// Code for handling UHCI USB controllers. // // Copyright (C) 2009 Kevin O'Connor // // This file may be distributed under the terms of the GNU LGPLv3 license. #include "util.h" // dprintf #include "pci.h" // pci_bdf_to_bus #include "config.h" // CONFIG_* #include "ioport.h" // outw #include "usb-uhci.h" // USBLEGSUP #include "pci_regs.h" // PCI_BASE_ADDRESS_4 #include "usb.h" // struct usb_s #include "farptr.h" // GET_FLATPTR static void reset_uhci(struct usb_s *cntl) { // XXX - don't reset if not needed. // Reset PIRQ and SMI pci_config_writew(cntl->bdf, USBLEGSUP, USBLEGSUP_RWC); // Reset the HC outw(USBCMD_HCRESET, cntl->uhci.iobase + USBCMD); udelay(5); // Disable interrupts and commands (just to be safe). outw(0, cntl->uhci.iobase + USBINTR); outw(0, cntl->uhci.iobase + USBCMD); } static void configure_uhci(struct usb_s *cntl) { // Allocate ram for schedule storage struct uhci_td *term_td = malloc_high(sizeof(*term_td)); struct uhci_framelist *fl = memalign_high(sizeof(*fl), sizeof(*fl)); struct uhci_qh *data_qh = malloc_low(sizeof(*data_qh)); struct uhci_qh *term_qh = malloc_high(sizeof(*term_qh)); if (!term_td || !fl || !data_qh || !term_qh) { dprintf(1, "No ram for uhci init\n"); return; } // Work around for PIIX errata memset(term_td, 0, sizeof(*term_td)); term_td->link = UHCI_PTR_TERM; term_td->token = (uhci_explen(0) | (0x7f << TD_TOKEN_DEVADDR_SHIFT) | USB_PID_IN); memset(term_qh, 0, sizeof(*term_qh)); term_qh->element = (u32)term_td; term_qh->link = UHCI_PTR_TERM; // Setup primary queue head. memset(data_qh, 0, sizeof(*data_qh)); data_qh->element = UHCI_PTR_TERM; data_qh->link = (u32)term_qh | UHCI_PTR_QH; cntl->uhci.qh = data_qh; // Set schedule to point to primary queue head int i; for (i=0; ilinks); i++) { fl->links[i] = (u32)data_qh | UHCI_PTR_QH; } // Set the frame length to the default: 1 ms exactly outb(USBSOF_DEFAULT, cntl->uhci.iobase + USBSOF); // Store the frame list base address outl((u32)fl->links, cntl->uhci.iobase + USBFLBASEADD); // Set the current frame number outw(0, cntl->uhci.iobase + USBFRNUM); } static void start_uhci(struct usb_s *cntl) { // Mark as configured and running with a 64-byte max packet. outw(USBCMD_RS | USBCMD_CF | USBCMD_MAXP, cntl->uhci.iobase + USBCMD); } // Find any devices connected to the root hub. static int check_ports(struct usb_s *cntl) { u16 port1 = inw(cntl->uhci.iobase + USBPORTSC1); u16 port2 = inw(cntl->uhci.iobase + USBPORTSC2); if (!((port1 & USBPORTSC_CCS) || (port2 & USBPORTSC_CCS))) // No devices return 0; // reset ports if (port1 & USBPORTSC_CCS) outw(USBPORTSC_PR, cntl->uhci.iobase + USBPORTSC1); if (port2 & USBPORTSC_CCS) outw(USBPORTSC_PR, cntl->uhci.iobase + USBPORTSC2); msleep(50); outw(0, cntl->uhci.iobase + USBPORTSC1); outw(0, cntl->uhci.iobase + USBPORTSC2); msleep(10); // Configure ports int totalcount = 0; port1 = inw(cntl->uhci.iobase + USBPORTSC1); if (port1 & USBPORTSC_CCS) { outw(USBPORTSC_PE, cntl->uhci.iobase + USBPORTSC1); int count = configure_usb_device(cntl, !!(port1 & USBPORTSC_LSDA)); if (! count) outw(0, cntl->uhci.iobase + USBPORTSC1); totalcount += count; } port2 = inw(cntl->uhci.iobase + USBPORTSC2); if (port2 & USBPORTSC_CCS) { outw(USBPORTSC_PE, cntl->uhci.iobase + USBPORTSC2); int count = configure_usb_device(cntl, !!