/** * \file * x86 backend for the Mono code generator * * Authors: * Paolo Molaro (lupus@ximian.com) * Dietmar Maurer (dietmar@ximian.com) * Patrik Torstensson * * Copyright 2003 Ximian, Inc. * Copyright 2003-2011 Novell Inc. * Copyright 2011 Xamarin Inc. * Licensed under the MIT license. See LICENSE file in the project root for full license information. */ #include "mini.h" #include #include #ifdef HAVE_UNISTD_H #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "trace.h" #include "mini-x86.h" #include "cpu-x86.h" #include "ir-emit.h" #include "mini-gc.h" #ifndef TARGET_WIN32 #ifdef MONO_XEN_OPT static gboolean optimize_for_xen = TRUE; #else #define optimize_for_xen 0 #endif #endif /* The single step trampoline */ static gpointer ss_trampoline; /* The breakpoint trampoline */ static gpointer bp_trampoline; /* This mutex protects architecture specific caches */ #define mono_mini_arch_lock() mono_os_mutex_lock (&mini_arch_mutex) #define mono_mini_arch_unlock() mono_os_mutex_unlock (&mini_arch_mutex) static mono_mutex_t mini_arch_mutex; #define ALIGN_TO(val,align) ((((guint64)val) + ((align) - 1)) & ~((align) - 1)) #define ARGS_OFFSET 8 #ifdef TARGET_WIN32 /* Under windows, the default pinvoke calling convention is stdcall */ #define CALLCONV_IS_STDCALL(sig) ((sig)->pinvoke && ((sig)->call_convention == MONO_CALL_STDCALL || (sig)->call_convention == MONO_CALL_DEFAULT || (sig)->call_convention == MONO_CALL_THISCALL)) #else #define CALLCONV_IS_STDCALL(sig) ((sig)->pinvoke && ((sig)->call_convention == MONO_CALL_STDCALL || (sig)->call_convention == MONO_CALL_THISCALL)) #endif #define X86_IS_CALLEE_SAVED_REG(reg) (((reg) == X86_EBX) || ((reg) == X86_EDI) || ((reg) == X86_ESI)) #define OP_SEQ_POINT_BP_OFFSET 7 static guint8* emit_load_aotconst (guint8 *start, guint8 *code, MonoCompile *cfg, MonoJumpInfo **ji, int dreg, int tramp_type, gconstpointer target); const char* mono_arch_regname (int reg) { switch (reg) { case X86_EAX: return "%eax"; case X86_EBX: return "%ebx"; case X86_ECX: return "%ecx"; case X86_EDX: return "%edx"; case X86_ESP: return "%esp"; case X86_EBP: return "%ebp"; case X86_EDI: return "%edi"; case X86_ESI: return "%esi"; } return "unknown"; } const char* mono_arch_fregname (int reg) { switch (reg) { case 0: return "%fr0"; case 1: return "%fr1"; case 2: return "%fr2"; case 3: return "%fr3"; case 4: return "%fr4"; case 5: return "%fr5"; case 6: return "%fr6"; case 7: return "%fr7"; default: return "unknown"; } } const char * mono_arch_xregname (int reg) { switch (reg) { case 0: return "%xmm0"; case 1: return "%xmm1"; case 2: return "%xmm2"; case 3: return "%xmm3"; case 4: return "%xmm4"; case 5: return "%xmm5"; case 6: return "%xmm6"; case 7: return "%xmm7"; default: return "unknown"; } } void mono_x86_patch (unsigned char* code, gpointer target) { x86_patch (code, (unsigned char*)target); } #define FLOAT_PARAM_REGS 0 static const guint32 thiscall_param_regs [] = { X86_ECX, X86_NREG }; static const guint32 *callconv_param_regs(MonoMethodSignature *sig) { if (!sig->pinvoke) return NULL; switch (sig->call_convention) { case MONO_CALL_THISCALL: return thiscall_param_regs; default: return NULL; } } #if defined(TARGET_WIN32) || defined(__APPLE__) || defined(__FreeBSD__) #define SMALL_STRUCTS_IN_REGS static X86_Reg_No return_regs [] = { X86_EAX, X86_EDX }; #endif static void inline add_general (guint32 *gr, const guint32 *param_regs, guint32 *stack_size, ArgInfo *ainfo) { ainfo->offset = *stack_size; if (!param_regs || param_regs [*gr] == X86_NREG) { ainfo->storage = ArgOnStack; ainfo->nslots = 1; (*stack_size) += sizeof (gpointer); } else { ainfo->storage = ArgInIReg; ainfo->reg = param_regs [*gr]; (*gr) ++; } } static void inline add_general_pair (guint32 *gr, const guint32 *param_regs , guint32 *stack_size, ArgInfo *ainfo) { ainfo->offset = *stack_size; g_assert(!param_regs || param_regs[*gr] == X86_NREG); ainfo->storage = ArgOnStack; (*stack_size) += sizeof (gpointer) * 2; ainfo->nslots = 2; } static void inline add_float (guint32 *gr, guint32 *stack_size, ArgInfo *ainfo, gboolean is_double) { ainfo->offset = *stack_size; if (*gr >= FLOAT_PARAM_REGS) { ainfo->storage = ArgOnStack; (*stack_size) += is_double ? 8 : 4; ainfo->nslots = is_double ? 2 : 1; } else { /* A double register */ if (is_double) ainfo->storage = ArgInDoubleSSEReg; else ainfo->storage = ArgInFloatSSEReg; ainfo->reg = *gr; (*gr) += 1; } } static void add_valuetype (MonoMethodSignature *sig, ArgInfo *ainfo, MonoType *type, gboolean is_return, guint32 *gr, const guint32 *param_regs, guint32 *fr, guint32 *stack_size) { guint32 size; MonoClass *klass; klass = mono_class_from_mono_type (type); size = mini_type_stack_size_full (&klass->byval_arg, NULL, sig->pinvoke); #if defined(TARGET_WIN32) /* * Standard C and C++ doesn't allow empty structs, empty structs will always have a size of 1 byte. * GCC have an extension to allow empty structs, https://gcc.gnu.org/onlinedocs/gcc/Empty-Structures.html. * This cause a little dilemma since runtime build using none GCC compiler will not be compatible with * GCC build C libraries and the other way around. On platforms where empty structs has size of 1 byte * it must be represented in call and cannot be dropped. */ if (size == 0 && MONO_TYPE_ISSTRUCT (type) && sig->pinvoke) { /* Empty structs (1 byte size) needs to be represented in a stack slot */ ainfo->pass_empty_struct = TRUE; size = 1; } #endif #ifdef SMALL_STRUCTS_IN_REGS if (sig->pinvoke && is_return) { MonoMarshalType *info; info = mono_marshal_load_type_info (klass); g_assert (info); ainfo->pair_storage [0] = ainfo->pair_storage [1] = ArgNone; /* Ignore empty struct return value, if used. */ if (info->num_fields == 0 && ainfo->pass_empty_struct) { ainfo->storage = ArgValuetypeInReg; return; } /* * Windows x86 ABI for returning structs of size 4 or 8 bytes (regardless of type) dictates that * values are passed in EDX:EAX register pairs, https://msdn.microsoft.com/en-us/library/984x0h58.aspx. * This is different compared to for example float or double return types (not in struct) that will be returned * in ST(0), https://msdn.microsoft.com/en-us/library/ha59cbfz.aspx. * * Apples OSX x86 ABI for returning structs of size 4 or 8 bytes uses a slightly different approach. * If a struct includes only one scalar value, it will be handled with the same rules as scalar values. * This means that structs with one float or double will be returned in ST(0). For more details, * https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/LowLevelABI/130-IA-32_Function_Calling_Conventions/IA32.html. */ #if !defined(TARGET_WIN32) /* Special case structs with only a float member */ if (info->num_fields == 1) { int ftype = mini_get_underlying_type (info->fields [0].field->type)->type; if ((info->native_size == 8) && (ftype == MONO_TYPE_R8)) { ainfo->storage = ArgValuetypeInReg; ainfo->pair_storage [0] = ArgOnDoubleFpStack; return; } if ((info->native_size == 4) && (ftype == MONO_TYPE_R4)) { ainfo->storage = ArgValuetypeInReg; ainfo->pair_storage [0] = ArgOnFloatFpStack; return; } } #endif if ((info->native_size == 1) || (info->native_size == 2) || (info->native_size == 4) || (info->native_size == 8)) { ainfo->storage = ArgValuetypeInReg; ainfo->pair_storage [0] = ArgInIReg; ainfo->pair_regs [0] = return_regs [0]; if (info->native_size > 4) { ainfo->pair_storage [1] = ArgInIReg; ainfo->pair_regs [1] = return_regs [1]; } return; } } #endif if (param_regs && param_regs [*gr] != X86_NREG && !is_return) { g_assert (size <= 4); ainfo->storage = ArgValuetypeInReg; ainfo->reg = param_regs [*gr]; (*gr)++; return; } ainfo->offset = *stack_size; ainfo->storage = ArgOnStack; *stack_size += ALIGN_TO (size, sizeof (gpointer)); ainfo->nslots = ALIGN_TO (size, sizeof (gpointer)) / sizeof (gpointer); } /* * get_call_info: * * Obtain information about a call according to the calling convention. * For x86 ELF, see the "System V Application Binary Interface Intel386 * Architecture Processor Supplment, Fourth Edition" document for more * information. * For x86 win32, see https://msdn.microsoft.com/en-us/library/984x0h58.aspx. */ static CallInfo* get_call_info_internal (CallInfo *cinfo, MonoMethodSignature *sig) { guint32 i, gr, fr, pstart; const guint32 *param_regs; MonoType *ret_type; int n = sig->hasthis + sig->param_count; guint32 stack_size = 0; gboolean is_pinvoke = sig->pinvoke; gr = 0; fr = 0; cinfo->nargs = n; param_regs = callconv_param_regs(sig); /* return value */ { ret_type = mini_get_underlying_type (sig->ret); switch (ret_type->type) { case MONO_TYPE_I1: case MONO_TYPE_U1: case MONO_TYPE_I2: case MONO_TYPE_U2: case MONO_TYPE_I4: case MONO_TYPE_U4: case MONO_TYPE_I: case MONO_TYPE_U: case MONO_TYPE_PTR: case MONO_TYPE_FNPTR: case MONO_TYPE_OBJECT: cinfo->ret.storage = ArgInIReg; cinfo->ret.reg = X86_EAX; break; case MONO_TYPE_U8: case MONO_TYPE_I8: cinfo->ret.storage = ArgInIReg; cinfo->ret.reg = X86_EAX; cinfo->ret.is_pair = TRUE; break; case MONO_TYPE_R4: cinfo->ret.storage = ArgOnFloatFpStack; break; case MONO_TYPE_R8: cinfo->ret.storage = ArgOnDoubleFpStack; break; case MONO_TYPE_GENERICINST: if (!mono_type_generic_inst_is_valuetype (ret_type)) { cinfo->ret.storage = ArgInIReg; cinfo->ret.reg = X86_EAX; break; } if (mini_is_gsharedvt_type (ret_type)) { cinfo->ret.storage = ArgOnStack; cinfo->vtype_retaddr = TRUE; break; } /* Fall through */ case MONO_TYPE_VALUETYPE: case MONO_TYPE_TYPEDBYREF: { guint32 tmp_gr = 0, tmp_fr = 0, tmp_stacksize = 0; add_valuetype (sig, &cinfo->ret, ret_type, TRUE, &tmp_gr, NULL, &tmp_fr, &tmp_stacksize); if (cinfo->ret.storage == ArgOnStack) { cinfo->vtype_retaddr = TRUE; /* The caller passes the address where the value is stored */ } break; } case MONO_TYPE_VAR: case MONO_TYPE_MVAR: g_assert (mini_is_gsharedvt_type (ret_type)); cinfo->ret.storage = ArgOnStack; cinfo->vtype_retaddr = TRUE; break; case MONO_TYPE_VOID: cinfo->ret.storage = ArgNone; break; default: g_error ("Can't handle as return value 0x%x", ret_type->type); } } pstart = 0; /* * To simplify get_this_arg_reg () and LLVM integration, emit the vret arg after * the first argument, allowing 'this' to be always passed in the first arg reg. * Also do this if the first argument is a reference type, since virtual calls * are sometimes made using calli without sig->hasthis set, like in the delegate * invoke wrappers. */ if (cinfo->vtype_retaddr && !is_pinvoke && (sig->hasthis || (sig->param_count > 0 && MONO_TYPE_IS_REFERENCE (mini_get_underlying_type (sig->params [0]))))) { if (sig->hasthis) { add_general (&gr, param_regs, &stack_size, cinfo->args + 0); } else { add_general (&gr, param_regs, &stack_size, &cinfo->args [sig->hasthis + 0]); pstart = 1; } cinfo->vret_arg_offset = stack_size; add_general (&gr, NULL, &stack_size, &cinfo->ret); cinfo->vret_arg_index = 1; } else { /* this */ if (sig->hasthis) add_general (&gr, param_regs, &stack_size, cinfo->args + 0); if (cinfo->vtype_retaddr) add_general (&gr, NULL, &stack_size, &cinfo->ret); } if (!sig->pinvoke && (sig->call_convention == MONO_CALL_VARARG) && (n == 0)) { fr = FLOAT_PARAM_REGS; /* Emit the signature cookie just before the implicit arguments */ add_general (&gr, param_regs, &stack_size, &cinfo->sig_cookie); } for (i = pstart; i < sig->param_count; ++i) { ArgInfo *ainfo = &cinfo->args [sig->hasthis + i]; MonoType *ptype; if (!sig->pinvoke && (sig->call_convention == MONO_CALL_VARARG) && (i == sig->sentinelpos)) { /* We allways pass the sig cookie on the stack for simplicity */ /* * Prevent implicit arguments + the sig cookie from being passed * in registers. */ fr = FLOAT_PARAM_REGS; /* Emit the signature cookie just before the implicit arguments */ add_general (&gr, param_regs, &stack_size, &cinfo->sig_cookie); } if (sig->params [i]->byref) { add_general (&gr, param_regs, &stack_size, ainfo); continue; } ptype = mini_get_underlying_type (sig->params [i]); switch (ptype->type) { case MONO_TYPE_I1: case MONO_TYPE_U1: add_general (&gr, param_regs, &stack_size, ainfo); break; case MONO_TYPE_I2: case MONO_TYPE_U2: add_general (&gr, param_regs, &stack_size, ainfo); break; case MONO_TYPE_I4: case MONO_TYPE_U4: add_general (&gr, param_regs, &stack_size, ainfo); break; case MONO_TYPE_I: case MONO_TYPE_U: case MONO_TYPE_PTR: case MONO_TYPE_FNPTR: case MONO_TYPE_OBJECT: add_general (&gr, param_regs, &stack_size, ainfo); break; case MONO_TYPE_GENERICINST: if (!mono_type_generic_inst_is_valuetype (ptype)) { add_general (&gr, param_regs, &stack_size, ainfo); break; } if (mini_is_gsharedvt_type (ptype)) { /* gsharedvt arguments are passed by ref */ add_general (&gr, param_regs, &stack_size, ainfo); g_assert (ainfo->storage == ArgOnStack); ainfo->storage = ArgGSharedVt; break; } /* Fall through */ case MONO_TYPE_VALUETYPE: case MONO_TYPE_TYPEDBYREF: add_valuetype (sig, ainfo, ptype, FALSE, &gr, param_regs, &fr, &stack_size); break; case MONO_TYPE_U8: case MONO_TYPE_I8: add_general_pair (&gr, param_regs, &stack_size, ainfo); break; case MONO_TYPE_R4: add_float (&fr, &stack_size, ainfo, FALSE); break; case MONO_TYPE_R8: add_float (&fr, &stack_size, ainfo, TRUE); break; case MONO_TYPE_VAR: case MONO_TYPE_MVAR: /* gsharedvt arguments are passed by ref */ g_assert (mini_is_gsharedvt_type (ptype)); add_general (&gr, param_regs, &stack_size, ainfo); g_assert (ainfo->storage == ArgOnStack); ainfo->storage = ArgGSharedVt; break; default: g_error ("unexpected type 0x%x", ptype->type); g_assert_not_reached (); } } if (!sig->pinvoke && (sig->call_convention == MONO_CALL_VARARG) && (n > 0) && (sig->sentinelpos == sig->param_count)) { fr = FLOAT_PARAM_REGS; /* Emit the signature cookie just before the implicit arguments */ add_general (&gr, param_regs, &stack_size, &cinfo->sig_cookie); } if (cinfo->vtype_retaddr) { /* if the function returns a struct on stack, the called method already does a ret $0x4 */ cinfo->callee_stack_pop = 4; } else if (CALLCONV_IS_STDCALL (sig)) { /* Have to compensate for the stack space popped by the native callee */ cinfo->callee_stack_pop = stack_size; } if (mono_do_x86_stack_align && (stack_size % MONO_ARCH_FRAME_ALIGNMENT) != 0) { cinfo->need_stack_align = TRUE; cinfo->stack_align_amount = MONO_ARCH_FRAME_ALIGNMENT - (stack_size % MONO_ARCH_FRAME_ALIGNMENT); stack_size += cinfo->stack_align_amount; } cinfo->stack_usage = stack_size; cinfo->reg_usage = gr; cinfo->freg_usage = fr; return cinfo; } static CallInfo* get_call_info (MonoMemPool *mp, MonoMethodSignature *sig) { int n = sig->hasthis + sig->param_count; CallInfo *cinfo; if (mp) cinfo = mono_mempool_alloc0 (mp, sizeof (CallInfo) + (sizeof (ArgInfo) * n)); else cinfo = g_malloc0 (sizeof (CallInfo) + (sizeof (ArgInfo) * n)); return get_call_info_internal (cinfo, sig); } /* * mono_arch_get_argument_info: * @csig: a method signature * @param_count: the number of parameters to consider * @arg_info: an array to store the result infos * * Gathers information on parameters such as size, alignment and * padding. arg_info should be large enought to hold param_count + 1 entries. * * Returns the size of the argument area on the stack. * This should be signal safe, since it is called from * mono_arch_unwind_frame (). * FIXME: The metadata calls might not be signal safe. */ int mono_arch_get_argument_info (MonoMethodSignature *csig, int param_count, MonoJitArgumentInfo *arg_info) { int len, k, args_size = 0; int size, pad; guint32 align; int offset = 8; CallInfo *cinfo; /* Avoid g_malloc as it is not signal safe */ len = sizeof (CallInfo) + (sizeof (ArgInfo) * (csig->param_count + 1)); cinfo = (CallInfo*)g_newa (guint8*, len); memset (cinfo, 0, len); cinfo = get_call_info_internal (cinfo, csig); arg_info [0].offset = offset; if (cinfo->vtype_retaddr && cinfo->vret_arg_index == 0) { args_size += sizeof (gpointer); offset += 4; } if (csig->hasthis) { args_size += sizeof (gpointer); offset += 4; } if (cinfo->vtype_retaddr && cinfo->vret_arg_index == 1 && csig->hasthis) { /* Emitted after this */ args_size += sizeof (gpointer); offset += 4; } arg_info [0].size = args_size; for (k = 0; k < param_count; k++) { size = mini_type_stack_size_full (csig->params [k], &align, csig->pinvoke); /* ignore alignment for now */ align = 1; args_size += pad = (align - (args_size & (align - 1))) & (align - 1); arg_info [k].pad = pad; args_size += size; arg_info [k + 1].pad = 0; arg_info [k + 1].size = size; offset += pad; arg_info [k + 1].offset = offset; offset += size; if (k == 0 && cinfo->vtype_retaddr && cinfo->vret_arg_index == 1 && !csig->hasthis) { /* Emitted after the first arg */ args_size += sizeof (gpointer); offset += 4; } } if (mono_do_x86_stack_align && !CALLCONV_IS_STDCALL (csig)) align = MONO_ARCH_FRAME_ALIGNMENT; else align = 4; args_size += pad = (align - (args_size & (align - 1))) & (align - 1); arg_info [k].pad = pad; return args_size; } gboolean mono_arch_tail_call_supported (MonoCompile *cfg, MonoMethodSignature *caller_sig, MonoMethodSignature *callee_sig) { MonoType *callee_ret; CallInfo *c1, *c2; gboolean res; if (cfg->compile_aot && !cfg->full_aot) /* OP_TAILCALL doesn't work with AOT */ return FALSE; c1 = get_call_info (NULL, caller_sig); c2 = get_call_info (NULL, callee_sig); /* * Tail calls with more callee stack usage than the caller cannot be supported, since * the extra stack space would be left on the stack after the tail call. */ res = c1->stack_usage >= c2->stack_usage; callee_ret = mini_get_underlying_type (callee_sig->ret); if (callee_ret && MONO_TYPE_ISSTRUCT (callee_ret) && c2->ret.storage != ArgValuetypeInReg) /* An address on the callee's stack is passed as the first argument */ res = FALSE; g_free (c1); g_free (c2); return res; } /* * Initialize the cpu to execute managed code. */ void mono_arch_cpu_init (void) { /* spec compliance requires running with double precision */ #ifndef _MSC_VER guint16 fpcw; __asm__ __volatile__ ("fnstcw %0\n": "=m" (fpcw)); fpcw &= ~X86_FPCW_PRECC_MASK; fpcw |= X86_FPCW_PREC_DOUBLE; __asm__ __volatile__ ("fldcw %0\n": : "m" (fpcw)); __asm__ __volatile__ ("fnstcw %0\n": "=m" (fpcw)); #else _control87 (_PC_53, MCW_PC); #endif } /* * Initialize architecture specific code. */ void mono_arch_init (void) { mono_os_mutex_init_recursive (&mini_arch_mutex); if (!mono_aot_only) bp_trampoline = mini_get_breakpoint_trampoline (); mono_aot_register_jit_icall ("mono_x86_throw_exception", mono_x86_throw_exception); mono_aot_register_jit_icall ("mono_x86_throw_corlib_exception", mono_x86_throw_corlib_exception); #if defined(MONO_ARCH_GSHAREDVT_SUPPORTED) mono_aot_register_jit_icall ("mono_x86_start_gsharedvt_call", mono_x86_start_gsharedvt_call); #endif } /* * Cleanup architecture specific code. */ void mono_arch_cleanup (void) { mono_os_mutex_destroy (&mini_arch_mutex); } /* * This function returns the optimizations supported on this cpu. */ guint32 mono_arch_cpu_optimizations (guint32 *exclude_mask) { guint32 opts = 0; *exclude_mask = 0; if (mono_hwcap_x86_has_cmov) { opts |= MONO_OPT_CMOV; if (mono_hwcap_x86_has_fcmov) opts |= MONO_OPT_FCMOV; else *exclude_mask |= MONO_OPT_FCMOV; } else { *exclude_mask |= MONO_OPT_CMOV; } if (mono_hwcap_x86_has_sse2) opts |= MONO_OPT_SSE2; else *exclude_mask |= MONO_OPT_SSE2; #ifdef MONO_ARCH_SIMD_INTRINSICS /*SIMD intrinsics require at least SSE2.*/ if (!mono_hwcap_x86_has_sse2) *exclude_mask |= MONO_OPT_SIMD; #endif return opts; } /* * This function test for all SSE functions supported. * * Returns a bitmask corresponding to all supported versions. * */ guint32 mono_arch_cpu_enumerate_simd_versions (void) { guint32 sse_opts = 0; if (mono_hwcap_x86_has_sse1) sse_opts |= SIMD_VERSION_SSE1; if (mono_hwcap_x86_has_sse2) sse_opts |= SIMD_VERSION_SSE2; if (mono_hwcap_x86_has_sse3) sse_opts |= SIMD_VERSION_SSE3; if (mono_hwcap_x86_has_ssse3) sse_opts |= SIMD_VERSION_SSSE3; if (mono_hwcap_x86_has_sse41) sse_opts |= SIMD_VERSION_SSE41; if (mono_hwcap_x86_has_sse42) sse_opts |= SIMD_VERSION_SSE42; if (mono_hwcap_x86_has_sse4a) sse_opts |= SIMD_VERSION_SSE4a; return sse_opts; } /* * Determine whenever the trap whose info is in SIGINFO is caused by * integer overflow. */ gboolean mono_arch_is_int_overflow (void *sigctx, void *info) { MonoContext ctx; guint8* ip; mono_sigctx_to_monoctx (sigctx, &ctx); ip = (guint8*)ctx.eip; if ((ip [0] == 0xf7) && (x86_modrm_mod (ip [1]) == 0x3) && (x86_modrm_reg (ip [1]) == 0x7)) { gint32 reg; /* idiv REG */ switch (x86_modrm_rm (ip [1])) { case X86_EAX: reg = ctx.eax; break; case X86_ECX: reg = ctx.ecx; break; case X86_EDX: reg = ctx.edx; break; case X86_EBX: reg = ctx.ebx; break; case X86_ESI: reg = ctx.esi; break; case X86_EDI: reg = ctx.edi; break; default: g_assert_not_reached (); reg = -1; } if (reg == -1) return TRUE; } return FALSE; } GList * mono_arch_get_allocatable_int_vars (MonoCompile *cfg) { GList *vars = NULL; int i; for (i = 0; i < cfg->num_varinfo; i++) { MonoInst *ins = cfg->varinfo [i]; MonoMethodVar *vmv = MONO_VARINFO (cfg, i); /* unused vars */ if (vmv->range.first_use.abs_pos >= vmv->range.last_use.abs_pos) continue; if ((ins->flags & (MONO_INST_IS_DEAD|MONO_INST_VOLATILE|MONO_INST_INDIRECT)) || (ins->opcode != OP_LOCAL && ins->opcode != OP_ARG)) continue; /* we dont allocate I1 to registers because there is no simply way to sign extend * 8bit quantities in caller saved registers on x86 */ if (mono_is_regsize_var (ins->inst_vtype) && (ins->inst_vtype->type != MONO_TYPE_I1)) { g_assert (MONO_VARINFO (cfg, i)->reg == -1); g_assert (i == vmv->idx); vars = g_list_prepend (vars, vmv); } } vars = mono_varlist_sort (cfg, vars, 0); return vars; } GList * mono_arch_get_global_int_regs (MonoCompile *cfg) { GList *regs = NULL; /* we can use 3 registers for global allocation */ regs = g_list_prepend (regs, (gpointer)X86_EBX); regs = g_list_prepend (regs, (gpointer)X86_ESI); regs = g_list_prepend (regs, (gpointer)X86_EDI); return regs; } /* * mono_arch_regalloc_cost: * * Return the cost, in number of memory references, of the action of * allocating the variable VMV into a register during global register * allocation. */ guint32 mono_arch_regalloc_cost (MonoCompile *cfg, MonoMethodVar *vmv) { MonoInst *ins = cfg->varinfo [vmv->idx]; if (cfg->method->save_lmf) /* The register is already saved */ return (ins->opcode == OP_ARG) ? 1 : 0; else /* push+pop+possible load if it is an argument */ return (ins->opcode == OP_ARG) ? 