
Vienna University of Technology SS 2010

Bachelor Thesis

A Secure Membership Service for
Time-Triggered Protocols

Bernhard Urban

lewurm@gmail.com

Sebastian Falbesoner

sebastian.falbesoner@gmail.com

August 22, 2010

Supervisor : Univ.Ass. Dipl.-Ing. Dr.techn. Christian El-Salloum

Abstract

A membership service provides information about faulty nodes (e.g. nodes not
synchronized with the global time) which is vital for safety-critical applications.
FlexRay does not provide a membership service by design, hence it must be imple-
mented on the application layer. Openness and connectivity of real-time systems
have increased over the years, thus a logical step forward is to secure this service.
Clock synchronization is the most elementary and therefore most vulnerable oper-
ation in a time-triggered protocol. By using a secure membership service, we also
secure the concerning clocks. On top of that, other services can be realized on a
higher layer.

We have implemented the secure membership service on a FlexRay evaluation
board (“bitspot blue” by Fujitsu) by using two different approaches:

• symmetric encryption only (AES)

• symmetric encryption in combination with public key cryptography (RSA-
AES)

We have analyzed both implementation variants with several parameters (key size
and frequency) with respect to computation time and memory usage.

1

mailto:lewurm@gmail.com
mailto:sebastian.falbesoner@gmail.com

Contents

Contents

1. Introduction 5
1.1. Real-Time Systems . 5
1.2. The Time-Triggered Architecture . 6
1.3. Why is Clock Synchronization important? 9

1.3.1. Why do Clocks deviate? . 9
1.3.2. Clock Correction . 10
1.3.3. Clock Synchronization . 11

1.4. Security can become Safety relevant . 11
1.5. Global Time has to be secured . 12

2. The FlexRay Protocol 13
2.1. History . 13
2.2. Goals and technical Details . 14
2.3. Clock Synchronization in FlexRay . 17

3. A Secure Clock Synchronization Algorithm 19
3.1. Attacker Model . 19
3.2. A Secure Membership Service . 20
3.3. AES . 21
3.4. RSA . 23

4. Implementation 25
4.1. Hardware Setup . 25
4.2. Toolchain . 26

4.2.1. SoftuneTM Tools and the Port to Linux 26
4.2.2. Makefile . 26
4.2.3. The flashing Tool pyfrprog . 27

4.3. Used Libraries . 28
4.3.1. MatrixSSL . 28
4.3.2. FlexRay Stack for the E-Ray IP-Module 29

4.4. Implementation Details . 32
4.4.1. Secure Membership Service . 32
4.4.2. Demo Application . 34
4.4.3. Simple Task Dispatcher . 36
4.4.4. Evaluating Performance . 37

4.5. Analysis . 38
4.5.1. AES . 39
4.5.2. AES-RSA . 39

5. Conclusion 42
5.1. What Configuration should be used for my real World Application? . . . 42
5.2. Future Work . 42

2

Contents

References 43

List of Figures 45

List of Tables 45

A. Header Files 46
A.1. membership.h . 46
A.2. dispatcher.h . 48
A.3. perf.h . 49

B. Source Files 51
B.1. membership master.c . 51
B.2. membership slave.c . 54
B.3. membership common.c . 57
B.4. dispatcher.c . 58
B.5. perf.c . 61

Preface

The thesis describes the development of a secure clock synchronization mechanism which
was inspired by the fact that the FlexRay communication protocol lacks a membership
service.

In Section 1 we impart the basic knowledge needed to understand the core of the thesis
by introducing the important term “real-time”. We will see that there are, according
to [Kop97] three classifications of real-time systems and that in the safety-critical one,
only systems with a hard deadline are relevant. The two basic paradigms for real-time
communication protocols, namely the event-triggered and time-triggered approaches are
discussed and compared. The result is that the TTA (time-triggered architecture) is in
many ways more reasonable with regard to determinism and timeliness. Its counterpart,
the event-triggered architecture, potentially leads to many more problems, one of them
being the absence of idempotence. The meaning of time and common clock synchro-
nization methods are discussed to get an idea why clock synchronization is important.
We will see that a combination of rate correction and offset correction leads to the best
results. The section is concluded with a few examples showing why security can become
safety relevant and it can be inferred from the discussion that global time has to be
secured.

Section 2 focuses on FlexRay, one of the most used real-time communication proto-
cols in the automotive industry nowadays. After the introduction of the history of the
protocol and the listing of some examples of cars that use FlexRay, the capabilities and
technical details are mentioned. We will see that it does not only support high-speed
communication and basically follows the time-triggered architecture, but also allows
event-triggered communication. The big drawback of FlexRay however – that has led
to the writing of this thesis – is the fact that it does not support a membership service.

3

Contents

The section is resumed with a listing of the most important configuration parameters,
with example values shown on the BMW 7. In a final step, the details of the clock
synchronization algorithm that is used within FlexRay is examined more closely. It is
about a Fault Tolerant Midpoint Algorithm which is very easy to implement in hardware
and always converges.

In Section 3, which is the core of the thesis in connection with Section 4, the develop-
ment of such a membership service is described in an abstract way, that is to say without
depending on any specific computer architecture. For simplifying the process we have
used a master-slave model for our secure membership service. As this leads to a single
point of failure, an important possibility to improve our implementation would be the
development of a purely distributed system which does not depend on one single master
node any more. This would however have gone far beyond the scope of this thesis and
project practical. The cryptographic algorithms that are used in our work, namely AES
for symmetric encryption and RSA for public-key encryption, are also briefly explained
by describing which role they play in our model. This section especially emphasizes the
fact that the secure clock synchronization is achieved through the secure membership
service.

Section 4 discusses the details of our implementation and can be partly regarded as the
documentation for it. It includes concrete C source code for our target architecture, the
FR60 MB91F465X microcontroller by Fujitsu. The used hardware, tools and libraries
are explained and the problems we encountered while trying to embed them in our
project. In the end, a performance analysis is figured, containing values with varying
key sizes and execution frequencies.

Acknowledgments

Christian El-Salloum for supervising our bachelor thesis and two practical training
projects.

Iris and Franz Winkelbauer, Josef Falbesoner, Bernhard Bliem, Marie Utkina for proof-
reading.

Developers of VImproved, git, GNU Make, TEX Live, LATEX, KOMA-Script, PSTricks
and highlight, although they will probably never read this.

4

1. Introduction

1. Introduction

1.1. Real-Time Systems

The term “real-time” is used in computer systems in which the temporal component
plays a major role; that means that the correctness of the system behaviour depends
not only on the logical results of the computation, but also on the physical time, when
these results are produced.

In many areas of computer science research, however, the temporal component is not
of any importance at all, e.g. in compiler construction. Of course, it is always desirable
to achieve high performance and to minimize latency for improving user-friendliness,
but no matter how long it takes a compiler to translate the source code into the binary,
the result will still be correct. In real-time systems such as automotive systems, after
a certain point in time – the so-called deadline – the result of the computation process
has no utility or, even worse, a catastrophe could be the result. A computer system in
an automobile for instance has to ensure to react in a given time on the input by the
driver (e.g. the braking-pedal) regardless of whether there is currently a high load on the
system or not. Typical deadlines in real-time computing are in the range of milliseconds
(ms) and microseconds (µs). The deadlines of real-time systems can be classified into
the following categories [Kop97]:

• soft deadline: The result has utility even after the deadline is missed, but does
not cause serious damage to its environment. (not the focus of this thesis)

Example: Consider a simple task of a computer system in an automobile that
checks the oil level of the engine every ten seconds. If, for any reason, the result
can not be delivered to the dashboard in time (say 100 milliseconds), this missing
of time has no harmful consequences.

• firm deadline: The result has no utility after the deadline has passed, but does
not cause serious damage either.

Example: A packet of a video stream is too late due to a different route through
the IP-network. Thus, the screen flickers for a short moment, yet this is nothing
but an annoying consequence.

• hard deadline: Missing a strict deadline can cause a catastrophe.

Example: If the computer system of the automobile in the example above can not
fulfil the timing requirements for the braking subsystem (e.g. anti-lock braking
system or electronic stability control) this could result in an accident and injure
or even kill people who are involved.

Other examples are aeroplane control systems, car engine control systems and
heart pacemakers.

Such systems, that include at least one hard deadline, are called hard real-time
systems, which are discussed in this work.

5

1. Introduction

1.2. The Time-Triggered Architecture

Designing a communication protocol for hard real-time systems is by no means trivial
and requires some special consideration of how to guarantee the reception of messages
before the deadline.

Generally it is important to ask the question: at which point in time it is allowed to
send messages? Is it wise to send them as soon as possible when requested? This seems
quite logical and, in Ethernet for example, this is the case – whenever a host wants
to send a packet, this is tried immediately. However, this freedom of being allowed to
send whenever you want of course implicates the possibility of collisions on the bus.
In the OSI Reference Model there is a special layer (2a) for avoiding these collisions,
called Media Access Control (MAC). In case of Ethernet this is handled via the Carrier
Sense Multiple Access with Collision Detection (CSMA/CD) mechanism: whenever a
host detects that there is already another host sending on the bus, it waits for a random
delay and tries again. It is quite clear that a system constructed like this is not suitable
for real-time communication, because it is not predictable when a message arrives. With
the help of statistics of course, you can determine the probability of collisions and thus
the probability that a message arrives within the deadline. But even this method largely
depends on the other nodes: if due to a failure a host tries to send packets in an endless
loop, the bus is disturbed and all messages of other nodes will probably never arrive.

The mechanism described above falls into the category of event-triggered architecture.
A widespread event-triggered protocol that has been de-facto standard for years in the
automotive industry is the Controller Area Network (CAN) bus, which uses a MAC
mechanism similar to Ethernet.

A different approach, originally designed at the Technical University Vienna in the early
80s is the time-triggered architecture: as the name indicates, the only factor respon-
sible for sending/receiving messages is the progression of time. There exists a specific
“roadmap” that determines when exactly each node can send and receive to avoid colli-
sions. For this purpose every communication round is divided into slots; the mechanism
is called time division multiple access (TDMA). Thus, every message of each node is
a-priori known when it is sent in a given communication cycle. In Figure 1, a TDMA
scheme is diagrammed with the setup of a communication cycle that consists of four
slots.

In order to be sure that a node does not send on the bus when it is not allowed
to do so (this could happen to faulty nodes like the typical “babbling idiot”), in some
implementations of the time-triggered architecture there are even bus guardians that
avoid sending on certain slots physically.

The advantages of the time-triggered approach for hard real-time systems are obvious:

• Because of the static round scheme the problem of media access control is implicitly
solved and it is guaranteed that messages arrive within the deadline. As a bonus,
the sender and receiver addresses need not be included in a message frame since
this is implicitly determined by the “roadmap”

6

1. Introduction

slot 4

slot 3

slot 1

slot 2

slot 4 slot 1 slot 2 slot 3 slot 4 slot 1

time

one communication cycle

Figure 1: Illustration of a TDMA Communication Cycle

• It is not possible that the bus is under (uncontrollable) “high-load” any longer, be-
cause the performance on the bus is determined before the system is even executing
and it never changes

• In contrast to event-triggered messages, which follow an exactly-once semantic, it
is not a problem if a message gets lost within a round because it will be sent in
the next round anyway. Furthermore a receiver is not forced to process a receiving
message immediately. This property is called idempotence [Kop97]: State-messages
are idempotent, that means, receiving more than one message of the same kind
has the same effect as receiving a single one.

One problem in the time-triggered architecture however is the fact that a global view of
the term time has to be ensured in a distributed system. This is described in detail in
Section 1.3.

The most commonly used TTA implementations nowadays are the Time Triggered
Protocol (TTP/C), invented at the Technical University Vienna1 and FlexRay, a pro-
tocol that was designed with the main focus on the automotive industry, which will be
described in detail in Section 2.

Example: Temperature Sensors in a Factory
In order to expose the benefits of a time-triggered architecture over event-triggered
architectures regarding load behaviour, we provide a simple example: Assume you have
four nodes in a factory connected to a communication bus (bandwidth of 100 kbit/s),
in which each node is connected to 16 temperature sensors. Additionally a node to
supervise the sensors is connected. Once a configured threshold of a sensor is exceeded,
its associated node sends a message over the bus to the supervisor. This has to happen
within ten milliseconds.

Note: Both solutions use the same protocol, e.g. CAN. To simplify calculations sup-
pose the message-header has a fixed length of 40 bits.

1since 1998 TTech Computertechnik AG has taken over the further development of TTP

7

1. Introduction

Event-triggered solution A node sends a message as soon as one of its sensors reaches
the given threshold. To identify a specific sensor, the sensor-number has to be
encoded into the message:

log2(4 nodes · 16 sensors) = log2(64) = 6

bits are needed. This results in a message-size of 40 + 6 = 46 bits. Therefore, in
ten milliseconds at a bandwidth of 100 kbit/s about

b100 · 103 · 10 · 10−3

46
c = b1000

46
c = 21

messages can be transmitted punctually. But in a worst-case scenario, up to 64
messages have to be sent simultaneously, which can not be carried by the event-
triggered solution.

Time-triggered solution Consider a TDMA-like manner, in which each node sends a
message with every communication cycle in its slot. A message contains the header
(40 bits) and a 16 bits boolean array, so there is one bit for each sensor connected to
the node. Since a node sends its message on an a-priori point in the communication
cycle, no data for identification has to be transmitted. Thereby, in ten milliseconds
at a bandwidth of 100 kbit/s about

b100 · 103 · 10 · 10−3

40 + 16
c = b1000

56
c = 17

messages can be transmitted in time. Compared to the event-triggered solution
these are slightly fewer messages, however, you have to consider that in one message
16 sensors are handled at once. Thus, in a worst-case situation only four messages
have to be transmitted, which can be easily achieved.

