// Low level ATA disk access // // Copyright (C) 2008 Kevin O'Connor // Copyright (C) 2002 MandrakeSoft S.A. // // This file may be distributed under the terms of the GNU LGPLv3 license. #include "types.h" // u8 #include "ioport.h" // inb #include "util.h" // dprintf #include "cmos.h" // inb_cmos #include "pic.h" // enable_hwirq #include "biosvar.h" // GET_EBDA #include "pci.h" // pci_find_class #include "pci_ids.h" // PCI_CLASS_STORAGE_OTHER #include "pci_regs.h" // PCI_INTERRUPT_LINE #include "boot.h" // add_bcv_hd #include "disk.h" // struct ata_s #include "atabits.h" // ATA_CB_STAT #define TIMEOUT 0 #define BSY 1 #define NOT_BSY 2 #define NOT_BSY_DRQ 3 #define NOT_BSY_NOT_DRQ 4 #define NOT_BSY_RDY 5 #define IDE_SECTOR_SIZE 512 #define CDROM_SECTOR_SIZE 2048 #define IDE_TIMEOUT 32000 //32 seconds max for IDE ops struct ata_s ATA VAR16_32; /**************************************************************** * Helper functions ****************************************************************/ // Wait for the specified ide state static inline int await_ide(u8 mask, u8 flags, u16 base, u16 timeout) { u64 end = calc_future_tsc(timeout); for (;;) { u8 status = inb(base+ATA_CB_STAT); if ((status & mask) == flags) return status; if (rdtscll() > end) { dprintf(1, "IDE time out\n"); return -1; } } } // Wait for the device to be not-busy. static int await_not_bsy(u16 base) { return await_ide(ATA_CB_STAT_BSY, 0, base, IDE_TIMEOUT); } // Wait for the device to be ready. static int await_rdy(u16 base) { return await_ide(ATA_CB_STAT_RDY, ATA_CB_STAT_RDY, base, IDE_TIMEOUT); } // Wait for ide state - pauses for one ata cycle first. static inline int pause_await_not_bsy(u16 iobase1, u16 iobase2) { // Wait one PIO transfer cycle. inb(iobase2 + ATA_CB_ASTAT); return await_not_bsy(iobase1); } // Wait for ide state - pause for 400ns first. static inline int ndelay_await_not_bsy(u16 iobase1) { ndelay(400); return await_not_bsy(iobase1); } // Reset a drive void ata_reset(int driveid) { u8 channel = driveid / 2; u8 slave = driveid % 2; u16 iobase1 = GET_GLOBAL(ATA.channels[channel].iobase1); u16 iobase2 = GET_GLOBAL(ATA.channels[channel].iobase2); dprintf(6, "ata_reset driveid=%d\n", driveid); // Pulse SRST outb(ATA_CB_DC_HD15 | ATA_CB_DC_NIEN | ATA_CB_DC_SRST, iobase2+ATA_CB_DC); udelay(5); outb(ATA_CB_DC_HD15 | ATA_CB_DC_NIEN, iobase2+ATA_CB_DC); mdelay(2); // wait for device to become not busy. int status = await_not_bsy(iobase1); if (status < 0) goto done; if (slave) { // Change device. u64 end = calc_future_tsc(IDE_TIMEOUT); for (;;) { outb(ATA_CB_DH_DEV1, iobase1 + ATA_CB_DH); status = ndelay_await_not_bsy(iobase1); if (status < 0) goto done; if (inb(iobase1 + ATA_CB_DH) == ATA_CB_DH_DEV1) break; // Change drive request failed to take effect - retry. if (rdtscll() > end) { dprintf(1, "ata_reset slave time out\n"); goto done; } } } // On a user-reset request, wait for RDY if it is an ATA device. u8 type=GET_GLOBAL(ATA.devices[driveid].type); if (type == ATA_TYPE_ATA) status = await_rdy(iobase1); done: // Enable interrupts outb(ATA_CB_DC_HD15, iobase2+ATA_CB_DC); dprintf(6, "ata_reset exit status=%x\n", status); } /**************************************************************** * ATA send command ****************************************************************/ struct ata_pio_command { u8 feature; u8 sector_count; u8 lba_low; u8 lba_mid; u8 lba_high; u8 device; u8 command; u8 sector_count2; u8 lba_low2; u8 lba_mid2; u8 lba_high2; }; // Send an ata command to the drive. static int send_cmd(int driveid, struct ata_pio_command *cmd) { u8 channel = driveid / 2; u8 slave = driveid % 2; u16 iobase1 = GET_GLOBAL(ATA.channels[channel].iobase1); u16 iobase2 = GET_GLOBAL(ATA.channels[channel].iobase2); // Disable interrupts outb(ATA_CB_DC_HD15 | ATA_CB_DC_NIEN, iobase2 + ATA_CB_DC); // Select device int status = await_not_bsy(iobase1); if (status < 0) return status; u8 newdh = ((cmd->device & ~ATA_CB_DH_DEV1) | (slave ? ATA_CB_DH_DEV1 : ATA_CB_DH_DEV0)); u8 olddh = inb(iobase1 + ATA_CB_DH); outb(newdh, iobase1 + ATA_CB_DH); if ((olddh ^ newdh) & (1<<4)) { // Was a device change - wait for device to become not busy. status = ndelay_await_not_bsy(iobase1); if (status < 0) return status; } if (cmd->command & 0x04) { outb(0x00, iobase1 + ATA_CB_FR); outb(cmd->sector_count2, iobase1 + ATA_CB_SC); outb(cmd->lba_low2, iobase1 + ATA_CB_SN); outb(cmd->lba_mid2, iobase1 + ATA_CB_CL); outb(cmd->lba_high2, iobase1 + ATA_CB_CH); } outb(cmd->feature, iobase1 + ATA_CB_FR); outb(cmd->sector_count, iobase1 + ATA_CB_SC); outb(cmd->lba_low, iobase1 + ATA_CB_SN); outb(cmd->lba_mid, iobase1 + ATA_CB_CL); outb(cmd->lba_high, iobase1 + ATA_CB_CH); outb(cmd->command, iobase1 + ATA_CB_CMD); status = ndelay_await_not_bsy(iobase1); if (status < 0) return status; if (status & ATA_CB_STAT_ERR) { dprintf(6, "send_cmd : read error (status=%02x err=%02x)\n" , status, inb(iobase1 + ATA_CB_ERR)); return -4; } if (!(status & ATA_CB_STAT_DRQ)) { dprintf(6, "send_cmd : DRQ not set (status %02x)\n", status); return -5; } return 0; } /**************************************************************** * ATA transfers ****************************************************************/ // Read and discard x number of bytes from an io channel. static void insx_discard(int iobase1, int bytes) { int count, i; if (CONFIG_ATA_PIO32) { count = bytes / 4; for (i=0; idriveid, op->command == ATA_CMD_WRITE_SECTORS , op->count, IDE_SECTOR_SIZE, 0, 0, op->buf_fl); } static noinline int ata_transfer_cdrom(const struct disk_op_s *op) { return ata_transfer(op->driveid, 0, op->count, CDROM_SECTOR_SIZE , 0, 0, op->buf_fl); } static noinline int ata_transfer_cdemu(const struct disk_op_s *op, int before, int after) { int vcount = op->count * 4 - before - after; int ret = ata_transfer(op->driveid, 0, op->count, CDROM_SECTOR_SIZE , before*512, after*512, op->buf_fl); if (ret) { SET_EBDA(sector_count, 0); return ret; } SET_EBDA(sector_count, vcount); return 0; } /**************************************************************** * ATA hard