3 : 2; } static void set_needs_stack_frame (MonoCompile *cfg, gboolean flag) { static int inited = FALSE; static int count = 0; if (cfg->arch.need_stack_frame_inited) { g_assert (cfg->arch.need_stack_frame == flag); return; } cfg->arch.need_stack_frame = flag; cfg->arch.need_stack_frame_inited = TRUE; if (flag) return; if (!inited) { mono_counters_register ("Could eliminate stack frame", MONO_COUNTER_INT|MONO_COUNTER_JIT, &count); inited = TRUE; } ++count; //g_print ("will eliminate %s.%s.%s\n", cfg->method->klass->name_space, cfg->method->klass->name, cfg->method->name); } static gboolean needs_stack_frame (MonoCompile *cfg) { MonoMethodSignature *sig; MonoMethodHeader *header; gboolean result = FALSE; #if defined(__APPLE__) /*OSX requires stack frame code to have the correct alignment. */ return TRUE; #endif if (cfg->arch.need_stack_frame_inited) return cfg->arch.need_stack_frame; header = cfg->header; sig = mono_method_signature (cfg->method); if (cfg->disable_omit_fp) result = TRUE; else if (cfg->flags & MONO_CFG_HAS_ALLOCA) result = TRUE; else if (cfg->method->save_lmf) result = TRUE; else if (cfg->stack_offset) result = TRUE; else if (cfg->param_area) result = TRUE; else if (cfg->flags & (MONO_CFG_HAS_CALLS | MONO_CFG_HAS_ALLOCA | MONO_CFG_HAS_TAIL)) result = TRUE; else if (header->num_clauses) result = TRUE; else if (sig->param_count + sig->hasthis) result = TRUE; else if (!sig->pinvoke && (sig->call_convention == MONO_CALL_VARARG)) result = TRUE; else if ((mono_jit_trace_calls != NULL && mono_trace_eval (cfg->method))) result = TRUE; set_needs_stack_frame (cfg, result); return cfg->arch.need_stack_frame; } /* * Set var information according to the calling convention. X86 version. * The locals var stuff should most likely be split in another method. */ void mono_arch_allocate_vars (MonoCompile *cfg) { MonoMethodSignature *sig; MonoMethodHeader *header; MonoInst *inst; guint32 locals_stack_size, locals_stack_align; int i, offset; gint32 *offsets; CallInfo *cinfo; header = cfg->header; sig = mono_method_signature (cfg->method); if (!cfg->arch.cinfo) cfg->arch.cinfo = get_call_info (cfg->mempool, sig); cinfo = (CallInfo *)cfg->arch.cinfo; cfg->frame_reg = X86_EBP; offset = 0; if (cfg->has_atomic_add_i4 || cfg->has_atomic_exchange_i4) { /* The opcode implementations use callee-saved regs as scratch regs by pushing and pop-ing them, but that is not async safe */ cfg->used_int_regs |= (1 << X86_EBX) | (1 << X86_EDI) | (1 << X86_ESI); } /* Reserve space to save LMF and caller saved registers */ if (cfg->method->save_lmf) { /* The LMF var is allocated normally */ } else { if (cfg->used_int_regs & (1 << X86_EBX)) { offset += 4; } if (cfg->used_int_regs & (1 << X86_EDI)) { offset += 4; } if (cfg->used_int_regs & (1 << X86_ESI)) { offset += 4; } } switch (cinfo->ret.storage) { case ArgValuetypeInReg: /* Allocate a local to hold the result, the epilog will copy it to the correct place */ offset += 8; cfg->ret->opcode = OP_REGOFFSET; cfg->ret->inst_basereg = X86_EBP; cfg->ret->inst_offset = - offset; break; default: break; } /* Allocate locals */ offsets = mono_allocate_stack_slots (cfg, TRUE, &locals_stack_size, &locals_stack_align); if (locals_stack_size > MONO_ARCH_MAX_FRAME_SIZE) { char *mname = mono_method_full_name (cfg->method, TRUE); mono_cfg_set_exception_invalid_program (cfg, g_strdup_printf ("Method %s stack is too big.", mname)); g_free (mname); return; } if (locals_stack_align) { int prev_offset = offset; offset += (locals_stack_align - 1); offset &= ~(locals_stack_align - 1); while (prev_offset < offset) { prev_offset += 4; mini_gc_set_slot_type_from_fp (cfg, - prev_offset, SLOT_NOREF); } } cfg->locals_min_stack_offset = - (offset + locals_stack_size); cfg->locals_max_stack_offset = - offset; /* * EBP is at alignment 8 % MONO_ARCH_FRAME_ALIGNMENT, so if we * have locals larger than 8 bytes we need to make sure that * they have the appropriate offset. */ if (MONO_ARCH_FRAME_ALIGNMENT > 8 && locals_stack_align > 8) { int extra_size = MONO_ARCH_FRAME_ALIGNMENT - sizeof (gpointer) * 2; offset += extra_size; locals_stack_size += extra_size; } for (i = cfg->locals_start; i < cfg->num_varinfo; i++) { if (offsets [i] != -1) { MonoInst *inst = cfg->varinfo [i]; inst->opcode = OP_REGOFFSET; inst->inst_basereg = X86_EBP; inst->inst_offset = - (offset + offsets [i]); //printf ("allocated local %d to ", i); mono_print_tree_nl (inst); } } offset += locals_stack_size; /* * Allocate arguments+return value */ switch (cinfo->ret.storage) { case ArgOnStack: if (cfg->vret_addr) { /* * In the new IR, the cfg->vret_addr variable represents the * vtype return value. */ cfg->vret_addr->opcode = OP_REGOFFSET; cfg->vret_addr->inst_basereg = cfg->frame_reg; cfg->vret_addr->inst_offset = cinfo->ret.offset + ARGS_OFFSET; if (G_UNLIKELY (cfg->verbose_level > 1)) { printf ("vret_addr ="); mono_print_ins (cfg->vret_addr); } } else { cfg->ret->opcode = OP_REGOFFSET; cfg->ret->inst_basereg = X86_EBP; cfg->ret->inst_offset = cinfo->ret.offset + ARGS_OFFSET; } break; case ArgValuetypeInReg: break; case ArgInIReg: cfg->ret->opcode = OP_REGVAR; cfg->ret->inst_c0 = cinfo->ret.reg; cfg->ret->dreg = cinfo->ret.reg; break; case ArgNone: case ArgOnFloatFpStack: case ArgOnDoubleFpStack: break; default: g_assert_not_reached (); } if (sig->call_convention == MONO_CALL_VARARG) { g_assert (cinfo->sig_cookie.storage == ArgOnStack); cfg->sig_cookie = cinfo->sig_cookie.offset + ARGS_OFFSET; } for (i = 0; i < sig->param_count + sig->hasthis; ++i) { ArgInfo *ainfo = &cinfo->args [i]; inst = cfg->args [i]; if (inst->opcode != OP_REGVAR) { inst->opcode = OP_REGOFFSET; inst->inst_basereg = X86_EBP; inst->inst_offset = ainfo->offset + ARGS_OFFSET; } } cfg->stack_offset = offset; } void mono_arch_create_vars (MonoCompile *cfg) { MonoType *sig_ret; MonoMethodSignature *sig; CallInfo *cinfo; sig = mono_method_signature (cfg->method); if (!cfg->arch.cinfo) cfg->arch.cinfo = get_call_info (cfg->mempool, sig); cinfo = (CallInfo *)cfg->arch.cinfo; sig_ret = mini_get_underlying_type (sig->ret); if (cinfo->ret.storage == ArgValuetypeInReg) cfg->ret_var_is_local = TRUE; if ((cinfo->ret.storage != ArgValuetypeInReg) && (MONO_TYPE_ISSTRUCT (sig_ret) || mini_is_gsharedvt_variable_type (sig_ret))) { cfg->vret_addr = mono_compile_create_var (cfg, &mono_defaults.int_class->byval_arg, OP_ARG); } if (cfg->gen_sdb_seq_points) { MonoInst *ins; ins = mono_compile_create_var (cfg, &mono_defaults.int_class->byval_arg, OP_LOCAL); ins->flags |= MONO_INST_VOLATILE; cfg->arch.ss_tramp_var = ins; ins = mono_compile_create_var (cfg, &mono_defaults.int_class->byval_arg, OP_LOCAL); ins->flags |= MONO_INST_VOLATILE; cfg->arch.bp_tramp_var = ins; } if (cfg->method->save_lmf) { cfg->create_lmf_var = TRUE; cfg->lmf_ir = TRUE; } cfg->arch_eh_jit_info = 1; } /* * It is expensive to adjust esp for each individual fp argument pushed on the stack * so we try to do it just once when we have multiple fp arguments in a row. * We don't use this mechanism generally because for int arguments the generated code * is slightly bigger and new generation cpus optimize away the dependency chains * created by push instructions on the esp value. * fp_arg_setup is the first argument in the execution sequence where the esp register * is modified. */ static G_GNUC_UNUSED int collect_fp_stack_space (MonoMethodSignature *sig, int start_arg, int *fp_arg_setup) { int fp_space = 0; MonoType *t; for (; start_arg < sig->param_count; ++start_arg) { t = mini_get_underlying_type (sig->params [start_arg]); if (!t->byref && t->type == MONO_TYPE_R8) { fp_space += sizeof (double); *fp_arg_setup = start_arg; } else { break; } } return fp_space; } static void emit_sig_cookie (MonoCompile *cfg, MonoCallInst *call, CallInfo *cinfo) { MonoMethodSignature *tmp_sig; int sig_reg; /* * mono_ArgIterator_Setup assumes the signature cookie is * passed first and all the arguments which were before it are * passed on the stack after the signature. So compensate by * passing a different signature. */ tmp_sig = mono_metadata_signature_dup (call->signature); tmp_sig->param_count -= call->signature->sentinelpos; tmp_sig->sentinelpos = 0; memcpy (tmp_sig->params, call->signature->params + call->signature->sentinelpos, tmp_sig->param_count * sizeof (MonoType*)); if (cfg->compile_aot) { sig_reg = mono_alloc_ireg (cfg); MONO_EMIT_NEW_SIGNATURECONST (cfg, sig_reg, tmp_sig); MONO_EMIT_NEW_STORE_MEMBASE (cfg, OP_STORE_MEMBASE_REG, X86_ESP, cinfo->sig_cookie.offset, sig_reg); } else { MONO_EMIT_NEW_STORE_MEMBASE_IMM (cfg, OP_STORE_MEMBASE_IMM, X86_ESP, cinfo->sig_cookie.offset, tmp_sig); } } #ifdef ENABLE_LLVM LLVMCallInfo* mono_arch_get_llvm_call_info (MonoCompile *cfg, MonoMethodSignature *sig) { int i, n; CallInfo *cinfo; ArgInfo *ainfo; LLVMCallInfo *linfo; MonoType *t, *sig_ret; n = sig->param_count + sig->hasthis; cinfo = get_call_info (cfg->mempool, sig); sig_ret = sig->ret; linfo = mono_mempool_alloc0 (cfg->mempool, sizeof (LLVMCallInfo) + (sizeof (LLVMArgInfo) * n)); /* * LLVM always uses the native ABI while we use our own ABI, the * only difference is the handling of vtypes: * - we only pass/receive them in registers in some cases, and only * in 1 or 2 integer registers. */ if (cinfo->ret.storage == ArgValuetypeInReg) { if (sig->pinvoke) { cfg->exception_message = g_strdup ("pinvoke + vtypes"); cfg->disable_llvm = TRUE; return linfo; } cfg->exception_message = g_strdup ("vtype ret in call"); cfg->disable_llvm = TRUE; /* linfo->ret.storage = LLVMArgVtypeInReg; for (j = 0; j < 2; ++j) linfo->ret.pair_storage [j] = arg_storage_to_llvm_arg_storage (cfg, cinfo->ret.pair_storage [j]); */ } if (mini_type_is_vtype (sig_ret) && cinfo->ret.storage == ArgInIReg) { /* Vtype returned using a hidden argument */ linfo->ret.storage = LLVMArgVtypeRetAddr; linfo->vret_arg_index = cinfo->vret_arg_index; } if (mini_type_is_vtype (sig_ret) && cinfo->ret.storage != ArgInIReg) { // FIXME: cfg->exception_message = g_strdup ("vtype ret in call"); cfg->disable_llvm = TRUE; } for (i = 0; i < n; ++i) { ainfo = cinfo->args + i; if (i >= sig->hasthis) t = sig->params [i - sig->hasthis]; else t = &mono_defaults.int_class->byval_arg; linfo->args [i].storage = LLVMArgNone; switch (ainfo->storage) { case ArgInIReg: linfo->args [i].storage = LLVMArgNormal; break; case ArgInDoubleSSEReg: case ArgInFloatSSEReg: linfo->args [i].storage = LLVMArgNormal; break; case ArgOnStack: if (mini_type_is_vtype (t)) { if (mono_class_value_size (mono_class_from_mono_type (t), NULL) == 0) /* LLVM seems to allocate argument space for empty structures too */ linfo->args [i].storage = LLVMArgNone; else linfo->args [i].storage = LLVMArgVtypeByVal; } else { linfo->args [i].storage = LLVMArgNormal; } break; case ArgValuetypeInReg: if (sig->pinvoke) { cfg->exception_message = g_strdup ("pinvoke + vtypes"); cfg->disable_llvm = TRUE; return linfo; } cfg->exception_message = g_strdup ("vtype arg"); cfg->disable_llvm = TRUE; /* linfo->args [i].storage = LLVMArgVtypeInReg; for (j = 0; j < 2; ++j) linfo->args [i].pair_storage [j] = arg_storage_to_llvm_arg_storage (cfg, ainfo->pair_storage [j]); */ break; case ArgGSharedVt: linfo->args [i].storage = LLVMArgGSharedVt; break; default: cfg->exception_message = g_strdup ("ainfo->storage"); cfg->disable_llvm = TRUE; break; } } return linfo; } #endif static void emit_gc_param_slot_def (MonoCompile *cfg, int sp_offset, MonoType *t) { if (cfg->compute_gc_maps) { MonoInst *def; /* Needs checking if the feature will be enabled again */ g_assert_not_reached (); /* On x86, the offsets are from the sp value before the start of the call sequence */ if (t == NULL) t = &mono_defaults.int_class->byval_arg; EMIT_NEW_GC_PARAM_SLOT_LIVENESS_DEF (cfg, def, sp_offset, t); } } void mono_arch_emit_call (MonoCompile *cfg, MonoCallInst *call) { MonoType *sig_ret; MonoInst *arg, *in; MonoMethodSignature *sig; int i, j, n; CallInfo *cinfo; int sentinelpos = 0, sp_offset = 0; sig = call->signature; n = sig->param_count + sig->hasthis; sig_ret = mini_get_underlying_type (sig->ret); cinfo = get_call_info (cfg->mempool, sig); call->call_info = cinfo; if (!sig->pinvoke && (sig->call_convention == MONO_CALL_VARARG)) sentinelpos = sig->sentinelpos + (sig->hasthis ? 1 : 0); if (sig_ret && MONO_TYPE_ISSTRUCT (sig_ret)) { if (cinfo->ret.storage == ArgValuetypeInReg && cinfo->ret.pair_storage[0] != ArgNone ) { /* * Tell the JIT to use a more efficient calling convention: call using * OP_CALL, compute the result location after the call, and save the * result there. */ call->vret_in_reg = TRUE; #if defined(__APPLE__) if (cinfo->ret.pair_storage [0] == ArgOnDoubleFpStack || cinfo->ret.pair_storage [0] == ArgOnFloatFpStack) call->vret_in_reg_fp = TRUE; #endif if (call->vret_var) NULLIFY_INS (call->vret_var); } } // FIXME: Emit EMIT_NEW_GC_PARAM_SLOT_LIVENESS_DEF everywhere /* Handle the case where there are no implicit arguments */ if (!sig->pinvoke && (sig->call_convention == MONO_CALL_VARARG) && (n == sentinelpos)) { emit_sig_cookie (cfg, call, cinfo); sp_offset = cinfo->sig_cookie.offset; emit_gc_param_slot_def (cfg, sp_offset, NULL); } /* Arguments are pushed in the reverse order */ for (i = n - 1; i >= 0; i --) { ArgInfo *ainfo = cinfo->args + i; MonoType *orig_type, *t; int argsize; if (cinfo->vtype_retaddr && cinfo->vret_arg_index == 1 && i == 0) { MonoInst *vtarg; /* Push the vret arg before the first argument */ MONO_INST_NEW (cfg, vtarg, OP_STORE_MEMBASE_REG); vtarg->type = STACK_MP; vtarg->inst_destbasereg = X86_ESP; vtarg->sreg1 = call->vret_var->dreg; vtarg->inst_offset = cinfo->ret.offset; MONO_ADD_INS (cfg->cbb, vtarg); emit_gc_param_slot_def (cfg, cinfo->ret.offset, NULL); } if (i >= sig->hasthis) t = sig->params [i - sig->hasthis]; else t = &mono_defaults.int_class->byval_arg; orig_type = t; t = mini_get_underlying_type (t); MONO_INST_NEW (cfg, arg, OP_X86_PUSH); in = call->args [i]; arg->cil_code = in->cil_code; arg->sreg1 = in->dreg; arg->type = in->type; g_assert (in->dreg != -1); if (ainfo->storage == ArgGSharedVt) { arg->opcode = OP_OUTARG_VT; arg->sreg1 = in->dreg; arg->klass = in->klass; arg->inst_p1 = mono_mempool_alloc (cfg->mempool, sizeof (ArgInfo)); memcpy (arg->inst_p1, ainfo, sizeof (ArgInfo)); sp_offset += 4; MONO_ADD_INS (cfg->cbb, arg); } else if ((i >= sig->hasthis) && (MONO_TYPE_ISSTRUCT(t))) { guint32 align; guint32 size; g_assert (in->klass); if (t->type == MONO_TYPE_TYPEDBYREF) { size = sizeof (MonoTypedRef); align = sizeof (gpointer); } else { size = mini_type_stack_size_full (&in->klass->byval_arg, &align, sig->pinvoke); } if (size > 0 || ainfo->pass_empty_struct) { arg->opcode = OP_OUTARG_VT; arg->sreg1 = in->dreg; arg->klass = in->klass; arg->backend.size = size; arg->inst_p0 = call; arg->inst_p1 = mono_mempool_alloc (cfg->mempool, sizeof (ArgInfo)); memcpy (arg->inst_p1, ainfo, sizeof (ArgInfo)); MONO_ADD_INS (cfg->cbb, arg); if (ainfo->storage != ArgValuetypeInReg) { emit_gc_param_slot_def (cfg, ainfo->offset, orig_type); } } } else { switch (ainfo->storage) { case ArgOnStack: if (!t->byref) { if (t->type == MONO_TYPE_R4) { MONO_EMIT_NEW_STORE_MEMBASE (cfg, OP_STORER4_MEMBASE_REG, X86_ESP, ainfo->offset, in->dreg); argsize = 4; } else if (t->type == MONO_TYPE_R8) { MONO_EMIT_NEW_STORE_MEMBASE (cfg, OP_STORER8_MEMBASE_REG, X86_ESP, ainfo->offset, in->dreg); argsize = 8; } else if (t->type == MONO_TYPE_I8 || t->type == MONO_TYPE_U8) { MONO_EMIT_NEW_STORE_MEMBASE (cfg, OP_STORE_MEMBASE_REG, X86_ESP, ainfo->offset + 4, MONO_LVREG_MS (in->dreg)); MONO_EMIT_NEW_STORE_MEMBASE (cfg, OP_STORE_MEMBASE_REG, X86_ESP, ainfo->offset, MONO_LVREG_LS (in->dreg)); argsize = 4; } else { MONO_EMIT_NEW_STORE_MEMBASE (cfg, OP_STORE_MEMBASE_REG, X86_ESP, ainfo->offset, in->dreg); argsize = 4; } } else { MONO_EMIT_NEW_STORE_MEMBASE (cfg, OP_STORE_MEMBASE_REG, X86_ESP, ainfo->offset, in->dreg); argsize = 4; } break; case ArgInIReg: arg->opcode = OP_MOVE; arg->dreg = ainfo->reg; MONO_ADD_INS (cfg->cbb, arg); argsize = 0; break; default: g_assert_not_reached (); } if (cfg->compute_gc_maps) { if (argsize == 4) { /* FIXME: The == STACK_OBJ check might be fragile ? */ if (sig->hasthis && i == 0 && call->args [i]->type == STACK_OBJ) { /* this */ if (call->need_unbox_trampoline) /* The unbox trampoline transforms this into a managed pointer */ emit_gc_param_slot_def (cfg, ainfo->offset, &mono_defaults.int_class->this_arg); else emit_gc_param_slot_def (cfg, ainfo->offset, &mono_defaults.object_class->byval_arg); } else { emit_gc_param_slot_def (cfg, ainfo->offset, orig_type); } } else { /* i8/r8 */ for (j = 0; j < argsize; j += 4) emit_gc_param_slot_def (cfg, ainfo->offset + j, NULL); } } } if (!sig->pinvoke && (sig->call_convention == MONO_CALL_VARARG) && (i == sentinelpos)) { /* Emit the signature cookie just before the implicit arguments */ emit_sig_cookie (cfg, call, cinfo); emit_gc_param_slot_def (cfg, cinfo->sig_cookie.offset, NULL); } } if (sig_ret && (MONO_TYPE_ISSTRUCT (sig_ret) || cinfo->vtype_retaddr)) { MonoInst *vtarg; if (cinfo->ret.storage == ArgValuetypeInReg) { /* Already done */ } else if (cinfo->ret.storage == ArgInIReg) { NOT_IMPLEMENTED; /* The return address is passed in a register */ MONO_INST_NEW (cfg, vtarg, OP_MOVE); vtarg->sreg1 = call->inst.dreg; vtarg->dreg = mono_alloc_ireg (cfg); MONO_ADD_INS (cfg->cbb, vtarg); mono_call_inst_add_outarg_reg (cfg, call, vtarg->dreg, cinfo->ret.reg, FALSE); } else if (cinfo->vtype_retaddr && cinfo->vret_arg_index == 0) { MONO_EMIT_NEW_STORE_MEMBASE (cfg, OP_STORE_MEMBASE_REG, X86_ESP, cinfo->ret.offset, call->vret_var->dreg); emit_gc_param_slot_def (cfg, cinfo->ret.offset, NULL); } } call->stack_usage = cinfo->stack_usage; call->stack_align_amount = cinfo->stack_align_amount; } void mono_arch_emit_outarg_vt (MonoCompile *cfg, MonoInst *ins, MonoInst *src) { MonoCallInst *call = (MonoCallInst*)ins->inst_p0; ArgInfo *ainfo = ins->inst_p1; int size = ins->backend.size; if (ainfo->storage == ArgValuetypeInReg) { int dreg = mono_alloc_ireg (cfg); switch (size) { case 1: MONO_EMIT_NEW_LOAD_MEMBASE_OP (cfg, OP_LOADU1_MEMBASE, dreg, src->dreg, 0); break; case 2: MONO_EMIT_NEW_LOAD_MEMBASE_OP (cfg, OP_LOADU2_MEMBASE, dreg, src->dreg, 0); break; case 4: MONO_EMIT_NEW_LOAD_MEMBASE (cfg, dreg, src->dreg, 0); break; case 3: /* FIXME */ default: g_assert_not_reached (); } mono_call_inst_add_outarg_reg (cfg, call, dreg, ainfo->reg, FALSE); } else { if (cfg->gsharedvt && mini_is_gsharedvt_klass (ins->klass)) { /* Pass by addr */ MONO_EMIT_NEW_STORE_MEMBASE (cfg, OP_STORE_MEMBASE_REG, X86_ESP, ainfo->offset, src->dreg); } else if (size <= 4) { int dreg = mono_alloc_ireg (cfg); if (ainfo->pass_empty_struct) { //Pass empty struct value as 0 on platforms representing empty structs as 1 byte. MONO_EMIT_NEW_ICONST (cfg, dreg, 0); } else { MONO_EMIT_NEW_LOAD_MEMBASE (cfg, dreg, src->dreg, 0); } MONO_EMIT_NEW_STORE_MEMBASE (cfg, OP_STORE_MEMBASE_REG, X86_ESP, ainfo->offset, dreg); } else if (size <= 20) { mini_emit_memcpy (cfg, X86_ESP, ainfo->offset, src->dreg, 0, size, 4); } else { // FIXME: Code growth mini_emit_memcpy (cfg, X86_ESP, ainfo->offset, src->dreg, 0, size, 4); } } } void mono_arch_emit_setret (MonoCompile *cfg, MonoMethod *method, MonoInst *val) { MonoType *ret = mini_get_underlying_type (mono_method_signature (method)->ret); if (!ret->byref) { if (ret->type == MONO_TYPE_R4) { if (COMPILE_LLVM (cfg)) MONO_EMIT_NEW_UNALU (cfg, OP_FMOVE, cfg->ret->dreg, val->dreg); /* Nothing to do */ return; } else if (ret->type == MONO_TYPE_R8) { if (COMPILE_LLVM (cfg)) MONO_EMIT_NEW_UNALU (cfg, OP_FMOVE, cfg->ret->dreg, val->dreg); /* Nothing to do */ return; } else if (ret->type == MONO_TYPE_I8 || ret->type == MONO_TYPE_U8) { if (COMPILE_LLVM (cfg)) MONO_EMIT_NEW_UNALU (cfg, OP_LMOVE, cfg->ret->dreg, val->dreg); else { MONO_EMIT_NEW_UNALU (cfg, OP_MOVE, X86_EAX, MONO_LVREG_LS (val->dreg)); MONO_EMIT_NEW_UNALU (cfg, OP_MOVE, X86_EDX, MONO_LVREG_MS (val->dreg)); } return; } } MONO_EMIT_NEW_UNALU (cfg, OP_MOVE, cfg->ret->dreg, val->dreg); } /* * Allow tracing to work with this interface (with an optional argument) */ void* mono_arch_instrument_prolog (MonoCompile *cfg, void *func, void *p, gboolean enable_arguments) { guchar *code = p; g_assert (MONO_ARCH_FRAME_ALIGNMENT >= 8); x86_alu_reg_imm (code, X86_SUB, X86_ESP, MONO_ARCH_FRAME_ALIGNMENT - 8); /* if some args are passed in registers, we need to save them here */ x86_push_reg (code, X86_EBP); if (cfg->compile_aot) { x86_push_imm (code, cfg->method); x86_mov_reg_imm (code, X86_EAX, func); x86_call_reg (code, X86_EAX); } else { mono_add_patch_info (cfg, code-cfg->native_code, MONO_PATCH_INFO_METHODCONST, cfg->method); x86_push_imm (code, cfg->method); mono_add_patch_info (cfg, code-cfg->native_code, MONO_PATCH_INFO_ABS, func); x86_call_code (code, 0); } x86_alu_reg_imm (code, X86_ADD, X86_ESP, MONO_ARCH_FRAME_ALIGNMENT); return code; } enum { SAVE_NONE, SAVE_STRUCT, SAVE_EAX, SAVE_EAX_EDX, SAVE_FP }; void* mono_arch_instrument_epilog_full (MonoCompile *cfg, void *func, void *p, gboolean enable_arguments, gboolean preserve_argument_registers) { guchar *code = p; int arg_size = 0, stack_usage = 0, save_mode = SAVE_NONE; MonoMethod *method = cfg->method; MonoType *ret_type = mini_get_underlying_type (mono_method_signature (method)->ret); switch (ret_type->type) { case MONO_TYPE_VOID: /* special case string .ctor icall */ if (strcmp (".ctor", method->name) && method->klass == mono_defaults.string_class) { save_mode = SAVE_EAX; stack_usage = enable_arguments ? 8 : 4; } else save_mode = SAVE_NONE; break; case MONO_TYPE_I8: case MONO_TYPE_U8: save_mode = SAVE_EAX_EDX; stack_usage = enable_arguments ? 16 : 8; break; case MONO_TYPE_R4: case MONO_TYPE_R8: save_mode = SAVE_FP; stack_usage = enable_arguments ? 16 : 8; break; case MONO_TYPE_GENERICINST: if (!mono_type_generic_inst_is_valuetype (ret_type)) { save_mode = SAVE_EAX; stack_usage = enable_arguments ? 8 : 4; break; } /* Fall through */ case MONO_TYPE_VALUETYPE: // FIXME: Handle SMALL_STRUCT_IN_REG here for proper alignment on darwin-x86 save_mode = SAVE_STRUCT; stack_usage = enable_arguments ? 4 : 0; break; default: save_mode = SAVE_EAX; stack_usage = enable_arguments ? 