// Low level ATA disk access // // Copyright (C) 2008 Kevin O'Connor // Copyright (C) 2002 MandrakeSoft S.A. // // This file may be distributed under the terms of the GNU GPLv3 license. #include "ata.h" // ATA_* #include "types.h" // u8 #include "ioport.h" // inb #include "util.h" // dprintf #include "cmos.h" // inb_cmos #include "pic.h" // enable_hwirq #include "biosvar.h" // GET_EBDA #include "pci.h" // pci_find_class #include "pci_ids.h" // PCI_CLASS_STORAGE_OTHER #include "pci_regs.h" // PCI_INTERRUPT_LINE #define TIMEOUT 0 #define BSY 1 #define NOT_BSY 2 #define NOT_BSY_DRQ 3 #define NOT_BSY_NOT_DRQ 4 #define NOT_BSY_RDY 5 #define IDE_SECTOR_SIZE 512 #define CDROM_SECTOR_SIZE 2048 #define IDE_TIMEOUT 32000u //32 seconds max for IDE ops /**************************************************************** * Helper functions ****************************************************************/ // Wait for the specified ide state static int await_ide(u8 when_done, u16 base, u16 timeout) { u32 time=0, last=0; for (;;) { u8 status = inb(base+ATA_CB_STAT); time++; u8 result = 0; if (when_done == BSY) result = status & ATA_CB_STAT_BSY; else if (when_done == NOT_BSY) result = !(status & ATA_CB_STAT_BSY); else if (when_done == NOT_BSY_DRQ) result = !(status & ATA_CB_STAT_BSY) && (status & ATA_CB_STAT_DRQ); else if (when_done == NOT_BSY_NOT_DRQ) result = !(status & ATA_CB_STAT_BSY) && !(status & ATA_CB_STAT_DRQ); else if (when_done == NOT_BSY_RDY) result = !(status & ATA_CB_STAT_BSY) && (status & ATA_CB_STAT_RDY); if (result) return status; // mod 2048 each 16 ms if (time>>16 != last) { last = time >>16; dprintf(6, "await_ide: (TIMEOUT,BSY,!BSY,!BSY_DRQ" ",!BSY_!DRQ,!BSY_RDY) %d time= %d timeout= %d\n" , when_done, time>>11, timeout); } if (status & ATA_CB_STAT_ERR) { dprintf(1, "await_ide: ERROR (TIMEOUT,BSY,!BSY,!BSY_DRQ" ",!BSY_!DRQ,!BSY_RDY) %d status=%x time= %d timeout= %d\n" , when_done, status, time>>11, timeout); return -1; } if (timeout == 0 || (time>>11) > timeout) break; } dprintf(1, "IDE time out\n"); return -2; } // Wait for ide state - pauses for one ata cycle first. static __always_inline int pause_await_ide(u8 when_done, u16 iobase1, u16 iobase2, u16 timeout) { // Wait one PIO transfer cycle. inb(iobase2 + ATA_CB_ASTAT); return await_ide(when_done, iobase1, timeout); } // Wait for ide state - pause for 400ns first. static __always_inline int ndelay_await_ide(u8 when_done, u16 iobase1, u16 timeout) { ndelay(400); return await_ide(when_done, iobase1, timeout); } // Reset a drive void ata_reset(int driveid) { u8 channel = driveid / 2; u8 slave = driveid % 2; u16 iobase1 = GET_EBDA(ata.channels[channel].iobase1); u16 iobase2 = GET_EBDA(ata.channels[channel].iobase2); // Reset // 8.2.1 (a) -- set SRST in DC outb(ATA_CB_DC_HD15 | ATA_CB_DC_NIEN | ATA_CB_DC_SRST, iobase2+ATA_CB_DC); // 8.2.1 (b) -- wait for BSY int status = await_ide(BSY, iobase1, 20); dprintf(6, "ata_reset(1) status=%x\n", status); // 8.2.1 (f) -- clear SRST outb(ATA_CB_DC_HD15 | ATA_CB_DC_NIEN, iobase2+ATA_CB_DC); // 8.2.1 (g) -- check for sc==sn==0x01 // select device outb(slave ? ATA_CB_DH_DEV1 : ATA_CB_DH_DEV0, iobase1+ATA_CB_DH); mdelay(50); u8 sc = inb(iobase1+ATA_CB_SC); u8 sn = inb(iobase1+ATA_CB_SN); // For predetermined ATA drives - wait for ready. if (sc==0x01 && sn==0x01) { u8 type=GET_EBDA(ata.devices[driveid].type); if (type == ATA_TYPE_ATA) await_ide(NOT_BSY_RDY, iobase1, IDE_TIMEOUT); } // 8.2.1 (h) -- wait for not BSY status = await_ide(NOT_BSY, iobase1, IDE_TIMEOUT); dprintf(6, "ata_reset(2) status=%x\n", status); // Enable interrupts outb(ATA_CB_DC_HD15, iobase2+ATA_CB_DC); } /**************************************************************** * ATA send command ****************************************************************/ struct ata_op_s { u64 lba; void *far_buffer; u16 driveid; u16 count; }; struct ata_pio_command { u8 feature; u8 sector_count; u8 lba_low; u8 lba_mid; u8 lba_high; u8 device; u8 command; u8 sector_count2; u8 lba_low2; u8 lba_mid2; u8 lba_high2; }; // Send an ata command to the drive. static int send_cmd(int driveid, struct ata_pio_command *cmd) { u8 channel = driveid / 2; u16 iobase1 = GET_EBDA(ata.channels[channel].iobase1); u16 iobase2 = GET_EBDA(ata.channels[channel].iobase2); int status = inb(iobase1 + ATA_CB_STAT); if (status & ATA_CB_STAT_BSY) return -3; // Disable interrupts outb(ATA_CB_DC_HD15 | ATA_CB_DC_NIEN, iobase2 + ATA_CB_DC); // Select device u8 device = inb(iobase1 + ATA_CB_DH); outb(cmd->device, iobase1 + ATA_CB_DH); if ((device ^ cmd->device) & (1 << 4)) // Wait for device to become active. mdelay(50); if (cmd->command & 0x04) { outb(0x00, iobase1 + ATA_CB_FR); outb(cmd->sector_count2, iobase1 + ATA_CB_SC); outb(cmd->lba_low2, iobase1 + ATA_CB_SN); outb(cmd->lba_mid2, iobase1 + ATA_CB_CL); outb(cmd->lba_high2, iobase1 + ATA_CB_CH); } outb(cmd->feature, iobase1 + ATA_CB_FR); outb(cmd->sector_count, iobase1 + ATA_CB_SC); outb(cmd->lba_low, iobase1 + ATA_CB_SN); outb(cmd->lba_mid, iobase1 + ATA_CB_CL); outb(cmd->lba_high, iobase1 + ATA_CB_CH); outb(cmd->command, iobase1 + ATA_CB_CMD); status = ndelay_await_ide(NOT_BSY_DRQ, iobase1, IDE_TIMEOUT); if (status < 0) return status; if (status & ATA_CB_STAT_ERR) { dprintf(6, "send_cmd : read error\n"); return -4; } if (!(status & ATA_CB_STAT_DRQ)) { dprintf(6, "send_cmd : DRQ not set (status %02x)\n" , (unsigned) status); return -5; } return 0; } /**************************************************************** * ATA transfers ****************************************************************/ // Read and discard x number of bytes from an io channel. static void insx_discard(int mode, int iobase1, int bytes) { int count, i; if (mode == ATA_MODE_PIO32) { count = bytes / 4; for (i=0; idriveid, iswrite, op->count, IDE_SECTOR_SIZE , 0, 0, op->far_buffer); } static noinline int ata_transfer_cdrom(const struct ata_op_s *op) { return ata_transfer(op->driveid, 0, op->count, CDROM_SECTOR_SIZE , 0, 0, op->far_buffer); } static noinline int ata_transfer_emu(const struct ata_op_s *op, int before, int after) { int vcount = op->count * 4 - before - after; int ret = ata_transfer(op->driveid, 0, op->count, CDROM_SECTOR_SIZE , before*512, after*512, op->far_buffer); if (ret) { SET_EBDA(ata.trsfsectors, 0); return ret; } SET_EBDA(ata.trsfsectors, vcount); return 0; } /**************************************************************** * ATA hard drive functions ****************************************************************/ static noinline int send_cmd_disk(const struct ata_op_s *op, u16 command) { u8 slave = op->driveid % 2; u64 lba = op->lba; struct ata_pio_command cmd; memset(&cmd, 0, sizeof(cmd)); cmd.command = command; if (op->count >= (1<<8) || lba + op->count >= (1<<28)) { cmd.sector_count2 = op->count >> 8; cmd.lba_low2 = lba >> 24; cmd.lba_mid2 = lba >> 32; cmd.lba_high2 = lba >> 40; cmd.command |= 0x04; lba &= 0xffffff; } cmd.feature = 0; cmd.sector_count = op->count; cmd.lba_low = lba; cmd.lba_mid = lba >> 8; cmd.lba_high = lba >> 16; cmd.device = ((slave ? ATA_CB_DH_DEV1 : ATA_CB_DH_DEV0) | ((lba >> 24) & 0xf) | ATA_CB_DH_LBA); return send_cmd(op->driveid, &cmd); } // Read/write count blocks from a harddrive. __always_inline int ata_cmd_data(int driveid, u16 command, u64 lba, u16 count, void *far_buffer) { struct ata_op_s op; op.driveid = driveid; op.lba = lba; op.count = count; op.far_buffer = far_buffer; int ret = send_cmd_disk(&op, command); if (ret) return ret; int iswrite = command == ATA_CMD_WRITE_SECTORS; return ata_transfer_disk(&op, iswrite); } /**************************************************************** * ATAPI functions ****************************************************************/ // Low-level atapi command transmit function. static __always_inline int send_atapi_cmd(int driveid, u8 *cmdbuf, u8 cmdlen, u16 blocksize) { u8 channel = driveid / 2; u8 slave = driveid % 2; u16 iobase1 = GET_EBDA(ata.channels[channel].iobase1); u16 iobase2 = GET_EBDA(ata.channels[channel].iobase2); struct ata_pio_command cmd; cmd.sector_count = 0; cmd.feature = 0; cmd.lba_low = 0; cmd.lba_mid = blocksize; cmd.lba_high = blocksize >> 8; cmd.device = slave ? ATA_CB_DH_DEV1 : ATA_CB_DH_DEV0; cmd.command = ATA_CMD_PACKET; int ret = send_cmd(driveid, &cmd); if (ret) return ret; // Send command to device outsw_far(iobase1, MAKE_FARPTR(GET_SEG(SS), (u32)cmdbuf), cmdlen / 2); int status = pause_await_ide(NOT_BSY_DRQ, iobase1, iobase2, IDE_TIMEOUT); if (status < 0) return status; return 0; } // Low-level cdrom read atapi command transmit function. static int send_cmd_cdrom(const struct ata_op_s *op) { u8 atacmd[12]; memset(atacmd, 0, sizeof(atacmd)); atacmd[0]=0x28; // READ command atacmd[7]=(op->count & 0xff00) >> 8; // Sectors atacmd[8]=(op->count & 0x00ff); atacmd[2]=(op->lba & 0xff000000) >> 24; // LBA atacmd[3]=(op->lba & 0x00ff0000) >> 16; atacmd[4]=(op->lba & 0x0000ff00) >> 8; atacmd[5]=(op->lba & 0x000000ff); return send_atapi_cmd(op->driveid, atacmd, sizeof(atacmd) , CDROM_SECTOR_SIZE); } // Read sectors from the cdrom. __always_inline int cdrom_read(int driveid, u32 lba, u32 count, void *far_buffer) { struct ata_op_s op; op.driveid = driveid; op.lba = lba; op.count = count; op.far_buffer = far_buffer; int ret = send_cmd_cdrom(&op); if (ret) return ret; return ata_transfer_cdrom(&op); } // Pretend the cdrom has 512 byte sectors (instead of 2048) and read // sectors. __always_inline int cdrom_read_512(int driveid, u32 vlba, u32 vcount, void *far_buffer) { u32 velba = vlba + vcount - 1; u32 lba = vlba / 4; u32 elba = velba / 4; int count = elba - lba + 1; int before = vlba % 4; int after = 3 - (velba % 4); struct ata_op_s op; op.driveid = driveid; op.lba = lba; op.count = count; op.far_buffer = far_buffer; dprintf(16, "cdrom_read_512: id=%d vlba=%d vcount=%d buf=%p lba=%d elba=%d" " count=%d before=%d after=%d\n" , driveid, vlba, vcount, far_buffer, lba, elba , count, before, after); int ret = send_cmd_cdrom(&op); if (ret) return ret; return ata_transfer_emu(&op, before, after); } // Send a simple atapi command to a drive. int ata_cmd_packet(int driveid, u8 *cmdbuf, u8 cmdlen , u32 length, void *far_buffer) { int ret = send_atapi_cmd(driveid, cmdbuf, cmdlen, length); if (ret) return ret; return ata_transfer(driveid, 0, 1, length, 0, 0, far_buffer); } /**************************************************************** * ATA detect and init ****************************************************************/ static void report_model(int driveid, u8 *buffer) { u8 model[41]; // Read model name int i; for (i=0; i<40; i+=2) { model[i] = buffer[i+54+1]; model[i+1] = buffer[i+54]; } // Reformat model[40] = 0x00; for (i=39; i>0; i--) { if (model[i] != 0x20) break; model[i] = 0x00; } u8 channel = driveid / 2; u8 slave = driveid % 2; // XXX - model on stack not %cs printf("ata%d %s: %s", channel, slave ? " slave" : "master", model); } static u8 get_ata_version(u8 *buffer) { u16 ataversion = *(u16*)&buffer[160]; u8 version; for (version=15; version>0; version--) if (ataversion & (1< 1) return; u16 nlc = GET_EBDA(ata.devices[driveid].lchs.cylinders); u16 nlh = GET_EBDA(ata.devices[driveid].lchs.heads); u16 nlspt = GET_EBDA(ata.devices[driveid].lchs.spt); u16 npc = GET_EBDA(ata.devices[driveid].pchs.cylinders); u16 nph = GET_EBDA(ata.devices[driveid].pchs.heads); u16 npspt = GET_EBDA(ata.devices[driveid].pchs.spt); SET_EBDA(fdpt[driveid].precompensation, 0xffff); SET_EBDA(fdpt[driveid].drive_control_byte, 0xc0 | ((nph > 8) << 3)); SET_EBDA(fdpt[driveid].landing_zone, npc); SET_EBDA(fdpt[driveid].cylinders, nlc); SET_EBDA(fdpt[driveid].heads, nlh); SET_EBDA(fdpt[driveid].sectors, nlspt); if (nlc == npc && nlh == nph && nlspt == npspt) // no logical CHS mapping used, just physical CHS // use Standard Fixed Disk Parameter Table (FDPT) return; // complies with Phoenix style Translated Fixed Disk Parameter // Table (FDPT) SET_EBDA(fdpt[driveid].phys_cylinders, npc); SET_EBDA(fdpt[driveid].phys_heads, nph); SET_EBDA(fdpt[driveid].phys_sectors, npspt); SET_EBDA(fdpt[driveid].a0h_signature, 0xa0); // Checksum structure. u8 *p = MAKE_FARPTR(SEG_EBDA, offsetof(struct extended_bios_data_area_s , fdpt[driveid])); u8 sum = checksum(p, FIELD_SIZEOF(struct extended_bios_data_area_s , fdpt[driveid]) - 1); SET_EBDA(fdpt[driveid].checksum, -sum); } static u8 get_translation(int driveid) { if (! CONFIG_COREBOOT) { // Emulators pass in the translation info via nvram. u8 channel = driveid / 2; u8 translation = inb_cmos(CMOS_BIOS_DISKTRANSFLAG + channel/2); translation >>= 2 * (driveid % 4); translation &= 0x03; return translation; } // On COREBOOT, use a heuristic to determine translation type. u16 heads = GET_EBDA(ata.devices[driveid].pchs.heads); u16 cylinders = GET_EBDA(ata.devices[driveid].pchs.cylinders); u16 spt = GET_EBDA(ata.devices[driveid].pchs.spt); if (cylinders <= 1024 && heads <= 16 && spt <= 63) return ATA_TRANSLATION_NONE; if (cylinders * heads <= 131072) return ATA_TRANSLATION_LARGE; return ATA_TRANSLATION_LBA; } static void setup_translation(int driveid) { u8 translation = get_translation(driveid); SET_EBDA(ata.devices[driveid].translation, translation); u8 channel = driveid / 2; u8 slave = driveid % 2; u16 heads = GET_EBDA(ata.devices[driveid].pchs.heads); u16 cylinders = GET_EBDA(ata.devices[driveid].pchs.cylinders); u16 spt = GET_EBDA(ata.devices[driveid].pchs.spt); u64 sectors = GET_EBDA(ata.devices[driveid].sectors); dprintf(1, "ata%d-%d: PCHS=%u/%d/%d translation=" , channel, slave, cylinders, heads, spt); switch (translation) { case