
Implementation of a Java
Just-In-Time Compiler in Haskell

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computer Architecture and Compiler Design

eingereicht von

Bernhard Urban
Matrikelnummer 0725771

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Krall

Wien, 31.1.2013
(Unterschrift Verfasserin) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Implementation of a Java
Just-In-Time Compiler in Haskell

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computer Architecture and Compiler Design

by

Bernhard Urban
Registration Number 0725771

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Krall

Vienna, 31.1.2013
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Bernhard Urban
Mühlhofstraße 24/12, 3500 Krems

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasserin)

i

Acknowledgements

I first met the JVM specification in spring 2011 in the lecture “Abstract Machines”. In fall 2011,
Josef Eisl suggested to build a Java virtual machine in Forth, as an exercise for the course “Stack-
based languages” Although the idea was crazy, he insisted to do that and after some thoughts I
was okay with that: JorthVM [ERU13] was born. During the implementation, the JVM specifi-
cation and I went through a love–hate relationship. After the project, we were able to conclude
that it is possible to build a JVM in Forth but it is hard1, though we are glad we have done it.

Some weeks later (after the “Type Systems” exam) on some beers with Josef Eisl and Harald
Steinlechner, the idea for MateVM was born. With the experience from JorthVM, the initial steps
were a lot easier and many ideas were ported to MateVM, though being a just-in-time compiler.

Thus, many thanks to Josef Eisl and Harald Steinlechner for being motivating guys and
always have an open ear to talk about VM stuff.

Thanks to Andreas Krall who enabled us to try new things and supported our project with
his experience on virtual machines in general and CACAO in particular.

Also thanks to my family, friends and Iris for all the support and effort to make my study
possible.

1of course, since Forth is not type safe! ;-)

iii

Abstract

Just-in-time compilation became popular lately, among others, due to the
success of the Java programming language. In this thesis we successfully
demonstrate a modern prototype of the Java virtual machine implemented as
method-based just-in-time compiler in the purely functional programming
language Haskell. Motivated by the powerful abstraction mechanism pro-
vided by the language, we were able to build a sophisticated compiler. Since
a high-level language is used, we had to solve problems regarding the inter-
face between Haskell and native code.

Existing libraries from the Haskell community are used. hs-java for
processing Java class files. Hoopl to implement a sophisticated compiler,
that supports data-flow analysis on an intermediate representation by mak-
ing extensive use of the type system. Harpy is used to generate machine code
for the target architecture x86 in the manner of a domain specific language.
We tried to keep as much as possible in pure code to gain the elegance
of Haskell. The compilation pipeline, e.g. JVM stack elimination or lin-
ear scan register allocation, is presented in detail in this thesis.

Basic features of a run-time system in order to complete a JVM, such
as method invocation, lazy class loading, dynamic type checking or excep-
tion handling, are presented.

Although implemented in Haskell and therefore at a high abstraction
level, our prototype performs well. The performance is compared to main-
stream JVMs.

v

Kurzfassung

Just-In-Time Übersetzung ist in der letzten Zeit populär geworden, unter
anderem durch den Erfolg der Programmiersprache Java. In dieser Arbeit
präsentieren wir einen modernen Prototypen einer Java virtuellen Maschine,
implementiert als methodenbasierenden Just-In-Time Compiler in der rein
funktionalen Programmiersprache Haskell. Motiviert durch die mächtigen
Abstraktionsmöglichkeiten die Haskell bietet, waren wir in der Lage einen
fortschrittlichen Compiler zu entwickeln. Probleme, die an der Schnittstelle
zwischen Haskell und Maschinencode aufgetreten sind, galt es zu lösen.

Existierende Bibliotheken aus der Haskell Community werden verwen-
det.
hs-java wird zum Verarbeiten von Java Class Dateien genutzt. Der Com-
piler greift auf Hoopl zurück, das Datenflussanalyse auf einer Zwischen-
darstellung durch intensive Nutzung des Typsystems ermöglicht. Um Ma-
schinencode für die Zielarchitektur x86 zu erzeugen, wird Harpy einge-
setzt. Diese Bibliothek ist als domänenspezifische Sprache implementiert.
Die Compilierpipeline, zum Beispiel JVM Stack Eliminierung oder Line-
ar Scan Register Allokation, werden detailiert in dieser Diplomarbeit vorge-
stellt.

Grundlegende Funktionen einer Laufzeitumgebung um eine JVM zu ver-
vollständigen, wie zum Beispiel Methodenaufrufe, träges Klassenladen, dy-
namische Typüberprüfung oder Exceptionhandling, werden vorgestellt.

Trotz des hohen Abstraktionsniveau durch Haskell, ist die Performance
des Prototyps gut. Das Ergebnis wird mit bekannten JVMs verglichen.

vii

Contents

1 Introduction 1
1.1 The Java virtual machine . 1
1.2 Tasks of a Java virtual machine . 1
1.3 Motivation . 2
1.4 Project context and activities . 2

2 Overview of MateVM 5
2.1 The virtual machine . 5
2.2 Libraries useful for this project . 6

2.2.1 hs-java . 6
2.2.2 Hoopl . 7
2.2.3 Harpy . 7

3 Front End 9
3.1 Intermediate Language: MateIR . 9

3.1.1 Design of the intermediate language 12
3.1.2 Combinators for MateIR . 14

3.2 Java bytecode to MateIR . 14
3.2.1 Elimination and type analysis of the Java stack 15
3.2.2 Non-empty stack on block boundaries 15

3.3 Hoopl passes . 16
3.3.1 Liveness analysis . 17

3.4 Linearise the graph . 18
3.5 Computing live ranges from liveness information 19
3.6 Linear Scan Register Allocation (LSRA) . 20

4 Back End 25
4.1 How to call native code from Haskell . 25
4.2 Code generation for x86 . 27

4.2.1 Combinators . 28
4.2.2 Emitting IROp (binary operator) . 30
4.2.3 Object- and array layout . 33
4.2.4 Method calls . 34

ix

4.3 Trap handling and code patching . 36
4.4 Exception handling . 38
4.5 Example: A classic Fibonacci implementation 40

5 Run-time environment 45
5.1 Classpool . 45
5.2 Methodpool . 48

5.2.1 Native methods . 48
5.3 Dynamic type checking . 49
5.4 Handling of String literals . 50
5.5 Garbage Collection . 51

6 Pearls 53
6.1 Register allocation and QuickCheck . 53
6.2 Evolution of code patching in MateVM . 54

6.2.1 First generation: C . 54
6.2.2 Second generation: Haskell and pointers 55
6.2.3 Current generation: Patching via the CodeGen-monad 55
6.2.4 Future generation: Trap combinator for the CodeGen-monad 55

7 Results 57
7.1 Benchmarks . 57
7.2 Execution time . 59
7.3 Memory usage . 60

8 Related Work 63
8.1 Kafka: Just-In-Time Compiler for a Functional Language 63
8.2 Lambdachine: A Trace-Based Just-In-Time Compiler for Haskell 63
8.3 JVMs ported to x86 . 64
8.4 Just-In-Time Compiler Techniques . 64

9 Conclusion and Future Work 65

Bibliography 69

x

CHAPTER 1
Introduction

1.1 The Java virtual machine

Instead of emitting native code directly, the Java compiler (javac) generates a so-called class file.
Thus, the application is portable without recompilation for different target architectures.

The class file contains a code section describing methods with a compact representation,
called Java bytecode. The format of the class file and the behaviour of each bytecode instruction
is specified by the JVM specification [LYBB13]. A virtual machine is used to execute such
class files. The idea is, to have a separate virtual machine for each target architecture, that
implements the same semantics for Java bytecode across different machines.

The JVM specification does not specify which implementation technique should be used to
execute bytecode, and therefore offers plenty room for improvements by implementers regarding
optimizations.

For the sake of simplicity, the first JVMs were interpreters. One technique used to optimize
execution of Java applications is just-in-time compilation. That is, a given bytecode sequence
is compiled at run-time to native code. Although initial effort is higher than pure interpretation,
the execution of the method itself is a lot faster.

Interpretation and just-in-time compilation can be mixed too, as done for example in the
HotSpotTM client compiler [KWM+08].

1.2 Tasks of a Java virtual machine

The entry point of the JVM is the main-method of a given class file. It has to execute each
bytecode instruction, including different kinds of method invocation. The JVM is a stack ma-
chine, that is a stack is used for computations. For example, the IADD instruction expects the
summands on the stack and pushes its result on the stack.

Primitive types such as integer or float are supported. There is a special type called
reference which is used to manipulate heap objects—objects are not allocated on the men-

1

tioned stack but on a heap. Although the JVM bytecode is mostly typed, in some cases the type
has to be determined at run-time, e.g. on invokevirtual the receiver method has to be ob-
tained depending on the object type at run-time, since the type of the object type is not known at
compile-time in general—this is also called dynamic dispatch.

Certain bytecode instructions can raise an exception. The JVM has to find the correct handler
for the exception, which depends on the type of the exception and the installed handlers.

Apart from that, the JVM has to look up classes at run-time if required. Also, not directly
included in a JVM, a base library is necessary for executing primitive programs.

1.3 Motivation

Nowadays virtual machines for the Java language are complex software applications [AFG+11,
KWM+08]. Prominent JVMs are implemented in C or C++, some are even implemented with
Java itself using tricky bootstrap mechanism. C is arguably a rather old language and does not
provide much features useful for abstraction. C++ on the other hand is powerful, but complex
itself and sometimes obscure. Haskell, being a high-level language, provides mechanism helpful
for abstraction. It is indeed often used for compiler tasks, such as parsing, in order to demonstrate
the beauty and power of the language.

At first glance, low-level tasks do not fit in the picture of a high-level language: They need
access to raw hardware, such as controlling every bit. But the appearance is deceptive: Haskell,
in the environment of the Glasgow Haskell Compiler (GHC), provides useful features for such
low-level tasks. As Haskell is not widespread, some of those areas are uncovered. The challenge
is to elaborate those caveats when implementing a just-in-time compiler, that indeed requires
low-level interaction.

Compilers are complex and expensive software, which tend to be hard to test and main-
tain. Equipped with Haskell, its powerful abstraction mechanism and tools we expect significant
improvements regarding maintainability, testability and code reusage. Also, with respect to
code quality and safety we expect improvements due to the advanced type system provided by
Haskell.

1.4 Project context and activities

A prototype called MateVM was initiated with Harald Steinlechner. The origin of the name
was inspired by the caffeine-contained drink called Club-Mate, to stay in tradition with other
JVM implementations such as Kaffe or CACAO.

The first commit was 15th March 2012. We evaluated, if it is possible to implement and
apply just-in-time compilation techniques in Haskell. On our first steps we heavily relied on the
Foreign Function Interface provided by GHC and implemented some tricky bits in C. But over
time we were able to move more things into Haskell, resulting in having less than 100 lines of
code in C now.

At the beginning, we decided to choose a simpler scheme for the back end, namely emit
native code directly from Java bytecode, i.e. mapping the Java stack to the x86 stack. After we

2

had certain features implemented, we came up with the current compilation pipeline. For more
details, see Chapter 2.

MateVM is licensed under the GPL3 and is available on GitHub https://github.
com/MateVM. Build instructions are included. Note that the only supported architecture is
x86 at the moment. Harald Steinlechner contributed BöhmGC bindings for Haskell and an ex-
act garbage collector implemented in Haskell [Ste13]. Apart from that, he contributed many
useful thoughts, reviews and code to the implementation of MateVM.

Although we try not to reference to the actual source code directly, we refer to
commit id c1a5c49ec of the git-repository.

3

https://github.com/MateVM
https://github.com/MateVM

CHAPTER 2
Overview of MateVM

MateVM is a just-in-time compiler for Java bytecode. In the current state not all parts of the
JVM specification [LYBB13] are covered, but we are trying to be as accurate as possible when
implementing features.

2.1 The virtual machine

MateVM consists of a compiler and a run-time environment. The execution flow is depicted
in Figure 2.1. The entry point of the virtual machine is the main method of the given program.
After compiling the main method, the generated code is installed by the run-time system and
triggers the execution of that code immediately. On certain points, the native code transfers
the control to the run-time system, which then can take further actions, such as compile a new
method, code patching, allocating memory and so forth. The parts are explained in detail in the
next chapters.

install method

compile new method

main method

native code

co
m

pi
le

r

back end

LSRA

front end

run-time

execute

tricked by trap

Figure 2.1: Execution flow in MateVM

5

Current features of MateVM are:

• different kinds of method invocation (Section 4.2.4)

• notion of lazy class loading (Section 5.1)

• array- and object-creation (Section 4.2.3)

• dynamic type checking (Section 5.3)

• exception handling (Section 4.4)

• linear scan register allocation (Section 3.6)

• efficient code generation for x86 (Section 4.2)

• garbage collection (Section 5.5)

Worth noting, features missing (cf. Chapter 9) to be a real-world Java virtual machine:

• floating point support. However, some preparation are already there and Harpy is able to
emit SSE instructions.

• long primitive type. Again, preparations are there, but this is a “won’t do”-point unless
we can generate code for x86_64.

• the concept of class loaders

• GNU Classpath support

• implementation of the Java Native Interface [Mic03]

• threads and concurrency

• verification of Java bytecode

2.2 Libraries useful for this project

In the Haskell community people contribute applications and libraries to a common place, called
Hackage [Com12]. Fortunately, there are already some useful libraries for compiler engineering,
in particular for this task.

2.2.1 hs-java

hs-java is designed to build and disassemble Java class files, while MateVM only use the
latter functionality. It implements processing of class files according to the JVM specification
in a Haskell idiomatic way. The interface enables us to avoid messing around with details of
the class file format, which can be a time consuming task. For example, hs-java resolves
references into the constant pool.

6

2.2.2 Hoopl

Hoopl [RDPJ10] is a library for data-flow analysis on a basic block basis. Although originally
designed for GHC [oG12] (a static compiler), it turned out to be suitable for MateVM too,
i.e. for applying analysis or transformations on the intermediate representation. Luckily, the
compile-time overhead seems to be low too, therefore matching the requirements of a just-in-
time compiler. Hoopl uses the Chamber-Lerner-Grove algorithm [LGC02] to solve its task.
A consequence is, that the used intermediate language does not require to be in static single
assignment form.

There are two types of passes which can be implemented with Hoopl: forward- and back-
ward passes. Both consists of three components:

Lattice describes the data structure used by the data-flow analysis and the merge function used
on join points in the control flow graph.

Transfer function collects information or the so-called data-flow facts. One can specify for
every intermediate instruction how Hoopl should obtain facts from it. In particular in-
structions closed on the exit (cf. Section 3.1) are interesting: The defined join function for
the lattice has to guarantee that it is possible to reach a fix point with it.

Rewrite function can be used to rewrite the Hoopl-graph supported by the data-flow facts. The
result type is realized with the Maybe1 data type: You can leave the instruction as-is
(Nothing) or replace it with a new graph (denoted by Just ...).

Hoopl itself is responsible for computing a fix point, therefore its actual implementation is not
relevant for the client. In order to use Hoopl as a library, one has to apply some design decisions
to its intermediate language, for example the notion of shapes, see Section 3.1.

2.2.3 Harpy

Harpy enables run-time code generation in Haskell [GK07]. The library exposes the so-called
CodeGen-monad, which enables us to write actual x86 instructions in a style of a domain
specific language2, cf. Listing 2.1. This example generates native code for the Java bytecode in-
struction GETSTATIC, that pushes the value of a static field on the stack.

Consider the type signature in the first line: The function requires a Java instruction, as de-
fined by hs-java. The “result” of the function is a bit weird to understand for non-Haskell user:
It is a so-called monad, which encapsulate a sequence of actions. In this example, the CodeGen-
monad provided by the Harpy-library is used. The CodeGen-monad consists of an environment
(here the type variable e), a state (CompileState) and a return value (here ()3). In the sec-
ond line, pattern-matching is used in order to make a case distinction and to unpack the class
index for the corresponding field.

Then, the local state is consulted, which contains a reference to the class file containing the
compiling method. With that, the address can be requested via getStaticFieldAddr. But

1definition: data Maybe a = Just a | Nothing
2similar to the Intel syntax
3() has a similar meaning in Haskell as void in C. The type is called () and its only constructor is () too.

