// Low level ATA disk access // // Copyright (C) 2008,2009 Kevin O'Connor // Copyright (C) 2002 MandrakeSoft S.A. // // This file may be distributed under the terms of the GNU LGPLv3 license. #include "types.h" // u8 #include "ioport.h" // inb #include "util.h" // dprintf #include "cmos.h" // inb_cmos #include "pic.h" // enable_hwirq #include "biosvar.h" // GET_EBDA #include "pci.h" // pci_find_class #include "pci_ids.h" // PCI_CLASS_STORAGE_OTHER #include "pci_regs.h" // PCI_INTERRUPT_LINE #include "boot.h" // add_bcv_hd #include "disk.h" // struct ata_s #include "ata.h" // ATA_CB_STAT #define IDE_SECTOR_SIZE 512 #define CDROM_SECTOR_SIZE 2048 #define IDE_TIMEOUT 32000 //32 seconds max for IDE ops struct ata_channel_s ATA_channels[CONFIG_MAX_ATA_INTERFACES] VAR16VISIBLE; /**************************************************************** * Helper functions ****************************************************************/ // Wait for the specified ide state static inline int await_ide(u8 mask, u8 flags, u16 base, u16 timeout) { u64 end = calc_future_tsc(timeout); for (;;) { u8 status = inb(base+ATA_CB_STAT); if ((status & mask) == flags) return status; if (rdtscll() > end) { dprintf(1, "IDE time out\n"); return -1; } } } // Wait for the device to be not-busy. static int await_not_bsy(u16 base) { return await_ide(ATA_CB_STAT_BSY, 0, base, IDE_TIMEOUT); } // Wait for the device to be ready. static int await_rdy(u16 base) { return await_ide(ATA_CB_STAT_RDY, ATA_CB_STAT_RDY, base, IDE_TIMEOUT); } // Wait for ide state - pauses for one ata cycle first. static inline int pause_await_not_bsy(u16 iobase1, u16 iobase2) { // Wait one PIO transfer cycle. inb(iobase2 + ATA_CB_ASTAT); return await_not_bsy(iobase1); } // Wait for ide state - pause for 400ns first. static inline int ndelay_await_not_bsy(u16 iobase1) { ndelay(400); return await_not_bsy(iobase1); } // Reset a drive static void ata_reset(int driveid) { u8 ataid = GET_GLOBAL(Drives.drives[driveid].cntl_id); u8 channel = ataid / 2; u8 slave = ataid % 2; u16 iobase1 = GET_GLOBAL(ATA_channels[channel].iobase1); u16 iobase2 = GET_GLOBAL(ATA_channels[channel].iobase2); dprintf(6, "ata_reset driveid=%d\n", driveid); // Pulse SRST outb(ATA_CB_DC_HD15 | ATA_CB_DC_NIEN | ATA_CB_DC_SRST, iobase2+ATA_CB_DC); udelay(5); outb(ATA_CB_DC_HD15 | ATA_CB_DC_NIEN, iobase2+ATA_CB_DC); mdelay(2); // wait for device to become not busy. int status = await_not_bsy(iobase1); if (status < 0) goto done; if (slave) { // Change device. u64 end = calc_future_tsc(IDE_TIMEOUT); for (;;) { outb(ATA_CB_DH_DEV1, iobase1 + ATA_CB_DH); status = ndelay_await_not_bsy(iobase1); if (status < 0) goto done; if (inb(iobase1 + ATA_CB_DH) == ATA_CB_DH_DEV1) break; // Change drive request failed to take effect - retry. if (rdtscll() > end) { dprintf(1, "ata_reset slave time out\n"); goto done; } } } else { // QEMU doesn't reset dh on reset, so set it explicitly. outb(ATA_CB_DH_DEV0, iobase1 + ATA_CB_DH); } // On a user-reset request, wait for RDY if it is an ATA device. u8 type=GET_GLOBAL(Drives.drives[driveid].type); if (type == DTYPE_ATA) status = await_rdy(iobase1); done: // Enable interrupts outb(ATA_CB_DC_HD15, iobase2+ATA_CB_DC); dprintf(6, "ata_reset exit status=%x\n", status); } static int isready(int driveid) { // Read the status from controller u8 ataid = GET_GLOBAL(Drives.drives[driveid].cntl_id); u8 channel = ataid / 2; u16 iobase1 = GET_GLOBAL(ATA_channels[channel].iobase1); u8 status = inb(iobase1 + ATA_CB_STAT); if ((status & (ATA_CB_STAT_BSY|ATA_CB_STAT_RDY)) == ATA_CB_STAT_RDY) return DISK_RET_SUCCESS; return DISK_RET_ENOTREADY; } static int process_ata_misc_op(struct disk_op_s *op) { if (!CONFIG_ATA) return 0; switch (op->command) { case CMD_RESET: ata_reset(op->driveid); return DISK_RET_SUCCESS; case CMD_ISREADY: return isready(op->driveid); case CMD_FORMAT: case CMD_VERIFY: case CMD_SEEK: return DISK_RET_SUCCESS; default: op->count = 0; return DISK_RET_EPARAM; } } /**************************************************************** * ATA send command ****************************************************************/ struct ata_pio_command { u8 feature; u8 sector_count; u8 lba_low; u8 lba_mid; u8 lba_high; u8 device; u8 command; u8 sector_count2; u8 lba_low2; u8 lba_mid2; u8 lba_high2; }; // Send an ata command to the drive. static int send_cmd(int driveid, struct ata_pio_command *cmd) { u8 ataid = GET_GLOBAL(Drives.drives[driveid].cntl_id); u8 channel = ataid / 2; u8 slave = ataid % 2; u16 iobase1 = GET_GLOBAL(ATA_channels[channel].iobase1); u16 iobase2 = GET_GLOBAL(ATA_channels[channel].iobase2); // Disable interrupts outb(ATA_CB_DC_HD15 | ATA_CB_DC_NIEN, iobase2 + ATA_CB_DC); // Select device int status = await_not_bsy(iobase1); if (status < 0) return status; u8 newdh = ((cmd->device & ~ATA_CB_DH_DEV1) | (slave ? ATA_CB_DH_DEV1 : ATA_CB_DH_DEV0)); u8 olddh = inb(iobase1 + ATA_CB_DH); outb(newdh, iobase1 + ATA_CB_DH); if ((olddh ^ newdh) & (1<<4)) { // Was a device change - wait for device to become not busy. status = ndelay_await_not_bsy(iobase1); if (status < 0) return status; } if (cmd->command & 0x04) { outb(0x00, iobase1 + ATA_CB_FR); outb(cmd->sector_count2, iobase1 + ATA_CB_SC); outb(cmd->lba_low2, iobase1 + ATA_CB_SN); outb(cmd->lba_mid2, iobase1 + ATA_CB_CL); outb(cmd->lba_high2, iobase1 + ATA_CB_CH); } outb(cmd->feature, iobase1 + ATA_CB_FR); outb(cmd->sector_count, iobase1 + ATA_CB_SC); outb(cmd->lba_low, iobase1 + ATA_CB_SN); outb(cmd->lba_mid, iobase1 + ATA_CB_CL); outb(cmd->lba_high, iobase1 + ATA_CB_CH); outb(cmd->command, iobase1 + ATA_CB_CMD); status = ndelay_await_not_bsy(iobase1); if (status < 0) return status; if (status & ATA_CB_STAT_ERR) { dprintf(6, "send_cmd : read error (status=%02x err=%02x)\n" , status, inb(iobase1 + ATA_CB_ERR)); return -4; } if (!(status & ATA_CB_STAT_DRQ)) { dprintf(6, "send_cmd : DRQ not set (status %02x)\n", status); return -5; } return 0; } /**************************************************************** * ATA transfers ****************************************************************/ // Transfer 'op->count' blocks (of 'blocksize' bytes) to/from drive // 'op->driveid'. static int ata_transfer(struct disk_op_s *op, int iswrite, int blocksize) { dprintf(16, "ata_transfer id=%d write=%d count=%d bs=%d buf=%p\n" , op->driveid, iswrite, op->count, blocksize, op->buf_fl); u8 ataid = GET_GLOBAL(Drives.drives[op->driveid].cntl_id); u8 channel = ataid / 2; u16 iobase1 = GET_GLOBAL(ATA_channels[channel].iobase1); u16 iobase2 = GET_GLOBAL(ATA_channels[channel].iobase2); int count = op->count; void *buf_fl = op->buf_fl; int status; for (;;) { if (iswrite) { // Write data to controller dprintf(16, "Write sector id=%d dest=%p\n", op->driveid, buf_fl); if (CONFIG_ATA_PIO32) outsl_fl(iobase1, buf_fl, blocksize / 4); else outsw_fl(iobase1, buf_fl, blocksize / 2); } else { // Read data from controller dprintf(16, "Read sector id=%d dest=%p\n", op->driveid, buf_fl); if (CONFIG_ATA_PIO32) insl_fl(iobase1, buf_fl, blocksize / 4); else insw_fl(iobase1, buf_fl, blocksize / 2); } buf_fl += blocksize; status = pause_await_not_bsy(iobase1, iobase2); if (status < 0) { // Error op->count -= count; return status; } count--; if (!count) break; status &= (ATA_CB_STAT_BSY | ATA_CB_STAT_DRQ | ATA_CB_STAT_ERR); if (status != ATA_CB_STAT_DRQ) { dprintf(6, "ata_transfer : more sectors left (status %02x)\n" , status); op->count -= count; return -6; } } status &= (ATA_CB_STAT_BSY | ATA_CB_STAT_DF | ATA_CB_STAT_DRQ | ATA_CB_STAT_ERR); if (!iswrite) status &= ~ATA_CB_STAT_DF; if (status != 0) { dprintf(6, "ata_transfer : no sectors left (status %02x)\n", status); return -7; } // Enable interrupts outb(ATA_CB_DC_HD15, iobase2+ATA_CB_DC); return 0; } /**************************************************************** * ATA hard drive functions ****************************************************************/ // Read/write count blocks from a harddrive. static int ata_cmd_data(struct disk_op_s *op, int iswrite, int command) { u64 lba = op->lba; struct ata_pio_command cmd; memset(&cmd, 0, sizeof(cmd)); cmd.command = command; if (op->count >= (1<<8) || lba + op->count >= (1<<28)) { cmd.sector_count2 = op->count >> 8; cmd.lba_low2 = lba >> 24; cmd.lba_mid2 = lba >> 32; cmd.lba_high2 = lba >> 40; cmd.command |= 0x04; lba &= 0xffffff; } cmd.feature = 0; cmd.sector_count = op->count; cmd.lba_low = lba; cmd.lba_mid = lba >> 8; cmd.lba_high = lba >> 16; cmd.device = ((lba >> 24) & 0xf) | ATA_CB_DH_LBA; int ret = send_cmd(op->driveid, &cmd); if (ret) return ret; return ata_transfer(op, iswrite, IDE_SECTOR_SIZE); } int process_ata_op(struct disk_op_s *op) { if (!CONFIG_ATA) return 0; int ret; switch (op->command) { case CMD_READ: ret = ata_cmd_data(op, 0, ATA_CMD_READ_SECTORS); break; case CMD_WRITE: ret = ata_cmd_data(op, 1, ATA_CMD_WRITE_SECTORS); break; default: return process_ata_misc_op(op); } if (ret) return DISK_RET_EBADTRACK; return DISK_RET_SUCCESS; } /**************************************************************** * ATAPI functions ****************************************************************/ // Low-level atapi command transmit function. static int send_atapi_cmd(int driveid, u8 *cmdbuf, u8 cmdlen, u16 blocksize) { u8 ataid = GET_GLOBAL(Drives.drives[driveid].cntl_id); u8 channel = ataid / 2; u16 iobase1 = GET_GLOBAL(ATA_channels[channel].iobase1); u16 iobase2 = GET_GLOBAL(ATA_channels[channel].iobase2); struct ata_pio_command cmd; cmd.sector_count = 0; cmd.feature = 0; cmd.lba_low = 0; cmd.lba_mid = blocksize; cmd.lba_high = blocksize >> 8; cmd.device = 0; cmd.command = ATA_CMD_PACKET; int ret = send_cmd(driveid, &cmd); if (ret) return ret; // Send command to device outsw_fl(iobase1, MAKE_FLATPTR(GET_SEG(SS), cmdbuf), cmdlen / 2); int status = pause_await_not_bsy(iobase1, iobase2); if (status < 0) return status; if (status & ATA_CB_STAT_ERR) { u8 err = inb(iobase1 + ATA_CB_ERR); // skip "Not Ready" if (err != 0x20) dprintf(6, "send_atapi_cmd : read error (status=%02x err=%02x)\n" , status, err); return -2; } if (!