// Code for handling OHCI USB controllers. // // Copyright (C) 2009 Kevin O'Connor // // This file may be distributed under the terms of the GNU LGPLv3 license. #include "util.h" // dprintf #include "pci.h" // pci_bdf_to_bus #include "config.h" // CONFIG_* #include "usb-ohci.h" // struct ohci_hcca #include "pci_regs.h" // PCI_BASE_ADDRESS_0 #include "usb.h" // struct usb_s #include "farptr.h" // GET_FLATPTR #define FIT (1 << 31) static int start_ohci(struct usb_s *cntl, struct ohci_hcca *hcca) { u32 oldfminterval = readl(&cntl->ohci.regs->fminterval); u32 oldrwc = readl(&cntl->ohci.regs->control) & OHCI_CTRL_RWC; // XXX - check if already running? // Do reset writel(&cntl->ohci.regs->control, OHCI_USB_RESET | oldrwc); readl(&cntl->ohci.regs->control); // flush writes msleep(USB_TIME_DRSTR); // Do software init (min 10us, max 2ms) u64 end = calc_future_tsc_usec(10); writel(&cntl->ohci.regs->cmdstatus, OHCI_HCR); for (;;) { u32 status = readl(&cntl->ohci.regs->cmdstatus); if (! status & OHCI_HCR) break; if (check_time(end)) { dprintf(1, "Timeout on ohci software reset\n"); return -1; } } // Init memory writel(&cntl->ohci.regs->ed_controlhead, (u32)cntl->ohci.control_ed); writel(&cntl->ohci.regs->ed_bulkhead, 0); writel(&cntl->ohci.regs->hcca, (u32)hcca); // Init fminterval u32 fi = oldfminterval & 0x3fff; writel(&cntl->ohci.regs->fminterval , (((oldfminterval & FIT) ^ FIT) | fi | (((6 * (fi - 210)) / 7) << 16))); writel(&cntl->ohci.regs->periodicstart, ((9 * fi) / 10) & 0x3fff); readl(&cntl->ohci.regs->control); // flush writes // XXX - verify that fminterval was setup correctly. // Go into operational state writel(&cntl->ohci.regs->control , (OHCI_CTRL_CBSR | OHCI_CTRL_CLE | OHCI_CTRL_PLE | OHCI_USB_OPER | oldrwc)); readl(&cntl->ohci.regs->control); // flush writes return 0; } static void stop_ohci(struct usb_s *cntl) { u32 oldrwc = readl(&cntl->ohci.regs->control) & OHCI_CTRL_RWC; writel(&cntl->ohci.regs->control, oldrwc); readl(&cntl->ohci.regs->control); // flush writes } // Find any devices connected to the root hub. static int check_ohci_ports(struct usb_s *cntl) { // Turn on power for all devices on roothub. u32 rha = readl(&cntl->ohci.regs->roothub_a); rha &= ~(RH_A_PSM | RH_A_OCPM); writel(&cntl->ohci.regs->roothub_status, RH_HS_LPSC); writel(&cntl->ohci.regs->roothub_b, RH_B_PPCM); msleep((rha >> 24) * 2); // Count and reset connected devices int ports = rha & RH_A_NDP; int totalcount = 0; int i; for (i=0; iohci.regs->roothub_portstatus[i]) & RH_PS_CCS) { writel(&cntl->ohci.regs->roothub_portstatus[i], RH_PS_PRS); totalcount++; } if (!totalcount) // No devices connected goto shutdown; // XXX - should poll instead of using timer. msleep(USB_TIME_DRSTR + USB_TIME_RSTRCY); totalcount = 0; for (i=0; iohci.regs->roothub_portstatus[i]); if ((sts & (RH_PS_CCS|RH_PS_PES)) == (RH_PS_CCS|RH_PS_PES)) { int count = configure_usb_device(cntl, !!