// Low level ATA disk access // // Copyright (C) 2008,2009 Kevin O'Connor // Copyright (C) 2002 MandrakeSoft S.A. // // This file may be distributed under the terms of the GNU LGPLv3 license. #include "types.h" // u8 #include "ioport.h" // inb #include "util.h" // dprintf #include "cmos.h" // inb_cmos #include "pic.h" // enable_hwirq #include "biosvar.h" // GET_EBDA #include "pci.h" // foreachpci #include "pci_ids.h" // PCI_CLASS_STORAGE_OTHER #include "pci_regs.h" // PCI_INTERRUPT_LINE #include "boot.h" // add_bcv_hd #include "disk.h" // struct ata_s #include "ata.h" // ATA_CB_STAT #include "blockcmd.h" // CDB_CMD_READ_10 #define IDE_TIMEOUT 32000 //32 seconds max for IDE ops struct ata_channel_s ATA_channels[CONFIG_MAX_ATA_INTERFACES] VAR16VISIBLE; /**************************************************************** * Helper functions ****************************************************************/ // Wait for the specified ide state static inline int await_ide(u8 mask, u8 flags, u16 base, u16 timeout) { u64 end = calc_future_tsc(timeout); for (;;) { u8 status = inb(base+ATA_CB_STAT); if ((status & mask) == flags) return status; if (check_time(end)) { warn_timeout(); return -1; } yield(); } } // Wait for the device to be not-busy. static int await_not_bsy(u16 base) { return await_ide(ATA_CB_STAT_BSY, 0, base, IDE_TIMEOUT); } // Wait for the device to be ready. static int await_rdy(u16 base) { return await_ide(ATA_CB_STAT_RDY, ATA_CB_STAT_RDY, base, IDE_TIMEOUT); } // Wait for ide state - pauses for one ata cycle first. static inline int pause_await_not_bsy(u16 iobase1, u16 iobase2) { // Wait one PIO transfer cycle. inb(iobase2 + ATA_CB_ASTAT); return await_not_bsy(iobase1); } // Wait for ide state - pause for 400ns first. static inline int ndelay_await_not_bsy(u16 iobase1) { ndelay(400); return await_not_bsy(iobase1); } // Reset a drive static void ata_reset(struct drive_s *drive_g) { u8 ataid = GET_GLOBAL(drive_g->cntl_id); u8 channel = ataid / 2; u8 slave = ataid % 2; u16 iobase1 = GET_GLOBAL(ATA_channels[channel].iobase1); u16 iobase2 = GET_GLOBAL(ATA_channels[channel].iobase2); dprintf(6, "ata_reset drive=%p\n", drive_g); // Pulse SRST outb(ATA_CB_DC_HD15 | ATA_CB_DC_NIEN | ATA_CB_DC_SRST, iobase2+ATA_CB_DC); udelay(5); outb(ATA_CB_DC_HD15 | ATA_CB_DC_NIEN, iobase2+ATA_CB_DC); msleep(2); // wait for device to become not busy. int status = await_not_bsy(iobase1); if (status < 0) goto done; if (slave) { // Change device. u64 end = calc_future_tsc(IDE_TIMEOUT); for (;;) { outb(ATA_CB_DH_DEV1, iobase1 + ATA_CB_DH); status = ndelay_await_not_bsy(iobase1); if (status < 0) goto done; if (inb(iobase1 + ATA_CB_DH) == ATA_CB_DH_DEV1) break; // Change drive request failed to take effect - retry. if (check_time(end)) { warn_timeout(); goto done; } } } else { // QEMU doesn't reset dh on reset, so set it explicitly. outb(ATA_CB_DH_DEV0, iobase1 + ATA_CB_DH); } // On a user-reset request, wait for RDY if it is an ATA device. u8 type=GET_GLOBAL(drive_g->type); if (type == DTYPE_ATA) status = await_rdy(iobase1); done: // Enable interrupts outb(ATA_CB_DC_HD15, iobase2+ATA_CB_DC); dprintf(6, "ata_reset exit status=%x\n", status); } // Check for drive RDY for 16bit interface command. static int isready(struct drive_s *drive_g) { // Read the