
Vienna University of Technology WS 2010

VU Formale Methoden der Informatik

Block 3: Formal Verification of
Software

Bernhard Urban

Matr.Nr.: 0725771

lewurm@gmail.com

May 21, 2011

Contents

1 Exercise 1 2

2 Exercise 2 2

3 Exercise 3 4
3.1 Termination . 7

4 Exercise 4 8

5 Exercise 5 8

6 Exercise 6 9

7 Exercise 7 10

1

mailto:lewurm@gmail.com

1 Exercise 1

1 Exercise 1

We want to show that the two given programs are semantically equivalent, which means
that both programs deliver the same outputstate on the same inputstate σ. First, we
analyze one iteration of the first program:

(while e do p od, σ)⇒

{
(p; while e do p od, σ) if [e]σ 6= 0

σ if [e]σ = 0

The execution of one iteration results into two possible states (depending on the result
of [e]σ). For the second program we get:

(if e then p; while e do p od else skip fi, σ)⇒

{
(p; while e do p od, σ) if [e]σ 6= 0

(skip, σ) if [e]σ = 0

Obviously, both programs ends up in the same programstate after one iteration (since
(skip, σ) ⇒ σ). Now we know that both programs have the same behaviour on any
inputstate σ and thus they are semantically equivalent.

2 Exercise 2

The pre- and post-condition are obvious: {F : x = x0∧y = y0} and {G : y = x0∧x = y0}

(a) Hoare calculus:

F ⇒ H ′[x/x− y] {H ′[x/x− y]}x = x− y{H ′} (as)

{F}x = x− y{H ′} (2) (lc)

{F}x = x− y{H ′} (2)
H ′ ⇒ H[y/x+ y] {H[y/x+ y]}y = x+ y{H} (as)

{H ′}y = x+ y{H} (lc)

{F}x = x− y; y = x+ y{H} (1) (sc)

{F}x = x− y; y = x+ y{H} (1)
H ⇒ G[x/y − x] {G[x/y − x]}x = y − x{G} (as)

{H}x = y − x{G} (lc)

{F}x = x− y; y = x+ y; y = y − x{G} (sc)

Now we need proper formulas for H and H ′, so that F ⇒ H ′[x/x− y], H ′ ⇒ H[y/x+ y]
and H ⇒ G[x/y − x] become vaild. We choose H ′ ≡ H[y/x + y] and H ≡ G[x/y − x].
It remains to show F ⇒ H ′[x/x− y], i.e.:

F ⇒ G[x/y − x][y/x+ y][x/x− y]

(x = x0 ∧ y = y0)⇒ (y = x0 ∧ x = y0)[x/y − x][y/x+ y][x/x− y]

(x = x0 ∧ y = y0)⇒ (y = x0 ∧ y − x = y0)[y/x+ y][x/x− y]

(x = x0 ∧ y = y0)⇒ (x+ y = x0 ∧ x+ y − x = y0)[x/x− y]

(x = x0 ∧ y = y0)⇒ (x− y + y = x0 ∧ x− y + y − x+ y = y0)

(x = x0 ∧ y = y0)⇒ (x = x0 ∧ y = y0)

2

2 Exercise 2

So, this implication is also valid, therefore the swap program is partially/totally correct.

(b) The annotation calculus allows us to write down the proof much cleaner:

{F : x = x0 ∧ y = y0 }
{ 3: G[x/y − x][y/x+ y][x/x− y] }
x := x− y
{ 2: G[x/y − x][y/x+ y] }
y := x+ y
{ 1: G[x/y − x] }
x := y − x
{G : y = x0 ∧ x = y0 }

F ⇒ 3 remains to show, which was already shown in (a).

(c) Weakest pre-condition.

{H ′′ : wp(x := x− y; y := x+ y;x := y − x), G }
x := x− y
{H ′ : wp(y := x+ y;x := y − x), G }
y := x+ y
{H : wp(x := y − x), G }
x := y − x
{G : y = x0 ∧ x = y0 }

According to the defintion wp(v := e, F) = F [v/e] in the slides, H ′′ yields into G[x/y −
x][y/x+ y][x/x− y], which is equal to our post-condition (as shown in (a)).

