VU Formale Methoden der Informatik

Block 3: Formal Verification of Software

Bernhard Urban
Matr.Nr.: 0725771
lewurm@gmail.com

May 21, 2011

Contents

1 Exercise 1 2
2 Exercise 2 2
3 Exercise 3 4
3.1 Termination 7
4 Exercise 4 8
5 Exercise 5 8
6 Exercise 6 9
7 Exercise 7 10

1 Exercise 1

We want to show that the two given programs are semantically equivalent, which means that both programs deliver the same outputstate on the same inputstate σ. First, we analyze one iteration of the first program:

$$
\text { (while } e \text { do } p \text { od, } \sigma) \Rightarrow \begin{cases}(p ; \text { while } e \text { do } p \text { od, } \sigma) & \text { if }[e] \sigma \neq 0 \\ \sigma & \text { if }[e] \sigma=0\end{cases}
$$

The execution of one iteration results into two possible states (depending on the result of $[e] \sigma)$. For the second program we get:
(if e then p; while e do p od else skip fi, $\sigma) \Rightarrow \begin{cases}(p ; \text { while } e \text { do } p \text { od, } \sigma) & \text { if }[e] \sigma \neq 0 \\ (\operatorname{skip}, \sigma) & \text { if }[e] \sigma=0\end{cases}$
Obviously, both programs ends up in the same programstate after one iteration (since (skip, $\sigma) \Rightarrow \sigma$). Now we know that both programs have the same behaviour on any inputstate σ and thus they are semantically equivalent.

2 Exercise 2

The pre- and post-condition are obvious: $\left\{F: x=x_{0} \wedge y=y_{0}\right\}$ and $\left\{G: y=x_{0} \wedge x=y_{0}\right\}$
(a) Hoare calculus:

$$
\begin{gathered}
\frac{F \Rightarrow H^{\prime}[x / x-y]\left\{H^{\prime}[x / x-y]\right\} x=x-y\left\{H^{\prime}\right\}(a s)}{\{F\} x=x-y\left\{H^{\prime}\right\}(2)}(l c) \\
\frac{\{F\} x=x-y\left\{H^{\prime}\right\}(2)}{\{F\} x=x-y ; y=x+y\{H\}(1)} \frac{H^{\prime} \Rightarrow H[y / x+y]\{H[y / x+y]\} y=x+y\{H\}(a s)}{\left\{H^{\prime}\right\} y=x+y\{H\}}(l c) \\
\frac{H F\})}{\{F\} x=x-y ; y=x+y\{H\}(1)} \frac{H \Rightarrow G[x / y-x]\{G[x / y-x]\} x=y-x\{G\}(a s)}{\{F\} x=x-y ; y=x+y ; y=y-x\{G\}}(l c)
\end{gathered}
$$

Now we need proper formulas for H and H^{\prime}, so that $F \Rightarrow H^{\prime}[x / x-y], H^{\prime} \Rightarrow H[y / x+y]$ and $H \Rightarrow G[x / y-x]$ become vaild. We choose $H^{\prime} \equiv H[y / x+y]$ and $H \equiv G[x / y-x]$. It remains to show $F \Rightarrow H^{\prime}[x / x-y]$, i.e.:

$$
\begin{aligned}
F & \Rightarrow G[x / y-x][y / x+y][x / x-y] \\
\left(x=x_{0} \wedge y=y_{0}\right) & \Rightarrow\left(y=x_{0} \wedge x=y_{0}\right)[x / y-x][y / x+y][x / x-y] \\
\left(x=x_{0} \wedge y=y_{0}\right) & \Rightarrow\left(y=x_{0} \wedge y-x=y_{0}\right)[y / x+y][x / x-y] \\
\left(x=x_{0} \wedge y=y_{0}\right) & \Rightarrow\left(x+y=x_{0} \wedge x+y-x=y_{0}\right)[x / x-y] \\
\left(x=x_{0} \wedge y=y_{0}\right) & \Rightarrow\left(x-y+y=x_{0} \wedge x-y+y-x+y=y_{0}\right) \\
\left(x=x_{0} \wedge y=y_{0}\right) & \Rightarrow\left(x=x_{0} \wedge y=y_{0}\right)
\end{aligned}
$$