(status & ATA_CB_STAT_DRQ)) { dprintf(6, "send_atapi_cmd : DRQ not set (status %02x)\n", status); return -3; } return 0; } // Read sectors from the cdrom. int cdrom_read(struct disk_op_s *op) { u8 atacmd[12]; memset(atacmd, 0, sizeof(atacmd)); atacmd[0]=0x28; // READ command atacmd[7]=(op->count & 0xff00) >> 8; // Sectors atacmd[8]=(op->count & 0x00ff); atacmd[2]=(op->lba & 0xff000000) >> 24; // LBA atacmd[3]=(op->lba & 0x00ff0000) >> 16; atacmd[4]=(op->lba & 0x0000ff00) >> 8; atacmd[5]=(op->lba & 0x000000ff); int ret = send_atapi_cmd(op->driveid, atacmd, sizeof(atacmd) , CDROM_SECTOR_SIZE); if (ret) return ret; return ata_transfer(op, 0, CDROM_SECTOR_SIZE); } int process_atapi_op(struct disk_op_s *op) { int ret; switch (op->command) { case CMD_READ: ret = cdrom_read(op); break; case CMD_FORMAT: case CMD_WRITE: return DISK_RET_EWRITEPROTECT; default: return process_ata_misc_op(op); } if (ret) return DISK_RET_EBADTRACK; return DISK_RET_SUCCESS; } // Send a simple atapi command to a drive. int ata_cmd_packet(int driveid, u8 *cmdbuf, u8 cmdlen , u32 length, void *buf_fl) { int ret = send_atapi_cmd(driveid, cmdbuf, cmdlen, length); if (ret) return ret; struct disk_op_s dop; memset(&dop, 0, sizeof(dop)); dop.driveid = driveid; dop.count = 1; dop.buf_fl = buf_fl; return ata_transfer(&dop, 0, length); } /**************************************************************** * ATA detect and init ****************************************************************/ // Extract the ATA/ATAPI version info. static int extract_version(u16 *buffer) { // Extract ATA/ATAPI version. u16 ataversion = buffer[80]; u8 version; for (version=15; version>0; version--) if (ataversion & (1<> 8; model[i*2+1] = v & 0xff; } model[maxsize-1] = 0x00; // Trim trailing spaces from model name. for (i=maxsize-2; i>0 && model[i] == 0x20; i--) model[i] = 0x00; // Common flags. SET_GLOBAL(Drives.drives[driveid].removable, (buffer[0] & 0x80) ? 1 : 0); } static int init_drive_atapi(int driveid, u16 *buffer) { // Send an IDENTIFY_DEVICE_PACKET command to device memset(buffer, 0, IDE_SECTOR_SIZE); struct disk_op_s dop; memset(&dop, 0, sizeof(dop)); dop.driveid = driveid; dop.count = 1; dop.lba = 1; dop.buf_fl = MAKE_FLATPTR(GET_SEG(SS), buffer); int ret = ata_cmd_data(&dop, 0, ATA_CMD_IDENTIFY_DEVICE_PACKET); if (ret) return ret; // Success - setup as ATAPI. extract_identify(driveid, buffer); SET_GLOBAL(Drives.drives[driveid].type, DTYPE_ATAPI); SET_GLOBAL(Drives.drives[driveid].blksize, CDROM_SECTOR_SIZE); SET_GLOBAL(Drives.drives[driveid].sectors, (u64)-1); u8 iscd = ((buffer[0] >> 8) & 0x1f) == 0x05; // Report drive info to user. u8 ataid = GET_GLOBAL(Drives.drives[driveid].cntl_id); u8 channel = ataid / 2; u8 slave = ataid % 2; printf("ata%d-%d: %s ATAPI-%d %s\n", channel, slave , Drives.drives[driveid].model, extract_version(buffer) , (iscd ? "CD-Rom/DVD-Rom" : "Device")); // fill cdidmap if (iscd) map_cd_drive(driveid); return 0; } static int init_drive_ata(int driveid, u16 *buffer) { // Send an IDENTIFY_DEVICE command to device memset(buffer, 0, IDE_SECTOR_SIZE); struct disk_op_s dop; memset(&dop, 0, sizeof(dop)); dop.driveid = driveid; dop.count = 1; dop.lba = 1; dop.buf_fl = MAKE_FLATPTR(GET_SEG(SS), buffer); int ret = ata_cmd_data(&dop, 0, ATA_CMD_IDENTIFY_DEVICE); if (ret) return ret; // Success - setup as ATA. extract_identify(driveid, buffer); SET_GLOBAL(Drives.drives[driveid].type, DTYPE_ATA); SET_GLOBAL(Drives.drives[driveid].blksize, IDE_SECTOR_SIZE); SET_GLOBAL(Drives.drives[driveid].pchs.cylinders, buffer[1]); SET_GLOBAL(Drives.drives[driveid].pchs.heads, buffer[3]); SET_GLOBAL(Drives.drives[driveid].pchs.spt, buffer[6]); u64 sectors; if (buffer[83] & (1 << 10)) // word 83 - lba48 support sectors = *(u64*)&buffer[100]; // word 100-103 else sectors = *(u32*)&buffer[60]; // word 60 and word 61 SET_GLOBAL(Drives.drives[driveid].sectors, sectors); // Setup disk geometry