drive functions ****************************************************************/ static int send_cmd_disk(const struct disk_op_s *op) { u64 lba = op->lba; struct ata_pio_command cmd; memset(&cmd, 0, sizeof(cmd)); cmd.command = op->command; if (op->count >= (1<<8) || lba + op->count >= (1<<28)) { cmd.sector_count2 = op->count >> 8; cmd.lba_low2 = lba >> 24; cmd.lba_mid2 = lba >> 32; cmd.lba_high2 = lba >> 40; cmd.command |= 0x04; lba &= 0xffffff; } cmd.feature = 0; cmd.sector_count = op->count; cmd.lba_low = lba; cmd.lba_mid = lba >> 8; cmd.lba_high = lba >> 16; cmd.device = ((lba >> 24) & 0xf) | ATA_CB_DH_LBA; return send_cmd(op->driveid, &cmd); } // Read/write count blocks from a harddrive. int ata_cmd_data(struct disk_op_s *op) { int ret = send_cmd_disk(op); if (ret) return ret; return ata_transfer_disk(op); } /**************************************************************** * ATAPI functions ****************************************************************/ // Low-level atapi command transmit function. static int send_atapi_cmd(int driveid, u8 *cmdbuf, u8 cmdlen, u16 blocksize) { u8 channel = driveid / 2; u16 iobase1 = GET_GLOBAL(ATA.channels[channel].iobase1); u16 iobase2 = GET_GLOBAL(ATA.channels[channel].iobase2); struct ata_pio_command cmd; cmd.sector_count = 0; cmd.feature = 0; cmd.lba_low = 0; cmd.lba_mid = blocksize; cmd.lba_high = blocksize >> 8; cmd.device = 0; cmd.command = ATA_CMD_PACKET; int ret = send_cmd(driveid, &cmd); if (ret) return ret; // Send command to device outsw_fl(iobase1, MAKE_FLATPTR(GET_SEG(SS), cmdbuf), cmdlen / 2); int status = pause_await_not_bsy(iobase1, iobase2); if (status < 0) return status; if (status & ATA_CB_STAT_ERR) { u8 err = inb(iobase1 + ATA_CB_ERR); // skip "Not Ready" if (err != 0x20) dprintf(6, "send_atapi_cmd : read error (status=%02x err=%02x)\n" , status, err); return -2; } if (!(status & ATA_CB_STAT_DRQ)) { dprintf(6, "send_atapi_cmd : DRQ not set (status %02x)\n", status); return -3; } return 0; } // Low-level cdrom read atapi command transmit function. static int send_cmd_cdrom(const struct disk_op_s *op) { u8 atacmd[12]; memset(atacmd, 0, sizeof(atacmd)); atacmd[0]=0x28; // READ command atacmd[7]=(op->count & 0xff00) >> 8; // Sectors atacmd[8]=(op->count & 0x00ff); atacmd[2]=(op->lba & 0xff000000) >> 24; // LBA atacmd[3]=(op->lba & 0x00ff0000) >> 16; atacmd[4]=(op->lba & 0x0000ff00) >> 8; atacmd[5]=(op->lba & 0x000000ff); return send_atapi_cmd(op->driveid, atacmd, sizeof(atacmd) , CDROM_SECTOR_SIZE); } // Read sectors from the cdrom. int cdrom_read(struct disk_op_s *op) { int ret = send_cmd_cdrom(op); if (ret) return ret; return ata_transfer_cdrom(op); } // Pretend the cdrom has 512 byte sectors (instead of 2048) and read // sectors. int cdrom_read_512(struct disk_op_s *op) { u32 vlba = op->lba; u32 vcount = op->count; u32 lba = op->lba = vlba / 4; u32 velba = vlba + vcount - 1; u32 elba = velba / 4; op->count = elba - lba + 1; int before = vlba % 4; int after = 3 - (velba % 4); dprintf(16, "cdrom_read_512: id=%d vlba=%d