So, this implication is also valid, therefore the swap program is partially/totally correct.
(b) The annotation calculus allows us to write down the proof much cleaner:

$$
\begin{aligned}
& \left\{F: x=x_{0} \wedge y=y_{0}\right\} \\
& \{3: G[x / y-x][y / x+y][x / x-y]\} \\
& x:=x-y \\
& \{2: G[x / y-x][y / x+y]\} \\
& y:=x+y \\
& \{1: G[x / y-x]\} \\
& x:=y-x \\
& \left\{G: y=x_{0} \wedge x=y_{0}\right\}
\end{aligned}
$$

$F \Rightarrow 3$ remains to show, which was already shown in (a).
(c) Weakest pre-condition.

$$
\begin{aligned}
& \left\{H^{\prime \prime}: w p(x:=x-y ; y:=x+y ; x:=y-x), G\right\} \\
& x:=x-y \\
& \left\{H^{\prime}: w p(y:=x+y ; x:=y-x), G\right\} \\
& y:=x+y \\
& \{H: w p(x:=y-x), G\} \\
& x:=y-x \\
& \left\{G: y=x_{0} \wedge x=y_{0}\right\}
\end{aligned}
$$

According to the defintion $w p(v:=e, F)=F[v / e]$ in the slides, $H^{\prime \prime}$ yields into $G[x / y-$ $x][y / x+y][x / x-y]$, which is equal to our post-condition (as shown in (a)).
(d) Strongest post-condition:

$$
\begin{aligned}
& \left\{F: x=x_{0} \wedge y=y_{0}\right\} \\
& x:=x-y \\
& \{H: \operatorname{sp}(x:=x-y, F)\} \\
& y:=x+y \\
& \left\{H^{\prime}: \operatorname{sp}(x:=x+y, H)\right\} \\
& x:=y-x \\
& \left\{H^{\prime \prime}: \operatorname{sp}\left(x:=y-x, H^{\prime}\right)\right\}
\end{aligned}
$$

$H^{\prime \prime}$ evaluates to (due to $\left.\operatorname{sp}(v:=e, F)=\exists v^{\prime}\left(F\left[v / v^{\prime}\right] \wedge v=e\left[v / v^{\prime}\right]\right)\right)$:

$$
\begin{aligned}
& \left\{H^{\prime \prime}: \operatorname{sp}(x=y-x, \operatorname{sp}(y=x+y, \operatorname{sp}(x=x-y, F)))\right\} \\
\Rightarrow & \left\{H^{\prime \prime}: \operatorname{sp}\left(x=y-x, \operatorname{sp}\left(y=x+y,\left\{\exists x^{\prime}\left(x^{\prime}=x_{0} \wedge y=y_{0} \wedge x=x^{\prime}-y\right\}\right)\right)\right\}\right. \\
\Rightarrow & \left\{H^{\prime \prime}: \operatorname{sp}\left(x=y-x,\left\{\exists y^{\prime}\left(\exists x^{\prime}\left(x^{\prime}=x_{0} \wedge y^{\prime}=y_{0} \wedge x=x^{\prime}-y^{\prime}\right) \wedge y=x+y^{\prime}\right\}\right)\right)\right\} \\
\Rightarrow & \left.\left\{H^{\prime \prime}: \exists x^{\prime \prime}\left(\exists y^{\prime}\left(\exists x^{\prime}\left(x^{\prime}=x_{0} \wedge y^{\prime}=y_{0} \wedge x^{\prime \prime}=x^{\prime}-y^{\prime}\right) \wedge y=x^{\prime \prime}+y^{\prime}\right) \wedge x=y-x^{\prime \prime}\right)\right)\right\}
\end{aligned}
$$

