->s_dstaddr, new->s_memsz, new->s_srcaddr, new->s_filesz);
353                 break;
354                 case PAYLOAD_SEGMENT_BSS:
355                         printk_info("BSS %p/%d\n", (void *) ntohl((u32) segment->load_addr),
356                                  ntohl(segment->mem_len));
357                         new = malloc(sizeof(*new));
358                         new->s_filesz = 0;
359                         new->s_dstaddr = ntohl((u32) segment->load_addr);
360                         new->s_memsz = ntohl(segment->mem_len);
361
362                         break;
363
364                 case PAYLOAD_SEGMENT_ENTRY:
365                         printk_info("Entry %p\n", (void *) ntohl((u32) segment->load_addr));
366                         *entry =  ntohl((u32) segment->load_addr);
367                         return 1;
368                 }
369                 segment++;
370                 for(ptr = head->next; ptr != head; ptr = ptr->next) {
371                         if (new->s_srcaddr < ntohl((u32) segment->load_addr))
372                                 break;
373                 }
374                 /* Order by stream offset */
375                 new->next = ptr;
376                 new->prev = ptr->prev;
377                 ptr->prev->next = new;
378                 ptr->prev = new;
379                 /* Order by original program header order */
380                 new->phdr_next = head;
381                 new->phdr_prev = head->phdr_prev;
382                 head->phdr_prev->phdr_next  = new;
383                 head->phdr_prev = new;
384         }
385         return 1;
386 }
387
388 static int load_self_segments(
389         struct segment *head,
390         struct lb_memory *mem,
391         struct cbfs_payload *payload)
392 {
393         unsigned long offset;
394         struct segment *ptr;
395         
396         offset = 0;
397         unsigned long required_bounce_size = lb_end - lb_start;
398         for(ptr = head->next; ptr != head; ptr = ptr->next) {
399                 if (!overlaps_coreboot(ptr)) continue;
400                 unsigned long bounce = ptr->s_dstaddr + ptr->s_memsz - lb_start;
401                 if (bounce > required_bounce_size) required_bounce_size = bounce;
402         }
403         get_bounce_buffer(mem, required_bounce_size);
404         if (!bounce_buffer) {
405                 printk_err("Could not find a bounce buffer...\n");
406                 return 0;
407         }
408         for(ptr = head->next; ptr != head; ptr = ptr->next) {
409                 /* Verify the memory addresses in the segment are valid */
410                 if (!valid_area(mem, bounce_buffer, ptr->s_dstaddr, ptr->s_memsz))
411                         return 0;
412         }
413         for(ptr = head->next; ptr != head; ptr = ptr->next) {
414                 unsigned char *dest, *middle, *end, *src;
415                 printk_debug("Loading Segment: addr: 0x%016lx memsz: 0x%016lx filesz: 0x%016lx\n",
416                         ptr->s_dstaddr, ptr->s_memsz, ptr->s_filesz);
417                 
418                 /* Modify the segment to load onto the bounce_buffer if necessary.
419                  */
420                 relocate_segment(bounce_buffer, ptr);
421
422                 printk_debug("Post relocation: addr: 0x%016lx memsz: 0x%016lx filesz: 0x%016lx\n",
423                         ptr->s_dstaddr, ptr->s_memsz, ptr->s_filesz);
424
425                 /* Compute the boundaries of the segment */
426                 dest = (unsigned char *)(ptr->s_dstaddr);
427                 src = (unsigned char *)(ptr->s_srcaddr);
428                 
429                 /* Copy data from the initial buffer */
430                 if (ptr->s_filesz) {
431                         size_t len;
432                         len = ptr->s_filesz;
433                         switch(ptr->compression) {
434 #if CONFIG_COMPRESSED_PAYLOAD_LZMA==1
435                                 case CBFS_COMPRESS_LZMA: {
436                                         printk_debug("using LZMA\n");
437                                         unsigned long ulzma(unsigned char *src, unsigned char *dst);            
438                                         len = ulzma(src, dest);
439                                         break;
440                                 }
441 #endif
442 #if CONFIG_COMPRESSED_PAYLOAD_NRV2B==1
443                                 case CBFS_COMPRESS_NRV2B: {
444                                         printk_debug("using NRV2B\n");
445                                         unsigned long unrv2b(u8 *src, u8 *dst, unsigned long *ilen_p);
446                                         unsigned long tmp;
447                                         len = unrv2b(src, dest, &tmp);
448                                         break;
449                                 }
450 #endif
451                                 case CBFS_COMPRESS_NONE: {
452                                         printk_debug("it's not compressed!\n");
453                                         memcpy(dest, src, len);
454                                         break;
455                                 }
456                                 default:
457                                         printk_info( "CBFS:  Unknown compression type %d\n", ptr->compression);
458                                         return -1;
459                         }
460                         end = dest + ptr->s_memsz;
461                         middle = dest + len;
462                         printk_spew("[ 0x%016lx, %016lx, 0x%016lx) <- %016lx\n",
463                                 (unsigned long)dest,
464                                 (unsigned long)middle,
465                                 (unsigned long)end,
466                                 (unsigned long)src);
467                 }
468                 /* Zero the extra bytes between middle & end */
469                 if (middle < end) {
470                         printk_debug("Clearing Segment: addr: 0x%016lx memsz: 0x%016lx\n",
471                                 (unsigned long)middle, (unsigned long)(end - middle));
472                         
473                         /* Zero the extra bytes */
474                         memset(middle, 0, end - middle);
475                 }
476         }
477         return 1;
478 }
479
480 int selfboot(struct lb_memory *mem, struct cbfs_payload *payload)
481 {
482         u32 entry=0;
483         struct segment head;
484
485         /* Preprocess the self segments */
486         if (!build_self_segment_list(&head, mem, payload, &entry))
487                 goto out;
488
489         /* Load the segments */
490         if (!load_self_segments(&head, mem, payload))
491                 goto out;
492
493         printk_spew("Loaded segments\n");
494
495         /* Reset to booting from this image as late as possible */
496         boot_successful();
497
498         printk_debug("Jumping to boot code at %x\n", entry);
499         post_code(0xfe);
500
501         /* Jump to kernel */
502         jmp_to_elf_entry((void*)entry, bounce_buffer, bounce_size);
503         return 1;
504
505  out:
506         return 0;
507 }
508