status from controller u8 ataid = GET_GLOBAL(drive_g->cntl_id); u8 channel = ataid / 2; u16 iobase1 = GET_GLOBAL(ATA_channels[channel].iobase1); u8 status = inb(iobase1 + ATA_CB_STAT); if ((status & (ATA_CB_STAT_BSY|ATA_CB_STAT_RDY)) == ATA_CB_STAT_RDY) return DISK_RET_SUCCESS; return DISK_RET_ENOTREADY; } // Default 16bit command demuxer for ATA and ATAPI devices. static int process_ata_misc_op(struct disk_op_s *op) { if (!CONFIG_ATA) return 0; switch (op->command) { case CMD_RESET: ata_reset(op->drive_g); return DISK_RET_SUCCESS; case CMD_ISREADY: return isready(op->drive_g); case CMD_FORMAT: case CMD_VERIFY: case CMD_SEEK: return DISK_RET_SUCCESS; default: op->count = 0; return DISK_RET_EPARAM; } } /**************************************************************** * ATA send command ****************************************************************/ struct ata_pio_command { u8 feature; u8 sector_count; u8 lba_low; u8 lba_mid; u8 lba_high; u8 device; u8 command; u8 feature2; u8 sector_count2; u8 lba_low2; u8 lba_mid2; u8 lba_high2; }; // Send an ata command to the drive. static int send_cmd(struct drive_s *drive_g, struct ata_pio_command *cmd) { u8 ataid = GET_GLOBAL(drive_g->cntl_id); u8 channel = ataid / 2; u8 slave = ataid % 2; u16 iobase1 = GET_GLOBAL(ATA_channels[channel].iobase1); // Select device int status = await_not_bsy(iobase1); if (status < 0) return status; u8 newdh = ((cmd->device & ~ATA_CB_DH_DEV1) | (slave ? ATA_CB_DH_DEV1 : ATA_CB_DH_DEV0)); u8 olddh = inb(iobase1 + ATA_CB_DH); outb(newdh, iobase1 + ATA_CB_DH); if ((olddh ^ newdh) & (1<<4)) { // Was a device change - wait for device to become not busy. status = ndelay_await_not_bsy(iobase1); if (status < 0) return status; } // Check for ATA_CMD_(READ|WRITE)_(SECTORS|DMA)_EXT commands. if ((cmd->command & ~0x11) == ATA_CMD_READ_SECTORS_EXT) { outb(cmd->feature2, iobase1 + ATA_CB_FR); outb(cmd->sector_count2, iobase1 + ATA_CB_SC); outb(cmd->lba_low2, iobase1 + ATA_CB_SN); outb(cmd->lba_mid2, iobase1 + ATA_CB_CL); outb(cmd->lba_high2, iobase1 + ATA_CB_CH); } outb(cmd->feature, iobase1 + ATA_CB_FR); outb(cmd->sector_count, iobase1 + ATA_CB_SC); outb(cmd->lba_low, iobase1 + ATA_CB_SN); outb(cmd->lba_mid, iobase1 + ATA_CB_CL); outb(cmd->lba_high, iobase1 + ATA_CB_CH); outb(cmd->command, iobase1 + ATA_CB_CMD); return 0; } // Wait for data after calling 'send_cmd'. static int ata_wait_data(u16 iobase1) { int status = ndelay_await_not_bsy(iobase1); if (status < 0) return status; if (status & ATA_CB_STAT_ERR) { dprintf(6, "send_cmd : read error (status=%02x err=%02x)\n" , status, inb(iobase1 + ATA_CB_ERR)); return -4; } if (!(status & ATA_CB_STAT_DRQ)) { dprintf(6, "send_cmd : DRQ not set (status %02x)\n", status); return -5; } return 0; } // Send an ata command that does not transfer any further data. int ata_cmd_nondata(struct drive_s *drive_g, struct ata_pio_command *cmd) { u8 ataid = GET_GLOBAL(drive_g->cntl_id); u8 channel = ataid / 2; u16 iobase1 = GET_GLOBAL(ATA_channels[channel].iobase1); u16 iobase2 = GET_GLOBAL(ATA_channels[channel].iobase2); // Disable interrupts outb(ATA_CB_DC_HD15 | ATA_CB_DC_NIEN, iobase2 + ATA_CB_DC); int ret = send_cmd(drive_g, cmd); if (ret) goto fail; ret = ndelay_await_not_bsy(iobase1); if (ret < 0) goto fail; if (ret & ATA_CB_STAT_ERR) { dprintf(6, "nondata