/** * \file * Lazy initialization and cleanup utilities * * Authors: Ludovic Henry * * Copyright 2015 Xamarin, Inc. (www.xamarin.com) * Licensed under the MIT license. See LICENSE file in the project root for full license information. */ #ifndef __MONO_LAZY_INIT_H__ #define __MONO_LAZY_INIT_H__ #include #include #include "atomic.h" #include "mono-threads.h" #include "mono-memory-model.h" /* * These functions should be used if you want some form of lazy initialization. You can have a look at the * threadpool for a more detailed example. * * The idea is that a module can be in 5 different states: * - not initialized: it is the first state it starts in * - initializing/initialized: whenever we need this module for the first time, we need to initialize it: allocate * memory, launch background thread, etc. To achieve this, we have a module specific function (let's call it * initialize) * - cleaning/cleaned: when we want to clean this module specific data up, then we need to clean it up: deallocate * memory, wait for background threads to finish, etc. As for the initialization process, we need a module specific * function (let's call it cleanup) * * The switch from one state to the other can only happen in the following ways: * - not initialized * - not initialized -> initializing -> initialized * - not initialized -> cleaned * - not initialized -> initializing -> initialized -> cleaning -> cleaned * * The initialize and cleanup functions are guaranteed to: * - be each called once and only once * - not be called concurrently (either 2+ initialize or 2+ cleanup, either initialize and cleanup) */ typedef gint32 mono_lazy_init_t; enum { MONO_LAZY_INIT_STATUS_NOT_INITIALIZED, MONO_LAZY_INIT_STATUS_INITIALIZING, MONO_LAZY_INIT_STATUS_INITIALIZED, MONO_LAZY_INIT_STATUS_CLEANING, MONO_LAZY_INIT_STATUS_CLEANED, }; static inline gboolean mono_lazy_initialize (mono_lazy_init_t *lazy_init, void (*initialize) (void)) { gint32 status; g_assert (lazy_init); status = *lazy_init; if (status >= MONO_LAZY_INIT_STATUS_INITIALIZED) return status == MONO_LAZY_INIT_STATUS_INITIALIZED; if (status == MONO_LAZY_INIT_STATUS_INITIALIZING || InterlockedCompareExchange (lazy_init, MONO_LAZY_INIT_STATUS_INITIALIZING, MONO_LAZY_INIT_STATUS_NOT_INITIALIZED) != MONO_LAZY_INIT_STATUS_NOT_INITIALIZED ) { while (*lazy_init == MONO_LAZY_INIT_STATUS_INITIALIZING) mono_thread_info_yield (); g_assert (InterlockedRead (lazy_init) >= MONO_LAZY_INIT_STATUS_INITIALIZED); return status == MONO_LAZY_INIT_STATUS_INITIALIZED; } initialize (); mono_atomic_store_release (lazy_init, MONO_LAZY_INIT_STATUS_INITIALIZED); return TRUE; } static inline void mono_lazy_cleanup (mono_lazy_init_t *lazy_init, void (*cleanup) (void)) { gint32 status; g_assert (lazy_init); status = *lazy_init; if (status == MONO_LAZY_INIT_STATUS_NOT_INITIALIZED && InterlockedCompareExchange (lazy_init, MONO_LAZY_INIT_STATUS_CLEANED, MONO_LAZY_INIT_STATUS_NOT_INITIALIZED) == MONO_LAZY_INIT_STATUS_NOT_INITIALIZED ) { return; } if (status == MONO_LAZY_INIT_STATUS_INITIALIZING) { while ((status = *lazy_init) == MONO_LAZY_INIT_STATUS_INITIALIZING) mono_thread_info_yield (); } if (status == MONO_LAZY_INIT_STATUS_CLEANED) return; if (status == MONO_LAZY_INIT_STATUS_CLEANING || InterlockedCompareExchange (lazy_init, MONO_LAZY_INIT_STATUS_CLEANING, MONO_LAZY_INIT_STATUS_INITIALIZED) != MONO_LAZY_INIT_STATUS_INITIALIZED ) { while (*lazy_init == MONO_LAZY_INIT_STATUS_CLEANING) mono_thread_info_yield (); g_assert (InterlockedRead (lazy_init) == MONO_LAZY_INIT_STATUS_CLEANED); return; } cleanup (); mono_atomic_store_release (lazy_init, MONO_LAZY_INIT_STATUS_CLEANED); } static inline gboolean mono_lazy_is_initialized (mono_lazy_init_t *lazy_init) { g_assert (lazy_init); return InterlockedRead (lazy_init) == MONO_LAZY_INIT_STATUS_INITIALIZED; } #endif