/* * wrapper functions. * * Authors: * Jonathan Pryor (jonpryor@vt.edu) * Jonathan Pryor (jpryor@novell.com) * Tim Jenks (tim.jenks@realtimeworlds.com) * * Copyright (C) 2004-2005 Jonathan Pryor * Copyright (C) 2008 Novell, Inc. */ #include #include "map.h" #include "mph.h" #ifndef HOST_WIN32 #include #include #if defined(HAVE_POLL_H) #include #elif defined(HAVE_SYS_POLL_H) #include #endif #include #include #include #include #include #include #endif G_BEGIN_DECLS typedef void (*mph_sighandler_t)(int); typedef struct Mono_Unix_UnixSignal_SignalInfo signal_info; #ifndef HOST_WIN32 static int count_handlers (int signum); #endif void* Mono_Posix_Stdlib_SIG_DFL (void) { return SIG_DFL; } void* Mono_Posix_Stdlib_SIG_ERR (void) { return SIG_ERR; } void* Mono_Posix_Stdlib_SIG_IGN (void) { return SIG_IGN; } void Mono_Posix_Stdlib_InvokeSignalHandler (int signum, void *handler) { mph_sighandler_t _h = (mph_sighandler_t) handler; _h (signum); } int Mono_Posix_SIGRTMIN (void) { #ifdef SIGRTMIN return SIGRTMIN; #else /* def SIGRTMIN */ return -1; #endif /* ndef SIGRTMIN */ } int Mono_Posix_SIGRTMAX (void) { #ifdef SIGRTMAX return SIGRTMAX; #else /* def SIGRTMAX */ return -1; #endif /* ndef SIGRTMAX */ } int Mono_Posix_FromRealTimeSignum (int offset, int *r) { if (NULL == r) { errno = EINVAL; return -1; } *r = 0; #if defined (SIGRTMIN) && defined (SIGRTMAX) if ((offset < 0) || (SIGRTMIN > SIGRTMAX - offset)) { errno = EINVAL; return -1; } *r = SIGRTMIN+offset; return 0; #else /* defined (SIGRTMIN) && defined (SIGRTMAX) */ # ifdef ENOSYS errno = ENOSYS; # endif /* ENOSYS */ return -1; #endif /* defined (SIGRTMIN) && defined (SIGRTMAX) */ } #ifndef HOST_WIN32 // Atomicity rules: Fields of signal_info read or written by the signal handler // (see UnixSignal.cs) should be read and written using atomic functions. // (For simplicity, we're protecting some things we don't strictly need to.) // Because we are in MonoPosixHelper, we are banned from linking mono. // We can still use atomic.h because that's all inline functions-- // unless WAPI_NO_ATOMIC_ASM is defined, in which case atomic.h calls linked functions. #ifndef WAPI_NO_ATOMIC_ASM #define mph_int_get(p) InterlockedExchangeAdd ((p), 0) #define mph_int_inc(p) InterlockedIncrement ((p)) #define mph_int_dec_test(p) (InterlockedDecrement ((p)) == 0) #define mph_int_set(p,n) InterlockedExchange ((p), (n)) // Pointer, original, new #define mph_int_test_and_set(p,o,n) (o == InterlockedCompareExchange ((p), (n), (o))) #elif GLIB_CHECK_VERSION(2,4,0) #define mph_int_get(p) g_atomic_int_get ((p)) #define mph_int_inc(p) do {g_atomic_int_inc ((p));} while (0) #define mph_int_dec_test(p) g_atomic_int_dec_and_test ((p)) #define mph_int_set(p,n) g_atomic_int_set ((p),(n)) #define mph_int_test_and_set(p,o,n) g_atomic_int_compare_and_exchange ((p), (o), (n)) #else #error "GLIB 2.4 required because building without ASM atomics" #endif #if HAVE_PSIGNAL int Mono_Posix_Syscall_psignal (int sig, const char* s) { errno = 0; psignal (sig, s); return errno == 0 ? 