Evaluating this expression results into:

$$
\left\{H^{\prime \prime}: y=x^{\prime \prime}+y^{\prime}\right.
$$

$$
\left.\wedge x=y-x^{\prime \prime}\right\}
$$

$$
\Rightarrow\left\{H^{\prime \prime}: y=x^{\prime}-y^{\prime}+y^{\prime} \quad \wedge x=y-x^{\prime}-y^{\prime}\right\}
$$

$$
\Rightarrow\left\{H^{\prime \prime}: y=x^{\prime} \quad \wedge x=y-x^{\prime}-y^{\prime}\right\}
$$

$$
\Rightarrow\left\{H^{\prime \prime}: y=x^{\prime} \quad \wedge x=y^{\prime}\right\} \quad \text { because of } y=x^{\prime}
$$

$$
\Rightarrow\left\{H^{\prime \prime}: y=x_{0} \quad \wedge x=y_{0}\right\} \quad \text { since } x^{\prime}=x_{0} \text { and } y^{\prime}=y_{0}
$$

3 Exercise 3

In the following, these abbreviations are used:

$$
\begin{aligned}
B & :=d \cdot m \leq n \\
\text { Inv } & :=0 \leq a<b \leq n+1 \wedge a \cdot m \leq n<b \cdot m
\end{aligned}
$$

First, we annotate the program by applying several rules:

```
\(\{1: m>0 \wedge n \geq 0\}\)
\(\{2: \operatorname{Inv}[b / n+1][a / 0]\} \quad\) as \(\uparrow\)
\(a:=0\);
\(\{3: \operatorname{Inv}[b / n+1]\} \quad\) as \(\uparrow\)
\(b:=n+1\);
\{4: Inv\} wh
while \(a+1 \neq b\) do
    \(\{5: \operatorname{Inv} \wedge a+1 \neq b\} \quad\) wh
    \(\{6:(B \Rightarrow \operatorname{Inv}[a / d]) \wedge(\neg B \Rightarrow \operatorname{Inv}[b / d])[d /(a+b) / 2]\} \quad\) as \(\uparrow\)
    \(d:=(a+b) / 2 ;\)
    \(\{7:(B \Rightarrow \operatorname{Inv}[a / d]) \wedge(\neg B \Rightarrow \operatorname{Inv}[b / d])\} \quad\) if \(\uparrow\)
    if \(d \cdot m \leq n\) then
            \(\{8: \operatorname{Inv}[a / d]\} \quad\) as \(\uparrow\)
            \(a:=d\);
            \{9: Inv\} fi \(\uparrow\)
    else
        \(\{10: \operatorname{Inv}[b / d]\}\) as \(\uparrow\)
        \(b:=d\);
        \(\{11:\) Inv \(\} \quad\) fi \(\uparrow\)
    fi
    \{12: Inv \} wh
od
\(\{\) 13: \(\operatorname{Inv} \wedge a+1=b\} \quad\) wh
\(\{14: a \cdot m \leq n<(a+1) \cdot m\}\)
```

Now it remains to show that $1 \Rightarrow 2,13 \Rightarrow 14$ and $5 \Rightarrow 6$ are indeed valid.

$1 \Rightarrow 2:$

$$
\begin{aligned}
& m>0 \wedge n \geq 0 \Rightarrow \operatorname{Inv}[b / n+1][a / 0] \\
& m>0 \wedge n \geq 0 \Rightarrow 0 \leq a<b \leq n+1 \wedge a \cdot m \leq n<b \cdot m[b / n+1][a / 0] \\
& m>0 \wedge n \geq 0 \Rightarrow 0 \leq 0<n+1 \leq n+1 \wedge 0 \cdot m \leq n<(n+1) \cdot m \\
& 0 \leq n \wedge 0<m \Rightarrow 0<n+1 \wedge 0 \leq n<(n+1) \cdot m
\end{aligned}
$$

now we split the formula:

$$
\begin{aligned}
& n \leq 0 \Rightarrow 0<n+1 \quad \checkmark \\
& 0<m \Rightarrow n<(n+1) \cdot m \\
& 0<m \Rightarrow n+1 \leq(n+1) \cdot m \\
& 0<m \Rightarrow 1 \leq m
\end{aligned}
$$

