// Code for handling EHCI USB controllers. // // Copyright (C) 2010 Kevin O'Connor // // This file may be distributed under the terms of the GNU LGPLv3 license. #include "util.h" // dprintf #include "pci.h" // pci_bdf_to_bus #include "config.h" // CONFIG_* #include "ioport.h" // outw #include "usb-ehci.h" // struct ehci_qh #include "pci_ids.h" // PCI_CLASS_SERIAL_USB_UHCI #include "pci_regs.h" // PCI_BASE_ADDRESS_0 #include "usb.h" // struct usb_s #include "farptr.h" // GET_FLATPTR #include "usb-uhci.h" // init_uhci #include "usb-ohci.h" // init_ohci struct usb_ehci_s { struct usb_s usb; struct ehci_caps *caps; struct ehci_regs *regs; struct ehci_qh *async_qh; struct pci_device *companion[8]; int checkports; int legacycount; }; /**************************************************************** * Root hub ****************************************************************/ #define EHCI_TIME_POSTPOWER 20 #define EHCI_TIME_POSTRESET 2 // Check if need companion controllers for full/low speed devices static void ehci_note_port(struct usb_ehci_s *cntl) { if (--cntl->checkports) // Ports still being detected. return; if (! cntl->legacycount) // No full/low speed devices found. return; // Start companion controllers. int i; for (i=0; icompanion); i++) { struct pci_device *pci = cntl->companion[i]; if (!pci) break; // ohci/uhci_init call pci_config_XXX - don't run from irq handler. wait_preempt(); if (pci_classprog(pci) == PCI_CLASS_SERIAL_USB_UHCI) uhci_init(pci, cntl->usb.busid + i); else if (pci_classprog(pci) == PCI_CLASS_SERIAL_USB_OHCI) ohci_init(pci, cntl->usb.busid + i); } } // Check if device attached to port static int ehci_hub_detect(struct usbhub_s *hub, u32 port) { struct usb_ehci_s *cntl = container_of(hub->cntl, struct usb_ehci_s, usb); u32 *portreg = &cntl->regs->portsc[port]; u32 portsc = readl(portreg); // Power up port. if (!(portsc & PORT_POWER)) { portsc |= PORT_POWER; writel(portreg, portsc); msleep(EHCI_TIME_POSTPOWER); } else { msleep(1); // XXX - time for connect to be detected. } portsc = readl(portreg); if (!(portsc & PORT_CONNECT)) // No device present goto doneearly; if ((portsc & PORT_LINESTATUS_MASK) == PORT_LINESTATUS_KSTATE) { // low speed device cntl->legacycount++; writel(portreg, portsc | PORT_OWNER); goto doneearly; } // XXX - if just powered up, need to wait for USB_TIME_ATTDB? // Begin reset on port portsc = (portsc & ~PORT_PE) | PORT_RESET; writel(portreg, portsc); msleep(USB_TIME_DRSTR); return 0; doneearly: ehci_note_port(cntl); return -1; } // Reset device on port static int ehci_hub_reset(struct usbhub_s *hub, u32 port) { struct usb_ehci_s *cntl = container_of(hub->cntl, struct usb_ehci_s, usb); u32 *portreg = &cntl->regs->portsc[port]; u32 portsc = readl(portreg); // Finish reset on port portsc &= ~PORT_RESET; writel(portreg, portsc); msleep(EHCI_TIME_POSTRESET); int rv = -1; portsc = readl(portreg); if (!(portsc & PORT_CONNECT)) // No longer connected goto resetfail; if (!