frage 19: lastfaktor; frage 20: IEEE 754 zusatz
authorBernhard Urban <lewurm@gmx.net>
Wed, 18 Nov 2009 11:04:21 +0000 (12:04 +0100)
committerBernhard Urban <lewurm@gmx.net>
Wed, 18 Nov 2009 11:06:52 +0000 (12:06 +0100)
ausarb2.txt

index 83c736d..26d273e 100755 (executable)
@@ -105,7 +105,46 @@ Teil 2/2 - von Sebastian Falbesoner <e0725433@student.tuwien.ac.at>
        TODO
 
 19 - Welche Bedeutung hat der Lastfaktor?
-       TODO
+       Der Lastfaktor wird fuer die Berechnung der SNR benoetigt;
+       > SNR = \frac{Signalpower}{Noisepower} =
+       > 10 log (\frac{\sigma^2_{Signal}}{\sigma^2_{A/D-Rauschen}})
+       10log deswegen, weil es sich um einen Leistungsterm handelt.
+
+       Der Rauschanteil berechnet sich durch statistische Annahmen:
+       > \sigma^2_{A/D-Rauschen} = \int^{q/2}_{-q/2} e^2 p(e) de =
+       > \frac{1}{q} * \int^{q/2}_{-q/2} e^2 de = \frac{q^2}{12}
+       > wobei q = \frac{2 U_p}{2^b} = LSB
+       > =>
+       > \sigma^2_{A/D-Rauschen} = \frac{(2 U_p)^2}{12(2^b)} =
+       > \frac{U^2_p}{3\cdot 2^{2b}}
+
+       Der Lastfaktor berechnet sich nun wie folgt:
+       > LF = \frac{Effektivwert}{Spitzenwert}
+
+       Ein Rechtecksignal hat z.B. einen LF=1; ein Sinussignal
+       LF=\frac{1}{\sqrt{2}} = 0.71
+
+       Anders angeschrieben berechnet sich der Lastfaktor
+       > LF = \frac{\sigma_{Signal}}{U_p}
+       daraus folgt
+       > \sigma^2_{Signal} = (LF)^2 U^2_p
+
+       in die SNR Formel eingesetzt ergibt das also
+       > SNR = 10log (\frac{(LF)^2 U^2_p}{U^2_p / 3 \cdot 2^{2b}}) =
+       > 10log ((LF)^2 (3\cdot 2^{2b})) =
+       > 4.77 + 6.02 * b + 20 log (LF)
+
+       Der Lastfaktor wird bei Sinusschwingungen nie groesser als -3dB, daraus
+       koennen wir die maximale Sinusaussteuerung fuer den A/D-Wandler berechnen:
+       > SNR = 4.77 + 6.02 * b + 20 log (1/\sqrt{2}) =
+       > 1.76 + 6.02 * b
+
+       Reale A/D-Wandler reduzieren die ideale SNR um 3-6dB. Es ist unvorsichtig
+       einen A/D-Wandler voll auszusteuern, da sonst die Gefahr der Uebersteuerung
+       besteht. Es muss ein Effektivwert gesucht werden, der den A/D-Wandler nicht
+       uebersteuert!
+       Weiters ist es unzweckmaessig einen A/D-Wandler einzusetzen der einen
+       deutlich besseres SNR hat als das zu wandlende kontinuierliche Signal!
 
 20 - Wie hängen Dynamikbereich und Genauigkeit bei der Festkommadarstellung
      zusammen?
@@ -164,6 +203,15 @@ Teil 2/2 - von Sebastian Falbesoner <e0725433@student.tuwien.ac.at>
        b ... Basis (hier b=2)
        e ... Exponent
 
+       bei IEEE 754:
+       x = (-1)^s * m * 2^{e-127}
+       IEEE 32-Bit floating-point:
+       s ... 1 Bit
+       e ... Bit 1 bis 8 (=8 Bits)
+       m ... Bit 9 bis 31 (=23 Bits)
+
+       warum 2^{e-127}? Leichtere Vergleichbarkeit!
+
        zwei Grunddatenformate:
                single precision (32 bit, len(m)=23 bit, len(e)=8 bit)
                double precision (64 bit, len(m)=52 bit, len(e)=11 bit)