/** * \file * Arch independent code generation functionality * * (C) 2003 Ximian, Inc. */ #include "config.h" #include #include #ifdef HAVE_UNISTD_H #include #endif #include #include #include #include #include #include #include "mini.h" #include "trace.h" #include "mini-arch.h" #ifndef DISABLE_JIT #ifndef MONO_MAX_XREGS #define MONO_MAX_XREGS 0 #define MONO_ARCH_CALLEE_SAVED_XREGS 0 #define MONO_ARCH_CALLEE_XREGS 0 #endif #define MONO_ARCH_BANK_MIRRORED -2 #ifdef MONO_ARCH_USE_SHARED_FP_SIMD_BANK #ifndef MONO_ARCH_NEED_SIMD_BANK #error "MONO_ARCH_USE_SHARED_FP_SIMD_BANK needs MONO_ARCH_NEED_SIMD_BANK to work" #endif #define get_mirrored_bank(bank) (((bank) == MONO_REG_SIMD ) ? MONO_REG_DOUBLE : (((bank) == MONO_REG_DOUBLE ) ? MONO_REG_SIMD : -1)) #define is_hreg_mirrored(rs, bank, hreg) ((rs)->symbolic [(bank)] [(hreg)] == MONO_ARCH_BANK_MIRRORED) #else #define get_mirrored_bank(bank) (-1) #define is_hreg_mirrored(rs, bank, hreg) (0) #endif /* If the bank is mirrored return the true logical bank that the register in the * physical register bank is allocated to. */ static inline int translate_bank (MonoRegState *rs, int bank, int hreg) { return is_hreg_mirrored (rs, bank, hreg) ? get_mirrored_bank (bank) : bank; } /* * Every hardware register belongs to a register type or register bank. bank 0 * contains the int registers, bank 1 contains the fp registers. * int registers are used 99% of the time, so they are special cased in a lot of * places. */ static const int regbank_size [] = { MONO_MAX_IREGS, MONO_MAX_FREGS, MONO_MAX_IREGS, MONO_MAX_IREGS, MONO_MAX_XREGS }; static const int regbank_load_ops [] = { OP_LOADR_MEMBASE, OP_LOADR8_MEMBASE, OP_LOADR_MEMBASE, OP_LOADR_MEMBASE, OP_LOADX_MEMBASE }; static const int regbank_store_ops [] = { OP_STORER_MEMBASE_REG, OP_STORER8_MEMBASE_REG, OP_STORER_MEMBASE_REG, OP_STORER_MEMBASE_REG, OP_STOREX_MEMBASE }; static const int regbank_move_ops [] = { OP_MOVE, OP_FMOVE, OP_MOVE, OP_MOVE, OP_XMOVE }; #define regmask(reg) (((regmask_t)1) << (reg)) #ifdef MONO_ARCH_USE_SHARED_FP_SIMD_BANK static const regmask_t regbank_callee_saved_regs [] = { MONO_ARCH_CALLEE_SAVED_REGS, MONO_ARCH_CALLEE_SAVED_FREGS, MONO_ARCH_CALLEE_SAVED_REGS, MONO_ARCH_CALLEE_SAVED_REGS, MONO_ARCH_CALLEE_SAVED_XREGS, }; #endif static const regmask_t regbank_callee_regs [] = { MONO_ARCH_CALLEE_REGS, MONO_ARCH_CALLEE_FREGS, MONO_ARCH_CALLEE_REGS, MONO_ARCH_CALLEE_REGS, MONO_ARCH_CALLEE_XREGS, }; static const int regbank_spill_var_size[] = { sizeof (mgreg_t), sizeof (double), sizeof (mgreg_t), sizeof (mgreg_t), 16 /*FIXME make this a constant. Maybe MONO_ARCH_SIMD_VECTOR_SIZE? */ }; #define DEBUG(a) MINI_DEBUG(cfg->verbose_level, 3, a;) static inline void mono_regstate_assign (MonoRegState *rs) { #ifdef MONO_ARCH_USE_SHARED_FP_SIMD_BANK /* The regalloc may fail if fp and simd logical regbanks share the same physical reg bank and * if the values here are not the same. */ g_assert(regbank_callee_regs [MONO_REG_SIMD] == regbank_callee_regs [MONO_REG_DOUBLE]); g_assert(regbank_callee_saved_regs [MONO_REG_SIMD] == regbank_callee_saved_regs [MONO_REG_DOUBLE]); g_assert(regbank_size [MONO_REG_SIMD] == regbank_size [MONO_REG_DOUBLE]); #endif if (rs->next_vreg > rs->vassign_size) { g_free (rs->vassign); rs->vassign_size = MAX (rs->next_vreg, 256); rs->vassign = (gint32 *)g_malloc (rs->vassign_size * sizeof (gint32)); } memset (rs->isymbolic, 0, MONO_MAX_IREGS * sizeof (rs->isymbolic [0])); memset (rs->fsymbolic, 0, MONO_MAX_FREGS * sizeof (rs->fsymbolic [0])); rs->symbolic [MONO_REG_INT] = rs->isymbolic; rs->symbolic [MONO_REG_DOUBLE] = rs->fsymbolic; #ifdef MONO_ARCH_NEED_SIMD_BANK memset (rs->xsymbolic, 0, MONO_MAX_XREGS * sizeof (rs->xsymbolic [0])); rs->symbolic [MONO_REG_SIMD] = rs->xsymbolic; #endif } static inline int mono_regstate_alloc_int (MonoRegState *rs, regmask_t allow) { regmask_t mask = allow & rs->ifree_mask; #if defined(__x86_64__) && defined(__GNUC__) { guint64 i; if (mask == 0) return -1; __asm__("bsfq %1,%0\n\t" : "=r" (i) : "rm" (mask)); rs->ifree_mask &= ~ ((regmask_t)1 << i); return i; } #else int i; for (i = 0; i < MONO_MAX_IREGS; ++i) { if (mask & ((regmask_t)1 << i)) { rs->ifree_mask &= ~ ((regmask_t)1 << i); return i; } } return -1; #endif } static inline void mono_regstate_free_int (MonoRegState *rs, int reg) { if (reg >= 0) { rs->ifree_mask |= (regmask_t)1 << reg; rs->isymbolic [reg] = 0; } } static inline int mono_regstate_alloc_general (MonoRegState *rs, regmask_t allow, int bank) { int i; int mirrored_bank; regmask_t mask = allow & rs->free_mask [bank]; for (i = 0; i < regbank_size [bank]; ++i) { if (mask & ((regmask_t)1 << i)) { rs->free_mask [bank] &= ~ ((regmask_t)1 << i); mirrored_bank = get_mirrored_bank (bank); if (mirrored_bank == -1) return i; rs->free_mask [mirrored_bank] = rs->free_mask [bank]; return i; } } return -1; } static inline void mono_regstate_free_general (MonoRegState *rs, int reg, int bank) { int mirrored_bank; if (reg >= 0) { rs->free_mask [bank] |= (regmask_t)1 << reg; rs->symbolic [bank][reg] = 0; mirrored_bank = get_mirrored_bank (bank); if (mirrored_bank == -1) return; rs->free_mask [mirrored_bank] = rs->free_mask [bank]; rs->symbolic [mirrored_bank][reg] = 0; } } const char* mono_regname_full (int reg, int bank) { if (G_UNLIKELY (bank)) { #if MONO_ARCH_NEED_SIMD_BANK if (bank == MONO_REG_SIMD) return mono_arch_xregname (reg); #endif if (bank == MONO_REG_INT_REF || bank == MONO_REG_INT_MP) return mono_arch_regname (reg); g_assert (bank == MONO_REG_DOUBLE); return mono_arch_fregname (reg); } else { return mono_arch_regname (reg); } } void mono_call_inst_add_outarg_reg (MonoCompile *cfg, MonoCallInst *call, int vreg, int hreg, int bank) { guint32 regpair; regpair = (((guint32)hreg) << 24) + vreg; if (G_UNLIKELY (bank)) { g_assert (vreg >= regbank_size [bank]); g_assert (hreg < regbank_size [bank]); call->used_fregs |= 1 << hreg; call->out_freg_args = g_slist_append_mempool (cfg->mempool, call->out_freg_args, (gpointer)(gssize)(regpair)); } else { g_assert (vreg >= MONO_MAX_IREGS); g_assert (hreg < MONO_MAX_IREGS); call->used_iregs |= 1 << hreg; call->out_ireg_args = g_slist_append_mempool (cfg->mempool, call->out_ireg_args, (gpointer)(gssize)(regpair)); } } /* * mono_call_inst_add_outarg_vt: * * Register OUTARG_VT as belonging to CALL. */ void mono_call_inst_add_outarg_vt (MonoCompile *cfg, MonoCallInst *call, MonoInst *outarg_vt) { call->outarg_vts = g_slist_append_mempool (cfg->mempool, call->outarg_vts, outarg_vt); } static void resize_spill_info (MonoCompile *cfg, int bank) { MonoSpillInfo *orig_info = cfg->spill_info [bank]; int orig_len = cfg->spill_info_len [bank]; int new_len = orig_len ? orig_len * 2 : 16; MonoSpillInfo *new_info; int i; g_assert (bank < MONO_NUM_REGBANKS); new_info = (MonoSpillInfo *)mono_mempool_alloc0 (cfg->mempool, sizeof (MonoSpillInfo) * new_len); if (orig_info) memcpy (new_info, orig_info, sizeof (MonoSpillInfo) * orig_len); for (i = orig_len; i < new_len; ++i) new_info [i].offset = -1; cfg->spill_info [bank] = new_info; cfg->spill_info_len [bank] = new_len; } /* * returns the offset used by spillvar. It allocates a new * spill variable if necessary. */ static inline int mono_spillvar_offset (MonoCompile *cfg, int spillvar, int bank) { MonoSpillInfo *info; int size; if (G_UNLIKELY (spillvar >= (cfg->spill_info_len [bank]))) { while (spillvar >= cfg->spill_info_len [bank]) resize_spill_info (cfg, bank); } /* * Allocate separate spill slots for fp/non-fp variables since most processors prefer it. */ info = &cfg->spill_info [bank][spillvar]; if (info->offset == -1) { cfg->stack_offset += sizeof (mgreg_t) - 1; cfg->stack_offset &= ~(sizeof (mgreg_t) - 1); g_assert (bank < MONO_NUM_REGBANKS); if (G_UNLIKELY (bank)) size = regbank_spill_var_size [bank]; else size = sizeof (mgreg_t); if (cfg->flags & MONO_CFG_HAS_SPILLUP) { cfg->stack_offset += size - 1; cfg->stack_offset &= ~(size - 1); info->offset = cfg->stack_offset; cfg->stack_offset += size; } else { cfg->stack_offset += size - 1; cfg->stack_offset &= ~(size - 1); cfg->stack_offset += size; info->offset = - cfg->stack_offset; } } return info->offset; } #define is_hard_ireg(r) ((r) >= 0 && (r) < MONO_MAX_IREGS) #define is_hard_freg(r) ((r) >= 0 && (r) < MONO_MAX_FREGS) #define is_global_ireg(r) (is_hard_ireg ((r)) && (MONO_ARCH_CALLEE_SAVED_REGS & (regmask (r)))) #define is_local_ireg(r) (is_hard_ireg ((r)) && (MONO_ARCH_CALLEE_REGS & (regmask (r)))) #define is_global_freg(r) (is_hard_freg ((r)) && (MONO_ARCH_CALLEE_SAVED_FREGS & (regmask (r)))) #define is_local_freg(r) (is_hard_freg ((r)) && (MONO_ARCH_CALLEE_FREGS & (regmask (r)))) #define is_hard_reg(r,bank) (G_UNLIKELY (bank) ? ((r) >= 0 && (r) < regbank_size [bank]) : ((r) < MONO_MAX_IREGS)) #define is_soft_reg(r,bank) (!is_hard_reg((r),(bank))) #define is_global_reg(r,bank) (G_UNLIKELY (bank) ? (is_hard_reg ((r), (bank)) && (regbank_callee_saved_regs [bank] & regmask (r))) : is_global_ireg (r)) #define is_local_reg(r,bank) (G_UNLIKELY (bank) ? (is_hard_reg ((r), (bank)) && (regbank_callee_regs [bank] & regmask (r))) : is_local_ireg (r)) #define reg_is_freeable(r,bank) (G_UNLIKELY (bank) ? is_local_reg ((r), (bank)) : is_local_ireg ((r))) #ifndef MONO_ARCH_INST_IS_FLOAT #define MONO_ARCH_INST_IS_FLOAT(desc) ((desc) == 'f') #endif #define reg_is_fp(desc) (MONO_ARCH_INST_IS_FLOAT (desc)) #define dreg_is_fp(spec) (MONO_ARCH_INST_IS_FLOAT (spec [MONO_INST_DEST])) #define sreg_is_fp(n,spec) (MONO_ARCH_INST_IS_FLOAT (spec [MONO_INST_SRC1+(n)])) #define sreg1_is_fp(spec) sreg_is_fp (0,(spec)) #define sreg2_is_fp(spec) sreg_is_fp (1,(spec)) #define reg_is_simd(desc) ((desc) == 'x') #ifdef MONO_ARCH_NEED_SIMD_BANK #define reg_bank(desc) (G_UNLIKELY (reg_is_fp (desc)) ? MONO_REG_DOUBLE : G_UNLIKELY (reg_is_simd(desc)) ? MONO_REG_SIMD : MONO_REG_INT) #else #define reg_bank(desc) reg_is_fp ((desc)) #endif #define sreg_bank(n,spec) reg_bank ((spec)[MONO_INST_SRC1+(n)]) #define sreg1_bank(spec) sreg_bank (0, (spec)) #define sreg2_bank(spec) sreg_bank (1, (spec)) #define dreg_bank(spec) reg_bank ((spec)[MONO_INST_DEST]) #define sreg_bank_ins(n,ins) sreg_bank ((n), ins_get_spec ((ins)->opcode)) #define sreg1_bank_ins(ins) sreg_bank_ins (0, (ins)) #define sreg2_bank_ins(ins) sreg_bank_ins (1, (ins)) #define dreg_bank_ins(ins) dreg_bank (ins_get_spec ((ins)->opcode)) #define regpair_reg2_mask(desc,hreg1) ((MONO_ARCH_INST_REGPAIR_REG2 (desc,hreg1) != -1) ? (regmask (MONO_ARCH_INST_REGPAIR_REG2 (desc,hreg1))) : MONO_ARCH_CALLEE_REGS) #ifdef MONO_ARCH_IS_GLOBAL_IREG #undef is_global_ireg #define is_global_ireg(reg) MONO_ARCH_IS_GLOBAL_IREG ((reg)) #endif typedef struct { int born_in; int killed_in; /* Not (yet) used */ //int last_use; //int prev_use; regmask_t preferred_mask; /* the hreg where the register should be allocated, or 0 */ } RegTrack; #if !defined(DISABLE_LOGGING) void mono_print_ins_index (int i, MonoInst *ins) { GString *buf = mono_print_ins_index_strbuf (i, ins); printf ("%s\n", buf->str); g_string_free (buf, TRUE); } GString * mono_print_ins_index_strbuf (int i, MonoInst *ins) { const char *spec = ins_get_spec (ins->opcode); GString *sbuf = g_string_new (NULL); int num_sregs, j; int sregs [MONO_MAX_SRC_REGS]; if (i != -1) g_string_append_printf (sbuf, "\t%-2d %s", i, mono_inst_name (ins->opcode)); else g_string_append_printf (sbuf, " %s", mono_inst_name (ins->opcode)); if (spec == MONO_ARCH_CPU_SPEC) { gboolean dest_base = FALSE; switch (ins->opcode) { case OP_STOREV_MEMBASE: dest_base = TRUE; break; default: break; } /* This is a lowered opcode */ if (ins->dreg != -1) { if (dest_base) g_string_append_printf (sbuf, " [R%d + 0x%lx] <-", ins->dreg, (long)ins->inst_offset); else g_string_append_printf (sbuf, " R%d <-", ins->dreg); } if (ins->sreg1 != -1) g_string_append_printf (sbuf, " R%d", ins->sreg1); if (ins->sreg2 != -1) g_string_append_printf (sbuf, " R%d", ins->sreg2); if (ins->sreg3 != -1) g_string_append_printf (sbuf, " R%d", ins->sreg3); switch (ins->opcode) { case OP_LBNE_UN: case OP_LBEQ: case OP_LBLT: case OP_LBLT_UN: case OP_LBGT: case OP_LBGT_UN: case OP_LBGE: case OP_LBGE_UN: case OP_LBLE: case OP_LBLE_UN: if (!ins->inst_false_bb) g_string_append_printf (sbuf, " [B%d]", ins->inst_true_bb->block_num); else g_string_append_printf (sbuf, " [B%dB%d]", ins->inst_true_bb->block_num, ins->inst_false_bb->block_num); break; case OP_PHI: case OP_VPHI: case OP_XPHI: case OP_FPHI: { int i; g_string_append_printf (sbuf, " [%d (", (int)ins->inst_c0); for (i = 0; i < ins->inst_phi_args [0]; i++) { if (i) g_string_append_printf (sbuf, ", "); g_string_append_printf (sbuf, "R%d", ins->inst_phi_args [i + 1]); } g_string_append_printf (sbuf, ")]"); break; } case OP_LDADDR: case OP_OUTARG_VTRETADDR: g_string_append_printf (sbuf, " R%d", ((MonoInst*)ins->inst_p0)->dreg); break; case OP_REGOFFSET: case OP_GSHAREDVT_ARG_REGOFFSET: g_string_append_printf (sbuf, " + 0x%lx", (long)ins->inst_offset); break; case OP_ISINST: case OP_CASTCLASS: g_string_append_printf (sbuf, " %s", ins->klass->name); break; default: break; } //g_error ("Unknown opcode: %s\n", mono_inst_name (ins->opcode)); return sbuf; } if (spec [MONO_INST_DEST]) { int bank = dreg_bank (spec); if (is_soft_reg (ins->dreg, bank)) { if (spec [MONO_INST_DEST] == 'b') { if (ins->inst_offset == 0) g_string_append_printf (sbuf, " [R%d] <-", ins->dreg); else g_string_append_printf (sbuf, " [R%d + 0x%lx] <-", ins->dreg, (long)ins->inst_offset); } else g_string_append_printf (sbuf, " R%d <-", ins->dreg); } else if (spec [MONO_INST_DEST] == 'b') { if (ins->inst_offset == 0) g_string_append_printf (sbuf, " [%s] <-", mono_arch_regname (ins->dreg)); else g_string_append_printf (sbuf, " [%s + 0x%lx] <-", mono_arch_regname (ins->dreg), (long)ins->inst_offset); } else g_string_append_printf (sbuf, " %s <-", mono_regname_full (ins->dreg, bank)); } if (spec [MONO_INST_SRC1]) { int bank = sreg1_bank (spec); if (is_soft_reg (ins->sreg1, bank)) { if (spec [MONO_INST_SRC1] == 'b') g_string_append_printf (sbuf, " [R%d + 0x%lx]", ins->sreg1, (long)ins->inst_offset); else g_string_append_printf (sbuf, " R%d", ins->sreg1); } else if (spec [MONO_INST_SRC1] == 'b') g_string_append_printf (sbuf, " [%s + 0x%lx]", mono_arch_regname (ins->sreg1), (long)ins->inst_offset); else g_string_append_printf (sbuf, " %s", mono_regname_full (ins->sreg1, bank)); } num_sregs = mono_inst_get_src_registers (ins, sregs); for (j = 1; j < num_sregs; ++j) { int bank = sreg_bank (j, spec); if (is_soft_reg (sregs [j], bank)) g_string_append_printf (sbuf, " R%d", sregs [j]); else g_string_append_printf (sbuf, " %s", mono_regname_full (sregs [j], bank)); } switch (ins->opcode) { case OP_ICONST: g_string_append_printf (sbuf, " [%d]", (int)ins->inst_c0); break; #if defined(TARGET_X86) || defined(TARGET_AMD64) case OP_X86_PUSH_IMM: #endif case OP_ICOMPARE_IMM: case OP_COMPARE_IMM: case OP_IADD_IMM: case OP_ISUB_IMM: case OP_IAND_IMM: case OP_IOR_IMM: case OP_IXOR_IMM: case OP_SUB_IMM: case OP_STORE_MEMBASE_IMM: g_string_append_printf (sbuf, " [%d]", (int)ins->inst_imm); break; case OP_ADD_IMM: case OP_LADD_IMM: g_string_append_printf (sbuf, " [%d]", (int)(gssize)ins->inst_p1); break; case OP_I8CONST: g_string_append_printf (sbuf, " [%lld]", (long long)ins->inst_l); break; case OP_R8CONST: g_string_append_printf (sbuf, " [%f]", *(double*)ins->inst_p0); break; case OP_R4CONST: g_string_append_printf (sbuf, " [%f]", *(float*)ins->inst_p0); break; case OP_CALL: case OP_CALL_MEMBASE: case OP_CALL_REG: case OP_FCALL: case OP_LCALL: case OP_VCALL: case OP_VCALL_REG: case OP_VCALL_MEMBASE: case OP_VCALL2: case OP_VCALL2_REG: case OP_VCALL2_MEMBASE: case OP_VOIDCALL: case OP_VOIDCALL_MEMBASE: case OP_TAILCALL: { MonoCallInst *call = (MonoCallInst*)ins; GSList *list; if (ins->opcode == OP_VCALL || ins->opcode == OP_VCALL_REG || ins->opcode == OP_VCALL_MEMBASE) { /* * These are lowered opcodes, but they are in the .md files since the old * JIT passes them to backends. */ if (ins->dreg != -1) g_string_append_printf (sbuf, " R%d <-", ins->dreg); } if (call->method) { char *full_name = mono_method_full_name (call->method, TRUE); g_string_append_printf (sbuf, " [%s]", full_name); g_free (full_name); } else if (call->fptr_is_patch) { MonoJumpInfo *ji = (MonoJumpInfo*)call->fptr; g_string_append_printf (sbuf, " "); mono_print_ji (ji); } else if (call->fptr) { MonoJitICallInfo *info = mono_find_jit_icall_by_addr (call->fptr); if (info) g_string_append_printf (sbuf, " [%s]", info->name); } list = call->out_ireg_args; while (list) { guint32 regpair; int reg, hreg; regpair = (guint32)(gssize)(list->data); hreg = regpair >> 24; reg = regpair & 0xffffff; g_string_append_printf (sbuf, " [%s <- R%d]", mono_arch_regname (hreg), reg); list = g_slist_next (list); } list = call->out_freg_args; while (list) { guint32 regpair; int reg, hreg; regpair = (guint32)(gssize)(list->data); hreg = regpair >> 24; reg = regpair & 0xffffff; g_string_append_printf (sbuf, " [%s <- R%d]", mono_arch_fregname (hreg), reg); list = g_slist_next (list); } break; } case OP_BR: case OP_CALL_HANDLER: g_string_append_printf (sbuf, " [B%d]", ins->inst_target_bb->block_num); break; case OP_IBNE_UN: case OP_IBEQ: case OP_IBLT: case OP_IBLT_UN: case OP_IBGT: case OP_IBGT_UN: case OP_IBGE: case OP_IBGE_UN: case OP_IBLE: case OP_IBLE_UN: case OP_LBNE_UN: case OP_LBEQ: case OP_LBLT: case OP_LBLT_UN: case OP_LBGT: case OP_LBGT_UN: case OP_LBGE: case OP_LBGE_UN: case OP_LBLE: case OP_LBLE_UN: if (!ins->inst_false_bb) g_string_append_printf (sbuf, " [B%d]", ins->inst_true_bb->block_num); else g_string_append_printf (sbuf, " [B%dB%d]", ins->inst_true_bb->block_num, ins->inst_false_bb->block_num); break; case OP_LIVERANGE_START: case OP_LIVERANGE_END: case OP_GC_LIVENESS_DEF: case OP_GC_LIVENESS_USE: g_string_append_printf (sbuf, " R%d", (int)ins->inst_c1); break; case OP_IL_SEQ_POINT: case OP_SEQ_POINT: g_string_append_printf (sbuf, " il: 0x%x%s", (int)ins->inst_imm, ins->flags & MONO_INST_NONEMPTY_STACK ? ", nonempty-stack" : ""); break; case OP_COND_EXC_EQ: case OP_COND_EXC_GE: case OP_COND_EXC_GT: case OP_COND_EXC_LE: case OP_COND_EXC_LT: case OP_COND_EXC_NE_UN: case OP_COND_EXC_GE_UN: case OP_COND_EXC_GT_UN: case OP_COND_EXC_LE_UN: case OP_COND_EXC_LT_UN: case OP_COND_EXC_OV: case OP_COND_EXC_NO: case OP_COND_EXC_C: case OP_COND_EXC_NC: case OP_COND_EXC_IEQ: case OP_COND_EXC_IGE: case OP_COND_EXC_IGT: case OP_COND_EXC_ILE: case OP_COND_EXC_ILT: case OP_COND_EXC_INE_UN: case OP_COND_EXC_IGE_UN: case OP_COND_EXC_IGT_UN: case OP_COND_EXC_ILE_UN: case OP_COND_EXC_ILT_UN: case OP_COND_EXC_IOV: case OP_COND_EXC_INO: case OP_COND_EXC_IC: case OP_COND_EXC_INC: g_string_append_printf (sbuf, " %s", ins->inst_p1); break; default: break; } if (spec [MONO_INST_CLOB]) g_string_append_printf (sbuf, " clobbers: %c", spec [MONO_INST_CLOB]); return sbuf; } static void print_regtrack (RegTrack *t, int num) { int i; char buf [32]; const char *r; for (i = 0; i < num; ++i) { if (!t [i].born_in) continue; if (i >= MONO_MAX_IREGS) { g_snprintf (buf, sizeof(buf), "R%d", i); r = buf; } else r = mono_arch_regname (i); printf ("liveness: %s [%d - %d]\n", r, t [i].born_in, t[i].killed_in); } } #else void mono_print_ins_index (int i, MonoInst *ins) { } #endif /* !defined(DISABLE_LOGGING) */ void mono_print_ins (MonoInst *ins) { mono_print_ins_index (-1, ins); } static inline void insert_before_ins (MonoBasicBlock *bb, MonoInst *ins, MonoInst* to_insert) { /* * If this function is called multiple times, the new instructions are inserted * in the proper order. */ mono_bblock_insert_before_ins (bb, ins, to_insert); } static inline void insert_after_ins (MonoBasicBlock *bb, MonoInst *ins, MonoInst **last, MonoInst* to_insert) { /* * If this function is called multiple times, the new instructions are inserted in * proper order. */ mono_bblock_insert_after_ins (bb, *last, to_insert); *last = to_insert; } static inline int get_vreg_bank (MonoCompile *cfg, int reg, int bank) { if (vreg_is_ref (cfg, reg)) return MONO_REG_INT_REF; else if (vreg_is_mp (cfg, reg)) return MONO_REG_INT_MP; else return bank; } /* * Force the spilling of the variable in the symbolic register 'reg', and free * the hreg it was assigned to. */ static void spill_vreg (MonoCompile *cfg, MonoBasicBlock *bb, MonoInst **last, MonoInst *ins, int reg, int bank) { MonoInst *load; int i, sel, spill; MonoRegState *rs = cfg->rs; sel = rs->vassign [reg]; /* the vreg we need to spill lives in another logical reg bank */ bank = translate_bank (cfg->rs, bank, sel); /*i = rs->isymbolic [sel]; g_assert (i == reg);*/ i = reg; spill = ++cfg->spill_count; rs->vassign [i] = -spill - 1; if (G_UNLIKELY (bank)) mono_regstate_free_general (rs, sel, bank); else mono_regstate_free_int (rs, sel); /* we need to create a spill var and insert a load to sel after the current instruction */ MONO_INST_NEW (cfg, load, regbank_load_ops [bank]); load->dreg = sel; load->inst_basereg = cfg->frame_reg; load->inst_offset = mono_spillvar_offset (cfg, spill, get_vreg_bank (cfg, reg, bank)); insert_after_ins (bb, ins, last, load); DEBUG (printf ("SPILLED LOAD (%d at 0x%08lx(%%ebp)) R%d (freed %s)\n", spill, (long)load->inst_offset, i, mono_regname_full (sel, bank))); if (G_UNLIKELY (bank)) i = mono_regstate_alloc_general (rs, regmask (sel), bank); else i = mono_regstate_alloc_int (rs, regmask (sel)); g_assert (i == sel); if (G_UNLIKELY (bank)) mono_regstate_free_general (rs, sel, bank); else mono_regstate_free_int (rs, sel); } static int get_register_spilling (MonoCompile *cfg, MonoBasicBlock *bb, MonoInst **last, MonoInst *ins, regmask_t regmask, int reg, int bank) { MonoInst *load; int i, sel, spill, num_sregs; int sregs [MONO_MAX_SRC_REGS]; MonoRegState *rs = cfg->rs; g_assert (bank < MONO_NUM_REGBANKS); DEBUG (printf ("\tstart regmask to assign R%d: 0x%08llu (R%d <- R%d R%d R%d)\n", reg, (unsigned long long)regmask, ins->dreg, ins->sreg1, ins->sreg2, ins->sreg3)); /* exclude the registers in the current instruction */ num_sregs = mono_inst_get_src_registers (ins, sregs); for (i = 0; i < num_sregs; ++i) { if ((sreg_bank_ins (i, ins) == bank) && (reg != sregs [i]) && (reg_is_freeable (sregs [i], bank) || (is_soft_reg (sregs [i], bank) && rs->vassign [sregs [i]] >= 0))) { if (is_soft_reg (sregs [i], bank)) regmask &= ~ (regmask (rs->vassign [sregs [i]])); else regmask &= ~ (regmask (sregs [i])); DEBUG (printf ("\t\texcluding sreg%d %s %d\n", i + 1, mono_regname_full (sregs [i], bank), sregs [i])); } } if ((dreg_bank_ins (ins) == bank) && (reg != ins->dreg) && reg_is_freeable (ins->dreg, bank)) { regmask &= ~ (regmask (ins->dreg)); DEBUG (printf ("\t\texcluding dreg %s\n", mono_regname_full (ins->dreg, bank))); } DEBUG (printf ("\t\tavailable regmask: 0x%08llu\n", (unsigned long long)regmask)); g_assert (regmask); /* need at least a register we can free */ sel = 0; /* we should track prev_use and spill the register that's farther */ if (G_UNLIKELY (bank)) { for (i = 0; i < regbank_size [bank]; ++i) { if (regmask & (regmask (i))) { sel = i; /* the vreg we need to load lives in another logical bank */ bank = translate_bank (cfg->rs, bank, sel); DEBUG (printf ("\t\tselected register %s has assignment %d\n", mono_regname_full (sel, bank), rs->symbolic [bank] [sel])); break; } } i = rs->symbolic [bank] [sel]; spill = ++cfg->spill_count; rs->vassign [i] = -spill - 1; mono_regstate_free_general (rs, sel, bank); } else { for (i = 0; i < MONO_MAX_IREGS; ++i) { if (regmask & (regmask (i))) { sel = i; DEBUG (printf ("\t\tselected register %s has assignment %d\n", mono_arch_regname (sel), rs->isymbolic [sel])); break; } } i = rs->isymbolic [sel]; spill = ++cfg->spill_count; rs->vassign [i] = -spill - 1; mono_regstate_free_int (rs, sel); } /* we need to create a spill var and insert a load to sel after the current instruction */ MONO_INST_NEW (cfg, load, regbank_load_ops [bank]); load->dreg = sel; load->inst_basereg = cfg->frame_reg; load->inst_offset = mono_spillvar_offset (cfg, spill, get_vreg_bank (cfg, i, bank)); insert_after_ins (bb, ins, last, load); DEBUG (printf ("\tSPILLED LOAD (%d at 0x%08lx(%%ebp)) R%d (freed %s)\n", spill, (long)load->inst_offset, i, mono_regname_full (sel, bank))); if (G_UNLIKELY (bank)) i = mono_regstate_alloc_general (rs, regmask (sel), bank); else i = mono_regstate_alloc_int (rs, regmask (sel)); g_assert (i == sel); return sel; } /* * free_up_hreg: * * Free up the hreg HREG by spilling the vreg allocated to it. */ static void free_up_hreg (MonoCompile *cfg, MonoBasicBlock *bb, MonoInst **last, MonoInst *ins, int hreg, int bank) { if (G_UNLIKELY (bank)) { if (!(cfg->rs->free_mask [bank] & (regmask (hreg)))) { bank = translate_bank (cfg->rs, bank, hreg); DEBUG (printf ("\tforced spill of R%d\n", cfg->rs->symbolic [bank] [hreg])); spill_vreg (cfg, bb, last, ins, cfg->rs->symbolic [bank] [hreg], bank); } } else { if (!(cfg->rs->ifree_mask & (regmask (hreg)))) { DEBUG (printf ("\tforced spill of R%d\n", cfg->rs->isymbolic [hreg])); spill_vreg (cfg, bb, last, ins, cfg->rs->isymbolic [hreg], bank); } } } static MonoInst* create_copy_ins (MonoCompile *cfg, MonoBasicBlock *bb, MonoInst **last, int dest, int src, MonoInst *ins, const unsigned char *ip, int bank) { MonoInst *copy; MONO_INST_NEW (cfg, copy, regbank_move_ops [bank]); copy->dreg = dest; copy->sreg1 = src; copy->cil_code = ip; if (ins) { mono_bblock_insert_after_ins (bb, ins, copy); *last = copy; } DEBUG (printf ("\tforced copy from %s to %s\n", mono_regname_full (src, bank), mono_regname_full (dest, bank))); return copy; } static inline const char* regbank_to_string (int bank) { if (bank == MONO_REG_INT_REF) return "REF "; else if (bank == MONO_REG_INT_MP) return "MP "; else return ""; } static void create_spilled_store (MonoCompile *cfg, MonoBasicBlock *bb, int spill, int reg, int prev_reg, MonoInst **last, MonoInst *ins, MonoInst *insert_before, int bank) { MonoInst *store, *def; bank = get_vreg_bank (cfg, prev_reg, bank); MONO_INST_NEW (cfg, store, regbank_store_ops [bank]); store->sreg1 = reg; store->inst_destbasereg = cfg->frame_reg; store->inst_offset = mono_spillvar_offset (cfg, spill, bank); if (ins) { mono_bblock_insert_after_ins (bb, ins, store); *last = store; } else if (insert_before) { insert_before_ins (bb, insert_before, store); } else { g_assert_not_reached (); } DEBUG (printf ("\t%sSPILLED STORE (%d at 0x%08lx(%%ebp)) R%d (from %s)\n", regbank_to_string (bank), spill, (long)store->inst_offset, prev_reg, mono_regname_full (reg, bank))); if (((bank == MONO_REG_INT_REF) || (bank == MONO_REG_INT_MP)) && cfg->compute_gc_maps) { g_assert (prev_reg != -1); MONO_INST_NEW (cfg, def, OP_GC_SPILL_SLOT_LIVENESS_DEF); def->inst_c0 = spill; def->inst_c1 = bank; mono_bblock_insert_after_ins (bb, store, def); } } /* flags used in reginfo->flags */ enum { MONO_FP_NEEDS_LOAD_SPILL = regmask (0), MONO_FP_NEEDS_SPILL = regmask (1), MONO_FP_NEEDS_LOAD = regmask (2) }; static inline int alloc_int_reg (MonoCompile *cfg, MonoBasicBlock *bb, MonoInst **last, MonoInst *ins, regmask_t dest_mask, int sym_reg, RegTrack *info) { int val; if (info && info->preferred_mask) { val = mono_regstate_alloc_int (cfg->rs, info->preferred_mask & dest_mask); if (val >= 0) { DEBUG (printf ("\tallocated preferred reg R%d to %s\n", sym_reg, mono_arch_regname (val))); return val; } } val = mono_regstate_alloc_int (cfg->rs, dest_mask); if (val < 0) val = get_register_spilling (cfg, bb, last, ins, dest_mask, sym_reg, 0); return val; } static inline int alloc_general_reg (MonoCompile *cfg, MonoBasicBlock *bb, MonoInst **last, MonoInst *ins, regmask_t dest_mask, int sym_reg, int bank) { int val; val = mono_regstate_alloc_general (cfg->rs, dest_mask, bank); if (val < 0) val = get_register_spilling (cfg, bb, last, ins, dest_mask, sym_reg, bank); return val; } static inline int alloc_reg (MonoCompile *cfg, MonoBasicBlock *bb, MonoInst **last, MonoInst *ins, regmask_t dest_mask, int sym_reg, RegTrack *info, int bank) { if (G_UNLIKELY (bank)) return alloc_general_reg (cfg, bb, last, ins, dest_mask, sym_reg, bank); else return alloc_int_reg (cfg, bb, last, ins, dest_mask, sym_reg, info); } static inline void assign_reg (MonoCompile *cfg, MonoRegState *rs, int reg, int hreg, int bank) { if (G_UNLIKELY (bank)) { int mirrored_bank; g_assert (reg >= regbank_size [bank]); g_assert (hreg < regbank_size [bank]); g_assert (! is_global_freg (hreg)); rs->vassign [reg] = hreg; rs->symbolic [bank] [hreg] = reg; rs->free_mask [bank] &= ~ (regmask (hreg)); mirrored_bank = get_mirrored_bank (bank); if (mirrored_bank == -1) return; /* Make sure the other logical reg bank that this bank shares * a single hard reg bank knows that this hard reg is not free. */ rs->free_mask [mirrored_bank] = rs->free_mask [bank]; /* Mark the other logical bank that the this bank shares * a single hard reg bank with as mirrored. */ rs->symbolic [mirrored_bank] [hreg] = MONO_ARCH_BANK_MIRRORED; } else { g_assert (reg >= MONO_MAX_IREGS); g_assert (hreg < MONO_MAX_IREGS); #if !defined(TARGET_ARM) && !defined(TARGET_ARM64) /* this seems to trigger a gcc compilation bug sometime (hreg is 0) */ /* On arm64, rgctx_reg is a global hreg, and it is used to pass an argument */ g_assert (! is_global_ireg (hreg)); #endif rs->vassign [reg] = hreg; rs->isymbolic [hreg] = reg; rs->ifree_mask &= ~ (regmask (hreg)); } } static inline regmask_t get_callee_mask (const char spec) { if (G_UNLIKELY (reg_bank (spec))) return regbank_callee_regs [reg_bank (spec)]; return MONO_ARCH_CALLEE_REGS; } static gint8 desc_to_fixed_reg [256]; static gboolean desc_to_fixed_reg_inited = FALSE; /* * Local register allocation. * We first scan the list of instructions and we save the liveness info of * each register (when the register is first used, when it's value is set etc.). * We also reverse the list of instructions because assigning registers backwards allows * for more tricks to be used. */ void mono_local_regalloc (MonoCompile *cfg, MonoBasicBlock *bb) { MonoInst *ins, *prev, *last; MonoInst **tmp; MonoRegState *rs = cfg->rs; int i, j, val, max; RegTrack *reginfo; const char *spec; unsigned char spec_src1, spec_dest; int bank = 0; #if MONO_ARCH_USE_FPSTACK gboolean has_fp = FALSE; int fpstack [8]; int sp = 0; #endif int num_sregs = 0; int sregs [MONO_MAX_SRC_REGS]; if (!bb->code) return; if (!desc_to_fixed_reg_inited) { for (i = 0; i < 256; ++i) desc_to_fixed_reg [i] = MONO_ARCH_INST_FIXED_REG (i); desc_to_fixed_reg_inited = TRUE; /* Validate the cpu description against the info in mini-ops.h */ #if defined(TARGET_AMD64) || defined(TARGET_X86) || defined(TARGET_ARM) || defined(TARGET_ARM64) for (i = OP_LOAD; i < OP_LAST; ++i) { const char *ispec; spec = ins_get_spec (i); ispec = INS_INFO (i); if ((spec [MONO_INST_DEST] && (ispec [MONO_INST_DEST] == ' '))) printf ("Instruction metadata for %s inconsistent.\n", mono_inst_name (i)); if ((spec [MONO_INST_SRC1] && (ispec [MONO_INST_SRC1] == ' '))) printf ("Instruction metadata for %s inconsistent.\n", mono_inst_name (i)); if ((spec [MONO_INST_SRC2] && (ispec [MONO_INST_SRC2] == ' '))) printf ("Instruction metadata for %s inconsistent.\n", mono_inst_name (i)); } #endif } rs->next_vreg = bb->max_vreg; mono_regstate_assign (rs); rs->ifree_mask = MONO_ARCH_CALLEE_REGS; for (i = 0; i < MONO_NUM_REGBANKS; ++i) rs->free_mask [i] = regbank_callee_regs [i]; max = rs->next_vreg; if (cfg->reginfo && cfg->reginfo_len < max) cfg->reginfo = NULL; reginfo = (RegTrack *)cfg->reginfo; if (!reginfo) { cfg->reginfo_len = MAX (1024, max * 2); reginfo = (RegTrack *)mono_mempool_alloc (cfg->mempool, sizeof (RegTrack) * cfg->reginfo_len); cfg->reginfo = reginfo; } else g_assert (cfg->reginfo_len >= rs->next_vreg); if (cfg->verbose_level > 1) { /* print_regtrack reads the info of all variables */ memset (cfg->reginfo, 0, cfg->reginfo_len * sizeof (RegTrack)); } /* * For large methods, next_vreg can be very large, so g_malloc0 time can * be prohibitive. So we manually init the reginfo entries used by the * bblock. */ for (ins = bb->code; ins; ins = ins->next) { gboolean modify = FALSE; spec = ins_get_spec (ins->opcode); if ((ins->dreg != -1) && (ins->dreg < max)) { memset (®info [ins->dreg], 0, sizeof (RegTrack)); #if SIZEOF_REGISTER == 4 if (MONO_ARCH_INST_IS_REGPAIR (spec [MONO_INST_DEST])) { /** * In the new IR, the two vregs of the regpair do not alias the * original long vreg. shift the vreg here so the rest of the * allocator doesn't have to care about it. */ ins->dreg ++; memset (®info [ins->dreg + 1], 0, sizeof (RegTrack)); } #endif } num_sregs = mono_inst_get_src_registers (ins, sregs); for (j = 0; j < num_sregs; ++j) { g_assert (sregs [j] != -1); if (sregs [j] < max) { memset (®info [sregs [j]], 0, sizeof (RegTrack)); #if SIZEOF_REGISTER == 4 if (MONO_ARCH_INST_IS_REGPAIR (spec [MONO_INST_SRC1 + j])) { sregs [j]++; modify = TRUE; memset (®info [sregs [j] + 1], 0, sizeof (RegTrack)); } #endif } } if (modify) mono_inst_set_src_registers (ins, sregs); } /*if (cfg->opt & MONO_OPT_COPYPROP) local_copy_prop (cfg, ins);*/ i = 1; DEBUG (printf ("\nLOCAL REGALLOC BLOCK %d:\n", bb->block_num)); /* forward pass on the instructions to collect register liveness info */ MONO_BB_FOR_EACH_INS (bb, ins) { spec = ins_get_spec (ins->opcode); spec_dest = spec [MONO_INST_DEST]; if (G_UNLIKELY (spec == MONO_ARCH_CPU_SPEC)) { g_error ("Opcode '%s' missing from machine description file.", mono_inst_name (ins->opcode)); } DEBUG (mono_print_ins_index (i, ins)); num_sregs = mono_inst_get_src_registers (ins, sregs); #if MONO_ARCH_USE_FPSTACK if (dreg_is_fp (spec)) { has_fp = TRUE; } else { for (j = 0; j < num_sregs; ++j) { if (sreg_is_fp (j, spec)) has_fp = TRUE; } } #endif for (j = 0; j < num_sregs; ++j) { int sreg = sregs [j]; int sreg_spec = spec [MONO_INST_SRC1 + j]; if (sreg_spec) { bank = sreg_bank (j, spec); g_assert (sreg != -1); if (is_soft_reg (sreg, bank)) /* This means the vreg is not local to this bb */ g_assert (reginfo [sreg].born_in > 0); rs->vassign [sreg] = -1; //reginfo [ins->sreg2].prev_use = reginfo [ins->sreg2].last_use; //reginfo [ins->sreg2].last_use = i; if (MONO_ARCH_INST_IS_REGPAIR (sreg_spec)) { /* The virtual register is allocated sequentially */ rs->vassign [sreg + 1] = -1; //reginfo [ins->sreg2 + 1].prev_use = reginfo [ins->sreg2 + 1].last_use; //reginfo [ins->sreg2 + 1].last_use = i; if (reginfo [sreg + 1].born_in == 0 || reginfo [sreg + 1].born_in > i) reginfo [sreg + 1].born_in = i; } } else { sregs [j] = -1; } } mono_inst_set_src_registers (ins, sregs); if (spec_dest) { int dest_dreg; bank = dreg_bank (spec); if (spec_dest != 'b') /* it's not just a base register */ reginfo [ins->dreg].killed_in = i; g_assert (ins->dreg != -1); rs->vassign [ins->dreg] = -1; //reginfo [ins->dreg].prev_use = reginfo [ins->dreg].last_use; //reginfo [ins->dreg].last_use = i; if (reginfo [ins->dreg].born_in == 0 || reginfo [ins->dreg].born_in > i) reginfo [ins->dreg].born_in = i; dest_dreg = desc_to_fixed_reg [spec_dest]; if (dest_dreg != -1) reginfo [ins->dreg].preferred_mask = (regmask (dest_dreg)); #ifdef MONO_ARCH_INST_FIXED_MASK reginfo [ins->dreg].preferred_mask |= MONO_ARCH_INST_FIXED_MASK (spec_dest); #endif if (MONO_ARCH_INST_IS_REGPAIR (spec_dest)) { /* The virtual register is allocated sequentially */ rs->vassign [ins->dreg + 1] = -1; //reginfo [ins->dreg + 1].prev_use = reginfo [ins->dreg + 1].last_use; //reginfo [ins->dreg + 1].last_use = i; if (reginfo [ins->dreg + 1].born_in == 0 || reginfo [ins->dreg + 1].born_in > i) reginfo [ins->dreg + 1].born_in = i; if (MONO_ARCH_INST_REGPAIR_REG2 (spec_dest, -1) != -1) reginfo [ins->dreg + 1].preferred_mask = regpair_reg2_mask (spec_dest, -1); } } else { ins->dreg = -1; } ++i; } tmp = &last; DEBUG (print_regtrack (reginfo, rs->next_vreg)); MONO_BB_FOR_EACH_INS_REVERSE_SAFE (bb, prev, ins) { int prev_dreg; int dest_dreg, clob_reg; int dest_sregs [MONO_MAX_SRC_REGS], prev_sregs [MONO_MAX_SRC_REGS]; int dreg_high, sreg1_high; regmask_t dreg_mask, mask; regmask_t sreg_masks [MONO_MAX_SRC_REGS], sreg_fixed_masks [MONO_MAX_SRC_REGS]; regmask_t dreg_fixed_mask; const unsigned char *ip; --i; spec = ins_get_spec (ins->opcode); spec_src1 = spec [MONO_INST_SRC1]; spec_dest = spec [MONO_INST_DEST]; prev_dreg = -1; clob_reg = -1; dest_dreg = -1; dreg_high = -1; sreg1_high = -1; dreg_mask = get_callee_mask (spec_dest); for (j = 0; j < MONO_MAX_SRC_REGS; ++j) { prev_sregs [j] = -1; sreg_masks [j] = get_callee_mask (spec [MONO_INST_SRC1 + j]); dest_sregs [j] = desc_to_fixed_reg [(int)spec [MONO_INST_SRC1 + j]]; #ifdef MONO_ARCH_INST_FIXED_MASK sreg_fixed_masks [j] = MONO_ARCH_INST_FIXED_MASK (spec [MONO_INST_SRC1 + j]); #else sreg_fixed_masks [j] = 0; #endif } DEBUG (printf ("processing:")); DEBUG (mono_print_ins_index (i, ins)); ip = ins->cil_code; last = ins; /* * FIXED REGS */ dest_dreg = desc_to_fixed_reg [spec_dest]; clob_reg = desc_to_fixed_reg [(int)spec [MONO_INST_CLOB]]; sreg_masks [1] &= ~ (MONO_ARCH_INST_SREG2_MASK (spec)); #ifdef MONO_ARCH_INST_FIXED_MASK dreg_fixed_mask = MONO_ARCH_INST_FIXED_MASK (spec_dest); #else dreg_fixed_mask = 0; #endif num_sregs = mono_inst_get_src_registers (ins, sregs); /* * TRACK FIXED SREG2, 3, ... */ for (j = 1; j < num_sregs; ++j) { int sreg = sregs [j]; int dest_sreg = dest_sregs [j]; if (dest_sreg == -1) continue; if (j == 2) { int k; /* * CAS. * We need to special case this, since on x86, there are only 3 * free registers, and the code below assigns one of them to * sreg, so we can run out of registers when trying to assign * dreg. Instead, we just set up the register masks, and let the * normal sreg2 assignment code handle this. It would be nice to * do this for all the fixed reg cases too, but there is too much * risk of breakage. */ /* Make sure sreg will be assigned to dest_sreg, and the other sregs won't */ sreg_masks [j] = regmask (dest_sreg); for (k = 0; k < num_sregs; ++k) { if (k != j) sreg_masks [k] &= ~ (regmask (dest_sreg)); } /* * Spill sreg1/2 if they are assigned to dest_sreg. */ for (k = 0; k < num_sregs; ++k) { if (k != j && is_soft_reg (sregs [k], 0) && rs->vassign [sregs [k]] == dest_sreg) free_up_hreg (cfg, bb, tmp, ins, dest_sreg, 0); } /* * We can also run out of registers while processing sreg2 if sreg3 is * assigned to another hreg, so spill sreg3 now. */ if (is_soft_reg (sreg, 0) && rs->vassign [sreg] >= 0 && rs->vassign [sreg] != dest_sreg) { spill_vreg (cfg, bb, tmp, ins, sreg, 0); } continue; } if (rs->ifree_mask & (regmask (dest_sreg))) { if (is_global_ireg (sreg)) { int k; /* Argument already in hard reg, need to copy */ MonoInst *copy = create_copy_ins (cfg, bb, tmp, dest_sreg, sreg, NULL, ip, 0); insert_before_ins (bb, ins, copy); for (k = 0; k < num_sregs; ++k) { if (k != j) sreg_masks [k] &= ~ (regmask (dest_sreg)); } /* See below */ dreg_mask &= ~ (regmask (dest_sreg)); } else { val = rs->vassign [sreg]; if (val == -1) { DEBUG (printf ("\tshortcut assignment of R%d to %s\n", sreg, mono_arch_regname (dest_sreg))); assign_reg (cfg, rs, sreg, dest_sreg, 0); } else if (val < -1) { /* FIXME: */ g_assert_not_reached (); } else { /* Argument already in hard reg, need to copy */ MonoInst *copy = create_copy_ins (cfg, bb, tmp, dest_sreg, val, NULL, ip, 0); int k; insert_before_ins (bb, ins, copy); for (k = 0; k < num_sregs; ++k) { if (k != j) sreg_masks [k] &= ~ (regmask (dest_sreg)); } /* * Prevent the dreg from being allocated to dest_sreg * too, since it could force sreg1 to be allocated to * the same reg on x86. */ dreg_mask &= ~ (regmask (dest_sreg)); } } } else { gboolean need_spill = TRUE; gboolean need_assign = TRUE; int k; dreg_mask &= ~ (regmask (dest_sreg)); for (k = 0; k < num_sregs; ++k) { if (k != j) sreg_masks [k] &= ~ (regmask (dest_sreg)); } /* * First check if dreg is assigned to dest_sreg2, since we * can't spill a dreg. */ if (spec [MONO_INST_DEST]) val = rs->vassign [ins->dreg]; else val = -1; if (val == dest_sreg && ins->dreg != sreg) { /* * the destination register is already assigned to * dest_sreg2: we need to allocate another register for it * and then copy from this to dest_sreg2. */ int new_dest; new_dest = alloc_int_reg (cfg, bb, tmp, ins, dreg_mask, ins->dreg, ®info [ins->dreg]); g_assert (new_dest >= 0); DEBUG (printf ("\tchanging dreg R%d to %s from %s\n", ins->dreg, mono_arch_regname (new_dest), mono_arch_regname (dest_sreg))); prev_dreg = ins->dreg; assign_reg (cfg, rs, ins->dreg, new_dest, 0); create_copy_ins (cfg, bb, tmp, dest_sreg, new_dest, ins, ip, 0); mono_regstate_free_int (rs, dest_sreg); need_spill = FALSE; } if (is_global_ireg (sreg)) { MonoInst *copy = create_copy_ins (cfg, bb, tmp, dest_sreg, sreg, NULL, ip, 0); insert_before_ins (bb, ins, copy); need_assign = FALSE; } else { val = rs->vassign [sreg]; if (val == dest_sreg) { /* sreg2 is already assigned to the correct register */ need_spill = FALSE; } else if (val < -1) { /* sreg2 is spilled, it can be assigned to dest_sreg2 */ } else if (val >= 0) { /* sreg2 already assigned to another register */ /* * We couldn't emit a copy from val to dest_sreg2, because * val might be spilled later while processing this * instruction. So we spill sreg2 so it can be allocated to * dest_sreg2. */ free_up_hreg (cfg, bb, tmp, ins, val, 0); } } if (need_spill) { free_up_hreg (cfg, bb, tmp, ins, dest_sreg, 0); } if (need_assign) { if (rs->vassign [sreg] < -1) { int spill; /* Need to emit a spill store */ spill = - rs->vassign [sreg] - 1; create_spilled_store (cfg, bb, spill, dest_sreg, sreg, tmp, NULL, ins, bank); } /* force-set sreg2 */ assign_reg (cfg, rs, sregs [j], dest_sreg, 0); } } sregs [j] = dest_sreg; } mono_inst_set_src_registers (ins, sregs); /* * TRACK DREG */ bank = dreg_bank (spec); if (spec_dest && is_soft_reg (ins->dreg, bank)) { prev_dreg = ins->dreg; } if (spec_dest == 'b') { /* * The dest reg is read by the instruction, not written, so * avoid allocating sreg1/sreg2 to the same reg. */ if (dest_sregs [0] != -1) dreg_mask &= ~ (regmask (dest_sregs [0])); for (j = 1; j < num_sregs; ++j) { if (dest_sregs [j] != -1) dreg_mask &= ~ (regmask (dest_sregs [j])); } val = rs->vassign [ins->dreg]; if (is_soft_reg (ins->dreg, bank) && (val >= 0) && (!