// Post memory manager (PMM) calls // // Copyright (C) 2009 Kevin O'Connor // // This file may be distributed under the terms of the GNU LGPLv3 license. #include "util.h" // checksum #include "config.h" // BUILD_BIOS_ADDR #include "memmap.h" // struct e820entry #include "farptr.h" // GET_FARVAR #include "biosvar.h" // GET_BDA // Information on a reserved area. struct allocinfo_s { struct allocinfo_s *next, **pprev; void *data, *dataend, *allocend; }; // Information on a tracked memory allocation. struct allocdetail_s { struct allocinfo_s detailinfo; struct allocinfo_s datainfo; u32 handle; }; // The various memory zones. struct zone_s { struct allocinfo_s *info; }; struct zone_s ZoneLow, ZoneHigh, ZoneFSeg, ZoneTmpLow, ZoneTmpHigh; static struct zone_s *Zones[] = { &ZoneTmpLow, &ZoneLow, &ZoneFSeg, &ZoneTmpHigh, &ZoneHigh }; /**************************************************************** * low-level memory reservations ****************************************************************/ // Find and reserve space from a given zone static void * allocSpace(struct zone_s *zone, u32 size, u32 align, struct allocinfo_s *fill) { struct allocinfo_s *info; for (info = zone->info; info; info = info->next) { void *dataend = info->dataend; void *allocend = info->allocend; void *newallocend = (void*)ALIGN_DOWN((u32)allocend - size, align); if (newallocend >= dataend && newallocend <= allocend) { // Found space - now reserve it. struct allocinfo_s **pprev = info->pprev; if (!fill) fill = newallocend; fill->next = info; fill->pprev = pprev; fill->data = newallocend; fill->dataend = newallocend + size; fill->allocend = allocend; info->allocend = newallocend; info->pprev = &fill->next; *pprev = fill; return newallocend; } } return NULL; } // Release space allocated with allocSpace() static void freeSpace(struct allocinfo_s *info) { struct allocinfo_s *next = info->next; struct allocinfo_s **pprev = info->pprev; *pprev = next; if (next) { if (next->allocend == info->data) next->allocend = info->allocend; next->pprev = pprev; } } // Add new memory to a zone static void addSpace(struct zone_s *zone, void *start, void *end) { // Find position to add space struct allocinfo_s **pprev = &zone->info, *info; for (;;) { info = *pprev; if (!info || info->data < start) break; pprev = &info->next; } // Add space using temporary allocation info. struct allocdetail_s tempdetail; tempdetail.datainfo.next = info; tempdetail.datainfo.pprev = pprev; tempdetail.datainfo.data = tempdetail.datainfo.dataend = start; tempdetail.datainfo.allocend = end; *pprev = &tempdetail.datainfo; if (info) info->pprev = &tempdetail.datainfo.next; // Allocate final allocation info. struct allocdetail_s *detail = allocSpace( &ZoneTmpHigh, sizeof(*detail), MALLOC_MIN_ALIGN, NULL); if (!detail) { detail = allocSpace(&ZoneTmpLow, sizeof(*detail) , MALLOC_MIN_ALIGN, NULL); if (!detail) { *tempdetail.datainfo.pprev = tempdetail.datainfo.next; if (tempdetail.datainfo.next) tempdetail.datainfo.next->pprev = tempdetail.datainfo.pprev; warn_noalloc(); return; } } // Replace temp alloc space with final alloc space memcpy(&detail->datainfo, &tempdetail.datainfo, sizeof(detail->datainfo)); detail->handle = PMM_DEFAULT_HANDLE; *tempdetail.datainfo.pprev = &detail->datainfo; if (tempdetail.datainfo.next) tempdetail.datainfo.next->pprev = &detail->datainfo.next; } // Search all zones for an allocation obtained