$13 \Rightarrow 14:$

$$
\left.\begin{array}{l}
\quad 0 \leq a<b \leq n+1 \wedge a \cdot m \leq n<b \cdot m \wedge a+1=b \Rightarrow a \cdot m \leq n<(a+1) \cdot m \\
0 \leq a<a+1 \leq n+1 \wedge \underbrace{a \cdot m \leq n<(a+1) \cdot m} \wedge a+1=b \Rightarrow \underbrace{a \cdot m \leq n<(a+1) \cdot m}
\end{array}\right\} \begin{aligned}
& 5 \Rightarrow 6:
\end{aligned}
$$

We split the proof into to parts (if and else), in order to make it more readable. This is valid, because of the relation

$$
A \Rightarrow((B \Rightarrow C) \wedge(D \Rightarrow E)) \equiv((A \wedge B) \Rightarrow C) \wedge((A \wedge D) \Rightarrow E)
$$

if

$$
\begin{aligned}
0 \leq & \leq a \leq n+1 \wedge a \cdot m \leq n<b \cdot m \wedge a+1 \neq b \\
& \Rightarrow d \cdot m \leq n \Rightarrow(0 \leq a<b \leq n+1 \wedge a \cdot m \leq n<b \cdot m)[a / d][d /(a+b) / 2]
\end{aligned}
$$

substitute a with d and after that d with $\frac{a+b}{2}$ on the right side
$0 \leq a<b \leq n+1 \wedge a \cdot m \leq n<b \cdot m \wedge a+1 \neq b$

$$
\Rightarrow \frac{a+b}{2} \cdot m \leq n \Rightarrow\left(0 \leq \frac{a+b}{2}<b \leq n+1 \wedge \frac{a+b}{2} \cdot m \leq n<b \cdot m\right)
$$

move $\frac{a+b}{2} \cdot m \leq n$ to the left side

$$
\begin{aligned}
0 \leq a & <b \leq n+1 \wedge a \cdot m \leq n<b \cdot m \wedge a+1 \neq b \wedge \frac{a+b}{2} \cdot m \leq n \\
& \Rightarrow \underbrace{0 \leq \frac{a+b}{2}<b \leq n+1}_{c_{1}} \wedge \underbrace{\frac{a+b}{2} \cdot m \leq n<b \cdot m}_{c_{2}}
\end{aligned}
$$

At this point, we introduce

$$
\begin{array}{rlrl}
a & <b & a & <b \\
a+b & <b+b & & a+a \\
a+b & <2 b & & \\
a+a+b \\
\frac{a+b}{2} & <b & & \\
& & & <\frac{a+b}{2}
\end{array} \text { because of } a+1 \neq b \text { this is valid }
$$

Now we show that the right side evaluates to true if the left side evaluates to true too:

- $0 \leq a<b \leq n+1 \Rightarrow c_{1}$ because of A_{1}
- $a \cdot m \leq n<b \cdot m \Rightarrow c_{2}$ because of A_{1}

else

$$
\begin{aligned}
0 \leq a & <b \leq n+1 \wedge a \cdot m \leq n<b \cdot m \wedge a+1 \neq b \\
& \Rightarrow d \cdot m>n \Rightarrow(0 \leq a<b \leq n+1 \wedge a \cdot m \leq n<b \cdot m)[b / d][d /(a+b) / 2]
\end{aligned}
$$

substitute b with d and after that d with $\frac{a+b}{2}$ on the right side

$$
\begin{aligned}
& 0 \leq a<b \leq n+1 \wedge a \cdot m \leq n<b \cdot m \wedge a+1 \neq b \\
& \quad \Rightarrow \frac{a+b}{2} \cdot m>n \Rightarrow\left(0 \leq a<\frac{a+b}{2} \leq n+1 \wedge a \cdot m \leq n<\frac{a+b}{2} \cdot m\right)
\end{aligned}
$$