ATA_TRANSLATION_NONE: dprintf(1, "none"); break; case ATA_TRANSLATION_LBA: dprintf(1, "lba"); spt = 63; if (sectors > 63*255*1024) { heads = 255; cylinders = 1024; break; } u32 sect = (u32)sectors / 63; heads = sect / 1024; if (heads>128) heads = 255; else if (heads>64) heads = 128; else if (heads>32) heads = 64; else if (heads>16) heads = 32; else heads = 16; cylinders = sect / heads; break; case ATA_TRANSLATION_RECHS: dprintf(1, "r-echs"); // Take care not to overflow if (heads==16) { if (cylinders>61439) cylinders=61439; heads=15; cylinders = (u16)((u32)(cylinders)*16/15); } // then go through the large bitshift process case ATA_TRANSLATION_LARGE: if (translation == ATA_TRANSLATION_LARGE) dprintf(1, "large"); while (cylinders > 1024) { cylinders >>= 1; heads <<= 1; // If we max out the head count if (heads > 127) break; } break; } // clip to 1024 cylinders in lchs if (cylinders > 1024) cylinders = 1024; dprintf(1, " LCHS=%d/%d/%d\n", cylinders, heads, spt); SET_EBDA(ata.devices[driveid].lchs.heads, heads); SET_EBDA(ata.devices[driveid].lchs.cylinders, cylinders); SET_EBDA(ata.devices[driveid].lchs.spt, spt); } static void init_drive_ata(int driveid) { SET_EBDA(ata.devices[driveid].type, ATA_TYPE_ATA); // Temporary values to do the transfer SET_EBDA(ata.devices[driveid].device, ATA_DEVICE_HD); SET_EBDA(ata.devices[driveid].mode, ATA_MODE_PIO16); // Now we send a IDENTIFY command to ATA device u8 buffer[0x0200]; memset(buffer, 0, sizeof(buffer)); u16 ret = ata_cmd_data(driveid, ATA_CMD_IDENTIFY_DEVICE , 1, 1 , MAKE_FARPTR(GET_SEG(SS), (u32)buffer)); if (ret) BX_PANIC("ata-detect: Failed to detect ATA device\n"); u8 removable = (buffer[0] & 0x80) ? 1 : 0; u8 mode = buffer[48*2] ? ATA_MODE_PIO32 : ATA_MODE_PIO16; u16 blksize = IDE_SECTOR_SIZE; u16 cylinders = *(u16*)&buffer[1*2]; // word 1 u16 heads = *(u16*)&buffer[3*2]; // word 3 u16 spt = *(u16*)&buffer[6*2]; // word 6 u64 sectors; if (*(u16*)&buffer[83*2] & (1 << 10)) // word 83 - lba48 support sectors = *(u64*)&buffer[100*2]; // word 100-103 else sectors = *(u32*)&buffer[60*2]; // word 60 and word 61 SET_EBDA(ata.devices[driveid].device, ATA_DEVICE_HD); SET_EBDA(ata.devices[driveid].removable, removable); SET_EBDA(ata.devices[driveid].mode, mode); SET_EBDA(ata.devices[driveid].blksize, blksize); SET_EBDA(ata.devices[driveid].pchs.heads, heads); SET_EBDA(ata.devices[driveid].pchs.cylinders, cylinders); SET_EBDA(ata.devices[driveid].pchs.spt, spt); SET_EBDA(ata.devices[driveid].sectors, sectors); // Setup disk geometry translation. setup_translation(driveid); // fill hdidmap u8 hdcount = GET_EBDA(ata.hdcount); SET_EBDA(ata.idmap[0][hdcount], driveid); SET_EBDA(ata.hdcount, ++hdcount); // Fill "fdpt" structure. fill_fdpt(driveid); // Report drive info to user. u64 sizeinmb = GET_EBDA(ata.devices[driveid].sectors) >> 11; report_model(driveid, buffer); u8 version = get_ata_version(buffer); if (sizeinmb < (1 << 16)) printf(" ATA-%d Hard-Disk (%u MiBytes)\n", version, (u32)sizeinmb); else printf(" ATA-%d Hard-Disk (%u GiBytes)\n", version , (u32)(sizeinmb >> 10)); } static void init_drive_unknown(int driveid) { SET_EBDA(ata.devices[driveid].type, ATA_TYPE_UNKNOWN); u8 channel = driveid / 2; u8 slave = driveid % 2; printf("ata%d %s: Unknown device\n", channel, slave ? " slave" : "master"); } static void ata_detect() { // Device detection int driveid; for(driveid=0; driveid