cmd : read error (status=%02x err=%02x)\n" , ret, inb(iobase1 + ATA_CB_ERR)); ret = -4; goto fail; } if (ret & ATA_CB_STAT_DRQ) { dprintf(6, "nondata cmd : DRQ set (status %02x)\n", ret); ret = -5; goto fail; } fail: // Enable interrupts outb(ATA_CB_DC_HD15, iobase2+ATA_CB_DC); return ret; } /**************************************************************** * ATA PIO transfers ****************************************************************/ // Transfer 'op->count' blocks (of 'blocksize' bytes) to/from drive // 'op->drive_g'. static int ata_pio_transfer(struct disk_op_s *op, int iswrite, int blocksize) { dprintf(16, "ata_pio_transfer id=%p write=%d count=%d bs=%d buf=%p\n" , op->drive_g, iswrite, op->count, blocksize, op->buf_fl); u8 ataid = GET_GLOBAL(op->drive_g->cntl_id); u8 channel = ataid / 2; u16 iobase1 = GET_GLOBAL(ATA_channels[channel].iobase1); u16 iobase2 = GET_GLOBAL(ATA_channels[channel].iobase2); int count = op->count; void *buf_fl = op->buf_fl; int status; for (;;) { if (iswrite) { // Write data to controller dprintf(16, "Write sector id=%p dest=%p\n", op->drive_g, buf_fl); if (CONFIG_ATA_PIO32) outsl_fl(iobase1, buf_fl, blocksize / 4); else outsw_fl(iobase1, buf_fl, blocksize / 2); } else { // Read data from controller dprintf(16, "Read sector id=%p dest=%p\n", op->drive_g, buf_fl); if (CONFIG_ATA_PIO32) insl_fl(iobase1, buf_fl, blocksize / 4); else insw_fl(iobase1, buf_fl, blocksize / 2); } buf_fl += blocksize; status = pause_await_not_bsy(iobase1, iobase2); if (status < 0) { // Error op->count -= count; return status; } count--; if (!count) break; status &= (ATA_CB_STAT_BSY | ATA_CB_STAT_DRQ | ATA_CB_STAT_ERR); if (status != ATA_CB_STAT_DRQ) { dprintf(6, "ata_pio_transfer : more sectors left (status %02x)\n" , status); op->count -= count; return -6; } } status &= (ATA_CB_STAT_BSY | ATA_CB_STAT_DF | ATA_CB_STAT_DRQ | ATA_CB_STAT_ERR); if (!iswrite) status &= ~ATA_CB_STAT_DF; if (status != 0) { dprintf(6, "ata_pio_transfer : no sectors left (status %02x)\n", status); return -7; } return 0; } /**************************************************************** * ATA DMA transfers ****************************************************************/ #define BM_CMD 0 #define BM_CMD_MEMWRITE 0x08 #define BM_CMD_START 0x01 #define BM_STATUS 2 #define BM_STATUS_IRQ 0x04 #define BM_STATUS_ERROR 0x02 #define BM_STATUS_ACTIVE 0x01 #define BM_TABLE 4 struct sff_dma_prd { u32 buf_fl; u32 count; }; // Check if DMA available and setup transfer if so. static int ata_try_dma(struct disk_op_s *op, int iswrite, int blocksize) { if (! CONFIG_ATA_DMA) return -1; u32 dest = (u32)op->buf_fl; if (dest & 1) // Need minimum alignment of 1. return -1; u8 ataid = GET_GLOBAL(op->drive_g->cntl_id); u8 channel = ataid / 2; u16 iomaster = GET_GLOBAL(ATA_channels[channel].iomaster); if (! iomaster) return -1; u32 bytes = op->count * blocksize; if (! bytes) return -1; // Build PRD dma structure. struct sff_dma_prd *dma = MAKE_FLATPTR( get_ebda_seg() , (void*)offsetof(struct extended_bios_data_area_s, extra_stack)); struct sff_dma_prd *origdma = dma; while (bytes) { if (dma >= &origdma[16]) // Too many descriptors.. return -1; u32 count = bytes; if (count > 0x10000) count = 0x10000; u32 max = 0x10000 - (dest & 0xffff); if (count > max) count = max; SET_FLATPTR(dma->buf_fl, dest); bytes -= count; if (!bytes) // Last descriptor. count |= 1<<31; dprintf(16, "dma@%p: %08x %08x\n", dma, dest, count); dest += count; SET_FLATPTR(dma->count, count); dma++; } // Program bus-master controller. outl((u32)origdma, iomaster + BM_TABLE); u8 oldcmd = inb(iomaster + BM_CMD) & ~(BM_CMD_MEMWRITE|BM_CMD_START); outb(oldcmd | (iswrite ? 