8 : 4; break; } x86_alu_reg_imm (code, X86_SUB, X86_ESP, MONO_ARCH_FRAME_ALIGNMENT - stack_usage - 4); switch (save_mode) { case SAVE_EAX_EDX: x86_push_reg (code, X86_EDX); x86_push_reg (code, X86_EAX); if (enable_arguments) { x86_push_reg (code, X86_EDX); x86_push_reg (code, X86_EAX); arg_size = 8; } break; case SAVE_EAX: x86_push_reg (code, X86_EAX); if (enable_arguments) { x86_push_reg (code, X86_EAX); arg_size = 4; } break; case SAVE_FP: x86_alu_reg_imm (code, X86_SUB, X86_ESP, 8); x86_fst_membase (code, X86_ESP, 0, TRUE, TRUE); if (enable_arguments) { x86_alu_reg_imm (code, X86_SUB, X86_ESP, 8); x86_fst_membase (code, X86_ESP, 0, TRUE, TRUE); arg_size = 8; } break; case SAVE_STRUCT: if (enable_arguments) { x86_push_membase (code, X86_EBP, 8); arg_size = 4; } break; case SAVE_NONE: default: break; } if (cfg->compile_aot) { x86_push_imm (code, method); x86_mov_reg_imm (code, X86_EAX, func); x86_call_reg (code, X86_EAX); } else { mono_add_patch_info (cfg, code-cfg->native_code, MONO_PATCH_INFO_METHODCONST, method); x86_push_imm (code, method); mono_add_patch_info (cfg, code-cfg->native_code, MONO_PATCH_INFO_ABS, func); x86_call_code (code, 0); } x86_alu_reg_imm (code, X86_ADD, X86_ESP, arg_size + 4); switch (save_mode) { case SAVE_EAX_EDX: x86_pop_reg (code, X86_EAX); x86_pop_reg (code, X86_EDX); break; case SAVE_EAX: x86_pop_reg (code, X86_EAX); break; case SAVE_FP: x86_fld_membase (code, X86_ESP, 0, TRUE); x86_alu_reg_imm (code, X86_ADD, X86_ESP, 8); break; case SAVE_NONE: default: break; } x86_alu_reg_imm (code, X86_ADD, X86_ESP, MONO_ARCH_FRAME_ALIGNMENT - stack_usage); return code; } #define EMIT_COND_BRANCH(ins,cond,sign) \ if (ins->inst_true_bb->native_offset) { \ x86_branch (code, cond, cfg->native_code + ins->inst_true_bb->native_offset, sign); \ } else { \ mono_add_patch_info (cfg, code - cfg->native_code, MONO_PATCH_INFO_BB, ins->inst_true_bb); \ if ((cfg->opt & MONO_OPT_BRANCH) && \ x86_is_imm8 (ins->inst_true_bb->max_offset - cpos)) \ x86_branch8 (code, cond, 0, sign); \ else \ x86_branch32 (code, cond, 0, sign); \ } /* * Emit an exception if condition is fail and * if possible do a directly branch to target */ #define EMIT_COND_SYSTEM_EXCEPTION(cond,signed,exc_name) \ do { \ MonoInst *tins = mono_branch_optimize_exception_target (cfg, bb, exc_name); \ if (tins == NULL) { \ mono_add_patch_info (cfg, code - cfg->native_code, \ MONO_PATCH_INFO_EXC, exc_name); \ x86_branch32 (code, cond, 0, signed); \ } else { \ EMIT_COND_BRANCH (tins, cond, signed); \ } \ } while (0); #define EMIT_FPCOMPARE(code) do { \ x86_fcompp (code); \ x86_fnstsw (code); \ } while (0); static guint8* emit_call (MonoCompile *cfg, guint8 *code, guint32 patch_type, gconstpointer data) { gboolean needs_paddings = TRUE; guint32 pad_size; MonoJumpInfo *jinfo = NULL; if (cfg->abs_patches) { jinfo = g_hash_table_lookup (cfg->abs_patches, data); if (jinfo && jinfo->type == MONO_PATCH_INFO_JIT_ICALL_ADDR) needs_paddings = FALSE; } if (cfg->compile_aot) needs_paddings = FALSE; /*The address must be 4 bytes aligned to avoid spanning multiple cache lines. This is required for code patching to be safe on SMP machines. */ pad_size = (guint32)(code + 1 - cfg->native_code) & 0x3; if (needs_paddings && pad_size) x86_padding (code, 4 - pad_size); mono_add_patch_info (cfg, code - cfg->native_code, patch_type, data); x86_call_code (code, 0); return code; } #define INST_IGNORES_CFLAGS(opcode) (!(((opcode) == OP_ADC) || ((opcode) == OP_IADC) || ((opcode) == OP_ADC_IMM) || ((opcode) == OP_IADC_IMM) || ((opcode) == OP_SBB) || ((opcode) == OP_ISBB) || ((opcode) == OP_SBB_IMM) || ((opcode) == OP_ISBB_IMM))) /* * mono_peephole_pass_1: * * Perform peephole opts which should/can be performed before local regalloc */ void mono_arch_peephole_pass_1 (MonoCompile *cfg, MonoBasicBlock *bb) { MonoInst *ins, *n; MONO_BB_FOR_EACH_INS_SAFE (bb, n, ins) { MonoInst *last_ins = mono_inst_prev (ins, FILTER_IL_SEQ_POINT); switch (ins->opcode) { case OP_IADD_IMM: case OP_ADD_IMM: if ((ins->sreg1 < MONO_MAX_IREGS) && (ins->dreg >= MONO_MAX_IREGS)) { /* * X86_LEA is like ADD, but doesn't have the * sreg1==dreg restriction. */ ins->opcode = OP_X86_LEA_MEMBASE; ins->inst_basereg = ins->sreg1; } else if ((ins->inst_imm == 1) && (ins->dreg == ins->sreg1)) ins->opcode = OP_X86_INC_REG; break; case OP_SUB_IMM: case OP_ISUB_IMM: if ((ins->sreg1 < MONO_MAX_IREGS) && (ins->dreg >= MONO_MAX_IREGS)) { ins->opcode = OP_X86_LEA_MEMBASE; ins->inst_basereg = ins->sreg1; ins->inst_imm = -ins->inst_imm; } else if ((ins->inst_imm == 1) && (ins->dreg == ins->sreg1)) ins->opcode = OP_X86_DEC_REG; break; case OP_COMPARE_IMM: case OP_ICOMPARE_IMM: /* OP_COMPARE_IMM (reg, 0) * --> * OP_X86_TEST_NULL (reg) */ if (!ins->inst_imm) ins->opcode = OP_X86_TEST_NULL; break; case OP_X86_COMPARE_MEMBASE_IMM: /* * OP_STORE_MEMBASE_REG reg, offset(basereg) * OP_X86_COMPARE_MEMBASE_IMM offset(basereg), imm * --> * OP_STORE_MEMBASE_REG reg, offset(basereg) * OP_COMPARE_IMM reg, imm * * Note: if imm = 0 then OP_COMPARE_IMM replaced with OP_X86_TEST_NULL */ if (last_ins && (last_ins->opcode == OP_STOREI4_MEMBASE_REG) && ins->inst_basereg == last_ins->inst_destbasereg && ins->inst_offset == last_ins->inst_offset) { ins->opcode = OP_COMPARE_IMM; ins->sreg1 = last_ins->sreg1; /* check if we can remove cmp reg,0 with test null */ if (!ins->inst_imm) ins->opcode = OP_X86_TEST_NULL; } break; case OP_X86_PUSH_MEMBASE: if (last_ins && (last_ins->opcode == OP_STOREI4_MEMBASE_REG || last_ins->opcode == OP_STORE_MEMBASE_REG) && ins->inst_basereg == last_ins->inst_destbasereg && ins->inst_offset == last_ins->inst_offset) { ins->opcode = OP_X86_PUSH; ins->sreg1 = last_ins->sreg1; } break; } mono_peephole_ins (bb, ins); } } void mono_arch_peephole_pass_2 (MonoCompile *cfg, MonoBasicBlock *bb) { MonoInst *ins, *n; MONO_BB_FOR_EACH_INS_SAFE (bb, n, ins) { switch (ins->opcode) { case OP_ICONST: /* reg = 0 -> XOR (reg, reg) */ /* XOR sets cflags on x86, so we cant do it always */ if (ins->inst_c0 == 0 && (!ins->next || (ins->next && INST_IGNORES_CFLAGS (ins->next->opcode)))) { MonoInst *ins2; ins->opcode = OP_IXOR; ins->sreg1 = ins->dreg; ins->sreg2 = ins->dreg; /* * Convert succeeding STORE_MEMBASE_IMM 0 ins to STORE_MEMBASE_REG * since it takes 3 bytes instead of 7. */ for (ins2 = mono_inst_next (ins, FILTER_IL_SEQ_POINT); ins2; ins2 = ins2->next) { if ((ins2->opcode == OP_STORE_MEMBASE_IMM) && (ins2->inst_imm == 0)) { ins2->opcode = OP_STORE_MEMBASE_REG; ins2->sreg1 = ins->dreg; } else if ((ins2->opcode == OP_STOREI4_MEMBASE_IMM) && (ins2->inst_imm == 0)) { ins2->opcode = OP_STOREI4_MEMBASE_REG; ins2->sreg1 = ins->dreg; } else if ((ins2->opcode == OP_STOREI1_MEMBASE_IMM) || (ins2->opcode == OP_STOREI2_MEMBASE_IMM)) { /* Continue iteration */ } else break; } } break; case OP_IADD_IMM: case OP_ADD_IMM: if ((ins->inst_imm == 1) && (ins->dreg == ins->sreg1)) ins->opcode = OP_X86_INC_REG; break; case OP_ISUB_IMM: case OP_SUB_IMM: if ((ins->inst_imm == 1) && (ins->dreg == ins->sreg1)) ins->opcode = OP_X86_DEC_REG; break; } mono_peephole_ins (bb, ins); } } #define NEW_INS(cfg,ins,dest,op) do { \ MONO_INST_NEW ((cfg), (dest), (op)); \ (dest)->cil_code = (ins)->cil_code; \ mono_bblock_insert_before_ins (bb, ins, (dest)); \ } while (0) /* * mono_arch_lowering_pass: * * Converts complex opcodes into simpler ones so that each IR instruction * corresponds to one machine instruction. */ void mono_arch_lowering_pass (MonoCompile *cfg, MonoBasicBlock *bb) { MonoInst *ins, *next; /* * FIXME: Need to add more instructions, but the current machine * description can't model some parts of the composite instructions like * cdq. */ MONO_BB_FOR_EACH_INS_SAFE (bb, next, ins) { switch (ins->opcode) { case OP_IREM_IMM: case OP_IDIV_IMM: case OP_IDIV_UN_IMM: case OP_IREM_UN_IMM: /* * Keep the cases where we could generated optimized code, otherwise convert * to the non-imm variant. */ if ((ins->opcode == OP_IREM_IMM) && mono_is_power_of_two (ins->inst_imm) >= 0) break; mono_decompose_op_imm (cfg, bb, ins); break; #ifdef MONO_ARCH_SIMD_INTRINSICS case OP_EXPAND_I1: { MonoInst *temp; int temp_reg1 = mono_alloc_ireg (cfg); int temp_reg2 = mono_alloc_ireg (cfg); int original_reg = ins->sreg1; NEW_INS (cfg, ins, temp, OP_ICONV_TO_U1); temp->sreg1 = original_reg; temp->dreg = temp_reg1; NEW_INS (cfg, ins, temp, OP_SHL_IMM); temp->sreg1 = temp_reg1; temp->dreg = temp_reg2; temp->inst_imm = 8; NEW_INS (cfg, ins, temp, OP_IOR); temp->sreg1 = temp->dreg = temp_reg2; temp->sreg2 = temp_reg1; ins->opcode = OP_EXPAND_I2; ins->sreg1 = temp_reg2; } break; #endif default: break; } } bb->max_vreg = cfg->next_vreg; } static const int branch_cc_table [] = { X86_CC_EQ, X86_CC_GE, X86_CC_GT, X86_CC_LE, X86_CC_LT, X86_CC_NE, X86_CC_GE, X86_CC_GT, X86_CC_LE, X86_CC_LT, X86_CC_O, X86_CC_NO, X86_CC_C, X86_CC_NC }; /* Maps CMP_... constants to X86_CC_... constants */ static const int cc_table [] = { X86_CC_EQ, X86_CC_NE, X86_CC_LE, X86_CC_GE, X86_CC_LT, X86_CC_GT, X86_CC_LE, X86_CC_GE, X86_CC_LT, X86_CC_GT }; static const int cc_signed_table [] = { TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE }; static unsigned char* emit_float_to_int (MonoCompile *cfg, guchar *code, int dreg, int size, gboolean is_signed) { #define XMM_TEMP_REG 0 /*This SSE2 optimization must not be done which OPT_SIMD in place as it clobbers xmm0.*/ /*The xmm pass decomposes OP_FCONV_ ops anyway anyway.*/ if (cfg->opt & MONO_OPT_SSE2 && size < 8 && !(cfg->opt & MONO_OPT_SIMD)) { /* optimize by assigning a local var for this use so we avoid * the stack manipulations */ x86_alu_reg_imm (code, X86_SUB, X86_ESP, 8); x86_fst_membase (code, X86_ESP, 0, TRUE, TRUE); x86_movsd_reg_membase (code, XMM_TEMP_REG, X86_ESP, 0); x86_cvttsd2si (code, dreg, XMM_TEMP_REG); x86_alu_reg_imm (code, X86_ADD, X86_ESP, 8); if (size == 1) x86_widen_reg (code, dreg, dreg, is_signed, FALSE); else if (size == 2) x86_widen_reg (code, dreg, dreg, is_signed, TRUE); return code; } x86_alu_reg_imm (code, X86_SUB, X86_ESP, 4); x86_fnstcw_membase(code, X86_ESP, 0); x86_mov_reg_membase (code, dreg, X86_ESP, 0, 2); x86_alu_reg_imm (code, X86_OR, dreg, 0xc00); x86_mov_membase_reg (code, X86_ESP, 2, dreg, 2); x86_fldcw_membase (code, X86_ESP, 2); if (size == 8) { x86_alu_reg_imm (code, X86_SUB, X86_ESP, 8); x86_fist_pop_membase (code, X86_ESP, 0, TRUE); x86_pop_reg (code, dreg); /* FIXME: need the high register * x86_pop_reg (code, dreg_high); */ } else { x86_push_reg (code, X86_EAX); // SP = SP - 4 x86_fist_pop_membase (code, X86_ESP, 0, FALSE); x86_pop_reg (code, dreg); } x86_fldcw_membase (code, X86_ESP, 0); x86_alu_reg_imm (code, X86_ADD, X86_ESP, 4); if (size == 1) x86_widen_reg (code, dreg, dreg, is_signed, FALSE); else if (size == 2) x86_widen_reg (code, dreg, dreg, is_signed, TRUE); return code; } static unsigned char* mono_emit_stack_alloc (MonoCompile *cfg, guchar *code, MonoInst* tree) { int sreg = tree->sreg1; int need_touch = FALSE; #if defined(TARGET_WIN32) || defined(MONO_ARCH_SIGSEGV_ON_ALTSTACK) need_touch = TRUE; #endif if (need_touch) { guint8* br[5]; /* * Under Windows: * If requested stack size is larger than one page, * perform stack-touch operation */ /* * Generate stack probe code. * Under Windows, it is necessary to allocate one page at a time, * "touching" stack after each successful sub-allocation. This is * because of the way stack growth is implemented - there is a * guard page before the lowest stack page that is currently commited. * Stack normally grows sequentially so OS traps access to the * guard page and commits more pages when needed. */ x86_test_reg_imm (code, sreg, ~0xFFF); br[0] = code; x86_branch8 (code, X86_CC_Z, 0, FALSE); br[2] = code; /* loop */ x86_alu_reg_imm (code, X86_SUB, X86_ESP, 0x1000); x86_test_membase_reg (code, X86_ESP, 0, X86_ESP); /* * By the end of the loop, sreg2 is smaller than 0x1000, so the init routine * that follows only initializes the last part of the area. */ /* Same as the init code below with size==0x1000 */ if (tree->flags & MONO_INST_INIT) { x86_push_reg (code, X86_EAX); x86_push_reg (code, X86_ECX); x86_push_reg (code, X86_EDI); x86_mov_reg_imm (code, X86_ECX, (0x1000 >> 2)); x86_alu_reg_reg (code, X86_XOR, X86_EAX, X86_EAX); if (cfg->param_area) x86_lea_membase (code, X86_EDI, X86_ESP, 12 + ALIGN_TO (cfg->param_area, MONO_ARCH_FRAME_ALIGNMENT)); else x86_lea_membase (code, X86_EDI, X86_ESP, 12); x86_cld (code); x86_prefix (code, X86_REP_PREFIX); x86_stosl (code); x86_pop_reg (code, X86_EDI); x86_pop_reg (code, X86_ECX); x86_pop_reg (code, X86_EAX); } x86_alu_reg_imm (code, X86_SUB, sreg, 0x1000); x86_alu_reg_imm (code, X86_CMP, sreg, 0x1000); br[3] = code; x86_branch8 (code, X86_CC_AE, 0, FALSE); x86_patch (br[3], br[2]); x86_test_reg_reg (code, sreg, sreg); br[4] = code; x86_branch8 (code, X86_CC_Z, 0, FALSE); x86_alu_reg_reg (code, X86_SUB, X86_ESP, sreg); br[1] = code; x86_jump8 (code, 0); x86_patch (br[0], code); x86_alu_reg_reg (code, X86_SUB, X86_ESP, sreg); x86_patch (br[1], code); x86_patch (br[4], code); } else x86_alu_reg_reg (code, X86_SUB, X86_ESP, tree->sreg1); if (tree->flags & MONO_INST_INIT) { int offset = 0; if (tree->dreg != X86_EAX && sreg != X86_EAX) { x86_push_reg (code, X86_EAX); offset += 4; } if (tree->dreg != X86_ECX && sreg != X86_ECX) { x86_push_reg (code, X86_ECX); offset += 4; } if (tree->dreg != X86_EDI && sreg != X86_EDI) { x86_push_reg (code, X86_EDI); offset += 4; } x86_shift_reg_imm (code, X86_SHR, sreg, 2); if (sreg != X86_ECX) x86_mov_reg_reg (code, X86_ECX, sreg, 4); x86_alu_reg_reg (code, X86_XOR, X86_EAX, X86_EAX); if (cfg->param_area) x86_lea_membase (code, X86_EDI, X86_ESP, offset + ALIGN_TO (cfg->param_area, MONO_ARCH_FRAME_ALIGNMENT)); else x86_lea_membase (code, X86_EDI, X86_ESP, offset); x86_cld (code); x86_prefix (code, X86_REP_PREFIX); x86_stosl (code); if (tree->dreg != X86_EDI && sreg != X86_EDI) x86_pop_reg (code, X86_EDI); if (tree->dreg != X86_ECX && sreg != X86_ECX) x86_pop_reg (code, X86_ECX); if (tree->dreg != X86_EAX && sreg != X86_EAX) x86_pop_reg (code, X86_EAX); } return code; } static guint8* emit_move_return_value (MonoCompile *cfg, MonoInst *ins, guint8 *code) { /* Move return value to the target register */ switch (ins->opcode) { case OP_CALL: case OP_CALL_REG: case OP_CALL_MEMBASE: if (ins->dreg != X86_EAX) x86_mov_reg_reg (code, ins->dreg, X86_EAX, 4); break; default: break; } return code; } #ifdef TARGET_MACH static int tls_gs_offset; #endif gboolean mono_arch_have_fast_tls (void) { #ifdef TARGET_MACH static gboolean have_fast_tls = FALSE; static gboolean inited = FALSE; guint32 *ins; if (mini_get_debug_options ()->use_fallback_tls) return FALSE; if (inited) return have_fast_tls; ins = (guint32*)pthread_getspecific; /* * We're looking for these two instructions: * * mov 0x4(%esp),%eax * mov %gs:[offset](,%eax,4),%eax */ have_fast_tls = ins [0] == 0x0424448b && ins [1] == 0x85048b65; tls_gs_offset = ins [2]; inited = TRUE; return have_fast_tls; #elif defined(TARGET_ANDROID) return FALSE; #else if (mini_get_debug_options ()->use_fallback_tls) return FALSE; return TRUE; #endif } static guint8* mono_x86_emit_tls_get (guint8* code, int dreg, int tls_offset) { #if defined(TARGET_MACH) x86_prefix (code, X86_GS_PREFIX); x86_mov_reg_mem (code, dreg, tls_gs_offset + (tls_offset * 4), 4); #elif defined(TARGET_WIN32) /* * See the Under the Hood article in the May 1996 issue of Microsoft Systems * Journal and/or a disassembly of the TlsGet () function. */ x86_prefix (code, X86_FS_PREFIX); x86_mov_reg_mem (code, dreg, 0x18, 4); if (tls_offset < 64) { x86_mov_reg_membase (code, dreg, dreg, 3600 + (tls_offset * 4), 4); } else { guint8 *buf [16]; g_assert (tls_offset < 0x440); /* Load TEB->TlsExpansionSlots */ x86_mov_reg_membase (code, dreg, dreg, 0xf94, 4); x86_test_reg_reg (code, dreg, dreg); buf [0] = code; x86_branch (code, X86_CC_EQ, code, TRUE); x86_mov_reg_membase (code, dreg, dreg, (tls_offset * 4) - 0x100, 4); x86_patch (buf [0], code); } #else if (optimize_for_xen) { x86_prefix (code, X86_GS_PREFIX); x86_mov_reg_mem (code, dreg, 0, 4); x86_mov_reg_membase (code, dreg, dreg, tls_offset, 4); } else { x86_prefix (code, X86_GS_PREFIX); x86_mov_reg_mem (code, dreg, tls_offset, 4); } #endif return code; } static guint8* mono_x86_emit_tls_set (guint8* code, int sreg, int tls_offset) { #if defined(TARGET_MACH) x86_prefix (code, X86_GS_PREFIX); x86_mov_mem_reg (code, tls_gs_offset + (tls_offset * 4), sreg, 4); #elif defined(TARGET_WIN32) g_assert_not_reached (); #else x86_prefix (code, X86_GS_PREFIX); x86_mov_mem_reg (code, tls_offset, sreg, 4); #endif return code; } /* * emit_setup_lmf: * * Emit code to initialize an LMF structure at LMF_OFFSET. */ static guint8* emit_setup_lmf (MonoCompile *cfg, guint8 *code, gint32 lmf_offset, int cfa_offset) { /* save all caller saved regs */ x86_mov_membase_reg (code, cfg->frame_reg, lmf_offset + MONO_STRUCT_OFFSET (MonoLMF, ebx), X86_EBX, sizeof (mgreg_t)); mono_emit_unwind_op_offset (cfg, code, X86_EBX, - cfa_offset + lmf_offset + MONO_STRUCT_OFFSET (MonoLMF, ebx)); x86_mov_membase_reg (code, cfg->frame_reg, lmf_offset + MONO_STRUCT_OFFSET (MonoLMF, edi), X86_EDI, sizeof (mgreg_t)); mono_emit_unwind_op_offset (cfg, code, X86_EDI, - cfa_offset + lmf_offset + MONO_STRUCT_OFFSET (MonoLMF, edi)); x86_mov_membase_reg (code, cfg->frame_reg, lmf_offset + MONO_STRUCT_OFFSET (MonoLMF, esi), X86_ESI, sizeof (mgreg_t)); mono_emit_unwind_op_offset (cfg, code, X86_ESI, - cfa_offset + lmf_offset + MONO_STRUCT_OFFSET (MonoLMF, esi)); x86_mov_membase_reg (code, cfg->frame_reg, lmf_offset + MONO_STRUCT_OFFSET (MonoLMF, ebp), X86_EBP, sizeof (mgreg_t)); /* save the current IP */ if (cfg->compile_aot) { /* This pushes the current ip */ x86_call_imm (code, 0); x86_pop_reg (code, X86_EAX); } else { mono_add_patch_info (cfg, code + 1 - cfg->native_code, MONO_PATCH_INFO_IP, NULL); x86_mov_reg_imm (code, X86_EAX, 0); } x86_mov_membase_reg (code, cfg->frame_reg, lmf_offset + MONO_STRUCT_OFFSET (MonoLMF, eip), X86_EAX, sizeof (mgreg_t)); mini_gc_set_slot_type_from_cfa (cfg, -cfa_offset + lmf_offset + MONO_STRUCT_OFFSET (MonoLMF, eip), SLOT_NOREF); mini_gc_set_slot_type_from_cfa (cfg, -cfa_offset + lmf_offset + MONO_STRUCT_OFFSET (MonoLMF, ebp), SLOT_NOREF); mini_gc_set_slot_type_from_cfa (cfg, -cfa_offset + lmf_offset + MONO_STRUCT_OFFSET (MonoLMF, esi), SLOT_NOREF); mini_gc_set_slot_type_from_cfa (cfg, -cfa_offset + lmf_offset + MONO_STRUCT_OFFSET (MonoLMF, edi), SLOT_NOREF); mini_gc_set_slot_type_from_cfa (cfg, -cfa_offset + lmf_offset + MONO_STRUCT_OFFSET (MonoLMF, ebx), SLOT_NOREF); mini_gc_set_slot_type_from_cfa (cfg, -cfa_offset + lmf_offset + MONO_STRUCT_OFFSET (MonoLMF, esp), SLOT_NOREF); mini_gc_set_slot_type_from_cfa (cfg, -cfa_offset + lmf_offset + MONO_STRUCT_OFFSET (MonoLMF, method), SLOT_NOREF); mini_gc_set_slot_type_from_cfa (cfg, -cfa_offset + lmf_offset + MONO_STRUCT_OFFSET (MonoLMF, lmf_addr), SLOT_NOREF); mini_gc_set_slot_type_from_cfa (cfg, -cfa_offset + lmf_offset + MONO_STRUCT_OFFSET (MonoLMF, previous_lmf), SLOT_NOREF); return code; } /* benchmark and set based on cpu */ #define LOOP_ALIGNMENT 8 #define bb_is_loop_start(bb) ((bb)->loop_body_start && (bb)->nesting) #ifndef DISABLE_JIT void mono_arch_output_basic_block (MonoCompile *cfg, MonoBasicBlock *bb) { MonoInst *ins; MonoCallInst *call; guint offset; guint8 *code = cfg->native_code + cfg->code_len; int max_len, cpos; if (cfg->opt & MONO_OPT_LOOP) { int pad, align = LOOP_ALIGNMENT; /* set alignment depending on cpu */ if (bb_is_loop_start (bb) && (pad = (cfg->code_len & (align - 1)))) { pad = align - pad; /*g_print ("adding %d pad at %x to loop in %s\n", pad, cfg->code_len, cfg->method->name);*/ x86_padding (code, pad); cfg->code_len += pad; bb->native_offset = cfg->code_len; } } if (cfg->verbose_level > 2) g_print ("Basic block %d starting at offset 0x%x\n", bb->block_num, bb->native_offset); cpos = bb->max_offset; offset = code - cfg->native_code; mono_debug_open_block (cfg, bb, offset); if (mono_break_at_bb_method && mono_method_desc_full_match (mono_break_at_bb_method, cfg->method) && bb->block_num == mono_break_at_bb_bb_num) x86_breakpoint (code); MONO_BB_FOR_EACH_INS (bb, ins) { offset = code - cfg->native_code; max_len = ((guint8 *)ins_get_spec (ins->opcode))[MONO_INST_LEN]; #define EXTRA_CODE_SPACE (16) if (G_UNLIKELY (offset > (cfg->code_size - max_len - EXTRA_CODE_SPACE))) { cfg->code_size *= 2; cfg->native_code = mono_realloc_native_code(cfg); code = cfg->native_code + offset; cfg->stat_code_reallocs++; } if (cfg->debug_info) mono_debug_record_line_number (cfg, ins, offset); switch (ins->opcode) { case OP_BIGMUL: x86_mul_reg (code, ins->sreg2, TRUE); break; case OP_BIGMUL_UN: x86_mul_reg (code, ins->sreg2, FALSE); break; case OP_X86_SETEQ_MEMBASE: case OP_X86_SETNE_MEMBASE: x86_set_membase (code, ins->opcode == OP_X86_SETEQ_MEMBASE ? X86_CC_EQ : X86_CC_NE, ins->inst_basereg, ins->inst_offset, TRUE); break; case OP_STOREI1_MEMBASE_IMM: x86_mov_membase_imm (code, ins->inst_destbasereg, ins->inst_offset, ins->inst_imm, 1); break; case OP_STOREI2_MEMBASE_IMM: x86_mov_membase_imm (code, ins->inst_destbasereg, ins->inst_offset, ins->inst_imm, 2); break; case OP_STORE_MEMBASE_IMM: case OP_STOREI4_MEMBASE_IMM: x86_mov_membase_imm (code, ins->inst_destbasereg, ins->inst_offset, ins->inst_imm, 4); break; case OP_STOREI1_MEMBASE_REG: x86_mov_membase_reg (code, ins->inst_destbasereg, ins->inst_offset, ins->sreg1, 1); break; case OP_STOREI2_MEMBASE_REG: x86_mov_membase_reg (code, ins->inst_destbasereg, ins->inst_offset, ins->sreg1, 2); break; case OP_STORE_MEMBASE_REG: case OP_STOREI4_MEMBASE_REG: x86_mov_membase_reg (code, ins->inst_destbasereg, ins->inst_offset, ins->sreg1, 4); break; case OP_STORE_MEM_IMM: x86_mov_mem_imm (code, ins->inst_p0, ins->inst_c0, 4); break; case OP_LOADU4_MEM: x86_mov_reg_mem (code, ins->dreg, ins->inst_imm, 4); break; case OP_LOAD_MEM: case OP_LOADI4_MEM: /* These are created by the cprop pass so they use inst_imm as the source */ x86_mov_reg_mem (code, ins->dreg, ins->inst_imm, 4); break; case OP_LOADU1_MEM: x86_widen_mem (code, ins->dreg, ins->inst_imm, FALSE, FALSE); break; case OP_LOADU2_MEM: x86_widen_mem (code, ins->dreg, ins->inst_imm, FALSE, TRUE); break; case OP_LOAD_MEMBASE: case OP_LOADI4_MEMBASE: case OP_LOADU4_MEMBASE: x86_mov_reg_membase (code, ins->dreg, ins->inst_basereg, ins->inst_offset, 4); break; case OP_LOADU1_MEMBASE: x86_widen_membase (code, ins->dreg, ins->inst_basereg, ins->inst_offset, FALSE, FALSE); break; case OP_LOADI1_MEMBASE: x86_widen_membase (code, ins->dreg, ins->inst_basereg, ins->inst_offset, TRUE, FALSE); break; case OP_LOADU2_MEMBASE: x86_widen_membase (code, ins->dreg, ins->inst_basereg, ins->inst_offset, FALSE, TRUE); break; case OP_LOADI2_MEMBASE: x86_widen_membase (code, ins->dreg, ins->inst_basereg, ins->inst_offset, TRUE, TRUE); break; case OP_ICONV_TO_I1: case OP_SEXT_I1: x86_widen_reg (code, ins->dreg, ins->sreg1, TRUE, FALSE); break; case OP_ICONV_TO_I2: case OP_SEXT_I2: x86_widen_reg (code, ins->dreg, ins->sreg1, TRUE, TRUE); break; case OP_ICONV_TO_U1: x86_widen_reg (code, ins->dreg, ins->sreg1, FALSE, FALSE); break; case OP_ICONV_TO_U2: x86_widen_reg (code, ins->dreg, ins->sreg1, FALSE, TRUE); break; case OP_COMPARE: case OP_ICOMPARE: x86_alu_reg_reg (code, X86_CMP, ins->sreg1, ins->sreg2); break; case OP_COMPARE_IMM: case OP_ICOMPARE_IMM: x86_alu_reg_imm (code, X86_CMP, ins->sreg1, ins->inst_imm); break; case OP_X86_COMPARE_MEMBASE_REG: x86_alu_membase_reg (code, X86_CMP, ins->inst_basereg, ins->inst_offset, ins->sreg2); break; case OP_X86_COMPARE_MEMBASE_IMM: x86_alu_membase_imm (code, X86_CMP, ins->inst_basereg, ins->inst_offset, ins->inst_imm); break; case OP_X86_COMPARE_MEMBASE8_IMM: x86_alu_membase8_imm (code, X86_CMP, ins->inst_basereg, ins->inst_offset, ins->inst_imm); break; case OP_X86_COMPARE_REG_MEMBASE: x86_alu_reg_membase (code, X86_CMP, ins->sreg1, ins->sreg2, ins->inst_offset); break; case OP_X86_COMPARE_MEM_IMM: x86_alu_mem_imm (code, X86_CMP, ins->inst_offset, ins->inst_imm); break; case OP_X86_TEST_NULL: x86_test_reg_reg (code, ins->sreg1, ins->sreg1); break; case OP_X86_ADD_MEMBASE_IMM: x86_alu_membase_imm (code, X86_ADD, ins->inst_basereg, ins->inst_offset, ins->inst_imm); break; case OP_X86_ADD_REG_MEMBASE: x86_alu_reg_membase (code, X86_ADD, ins->sreg1, ins->sreg2, ins->inst_offset); break; case OP_X86_SUB_MEMBASE_IMM: x86_alu_membase_imm (code, X86_SUB, ins->inst_basereg, ins->inst_offset, ins->inst_imm); break; case OP_X86_SUB_REG_MEMBASE: x86_alu_reg_membase (code, X86_SUB, ins->sreg1, ins->sreg2, ins->inst_offset); break; case OP_X86_AND_MEMBASE_IMM: x86_alu_membase_imm (code, X86_AND, ins->inst_basereg, ins->inst_offset, ins->inst_imm); break; case OP_X86_OR_MEMBASE_IMM: x86_alu_membase_imm (code, X86_OR, ins->inst_basereg, ins->inst_offset, ins->inst_imm); break; case OP_X86_XOR_MEMBASE_IMM: x86_alu_membase_imm (code, X86_XOR, ins->inst_basereg, ins->inst_offset, ins->inst_imm); break; case OP_X86_ADD_MEMBASE_REG: x86_alu_membase_reg (code, X86_ADD, ins->inst_basereg, ins->inst_offset, ins->sreg2); break; case OP_X86_SUB_MEMBASE_REG: x86_alu_membase_reg (code, X86_SUB, ins->inst_basereg, ins->inst_offset, ins->sreg2); break; case OP_X86_AND_MEMBASE_REG: x86_alu_membase_reg (code, X86_AND, ins->inst_basereg, ins->inst_offset, ins->sreg2); break; case OP_X86_OR_MEMBASE_REG: x86_alu_membase_reg (code, X86_OR, ins->inst_basereg, ins->inst_offset, ins->sreg2); break; case OP_X86_XOR_MEMBASE_REG: x86_alu_membase_reg (code, X86_XOR, ins->inst_basereg, ins->inst_offset, ins->sreg2); break; case OP_X86_INC_MEMBASE: x86_inc_membase (code, ins->inst_basereg, ins->inst_offset); break; case OP_X86_INC_REG: x86_inc_reg (code, ins->dreg); break; case OP_X86_DEC_MEMBASE: x86_dec_membase (code, ins->inst_basereg, ins->inst_offset); break; case OP_X86_DEC_REG: x86_dec_reg (code, ins->dreg); break; case OP_X86_MUL_REG_MEMBASE: x86_imul_reg_membase (code, ins->sreg1, ins->sreg2, ins->inst_offset); break; case OP_X86_AND_REG_MEMBASE: x86_alu_reg_membase (code, X86_AND, ins->sreg1, ins->sreg2, ins->inst_offset); break; case OP_X86_OR_REG_MEMBASE: x86_alu_reg_membase (code, X86_OR, ins->sreg1, ins->sreg2, ins->inst_offset); break; case OP_X86_XOR_REG_MEMBASE: x86_alu_reg_membase (code, X86_XOR, ins->sreg1, ins->sreg2, ins->inst_offset); break; case OP_BREAK: x86_breakpoint (code); break; case OP_RELAXED_NOP: x86_prefix (code, X86_REP_PREFIX); x86_nop (code); break; case OP_HARD_NOP: x86_nop (code); break; case OP_NOP: case OP_DUMMY_USE: case OP_DUMMY_STORE: case OP_DUMMY_ICONST: case OP_DUMMY_R8CONST: case OP_NOT_REACHED: case OP_NOT_NULL: break; case OP_IL_SEQ_POINT: mono_add_seq_point (cfg, bb, ins, code - cfg->native_code); break; case OP_SEQ_POINT: { int i; if (cfg->compile_aot) NOT_IMPLEMENTED; /* Have to use ecx as a temp reg since this can occur after OP_SETRET */ /* * We do this _before_ the breakpoint, so single stepping after * a breakpoint is hit will step to the next IL offset. */ if (ins->flags & MONO_INST_SINGLE_STEP_LOC) { MonoInst *var = cfg->arch.ss_tramp_var; guint8 *br [1]; g_assert (var); g_assert (var->opcode == OP_REGOFFSET); /* Load ss_tramp_var */ /* This is equal to &ss_trampoline */ x86_mov_reg_membase (code, X86_ECX, var->inst_basereg, var->inst_offset, sizeof (mgreg_t)); x86_mov_reg_membase (code, X86_ECX, X86_ECX, 0, sizeof (mgreg_t)); x86_alu_reg_imm (code, X86_CMP, X86_ECX, 0); br[0] = code; x86_branch8 (code, X86_CC_EQ, 0, FALSE); x86_call_reg (code, X86_ECX); x86_patch (br [0], code); } /* * Many parts of sdb depend on the ip after the single step trampoline call to be equal to the seq point offset. * This means we have to put the loading of bp_tramp_var after the offset. */ mono_add_seq_point (cfg, bb, ins, code - cfg->native_code); MonoInst *var = cfg->arch.bp_tramp_var; g_assert (var); g_assert (var->opcode == OP_REGOFFSET); /* Load the address of the bp trampoline */ /* This needs to be constant size */ guint8 *start = code; x86_mov_reg_membase (code, X86_ECX, var->inst_basereg, var->inst_offset, 4); if (code < start + OP_SEQ_POINT_BP_OFFSET) { int size = start + OP_SEQ_POINT_BP_OFFSET - code; x86_padding (code, size); } /* * A placeholder for a possible breakpoint inserted by * mono_arch_set_breakpoint (). */ for (i = 0; i < 2; ++i) x86_nop (code); /* * Add an additional nop so skipping the bp doesn't cause the ip to point * to another IL offset. */ x86_nop (code); break; } case OP_ADDCC: case OP_IADDCC: case OP_IADD: x86_alu_reg_reg (code, X86_ADD, ins->sreg1, ins->sreg2); break; case OP_ADC: case OP_IADC: x86_alu_reg_reg (code, X86_ADC, ins->sreg1, ins->sreg2); break; case OP_ADDCC_IMM: case OP_ADD_IMM: case OP_IADD_IMM: x86_alu_reg_imm (code, X86_ADD, ins->dreg, ins->inst_imm); break; case OP_ADC_IMM: case OP_IADC_IMM: x86_alu_reg_imm (code, X86_ADC, ins->dreg, ins->inst_imm); break; case OP_SUBCC: case OP_ISUBCC: case OP_ISUB: x86_alu_reg_reg (code, X86_SUB, ins->sreg1, ins->sreg2); break; case OP_SBB: case OP_ISBB: x86_alu_reg_reg (code, X86_SBB, ins->sreg1, ins->sreg2); break; case OP_SUBCC_IMM: case OP_SUB_IMM: case OP_ISUB_IMM: x86_alu_reg_imm (code, X86_SUB, ins->dreg, ins->inst_imm); break; case OP_SBB_IMM: case OP_ISBB_IMM: x86_alu_reg_imm (code, X86_SBB, ins->dreg, ins->inst_imm); break; case OP_IAND: x86_alu_reg_reg (code, X86_AND, ins->sreg1, ins->sreg2); break; case OP_AND_IMM: case OP_IAND_IMM: x86_alu_reg_imm (code, X86_AND, ins->sreg1, ins->inst_imm); break; case OP_IDIV: case OP_IREM: /* * The code is the same for div/rem, the allocator will allocate dreg * to RAX/RDX as appropriate. */ if (ins->sreg2 == X86_EDX) { /* cdq clobbers this */ x86_push_reg (code, ins->sreg2); x86_cdq (code); x86_div_membase (code, X86_ESP, 0, TRUE); x86_alu_reg_imm (code, X86_ADD, X86_ESP, 4); } else { x86_cdq (code); x86_div_reg (code, ins->sreg2, TRUE); } break; case OP_IDIV_UN: case OP_IREM_UN: if (ins->sreg2 == X86_EDX) { x86_push_reg (code, ins->sreg2); x86_alu_reg_reg (code, X86_XOR, X86_EDX, X86_EDX); x86_div_membase (code, X86_ESP, 0, FALSE); x86_alu_reg_imm (code, X86_ADD, X86_ESP, 4); } else { x86_alu_reg_reg (code, X86_XOR, X86_EDX, X86_EDX); x86_div_reg (code, ins->sreg2, FALSE); } break; case OP_DIV_IMM: x86_mov_reg_imm (code, ins->sreg2, ins->inst_imm); x86_cdq (code); x86_div_reg (code, ins->sreg2, TRUE); break; case OP_IREM_IMM: { int power = mono_is_power_of_two (ins->inst_imm); g_assert (ins->sreg1 == X86_EAX); g_assert (ins->dreg == X86_EAX); g_assert (power >= 0); if (power == 1) { /* Based on http://compilers.iecc.com/comparch/article/93-04-079 */ x86_cdq (code); x86_alu_reg_imm (code, X86_AND, X86_EAX, 1); /* * If the divident is >= 0, this does not nothing. If it is positive, it * it transforms %eax=0 into %eax=0, and %eax=1 into %eax=-1. */ x86_alu_reg_reg (code, X86_XOR, X86_EAX, X86_EDX); x86_alu_reg_reg (code, X86_SUB, X86_EAX, X86_EDX); } else if (power == 0) { x86_alu_reg_reg (code, X86_XOR, ins->dreg, ins->dreg); } else { /* Based on gcc code */ /* Add compensation for negative dividents */ x86_cdq (code); x86_shift_reg_imm (code, X86_SHR, X86_EDX, 32 - power); x86_alu_reg_reg (code, X86_ADD, X86_EAX, X86_EDX); /* Compute remainder */ x86_alu_reg_imm (code, X86_AND, X86_EAX, (1 << power) - 1); /* Remove compensation */ x86_alu_reg_reg (code, X86_SUB, X86_EAX, X86_EDX); } break; } case OP_IOR: x86_alu_reg_reg (code, X86_OR, ins->sreg1, ins->sreg2); break; case OP_OR_IMM: case OP_IOR_IMM: x86_alu_reg_imm (code, X86_OR, ins->sreg1, ins->inst_imm); break; case OP_IXOR: x86_alu_reg_reg (code, X86_XOR, ins->sreg1, ins->sreg2); break; case OP_XOR_IMM: case OP_IXOR_IMM: x86_alu_reg_imm (code, X86_XOR, ins->sreg1, ins->inst_imm); break; case OP_ISHL: g_assert (ins->sreg2 == X86_ECX); x86_shift_reg (code, X86_SHL, ins->dreg); break; case OP_ISHR: g_assert (ins->sreg2 == X86_ECX); x86_shift_reg (code, X86_SAR, ins->dreg); break; case OP_SHR_IMM: case OP_ISHR_IMM: x86_shift_reg_imm (code, X86_SAR, ins->dreg, ins->inst_imm); break; case OP_SHR_UN_IMM: case OP_ISHR_UN_IMM: x86_shift_reg_imm (code, X86_SHR, ins->dreg, ins->inst_imm); break; case OP_ISHR_UN: g_assert (ins->sreg2 == X86_ECX); x86_shift_reg (code, X86_SHR, ins->dreg); break; case OP_SHL_IMM: case OP_ISHL_IMM: x86_shift_reg_imm (code, X86_SHL, ins->dreg, ins->inst_imm); break; case OP_LSHL: { guint8 *jump_to_end; /* handle shifts below 32 bits */ x86_shld_reg (code, ins->backend.reg3, ins->sreg1); x86_shift_reg (code, X86_SHL, ins->sreg1); x86_test_reg_imm (code, X86_ECX, 32); jump_to_end = code; x86_branch8 (code, X86_CC_EQ, 0, TRUE); /* handle shift over 32 bit */ x86_mov_reg_reg (code, ins->backend.reg3, ins->sreg1, 4); x86_clear_reg (code, ins->sreg1); x86_patch (jump_to_end, code); } break; case OP_LSHR: { guint8 *jump_to_end; /* handle shifts below 32 bits */ x86_shrd_reg (code, ins->sreg1, ins->backend.reg3); x86_shift_reg (code, X86_SAR, ins->backend.reg3); x86_test_reg_imm (code, X86_ECX, 32); jump_to_end = code; x86_branch8 (code, X86_CC_EQ, 0, FALSE); /* handle shifts over 31 bits */ x86_mov_reg_reg (code, ins->sreg1, ins->backend.reg3, 4); x86_shift_reg_imm (code, X86_SAR, ins->backend.reg3, 31); x86_patch (jump_to_end, code); } break; case OP_LSHR_UN: { guint8 *jump_to_end; /* handle shifts below 32 bits */ x86_shrd_reg (code, ins->sreg1, ins->backend.reg3); x86_shift_reg (code, X86_SHR, ins->backend.reg3); x86_test_reg_imm (code, X86_ECX, 32); jump_to_end = code; x86_branch8 (code, X86_CC_EQ, 0, FALSE); /* handle shifts over 31 bits */ x86_mov_reg_reg (code, ins->sreg1, ins->backend.reg3, 4); x86_clear_reg (code, ins->backend.reg3); x86_patch (jump_to_end, code); } break; case OP_LSHL_IMM: if (ins->inst_imm >= 32) { x86_mov_reg_reg (code, ins->backend.reg3, ins->sreg1, 4); x86_clear_reg (code, ins->sreg1); x86_shift_reg_imm (code, X86_SHL, ins->backend.reg3, ins->inst_imm - 32); } else { x86_shld_reg_imm (code, ins->backend.reg3, ins->sreg1, ins->inst_imm); x86_shift_reg_imm (code, X86_SHL, ins->sreg1, ins->inst_imm); } break; case OP_LSHR_IMM: if (ins->inst_imm >= 32) { x86_mov_reg_reg (code, ins->sreg1, ins->backend.reg3, 4); x86_shift_reg_imm (code, X86_SAR, ins->backend.reg3, 0x1f); x86_shift_reg_imm (code, X86_SAR, ins->sreg1, ins->inst_imm - 32); } else { x86_shrd_reg_imm (code, ins->sreg1, ins->backend.reg3, ins->inst_imm); x86_shift_reg_imm (code, X86_SAR, ins->backend.reg3, ins->inst_imm); } break; case OP_LSHR_UN_IMM: if (ins->inst_imm >= 32) { x86_mov_reg_reg (code, ins->sreg1, ins->backend.reg3, 4); x86_clear_reg (code, ins->backend.reg3); x86_shift_reg_imm (code, X86_SHR, ins->sreg1, ins->inst_imm - 32); } else { x86_shrd_reg_imm (code, ins->sreg1, ins->backend.reg3, ins->inst_imm); x86_shift_reg_imm (code, X86_SHR, ins->backend.reg3, ins->inst_imm); } break; case OP_INOT: x86_not_reg (code, ins->sreg1); break; case OP_INEG: x86_neg_reg (code, ins->sreg1); break; case OP_IMUL: x86_imul_reg_reg (code, ins->sreg1, ins->sreg2); break; case OP_MUL_IMM: case OP_IMUL_IMM: switch (ins->inst_imm) { case 2: /* MOV r1, r2 */ /* ADD r1, r1 */ if (ins->dreg != ins->sreg1) x86_mov_reg_reg (code, ins->dreg, ins->sreg1, 4); x86_alu_reg_reg (code, X86_ADD, ins->dreg, ins->dreg); break; case 3: /* LEA r1, [r2 + r2*2] */ x86_lea_memindex (code, ins->dreg, ins->sreg1, 0, ins->sreg1, 1); break; case 5: /* LEA r1, [r2 + r2*4] */ x86_lea_memindex (code, ins->dreg, ins->sreg1, 0, ins->sreg1, 2); break; case 6: /* LEA r1, [r2 + r2*2] */ /* ADD r1, r1 */ x86_lea_memindex (code, ins->dreg, ins->sreg1, 0, ins->sreg1, 1); x86_alu_reg_reg (code, X86_ADD, ins->dreg, ins->dreg); break; case 9: /* LEA r1, [r2 + r2*8] */ x86_lea_memindex (code, ins->dreg, ins->sreg1, 0, ins->sreg1, 3); break; case 10: /* LEA r1, [r2 + r2*4] */ /* ADD r1, r1 */ x86_lea_memindex (code, ins->dreg, ins->sreg1, 0, ins->sreg1, 2); x86_alu_reg_reg (code, X86_ADD, ins->dreg, ins->dreg); break; case 12: /* LEA r1, [r2 + r2*2] */ /* SHL r1, 2 */ x86_lea_memindex (code, ins->dreg, ins->sreg1, 0, ins->sreg1, 1); x86_shift_reg_imm (code, X86_SHL, ins->dreg, 2); break; case 25: /* LEA r1, [r2 + r2*4] */ /* LEA r1, [r1 + r1*4] */ x86_lea_memindex (code, ins->dreg, ins->sreg1, 0, ins->sreg1, 2); x86_lea_memindex (code, ins->dreg, ins->dreg, 0, ins->dreg, 2); break; case 100: /* LEA r1, [r2 + r2*4] */ /* SHL r1, 2 */ /* LEA r1, [r1 + r1*4] */ x86_lea_memindex (code, ins->dreg, ins->sreg1, 0, ins->sreg1, 2); x86_shift_reg_imm (code, X86_SHL, ins->dreg, 2); x86_lea_memindex (code, ins->dreg, ins->dreg, 0, ins->dreg, 2); break; default: x86_imul_reg_reg_imm (code, ins->dreg, ins->sreg1, ins->inst_imm); break; } break; case OP_IMUL_OVF: x86_imul_reg_reg (code, ins->sreg1, ins->sreg2); EMIT_COND_SYSTEM_EXCEPTION (X86_CC_O, FALSE, "OverflowException"); break; case OP_IMUL_OVF_UN: { /* the mul operation and the exception check should most likely be split */ int non_eax_reg, saved_eax = FALSE, saved_edx = FALSE; /*g_assert (ins->sreg2 == X86_EAX); g_assert (ins->dreg == X86_EAX);*/ if (ins->sreg2 == X86_EAX) { non_eax_reg = ins->sreg1; } else if (ins->sreg1 == X86_EAX) { non_eax_reg = ins->sreg2; } else { /* no need to save since we're going to store to it anyway */ if (ins->dreg != X86_EAX) { saved_eax = TRUE; x86_push_reg (code, X86_EAX); } x86_mov_reg_reg (code, X86_EAX, ins->sreg1, 4); non_eax_reg = ins->sreg2; } if (ins->dreg == X86_EDX) { if (!saved_eax) { saved_eax = TRUE; x86_push_reg (code, X86_EAX); } } else { saved_edx = TRUE; x86_push_reg (code, X86_EDX); } x86_mul_reg (code, non_eax_reg, FALSE); /* save before the check since pop and mov don't change the flags */ if (ins->dreg != X86_EAX) x86_mov_reg_reg (code, ins->dreg, X86_EAX, 4); if (saved_edx) x86_pop_reg (code, X86_EDX); if (saved_eax) x86_pop_reg (code, X86_EAX); EMIT_COND_SYSTEM_EXCEPTION (X86_CC_O, FALSE, "OverflowException"); break; } case OP_ICONST: x86_mov_reg_imm (code, ins->dreg, ins->inst_c0); break; case OP_AOTCONST: g_assert_not_reached (); mono_add_patch_info (cfg, offset, (MonoJumpInfoType)ins->inst_i1, ins->inst_p0); x86_mov_reg_imm (code, ins->dreg, 0); break; case OP_JUMP_TABLE: mono_add_patch_info (cfg, offset, (MonoJumpInfoType)ins->inst_i1, ins->inst_p0); x86_mov_reg_imm (code, ins->dreg, 0); break; case OP_LOAD_GOTADDR: g_assert (ins->dreg == MONO_ARCH_GOT_REG); code = mono_arch_emit_load_got_addr (cfg->native_code, code, cfg, NULL); break; case OP_GOT_ENTRY: mono_add_patch_info (cfg, offset, (MonoJumpInfoType)ins->inst_right->inst_i1, ins->inst_right->inst_p0); x86_mov_reg_membase (code, ins->dreg, ins->inst_basereg, 0xf0f0f0f0, 4); break; case OP_X86_PUSH_GOT_ENTRY: mono_add_patch_info (cfg, offset, (MonoJumpInfoType)ins->inst_right->inst_i1, ins->inst_right->inst_p0); x86_push_membase (code, ins->inst_basereg, 0xf0f0f0f0); break; case OP_MOVE: if (ins->dreg != ins->sreg1) x86_mov_reg_reg (code, ins->dreg, ins->sreg1, 4); break; case OP_TAILCALL: { MonoCallInst *call = (MonoCallInst*)ins; int pos = 0, i; ins->flags |= MONO_INST_GC_CALLSITE; ins->backend.pc_offset = code - cfg->native_code; /* reset offset to make max_len work */ offset = code - cfg->native_code; g_assert (!cfg->method->save_lmf); /* restore callee saved registers */ for (i = 0; i < X86_NREG; ++i) if (X86_IS_CALLEE_SAVED_REG (i) && cfg->used_int_regs & (1 << i)) pos -= 4; if (cfg->used_int_regs & (1 << X86_ESI)) { x86_mov_reg_membase (code, X86_ESI, X86_EBP, pos, 4); pos += 4; } if (cfg->used_int_regs & (1 << X86_EDI)) { x86_mov_reg_membase (code, X86_EDI, X86_EBP, pos, 4); pos += 4; } if (cfg->used_int_regs & (1 << X86_EBX)) { x86_mov_reg_membase (code, X86_EBX, X86_EBP, pos, 4); pos += 4; } /* Copy arguments on the stack to our argument area */ for (i = 0; i < call->stack_usage - call->stack_align_amount; i += 4) { x86_mov_reg_membase (code, X86_EAX, X86_ESP, i, 4); x86_mov_membase_reg (code, X86_EBP, 8 + i, X86_EAX, 4); } /* restore ESP/EBP */ x86_leave (code); offset = code - cfg->native_code; mono_add_patch_info (cfg, offset, MONO_PATCH_INFO_METHOD_JUMP, call->method); x86_jump32 (code, 0); ins->flags |= MONO_INST_GC_CALLSITE; cfg->disable_aot = TRUE; break; } case OP_CHECK_THIS: /* ensure ins->sreg1 is not NULL * note that cmp DWORD PTR [eax], eax is one byte shorter than * cmp DWORD PTR [eax], 0 */ x86_alu_membase_reg (code, X86_CMP, ins->sreg1, 0, ins->sreg1); break; case OP_ARGLIST: { int hreg = ins->sreg1 == X86_EAX? X86_ECX: X86_EAX; x86_push_reg (code, hreg); x86_lea_membase (code, hreg, X86_EBP, cfg->sig_cookie); x86_mov_membase_reg (code, ins->sreg1, 0, hreg, 4); x86_pop_reg (code, hreg); break; } case OP_FCALL: case OP_LCALL: case OP_VCALL: case OP_VCALL2: case OP_VOIDCALL: case OP_CALL: case OP_FCALL_REG: case OP_LCALL_REG: case OP_VCALL_REG: case OP_VCALL2_REG: case OP_VOIDCALL_REG: case OP_CALL_REG: case OP_FCALL_MEMBASE: case OP_LCALL_MEMBASE: case OP_VCALL_MEMBASE: case OP_VCALL2_MEMBASE: case OP_VOIDCALL_MEMBASE: case OP_CALL_MEMBASE: { CallInfo *cinfo; call = (MonoCallInst*)ins; cinfo = (CallInfo*)call->call_info; switch (ins->opcode) { case OP_FCALL: case OP_LCALL: case OP_VCALL: case OP_VCALL2: case OP_VOIDCALL: case OP_CALL: if (ins->flags & MONO_INST_HAS_METHOD) code = emit_call (cfg, code, MONO_PATCH_INFO_METHOD, call->method); else code = emit_call (cfg, code, MONO_PATCH_INFO_ABS, call->fptr); break; case OP_FCALL_REG: case OP_LCALL_REG: case OP_VCALL_REG: case OP_VCALL2_REG: case OP_VOIDCALL_REG: case OP_CALL_REG: x86_call_reg (code, ins->sreg1); break; case OP_FCALL_MEMBASE: case OP_LCALL_MEMBASE: case OP_VCALL_MEMBASE: case OP_VCALL2_MEMBASE: case OP_VOIDCALL_MEMBASE: case OP_CALL_MEMBASE: x86_call_membase (code, ins->sreg1, ins->inst_offset); break; default: g_assert_not_reached (); break; } ins->flags |= MONO_INST_GC_CALLSITE; ins->backend.pc_offset = code - cfg->native_code; if (cinfo->callee_stack_pop) { /* Have to compensate for the stack space popped by the callee */ x86_alu_reg_imm (code, X86_SUB, X86_ESP, cinfo->callee_stack_pop); } code = emit_move_return_value (cfg, ins, code); break; } case OP_X86_LEA: x86_lea_memindex (code, ins->dreg, ins->sreg1, ins->inst_imm, ins->sreg2, ins->backend.shift_amount); break; case OP_X86_LEA_MEMBASE: x86_lea_membase (code, ins->dreg, ins->sreg1, ins->inst_imm); break; case OP_X86_XCHG: x86_xchg_reg_reg (code, ins->sreg1, ins->sreg2, 4); break; case OP_LOCALLOC: /* keep alignment */ x86_alu_reg_imm (code, X86_ADD, ins->sreg1, MONO_ARCH_LOCALLOC_ALIGNMENT - 1); x86_alu_reg_imm (code, X86_AND, ins->sreg1, ~(MONO_ARCH_LOCALLOC_ALIGNMENT - 1)); code = mono_emit_stack_alloc (cfg, code, ins); x86_mov_reg_reg (code, ins->dreg, X86_ESP, 4); if (cfg->param_area) x86_alu_reg_imm (code, X86_ADD, ins->dreg, ALIGN_TO (cfg->param_area, MONO_ARCH_FRAME_ALIGNMENT)); break; case OP_LOCALLOC_IMM: { guint32 size = ins->inst_imm; size = (size + (MONO_ARCH_FRAME_ALIGNMENT - 1)) & ~ (MONO_ARCH_FRAME_ALIGNMENT - 1); if (ins->flags & MONO_INST_INIT) { /* FIXME: Optimize this */ x86_mov_reg_imm (code, ins->dreg, size); ins->sreg1 = ins->dreg; code = mono_emit_stack_alloc (cfg, code, ins); x86_mov_reg_reg (code, ins->dreg, X86_ESP, 4); } else { x86_alu_reg_imm (code, X86_SUB, X86_ESP, size); x86_mov_reg_reg (code, ins->dreg, X86_ESP, 4); } if (cfg->param_area) x86_alu_reg_imm (code, X86_ADD, ins->dreg, ALIGN_TO (cfg->param_area, MONO_ARCH_FRAME_ALIGNMENT)); break; } case OP_THROW: { x86_alu_reg_imm (code, X86_SUB, X86_ESP, MONO_ARCH_FRAME_ALIGNMENT - 4); x86_push_reg (code, ins->sreg1); code = emit_call (cfg, code, MONO_PATCH_INFO_INTERNAL_METHOD, (gpointer)"mono_arch_throw_exception"); ins->flags |= MONO_INST_GC_CALLSITE; ins->backend.pc_offset = code - cfg->native_code; break; } case OP_RETHROW: { x86_alu_reg_imm (code, X86_SUB, X86_ESP, MONO_ARCH_FRAME_ALIGNMENT - 4); x86_push_reg (code, ins->sreg1); code = emit_call (cfg, code, MONO_PATCH_INFO_INTERNAL_METHOD, (gpointer)"mono_arch_rethrow_exception"); ins->flags |= MONO_INST_GC_CALLSITE; ins->backend.pc_offset = code - cfg->native_code; break; } case OP_CALL_HANDLER: x86_alu_reg_imm (code, X86_SUB, X86_ESP, MONO_ARCH_FRAME_ALIGNMENT - 4); mono_add_patch_info (cfg, code - cfg->native_code, MONO_PATCH_INFO_BB, ins->inst_target_bb); x86_call_imm (code, 0); mono_cfg_add_try_hole (cfg, ins->inst_eh_block, code, bb); x86_alu_reg_imm (code, X86_ADD, X86_ESP, MONO_ARCH_FRAME_ALIGNMENT - 4); break; case OP_START_HANDLER: { MonoInst *spvar = mono_find_spvar_for_region (cfg, bb->region); x86_mov_membase_reg (code, spvar->inst_basereg, spvar->inst_offset, X86_ESP, 4); if (cfg->param_area) x86_alu_reg_imm (code, X86_SUB, X86_ESP, ALIGN_TO (cfg->param_area, MONO_ARCH_FRAME_ALIGNMENT)); break; } case OP_ENDFINALLY: { MonoInst *spvar = mono_find_spvar_for_region (cfg, bb->region); x86_mov_reg_membase (code, X86_ESP, spvar->inst_basereg, spvar->inst_offset, 4); x86_ret (code); break; } case OP_ENDFILTER: { MonoInst *spvar = mono_find_spvar_for_region (cfg, bb->region); x86_mov_reg_membase (code, X86_ESP, spvar->inst_basereg, spvar->inst_offset, 4); /* The local allocator will put the result into EAX */ x86_ret (code); break; } case OP_GET_EX_OBJ: if (ins->dreg != X86_EAX) x86_mov_reg_reg (code, ins->dreg, X86_EAX, sizeof (gpointer)); break; case OP_LABEL: ins->inst_c0 = code - cfg->native_code; break; case OP_BR: if (ins->inst_target_bb->native_offset) { x86_jump_code (code, cfg->native_code + ins->inst_target_bb->native_offset); } else { mono_add_patch_info (cfg, offset, MONO_PATCH_INFO_BB, ins->inst_target_bb); if ((cfg->opt & MONO_OPT_BRANCH) && x86_is_imm8 (ins->inst_target_bb->max_offset - cpos)) x86_jump8 (code, 0); else x86_jump32 (code, 0); } break; case OP_BR_REG: x86_jump_reg (code, ins->sreg1); break; case OP_ICNEQ: case OP_ICGE: case OP_ICLE: case OP_ICGE_UN: case OP_ICLE_UN: case OP_CEQ: case OP_CLT: case OP_CLT_UN: case OP_CGT: case OP_CGT_UN: case OP_CNE: case OP_ICEQ: case OP_ICLT: case OP_ICLT_UN: case OP_ICGT: case OP_ICGT_UN: x86_set_reg (code, cc_table [mono_opcode_to_cond (ins->opcode)], ins->dreg, cc_signed_table [mono_opcode_to_cond (ins->opcode)]); x86_widen_reg (code, ins->dreg, ins->dreg, FALSE, FALSE); break; case OP_COND_EXC_EQ: case OP_COND_EXC_NE_UN: case OP_COND_EXC_LT: case OP_COND_EXC_LT_UN: case OP_COND_EXC_GT: case OP_COND_EXC_GT_UN: case OP_COND_EXC_GE: case OP_COND_EXC_GE_UN: case OP_COND_EXC_LE: case OP_COND_EXC_LE_UN: case OP_COND_EXC_IEQ: case OP_COND_EXC_INE_UN: case OP_COND_EXC_ILT: case OP_COND_EXC_ILT_UN: case OP_COND_EXC_IGT: case OP_COND_EXC_IGT_UN: case OP_COND_EXC_IGE: case OP_COND_EXC_IGE_UN: case OP_COND_EXC_ILE: case OP_COND_EXC_ILE_UN: EMIT_COND_SYSTEM_EXCEPTION (cc_table [mono_opcode_to_cond (ins->opcode)], cc_signed_table [mono_opcode_to_cond (ins->opcode)], ins->inst_p1); break; case OP_COND_EXC_OV: case OP_COND_EXC_NO: case OP_COND_EXC_C: case OP_COND_EXC_NC: EMIT_COND_SYSTEM_EXCEPTION (branch_cc_table [ins->opcode - OP_COND_EXC_EQ], (ins->opcode < OP_COND_EXC_NE_UN), ins->inst_p1); break; case OP_COND_EXC_IOV: case OP_COND_EXC_INO: case OP_COND_EXC_IC: case OP_COND_EXC_INC: EMIT_COND_SYSTEM_EXCEPTION (branch_cc_table [ins->opcode - OP_COND_EXC_IEQ], (ins->opcode < OP_COND_EXC_INE_UN), ins->inst_p1); break; case OP_IBEQ: case OP_IBNE_UN: case OP_IBLT: case OP_IBLT_UN: case OP_IBGT: case OP_IBGT_UN: case OP_IBGE: case OP_IBGE_UN: case OP_IBLE: case OP_IBLE_UN: EMIT_COND_BRANCH (ins, cc_table [mono_opcode_to_cond (ins->opcode)], cc_signed_table [mono_opcode_to_cond (ins->opcode)]); break; case OP_CMOV_IEQ: case OP_CMOV_IGE: case OP_CMOV_IGT: case OP_CMOV_ILE: case OP_CMOV_ILT: case OP_CMOV_INE_UN: case OP_CMOV_IGE_UN: case OP_CMOV_IGT_UN: case OP_CMOV_ILE_UN: case OP_CMOV_ILT_UN: g_assert (ins->dreg == ins->sreg1); x86_cmov_reg (code, cc_table [mono_opcode_to_cond (ins->opcode)], cc_signed_table [mono_opcode_to_cond (ins->opcode)], ins->dreg, ins->sreg2); break; /* floating point opcodes */ case OP_R8CONST: { double d = *(double *)ins->inst_p0; if ((d == 0.0) && (mono_signbit (d) == 0)) { x86_fldz (code); } else if (d == 1.0) { x86_fld1 (code); } else { if (cfg->compile_aot) { guint32 *val = (guint32*)&d; x86_push_imm (code, val [1]); x86_push_imm (code, val [0]); x86_fld_membase (code, X86_ESP, 0, TRUE); x86_alu_reg_imm (code, X86_ADD, X86_ESP, 8); } else { mono_add_patch_info (cfg, code - cfg->native_code, MONO_PATCH_INFO_R8, ins->inst_p0); x86_fld (code, NULL, TRUE); } } break; } case OP_R4CONST: { float f = *(float *)ins->inst_p0; if ((f == 0.0) && (mono_signbit (f) == 0)) { x86_fldz (code); } else if (f == 1.0) { x86_fld1 (code); } else { if (cfg->compile_aot) { guint32 val = *(guint32*)&f; x86_push_imm (code, val); x86_fld_membase (code, X86_ESP, 0, FALSE); x86_alu_reg_imm (code, X86_ADD, X86_ESP, 4); } else { mono_add_patch_info (cfg, code - cfg->native_code, MONO_PATCH_INFO_R4, ins->inst_p0); x86_fld (code, NULL, FALSE); } } break; } case OP_STORER8_MEMBASE_REG: x86_fst_membase (code, ins->inst_destbasereg, ins->inst_offset, TRUE, TRUE); break; case OP_LOADR8_MEMBASE: x86_fld_membase (code, ins->inst_basereg, ins->inst_offset, TRUE); break; case OP_STORER4_MEMBASE_REG: x86_fst_membase (code, ins->inst_destbasereg, ins->inst_offset, FALSE, TRUE); break; case OP_LOADR4_MEMBASE: x86_fld_membase (code, ins->inst_basereg, ins->inst_offset, FALSE); break; case OP_ICONV_TO_R4: x86_push_reg (code, ins->sreg1); x86_fild_membase (code, X86_ESP, 0, FALSE); /* Change precision */ x86_fst_membase (code, X86_ESP, 0, FALSE, TRUE); x86_fld_membase (code, X86_ESP, 0, FALSE); x86_alu_reg_imm (code, X86_ADD, X86_ESP, 4); break; case OP_ICONV_TO_R8: x86_push_reg (code, ins->sreg1); x86_fild_membase (code, X86_ESP, 0, FALSE); x86_alu_reg_imm (code, X86_ADD, X86_ESP, 4); break; case OP_ICONV_TO_R_UN: x86_push_imm (code, 0); x86_push_reg (code, ins->sreg1); x86_fild_membase (code, X86_ESP, 0, TRUE); x86_alu_reg_imm (code, X86_ADD, X86_ESP, 8); break; case OP_X86_FP_LOAD_I8: x86_fild_membase (code, ins->inst_basereg, ins->inst_offset, TRUE); break; case OP_X86_FP_LOAD_I4: x86_fild_membase (code, ins->inst_basereg, ins->inst_offset, FALSE); break; case OP_FCONV_TO_R4: /* Change precision */ x86_alu_reg_imm (code, X86_SUB, X86_ESP, 4); x86_fst_membase (code, X86_ESP, 0, FALSE, TRUE); x86_fld_membase (code, X86_ESP, 0, FALSE); x86_alu_reg_imm (code, X86_ADD, X86_ESP, 4); break; case OP_FCONV_TO_I1: code = emit_float_to_int (cfg, code, ins->dreg, 1, TRUE); break; case OP_FCONV_TO_U1: code = emit_float_to_int (cfg, code, ins->dreg, 1, FALSE); break; case OP_FCONV_TO_I2: code = emit_float_to_int (cfg, code, ins->dreg, 2, TRUE); break; case OP_FCONV_TO_U2: code = emit_float_to_int (cfg, code, ins->dreg, 2, FALSE); break; case OP_FCONV_TO_I4: case OP_FCONV_TO_I: code = emit_float_to_int (cfg, code, ins->dreg, 4, TRUE); break; case OP_FCONV_TO_I8: x86_alu_reg_imm (code, X86_SUB, X86_ESP, 4); x86_fnstcw_membase(code, X86_ESP, 0); x86_mov_reg_membase (code, ins->dreg, X86_ESP, 0, 2); x86_alu_reg_imm (code, X86_OR, ins->dreg, 0xc00); x86_mov_membase_reg (code, X86_ESP, 2, ins->dreg, 2); x86_fldcw_membase (code, X86_ESP, 2); x86_alu_reg_imm (code, X86_SUB, X86_ESP, 8); x86_fist_pop_membase (code, X86_ESP, 0, TRUE); x86_pop_reg (code, ins->dreg); x86_pop_reg (code, ins->backend.reg3); x86_fldcw_membase (code, X86_ESP, 0); x86_alu_reg_imm (code, X86_ADD, X86_ESP, 4); break; case OP_LCONV_TO_R8_2: x86_push_reg (code, ins->sreg2); x86_push_reg (code, ins->sreg1); x86_fild_membase (code, X86_ESP, 0, TRUE); /* Change precision */ x86_fst_membase (code, X86_ESP, 0, TRUE, TRUE); x86_fld_membase (code, X86_ESP, 0, TRUE); x86_alu_reg_imm (code, X86_ADD, X86_ESP, 8); break; case OP_LCONV_TO_R4_2: x86_push_reg (code, ins->sreg2); x86_push_reg (code, ins->sreg1); x86_fild_membase (code, X86_ESP, 0, TRUE); /* Change precision */ x86_fst_membase (code, X86_ESP, 0, FALSE, TRUE); x86_fld_membase (code, X86_ESP, 0, FALSE); x86_alu_reg_imm (code, X86_ADD, X86_ESP, 8); break; case OP_LCONV_TO_R_UN_2: { static guint8 mn[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x3f, 0x40 }; guint8 *br; /* load 64bit integer to FP stack */ x86_push_reg (code, ins->sreg2); x86_push_reg (code, ins->sreg1); x86_fild_membase (code, X86_ESP, 0, TRUE); /* test if lreg is negative */ x86_test_reg_reg (code, ins->sreg2, ins->sreg2); br = code; x86_branch8 (code, X86_CC_GEZ, 0, TRUE); /* add correction constant mn */ if (cfg->compile_aot) { x86_push_imm (code, (((guint32)mn [9]) << 24) | ((guint32)mn [8] << 16) | ((guint32)mn [7] << 8) | ((guint32)mn [6])); x86_push_imm (code, (((guint32)mn [5]) << 24) | ((guint32)mn [4] << 16) | ((guint32)mn [3] << 8) | ((guint32)mn [2])); x86_push_imm (code, (((guint32)mn [1]) << 24) | ((guint32)mn [0] << 16)); x86_fld80_membase (code, X86_ESP, 2); x86_alu_reg_imm (code, X86_ADD, X86_ESP, 12); } else { x86_fld80_mem (code, mn); } x86_fp_op_reg (code, X86_FADD, 1, TRUE); x86_patch (br, code); /* Change precision */ x86_fst_membase (code, X86_ESP, 0, TRUE, TRUE); x86_fld_membase (code, X86_ESP, 0, TRUE); x86_alu_reg_imm (code, X86_ADD, X86_ESP, 8); break; } case OP_LCONV_TO_OVF_I: case OP_LCONV_TO_OVF_I4_2: { guint8 *br [3], *label [1]; MonoInst *tins; /* * Valid ints: 0xffffffff:8000000 to 00000000:0x7f000000 */ x86_test_reg_reg (code, ins->sreg1, ins->sreg1); /* If the low word top bit is set, see if we are negative */ br [0] = code; x86_branch8 (code, X86_CC_LT, 0, TRUE); /* We are not negative (no top bit set, check for our top word to be zero */ x86_test_reg_reg (code, ins->sreg2, ins->sreg2); br [1] = code; x86_branch8 (code, X86_CC_EQ, 0, TRUE); label [0] = code; /* throw exception */ tins = mono_branch_optimize_exception_target (cfg, bb, "OverflowException"); if (tins) { mono_add_patch_info (cfg, code - cfg->native_code, MONO_PATCH_INFO_BB, tins->inst_true_bb); if ((cfg->opt & MONO_OPT_BRANCH) && x86_is_imm8 (tins->inst_true_bb->max_offset - cpos)) x86_jump8 (code, 0); else x86_jump32 (code, 0); } else { mono_add_patch_info (cfg, code - cfg->native_code, MONO_PATCH_INFO_EXC, "OverflowException"); x86_jump32 (code, 0); } x86_patch (br [0], code); /* our top bit is set, check that top word is 0xfffffff */ x86_alu_reg_imm (code, X86_CMP, ins->sreg2, 0xffffffff); x86_patch (br [1], code); /* nope, emit exception */ br [2] = code; x86_branch8 (code, X86_CC_NE, 0, TRUE); x86_patch (br [2], label [0]); if (ins->dreg != ins->sreg1) x86_mov_reg_reg (code, ins->dreg, ins->sreg1, 4); break; } case OP_FMOVE: /* Not needed on the fp stack */ break; case OP_MOVE_F_TO_I4: x86_fst_membase (code, ins->backend.spill_var->inst_basereg, ins->backend.spill_var->inst_offset, FALSE, TRUE); x86_mov_reg_membase (code, ins->dreg, ins->backend.spill_var->inst_basereg, ins->backend.spill_var->inst_offset, 4); break; case OP_MOVE_I4_TO_F: x86_mov_membase_reg (code, ins->backend.spill_var->inst_basereg, ins->backend.spill_var->inst_offset, ins->sreg1, 4); x86_fld_membase (code, ins->backend.spill_var->inst_basereg, ins->backend.spill_var->inst_offset, FALSE); break; case OP_FADD: x86_fp_op_reg (code, X86_FADD, 1, TRUE); break; case OP_FSUB: x86_fp_op_reg (code, X86_FSUB, 1, TRUE); break; case OP_FMUL: x86_fp_op_reg (code, X86_FMUL, 1, TRUE); break; case OP_FDIV: x86_fp_op_reg (code, X86_FDIV, 1, TRUE); break; case OP_FNEG: x86_fchs (code); break; case OP_SIN: x86_fsin (code); x86_fldz (code); x86_fp_op_reg (code, X86_FADD, 1, TRUE); break; case OP_COS: x86_fcos (code); x86_fldz (code); x86_fp_op_reg (code, X86_FADD, 1, TRUE); break; case OP_ABS: x86_fabs (code); break; case OP_TAN: { /* * it really doesn't make sense to inline all this code, * it's here just to show that things may not be as simple * as they appear. */ guchar *check_pos, *end_tan, *pop_jump; x86_push_reg (code, X86_EAX); x86_fptan (code); x86_fnstsw (code); x86_test_reg_imm (code, X86_EAX, X86_FP_C2); check_pos = code; x86_branch8 (code, X86_CC_NE, 0, FALSE); x86_fstp (code, 0); /* pop the 1.0 */ end_tan = code; x86_jump8 (code, 0); x86_fldpi (code); x86_fp_op (code, X86_FADD, 0); x86_fxch (code, 1); x86_fprem1 (code); x86_fstsw (code); x86_test_reg_imm (code, X86_EAX, X86_FP_C2); pop_jump = code; x86_branch8 (code, X86_CC_NE, 0, FALSE); x86_fstp (code, 1); x86_fptan (code); x86_patch (pop_jump, code); x86_fstp (code, 0); /* pop the 1.0 */ x86_patch (check_pos, code); x86_patch (end_tan, code); x86_fldz (code); x86_fp_op_reg (code, X86_FADD, 1, TRUE); x86_pop_reg (code, X86_EAX); break; } case OP_ATAN: x86_fld1 (code); x86_fpatan (code); x86_fldz (code); x86_fp_op_reg (code, X86_FADD, 1, TRUE); break; case OP_SQRT: x86_fsqrt (code); break; case OP_ROUND: x86_frndint (code); break; case OP_IMIN: g_assert (cfg->opt & MONO_OPT_CMOV); g_assert (ins->dreg == ins->sreg1); x86_alu_reg_reg (code, X86_CMP, ins->sreg1, ins->sreg2); x86_cmov_reg (code, X86_CC_GT, TRUE, ins->dreg, ins->sreg2); break; case OP_IMIN_UN: g_assert (cfg->opt & MONO_OPT_CMOV); g_assert (ins->dreg == ins->sreg1); x86_alu_reg_reg (code, X86_CMP, ins->sreg1, ins->sreg2); x86_cmov_reg (code, X86_CC_GT, FALSE, ins->dreg, ins->sreg2); break; case OP_IMAX: g_assert (cfg->opt & MONO_OPT_CMOV); g_assert (ins->dreg == ins->sreg1); x86_alu_reg_reg (code, X86_CMP, ins->sreg1, ins->sreg2); x86_cmov_reg (code, X86_CC_LT, TRUE, ins->dreg, ins->sreg2); break; case OP_IMAX_UN: g_assert (cfg->opt & MONO_OPT_CMOV); g_assert (ins->dreg == ins->sreg1); x86_alu_reg_reg (code, X86_CMP, ins->sreg1, ins->sreg2); x86_cmov_reg (code, X86_CC_LT, FALSE, ins->dreg, ins->sreg2); break; case OP_X86_FPOP: x86_fstp (code, 0); break; case OP_X86_FXCH: x86_fxch (code, ins->inst_imm); break; case OP_FREM: { guint8 *l1, *l2; x86_push_reg (code, X86_EAX); /* we need to exchange ST(0) with ST(1) */ x86_fxch (code, 1); /* this requires a loop, because fprem somtimes * returns a partial remainder */ l1 = code; /* looks like MS is using fprem instead of the IEEE compatible fprem1 */ /* x86_fprem1 (code); */ x86_fprem (code); x86_fnstsw (code); x86_alu_reg_imm (code, X86_AND, X86_EAX, X86_FP_C2); l2 = code; x86_branch8 (code, X86_CC_NE, 0, FALSE); x86_patch (l2, l1); /* pop result */ x86_fstp (code, 1); x86_pop_reg (code, X86_EAX); break; } case OP_FCOMPARE: if (cfg->opt & MONO_OPT_FCMOV) { x86_fcomip (code, 1); x86_fstp (code, 0); break; } /* this overwrites EAX */ EMIT_FPCOMPARE(code); x86_alu_reg_imm (code, X86_AND, X86_EAX, X86_FP_CC_MASK); break; case OP_FCEQ: case OP_FCNEQ: if (cfg->opt & MONO_OPT_FCMOV) { /* zeroing the register at the start results in * shorter and faster code (we can also remove the widening op) */ guchar *unordered_check; x86_alu_reg_reg (code, X86_XOR, ins->dreg, ins->dreg); x86_fcomip (code, 1); x86_fstp (code, 0); unordered_check = code; x86_branch8 (code, X86_CC_P, 0, FALSE); if (ins->opcode == OP_FCEQ) { x86_set_reg (code, X86_CC_EQ, ins->dreg, FALSE); x86_patch (unordered_check, code); } else { guchar *jump_to_end; x86_set_reg (code, X86_CC_NE, ins->dreg, FALSE); jump_to_end = code; x86_jump8 (code, 0); x86_patch (unordered_check, code); x86_inc_reg (code, ins->dreg); x86_patch (jump_to_end, code); } break; } if (ins->dreg != X86_EAX) x86_push_reg (code, X86_EAX); EMIT_FPCOMPARE(code); x86_alu_reg_imm (code, X86_AND, X86_EAX, X86_FP_CC_MASK); x86_alu_reg_imm (code, X86_CMP, X86_EAX, 0x4000); x86_set_reg (code, ins->opcode == OP_FCEQ ? X86_CC_EQ : X86_CC_NE, ins->dreg, TRUE); x86_widen_reg (code, ins->dreg, ins->dreg, FALSE, FALSE); if (ins->dreg != X86_EAX) x86_pop_reg (code, X86_EAX); break; case OP_FCLT: case OP_FCLT_UN: if (cfg->opt & MONO_OPT_FCMOV) { /* zeroing the register at the start results in * shorter and faster code (we can also remove the widening op) */ x86_alu_reg_reg (code, X86_XOR, ins->dreg, ins->dreg); x86_fcomip (code, 1); x86_fstp (code, 0); if (ins->opcode == OP_FCLT_UN) { guchar *unordered_check = code; guchar *jump_to_end; x86_branch8 (code, X86_CC_P, 0, FALSE); x86_set_reg (code, X86_CC_GT, ins->dreg, FALSE); jump_to_end = code; x86_jump8 (code, 0); x86_patch (unordered_check, code); x86_inc_reg (code, ins->dreg); x86_patch (jump_to_end, code); } else { x86_set_reg (code, X86_CC_GT, ins->dreg, FALSE); } break; } if (ins->dreg != X86_EAX) x86_push_reg (code, X86_EAX); EMIT_FPCOMPARE(code); x86_alu_reg_imm (code, X86_AND, X86_EAX, X86_FP_CC_MASK); if (ins->opcode == OP_FCLT_UN) { guchar *is_not_zero_check, *end_jump; is_not_zero_check = code; x86_branch8 (code, X86_CC_NZ, 0, TRUE); end_jump = code; x86_jump8 (code, 0); x86_patch (is_not_zero_check, code); x86_alu_reg_imm (code, X86_CMP, X86_EAX, X86_FP_CC_MASK); x86_patch (end_jump, code); } x86_set_reg (code, X86_CC_EQ, ins->dreg, TRUE); x86_widen_reg (code, ins->dreg, ins->dreg, FALSE, FALSE); if (ins->dreg != X86_EAX) x86_pop_reg (code, X86_EAX); break; case OP_FCLE: { guchar *unordered_check; guchar *jump_to_end; if (cfg->opt & MONO_OPT_FCMOV) { /* zeroing the register at the start results in * shorter and faster code (we can also remove the widening op) */ x86_alu_reg_reg (code, X86_XOR, ins->dreg, ins->dreg); x86_fcomip (code, 1); x86_fstp (code, 0); unordered_check = code; x86_branch8 (code, X86_CC_P, 0, FALSE); x86_set_reg (code, X86_CC_NB, ins->dreg, FALSE); x86_patch (unordered_check, code); break; } if (ins->dreg != X86_EAX) x86_push_reg (code, X86_EAX); EMIT_FPCOMPARE(code); x86_alu_reg_imm (code, X86_AND, X86_EAX, X86_FP_CC_MASK); x86_alu_reg_imm (code, X86_CMP, X86_EAX, 0x4500); unordered_check = code; x86_branch8 (code, X86_CC_EQ, 0, FALSE); x86_alu_reg_imm (code, X86_CMP, X86_EAX, X86_FP_C0); x86_set_reg (code, X86_CC_NE, ins->dreg, TRUE); x86_widen_reg (code, ins->dreg, ins->dreg, FALSE, FALSE); jump_to_end = code; x86_jump8 (code, 0); x86_patch (unordered_check, code); x86_alu_reg_reg (code, X86_XOR, ins->dreg, ins->dreg); x86_patch (jump_to_end, code); if (ins->dreg != X86_EAX) x86_pop_reg (code, X86_EAX); break; } case OP_FCGT: case OP_FCGT_UN: if (cfg->opt & MONO_OPT_FCMOV) { /* zeroing the register at the start results in * shorter and faster code (we can also remove the widening op) */ guchar *unordered_check; x86_alu_reg_reg (code, X86_XOR, ins->dreg, ins->dreg); x86_fcomip (code, 1); x86_fstp (code, 0); if (ins->opcode == OP_FCGT) { unordered_check = code; x86_branch8 (code, X86_CC_P, 0, FALSE); x86_set_reg (code, X86_CC_LT, ins->dreg, FALSE); x86_patch (unordered_check, code); } else { x86_set_reg (code, X86_CC_LT, ins->dreg, FALSE); } break; } if (ins->dreg != X86_EAX) x86_push_reg (code, X86_EAX); EMIT_FPCOMPARE(code); x86_alu_reg_imm (code, X86_AND, X86_EAX, X86_FP_CC_MASK); x86_alu_reg_imm (code, X86_CMP, X86_EAX, X86_FP_C0); if (ins->opcode == OP_FCGT_UN) { guchar *is_not_zero_check, *end_jump; is_not_zero_check = code; x86_branch8 (code, X86_CC_NZ, 0, TRUE); end_jump = code; x86_jump8 (code, 0); x86_patch (is_not_zero_check, code); x86_alu_reg_imm (code, X86_CMP, X86_EAX, X86_FP_CC_MASK); x86_patch (end_jump, code); } x86_set_reg (code, X86_CC_EQ, ins->dreg, TRUE); x86_widen_reg (code, ins->dreg, ins->dreg, FALSE, FALSE); if (ins->dreg != X86_EAX) x86_pop_reg (code, X86_EAX); break; case OP_FCGE: { guchar *unordered_check; guchar *jump_to_end; if (cfg->opt & MONO_OPT_FCMOV) { /* zeroing the register at the start results in * shorter and faster code (we can also remove the widening op) */ x86_alu_reg_reg (code, X86_XOR, ins->dreg, ins->dreg); x86_fcomip (code, 1); x86_fstp (code, 0); unordered_check = code; x86_branch8 (code, X86_CC_P, 0, FALSE); x86_set_reg (code, X86_CC_NA, ins->dreg, FALSE); x86_patch (unordered_check, code); break; } if (ins->dreg != X86_EAX) x86_push_reg (code, X86_EAX); EMIT_FPCOMPARE(code); x86_alu_reg_imm (code, X86_AND, X86_EAX, X86_FP_CC_MASK); x86_alu_reg_imm (code, X86_CMP, X86_EAX, 0x4500); unordered_check = code; x86_branch8 (code, X86_CC_EQ, 0, FALSE); x86_alu_reg_imm (code, X86_CMP, X86_EAX, X86_FP_C0); x86_set_reg (code, X86_CC_GE, ins->dreg, TRUE); x86_widen_reg (code, ins->dreg, ins->dreg, FALSE, FALSE); jump_to_end = code; x86_jump8 (code, 0); x86_patch (unordered_check, code); x86_alu_reg_reg (code, X86_XOR, ins->dreg, ins->dreg); x86_patch (jump_to_end, code); if (ins->dreg != X86_EAX) x86_pop_reg (code, X86_EAX); break; } case OP_FBEQ: if (cfg->opt & MONO_OPT_FCMOV) { guchar *jump = code; x86_branch8 (code, X86_CC_P, 0, TRUE); EMIT_COND_BRANCH (ins, X86_CC_EQ, FALSE); x86_patch (jump, code); break; } x86_alu_reg_imm (code, X86_CMP, X86_EAX, 0x4000); EMIT_COND_BRANCH (ins, X86_CC_EQ, TRUE); break; case OP_FBNE_UN: /* Branch if C013 != 100 */ if (cfg->opt & MONO_OPT_FCMOV) { /* branch if !ZF or (PF|CF) */ EMIT_COND_BRANCH (ins, X86_CC_NE, FALSE); EMIT_COND_BRANCH (ins, X86_CC_P, FALSE); EMIT_COND_BRANCH (ins, X86_CC_B, FALSE); break; } x86_alu_reg_imm (code, X86_CMP, X86_EAX, X86_FP_C3); EMIT_COND_BRANCH (ins, X86_CC_NE, FALSE); break; case OP_FBLT: if (cfg->opt & MONO_OPT_FCMOV) { EMIT_COND_BRANCH (ins, X86_CC_GT, FALSE); break; } EMIT_COND_BRANCH (ins, X86_CC_EQ, FALSE); break; case OP_FBLT_UN: if (cfg->opt & MONO_OPT_FCMOV) { EMIT_COND_BRANCH (ins, X86_CC_P, FALSE); EMIT_COND_BRANCH (ins, X86_CC_GT, FALSE); break; } if (ins->opcode == OP_FBLT_UN) { guchar *is_not_zero_check, *end_jump; is_not_zero_check = code; x86_branch8 (code, X86_CC_NZ, 0, TRUE); end_jump = code; x86_jump8 (code, 0); x86_patch (is_not_zero_check, code); x86_alu_reg_imm (code, X86_CMP, X86_EAX, X86_FP_CC_MASK); x86_patch (end_jump, code); } EMIT_COND_BRANCH (ins, X86_CC_EQ, FALSE); break; case OP_FBGT: case OP_FBGT_UN: if (cfg->opt & MONO_OPT_FCMOV) { if (ins->opcode == OP_FBGT) { guchar *br1; /* skip branch if C1=1 */ br1 = code; x86_branch8 (code, X86_CC_P, 0, FALSE); /* branch if (C0 | C3) = 1 */ EMIT_COND_BRANCH (ins, X86_CC_LT, FALSE); x86_patch (br1, code); } else { EMIT_COND_BRANCH (ins, X86_CC_LT, FALSE); } break; } x86_alu_reg_imm (code, X86_CMP, X86_EAX, X86_FP_C0); if (ins->opcode == OP_FBGT_UN) { guchar *is_not_zero_check, *end_jump; is_not_zero_check = code; x86_branch8 (code, X86_CC_NZ, 0, TRUE); end_jump = code; x86_jump8 (code, 0); x86_patch (is_not_zero_check, code); x86_alu_reg_imm (code, X86_CMP, X86_EAX, X86_FP_CC_MASK); x86_patch (end_jump, code); } EMIT_COND_BRANCH (ins, X86_CC_EQ, FALSE); break; case OP_FBGE: /* Branch if C013 == 100 or 001 */ if (cfg->opt & MONO_OPT_FCMOV) { guchar *br1; /* skip branch if C1=1 */ br1 = code; x86_branch8 (code, X86_CC_P, 0, FALSE); /* branch if (C0 | C3) = 1 */ EMIT_COND_BRANCH (ins, X86_CC_BE, FALSE); x86_patch (br1, code); break; } x86_alu_reg_imm (code, X86_CMP, X86_EAX, X86_FP_C0); EMIT_COND_BRANCH (ins, X86_CC_EQ, FALSE); x86_alu_reg_imm (code, X86_CMP, X86_EAX, X86_FP_C3); EMIT_COND_BRANCH (ins, X86_CC_EQ, FALSE); break; case OP_FBGE_UN: /* Branch if C013 == 000 */ if (cfg->opt & MONO_OPT_FCMOV) { EMIT_COND_BRANCH (ins, X86_CC_LE, FALSE); break; } EMIT_COND_BRANCH (ins, X86_CC_NE, FALSE); break; case OP_FBLE: /* Branch if C013=000 or 100 */ if (cfg->opt & MONO_OPT_FCMOV) { guchar *br1; /* skip branch if C1=1 */ br1 = code; x86_branch8 (code, X86_CC_P, 0, FALSE); /* branch if C0=0 */ EMIT_COND_BRANCH (ins, X86_CC_NB, FALSE); x86_patch (br1, code); break; } x86_alu_reg_imm (code, X86_AND, X86_EAX, (X86_FP_C0|X86_FP_C1)); x86_alu_reg_imm (code, X86_CMP, X86_EAX, 