7

1 emit :: J.Instruction -> CodeGen e CompileState ()
2 emit (GETSTATIC cpidx) = do
3 cls <- classfile <$> getState
4 addr <- liftIO (getStaticFieldAddr cls cpidx)
5 mov eax (Addr addr)
6 push eax
7

8 getStaticFieldAddr :: Class Direct -> Word16 -> IO Word32

Listing 2.1: Example of the DSL provided by Harpy

what means liftIO here? That the expression in parentheses has side-effects. Those side-
effects could be class loading, which in turn allocates memory for static fields and requires to
execute a static initializer of a class4. That is, such an expression has to be explicitly annotated,
otherwise the Haskell compiler does not accept it as valid program as the types do not match.

Finally, the actual operation can be done: a memory access and pushing the result of that
read operation. Note, that the mov- and push-instruction will be written into memory as-is, i.e.
assuming addr = 0xcafebabe this would be:

mov 0xcafebabe eax # AT&T syntax. Note the missing $
push %eax

While emitting instructions within the CodeGen-monad, side-effects are produced to the local
state, e.g. the program counter is incremented from line 5 to line 6.

Note that this example would be a wrong implementation of the lazy class loading require-
ment. In MateVM we address this issue via hardware traps and code patching, see Section 4.3.

4The cls reference only contains the description to the class that has the information about the actual field offset

8

CHAPTER 3
Front End

hs-java

make MateIR graph

liveness analysis (with Hoopl)

linearise graph

linear scan
register allocation

method name + class file

[Java.Instruction]

Graph (MateIR Var)

Graph (MateIR Var)

[Linear (MateIR Var)]

[Linear (MateIR HVarX86)]

Figure 3.1: Stages in the front end pipeline

As already mentioned in Section 1.4, we
moved from a simpler scheme to a more so-
phisticated one.

In Figure 3.1 the current state of the front
end is depicted. After each stage the result-
ing type is denoted. In this chapter we de-
scribe the intermediate language first and then
present each part of the front end in detail.
The main contributions of the intermediate
language are

• a more suitable representation than
Java bytecode in terms of manipulation

• enable usage of Hoopl, which in turn
enables the oppurtunity to develop fur-
ther optimizations easily

• having a register-based representation,
which is more suitable for optimiza-
tions, register allocation and efficient
code generation

3.1 Intermediate Language: MateIR

In Listing 3.1 the definition of the MateIR data type is shown. Generalized algebraic data
types (GADTs) [JWW04] is used, a type extension useful for defining MateIR. Actually, this
is a requirement by Hoopl: Consider the first line, there are three type variables: t, e and x. t

9

is used as one would assume when thinking of a type variable, namely as placeholder for other
types. That is, MateIR is polymorphic regarding t.

But, this is not exactly true for e and x: They are not mentioned anywhere in the definition
of the constructors. Instead, O’s and C’s are everywhere—they are defined like this:

data O = O -- open
data C = C -- closed

So they have one constructor each, with the same name as the type. They are also called phantom
types. Instead having a value associated, they are used to express invariants that are proved by
the type checker. They naming of e and x is not accidentally: e should be an abbreviation for
entry and x for exit. Therefore, e and x denotes if a single instruction is open or closed on the
entry as well for the exit; this is called the shape of an instruction1.

1 data MateIR t e x where
2 IRLabel :: Label -> HandlerMap -> MaybeHandler -> MateIR t C O
3

4 -- dst <- src1 ‘op‘ src2
5 IROp :: OpType -> t -> t -> t -> MateIR t O O
6 IRStore :: RTPool t -> t {-ref-} -> t {-src-} -> MateIR t O O
7 IRLoad :: RTPool t -> t {-ref-} -> t {-dst-} -> MateIR t O O
8 IRMisc1 :: Instruction -> t {-src-} -> MateIR t O O
9 IRMisc2 :: Instruction -> t {-dst-} -> t {-src-} -> MateIR t O O

10 IRPrep :: CallingConv -> [(t, VarType)] -> MateIR t O O
11 IRInvoke :: RTPool t -> Maybe t -> CallType -> MateIR t O O
12 IRPush :: Word8 -> t -> MateIR t O O
13

14 IRJump :: Label -> MateIR t O C
15 IRIfElse :: CMP -> t -> t -> Label -> Label -> MateIR t O C
16 IRExHandler :: [Label] -> MateIR t O C
17 IRSwitch :: t {-src-} -> [(Maybe Int32, Label)] -> MateIR t O C
18 IRReturn :: Maybe t -> MateIR t O C

Listing 3.1: Intermediate representation of MateVM

Taking this further, one will discover the notion of basic blocks: An IRLabel can be the
“entry instruction” of a basic block. That is, the instruction can have several predecessors but
has exactly one successor. Similar, IROp has exactly one predecessor and exactly one successor.
IRSwitch in contrast, has exactly one predecessor and can have several successors.

This probably seems unnecessary complicated on the first sight, but consider building a
graph for MateIR: Blocks can be built up of a certain shape. The type system is told what
shape is expected when building such a block. Then, the type system guarantees that things are

1the notion of shapes also applies for blocks and graphs

10

correct at compile-time. When things are done wrong (e.g., try to pass a graph of the wrong
shape), the type system of Haskell will refuse compilation with a type error.

Consider this type signature of a function from the Hoopl-library:

(<*>) :: (GraphRep g, NonLocal n) => g n e O -> g n O x -> g n e x

where g is a type variable, restricted to be an instance for GraphRep—think of an interface for
a graph data structure. nwould be in our case MateIR, see below for an instance of NonLocal.
The function (<*>) is used to connect two graphs, with a certain restriction: The first being
open on the exit and the second open on the entry. Due to this property, a new graph can
be safely connected preserving the shape of the original entry of the first graph, and exit of the
second graph. The resulting and actual shape does not concern the function (<*>).

In order to gain support for Hoopl, it has to determine what the predecessor or successor
(depending on the shape) of a MateIR-instruction are. This is solved by a type class called
NonLocal which has to be implemented for MateIR, cf. Listing 3.2. Note the elegance of

1 class NonLocal ins where -- defined by Hoopl
2 entryLabel :: ins C x -> Label
3 successors :: ins e C -> [Label]
4

5 instance NonLocal (MateIR Var) where
6 entryLabel (IRLabel l _ _) = l
7 successors (IRJump l) = [l]
8 successors (IRIfElse _ _ _ l1 l2) = [l1, l2]
9 successors (IRExHandler t) = t

10 successors (IRSwitch _ t) = map snd t
11 successors (IRReturn _) = []

Listing 3.2: Definition of NonLocal for MateIR

GADTs here: The type system already knows, that IRLabel is the only instruction where an
implementation is required for entryLabel, as it is the only constructor which is closed on
the entry. For a more detailed explanation look up the Hoopl-paper [RDPJ10].

Let’s consider the first type variable t again: This is the place holder for a type describing an
actual variable or register. First, as shown in Section 3.2, MateIR is equipped with virtual reg-
isters as hardware registers are not relevant yet. A virtual register is an integer annotated with
its computational type2 or a constant of the corresponding type.

However after register allocation, virtual registers should be replaced by hardware registers
of the target CPU architecture, but preserving the graph representation, or, described differently,
a function that has the type signature:

registerAllocation :: Graph (MateIR VReg) e x
-> Graph (MateIR HardwareReg) e x

While this is basically the idea, it is not easily possible to apply the register allocation algorithm
2int, long, float, double or reference as defined in JVM specification [LYBB13, § 2.11.1.]

11

to a graph. Therefore the graph is flattened to a linear representation before doing register allo-
cation, as described in Section 3.4.

3.1.1 Design of the intermediate language

The pseudo instruction IRLabel defines the beginning of a basic block. It contains informa-
tion about relevant exception handlers for this block and if this block is a handler itself. This
information is valid for the whole block, as it is ensured that basic blocks are split on exception
region boundaries.

Fall through instructions (shape O O)
IROp is used to represent a binary operation, e.g. addition, which has two registers as in-
put (“source”) and one register as output (“destination”). The representation is therefore a
register machine. In order to achieve this, the computation stack of the Java bytecode has to
be eliminated (Section 3.2).

For IRStore and IRLoad respectively, a further element with the type RTPool t is
introduced, which is a reference to the run-time constant pool of the class of the method being
compiled: The definition in Listing 3.3 reveals, that some constructors need a register (denoted

1 data RTPool t
2 = RTPool Word16 -- e.g. field of objects
3 | RTPoolCall Word16 GCPoint -- method invoc. or ‘new’
4 | RTArrayNew Word8 MateObjType GCPoint t
5 | RTArrayIndex t VarType
6 | RTArrayLength

Listing 3.3: Definition of RTPool, a reference to the run-time constant pool

by the type variable t). For instance, RTArrayNew is used for allocating a new array. The size
could be determined by a constant or by a register (whether the size is known at compile-time of
the Java program or calculated at run-time). IRStore expects a reference to a run-time object
and a value, which should be stored to it. Depending on the run-time object, the destination is
computed differently. For example, assume a store-operation to a field, then the corresponding
offset has to be obtained from the run-time system (see Section 5.1). IRLoad is similar, but
loads a value from an object into a register.

IRMisc1 and IRMisc2 forwards an Instruction (which is a Java bytecode instruc-
tion) through the pipeline to the back end. For example INSTANCEOF is such an instruction,
that should be handled by the back end directly. Though, it expects an object reference on the
stack and pushes the result as a boolean, that is, it has a source register and a destination register.
Therefore the register allocator has to take care of it.

IRPrep, IRInvoke and IRPush are used for executing a method call. IRPrep contains
a list of registers needed to be saved on the stack before executing a call. This is obviously
important for the back end, but also important for the garbage collector, see Section 4.2.4.2.

12

CallingConv denotes if the registers should be saved or restored. IRPush “pushes” argu-
ments for method invocations on the stack. This notion is actually convenient for the calling
convention used for integers on x86. However, IRPush also contains the order of the pa-
rameter and thus it is easily possible to implement other calling conventions in the back end.
IRInvoke does the actual method invocation: It has a reference to the run-time constant pool
to resolve the target method. Also, it has maybe a return register, which has to be allocated if
used—this is represented by the type Maybe t. Last, it has a description what type of call it is:
static, special, virtual or interface.

Note the type regarding entry and exit of IRInvoke: It does not end a basic block, but it
is considered as fall through instruction. We consider a method invocation as an operation, that
does not change the control flow of a program (i.e. what O O actually says). However, Java
has exceptions which can change the control flow of the caller. But, for easier processing the
intermediate language, we do not want to map exception behaviour to the intermediate language
and ignore exceptions on that level. In fact, the control flow graph would explode, since many
instructions could trigger a runtime exception.

Instructions changing the control flow (shape O C)
IRJump is used for two scenarios: First for GOTO and second on block splitting. The latter case
occurs when an instruction is a branch target or it is the start of a try block. Therefore, IRJump
obviously just contains one label.

IRIfElse is the classical operation of the well-known conditional construct. The Java
bytecode has several encodings for this operation, which can be all described by IRIfElse.
This instruction contains:

CMP this data type is defined in hs-java and encodes the wanted type of comparison, e.g.
equals or less than.

two registers the two operands on that the comparison is applied to.

two labels referring the two possible target blocks, depending on the result of the comparison.

IRExHandler is a fake instruction, which is just used to reference exception handlers.
This is needed, since handler blocks are not refered by any jump or whatsoever in the non-exceptional
case, hence Hoopl would consider to remove such a basic block, cf. Section 3.4.

In order to implement the Java bytecode instructions TABLESWITCH and LOOKUPSWITCH,
IRSwitch is used. It contains a register, which is used for comparison, and a list with values
and its target block (denoted as label). Note the type Maybe of the value in the tuple: While
everything with a concrete value is denoted with Just ..., the default case of the switch
statement is embodied by Nothing, but still having a label assigned.

IRReturn maybe has a return value (again, denoted by Maybe t), but has not any succes-
sors and therefore contains no label in its constructor, despite being an instruction of shape O C.

Miscellaneous fact about MateIR: The actual memory encoding is left to the Haskell compiler,
which contributes to further abstraction.

13

3.1.2 Combinators for MateIR

Often a situation requires to apply a certain manipulation to an instruction. The following func-
tions are introduced for this purpose:

1. get a list of registers which are used by the instruction

2. get a list of registers which are defined by the instruction

3. map all registers of type a of this instruction to a register of type b

For the last case, consider the example in Listing 3.4: Every virtual register is mapped3 to the
hardware register eax, and that for each instruction of the graph.

Those combinators are used in liveness analysis (see Section 3.3.1) or in the register allocator
(see Section 3.6). It enables to write simple and readable code.

1 mapIR :: (t -> r) -> MateIR t e x -> MateIR r e x
2

3 everythingEax :: [MateIR Var O O] -> [MateIR HVarX86 O O]
4 everythingEax instructions =
5 map (mapIR (_ -> HIReg eax)) instructions

Listing 3.4: Assign each virtual register to eax with mapIR

3.2 Java bytecode to MateIR

In order to gain a list of Java bytecode instructions, the code section for the corresponding
method has to be extracted from the class file. This representation should be transformed to a
graph containing MateIR-instructions. In order to identify basic blocks, two passes are needed
over the Java bytecode stream:

1. resolve each jump offset of the given code segment. This “preparation” pass is necessary
to resolve backward references, e.g. for some kind of loops. Also, exception handlers and
try blocks4 are marked as block boundaries in this pass.

2. building basic blocks by translating Java bytecode instructions to MateIR instructions.
Since block boundaries are known from the first pass, basic blocks can be easily deter-
mined.

3in fact it does not matter what the type is, as it is ignored anyways (denoted by _)
4i.e. that is visible from the bytecode level

14

3.2.1 Elimination and type analysis of the Java stack

The stack representation should be translated to a register based representation, therefore the
stack temporaries have to be mapped to registers somehow.

Although many Java bytecode instructions are typed (e.g. IADD), some are not, for example
DUP and POP. However, this would be a valuable information for the back end, for instance the
code generator has to know the byte width of the element to duplicate.

BIPUSH 22
DUP
IADD

Figure 3.2: Java
bytecode snippet

Both problems can be tackled in one step: When an instruction like
BIPUSH is encountered, the constant (as a register) and its type (in this
case int) is pushed on a simulation stack. On an operation, e.g. IADD,
two registers are popped from the simulation stack and create a new vir-
tual register to store the result of the operation. The destination register is
pushed to the simulation stack, so it is usable for further instructions. As a
result, IROp instruction is equipped with the mentioned registers.

Consider Figure 3.2 for a short example. Listing 3.5 shows how the instructions are handled
by the translator. The stack effect and result is depicted in Listing 3.6.

{- stack effect:
stack before IADD: (constant 22) (constant 22)
stack after IADD: (virtual reg 1) -}

IROp Add (VReg 1 JInt) (JIntValue 22) (JIntValue 22)

Listing 3.6: Stack effect and result as MateIR of Figure 3.2

The implementation for apop, apush and newvar is trivial: The so-called State-monad
is used in order to emulate imperative computation. The state consists of a Haskell list (repre-
senting the stack) and a counter for generating new virtual registers, as a virtual register is
denoted by an unique identifier and its type. This example is of course simplified, for the actual
implementation consult ./Compiler/Mate/Frontend/MkGraph.hs of the source code.

Note that this is some kind of verifier for free here: Every register pair is type checked if
it has the expected type, e.g. in the example above both parameters are checked if they match
regarding their types. If they do not match, the given bytecode is not valid according to the JVM
specification and the execution of the virtual machine is aborted.

3.2.2 Non-empty stack on block boundaries

Occasionally it happens that the Java stack is not empty on a basic block boundary. We chose
a similar solution as in [Kra98, Section 3.2]: When the stack contains elements on boundaries,
those elements are popped from the stack until it is empty. For every possible basic block succes-
sor, the mentioned elements are stored. When processing such a successor block, the elements
are pushed right at the beginning of the block to the simulation stack.