The load on the bus by both solutions is illustrated in Figure 2.

0

33

66

99

0 10 20 30 40 50 60

lo
a
d
[%

]

sensor-reports

event-triggered

time-triggered

Figure 2: Event- vs. Time-triggered Solution

8

1. Introduction

1.3. Why is Clock Synchronization important?

Due to the fact that the time-triggered architecture is based merely on the progression
of time, it is crucial that all nodes have a consistent view of the current time. For that
purpose the term global time is introduced, which is achieved via a clock synchronization
mechanism.

1.3.1. Why do Clocks deviate?

Nowadays clocks are characterized by an astonishing precision, however even atomic
clocks exhibit deviations of the “perfect time” after some time. Taking this into con-
sideration, the clocks used in embedded systems2 have – when compared to watches,
wall-clocks or even atomic clocks – quite large inaccuracies, because the devices are
quite simple and are occasionally exposed to extreme environmental conditions.

A clock is generally characterized by two properties, namely frequency and phase. If
two clocks have exactly the same value in both of these parameters, they are said to be
synchronized. There can be two reasons why clocks are not synchronous to each other.
If the frequency of clocks differs, the deviation of the clocks to each other will increase by
time. Figure 3(a) shows an example of three clocks that are started simultaneously. If –
in another extreme example – the clocks start with a different phase, but with exactly
the same frequency, the deviation between the clocks is constant (see Figure 3(b)).

clock 1

clock 2

clock 3

t

deviation

(a) different frequency, but same phase

clock 1

clock 2

clock 3

t

deviation

(b) different phase, but same frequency

Figure 3: Several Clocks with different Settings

In embedded systems, oscillators are used as frequency source for a clock. Even in
high-quality silicon oscillators there are deviations to their actual normal frequency.
Reasons for these frequency deviations include manufacturing tolerances, variations in
temperature, aging and vibrations.

2nowadays mostly realized by timers directly integrated in the microcontroller

9

1. Introduction

Mathematically spoken, the drift rate of a clock k is defined as follows [Kop97]:

ρki = |
z(microtickski+1)− z(microtickski)

nk
− 1|

where

• z(...) denotes the perfect reference clock which returns a timestamp of the given
event.

• microtickski is the i-th microtick by clock k. A microtick is the smallest step a
clock k can do (which is in turn clock specific).

• nk is a nominal number of ticks of the reference clock z within a granule of clock
k.

The perfect reference clock has a drift rate of ρz = 0 [s/s], whereby real clocks have a
drift rate between 10−2 and 10−8 [s/s]. In practice a drift rate results from two properties
of real clocks, namely frequency and phase as has already been discussed above.

1.3.2. Clock Correction

There are two fundamental methods to correct the deviation of time of a clock which
form the base of a stable clock-synchronisation algorithm [Rau07]:

offset correction The counter value of the clock is modified directly. This method
needs an external clock, whose time value is used for synchronisation. Offset
correction solely works upon the symptom of the clock deviation; the real cause of
the frequency deviation of the oscillators is not corrected, so after some time the
corrected clock will have a deviation to another clock again.

rate correction This method tries to solve those problems. The oscillator frequency
is usually divided into a lower frequency by using prescalers, before the “time is
counted”. Of course the frequency of an oscillator can not be changed directly,
but the divider ratio can be adapted according to the frequency deviation. In this
way, the resulting frequency can be accelerated or slowed down. Therefore, the
relation between input and output frequency is influenced by the rate correction.
The advantage of this method is the fact that once clocks are synchronized they
do not deviate that much over a long period of time.

Of course, it is not surprising that a combination of both methods, offset and rate
correction, leads to the best results.

10

1. Introduction

1.3.3. Clock Synchronization

The goal of a clock synchronisation algorithm in a real-time system is to ensure that the
local clock of each correct node in an ensemble is within a given precision Π [Kop97].
The precision at an instant i of the omniscient clock is defined as following:

Πi = max
∀ 1≤j,k≤n

{offsetjki }

whereas the offset between a clock j and a clock k at a point in time i is defined as:

offsetjki = |z(microtickk
i)− z(microtickk

i)|

where z(...) and microtickk
i are defined as above.

One example of such an algorithm which fulfils those conditions is the Fault Tolerant
Midpoint Algorithm (see Section 2.3 for more details on it).

1.4. Security can become Safety relevant

A common problem of popular protocols is that they were not intended for security
applications by design. Take the Domain Name System for example: It has several
security issues, like DNS cache poisoning to name one, because its designers had no or
little security in mind.

So have time-triggered protocols, such as TTP and FlexRay. Although they have been
designed for applications which are safety relevant, one has to consider that safety is not
equal to security. The reverse conclusion however is possible: As intruders might try to
manipulate global time, security can become safety relevant. In a common definition in
computer science [RG91] the term “security” describes three distinct aspects:

secrecy / confidentiality information has to be disclosed to anyone who is not autho-
rized to access it

integrity any unauthorized malicious or accidental changes of information must be
avoided

availability the computer system’s hardware and software must keep working efficiently
(must be available) and should be able to recover quickly and completely if a
disaster occurs

In usual (non real-time) computer systems secrecy seems to be the most important
aspect – some people do not even think of the other two aspects and put security
on a level with secrecy, e.g. by keeping their critical e-mails secret with some kind of
encryption. With regard to hard real-time communication systems themselves, secrecy
however is the least important of the three aspects. If you take a car for example, most
of the information that is sent through the protocol is control information anyway, and
a “bad guy” who wants to exploit the system will not have much benefit by intercepting
the bus and thus being able to watch data frames containing actual sensor values or

11

1. Introduction

motor and climate control data. In this case the guarantee of integrity and availability
are far more important – if the intruder succeeds in manipulating the control data,
e.g. by constantly overwriting brakes control data, and injecting motor control data,
which leads to acceleration, any attempt to slow down the car will fail ultimately and
the drive will end deadly. A crafty terrorist could manipulate flight control data in
an aeroplane to provoke an accident that claims hundreds of victims – to mention an
even more drastic example. Compromised real-time systems in nuclear power plants
could of course also lead to catastrophic accidents. All those examples illustrate how
the integrity aspect of security could lead to safety problems: It is obvious however that
all this is also closely connected to availability – if an important node in a real-time
communication network is just down, the whole system is compromised. Availability
can be improved via redundancy, but this is not the subject of this thesis; this work
concentrates on developing a membership mechanism3 that supports the avoidance of
global time manipulation.

1.5. Global Time has to be secured

If the intruder manages to manipulate global time by drifting away the clock count of a
certain node, the results could be catastrophic as well because the data frames (which
themselves remain unmodified) arrive at a wrong instant and could do something that
is not intended. For this reason it is important to have a mechanism that detects those
manipulated nodes and puts them into a safe state. Of course, the drawback is that
some of the bandwidth of the communication cycle needs to be statically reserved for
a secure membership implementation. As it uses cryptography algorithms (e.g. AES
or RSA) for increasing security, this also increases the CPU load because of the per-
manent encryption/decryption procedures, but in safety-critical systems a small loss of
bandwidth and performance is usually accepted as the avoidance of accidents has top
priority.

3see next section for a description of what membership is in terms of real-time communication systems

12

2. The FlexRay Protocol

2. The FlexRay Protocol

2.1. History

Before the appearance and development of FlexRay in 2000, the standard communication
system in the automotive industry was the CAN-bus, developed by Bosch in 1983. It
followed a purely event-triggered approach and is thus not suitable for hard real-time
systems. Potential bus collisions are resolved with Carrier Sense Multiple Access with
Collision Avoidance (CSMA/CA): whenever two hosts try to send simultaneously, the
one with higher priority is allowed to send, and the other has to wait. This approach is
better than the MAC mechanism used in Ethernet (as described in Section 1.2), but it
still leads to problems when a faulty high-priority node becomes a “babbling idiot” and
the other lower-priority nodes come down with starvation and the bus is blocked.

Another bus system widely in use is Local Interconnect Network (LIN), which is used
for a cost-effective communication between sensors and actuators and other systems
that do not need to operate in real-time and do not need much bandwidth. As it is
a master-slave system, there is no collision detection; all messages are initiated by the
master. Typical applications are the networking in a door or seat, light control, climate
control etc.

Other protocols that were used most notably in the BMW series were the byteflight
protocol (BMW 5, 6 and 7 series) and later Time-Triggered CAN (since 2007 in the
newer models of BMW 5 and 6 series). The former was developed especially for use in
passive safety systems like airbags and can be seen as the predecessor of FlexRay; it
already took advantage of TDMA for realizing a deterministic real-time behaviour.

The FlexRay Consortium
In the year 2000, the concerns BMW, DaimlerChrysler, Motorola and Philips founded an
industry consortium with the primary goal of developing a fast communication system
for the special requirements in the autocar. By now, more concerns have joined the
FlexRay consortium, so since the year 2003 it is made up of the following well-known
core members:

BMW

Daimler AG formerly (until 2007) DaimlerChrysler AG

Freescale Semiconductor spin-off from Motorola in 2004

NXP Semiconductors founded by Philips in 2006

Robert Bosch GmbH joined 2001

General Motors joined 2002

Volkswagen joined 2003

13

2. The FlexRay Protocol

The first series production vehicle was the BMW X5 at the end of 2006. The first
autocar that would fully utilize the FlexRay system was introduced in 2008 in the new
BMW 7 Series (F01). The new Audi A8 (2011 Audi A8 4.2 FSI) that will be on sale
in November 2010 will also use FlexRay, connecting approximately 30 ECUs [Dav10].

2.2. Goals and technical Details

Besides economical goals concerning cost advantage and the avoidance of compulsory
licence fees, the most important technical goals that were realized in FlexRay are the
following [Rau07]:

• bus speed of 10 Mbit/s
The usual CAN data rate of 500 kbit/s is exceeded by a factor of 20, so that you
have a reserve for the next few years.

• redundant communication channels
With the use of two physical communication channels it is possible to either have
redundant communication to reduce failure probability or to double the bandwidth
(to 20 Mbit/s gross).

• supply of a global synchronized time base
Having a global time base is an absolute requisite for an implementation of the
time-triggered architecture.

• guaranteed message transmission
Experiences with CAN have showed that messages get lost sometimes and that
there are large variations concerning the arrival of messages, due to the event-
triggered approach. By using the time-triggered architecture, those problems can
be eliminated.

• support for both time- and event-triggered communication
By splitting up the communication cycle in a static and a dynamic segment, event-
triggered communication for applications that are not real-time relevant can be
established.

• compatibility to the byteflight protocol
Many existing components like bus drivers, star couplers, development boards and
tools for the byteflight protocol as well as experiences with handling it have caused
that decision. By now, the compatibility was dropped because this request would
have limited the protocol way too much and other development goals would not
have been achievable. The minislotting-technique used in byteflight however has
been adapted for the dynamic event-triggered part of FlexRay.

As shown in Figure 4, a FlexRay node consists of a microcontroller (the host), the
FlexRay-controller itself – called communication controller (CC) – and one or two bus

14

2. The FlexRay Protocol

drivers4. The bus drivers realize the physical connection with the communication chan-
nel; FlexRay supports electrical as well as optical media. The FlexRay-controller im-
plements the (logical) FlexRay-protocol. On the host, the application that sends and
receives messages from or to other nodes is running. Before communication can be
established, the host has to configure the CC.

Host controller

FlexRay controller

Bus driver (A) Bus driver (B)

communication channel
?

6

?

6

?

6

?

6

Figure 4: Schematic of an integrated
FlexRay Node

With regard to media access control,
FlexRay is basically a combination of TTP/C
and byteflight – the former uses the TDMA
mechanism and is thus used in the static seg-
ment, the latter uses mini-slotting for the
dynamic segment, supporting event-triggered
communication. A typical communication cy-
cle is illustrated in Figure 5. Besides of the
static and dynamic segment, there are also the
Symbol Window and the Network Idle Time
(NIT) in a communication cycle, whereby only
the static segment and the NIT are obligatory.
The Symbol Window is a special time slot that
is reserved for symbols, e.g. for waking up all
nodes in the network. During the last part of
the cycle, the NIT, there is no communication
on the bus - it is used for controller-internal
processes and for clock synchronization.

NIT
Symbol

Window

dynamic
segment

static
segment

-�
communication cycle

Figure 5: The FlexRay Communication Cycle

In the static segment there are slots with a fixed length and every node can take use
of one or more of those slots to send or receive messages. Note that this allocation must
be set in the configure state of the FlexRay controller and can not be changed during
the running phase. Messages are called frames in the FlexRay terminology. Every
one has to be identified with a certain Frame-ID. In slot 1, only frames with Frame-
ID 1 are sent, in slot 2 only frames with Frame-ID 2 and so forth. Slots can also be
empty, which can be useful for future extension or for the application to have some
time to perform necessary calculations. The layout of a frame is illustrated in Figure 6.

4note that there are also stand-alone FlexRay-controllers which are connected to the host via address
and data bus, the integrated approach however is more common because of cost advantages and
faster exchange of data

15

2. The FlexRay Protocol

CRCPayloadHeader

-�
frame

5 bytes 0–254 bytes 3 bytes

Figure 6: Layout of a FlexRay Frame

The header section of the frame contains cer-
tain control bits, the Frame-ID, the payload
length, a header CRC and the current cycle
count. Note that the number of bytes in the
payload section can only be even (the payload
length in the header is doubled to determine
the actual size). Thus the set of all possible
total frame sizes can be described as: s = {x ∈ N | x ≥ 8 ∧ x ≤ 262 ∧ x mod 2 ≡ 0}.

The mini-slotting technique used in the dynamic segment is not that relevant for hard
real-time systems and is thus not covered in this short FlexRay introduction as it goes
far beyond the scope of this thesis. See [BMR00] for a detailed description on byteflight
and its MAC mechanism.

