v2/src romfs->cbfs rename
[coreboot.git] / src / boot / selfboot.c
1 /*
2  * This file is part of the coreboot project.
3  *
4  * Copyright (C) 2003 Eric W. Biederman <ebiederm@xmission.com>
5  * Copyright (C) 2009 Ron Minnich <rminnich@gmail.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; version 2 of the License.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA, 02110-1301 USA
19  */
20
21 #include <console/console.h>
22 #include <part/fallback_boot.h>
23 #include <boot/elf.h>
24 #include <boot/elf_boot.h>
25 #include <boot/coreboot_tables.h>
26 #include <ip_checksum.h>
27 #include <stream/read_bytes.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <string.h>
31 #include <cbfs.h>
32
33 #ifndef CONFIG_BIG_ENDIAN
34 #define ntohl(x) ( ((x&0xff)<<24) | ((x&0xff00)<<8) | \
35                 ((x&0xff0000) >> 8) | ((x&0xff000000) >> 24) )
36 #else
37 #define ntohl(x) (x)
38 #endif
39
40 /* Maximum physical address we can use for the coreboot bounce buffer.
41  */
42 #ifndef MAX_ADDR
43 #define MAX_ADDR -1UL
44 #endif
45
46 extern unsigned char _ram_seg;
47 extern unsigned char _eram_seg;
48
49 struct segment {
50         struct segment *next;
51         struct segment *prev;
52         struct segment *phdr_next;
53         struct segment *phdr_prev;
54         unsigned long s_dstaddr;
55         unsigned long s_srcaddr;
56         unsigned long s_memsz;
57         unsigned long s_filesz;
58 };
59
60 struct verify_callback {
61         struct verify_callback *next;
62         int (*callback)(struct verify_callback *vcb, 
63                 Elf_ehdr *ehdr, Elf_phdr *phdr, struct segment *head);
64         unsigned long desc_offset;
65         unsigned long desc_addr;
66 };
67
68 struct ip_checksum_vcb {
69         struct verify_callback data;
70         unsigned short ip_checksum;
71 };
72
73 int cbfs_self_decompress(int algo, void *src,struct segment *new)
74 {
75         u8 *dst;
76
77         /* for uncompressed, it's easy: just point at the area in ROM */
78         if (algo ==  CBFS_COMPRESS_NONE) {
79                 new->s_srcaddr = (u32) src;
80                 new->s_filesz =  new->s_memsz;
81                 return 0;
82         }
83
84         /* for compression, let's keep it simple. We'll malloc the destination 
85          * area and decompress to there. The compression overhead far outweighs
86          * any overhead for an extra copy. 
87          */
88         dst = malloc(new->s_memsz);
89         if (! dst)
90                 return -1;
91
92         switch(algo) {
93 #ifdef CONFIG_COMPRESSION_LZMA
94         case CBFS_COMPRESS_LZMA: {
95                 unsigned long ulzma(unsigned char *src, unsigned char *dst);            
96                 ulzma(src, dst);
97         }
98 #endif
99
100 #ifdef CONFIG_COMPRESSION_NRV2B
101         case CBFS_COMPRESS_NRV2B: {
102                 unsigned long unrv2b(u8 *src, u8 *dst, unsigned long *ilen_p);
103                 unsigned long tmp;
104                 unrv2b(src, dst, &tmp);
105         }
106 #endif
107         default:
108                 printk_info( "CBFS:  Unknown compression type %d\n",
109                        algo);
110                 return -1;
111         }
112
113         new->s_srcaddr = (u32) dst;
114         new->s_filesz =  new->s_memsz;
115         return 0;
116         
117 }
118
119 /* The problem:  
120  * Static executables all want to share the same addresses
121  * in memory because only a few addresses are reliably present on
122  * a machine, and implementing general relocation is hard.
123  *
124  * The solution:
125  * - Allocate a buffer twice the size of the coreboot image.
126  * - Anything that would overwrite coreboot copy into the lower half of
127  *   the buffer. 
128  * - After loading an ELF image copy coreboot to the upper half of the
129  *   buffer.
130  * - Then jump to the loaded image.
131  * 
132  * Benefits:
133  * - Nearly arbitrary standalone executables can be loaded.
134  * - Coreboot is preserved, so it can be returned to.
135  * - The implementation is still relatively simple,
136  *   and much simpler then the general case implemented in kexec.