15

1 data SimulationStack = SimulationStack
2 { vregCounter :: Integer
3 , simStack :: [(Integer, VarType)] }
4

5 translate :: Instruction -> State SimulationStack [MateIR O O]
6 translate (BIPUSH w16) = do
7 apush (JIntValue w16)
8 return []
9

10 translate DUP = do
11 var <- apop
12 dup <- newvar (varType var)
13 apush var
14 apush dup
15 -- move content of var into a fresh register
16 return [IROp Add dup var (nullConst (varType var))]
17

18 translate IADD = do
19 op1 <- apop
20 op2 <- apop
21 when (typeOf op1 /= JInt || typeOf op2 /= typeOf op1) $
22 error "type mismatch"
23 nv <- newvar JInt
24 apush nv
25 return [IROp Add nv op1 op2]
26

27 run :: [MateIR Var O O]
28 run = evalState translate (SimulationStack 0 []) [BIPUSH 22, DUP, IADD]

Listing 3.5: Simulating stack effects

3.3 Hoopl passes

Due to the special crafting of MateIR with GADTs, data flow passes are ready to be imple-
mented in Hoopl. Data flow problems are common in compiler construction and there are plenty
of them ready to implement. But, when implementing a just-in-time compiler, requirements
are different to a static compiler with respect to compile-time. While being able to use Hoopl
in MateVM, it cannot be used at its full glance yet, in order to meet those requirements. In
the future, however, thinking of recompilation, Hoopl will certainly pay off, i.e. compiling hot
methods with more expensive passes resulting in better code.

16

3.3.1 Liveness analysis

A well known analysis is the liveness analysis of variables: The used data structure is a set of
virtual registers and the merge operation is the union operator. The analysis is a backward
pass and the bottom is an empty set. Every instruction is inspected for two aspects, consider the
following example:

IROp Add (VReg 10 JInt) (VReg 5 JInt) (VReg 4 JInt)

gen-set variables are used by it (the virtual registers 5 and 4)

kill-set variables are defined by it (virtual register 10)

The transfer function is depicted in Listing 3.7. Due to the application of the combinators from
Section 3.1.2, the code is short. While instructions of the shape C O and O O are handled in
the same manner, O C needs special care: On such instructions it is possible that several control
flows merge together. Since the liveness analysis is backwards, the facts are simply looked up for
every successor (via the successors function from the NonLocal type class, defined in Sec-
tion 3.1) and apply the union operator via the well-known higher-order function fold [Wik12].
The liveness information will be used as a basis for three tasks in MateVM:

• Computing live ranges, which are designated as input for register allocation (see Sec-
tion 3.6).

• Dead-code elimination. This optimization would be free, as liveness analysis is needed
anyway for register allocation. However, the JVM specification has some pitfalls; consider
Listing 3.8: Although a is dead in this example (as would be b then), a and the division
cannot be deleted, because it would not trigger the arithmetic exception anymore. That
is, the JVM specification [LYBB13, § 2.10.] requires precise exceptions regarding the
bytecode representation. Of course one can carefully consider all exceptional cases, but
this can be cumbersome in context of lazy class loading and probably other things, hence
dead-code elimination is disabled at the moment.

However, dead assignments have some side effects in the current implementation: The
live range for a dead variable cannot be computed as it has no single use. Therefore, the
register allocator will never assign a register. In such cases, the unassigned register is
mapped to a spill location on the stack. Thus, dead variables do not consume valuable
hardware registers at least.

• Liveness information is used for defining garbage collection points at certain places in the
generated code, see Section 4.2.4.2. Despite having a bit different requirement, the same
information could be adapted to be used for replacement points [SKT07, Section 4.3] too
in the future.

17

1 type LiveSet = Set VirtualReg
2

3 bot :: LiveSet
4 bot = Set.empty
5

6 factLabel :: FactBase LiveSet -> Label -> LiveSet
7 factLabel f l = fromMaybe bot (lookupFact l f)
8

9 varsIR’ :: forall e x. MateIR Var e x -> ([Var], [Var])
10 varsIR’ ins = (defIR ins, useIR ins)
11

12 livenessTransfer :: BwdTransfer (MateIR Var) LiveSet
13 livenessTransfer = mkBTransfer3 liveCO liveOO liveOC
14 where
15 liveCO ins f = factMerge f (varsIR’ ins)
16 liveOO ins f = factMerge f (varsIR’ ins)
17 liveOC ins f = factMerge facts (varsIR’ ins)
18 where
19 facts = foldl Set.union bot
20 (map (factLabel f) (successors ins))
21

22 addVar :: Var -> LiveSet -> LiveSet
23 addVar (VReg v) f = Set.insert v f
24 addVar _ f = f
25

26 removeVar :: Var -> LiveSet -> LiveSet
27 removeVar (VReg v) f = Set.delete v f
28 removeVar _ f = f
29

30 factMerge :: LiveSet -> ([Var], [Var]) -> LiveSet
31 factMerge f (defs, uses) =
32 foldr removeVar (foldr addVar f uses) defs

Listing 3.7: Transferfunction for the liveness pass

3.4 Linearise the graph

For further processing, namely register allocation and code generation, a linearised represen-
tation is useful. Hoopl provides some helpers to do this, however there is a problem with the
type system: Lists of this kind cannot be built

[IRPush 1 (VReg 1 JInt), IRJump (Label 2)]

as they have a different shape (O O and O C), so the type system refuses to compile.

18

1 public static void main(String []args) {
2 int b = 1234;
3 try {
4 int a = b / 0;
5 System.out.printf("goodbye\n");
6 } catch (Exception _) {
7 System.out.printf("div / 0\n");
8 }
9 }

Listing 3.8: Eliminating a would lead to wrong behaviour according to the JVM specification

A simple wrapper data type can be defined, see Listing 3.9. Again, LinearIns is poly-

1 data LinearIns t
2 = Fst (MateIR t C O)
3 | Mid (MateIR t O O)
4 | Lst (MateIR t O C)

Listing 3.9: Linear representation of MateIR

morphic regarding the used type for registers like MateIR is. Now, the example from above
can be represented as a list:

[Mid (IRPush 1 (VReg 1 JInt)), Lst (IRJump (Label 2))]

Basic blocks of exception handlers
Usually a basic block which is a part of an exception handler will never be referenced by an
instruction of the non-exceptional control flow. The problem is depicted in Figure 3.3. Hoopl
is designed to remove unused blocks, as this can be a side-effect of an optimization—think of
constant folding, which enables to evaluate an expression in an if-statement at compile-time.
Hence, it must be ensured that exception handler blocks will not be removed on flattening the
control flow graph. In Section 3.1, the pseudo instruction IRExHandler is introduced, which
is used to reference all exception handlers at the beginning of a method.

3.5 Computing live ranges from liveness information

After linearising the Hoopl-graph, live ranges can be computed from the liveness information for
each instruction. In fact, the actual instruction is ignored and the liveness information is taken
for this task, but the sequence must be preserved though. In order to enable fast access to needed
information in the linear scan algorithm, the data structure in Listing 3.10 is used. PC is an
unique identifier for each MateIR instruction in an ascending manner. In LiveStart every
program counter is mapped to a list of virtual registers which are defined at this instruction. On
the other hand, the last use of every virtual register is stored in LiveEnd.

19

public static void main(String []args) {

try {

int a = 5 / 0;

} catch (Exception _) {

System.out.println("bye");

}

}

(a) Java source code

RETURN

ICONST 5

ICONST 0

IDIV

ISTORE 1

GOTO

ASTORE 1

GETSTATIC #3

LDC #4

INVOKEVIRTUAL #5

GOTO

entry point

(b) Control flow graph

public static void main(java.lang.String[]);

Code:

0: iconst_5

1: iconst_0

2: idiv

3: istore_1

4: goto 16

7: astore_1

8: getstatic #3; //Field System.out

11: ldc #4; //String bye

13: invokevirtual #5; //Method println

16: return

Exception table:

from to target type

0 4 7 Class java/lang/Exception

(c) Bytecode

Figure 3.3: Illustration of an unreferenced exception handler block

1 type PC = Int
2

3 type LiveStart = M.Map PC [VirtualReg]
4 type LiveEnd = M.Map VirtualReg PC
5

6 data LiveRanges = LiveRanges LiveStart LiveEnd

Listing 3.10: Data structure to represent live ranges of registers in a method

The implementation is a single pass over the liveness information, adding information to the
map on each instruction in the input list.

3.6 Linear Scan Register Allocation (LSRA)

LSRA [PS99] enables register allocation in one linear pass over the instructions, in contrast to
more sophisticated algorithms e.g. graph coloring. Since LSRA is linear, it enables fast register
allocation and therefore is suitable for a just-in-time compiler.

We implemented the algorithm presented in [PS99], see Listing 3.11. The data structures for
liverangeStarts and liverangeEnds are given in Listing 3.10. The algorithm iterates
over the computed live ranges of the instructions, where each instruction has a virtual program
counter assigned.

20

1 lsra = do
2 for [0 .. lastPC] $ \pc -> do
3 case pc ‘lookup‘ liverangeStarts of
4 Nothing -> return ()
5 Just newregs -> do
6 freeRegs pc
7 for newregs $ \reg -> do
8 if hardwareregAvailable
9 then assignHWReg to reg

10 else spillReg reg
11 collect information for gc points
12

13 freeRegs pc = do
14 for activeRegs $ \reg -> do
15 when ((liverangeEnds ! reg) < pc) $ do
16 delete from activeRegs
17 add to available hardware regs
18

19 spillReg reg = do
20 if some assigned HWReg has a longer live range
21 then spill that reg and assign freed HWReg to reg
22 else spill reg

Listing 3.11: Algorithm of LSRA (pseudocode)

If there is at least one new register, the active set of registers is considered first and registers
are removed if their live range has passed (freeRegs). After that, registers are assigned in no
certain order to hardware registers. If no hardware register is available, the register is spilled to
the stack.

However, registers with shorter live ranges are prioritized opposed to registers with long
live ranges. Therefore, before doing the actual spill, it is checked if a hardware register is
assigned to a register having a lower priority than the current register. If so, assignments are
swapped: The low-priority register is spilled and the now available hardware register is assigned
to the current register with the shorter live range. This results in much lesser spills overall, as
registers with high register pressure are more likely to get spilled.

As our target architecture is x86, ecx, edx, ebx, esi and edi are used as initial pool of
available hardware registers. eax is reserved as a scratch register and used for passing a return
value in the calling convention. esp and ebp are used for stack operations, hence they are
not available to the register allocator. Readers who are familiar with the x86 architectures will
remember that there are instructions which clobber certain hardware registers, for example div
clobbers ebx and eax. We considered two solutions to this problem:

• integrate support for pre colored registers in the register allocator, and annotate each in-

21

termediate instruction that could clobber hardware registers (hence requires knowledge
about the code generator in the front end)

• save registers on the stack (or somewhere else) before emitting the instruction clobbering
certain registers, in the code generator

We decided to use the latter approach, since the first one would be only required for x86 and
we would like to move on to another architecture in the future, and therefore avoid ugly design
decisions. Thus, the problem is moved to the code generator, cf. Section 4.2.1, which is x86-
specific anyway.

While we were developing the new front end, LSRA was not implemented yet. Instead,
register allocation was done in a very simple way: Just assign each register in sequence to
virtual registers. After all hardware registers are assigned, continue with spills on the stack and
ignore any information about liveness of registers. Compared to the temporary approach, the
presented way of LSRA above does a good job even on x86 with few registers. In fact, a spill
occurs rarely.

Instead improving LSRA with respect to live range splitting [WM05], we think that the orig-
inal problem should be eliminated in the first place: Avoiding register duplication, i.e. suppress
move instructions where possible. One approach would be register coalescing before liveness
analysis and register allocation, but a better solution would be to delay the duplication decision
while transforming Java bytecode to MateIR (Section 3.2), as done in [Kra98].

Pre-assigned registers
Some virtual registers have a special purpose, such as arguments in a method. Those registers
are not assigned by the register allocator, but are pre-colored. For instance an int return value
of a method will be always assigned to eax, as this is defined by the calling convention (cf.
Section 4.2.4.1).

The module described in Section 3.2 is responsible for creating new virtual registers. Since
a virtual register is defined by a plain integer (and its type), ranges with special meaning are
defined in order to have a portable design across different target architectures, see Table 3.1.
“locals” are registers that are local to the method, which are also visible at Java bytecode level.

description range
locals 1–49999
temporary 50000–99998
return (int) 99999
return (float) 100000
arguments (int) 200000–299999
arguments (float) 300000–599999
block interfaces 600000–∞

Table 3.1: Ranges of virtual registers

“temporary” registers are generated by the stack simulation for different purposes. Both registers

22

have their type encoded in the data type of the virtual registers. The next groups are designated
to their type, since it allows easier handling: E.g. on int parameters each register is mapped to
its right position on the stack (think of the x86 calling conventions), in order to avoid mixing it
with float parameters in the first place. This behaviour is functional for every other popular
architecture too, because they separate integer registers from floating-point registers.

Registers in the group “block interfaces” belongs to basic block boundaries, as explained in
Section 3.2.2.

The knowledge to which group a virtual register belongs, can be useful for Hoopl-passes
too, e.g. registers of the block interface group can play a critical role in terms of optimizations.

Admittedly this design decision is more like a hack and is not really Haskell idiomatic
(that is, defining an own data type for that purpose). Furthermore, although the ranges are
big and should be sufficient for any real-life application, it does not feel like a clean solution. A
redesign of this implementation should be considered.

23

CHAPTER 4
Back End

In this chapter we present the architecture specific back end. First, we give a short introduction of
how to handle native code in Haskell. Then we present the parts of the code generator designed
for x86.

4.1 How to call native code from Haskell

Until now, the presented methods are all solvable in pure Haskell without interaction with raw
memory or foreign functions. Since the back end has to generate native code and execute it, we
have to leave the beautiful and pure world of Haskell and have to mess around with low-level
details of the target architecture x86.

In Listing 4.1 a small example is shown. In line 26 actions of mNativeAdd are executed,
which is encapsulated in a CodeGen-monad. Basically, it allocates a code buffer and emits the
given instructions to that buffer. The effect returns the entry address of the code buffer and the
disassembly.

In line 27 the main-function calls into the code buffer, namely by using code_int defined
in line 12. For the definition in line 12, a GHC extension for the foreign function interface (FFI)
is needed. With FFI imported functions of different languages (e.g. C) can be used by Haskell
code. This is usually done statically, i.e. the job is delegated to the linker at compile-time. But
in certain situations, the address is not available to the compiler or linker. FFI provides the
foreign import dynamic primitive for that task [FLMPJ99, Section 3.4]. With that, a
function can be defined that gets a function pointer of type BinaryOperation, which in
turn returns a function of the same type but without the FunPtr-wrapper. It enables to use
FFI-functions as normal Haskell functions, as done in line 27.

After the result of the addition is printed by the program, it also dumps the disassembly of
the generated machine code for demonstration purpose. Assuming the example is stored in the
file harpy.hs, one can compile1 and execute the Haskell program as depicted in Listing 4.2.

1harpy must be installed via cabal install harpy

25

1 {-# LANGUAGE ForeignFunctionInterface #-}
2 module Main where
3 import Foreign
4 import Foreign.C.Types
5 import Control.Applicative
6 import Harpy
7 import Harpy.X86Disassembler
8 import Text.Printf
9

10 type BinaryOperation = CInt -> CInt -> IO CInt
11

12 foreign import ccall "dynamic"
13 call_int :: FunPtr BinaryOperation -> BinaryOperation
14

15 mNativeAdd :: CodeGen () () (FunPtr BinaryOperation, [Instruction])
16 mNativeAdd = do
17 mov eax (Disp 0x4, esp)
18 add eax (Disp 0x8, esp)
19 ret
20 fp <- castPtrToFunPtr <$> getEntryPoint
21 d <- disassemble
22 return (fp, d)
23

24 main :: IO ()
25 main = do
26 (_, Right (nativeAdd, disasm)) <- runCodeGen mNativeAdd () ()
27 result <- (call_int nativeAdd) 5 10
28 printf "5 + 10 = %d\n" (fromIntegral result :: Word32)
29 mapM_ (printf "%s\n" . showAtt) disasm

Listing 4.1: How to call into a memory blob containing code

Note, that the type system relies on the given type signature of BinaryOperation and cannot
verify its correctness. If a native function is called which does not match the type signature, the
run-time behaviour is undefined.