(d) Strongest post-condition:

{F : x = x0 ∧ y = y0 }
x := x− y
{H : sp(x := x− y, F) }
y := x+ y
{H ′ : sp(x := x+ y,H) }
x := y − x
{H ′′ : sp(x := y − x,H ′) }

H ′′ evaluates to (due to sp(v := e, F) = ∃v′(F [v/v′] ∧ v = e[v/v′])):

{H ′′ : sp(x = y − x, sp(y = x+ y, sp(x = x− y, F))) }
⇒{H ′′ : sp(x = y − x, sp(y = x+ y, {∃x′(x′ = x0 ∧ y = y0 ∧ x = x′ − y})) }
⇒{H ′′ : sp(x = y − x, {∃y′(∃x′(x′ = x0 ∧ y′ = y0 ∧ x = x′ − y′) ∧ y = x+ y′})) }
⇒{H ′′ : ∃x′′(∃y′(∃x′(x′ = x0 ∧ y′ = y0 ∧ x′′ = x′ − y′) ∧ y = x′′ + y′) ∧ x = y − x′′)) }

3

3 Exercise 3

Evaluating this expression results into:

{H ′′ : y = x′′ + y′ ∧ x = y − x′′}
⇒{H ′′ : y = x′ − y′ + y′ ∧ x = y − x′ − y′} due to x′′ = x′ − y′

⇒{H ′′ : y = x′ ∧ x = y − x′ − y′}
⇒{H ′′ : y = x′ ∧ x = y′} because of y = x′

⇒{H ′′ : y = x0 ∧ x = y0} since x′ = x0 and y′ = y0

3 Exercise 3

In the following, these abbreviations are used:

B := d ·m ≤ n

Inv := 0 ≤ a < b ≤ n+ 1 ∧ a ·m ≤ n < b ·m

First, we annotate the program by applying several rules:

{ 1: m > 0 ∧ n ≥ 0 }
{ 2: Inv [b/n+ 1][a/0] } as ↑
a := 0;
{ 3: Inv [b/n+ 1] } as ↑
b := n+ 1;
{ 4: Inv } wh
while a+ 1 6= b do
{ 5: Inv ∧ a+ 1 6= b } wh
{ 6: (B ⇒ Inv [a/d]) ∧ (¬B ⇒ Inv [b/d])[d/(a+ b)/2] } as ↑
d := (a+ b)/2;
{ 7: (B ⇒ Inv [a/d]) ∧ (¬B ⇒ Inv [b/d]) } if ↑
if d ·m ≤ n then
{ 8: Inv [a/d] } as ↑
a := d;
{ 9: Inv } fi ↑

else
{ 10: Inv [b/d] } as ↑
b := d;
{ 11: Inv } fi ↑

fi
{ 12: Inv } wh

od
{ 13: Inv ∧ a+ 1 = b } wh
{ 14: a ·m ≤ n < (a+ 1) ·m }

Now it remains to show that 1⇒ 2, 13⇒ 14 and 5⇒ 6 are indeed valid.

4

3 Exercise 3

1⇒ 2:

m > 0 ∧ n ≥ 0⇒ Inv [b/n+ 1][a/0]

m > 0 ∧ n ≥ 0⇒ 0 ≤ a < b ≤ n+ 1 ∧ a ·m ≤ n < b ·m[b/n+ 1][a/0]

m > 0 ∧ n ≥ 0⇒ 0 ≤ 0 < n+ 1 ≤ n+ 1 ∧ 0 ·m ≤ n < (n+ 1) ·m
0 ≤ n ∧ 0 < m⇒ 0 < n+ 1 ∧ 0 ≤ n < (n+ 1) ·m

now we split the formula:

n ≤ 0⇒ 0 < n+ 1 X

0 < m⇒ n < (n+ 1) ·m
0 < m⇒ n+ 1 ≤ (n+ 1) ·m
0 < m⇒ 1 ≤ m X

13⇒ 14:

0 ≤ a < b ≤ n+ 1 ∧ a ·m ≤ n < b ·m ∧ a+ 1 = b⇒ a ·m ≤ n < (a+ 1) ·m
0 ≤ a < a+ 1 ≤ n+ 1 ∧ a ·m ≤ n < (a+ 1) ·m︸ ︷︷ ︸∧a+ 1 = b⇒ a ·m ≤ n < (a+ 1) ·m︸ ︷︷ ︸ X

5⇒ 6:

We split the proof into to parts (if and else), in order to make it more readable. This is
valid, because of the relation

A⇒ ((B ⇒ C) ∧ (D ⇒ E)) ≡ ((A ∧B)⇒ C) ∧ ((A ∧D)⇒ E)

if

0 ≤a < b ≤ n+ 1 ∧ a ·m ≤ n < b ·m ∧ a+ 1 6= b

⇒ d ·m ≤ n⇒ (0 ≤ a < b ≤ n+ 1 ∧ a ·m ≤ n < b ·m)[a/d][d/(a+ b)/2]

substitute a with d and after that d with
a+ b

2
on the right side

0 ≤a < b ≤ n+ 1 ∧ a ·m ≤ n < b ·m ∧ a+ 1 6= b

⇒ a+ b

2
·m ≤ n⇒ (0 ≤ a+ b

2
< b ≤ n+ 1 ∧ a+ b

2
·m ≤ n < b ·m)

move
a+ b

2
·m ≤ n to the left side

0 ≤a < b ≤ n+ 1 ∧ a ·m ≤ n < b ·m ∧ a+ 1 6= b ∧ a+ b

2
·m ≤ n

⇒ 0 ≤ a+ b

2
< b ≤ n+ 1︸ ︷︷ ︸
c1

∧ a+ b

2
·m ≤ n < b ·m︸ ︷︷ ︸

c2

5

3 Exercise 3

At this point, we introduce

a < b a < b

a+ b < b+ b a+ a < a+ b

a+ b < 2b 2a < a+ b

a+ b

2
< b a <

a+ b

2
because of a+ 1 6= b this is valid

⇒ a <
a+ b

2
< b . . . A1

Now we show that the right side evaluates to true if the left side evaluates to true too:

• 0 ≤ a < b ≤ n+ 1⇒ c1 because of A1 X

• a ·m ≤ n < b ·m⇒ c2 because of A1 X

else

0 ≤a < b ≤ n+ 1 ∧ a ·m ≤ n < b ·m ∧ a+ 1 6= b

⇒ d ·m > n⇒ (0 ≤ a < b ≤ n+ 1 ∧ a ·m ≤ n < b ·m)[b/d][d/(a+ b)/2]

substitute b with d and after that d with
a+ b

2
on the right side

0 ≤a < b ≤ n+ 1 ∧ a ·m ≤ n < b ·m ∧ a+ 1 6= b

⇒ a+ b

2
·m > n⇒ (0 ≤ a <

a+ b

2
≤ n+ 1 ∧ a ·m ≤ n <

a+ b

2
·m)

move
a+ b

2
·m > n to the left side

0 ≤a < b ≤ n+ 1 ∧ a ·m ≤ n < b ·m ∧ a+ 1 6= b ∧ a+ b

2
·m > n

⇒ 0 ≤ a <
a+ b

2
≤ n+ 1︸ ︷︷ ︸

c′1

∧ a ·m ≤ n <
a+ b

2
·m︸ ︷︷ ︸

c′2

Now we show that the right side evaluates to true if the left side evaluates to true too,
again using A1:

• 0 ≤ a < b ≤ n+ 1⇒ c′1 because of A1 X

• a ·m ≤ n < b ·m⇒ c′2 because of A1 X

6

3 Exercise 3

3.1 Termination

Since termination is tied to the loop condition, a+ 1 6= b is a good starting point for the
bound function t. Therefore, b− a− 1 might be a suitable bound function.