FlexRay uses a Non Return to Zero coding to shape the bitstream into physical form.
Additionally, before every data byte the two bits 10, called Byte Start Sequence (BSS),
are inserted. Thus, for the transfer of one single byte, 10 bits are used physically. The
falling edge between high- and low-bit is used for bit-resynchronization on the receiver.

Figure 7: Temporal Configuration Values and their Dependencies [Mic10a]

There are lots of parameters (see [Con05]) that need to be configured in FlexRay, the
most important being:

gdMinislot Duration of a minislot.

gdStaticSlot Duration of a static slot.

16

2. The FlexRay Protocol

gMacroPerCycle Numbers of macroticks in a communication cycle.

gNumberOfMinislots Number of minislots in the dynamic segment.

gNumberOfStaticSlots Number of static slots in the static segment.

gPayloadLengthStatic Payload length of a static frame.

gdNIT Duration of the Network Idle Time.

pMicroPerCycle Number of microticks in the communication cycle of the local node.
This value can differ from node to node since a microtick is clock specific.

Figure 7 shows the dependencies of some temporal configuration values in a sample
FlexRay setup. Figure 8 lists setup values of the BMW 7 FlexRay communication
network.

Figure 8: FlexRay Configuration Values of the BMW 7 [BPS08]

2.3. Clock Synchronization in FlexRay

In FlexRay no reference clock for global time exists. Thus a clock synchronization
algorithm is required to establish its own local view of the global time for each node.
Since the configuration is done off-line, all time relevant settings are known a-priori. As

17

2. The FlexRay Protocol

a consequence, a node can determine a specific deviation to another node by comparing
the timestamp of a received frame with the expected timestamp and calculate the clock
correction data out of them, which is done by a clock synchronization algorithm. For that
purpose FlexRay uses a Fault Tolerant Midpoint Algorithm (FTMA). The advantage of
that algorithm is that it is easy to implement in hardware, because besides of sorting
and selecting the values the only CPU operations needed are “addition” and “division
by 2”. It is proven that this simple algorithm always converges and one or two defective
measurement values (depending on the number of available measurement values) do not
influence the result.

The calculation of the “midpoint” of a measurement series is done by performing the
following steps [Rau07]:

1. The measurement values are sorted

2. The k largest and k smallest values from the list are discarded

3. The largest and the smallest value from the remaining list are selected

4. Those two values are added and divided by two

The value k, which determines how many values are withdrawn from the list, depends
on the number of available measurement values:

number of values k
1-2 0
3-7 1
>7 2

Because of a much simpler implementation, the algorithm only uses integers. The critical
part considering the need of floating-point arithmetic in this algorithm is the division
by two; whenever an odd number is divided there is a remainder and the exact result
would contain a decimal place (x.5). In this case it will always be rounded towards zero,
i.e. a positive number will be rounded down and a negative number rounded up.
For example, 23

2
= 11 and −23

2
= −11.

18

3. A Secure Clock Synchronization Algorithm

3. A Secure Clock Synchronization Algorithm

By using a secure membership service, the local view of global time is encrypted with a
cryptography algorithm and sent to a trusted master node. The master node compares
the content with its own view of global time and generates a membership vector with
this information. Therefore we gain an advantage implicitly, namely a secure clock
synchronization.

3.1. Attacker Model

Before we discuss the algorithm in detail, we want to propose an attacker model as mo-
tivation for a secure membership service. The model describes the different approaches
how a potential attacker could manipulate the behaviour of the system to his favour.
There are generally two types of attacks that can be thought of:

• Delay / acceleration attacks
In real-time systems, the semantic of a message depends not only on its content,
but also on the point in time, when it arrives at the receiving node. By physical
modifications on the bus, the attacker can influence the duration for a message
transmission. One could cut the bus line to a node and place a electrical device in-
between which does nothing other than delaying the incoming signal. This is called
a delay attack. The opposite of that, which is surely harder to achieve because the
attacker needs to shorten the bus (which is often microscopical small nowadays)
somehow, is named acceleration attack. Delay and acceleration attacks can not be
avoided themselves, but in most cases they are useless anyway, because the clock
synchronization mechanism will notice that the corresponding node is out of sync.

• Time drifting attacks
A more threatening approach, which is based on the delay and acceleration attacks,
is drifting away the global time. The idea of time drifting attacks is to trick out the
synchronization algorithm which will not notice that something is wrong as long
as the global time view changes only in very small steps. Time drifting attacks
also can not be avoided themselves, but through our membership service all slaves
receive a vector that shows which of the other nodes tried to be evil by trying to
drift the global time away.

For understanding the thesis and the meaning of the secure membership service it is vital
to consider the fact that both of those attacks can not be avoided. They are performed
on a very low level and can not be fighted with common hardware or software security
measurements, but instead the whole system – all nodes and the connecting bus lines –
needed to be guarded in a physical way, which would increase costs and effort and is
often not even possible. The purpose of our secure membership service is only to detect
possible attacks by supplying every (slave) node with a vector that shows which of the
other nodes are still trustworthy.

19

3. A Secure Clock Synchronization Algorithm

3.2. A Secure Membership Service

The secure membership service implementation is basically a master-slave system: Only
one node in the system (the master) receives the time information of the slave nodes
regularly and constructs the membership vector out of it. This vector is just an array
of elements, for each node containing either 1 (→ slave is alive and its global time is
synchronized) or 0 (→ slave is not alive or its global time is compromised). For N slave
nodes, the membership vector −→m can be described mathematically as:

−→m =

m0

m1

m2
...

mN−1

 , mi ∈ {0, 1}, |−→m| = N (1)

The number of “healthy” nodes in a network nhealthy can be calculated simply by adding
all the elements of the vector:

nhealthy =
N−1∑
i=0

mi (2)

Logically, the difference to N results in the number of faulty nodes, nfaulty:

nfaulty = N − nhealthy = N −
N−1∑
i=0

mi (3)

Every node is able to get the current global time – or, to be more specific, its own
view of the global time – by calling a certain function from the FlexRay driver, which we
will call getGlobalTime() from now on. The service works the following way (compare
with Figure 9):

1. Slaves - at the start of each cycle: call getGlobalTime(), encrypt the result and
send it to the master

2. Master - receive the encrypted time information and decrypting it

3. Master - construct the membership vector out of all received slave timing infor-
mation, sign it and send it to the slaves

4. Slaves - receive the membership vector; if the slave detects that it is out of mem-
bership, it turns into a safe state

Furthermore the secure membership has several properties:

Global Time is sent from each slave to the master. This was primarily introduced in
order to prevent replay attacks.

20

3. A Secure Clock Synchronization Algorithm

Slave 2

Slave 1 Slave N

Master

.

.

.

AES(global time)

A
E
S
(g
lo
b
a
l
tim

e)

AE
S(
glo

ba
l t
im
e)

membership
vector

m
em

b
ersh

ip
v
ecto

r

me
mb

ers
hip

ve
cto

r

Figure 9: Visualization of the Membership Process

Reducing Overhead by discarding unneeded information of the global time data struc-
ture. In FlexRay for example the Macrotick Value, which is the current offset in
a communication cycle, can be discarded because the instant of the receiving is
already known a-priori (as well for a potential attacker).

Detection Latency provides a mechanism, how often the described process of the secure
membership service should be executed. On the one hand the detection latency
of one or more faulty nodes is adjustable. On the other hand computation and
communication overhead is controllable.

We have implemented two versions of the membership service regarding the algorithm
that is used for establishing security: one version is utilizing symmetric-key encryption
only (AES) and the other one is using symmetric-key and public-key encryption com-
bined (AES and RSA). As to the latter one, slaves use AES for encrypting global time
and RSA is used to sign the membership vector on the master node.

3.3. AES

To improve security of the membership algorithm, the timing information will only be
sent on the bus in encrypted form. This prevents the possibility of manipulating the
signal by the intruder (→ integrity aspect of security) to the value that is expected
by the master, though the global time view of the slave node possibly differs and is
compromised.

The Advanced Encryption Standard (AES) is a symmetric-key encryption algorithm
developed by two Belgian cryptographers, Joan Daemen and Vincent Rijmen. The

21

3. A Secure Clock Synchronization Algorithm

name symmetric results from the fact that the same key is used for the encrypting and
decrypting entity. Hence, the security of such a cipher depends only on the key which
should be only known to two parties, so those ciphers are also sometimes called private-
key algorithms. Symmetric ciphers can be divided into two categories: block ciphers and
stream ciphers, whereas AES belongs to the former [KW06]. Block ciphers encrypt the
messages in data blocks of fixed length (e.g. 64 bit), stream ciphers, in contrast are based
on the one-time pad (OTP) encryption and are not discussed further in this thesis – see
[KW06] for a short introduction.

AES emerged in the search of a replacement for the obsolete Data Encryption Stan-
dard (DES). DES became vulnerable to brute-force attacks in the end of the 90s due
to its short key-size of only 56 bits.5 In 2001, after a 5-year standardization process
organized by the National Institute of Standards and Technology (NIST), in which fif-
teen competing designs were presented and evaluated, Rijndael was announced to be
the winner because it was voted as the most suitable, that is to say, it had the best
combination of security, performance, efficiency, implementability and flexibility, at the
conferences, and thus became the new AES standard. It became effective as a Federal
government standard in May 2002 and is now used worldwide[DR02].

AES has a fixed 128-bit block size and allows key sizes of 128, 192 or 256 bits, respec-
tively. The only difference between Rijndael and AES is the fact that Rijndael supports
more block sizes than just one (from 128 to 256 bits) and the key size has theoretically
no maximum, but both need to be multiples of 32 bit.

AES consists of four invertible transformations which provide confusion and diffusion:

• Byte Substitution

• Shift Rows

• Mix Columns

• Add Round Key

Every step will described shortly on the basis of AES-128 to get an idea how Rijndael
works. The basic block needed in this cipher is the so-called State, which is a 4 by 4
matrix of bytes, containing the arranged data of the actual 128-bit data block that needs
to be encrypted. The keys are similarly arranged in a matrix of 4 by key length

32
, so in our

case also 4 by 4. The transformations are performed in several rounds, the details of
those rounds and the exact order can be found in [DR02].

The first step describes a nonlinear, invertible Byte Substitution which is performed
using a so called S-Box (which is in fact a fixed 256 byte array, constructed from math-
ematical considerations): for each byte in the State block an equivalent from the S-Box
is chosen. This operation conforms to a substitution cipher. As the name indicates,
the Shift Rows operation cyclically shifts each row of the two-dimensional State by a

5Triple DES (3DES), first published 1998, was an approach to increase the key size of DES by simply
applying the original algorithm three times on each block. It is for example used in the electronic
payment industry.

22

3. A Secure Clock Synchronization Algorithm

certain offset. The first row remains unchanged, the second row is shifted by one, the
third row by two and the fourth row by three bytes to the left; the bytes are just getting
permutated. Finally, the columns are mixed up (Mix Columns): every row of a column
is muliplicated with a constant and the result is combined with a XOR operation. There
is a complex mathematical theory about finite fields behind this procedure which builds,
along with the shift-rows step, the primary source of diffusion in Rijndael. The Add
Round Key function is the only one in AES which makes the algorithm dependent on
the user key. Each byte of the State is combined with the round subkey using the XOR
operation.

For our secure membership service implementation, a key size of 128 bits should be
completely sufficient, however we also experimented with the other two larger sizes of 192
and 256 bits and compared the performance results (see Section 4.5.1 for the details).

3.4. RSA

RSA is an algorithm for public-key cryptography and is named after its inventors Rivest,
Sharmir and Adleman. It is an asymmetric procedure, which means that there are two
different keys: a public and a private key. The latter is used to encrypt data and therefore
should be kept secret. The public key can be shared; with it one is able to decrypt a
message signed by the corresponding private key. RSA is a deterministic algorithm,
which means that every key-pair is theoretically breakable if enough computation power
and enough time is available6. Thus, a longer key is preferred, but a longer key takes
more computation time and memory usage on encryption respectively decryption, which
are both quite limited in embedded systems.

The following example should illustrate how the idea behind RSA works:

1. choose two prime numbers: p = 101 and q = 113

2. calculate n:
n = p · q = 11413

3. calculate ϕ(n):

ϕ(n) = (p− 1) · (q − 1) = 100 · 112 = 11200

4. choose e, which must be coprime to ϕ(n), under the requirement e < ϕ(n). With-
out any particular reason, we choose e = 3533.

5. now we have to calculate d, which must fulfil following condition:

d · e ≡ 1 (mod ϕ(n))

and results into. . .

d = 6597

6it is basically a prime factorization problem, which is NP-hard

23

3. A Secure Clock Synchronization Algorithm

6. therefore, the public key is (n = 11413, e = 3533) and the private key (n =
11413, d = 6597).

7. to encrypt a message m, this equation must be solved (where c is the encrypted
message and m is plain text), m = 65:

c = md (mod n)

c = 656597 (mod 11413)

c = 5269

8. for decryption we take the public key pair:

m = ce (mod n)

m = 52693533 (mod 11413)

m = 65

Thus the principal idea is, that it is a way more easier to multiply two numbers than
finding the factors of the result itself. For a more detailed explanation on RSA take a
look at [Sch96].

For our secure membership service implementation, RSA matches in several require-
ments to encrypt the membership vector:

• key management: only the master must own the private key; the public key can
be shared safely with the slaves. In contrast to symmetric algorithm, a compro-
mised slave is not able to (theoretically) sign the faked membership vector because
it does not own the private key.

• The problem with symmetric algorithm could be solved by using one key for each
slave, but this would make key management harder as well and require more mem-
ory.

Using RSA naturally requires additional program memory for the implementation, since
we use AES for encrypting the global time anyway.

