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Abstract
We present a JVM prototype implemented in the purely-functional
language Haskell. It exploits several features of the language, such
as strong static typing to implement an intermediate representation,
and abstraction mechanism to express machine code generation in
the manner of a domain specific language.

The compiler consists of (i) a pass to transform Java bytecode to
a register-based intermediate representation, (ii) application of an
existing data-flow analysis framework to our intermediate represen-
tation and (iii) machine code generation that targets the x86 archi-
tecture. The implementation follows a compile-only approach. To
implement certain Java features efficiently, code patching is used.

Various code samples demonstrate the elegance of our pro-
totype. Results prove reasonable performance compared to real-
world implementations.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers

General Terms Algorithms, Languages, Performance

Keywords Java, Haskell, virtual machine, intermediate represen-
tation, data-flow analysis, code generation

1. Introduction
The inherent complexity of compilers is increased in the context of
dynamic compilation. The latter is of increasing relevance due to
the rise of dynamic languages. For a high performance implementa-
tion of a language, compiler writers traditionally use low-level lan-
guages such as C and C++ which have mature and highly tuned tool
chains and allow low level features such as raw memory access.
More recent research work shows a trend towards adopting higher
level implementation languages. For example, MaxineVM [8] is
implemented in Java.

Functional languages provide other higher level design patterns.
For example monads can be employed to model problems such as
monadic parsing [3] more elegantly than imperative implementa-
tions. In our case study we use monads in different parts of the
compiler, e.g. to express imperative algorithms in a functional set-
ting or as abstraction mechanism for code generation.

Of course the high level of abstraction found in languages such
as Haskell comes with a price, namely performance. Although
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Figure 1. Execution flow in MateVM

Haskell has been shown to be faster than C in some areas [5], this is
usually not the case, and it is usually considered to be some factors
slower.

In this paper we present present an overview of our prototype,
which consists of a Java bytecode compiler (main focus of this
paper) and a run-time system, mostly implemented in Haskell with
a small amount (about 100 lines) in C for signal handling.

2. Overview of MateVM
Our prototype is called MateVM and is available on GitHub1 li-
censed under the GPL3.

A concise overview is depicted in Figure 1. The VM follows
the compile-only approach. At startup, the VM finds the main-
method and compiles it to machine code. The generated code is
then registered and executed by the run-time system. Assume that
the main-method calls another method foo. Instead of compiling
foo at VM startup, the call to foo is compiled as a trap in main.

When this call is executed, the trap is triggered and handled by
the run-time system. The run-time-system retrieves code for foo,
compiling it first if necessary, and patches the trap with a call to the
code. Execution is resumed at the patched call instruction.

The compiler is partitioned into a front end (Section 3), a reg-
ister allocator (linear scan [6]) which constitutes a transition to
the machine dependent part and a back end, for generating ma-
chine code (Section 4). The trap mechanism is presented in Sec-
tion 4.1.

3. Front End
The hs-java2 library is used to parse Java class files into a Haskell
idiomatic data representation. It supports class path handling and is
able to read class files from JAR files. The compiler is supplied
with the instruction stream and a reference to the constant pool.

1 https://github.com/MateVM/MateVM
2 http://hackage.haskell.org/package/hs-java
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1 data MateIR t e x where
2 IRLabel :: Label -> HandlerMap -> MaybeHandler -> MateIR t C O
3

4 -- dst <- src1 ‘op‘ src2
5 IROp :: OpType -> t -> t -> t -> MateIR t O O
6 IRStore :: RTPool t -> t -> t -> MateIR t O O
7 IRLoad :: RTPool t -> t -> t -> MateIR t O O
8 IRMisc1 :: Instruction -> t -> MateIR t O O
9 IRMisc2 :: Instruction -> t -> t -> MateIR t O O

10 IRPrep :: CallingConv -> [(t, VarType)] -> MateIR t O O
11 IRInvoke :: RTPool t -> Maybe t -> CallType -> MateIR t O O
12 IRPush :: Word8 -> t -> MateIR t O O
13

14 IRJump :: Label -> MateIR t O C
15 IRIfElse :: CMP -> t -> t -> Label -> Label -> MateIR t O C
16 IRExHandler :: [Label] -> MateIR t O C
17 IRSwitch :: t -> [(Maybe Int32, Label)] -> MateIR t O C
18 IRReturn :: Maybe t -> MateIR t O C

Figure 2. MateIR, intermediate representation of the compiler

The first step transforms Java bytecode into the internal interme-
diate representation of the compiler, named MateIR and depicted
in Figure 2.

