// 16bit code to access floppy drives. // // Copyright (C) 2008,2009 Kevin O'Connor // Copyright (C) 2002 MandrakeSoft S.A. // // This file may be distributed under the terms of the GNU LGPLv3 license. #include "types.h" // u8 #include "disk.h" // DISK_RET_SUCCESS #include "config.h" // CONFIG_FLOPPY #include "biosvar.h" // SET_BDA #include "util.h" // wait_irq #include "cmos.h" // inb_cmos #include "pic.h" // eoi_pic1 #include "bregs.h" // struct bregs #include "boot.h" // boot_add_floppy #include "pci.h" // pci_to_bdf #include "pci_ids.h" // PCI_CLASS_BRIDGE_ISA #define FLOPPY_SIZE_CODE 0x02 // 512 byte sectors #define FLOPPY_DATALEN 0xff // Not used - because size code is 0x02 #define FLOPPY_MOTOR_TICKS 37 // ~2 seconds #define FLOPPY_FILLBYTE 0xf6 #define FLOPPY_GAPLEN 0x1B #define FLOPPY_FORMAT_GAPLEN 0x6c // New diskette parameter table adding 3 parameters from IBM // Since no provisions are made for multiple drive types, most // values in this table are ignored. I set parameters for 1.44M // floppy here struct floppy_ext_dbt_s diskette_param_table2 VAR16VISIBLE = { .dbt = { .specify1 = 0xAF, // step rate 12ms, head unload 240ms .specify2 = 0x02, // head load time 4ms, DMA used .shutoff_ticks = FLOPPY_MOTOR_TICKS, // ~2 seconds .bps_code = FLOPPY_SIZE_CODE, .sectors = 18, .interblock_len = FLOPPY_GAPLEN, .data_len = FLOPPY_DATALEN, .gap_len = FLOPPY_FORMAT_GAPLEN, .fill_byte = FLOPPY_FILLBYTE, .settle_time = 0x0F, // 15ms .startup_time = 0x08, // 1 second }, .max_track = 79, // maximum track .data_rate = 0, // data transfer rate .drive_type = 4, // drive type in cmos }; // Since no provisions are made for multiple drive types, most // values in this table are ignored. I set parameters for 1.44M // floppy here struct floppy_dbt_s diskette_param_table VAR16FIXED(0xefc7) = { .specify1 = 0xAF, .specify2 = 0x02, .shutoff_ticks = FLOPPY_MOTOR_TICKS, .bps_code = FLOPPY_SIZE_CODE, .sectors = 18, .interblock_len = FLOPPY_GAPLEN, .data_len = FLOPPY_DATALEN, .gap_len = FLOPPY_FORMAT_GAPLEN, .fill_byte = FLOPPY_FILLBYTE, .settle_time = 0x0F, .startup_time = 0x08, }; struct floppyinfo_s { struct chs_s chs; u8 config_data; u8 media_state; }; struct floppyinfo_s FloppyInfo[] VAR16VISIBLE = { // Unknown { {0, 0, 0}, 0x00, 0x00}, // 1 - 360KB, 5.25" - 2 heads, 40 tracks, 9 sectors { {2, 40, 9}, 0x00, 0x25}, // 2 - 1.2MB, 5.25" - 2 heads, 80 tracks, 15 sectors { {2, 80, 15}, 0x00, 0x25}, // 3 - 720KB, 3.5" - 2 heads, 80 tracks, 9 sectors { {2, 80, 9}, 0x00, 0x17}, // 4 - 1.44MB, 3.5" - 2 heads, 80 tracks, 18 sectors { {2, 80, 18}, 0x00, 0x17}, // 5 - 2.88MB, 3.5" - 2 heads, 80 tracks, 36 sectors { {2, 80, 36}, 0xCC, 0xD7}, // 6 - 160k, 5.25" - 1 heads, 40 tracks, 8 sectors { {1, 40, 8}, 0x00, 0x27}, // 7 - 180k, 5.25" - 1 heads, 40 tracks, 9 sectors { {1, 40, 9}, 0x00, 0x27}, // 8 - 320k, 5.25" - 2 heads, 40 tracks, 8 sectors { {2, 40, 8}, 0x00, 0x27}, }; struct drive_s * init_floppy(int floppyid, int ftype) { if (ftype <= 0 || ftype >= ARRAY_SIZE(FloppyInfo)) { dprintf(1, "Bad floppy type %d\n", ftype); return NULL; } struct drive_s *drive_g = malloc_fseg(sizeof(*drive_g)); if (!drive_g) { warn_noalloc(); return