24

4. Implementation

4. Implementation

4.1. Hardware Setup

As hardware setup for the implementation of the FlexRay driver and the secure mem-
bership service we have used development boards by Fujitsu, called bits pot blue. “bits
pot” denotes a series of five color-boards microcontroller starter kits [Mic10b] designed
especially for learning automotive network technologies. The blue board is designed for
FlexRay communication, other colored boards contain chips for CAN, USB and LIN
communication.

Figure 10: The “bitspot blue” Development Board

As you can see in Figure 10, the development board contains eight LEDs, two seven-
segment displays, two volume switches (connected to the ADC of the microcontroller),
two push buttons, one reset button and four connection ports, representing communi-
cation channel A and B of the FlexRay controller and two channels for CAN communi-
cation. A connection to the PC can be established via USB.

The microcontroller model included in this board is named FR60 MB91F465X7.

7FR does not stand for FlexRay, but is the abbreviation of “FUJITSU RISC” controller, a product
line of Fujitsu Microelectronics Ltd.

25

4. Implementation

It contains the basic functions of the FR60 MB91460 series, a “line of general-purpose
32-bit RISC microcontrollers designed for embedded control applications which require
high-speed real-time processing such as consumer devices and on-board vehicle systems”,
plus an FlexRay IP-module (called E-Ray) that performs communication according to
the FlexRay Specification [Con05]. The most important capabilities of the microcon-
troller are shown in Table 1.

CPU clock frequency (max.) 100 MHz
FlexRay clock frequency (max.) 80 MHz
Flash memory 544 KiB
D-RAM (Data) 16 KiB
ID-RAM (Instruction Data) 16 KiB
Flash Cache (Instruction cache) 8 KiB

Table 1: FR60 MB91F465X Properties

Figure 11 on page 29 shows a block diagram of the E-Ray IP-module and is described
in detail in Section 4.3.2.

4.2. Toolchain

4.2.1. SoftuneTM Tools and the Port to Linux

The bitspot blue software package included a bunch of Windows tools to get started
with the FlexRay board. The most important for development is the SoftuneTM IDE.
However, since we use Linux, we have looked for a way to use the toolchain without
being dependent on one single graphical tool (which is unintuitive to use – and was
probably designed for Japanese users). It would be much more flexible to have the
basic tools like compiler, assembler and linker on the command-line and call them from
one’s favourite editor or IDE, or – to save even more effort – put them in a comfortable
Makefile (see next Section 4.2.2). By using wine, a well-known application that allows
Windows programs to run on Unix-like operating systems, we can use the toolchain for
this microcontroller under Linux.

4.2.2. Makefile

make [Fou10] is a well-known and popular software development utility, widely used on
Unix-based platforms. Because we are used to make, we have decided to use it for our new
environment too. Therefore, one of the central parts of the Linux port is the Makefile.
It provides an easy-to-use command-line interface to the toolchain and simplifies the
build-process by specifying some special targets – the most important being:

• $ make → the simplest call without arguments just builds the first node

• $ N=2 make→ builds the second node - with the environment variable N a specific
target node can be selected

26

4. Implementation

• $ make allnodes → builds all nodes (there are two nodes by default; to change
that, you have to modify the FLASH NODES environment variable in the Makefile)

• $ N=2 make upload→ flashes the binary of the second node to the board (again,
by omitting the environment variable N the standard node 1 is selected); see section
4.2.3 for an explanation of the flashing tool used

• $ make allupload → flashes all node binaries to the boards, whereby node num-
ber n code is transferred to the device /dev/ttyUSB[n− 1]

The building process can be adapted, tweaked or optimized by passing command-line
flags to the tools involved (compiler, assembler and linker) – they can be modified in the
Makefile in the variables CFLAGS, ASFLAGS and LDFLAGS, respectively. Note that some of
the flags are already well-adapted to the bitspot blue target and should not be changed
(for example, the memory areas of the different segments in the linker).

The trickiest parts of the Makefile are

• conversion between the different newline-perceptions [Wik10] by Windows and
Unix

• proper dependency generation for header-files, to make it compatible with make

• adding configuration values to the registry of wine, to ensure proper functionality
of the tools (e.g. finding standard headers of their library)

4.2.3. The flashing Tool pyfrprog

The given MB91F465X flashing tools for Windows were not very satisfying, and it was
of course not very comfortable to switch to the Virtual Machine8 all the time only for
programming the boards, so we have decided to create our own tool running on Linux.
pyfrprog [UF10] is written in Python using the Universal Serial Port Python Library

(USPP) by Isaac Barona Martinez [Mar06]. It gets a .mhx9 file as input (output of
the SoftuneTM linker/f2ms converter) and then just transfers its content to the board
byte for byte. In order to start the transfer the RESET button needs to be pressed –
this is because a communication with the internal BootROM application can only be
established within the first 100ms after a reset. This application (which itself is not
capable of any flash memory access) allows us to write a simple self-written kernel
(called pkernel) into the board’s instruction RAM. Afterwards, the BootROM is told
to execute a certain address in RAM, which in fact starts the pkernel. The pkernel

waits for commands on the UART and writes or rather reads data from flash memory.
When the write and read operations are done, pyfrprog issues an operation-complete-
command and therefore pkernel causes a restart of the microcontroller which boots the
programmed application in the end.

8the flashing tools would not simply run under wine because there is no USB support so far; in
VirtualBox, this works without problems

9The mhx-format is basically just a hexdump of the binary code plus some checksum information – it
is very similar to the Intel HEX-Format

27

4. Implementation

4.3. Used Libraries

To implement a secure membership service, different libraries are required. First, we
need a library which provides common encryption operations such as AES and RSA.
Second, we need a driver for the E-Ray IP-Core on the bits pot blue boards, since
no driver is (publicly) available, except a demo application by Fujitsu with restricted
functionality. In the following we describe the libraries we used and explain how we
solved problems that occurred.

4.3.1. MatrixSSL

During the search for a encryption library we found MatrixSSL, which is an “embedded
SSL and TLS implementation designed for small footprint application and devices“
[Net10]. Therefore it perfectly fits in our usage of a lightweight embedded application.
The architecture of the microcontroller however is not widely in use (at least in the
FOSS10-field), so we had to port the library. Fortunately, the library is written very
generic. As a result we basically had to set some constants through #define (e.g. byte
order) and map some functions for our board (e.g. replace printf() with a function
that uses the UART instead of stdout) which was quite an easy task. MatrixSSL also
requires support for dynamic memory allocation for big numbers, which is in general
provided by the C standard library call malloc(). The pitfalls we ran into are described
in the next section. We also had to resize the stack size from 400 bytes to 800 bytes.

malloc() and friends
A more confusing step was the usage of malloc(): Although Fujitsu already provides a
functional implementation of malloc() itself, it is not fully operative per se – something
we found out the hard way: malloc() is available as usual with a simple

#include <stdlib.h>

and linking it against stdlib. As the tools do not output any warning or the like,
our assumption was that everything would be fine. After hours of debugging, why
MatrixSSL was not working correctly, we finally looked at malloc() again, and found
out that malloc() always returns the same value, namely a NULL-pointer, which is
obviously pretty bad.

After several hours, we found a hint in a manual [Mic08], how dynamic allocation can
be added for their simulator in the SoftuneTM IDE:

#define HEEP SIZE 16*1024

static long brk siz = 0;

typedef int heep t;

#define ROUNDUP(s) (((s)+sizeof(heep t)-1)&∼(sizeof(heep t)-1))

10Free and Open Source Software

28

4. Implementation

static heep t heep[ROUNDUP(HEEP SIZE)/sizeof(heep t)];

#define heep size ROUNDUP(HEEP SIZE)

extern char *sbrk(int size)

{
if(brk siz + size > heep size || brk siz + size < 0)

return ((char *)-1);

brk siz += size;

return ((char *) heep + brk siz - size);

}

In fact, we have to implement the low level function sbrk() and pack it into a library
with the existing library of Fujitsu stdlib (which is, by the way, only supplied as
compiled library). After we had done that, everything worked pretty nice.

The troubles however were not for nothing: Since we are able to control memory allo-
cation on such a low level, we can easily determine dynamic memory usage by accessing
the variable brk siz (compare Section 4.4.4).

4.3.2. FlexRay Stack for the E-Ray IP-Module

As no E-Ray compatible driver was available, we had to write our own FlexRay im-
plementation for that. This actually happened within a “practical training project” at
university. Basically we tried to be compatible with [AUT09]. In this section we want
to describe how the communication controller works and particularly how receiving and
transmitting of messages are realized with the E-Ray IP-module.

In Figure 11 the block diagram of the E-Ray IP-module is depicted. In our case

Figure 11: Schematic of the E-Ray IP-Module [Bos06]

29

4. Implementation

the Host CPU is the FR60 MB91F465X which is connected with some data, address,
control and interrupt lines of the E-Ray IP-module. Even some registers are mapped
to the Host CPU (not pictured in the figure). For physical connection to other nodes
two channels are available (Rx A & Tx A and Rx B & Tx B). The Message RAM holds
several information about messages (e.g. Frame-ID, should the message issue a interrupt
after arrival and so forth) and data of these messages. The Host CPU can not directly
access the Message RAM; it has to request a specific message through the Input Buffer
(IBF) and the Output Buffer (OBF), respectively.

Message RAM

Figure 12: Illustration of the Message
RAM [Bos06]

The Message RAM is organized in 2048 ·32-bit
words, where each word is protected with an
additional parity bit. The organization of the
content is illustrated in Figure 12.

The Message RAM is basically split up into
a region for headers and another one for data
of messages. A header contains several infor-
mation about a specific message as depicted in
Figure 13 and has a size of 4 · 32-Bit. Depend-
ing on the configuration, the Message RAM
can contain up to 128 messages and each data
section can hold up to 254 bytes, which is the
maximum size for the payload according to the
FlexRay specification [Con05].

The configuration of the headers usually
happens at the initialization of the communi-
cation controller, but can also be updated online. An essential configuration field is the
Frame-ID : It specifies on which position a message is sent in the communication cycle.
The Data Pointer refers to the position in the Message RAM where the relevant data
for this message reside; the length is determined by the entry Payload Length. Thus,

Figure 13: Illustration of the Message Header [Bos06]

30

4. Implementation

it must take care while designing the layout for the Message RAM, because the E-Ray
IP-module does not check whether data sections of different messages overlap in the
Message RAM. The fourth word contains status information. The bit VFRA for exam-
ple denotes whether a valid frame was received on channel A. For a full explanation of
all fields see [Bos06] section 5.12.

Output Buffer (OBF)

Figure 14: The Output Buffer [Bos06]

As mentioned above, the Host CPU can not di-
rectly access the internal Message RAM of the
E-Ray IP-module. Therefore, to receive the
data of a configured message, a specific mes-
sage must be requested from the Host CPU,
which is loaded into the shadow buffer of the
OBF (pictured in Figure 14). Once the mes-
sage is in there, the Host CPU can issue a swap-command and the desired message can
be read by the Host CPU from the host buffer through registers mapped to it. In detail,
the following steps are necessary for a successful receiving of a message:

1. any action that triggers this process, e.g. an interrupt by the communication con-
troller which indicates that a new message has arrived

2. set the message number11 and whether header and/or data section should be loaded
into the shadow buffer

3. start the transfer and wait until it is done

4. swap the shadow buffer with the host buffer

5. read the desired data from the registers

Input Buffer (IBF)

Figure 15: The Input Buffer [Bos06]

The IBF is provided for transmitting messages.
It has a similar structure as the OBF, as de-
picted in Figure 15. Again, we describe the
steps which are required for sending a message
(or, to be more precise, to set the data of a message, because the communication con-
troller itself decides when a message is sent):

1. check if a transfer is already in progress and if so, wait until it is finished

2. load data into the host buffer

3. set command bits like the header configuration should be overwritten

4. set the message number of the desired message; this action swaps host and shadow
buffer automatically

11which is not necessarily equal to the Frame-ID

31

4. Implementation

Note that state and event messages are handled exactly in the same manner from a
programmer’s point of view. The configuration of the Message RAM, is further separated
into a state and event message segment, where the border can be defined (e.g. totally
12 messages → 8 state and 4 event messages reside in the Message RAM in a row).

4.4. Implementation Details

4.4.1. Secure Membership Service

Global Time and FlexRay
According to [Con05, p. 170] FlexRay’s global time consists of a cycle counter and
a macrotick value. This is also true for the E-Ray IP-Module by Bosch which fulfils
the official FlexRay Specification [Bos06]. Valid values for the cycle counter are in the
range from 0 to 63. Since a period of a communication cycle with our configuration (cf.
Section 4.4.2) is only 8.8ms long, the time horizon is about half a second which is quite
few compared to other time-triggered protocols like TTP and TT-Ethernet. If we would
have used the cycle counter, our implementation would be highly vulnerable to replay
attacks.

Consequently we have enhanced the provided global time within the membership
implementation, by increasing a 32bit counter on each cycle counter overflow – we call
this extended global time. In our configuration of the FlexRay setup, it overflows after

232 × 64× 8.8ms ∼ 76 years

therefore it is surely sufficient for our purpose.
In order to increase the security aspect even more, the starting value upon a hardware

reset of the counter is initialized with a random value generated by the noise of an
unconnected ADC. For detailed source code compare Appendix B.4 and B.1.

Settings in membership.h (Appendix A.1)
The main configuration part is done by setting several constants in the header file
membership.h. The important ones are explained in the following:

• MAX SLAVES: maximum number of slaves that can be managed by the implemen-
tation.

• NO SLAVES: number of slaves that are actually in use (must be lower than MAX SLAVES).

• FRAMEID SLAVEX: describes at which Frame-ID a slave X sends its encrypted global
time information.

• FRAMEID EXTGT: describes the Frame-ID which contains the extended global time
information.

• FRAMEID MBVEC: describes the Frame-ID to use by the master to send the encrypted
membership vector.