(sts & RH_PS_LSDA)); if (! count) // Shutdown port writel(&cntl->ohci.regs->roothub_portstatus[i] , RH_PS_CCS|RH_PS_LSDA); totalcount += count; } } if (!totalcount) goto shutdown; return totalcount; shutdown: // Turn off power to all ports writel(&cntl->ohci.regs->roothub_status, RH_HS_LPS); return 0; } void ohci_init(void *data) { if (! CONFIG_USB_OHCI) return; struct usb_s *cntl = data; // XXX - don't call pci_config_XXX from a thread cntl->type = USB_TYPE_OHCI; u32 baseaddr = pci_config_readl(cntl->bdf, PCI_BASE_ADDRESS_0); cntl->ohci.regs = (void*)(baseaddr & PCI_BASE_ADDRESS_MEM_MASK); dprintf(3, "OHCI init on dev %02x:%02x.%x (regs=%p)\n" , pci_bdf_to_bus(cntl->bdf), pci_bdf_to_dev(cntl->bdf) , pci_bdf_to_fn(cntl->bdf), cntl->ohci.regs); // Enable bus mastering and memory access. pci_config_maskw(cntl->bdf, PCI_COMMAND , 0, PCI_COMMAND_MASTER|PCI_COMMAND_MEMORY); // XXX - check for and disable SMM control? // Disable interrupts writel(&cntl->ohci.regs->intrdisable, ~0); writel(&cntl->ohci.regs->intrstatus, ~0); // Allocate memory struct ohci_hcca *hcca = memalign_high(256, sizeof(*hcca)); struct ohci_ed *intr_ed = malloc_high(sizeof(*intr_ed)); struct ohci_ed *control_ed = malloc_high(sizeof(*control_ed)); if (!hcca || !intr_ed || !control_ed) { dprintf(1, "No ram for ohci init\n"); goto free; } memset(hcca, 0, sizeof(*hcca)); memset(intr_ed, 0, sizeof(*intr_ed)); intr_ed->hwINFO = ED_SKIP; int i; for (i=0; iint_table); i++) hcca->int_table[i] = (u32)intr_ed; memset(control_ed, 0, sizeof(*control_ed)); control_ed->hwINFO = ED_SKIP; cntl->ohci.control_ed = control_ed; int ret = start_ohci(cntl, hcca); if (ret) goto err; int count = check_ohci_ports(cntl); if (! count) goto err; return; err: stop_ohci(cntl); free: free(hcca); free(intr_ed); free(control_ed); } static int wait_ed(struct ohci_ed *ed) { // XXX - 500ms just a guess u64 end = calc_future_tsc(500); for (;;) { if (ed->hwHeadP == ed->hwTailP) return 0; if (check_time(end)) { dprintf(1, "Timeout on wait_ed %p\n", ed); return -1; } yield(); } } int ohci_control(u32 endp, int dir, const void *cmd, int cmdsize , void *data, int datasize) { if (! CONFIG_USB_OHCI) return -1; dprintf(5, "ohci_control %x\n", endp); struct usb_s *cntl = endp2cntl(endp); int maxpacket = endp2maxsize(endp); int lowspeed = endp2speed(endp); int devaddr = endp2devaddr(endp) | (endp2ep(endp) << 7); // Setup transfer descriptors struct ohci_td *tds = malloc_tmphigh(sizeof(*tds) * 3); tds[0].hwINFO = TD_DP_SETUP | TD_T_DATA0 | TD_CC; tds[0].hwCBP = (u32)cmd; tds[0].hwNextTD = (u32)&tds[1]; tds[0].hwBE = (u32)cmd + cmdsize - 1; tds[1].hwINFO = (dir ? TD_DP_IN : TD_DP_OUT) | TD_T_DATA1 | TD_CC; tds[1].hwCBP = datasize ? (u32)data : 0; tds[1].hwNextTD = (u32)&tds[2]; tds[1].hwBE = (u32)data + datasize - 