(regmask (val) & dreg_mask))) { /* DREG is already allocated to a register needed for sreg1 */ spill_vreg (cfg, bb, tmp, ins, ins->dreg, 0); } } /* * If dreg is a fixed regpair, free up both of the needed hregs to avoid * various complex situations. */ if (MONO_ARCH_INST_IS_REGPAIR (spec_dest)) { guint32 dreg2, dest_dreg2; g_assert (is_soft_reg (ins->dreg, bank)); if (dest_dreg != -1) { if (rs->vassign [ins->dreg] != dest_dreg) free_up_hreg (cfg, bb, tmp, ins, dest_dreg, 0); dreg2 = ins->dreg + 1; dest_dreg2 = MONO_ARCH_INST_REGPAIR_REG2 (spec_dest, dest_dreg); if (dest_dreg2 != -1) { if (rs->vassign [dreg2] != dest_dreg2) free_up_hreg (cfg, bb, tmp, ins, dest_dreg2, 0); } } } if (dreg_fixed_mask) { g_assert (!bank); if (is_global_ireg (ins->dreg)) { /* * The argument is already in a hard reg, but that reg is * not usable by this instruction, so allocate a new one. */ val = mono_regstate_alloc_int (rs, dreg_fixed_mask); if (val < 0) val = get_register_spilling (cfg, bb, tmp, ins, dreg_fixed_mask, -1, bank); mono_regstate_free_int (rs, val); dest_dreg = val; /* Fall through */ } else dreg_mask &= dreg_fixed_mask; } if (is_soft_reg (ins->dreg, bank)) { val = rs->vassign [ins->dreg]; if (val < 0) { int spill = 0; if (val < -1) { /* the register gets spilled after this inst */ spill = -val -1; } val = alloc_reg (cfg, bb, tmp, ins, dreg_mask, ins->dreg, ®info [ins->dreg], bank); assign_reg (cfg, rs, ins->dreg, val, bank); if (spill) create_spilled_store (cfg, bb, spill, val, prev_dreg, tmp, ins, NULL, bank); } DEBUG (printf ("\tassigned dreg %s to dest R%d\n", mono_regname_full (val, bank), ins->dreg)); ins->dreg = val; } /* Handle regpairs */ if (MONO_ARCH_INST_IS_REGPAIR (spec_dest)) { int reg2 = prev_dreg + 1; g_assert (!bank); g_assert (prev_dreg > -1); g_assert (!is_global_ireg (rs->vassign [prev_dreg])); mask = regpair_reg2_mask (spec_dest, rs->vassign [prev_dreg]); #ifdef TARGET_X86 /* bug #80489 */ mask &= ~regmask (X86_ECX); #endif val = rs->vassign [reg2]; if (val < 0) { int spill = 0; if (val < -1) { /* the register gets spilled after this inst */ spill = -val -1; } val = mono_regstate_alloc_int (rs, mask); if (val < 0) val = get_register_spilling (cfg, bb, tmp, ins, mask, reg2, bank); if (spill) create_spilled_store (cfg, bb, spill, val, reg2, tmp, ins, NULL, bank); } else { if (! (mask & (regmask (val)))) { val = mono_regstate_alloc_int (rs, mask); if (val < 0) val = get_register_spilling (cfg, bb, tmp, ins, mask, reg2, bank); /* Reallocate hreg to the correct register */ create_copy_ins (cfg, bb, tmp, rs->vassign [reg2], val, ins, ip, bank); mono_regstate_free_int (rs, rs->vassign [reg2]); } } DEBUG (printf ("\tassigned dreg-high %s to dest R%d\n", mono_arch_regname (val), reg2)); assign_reg (cfg, rs, reg2, val, bank); dreg_high = val; ins->backend.reg3 = val; if (reg_is_freeable (val, bank) && reg2 >= 0 && (reginfo [reg2].born_in >= i)) { DEBUG (printf ("\tfreeable %s (R%d)\n", mono_arch_regname (val), reg2)); mono_regstate_free_int (rs, val); } } if (prev_dreg >= 0 && is_soft_reg (prev_dreg, bank) && (spec_dest != 'b')) { /* * In theory, we could free up the hreg even if the vreg is alive, * but branches inside bblocks force us to assign the same hreg * to a vreg every time it is encountered. */ int dreg = rs->vassign [prev_dreg]; g_assert (dreg >= 0); DEBUG (printf ("\tfreeable %s (R%d) (born in %d)\n", mono_regname_full (dreg, bank), prev_dreg, reginfo [prev_dreg].born_in)); if (G_UNLIKELY (bank)) mono_regstate_free_general (rs, dreg, bank); else mono_regstate_free_int (rs, dreg); rs->vassign [prev_dreg] = -1; } if ((dest_dreg != -1) && (ins->dreg != dest_dreg)) { /* this instruction only outputs to dest_dreg, need to copy */ create_copy_ins (cfg, bb, tmp, ins->dreg, dest_dreg, ins, ip, bank); ins->dreg = dest_dreg; if (G_UNLIKELY (bank)) { /* the register we need to free up may be used in another logical regbank * so do a translate just in case. */ int translated_bank = translate_bank (cfg->rs, bank, dest_dreg); if (rs->symbolic [translated_bank] [dest_dreg] >= regbank_size [translated_bank]) free_up_hreg (cfg, bb, tmp, ins, dest_dreg, translated_bank); } else { if (rs->isymbolic [dest_dreg] >= MONO_MAX_IREGS) free_up_hreg (cfg, bb, tmp, ins, dest_dreg, bank); } } if (spec_dest == 'b') { /* * The dest reg is read by the instruction, not written, so * avoid allocating sreg1/sreg2 to the same reg. */ for (j = 0; j < num_sregs; ++j) if (!sreg_bank (j, spec)) sreg_masks [j] &= ~ (regmask (ins->dreg)); } /* * TRACK CLOBBERING */ if ((clob_reg != -1) && (!(rs->ifree_mask & (regmask (clob_reg))))) { DEBUG (printf ("\tforced spill of clobbered reg R%d\n", rs->isymbolic [clob_reg])); free_up_hreg (cfg, bb, tmp, ins, clob_reg, 0); } if (spec [MONO_INST_CLOB] == 'c') { int j, s, dreg, dreg2, cur_bank; guint64 clob_mask; clob_mask = MONO_ARCH_CALLEE_REGS; if (rs->ifree_mask != MONO_ARCH_CALLEE_REGS) { /* * Need to avoid spilling the dreg since the dreg is not really * clobbered by the call. */ if ((prev_dreg != -1) && !reg_bank (spec_dest)) dreg = rs->vassign [prev_dreg]; else dreg = -1; if (MONO_ARCH_INST_IS_REGPAIR (spec_dest)) dreg2 = rs->vassign [prev_dreg + 1]; else dreg2 = -1; for (j = 0; j < MONO_MAX_IREGS; ++j) { s = regmask (j); if ((clob_mask & s) && !(rs->ifree_mask & s) && (j != ins->sreg1)) { if ((j != dreg) && (j != dreg2)) free_up_hreg (cfg, bb, tmp, ins, j, 0); else if (rs->isymbolic [j]) /* The hreg is assigned to the dreg of this instruction */ rs->vassign [rs->isymbolic [j]] = -1; mono_regstate_free_int (rs, j); } } } for (cur_bank = 1; cur_bank < MONO_NUM_REGBANKS; ++ cur_bank) { if (rs->free_mask [cur_bank] != regbank_callee_regs [cur_bank]) { clob_mask = regbank_callee_regs [cur_bank]; if ((prev_dreg != -1) && reg_bank (spec_dest)) dreg = rs->vassign [prev_dreg]; else dreg = -1; for (j = 0; j < regbank_size [cur_bank]; ++j) { /* we are looping though the banks in the outer loop * so, we don't need to deal with mirrored hregs * because we will get them in one of the other bank passes. */ if (is_hreg_mirrored (rs, cur_bank, j)) continue; s = regmask (j); if ((clob_mask & s) && !