32

4. Implementation

• FAULTY SLAVE: by setting this constant, one can simulate a manipulated slave
which sends wrong timing information to the master and therefore is excluded by
the master and at the resulting membership vector respectively.

• FREQUENCY: defines how often the membership process is executed (compare Sec-
tion 4.5).

• RSABITSIZE: declares the RSA bitsize which should be used; must be divisible by
8.

• AESBITSIZE: declares the AES bitsize which should be used; must be 128, 192 or
256.

Functions of the Secure Membership Service
The following list shortly describes the most important functions our secure member-
ship service implementation consists of. Each procedure is either designed for being
called on the master node (marked with → [M]) or on one of the slaves (→ [S]). For
a better understanding the functions are listed in the order of their logical steps as de-
scribed in Section 3.2. The full source code of the implementation resides in the files
membership master.c respectively membership slave.c and can be found in Appendix
B.1 and B.2.

void SecMem Init Master(void); [M]
This function starts the secure membership service for the master node. Cryptography
routines for AES and RSA are initialized and necessary interrupt handlers are set. Ad-
ditionally, the function SecMem SendMembershipVector() which is described below is
added as a task to the scheduler. From a programmer’s perspective, this initialization
function is the only one that needs to be called on the master for a fully working secure
clock synchronization; other important functions are automatically called via interrupts
and the scheduler.

void SecMem Init Slave(void); [S]
This is the counterpart of the previous initialization function for the slaves. Again, no
other function needs to be called by the programmer, as it already registers the necessary
interrupt handler (for SecMem ReceiveMembershipVector()) and the task for sending
the global time to the master periodically (see SecMem SendTimeToMaster()).

void SecMem SendTimeToMaster (void); [S]
This function represents the first logical step of the secure membership service: the
slave’s own view of the global time is determined via a call to the FlexRay driver (→
Flxr GetGlobalTime() in combination with the extended global time) and then sym-
metrically encrypted with AES. The result is then sent to the master. Note that a
message block is longer than the global time value (which is in fact only one byte for
the cycle counter and four bytes for our global time extension), so the rest of the block
is filled up with random values before the encryption takes place for security reasons.

33

4. Implementation

The function is not thought to be called by hand, but periodically by the scheduler at
the start of each communication cycle.

void SecMem ReceiveSlaveTime(uint8 *encr, uint8 len, sint8 slno); [M]
The next logical step of our implementation requires the receiving of the encrypted
time information, constructed by the slave via SecMem SendTimeToMaster(). After
encrypting the message block, the received global time is compared with the master’s
own view of global time; if the values differ, the slave is considered to be faulty and the
corresponding entry in the membership vector (indicated by the slno parameter) is set
to zero.

void SecMem SendMembershipVector (void); [M]
In the next step, after all slaves have sent their global time view to the master and the
membership vector information is fully constructed, the master has to send the vector
to all slaves to notify them whether they are perhaps out of membership respectively
whether they can still trust certain other nodes or not. This transmission of the vector
happens in the listed function. Like in SecMem SendTimeToMaster(), the information is
encrypted before – this time with the AES or RSA algorithm, depending on the chosen
implementation. Again, because the vector data is likely smaller than the message block
size, the rest is filled up randomly for security reasons before encryption. In addition
the extended global time is sent unencrypted in an explicit slot to propagate the timing
information.

void SecMem ReceiveMembershipVector(uint8 *encr, uint8 len); [S]
In the end of the secure membership service process, the constructed membership vector
has to be received from the master by all slave nodes. As it has been encrypted, this
routine has to decrypt the message block. If the slave node notices by means of the
membership vector that it is out of membership, it turns into a safe state.

void SecMem ReceiveExtGT(uint8 *data, uint8 len); [S]
This function is a callback function which applies the extended global time information
received by the master to a local counter of the slave.

void SecMem ShowMembershipVector(uint8 memvector); [M,S]
This function only exists for debugging purposes and sends a human readable represen-
tation of the membership vector memvector to the UART interface via dprintf().

4.4.2. Demo Application

In order to test our secure membership implementation we had to develop a lightweight
application, which uses basic functionality of the FlexRay driver using the provided
interfaces of the evaluation board. As labelled in Figure 16 each device has the following
role:

A1, A2 On the left seven-segment display a simple counter prints its output, which is

34

4. Implementation

Figure 16: Explanation of the used I/O in the Application

controlled by the master: A so-called reloadtimer on the master node is config-
ured, which generates an overflow interrupt at approximately every second. In the
interrupt service routine a counter is incremented by one and an event message
with the payload “1” is sent afterwards. By receiving the message on the slave, its
local counter is increased by one as well. It counts from 0 to F. On an overflow it
starts at 0 again.

This should demonstrate the use of event messages, although it would be more
appropriate to use static messages here. Also note, that the boards have to start
counting at the same time, otherwise the local counters will differ to each other
(even if they count up at the same time12) which would not be the case for static
messages.

B1, B2 The right seven-segment devices display the corresponding node ID. In this
case, node ID 1 is the master of the membership protocol and node ID 2 is the
slave.

D, E1, E2 The volume control is internally connected to an ADC13. The converted
result is displayed on four LEDs (E1)14 and is also sent in the FlexRay slot 1 of
the communication cycle as a static message. On receiving at the slave, the value
is outputted on its LEDs (E2) too. In practice this happens immediately, in the
user’s point of view.

12to be correct: nearly at the same time – this however is not visible to the eye
13Analog-to-digital converter
14which are better depicted in Figure 10

35

4. Implementation

C By pressing this button on the master node, an additional feature is turned on: instead
of just displaying the ADC value, it will blink synchronously with approximately
1 Hz on both nodes. This is easily achievable by using static messages. By pushing
it again the original behavior will be restored.

X This button resets the MCU.

(a) FlexRay Settings

Property Value
baud rate on FlexRay bus 10 MBit/s
one microtick 25 ns
one macrotick 1 µs
communication cycletime 352000 microticks
communication cycletime 8800 macroticks
communication cycletime 8,8 ms
payload static segment 254 bytes
number of static slots 24 slots
static slots length 272 µs
static segment 6.53 ms
payload dynamic segment 0–254 bytes
number of minislots 308 slots
minislot length 7 µs
dynamic segment 2.12 ms

(b) Slot Roadmap

FID from Type Description
1 [M] state LED value from

ADC
4 [S1] state encrypted global

time
6 [S2] state encrypted global

time (reserved)
7 [M] state extended global

time information
8 [S3] state encrypted global

time (reserved)
9 [M] state membership vec-

tor
– [M] event payload for

counter @ 7seg

Table 2: FlexRay Configuration of the Application

A further important property of our application is the specific FlexRay configuration.
Details of it are listed in Table 2.

4.4.3. Simple Task Dispatcher

In order to execute simple tasks, we had to implement a task dispatcher. Basically,
this happens with a timer interrupt, e.g. after a timer overflow a certain task set should
be executed. However, a requirement was to start this task set at each start of a
communication cycle. Principally, we would have been able to achieve this requirement
by using a local timer and syncing it by a special message in the communication cycle, but
there is a better solution: Fortunately, the E-Ray IP-module provides an own interrupt
for that, called Cycle Start Interrupt or Begin of Cycle (BOF) Interrupt.

In order to determine the current cycle, the function GetGlobalTime() can be used,
which returns a pair consisting of the cycle- and the macroticks-counter, as has already
been stated in Section 3.2. This fact is vital for a dispatcher implementation, because
BOF interrupts can get lost due to different circumstances, particularly for a short
cycletime. On a high processor load a CPU-intensive taskset for example can not finish

36

4. Implementation

until the next cycle starts and the flag can not be cleared in time. Therefore we have to
manage the latest cycle value to calculate how many interrupts we have missed. This is
not particularly that helpful when we want to execute the taskset at every cycle-start,
therefore we introduced a way to start the execution at every xth cycle, where x is
defined by DISPATCHER PRESCALE. This functionality is fulfiled by the private function
dispatcher newcycle().

A task can be added by calling dispatcher addTask() which requires three parame-
ters:

index identifies a specific task and defines the position in the taskset.

freq means, that the given task is executed every freqth dispatcher cycle15.

handler a callback function which should be called on the appropriate instant.

Analogously a function dispatcher removeTaks() is provided for removing tasks.
Last but not least, the function dispatcher loop() must be placed in the infinite

loop of main(). dispatcher loop() executes all registered task and meets the given
freq conditions. For the full sourcecode listings, compare Appendix A.2 and B.4.

4.4.4. Evaluating Performance

In this section we want to outline how we measured processor and memory utilization
on the Fujitsu evaluation boards. On the running application, the calculated results
are printed periodically on the UART device. A detailed summary of the results are
provided in the next Section 4.5.2.

Processor Utilization
The goal is to compute the system load over a period of time. We have implemented
a counter which is incremented by one in the main()-loop. Therefore, the counter is
incremented every time the processor is actually inactive16, otherwise the CPU is busy
with an interrupt service routine or a task of the dispatcher. Thus, the greater the value
of the counter, the smaller the processor utilization is. To obtain a relative number
in percent, a reference tickvalue has to be determined; this value is simply gained by
disabling all tasks and interrupts17 (compare TICKS PER ROUND CLEAN in Appendix A.3).

By using a reloadtimer running at 100Hz, we can determine the processor load for a
certain period. Furthermore, there is a constant PERF ROUNDS to compute the average
load over a given amount of rounds. Maybe this approach is not the most exact one,
but it is absolutely sufficient for our purpose, making a comparison between different
settings of the secure membership implementation.

15this is not necessarily equal to a communication cycle (consider the configoption
DISPATCHER PRESCALE)

16we did not use any sleep mode for our application
17except the UART device of course

37

4. Implementation

Memory Usage
Two values are important for memory: static and dynamic memory usage. Static mem-
ory usage can be simply determined after compilation and linking of the program by
using the given tools of Fujitsu. In fact, the linker generates a detailed report of the
static memory layout at compile-time.

The dynamic memory is determined by our sbrk()-implementation as mentioned
already in Section 4.3.1. Since we have to implement sbrk() anyway, we can easily
access those values which are relevant for calculation of the usage.
For full sourcecode listings see Appendix A.3 and B.5.

4.5. Analysis

In this section we have inspected our implementation of a secure membership regarding
processor load and the usage of memory at compile-time (static) and at run-time (dy-
namic). We have compared different settings, which means we use different key sizes
and modify the frequency which has an influence on when a membership vector should
be processed.

Keylength for Encryption
AES For AES we selected all available key sizes, namely 128, 192 and 256 bits.

AES-RSA Since AES256 is not that more expensive than AES128 (this is true for
MatrixSSL at least, cf. Section 4.5.1), AES256 is used for encrypting the global
time.

Encryption of the membership vector uses RSA. We have selected the following
key sizes to analyse: 128, 256, 512, 1024 and 1536 bits.

We have also included measured data with disabled membership service, to declare a
lower bound.

Frequency
In order to minimize CPU load, we have implemented a way to determine how often
the global time is sent or the membership vector is received18 respectively. We call
that frequency. However, there are two approaches to realize this idea, which are not
mutually exclusive:

• DISPATCHER PRESCALE (DP): specifies how often the taskset of the dispatcher
should be executed, whereby this constant is a division factor: the execution of
tasks happens every DPth time.

• FREQUENCY (FQ): this constant is similar to DP, thus it does the same for a single
task. In fact, our dispatcher introduced in Section 4.4.3 provides such a mechanism.

18since the membership vector is sent as a static message, this is no restriction

38

4. Implementation

Although the functionality is similar, those parameters depend on each other, e.g. DP=10
and FQ=10 result in an overall-frequency of 100, meaning that the membership task
is executed every 100th communication cycle of the FlexRay controller, because the
dispatcher relies on the begin of cycle-interrupt as discussed in Section 4.4.3. In
order to simplify the results only the overall-frequencies are provided in the results. For
detailed implementation see Appendix B.1, B.2 and B.4.

4.5.1. AES

Processor Utilization
In Table 3 all results are printed. Since the results are not significant enough, we can
conclude that it does not make a difference which configuration is chosen. Therefore
AES256 is recommended.

Configuration
Frequency 100 10 5 3 1
Period 880.0 ms 88.0 ms 44.0 ms 26.4 ms 8.8 ms

[%] [%] [%] [%] [%]
No Secure Master 65.4 % 65.4 % 65.4 % 65.4 % 65.4 %
Membership Slave 50.5 % 50.5 % 50.5 % 50.5 % 50.5 %

AES128
Master 65.5 % 66.6 % 65.7 % 65.9 % 67.7 %
Slave 50.6 % 52.4 % 50.7 % 51.1 % 53.4 %

AES192
Master 66.8 % 66.8 % 65.7 % 66.0 % 67.7 %
Slave 52.4 % 52.4 % 50.7 % 51.1 % 53.3 %

AES256
Master 66.8 % 65.5 % 66.9 % 67.3 % 66.4 %
Slave 52.4 % 50.6 % 52.6 % 52.9 % 51.7 %

Table 3: CPU Utilization for different Configurations (AES)

Memory Usage
Static usage is with every configuration 2120 bytes on the master and 2104 bytes on the
slave, this is about 20% of the available memory. Since MatrixSSL can not distinguish
between the bit size at compile-time by design, the usage do not vary between the
configurations. Dynamic memory is not required for the AES implementation.