(port2 & USBPORTSC_LSDA)); if (! count) outw(0, cntl->uhci.iobase + USBPORTSC2); totalcount += count; } return totalcount; } int uhci_init(struct usb_s *cntl) { if (! CONFIG_USB_UHCI) return 0; cntl->type = USB_TYPE_UHCI; cntl->uhci.iobase = (pci_config_readl(cntl->bdf, PCI_BASE_ADDRESS_4) & PCI_BASE_ADDRESS_IO_MASK); dprintf(3, "UHCI init on dev %02x:%02x.%x (io=%x)\n" , pci_bdf_to_bus(cntl->bdf), pci_bdf_to_dev(cntl->bdf) , pci_bdf_to_fn(cntl->bdf), cntl->uhci.iobase); pci_config_maskw(cntl->bdf, PCI_COMMAND, 0, PCI_COMMAND_MASTER); reset_uhci(cntl); configure_uhci(cntl); start_uhci(cntl); int count = check_ports(cntl); if (! count) { // XXX - no devices; free data structures. return 0; } return count; } static int wait_qh(struct uhci_qh *qh) { // XXX - 500ms just a guess u64 end = calc_future_tsc(500); for (;;) { if (qh->element & UHCI_PTR_TERM) return 0; if (check_time(end)) { dprintf(1, "Timeout on wait_qh %p\n", qh); return -1; } cpu_relax(); } } int uhci_control(u32 endp, int dir, const void *cmd, int cmdsize , void *data, int datasize) { if (! CONFIG_USB_UHCI) return -1; dprintf(5, "uhci_control %x\n", endp); struct usb_s *cntl = endp2cntl(endp); int maxpacket = endp2maxsize(endp); int lowspeed = endp2speed(endp); int devaddr = endp2devaddr(endp) | (endp2ep(endp) << 7); // Setup transfer descriptors int count = 2 + DIV_ROUND_UP(datasize, maxpacket); struct uhci_td *tds = malloc_tmphigh(sizeof(*tds) * count); tds[0].link = (u32)&tds[1] | UHCI_PTR_DEPTH; tds[0].status = (uhci_maxerr(3) | (lowspeed ? TD_CTRL_LS : 0) | TD_CTRL_ACTIVE); tds[0].token = (uhci_explen(cmdsize) | (devaddr << TD_TOKEN_DEVADDR_SHIFT) | USB_PID_SETUP); tds[0].buffer = (void*)cmd; int toggle = TD_TOKEN_TOGGLE; int i; for (i=1; iuhci.qh; data_qh->element = (u32)&tds[0]; int ret = wait_qh(data_qh); if (ret) // XXX - leak tds return ret; // XXX - free(tds); return 0; } struct usb_pipe * uhci_alloc_intr_pipe(u32 endp, int period) { if (! CONFIG_USB_UHCI) return NULL; dprintf(7, "uhci_alloc_intr_pipe %x %d\n", endp, period); struct usb_s *cntl = endp2cntl(endp); int maxpacket = endp2maxsize(endp); int lowspeed = endp2speed(endp); int devaddr = endp2devaddr(endp) | (endp2ep(endp) << 7); // XXX - just grab 20 for now. int count = 20; struct uhci_qh *qh = malloc_low(sizeof(*qh)); struct uhci_td *tds = malloc_low(sizeof(*tds) * count); if (!qh || !tds) return NULL; if (maxpacket > sizeof(tds[0].data)) // XXX - free qh/tds return NULL; qh->element = (u32)tds; int toggle = 0; int i; for (i=0; inext_td = &tds[0]; qh->pipe.endp = endp; // XXX - need schedule - just add to primary list for now. struct uhci_qh *data_qh = cntl->uhci.qh; qh->link = data_qh->link; data_qh->link = (u32)qh | UHCI_PTR_QH; return &qh->pipe; } int uhci_poll_intr(struct usb_pipe *pipe, void *data) { ASSERT16(); if (! CONFIG_USB_UHCI) return -1; struct uhci_qh *qh = container_of(pipe, struct uhci_qh, pipe); struct uhci_td *td = GET_FLATPTR(qh->next_td); u32 status = GET_FLATPTR(td->status); u32 token = GET_FLATPTR(td->token); if (status & TD_CTRL_ACTIVE) // No intrs found. return -1; // XXX - check for errors. // Copy data. memcpy_far(GET_SEG(SS), data , FLATPTR_TO_SEG(td->data), (void*)FLATPTR_TO_OFFSET(td->data) , uhci_expected_length(token)); // Reenable this td. u32 next = GET_FLATPTR(td->link); SET_FLATPTR(td->status, (uhci_maxerr(0) | (status & TD_CTRL_LS) | TD_CTRL_ACTIVE)); SET_FLATPTR(qh->next_td, (void*)(next & ~UHCI_PTR_BITS)); return 0; }