
Masterstudium:
Computer Architecture and Compiler Design

Diplomarbeitspräsentation

Implementation of a Java

Just-In-Time Compiler in Haskell

Bernhard Urban

���
���
���
���
���

���
���
���
���
���

uages
comp
lang

uter

Technische Universität Wien
Institut für Computersprachen

Arbeitsbereich: Programmiersprachen und Übersetzer
Betreuer: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Krall

Real World Application: A JIT Compiler

◮ Nowadays JVMs are inherently complex in order to provide
fast execution [1] comparable to native applications. They are
traditionally implemented in languages such as C or C++

◮ Correctness in a compiler is extremely important with respect
to bugs in general and security in particular

◮ Haskell provides language features to enable abstraction:
strong type system, the Monad construct, type classes and
composable code.

“Dirty” low-level tasks in a JIT compiler

◮ Run-time machine code generation
◮ Transitions between Haskell world and native code
◮ Interruption of native code execution to enable

run-time services and code patching
Are those requirements compatible with a high-level purely

functional language such as Haskell? Yes!

Tackling the pitfalls

◮ Harpy [2] generates code at run-time for the x86-architecture
◮ Haskell → native code: the dynamic import wrapper

provided by the function foreign interface of the Glasgow
Haskell Compiler—comparable to function pointers in C

◮ Native code → Haskell: Solved via traps (aka. hardware
exception or signal), that requires minimal C code.

MateVM [3]: The prototype

The origin of the name was inspired by the caffeine-contained drink
called Club-Mate, to stay in tradition with other JVM
implementations (e.g. Kaffe or CACAO). Architecture Overview:

install method

compile new method

main method

native code

co
m

p
il

er

back end

LSRA

front end

run-time

execute

tricked by trap

Compiler: Front End

◮ Intermediate language: Register based, polymorphic regarding
register type and implements the notion of basic blocks via
invariants on type level

◮ The latter enables usage of Hoopl [4], a Haskell library for
data-flow analysis (also used by GHC)

◮ In order to create a control-flow graph from JVM bytecode,
the JVM stack has to be eliminated and jumps must be
resolved

◮ Liveness Analysis is implemented in order to compute
live ranges needed for register allocation.

Compiler: Linear Scan Register Allocation (LSRA) [5]

◮ Few registers available: ecx, edx, ebx, esi and edi
→ good spilling decision is important

◮ QuickCheck [6] is a library for testing properties on random

generated instances. Property for register allocation:
For all virtual register there is no other virtual register that

has an overlapping live range and the same hardware

register assigned.

Front end and LSRA are pure, i.e. code without side-effects in
the programmer model. The rest is effectful code, but explicitly
encapsulated in an I/O-Monad.

Compiler: Back End

◮ Harpy provides a domain specific language similar to Intel
syntax for x86-assembly to generate machine code

◮ Custom combinators are used to circumvent quirks on ISA
level of x86, such as div that clobbers eax and edx

Run-time system

◮ Back end intentionally places traps in generated code,
therefore code patching is required at run-time

◮ The run-time system is responsible for class loading, resolve
method lookup, dynamic type check, exception handling etc.

Results

◮ slower than mainstream JVMs (as expected)
◮ generated code quality is good, but can be certainly improved
◮ however, the compiler is rather slow and will probably never

get faster than implementations in C/C++. That is the price for
using a high-level language.

benchmark server client cacao mate jamvm

HelloWorld 0.06s 0.03s 0.12s 0.00s 0.03s
Fib 0.15s 0.16s 0.38s 0.46s 3.35s
Objectfield 0.02s 0.39s 0.52s 0.88s 4.52s
Staticfield 0.02s 0.39s 0.40s 0.83s 5.68s
Virtual 0.55s 0.65s 2.02s 4.97s 25.33s
Interface 0.02s 0.12s 0.24s 0.65s 3.37s
InstanceOf 0.00s 0.00s 0.01s 1.72s 0.01s
Array 0.85s 0.83s 0.89s 1.59s 5.70s
Exception 0.24s 0.10s 0.19s 0.43s 0.45s
Compiletime 0.14s 0.14s 0.20s 0.94s 0.04s

References

[1] M. Arnold, S. Fink, D. Grove, M. Hind, and P. Sweeney, “A Survey of Adaptive Optimization in
Virtual Machines,” 2005.

[2] M. Grabmüller and D. Kleeblatt, “Harpy: Run-Time Code Generation in Haskell,” 2007.

[3] https://github.com/MateVM.

[4] N. Ramsey, J. a. Dias, and S. Peyton Jones, “Hoopl: A Modular, Reusable Library for
Dataflow Analysis and Transformation,” 2010.

[5] M. Poletto and V. Sarkar, “Linear Scan Register Allocation,” 1999.

[6] K. Claessen and J. Hughes, “QuickCheck: a lightweight tool for random testing of Haskell
programs,” 2000.

Kontakt: lewurm@gmail.com

https://github.com/MateVM