Issues with the foreign function interface
Apparently, a few Haskell programmers works on such a low level:

• While we switched to a new environment (Ubuntu 10.04 to 12.04) we encountered strange
problems when executing code from a code buffer at run-time [Ove12b]. While we were
not able to identify the original problem, we were able to work around the issue us-
ing mprotect(3) and declare the code buffer explicitly as executable memory region.

26

$ ghc harpy.hs
[1 of 1] Compiling Main (harpy.hs, harpy.o)
Linking harpy ...
$./harpy
5 + 10 = 15
0914c000 8b 44 24 04 movl 4(%esp),%eax
0914c004 03 44 24 08 addl 8(%esp),%eax
0914c008 c3

Listing 4.2: Compile and execute the example from Listing 4.1

• GHCi, the interactive mode provided by GHC, has problems using FFI. Our question re-
garding this problem is still unanswered on the popular stack overflow platform [Ove12c].
However, recently the GHC team disabled the custom run-time system-linker by default
and relies now on the system linker [Mar12], which could among others solve some issues
regarding GHCi.

We have shown in this section how a program can switch from Haskell world into native code
and return regularly. However, in the situation of a just-in-time compiler, the execution of a
program should be interruptible, that is get back to the run-time system (Haskell world) from
native code, for example to patch small junks of native code or handle exceptions. MateVM
solves that by using hardware traps, as presented in Section 4.3.

4.2 Code generation for x86

The function for emitting native code gets a list of type

[LinearIns HVarX86]

where HVarX86 indicates that each register of an instruction is already assigned to a hardware
register.

For emitting each MateIR-instruction, pattern-matching is used. IRLabel is the only
instruction being of shape O O. The CodeGen-monad provided by Harpy offers a label mech-
anism, similar to the labels known from assembly languages. Thus, for each IRLabel a new
label is defined in Harpy. Also, the definition of that label is stored in the state of the CodeGen-
monad.

Instructions of the shape O C heavily rely on the label mechanism by the CodeGen-monad.
For IRIfElse the given registers are compared and the comparison flag from hs-java is
mapped to the x86 architecture. Handling of IRSwitch is shown in Listing 4.3. For simplicity
we did not consider to implement a jump table, but generating a series of cmp-instructions. For
each je- and jmp-instruction respectively, a label obtained from the state of the CodeGen-
monad is provided. The label contained in the table is actually a label defined in Hoopl-
context and therefore something different. Hence, a lookup-table (lmap) is used where each
Hoopl-label is mapped to a label in the sense of Harpy.

27

Note, that a label can be created in the CodeGen-monad, but can be defined later on. That
is, Harpy is able to resolve unknown labels afterwards and patches them correctly.

Details about instructions of shape O O are presented in the remaining section.

1 IRSwitch src table -> do
2 r2r eax src
3 forM_ table $ \x -> case x of
4 (Just val, label) -> do cmp eax (i32Tow32 val)
5 je (lmap M.! label)
6 -- "Nothing" is always the last entry in the table
7 (Nothing, label) -> jmp (lmap M.! label)

Listing 4.3: Code generation for IRSwitch

4.2.1 Combinators

Haskell offers various opportunities to eliminate or at least minimize repetitive tasks. Often the
situation occurs, that a register of type HVarX86 has to be moved to a scratch register, mostly
being eax. However, HVarX86 is defined like this:

data HVarX86 = HIReg Reg32
| HIConstant Int32
| SpillIReg Disp

that is, mov defined by Harpy cannot be used in this context, but a case distinction would be
necessary for each constructor. In order to simplify things for the scratch register eax, the
following function would be appropriate:

hvar2eax :: HVarX86 -> CodeGen s e ()

Then, a function to copy back the content of eax to a register of type HVarX86 would be
convenient too.

In order to generalize that task (and avoid implementing helpers for each combination), a
type class RegisterToRegister2 is introduced. It consists of only one function r2r, see
Listing 4.4. An instance for each useful combination is defined, e.g. consider the example in
Listing 4.3 again: As the incarnation of src is not known (without looking at the constructor),
r2r is used in order to move the content of src to the scratch register eax.

While we would be certainly able to optimize things, i.e. if src is a hardware register, we
argue with better readability here though3.

2this definition requires the MultiParamTypeClasses extension
3and the fact, that nowadays x86-processors optimize such cases anyway

28

1 class RegisterToRegister a b where
2 r2r :: a -> b -> CodeGen e s ()
3

4 instance RegisterToRegister HVarX86 Word32 where
5 r2r (HIReg reg) src = mov reg src
6 r2r (SpillIReg disp) src = mov (disp, ebp) src
7 r2r i _ = error $ "r2r HVarX86 Word32: " ++ show i
8

9 instance RegisterToRegister HVarX86 Reg32 where
10 r2r (HIReg reg) src = mov reg src
11 r2r (SpillIReg disp) src = mov (disp, ebp) src
12 r2r i _ = error $ "r2r HVarX86 Reg32: " ++ show i
13

14 instance RegisterToRegister Reg32 HVarX86 where
15 r2r dst (HIReg reg) = mov dst reg
16 r2r dst (SpillIReg disp) = mov dst (disp, ebp)
17 r2r dst (HIConstant i32) = mov dst (i32Tow32 i32)

Listing 4.4: Type class RegisterToRegister

Free a hardware register for a region
Consider code generation for multiplication, the mul-instruction of x86 clobbers certain reg-
isters. The register allocator does not respect this fact (cf. Section 3.6), hence the problem is
delayed to the code generator. In order to address this issue, the combinator freeRegFor is
introduced and its definition is listed in Listing 4.5. freeRegFor gets a hardware register
(Reg32). For an usage example see Listing 4.7 on Page 32.

1 freeRegFor :: Reg32 -> HVarX86 -> CodeGen e s r -> CodeGen e s r
2 freeRegFor r32 dst body = do
3 let isNotDst = case dst of
4 HIReg dst’ -> dst’ /= r32
5 _ -> True
6 push r32 -- store hardware register on the stack
7 res <- body -- execute given actions
8 if isNotDst then pop r32 -- restore hardware register
9 else add esp (4 :: Word32) -- or delete backup entry

10 return res

Listing 4.5: Free a hardware register for a certain region

29

4.2.2 Emitting IROp (binary operator)

For integer operations, the JVM specification [LYBB13, § 2.11.1.] defines some binary operators
(cf. Table 4.1). The unary operator INEG can be substituted by ISUB. While one would assume
to use the same pattern to emit code for binary operations, this is not possible with x86: For
example, all shift instructions assume the amount of bits to shift to be in the register ecx.
Therefore, the instructions are separated into groups in order to avoid code duplication, see
Table 4.1.

Operation default shift mul div
add X
sub X
mul X
div X
rem X
and X
or X
xor X
shr X
sar X
sal X

Table 4.1: Grouping of binary operators, respecting x86 quirks

1 type DefaultOp = forall a b.
2 (Add a b, Sub a b, And a b, Or a b, Xor a b) =>
3 a -> b -> forall e s. CodeGen e s ()
4

5 gd :: DefaultOp -> HVarX86 -> HVarX86 -> HVarX86 -> CodeGen e s ()
6 gd opx dst src1 src2 = do
7 r2r eax src2
8 case src1 of
9 HIConstant c -> opx eax (i32Tow32 c)

10 HIReg r -> opx eax r
11 SpillIReg d -> opx eax (d, ebp)
12 r2r dst eax

Listing 4.6: Emitting code for the default group

Emitting code for the default group is rather easy, see Listing 4.6. The operation is given as
a function opx, the destination register and both source registers as HVarX86. For readability,
the presented combinator r2r is used to move the content of the second source register into the
scratch register eax. For the first source a case distinction has to be done in order to unpack

30

needed information, where also the given operation is emitted with its arguments. After that, the
result is stored to the destination, again by using r2r.

Admittedly the type signature is quite hard to understand. It requires knowledge about:

1. how Harpy defines instructions on a type level

2. RankNTypes, an extension to the type system of Haskell

Harpy defines instruction via type classes in order to be able to reflect the different use scenario
of x86-instructions to the programmer. For example, consider the type signature of add:

add :: Add a b => a -> b -> CodeGen e s ()

where Add4 is a type class, required to be implemented for the type variables a and b in order
to use the function add. As an example consider

add eax ebx -- a = Reg32, b = Reg32
add eax (Disp 8, ebp) -- a = Reg32, b = (Disp, Reg32)

That is, an instance has to be defined for the type class Add for each type pair (a, b) if it should be
usable from the CodeGen-monad. Given that, it is a similar pattern as for
Register2Register. This explains the type class constraint in DefaultOp: It has to
be ensured on a type level, that each pair of types is defined for the used instructions. Also, this
determines the requirement, that all possible instructions in this groups have to implement the
same kind of addressing modes in a type safe way. More generally, this concept is also called a
class constraint in Haskell.

RankNTypes
In Haskell98 each polymorphic parameter is unified with the complete function it occurs in i.e.
they are universally quantified at top level. Consider the following example:

foo :: (a -> a) -> (Char, Bool)
foo f = (f ’c’, f True)

When the type parameter a is instantiated by the type checker it must conform to all expressions
the parameter occurs in. Therefore a cannot be Char and Bool at the same time.

4Haskell is case sensitive, whereas identifiers beginning with upper case denotes a type, type class or constructor

31

A type extension, called Higher-Ranked-Types or RankNTypes [VWJ08] lifts this limi-
tation and permits universal quantifiers to occur nested within type-expressions, but requires
explicit type annotations. The example now writes:

foo :: (forall . (a -> a)) -> (Char, Bool)
foo f = (f ’c’, f True)

A function matching the requirements of f in foo is for example id:

id :: forall a. a -> a
id x = x
> foo id
(’c’, True)

Now back to Listing 4.6 (Page 30): opx is used in different contexts, namely:

• (Reg32, Word32)

• (Reg32, Reg32)

• (Reg32, (Disp, Reg32))

Therefore, there are three possible incarnations of opx regarding the type. I.e., opx has three
different ranks, or more general, a higher rank. This feature is not available in Haskell98, and
therefore requires to enable the RankNTypes extension. forall also works on type class
constraints as it is done in DefaultOp.

Other groups
Another example is presented in Listing 4.7, emitting code for shift instructions. The combi-
nators r2r and freeRegFor are used. The remaining groups have a similar implementation,
while respecting the requirements of the x86 architecture.

1 gs :: (forall a b. (Shr a b, Sar a b, Sal a b)
2 => a -> b -> CodeGen e s ())
3 -> HVarX86 -> HVarX86 -> HVarX86 -> CodeGen e s ()
4 gs so dst src1 src2 = do
5 freeRegFor ecx dst $ do
6 r2r eax src2
7 r2r ecx src1
8 so eax cl
9 r2r dst eax

Listing 4.7: Emitting code for the shift group

32

4.2.3 Object- and array layout

For creating objects the layout of an object has to be considered. In Figure 4.1 the layout is
depicted, also with its relationship to the method table and interface method table. In order to
create an object

• the object size (that is, the amount of fields) has to be requested from the run-time system

• emit a call to the memory management unit to allocate memory.

More details about how offsets are generated are discussed in Section 5.1. Allocating memory

Object Layout
(per object)

Method table
(per class)

Interface method table
(per class)

this mtable-ptr

GC data

field1

field2

. . .

fieldn

itable-ptr

method1

method2

. . .

methodn

code1

code2

coden

imethod1

. . .

imethodn

Figure 4.1: Memory layout of an object

from the run-time system is guarded by a trap (see Section 4.3), since it could trigger a lazy class
loading event.

The memory layout of an array is shown in Figure 4.2. Although it is not a Java object, it
contains a magic number at the position of the mtable-ptr field, in order to be recognizable
as array by the garbage collector. There are two different magic numbers defined, since there
are arrays for primitives and references. For the latter one, the garbage collector has to follow
its references.

array[] 0x1228babe GC data field1 field2 . . . fieldn

Figure 4.2: Memory layout of an array

Requesting memory from the run-time system
On creating an array or an object, memory has to be allocated. The memory manager needs to
know the base pointer and the instruction pointer of the caller, in order to do a stack walk and

33

to look up garbage collection points (Section 4.2.4.2). That information is usually available to
the caller implicitly, due to the calling convention, as eip and ebp of the caller is stored on the
current stack frame.

However, the function allocating memory is written in Haskell. Although it is callable from
native code (via FFI), internally the generated code by GHC violates the calling convention,
therefore the garbage collector cannot rely on the stack layout defined by the used x86 calling
convention. Thus, the Haskell world is considered as a black box and a different solution to gain
ebp and eip is used: The current ebp, eip and the requested size of memory are passed as
arguments to the allocating function, hence having the following type signature:

mallocObjectGC :: CPtrdiff -> CPtrdiff -> Int -> IO CPtrdiff

where CPtrdiff represents the C type ptrdiff_t in Haskell.

4.2.4 Method calls

Consider that a method f which calls an other method g. At compile-time of method f it
is generally not assumed that method g is already compiled, that is, the entry address is not
available. Instead, a trap is placed in order to switch to the run-time system on the first invocation
of the method, which handles resolution of method g and patches the trap accordingly.

The four different types of method invocation as defined in JVM specification [LYBB13,
§ 3.7.] are discussed in this section. In order to show the core techniques of method calls, we
ignore the used trap mechanism and assume everything is patched correctly. The trap mechanism
is presented in Section 4.3.

invokestatic
Since the receiver of the call is known at compile-time, this is an ordinary relative call in terms
of x86.

eip <- getCurrentOffset
target <- lookupMethod methodinfo
call (target - eip)

Therefore, invokestatic is the most efficient call type in MateVM.

invokespecial
Similar to invokestatic, but it has a further argument on the first position, namely this.
This type of call is usually used for object constructors.

invokevirtual
For dynamic dispatch, the receiver of the call has to be determined at run-time. Fortunately,
Java has only single inheritance of classes enabling simpler handling of dynamic dispatch. For
that, a so-called method table (or mtable) is used which is computed by the class pool (see
Section 5.1).

34

By dereferencing the pointer to an object, the mtable is obtained. In each mtable-slot
a pointer to the method entry is stored, see also Figure 4.1. Hence, a virtual dispatch is done
by first dereferencing the object pointer and then by dereferencing the result with a certain
offset.

mov ebx this
mov eax (Disp 0, ebx) -- mtable in eax
call (Disp offset, eax) -- indirect call

The offset is obtained from the run-time system (cf. Section 5.1).

invokeinterface
Since interfaces allow multiple inheritance in Java, this type of invocation is more complicated
(that is, it requires a further table as shown in Section 5.1) and requires a further indirection.

mov ebx this
mov ebx (Disp 0, ebx) -- mtable in ebx
mov eax (Disp 0, ebx) -- itable in eax
call (Disp offset, eax) -- indirect call

A complete example is presented in Listing 5.1 (Page 47).

4.2.4.1 Calling convention

cdecl, a common calling convention on x86, is used. That is, arguments are passed on the
stack to the callee in reverse order. Furthermore, eax is used to return a value from the callee to
the caller. The caller is responsible to remove the arguments from the stack after the call. This
decision enables easy calling of native functions, as it is the same calling convention as the host
operating system uses.

On further investigation we probably can get rid of esp and use it as general purpose register
in the register allocator, but that would require extra care when calling native functions and
requires to eliminate all uses of push- and pop-instructions in the back end.

4.2.4.2 Savepoints for garbage collection

On calling the garbage collector, information has to be provided about the current state of used
references located in registers or spill locations. Originally, that information is provided by the
register allocator, but this information is associated with the program counter of the intermediate
language. On code generation, a table has to be constructed that maps the instruction pointer
from native code to the set of references. Savepoints are placed on

• claiming memory from the run-time system (objects and arrays).

• after a method call, that is the return point in the caller where the callee returns.

35

While the first is obvious, the latter is needed for walking the calling stack, since the garbage col-
lector has to walk through the calling tree (see Section 4.4) to create an exact representation of
used objects currently in use.

Savepoints are needed for exact garbage collection. A first version is implemented by Stein-
lechner [Ste13], which is relying on this mechanism.