0); EMIT_COND_BRANCH (ins, X86_CC_EQ, FALSE); break; case OP_FBLE_UN: /* Branch if C013 != 001 */ if (cfg->opt & MONO_OPT_FCMOV) { EMIT_COND_BRANCH (ins, X86_CC_P, FALSE); EMIT_COND_BRANCH (ins, X86_CC_GE, FALSE); break; } x86_alu_reg_imm (code, X86_CMP, X86_EAX, X86_FP_C0); EMIT_COND_BRANCH (ins, X86_CC_NE, FALSE); break; case OP_CKFINITE: { guchar *br1; x86_push_reg (code, X86_EAX); x86_fxam (code); x86_fnstsw (code); x86_alu_reg_imm (code, X86_AND, X86_EAX, 0x4100); x86_alu_reg_imm (code, X86_CMP, X86_EAX, X86_FP_C0); x86_pop_reg (code, X86_EAX); /* Have to clean up the fp stack before throwing the exception */ br1 = code; x86_branch8 (code, X86_CC_NE, 0, FALSE); x86_fstp (code, 0); EMIT_COND_SYSTEM_EXCEPTION (X86_CC_EQ, FALSE, "OverflowException"); x86_patch (br1, code); break; } case OP_TLS_GET: { code = mono_x86_emit_tls_get (code, ins->dreg, ins->inst_offset); break; } case OP_TLS_SET: { code = mono_x86_emit_tls_set (code, ins->sreg1, ins->inst_offset); break; } case OP_MEMORY_BARRIER: { if (ins->backend.memory_barrier_kind == MONO_MEMORY_BARRIER_SEQ) { x86_prefix (code, X86_LOCK_PREFIX); x86_alu_membase_imm (code, X86_ADD, X86_ESP, 0, 0); } break; } case OP_ATOMIC_ADD_I4: { int dreg = ins->dreg; g_assert (cfg->has_atomic_add_i4); /* hack: limit in regalloc, dreg != sreg1 && dreg != sreg2 */ if (ins->sreg2 == dreg) { if (dreg == X86_EBX) { dreg = X86_EDI; if (ins->inst_basereg == X86_EDI) dreg = X86_ESI; } else { dreg = X86_EBX; if (ins->inst_basereg == X86_EBX) dreg = X86_EDI; } } else if (ins->inst_basereg == dreg) { if (dreg == X86_EBX) { dreg = X86_EDI; if (ins->sreg2 == X86_EDI) dreg = X86_ESI; } else { dreg = X86_EBX; if (ins->sreg2 == X86_EBX) dreg = X86_EDI; } } if (dreg != ins->dreg) { x86_push_reg (code, dreg); } x86_mov_reg_reg (code, dreg, ins->sreg2, 4); x86_prefix (code, X86_LOCK_PREFIX); x86_xadd_membase_reg (code, ins->inst_basereg, ins->inst_offset, dreg, 4); /* dreg contains the old value, add with sreg2 value */ x86_alu_reg_reg (code, X86_ADD, dreg, ins->sreg2); if (ins->dreg != dreg) { x86_mov_reg_reg (code, ins->dreg, dreg, 4); x86_pop_reg (code, dreg); } break; } case OP_ATOMIC_EXCHANGE_I4: { guchar *br[2]; int sreg2 = ins->sreg2; int breg = ins->inst_basereg; g_assert (cfg->has_atomic_exchange_i4); /* cmpxchg uses eax as comperand, need to make sure we can use it * hack to overcome limits in x86 reg allocator * (req: dreg == eax and sreg2 != eax and breg != eax) */ g_assert (ins->dreg == X86_EAX); /* We need the EAX reg for the cmpxchg */ if (ins->sreg2 == X86_EAX) { sreg2 = (breg == X86_EDX) ? X86_EBX : X86_EDX; x86_push_reg (code, sreg2); x86_mov_reg_reg (code, sreg2, X86_EAX, 4); } if (breg == X86_EAX) { breg = (sreg2 == X86_ESI) ? X86_EDI : X86_ESI; x86_push_reg (code, breg); x86_mov_reg_reg (code, breg, X86_EAX, 4); } x86_mov_reg_membase (code, X86_EAX, breg, ins->inst_offset, 4); br [0] = code; x86_prefix (code, X86_LOCK_PREFIX); x86_cmpxchg_membase_reg (code, breg, ins->inst_offset, sreg2); br [1] = code; x86_branch8 (code, X86_CC_NE, -1, FALSE); x86_patch (br [1], br [0]); if (breg != ins->inst_basereg) x86_pop_reg (code, breg); if (ins->sreg2 != sreg2) x86_pop_reg (code, sreg2); break; } case OP_ATOMIC_CAS_I4: { g_assert (ins->dreg == X86_EAX); g_assert (ins->sreg3 == X86_EAX); g_assert (ins->sreg1 != X86_EAX); g_assert (ins->sreg1 != ins->sreg2); x86_prefix (code, X86_LOCK_PREFIX); x86_cmpxchg_membase_reg (code, ins->sreg1, ins->inst_offset, ins->sreg2); break; } case OP_ATOMIC_LOAD_I1: { x86_widen_membase (code, ins->dreg, ins->inst_basereg, ins->inst_offset, TRUE, FALSE); break; } case OP_ATOMIC_LOAD_U1: { x86_widen_membase (code, ins->dreg, ins->inst_basereg, ins->inst_offset, FALSE, FALSE); break; } case OP_ATOMIC_LOAD_I2: { x86_widen_membase (code, ins->dreg, ins->inst_basereg, ins->inst_offset, TRUE, TRUE); break; } case OP_ATOMIC_LOAD_U2: { x86_widen_membase (code, ins->dreg, ins->inst_basereg, ins->inst_offset, FALSE, TRUE); break; } case OP_ATOMIC_LOAD_I4: case OP_ATOMIC_LOAD_U4: { x86_mov_reg_membase (code, ins->dreg, ins->inst_basereg, ins->inst_offset, 4); break; } case OP_ATOMIC_LOAD_R4: case OP_ATOMIC_LOAD_R8: { x86_fld_membase (code, ins->inst_basereg, ins->inst_offset, ins->opcode == OP_ATOMIC_LOAD_R8); break; } case OP_ATOMIC_STORE_I1: case OP_ATOMIC_STORE_U1: case OP_ATOMIC_STORE_I2: case OP_ATOMIC_STORE_U2: case OP_ATOMIC_STORE_I4: case OP_ATOMIC_STORE_U4: { int size; switch (ins->opcode) { case OP_ATOMIC_STORE_I1: case OP_ATOMIC_STORE_U1: size = 1; break; case OP_ATOMIC_STORE_I2: case OP_ATOMIC_STORE_U2: size = 2; break; case OP_ATOMIC_STORE_I4: case OP_ATOMIC_STORE_U4: size = 4; break; } x86_mov_membase_reg (code, ins->inst_destbasereg, ins->inst_offset, ins->sreg1, size); if (ins->backend.memory_barrier_kind == MONO_MEMORY_BARRIER_SEQ) x86_mfence (code); break; } case OP_ATOMIC_STORE_R4: case OP_ATOMIC_STORE_R8: { x86_fst_membase (code, ins->inst_destbasereg, ins->inst_offset, ins->opcode == OP_ATOMIC_STORE_R8, TRUE); if (ins->backend.memory_barrier_kind == MONO_MEMORY_BARRIER_SEQ) x86_mfence (code); break; } case OP_CARD_TABLE_WBARRIER: { int ptr = ins->sreg1; int value = ins->sreg2; guchar *br = NULL; int nursery_shift, card_table_shift; gpointer card_table_mask; size_t nursery_size; gulong card_table = (gulong)mono_gc_get_card_table (&card_table_shift, &card_table_mask); gulong nursery_start = (gulong)mono_gc_get_nursery (&nursery_shift, &nursery_size); gboolean card_table_nursery_check = mono_gc_card_table_nursery_check (); /* * We need one register we can clobber, we choose EDX and make sreg1 * fixed EAX to work around limitations in the local register allocator. * sreg2 might get allocated to EDX, but that is not a problem since * we use it before clobbering EDX. */ g_assert (ins->sreg1 == X86_EAX); /* * This is the code we produce: * * edx = value * edx >>= nursery_shift * cmp edx, (nursery_start >> nursery_shift) * jne done * edx = ptr * edx >>= card_table_shift * card_table[edx] = 1 * done: */ if (card_table_nursery_check) { if (value != X86_EDX) x86_mov_reg_reg (code, X86_EDX, value, 4); x86_shift_reg_imm (code, X86_SHR, X86_EDX, nursery_shift); x86_alu_reg_imm (code, X86_CMP, X86_EDX, nursery_start >> nursery_shift); br = code; x86_branch8 (code, X86_CC_NE, -1, FALSE); } x86_mov_reg_reg (code, X86_EDX, ptr, 4); x86_shift_reg_imm (code, X86_SHR, X86_EDX, card_table_shift); if (card_table_mask) x86_alu_reg_imm (code, X86_AND, X86_EDX, (int)card_table_mask); x86_mov_membase_imm (code, X86_EDX, card_table, 1, 1); if (card_table_nursery_check) x86_patch (br, code); break; } #ifdef MONO_ARCH_SIMD_INTRINSICS case OP_ADDPS: x86_sse_alu_ps_reg_reg (code, X86_SSE_ADD, ins->sreg1, ins->sreg2); break; case OP_DIVPS: x86_sse_alu_ps_reg_reg (code, X86_SSE_DIV, ins->sreg1, ins->sreg2); break; case OP_MULPS: x86_sse_alu_ps_reg_reg (code, X86_SSE_MUL, ins->sreg1, ins->sreg2); break; case OP_SUBPS: x86_sse_alu_ps_reg_reg (code, X86_SSE_SUB, ins->sreg1, ins->sreg2); break; case OP_MAXPS: x86_sse_alu_ps_reg_reg (code, X86_SSE_MAX, ins->sreg1, ins->sreg2); break; case OP_MINPS: x86_sse_alu_ps_reg_reg (code, X86_SSE_MIN, ins->sreg1, ins->sreg2); break; case OP_COMPPS: g_assert (ins->inst_c0 >= 0 && ins->inst_c0 <= 7); x86_sse_alu_ps_reg_reg_imm (code, X86_SSE_COMP, ins->sreg1, ins->sreg2, ins->inst_c0); break; case OP_ANDPS: x86_sse_alu_ps_reg_reg (code, X86_SSE_AND, ins->sreg1, ins->sreg2); break; case OP_ANDNPS: x86_sse_alu_ps_reg_reg (code, X86_SSE_ANDN, ins->sreg1, ins->sreg2); break; case OP_ORPS: x86_sse_alu_ps_reg_reg (code, X86_SSE_OR, ins->sreg1, ins->sreg2); break; case OP_XORPS: x86_sse_alu_ps_reg_reg (code, X86_SSE_XOR, ins->sreg1, ins->sreg2); break; case OP_SQRTPS: x86_sse_alu_ps_reg_reg (code, X86_SSE_SQRT, ins->dreg, ins->sreg1); break; case OP_RSQRTPS: x86_sse_alu_ps_reg_reg (code, X86_SSE_RSQRT, ins->dreg, ins->sreg1); break; case OP_RCPPS: x86_sse_alu_ps_reg_reg (code, X86_SSE_RCP, ins->dreg, ins->sreg1); break; case OP_ADDSUBPS: x86_sse_alu_sd_reg_reg (code, X86_SSE_ADDSUB, ins->sreg1, ins->sreg2); break; case OP_HADDPS: x86_sse_alu_sd_reg_reg (code, X86_SSE_HADD, ins->sreg1, ins->sreg2); break; case OP_HSUBPS: x86_sse_alu_sd_reg_reg (code, X86_SSE_HSUB, ins->sreg1, ins->sreg2); break; case OP_DUPPS_HIGH: x86_sse_alu_ss_reg_reg (code, X86_SSE_MOVSHDUP, ins->dreg, ins->sreg1); break; case OP_DUPPS_LOW: x86_sse_alu_ss_reg_reg (code, X86_SSE_MOVSLDUP, ins->dreg, ins->sreg1); break; case OP_PSHUFLEW_HIGH: g_assert (ins->inst_c0 >= 0 && ins->inst_c0 <= 0xFF); x86_pshufw_reg_reg (code, ins->dreg, ins->sreg1, ins->inst_c0, 1); break; case OP_PSHUFLEW_LOW: g_assert (ins->inst_c0 >= 0 && ins->inst_c0 <= 0xFF); x86_pshufw_reg_reg (code, ins->dreg, ins->sreg1, ins->inst_c0, 0); break; case OP_PSHUFLED: g_assert (ins->inst_c0 >= 0 && ins->inst_c0 <= 0xFF); x86_sse_shift_reg_imm (code, X86_SSE_PSHUFD, ins->dreg, ins->sreg1, ins->inst_c0); break; case OP_SHUFPS: g_assert (ins->inst_c0 >= 0 && ins->inst_c0 <= 0xFF); x86_sse_alu_reg_reg_imm8 (code, X86_SSE_SHUFP, ins->sreg1, ins->sreg2, ins->inst_c0); break; case OP_SHUFPD: g_assert (ins->inst_c0 >= 0 && ins->inst_c0 <= 0x3); x86_sse_alu_pd_reg_reg_imm8 (code, X86_SSE_SHUFP, ins->sreg1, ins->sreg2, ins->inst_c0); break; case OP_ADDPD: x86_sse_alu_pd_reg_reg (code, X86_SSE_ADD, ins->sreg1, ins->sreg2); break; case OP_DIVPD: x86_sse_alu_pd_reg_reg (code, X86_SSE_DIV, ins->sreg1, ins->sreg2); break; case OP_MULPD: x86_sse_alu_pd_reg_reg (code, X86_SSE_MUL, ins->sreg1, ins->sreg2); break; case OP_SUBPD: x86_sse_alu_pd_reg_reg (code, X86_SSE_SUB, ins->sreg1, ins->sreg2); break; case OP_MAXPD: x86_sse_alu_pd_reg_reg (code, X86_SSE_MAX, ins->sreg1, ins->sreg2); break; case OP_MINPD: x86_sse_alu_pd_reg_reg (code, X86_SSE_MIN, ins->sreg1, ins->sreg2); break; case OP_COMPPD: g_assert (ins->inst_c0 >= 0 && ins->inst_c0 <= 7); x86_sse_alu_pd_reg_reg_imm (code, X86_SSE_COMP, ins->sreg1, ins->sreg2, ins->inst_c0); break; case OP_ANDPD: x86_sse_alu_pd_reg_reg (code, X86_SSE_AND, ins->sreg1, ins->sreg2); break; case OP_ANDNPD: x86_sse_alu_pd_reg_reg (code, X86_SSE_ANDN, ins->sreg1, ins->sreg2); break; case OP_ORPD: x86_sse_alu_pd_reg_reg (code, X86_SSE_OR, ins->sreg1, ins->sreg2); break; case OP_XORPD: x86_sse_alu_pd_reg_reg (code, X86_SSE_XOR, ins->sreg1, ins->sreg2); break; case OP_SQRTPD: x86_sse_alu_pd_reg_reg (code, X86_SSE_SQRT, ins->dreg, ins->sreg1); break; case OP_ADDSUBPD: x86_sse_alu_pd_reg_reg (code, X86_SSE_ADDSUB, ins->sreg1, ins->sreg2); break; case OP_HADDPD: x86_sse_alu_pd_reg_reg (code, X86_SSE_HADD, ins->sreg1, ins->sreg2); break; case OP_HSUBPD: x86_sse_alu_pd_reg_reg (code, X86_SSE_HSUB, ins->sreg1, ins->sreg2); break; case OP_DUPPD: x86_sse_alu_sd_reg_reg (code, X86_SSE_MOVDDUP, ins->dreg, ins->sreg1); break; case OP_EXTRACT_MASK: x86_sse_alu_pd_reg_reg (code, X86_SSE_PMOVMSKB, ins->dreg, ins->sreg1); break; case OP_PAND: x86_sse_alu_pd_reg_reg (code, X86_SSE_PAND, ins->sreg1, ins->sreg2); break; case OP_POR: x86_sse_alu_pd_reg_reg (code, X86_SSE_POR, ins->sreg1, ins->sreg2); break; case OP_PXOR: x86_sse_alu_pd_reg_reg (code, X86_SSE_PXOR, ins->sreg1, ins->sreg2); break; case OP_PADDB: x86_sse_alu_pd_reg_reg (code, X86_SSE_PADDB, ins->sreg1, ins->sreg2); break; case OP_PADDW: x86_sse_alu_pd_reg_reg (code, X86_SSE_PADDW, ins->sreg1, ins->sreg2); break; case OP_PADDD: x86_sse_alu_pd_reg_reg (code, X86_SSE_PADDD, ins->sreg1, ins->sreg2); break; case OP_PADDQ: x86_sse_alu_pd_reg_reg (code, X86_SSE_PADDQ, ins->sreg1, ins->sreg2); break; case OP_PSUBB: x86_sse_alu_pd_reg_reg (code, X86_SSE_PSUBB, ins->sreg1, ins->sreg2); break; case OP_PSUBW: x86_sse_alu_pd_reg_reg (code, X86_SSE_PSUBW, ins->sreg1, ins->sreg2); break; case OP_PSUBD: x86_sse_alu_pd_reg_reg (code, X86_SSE_PSUBD, ins->sreg1, ins->sreg2); break; case OP_PSUBQ: x86_sse_alu_pd_reg_reg (code, X86_SSE_PSUBQ, ins->sreg1, ins->sreg2); break; case OP_PMAXB_UN: x86_sse_alu_pd_reg_reg (code, X86_SSE_PMAXUB, ins->sreg1, ins->sreg2); break; case OP_PMAXW_UN: x86_sse_alu_sse41_reg_reg (code, X86_SSE_PMAXUW, ins->sreg1, ins->sreg2); break; case OP_PMAXD_UN: x86_sse_alu_sse41_reg_reg (code, X86_SSE_PMAXUD, ins->sreg1, ins->sreg2); break; case OP_PMAXB: x86_sse_alu_sse41_reg_reg (code, X86_SSE_PMAXSB, ins->sreg1, ins->sreg2); break; case OP_PMAXW: x86_sse_alu_pd_reg_reg (code, X86_SSE_PMAXSW, ins->sreg1, ins->sreg2); break; case OP_PMAXD: x86_sse_alu_sse41_reg_reg (code, X86_SSE_PMAXSD, ins->sreg1, ins->sreg2); break; case OP_PAVGB_UN: x86_sse_alu_pd_reg_reg (code, X86_SSE_PAVGB, ins->sreg1, ins->sreg2); break; case OP_PAVGW_UN: x86_sse_alu_pd_reg_reg (code, X86_SSE_PAVGW, ins->sreg1, ins->sreg2); break; case OP_PMINB_UN: x86_sse_alu_pd_reg_reg (code, X86_SSE_PMINUB, ins->sreg1, ins->sreg2); break; case OP_PMINW_UN: x86_sse_alu_sse41_reg_reg (code, X86_SSE_PMINUW, ins->sreg1, ins->sreg2); break; case OP_PMIND_UN: x86_sse_alu_sse41_reg_reg (code, X86_SSE_PMINUD, ins->sreg1, ins->sreg2); break; case OP_PMINB: x86_sse_alu_sse41_reg_reg (code, X86_SSE_PMINSB, ins->sreg1, ins->sreg2); break; case OP_PMINW: x86_sse_alu_pd_reg_reg (code, X86_SSE_PMINSW, ins->sreg1, ins->sreg2); break; case OP_PMIND: x86_sse_alu_sse41_reg_reg (code, X86_SSE_PMINSD, ins->sreg1, ins->sreg2); break; case OP_PCMPEQB: x86_sse_alu_pd_reg_reg (code, X86_SSE_PCMPEQB, ins->sreg1, ins->sreg2); break; case OP_PCMPEQW: x86_sse_alu_pd_reg_reg (code, X86_SSE_PCMPEQW, ins->sreg1, ins->sreg2); break; case OP_PCMPEQD: x86_sse_alu_pd_reg_reg (code, X86_SSE_PCMPEQD, ins->sreg1, ins->sreg2); break; case OP_PCMPEQQ: x86_sse_alu_sse41_reg_reg (code, X86_SSE_PCMPEQQ, ins->sreg1, ins->sreg2); break; case OP_PCMPGTB: x86_sse_alu_pd_reg_reg (code, X86_SSE_PCMPGTB, ins->sreg1, ins->sreg2); break; case OP_PCMPGTW: x86_sse_alu_pd_reg_reg (code, X86_SSE_PCMPGTW, ins->sreg1, ins->sreg2); break; case OP_PCMPGTD: x86_sse_alu_pd_reg_reg (code, X86_SSE_PCMPGTD, ins->sreg1, ins->sreg2); break; case OP_PCMPGTQ: x86_sse_alu_sse41_reg_reg (code, X86_SSE_PCMPGTQ, ins->sreg1, ins->sreg2); break; case OP_PSUM_ABS_DIFF: x86_sse_alu_pd_reg_reg (code, X86_SSE_PSADBW, ins->sreg1, ins->sreg2); break; case OP_UNPACK_LOWB: x86_sse_alu_pd_reg_reg (code, X86_SSE_PUNPCKLBW, ins->sreg1, ins->sreg2); break; case OP_UNPACK_LOWW: x86_sse_alu_pd_reg_reg (code, X86_SSE_PUNPCKLWD, ins->sreg1, ins->sreg2); break; case OP_UNPACK_LOWD: x86_sse_alu_pd_reg_reg (code, X86_SSE_PUNPCKLDQ, ins->sreg1, ins->sreg2); break; case OP_UNPACK_LOWQ: x86_sse_alu_pd_reg_reg (code, X86_SSE_PUNPCKLQDQ, ins->sreg1, ins->sreg2); break; case OP_UNPACK_LOWPS: x86_sse_alu_ps_reg_reg (code, X86_SSE_UNPCKL, ins->sreg1, ins->sreg2); break; case OP_UNPACK_LOWPD: x86_sse_alu_pd_reg_reg (code, X86_SSE_UNPCKL, ins->sreg1, ins->sreg2); break; case OP_UNPACK_HIGHB: x86_sse_alu_pd_reg_reg (code, X86_SSE_PUNPCKHBW, ins->sreg1, ins->sreg2); break; case OP_UNPACK_HIGHW: x86_sse_alu_pd_reg_reg (code, X86_SSE_PUNPCKHWD, ins->sreg1, ins->sreg2); break; case OP_UNPACK_HIGHD: x86_sse_alu_pd_reg_reg (code, X86_SSE_PUNPCKHDQ, ins->sreg1, ins->sreg2); break; case OP_UNPACK_HIGHQ: x86_sse_alu_pd_reg_reg (code, X86_SSE_PUNPCKHQDQ, ins->sreg1, ins->sreg2); break; case OP_UNPACK_HIGHPS: x86_sse_alu_ps_reg_reg (code, X86_SSE_UNPCKH, ins->sreg1, ins->sreg2); break; case OP_UNPACK_HIGHPD: x86_sse_alu_pd_reg_reg (code, X86_SSE_UNPCKH, ins->sreg1, ins->sreg2); break; case OP_PACKW: x86_sse_alu_pd_reg_reg (code, X86_SSE_PACKSSWB, ins->sreg1, ins->sreg2); break; case OP_PACKD: x86_sse_alu_pd_reg_reg (code, X86_SSE_PACKSSDW, ins->sreg1, ins->sreg2); break; case OP_PACKW_UN: x86_sse_alu_pd_reg_reg (code, X86_SSE_PACKUSWB, ins->sreg1, ins->sreg2); break; case OP_PACKD_UN: x86_sse_alu_sse41_reg_reg (code, X86_SSE_PACKUSDW, ins->sreg1, ins->sreg2); break; case OP_PADDB_SAT_UN: x86_sse_alu_pd_reg_reg (code, X86_SSE_PADDUSB, ins->sreg1, ins->sreg2); break; case OP_PSUBB_SAT_UN: x86_sse_alu_pd_reg_reg (code, X86_SSE_PSUBUSB, ins->sreg1, ins->sreg2); break; case OP_PADDW_SAT_UN: x86_sse_alu_pd_reg_reg (code, X86_SSE_PADDUSW, ins->sreg1, ins->sreg2); break; case OP_PSUBW_SAT_UN: x86_sse_alu_pd_reg_reg (code, X86_SSE_PSUBUSW, ins->sreg1, ins->sreg2); break; case OP_PADDB_SAT: x86_sse_alu_pd_reg_reg (code, X86_SSE_PADDSB, ins->sreg1, ins->sreg2); break; case OP_PSUBB_SAT: x86_sse_alu_pd_reg_reg (code, X86_SSE_PSUBSB, ins->sreg1, ins->sreg2); break; case OP_PADDW_SAT: x86_sse_alu_pd_reg_reg (code, X86_SSE_PADDSW, ins->sreg1, ins->sreg2); break; case OP_PSUBW_SAT: x86_sse_alu_pd_reg_reg (code, X86_SSE_PSUBSW, ins->sreg1, ins->sreg2); break; case OP_PMULW: x86_sse_alu_pd_reg_reg (code, X86_SSE_PMULLW, ins->sreg1, ins->sreg2); break; case OP_PMULD: x86_sse_alu_sse41_reg_reg (code, X86_SSE_PMULLD, ins->sreg1, ins->sreg2); break; case OP_PMULQ: x86_sse_alu_pd_reg_reg (code, X86_SSE_PMULUDQ, ins->sreg1, ins->sreg2); break; case OP_PMULW_HIGH_UN: x86_sse_alu_pd_reg_reg (code, X86_SSE_PMULHUW, ins->sreg1, ins->sreg2); break; case OP_PMULW_HIGH: x86_sse_alu_pd_reg_reg (code, X86_SSE_PMULHW, ins->sreg1, ins->sreg2); break; case OP_PSHRW: x86_sse_shift_reg_imm (code, X86_SSE_PSHIFTW, X86_SSE_SHR, ins->dreg, ins->inst_imm); break; case OP_PSHRW_REG: x86_sse_shift_reg_reg (code, X86_SSE_PSRLW_REG, ins->dreg, ins->sreg2); break; case OP_PSARW: x86_sse_shift_reg_imm (code, X86_SSE_PSHIFTW, X86_SSE_SAR, ins->dreg, ins->inst_imm); break; case OP_PSARW_REG: x86_sse_shift_reg_reg (code, X86_SSE_PSRAW_REG, ins->dreg, ins->sreg2); break; case OP_PSHLW: x86_sse_shift_reg_imm (code, X86_SSE_PSHIFTW, X86_SSE_SHL, ins->dreg, ins->inst_imm); break; case OP_PSHLW_REG: x86_sse_shift_reg_reg (code, X86_SSE_PSLLW_REG, ins->dreg, ins->sreg2); break; case OP_PSHRD: x86_sse_shift_reg_imm (code, X86_SSE_PSHIFTD, X86_SSE_SHR, ins->dreg, ins->inst_imm); break; case OP_PSHRD_REG: x86_sse_shift_reg_reg (code, X86_SSE_PSRLD_REG, ins->dreg, ins->sreg2); break; case OP_PSARD: x86_sse_shift_reg_imm (code, X86_SSE_PSHIFTD, X86_SSE_SAR, ins->dreg, ins->inst_imm); break; case OP_PSARD_REG: x86_sse_shift_reg_reg (code, X86_SSE_PSRAD_REG, ins->dreg, ins->sreg2); break; case OP_PSHLD: x86_sse_shift_reg_imm (code, X86_SSE_PSHIFTD, X86_SSE_SHL, ins->dreg, ins->inst_imm); break; case OP_PSHLD_REG: x86_sse_shift_reg_reg (code, X86_SSE_PSLLD_REG, ins->dreg, ins->sreg2); break; case OP_PSHRQ: x86_sse_shift_reg_imm (code, X86_SSE_PSHIFTQ, X86_SSE_SHR, ins->dreg, ins->inst_imm); break; case OP_PSHRQ_REG: x86_sse_shift_reg_reg (code, X86_SSE_PSRLQ_REG, ins->dreg, ins->sreg2); break; case OP_PSHLQ: x86_sse_shift_reg_imm (code, X86_SSE_PSHIFTQ, X86_SSE_SHL, ins->dreg, ins->inst_imm); break; case OP_PSHLQ_REG: x86_sse_shift_reg_reg (code, X86_SSE_PSLLQ_REG, ins->dreg, ins->sreg2); break; case OP_ICONV_TO_X: x86_movd_xreg_reg (code, ins->dreg, ins->sreg1); break; case OP_EXTRACT_I4: x86_movd_reg_xreg (code, ins->dreg, ins->sreg1); break; case OP_EXTRACT_I1: case OP_EXTRACT_U1: x86_movd_reg_xreg (code, ins->dreg, ins->sreg1); if (ins->inst_c0) x86_shift_reg_imm (code, X86_SHR, ins->dreg, ins->inst_c0 * 8); x86_widen_reg (code, ins->dreg, ins->dreg, ins->opcode == OP_EXTRACT_I1, FALSE); break; case OP_EXTRACT_I2: case OP_EXTRACT_U2: x86_movd_reg_xreg (code, ins->dreg, ins->sreg1); if (ins->inst_c0) x86_shift_reg_imm (code, X86_SHR, ins->dreg, 16); x86_widen_reg (code, ins->dreg, ins->dreg, ins->opcode == OP_EXTRACT_I2, TRUE); break; case OP_EXTRACT_R8: if (ins->inst_c0) x86_sse_alu_pd_membase_reg (code, X86_SSE_MOVHPD_MEMBASE_REG, ins->backend.spill_var->inst_basereg, ins->backend.spill_var->inst_offset, ins->sreg1); else x86_sse_alu_sd_membase_reg (code, X86_SSE_MOVSD_MEMBASE_REG, ins->backend.spill_var->inst_basereg, ins->backend.spill_var->inst_offset, ins->sreg1); x86_fld_membase (code, ins->backend.spill_var->inst_basereg, ins->backend.spill_var->inst_offset, TRUE); break; case OP_INSERT_I2: x86_sse_alu_pd_reg_reg_imm (code, X86_SSE_PINSRW, ins->sreg1, ins->sreg2, ins->inst_c0); break; case OP_EXTRACTX_U2: x86_sse_alu_pd_reg_reg_imm (code, X86_SSE_PEXTRW, ins->dreg, ins->sreg1, ins->inst_c0); break; case OP_INSERTX_U1_SLOW: /*sreg1 is the extracted ireg (scratch) /sreg2 is the to be inserted ireg (scratch) /dreg is the xreg to receive the value*/ /*clear the bits from the extracted word*/ x86_alu_reg_imm (code, X86_AND, ins->sreg1, ins->inst_c0 & 1 ? 