4.5.2. AES-RSA

Processor Utilization
In Table 4 all results are included. The CPU utilization for the master is depicted
graphically in Figure 17. Some results in Table 4 were not fully operative however,
therefore they are signed with a symbol:

? in such cases, the dispatcher has not been able to complete all tasks within the given
timing constraints. The consequences are that other tasks might be significantly
delayed and that the encrypted membership vector is not broadcasted that often
as it should be. This is also one reason why the CPU utilization does not distinctly

39

4. Implementation

Configuration
Frequency 1000 100 10 5
Period 8800.0 ms 880.0 ms 88.0 ms 44.0 ms

[%] [%] [%] [%]
No Secure Master 65.4 % 65.4 % 65.4 % 65.4 %
Membership Slave 50.5 % 50.5 % 50.5 % 50.5 %
RSA128 Master 65.4 % 66.2 % 70.1 % 74.8 %
AES256 Slave 50.7 % 50.8 % 51.5 % 52.3 %
RSA256 Master 65.8 % 68.6 % 78.6 % ? 85.4 %
AES256 Slave 50.7 % 50.9 % 51.7 % 52.3 %
RSA512 Master 69.1 % 79.0 % 92.6 % ? 96.0 %
AES256 Slave 52.5 % 52.9 % 53.4 % 53.5 %
RSA1024 Master 82.2 % ? 95.7 % ? 98.6 % ⊗ 99.6 %
AES256 Slave 52.5 % 52.6 % 52.7 % 52.7 %
RSA1536 Master ? 100.0 % ? 100.0 % ? 100.0 % ⊗ 100.0 %
AES256 Slave 52.5 % 52.5 % 52.6 % 52.6 %

Table 4: CPU Utilization for different Configurations (AES-RSA)

55

60

65

70

75

80

85

90

95

100

1000 100 10 5

C
P
U

lo
a
d

[%
]

Configuration

* * * * No SecMembC bC

bC

bC RSA128

×
×

×

× RSA256

qP

qP

qP

qP
RSA512

uT

uT

uT
uT
RSA1024

rS rS rS rS RSA1536

Figure 17: CPU Utilization on the Master (compare Table 4)

40

4. Implementation

increase on the slave: Since the membership vector is not received that often, the
decryption happens less frequently19. However, the application inclusive the secure
membership service is still operating.

⊗ in those cases the timing requirements are so hard that even the membership service
is not fully working.

Memory Usage

Configuration
Dyn. Mem. Dyn. Mem. Static Mem. Static Mem.

[byte] [%] [byte] [%]
No Secure Master 0 byte 0.00 % 1056 byte 9.38 %
Membership Slave 0 byte 0.00 % 1056 byte 9.38 %
RSA128 Master 640 byte 6.94 % 1740 byte 24.27 %
AES256 Slave 380 byte 4.12 % 1724 byte 24.05 %
RSA256 Master 1712 byte 18.58 % 1772 byte 24.72 %
AES256 Slave 636 byte 6.90 % 1740 byte 24.27 %
RSA512 Master 3024 byte 32.81 % 1836 byte 25.61 %
AES256 Slave 1148 byte 12.46 % 1772 byte 24.72 %
RSA1024 Master 5648 byte 61.28 % 1964 byte 27.40 %
AES256 Slave 2172 byte 23.57 % 1836 byte 25.61 %
RSA1536 Master 8272 byte 89.76 % 1992 byte 27.79 %
AES256 Slave 3196 byte 34.68 % 1900 byte 26.51 %

Table 5: Static and dynamic Memory Usage for different Configurations (AES-RSA)

While the frequency-settings influence CPU load, this consideration is not true for
memory of course. Thus, we outsourced the data in a separate table (cf. Table 5).
As shown in Table 1 on Page 26, the microcontroller includes a 16 KiB RAM-block.
Due to the usage of malloc(), the memory is divided into a section for dynamic and
static memory, whereby the former one has to be determined at runtime (as described
in Section 4.4.4). In this particular case we have reserved 9 KiB of memory for dynamic
usage. As can be seen, with RSA1536 just the dynamic memory uses over the half of
the whole RAM on the master, which is remarkably much memory for a membership
service.

19the second reason is that decryption does not take that long

41

5. Conclusion

5. Conclusion

With our model of a secure membership service, the system is able to detect whether a
specific node is part of the membership vector or not. It prevents attacks like presented
in our Attacker Model, e.g. delay attacks on a certain node. We have developed a
reference implementation for the well-known time-triggered protocol FlexRay, although
the secure membership service is not designed for a specific time-triggered platform. In
fact it is practicable with some effort for other protocols like TTP and TT-Ethernet.

The overhead for our implementation was experimentally determined for several con-
figurations – adjustable by encryption length and detection latency – with regard to
CPU utilization and memory usage on the development boards of the “bitspot blue”
series.

5.1. What Configuration should be used for my real World
Application?

We cannot give an exact answer to this question. It extremely depends on your envi-
ronment and the application you want to realize. Since resources are very limited in
embedded systems, you may take into consideration that you do not even need a secure
membership for your application anyway. Also keep in mind that RSA768 is already
crackable [KAF+10] with some effort. Therefore a higher key size for a safety-critical
application should be considered. According to [Kal03] a key size of 2048 bits should be
sufficient until the year 2030. The MCU on the evaluation board for example is defini-
tively overloaded with RSA1536, therefore – if really needed – a better MCU regarding
CPU power and RAM should be considered.

5.2. Future Work

The primarily flaw of our secure membership service is that it is based on a master-
slave system: A distributed approach as for example presented in [MLKSP10] seems to
be a great enhancement towards the current idea. Further it would be interesting if an
implementation on a different time-triggered platform like TTP and TT-Ethernet is also
(easily) possible.

With regard to our specific implementation results for a different and faster hardware
setup would be an interesting comparison. Also other libraries for RSA which are par-
ticularly adapted for embedded systems like in [GPW+04] or even hardware support
realized with the help of FPGAs like mentioned in [WK06, p. 154] could be worthwhile
enough for further investigations on this topic.

42

References

References

[AUT09] AUTOSAR. Specification of FlexRay Driver, V2.3.0, R4.0 Rev 1, 2009.

[BMR00] J. Berwanger, Peller M., and Griessbach R. byteflight - A New High-
Performance Data Bus System for Safety-Related Applications. 2000. http:
//www.byteflight.com/presentations/byteflight_paper.pdf.

[Bos06] Bosch. E-Ray – FlexRay IP-Module, User’s Manual, Revision 1.2.5, 2006.

[BPS08] J. Berwanger, M. Peteratzinger, and A. Schedl. Flexray startet durch
– FlexRay-Bordnetz für Fahrdynamik und Fahrerassistenzsysteme. In
Elektronik automotive: Sonderausgabe 7er BMW. 2008. http://www.

elektroniknet.de/home/automotive/bmw-7/flexray-startet-durch/

(unfortunately offline).

[Con05] FlexRay Consortium. FlexRay Communications System Protocol Specifica-
tion, Version 2.1, Revision A, 2005.

[Dav10] Matt Davis. 2011 Audi A8 4.2 FSi First Drive, 2010. http://www.

insideline.com/audi/a8/2011/2011-audi-a8-4-2-fsi-first-drive.

html.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael – AES - The
Advanced Encryption Standard. Springer-Verlag, 2002.

[Fou10] Free Software Foundation. GNU Make, 2010. http://www.gnu.org/

software/make.

[GPW+04] Nils Gura, Arun Patel, Arvinderpal W, Hans Eberle, and Sheueling Chang
Shantz. Comparing Elliptic Curve Cryptography and RSA on 8-bit CPUs.
pages 119–132, 2004.

[KAF+10] Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen K. Lenstra, Em-
manuel Thomé, Pierrick Gaudry, Peter L. Montgomery, Dag Arne Osvik,
Herman Te Riele, Andrey Timofeev, and Paul Zimmermann. Factorization
of a 768-bit RSA modulus, 2010.

[Kal03] Burt Kaliski. TWIRL and RSA Key Size, 2003. http://www.rsa.com/

rsalabs/node.asp?id=2004.

[Kop97] Hermann Kopetz. Real-Time Systems: Design Principles for Distributed
Embedded Applications. Kluwer Academic Publishers, Norwell, MA, USA,
1997.

[KW06] Sandeep Kumar and Thomas Wollinger. Fundamentals of symmetric cryp-
tography. In Kerstin Lemke, Christof Paar, and Marko Wolf, editors, Em-
bedded Security in Cars – Securing Current and Future Automotive IT Ap-
plications, pages 125–143. Springer-Verlag, 2006.

43

http://www.byteflight.com/presentations/byteflight_paper.pdf
http://www.byteflight.com/presentations/byteflight_paper.pdf
http://www.elektroniknet.de/home/automotive/bmw-7/flexray-startet-durch/
http://www.elektroniknet.de/home/automotive/bmw-7/flexray-startet-durch/
http://www.insideline.com/audi/a8/2011/2011-audi-a8-4-2-fsi-first-drive.html
http://www.insideline.com/audi/a8/2011/2011-audi-a8-4-2-fsi-first-drive.html
http://www.insideline.com/audi/a8/2011/2011-audi-a8-4-2-fsi-first-drive.html
http://www.gnu.org/software/make
http://www.gnu.org/software/make
http://www.rsa.com/rsalabs/node.asp?id=2004
http://www.rsa.com/rsalabs/node.asp?id=2004

References

[Mar06] Isaac Barona Martinez. USPP – Universal Serial Port Python Library,
2006. http://sites.google.com/site/ibarona/uspp.

[Mic08] Fujitsu Microelectronics. FR Family SoftuneTM C/C++ Compiler Manual
for V6, 2008.

[Mic10a] Fujitsu Microelectronics, 2010. http://www.fujitsu.com/global/

services/microelectronics/technical/flexray/index_p13.html.

[Mic10b] Fujitsu Microelectronics. bits bot – microcontroller starter kits by Fujitsu,
2010. http://www.fujitsu.com/global/services/microelectronics/

product/micom/tools/hard/board/bitspot.html.

[MLKSP10] Martin Mitzlaff, Michael Lang, Rüdiger Kapitza, and Wolfgang Schröder-
Preikschat. A Membership Service for a Distributed, Embedded System
Based on a Time-Triggered FlexRay Network. In Dependable Computing
Conference (EDCC), 2010 European, pages 155 –162, 28-30 2010.

[Net10] PeerSec Networks. PeerSec Networks MatrixSSL, 2010. http://www.

matrixssl.org.

[Rau07] Mathias Rausch. FlexRay. Grundlagen, Funktionsweise, Anwendung.
Hanser Fachbuch, 2007.

[RG91] Debby Russell and G.T Gangemi. Computer Security Basics. O’Reilly
Media, 1991.

[Sch96] Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and Source
Code in C, Second Edition. Wiley, 2nd edition, October 1996.

[UF10] Bernhard Urban and Sebastian Falbesoner. a native linux programmer for
MB91F465X, 2010. http://github.com/lewurm/frprog.

[Wik10] Wikipedia. Newline — Wikipedia, the free encyclopedia, 2010.
https://secure.wikimedia.org/wikipedia/en/w/index.php?title=

Newline&oldid=366510232#Common_problems.

[WK06] Thomas Wollinger and Sandeep Kumar. Fundamentals of asymmetric cryp-
tography. In Kerstin Lemke, Christof Paar, and Marko Wolf, editors, Em-
bedded Security in Cars – Securing Current and Future Automotive IT Ap-
plications, pages 146–156. Springer-Verlag, 2006.

44

http://sites.google.com/site/ibarona/uspp
http://www.fujitsu.com/global/services/microelectronics/technical/flexray/index_p13.html
http://www.fujitsu.com/global/services/microelectronics/technical/flexray/index_p13.html
http://www.fujitsu.com/global/services/microelectronics/product/micom/tools/hard/board/bitspot.html
http://www.fujitsu.com/global/services/microelectronics/product/micom/tools/hard/board/bitspot.html
http://www.matrixssl.org
http://www.matrixssl.org
http://github.com/lewurm/frprog
https://secure.wikimedia.org/wikipedia/en/w/index.php?title=Newline&oldid=366510232#Common_problems
https://secure.wikimedia.org/wikipedia/en/w/index.php?title=Newline&oldid=366510232#Common_problems

List of Figures

List of Figures

1. Illustration of a TDMA Communication Cycle 7
2. Event- vs. Time-triggered Solution . 8
3. Several Clocks with different Settings . 9
4. Schematic of an integrated FlexRay Node 15
5. The FlexRay Communication Cycle . 15
6. Layout of a FlexRay Frame . 16
7. Temporal Configuration Values and their Dependencies [Mic10a] 16
8. FlexRay Configuration Values of the BMW 7 [BPS08] 17
9. Visualization of the Membership Process 21
10. The “bitspot blue” Development Board 25
11. Schematic of the E-Ray IP-Module [Bos06] 29
12. Illustration of the Message RAM [Bos06] 30
13. Illustration of the Message Header [Bos06] 30
14. The Output Buffer [Bos06] . 31
15. The Input Buffer [Bos06] . 31
16. Explanation of the used I/O in the Application 35
17. CPU Utilization on the Master (compare Table 4) 40

List of Tables

1. FR60 MB91F465X Properties . 26
2. FlexRay Configuration of the Application 36
3. CPU Utilization for different Configurations (AES) 39
4. CPU Utilization for different Configurations (AES-RSA) 40
5. Static and dynamic Memory Usage for different Configurations (AES-RSA) 41

45

A. Header Files

A. Header Files

A.1. membership.h

1 /*
2 Copyright (C) 2010 Bernhard Urban <lewurm@gmail.com>
3 Copyright (C) 2010 Sebastian Falbesoner <sebastian.falbesoner@gmail.com>
4 All rights reserved.
5 */
6

7 #ifndef MEMBERSHIP H

8 #define MEMBERSHIP H

9

10 #include "Platform Types.h"

11 #include "..\defs\ fr.h"
12 #include "Flxr.h"

13 #include "dispatcher.h"

14 #include "uart.h"

15 #include "..\matrixssl\crypto\cryptoApi.h"
16 #include "..\keys.h"
17

18 /**
19 * A Secure Membership Service for Time-Triggered Protocols *
20 **/
21

22 #define MAX SLAVES 4

23 #define NO SLAVES 1 //number of slaves
24

25

26 #if NODE >= 2

27 #define SLAVE NUMBER (NODE-2)