137  * 
138  */
139
140 static unsigned long get_bounce_buffer(struct lb_memory *mem)
141 {
142         unsigned long lb_size;
143         unsigned long mem_entries;
144         unsigned long buffer;
145         int i;
146         lb_size = (unsigned long)(&_eram_seg - &_ram_seg);
147         /* Double coreboot size so I have somewhere to place a copy to return to */
148         lb_size = lb_size + lb_size;
149         mem_entries = (mem->size - sizeof(*mem))/sizeof(mem->map[0]);
150         buffer = 0;
151         for(i = 0; i < mem_entries; i++) {
152                 unsigned long mstart, mend;
153                 unsigned long msize;
154                 unsigned long tbuffer;
155                 if (mem->map[i].type != LB_MEM_RAM)
156                         continue;
157                 if (unpack_lb64(mem->map[i].start) > MAX_ADDR)
158                         continue;
159                 if (unpack_lb64(mem->map[i].size) < lb_size)
160                         continue;
161                 mstart = unpack_lb64(mem->map[i].start);
162                 msize = MAX_ADDR - mstart +1;
163                 if (msize > unpack_lb64(mem->map[i].size))
164                         msize = unpack_lb64(mem->map[i].size);
165                 mend = mstart + msize;
166                 tbuffer = mend - lb_size;
167                 if (tbuffer < buffer) 
168                         continue;
169                 buffer = tbuffer;
170         }
171         return buffer;
172 }
173
174 static int valid_area(struct lb_memory *mem, unsigned long buffer,
175         unsigned long start, unsigned long len)
176 {
177         /* Check through all of the memory segments and ensure
178          * the segment that was passed in is completely contained
179          * in RAM.
180          */
181         int i;
182         unsigned long end = start + len;
183         unsigned long mem_entries = (mem->size - sizeof(*mem))/sizeof(mem->map[0]);
184
185         /* See if I conflict with the bounce buffer */
186         if (end >= buffer) {
187                 return 0;
188         }
189
190         /* Walk through the table of valid memory ranges and see if I
191          * have a match.
192          */
193         for(i = 0; i < mem_entries; i++) {
194                 uint64_t mstart, mend;
195                 uint32_t mtype;
196                 mtype = mem->map[i].type;
197                 mstart = unpack_lb64(mem->map[i].start);
198                 mend = mstart + unpack_lb64(mem->map[i].size);
199                 if ((mtype == LB_MEM_RAM) && (start < mend) && (end > mstart)) {
200                         break;
201                 }
202                 if ((mtype == LB_MEM_TABLE) && (start < mend) && (end > mstart)) {
203                         printk_err("Payload is overwriting Coreboot tables.\n");
204                         break;
205                 }
206         }
207         if (i == mem_entries) {
208                 printk_err("No matching ram area found for range:\n");
209                 printk_err("  [0x%016lx, 0x%016lx)\n", start, end);
210                 printk_err("Ram areas\n");
211                 for(i = 0; i < mem_entries; i++) {
212                         uint64_t mstart, mend;
213                         uint32_t mtype;
214                         mtype = mem->map[i].type;
215                         mstart = unpack_lb64(mem->map[i].start);
216                         mend = mstart + unpack_lb64(mem->map[i].size);
217                         printk_err("  [0x%016lx, 0x%016lx) %s\n",
218                                 (unsigned long)mstart, 
219                                 (unsigned long)mend, 
220                                 (mtype == LB_MEM_RAM)?"RAM":"Reserved");
221                         
222                 }
223                 return 0;
224         }
225         return 1;
226 }
227
228 static void relocate_segment(unsigned long buffer, struct segment *seg)
229 {
230         /* Modify all segments that want to load onto coreboot
231          * to load onto the bounce buffer instead.
232          */
233         unsigned long lb_start = (unsigned long)&_ram_seg;
234         unsigned long lb_end = (unsigned long)&_eram_seg;
235         unsigned long start, middle, end;
236
237         printk_spew("lb: [0x%016lx, 0x%016lx)\n", 
238                 lb_start, lb_end);
239
240         start = seg->s_dstaddr;
241         middle = start + seg->s_filesz;
242         end = start + seg->s_memsz;
243         /* I don't conflict with coreboot so get out of here */
244         if ((end <= lb_start) || (start >= lb_end))
245                 return;
246
247         printk_spew("segment: [0x%016lx, 0x%016lx, 0x%016lx)\n", 
248                 start, middle, end);
249
250         /* Slice off a piece at the beginning
251          * that doesn't conflict with coreboot.