4.3 Trap handling and code patching

Traps, e.g. invalid instructions, are placed by the code generator intentionally. Such traps causes
a signal, caught by a handler which in turn calls into the run-time system of MateVM and does
the appropriate actions. Hence, traps realize the edge from native code into the run-time system
as depicted in Figure 2.1 (Page 5). At the moment traps are used for:

static calls Consider the example from above (method f and g), linkage is done at run-time.
Due to the return into the run-time system, it is able to resolve and, if needed, to trigger
compilation of the method g. After that, the entry address is patched to the call instruc-
tion accordingly.

This trap is active at most once.

virtual calls invokevirtual and invokeinterface are similar, since both call types
require an offset and an appropriate entry in the mtable or itable. The example in
Listing 5.1 (Page 47) explains that type of traps in more detail.

This trap consists actually of two parts: First, patching the right offset in the call instruc-
tion itself and second patching the entry in the mtable or itable. Offset patching is
needed at most once, but for the latter case this trap can be triggered frequently, as the re-
ceiver can have a different type (e.g. a sub class and hence having an unpatched mtable
entry).

object creation As the class of the object that should be instantiated may not have been loaded
yet, the target object size and the mtable-identifier is not known at compile-time. Actu-
ally, we could come up with a different solution in the class pool, having the object size
and mtable identifier available to the compiler. However, the trap is still necessary as
the static class initializer has to be executed exactly at this point, in order to fulfill the
lazy class loading requirement.

At patch-time the class pool is queried for object size and mtable identifier, which
maybe loads the class and triggers class initialization. After that, the object size is patched
into the assembly stream, which is an argument to the memory allocation function. The
mtable identifier is patched too, by adjusting a mov-instruction.

This trap is active at most once.

object fields The situation is similar to above: a field access requires an offset, thus requires the
class to be loaded which would trigger class initialization.

This trap is active at most once.

36

static fields Static fields are allocated at class initialization. According to the JVM specifica-
tion [LYBB13, § 5.5.], class initialization takes place on the first access of a class.

At code generation, an instruction sequence is emitted which will eventually cause a sig-
nal:

mov eax (Addr 0)

At patch-time, the address null is replaced with the actual memory location of the cor-
responding static field.

This trap is active at most once.

dynamic type check In the current state, MateVM does an inefficient type check in the run-time
system rather than in native code. Traps are placed to call back to the run-time system and
compute the type relation, cf. Section 5.3.

It does so, by patching a mov-instruction, which, depending on the result of the type check,
copies 0 or 1 to the scratch register eax (representing the result as boolean).

This trap will not be patched away and is always active.

ATHROW Exceptions are handled by the run-time system, as presented in Section 4.4. When an
exception occurs, the code generator places a trap in order to give control to the run-time
system which handles the exception accordingly.

This trap will not be patched away and is always active.

NullPointerException Basically similar to the semantic of ATHROW, however it is never
triggered explicitly. If a signal is not registered to a native code snippet, and it represents a
signal of type SIGILL, it is recognized automatically as null pointer access. More details
are discussed in Section 4.4.

After patching, the run-time system returns to the execution of native code and restarts the
instruction that caused the signal.

Regarding the implementation: Handling hardware traps, or on operating system level sig-
nals, is not doable in pure Haskell at the moment. Albeit GHC is able to handle simple signals,
access to the ucontext_t structure is needed in order to dump the contents of the register in
the signal handler.

Discussion
Probably we could have used other techniques to switch back to the “Haskell World”, but this
approach has some advantages:

• The minimum byte sequence needed to cause a signal is two, namely 0xffff which
triggers SIGILL. After that, an arbitrary number of no-op instructions (0x90) can be
placed in order to have the exact space needed for the instruction to be patched.

• Null dereferences can be placed intentionally (like done for virtual calls having unpatched
mtable entries) and are cheap to handle. On the other hand, NullPointerExceptions
can be handled fast and guarding certain operations with nullchecks is not required.

37

4.4 Exception handling

Exception handling itself is done at run-time, but it requires preparations at compile-time. First,
it heavily depends on the used stack layout as stack walking is required for exceptions. Second,
a special pointer, called StablePtr, is placed on the stack, which encapsulates necessary
information as a Haskell data type. StablePtrs are provided by the GHC-run-time: If a
StablePtr is requested for a value, the GHC-run-time assigns a unique number and maps it
to the value. Although the value is a Haskell expression, the garbage collector of the GHC-run-
time ignores this value. Later in time, one can obtain the value with the StablePtr. With this,
arbitrary Haskell values can be saved in foreign storages, such as global variables in C or, as in
the case of MateVM, on the machine stack.

The stack frame layout used for generated methods in MateVM is depicted in Figure 4.3.
Basically, it represents the layout given by the cdecl calling convention with little modifica-

0x00000000
...

temporary values

esp

spills and
register storage

ebp StablePtr

ebp from caller

eip from caller

argument1

argument2

...
0xffffffff

Figure 4.3: Stack frame layout of a generated method

tions. On the function prologue ebp is saved to the stack and also a copy of the StablePtr
for this method. Then, esp will be assigned to ebp and esp will be updated according to the

38

space requirements for spilled registers plus some slots for saving active hardware registers to
a fixed location on the stack. The required space is computed by the register allocator, since it
knows how much registers have to be spilled in this method.

The value of the stored StablePtr has the type RuntimeStackInfo. It contains

• the method name, mainly for debugging purpose at the moment. In future work, i.e.
implementing a sophisticated base library, it is also needed for StackTraceElement
in order to provide the user a correct stack trace.

• An exception-map, originally obtained from the class file stored in the exception-section.
However, the given offsets refer to the program counter of the Java bytecode. Therefore,
the back end has to update those values and map them to the hardware program counter
of the target machine accordingly. This map maintains information necessary to find the
appropriate handler for an exception at run-time.

• Savepoints for garbage collection, as described in Section 4.2.4.2

At run-time, the exception handling unit can be initiated by an ATHROW-instruction. In
MateVM, ATHROW is realized by hardware traps as described in Section 4.3. When the trap han-
dler identifies an ATHROW-trap, the exception, referenced by the pointer in eax, is inspected and
handled as follows:

1. By observing the stack via ebp, the StablePtr can be obtained. The value referred
by StablePtr contains a map of all possible handlers for this method. Let H be all
handlers having the current eip in their responsible range. An element x ∈ H is a tuple,
consisting of the type matching this handler and its entry point.

2. The run-time type of the exception stored in eax and the type of each handler in H are
compared, using dynamic type checking. H has a certain order, representing the priority
of each handler. That is, a handler for a more specific type regarding the class hierarchy,
should match first than a handler for a more general type. On the first match, the algorithm
continues with Case 4. If no handler matches, the stack is unwinded, as described in
Case 3.

3. Unwinding the stack means, that the current stack frame is popped and eip, ebp and esp
are restored, such as when the callee would return normally. Also caller-save registers
have to be restored, which are stored at a fixed position in the stack frame. After that,
Case 1 is considered again, as a different StablePtr is referenced now, thus a different
set of handlers that could potentially catch the exception accordingly.

4. Having a matching handler, the handler can be executed by updating eip to the entry point
of the handler. The trap handler is responsible to write back the updated registers to the
processor and continues execution.

For certain cases, the virtual machine is responsible to create an exception object, for example
NullPointerException or ArithmeticException. In such cases, the trap handler
creates an object by first allocating memory for the object itself. Then the <init>-method is

39

looked up, i.e. the constructor, of the target class and is called with the just allocated object (that
is, execution of native code of this method, which can potentially has further side-effects such
as exceptions).

Run-time exceptions
Some common run-time-exceptions are implemented, for example NullPointerException:
MateVM uses two types of traps, namely SIGILL and SIGSEGV in generated code (cf. Sec-
tion 4.3) Consider the following snippet:

mov 16(%eax), ebx

Suppose that eax contains an object reference and 16 is the offset to a field of that object.
The JVM specification [LYBB13, § 2.4.], allows null-references, hence a nullcheck would
be necessary before each field access. In fact, this check has to be done even before vir-
tual calls, as they require an valid reference to mtable. If the check fails, an object of type
NullPointerException has to be created.

However, nullchecks are expensive as they occur often [KP98]. One approach would be to
eliminate nullchecks by static analysis, which would be easily doable with Hoopl. But, since
MateVM already uses hardware traps, it can fall back to signals of the operating system and the
target machine respectively, which signals the executed program with SIGSEGV if an invalid
memory location is accessed, such as 0x00000000. Therefore, nullcheck elimination is for
free: The generated code does not have to check for null-references and the trap mechanism
knows, if no other trap is registered for the program counter issuing the signal, it has to be a
NullPointerException5.

For further stability, MateVM should determine (like CACAO does [KP98]), which instruc-
tion or method caused the invalid access, thus determine if the signal originates from the Java
program or something else. In the latter case, the virtual machine should propagate the signal to
the operating system.

4.5 Example: A classic Fibonacci implementation

In this section the life cycle of a method through MateVM is demonstrated. The input as
Java source code is shown in Listing 4.8. Figure 4.4a represents the output after using javac,
that is Java bytecode. In Figure 4.4b the debug output after the front end is shown. Note the

1 public static int fib(int n) {
2 if (n <= 1) return 1;
3 else return fib(n - 1) + fib(n - 2);
4 }

Listing 4.8: A naive implementation of Fibonacci

5furthermore, it can distinguish between the different types of signals

40

usage of virtual registers as described in Section 3.6. Also, as the actual register assignment has
not happened yet, to be saved registers are not determined yet, represented by the empty list in
call preps constructor. The pattern Add <reg0>, <reg1>, 0x00000000 represents
a copy instruction. This substitution is useful for analysis, since it is covered by the general case
(the add operation).

Consider the first line of Figure 4.4b: The register copy could be avoided and all future uses
of the temporary register 50000 should be replaced with the source, the virtual register 200000.
Unfortunately, since MateIR is not in static single assignment form, this kind of transformation
cannot be done safely in every case. Apart from that, as already discussed in Section 3.6, the
copy elimination should be done beforehand.

1 0: iload_0

2 1: iconst_1

3 2: if_icmpgt 7

4 5: iconst_1

5 6: ireturn

6 7: iload_0

7 8: iconst_1

8 9: isub

9 10: invokestatic #2; //Method fib:(I)I

10 13: iload_0

11 14: iconst_2

12 15: isub

13 16: invokestatic #2; //Method fib:(I)I

14 19: iadd

15 20: ireturn

(a) Java bytecode of fib()

1 L1:

2 Add JInt(50000), JInt(200000), 0x00000000

3 if (0x00000001 ‘C_GT‘ JInt(50000)) then L2 else L3

4 L2:

5 Add JInt(50001), JInt(200000), 0x00000000

6 Sub JInt(50002), 0x00000001, JInt(50001)

7 call preps (SaveRegs): []

8 push(0) JInt(50002)

9 invoke RTCall(02) (Just JInt(99999)) [CallStatic]

10 call preps (RestoreRegs): []

11 Add JInt(50003), JInt(99999), 0x00000000

12 Add JInt(50004), JInt(200000), 0x00000000

13 Sub JInt(50005), 0x00000002, JInt(50004)

14 call preps (SaveRegs): []

15 push(0) JInt(50005)

16 invoke RTCall(02) (Just JInt(99999)) [CallStatic]

17 call preps (RestoreRegs): []

18 Add JInt(50006), JInt(99999), 0x00000000

19 Add JInt(50007), JInt(50006), JInt(50003)

20 return (Just JInt(50007))

21 L3:

22 return (Just 0x00000001)

(b) MateIR debug output

Figure 4.4: Java bytecode and representation in MateIR before linearisation

Next, Listing 4.9 shows the intermediate representation after linearisation and register allo-
cation. Note that Hoopl put the basic block L3 directly after L1. All virtual registers are replaced
by hardware registers or spill locations. Otherwise no optimizations, such as dead-code elimi-
nation, are done, thus the structure remains the same.

Finally, the back end emits native code, as shown in Listing 4.10. As cdecl is used, the
function layout should be familiar to the reader: Line 1–7 is the method prologue, slightly mod-
ified due to the use of the StablePtr. Block L1 represents the comparison used to determine
the base case, while block L3 is the base case itself, returning 1 plus the function epilogue. From
line 23–36 the first call to fib(n-1) is done, followed by the second call to fib(n-2) in
line 37–50. Note that the result of fib(n-1) is saved to the stack in line 36. In the block
from line 52–54 the results from both method calls are added, and finally returned to the caller
in 56–63.

41

1 L1:
2 Add ecx, 0x0c(ebp), 0x00000000
3 if (0x00000001 ‘C_GT‘ ecx) then L2 else L3
4 L3:
5 return (Just 0x00000001)
6 L2:
7 Add ecx, 0x0c(ebp), 0x00000000
8 Sub edx, 0x00000001, ecx
9 call preps (SaveRegs): [(ecx,JInt),(edx,JInt)]

10 push(0) edx
11 invoke RTCall(02) (Just eax) [CallStatic]
12 call preps (RestoreRegs): []
13 Add 0xffffffe8(ebp), eax, 0x00000000
14 Add ecx, 0x0c(ebp), 0x00000000
15 Sub edx, 0x00000002, ecx
16 call preps (SaveRegs): [(ecx,JInt),(edx,JInt)]
17 push(0) edx
18 invoke RTCall(02) (Just eax) [CallStatic]
19 call preps (RestoreRegs): []
20 Add edx, eax, 0x00000000
21 Add ecx, edx, 0xffffffe8(ebp)
22 return (Just ecx)

Listing 4.9: Representation after linearising and register allocation

42

1 push ebp
2 push 21H # StablePtr
3 mov ebp, esp
4 sub esp, 1cH
5 push ebx # callee saved registers
6 push esi
7 push edi
8 L1:
9 mov ecx, dword ptr [ebp+12]

10 cmp ecx, 1H
11 jg L2
12 jmp L3
13 L3:
14 mov eax, 1H # epilogue for ’return 1’
15 pop edi # restore callee saved regs
16 pop esi
17 pop ebx
18 mov esp, ebp
19 pop ebp # destroy StablePtr
20 pop ebp
21 ret
22 L2:
23 mov ecx, dword ptr [ebp+12] # copy arg1
24 mov eax, ecx
25 sub eax, 1H
26 mov edx, eax
27 mov dword ptr [ebp-4], ecx # save regs
28 mov dword ptr [ebp-8], edx
29 push edx # push arg
30 # trap for static call
31 (invalid opcode, byte=255)
32 nop
33 nop
34 nop
35 add esp, 4H
36 mov dword ptr [ebp-24], eax # store result

37 mov ecx, dword ptr [ebp+12] # copy arg1
38 mov eax, ecx
39 sub eax, 2H
40 mov edx, eax
41 mov dword ptr [ebp-4], ecx # save regs
42 mov dword ptr [ebp-8], edx
43 push edx # push arg
44 # trap for static call
45 (invalid opcode, byte=255)
46 nop
47 nop
48 nop
49 add esp, 4H
50 mov edx, eax
51
52 mov eax, dword ptr [ebp-24]
53 add eax, edx # add results
54 mov ecx, eax
55
56 mov eax, ecx # epilogue
57 pop edi
58 pop esi
59 pop ebx
60 mov esp, ebp
61 pop ebp
62 pop ebp
63 ret

Listing 4.10: Emitted Code

43

CHAPTER 5
Run-time environment

One of the main differences between a static compiler and a dynamic compiler is, among oth-
ers, to shift certain parts from compile-time to run-time1. For example, the JVM specification
requires to be able to load classes at run-time2, instead of loading all classes at startup of the vir-
tual machine. In this chapter we present what happens on class loading, how a method lookup,
dynamic type checking, string allocation and garbage collection works.

5.1 Classpool

This part of MateVM is responsible for everything regarding Java classes. It serves as a database
for field- and method-offsets. Also, it loads classes and interfaces if requested. Loading a class
could be triggered by:

• method lookup (see Section 5.2)

• object creation

• static or object field access

• dynamic type check

All those events require to execute the static initializer of the target class. Interfaces are loaded
by loading a class implementing this interface or by resolving a super interface.