vcount=%d buf=%p lba=%d elba=%d" " count=%d before=%d after=%d\n" , op->driveid, vlba, vcount, op->buf_fl, lba, elba , op->count, before, after); int ret = send_cmd_cdrom(op); if (ret) return ret; return ata_transfer_cdemu(op, before, after); } // Send a simple atapi command to a drive. int ata_cmd_packet(int driveid, u8 *cmdbuf, u8 cmdlen , u32 length, void *buf_fl) { int ret = send_atapi_cmd(driveid, cmdbuf, cmdlen, length); if (ret) return ret; return ata_transfer(driveid, 0, 1, length, 0, 0, buf_fl); } /**************************************************************** * Disk geometry translation ****************************************************************/ static u8 get_translation(int driveid) { if (! CONFIG_COREBOOT) { // Emulators pass in the translation info via nvram. u8 channel = driveid / 2; u8 translation = inb_cmos(CMOS_BIOS_DISKTRANSFLAG + channel/2); translation >>= 2 * (driveid % 4); translation &= 0x03; return translation; } // On COREBOOT, use a heuristic to determine translation type. u16 heads = GET_GLOBAL(ATA.devices[driveid].pchs.heads); u16 cylinders = GET_GLOBAL(ATA.devices[driveid].pchs.cylinders); u16 spt = GET_GLOBAL(ATA.devices[driveid].pchs.spt); if (cylinders <= 1024 && heads <= 16 && spt <= 63) return ATA_TRANSLATION_NONE; if (cylinders * heads <= 131072) return ATA_TRANSLATION_LARGE; return ATA_TRANSLATION_LBA; } static void setup_translation(int driveid) { u8 translation = get_translation(driveid); SET_GLOBAL(ATA.devices[driveid].translation, translation); u8 channel = driveid / 2; u8 slave = driveid % 2; u16 heads = GET_GLOBAL(ATA.devices[driveid].pchs.heads); u16 cylinders = GET_GLOBAL(ATA.devices[driveid].pchs.cylinders); u16 spt = GET_GLOBAL(ATA.devices[driveid].pchs.spt); u64 sectors = GET_GLOBAL(ATA.devices[driveid].sectors); dprintf(1, "ata%d-%d: PCHS=%u/%d/%d translation=" , channel, slave, cylinders, heads, spt); switch (translation) { case ATA_TRANSLATION_NONE: dprintf(1, "none"); break; case ATA_TRANSLATION_LBA: dprintf(1, "lba"); spt = 63; if (sectors > 63*255*1024) { heads = 255; cylinders = 1024; break; } u32 sect = (u32)sectors / 63; heads = sect / 1024; if (heads>128) heads = 255; else if (heads>64) heads = 128; else if (heads>32) heads = 64; else if (heads>16) heads = 32; else heads = 16; cylinders = sect / heads; break; case ATA_TRANSLATION_RECHS: dprintf(1, "r-echs"); // Take care not to overflow if (heads==16) { if (cylinders>61439) cylinders=61439; heads=15; cylinders = (u16)((u32)(cylinders)*16/15); } // then go through the large bitshift process case ATA_TRANSLATION_LARGE: if (translation == ATA_TRANSLATION_LARGE) dprintf(1, "large"); while (cylinders > 1024) { cylinders >>= 1; heads <<= 1; // If we max out the head count if (heads > 127) break; } break; } // clip to 1024 cylinders in lchs if (cylinders > 1024) cylinders = 1024; dprintf(1, " LCHS=%d/%d/%d\n", cylinders, heads, spt); SET_GLOBAL(ATA.devices[driveid].lchs.heads, heads); SET_GLOBAL(ATA.devices[driveid].lchs.cylinders, cylinders); SET_GLOBAL(ATA.devices[driveid].lchs.spt, spt); } /**************************************************************** * ATA