28 #endif

29

30

31 #define FRAMEID SLAVE0 4 //Frame IDs have to be in a ”row”, otherwise
32 #define FRAMEID SLAVE1 (FRAMEID SLAVE0 + 2) //SecMem Init() must be adapted
33 #define FRAMEID SLAVE2 (FRAMEID SLAVE1 + 2)

34

35 #define FRAMEID EXTGT 7

36 #define FRAMEID MBVEC 9

37

38

39 /* for testig purpose */
40 //#define FAULTY SLAVE

46

A. Header Files

41

42 #ifdef FAULTY SLAVE

43 #define CYCLE CORRECTION OFFSET 7

44 #else

45 #define CYCLE CORRECTION OFFSET 0

46 #endif

47

48

49 /* indicate the frequency of the message; FREQUENCY denotes a message should
50 * be sent every FREQUENCY’th round */
51 #define FREQUENCY 10

52

53 /* please just use an constant (in bits) here, because this value is used by an
54 * external script to generate proper RSA keys
55 * maximum value: 254*8 = 2032 */
56 #define RSABITSIZE 256

57

58 /* maximum value: 254 bytes (RSA) */
59 #define FRAMEMBVECLEN (RSABITSIZE/8)

60

61 /* please just use an constant (in bits) here, because this value is used by an
62 * external script to generate proper RSA keys. vaild values are 128, 192 and
63 * 256 */
64 #define AESBITSIZE 256

65

66 /* this value should not be changed, since the blocksize is always 16 bytes for
67 * AES */
68 #define FRAMESLAVELEN 16

69

70

71

72 /* Master -> init membership system */
73 void SecMem Init Master(void);

74

75 /* Slave -> init membership system for slaves */
76 void SecMem Init Slave(void);

77

78 /* Slave -> call getGlobalTime(), encrypt the result and send it to the master;
79 * => should be triggered at the beginning of a communication cycle! */
80 void SecMem SendTimeToMaster();

81

82 /* Master -> receive the encrypted information, decrypt it;
83 * => should be used as a callback function of receiving a frame! */
84 void SecMem ReceiveSlaveTime(uint8 *encrypted, uint8 length, sint8 slaveno);

47

A. Header Files

85

86 /* Master -> out of all received slave timing information, construct the
87 * membership vector, sign it and send it to the slaves
88 * => should be triggered as soon as all slave timing information are
89 * received! */
90 void SecMem SendMembershipVector();

91

92 /* Slave -> receive extended global time information
93 * => should be used as a callback function of receiving a frame! */
94 void SecMem ReceiveExtGT(uint8 *data, uint8 length);

95

96 /* Slave -> receive the membership vector; if slave detects that it is out of
97 * membership, go in a safe state;
98 * => should be used as a callback function of receiving a frame! */
99 void SecMem ReceiveMembershipVector(uint8 *encrypt, uint8 length);

100

101 /* Master/Slave -> display membership vector (e.g. LEDs or UART) */
102 void SecMem ShowMembershipVector(uint8 memvector);

103

104 /* encryption helper */
105 void init rsa(void);

106

107 /* helper for increasing the ext. global time */
108 void increase extended global time(void);

109

110 #endif

A.2. dispatcher.h

1 /*
2 Copyright (C) 2010 Bernhard Urban <lewurm@gmail.com>
3 Copyright (C) 2010 Sebastian Falbesoner <sebastian.falbesoner@gmail.com>
4 All rights reserved.
5 */
6

7 #ifndef DISPATCHER H

8 #define DISPATCHER H

9

10 #include "general.h"

11 #include "..\defs\ fr.h"
12 #include "Platform Types.h"

13 #include "Flxr.h"

14 #include "uart.h"

48

A. Header Files

15

16 /* start at first task although not all tasks are proccessed when a new cycle
17 * begins */
18 #define FORCE NEW CYCLE

19

20 /* ensure that all tasks are proceed, regardless if a new cycle begins */
21 //#define HANDLE ALL TASKS
22

23 #if defined(FORCE NEW CYCLE) && defined(HANDLE ALL TASKS)

24 #error "both configuration options can’t be choosen at the same time"

25 #endif

26

27 /* basic prescaler for dispatcher */
28 #define DISPATCHER PRESCALER 10

29

30 #define DISPATCHER MAX TASKS 8

31

32

33 /* initialize the dispatcher, which register a callback for
34 * the begin-of-cycle interrupt */
35 void dispatcher init(void);

36

37 /* add a new task to dispatcher */
38 void dispatcher addTask(uint8 idx, uint16 freq, void (*handler)(void));

39

40 /* remove an existing task */
41 void dispatcher removeTask(uint8 idx);

42

43 /* this function is called periodically from the while(1)-loop in the main()
44 * function */
45 void dispatcher loop(void);

46

47 /* register a callback function for increasing the extended global time */
48 void dispatcher register incgt(void (*f)(void));

49

50 #endif

A.3. perf.h

1 /*
2 Copyright (C) 2010 Bernhard Urban <lewurm@gmail.com>
3 Copyright (C) 2010 Sebastian Falbesoner <sebastian.falbesoner@gmail.com>
4 All rights reserved.

49

A. Header Files

5 */
6

7 #ifndef PERF H

8 #define PERF H

9

10 #include "Platform Types.h"

11 #include "uart.h"

12 #include "reloadtimer.h"

13 #include <limits.h>
14

15 /* how many rounds should be measured for CPU load? */
16 #define PERF ROUNDS 700

17

18 /* TICKS PER ROUND CLEAN are the ticks measured without any application
19 * except perf.c running on the microcontroller (with PERF ROUNDS=1000) */
20 #define TICKS PER ROUND CLEAN (13331600ULL/1000ULL)

21

22

23 /* initialize perf -- reset values and add callback to dispatcher */
24 void perf init(void);

25

26 /* function is called periodically by timer interrupt and calculates CPU usage */
27 void perf cpucb(void);

28

29 /* function count up cycles; place a call the main loop */
30 void perf countup(void);

31

32 /* show CPU usage on UART */
33 void perf showCpu(void);

34

35 /* show memory usage (rely on our sbrk-hack) on UART */
36 void perf showMem(void);

37

38 #endif

50

B. Source Files

B. Source Files

B.1. membership master.c

1 /*
2 Copyright (C) 2010 Bernhard Urban <lewurm@gmail.com>
3 Copyright (C) 2010 Sebastian Falbesoner <sebastian.falbesoner@gmail.com>
4 All rights reserved.
5 */
6

7 #include "include\membership.h"
8

9 static void init aes();

10

11 static uint8 membership vector = 0;

12 static psAesKey t aeskeys[NO SLAVES];

13

14 /* provided by membership common.c */
15 extern psRsaKey t rsakey;

16 extern volatile uint32 clock ext;

17

18

19 /* necassary hack, because C doesn’t provide higher-order functions... */
20 static void SecMem ReceiveSlaveTime0(uint8 *encrypt, uint8 length) {
21 SecMem ReceiveSlaveTime(encrypt, length, 0);

22 }
23 static void SecMem ReceiveSlaveTime1(uint8 *encrypt, uint8 length) {
24 SecMem ReceiveSlaveTime(encrypt, length, 1);

25 }
26 static void SecMem ReceiveSlaveTime2(uint8 *encrypt, uint8 length) {
27 SecMem ReceiveSlaveTime(encrypt, length, 2);

28 }
29 static void SecMem ReceiveSlaveTime3(uint8 *encrypt, uint8 length) {
30 SecMem ReceiveSlaveTime(encrypt, length, 3);

31 }
32

33 static void (*secmemcb[MAX SLAVES])(uint8 *buf, uint8 buflen) =

34 {SecMem ReceiveSlaveTime0, SecMem ReceiveSlaveTime1,

35 SecMem ReceiveSlaveTime2, SecMem ReceiveSlaveTime3};
36

37 void SecMem Init Master(void)

38 {
39 uint8 i=0;

40 for(; i < NO SLAVES*2; i+=2)

51

B. Source Files

41 Flxr RegisterIntHandler(secmemcb[i/2], FRAMEID SLAVE0+i);

42 dispatcher addTask(0, FREQUENCY, SecMem SendMembershipVector);

43 dispatcher register incgt(increase extended global time);

44

45 clock ext = rand();

46

47 init aes();

48 init rsa();

49 }
50

51 void SecMem ReceiveSlaveTime(uint8 *encrypted, uint8 length, sint8 slaveno)

52 {
53 if (length > 0) {
54 uint8 plain[FRAMESLAVELEN];

55 uint8 cycle, i;

56 uint16 macrotick;

57 uint32 recv clock ext = 0;

58

59 memset(plain, 0, FRAMESLAVELEN);

60 psAesDecryptBlock(encrypted, plain, & aeskeys[slaveno]);

61

62 membership vector |= 1 << slaveno;

63 for(i=0; i < 4; i++) {
64 recv clock ext |= plain[FRAMESLAVELEN-2-i] << (i*8);

65 }
66

67 Flxr GetGlobalTime(ERAY CTRLIDX, &cycle, ¯otick);

68

69 /* Is the slave evil and has manipulated global time? */
70 if ((cycle != plain[FRAMESLAVELEN-1]) ||
71 (clock ext != recv clock ext)) {
72 membership vector &= ∼(1 << slaveno);

73 dprintf("[secmem] cycle-counter mismatch, difference: %d\n",
74 ((sint16)cycle)-((sint16)plain[FRAMESLAVELEN-1]));

75 dprintf("[secmem] extended-counter mismatch, "

76 "difference: %d\n",
77 ((sint32)clock ext)-((sint32)recv clock ext));

78 dprintf("[secmem] clock ext: %d\n", clock ext);

79 dprintf("[secmem] recv clock ext: %d\n", recv clock ext);

80 }
81 }
82 }
83

84 void SecMem SendMembershipVector()

52

B. Source Files

85 {
86 static uint8 plain[FRAMEMBVECLEN];

87 static uint8 encrypt[FRAMEMBVECLEN];

88 uint32 elen = FRAMEMBVECLEN;

89 uint8 i;

90

91 /* send extended global time information in slot 7 */
92 memset(plain, 0, FRAMEMBVECLEN);

93 for(i=0; i < 4; i++) {
94 plain[FRAMEMBVECLEN-1-i] = (clock ext >> (i*8)) & 0xff;

95 }
96 Flxr TransmitTxLPdu(ERAY CTRLIDX, FRAMEID EXTGT, plain, FRAMEMBVECLEN);

97

98

99 /* send encrypted membership vector in slot 9 */
100 /* padding */
101 for(i=0; i < FRAMEMBVECLEN; i++) {
102 uint32 pad = rand();

103 memset(plain+i, pad, 1);

104 }
105

106 /* prevent ”sanity/limit test”-fail; this actually happens if
107 * the data, interpreted as a number, is bigger than N */
108 plain[0] = 0;

109 plain[FRAMEMBVECLEN-1] = membership vector;

110

111 psRsaCrypt(NULL, plain, FRAMEMBVECLEN, encrypt, &elen, & rsakey,

112 PRIVKEY TYPE);

113 Flxr TransmitTxLPdu(ERAY CTRLIDX, FRAMEID MBVEC, encrypt, FRAMEMBVECLEN);

114 SecMem ShowMembershipVector(membership vector);

115 }
116

117 static void init aes()

118 {
119 int32 aesret;

120

121 /* not that nice, but it get computed at compile-time which saves
122 * cpu-time and, a way more important, RAM */
123 #if NO SLAVES >= 1

124 if((aesret=psAesInitKey(AES KEY0,AES KEYLEN0,& aeskeys[0])) !=0) {
125 dprintf("AES: something was wrong with the key(0) initialization:"

126 "%i\n", aesret);

127 }
128 #endif

53

B. Source Files

129 #if NO SLAVES >= 2

130 if((aesret=psAesInitKey(AES KEY1,AES KEYLEN1,& aeskeys[1])) !=0) {
131 dprintf("AES: something was wrong with the key(1) initialization:"

132 "%i\n", aesret);

133 }
134 #endif

135 #if NO SLAVES >= 3

136 if((aesret=psAesInitKey(AES KEY2,AES KEYLEN2,& aeskeys[2])) !=0) {
137 dprintf("AES: something was wrong with the key(2) initialization:"

138 "%i\n", aesret);

139 }
140 #endif

141 #if NO SLAVES >= 4

142 if((aesret=psAesInitKey(AES KEY3,AES KEYLEN3,& aeskeys[3])) !=0) {
143 dprintf("AES: something was wrong with the key(3) initialization:"

144 "%i\n", aesret);

145 }
146 #endif

147 }

B.2. membership slave.c

1 /*
2 Copyright (C) 2010 Bernhard Urban <lewurm@gmail.com>
3 Copyright (C) 2010 Sebastian Falbesoner <sebastian.falbesoner@gmail.com>
4 All rights reserved.
5 */
6

7 #include "include\membership.h"
8

9 static void init aes slave();

10

11 static psAesKey t aeskey;

12

13 /* provided by membership common.c */
14 extern psRsaKey t rsakey;

15 extern volatile uint32 clock ext;

16

17

18 void SecMem Init Slave()

19 {
20 /* Slave Nodes perform getGlobalTime() at the begin of each communication
21 * cycle, encrypt the value and prepare sending in a slot of the remaining

54

B. Source Files

22 * cycle */
23 dispatcher addTask(0, FREQUENCY, SecMem SendTimeToMaster);

24 dispatcher register incgt(increase extended global time);

25

26 /* register callback for membership-vector */
27 Flxr RegisterIntHandler(SecMem ReceiveExtGT, FRAMEID EXTGT);

28 Flxr RegisterIntHandler(SecMem ReceiveMembershipVector, FRAMEID MBVEC);

29

30 init aes slave();

31 init rsa();