A class file is searched in all given class paths. Before the class itself is inspected, the
super class of it is resolved recursively, until it loads java/lang/Object. Afterwards all
interfaces are loaded that are implemented by this class. Loaded classes or interfaces are cached
by the classpool in a map as Haskell values, in order to avoid filesystem access on further re-
quests to this class (e.g. on extracting the code segment when compiling a new method of this
class). Finally, the class itself can be used to build the following lookup-tables:

1strictly speaken, everything is run-time in a dynamic compilation system
2in fact it even requires to be able to replace loaded classes. MateVM does not support this feature yet

45

static fields When calculating offsets for static fields, static fields of the super class have to
be respected too. Thus, the classpool duplicates the lookup-table of the super class. The
classpool allocates memory for each new field entries and stores the address in the lookup-
table for each offset.

Note, that the requirement of the Java language specification [GJS+13, Example 8.3.1.1-
2], i.e. static fields could be overridden by inheritance, has to be respected.

object field offsets Object fields are similar to static fields, except that no absolute addresses
are stored, but offsets, as they are per object.

method offsets As Java implements single inheritance of classes, method offset generation is
similar to field offsets. As calculated method offsets can be shared across different objects
of this class, a so-called method table, or short mtable, is allocated. On object creation,
the address of the mtable is stored as the first entry in the object layout (cf. Figure 4.1
on Page 33). Note, that the offset is only unique locally with respect to its class hierarchy,
which differs to offsets for interface methods.

interface method offsets These offsets are generated by loading interfaces. When loading an
interface, each method will be assigned to a globally and unique offset. A globally unique
mapping is needed, in order to have consistent offests across different classes which im-
plement the same interfaces. The uniqueness requirement is an implication of multiple
inheritance of interfaces.

On class initialization, memory is allocated for a table according to the current size of
the global offset map. This table is called interface method table, or short itable. The
global offset map guarantees that it contains all offsets needed by the class and therefore
is big enough (a precondition is, that all implemented interfaces are loaded at this point,
therefore the exact size can be obtained). In fact, the table will contain many slots for
interface methods never used by this class, as some interfaces are not even implemented
by it, but already added to the global offset map. As a result, interface method tables
could be large and reserve unnecessary memory. There are techniques addressing this
issue [ACFG01].

An advantage of our approach is that we can skip an expensive dynamic type check on
invokeinterface, thus having a rather efficient and simple implementation (see Sec-
tion 4.2.4).

Each offset, when mapped (see below), contains a pointer to the implementing method, as
depicted in Figure 4.1 on Page 33.

Pointers in the method table and interface method table are initialized with null pointers, thus
forcing a segmentation fault (also known as SIGSEGV) on access. This signal is captured by the
trap handler, causing a method lookup and patching the table entry accordingly (cf. Section 4.3).

Figure 5.1 depicts the memory layout of object o after the execution of main from the ex-
ample listed in Listing 5.13. hashCode(), notify() and so forth does not have a reference

3addresses can vary due to different machines and address space layout randomization

46

1 public class Example extends A {
2 public static void main(String []args) {
3 Example o = new Example();
4 o.method1();
5 o.method2();
6 for (int i = 0; i < 2; i++)
7 ((I2) o).method1();
8 ((I1) o).method1();
9 ((I2) o).method2();

10 System.out.printf("o.f1: %d\n", o.f1);
11 }
12 }
13

14 class A implements I1, I2 {
15 int f1;
16 public void method1() { System.out.printf("method1\n"); }
17 public int method2() { f1 += 2; return f1; }
18 }
19

20 interface I1 {
21 void method1();
22 }
23

24 interface I2 {
25 void method1();
26 int method2();
27 }

Listing 5.1: Example with interfaces

Object data Method table Interface method table

this

0x08bce000
0x08bb0868

GC data

f1

0x08bac860

hashCode()I

notify()V

. . .

method1()V

method2()I

method1:

@0x09be7000

method2:

@0x09be8000

I1method1()V

I2method1()V

I2method2()I

Figure 5.1: Memory layout of object o after execution (cf. Listing 5.1)

47

to an actual piece of code, since they were never executed and therefore not compiled to native
code. The method references of the interfaces are resolved to the same code blob as the class
methods itself (i.e., no code duplication). The linkage is done at run-time, for example consider
I2method1: At code generation (compile-time) a trap is placed at line 7 of Listing 5.1. When
the trap occurs, the trap handler knows the type of the call and information about the called
method. It then consults the methodpool (see Section 5.2) for the entry point of the method and
patches

• the entry point at the correct offset in the itable

• the call instruction with the correct offset into the itable

Loading the itable into the right register is already handled by the code generator. After the
trap handler has done its work, execution restarts at the program counter which caused the trap,
that is now a call after patching.

On the second iteration at line 7 the trap is removed due to the patching above. Also, the
entry in the itable is patched accordingly, therefore the method call is done without any
interaction of the run-time system.

Assuming a different object would pass this loop (not the case in this example), and it has not
a patched itable yet, it would also trigger a signal and would be handled by the trap handler.

Security concerns
The segmentation fault would not occur at 0x00000000, which is not mapped on any sane
system nowadays, but at 0x00000000+ioffset (in this case being ioffset = 0x4). Apart from se-
curity implications, this could lead to an unwanted faulty behaviour when hitting a valid memory
segment if ioffset is big enough.

5.2 Methodpool

If the run-time system looks up a method, it consults the so-called methodpool. It maintains
a map of already compiled methods and its entry points. If the requested method is not in the
map, the methodpool starts the compiler for it. After compilation, it stores the result (that is,
the entry point) into the map. Note, that the key of the mentioned map is the full name of the
method, i.e. the class name, method name and its type signature (same notation as used by the
JVM specification [LYBB13, § 4.3.2.]) encoded as a byte string.

5.2.1 Native methods

The methodpool is also responsible to resolve native methods. In Java a programmer can declare
a method as native and omitting the method body, i.e. no code section is provided via the
class file. The virtual machine has to find a proper method implementation for it. For example
basic IO-operations are native, since they need to access interfaces of the operating system. In
MateVM native methods can be implemented in C or Haskell:

48

C Dynamic look up is done with a Haskell package called plugins [Ste12]. It can determine
a symbol (and hence its entry point) in an object file and link it to the current executed
program. However, the operation itself costs about 300ms which conflict with the require-
ment of a fast startup. Therefore, it is suggested to implement native methods critical to
execution time with the Haskell variant.

Haskell Functions in Haskell can be exported with FFI, therefore they are also visible from the
outside of Haskell and are callable with the used calling convention. Further, it is possible
to obtain the entry point of such a function at compile-time [Ove12a]. Those functions
must be declared as IO and should use C types as provided by the FFI module.

Since both variants can obtain the entry point of a method, the same techniques for code patching
applies as for normal methods, just the lookup is different. Due to the same calling convention
for methods emitted by MateVM and the operating system, no property mismatch occurs.

The difference between the two presented approaches is, that native methods implemented
with Haskell are compiled and linked to the MateVM-executable. With the C variant, one
has to provide an object file (native.o), which can be exchanged without recompilation of
MateVM. Therefore, the C variant will be interesting for adding support for the Java Native In-
terface [Mic03]. MateVM does not implement JNI yet, which simplifies the current native inter-
face a lot.

5.3 Dynamic type checking

In order to determine a subtype-relation between two classes or interfaces, a hierarchy has to
be built first, which represents the relations between classes or interfaces. On class or interface
loading, the class pool adds an entry to the global hierarchy data structure. The class hierarchy
consists of a map, where the key represents the mtable-pointer and the value its super class
(again as mtable-pointer) and all implementing interfaces as a list of byte strings. The in-
terface hierarchy is a map, with a byte string as key (representing the interface name) and all
super interfaces as list of byte strings as value.

The transition between native code and run-time system is already described in Section 4.3.
The run-time system queries the class hierarchy with the object reference and the given class or
interface to examine, extracted from the INSTANCEOF- or CHECKCAST-instruction.

Since Java has single inheritance for classes and multiple inheritance for interfaces, two
cases have to be distinguished:

Class Let mobj be the mtable-pointer of the given object. First the mtable-pointer mquery
of the requested class name is obtained (the classpool maintains a map for that). Then,
a function compares mobj with mquery. On a match, the subtype-relation is given and the
algorithm terminates successfully. Otherwise, the super class of mobj is obtained and the
function calls itself recursively. If no type match occurs, the algorithm will eventually
end up with java/lang/Object as mobj, which aborts the algorithm and it returns
false, meaning no subtype-relation is given.

49

Interface Let I be the set of implementing interfaces of the given object. iquery is the requested
interface name. A function checks if iquery ∈ I. If this operation succeeds, the subtype-
relation is true. Otherwise, the super interfaces of all interfaces in I are obtained from
the interface hierarchy and added to I, while the already checked interfaces are removed
from I. The algorithm terminates with false, if I represents the empty set.

Although, the module operates functional correct and is easily implementable in Haskell, the
implementation is rather inefficient regarding execution time (cf. Section 7.2): The class or in-
terface hierarchy is iterated on every query. Even worse, the algorithm needs rather long to
determine that no subtype-relation for the given query exists. Likewise, the used data struc-
ture is bloated, as the presented algorithm operates on interface names. Another issue is, that
class reloading is not considered at all.

For future work we suggest to implement displays [Coh91, BEK09], as the implementation
effort is moderate and is suitable for native code since the required data structure is simple. Also,
Vitek et al. [VHK97] presents sophisticated algorithms for dynamic type checking.

5.4 Handling of String literals

Strings have a rather unique behaviour in the Java language specification [GJS+13, §3.10.5].
Consider the example in Listing 5.2. Usually, in order to compare the content of two objects,
equals() is used in Java. Although Strings are regular objects in Java, they can be de-
fined at compile-time, i.e. as a String literal. Further, the specification requires that two

1 public class Stringhandling extends {
2 public static void main(String []args) {
3 String a = "abc";
4 String b = "abc";
5 if (a == b)
6 System.out.printf("a and b are equal\n");
7 else
8 System.out.printf("never happens\n");
9 }

10 }

Listing 5.2: Behaviour of interned Strings in Java

String literals, describing the same content, must be the same object.

In MateVM, this is solved via a map: As key the String content is used, and the value
represents the reference to the object. If the run-time system requests a yet unknown String,

50

it has to be allocated and added to the map.

5.5 Garbage Collection

As mentioned in Section 1.4 Steinlechner [Ste13] contributed two garbage collectors to MateVM,
which are described shortly in this section. Which garbage collector is used, is controlled by the
compile-time-option

usePreciseGC :: Bool

in ./Compiler/Mate/Runtime/RtsOptions.hs.

BoehmGC
The Boehm-Demers-Weiser garbage collector [Boe13] is conservative, and can be used as trans-
parent replacement for malloc(3). Hence, free(3) is not necessary explicitly anymore,
therefore matching the semantics of the Java language [LYBB13, § 2.5.3.].

BoehmGC is implemented in C, thus, to be usable from Haskell, bindings via FFI had to be
done. The interface to MateVM is rather easy, since it already used malloc(3)4 for allocating
memory for objects and arrays.

Exact garbage collection
Being a conservative garbage collector has of course drawbacks, e.g. memory leaks occurs by
design. Exact garbage collection requires a so-called root-set containing references, which is
represented by savepoints, as already discussed in Section 4.2.4.2. Simplified, on a garbage col-
lection, it builds an object graph using the root-set combined with stack walking and marks all
references reachable from that root-set. All marked objects are copied to a new heap space. The
old heap space is omitted, thus all unreferenced objects are implicitly deallocated.

From an implementation point of view, everything is done in Haskell, that is, no FFI is
required. It introduces a type class RefObj, which essentially represents functions that can be
used to operate on a single reference in the object graph. The actual module relies heavily on IO,
but since the graph is realized as a type class, it can be tested with pure code, resulting in more
reliable tests.

4but without deallocating memory afterwards

51

CHAPTER 6
Pearls

In this section we want to highlight some parts of MateVM, which shows the strength of imple-
menting a virtual machine in Haskell. We already covered some functional pearls in the previous
chapters, such as Hoopl in Section 3.3 or RankNTypes in Section 4.2.2.

6.1 Register allocation and QuickCheck

Section 3.6 presents register allocation. In order to do the actual allocation, live ranges are
needed. From that, a register assignment can be computed. The following property can be
defined:

Property 1. For all virtual register there is no other virtual register that has an overlapping
live range and the same hardware register assigned.

In the debug build of MateVM we check the result of the register allocator with this property—
Property 1 is realized with the function

noLiveRangeCollision :: LiveRanges -> RegMapping -> Bool

QuickCheck [CH00] enables property checking on randomly generated test cases. In or-
der to enable random generation, QuickCheck defines a type class Arbitrary, that must be
implemented for the desired data type. We have to specify certain boundaries and guide the
library how to create an instance. For example, we can define a range of how many virtual reg-
isters should a LiveRange contain. Also, a virtual register can be guarded by conditions,
e.g. the end of a live range must be after the start of it. ./Compiler/Mate/Frontend/
RegisterAllocation.hs specifies an instance of Arbitrary for LiveRange.

53

Now, QuickCheck can be used to do property checks:

• QuickCheck generates a random LiveRange instance

• LSRA is used to obtain a register mapping (i.e., from virtual register to hardware registers)

• verifies the register mapping with Property 1

If a random instance generated by QuickCheck fails, the malicious test case is printed and can
be analyzed. Otherwise, this procedure is repeated hundred times per default.

In order to raise the chance of finding a failing test case, the QuickCheck test is included in
the build bot, which builds HEAD from the repository every night. So far, the only bug found
was introduced by refactoring, yielding an undefined value due to a missing preprocessor
definition.

6.2 Evolution of code patching in MateVM

The presented trap mechanism (cf. Section 4.3) requires code patching.

6.2.1 First generation: C

In the early stages of MateVM, code patching was done in C, cf. Listing 6.1. Note, that
getMethodEntry is a Haskell function called with FFI, which knows about registered traps,
that could be looked up via the current instruction pointer. This method requires knowledge
about x86-opcodes and how instructions are encoded.

1 void staticcalltrap(int nSignal, siginfo_t *info, void *ctx) {
2 mcontext_t *mctx = &((ucontext_t *) ctx)->uc_mcontext;
3 unsigned int eip = (unsigned int) mctx->gregs[REG_EIP];
4 unsigned int *to_patch = (unsigned int *) (eip + 1);
5 if (*to_patch != 0x909090ff) {
6 dprintf("callertrap: something is wrong here. abort\n");
7 exit(0);
8 }
9 /* getMethodEntry queries the method pool */

10 unsigned int patchme = getMethodEntry(eip, 0);
11

12 unsigned char *insn = (unsigned char *) eip;
13 *insn = 0xe8; /* call opcode on x86 */
14 *to_patch = patchme - (eip + 5);
15 mctx->gregs[REG_EIP] = (unsigned long) insn;
16 }

Listing 6.1: First generation: Code patching in C for a static method invocation

54

6.2.2 Second generation: Haskell and pointers

Later on, patching was shifted to the Haskell world (see Listing 6.2), but basically it remains the
same: It still requires low-level knowledge about the target architecture. The dirty work, such as
obtaining registers or register write back, is still done in C.

1 staticCallHandler :: CPtrdiff -> IO CPtrdiff
2 staticCallHandler eip = do
3 let insn_ptr = intPtrToPtr (fromIntegral eip) :: Ptr CUChar
4 let imm_ptr = intPtrToPtr (fromIntegral (eip - 1)) :: Ptr CPtrdiff
5 checkMe <- peek imm_ptr
6 if checkMe == 0x909090ff then
7 do
8 entryAddr <- getMethodEntry eip 0
9 poke insn_ptr 0xe8 -- call opcode

10 poke imm_ptr (entryAddr - (eip + 5))
11 return (eip - 2)
12 else error "staticCallHandler: something is wrong here. abort\n"

Listing 6.2: Second generation: Code patching in Haskell for a static method invocation

6.2.3 Current generation: Patching via the CodeGen-monad

In the current implementation, the CodeGen-monad is used a second time, namely at patch-
time. Consider the example in Listing 6.3: girStatic emits the code for a static call. In line 8
a sequence is generated, that eventually triggers SIGILL. After that, line 9 defines a closure
named patcher, that is actually a CodeGen-monad for itself. Instead of storing relevant
information for the trap at this point, the unevaluated closure is stored in the trap map (line 23).
At patch-time, the trap handler executes patcher, using the current instruction pointer as
code buffer. Thus, patcher overrides the trap with its emitted code.