(portsc & PORT_PE)) { // full speed device cntl->legacycount++; writel(portreg, portsc | PORT_OWNER); goto resetfail; } rv = USB_HIGHSPEED; resetfail: ehci_note_port(cntl); return rv; } // Disable port static void ehci_hub_disconnect(struct usbhub_s *hub, u32 port) { struct usb_ehci_s *cntl = container_of(hub->cntl, struct usb_ehci_s, usb); u32 *portreg = &cntl->regs->portsc[port]; u32 portsc = readl(portreg); writel(portreg, portsc & ~PORT_PE); } static struct usbhub_op_s ehci_HubOp = { .detect = ehci_hub_detect, .reset = ehci_hub_reset, .disconnect = ehci_hub_disconnect, }; // Find any devices connected to the root hub. static int check_ehci_ports(struct usb_ehci_s *cntl) { ASSERT32FLAT(); struct usbhub_s hub; memset(&hub, 0, sizeof(hub)); hub.cntl = &cntl->usb; hub.portcount = cntl->checkports; hub.op = &ehci_HubOp; usb_enumerate(&hub); return hub.devcount; } /**************************************************************** * Setup ****************************************************************/ static void configure_ehci(void *data) { struct usb_ehci_s *cntl = data; // Allocate ram for schedule storage struct ehci_framelist *fl = memalign_high(sizeof(*fl), sizeof(*fl)); struct ehci_qh *intr_qh = memalign_high(EHCI_QH_ALIGN, sizeof(*intr_qh)); struct ehci_qh *async_qh = memalign_high(EHCI_QH_ALIGN, sizeof(*async_qh)); if (!fl || !intr_qh || !async_qh) { warn_noalloc(); goto fail; } // XXX - check for halted? // Reset the HC u32 cmd = readl(&cntl->regs->usbcmd); writel(&cntl->regs->usbcmd, (cmd & ~(CMD_ASE | CMD_PSE)) | CMD_HCRESET); u64 end = calc_future_tsc(250); for (;;) { cmd = readl(&cntl->regs->usbcmd); if (!(cmd & CMD_HCRESET)) break; if (check_tsc(end)) { warn_timeout(); goto fail; } yield(); } // Disable interrupts (just to be safe). writel(&cntl->regs->usbintr, 0); // Set schedule to point to primary intr queue head memset(intr_qh, 0, sizeof(*intr_qh)); intr_qh->next = EHCI_PTR_TERM; intr_qh->info2 = (0x01 << QH_SMASK_SHIFT); intr_qh->token = QTD_STS_HALT; intr_qh->qtd_next = intr_qh->alt_next = EHCI_PTR_TERM; int i; for (i=0; ilinks); i++) fl->links[i] = (u32)intr_qh | EHCI_PTR_QH; writel(&cntl->regs->periodiclistbase, (u32)fl); // Set async list to point to primary async queue head memset(async_qh, 0, sizeof(*async_qh)); async_qh->next = (u32)async_qh | EHCI_PTR_QH; async_qh->info1 = QH_HEAD; async_qh->token = QTD_STS_HALT; async_qh->qtd_next = async_qh->alt_next = EHCI_PTR_TERM; cntl->async_qh = async_qh; writel(&cntl->regs->asynclistbase, (u32)async_qh); // Enable queues writel(&cntl->regs->usbcmd, cmd | CMD_ASE | CMD_PSE | CMD_RUN); // Set default of high speed for root hub. writel(&cntl->regs->configflag, 1); cntl->checkports = readl(&cntl->caps->hcsparams) & HCS_N_PORTS_MASK; // Find devices int count = check_ehci_ports(cntl); free_pipe(cntl->usb.defaultpipe); if (count) // Success return; // No devices found - shutdown and free controller. writel(&cntl->regs->usbcmd, cmd & ~CMD_RUN); msleep(4); // 