move $\frac{a+b}{2} \cdot m>n$ to the left side

$$
\begin{aligned}
0 \leq a & <b \leq n+1 \wedge a \cdot m \leq n<b \cdot m \wedge a+1 \neq b \wedge \frac{a+b}{2} \cdot m>n \\
& \Rightarrow \underbrace{0 \leq a<\frac{a+b}{2} \leq n+1}_{c_{1}^{\prime}} \wedge \underbrace{a \cdot m \leq n<\frac{a+b}{2} \cdot m}_{c_{2}^{\prime}}
\end{aligned}
$$

Now we show that the right side evaluates to true if the left side evaluates to true too, again using A_{1} :

- $0 \leq a<b \leq n+1 \Rightarrow c_{1}^{\prime}$ because of A_{1}
- $a \cdot m \leq n<b \cdot m \Rightarrow c_{2}^{\prime}$ because of A_{1}

3.1 Termination

Since termination is tied to the loop condition, $a+1 \neq b$ is a good starting point for the bound function t. Therefore, $b-a-1$ might be a suitable bound function.

```
while \(a+1 \neq b\) do
    \(\left\{1:\right.\) Inv \(\left.\wedge a+1 \neq b \wedge 0 \leq t=t_{0}\right\}\)
    \(\left\{2:\left(\left(B \Rightarrow 0 \leq t<t_{0}[a / d]\right) \wedge\left(\neg B \Rightarrow 0 \leq t<t_{0}[b / d]\right)\right)\left[d / \frac{a+b}{2}\right]\right\}\)
    \(d:=(a+b) / 2\);
    \(\left\{3:\left(B \Rightarrow 0 \leq t<t_{0}[a / d]\right) \wedge\left(\neg B \Rightarrow 0 \leq t<t_{0}[b / d]\right)\right\}\)
    if \(d \cdot m \leq n\) then
        \(\left\{4: 0 \leq t<t_{0}[a / d]\right\}\)
        \(a:=d\);
        \(\left\{5: 0 \leq t<t_{0}\right\}\)
    else
        \(\left\{6: 0 \leq t<t_{0}[b / d]\right\}\)
        \(b:=d\);
        \(\left\{7: 0 \leq t<t_{0}\right\}\)
    fi
    \(\left\{8: 0 \leq t<t_{0}\right\}\)
od
```

It remains to show that $1 \Rightarrow 2$ is valid. Again, we split the proof into two parts (if and else).
$1 \Rightarrow 2$:
if

$$
\begin{aligned}
& 0 \leq a<b \leq n+1 \wedge a \cdot m \leq n<b \cdot m \wedge a+1 \neq b \wedge 0 \leq t_{0} \\
& \Rightarrow\left(d \cdot m \leq n \Rightarrow\left(0 \leq b-a-1<t_{0}\right)[a / d]\right)\left[d / \frac{a+b}{2}\right] \\
& 0 \leq a<b \leq n+1 \wedge a \cdot m \leq n<b \cdot m \wedge a+1 \neq b \wedge 0 \leq t_{0} \\
& \Rightarrow \frac{a+b}{2} \cdot m \leq n \Rightarrow 0 \leq b-\frac{a+b}{2}-1<t_{0} \\
& 0 \leq a<b \leq n+1 \wedge a \cdot m \leq n<b \cdot m \wedge a+1 \neq b \wedge 0 \leq t_{0} \wedge \frac{a+b}{2} \cdot m \leq n \\
& \Rightarrow 0 \leq b-\frac{a+b}{2}-1<t_{0} \\
& 0 \leq a<b \leq n+1 \wedge a \cdot m \leq n<b \cdot m \wedge a+1 \neq b \wedge 0 \leq t_{0} \wedge \frac{a+b}{2} \cdot m \leq n \\
& \Rightarrow 0 \leq \frac{2 b-a-b}{2}-1<t_{0} \quad \checkmark \quad \text { since } a \geq 0 \Rightarrow t \text { decreases }
\end{aligned}
$$