NULL; } memset(drive_g, 0, sizeof(*drive_g)); drive_g->cntl_id = floppyid; drive_g->type = DTYPE_FLOPPY; drive_g->blksize = DISK_SECTOR_SIZE; drive_g->floppy_type = ftype; drive_g->sectors = (u64)-1; memcpy(&drive_g->lchs, &FloppyInfo[ftype].chs , sizeof(FloppyInfo[ftype].chs)); return drive_g; } static void addFloppy(int floppyid, int ftype) { struct drive_s *drive_g = init_floppy(floppyid, ftype); if (!drive_g) return; char *desc = znprintf(MAXDESCSIZE, "Floppy [drive %c]", 'A' + floppyid); struct pci_device *pci = pci_find_class(PCI_CLASS_BRIDGE_ISA); /* isa-to-pci bridge */ int prio = bootprio_find_fdc_device(pci, PORT_FD_BASE, floppyid); boot_add_floppy(drive_g, desc, prio); } void floppy_setup(void) { if (! CONFIG_FLOPPY) return; dprintf(3, "init floppy drives\n"); if (CONFIG_COREBOOT) { // XXX - disable floppies on coreboot for now. } else { u8 type = inb_cmos(CMOS_FLOPPY_DRIVE_TYPE); if (type & 0xf0) addFloppy(0, type >> 4); if (type & 0x0f) addFloppy(1, type & 0x0f); } outb(0x02, PORT_DMA1_MASK_REG); enable_hwirq(6, FUNC16(entry_0e)); } // Find a floppy type that matches a given image size. int find_floppy_type(u32 size) { int i; for (i=1; icylinders * c->heads * c->spt * DISK_SECTOR_SIZE == size) return i; } return -1; } /**************************************************************** * Low-level floppy IO ****************************************************************/ static void floppy_reset_controller(void) { // Reset controller u8 val8 = inb(PORT_FD_DOR); outb(val8 & ~0x04, PORT_FD_DOR); outb(val8 | 0x04, PORT_FD_DOR); // Wait for controller to come out of reset while ((inb(PORT_FD_STATUS) & 0xc0) != 0x80) ; } static int wait_floppy_irq(void) { ASSERT16(); u8 v; for (;;) { if (!GET_BDA(floppy_motor_counter)) return -1; v = GET_BDA(floppy_recalibration_status); if (v & FRS_TIMEOUT) break; // Could use wait_irq() here, but that causes issues on // bochs, so use yield() instead. yield(); } v &= ~FRS_TIMEOUT; SET_BDA(floppy_recalibration_status, v); return 0; } static void floppy_prepare_controller(u8 floppyid) { CLEARBITS_BDA(floppy_recalibration_status, FRS_TIMEOUT); // turn on motor of selected drive, DMA & int enabled, normal operation u8 prev_reset = inb(PORT_FD_DOR) & 0x04; u8 dor = 0x10; if (floppyid) dor = 0x20; dor |= 0x0c; dor |= floppyid; outb(dor, PORT_FD_DOR); // reset the disk motor timeout value of INT 08 SET_BDA(floppy_motor_counter, FLOPPY_MOTOR_TICKS); // wait for drive readiness while ((inb(PORT_FD_STATUS) & 0xc0) != 0x80) ; if (!prev_reset) wait_floppy_irq(); } static int floppy_pio(u8 *cmd, u8 cmdlen) { floppy_prepare_controller(cmd[1] & 1); // send command to controller u8 i; for (i=0; ibuf_fl; // check for 64K boundary overrun u16 end = count - 1; u32 last_addr = addr + end; if ((addr >> 16) != (last_addr >> 16)) return DISK_RET_EBOUNDARY; u8 mode_register = 0x4a; // single mode, increment, autoinit disable, if (cmd[0] == 0xe6) // read mode_register = 0x46; //DEBUGF("floppy dma c2\n"); outb(0x06, PORT_DMA1_MASK_REG); outb(0x00, PORT_DMA1_CLEAR_FF_REG); // clear flip-flop outb(addr, PORT_DMA_ADDR_2); outb(addr>>8, PORT_DMA_ADDR_2); outb(0x00, PORT_DMA1_CLEAR_FF_REG); // clear