For the definition of MateIR, the Haskell type extension Gen-
eralized Algebraic Data Types (GADTs) [4] is used. This kind of
definition enables us to use Hoopl [7] for the intermediate represen-
tation, which is a library for data-flow analysis. It provides func-
tions to build and process graphs, and expresses passes as either
forward or backward by providing (i) a lattice, (ii) a transfer func-
tion and (iii) a rewrite function. Graphs built with Hoopl are typical
control-flow graphs composed of basic blocks. A basic block is a
sequence of nodes, that are represented by MateIR in our compiler.
An example of Hoopl is presented in Section 3.2.

Consider the first line of the definition in Figure 2 which con-
tains three type variables: t, e and x. The first type variable t is a
normal type variable and represents a register type. That is, MateIR
is polymorphic with respect to t. However e and x are interpreted
differently. They are not mentioned anywhere in the constructor
definitions. Instead, O’s and C’s are used and they are defined as
follows:

data O = O -- open
data C = C -- closed

Each data type above has exactly one constructor and therefore
one value. These so-called phantom types are used to express in-
variants using ordinary types. Those invariants are checked by the
type checker at compile-time.

The names e and x are abbreviations for entry and exit. There-
fore, e and x denote if a single instruction is open or closed on entry
and exit—this is the shape of an instruction3.

Building on this, we derive the notion of basic blocks: An
IRLabel is the entry instruction of a basic block. We say, IRLabel
is closed on entry and open on exit. That is, the instruction can
have several predecessors but has exactly one successor. Simi-
lar, IROp has exactly one predecessor and exactly one successor.
IRSwitch in contrast, has exactly one predecessor and can have
several successors—it denotes the end of a basic block.

Having such invariants modeled by the type system, allows us
to write functions which expect arguments to be in a specific shape,
where the compiler proves correct usage at compile-time. Consider
the following signature of a function from the Hoopl-library:

(<*>) :: (GraphRep g, NonLocal n) => g n e O -> g n O x -> g n e x

where g is a type variable, restricted to be an instance of GraphRep
(think of an interface for a graph data structure). In our example,

3 the notion of shapes also applies to blocks and graphs.

1 class NonLocal ins where -- defined by Hoopl
2 entryLabel :: ins C x -> Label
3 successors :: ins e C -> [Label]
4

5 instance NonLocal (MateIR Var) where
6 entryLabel (IRLabel l _ _) = l
7 successors (IRJump l) = [l]
8 successors (IRIfElse _ _ _ l1 l2) = [l1, l2]
9 successors (IRExHandler t) = t

10 successors (IRSwitch _ t) = map snd t
11 successors (IRReturn _) = []

Figure 3. Definition of NonLocal for MateIR

n would be MateIR. See Figure 3 for an instance definition of
NonLocal.

The function (<*>) is used to connect two graphs, with the
following restriction: the first graph must be open on the exit and
the second graph must be open on the entry. This allows a new
graph to be safely constructed while preserving the shape of the
original entry e of the first graph, and exit x of the second graph.

In order to make the graph iterable for Hoopl, it has to determine
what the predecessor and successor of a MateIR-instruction are.
This is solved by a type class called NonLocal (see Figure 3) which
has to be implemented for MateIR. Note the elegance of GADTs
here: The type system already knows that IRLabel is the only
instruction which requires an implementation for entryLabel, as
it is the only constructor which is closed on the entry.

Consider the first type variable t again: This is the place holder
for a type describing an actual variable or register. First, MateIR is
equipped with virtual registers. A virtual register is an integer anno-
tated with its computational type or a constant of the corresponding
type.