0x00 : BM_CMD_MEMWRITE), iomaster + BM_CMD); outb(BM_STATUS_ERROR|BM_STATUS_IRQ, iomaster + BM_STATUS); return 0; } // Transfer data using DMA. static int ata_dma_transfer(struct disk_op_s *op) { if (! CONFIG_ATA_DMA) return -1; dprintf(16, "ata_dma_transfer id=%p buf=%p\n" , op->drive_g, op->buf_fl); u8 ataid = GET_GLOBAL(op->drive_g->cntl_id); u8 channel = ataid / 2; u16 iomaster = GET_GLOBAL(ATA_channels[channel].iomaster); // Start bus-master controller. u8 oldcmd = inb(iomaster + BM_CMD); outb(oldcmd | BM_CMD_START, iomaster + BM_CMD); u64 end = calc_future_tsc(IDE_TIMEOUT); u8 status; for (;;) { status = inb(iomaster + BM_STATUS); if (status & BM_STATUS_IRQ) break; // Transfer in progress if (check_time(end)) { // Timeout. warn_timeout(); break; } yield(); } outb(oldcmd & ~BM_CMD_START, iomaster + BM_CMD); u16 iobase1 = GET_GLOBAL(ATA_channels[channel].iobase1); u16 iobase2 = GET_GLOBAL(ATA_channels[channel].iobase2); int idestatus = pause_await_not_bsy(iobase1, iobase2); if ((status & (BM_STATUS_IRQ|BM_STATUS_ACTIVE)) == BM_STATUS_IRQ && idestatus >= 0x00 && (idestatus & (ATA_CB_STAT_BSY | ATA_CB_STAT_DF | ATA_CB_STAT_DRQ | ATA_CB_STAT_ERR)) == 0x00) // Success. return 0; dprintf(6, "IDE DMA error (dma=%x ide=%x/%x/%x)\n", status, idestatus , inb(iobase2 + ATA_CB_ASTAT), inb(iobase1 + ATA_CB_ERR)); op->count = 0; return -1; } /**************************************************************** * ATA hard drive functions ****************************************************************/ // Transfer data to harddrive using PIO protocol. static int ata_pio_cmd_data(struct disk_op_s *op, int iswrite, struct ata_pio_command *cmd) { u8 ataid = GET_GLOBAL(op->drive_g->cntl_id); u8 channel = ataid / 2; u16 iobase1 = GET_GLOBAL(ATA_channels[channel].iobase1); u16 iobase2 = GET_GLOBAL(ATA_channels[channel].iobase2); // Disable interrupts outb(ATA_CB_DC_HD15 | ATA_CB_DC_NIEN, iobase2 + ATA_CB_DC); int ret = send_cmd(op->drive_g, cmd); if (ret) goto fail; ret = ata_wait_data(iobase1); if (ret) goto fail; ret = ata_pio_transfer(op, iswrite, DISK_SECTOR_SIZE); fail: // Enable interrupts outb(ATA_CB_DC_HD15, iobase2+ATA_CB_DC); return ret; } // Transfer data to harddrive using DMA protocol. static int ata_dma_cmd_data(struct disk_op_s *op, struct ata_pio_command *cmd) { if (! CONFIG_ATA_DMA) return -1; int ret = send_cmd(op->drive_g, cmd); if (ret) return ret; return ata_dma_transfer(op); } // Read/write count blocks from a harddrive. static int ata_readwrite(struct disk_op_s *op, int iswrite) { u64 lba = op->lba; int usepio = ata_try_dma(op, iswrite, DISK_SECTOR_SIZE); struct ata_pio_command cmd; memset(&cmd, 0, sizeof(cmd)); if (op->count >= (1<<8) || lba + op->count >= (1<<28)) { cmd.sector_count2 = op->count >> 8; cmd.lba_low2 = lba >> 24; cmd.lba_mid2 = lba >> 32; cmd.lba_high2 = lba >> 40; lba &= 0xffffff; if (usepio) cmd.command = (iswrite ? ATA_CMD_WRITE_SECTORS_EXT : ATA_CMD_READ_SECTORS_EXT); else cmd.command = (iswrite ? ATA_CMD_WRITE_DMA_EXT : ATA_CMD_READ_DMA_EXT); } else { if (usepio) cmd.command = (iswrite ? ATA_CMD_WRITE_SECTORS : ATA_CMD_READ_SECTORS); else cmd.command = (iswrite ? ATA_CMD_WRITE_DMA : ATA_CMD_READ_DMA); } cmd.sector_count = op->count; cmd.lba_low = lba; cmd.lba_mid = lba >> 8; cmd.lba_high = lba >> 16; cmd.device = ((lba >> 24) & 0xf) | ATA_CB_DH_LBA; int ret; if (usepio) ret = ata_pio_cmd_data(op, iswrite, &cmd); else ret = ata_dma_cmd_data(op, &cmd); if (ret) return DISK_RET_EBADTRACK; return DISK_RET_SUCCESS; } // 16bit command demuxer for ATA harddrives. int process_ata_op(struct disk_op_s *op) { if (!CONFIG_ATA) return 0; switch (op->command) { case CMD_READ: return ata_readwrite(op, 0); case CMD_WRITE: return ata_readwrite(op, 1); default: return process_ata_misc_op(op); } } /**************************************************************** * ATAPI functions ****************************************************************/ #define CDROM_CDB_SIZE 12 // Low-level atapi command transmit function. int atapi_cmd_data(struct disk_op_s *op, void *cdbcmd, u16 blocksize) { u8 ataid = GET_GLOBAL(op->drive_g->cntl_id); u8 channel = ataid / 2; u16 iobase1 = GET_GLOBAL(ATA_channels[channel].iobase1); u16 iobase2 = GET_GLOBAL(ATA_channels[channel].iobase2); struct ata_pio_command cmd; memset(&cmd, 0, sizeof(cmd)); cmd.lba_mid = blocksize; cmd.lba_high = blocksize >> 8; cmd.command = ATA_CMD_PACKET; // Disable interrupts outb(ATA_CB_DC_HD15 | ATA_CB_DC_NIEN, iobase2 + ATA_CB_DC); int ret = send_cmd(op->drive_g, &cmd); if (ret) goto fail; ret = ata_wait_data(iobase1); if (ret) goto fail; // Send command to device outsw_fl(iobase1, MAKE_FLATPTR(GET_SEG(SS), cdbcmd), CDROM_CDB_SIZE / 2); int status = pause_await_not_bsy(iobase1, iobase2); if (status < 0) { ret = status; goto fail; } if (status & ATA_CB_STAT_ERR) { u8 err = inb(iobase1 + ATA_CB_ERR); // skip "Not Ready" if (err != 0x20) dprintf(6, "send_atapi_cmd : read error (status=%02x err=%02x)\n" , status, err); ret = -2; goto fail; } if (!(status & ATA_CB_STAT_DRQ)) { dprintf(6, "send_atapi_cmd : DRQ not set (status %02x)\n", status); ret = -3; goto fail; } ret = ata_pio_transfer(op, 0, blocksize); fail: // Enable interrupts outb(ATA_CB_DC_HD15, iobase2+ATA_CB_DC); return ret; } // Read sectors from the cdrom. int cdrom_read(struct disk_op_s *op) { struct cdb_rwdata_10 cmd; memset(&cmd, 0, sizeof(cmd)); cmd.command = CDB_CMD_READ_10; cmd.lba = htonl(op->lba); cmd.count = htons(op->count); return atapi_cmd_data(op, &cmd, CDROM_SECTOR_SIZE); } // 16bit command demuxer for ATAPI cdroms. int process_atapi_op(struct disk_op_s *op) { int ret; switch (op->command) { case CMD_READ: ret = cdrom_read(op); if (ret) return DISK_RET_EBADTRACK; return DISK_RET_SUCCESS; case CMD_FORMAT: case CMD_WRITE: return DISK_RET_EWRITEPROTECT; default: return process_ata_misc_op(op); } } /**************************************************************** * ATA detect and init ****************************************************************/ // Send an identify device or identify device packet command. static int send_ata_identity(struct drive_s *drive_g, u16 *buffer, int command) { memset(buffer, 0, DISK_SECTOR_SIZE); struct