flip-flop outb(end, PORT_DMA_CNT_2); outb(end>>8, PORT_DMA_CNT_2); // port 0b: DMA-1 Mode Register // transfer type=write, channel 2 outb(mode_register, PORT_DMA1_MODE_REG); // port 81: DMA-1 Page Register, channel 2 outb(addr>>16, PORT_DMA_PAGE_2); outb(0x02, PORT_DMA1_MASK_REG); // unmask channel 2 int ret = floppy_pio(cmd, cmdlen); if (ret) return DISK_RET_ETIMEOUT; // check port 3f4 for accessibility to status bytes if ((inb(PORT_FD_STATUS) & 0xc0) != 0xc0) return DISK_RET_ECONTROLLER; // read 7 return status bytes from controller u8 i; for (i=0; i<7; i++) { u8 v = inb(PORT_FD_DATA); cmd[i] = v; SET_BDA(floppy_return_status[i], v); } return DISK_RET_SUCCESS; } /**************************************************************** * Floppy media sense ****************************************************************/ static inline void set_diskette_current_cyl(u8 floppyid, u8 cyl) { SET_BDA(floppy_track[floppyid], cyl); } static void floppy_drive_recal(u8 floppyid) { // send Recalibrate command (2 bytes) to controller u8 data[12]; data[0] = 0x07; // 07: Recalibrate data[1] = floppyid; // 0=drive0, 1=drive1 floppy_pio(data, 2); SETBITS_BDA(floppy_recalibration_status, 1<floppy_type); SET_BDA(floppy_last_data_rate, GET_GLOBAL(FloppyInfo[ftype].config_data)); u8 floppyid = GET_GLOBAL(drive_g->cntl_id); SET_BDA(floppy_media_state[floppyid] , GET_GLOBAL(FloppyInfo[ftype].media_state)); return DISK_RET_SUCCESS; } static int check_recal_drive(struct drive_s *drive_g) { u8 floppyid = GET_GLOBAL(drive_g->cntl_id); if ((GET_BDA(floppy_recalibration_status) & (1<lba; u32 tmp = lba + 1; u16 nlspt = GET_GLOBAL(op->drive_g->lchs.spt); *sector = tmp % nlspt; tmp /= nlspt; u16 nlh = GET_GLOBAL(op->drive_g->lchs.heads); *head = tmp % nlh; tmp /= nlh; *track = tmp; } // diskette controller reset static int floppy_reset(struct disk_op_s *op) { u8 floppyid = GET_GLOBAL(op->drive_g->cntl_id); set_diskette_current_cyl(floppyid, 0); // current cylinder return DISK_RET_SUCCESS; } // Read Diskette Sectors static int floppy_read(struct disk_op_s *op) { int res = check_recal_drive(op->drive_g); if (res) goto fail; u8 track, sector, head; lba2chs(op, &track, §or, &head); // send read-normal-data command (9 bytes) to controller u8 floppyid = GET_GLOBAL(op->drive_g->cntl_id); u8 data[12]; data[0] = 0xe6; // e6: read normal data data[1] = (head << 2) | floppyid; // HD DR1 DR2 data[2] = track; data[3] = head; data[4] = sector; data[5] = FLOPPY_SIZE_CODE; data[6] = sector + op->count - 1; // last sector to read on track data[7] = FLOPPY_GAPLEN; data[8] = FLOPPY_DATALEN; res = floppy_cmd(op, op->count * DISK_SECTOR_SIZE, data, 9); if (res) goto fail; if (data[0] & 0xc0) { res = DISK_RET_ECONTROLLER; goto fail; } // ??? should track be new val from return_status[3] ? set_diskette_current_cyl(floppyid, track); return DISK_RET_SUCCESS; fail: op->count = 0; // no sectors read return res; } // Write Diskette Sectors static int floppy_write(struct disk_op_s *op) { int res = check_recal_drive(op->drive_g); if (res) goto fail; u8 track, sector, head; lba2chs(op, &track, §or, &head); // send write-normal-data command (9 bytes) to