This method is more elegant, since compile-time and patch-time are sticked together at a
common part in the source code.

6.2.4 Future generation: Trap combinator for the CodeGen-monad

The next step would be to introduce a combinator, that places a trap for a certain region. In the
current method, knowledge about the needed space for a trap is necessary. With a combinator,
that could be determined automatically. The source code would be like depicted in Listing 6.4,
that is a sequence of monadic action is guarded by a trap. The body of the guard is executed not
at compile-time, but at patch-time when the placed trap occurs. The body is used to patch at the
given program counter.

Emitting the trap with enough padding and storing the patcher into the map, is hidden by
the combinator guardWithTrap.

55

1 girStatic :: Word16 -> Maybe HVarX86 -> CallType
2 -> PreGCPoint HVarX86 -> CodeGen e CompileState ()
3 girStatic cpidx haveReturn ct mapping = do
4 cls <- classf <$> getState
5 let l = buildMethodID cls cpidx
6 newNamedLabel (show l) >>= defineLabel
7 -- emits the sequence 0xff 0xff 0x90 0x90 0x90
8 calladdr <- emitSigIllTrap 5
9 let patcher :: WriteBackRegs -> CodeGen () () WriteBackRegs

10 patcher wbr = do
11 entryAddr <- liftIO $ lookupMethodEntry l
12 call $ fromIntegral (entryAddr - ((wbr M.! eip) + 5))
13 return wbr
14 setGCPoint mapping
15 let argcnt = methodGetArgsCount (methodNameTypeByIdx cls cpidx)
16 * ptrSize
17 when (argcnt > 0) (add esp argcnt)
18

19 case haveReturn of
20 Just (HIReg dst) -> mov dst eax
21 Nothing -> return ()
22 modifyState (\s -> s
23 {traps = M.insert calladdr (StaticMethod patcher) (traps s)})

Listing 6.3: Third generation: Code patching via CodeGen-monad

1 girStatic cpidx haveReturn ct mapping = do
2 {- ... -}
3 newNamedLabel (show l) >>= defineLabel
4 guardWithTrap $ \wbr -> do
5 entryAddr <- liftIO $ lookupMethodEntry l
6 call $ fromIntegral (entryAddr - ((wbr M.! eip) + 5))
7 setGCPoint mapping
8 {- ... -}

Listing 6.4: Future generation: combinator in CodeGen-monad

56

CHAPTER 7
Results

7.1 Benchmarks

In order to show the state of the current implementation of MateVM, we present some bench-
marks and compare performance with mainstream JVMs. Unfortunately, MateVM does not
have a sophisticated base library like GNU Classpath yet, therefore we cannot fall back on elab-
orated benchmarks such as SPEC JVM98 [Cor98]. Hence, we implemented some synthetically
benchmarks. The benchmarks are:

HelloWorld The classic “Hello World” example. This instance is used as baseline, as the other
virtual machines uses full-fledged base libraries, and therefore have more initial compile-
time or interpreting overhead as MateVM. We subtract the result of this benchmark to get
an approximate value of the actual execution time, in order to get a fairer comparison (the
following benchmarks does not rely on the base library—except BenchException).

Fib A naive implementation of Fibonacci calculating the 37th number.

BenchObjectfield Stressing field access (read and write) of an object in a loop, with two reads
and one write per iteration.

BenchStaticfield Stressing field access (read and write) of a class in a loop, with two reads and
one write per iteration.

BenchVirtual An example using inheritance for classes and overloads methods. In a loop we
call virtual methods in order to examine dynamic dispatch.

BenchInterface Testing invokeinterface, with two objects of different classes but imple-
menting a common interface. We then cast them to the same interface. In a loop, we call
for both objects the same methods, but, since different implementations in the class, each
method refers to a distinct method which the JVMs have to resolve at run-time.

57

BenchInstanceOf Queries the JVM about class relations in a moderate class hierarchy (eight
interfaces and four classes).

BenchArray This benchmark allocates an array with 0x100 elements and initialises it with
“random” numbers in a loop. Then, it calculates some kind of sum in a long loop, which
includes four array reads and two writes each iteration.

BenchException A nested method hierarchy is called in a loop. In the leaf method an exception
is thrown, which is propagated to the main-method that has appropriate handlers to catch
the exception.

BenchCompiletime An object is allocated, that has 7885 field members which are initialized
in the object constructor. However, only two instance variables are accessed in main.

The source code of each benchmark can be looked up in the repository, under the directory
./tests/.

Execution time and memory usage are measured. The command-line utility time(1) is
used for both tasks, as this is the most generic way to do. While execution time is straight for-
ward, memory usage has its difficulties. The so-called maximum resident set size is measured,
that is the amount of memory held in RAM of the executing machine. While it is not exact,
it has some advantages regarding garbage collection: Usually a garbage collector allocates an
initial heap on start up1. In the presented test cases, this heap will never be full as the memory
requirements are low. Fortunately, the operating system uses lazy page loading, therefore a page
is only installed on the first access—thus a page counts to the resident set size on the first access.

Others then that, time(1) reports memory in the wrong unit [Pro10] which is respected in
the presented results. In order approve the measured results, we analyzed the GHC heap report
for MateVM that roughly matches the output by time(1).

How we measure a JVM with a test case
The script ./tools/bench.sh tests a single test case by first executing it three times in order
to fill the file caches of the machine. After that, the test case is executed twelve times, and the
best three results are taken. From that, the average is calculated.

Builds of JVMs used
We obtained all JVMs from the Ubuntu 12.04 repositories.

java version "1.6.0_24"
OpenJDK Runtime Environment (IcedTea6 1.11.5) (6b24-1.11.5-0ubuntu1~12.04.1)
OpenJDK Server VM (build 20.0-b12, mixed mode)
OpenJDK Client VM (build 20.0-b12, mixed mode, sharing)
CACAO (build 1.1.0pre2, compiled mode)
JamVM (build 1.6.0-devel, inline-threaded interpreter with stack-caching)

1note, that MateVM runs in fact two GCs: One for the Haskell run-time and one for Java

58

Regarding CACAO, the wall times were taken with the Ubuntu build in Table 7.1. In order
to obtain compile-time in Table 7.3, the option -enable-statistics2 is necessary. This
option is not available in the Ubuntu build, therefore a custom build had to be done.

Benchmark machine
The measurements were performed on an Intel Core i7 920 2.67 GHz equipped with 8 GB RAM
available. As operating system Ubuntu 12.04 LTS 32 bit is used. Regarding MateVM, GHC 7.4.1
is used, compiled with -O2 -fasm -static. See the Makefile-target mate.opt for the
specific build flags.

7.2 Execution time

The wall time is measured in Table 7.1, however HelloWorld is used as baseline, that is the
time needed for HelloWorld is subtracted from each result in order to have better compari-
son of the actual time spent, ignoring startup-time needed for the base library. Unsurprisingly,

benchmark server client cacao mate jamvm
HelloWorld 0.06s 0.03s 0.12s 0.00s 0.03s
Fib 0.15s 0.16s 0.38s 0.46s 3.35s
Objectfield 0.02s 0.39s 0.52s 0.88s 4.52s
Staticfield 0.02s 0.39s 0.40s 0.83s 5.68s
Virtual 0.55s 0.65s 2.02s 4.97s 25.33s
Interface 0.02s 0.12s 0.24s 0.65s 3.37s
InstanceOf 0.00s 0.00s 0.01s 1.72s 0.01s
Array 0.85s 0.83s 0.89s 1.59s 5.70s
Exception 0.24s 0.10s 0.19s 0.43s 0.45s
Compiletime 0.14s 0.14s 0.20s 0.94s 0.04s

Table 7.1: Measurements for execution time

MateVM cannot compete with the other just-in-time compilers. Then again, BenchVirtual
and BenchInterface are handicapped by the rather bad layout for mtable and itable,
which simplifies things but requires more dereferencing on a virtual dispatch.

BenchInstanceOf is particular bad regarding performance since it involves explicit dy-
namic type checking, as already discussed in Section 5.3.

In BenchCompiletime the compiler is stressed. We analyzed compile-time in more
detail for MateVM in Table 7.2. The values are obtained by enabling

mateTIME :: Bool

in ./Compiler/Mate/Debug.hs. As a comparison, the compile-time results for CACAO
are shown in Table 7.3 for some benchmarks, obtained via -time. They are varying between

2this enables the -time flag on command-line

59

benchmark wall time compiler amount in %
HelloWorld 8.00ms 5.33ms 66.66%
Fib 474.70ms 2.67ms 0.56%
Objectfield 897.39ms 4.00ms 0.45%
Staticfield 832.05ms 5.33ms 0.64%
Virtual 4976.31ms 5.33ms 0.10%
Interface 621.37ms 5.33ms 0.86%
InstanceOf 1401.42ms 10.67ms 0.76%
Array 1610.77ms 4.00ms 0.25%
Exception 458.70ms 6.67ms 1.45%
Compiletime 956.06ms 757.38ms 79.21%

Table 7.2: Execution time and compile-time for MateVM

20ms and 56ms for CACAO, regardless of the benchmark. Note that the startup-time is included,
i.e. the compile-time for BenchCompiletime is negligible compared to MateVM.

We hope, that performance of the compiler can be improved in future work (cf. Chapter 9),
although due to Haskell being a high-level language, it will probably never get faster than CA-
CAO.

benchmark wall time compiler amount in %
HelloWorld 128ms 40ms 31.25%
Exception 320ms 44ms 13.75%
Compiletime 196ms 40ms 20.41%

Table 7.3: Execution time and compile-time for CACAO

7.3 Memory usage

As expected, memory consumption does not vary that much between the benchmarks. From the
differences between some test cases, we can conclude memory consumption for the compiler,
e.g. consider BenchCompiletime at MateVM. We can estimate, that the compiler needs
about 30MB to compile the method. Unfortunately, lazy programs are known for unpredictable
memory behaviour. Furthermore, MateVM does not use strictness annotations for its data struc-
tures yet, supporting bad memory usage.

On the other hand, the garbage collector of the GHC-runtime is not triggered yet, there-
fore making use of the available heap. The option for the garbage collector can be tuned if
memory usage is a problem, for example if the maximum heap size is restricted to 15 MB, the
benchmark runs as well, but the garbage collector must be called more often.

This observation is also true for the garbage collectors of the JVMs: By tuning those pa-
rameters, different results could be achieved as well. We used the default configuration for each
JVM, cf. Table 7.5.

60

benchmark server client cacao mate jamvm
HelloWorld 10.22MB 11.39MB 12.66MB 5.88MB 7.88MB
Fib 11.57MB 11.63MB 12.83MB 5.96MB 8.00MB
Objectfield 11.84MB 11.66MB 12.84MB 5.99MB 8.01MB
Staticfield 11.84MB 11.67MB 12.84MB 5.96MB 8.01MB
Virtual 11.93MB 11.69MB 12.86MB 6.00MB 8.02MB
Interface 12.26MB 11.72MB 12.89MB 6.20MB 8.06MB
InstanceOf 10.37MB 11.76MB 12.92MB 6.45MB 8.11MB
Array 12.18MB 11.66MB 12.84MB 6.05MB 8.01MB
Exception 20.67MB 15.92MB 14.41MB 7.49MB 16.62MB
Compiletime 12.23MB 13.42MB 17.07MB 36.12MB 10.05MB

Table 7.4: Measurements for memory usage

JVM stack heap start heap max
server 320kB 16MB 512MB
client 320kB 16MB 512MB
cacao 64kB 2MB 128MB
jamvm 64kB 1MB 16MB

Table 7.5: Memory Configuration of JVMs

The memory footprint is unexpected low (roughly 6MB): Keep in mind, that for executing a
Haskell program, a run-time system for it is necessary. Furthermore, MateVM is still missing a
sophisticated base library mainly the reason for “low” memory usage. Consider

$ java -cacao -verbose:jit tests/HelloWorld | \
grep -c ’Generating code done’

1124

A classic HelloWorld-program requires 1124 methods to be compiled. This is clearly not the
case with the minimalistic base library used in MateVM:

$ mate tests/HelloWorld # generates logfile "mate.log"
$ grep ’Jit: emit code’ mate.log
7

Therefore resulting in lower absolute memory consumption.

61

CHAPTER 8
Related Work

This thesis is influenced by research from the Haskell and JVM community.

8.1 Kafka: Just-In-Time Compiler for a Functional Language

Grabmüller implemented the prototype Kafka for his thesis [Gra09]. Kafka is a just-in-time
compiler for a fictive functional language. Kafka itself is implemented in Haskell, hence being
the first just-in-time compiler implemented in Haskell known to the author. For run-time code
generation it uses Harpy (Grabmüller is the author of Harpy [GK07]). In order to store references
on the machine stack, it also uses StablePtrs as presented in Section 4.4.

Callbacks into the run-time system are solved differently: All run-time related functions are
exported via FFI, therefore can be called by native code (such as done for calls into garbage col-
lection in Section 4.2.3). If on a certain point run-time services are needed, a call to it is emitted.
At run-time, the run-time service can patch itself away, e.g. an eval-node triggers evaluation,
that is the compiler, of a part of the program. After compilation, it replaces the call into the
run-time system with a call to the generated function via code patching (similar to the “second
generation” Section 6.2.2).

We think that traps as used in MateVM, would make the implementation of Kafka simpler
and more readable. However, it has an entirely different execution model, since the input lan-
guage is of an other language paradigm. The source code of Kafka is not publicly available, but
can be obtained by asking the author of Kafka friendly.

8.2 Lambdachine: A Trace-Based Just-In-Time Compiler for
Haskell

Schilling implemented a trace-based just-in-time compiler for Haskell [Sch12, Sch13]. Lamb-
dachine is split into two parts:

63

• In order to have an efficient execution, the Haskell source code is first compiled to a
suitable representation for tracing, that is bytecode. It uses the GHC front end to extract
the Core-representation of an given Haskell file. The compiler translates the Core input
to its own bytecode, which is used for static analysis and then for register allocation.
Lambdachine uses Hoopl as well: Linearisation, as presented in Section 3.4, was inspired
by Lambdachine. Hence, it uses the linearised representation for register allocation similar
to the presented way in Section 3.6. It is the only Hoopl-client in the wild1 known to the
author.

• A virtual machine, implemented in C++, which executes the generated bytecode files.
Since only traces have to be compiled, code generation is simpler than a regular compiler.

8.3 JVMs ported to x86

x86 is known to be an unpopular target for compiler writers (e.g., [ABC+02, Section 3.1]),
because it has a non-orthogonal instruction set and is not a load/store architecture. Unfortunately,
due to Harpy, MateVM is restricted to x86 at the moment.

The first target of CACAO was DEC Alpha [Kra98], but x86 was implemented years
later [Tha04]. An other example is the Jikes RVM, which reported their experiences with x86
regarding the virtual machine in [ABC+02]—the first platform used for Jikes RVM was Pow-
erPC on AIX.

8.4 Just-In-Time Compiler Techniques

Regarding used techniques, MateVM is inspired by CACAO, due to its simplicity. The pre-
sented design of traps in Section 4.3 is similar to the implementation of CACAO. CACAO solves
mtable and itable more efficient [BEK09], but the idea of having tables and therefore
be able to omit dynamic type checking on an invocation, is the same for MateVM. MateVM
implements some ideas from the front end of CACAO, for example interface registers on ba-
sic block analysis (cf. Section 3.2.2 [Kra98]).

1apart from GHC

64

CHAPTER 9
Conclusion and Future Work

We have shown that Haskell is suitable for implementing a just-in-time compiler. The strength
of Haskell is certainly the explicit seperation of pure and effectful code, which is helpful on
designing a complex project. Hoopl turned out to be a powerful framework, that enables further
opportunities to integrate optimization passes easily. An other example is the CodeGen-monad,
which enables a nice level of abstraction to generate native code in a type-safe manner.