disk_op_s dop; memset(&dop, 0, sizeof(dop)); dop.drive_g = drive_g; dop.count = 1; dop.lba = 1; dop.buf_fl = MAKE_FLATPTR(GET_SEG(SS), buffer); struct ata_pio_command cmd; memset(&cmd, 0, sizeof(cmd)); cmd.command = command; return ata_pio_cmd_data(&dop, 0, &cmd); } // Extract the ATA/ATAPI version info. static int extract_version(u16 *buffer) { // Extract ATA/ATAPI version. u16 ataversion = buffer[80]; u8 version; for (version=15; version>0; version--) if (ataversion & (1<model; int maxsize = ARRAY_SIZE(drive_g->model); int i; for (i=0; i> 8; model[i*2+1] = v & 0xff; } model[maxsize-1] = 0x00; // Trim trailing spaces from model name. for (i=maxsize-2; i>0 && model[i] == 0x20; i--) model[i] = 0x00; // Common flags. SET_GLOBAL(drive_g->removable, (buffer[0] & 0x80) ? 1 : 0); SET_GLOBAL(drive_g->cntl_info, extract_version(buffer)); } // Print out a description of the given atapi drive. void describe_atapi(struct drive_s *drive_g) { u8 ataid = drive_g->cntl_id; u8 channel = ataid / 2; u8 slave = ataid % 2; u8 version = drive_g->cntl_info; int iscd = drive_g->floppy_type; printf("ata%d-%d: %s ATAPI-%d %s", channel, slave , drive_g->model, version , (iscd ? "CD-Rom/DVD-Rom" : "Device")); } // Detect if the given drive is an atapi - initialize it if so. static struct drive_s * init_drive_atapi(struct drive_s *dummy, u16 *buffer) { // Send an IDENTIFY_DEVICE_PACKET command to device int ret = send_ata_identity(dummy, buffer, ATA_CMD_IDENTIFY_PACKET_DEVICE); if (ret) return NULL; // Success - setup as ATAPI. struct drive_s *drive_g = allocDrive(); if (! drive_g) return NULL; SET_GLOBAL(drive_g->cntl_id, dummy->cntl_id); extract_identify(drive_g, buffer); SET_GLOBAL(drive_g->type, DTYPE_ATAPI); SET_GLOBAL(drive_g->blksize, CDROM_SECTOR_SIZE); SET_GLOBAL(drive_g->sectors, (u64)-1); u8 iscd = ((buffer[0] >> 8) & 0x1f) == 0x05; SET_GLOBAL(drive_g->floppy_type, iscd); // fill cdidmap if (iscd) map_cd_drive(drive_g); return drive_g; } // Print out a description of the given ata drive. void describe_ata(struct drive_s *drive_g) { u8 ataid = drive_g->cntl_id; u8 channel = ataid / 2; u8 slave = ataid % 2; u64 sectors = drive_g->sectors; u8 version = drive_g->cntl_info; char *model = drive_g->model; printf("ata%d-%d: %s ATA-%d Hard-Disk", channel, slave, model, version); u64 sizeinmb = sectors >> 11; if (sizeinmb < (1 << 16)) printf(" (%u MiBytes)", (u32)sizeinmb); else printf(" (%u GiBytes)", (u32)(sizeinmb >> 10)); } // Detect if the given drive is a regular ata drive - initialize it if so. static struct drive_s * init_drive_ata(struct drive_s *dummy, u16 *buffer) { // Send an IDENTIFY_DEVICE command to device int ret = send_ata_identity(dummy, buffer, ATA_CMD_IDENTIFY_DEVICE); if (ret) return NULL; // Success - setup as ATA. struct drive_s *drive_g = allocDrive(); if (! drive_g) return NULL; SET_GLOBAL(drive_g->cntl_id, dummy->cntl_id); extract_identify(drive_g, buffer); SET_GLOBAL(drive_g->type, DTYPE_ATA); SET_GLOBAL(drive_g->blksize, DISK_SECTOR_SIZE); SET_GLOBAL(drive_g->pchs.cylinders, buffer[1]); SET_GLOBAL(drive_g->pchs.heads, buffer[3]); SET_GLOBAL(drive_g->pchs.spt, buffer[6]); u64 sectors; if (buffer[83] & (1 << 10)) // word 83 - lba48 support sectors = *(u64*)&buffer[100]; // word 100-103 else sectors = *(u32*)&buffer[60]; // word 60 and word 61 SET_GLOBAL(drive_g->sectors, sectors); // Setup disk geometry translation. setup_translation(drive_g); // Register with bcv system. add_bcv_internal(drive_g); return drive_g; } static u64 SpinupEnd; // Wait for non-busy status and check for "floating bus" condition. static int powerup_await_non_bsy(u16 base) { u8 orstatus = 0; u8 status; for (;;) { status = inb(base+ATA_CB_STAT); if (!