1; tds[2].hwINFO = (dir ? TD_DP_OUT : TD_DP_IN) | TD_T_DATA1 | TD_CC; tds[2].hwCBP = 0; tds[2].hwNextTD = (u32)&tds[3]; tds[2].hwBE = 0; // Transfer data struct ohci_ed *ed = cntl->ohci.control_ed; ed->hwINFO = ED_SKIP; barrier(); ed->hwHeadP = (u32)&tds[0]; ed->hwTailP = (u32)&tds[3]; barrier(); ed->hwINFO = devaddr | (maxpacket << 16) | (lowspeed ? ED_LOWSPEED : 0); writel(&cntl->ohci.regs->cmdstatus, OHCI_CLF); int ret = wait_ed(ed); ed->hwINFO = ED_SKIP; if (ret) usleep(1); // XXX - in case controller still accessing tds free(tds); return ret; } struct ohci_pipe { struct ohci_ed ed; struct usb_pipe pipe; void *data; int count; struct ohci_td *tds; }; struct usb_pipe * ohci_alloc_intr_pipe(u32 endp, int frameexp) { if (! CONFIG_USB_OHCI) return NULL; dprintf(7, "ohci_alloc_intr_pipe %x %d\n", endp, frameexp); if (frameexp > 5) frameexp = 5; struct usb_s *cntl = endp2cntl(endp); int maxpacket = endp2maxsize(endp); int lowspeed = endp2speed(endp); int devaddr = endp2devaddr(endp) | (endp2ep(endp) << 7); // Determine number of entries needed for 2 timer ticks. int ms = 1<ed; ed->hwHeadP = (u32)&tds[0]; ed->hwTailP = (u32)&tds[count-1]; ed->hwINFO = devaddr | (maxpacket << 16) | (lowspeed ? ED_LOWSPEED : 0); int i; for (i=0; iohci.regs->hcca; if (frameexp == 0) { // Add to existing interrupt entry. struct ohci_ed *intr_ed = (void*)hcca->int_table[0]; ed->hwNextED = intr_ed->hwNextED; intr_ed->hwNextED = (u32)ed; } else { int startpos = 1<<(frameexp-1); ed->hwNextED = hcca->int_table[startpos]; for (i=startpos; iint_table); i+=ms) hcca->int_table[i] = (u32)ed; } pipe->data = data; pipe->count = count; pipe->tds = tds; pipe->pipe.endp = endp; return &pipe->pipe; err: free(pipe); free(tds); free(data); return NULL; } int ohci_poll_intr(struct usb_pipe *pipe, void *data) { ASSERT16(); if (! CONFIG_USB_OHCI) return -1; struct ohci_pipe *p = container_of(pipe, struct ohci_pipe, pipe); struct ohci_td *tds = GET_FLATPTR(p->tds); struct ohci_td *head = (void*)GET_FLATPTR(p->ed.hwHeadP); struct ohci_td *tail = (void*)GET_FLATPTR(p->ed.hwTailP); int count = GET_FLATPTR(p->count); int pos = (tail - tds + 1) % count; struct ohci_td *next = &tds[pos]; if (head == next) // No intrs found. return -1; // XXX - check for errors. // Copy data. u32 endp = GET_FLATPTR(p->pipe.endp); int maxpacket = endp2maxsize(endp); void *pipedata = GET_FLATPTR(p->data); void *intrdata = pipedata + maxpacket * pos; memcpy_far(GET_SEG(SS), data , FLATPTR_TO_SEG(intrdata), (void*)FLATPTR_TO_OFFSET(intrdata) , maxpacket); // Reenable this td. SET_FLATPTR(tail->hwINFO, TD_DP_IN | TD_T_TOGGLE | TD_CC); intrdata = pipedata + maxpacket * (tail-tds); SET_FLATPTR(tail->hwCBP, (u32)intrdata); SET_FLATPTR(tail->hwNextTD, (u32)next); SET_FLATPTR(tail->hwBE, (u32)intrdata + maxpacket - 1); SET_FLATPTR(p->ed.hwTailP, (u32)next); return 0; }