252          */
253         if (start < lb_start) {
254                 struct segment *new;
255                 unsigned long len = lb_start - start;
256                 new = malloc(sizeof(*new));
257                 *new = *seg;
258                 new->s_memsz = len;
259                 seg->s_memsz -= len;
260                 seg->s_dstaddr += len;
261                 seg->s_srcaddr += len;
262                 if (seg->s_filesz > len) {
263                         new->s_filesz = len;
264                         seg->s_filesz -= len;
265                 } else {
266                         seg->s_filesz = 0;
267                 }
268
269                 /* Order by stream offset */
270                 new->next = seg;
271                 new->prev = seg->prev;
272                 seg->prev->next = new;
273                 seg->prev = new;
274                 /* Order by original program header order */
275                 new->phdr_next = seg;
276                 new->phdr_prev = seg->phdr_prev;
277                 seg->phdr_prev->phdr_next = new;
278                 seg->phdr_prev = new;
279
280                 /* compute the new value of start */
281                 start = seg->s_dstaddr;
282                 
283                 printk_spew("   early: [0x%016lx, 0x%016lx, 0x%016lx)\n", 
284                         new->s_dstaddr, 
285                         new->s_dstaddr + new->s_filesz,
286                         new->s_dstaddr + new->s_memsz);
287         }
288         
289         /* Slice off a piece at the end 
290          * that doesn't conflict with coreboot 
291          */
292         if (end > lb_end) {
293                 unsigned long len = lb_end - start;
294                 struct segment *new;
295                 new = malloc(sizeof(*new));
296                 *new = *seg;
297                 seg->s_memsz = len;
298                 new->s_memsz -= len;
299                 new->s_dstaddr += len;
300                 new->s_srcaddr += len;
301                 if (seg->s_filesz > len) {
302                         seg->s_filesz = len;
303                         new->s_filesz -= len;
304                 } else {
305                         new->s_filesz = 0;
306                 }
307                 /* Order by stream offset */
308                 new->next = seg->next;
309                 new->prev = seg;
310                 seg->next->prev = new;
311                 seg->next = new;
312                 /* Order by original program header order */
313                 new->phdr_next = seg->phdr_next;
314                 new->phdr_prev = seg;
315                 seg->phdr_next->phdr_prev = new;
316                 seg->phdr_next = new;
317
318                 /* compute the new value of end */
319                 end = start + len;
320                 
321                 printk_spew("   late: [0x%016lx, 0x%016lx, 0x%016lx)\n", 
322                         new->s_dstaddr, 
323                         new->s_dstaddr + new->s_filesz,
324                         new->s_dstaddr + new->s_memsz);
325                 
326         }
327         /* Now retarget this segment onto the bounce buffer */
328         /* sort of explanation: the buffer is a 1:1 mapping to coreboot. 
329          * so you will make the dstaddr be this buffer, and it will get copied
330          * later to where coreboot lives.
331          */
332         seg->s_dstaddr = buffer + (seg->s_dstaddr - lb_start);
333
334         printk_spew(" bounce: [0x%016lx, 0x%016lx, 0x%016lx)\n", 
335                 seg->s_dstaddr, 
336                 seg->s_dstaddr + seg->s_filesz, 
337                 seg->s_dstaddr + seg->s_memsz);
338 }
339
340
341 static int build_self_segment_list(
342         struct segment *head, 
343         unsigned long bounce_buffer, struct lb_memory *mem,
344         struct cbfs_payload *payload, u32 *entry)
345 {
346         struct segment *new;
347         struct segment *ptr;
348         u8 *data;
349         int datasize;
350         struct cbfs_payload_segment *segment, *first_segment;
351         memset(head, 0, sizeof(*head));
352         head->phdr_next = head->phdr_prev = head;
353         head->next = head->prev = head;
354         first_segment = segment = &payload->segments;
355
356         while(1) {
357                 printk_debug("Segment %p\n", segment);
358                 switch(segment->type) {
359                 default: printk_emerg("Bad segment type %x\n", segment->type);
360                         return -1;
361                 case PAYLOAD_SEGMENT_PARAMS:
362                         printk_info("found param section\n");
363                         segment++;
364                         continue;
365                 case PAYLOAD_SEGMENT_CODE:
366                 case PAYLOAD_SEGMENT_DATA:
367                         printk_info( "%s: ", segment->type == PAYLOAD_SEGMENT_CODE ? 