32 }
33

34 void SecMem SendTimeToMaster()

35 {
36 #define FID (FRAMEID SLAVE0 + (SLAVE NUMBER * 2))

37 uint8 cycle, i;

38 uint16 macrotick;

39

40 uint8 message[FRAMESLAVELEN];

41 uint8 encrypted[FRAMESLAVELEN];

42

43 /* padding */
44 for(i=0; i < FRAMESLAVELEN; i+=4) {
45 uint32 pad = rand();

46 memcpy(message+i, &pad, 4);

47 }
48

49 Flxr GetGlobalTime(ERAY CTRLIDX, &cycle, ¯otick);

50

51 message[FRAMESLAVELEN-1] = (cycle + CYCLE CORRECTION OFFSET) % 64;

52 for(i=0; i < 4; i++) {
53 message[FRAMESLAVELEN-2-i] = (clock ext >> (i*8)) & 0xff;

54 }
55

56 psAesEncryptBlock(message, encrypted, & aeskey);

57 Flxr TransmitTxLPdu(ERAY CTRLIDX, FID, encrypted, FRAMESLAVELEN);

58 }
59

60 void SecMem ReceiveExtGT(uint8 *data, uint8 length)

61 {
62 uint8 i;

63 clock ext = 0;

64 for(i=0; i < 4; i++) {
65 clock ext |= data[FRAMEMBVECLEN-1-i] << (i*8);

55

B. Source Files

66 }
67 }
68 void SecMem ReceiveMembershipVector(uint8 *encrypt, uint8 length)

69 {
70 static uint8 plain[FRAMEMBVECLEN];

71 uint32 elen = FRAMEMBVECLEN;

72 int32 rsaret;

73 rsaret = psRsaCrypt(NULL, encrypt, FRAMEMBVECLEN, plain, &elen,

74 & rsakey, PUBKEY TYPE);

75

76 if((SLAVE NUMBER < length &&

77 !((plain[FRAMEMBVECLEN-1] >> SLAVE NUMBER) & 1))

78 || (rsaret == -1)) {
79 ; /* here we go into a safe state in a realworld application */;
80 }
81 SecMem ShowMembershipVector(plain[FRAMEMBVECLEN-1]);

82 }
83

84 static void init aes slave(void)

85 {
86 int32 aesret;

87

88 /* not that nice, but it get computed at compile-time which saves
89 * cpu-time and, a way more important, RAM */
90 #if SLAVE NUMBER == 0

91 const unsigned char *key = AES KEY0;

92 uint32 len = AES KEYLEN0;

93 #elif SLAVE NUMBER == 1

94 const unsigned char *key = AES KEY1;

95 uint32 len = AES KEYLEN1;

96 #elif SLAVE NUMBER == 2

97 const unsigned char *key = AES KEY2;

98 uint32 len = AES KEYLEN2;

99 #elif SLAVE NUMBER == 3

100 const unsigned char *key = AES KEY3;

101 uint32 len = AES KEYLEN3;

102 #endif

103

104 if((aesret = psAesInitKey(key, len, & aeskey)) != 0) {
105 dprintf("AES: something was wrong with the key(%i) initialization:"

106 "%i\n", SLAVE NUMBER, aesret);

107 }
108 }

56

B. Source Files

B.3. membership common.c

1 /*
2 Copyright (C) 2010 Bernhard Urban <lewurm@gmail.com>
3 Copyright (C) 2010 Sebastian Falbesoner <sebastian.falbesoner@gmail.com>
4 All rights reserved.
5 */
6

7 #include "include\membership.h"
8

9 psRsaKey t rsakey;

10 volatile uint32 clock ext = 0;

11

12 void increase extended global time(void)

13 {
14 /* a overflow isn’t actually a problem.
15 * consider a cyclelenght of 8.8ms, therefore the first overflow happens
16 * after: 8.8ms * 64cycles * 2ˆ32 = 76,7 years */
17 clock ext++;

18 }
19

20 void SecMem ShowMembershipVector(uint8 memvector)

21 {
22 static uint16 i = 0;

23 uint8 t = 0;

24 i++;

25 if(i == 5) {
26 dprintf("memvec(@node%d): %i|%i|%i|%i\n", NODE,

27 (memvector >> 0) & 1, (memvector >> 1) & 1,

28 (memvector >> 2) & 1, (memvector >> 3) & 1);

29 i = 0;

30 }
31 t |= ((memvector >> 0) & 1) << 4;

32 t |= ((memvector >> 1) & 1) << 5;

33 t |= ((memvector >> 2) & 1) << 6;

34 t |= ((memvector >> 3) & 1) << 7;

35

36 t = ∼t;
37 IO PDR14.byte = (t & 0xf0) | (IO PDR14.byte & 0x0f);

38 }
39

40 void init rsa(void)

41 {
42 int32 rsaret = 0;

57

B. Source Files

43

44 rsaret |= pstm init for read unsigned bin(NULL, &(rsakey.N), 1);

45 rsaret |= pstm init for read unsigned bin(NULL, &(rsakey.e), 1);

46 rsaret |= pstm init for read unsigned bin(NULL, &(rsakey.d), 1);

47

48 rsaret |= pstm read unsigned bin(&(rsakey.N), RSA N, ARLEN(RSA N)-1);

49 #ifndef SLAVE NUMBER

50 /* the master just needs the private key to sign the membership vector */
51 rsaret |= pstm read unsigned bin(&(rsakey.d), RSA D, ARLEN(RSA D)-1);

52 #else

53 /* just initialize the public key for a slave */
54 rsaret |= pstm read unsigned bin(&(rsakey.e), RSA E, ARLEN(RSA E)-1);

55 #endif

56

57 rsakey.size = ARLEN(RSA N)-1;

58 rsakey.optimized = 0;

59

60 if(rsaret != 0) {
61 dprintf("RSA: something was wrong with the key initialization:"

62 "%i\n", rsaret);

63 }
64 }

B.4. dispatcher.c

1 /*
2 Copyright (C) 2010 Bernhard Urban <lewurm@gmail.com>
3 Copyright (C) 2010 Sebastian Falbesoner <sebastian.falbesoner@gmail.com>
4 All rights reserved.
5 */
6

7 #include "include\dispatcher.h"
8

9 /* which task is active? */
10 static volatile uint8 counter = 0;

11

12 /* task callbacks */
13 static void (* tasks[DISPATCHER MAX TASKS])(void) = {NULL PTR};
14

15 /* global variables to manage frequency of tasks */
16 static uint16 freq limit[DISPATCHER MAX TASKS] = {0};
17 static uint16 freq counter[DISPATCHER MAX TASKS] = {0};
18

58

B. Source Files

19 /* interrupt flag */
20 static volatile uint8 flag = 0;

21

22 /* callbacks function */
23 static void dispatcher newcycle(void);

24 static void (* increment gt)(void) = NULL PTR;

25

26

27 void dispatcher init(void)

28 {
29 /* register a callback function on for the
30 * begin-of-cycle interrupt of the FlexRay Stack */
31 Flxr RegisterBOCHandler(dispatcher newcycle);

32 }
33

34 void dispatcher addTask(uint8 idx, uint16 freq, void (*f)(void)) {
35 if(idx < DISPATCHER MAX TASKS) {
36 tasks[idx] = f;

37 freq counter[idx] = 0;

38 freq limit[idx] = freq ? freq : 1;

39 }
40 }
41

42 void dispatcher removeTask(uint8 idx)

43 {
44 if(idx < DISPATCHER MAX TASKS) {
45 tasks[idx] = NULL PTR;

46 freq counter[idx] = 0;

47 freq limit[idx] = 0;

48 }
49 }
50

51 void dispatcher register incgt(void (*f)(void))

52 {
53 increment gt = f;

54 }
55

56 static uint8 cycle difference(uint8 newc, uint8 oldc)

57 {
58 /* valid cycle values are 0 to 63 */
59 if(newc >= oldc) {
60 return newc - oldc;

61 } else {
62 /* increment the extended global time */

59

B. Source Files

63 if(increment gt != NULL PTR) {
64 increment gt();

65 }
66 return (64-oldc) + newc;

67 /* examples:
68 * - oldc=63, newc=1 => return 2;
69 * - oldc=63, newc=0 => return 1;
70 */
71 }
72 }
73

74 static void dispatcher newcycle(void) {
75 static uint16 prescale = 0;

76 static uint8 firstexec = 1;

77

78 uint8 new cycle;

79 static uint8 old cycle;

80 uint16 macrotick;

81 Flxr GetGlobalTime(ERAY CTRLIDX, &new cycle, ¯otick);

82

83 /* begin-of-cycle interrupts can get lost, when the interrupt isn’t handeld
84 * fast enough (which can happen quite often, depending on the FlexRay
85 * configuration) */
86 if(firstexec == 0) {
87 prescale += cycle difference(new cycle, old cycle);

88 }
89

90 if(prescale >= DISPATCHER PRESCALER) {
91 if(flag == 1) {
92 #if 0

93 dprintf("[dispatcher]: please try a lower frequency\n"
94 " or modify DISPATCHER PRESCALER\n");
95 }
96 #else

97 /* alternatively just use the 6th LED for output (in order to
98 * save some cpu time) */
99 IO PDR14.byte &= ∼(1<<5);

100 } else {
101 IO PDR14.byte |= (1<<5);
102 }
103 #endif

104 flag = 1;

105 #ifdef FORCE NEW CYCLE

106 counter = 0;

60

B. Source Files

107 #endif

108 prescale -= DISPATCHER PRESCALER;

109 } else if(prescale < DISPATCHER PRESCALER) {
110 /* why? to ensure all nodes start (nearly) at the same time */
111 if(firstexec) {
112 if(old cycle < 60 && 60 <= new cycle) {
113 firstexec = 0;

114 }
115 }
116 }
117

118 old cycle = new cycle;

119 }
120

121 void dispatcher loop()

122 {
123 if(flag == 1) {
124 if(counter < DISPATCHER MAX TASKS) {
125 if(tasks[counter] != NULL PTR) {
126 if(freq counter[counter] >= freq limit[counter]) {
127 tasks[counter]();

128 freq counter[counter] = 0;

129 } else if(freq counter[counter] < freq limit[counter]){
130 freq counter[counter]++;

131 }
132 }
133

134 counter++;

135 } else if(counter == DISPATCHER MAX TASKS) {
136 flag = 0;

137 #ifdef HANDLE ALL TASKS

138 counter = 0;

139 #endif

140 }
141 }
142 }

B.5. perf.c

1 /*
2 Copyright (C) 2010 Bernhard Urban <lewurm@gmail.com>
3 Copyright (C) 2010 Sebastian Falbesoner <sebastian.falbesoner@gmail.com>
4 All rights reserved.

61

B. Source Files

5 */
6

7 #include "include\perf.h"
8

9 /* functions from our sbrk-implementation */
10 unsigned short getMemUsage(void);

11 unsigned short getMemUsageMax(void);

12 long getBrksize(void);

13 long getBrkMax(void);

14

15 void perf showMem(void)

16 {
17 dprintf("[mem%, mem%max; brk siz, brk max]: %3d%%o, %3d%%o; %4d,"

18 "%4d\n", getMemUsage(), getMemUsageMax(), getBrksize(),

19 getBrkMax());

20 }
21

22

23 static unsigned long long cputicks, cputicks max;

24

25 void perf init(void)

26 {
27 cputicks = 0;

28 cputicks max = ULONG LONG MAX;

29

30 /* reloadtimer4 is set to 100Hz */
31 init rt4(perf cpucb);

32 }
33

34 void inline perf countup(void)

35 {
36 cputicks++;

37 }
38

39 void perf cpucb(void)

40 {
41 static uint16 round = 0;

42 if(round == PERF ROUNDS) {
43 /* lesser ticks ∼ more load */
44 if(cputicks < cputicks max) {
45 cputicks max = cputicks;

46 }
47 /* display cpu- and memstats */
48 perf showCpu();

62

B. Source Files

49 perf showMem();

50

51 /* reset values */
52 cputicks = 0;

53 round = 0;

54 } else if (round < PERF ROUNDS) {
55 round++;

56 }
57 }
58

59 void perf showCpu(void)

60 {
61 uint16 now = 1000 - ((uint16)((cputicks*1000ULL)/

62 (TICKS PER ROUND CLEAN * PERF ROUNDS)));

63 uint16 max = 1000 - ((uint16)((cputicks max*1000ULL)/

64 (TICKS PER ROUND CLEAN * PERF ROUNDS)));

65 dprintf("[load%, loadmax%; ticks, ticks max]: %3d%%o, %3d%%o; %10llu,"

66 "%10llu\n", now, max, cputicks, cputicks max);

67 }

63

	Introduction
	Real-Time Systems
	The Time-Triggered Architecture
	Why is Clock Synchronization important?
	Why do Clocks deviate?
	Clock Correction
	Clock Synchronization

	Security can become Safety relevant
	Global Time has to be secured

	The FlexRay Protocol
	History
	Goals and technical Details
	Clock Synchronization in FlexRay

	A Secure Clock Synchronization Algorithm
	Attacker Model
	A Secure Membership Service
	AES
	RSA

	Implementation
	Hardware Setup
	Toolchain
	Softune™ Tools and the Port to Linux
	Makefile
	The flashing Tool pyfrprog

	Used Libraries
	MatrixSSL
	FlexRay Stack for the E-Ray IP-Module

	Implementation Details
	Secure Membership Service
	Demo Application
	Simple Task Dispatcher
	Evaluating Performance

	Analysis
	AES
	AES-RSA

	Conclusion
	What Configuration should be used for my real World Application?
	Future Work

	References
	List of Figures
	List of Tables
	Header Files
	membership.h
	dispatcher.h
	perf.h

	Source Files
	membership_master.c
	membership_slave.c
	membership_common.c
	dispatcher.c
	perf.c