As a result of register allocation, virtual registers are replaced
by hardware registers of the target CPU architecture. The graph
representation is preserved by this transformation. That is, we want
a function that has the type signature:

registerAllocation :: Graph (MateIR VReg) e x
-> Graph (MateIR HardwareReg) e x

However, it is not straight forward to apply a linear scan register
allocation algorithm to a graph. As such, the graph is flattened to a
linear representation prior to register allocation.

3.1 Java bytecode to MateIR

In order to build a list of MateIR-instructions for a Java method,
the bytecode for the method is read from a class file. To identify
basic blocks, two passes are needed over the Java bytecode stream:

1. find all jump targets in the code. This “preparation” pass is nec-
essary to resolve backward references, e.g. loops. Also, excep-
tion handlers and try blocks are marked as block boundaries in
this pass.

2. building basic blocks by translating Java bytecode instructions
to MateIR instructions. Since block boundaries are produced
by the first pass, basic blocks can be easily determined.

MateIR is a register based representation, therefore stack tempo-
raries have to be mapped to virtual registers. Furthermore, some
Java bytecode instructions are not typed. Both problems are tackled
in the second pass: Types are determined by abstract interpretation
of the Java stack and new virtual registers are created during this
process.

3.2 Implementing Liveness Analysis with Hoopl
After generating a graph from Java bytecode, we apply data-flow
passes with the help of Hoopl. The example given in Figure 4 im-
plements a transfer function for a backward pass that computes
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1 type LiveSet = Set VirtualReg
2

3 factLabel :: FactBase LiveSet -> Label -> LiveSet
4 factLabel f l = fromMaybe Set.empty (lookupFact l f)
5

6 varsIR’ :: forall e x. MateIR Var e x -> ([Var], [Var])
7 varsIR’ ins = (defIR ins, useIR ins)
8

9 livenessTransfer :: BwdTransfer (MateIR Var) LiveSet
10 livenessTransfer = mkBTransfer3 liveCO liveOO liveOC
11 where
12 liveCO ins f = factMerge f (varsIR’ ins)
13 liveOO ins f = factMerge f (varsIR’ ins)
14 liveOC ins f = factMerge facts (varsIR’ ins)
15 where
16 facts = foldl Set.union Set.empty
17 (map (factLabel f) (successors ins))
18

19 addVar :: Var -> LiveSet -> LiveSet
20 addVar (VReg v) f = Set.insert v f
21 addVar _ f = f
22

23 removeVar :: Var -> LiveSet -> LiveSet
24 removeVar (VReg v) f = Set.delete v f
25 removeVar _ f = f
26

27 factMerge :: LiveSet -> ([Var], [Var]) -> LiveSet
28 factMerge f (defs, uses) =
29 foldr removeVar (foldr addVar f uses) defs

Figure 4. Transfer function for the liveness pass

1 emitOO :: MateIR HVarX86 O O -> CodeGen e CompileState ()
2 emitOO (IRLoad (RTPool cpidx) src dst) = do
3 cls <- classfile <$> getState
4 case constPool cls M.! cpidx of
5 (CField desc) -> do -- GETFIELD
6 offset <- liftIO (getFieldOffset cls desc)
7 mov dst (Disp32 offset, src)
8 -- handle other cases
9

10 getFieldOffset :: Class Direct -> FieldDescription -> IO Word32

Figure 5. Example of the DSL provided by Harpy

liveness information of variables. This liveness information is used
as a basis for (i) computing live ranges during register allocation,
(ii) dead-code elimination and (iii) safepoints for garbage collec-
tion.

4. Back End
For code generation, the Haskell library Harpy is used [2]. Harpy
exposes the so-called CodeGen-monad, which enables us to ex-
press x86 instructions in a style of a domain specific language
similar to the Intel syntax. The example in Figure 5 generates ma-
chine code for the instruction IRLoad, originally created from a
GETFIELD bytecode instruction, that has the object reference in the
register src and stores the value of the read in dst.