translation. setup_translation(driveid); // Report drive info to user. u8 ataid = GET_GLOBAL(Drives.drives[driveid].cntl_id); u8 channel = ataid / 2; u8 slave = ataid % 2; char *model = Drives.drives[driveid].model; printf("ata%d-%d: %s ATA-%d Hard-Disk ", channel, slave, model , extract_version(buffer)); u64 sizeinmb = sectors >> 11; if (sizeinmb < (1 << 16)) printf("(%u MiBytes)\n", (u32)sizeinmb); else printf("(%u GiBytes)\n", (u32)(sizeinmb >> 10)); // Register with bcv system. add_bcv_hd(driveid, model); return 0; } static int powerup_await_non_bsy(u16 base, u64 end) { u8 orstatus = 0; u8 status; for (;;) { status = inb(base+ATA_CB_STAT); if (!(status & ATA_CB_STAT_BSY)) break; orstatus |= status; if (orstatus == 0xff) { dprintf(1, "powerup IDE floating\n"); return orstatus; } if (rdtscll() > end) { dprintf(1, "powerup IDE time out\n"); return -1; } } dprintf(6, "powerup iobase=%x st=%x\n", base, status); return status; } static void ata_detect() { // Device detection u64 end = calc_future_tsc(IDE_TIMEOUT); int ataid, last_reset_ataid=-1; for (ataid=0; ataid= ARRAY_SIZE(Drives.drives)) break; memset(&Drives.drives[driveid], 0, sizeof(Drives.drives[0])); Drives.drives[driveid].cntl_id = ataid; // reset the channel if (slave && ataid == last_reset_ataid + 1) { // The drive was just reset - no need to reset it again. } else { ata_reset(driveid); last_reset_ataid = ataid; } // check for ATAPI u16 buffer[256]; int ret = init_drive_atapi(driveid, buffer); if (!ret) { // Found an ATAPI drive. } else { u8 st = inb(iobase1+ATA_CB_STAT); if (!st) // Status not set - can't be a valid drive. continue; // Wait for RDY. ret = await_rdy(iobase1); if (ret < 0) continue; // check for ATA. ret = init_drive_ata(driveid, buffer); if (ret) // No ATA drive found continue; } SET_GLOBAL(Drives.drivecount, driveid+1); u16 resetresult = buffer[93]; dprintf(6, "ata_detect resetresult=%04x\n", resetresult); if (!slave && (resetresult & 0xdf61) == 0x4041) // resetresult looks valid and device 0 is responding to // device 1 requests - device 1 must not be present - skip // detection. ataid++; } printf("\n"); } static void ata_init() { // Scan PCI bus for ATA adapters int count=0; int bdf, max; foreachpci(bdf, max) { if (pci_config_readw(bdf, PCI_CLASS_DEVICE) != PCI_CLASS_STORAGE_IDE) continue; if (count >= ARRAY_SIZE(ATA_channels)) break; u8 irq = pci_config_readb(bdf, PCI_INTERRUPT_LINE); SET_GLOBAL(ATA_channels[count].irq, irq); SET_GLOBAL(ATA_channels[count].pci_bdf, bdf); u8 prog_if = pci_config_readb(bdf, PCI_CLASS_PROG); u32 port1, port2; if (prog_if & 1) { port1 = pci_config_readl(bdf, PCI_BASE_ADDRESS_0) & ~3; port2 = pci_config_readl(bdf, PCI_BASE_ADDRESS_1) & ~3; } else { port1 = 0x1f0; port2 = 0x3f0; } SET_GLOBAL(ATA_channels[count].iobase1, port1); SET_GLOBAL(ATA_channels[count].iobase2, port2); dprintf(1, "ATA controller %d at %x/%x (dev %x prog_if %x)\n" , count, port1, port2, bdf, prog_if); count++; if (prog_if & 4) { port1 = pci_config_readl(bdf, PCI_BASE_ADDRESS_2) & ~3; port2 = pci_config_readl(bdf, PCI_BASE_ADDRESS_3) & ~3; } else { port1 = 0x170; port2 = 0x370; } dprintf(1, "ATA controller %d at %x/%x (dev %x prog_if %x)\n" , count, port1, port2, bdf, prog_if); SET_GLOBAL(ATA_channels[count].iobase1, port1); SET_GLOBAL(ATA_channels[count].iobase2, port2); count++; } } void ata_setup() { if (!CONFIG_ATA) return; dprintf(3, "init hard drives\n"); ata_init(); ata_detect(); SET_BDA(disk_control_byte, 0xc0); enable_hwirq(14, entry_76); }