0 : -1; } #endif /* def HAVE_PSIGNAL */ #define NUM_SIGNALS 64 static signal_info signals[NUM_SIGNALS]; static int acquire_mutex (pthread_mutex_t *mutex) { int mr; while ((mr = pthread_mutex_lock (mutex)) == EAGAIN) { /* try to acquire again */ } if ((mr != 0) && (mr != EDEADLK)) { errno = mr; return -1; } return 0; } static void release_mutex (pthread_mutex_t *mutex) { int mr; while ((mr = pthread_mutex_unlock (mutex)) == EAGAIN) { /* try to release mutex again */ } } static inline int keep_trying (int r) { return r == -1 && errno == EINTR; } // This tiny ad-hoc read/write lock is needed because of the very specific // synchronization needed between default_handler and teardown_pipes: // - Many default_handlers can be running at once // - The signals_mutex already ensures only one teardown_pipes runs at once // - If teardown_pipes starts while a default_handler is ongoing, it must block // - If default_handler starts while a teardown_pipes is ongoing, it must *not* block // Locks are implemented as ints. // The lock is split into a teardown bit and a handler count (sign bit unused). // There is a teardown running or waiting to run if the teardown bit is set. // There is a handler running if the handler count is nonzero. #define PIPELOCK_TEARDOWN_BIT ( (int)0x40000000 ) #define PIPELOCK_COUNT_MASK (~((int)0xC0000000)) #define PIPELOCK_GET_COUNT(x) ((x) & PIPELOCK_COUNT_MASK) #define PIPELOCK_INCR_COUNT(x, by) (((x) & PIPELOCK_TEARDOWN_BIT) | (PIPELOCK_GET_COUNT (PIPELOCK_GET_COUNT (x) + (by)))) static inline void acquire_pipelock_teardown (int *lock) { int lockvalue_draining; // First mark that a teardown is occurring, so handlers will stop entering the lock. while (1) { int lockvalue = mph_int_get (lock); lockvalue_draining = lockvalue | PIPELOCK_TEARDOWN_BIT; if (mph_int_test_and_set (lock, lockvalue, lockvalue_draining)) break; } // Now wait for all handlers to complete. while (1) { if (0 == PIPELOCK_GET_COUNT (lockvalue_draining)) break; // We now hold the lock. // Handler is still running, spin until it completes. sched_yield (); // We can call this because !defined(HOST_WIN32) lockvalue_draining = mph_int_get (lock); } } static inline void release_pipelock_teardown (int *lock) { while (1) { int lockvalue = mph_int_get (lock); int lockvalue_new = lockvalue & ~PIPELOCK_TEARDOWN_BIT; // Technically this can't fail, because we hold both the pipelock and the mutex, but if (mph_int_test_and_set (lock, lockvalue, lockvalue_new)) return; } } // Return 1 for success static inline int acquire_pipelock_handler (int *lock) { while (1) { int lockvalue = mph_int_get (lock); if (lockvalue & PIPELOCK_TEARDOWN_BIT) // Final lock is being torn down return 0; int lockvalue_new = PIPELOCK_INCR_COUNT (lockvalue, 1); if (mph_int_test_and_set (lock, lockvalue, lockvalue_new)) return 1; } } static inline void release_pipelock_handler (int *lock) { while (1) { int lockvalue = mph_int_get (lock); int lockvalue_new = PIPELOCK_INCR_COUNT (lockvalue, -1); if (mph_int_test_and_set (lock, lockvalue, lockvalue_new)) return; } } // This handler is registered once for each UnixSignal object. A pipe is maintained // for each one; Wait users read at one end of this pipe, and default_handler sends // a write on the pipe for each signal received while the Wait is ongoing. // // Notice a fairly unlikely race condition exists here: Because we synchronize with // pipe teardown, but not install/uninstall (in other words, we are only trying to // protect against writing on a closed pipe) it is technically possible a full // uninstall and then an install could complete after signum is checked but before // the remaining instructions execute. In this unlikely case count could be // incremented or a byte written on the wrong signal handler. static void default_handler (int