Consider the type signature in the first line: The function re-
quires a MateIR instruction instrumented with a hardware register.
The return type of the function is the result of a sequence of actions,
encapsulated in a monad. Harpy provides a specialized monad for
code generation, CodeGen. In this example it is parameterized with
an environment (here the type variable e), a state (CompileState)
and a return value (), which has a similar meaning as void in Java.

In the second line, pattern-matching is used to make a case
distinction and to unpack the class index for the corresponding
field.

In the third line the local state is consulted, which contains a
reference to the class file. With that, the entry of the constant pool
can be accessed. The CField value contains a description of the
field. getFieldOffset asks the run-time system for the field’s

1 girStatic :: Word16 -> Maybe HVarX86
2 -> CallType -> PreGCPoint HVarX86
3 -> CodeGen e CompileState ()
4 girStatic cpidx haveReturn ct mapping = do
5 cls <- classf <$> getState
6 let l = buildMethodID cls cpidx
7 newNamedLabel (show l) >>= defineLabel
8 -- emits the sequence 0xff 0xff 0x90 0x90 0x90
9 calladdr <- emitSigIllTrap 5

10 let patcher :: WriteBackRegs
11 -> CodeGen () () WriteBackRegs
12 patcher wbr = do
13 entryAddr <- liftIO $ lookupMethodEntry l
14 let relative = entryAddr - ((wbr M.! eip) + 5)
15 call $ fromIntegral relative
16 return wbr
17 setGCPoint mapping
18 let mname = methodNameTypeByIdx cls cpidx
19 let argcnt = methodGetArgsCount mname * ptrSize
20 when (argcnt > 0) (add esp argcnt)
21

22 case haveReturn of
23 Just (HIReg dst) -> mov dst eax
24 Nothing -> return ()
25 let patchEntry = StaticMethod patcher
26 modifyState (\s -> s
27 {traps = M.insert calladdr patchEntry (traps s)})

Figure 6. Code patching via CodeGen-monad

offset—liftIO encapsulates an expression with side-effects (e.g.
class loading). Expressions with side-effects have to be explicitly
annotated, otherwise the Haskell compiler will not accept it as valid
program since the types do not match.

Finally, the actual operation can be emitted: Storing the result of
a memory access into a register. Note, that the mov-instruction will
be written into memory as-is. For example, assuming src = eax,
dst = ebx and offset = 0x20, this would be:

mov eax, [ebx+0x20]

The resulting representation after register allocation is a lin-
earized graph of MateIR instructions, already in terms of hardware
registers. At that point, native code is generated for each MateIR
instruction in a manner similar to the above example. We use other
type system extensions, such as RankNTypes in order to group in-
structions for the x86 architecture with certain properties together
to avoid code duplication.

4.1 Trapping Code and Code Patching
The code generator emits traps at points where run-time system
assistance is required. Traps are registered with the back end in
terms of the program counters where they can occur. The two kinds
of traps are (i) one-time traps such as for unresolved calls and
(ii) persistent traps such as ATHROW which always traps into the
run-time system to allocate the exception object and execute the
exception handling logic.

During patching we do not want to deal with architecture spe-
cific details. Instead, the back end should provide details about how
to patch code.

In the current implementation, the CodeGen-monad is used a
second time, namely at patch-time. Consider the example in Fig-
ure 6: girStatic emits code for a static call. In order to get the
entry address of the callee, the run-time system must be queried.
However, a query could have side-effects such as compilation of
the callee. Therefore, in line 9 a sequence is generated that even-
tually triggers SIGILL. In line 10 a closure4 named patcher is
defined, that is also a CodeGen-monad.

patcher describes the logic needed to resolve the call-site,
which is to (i) request the entry point of the callee (annotated

4 i.e. a function that can access variables of its lexically enclosing scope.
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with liftIO to explicitly express that the operation can have side-
effects) and (ii) replace the trap with the actual call instruction.
patcher uses local information such as cls, the class reference,
for the latter.

The unevaluated closure is stored in the trap map (line 27).
When a trap occurs at execution time, the trap handler uses the cur-
rent instruction pointer to get the responsible closure for handling
the trap. It calls the closure with relevant context information, such
as the current values in the hardware registers (WriteBackRegs).