2ms to stop reading memory - XXX fail: free(fl); free(intr_qh); free(async_qh); free(cntl); } int ehci_init(struct pci_device *pci, int busid, struct pci_device *comppci) { if (! CONFIG_USB_EHCI) return -1; u16 bdf = pci->bdf; u32 baseaddr = pci_config_readl(bdf, PCI_BASE_ADDRESS_0); struct ehci_caps *caps = (void*)(baseaddr & PCI_BASE_ADDRESS_MEM_MASK); u32 hcc_params = readl(&caps->hccparams); if (hcc_params & HCC_64BIT_ADDR) { dprintf(1, "No support for 64bit EHCI\n"); return -1; } struct usb_ehci_s *cntl = malloc_tmphigh(sizeof(*cntl)); if (!cntl) { warn_noalloc(); return -1; } memset(cntl, 0, sizeof(*cntl)); cntl->usb.busid = busid; cntl->usb.pci = pci; cntl->usb.type = USB_TYPE_EHCI; cntl->caps = caps; cntl->regs = (void*)caps + readb(&caps->caplength); dprintf(1, "EHCI init on dev %02x:%02x.%x (regs=%p)\n" , pci_bdf_to_bus(bdf), pci_bdf_to_dev(bdf) , pci_bdf_to_fn(bdf), cntl->regs); pci_config_maskw(bdf, PCI_COMMAND, 0, PCI_COMMAND_MASTER); // XXX - check for and disable SMM control? // Find companion controllers. int count = 0; for (;;) { if (!comppci || comppci == pci) break; if (pci_classprog(comppci) == PCI_CLASS_SERIAL_USB_UHCI) cntl->companion[count++] = comppci; else if (pci_classprog(comppci) == PCI_CLASS_SERIAL_USB_OHCI) cntl->companion[count++] = comppci; comppci = comppci->next; } run_thread(configure_ehci, cntl); return 0; } /**************************************************************** * End point communication ****************************************************************/ struct ehci_pipe { struct ehci_qh qh; struct ehci_qtd *next_td, *tds; void *data; struct usb_pipe pipe; }; // Wait for next USB async frame to start - for ensuring safe memory release. static void ehci_waittick(struct usb_ehci_s *cntl) { if (MODE16) { msleep(10); return; } // Wait for access to "doorbell" barrier(); u32 cmd, sts; u64 end = calc_future_tsc(100); for (;;) { sts = readl(&cntl->regs->usbsts); if (!(sts & STS_IAA)) { cmd = readl(&cntl->regs->usbcmd); if (!(cmd & CMD_IAAD)) break; } if (check_tsc(end)) { warn_timeout(); return; } yield(); } // Ring "doorbell" writel(&cntl->regs->usbcmd, cmd | CMD_IAAD); // Wait for completion for (;;) { sts = readl(&cntl->regs->usbsts); if (sts & STS_IAA) break; if (check_tsc(end)) { warn_timeout(); return; } yield(); } // Ack completion writel(&cntl->regs->usbsts, STS_IAA); } static void ehci_reset_pipe(struct ehci_pipe *pipe) { SET_FLATPTR(pipe->qh.qtd_next, EHCI_PTR_TERM); SET_FLATPTR(pipe->qh.alt_next, EHCI_PTR_TERM); barrier(); SET_FLATPTR(pipe->qh.token, GET_FLATPTR(pipe->qh.token) & QTD_TOGGLE); } static int ehci_wait_td(struct ehci_pipe *pipe, struct ehci_qtd *td, int timeout) { u64 end = calc_future_tsc(timeout); u32 status; for (;;) { status = td->token; if (!