0x00FF : 0xFF00); /*shift the value to insert if needed*/ if (ins->inst_c0 & 1) x86_shift_reg_imm (code, X86_SHL, ins->sreg2, 8); /*join them together*/ x86_alu_reg_reg (code, X86_OR, ins->sreg1, ins->sreg2); x86_sse_alu_pd_reg_reg_imm (code, X86_SSE_PINSRW, ins->dreg, ins->sreg1, ins->inst_c0 / 2); break; case OP_INSERTX_I4_SLOW: x86_sse_alu_pd_reg_reg_imm (code, X86_SSE_PINSRW, ins->dreg, ins->sreg2, ins->inst_c0 * 2); x86_shift_reg_imm (code, X86_SHR, ins->sreg2, 16); x86_sse_alu_pd_reg_reg_imm (code, X86_SSE_PINSRW, ins->dreg, ins->sreg2, ins->inst_c0 * 2 + 1); break; case OP_INSERTX_R4_SLOW: x86_fst_membase (code, ins->backend.spill_var->inst_basereg, ins->backend.spill_var->inst_offset, FALSE, TRUE); /*TODO if inst_c0 == 0 use movss*/ x86_sse_alu_pd_reg_membase_imm (code, X86_SSE_PINSRW, ins->dreg, ins->backend.spill_var->inst_basereg, ins->backend.spill_var->inst_offset + 0, ins->inst_c0 * 2); x86_sse_alu_pd_reg_membase_imm (code, X86_SSE_PINSRW, ins->dreg, ins->backend.spill_var->inst_basereg, ins->backend.spill_var->inst_offset + 2, ins->inst_c0 * 2 + 1); break; case OP_INSERTX_R8_SLOW: x86_fst_membase (code, ins->backend.spill_var->inst_basereg, ins->backend.spill_var->inst_offset, TRUE, TRUE); if (cfg->verbose_level) printf ("CONVERTING a OP_INSERTX_R8_SLOW %d offset %x\n", ins->inst_c0, offset); if (ins->inst_c0) x86_sse_alu_pd_reg_membase (code, X86_SSE_MOVHPD_REG_MEMBASE, ins->dreg, ins->backend.spill_var->inst_basereg, ins->backend.spill_var->inst_offset); else x86_movsd_reg_membase (code, ins->dreg, ins->backend.spill_var->inst_basereg, ins->backend.spill_var->inst_offset); break; case OP_STOREX_MEMBASE_REG: case OP_STOREX_MEMBASE: x86_movups_membase_reg (code, ins->dreg, ins->inst_offset, ins->sreg1); break; case OP_LOADX_MEMBASE: x86_movups_reg_membase (code, ins->dreg, ins->sreg1, ins->inst_offset); break; case OP_LOADX_ALIGNED_MEMBASE: x86_movaps_reg_membase (code, ins->dreg, ins->sreg1, ins->inst_offset); break; case OP_STOREX_ALIGNED_MEMBASE_REG: x86_movaps_membase_reg (code, ins->dreg, ins->inst_offset, ins->sreg1); break; case OP_STOREX_NTA_MEMBASE_REG: x86_sse_alu_reg_membase (code, X86_SSE_MOVNTPS, ins->dreg, ins->sreg1, ins->inst_offset); break; case OP_PREFETCH_MEMBASE: x86_sse_alu_reg_membase (code, X86_SSE_PREFETCH, ins->backend.arg_info, ins->sreg1, ins->inst_offset); break; case OP_XMOVE: /*FIXME the peephole pass should have killed this*/ if (ins->dreg != ins->sreg1) x86_movaps_reg_reg (code, ins->dreg, ins->sreg1); break; case OP_XZERO: x86_sse_alu_pd_reg_reg (code, X86_SSE_PXOR, ins->dreg, ins->dreg); break; case OP_XONES: x86_sse_alu_pd_reg_reg (code, X86_SSE_PCMPEQB, ins->dreg, ins->dreg); break; case OP_FCONV_TO_R8_X: x86_fst_membase (code, ins->backend.spill_var->inst_basereg, ins->backend.spill_var->inst_offset, TRUE, TRUE); x86_movsd_reg_membase (code, ins->dreg, ins->backend.spill_var->inst_basereg, ins->backend.spill_var->inst_offset); break; case OP_XCONV_R8_TO_I4: x86_cvttsd2si (code, ins->dreg, ins->sreg1); switch (ins->backend.source_opcode) { case OP_FCONV_TO_I1: x86_widen_reg (code, ins->dreg, ins->dreg, TRUE, FALSE); break; case OP_FCONV_TO_U1: x86_widen_reg (code, ins->dreg, ins->dreg, FALSE, FALSE); break; case OP_FCONV_TO_I2: x86_widen_reg (code, ins->dreg, ins->dreg, TRUE, TRUE); break; case OP_FCONV_TO_U2: x86_widen_reg (code, ins->dreg, ins->dreg, FALSE, TRUE); break; } break; case OP_EXPAND_I2: x86_sse_alu_pd_reg_reg_imm (code, X86_SSE_PINSRW, ins->dreg, ins->sreg1, 0); x86_sse_alu_pd_reg_reg_imm (code, X86_SSE_PINSRW, ins->dreg, ins->sreg1, 1); x86_sse_shift_reg_imm (code, X86_SSE_PSHUFD, ins->dreg, ins->dreg, 0); break; case OP_EXPAND_I4: x86_movd_xreg_reg (code, ins->dreg, ins->sreg1); x86_sse_shift_reg_imm (code, X86_SSE_PSHUFD, ins->dreg, ins->dreg, 0); break; case OP_EXPAND_R4: x86_fst_membase (code, ins->backend.spill_var->inst_basereg, ins->backend.spill_var->inst_offset, FALSE, TRUE); x86_movd_xreg_membase (code, ins->dreg, ins->backend.spill_var->inst_basereg, ins->backend.spill_var->inst_offset); x86_sse_shift_reg_imm (code, X86_SSE_PSHUFD, ins->dreg, ins->dreg, 0); break; case OP_EXPAND_R8: x86_fst_membase (code, ins->backend.spill_var->inst_basereg, ins->backend.spill_var->inst_offset, TRUE, TRUE); x86_movsd_reg_membase (code, ins->dreg, ins->backend.spill_var->inst_basereg, ins->backend.spill_var->inst_offset); x86_sse_shift_reg_imm (code, X86_SSE_PSHUFD, ins->dreg, ins->dreg, 0x44); break; case OP_CVTDQ2PD: x86_sse_alu_ss_reg_reg (code, X86_SSE_CVTDQ2PD, ins->dreg, ins->sreg1); break; case OP_CVTDQ2PS: x86_sse_alu_ps_reg_reg (code, X86_SSE_CVTDQ2PS, ins->dreg, ins->sreg1); break; case OP_CVTPD2DQ: x86_sse_alu_sd_reg_reg (code, X86_SSE_CVTPD2DQ, ins->dreg, ins->sreg1); break; case OP_CVTPD2PS: x86_sse_alu_pd_reg_reg (code, X86_SSE_CVTPD2PS, ins->dreg, ins->sreg1); break; case OP_CVTPS2DQ: x86_sse_alu_pd_reg_reg (code, X86_SSE_CVTPS2DQ, ins->dreg, ins->sreg1); break; case OP_CVTPS2PD: x86_sse_alu_ps_reg_reg (code, X86_SSE_CVTPS2PD, ins->dreg, ins->sreg1); break; case OP_CVTTPD2DQ: x86_sse_alu_pd_reg_reg (code, X86_SSE_CVTTPD2DQ, ins->dreg, ins->sreg1); break; case OP_CVTTPS2DQ: x86_sse_alu_ss_reg_reg (code, X86_SSE_CVTTPS2DQ, ins->dreg, ins->sreg1); break; #endif case OP_LIVERANGE_START: { if (cfg->verbose_level > 1) printf ("R%d START=0x%x\n", MONO_VARINFO (cfg, ins->inst_c0)->vreg, (int)(code - cfg->native_code)); MONO_VARINFO (cfg, ins->inst_c0)->live_range_start = code - cfg->native_code; break; } case OP_LIVERANGE_END: { if (cfg->verbose_level > 1) printf ("R%d END=0x%x\n", MONO_VARINFO (cfg, ins->inst_c0)->vreg, (int)(code - cfg->native_code)); MONO_VARINFO (cfg, ins->inst_c0)->live_range_end = code - cfg->native_code; break; } case OP_GC_SAFE_POINT: { guint8 *br [1]; g_assert (mono_threads_is_coop_enabled ()); x86_test_membase_imm (code, ins->sreg1, 0, 1); br[0] = code; x86_branch8 (code, X86_CC_EQ, 0, FALSE); code = emit_call (cfg, code, MONO_PATCH_INFO_INTERNAL_METHOD, "mono_threads_state_poll"); x86_patch (br [0], code); break; } case OP_GC_LIVENESS_DEF: case OP_GC_LIVENESS_USE: case OP_GC_PARAM_SLOT_LIVENESS_DEF: ins->backend.pc_offset = code - cfg->native_code; break; case OP_GC_SPILL_SLOT_LIVENESS_DEF: ins->backend.pc_offset = code - cfg->native_code; bb->spill_slot_defs = g_slist_prepend_mempool (cfg->mempool, bb->spill_slot_defs, ins); break; case OP_GET_SP: x86_mov_reg_reg (code, ins->dreg, X86_ESP, sizeof (mgreg_t)); break; case OP_SET_SP: x86_mov_reg_reg (code, X86_ESP, ins->sreg1, sizeof (mgreg_t)); break; case OP_FILL_PROF_CALL_CTX: x86_mov_membase_reg (code, ins->sreg1, MONO_STRUCT_OFFSET (MonoContext, esp), X86_ESP, sizeof (mgreg_t)); x86_mov_membase_reg (code, ins->sreg1, MONO_STRUCT_OFFSET (MonoContext, ebp), X86_EBP, sizeof (mgreg_t)); x86_mov_membase_reg (code, ins->sreg1, MONO_STRUCT_OFFSET (MonoContext, ebx), X86_EBX, sizeof (mgreg_t)); x86_mov_membase_reg (code, ins->sreg1, MONO_STRUCT_OFFSET (MonoContext, esi), X86_ESI, sizeof (mgreg_t)); x86_mov_membase_reg (code, ins->sreg1, MONO_STRUCT_OFFSET (MonoContext, edi), X86_EDI, sizeof (mgreg_t)); break; default: g_warning ("unknown opcode %s\n", mono_inst_name (ins->opcode)); g_assert_not_reached (); } if (G_UNLIKELY ((code - cfg->native_code - offset) > max_len)) { g_warning ("wrong maximal instruction length of instruction %s (expected %d, got %d)", mono_inst_name (ins->opcode), max_len, code - cfg->native_code - offset); g_assert_not_reached (); } cpos += max_len; } cfg->code_len = code - cfg->native_code; } #endif /* DISABLE_JIT */ void mono_arch_register_lowlevel_calls (void) { } void mono_arch_patch_code_new (MonoCompile *cfg, MonoDomain *domain, guint8 *code, MonoJumpInfo *ji, gpointer target) { unsigned char *ip = ji->ip.i + code; switch (ji->type) { case MONO_PATCH_INFO_IP: *((gconstpointer *)(ip)) = target; break; case MONO_PATCH_INFO_ABS: case MONO_PATCH_INFO_METHOD: case MONO_PATCH_INFO_METHOD_JUMP: case MONO_PATCH_INFO_INTERNAL_METHOD: case MONO_PATCH_INFO_BB: case MONO_PATCH_INFO_LABEL: case MONO_PATCH_INFO_RGCTX_FETCH: case MONO_PATCH_INFO_JIT_ICALL_ADDR: x86_patch (ip, (unsigned char*)target); break; case MONO_PATCH_INFO_NONE: break; case MONO_PATCH_INFO_R4: case MONO_PATCH_INFO_R8: { guint32 offset = mono_arch_get_patch_offset (ip); *((gconstpointer *)(ip + offset)) = target; break; } default: { guint32 offset = mono_arch_get_patch_offset (ip); *((gconstpointer *)(ip + offset)) = target; break; } } } static G_GNUC_UNUSED void stack_unaligned (MonoMethod *m, gpointer caller) { printf ("%s\n", mono_method_full_name (m, TRUE)); g_assert_not_reached (); } guint8 * mono_arch_emit_prolog (MonoCompile *cfg) { MonoMethod *method = cfg->method; MonoBasicBlock *bb; MonoMethodSignature *sig; MonoInst *inst; CallInfo *cinfo; ArgInfo *ainfo; int alloc_size, pos, max_offset, i, cfa_offset; guint8 *code; gboolean need_stack_frame; cfg->code_size = MAX (cfg->header->code_size * 4, 10240); code = cfg->native_code = g_malloc (cfg->code_size); #if 0 { guint8 *br [16]; /* Check that the stack is aligned on osx */ x86_mov_reg_reg (code, X86_EAX, X86_ESP, sizeof (mgreg_t)); x86_alu_reg_imm (code, X86_AND, X86_EAX, 15); x86_alu_reg_imm (code, X86_CMP, X86_EAX, 0xc); br [0] = code; x86_branch_disp (code, X86_CC_Z, 0, FALSE); x86_push_membase (code, X86_ESP, 0); x86_push_imm (code, cfg->method); x86_mov_reg_imm (code, X86_EAX, stack_unaligned); x86_call_reg (code, X86_EAX); x86_patch (br [0], code); } #endif /* Offset between RSP and the CFA */ cfa_offset = 0; // CFA = sp + 4 cfa_offset = sizeof (gpointer); mono_emit_unwind_op_def_cfa (cfg, code, X86_ESP, sizeof (gpointer)); // IP saved at CFA - 4 /* There is no IP reg on x86 */ mono_emit_unwind_op_offset (cfg, code, X86_NREG, -cfa_offset); mini_gc_set_slot_type_from_cfa (cfg, -cfa_offset, SLOT_NOREF); need_stack_frame = needs_stack_frame (cfg); if (need_stack_frame) { x86_push_reg (code, X86_EBP); cfa_offset += sizeof (gpointer); mono_emit_unwind_op_def_cfa_offset (cfg, code, cfa_offset); mono_emit_unwind_op_offset (cfg, code, X86_EBP, - cfa_offset); x86_mov_reg_reg (code, X86_EBP, X86_ESP, 4); mono_emit_unwind_op_def_cfa_reg (cfg, code, X86_EBP); /* These are handled automatically by the stack marking code */ mini_gc_set_slot_type_from_cfa (cfg, -cfa_offset, SLOT_NOREF); } else { cfg->frame_reg = X86_ESP; } cfg->stack_offset += cfg->param_area; cfg->stack_offset = ALIGN_TO (cfg->stack_offset, MONO_ARCH_FRAME_ALIGNMENT); alloc_size = cfg->stack_offset; pos = 0; if (!method->save_lmf) { if (cfg->used_int_regs & (1 << X86_EBX)) { x86_push_reg (code, X86_EBX); pos += 4; cfa_offset += sizeof (gpointer); mono_emit_unwind_op_offset (cfg, code, X86_EBX, - cfa_offset); /* These are handled automatically by the stack marking code */ mini_gc_set_slot_type_from_cfa (cfg, - cfa_offset, SLOT_NOREF); } if (cfg->used_int_regs & (1 << X86_EDI)) { x86_push_reg (code, X86_EDI); pos += 4; cfa_offset += sizeof (gpointer); mono_emit_unwind_op_offset (cfg, code, X86_EDI, - cfa_offset); mini_gc_set_slot_type_from_cfa (cfg, - cfa_offset, SLOT_NOREF); } if (cfg->used_int_regs & (1 << X86_ESI)) { x86_push_reg (code, X86_ESI); pos += 4; cfa_offset += sizeof (gpointer); mono_emit_unwind_op_offset (cfg, code, X86_ESI, - cfa_offset); mini_gc_set_slot_type_from_cfa (cfg, - cfa_offset, SLOT_NOREF); } } alloc_size -= pos; /* the original alloc_size is already aligned: there is %ebp and retip pushed, so realign */ if (mono_do_x86_stack_align && need_stack_frame) { int tot = alloc_size + pos + 4; /* ret ip */ if (need_stack_frame) tot += 4; /* ebp */ tot &= MONO_ARCH_FRAME_ALIGNMENT - 1; if (tot) { alloc_size += MONO_ARCH_FRAME_ALIGNMENT - tot; for (i = 0; i < MONO_ARCH_FRAME_ALIGNMENT - tot; i += sizeof (mgreg_t)) mini_gc_set_slot_type_from_fp (cfg, - (alloc_size + pos - i), SLOT_NOREF); } } cfg->arch.sp_fp_offset = alloc_size + pos; if (alloc_size) { /* See mono_emit_stack_alloc */ #if defined(TARGET_WIN32) || defined(MONO_ARCH_SIGSEGV_ON_ALTSTACK) guint32 remaining_size = alloc_size; /*FIXME handle unbounded code expansion, we should use a loop in case of more than X interactions*/ guint32 required_code_size = ((remaining_size / 0x1000) + 1) * 8; /*8 is the max size of x86_alu_reg_imm + x86_test_membase_reg*/ guint32 offset = code - cfg->native_code; if (G_UNLIKELY (required_code_size >= (cfg->code_size - offset))) { while (required_code_size >= (cfg->code_size - offset)) cfg->code_size *= 2; cfg->native_code = mono_realloc_native_code(cfg); code = cfg->native_code + offset; cfg->stat_code_reallocs++; } while (remaining_size >= 0x1000) { x86_alu_reg_imm (code, X86_SUB, X86_ESP, 0x1000); x86_test_membase_reg (code, X86_ESP, 0, X86_ESP); remaining_size -= 0x1000; } if (remaining_size) x86_alu_reg_imm (code, X86_SUB, X86_ESP, remaining_size); #else x86_alu_reg_imm (code, X86_SUB, X86_ESP, alloc_size); #endif g_assert (need_stack_frame); } if (cfg->method->wrapper_type == MONO_WRAPPER_NATIVE_TO_MANAGED || cfg->method->wrapper_type == MONO_WRAPPER_RUNTIME_INVOKE) { x86_alu_reg_imm (code, X86_AND, X86_ESP, -MONO_ARCH_FRAME_ALIGNMENT); } #if DEBUG_STACK_ALIGNMENT /* check the stack is aligned */ if (need_stack_frame && method->wrapper_type == MONO_WRAPPER_NONE) { x86_mov_reg_reg (code, X86_ECX, X86_ESP, 4); x86_alu_reg_imm (code, X86_AND, X86_ECX, MONO_ARCH_FRAME_ALIGNMENT - 1); x86_alu_reg_imm (code, X86_CMP, X86_ECX, 0); x86_branch_disp (code, X86_CC_EQ, 3, FALSE); x86_breakpoint (code); } #endif /* compute max_offset in order to use short forward jumps */ max_offset = 0; if (cfg->opt & MONO_OPT_BRANCH) { for (bb = cfg->bb_entry; bb; bb = bb->next_bb) { MonoInst *ins; bb->max_offset = max_offset; /* max alignment for loops */ if ((cfg->opt & MONO_OPT_LOOP) && bb_is_loop_start (bb)) max_offset += LOOP_ALIGNMENT; MONO_BB_FOR_EACH_INS (bb, ins) { if (ins->opcode == OP_LABEL) ins->inst_c1 = max_offset; max_offset += ((guint8 *)ins_get_spec (ins->opcode))[MONO_INST_LEN]; } } } /* store runtime generic context */ if (cfg->rgctx_var) { g_assert (cfg->rgctx_var->opcode == OP_REGOFFSET && cfg->rgctx_var->inst_basereg == X86_EBP); x86_mov_membase_reg (code, X86_EBP, cfg->rgctx_var->inst_offset, MONO_ARCH_RGCTX_REG, 4); } if (method->save_lmf) code = emit_setup_lmf (cfg, code, cfg->lmf_var->inst_offset, cfa_offset); if (mono_jit_trace_calls != NULL && mono_trace_eval (method)) code = mono_arch_instrument_prolog (cfg, mono_trace_enter_method, code, TRUE); { MonoInst *ins; if (cfg->arch.ss_tramp_var) { /* Initialize ss_tramp_var */ ins = cfg->arch.ss_tramp_var; g_assert (ins->opcode == OP_REGOFFSET); g_assert (!cfg->compile_aot); x86_mov_membase_imm (code, ins->inst_basereg, ins->inst_offset, (guint32)&ss_trampoline, 4); } if (cfg->arch.bp_tramp_var) { /* Initialize bp_tramp_var */ ins = cfg->arch.bp_tramp_var; g_assert (ins->opcode == OP_REGOFFSET); g_assert (!cfg->compile_aot); x86_mov_membase_imm (code, ins->inst_basereg, ins->inst_offset, (guint32)&bp_trampoline, 4); } } /* load arguments allocated to register from the stack */ sig = mono_method_signature (method); pos = 0; cinfo = (CallInfo *)cfg->arch.cinfo; for (i = 0; i < sig->param_count + sig->hasthis; ++i) { inst = cfg->args [pos]; ainfo = &cinfo->args [pos]; if (inst->opcode == OP_REGVAR) { g_assert (need_stack_frame); x86_mov_reg_membase (code, inst->dreg, X86_EBP, ainfo->offset + ARGS_OFFSET, 4); if (cfg->verbose_level > 2) g_print ("Argument %d assigned to register %s\n", pos, mono_arch_regname (inst->dreg)); } pos++; } cfg->code_len = code - cfg->native_code; g_assert (cfg->code_len < cfg->code_size); return code; } void mono_arch_emit_epilog (MonoCompile *cfg) { MonoMethod *method = cfg->method; MonoMethodSignature *sig = mono_method_signature (method); int i, quad, pos; guint32 stack_to_pop; guint8 *code; int max_epilog_size = 16; CallInfo *cinfo; gboolean need_stack_frame = needs_stack_frame (cfg); if (cfg->method->save_lmf) max_epilog_size += 128; while (cfg->code_len + max_epilog_size > (cfg->code_size - 16)) { cfg->code_size *= 2; cfg->native_code = mono_realloc_native_code(cfg); cfg->stat_code_reallocs++; } code = cfg->native_code + cfg->code_len; if (mono_jit_trace_calls != NULL && mono_trace_eval (method)) code = mono_arch_instrument_epilog (cfg, mono_trace_leave_method, code, TRUE); /* the code restoring the registers must be kept in sync with OP_TAILCALL */ pos = 0; if (method->save_lmf) { gint32 lmf_offset = cfg->lmf_var->inst_offset; guint8 *patch; /* check if we need to restore protection of the stack after a stack overflow */ if (!cfg->compile_aot && mono_arch_have_fast_tls () && mono_tls_get_tls_offset (TLS_KEY_JIT_TLS) != -1) { code = mono_x86_emit_tls_get (code, X86_ECX, mono_tls_get_tls_offset (TLS_KEY_JIT_TLS)); /* we load the value in a separate instruction: this mechanism may be * used later as a safer way to do thread interruption */ x86_mov_reg_membase (code, X86_ECX, X86_ECX, MONO_STRUCT_OFFSET (MonoJitTlsData, restore_stack_prot), 4); x86_alu_reg_imm (code, X86_CMP, X86_ECX, 0); patch = code; x86_branch8 (code, X86_CC_Z, 0, FALSE); /* note that the call trampoline will preserve eax/edx */ x86_call_reg (code, X86_ECX); x86_patch (patch, code); } /* restore caller saved regs */ if (cfg->used_int_regs & (1 << X86_EBX)) { x86_mov_reg_membase (code, X86_EBX, cfg->frame_reg, lmf_offset + MONO_STRUCT_OFFSET (MonoLMF, ebx), 4); } if (cfg->used_int_regs & (1 << X86_EDI)) { x86_mov_reg_membase (code, X86_EDI, cfg->frame_reg, lmf_offset + MONO_STRUCT_OFFSET (MonoLMF, edi), 4); } if (cfg->used_int_regs & (1 << X86_ESI)) { x86_mov_reg_membase (code, X86_ESI, cfg->frame_reg, lmf_offset + MONO_STRUCT_OFFSET (MonoLMF, esi), 4); } /* EBP is restored by LEAVE */ } else { for (i = 0; i < X86_NREG; ++i) { if ((cfg->used_int_regs & X86_CALLER_REGS & (1 << i)) && (i != X86_EBP)) { pos -= 4; } } if (pos) { g_assert (need_stack_frame); x86_lea_membase (code, X86_ESP, X86_EBP, pos); } if (pos) { g_assert (need_stack_frame); x86_lea_membase (code, X86_ESP, X86_EBP, pos); } if (cfg->used_int_regs & (1 << X86_ESI)) { x86_pop_reg (code, X86_ESI); } if (cfg->used_int_regs & (1 << X86_EDI)) { x86_pop_reg (code, X86_EDI); } if (cfg->used_int_regs & (1 << X86_EBX)) { x86_pop_reg (code, X86_EBX); } } /* Load returned vtypes into registers if needed */ cinfo = (CallInfo *)cfg->arch.cinfo; if (cinfo->ret.storage == ArgValuetypeInReg) { for (quad = 0; quad < 2; quad ++) { switch (cinfo->ret.pair_storage [quad]) { case ArgInIReg: x86_mov_reg_membase (code, cinfo->ret.pair_regs [quad], cfg->ret->inst_basereg, cfg->ret->inst_offset + (quad * sizeof (gpointer)), 4); break; case ArgOnFloatFpStack: x86_fld_membase (code, cfg->ret->inst_basereg, cfg->ret->inst_offset + (quad * sizeof (gpointer)), FALSE); break; case ArgOnDoubleFpStack: x86_fld_membase (code, cfg->ret->inst_basereg, cfg->ret->inst_offset + (quad * sizeof (gpointer)), TRUE); break; case ArgNone: break; default: g_assert_not_reached (); } } } if (need_stack_frame) x86_leave (code); if (CALLCONV_IS_STDCALL (sig)) { MonoJitArgumentInfo *arg_info = alloca (sizeof (MonoJitArgumentInfo) * (sig->param_count + 1)); stack_to_pop = mono_arch_get_argument_info (sig, sig->param_count, arg_info); } else if (cinfo->callee_stack_pop) stack_to_pop = cinfo->callee_stack_pop; else stack_to_pop = 0; if (stack_to_pop) { g_assert (need_stack_frame); x86_ret_imm (code, stack_to_pop); } else { x86_ret (code); } cfg->code_len = code - cfg->native_code; g_assert (cfg->code_len < cfg->code_size); } void mono_arch_emit_exceptions (MonoCompile *cfg) { MonoJumpInfo *patch_info; int nthrows, i; guint8 *code; MonoClass *exc_classes [16]; guint8 *exc_throw_start [16], *exc_throw_end [16]; guint32 code_size; int exc_count = 0; /* Compute needed space */ for (patch_info = cfg->patch_info; patch_info; patch_info = patch_info->next) { if (patch_info->type == MONO_PATCH_INFO_EXC) exc_count++; } /* * make sure we have enough space for exceptions * 16 is the size of two push_imm instructions and a call */ if (cfg->compile_aot) code_size = exc_count * 32; else code_size = exc_count * 16; while (cfg->code_len + code_size > (cfg->code_size - 16)) { cfg->code_size *= 2; cfg->native_code = mono_realloc_native_code(cfg); cfg->stat_code_reallocs++; } code = cfg->native_code + cfg->code_len; nthrows = 0; for (patch_info = cfg->patch_info; patch_info; patch_info = patch_info->next) { switch (patch_info->type) { case MONO_PATCH_INFO_EXC: { MonoClass *exc_class; guint8 *buf, *buf2; guint32 throw_ip; x86_patch (patch_info->ip.i + cfg->native_code, code); exc_class = mono_class_load_from_name (mono_defaults.corlib, "System", patch_info->data.name); throw_ip = patch_info->ip.i; /* Find a throw sequence for the same exception class */ for (i = 0; i < nthrows; ++i) if (exc_classes [i] == exc_class) break; if (i < nthrows) { x86_push_imm (code, (exc_throw_end [i] - cfg->native_code) - throw_ip); x86_jump_code (code, exc_throw_start [i]); patch_info->type = MONO_PATCH_INFO_NONE; } else { guint32 size; /* Compute size of code following the push */ size = 5 + 5; /*This is aligned to 16 bytes by the callee. This way we save a few bytes here.