while a+ 1 6= b do
{ 1: Inv ∧ a+ 1 6= b ∧ 0 ≤ t = t0 }
{ 2: ((B ⇒ 0 ≤ t < t0[a/d]) ∧ (¬B ⇒ 0 ≤ t < t0[b/d]))[d/a+b

2
] }

d := (a+ b)/2;
{ 3: (B ⇒ 0 ≤ t < t0[a/d]) ∧ (¬B ⇒ 0 ≤ t < t0[b/d]) }
if d ·m ≤ n then
{ 4: 0 ≤ t < t0[a/d] }
a := d;
{ 5: 0 ≤ t < t0 }

else
{ 6: 0 ≤ t < t0[b/d] }
b := d;
{ 7: 0 ≤ t < t0 }

fi
{ 8: 0 ≤ t < t0 }

od

It remains to show that 1⇒ 2 is valid. Again, we split the proof into two parts (if and
else).

1⇒ 2:

if

0 ≤a < b ≤ n+ 1 ∧ a ·m ≤ n < b ·m ∧ a+ 1 6= b ∧ 0 ≤ t0

⇒ (d ·m ≤ n⇒ (0 ≤ b− a− 1 < t0)[a/d])[d/
a+ b

2
]

0 ≤a < b ≤ n+ 1 ∧ a ·m ≤ n < b ·m ∧ a+ 1 6= b ∧ 0 ≤ t0

⇒ a+ b

2
·m ≤ n⇒ 0 ≤ b− a+ b

2
− 1 < t0

0 ≤a < b ≤ n+ 1 ∧ a ·m ≤ n < b ·m ∧ a+ 1 6= b ∧ 0 ≤ t0 ∧
a+ b

2
·m ≤ n

⇒ 0 ≤ b− a+ b

2
− 1 < t0

0 ≤a < b ≤ n+ 1 ∧ a ·m ≤ n < b ·m ∧ a+ 1 6= b ∧ 0 ≤ t0 ∧
a+ b

2
·m ≤ n

⇒ 0 ≤ 2b− a− b
2

− 1 < t0 X since a ≥ 0⇒ t decreases

7

4 Exercise 4

else

0 ≤a < b ≤ n+ 1 ∧ a ·m ≤ n < b ·m ∧ a+ 1 6= b ∧ 0 ≤ t0

⇒ (d ·m > n⇒ (0 ≤ b− a− 1 < t0)[b/d])[d/
a+ b

2
]

0 ≤a < b ≤ n+ 1 ∧ a ·m ≤ n < b ·m ∧ a+ 1 6= b ∧ 0 ≤ t0

⇒ a+ b

2
·m > n⇒ 0 ≤ a+ b

2
− a− 1 < t0

0 ≤a < b ≤ n+ 1 ∧ a ·m ≤ n < b ·m ∧ a+ 1 6= b ∧ 0 ≤ t0 ∧
a+ b

2
·m > n

⇒ 0 ≤ a+ b

2
− a− 1 < t0

0 ≤a < b ≤ n+ 1 ∧ a ·m ≤ n < b ·m ∧ a+ 1 6= b ∧ 0 ≤ t0 ∧
a+ b

2
·m > n

⇒ 0 ≤ a+ b− 2a

2
− 1 < t0 X since a ≥ 0⇒ t decreases

4 Exercise 4

By looking at sp(if e then p else q fi, F) and the if ↓ rule

{F} if e then . . . else 7→ {F} if e then {F ∧ e} . . . else {F ∧ ¬e} if ↓

plus some intuition, we get

• if: {e ∧ F}p{sp(p, {e ∧ F}}

• else: {¬e ∧ F}p{sp(q, {¬e ∧ F}}

as strongest post-condition for each branch. By applying the dual-fi rule

{F} else . . . {G} 7→ {F} else . . . {G} fi {F ∨G} fi ↓

we can conclude:

sp(if e then p else q fi, F) = {sp(p, {e ∧ F}) ∨ sp(q, {¬e ∧ F})}

5 Exercise 5

{F} p {true}
(a) {F : x 6= 0 } so p may not terminate, depending on whether x is even or odd.