controller u8 floppyid = GET_GLOBAL(op->drive_g->cntl_id); u8 data[12]; data[0] = 0xc5; // c5: write normal data data[1] = (head << 2) | floppyid; // HD DR1 DR2 data[2] = track; data[3] = head; data[4] = sector; data[5] = FLOPPY_SIZE_CODE; data[6] = sector + op->count - 1; // last sector to write on track data[7] = FLOPPY_GAPLEN; data[8] = FLOPPY_DATALEN; res = floppy_cmd(op, op->count * DISK_SECTOR_SIZE, data, 9); if (res) goto fail; if (data[0] & 0xc0) { if (data[1] & 0x02) res = DISK_RET_EWRITEPROTECT; else res = DISK_RET_ECONTROLLER; goto fail; } // ??? should track be new val from return_status[3] ? set_diskette_current_cyl(floppyid, track); return DISK_RET_SUCCESS; fail: op->count = 0; // no sectors read return res; } // Verify Diskette Sectors static int floppy_verify(struct disk_op_s *op) { int res = check_recal_drive(op->drive_g); if (res) goto fail; u8 track, sector, head; lba2chs(op, &track, §or, &head); // ??? should track be new val from return_status[3] ? u8 floppyid = GET_GLOBAL(op->drive_g->cntl_id); set_diskette_current_cyl(floppyid, track); return DISK_RET_SUCCESS; fail: op->count = 0; // no sectors read return res; } // format diskette track static int floppy_format(struct disk_op_s *op) { int ret = check_recal_drive(op->drive_g); if (ret) return ret; u8 head = op->lba; // send format-track command (6 bytes) to controller u8 floppyid = GET_GLOBAL(op->drive_g->cntl_id); u8 data[12]; data[0] = 0x4d; // 4d: format track data[1] = (head << 2) | floppyid; // HD DR1 DR2 data[2] = FLOPPY_SIZE_CODE; data[3] = op->count; // number of sectors per track data[4] = FLOPPY_FORMAT_GAPLEN; data[5] = FLOPPY_FILLBYTE; ret = floppy_cmd(op, op->count * 4, data, 6); if (ret) return ret; if (data[0] & 0xc0) { if (data[1] & 0x02) return DISK_RET_EWRITEPROTECT; return DISK_RET_ECONTROLLER; } set_diskette_current_cyl(floppyid, 0); return DISK_RET_SUCCESS; } int process_floppy_op(struct disk_op_s *op) { if (!CONFIG_FLOPPY) return 0; switch (op->command) { case CMD_RESET: return floppy_reset(op); case CMD_READ: return floppy_read(op); case CMD_WRITE: return floppy_write(op); case CMD_VERIFY: return floppy_verify(op); case CMD_FORMAT: return floppy_format(op); default: op->count = 0; return DISK_RET_EPARAM; } } /**************************************************************** * HW irqs ****************************************************************/ // INT 0Eh Diskette Hardware ISR Entry Point void VISIBLE16 handle_0e(void) { debug_isr(DEBUG_ISR_0e); if (! CONFIG_FLOPPY) goto done; if ((inb(PORT_FD_STATUS) & 0xc0) != 0xc0) { outb(0x08, PORT_FD_DATA); // sense interrupt status while ((inb(PORT_FD_STATUS) & 0xc0) != 0xc0) ; do { inb(PORT_FD_DATA); } while ((inb(PORT_FD_STATUS) & 0xc0) == 0xc0); } // diskette interrupt has occurred SETBITS_BDA(floppy_recalibration_status, FRS_TIMEOUT); done: eoi_pic1(); } // Called from int08 handler. void floppy_tick(void) { if (! CONFIG_FLOPPY) return; // time to turn off drive(s)? u8 fcount = GET_BDA(floppy_motor_counter); if (fcount) { fcount--; SET_BDA(floppy_motor_counter, fcount); if (fcount == 0) // turn motor(s) off outb(inb(PORT_FD_DOR) & 0xcf, PORT_FD_DOR); } }