(status & ATA_CB_STAT_BSY)) break; orstatus |= status; if (orstatus == 0xff) { dprintf(1, "powerup IDE floating\n"); return orstatus; } if (check_time(SpinupEnd)) { warn_timeout(); return -1; } yield(); } dprintf(6, "powerup iobase=%x st=%x\n", base, status); return status; } // Detect any drives attached to a given controller. static void ata_detect(void *data) { struct ata_channel_s *atachannel = data; int startid = (atachannel - ATA_channels) * 2; struct drive_s dummy; memset(&dummy, 0, sizeof(dummy)); // Device detection int ataid, last_reset_ataid=-1; for (ataid=startid; ataidirq, irq); SET_GLOBAL(atachannel->pci_bdf, bdf); SET_GLOBAL(atachannel->iobase1, port1); SET_GLOBAL(atachannel->iobase2, port2); SET_GLOBAL(atachannel->iomaster, master); dprintf(1, "ATA controller %d at %x/%x/%x (irq %d dev %x)\n" , atachannel - ATA_channels, port1, port2, master, irq, bdf); run_thread(ata_detect, atachannel); } #define IRQ_ATA1 14 #define IRQ_ATA2 15 // Locate and init ata controllers. static void ata_init(void) { // Scan PCI bus for ATA adapters int count=0, pcicount=0; int bdf, max; foreachpci(bdf, max) { pcicount++; if (pci_config_readw(bdf, PCI_CLASS_DEVICE) != PCI_CLASS_STORAGE_IDE) continue; if (count >= ARRAY_SIZE(ATA_channels)) break; u8 pciirq = pci_config_readb(bdf, PCI_INTERRUPT_LINE); u8 prog_if = pci_config_readb(bdf, PCI_CLASS_PROG); int master = 0; if (CONFIG_ATA_DMA && prog_if & 0x80) { // Check for bus-mastering. u32 bar = pci_config_readl(bdf, PCI_BASE_ADDRESS_4); if (bar & PCI_BASE_ADDRESS_SPACE_IO) { master = bar & PCI_BASE_ADDRESS_IO_MASK; pci_config_maskw(bdf, PCI_COMMAND, 0, PCI_COMMAND_MASTER); } } u32 port1, port2, irq; if (prog_if & 1) { port1 = pci_config_readl(bdf, PCI_BASE_ADDRESS_0) & ~3; port2 = pci_config_readl(bdf, PCI_BASE_ADDRESS_1) & ~3; irq = pciirq; } else { port1 = PORT_ATA1_CMD_BASE; port2 = PORT_ATA1_CTRL_BASE; irq = IRQ_ATA1; } init_controller(&ATA_channels[count], bdf, irq, port1, port2, master); count++; if (prog_if & 4) { port1 = pci_config_readl(bdf, PCI_BASE_ADDRESS_2) & ~3; port2 = pci_config_readl(bdf, PCI_BASE_ADDRESS_3) & ~3; irq = pciirq; } else { port1 = PORT_ATA2_CMD_BASE; port2 = PORT_ATA2_CTRL_BASE; irq = IRQ_ATA2; } init_controller(&ATA_channels[count], bdf, irq, port1, port2 , master ? master + 8 : 0); count++; } if (!CONFIG_COREBOOT && !pcicount && ARRAY_SIZE(ATA_channels) >= 2) { // No PCI devices found - probably a QEMU "-M isapc" machine. // Try using ISA ports for ATA controllers. init_controller(&ATA_channels[0], -1, IRQ_ATA1 , PORT_ATA1_CMD_BASE, PORT_ATA1_CTRL_BASE, 0); init_controller(&ATA_channels[1], -1, IRQ_ATA2 , PORT_ATA2_CMD_BASE, PORT_ATA2_CTRL_BASE, 0); } } void ata_setup(void) { ASSERT32FLAT(); if (!CONFIG_ATA) return; dprintf(3, "init hard drives\n"); SpinupEnd = calc_future_tsc(IDE_TIMEOUT); ata_init(); SET_BDA(disk_control_byte, 0xc0); enable_hwirq(14, entry_76); }