(b) {F : x = 0 } ⇒ the program always terminate.

8

6 Exercise 6

{F} p {false}
(a) {F : x = 1 } so the program doesn’t terminate obviously.

(b) No formula, since the post-condition is false, which means the program never ter-
minate.

{true} p {F}
(a) {F : x = 0 } when the program terminates, the post-condition is fulfilled.

(b) No formula, because we don’t know anything about x, therefore we can end up an
infinte loop.

{false} p {F}
(a) {F : x = 0 } even when p would terminate, it would fullfil the post-condition then.

(b) No formula, since the pre-condition is false anyway and therefore termination won’t
be guaranteed.

6 Exercise 6

An assertion {F}p{G} is totally correct, if

• whenever p starts in an F -State, then p terminates and stops in a G-State.

• ∀σ ∈ S : [F]σ ⇒ def([p]σ) ∧ [G][p]σ

Looking at the premise {F ∧ e}p{G}, which must be totally correct, we can rewrite it

according to the definition above as (we use σ : F as an abbreviation for “σ is a defined
F -State”, i.e., for “σ is a defined state and the formula F is true in σ.”):

∀σ ∈ S : [F ∧ e]σ ⇒ def([p]σ) ∧ [G][p]σ

∀σ ∈ S : [F]σ ∧ [e]σ ⇒ def([p]σ) ∧ [G][p]σ

∀σ ∈ S : [F]σ ∧ [e]σ ⇒ [p]σ : G

∀σ ∈ S : [F]σ ∧ [e]σ 6= 0⇒ [p]σ : G since [e]σ is a boolean expression

∀σ ∈ S : [F]σ ⇒ [e]σ 6= 0⇒ [p]σ : G moving it to the right side

Similar, {F ∧ ¬e}q{G} results into

∀σ ∈ S : [F]σ ⇒ [e]σ = 0⇒ [q]σ : G

9

7 Exercise 7

Now we take a look at the if statement for Tpl (natural semantics):

[if e then p else q fi]σ ⇒

{
[p]σ if [e]σ 6= 0

[q]σ if [e]σ = 0

This rule allows us to rewrite the both statements above such as:

∀σ ∈ S : [F]σ ⇒ [if e then p else q fi]σ : G

∀σ ∈ S : [F]σ ⇒ def([if e then p else q fi]σ) ∧ [G][if e then p else q fi]σ

⇒ {F}if e then p else q fi{G} X by using the defintion of totally correctness

7 Exercise 7

By looking at the post-condition {0 ≤ y2 ≤ x < (y + 1)2}, we can easily identify an
invariant for our program, since we know that y must be at least 0 (otherwise we would
get complex numbers): {0 ≤ y2 ≤ x}. Due to the wh-rule

while e do . . . od 7→ {Inv} while e do{Inv ∧ e} . . . {Inv} od {Inv ∧ ¬e} wh

we know, that the post-condition of a while consists of the conjunction of the invariant
and the negated loop-condition. Therefore

¬e = x < (y + 1)2

e = x ≥ (y + 1)2

is the loop-condition. In order to guarantee termination, we consider the loop condition.
We see, that y have to increase over time. Also this is the closest condition which we
can get, since we’re operating on integer numbers.
Thus, a simple algorithm would be (although it isn’t quite efficient):

{ 2: x ≥ 0 }
y := 0;
{ Inv : 0 ≤ y2 ≤ x }
while x ≥ (y + 1)2 do
y := y + 1;

od
{ 1: 0 ≤ y2 ≤ x < (y + 1)2 }

10

	Exercise 1
	Exercise 2
	Exercise 3
	Termination

	Exercise 4
	Exercise 5
	Exercise 6
	Exercise 7