Catching of traps is implemented with a small amount of
C code, as the GHC runtime system is able to catch signals but
does not provide context information such as the register state of
the machine.

4.2 Bridging the gap to bare-metal hardware
Except for signal handling, the presented system is implemented
in pure Haskell. The Glasgow Haskell Compiler (GHC) compiles
a Haskell application to a standard binary. Furthermore, GHC has
a well-defined foreign function interface (FFI), enabling interoper-
ability with non-Haskell code e.g. C.

Usually, FFI is used to link functions at compile-time. However,
this obviously is not possible for a JIT compiler. Thus, we use the
dynamic import statement provided by the GHC FFI API [1]. This
mechanism is similar to function pointers in C and can be used to
call to arbitrary memory blobs containing machine code.

We use cdecl as our calling convention, which obviates the
need for stubs to marshal arguments and return values across native
calls. An additional advantage is that the stack of the Haskell run-
time can be used without any modification.

5. Results
Due to the lack of feature-completeness (e.g. floating point or
multi threading) we cannot run sophisticated benchmarks such as
SpecJVM or DaCapo. Instead, we created some (micro)benchmarks,
which stress implemented features of MateVM. The source code
for these benchmarks is included in our repository.

The wall time is shown in Table 1, where HelloWorld is used
as a baseline; the time needed for HelloWorld is subtracted from
each result in order to have better comparison of the actual time
spent, ignoring startup-time needed for the base library.

Unsurprisingly, MateVM does not (yet!) outperform other just-
in-time compilers. The Virtual and Interface benchmarks
suffer from a suboptimal layout for tables used for dispatch-
ing virtual and interface calls. The simple layout currently
used requires more dereferencing during virtual dispatch. The
InstanceOf benchmark shows the penalty we pay for making
a run-time call via the trapping mechanism for every type check
and the slow implementation of the type check itself.

The Compiletime benchmark feeds the compiler with a method
that contains about 23000 Java bytecode instructions. MateVM
spends about 80% of the time in the compiler. For comparison,
CACAO spends about 50ms for compilation.

Considering the effort expended in implementing our sys-
tem (about six man-months), we are encouraged to see that the
generated code is only 2x–3x slower than that of CACAO.

6. Future Work
The compile-only approach with a single compiler makes aggres-
sive optimizations challenging. Modern compilers use an inter-
preter or a baseline compiler as fallback if an optimistic assump-
tion is invalidated. Given the relative simplicity of an interpreter,
we consider two options for a mixed mode configuration: (i) inter-
pret the graph-based MateIR or, (ii) use an existing interpreter such

benchmark server client cacao mate jamvm
HelloWorld 0.06 0.03 0.12 0.00 0.03
Fib 0.15 0.16 0.38 0.46 3.35
Objectfield 0.02 0.39 0.52 0.88 4.52
Staticfield 0.02 0.39 0.40 0.83 5.68
Virtual 0.55 0.65 2.02 4.97 25.33
Interface 0.02 0.12 0.24 0.65 3.37
InstanceOf 0.00 0.00 0.01 1.72 0.01
Array 0.85 0.83 0.89 1.59 5.70
Exception 0.24 0.10 0.19 0.43 0.45
Compiletime 0.14 0.14 0.20 0.94 0.04

Table 1. Measurements of execution time in seconds

as JamVM5. The latter solution would require creating an interface
between the interpreter (written in C) and our compiler. It would
allow us to collect profile information during interpretation for use
in the compilation process.

7. Conclusion
We presented aspects of a JVM prototype implemented in Haskell.
The compiler uses an intermediate representation that leverages
features provided by the language (e.g. GADTs) in order to define
the notion of basic blocks on a type-level. Hoopl enables adding
passes to the compiler in the traditional form of a data-flow problem
as shown by an implementation of liveness analysis.

The monad-type class proved to be useful for several tasks,
e.g. to express an assembly-like domain specific language. The
latter feels like writing assembler code with regular Haskell code
in between.
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