signum) { int i; for (i = 0; i < NUM_SIGNALS; ++i) { int fd; signal_info* h = &signals [i]; if (mph_int_get (&h->signum) != signum) continue; mph_int_inc (&h->count); if (!acquire_pipelock_handler (&h->pipelock)) continue; // Teardown is occurring on this object, no one to send to. fd = mph_int_get (&h->write_fd); if (fd > 0) { // If any listener exists to write to int j,pipecounter; char c = signum; // (Value is meaningless) pipecounter = mph_int_get (&h->pipecnt); // Write one byte per pipe listener for (j = 0; j < pipecounter; ++j) { int r; do { r = write (fd, &c, 1); } while (keep_trying (r)); } } release_pipelock_handler (&h->pipelock); } } static pthread_mutex_t signals_mutex = PTHREAD_MUTEX_INITIALIZER; // A UnixSignal object is being constructed void* Mono_Unix_UnixSignal_install (int sig) { #if defined(HAVE_SIGNAL) int i; signal_info* h = NULL; // signals[] slot to install to int have_handler = 0; // Candidates for signal_info handler fields void* handler = NULL; if (acquire_mutex (&signals_mutex) == -1) return NULL; #if defined (SIGRTMIN) && defined (SIGRTMAX) /*The runtime uses some rt signals for itself so it's important to not override them.*/ if (sig >= SIGRTMIN && sig <= SIGRTMAX && count_handlers (sig) == 0) { struct sigaction sinfo; sigaction (sig, NULL, &sinfo); if (sinfo.sa_handler != SIG_DFL || (void*)sinfo.sa_sigaction != (void*)SIG_DFL) { pthread_mutex_unlock (&signals_mutex); errno = EADDRINUSE; return NULL; // This is an rt signal with an existing handler. Bail out. } } #endif /*defined (SIGRTMIN) && defined (SIGRTMAX)*/ // Scan through signals list looking for (1) an unused spot (2) a usable value for handler for (i = 0; i < NUM_SIGNALS; ++i) { int just_installed = 0; // We're still looking for a signal_info spot, and this one is available: if (h == NULL && mph_int_get (&signals [i].signum) == 0) { h = &signals [i]; h->handler = signal (sig, default_handler); if (h->handler == SIG_ERR) { h->handler = NULL; h = NULL; break; } else { just_installed = 1; } } // Check if this slot has a "usable" (not installed by this file) handler-to-restore-later: // (On the first signal to be installed, signals [i] will be == h when this happens.) if (!have_handler && (just_installed || mph_int_get (&signals [i].signum) == sig) && signals [i].handler != default_handler) { have_handler = 1; handler = signals [i].handler; } if (h && have_handler) // We have everything we need break; } if (h) { // If we reached here without have_handler, this means that default_handler // was set as the signal handler before the first UnixSignal object was installed. g_assert (have_handler); // Overwrite the tenative handler we set a moment ago with a known-usable one h->handler = handler; h->have_handler = 1; mph_int_set (&h->count, 0); mph_int_set (&h->pipecnt, 0); mph_int_set (&h->signum, sig); } release_mutex (&signals_mutex); return h; #else g_error ("signal() is not supported by this platform"); return 0; #endif } static int count_handlers (int signum) { int i; int count = 0; for (i = 0; i < NUM_SIGNALS; ++i) { if (mph_int_get (&signals [i].signum) == signum) ++count; } return count; } // A UnixSignal object is being Disposed int Mono_Unix_UnixSignal_uninstall (void* info) { #if defined(HAVE_SIGNAL) signal_info* h; int r = -1; if (acquire_mutex (&signals_mutex) == -1) return -1; h = info; if (h == NULL || h < signals || h > &signals [NUM_SIGNALS]) errno = EINVAL; else { /* last UnixSignal -- we can unregister */ int signum = mph_int_get (&h->signum); if (h->have_handler && count_handlers (signum) == 1) { mph_sighandler_t p = signal (signum, h->handler); if (p != SIG_ERR) r = 0; h->handler = NULL; h->have_handler = 0; } mph_int_set (&h->signum, 0); } release_mutex (&signals_mutex); return r; #else g_error ("signal() is not supported by this platform"); return 0; #endif } // Set up a signal_info to begin waiting for signal static int setup_pipes (signal_info** signals, int count, struct pollfd *fd_structs, int *currfd) { int i; int r = 0; for (i = 0; i < count; ++i) { signal_info* h; int filedes[2]; h = signals [i]; if (mph_int_get (&h->pipecnt) == 0) { // First listener for this signal_info if ((r = pipe (filedes)) != 0) { break; } mph_int_set (&h->read_fd, filedes [0]); mph_int_set (&h->write_fd, filedes [1]); } mph_int_inc (&h->pipecnt); fd_structs[*currfd].fd = mph_int_get (&h->read_fd); fd_structs[*currfd].events = POLLIN; ++(*currfd); // count is verified less than NUM_SIGNALS by caller } return r; } // Cleanup a signal_info after waiting for signal static void teardown_pipes (signal_info** signals, int count) { int i; for (i = 0; i < count; ++i) { signal_info* h = signals [i]; if (mph_int_dec_test (&h->pipecnt)) { // Final listener for this signal_info acquire_pipelock_teardown (&h->pipelock); int read_fd = mph_int_get (&h->read_fd); int write_fd = mph_int_get (&h->write_fd); if (read_fd != 0) close (read_fd); if (write_fd != 0) close (write_fd); mph_int_set (&h->read_fd, 0); mph_int_set (&h->write_fd, 0); release_pipelock_teardown (&h->pipelock); } } } // Given pipes set up, wait for a byte to arrive on one of them static int wait_for_any (signal_info** signals, int count, int *currfd, struct pollfd* fd_structs, int timeout, Mono_Posix_RuntimeIsShuttingDown shutting_down) { int r, idx; // Poll until one of this signal_info's pipes is ready to read. // Once a second, stop to check if the VM is shutting down. do { struct timeval tv; struct timeval *ptv = NULL; if (timeout != -1) { tv.tv_sec = timeout / 1000; tv.tv_usec = (timeout % 1000)*1000; ptv = &tv; } r = poll (fd_structs, count, timeout); } while (keep_trying (r) && !shutting_down ()); idx = -1; if (r == 0) idx = timeout; else if (r > 0) { // The pipe[s] are ready to read. int i; for (i = 0; i < count; ++i) { signal_info* h = signals [i]; if (fd_structs[i].revents & POLLIN) { int r; char c; do { r = read (mph_int_get (&h->read_fd), &c, 1); } while (keep_trying (r) && !shutting_down ()); if (idx == -1) idx = i; } } } return idx; } /* * returns: -1 on error: * timeout on timeout * index into _signals array of signal that was generated on success */ int Mono_Unix_UnixSignal_WaitAny (void** _signals, int count, int timeout /* milliseconds */, Mono_Posix_RuntimeIsShuttingDown shutting_down) { int r; int currfd = 0; struct pollfd fd_structs[NUM_SIGNALS]; signal_info** signals = (signal_info**) _signals; if (count > NUM_SIGNALS) return -1; if (acquire_mutex (&signals_mutex) == -1) return -1; r = setup_pipes (signals, count, &fd_structs[0], &currfd); release_mutex (&signals_mutex); if (r == 0) { r = wait_for_any (signals, count, &currfd, &fd_structs[0], timeout, shutting_down); } if (acquire_mutex (&signals_mutex) == -1) return -1; teardown_pipes (signals, count); release_mutex (&signals_mutex); return r; } #endif /* ndef HOST_WIN32 */ G_END_DECLS /* * vim: noexpandtab */