(status & QTD_STS_ACTIVE)) break; if (check_tsc(end)) { u32 cur = GET_FLATPTR(pipe->qh.current); u32 tok = GET_FLATPTR(pipe->qh.token); u32 next = GET_FLATPTR(pipe->qh.qtd_next); warn_timeout(); dprintf(1, "ehci pipe=%p cur=%08x tok=%08x next=%x td=%p status=%x\n" , pipe, cur, tok, next, td, status); ehci_reset_pipe(pipe); struct usb_ehci_s *cntl = container_of( GET_FLATPTR(pipe->pipe.cntl), struct usb_ehci_s, usb); ehci_waittick(cntl); return -1; } yield(); } if (status & QTD_STS_HALT) { dprintf(1, "ehci_wait_td error - status=%x\n", status); ehci_reset_pipe(pipe); return -2; } return 0; } void ehci_free_pipe(struct usb_pipe *p) { if (! CONFIG_USB_EHCI) return; dprintf(7, "ehci_free_pipe %p\n", p); struct ehci_pipe *pipe = container_of(p, struct ehci_pipe, pipe); struct usb_ehci_s *cntl = container_of( pipe->pipe.cntl, struct usb_ehci_s, usb); struct ehci_qh *start = cntl->async_qh; struct ehci_qh *pos = start; for (;;) { struct ehci_qh *next = (void*)(pos->next & ~EHCI_PTR_BITS); if (next == start) { // Not found?! Exit without freeing. warn_internalerror(); return; } if (next == &pipe->qh) { pos->next = next->next; ehci_waittick(cntl); free(pipe); return; } pos = next; } } struct usb_pipe * ehci_alloc_control_pipe(struct usb_pipe *dummy) { if (! CONFIG_USB_EHCI) return NULL; struct usb_ehci_s *cntl = container_of( dummy->cntl, struct usb_ehci_s, usb); dprintf(7, "ehci_alloc_control_pipe %p\n", &cntl->usb); // Allocate a queue head. struct ehci_pipe *pipe = memalign_tmphigh(EHCI_QH_ALIGN, sizeof(*pipe)); if (!pipe) { warn_noalloc(); return NULL; } memset(pipe, 0, sizeof(*pipe)); memcpy(&pipe->pipe, dummy, sizeof(pipe->pipe)); pipe->qh.qtd_next = pipe->qh.alt_next = EHCI_PTR_TERM; // Add queue head to controller list. struct ehci_qh *async_qh = cntl->async_qh; pipe->qh.next = async_qh->next; barrier(); async_qh->next = (u32)&pipe->qh | EHCI_PTR_QH; return &pipe->pipe; } static int fillTDbuffer(struct ehci_qtd *td, u16 maxpacket, const void *buf, int bytes) { u32 dest = (u32)buf; u32 *pos = td->buf; while (bytes) { if (pos >= &td->buf[ARRAY_SIZE(td->buf)]) // More data than can transfer in a single qtd - only use // full packets to prevent a babble error. return ALIGN_DOWN(dest - (u32)buf, maxpacket); u32 count = bytes; u32 max = 0x1000 - (dest & 0xfff); if (count > max) count = max; *pos = dest; bytes -= count; dest += count; pos++; } return dest - (u32)buf; } int ehci_control(struct usb_pipe *p, int dir, const void *cmd, int cmdsize , void *data, int datasize) { ASSERT32FLAT(); if (! CONFIG_USB_EHCI) return -1; dprintf(5, "ehci_control %p (dir=%d cmd=%d data=%d)\n" , p, dir, cmdsize, datasize); if (datasize > 4*4096 || cmdsize > 4*4096) { // XXX - should support larger sizes. warn_noalloc(); return -1; } struct ehci_pipe *pipe = container_of(p, struct ehci_pipe, pipe); u16 maxpacket = pipe->pipe.maxpacket; int speed = pipe->pipe.speed; // Setup fields in qh pipe->qh.info1 = ( (1 << QH_MULT_SHIFT) | (speed != USB_HIGHSPEED ? QH_CONTROL : 0) | (maxpacket << QH_MAXPACKET_SHIFT) | QH_TOGGLECONTROL | (speed << QH_SPEED_SHIFT) | (pipe->pipe.ep << QH_EP_SHIFT) | (pipe->pipe.devaddr << QH_DEVADDR_SHIFT)); pipe->qh.info2 = ((1 << QH_MULT_SHIFT) | (pipe->pipe.tt_port << QH_HUBPORT_SHIFT) | (pipe->pipe.tt_devaddr << QH_HUBADDR_SHIFT)); // Setup transfer descriptors struct ehci_qtd *tds = memalign_tmphigh(EHCI_QTD_ALIGN, sizeof(*tds) * 3); if (!tds) { warn_noalloc(); return -1; } memset(tds, 0, sizeof(*tds) * 3); struct ehci_qtd *td = tds; td->qtd_next = (u32)&td[1]; td->alt_next = EHCI_PTR_TERM; td->token = (ehci_explen(cmdsize) | QTD_STS_ACTIVE | QTD_PID_SETUP | ehci_maxerr(3)); fillTDbuffer(td, maxpacket, cmd, cmdsize); td++; if (datasize) { td->qtd_next = (u32)&td[1]; td->alt_next = EHCI_PTR_TERM; td->token = (QTD_TOGGLE | ehci_explen(datasize) | QTD_STS_ACTIVE | (dir ? QTD_PID_IN : QTD_PID_OUT) | ehci_maxerr(3)); fillTDbuffer(td, maxpacket, data, datasize); td++; } td->qtd_next = EHCI_PTR_TERM; td->alt_next = EHCI_PTR_TERM; td->token = (QTD_TOGGLE | QTD_STS_ACTIVE | (dir ? QTD_PID_OUT : QTD_PID_IN) | ehci_maxerr(3)); // Transfer data barrier(); pipe->qh.qtd_next = (u32)tds; int i, ret=0; for (i=0; i<3; i++) { struct ehci_qtd *td = &tds[i]; ret = ehci_wait_td(pipe, td, 500); if (ret) break; } free(tds); return ret; } struct usb_pipe * ehci_alloc_bulk_pipe(struct usb_pipe *dummy) { // XXX - this func is same as alloc_control except for malloc_low if (! CONFIG_USB_EHCI) return NULL; struct usb_ehci_s *cntl = container_of( dummy->cntl, struct usb_ehci_s, usb); dprintf(7, "ehci_alloc_bulk_pipe %p\n", &cntl->usb); // Allocate a queue head. struct ehci_pipe *pipe = memalign_low(EHCI_QH_ALIGN, sizeof(*pipe)); if (!pipe) { warn_noalloc(); return NULL; } memset(pipe, 0, sizeof(*pipe)); memcpy(&pipe->pipe, dummy, sizeof(pipe->pipe)); pipe->qh.qtd_next = pipe->qh.alt_next = EHCI_PTR_TERM; // Add queue head to controller list. struct ehci_qh *async_qh = cntl->async_qh; pipe->qh.next = async_qh->next; barrier(); async_qh->next = (u32)&pipe->qh | EHCI_PTR_QH; return &pipe->pipe; } #define STACKQTDS 4 int ehci_send_bulk(struct usb_pipe *p, int dir, void *data, int datasize) { if (! CONFIG_USB_EHCI) return -1; struct ehci_pipe *pipe = container_of(p, struct ehci_pipe, pipe); dprintf(7, "ehci_send_bulk qh=%p dir=%d data=%p size=%d\n" , &pipe->qh, dir, data, datasize); // Allocate 4 tds on stack (16byte aligned) u8 tdsbuf[sizeof(struct ehci_qtd) * STACKQTDS + EHCI_QTD_ALIGN - 1]; struct ehci_qtd *tds = (void*)ALIGN((u32)tdsbuf, EHCI_QTD_ALIGN); memset(tds, 0, sizeof(*tds) * STACKQTDS); // Setup fields in qh u16 maxpacket = GET_FLATPTR(pipe->pipe.maxpacket); SET_FLATPTR(pipe->qh.info1 , ((1 << QH_MULT_SHIFT) | (maxpacket << QH_MAXPACKET_SHIFT) | (GET_FLATPTR(pipe->pipe.speed) << QH_SPEED_SHIFT) | (GET_FLATPTR(pipe->pipe.ep) << QH_EP_SHIFT) | (GET_FLATPTR(pipe->pipe.devaddr) << QH_DEVADDR_SHIFT))); SET_FLATPTR(pipe->qh.info2 , ((1 << QH_MULT_SHIFT) | (GET_FLATPTR(pipe->pipe.tt_port) << QH_HUBPORT_SHIFT) | (GET_FLATPTR(pipe->pipe.tt_devaddr) << QH_HUBADDR_SHIFT))); barrier(); SET_FLATPTR(pipe->qh.qtd_next, (u32)MAKE_FLATPTR(GET_SEG(SS), tds)); int