*/ if ((code - cfg->native_code) - throw_ip < 126 - size) { /* Use the shorter form */ buf = buf2 = code; x86_push_imm (code, 0); } else { buf = code; x86_push_imm (code, 0xf0f0f0f0); buf2 = code; } if (nthrows < 16) { exc_classes [nthrows] = exc_class; exc_throw_start [nthrows] = code; } x86_push_imm (code, exc_class->type_token - MONO_TOKEN_TYPE_DEF); patch_info->data.name = "mono_arch_throw_corlib_exception"; patch_info->type = MONO_PATCH_INFO_INTERNAL_METHOD; patch_info->ip.i = code - cfg->native_code; x86_call_code (code, 0); x86_push_imm (buf, (code - cfg->native_code) - throw_ip); while (buf < buf2) x86_nop (buf); if (nthrows < 16) { exc_throw_end [nthrows] = code; nthrows ++; } } break; } default: /* do nothing */ break; } } cfg->code_len = code - cfg->native_code; g_assert (cfg->code_len < cfg->code_size); } void mono_arch_flush_icache (guint8 *code, gint size) { /* not needed */ } void mono_arch_flush_register_windows (void) { } gboolean mono_arch_is_inst_imm (gint64 imm) { return TRUE; } void mono_arch_finish_init (void) { char *mono_no_tls = g_getenv ("MONO_NO_TLS"); if (!mono_no_tls) { #ifndef TARGET_WIN32 #if MONO_XEN_OPT optimize_for_xen = access ("/proc/xen", F_OK) == 0; #endif #endif } else { g_free (mono_no_tls); } } void mono_arch_free_jit_tls_data (MonoJitTlsData *tls) { } // Linear handler, the bsearch head compare is shorter //[2 + 4] x86_alu_reg_imm (code, X86_CMP, ins->sreg1, ins->inst_imm); //[1 + 1] x86_branch8(inst,cond,imm,is_signed) // x86_patch(ins,target) //[1 + 5] x86_jump_mem(inst,mem) #define CMP_SIZE 6 #define BR_SMALL_SIZE 2 #define BR_LARGE_SIZE 5 #define JUMP_IMM_SIZE 6 #define ENABLE_WRONG_METHOD_CHECK 0 #define DEBUG_IMT 0 static int imt_branch_distance (MonoIMTCheckItem **imt_entries, int start, int target) { int i, distance = 0; for (i = start; i < target; ++i) distance += imt_entries [i]->chunk_size; return distance; } /* * LOCKING: called with the domain lock held */ gpointer mono_arch_build_imt_trampoline (MonoVTable *vtable, MonoDomain *domain, MonoIMTCheckItem **imt_entries, int count, gpointer fail_tramp) { int i; int size = 0; guint8 *code, *start; GSList *unwind_ops; for (i = 0; i < count; ++i) { MonoIMTCheckItem *item = imt_entries [i]; if (item->is_equals) { if (item->check_target_idx) { if (!item->compare_done) item->chunk_size += CMP_SIZE; item->chunk_size += BR_SMALL_SIZE + JUMP_IMM_SIZE; } else { if (fail_tramp) { item->chunk_size += CMP_SIZE + BR_SMALL_SIZE + JUMP_IMM_SIZE * 2; } else { item->chunk_size += JUMP_IMM_SIZE; #if ENABLE_WRONG_METHOD_CHECK item->chunk_size += CMP_SIZE + BR_SMALL_SIZE + 1; #endif } } } else { item->chunk_size += CMP_SIZE + BR_LARGE_SIZE; imt_entries [item->check_target_idx]->compare_done = TRUE; } size += item->chunk_size; } if (fail_tramp) code = mono_method_alloc_generic_virtual_trampoline (domain, size); else code = mono_domain_code_reserve (domain, size); start = code; unwind_ops = mono_arch_get_cie_program (); for (i = 0; i < count; ++i) { MonoIMTCheckItem *item = imt_entries [i]; item->code_target = code; if (item->is_equals) { if (item->check_target_idx) { if (!item->compare_done) x86_alu_reg_imm (code, X86_CMP, MONO_ARCH_IMT_REG, (guint32)item->key); item->jmp_code = code; x86_branch8 (code, X86_CC_NE, 0, FALSE); if (item->has_target_code) x86_jump_code (code, item->value.target_code); else x86_jump_mem (code, & (vtable->vtable [item->value.vtable_slot])); } else { if (fail_tramp) { x86_alu_reg_imm (code, X86_CMP, MONO_ARCH_IMT_REG, (guint32)item->key); item->jmp_code = code; x86_branch8 (code, X86_CC_NE, 0, FALSE); if (item->has_target_code) x86_jump_code (code, item->value.target_code); else x86_jump_mem (code, & (vtable->vtable [item->value.vtable_slot])); x86_patch (item->jmp_code, code); x86_jump_code (code, fail_tramp); item->jmp_code = NULL; } else { /* enable the commented code to assert on wrong method */ #if ENABLE_WRONG_METHOD_CHECK x86_alu_reg_imm (code, X86_CMP, MONO_ARCH_IMT_REG, (guint32)item->key); item->jmp_code = code; x86_branch8 (code, X86_CC_NE, 0, FALSE); #endif if (item->has_target_code) x86_jump_code (code, item->value.target_code); else x86_jump_mem (code, & (vtable->vtable [item->value.vtable_slot])); #if ENABLE_WRONG_METHOD_CHECK x86_patch (item->jmp_code, code); x86_breakpoint (code); item->jmp_code = NULL; #endif } } } else { x86_alu_reg_imm (code, X86_CMP, MONO_ARCH_IMT_REG, (guint32)item->key); item->jmp_code = code; if (x86_is_imm8 (imt_branch_distance (imt_entries, i, item->check_target_idx))) x86_branch8 (code, X86_CC_GE, 0, FALSE); else x86_branch32 (code, X86_CC_GE, 0, FALSE); } } /* patch the branches to get to the target items */ for (i = 0; i < count; ++i) { MonoIMTCheckItem *item = imt_entries [i]; if (item->jmp_code) { if (item->check_target_idx) { x86_patch (item->jmp_code, imt_entries [item->check_target_idx]->code_target); } } } if (!fail_tramp) UnlockedAdd (&mono_stats.imt_trampolines_size, code - start); g_assert (code - start <= size); #if DEBUG_IMT { char *buff = g_strdup_printf ("thunk_for_class_%s_%s_entries_%d", vtable->klass->name_space, vtable->klass->name, count); mono_disassemble_code (NULL, (guint8*)start, code - start, buff); g_free (buff); } #endif if (mono_jit_map_is_enabled ()) { char *buff; if (vtable) buff = g_strdup_printf ("imt_%s_%s_entries_%d", vtable->klass->name_space, vtable->klass->name, count); else buff = g_strdup_printf ("imt_trampoline_entries_%d", count); mono_emit_jit_tramp (start, code - start, buff); g_free (buff); } MONO_PROFILER_RAISE (jit_code_buffer, (start, code - start, MONO_PROFILER_CODE_BUFFER_IMT_TRAMPOLINE, NULL)); mono_tramp_info_register (mono_tramp_info_create (NULL, start, code - start, NULL, unwind_ops), domain); return start; } MonoMethod* mono_arch_find_imt_method (mgreg_t *regs, guint8 *code) { return (MonoMethod*) regs [MONO_ARCH_IMT_REG]; } MonoVTable* mono_arch_find_static_call_vtable (mgreg_t *regs, guint8 *code) { return (MonoVTable*) regs [MONO_ARCH_RGCTX_REG]; } GSList* mono_arch_get_cie_program (void) { GSList *l = NULL; mono_add_unwind_op_def_cfa (l, (guint8*)NULL, (guint8*)NULL, X86_ESP, 4); mono_add_unwind_op_offset (l, (guint8*)NULL, (guint8*)NULL, X86_NREG, -4); return l; } MonoInst* mono_arch_emit_inst_for_method (MonoCompile *cfg, MonoMethod *cmethod, MonoMethodSignature *fsig, MonoInst **args) { MonoInst *ins = NULL; int opcode = 0; if (cmethod->klass == mono_defaults.math_class) { if (strcmp (cmethod->name, "Sin") == 0) { opcode = OP_SIN; } else if (strcmp (cmethod->name, "Cos") == 0) { opcode = OP_COS; } else if (strcmp (cmethod->name, "Tan") == 0) { opcode = OP_TAN; } else if (strcmp (cmethod->name, "Atan") == 0) { opcode = OP_ATAN; } else if (strcmp (cmethod->name, "Sqrt") == 0) { opcode = OP_SQRT; } else if (strcmp (cmethod->name, "Abs") == 0 && fsig->params [0]->type == MONO_TYPE_R8) { opcode = OP_ABS; } else if (strcmp (cmethod->name, "Round") == 0 && fsig->param_count == 1 && fsig->params [0]->type == MONO_TYPE_R8) { opcode = OP_ROUND; } if (opcode && fsig->param_count == 1) { MONO_INST_NEW (cfg, ins, opcode); ins->type = STACK_R8; ins->dreg = mono_alloc_freg (cfg); ins->sreg1 = args [0]->dreg; MONO_ADD_INS (cfg->cbb, ins); } if (cfg->opt & MONO_OPT_CMOV) { opcode = 0; if (strcmp (cmethod->name, "Min") == 0) { if (fsig->params [0]->type == MONO_TYPE_I4) opcode = OP_IMIN; } else if (strcmp (cmethod->name, "Max") == 0) { if (fsig->params [0]->type == MONO_TYPE_I4) opcode = OP_IMAX; } if (opcode && fsig->param_count == 2) { MONO_INST_NEW (cfg, ins, opcode); ins->type = STACK_I4; ins->dreg = mono_alloc_ireg (cfg); ins->sreg1 = args [0]->dreg; ins->sreg2 = args [1]->dreg; MONO_ADD_INS (cfg->cbb, ins); } } #if 0 /* OP_FREM is not IEEE compatible */ else if (strcmp (cmethod->name, "IEEERemainder") == 0 && fsig->param_count == 2) { MONO_INST_NEW (cfg, ins, OP_FREM); ins->inst_i0 = args [0]; ins->inst_i1 = args [1]; } #endif } return ins; } guint32 mono_arch_get_patch_offset (guint8 *code) { if ((code [0] == 0x8b) && (x86_modrm_mod (code [1]) == 0x2)) return 2; else if (code [0] == 0xba) return 1; else if (code [0] == 0x68) /* push IMM */ return 1; else if ((code [0] == 0xff) && (x86_modrm_reg (code [1]) == 0x6)) /* push () */ return 2; else if ((code [0] == 0xff) && (x86_modrm_reg (code [1]) == 0x2)) /* call *() */ return 2; else if ((code [0] == 0xdd) || (code [0] == 0xd9)) /* fldl */ return 2; else if ((code [0] == 0x58) && (code [1] == 0x05)) /* pop %eax; add , %eax */ return 2; else if ((code [0] >= 0x58) && (code [0] <= 0x58 + X86_NREG) && (code [1] == 0x81)) /* pop ; add , */ return 3; else if ((code [0] >= 0xb8) && (code [0] < 0xb8 + 8)) /* mov , imm */ return 1; else { g_assert_not_reached (); return -1; } } /** * \return TRUE if no sw breakpoint was present. * * Copy \p size bytes from \p code - \p offset to the buffer \p buf. If the debugger inserted software * breakpoints in the original code, they are removed in the copy. */ gboolean mono_breakpoint_clean_code (guint8 *method_start, guint8 *code, int offset, guint8 *buf, int size) { /* * If method_start is non-NULL we need to perform bound checks, since we access memory * at code - offset we could go before the start of the method and end up in a different * page of memory that is not mapped or read incorrect data anyway. We zero-fill the bytes * instead. */ if (!method_start || code - offset >= method_start) { memcpy (buf, code - offset, size); } else { int diff = code - method_start; memset (buf, 0, size); memcpy (buf + offset - diff, method_start, diff + size - offset); } return TRUE; } /* * mono_x86_get_this_arg_offset: * * Return the offset of the stack location where this is passed during a virtual * call. */ guint32 mono_x86_get_this_arg_offset (MonoMethodSignature *sig) { return 0; } gpointer mono_arch_get_this_arg_from_call (mgreg_t *regs, guint8 *code) { guint32 esp = regs [X86_ESP]; gpointer res; int offset; offset = 0; /* * The stack looks like: * * */ res = ((MonoObject**)esp) [0]; return res; } #define MAX_ARCH_DELEGATE_PARAMS 10 static gpointer get_delegate_invoke_impl (MonoTrampInfo **info, gboolean has_target, guint32 param_count) { guint8 *code, *start; int code_reserve = 64; GSList *unwind_ops; unwind_ops = mono_arch_get_cie_program (); /* * The stack contains: * * */ if (has_target) { start = code = mono_global_codeman_reserve (code_reserve); /* Replace the this argument with the target */ x86_mov_reg_membase (code, X86_EAX, X86_ESP, 4, 4); x86_mov_reg_membase (code, X86_ECX, X86_EAX, MONO_STRUCT_OFFSET (MonoDelegate, target), 4); x86_mov_membase_reg (code, X86_ESP, 4, X86_ECX, 4); x86_jump_membase (code, X86_EAX, MONO_STRUCT_OFFSET (MonoDelegate, method_ptr)); g_assert ((code - start) < code_reserve); } else { int i = 0; /* 8 for mov_reg and jump, plus 8 for each parameter */ code_reserve = 8 + (param_count * 8); /* * The stack contains: * * * * * and we need: * * * * without unbalancing the stack. * So move each arg up a spot in the stack (overwriting un-needed 'this' arg) * and leaving original spot of first arg as placeholder in stack so * when callee pops stack everything works. */ start = code = mono_global_codeman_reserve (code_reserve); /* store delegate for access to method_ptr */ x86_mov_reg_membase (code, X86_ECX, X86_ESP, 4, 4); /* move args up */ for (i = 0; i < param_count; ++i) { x86_mov_reg_membase (code, X86_EAX, X86_ESP, (i+2)*4, 4); x86_mov_membase_reg (code, X86_ESP, (i+1)*4, X86_EAX, 4); } x86_jump_membase (code, X86_ECX, MONO_STRUCT_OFFSET (MonoDelegate, method_ptr)); g_assert ((code - start) < code_reserve); } if (has_target) { *info = mono_tramp_info_create ("delegate_invoke_impl_has_target", start, code - start, NULL, unwind_ops); } else { char *name = g_strdup_printf ("delegate_invoke_impl_target_%d", param_count); *info = mono_tramp_info_create (name, start, code - start, NULL, unwind_ops); g_free (name); } if (mono_jit_map_is_enabled ()) { char *buff; if (has_target) buff = (char*)"delegate_invoke_has_target"; else buff = g_strdup_printf ("delegate_invoke_no_target_%d", param_count); mono_emit_jit_tramp (start, code - start, buff); if (!has_target) g_free (buff); } MONO_PROFILER_RAISE (jit_code_buffer, (start, code - start, MONO_PROFILER_CODE_BUFFER_DELEGATE_INVOKE, NULL)); return start; } #define MAX_VIRTUAL_DELEGATE_OFFSET 32 static gpointer get_delegate_virtual_invoke_impl (MonoTrampInfo **info, gboolean load_imt_reg, int offset) { guint8 *code, *start; int size = 24; char *tramp_name; GSList *unwind_ops; if (offset / (int)sizeof (gpointer) > MAX_VIRTUAL_DELEGATE_OFFSET) return NULL; /* * The stack contains: * * */ start = code = mono_global_codeman_reserve (size); unwind_ops = mono_arch_get_cie_program (); /* Replace the this argument with the target */ x86_mov_reg_membase (code, X86_EAX, X86_ESP, 4, 4); x86_mov_reg_membase (code, X86_ECX, X86_EAX, MONO_STRUCT_OFFSET (MonoDelegate, target), 4); x86_mov_membase_reg (code, X86_ESP, 4, X86_ECX, 4); if (load_imt_reg) { /* Load the IMT reg */ x86_mov_reg_membase (code, MONO_ARCH_IMT_REG, X86_EAX, MONO_STRUCT_OFFSET (MonoDelegate, method), 4); } /* Load the vtable */ x86_mov_reg_membase (code, X86_EAX, X86_ECX, MONO_STRUCT_OFFSET (MonoObject, vtable), 4); x86_jump_membase (code, X86_EAX, offset); MONO_PROFILER_RAISE (jit_code_buffer, (start, code - start, MONO_PROFILER_CODE_BUFFER_DELEGATE_INVOKE, NULL)); tramp_name = mono_get_delegate_virtual_invoke_impl_name (load_imt_reg, offset); *info = mono_tramp_info_create (tramp_name, start, code - start, NULL, unwind_ops); g_free (tramp_name); return start; } GSList* mono_arch_get_delegate_invoke_impls (void) { GSList *res = NULL; MonoTrampInfo *info; int i; get_delegate_invoke_impl (&info, TRUE, 0); res = g_slist_prepend (res, info); for (i = 0; i <= MAX_ARCH_DELEGATE_PARAMS; ++i) { get_delegate_invoke_impl (&info, FALSE, i); res = g_slist_prepend (res, info); } for (i = 0; i <= MAX_VIRTUAL_DELEGATE_OFFSET; ++i) { get_delegate_virtual_invoke_impl (&info, TRUE, - i * SIZEOF_VOID_P); res = g_slist_prepend (res, info); get_delegate_virtual_invoke_impl (&info, FALSE, i * SIZEOF_VOID_P); res = g_slist_prepend (res, info); } return res; } gpointer mono_arch_get_delegate_invoke_impl (MonoMethodSignature *sig, gboolean has_target) { guint8 *code, *start; if (sig->param_count > MAX_ARCH_DELEGATE_PARAMS) return NULL; /* FIXME: Support more cases */ if (MONO_TYPE_ISSTRUCT (sig->ret)) return NULL; /* * The stack contains: * * */ if (has_target) { static guint8* cached = NULL; if (cached) return cached; if (mono_aot_only) { start = mono_aot_get_trampoline ("delegate_invoke_impl_has_target"); } else { MonoTrampInfo *info; start = get_delegate_invoke_impl (&info, TRUE, 0); mono_tramp_info_register (info, NULL); } mono_memory_barrier (); cached = start; } else { static guint8* cache [MAX_ARCH_DELEGATE_PARAMS + 1] = {NULL}; int i = 0; for (i = 0; i < sig->param_count; ++i) if (!mono_is_regsize_var (sig->params [i])) return NULL; code = cache [sig->param_count]; if (code) return code; if (mono_aot_only) { char *name = g_strdup_printf ("delegate_invoke_impl_target_%d", sig->param_count); start = mono_aot_get_trampoline (name); g_free (name); } else { MonoTrampInfo *info; start = get_delegate_invoke_impl (&info, FALSE, sig->param_count); mono_tramp_info_register (info, NULL); } mono_memory_barrier (); cache [sig->param_count] = start; } return start; } gpointer mono_arch_get_delegate_virtual_invoke_impl (MonoMethodSignature *sig, MonoMethod *method, int offset, gboolean load_imt_reg) { MonoTrampInfo *info; gpointer code; code = get_delegate_virtual_invoke_impl (&info, load_imt_reg, offset); if (code) mono_tramp_info_register (info, NULL); return code; } mgreg_t mono_arch_context_get_int_reg (MonoContext *ctx, int reg) { switch (reg) { case X86_EAX: return ctx->eax; case X86_EBX: return ctx->ebx; case X86_ECX: return ctx->ecx; case X86_EDX: return ctx->edx; case X86_ESP: return ctx->esp; case X86_EBP: return ctx->ebp; case X86_ESI: return ctx->esi; case X86_EDI: return ctx->edi; default: g_assert_not_reached (); return 0; } } void mono_arch_context_set_int_reg (MonoContext *ctx, int reg, mgreg_t val) { switch (reg) { case X86_EAX: ctx->eax = val; break; case X86_EBX: ctx->ebx = val; break; case X86_ECX: ctx->ecx = val; break; case X86_EDX: ctx->edx = val; break; case X86_ESP: ctx->esp = val; break; case X86_EBP: ctx->ebp = val; break; case X86_ESI: ctx->esi = val; break; case X86_EDI: ctx->edi = val; break; default: g_assert_not_reached (); } } #ifdef MONO_ARCH_SIMD_INTRINSICS static MonoInst* get_float_to_x_spill_area (MonoCompile *cfg) { if (!cfg->fconv_to_r8_x_var) { cfg->fconv_to_r8_x_var = mono_compile_create_var (cfg, &mono_defaults.double_class->byval_arg, OP_LOCAL); cfg->fconv_to_r8_x_var->flags |= MONO_INST_VOLATILE; /*FIXME, use the don't regalloc flag*/ } return cfg->fconv_to_r8_x_var; } /* * Convert all fconv opts that MONO_OPT_SSE2 would get wrong. */ void mono_arch_decompose_opts (MonoCompile *cfg, MonoInst *ins) { MonoInst *fconv; int dreg, src_opcode; if (!(cfg->opt & MONO_OPT_SSE2) || !(cfg->opt & MONO_OPT_SIMD) || COMPILE_LLVM (cfg)) return; switch (src_opcode = ins->opcode) { case OP_FCONV_TO_I1: case OP_FCONV_TO_U1: case OP_FCONV_TO_I2: case OP_FCONV_TO_U2: case OP_FCONV_TO_I4: case OP_FCONV_TO_I: break; default: return; } /* dreg is the IREG and sreg1 is the FREG */ MONO_INST_NEW (cfg, fconv, OP_FCONV_TO_R8_X); fconv->klass = NULL; /*FIXME, what can I use here as the Mono.Simd lib might not be loaded yet*/ fconv->sreg1 = ins->sreg1; fconv->dreg = mono_alloc_ireg (cfg); fconv->type = STACK_VTYPE; fconv->backend.spill_var = get_float_to_x_spill_area (cfg); mono_bblock_insert_before_ins (cfg->cbb, ins, fconv); dreg = ins->dreg; NULLIFY_INS (ins); ins->opcode = OP_XCONV_R8_TO_I4; ins->klass = mono_defaults.int32_class; ins->sreg1 = fconv->dreg; ins->dreg = dreg; ins->type = STACK_I4; ins->backend.source_opcode = src_opcode; } #endif /* #ifdef MONO_ARCH_SIMD_INTRINSICS */ void mono_arch_decompose_long_opts (MonoCompile *cfg, MonoInst *long_ins) { MonoInst *ins; int vreg; if (long_ins->opcode == OP_LNEG) { ins = long_ins; MONO_EMIT_NEW_UNALU (cfg, OP_INEG, MONO_LVREG_LS (ins->dreg), MONO_LVREG_LS (ins->sreg1)); MONO_EMIT_NEW_BIALU_IMM (cfg, OP_ADC_IMM, MONO_LVREG_MS (ins->dreg), MONO_LVREG_MS (ins->sreg1), 0); MONO_EMIT_NEW_UNALU (cfg, OP_INEG, MONO_LVREG_MS (ins->dreg), MONO_LVREG_MS (ins->dreg)); NULLIFY_INS (ins); return; } #ifdef MONO_ARCH_SIMD_INTRINSICS if (!(cfg->opt & MONO_OPT_SIMD)) return; /*TODO move this to simd-intrinsic.c once we support sse 4.1 dword extractors since we need the runtime caps info */ switch (long_ins->opcode) { case OP_EXTRACT_I8: vreg = long_ins->sreg1; if (long_ins->inst_c0) { MONO_INST_NEW (cfg, ins, OP_PSHUFLED); ins->klass = long_ins->klass; ins->sreg1 = long_ins->sreg1; ins->inst_c0 = 2; ins->type = STACK_VTYPE; ins->dreg = vreg = alloc_ireg (cfg); MONO_ADD_INS (cfg->cbb, ins); } MONO_INST_NEW (cfg, ins, OP_EXTRACT_I4); ins->klass = mono_defaults.int32_class; ins->sreg1 = vreg; ins->type = STACK_I4; ins->dreg = MONO_LVREG_LS (long_ins->dreg); MONO_ADD_INS (cfg->cbb, ins); MONO_INST_NEW (cfg, ins, OP_PSHUFLED); ins->klass = long_ins->klass; ins->sreg1 = long_ins->sreg1; ins->inst_c0 = long_ins->inst_c0 ? 3 : 1; ins->type = STACK_VTYPE; ins->dreg = vreg = alloc_ireg (cfg); MONO_ADD_INS (cfg->cbb, ins); MONO_INST_NEW (cfg, ins, OP_EXTRACT_I4); ins->klass = mono_defaults.int32_class; ins->sreg1 = vreg; ins->type = STACK_I4; ins->dreg = MONO_LVREG_MS (long_ins->dreg); MONO_ADD_INS (cfg->cbb, ins); long_ins->opcode = OP_NOP; break; case OP_INSERTX_I8_SLOW: MONO_INST_NEW (cfg, ins, OP_INSERTX_I4_SLOW); ins->dreg = long_ins->dreg; ins->sreg1 = long_ins->dreg; ins->sreg2 = MONO_LVREG_LS (long_ins->sreg2); ins->inst_c0 = long_ins->inst_c0 * 2; MONO_ADD_INS (cfg->cbb, ins); MONO_INST_NEW (cfg, ins, OP_INSERTX_I4_SLOW); ins->dreg = long_ins->dreg; ins->sreg1 = long_ins->dreg; ins->sreg2 = MONO_LVREG_MS (long_ins->sreg2); ins->inst_c0 = long_ins->inst_c0 * 2 + 1; MONO_ADD_INS (cfg->cbb, ins); long_ins->opcode = OP_NOP; break; case OP_EXPAND_I8: MONO_INST_NEW (cfg, ins, OP_ICONV_TO_X); ins->dreg = long_ins->dreg; ins->sreg1 = MONO_LVREG_LS (long_ins->sreg1); ins->klass = long_ins->klass; ins->type = STACK_VTYPE; MONO_ADD_INS (cfg->cbb, ins); MONO_INST_NEW (cfg, ins, OP_INSERTX_I4_SLOW); ins->dreg = long_ins->dreg; ins->sreg1 = long_ins->dreg; ins->sreg2 = MONO_LVREG_MS (long_ins->sreg1); ins->inst_c0 = 1; ins->klass = long_ins->klass; ins->type = STACK_VTYPE; MONO_ADD_INS (cfg->cbb, ins); MONO_INST_NEW (cfg, ins, OP_PSHUFLED); ins->dreg = long_ins->dreg; ins->sreg1 = long_ins->dreg;; ins->inst_c0 = 0x44; /*Magic number for swizzling (X,Y,X,Y)*/ ins->klass = long_ins->klass; ins->type = STACK_VTYPE; MONO_ADD_INS (cfg->cbb, ins); long_ins->opcode = OP_NOP; break; } #endif /* MONO_ARCH_SIMD_INTRINSICS */ } /* * mono_aot_emit_load_got_addr: * * Emit code to load the got address. * On x86, the result is placed into EBX. */ guint8* mono_arch_emit_load_got_addr (guint8 *start, guint8 *code, MonoCompile *cfg, MonoJumpInfo **ji) { x86_call_imm (code, 0); /* * The patch needs to point to the pop, since the GOT offset needs * to be added to that address. */ if (cfg) mono_add_patch_info (cfg, code - cfg->native_code, MONO_PATCH_INFO_GOT_OFFSET, NULL); else *ji = mono_patch_info_list_prepend (*ji, code - start, MONO_PATCH_INFO_GOT_OFFSET, NULL); x86_pop_reg (code, MONO_ARCH_GOT_REG); x86_alu_reg_imm (code, X86_ADD, MONO_ARCH_GOT_REG, 0xf0f0f0f0); return code; } static guint8* emit_load_aotconst (guint8 *start, guint8 *code, MonoCompile *cfg, MonoJumpInfo **ji, int dreg, int tramp_type, gconstpointer target) { if (cfg) mono_add_patch_info (cfg, code - cfg->native_code, tramp_type, target); else g_assert_not_reached (); x86_mov_reg_membase (code, dreg, MONO_ARCH_GOT_REG, 0xf0f0f0f0, 4); return code; } /* * mono_arch_emit_load_aotconst: * * Emit code to load the contents of the GOT slot identified by TRAMP_TYPE and * TARGET from the mscorlib GOT in full-aot code. * On x86, the GOT address is assumed to be in EBX, and the result is placed into * EAX. */ guint8* mono_arch_emit_load_aotconst (guint8 *start, guint8 *code, MonoJumpInfo **ji, MonoJumpInfoType tramp_type, gconstpointer target) { /* Load the mscorlib got address */ x86_mov_reg_membase (code, X86_EAX, MONO_ARCH_GOT_REG, sizeof (gpointer), 4); *ji = mono_patch_info_list_prepend (*ji, code - start, tramp_type, target); /* arch_emit_got_access () patches this */ x86_mov_reg_membase (code, X86_EAX, X86_EAX, 0xf0f0f0f0, 4); return code; } /* Can't put this into mini-x86.h */ gpointer mono_x86_get_signal_exception_trampoline (MonoTrampInfo **info, gboolean aot); GSList * mono_arch_get_trampolines (gboolean aot) { MonoTrampInfo *info; GSList *tramps = NULL; mono_x86_get_signal_exception_trampoline (&info, aot); tramps = g_slist_append (tramps, info); return tramps; } /* Soft Debug support */ #ifdef MONO_ARCH_SOFT_DEBUG_SUPPORTED /* * mono_arch_set_breakpoint: * * Set a breakpoint at the native code corresponding to JI at NATIVE_OFFSET. * The location should contain code emitted by OP_SEQ_POINT. */ void mono_arch_set_breakpoint (MonoJitInfo *ji, guint8 *ip) { guint8 *code = ip + OP_SEQ_POINT_BP_OFFSET; g_assert (code [0] == 0x90); x86_call_membase (code, X86_ECX, 0); } /* * mono_arch_clear_breakpoint: * * Clear the breakpoint at IP. */ void mono_arch_clear_breakpoint (MonoJitInfo *ji, guint8 *ip) { guint8 *code = ip + OP_SEQ_POINT_BP_OFFSET; int i; for (i = 0; i < 2; ++i) x86_nop (code); } /* * mono_arch_start_single_stepping: * * Start single stepping. */ void mono_arch_start_single_stepping (void) { ss_trampoline = mini_get_single_step_trampoline (); } /* * mono_arch_stop_single_stepping: * * Stop single stepping. */ void mono_arch_stop_single_stepping (void) { ss_trampoline = NULL; } /* * mono_arch_is_single_step_event: * * Return whenever the machine state in SIGCTX corresponds to a single * step event. */ gboolean mono_arch_is_single_step_event (void *info, void *sigctx) { /* We use soft breakpoints */ return FALSE; } gboolean mono_arch_is_breakpoint_event (void *info, void *sigctx) { /* We use soft breakpoints */ return FALSE; } #define BREAKPOINT_SIZE 2 /* * mono_arch_skip_breakpoint: * * See mini-amd64.c for docs. */ void mono_arch_skip_breakpoint (MonoContext *ctx, MonoJitInfo *ji) { g_assert_not_reached (); } /* * mono_arch_skip_single_step: * * See mini-amd64.c for docs. */ void mono_arch_skip_single_step (MonoContext *ctx) { g_assert_not_reached (); } /* * mono_arch_get_seq_point_info: * * See mini-amd64.c for docs. */ gpointer mono_arch_get_seq_point_info (MonoDomain *domain, guint8 *code) { NOT_IMPLEMENTED; return NULL; } void mono_arch_init_lmf_ext (MonoLMFExt *ext, gpointer prev_lmf) { ext->lmf.previous_lmf = (gsize)prev_lmf; /* Mark that this is a MonoLMFExt */ ext->lmf.previous_lmf = (gsize)(gpointer)(((gssize)ext->lmf.previous_lmf) | 2); ext->lmf.ebp = (gssize)ext; } #endif gboolean mono_arch_opcode_supported (int opcode) { switch (opcode) { case OP_ATOMIC_ADD_I4: case OP_ATOMIC_EXCHANGE_I4: case OP_ATOMIC_CAS_I4: case OP_ATOMIC_LOAD_I1: case OP_ATOMIC_LOAD_I2: case OP_ATOMIC_LOAD_I4: case OP_ATOMIC_LOAD_U1: case OP_ATOMIC_LOAD_U2: case OP_ATOMIC_LOAD_U4: case OP_ATOMIC_LOAD_R4: case OP_ATOMIC_LOAD_R8: case OP_ATOMIC_STORE_I1: case OP_ATOMIC_STORE_I2: case OP_ATOMIC_STORE_I4: case OP_ATOMIC_STORE_U1: case OP_ATOMIC_STORE_U2: case OP_ATOMIC_STORE_U4: case OP_ATOMIC_STORE_R4: case OP_ATOMIC_STORE_R8: return TRUE; default: return FALSE; } } CallInfo* mono_arch_get_call_info (MonoMemPool *mp, MonoMethodSignature *sig) { return get_call_info (mp, sig); }