The results evidently shows that MateVM is not faster than other just-in-time compilers,
but we are satisfied with overall performance. Although performance can be improved, Haskell
is a high-level language after all, therefore we could not expect a faster implementation than
JVMs in C/C++/etc in the first place. On the other hand, we think that MateVM is “better” on a
source code level, albeit this is the subjective opinion of the author and impossible to prove.

We are looking forward to further contributions to MateVM.

Future Work
We have two primary goals for MateVM, with the constraint to be implemented in Haskell:

1. Implement the JVM specification [LYBB13]

2. Implement a fast virtual machine, but keep complexity low

Both goals are big tasks for itself, therefore there are many open tasks and questions left. Here
is a list, sorted by priority, of some open tasks:

x86_64 and other architectures We are limited by Harpy to x86, but we would like to move
forward, since x86 is unfriendly to compiler writers. x86_64 should be rather easy to
port, but in principle every architecture supported by GHC is welcome.

Optimizations There are many opportunities, e.g.:

• According to [RDPJ10], students were able to implement sophisticated optimiza-
tions such as lazy code motion [KRSA92] with Hoopl.

65

• Method inlining could be done in the front end of MateVM. An appropriate place
would be when translating the Java bytecode of a method to MateIR. However,
one has to implement a good heuristic to guide inlining decisions. Also, inlining of
virtual calls is more complicated, so inlining of static methods should be the first
step when implementing such optimization.

• Stack allocation of heap objects. Again, Hoopl should be well suited for escape
analysis.

As optimizations increase compile-time-costs, one has to implement some kind of trigger
to decide, when a method should be compiled with optimizations. The standard approach
for that is profiling. It would be nice to implement a technique, which collects analysis
data for a Hoopl-pass at run-time that could be used later on re-compiling a hot method.

The idea can be further evolved to have different kinds of compilers: A fast one (regarding
to compile-time) producing slow code and a highly optimized one for hot methods (similar
to Jikes RVM [AAC+99]). On the other hand, one might want to implement an interpreter
for the sake of simplicity.

Although some optimizations seems to be easy to implement, it turns out to require more
effort than expected, since the JVM specification has unpleasant requirements, such as
class reloading at run-time. Such side-effects must be considered when implementing
optimizations and deoptimization strategies must be developed. Deoptimization is useful
for optimistic optimization too. Traps from Section 4.3 could be refined and used to
implement the semantics of deoptimizations.

GNU Classpath At the moment MateVM uses a custom and minimalistic base library. GNU Class-
path would enable to run real life applications with MateVM. One major feature miss-
ing for it, are the concept of class loaders. As GNU Classpath is designed to be easily
portable and the exposed interface is simple, it should not be too hard. However, in prac-
tice it can be a cumbersome task to debug errors in combination with GNU Classpath. At
the moment, executing a simple HelloWorld-program with GNU Classpath loads about
70 classes, but fails when GNU Classpath requests a class-object from MateVM. Al-
though this is already good progress, it would require still some weeks or months to get
GNU Classpath running properly.

Overall improvments During the implementation the author improved his Haskell skills from
a beginner level. Thus there are some low-hanging fruits:

• implement algorithms more efficient with respect to strictness

• using unboxed types in order to avoid overhead introduced by Haskell data types

• redesign the compilation pipeline in order to enable more interleaved compilation,
eventually eliminating iterations on the intermediate representation

• better integration of traps into the CodeGen-monad

• other tweaks, that we are not aware of yet

66

Improve existing run-time services Simple techniques are used in the current state. Improve-
ments are definitely possible at invokeinterface and dynamic type check. The latter
should be done in native code, as discussed in Section 5.3.

Concurrency One should evaluate what is needed for concurrency. This is a rather difficult
task, as it can influence other parts if things are done wrong. Also, concurrency is known
to be an optimization barrier, therefore possible optimizations conflicting with concur-
rency have to be disabled or deoptimization strategies have to be developed.

67

Bibliography

[AAC+99] Bowen Alpern, C. R. Attanasio, Anthony Cocchi, Derek Lieber, Stephen Smith,
Ton Ngo, John J. Barton, Susan Flynn Hummel, Janice C. Sheperd, and Mark
Mergen, Implementing Jalapeno in Java, Proceedings of the 14th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications
(New York, NY, USA), OOPSLA ’99, ACM, 1999, pp. 314–324.

[ABC+02] Bowen Alpern, Maria Butrico, Anthony Cocchi, Julian Dolby, Stephen Fink,
David Grove, and Ton Ngo, Experiences Porting the Jikes RVM to Linux/IA32, In
2nd Java(TM) Virtual Machine Research and Technology Symposium (JVM’02,
USENIX Association, 2002, pp. 51–64.

[ACFG01] Bowen Alpern, Anthony Cocchi, Stephen Fink, and David Grove, Efficient imple-
mentation of Java interfaces: Invokeinterface considered harmless, Proceedings of
the 16th ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications (New York, NY, USA), OOPSLA ’01, ACM, 2001,
pp. 108–124.

[AFG+11] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter F. Sweeney,
Adaptive optimization in the Jalapeno JVM, SIGPLAN Not. 46 (2011), no. 4, 65–
83.

[BEK09] Manfred Brockhaus, Anton Ertl, and Andreas Krall, Weiterführender Übersetzer-
bau, Institut für Computersprachen. Arbeitsbereich für Programmiersprachen und
Übersetzerbau. Technische Universität Wien, 2009.

[Boe13] Hans Boehm, A garbage collector for C and C++, 2013, http://www.hpl.
hp.com/personal/Hans_Boehm/gc/.

[CH00] Koen Claessen and John Hughes, QuickCheck: a lightweight tool for random test-
ing of Haskell programs, Proceedings of the fifth ACM SIGPLAN international
conference on Functional programming (New York, NY, USA), ICFP ’00, ACM,
2000, pp. 268–279.

[Coh91] Norman H. Cohen, Type-extension type test can be performed in constant time,
ACM Trans. Program. Lang. Syst. 13 (1991), no. 4, 626–629.

69

http://www.hpl.hp.com/personal/Hans_Boehm/gc/
http://www.hpl.hp.com/personal/Hans_Boehm/gc/

[Com12] Haskell Community, Hackage, 2012, http://hackage.haskell.org.

[Cor98] The Standard Performance Evaluation Corporation, SPEC JVM98, 1998, http:
//www.spec.org/osg/jvm98/.

[ERU13] Josef Eisl, Sebastian Rumpl, and Bernhard Urban, JorthVM at github, https:
//github.com/JorthVM/JorthVM, 2013, [Online; accessed 10-January-
2013].

[FLMPJ99] Sigbjorn Finne, Daan Leijen, Erik Meijer, and Simon Peyton Jones, Calling Hell
from Heaven and Heaven from Hell, Proceedings of the fourth ACM SIGPLAN
international conference on Functional programming (New York, NY, USA), ICFP
’99, ACM, 1999, pp. 114–125.

[GJS+13] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley, The JavaTM

Language Specification, Java SE 7 Edition, Oracle, 2013, http://docs.
oracle.com/javase/specs/jls/se7/html.

[GK07] Martin Grabmüller and Dirk Kleeblatt, Harpy: Run-Time Code Generation in
Haskell, Proceedings of the ACM SIGPLAN workshop on Haskell workshop (New
York, NY, USA), Haskell ’07, ACM, 2007, pp. 94–94.

[Gra09] Martin Grabmüller, Dynamic Compilation for Functional Programs, 2009.

[JWW04] Simon Peyton Jones, Geoffrey Washburn, and Stephanie Weirich, Wobbly Types:
Type Inference for Generalised Algebraic Data Types, Tech. report, 2004.

[KP98] Andreas Krall and Mark Probst, Monitors and Exceptions: How to implement Java
efficiently, IN ACM 1998 WORKSHOP ON JAVA FOR HIGH-PERFORMANCE
NETWORK COMPUTING, ACM, 1998, pp. 15–24.

[Kra98] Andreas Krall, Efficient JavaVM Just-in-Time Compilation, International Confer-
ence on Parallel Architectures and Compilation Techniques, 1998, pp. 205–212.

[KRSA92] Jens Knoop, Oliver Rüthing, Bernhard Steffen, and Rwth Aachen, Lazy code mo-
tion, 1992, pp. 224–234.

[KWM+08] Thomas Kotzmann, Christian Wimmer, Hanspeter Mössenböck, Thomas Ro-
driguez, Kenneth Russell, and David Cox, Design of the Java HotSpotTM client
compiler for Java 6, ACM Trans. Archit. Code Optim. 5 (2008), no. 1, 7:1–7:32.

[LGC02] Sorin Lerner, David Grove, and Craig Chambers, Composing Dataflow Analyses
and Transformations, Proceedings of the 29th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages (New York, NY, USA), POPL ’02,
ACM, 2002, pp. 270–282.

[LYBB13] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley, The JavaTM

Virtual Machine Specification, Oracle, 2013, http://docs.oracle.com/
javase/specs/jls/se7/html.

70

http://hackage.haskell.org
http://www.spec.org/osg/jvm98/
http://www.spec.org/osg/jvm98/
https://github.com/JorthVM/JorthVM
https://github.com/JorthVM/JorthVM
http://docs.oracle.com/javase/specs/jls/se7/html
http://docs.oracle.com/javase/specs/jls/se7/html
http://docs.oracle.com/javase/specs/jls/se7/html
http://docs.oracle.com/javase/specs/jls/se7/html

[Mar12] Simon Marlow, Dynamically link GHCi (and use system linker) on platforms that
support it, 2012, http://hackage.haskell.org/trac/ghc/ticket/
3658.

[Mic03] Sun Microsystems, JavaTM Native Interface Specification,
http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/jniTOC.html (2003),
http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/
jniTOC.html.

[oG12] University of Glasgow, Glasgow Haskell Compiler, 2012, http://www.
haskell.org/ghc/.

[Ove12a] Stack Overflow, get the address of a function (without interfacing C),
2012, http://stackoverflow.com/questions/10967598/
get-the-address-of-a-function-without-interfacing-c.

[Ove12b] , GHC: segmentation fault under strange conditions, 2012,
http://stackoverflow.com/questions/10341943/
ghc-segmentation-fault-under-strange-conditions.

[Ove12c] , GHCi runtime linker issue when using FFI declarations,
2012, http://stackoverflow.com/questions/10658104/
ghci-runtime-linker-issue-when-using-ffi-declarations.

[Pro10] Bob Proulx, GNU time: incorrect results, 2010, https://groups.google.
com/d/msg/gnu.utils.help/u1MOsHL4bhg/ewaNE5uxLxoJ.

[PS99] Massimiliano Poletto and Vivek Sarkar, Linear Scan Register Allocation, ACM
TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS 21
(1999), no. 5, 895–913.

[RDPJ10] Norman Ramsey, João Dias, and Simon Peyton Jones, Hoopl: A Modular,
Reusable Library for Dataflow Analysis and Transformation, Proceedings of the
third ACM Haskell symposium on Haskell (New York, NY, USA), Haskell ’10,
ACM, 2010, pp. 121–134.

[Sch12] Thomas Schilling, Challenges for a Trace-Based Just-In-Time Compiler for
Haskell, Implementation and Application of Functional Languages (Andy Gill
and Jurriaan Hage, eds.), Lecture Notes in Computer Science, vol. 7257, Springer
Berlin Heidelberg, 2012, pp. 51–68.

[Sch13] , lambdachine at github, https://github.com/nominolo/
lambdachine, 2013, [Online; accessed 13-January-2013].

[SKT07] Edwin Steiner, Andreas Krall, and Christian Thalinger, Adaptive Inlining and On-
Stack Replacement in the CACAO virtual machine, Proceedings of the 5th interna-
tional symposium on Principles and practice of programming in Java (New York,
NY, USA), PPPJ ’07, ACM, 2007, pp. 221–226.

71

http://hackage.haskell.org/trac/ghc/ticket/3658
http://hackage.haskell.org/trac/ghc/ticket/3658
http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/jniTOC.html
http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/jniTOC.html
http://www.haskell.org/ghc/
http://www.haskell.org/ghc/
http://stackoverflow.com/questions/10967598/get-the-address-of-a-function-without-interfacing-c
http://stackoverflow.com/questions/10967598/get-the-address-of-a-function-without-interfacing-c
http://stackoverflow.com/questions/10341943/ghc-segmentation-fault-under-strange-conditions
http://stackoverflow.com/questions/10341943/ghc-segmentation-fault-under-strange-conditions
http://stackoverflow.com/questions/10658104/ghci-runtime-linker-issue-when-using-ffi-declarations
http://stackoverflow.com/questions/10658104/ghci-runtime-linker-issue-when-using-ffi-declarations
https://groups.google.com/d/msg/gnu.utils.help/u1MOsHL4bhg/ewaNE5uxLxoJ
https://groups.google.com/d/msg/gnu.utils.help/u1MOsHL4bhg/ewaNE5uxLxoJ
https://github.com/nominolo/lambdachine
https://github.com/nominolo/lambdachine

[Ste12] Don Stewart, plugins: Dynamic linking for Haskell and C objects, 2012, http:
//hackage.haskell.org/package/plugins.

[Ste13] Harald Steinlechner, Precise Garbage Collection für die MateVM, 2013, to appear.

[Tha04] Christian Thalinger, Optimizing and Porting the CACAO JVM, 2004.

[VHK97] Jan Vitek, R. Nigel Horspool, and Andreas Krall, Efficient type inclusion tests,
Proceedings of the 12th ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications (New York, NY, USA), OOPSLA ’97,
ACM, 1997, pp. 142–157.

[VWJ08] Dimitrios Vytiniotis, Stephanie Weirich, and Simon Peyton Jones, FPH: First-
class Polymorphism for Haskell Declarative, constraint-free type inference for im-
predicative polymorphism, 2008.

[Wik12] Wikipedia, Fold (higher-order function), 2012, http://en.wikipedia.
org/w/index.php?title=Fold_(higher-order_function)
&oldid=518131910.

[WM05] Christian Wimmer and Hanspeter Mössenböck, Optimized Interval Splitting in a
Linear Scan Register Allocator, Proceedings of the 1st ACM/USENIX interna-
tional conference on Virtual execution environments (New York, NY, USA), VEE
’05, ACM, 2005, pp. 132–141.

72

http://hackage.haskell.org/package/plugins
http://hackage.haskell.org/package/plugins
http://en.wikipedia.org/w/index.php?title=Fold_(higher-order_function)&oldid=518131910
http://en.wikipedia.org/w/index.php?title=Fold_(higher-order_function)&oldid=518131910
http://en.wikipedia.org/w/index.php?title=Fold_(higher-order_function)&oldid=518131910

	Introduction
	The Java virtual machine
	Tasks of a Java virtual machine
	Motivation
	Project context and activities

	Overview of MateVM
	The virtual machine
	Libraries useful for this project
	hs-java
	Hoopl
	Harpy

	Front End
	Intermediate Language: MateIR
	Design of the intermediate language
	Combinators for MateIR

	Java bytecode to MateIR
	Elimination and type analysis of the Java stack
	Non-empty stack on block boundaries

	Hoopl passes
	Liveness analysis

	Linearise the graph
	Computing live ranges from liveness information
	Linear Scan Register Allocation (LSRA)

	Back End
	How to call native code from Haskell
	Code generation for x86
	Combinators
	Emitting IROp (binary operator)
	Object- and array layout
	Method calls

	Trap handling and code patching
	Exception handling
	Example: A classic Fibonacci implementation

	Run-time environment
	Classpool
	Methodpool
	Native methods

	Dynamic type checking
	Handling of String literals
	Garbage Collection

	Pearls
	Register allocation and QuickCheck
	Evolution of code patching in MateVM
	First generation: C
	Second generation: Haskell and pointers
	Current generation: Patching via the CodeGen-monad
	Future generation: Trap combinator for the CodeGen-monad

	Results
	Benchmarks
	Execution time
	Memory usage

	Related Work
	Kafka: Just-In-Time Compiler for a Functional Language
	Lambdachine: A Trace-Based Just-In-Time Compiler for Haskell
	JVMs ported to x86
	Just-In-Time Compiler Techniques

	Conclusion and Future Work
	Bibliography