from allocSpace() static struct allocinfo_s * findAlloc(void *data) { int i; for (i=0; iinfo; info; info = info->next) if (info->data == data) return info; } return NULL; } // Return the last sentinal node of a zone static struct allocinfo_s * findLast(struct zone_s *zone) { struct allocinfo_s *info = zone->info; if (!info) return NULL; for (;;) { struct allocinfo_s *next = info->next; if (!next) return info; info = next; } } /**************************************************************** * Setup ****************************************************************/ void malloc_setup(void) { ASSERT32FLAT(); dprintf(3, "malloc setup\n"); // Populate temp high ram u32 highram = 0; int i; for (i=e820_count-1; i>=0; i--) { struct e820entry *en = &e820_list[i]; u64 end = en->start + en->size; if (end < 1024*1024) break; if (en->type != E820_RAM || end > 0xffffffff) continue; u32 s = en->start, e = end; if (!highram) { u32 newe = ALIGN_DOWN(e - CONFIG_MAX_HIGHTABLE, MALLOC_MIN_ALIGN); if (newe <= e && newe >= s) { highram = newe; e = newe; } } addSpace(&ZoneTmpHigh, (void*)s, (void*)e); } // Populate other regions addSpace(&ZoneTmpLow, (void*)BUILD_STACK_ADDR, (void*)BUILD_EBDA_MINIMUM); addSpace(&ZoneFSeg, BiosTableSpace, &BiosTableSpace[CONFIG_MAX_BIOSTABLE]); addSpace(&ZoneLow, (void*)BUILD_LOWRAM_END, (void*)BUILD_LOWRAM_END); if (highram) { addSpace(&ZoneHigh, (void*)highram , (void*)highram + CONFIG_MAX_HIGHTABLE); add_e820(highram, CONFIG_MAX_HIGHTABLE, E820_RESERVED); } } // Update pointers after code relocation. void malloc_fixupreloc(void) { ASSERT32FLAT(); if (!CONFIG_RELOCATE_INIT) return; dprintf(3, "malloc fixup reloc\n"); int i; for (i=0; iinfo->pprev = &zone->info; } // Add space free'd during relocation in f-segment to ZoneFSeg extern u8 code32init_end[]; if ((u32)code32init_end > BUILD_BIOS_ADDR) { memset((void*)BUILD_BIOS_ADDR, 0, (u32)code32init_end - BUILD_BIOS_ADDR); addSpace(&ZoneFSeg, (void*)BUILD_BIOS_ADDR, code32init_end); } } void malloc_finalize(void) { ASSERT32FLAT(); dprintf(3, "malloc finalize\n"); // Reserve more low-mem if needed. u32 endlow = GET_BDA(mem_size_kb)*1024; add_e820(endlow, BUILD_LOWRAM_END-endlow, E820_RESERVED); // Give back unused high ram. struct allocinfo_s *info = findLast(&ZoneHigh); if (info) { u32 giveback = ALIGN_DOWN(info->allocend - info->dataend, PAGE_SIZE); add_e820((u32)info->dataend, giveback, E820_RAM); dprintf(1, "Returned %d bytes of ZoneHigh\n", giveback); } } /**************************************************************** * ebda movement ****************************************************************/ // Move ebda static int relocate_ebda(u32 newebda, u32 oldebda, u8 ebda_size) { u32 lowram = GET_BDA(mem_size_kb) * 1024; if (oldebda != lowram) // EBDA isn't at end of ram - give up. return -1; // Do copy memmove((void*)newebda, (void*)oldebda, ebda_size * 1024); // Update indexes dprintf(1, "ebda moved from %x to %x\n", oldebda, newebda); SET_BDA(mem_size_kb, newebda / 1024); SET_BDA(ebda_seg, FLATPTR_TO_SEG(newebda)); return 0; } // Support expanding the ZoneLow dynamically. static void zonelow_expand(u32 size, u32 align) { struct allocinfo_s *info = findLast(&ZoneLow); if (!info) return; u32 oldpos = (u32)info->allocend; u32 newpos = ALIGN_DOWN(oldpos - size, align); u32 bottom = (u32)info->dataend; if (newpos >= bottom && newpos <= oldpos) // Space already present. return; u16 ebda_seg = get_ebda_seg(); u32 ebda_pos = (u32)MAKE_FLATPTR(ebda_seg, 0); u8 ebda_size = GET_EBDA2(ebda_seg, size); u32 ebda_end = ebda_pos + ebda_size * 1024; if (ebda_end != bottom) // Something else is after ebda - can't use any existing space. newpos = ALIGN_DOWN(ebda_end - size, align); u32 newbottom = ALIGN_DOWN(newpos, 1024); u32 newebda = ALIGN_DOWN(newbottom - ebda_size * 1024, 1024); if (newebda < BUILD_EBDA_MINIMUM) // Not enough space. return; // Move ebda int ret = relocate_ebda(newebda, ebda_pos, ebda_size); if (ret) return; // Update zone if (ebda_end == bottom) { info->data = (void*)newbottom; info->dataend = (void*)newbottom; } else addSpace(&ZoneLow, (void*)newbottom, (void*)ebda_end); } // Check if can expand the given zone to fulfill an allocation static void * allocExpandSpace(struct zone_s *zone, u32 size, u32 align , struct allocinfo_s *fill) { void *data = allocSpace(zone, size, align, fill); if (data || zone != &ZoneLow) return data; // Make sure to not move ebda while an optionrom is running. if (unlikely(wait_preempt())) { data = allocSpace(zone, size, align, fill); if (data) return data; } zonelow_expand(size, align); return allocSpace(zone, size, align, fill); } /**************************************************************** * tracked memory allocations ****************************************************************/ // Allocate memory from the given zone and track it as a PMM allocation void * __malloc pmm_malloc(struct zone_s *zone, u32 handle, u32 size, u32 align) { ASSERT32FLAT(); if (!size) return NULL; // Find and reserve space for bookkeeping. struct allocdetail_s *detail = allocSpace( &ZoneTmpHigh, sizeof(*detail), MALLOC_MIN_ALIGN, NULL); if (!detail) { detail = allocSpace(&ZoneTmpLow, sizeof(*detail) , MALLOC_MIN_ALIGN, NULL); if (!detail) return NULL; } // Find and reserve space for main allocation void *data = allocExpandSpace(zone, size, align, &detail->datainfo); if (!data) { freeSpace(&detail->detailinfo); return NULL; } dprintf(8, "pmm_malloc zone=%p handle=%x size=%d align=%x" " ret=%p (detail=%p)\n" , zone, handle, size, align , data, detail); detail->handle = handle; return data; } // Free a data block allocated with pmm_malloc int pmm_free(void *data) { ASSERT32FLAT(); struct allocinfo_s *info = findAlloc(data); if (!info || data == (void*)info || data == info->dataend) return -1; struct allocdetail_s *detail = container_of( info, struct allocdetail_s, datainfo); dprintf(8, "pmm_free %p (detail=%p)\n", data, detail); freeSpace(info); freeSpace(&detail->detailinfo); return 0; } // Find the amount of free space in a given zone. static u32 pmm_getspace(struct zone_s *zone) { // XXX - doesn't account for ZoneLow being able to grow. // XXX - results not reliable when CONFIG_THREAD_OPTIONROMS u32 maxspace = 0; struct allocinfo_s *info; for (info = zone->info; info; info = info->next) { u32 space = info->allocend - info->dataend; if (space > maxspace) maxspace = space; } if (zone != &ZoneTmpHigh && zone != &ZoneTmpLow) return maxspace; // Account for space needed for PMM tracking. u32 reserve = ALIGN(sizeof(struct allocdetail_s), MALLOC_MIN_ALIGN); if (maxspace <= reserve) return 0; return maxspace - reserve; } // Find the data block allocated with pmm_malloc with a given handle. static void * pmm_find(u32 handle) { int i; for (i=0; iinfo; info; info = info->next) { if (info->data != (void*)info) continue; struct