// Main code for handling USB controllers and devices. // // Copyright (C) 2009 Kevin O'Connor // // This file may be distributed under the terms of the GNU LGPLv3 license. #include "util.h" // dprintf #include "pci.h" // foreachpci #include "config.h" // CONFIG_* #include "pci_regs.h" // PCI_CLASS_REVISION #include "pci_ids.h" // PCI_CLASS_SERIAL_USB_UHCI #include "usb-uhci.h" // uhci_init #include "usb-ohci.h" // ohci_init #include "usb-ehci.h" // ehci_init #include "usb-hid.h" // usb_keyboard_setup #include "usb-hub.h" // usb_hub_init #include "usb-msc.h" // usb_msc_init #include "usb.h" // struct usb_s #include "biosvar.h" // GET_GLOBAL /**************************************************************** * Controller function wrappers ****************************************************************/ // Free an allocated control or bulk pipe. void free_pipe(struct usb_pipe *pipe) { ASSERT32FLAT(); if (!pipe) return; switch (pipe->type) { default: case USB_TYPE_UHCI: return uhci_free_pipe(pipe); case USB_TYPE_OHCI: return ohci_free_pipe(pipe); case USB_TYPE_EHCI: return ehci_free_pipe(pipe); } } // Allocate a control pipe to a default endpoint (which can only be // used by 32bit code) static struct usb_pipe * alloc_default_control_pipe(struct usb_pipe *dummy) { switch (dummy->type) { default: case USB_TYPE_UHCI: return uhci_alloc_control_pipe(dummy); case USB_TYPE_OHCI: return ohci_alloc_control_pipe(dummy); case USB_TYPE_EHCI: return ehci_alloc_control_pipe(dummy); } } // Send a message on a control pipe using the default control descriptor. static int send_control(struct usb_pipe *pipe, int dir, const void *cmd, int cmdsize , void *data, int datasize) { ASSERT32FLAT(); switch (pipe->type) { default: case USB_TYPE_UHCI: return uhci_control(pipe, dir, cmd, cmdsize, data, datasize); case USB_TYPE_OHCI: return ohci_control(pipe, dir, cmd, cmdsize, data, datasize); case USB_TYPE_EHCI: return ehci_control(pipe, dir, cmd, cmdsize, data, datasize); } } // Fill "pipe" endpoint info from an endpoint descriptor. static void desc2pipe(struct usb_pipe *newpipe, struct usb_pipe *origpipe , struct usb_endpoint_descriptor *epdesc) { memcpy(newpipe, origpipe, sizeof(*newpipe)); newpipe->ep = epdesc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; newpipe->maxpacket = epdesc->wMaxPacketSize; } struct usb_pipe * alloc_bulk_pipe(struct usb_pipe *pipe, struct usb_endpoint_descriptor *epdesc) { struct usb_pipe dummy; desc2pipe(&dummy, pipe, epdesc); switch (pipe->type) { default: case USB_TYPE_UHCI: return uhci_alloc_bulk_pipe(&dummy); case USB_TYPE_OHCI: return ohci_alloc_bulk_pipe(&dummy); case USB_TYPE_EHCI: return ehci_alloc_bulk_pipe(&dummy); } } int usb_send_bulk(struct usb_pipe *pipe_fl, int dir, void *data, int datasize) { switch (GET_FLATPTR(pipe_fl->type)) { default: case USB_TYPE_UHCI: return uhci_send_bulk(pipe_fl, dir, data, datasize); case USB_TYPE_OHCI: return ohci_send_bulk(pipe_fl, dir, data, datasize); case USB_TYPE_EHCI: return ehci_send_bulk(pipe_fl, dir, data, datasize); } } struct usb_pipe * alloc_intr_pipe(struct usb_pipe *pipe, struct usb_endpoint_descriptor *epdesc) { struct usb_pipe dummy; desc2pipe(&dummy, pipe, epdesc); // Find the exponential period of the requested time. int period = epdesc->bInterval; int frameexp; if (pipe->speed != USB_HIGHSPEED) frameexp = (period <= 0) ? 0 : __fls(period); else frameexp = (period <= 4) ? 