else

$$
\begin{aligned}
& 0 \leq a<b \leq n+1 \wedge a \cdot m \leq n<b \cdot m \wedge a+1 \neq b \wedge 0 \leq t_{0} \\
& \Rightarrow\left(d \cdot m>n \Rightarrow\left(0 \leq b-a-1<t_{0}\right)[b / d]\right)\left[d / \frac{a+b}{2}\right] \\
& 0 \leq a<b \leq n+1 \wedge a \cdot m \leq n<b \cdot m \wedge a+1 \neq b \wedge 0 \leq t_{0} \\
& \Rightarrow \frac{a+b}{2} \cdot m>n \Rightarrow 0 \leq \frac{a+b}{2}-a-1<t_{0} \\
& 0 \leq a<b \leq n+1 \wedge a \cdot m \leq n<b \cdot m \wedge a+1 \neq b \wedge 0 \leq t_{0} \wedge \frac{a+b}{2} \cdot m>n \\
& \Rightarrow 0 \leq \frac{a+b}{2}-a-1<t_{0} \\
& 0 \leq a<b \leq n+1 \wedge a \cdot m \leq n<b \cdot m \wedge a+1 \neq b \wedge 0 \leq t_{0} \wedge \frac{a+b}{2} \cdot m>n \\
& \Rightarrow 0 \leq \frac{a+b-2 a}{2}-1<t_{0} \quad \checkmark \quad \text { since } a \geq 0 \Rightarrow t \text { decreases }
\end{aligned}
$$

4 Exercise 4

By looking at sp(if e then p else q fi, F) and the if \downarrow rule $\{F\}$ if e then \ldots else $\mapsto\{F\}$ if e then $\{F \wedge e\} \ldots$ else $\{F \wedge \neg e\}$ if \downarrow plus some intuition, we get

- if: $\{e \wedge F\} p\{\operatorname{sp}(p,\{e \wedge F\}\}$
- else: $\{\neg e \wedge F\} p\{\operatorname{sp}(q,\{\neg e \wedge F\}\}$
as strongest post-condition for each branch. By applying the dual-fi rule

$$
\{F\} \text { else } \ldots\{G\} \mapsto\{F\} \text { else } \ldots\{G\} \text { fi }\{F \vee G\} \quad \text { fi } \downarrow
$$

we can conclude:

$$
\text { sp(if } e \text { then } p \text { else } q \text { fi, } F)=\{\operatorname{sp}(p,\{e \wedge F\}) \vee \operatorname{sp}(q,\{\neg e \wedge F\})\}
$$

5 Exercise 5

$\{F\} p\{\mathbf{t r u e}\}$
(a) $\{F: x \neq 0\}$ so p may not terminate, depending on whether x is even or odd.
(b) $\{F: x=0\} \Rightarrow$ the program always terminate.
$\{F\} p\{\mathbf{f a l s e}\}$
(a) $\{F: x=1\}$ so the program doesn't terminate obviously.
(b) No formula, since the post-condition is false, which means the program never terminate.

\{true $\} p\{F\}$

(a) $\{F: x=0\}$ when the program terminates, the post-condition is fulfilled.
(b) No formula, because we don't know anything about x, therefore we can end up an infinte loop.
\{false $\} p\{F\}$
(a) $\{F: x=0\}$ even when p would terminate, it would fullfil the post-condition then.
(b) No formula, since the pre-condition is false anyway and therefore termination won't be guaranteed.