allocdetail_s *detail = container_of( info, struct allocdetail_s, detailinfo); if (detail->handle == handle) return detail->datainfo.data; } } return NULL; } /**************************************************************** * pmm interface ****************************************************************/ struct pmmheader { u32 signature; u8 version; u8 length; u8 checksum; u16 entry_offset; u16 entry_seg; u8 reserved[5]; } PACKED; extern struct pmmheader PMMHEADER; #define PMM_SIGNATURE 0x4d4d5024 // $PMM #if CONFIG_PMM struct pmmheader PMMHEADER __aligned(16) VAR16EXPORT = { .version = 0x01, .length = sizeof(PMMHEADER), .entry_seg = SEG_BIOS, }; #endif #define PMM_FUNCTION_NOT_SUPPORTED 0xffffffff // PMM - allocate static u32 handle_pmm00(u16 *args) { u32 length = *(u32*)&args[1], handle = *(u32*)&args[3]; u16 flags = args[5]; dprintf(3, "pmm00: length=%x handle=%x flags=%x\n" , length, handle, flags); struct zone_s *lowzone = &ZoneTmpLow, *highzone = &ZoneTmpHigh; if (flags & 8) { // Permanent memory request. lowzone = &ZoneLow; highzone = &ZoneHigh; } if (!length) { // Memory size request switch (flags & 3) { default: case 0: return 0; case 1: return pmm_getspace(lowzone); case 2: return pmm_getspace(highzone); case 3: { u32 spacelow = pmm_getspace(lowzone); u32 spacehigh = pmm_getspace(highzone); if (spacelow > spacehigh) return spacelow; return spacehigh; } } } u32 size = length * 16; if ((s32)size <= 0) return 0; u32 align = MALLOC_MIN_ALIGN; if (flags & 4) { align = 1<<__ffs(size); if (align < MALLOC_MIN_ALIGN) align = MALLOC_MIN_ALIGN; } switch (flags & 3) { default: case 0: return 0; case 1: return (u32)pmm_malloc(lowzone, handle, size, align); case 2: return (u32)pmm_malloc(highzone, handle, size, align); case 3: { void *data = pmm_malloc(lowzone, handle, size, align); if (data) return (u32)data; return (u32)pmm_malloc(highzone, handle, size, align); } } } // PMM - find static u32 handle_pmm01(u16 *args) { u32 handle = *(u32*)&args[1]; dprintf(3, "pmm01: handle=%x\n", handle); if (handle == PMM_DEFAULT_HANDLE) return 0; return (u32)pmm_find(handle); } // PMM - deallocate static u32 handle_pmm02(u16 *args) { u32 buffer = *(u32*)&args[1]; dprintf(3, "pmm02: buffer=%x\n", buffer); int ret = pmm_free((void*)buffer); if (ret) // Error return 1; return 0; } static u32 handle_pmmXX(u16 *args) { return PMM_FUNCTION_NOT_SUPPORTED; } u32 VISIBLE32INIT handle_pmm(u16 *args) { ASSERT32FLAT(); if (! CONFIG_PMM) return PMM_FUNCTION_NOT_SUPPORTED; u16 arg1 = args[0]; dprintf(DEBUG_HDL_pmm, "pmm call arg1=%x\n", arg1); int oldpreempt; if (CONFIG_THREAD_OPTIONROMS) { // Not a preemption event - don't wait in wait_preempt() oldpreempt = CanPreempt; CanPreempt = 0; } u32 ret; switch (arg1) { case 0x00: ret = handle_pmm00(args); break; case 0x01: ret = handle_pmm01(args); break; case 0x02: ret = handle_pmm02(args); break; default: ret = handle_pmmXX(args); break; } if (CONFIG_THREAD_OPTIONROMS) CanPreempt = oldpreempt; return ret; } // romlayout.S extern void entry_pmm(void); void pmm_setup(void) { if (! CONFIG_PMM) return; dprintf(3, "init PMM\n"); PMMHEADER.signature = PMM_SIGNATURE; PMMHEADER.entry_offset = (u32)entry_pmm - BUILD_BIOS_ADDR; PMMHEADER.checksum -= checksum(&PMMHEADER, sizeof(PMMHEADER)); } void pmm_finalize(void) { if (! CONFIG_PMM) return; dprintf(3, "finalize PMM\n"); PMMHEADER.signature = 0; PMMHEADER.entry_offset = 0; }