0 : period - 4; switch (pipe->type) { default: case USB_TYPE_UHCI: return uhci_alloc_intr_pipe(&dummy, frameexp); case USB_TYPE_OHCI: return ohci_alloc_intr_pipe(&dummy, frameexp); case USB_TYPE_EHCI: return ehci_alloc_intr_pipe(&dummy, frameexp); } } int noinline usb_poll_intr(struct usb_pipe *pipe_fl, void *data) { switch (GET_FLATPTR(pipe_fl->type)) { default: case USB_TYPE_UHCI: return uhci_poll_intr(pipe_fl, data); case USB_TYPE_OHCI: return ohci_poll_intr(pipe_fl, data); case USB_TYPE_EHCI: return ehci_poll_intr(pipe_fl, data); } } /**************************************************************** * Helper functions ****************************************************************/ // Find the first endpoing of a given type in an interface description. struct usb_endpoint_descriptor * findEndPointDesc(struct usb_interface_descriptor *iface, int imax , int type, int dir) { struct usb_endpoint_descriptor *epdesc = (void*)&iface[1]; for (;;) { if ((void*)epdesc >= (void*)iface + imax || epdesc->bDescriptorType == USB_DT_INTERFACE) { return NULL; } if (epdesc->bDescriptorType == USB_DT_ENDPOINT && (epdesc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == dir && (epdesc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == type) return epdesc; epdesc = (void*)epdesc + epdesc->bLength; } } // Send a message to the default control pipe of a device. int send_default_control(struct usb_pipe *pipe, const struct usb_ctrlrequest *req , void *data) { return send_control(pipe, req->bRequestType & USB_DIR_IN , req, sizeof(*req), data, req->wLength); } // Get the first 8 bytes of the device descriptor. static int get_device_info8(struct usb_pipe *pipe, struct usb_device_descriptor *dinfo) { struct usb_ctrlrequest req; req.bRequestType = USB_DIR_IN | USB_TYPE_STANDARD | USB_RECIP_DEVICE; req.bRequest = USB_REQ_GET_DESCRIPTOR; req.wValue = USB_DT_DEVICE<<8; req.wIndex = 0; req.wLength = 8; return send_default_control(pipe, &req, dinfo); } static struct usb_config_descriptor * get_device_config(struct usb_pipe *pipe) { struct usb_config_descriptor cfg; struct usb_ctrlrequest req; req.bRequestType = USB_DIR_IN | USB_TYPE_STANDARD | USB_RECIP_DEVICE; req.bRequest = USB_REQ_GET_DESCRIPTOR; req.wValue = USB_DT_CONFIG<<8; req.wIndex = 0; req.wLength = sizeof(cfg); int ret = send_default_control(pipe, &req, &cfg); if (ret) return NULL; void *config = malloc_tmphigh(cfg.wTotalLength); if (!config) return NULL; req.wLength = cfg.wTotalLength; ret = send_default_control(pipe, &req, config); if (ret) return NULL; //hexdump(config, cfg.wTotalLength); return config; } static int set_configuration(struct usb_pipe *pipe, u16 val) { struct usb_ctrlrequest req; req.bRequestType = USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE; req.bRequest = USB_REQ_SET_CONFIGURATION; req.wValue = val; req.wIndex = 0; req.wLength = 0; return send_default_control(pipe, &req, NULL); } /**************************************************************** * Initialization and enumeration ****************************************************************/ // Assign an address to a device in the default state on the given // controller. static struct usb_pipe * usb_set_address(struct usbhub_s *hub, int port, int speed) { ASSERT32FLAT(); struct usb_s *cntl = hub->cntl; dprintf(3, "set_address %p\n", cntl); if (cntl->maxaddr >= USB_MAXADDR) return NULL; struct usb_pipe *defpipe = cntl->defaultpipe; if (!defpipe) { // Create a pipe for the default address. struct usb_pipe dummy; memset(&dummy, 0, sizeof(dummy)); dummy.cntl = cntl; dummy.type = cntl->type; dummy.maxpacket = 8; dummy.path = (u64)-1; cntl->defaultpipe = defpipe = alloc_default_control_pipe(&dummy); if (!defpipe) return NULL; } defpipe->speed = speed; if (hub->pipe) { if (hub->pipe->speed == USB_HIGHSPEED) { defpipe->tt_devaddr = hub->pipe->devaddr; defpipe->tt_port = port; } else { defpipe->tt_devaddr = hub->pipe->tt_devaddr; defpipe->tt_port = hub->pipe->tt_port; } } else { defpipe->tt_devaddr = defpipe->tt_port = 0; } msleep(USB_TIME_RSTRCY); struct usb_ctrlrequest req; req.bRequestType = USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE; req.bRequest = USB_REQ_SET_ADDRESS; req.wValue = cntl->maxaddr + 1; req.wIndex = 0; req.wLength = 0; int ret = send_default_control(defpipe, &req, NULL); if (ret) return NULL; msleep(USB_TIME_SETADDR_RECOVERY); cntl->maxaddr++; defpipe->devaddr = cntl->maxaddr; struct usb_pipe *pipe = alloc_default_control_pipe(defpipe); defpipe->devaddr = 0; if (hub->pipe) pipe->path = hub->pipe->path; pipe->path = (pipe->path << 8) | port; return pipe; } // Called for every found device - see if a driver is available for // this device and do setup if so. static int configure_usb_device(struct usb_pipe *pipe) { ASSERT32FLAT(); dprintf(3, "config_usb: %p\n", pipe); // Set the max packet size for endpoint 0 of this device. struct usb_device_descriptor dinfo; int ret = get_device_info8(pipe, &dinfo); if (ret) return 0; dprintf(3, "device rev=%04x cls=%02x sub=%02x proto=%02x size=%02x\n" , dinfo.bcdUSB, dinfo.bDeviceClass, dinfo.bDeviceSubClass , dinfo.bDeviceProtocol, dinfo.bMaxPacketSize0); if (dinfo.bMaxPacketSize0 < 8 || dinfo.bMaxPacketSize0 > 64) return 0; pipe->maxpacket = dinfo.bMaxPacketSize0; // Get configuration struct usb_config_descriptor *config = get_device_config(pipe); if (!config) return 0; // Determine if a driver exists for this device - only look at the // first interface of the first configuration. struct usb_interface_descriptor *iface = (void*)(&config[1]); if (iface->bInterfaceClass != USB_CLASS_HID && iface->bInterfaceClass != USB_CLASS_MASS_STORAGE && iface->bInterfaceClass != USB_CLASS_HUB) // Not a supported device. goto fail; // Set the configuration. ret = set_configuration(pipe, config->bConfigurationValue); if (ret) goto fail; // Configure driver. int imax = (void*)config + config->wTotalLength - (void*)iface; if (iface->bInterfaceClass == USB_CLASS_HUB) ret = usb_hub_init(pipe); else if (iface->bInterfaceClass == USB_CLASS_MASS_STORAGE) ret = usb_msc_init(pipe, iface, imax); else ret = usb_hid_init(pipe, iface, imax); if (ret) goto fail; free(config); return 1; fail: free(config); return 0; } static void usb_init_hub_port(void *data) { struct usbhub_s *hub = data; u32 port = hub->port; // XXX - find better way to pass port // Detect if device present (and possibly start reset) int ret = hub->op->detect(hub, port); if (ret) // No device present goto done; // Reset port and determine device speed mutex_lock(&hub->cntl->resetlock); ret = hub->op->reset(hub, port); if (ret < 0) // Reset failed goto resetfail; // Set address of port struct usb_pipe *pipe = usb_set_address(hub, port, ret); if (!pipe) { hub->op->disconnect(hub, port); goto resetfail; } mutex_unlock(&hub->cntl->resetlock); // Configure the device int count = configure_usb_device(pipe); free_pipe(pipe); if (!count) hub->op->disconnect(hub, port); hub->devcount += count; done: hub->threads--; return; resetfail: mutex_unlock(&hub->cntl->resetlock); goto done; } void usb_enumerate(struct usbhub_s *hub) { u32 portcount = hub->portcount; hub->threads = portcount; // Launch a thread for every port. int i; for (i=0; iport = i; run_thread(usb_init_hub_port, hub); } // Wait for threads to complete. while (hub->threads) yield(); } void usb_setup(void) { ASSERT32FLAT(); if (! CONFIG_USB) return; dprintf(3, "init usb\n"); // Look for USB controllers int count = 0; struct pci_device *ehcipci = PCIDevices; struct pci_device *pci; foreachpci(pci) { if (pci->class != PCI_CLASS_SERIAL_USB) continue; if (pci->bdf >= ehcipci->bdf) { // Check to see if this device has an ehci controller int found = 0; ehcipci = pci; for (;;) { if (pci_classprog(ehcipci) == PCI_CLASS_SERIAL_USB_EHCI) { // Found an ehci controller. int ret = ehci_init(ehcipci, count++, pci); if (ret) // Error break; count += found; pci = ehcipci; break; } if (ehcipci->class == PCI_CLASS_SERIAL_USB) found++; ehcipci = ehcipci->next; if (!ehcipci || (pci_bdf_to_busdev(ehcipci->bdf) != pci_bdf_to_busdev(pci->bdf))) // No ehci controller found. break; } } if (pci_classprog(pci) == PCI_CLASS_SERIAL_USB_UHCI) uhci_init(pci, count++); else if (pci_classprog(pci) == PCI_CLASS_SERIAL_USB_OHCI) ohci_init(pci, count++); } }