6 Exercise 6

An assertion $\{F\} p\{G\}$ is totally correct, if

- whenever p starts in an F-State, then p terminates and stops in a G-State.
- $\forall \sigma \in \mathcal{S}:[F] \sigma \Rightarrow \operatorname{def}([p] \sigma) \wedge[G][p] \sigma$

Looking at the premise $\{F \wedge e\} p\{G\}$, which must be totally correct, we can rewrite it according to the definition above as (we use $\sigma: F$ as an abbreviation for " σ is a defined F-State", i.e., for " σ is a defined state and the formula F is true in σ."):

$$
\begin{aligned}
\forall \sigma \in \mathcal{S}:[F \wedge e] \sigma & \Rightarrow \operatorname{def}([p] \sigma) \wedge[G][p] \sigma \\
\forall \sigma \in \mathcal{S}:[F] \sigma \wedge[e] \sigma & \Rightarrow \operatorname{def}([p] \sigma) \wedge[G][p] \sigma \\
\forall \sigma \in \mathcal{S}:[F] \sigma \wedge[e] \sigma & \Rightarrow[p] \sigma: G \\
\forall \sigma \in \mathcal{S}:[F] \sigma \wedge[e] \sigma \neq 0 & \Rightarrow[p] \sigma: G \quad \text { since }[e] \sigma \text { is a boolean expression } \\
\forall \sigma \in \mathcal{S}:[F] \sigma & \Rightarrow[e] \sigma \neq 0 \Rightarrow[p] \sigma: G \quad \text { moving it to the right side }
\end{aligned}
$$

Similar, $\{F \wedge \neg e\} q\{G\}$ results into

$$
\forall \sigma \in \mathcal{S}:[F] \sigma \Rightarrow[e] \sigma=0 \Rightarrow[q] \sigma: G
$$

Now we take a look at the if statement for Tpl (natural semantics):

$$
\text { [if } e \text { then } p \text { else } q \text { fi] } \sigma \Rightarrow \begin{cases}{[p] \sigma} & \text { if }[e] \sigma \neq 0 \\ {[q] \sigma} & \text { if }[e] \sigma=0\end{cases}
$$

This rule allows us to rewrite the both statements above such as:

$$
\begin{aligned}
& \forall \sigma \in \mathcal{S}:[F] \sigma \Rightarrow[\text { if } e \text { then } p \text { else } q \text { fi }] \sigma: G \\
& \forall \sigma \in \mathcal{S}:[F] \sigma \Rightarrow \operatorname{def}([\text { if } e \text { then } p \text { else } q \text { fi] }]) \wedge[G][\text { if } e \text { then } p \text { else } q \text { fi] } \sigma \\
& \quad \Rightarrow\{F\} \text { if } e \text { then } p \text { else } q \text { fi\{G\} } \checkmark \text { by using the defintion of totally correctness }
\end{aligned}
$$

7 Exercise 7

By looking at the post-condition $\left\{0 \leq y^{2} \leq x<(y+1)^{2}\right\}$, we can easily identify an invariant for our program, since we know that y must be at least 0 (otherwise we would get complex numbers): $\left\{0 \leq y^{2} \leq x\right\}$. Due to the wh-rule

$$
\text { while } e \text { do } \ldots \text { od } \mapsto\{\operatorname{Inv}\} \text { while } e \text { do }\{\operatorname{Inv} \wedge e\} \ldots\{\operatorname{Inv}\} \text { od }\{\operatorname{Inv} \wedge \neg e\} \quad \text { wh }
$$

we know, that the post-condition of a while consists of the conjunction of the invariant and the negated loop-condition. Therefore

$$
\begin{aligned}
\neg e & =x<(y+1)^{2} \\
e & =x \geq(y+1)^{2}
\end{aligned}
$$

is the loop-condition. In order to guarantee termination, we consider the loop condition. We see, that y have to increase over time. Also this is the closest condition which we can get, since we're operating on integer numbers.
Thus, a simple algorithm would be (although it isn't quite efficient):

$$
\begin{aligned}
& \{2: x \geq 0\} \\
& y:=0 ; \\
& \left\{\text { Inv }: 0 \leq y^{2} \leq x\right\} \\
& \text { while } x \geq(y+1)^{2} \text { do } \\
& \quad y:=y+1 ; \\
& \text { od } \\
& \left\{1: 0 \leq y^{2} \leq x<(y+1)^{2}\right\}
\end{aligned}
$$