detect and init ****************************************************************/ // Extract common information from IDENTIFY commands. static void extract_identify(int driveid, u16 *buffer) { dprintf(3, "Identify w0=%x w2=%x\n", buffer[0], buffer[2]); // Read model name char *model = ATA.devices[driveid].model; int maxsize = ARRAY_SIZE(ATA.devices[driveid].model); int i; for (i=0; i> 8; model[i*2+1] = v & 0xff; } model[maxsize-1] = 0x00; // Trim trailing spaces from model name. for (i=maxsize-2; i>0 && model[i] == 0x20; i--) model[i] = 0x00; // Extract ATA/ATAPI version. u16 ataversion = buffer[80]; u8 version; for (version=15; version>0; version--) if (ataversion & (1<> 8) & 0x1f); SET_GLOBAL(ATA.devices[driveid].blksize, CDROM_SECTOR_SIZE); // fill cdidmap u8 cdcount = GET_GLOBAL(ATA.cdcount); SET_GLOBAL(ATA.idmap[1][cdcount], driveid); SET_GLOBAL(ATA.cdcount, cdcount+1); // Report drive info to user. u8 channel = driveid / 2; u8 slave = driveid % 2; printf("ata%d-%d: %s ATAPI-%d %s\n", channel, slave , ATA.devices[driveid].model, ATA.devices[driveid].version , (ATA.devices[driveid].device == ATA_DEVICE_CDROM ? "CD-Rom/DVD-Rom" : "Device")); return 0; } static int init_drive_ata(int driveid, u16 *buffer) { // Send an IDENTIFY_DEVICE command to device memset(buffer, 0, IDE_SECTOR_SIZE); struct disk_op_s dop; dop.driveid = driveid; dop.command = ATA_CMD_IDENTIFY_DEVICE; dop.count = 1; dop.lba = 1; dop.buf_fl = MAKE_FLATPTR(GET_SEG(SS), buffer); int ret = ata_cmd_data(&dop); if (ret) return ret; // Success - setup as ATA. extract_identify(driveid, buffer); SET_GLOBAL(ATA.devices[driveid].type, ATA_TYPE_ATA); SET_GLOBAL(ATA.devices[driveid].device, ATA_DEVICE_HD); SET_GLOBAL(ATA.devices[driveid].blksize, IDE_SECTOR_SIZE); SET_GLOBAL(ATA.devices[driveid].pchs.cylinders, buffer[1]); SET_GLOBAL(ATA.devices[driveid].pchs.heads, buffer[3]); SET_GLOBAL(ATA.devices[driveid].pchs.spt, buffer[6]); u64 sectors; if (buffer[83] & (1 << 10)) // word 83 - lba48 support sectors = *(u64*)&buffer[100]; // word 100-103 else sectors = *(u32*)&buffer[60]; // word 60 and word 61 SET_GLOBAL(ATA.devices[driveid].sectors, sectors); // Setup disk geometry translation. setup_translation(driveid); // Report drive info to user. u8 channel = driveid / 2; u8 slave = driveid % 2; char *model = ATA.devices[driveid].model; printf("ata%d-%d: %s ATA-%d Hard-Disk ", channel, slave, model , ATA.devices[driveid].version); u64 sizeinmb = sectors >> 11; if (sizeinmb < (1 << 16)) printf("(%u MiBytes)\n", (u32)sizeinmb); else printf("(%u GiBytes)\n", (u32)(sizeinmb >> 10)); // Register with bcv system. add_bcv_hd(driveid, model); return 0; } static int powerup_await_non_bsy(u16 base, u64 end) { u8 orstatus = 0; u8 status; for (;;) { status = inb(base+ATA_CB_STAT); if (!