368                                 "code" : "data");
369                 new = malloc(sizeof(*new));
370                 new->s_dstaddr = ntohl((u32) segment->load_addr);
371                 new->s_memsz = ntohl(segment->mem_len);
372
373                 datasize = ntohl(segment->len);
374                 /* figure out decompression, do it, get pointer to the area */
375                 if (cbfs_self_decompress(ntohl(segment->compression),
376                                              ((unsigned char *) first_segment) +
377                                              ntohl(segment->offset), new)) {
378                         printk_emerg("cbfs_self_decompress failed\n");
379                         return;
380                 }
381                 printk_debug("New segment dstaddr 0x%lx memsize 0x%lx srcaddr 0x%lx filesize 0x%lx\n",
382                         new->s_dstaddr, new->s_memsz, new->s_srcaddr, new->s_filesz);
383                 /* Clean up the values */
384                 if (new->s_filesz > new->s_memsz)  {
385                         new->s_filesz = new->s_memsz;
386                 }
387                 printk_debug("(cleaned up) New segment addr 0x%lx size 0x%lx offset 0x%lx filesize 0x%lx\n",
388                         new->s_dstaddr, new->s_memsz, new->s_srcaddr, new->s_filesz);
389                 break;
390                 case PAYLOAD_SEGMENT_BSS:
391                         printk_info("BSS %p/%d\n", (void *) ntohl((u32) segment->load_addr),
392                                  ntohl(segment->mem_len));
393                         new = malloc(sizeof(*new));
394                         new->s_filesz = 0;
395                         new->s_dstaddr = ntohl((u32) segment->load_addr);
396                         new->s_memsz = ntohl(segment->mem_len);
397
398                         break;
399
400                 case PAYLOAD_SEGMENT_ENTRY:
401                         printk_info("Entry %p\n", (void *) ntohl((u32) segment->load_addr));
402                         *entry =  (void *) ntohl((u32) segment->load_addr);
403                         return 1;
404                 }
405                 segment++;
406                 for(ptr = head->next; ptr != head; ptr = ptr->next) {
407                         if (new->s_srcaddr < ntohl((u32) segment->load_addr))
408                                 break;
409                 }
410                 /* Order by stream offset */
411                 new->next = ptr;
412                 new->prev = ptr->prev;
413                 ptr->prev->next = new;
414                 ptr->prev = new;
415                 /* Order by original program header order */
416                 new->phdr_next = head;
417                 new->phdr_prev = head->phdr_prev;
418                 head->phdr_prev->phdr_next  = new;
419                 head->phdr_prev = new;
420
421                 /* Verify the memory addresses in the segment are valid */
422                 if (!valid_area(mem, bounce_buffer, new->s_dstaddr, new->s_memsz)) 
423                         goto out;
424
425                 /* Modify the segment to load onto the bounce_buffer if necessary.
426                  */
427                 relocate_segment(bounce_buffer, new);
428         }
429         return 1;
430  out:
431         return 0;
432 }
433
434 static int load_self_segments(
435         struct segment *head, struct cbfs_payload *payload)
436 {
437         unsigned long offset;
438         struct segment *ptr;
439         
440         offset = 0;
441         for(ptr = head->next; ptr != head; ptr = ptr->next) {
442                 unsigned long skip_bytes, read_bytes;
443                 unsigned char *dest, *middle, *end, *src;
444                 byte_offset_t result;
445                 printk_debug("Loading Segment: addr: 0x%016lx memsz: 0x%016lx filesz: 0x%016lx\n",
446                         ptr->s_dstaddr, ptr->s_memsz, ptr->s_filesz);
447                 
448                 /* Compute the boundaries of the segment */
449                 dest = (unsigned char *)(ptr->s_dstaddr);
450                 end = dest + ptr->s_memsz;
451                 middle = dest + ptr->s_filesz;
452                 src = ptr->s_srcaddr;
453                 printk_spew("[ 0x%016lx, %016lx, 0x%016lx) <- %016lx\n",
454                         (unsigned long)dest,
455                         (unsigned long)middle,
456                         (unsigned long)end,
457                         (unsigned long)src);
458                 
459                 /* Copy data from the initial buffer */
460                 if (ptr->s_filesz) {
461                         size_t len;
462                         len = ptr->s_filesz;
463                         memcpy(dest, src, len);
464                         dest += len;
465                 }
466                 
467                 /* Zero the extra bytes between middle & end */
468                 if (middle < end) {
469                         printk_debug("Clearing Segment: addr: 0x%016lx memsz: 0x%016lx\n",
470                                 (unsigned long)middle, (unsigned long)(end - middle));
471                         
472                         /* Zero the extra bytes */
473                         memset(middle, 0, end - middle);
474                 }
475         }
476         return 1;
477  out:
478         return 0;
479 }
480
481 int selfboot(struct lb_memory *mem, struct cbfs_payload *payload)
482 {
483         void *entry;
484         struct segment head;
485         unsigned long bounce_buffer;
486
487         /* Find a bounce buffer so I can load to coreboot's current location */
488         bounce_buffer = get_bounce_buffer(mem);
489         if (!bounce_buffer) {
490                 printk_err("Could not find a bounce buffer...\n");
491                 goto out;
492         }
493
494         /* Preprocess the self segments */
495         if (!build_self_segment_list(&head, bounce_buffer, mem, payload, &entry))
496                 goto out;
497
498         /* Load the segments */
499         if (!load_self_segments(&head, payload))
500                 goto out;
501
502         printk_spew("Loaded segments\n");
503
504         /* Reset to booting from this image as late as possible */
505         boot_successful();
506
507         printk_debug("Jumping to boot code at %p\n", entry);
508         post_code(0xfe);
509
510         /* Jump to kernel */
511         jmp_to_elf_entry(entry, bounce_buffer);
512         return 1;
513
514  out:
515         return 0;
516 }
517