tdpos = 0; while (datasize) { struct ehci_qtd *td = &tds[tdpos++ % STACKQTDS]; int ret = ehci_wait_td(pipe, td, 5000); if (ret) return -1; struct ehci_qtd *nexttd_fl = MAKE_FLATPTR(GET_SEG(SS) , &tds[tdpos % STACKQTDS]); int transfer = fillTDbuffer(td, maxpacket, data, datasize); td->qtd_next = (transfer==datasize ? EHCI_PTR_TERM : (u32)nexttd_fl); td->alt_next = EHCI_PTR_TERM; barrier(); td->token = (ehci_explen(transfer) | QTD_STS_ACTIVE | (dir ? QTD_PID_IN : QTD_PID_OUT) | ehci_maxerr(3)); data += transfer; datasize -= transfer; } int i; for (i=0; icntl, struct usb_ehci_s, usb); dprintf(7, "ehci_alloc_intr_pipe %p %d\n", &cntl->usb, frameexp); if (frameexp > 10) frameexp = 10; int maxpacket = dummy->maxpacket; // Determine number of entries needed for 2 timer ticks. int ms = 1<pipe, dummy, sizeof(pipe->pipe)); pipe->next_td = pipe->tds = tds; pipe->data = data; pipe->qh.info1 = ( (1 << QH_MULT_SHIFT) | (maxpacket << QH_MAXPACKET_SHIFT) | (pipe->pipe.speed << QH_SPEED_SHIFT) | (pipe->pipe.ep << QH_EP_SHIFT) | (pipe->pipe.devaddr << QH_DEVADDR_SHIFT)); pipe->qh.info2 = ((1 << QH_MULT_SHIFT) | (pipe->pipe.tt_port << QH_HUBPORT_SHIFT) | (pipe->pipe.tt_devaddr << QH_HUBADDR_SHIFT) | (0x01 << QH_SMASK_SHIFT) | (0x1c << QH_CMASK_SHIFT)); pipe->qh.qtd_next = (u32)tds; int i; for (i=0; iqtd_next = (i==count-1 ? (u32)tds : (u32)&td[1]); td->alt_next = EHCI_PTR_TERM; td->token = (ehci_explen(maxpacket) | QTD_STS_ACTIVE | QTD_PID_IN | ehci_maxerr(3)); td->buf[0] = (u32)data + maxpacket * i; } // Add to interrupt schedule. struct ehci_framelist *fl = (void*)readl(&cntl->regs->periodiclistbase); if (frameexp == 0) { // Add to existing interrupt entry. struct ehci_qh *intr_qh = (void*)(fl->links[0] & ~EHCI_PTR_BITS); pipe->qh.next = intr_qh->next; barrier(); intr_qh->next = (u32)&pipe->qh | EHCI_PTR_QH; } else { int startpos = 1<<(frameexp-1); pipe->qh.next = fl->links[startpos]; barrier(); for (i=startpos; ilinks); i+=ms) fl->links[i] = (u32)&pipe->qh | EHCI_PTR_QH; } return &pipe->pipe; fail: free(pipe); free(tds); free(data); return NULL; } int ehci_poll_intr(struct usb_pipe *p, void *data) { ASSERT16(); if (! CONFIG_USB_EHCI) return -1; struct ehci_pipe *pipe = container_of(p, struct ehci_pipe, pipe); struct ehci_qtd *td = GET_FLATPTR(pipe->next_td); u32 token = GET_FLATPTR(td->token); if (token & QTD_STS_ACTIVE) // No intrs found. return -1; // XXX - check for errors. // Copy data. int maxpacket = GET_FLATPTR(pipe->pipe.maxpacket); int pos = td - GET_FLATPTR(pipe->tds); void *tddata = GET_FLATPTR(pipe->data) + maxpacket * pos; memcpy_far(GET_SEG(SS), data , FLATPTR_TO_SEG(tddata), (void*)FLATPTR_TO_OFFSET(tddata) , maxpacket); // Reenable this td. struct ehci_qtd *next = (void*)(GET_FLATPTR(td->qtd_next) & ~EHCI_PTR_BITS); SET_FLATPTR(pipe->next_td, next); SET_FLATPTR(td->buf[0], (u32)tddata); barrier(); SET_FLATPTR(td->token, (ehci_explen(maxpacket) | QTD_STS_ACTIVE | QTD_PID_IN | ehci_maxerr(3))); return 0; }