(status & ATA_CB_STAT_BSY)) break; orstatus |= status; if (orstatus == 0xff) { dprintf(1, "powerup IDE floating\n"); return orstatus; } if (rdtscll() > end) { dprintf(1, "powerup IDE time out\n"); return -1; } } dprintf(6, "powerup iobase=%x st=%x\n", base, status); return status; } static void ata_detect() { // Device detection u64 end = calc_future_tsc(IDE_TIMEOUT); int driveid, last_reset_driveid=-1; for(driveid=0; driveid= ARRAY_SIZE(ATA.channels)) break; u8 irq = pci_config_readb(bdf, PCI_INTERRUPT_LINE); SET_GLOBAL(ATA.channels[count].irq, irq); SET_GLOBAL(ATA.channels[count].pci_bdf, bdf); u8 prog_if = pci_config_readb(bdf, PCI_CLASS_PROG); u32 port1, port2; if (prog_if & 1) { port1 = pci_config_readl(bdf, PCI_BASE_ADDRESS_0) & ~3; port2 = pci_config_readl(bdf, PCI_BASE_ADDRESS_1) & ~3; } else { port1 = 0x1f0; port2 = 0x3f0; } SET_GLOBAL(ATA.channels[count].iobase1, port1); SET_GLOBAL(ATA.channels[count].iobase2, port2); dprintf(1, "ATA controller %d at %x/%x (dev %x prog_if %x)\n" , count, port1, port2, bdf, prog_if); count++; if (prog_if & 4) { port1 = pci_config_readl(bdf, PCI_BASE_ADDRESS_2) & ~3; port2 = pci_config_readl(bdf, PCI_BASE_ADDRESS_3) & ~3; } else { port1 = 0x170; port2 = 0x370; } dprintf(1, "ATA controller %d at %x/%x (dev %x prog_if %x)\n" , count, port1, port2, bdf, prog_if); SET_GLOBAL(ATA.channels[count].iobase1, port1); SET_GLOBAL(ATA.channels[count].iobase2, port2); count++; } } void hard_drive_setup() { if (!CONFIG_ATA) return; dprintf(3, "init hard drives\n"); ata_init(); ata_detect(); SET_BDA(disk_control_byte, 0xc0); enable_hwirq(14, entry_76); } /**************************************************************** * Drive mapping ****************************************************************/ // Fill in Fixed Disk Parameter Table (located in ebda). static void fill_fdpt(int driveid) { if (driveid > 1) return; u16 nlc = GET_GLOBAL(ATA.devices[driveid].lchs.cylinders); u16 nlh = GET_GLOBAL(ATA.devices[driveid].lchs.heads); u16 nlspt = GET_GLOBAL(ATA.devices[driveid].lchs.spt); u16 npc = GET_GLOBAL(ATA.devices[driveid].pchs.cylinders); u16 nph = GET_GLOBAL(ATA.devices[driveid].pchs.heads); u16 npspt = GET_GLOBAL(ATA.devices[driveid].pchs.spt); struct fdpt_s *fdpt = &get_ebda_ptr()->fdpt[driveid]; fdpt->precompensation = 0xffff; fdpt->drive_control_byte = 0xc0 | ((nph > 8) << 3); fdpt->landing_zone = npc; fdpt->cylinders = nlc; fdpt->heads = nlh; fdpt->sectors = nlspt; if (nlc == npc && nlh == nph && nlspt == npspt) // no logical CHS mapping used, just physical CHS // use Standard Fixed Disk Parameter Table (FDPT) return; // complies with Phoenix style Translated Fixed Disk Parameter // Table (FDPT) fdpt->phys_cylinders = npc; fdpt->phys_heads = nph; fdpt->phys_sectors = npspt; fdpt->a0h_signature = 0xa0; // Checksum structure. u8 sum = checksum(fdpt, sizeof(*fdpt)-1); fdpt->checksum = -sum; } // Map a drive (that was registered via add_bcv_hd) void map_drive(int driveid) { // fill hdidmap u8 hdcount = GET_BDA(hdcount); dprintf(3, "Mapping driveid %d to %d\n", driveid, hdcount); SET_GLOBAL(ATA.idmap[0][hdcount], driveid); SET_BDA(hdcount, hdcount + 1); // Fill "fdpt" structure. fill_fdpt(hdcount); }