(rs->free_mask [cur_bank] & s)) { if (j != dreg) free_up_hreg (cfg, bb, tmp, ins, j, cur_bank); else if (rs->symbolic [cur_bank] [j]) /* The hreg is assigned to the dreg of this instruction */ rs->vassign [rs->symbolic [cur_bank] [j]] = -1; mono_regstate_free_general (rs, j, cur_bank); } } } } } /* * TRACK ARGUMENT REGS */ if (spec [MONO_INST_CLOB] == 'c' && MONO_IS_CALL (ins)) { MonoCallInst *call = (MonoCallInst*)ins; GSList *list; /* * This needs to be done before assigning sreg1, so sreg1 will * not be assigned one of the argument regs. */ /* * Assign all registers in call->out_reg_args to the proper * argument registers. */ list = call->out_ireg_args; if (list) { while (list) { guint32 regpair; int reg, hreg; regpair = (guint32)(gssize)(list->data); hreg = regpair >> 24; reg = regpair & 0xffffff; assign_reg (cfg, rs, reg, hreg, 0); sreg_masks [0] &= ~(regmask (hreg)); DEBUG (printf ("\tassigned arg reg %s to R%d\n", mono_arch_regname (hreg), reg)); list = g_slist_next (list); } } list = call->out_freg_args; if (list) { while (list) { guint32 regpair; int reg, hreg; regpair = (guint32)(gssize)(list->data); hreg = regpair >> 24; reg = regpair & 0xffffff; assign_reg (cfg, rs, reg, hreg, 1); DEBUG (printf ("\tassigned arg reg %s to R%d\n", mono_regname_full (hreg, 1), reg)); list = g_slist_next (list); } } } /* * TRACK SREG1 */ bank = sreg1_bank (spec); if (MONO_ARCH_INST_IS_REGPAIR (spec_dest) && (spec [MONO_INST_CLOB] == '1')) { int sreg1 = sregs [0]; int dest_sreg1 = dest_sregs [0]; g_assert (is_soft_reg (sreg1, bank)); /* To simplify things, we allocate the same regpair to sreg1 and dreg */ if (dest_sreg1 != -1) g_assert (dest_sreg1 == ins->dreg); val = mono_regstate_alloc_int (rs, regmask (ins->dreg)); g_assert (val >= 0); if (rs->vassign [sreg1] >= 0 && rs->vassign [sreg1] != val) // FIXME: g_assert_not_reached (); assign_reg (cfg, rs, sreg1, val, bank); DEBUG (printf ("\tassigned sreg1-low %s to R%d\n", mono_regname_full (val, bank), sreg1)); g_assert ((regmask (dreg_high)) & regpair_reg2_mask (spec_src1, ins->dreg)); val = mono_regstate_alloc_int (rs, regmask (dreg_high)); g_assert (val >= 0); if (rs->vassign [sreg1 + 1] >= 0 && rs->vassign [sreg1 + 1] != val) // FIXME: g_assert_not_reached (); assign_reg (cfg, rs, sreg1 + 1, val, bank); DEBUG (printf ("\tassigned sreg1-high %s to R%d\n", mono_regname_full (val, bank), sreg1 + 1)); /* Skip rest of this section */ dest_sregs [0] = -1; } if (sreg_fixed_masks [0]) { g_assert (!bank); if (is_global_ireg (sregs [0])) { /* * The argument is already in a hard reg, but that reg is * not usable by this instruction, so allocate a new one. */ val = mono_regstate_alloc_int (rs, sreg_fixed_masks [0]); if (val < 0) val = get_register_spilling (cfg, bb, tmp, ins, sreg_fixed_masks [0], -1, bank); mono_regstate_free_int (rs, val); dest_sregs [0] = val; /* Fall through to the dest_sreg1 != -1 case */ } else sreg_masks [0] &= sreg_fixed_masks [0]; } if (dest_sregs [0] != -1) { sreg_masks [0] = regmask (dest_sregs [0]); if ((rs->vassign [sregs [0]] != dest_sregs [0]) && !(rs->ifree_mask & (regmask (dest_sregs [0])))) { free_up_hreg (cfg, bb, tmp, ins, dest_sregs [0], 0); } if (is_global_ireg (sregs [0])) { /* The argument is already in a hard reg, need to copy */ MonoInst *copy = create_copy_ins (cfg, bb, tmp, dest_sregs [0], sregs [0], NULL, ip, 0); insert_before_ins (bb, ins, copy); sregs [0] = dest_sregs [0]; } } if (is_soft_reg (sregs [0], bank)) { val = rs->vassign [sregs [0]]; prev_sregs [0] = sregs [0]; if (val < 0) { int spill = 0; if (val < -1) { /* the register gets spilled after this inst */ spill = -val -1; } if ((ins->opcode == OP_MOVE) && !spill && !bank && is_local_ireg (ins->dreg) && (rs->ifree_mask & (regmask (ins->dreg)))) { /* * Allocate the same hreg to sreg1 as well so the * peephole can get rid of the move. */ sreg_masks [0] = regmask (ins->dreg); } if (spec [MONO_INST_CLOB] == '1' && !dreg_bank (spec) && (rs->ifree_mask & (regmask (ins->dreg)))) /* Allocate the same reg to sreg1 to avoid a copy later */ sreg_masks [0] = regmask (ins->dreg); val = alloc_reg (cfg, bb, tmp, ins, sreg_masks [0], sregs [0], ®info [sregs [0]], bank); assign_reg (cfg, rs, sregs [0], val, bank); DEBUG (printf ("\tassigned sreg1 %s to R%d\n", mono_regname_full (val, bank), sregs [0])); if (spill) { /* * Need to insert before the instruction since it can * overwrite sreg1. */ create_spilled_store (cfg, bb, spill, val, prev_sregs [0], tmp, NULL, ins, bank); } } else if ((dest_sregs [0] != -1) && (dest_sregs [0] != val)) { MonoInst *copy = create_copy_ins (cfg, bb, tmp, dest_sregs [0], val, NULL, ip, bank); insert_before_ins (bb, ins, copy); for (j = 1; j < num_sregs; ++j) sreg_masks [j] &= ~(regmask (dest_sregs [0])); val = dest_sregs [0]; } sregs [0] = val; } else { prev_sregs [0] = -1; } mono_inst_set_src_registers (ins, sregs); for (j = 1; j < num_sregs; ++j) sreg_masks [j] &= ~(regmask (sregs [0])); /* Handle the case when sreg1 is a regpair but dreg is not */ if (MONO_ARCH_INST_IS_REGPAIR (spec_src1) && (spec [MONO_INST_CLOB] != '1')) { int reg2 = prev_sregs [0] + 1; g_assert (!bank); g_assert (prev_sregs [0] > -1); g_assert (!is_global_ireg (rs->vassign [prev_sregs [0]])); mask = regpair_reg2_mask (spec_src1, rs->vassign [prev_sregs [0]]); val = rs->vassign [reg2]; if (val < 0) { int spill = 0; if (val < -1) { /* the register gets spilled after this inst */ spill = -val -1; } val = mono_regstate_alloc_int (rs, mask); if (val < 0) val = get_register_spilling (cfg, bb, tmp, ins, mask, reg2, bank); if (spill) g_assert_not_reached (); } else { if (! (mask & (regmask (val)))) { /* The vreg is already allocated to a wrong hreg */ /* FIXME: */ g_assert_not_reached (); #if 0 val = mono_regstate_alloc_int (rs, mask); if (val < 0) val = get_register_spilling (cfg, bb, tmp, ins, mask, reg2, bank); /* Reallocate hreg to the correct register */ create_copy_ins (cfg, bb, tmp, rs->vassign [reg2], val, ins, ip, bank); mono_regstate_free_int (rs, rs->vassign [reg2]); #endif } } sreg1_high = val; DEBUG (printf ("\tassigned sreg1 hreg %s to dest R%d\n", mono_arch_regname (val), reg2)); assign_reg (cfg, rs, reg2, val, bank); } /* Handle dreg==sreg1 */ if (((dreg_is_fp (spec) && sreg1_is_fp (spec)) || spec [MONO_INST_CLOB] == '1') && ins->dreg != sregs [0]) { MonoInst *sreg2_copy = NULL; MonoInst *copy; int bank = reg_bank (spec_src1); if (ins->dreg == sregs [1]) { /* * copying sreg1 to dreg could clobber sreg2, so allocate a new * register for it. */ int reg2 = alloc_reg (cfg, bb, tmp, ins, dreg_mask, sregs [1], NULL, bank); DEBUG (printf ("\tneed to copy sreg2 %s to reg %s\n", mono_regname_full (sregs [1], bank), mono_regname_full (reg2, bank))); sreg2_copy = create_copy_ins (cfg, bb, tmp, reg2, sregs [1], NULL, ip, bank); prev_sregs [1] = sregs [1] = reg2; if (G_UNLIKELY (bank)) mono_regstate_free_general (rs, reg2, bank); else mono_regstate_free_int (rs, reg2); } if (MONO_ARCH_INST_IS_REGPAIR (spec_src1)) { /* Copying sreg1_high to dreg could also clobber sreg2 */ if (rs->vassign [prev_sregs [0] + 1] == sregs [1]) /* FIXME: */ g_assert_not_reached (); /* * sreg1 and dest are already allocated to the same regpair by the * SREG1 allocation code. */ g_assert (sregs [0] == ins->dreg); g_assert (dreg_high == sreg1_high); } DEBUG (printf ("\tneed to copy sreg1 %s to dreg %s\n", mono_regname_full (sregs [0], bank), mono_regname_full (ins->dreg, bank))); copy = create_copy_ins (cfg, bb, tmp, ins->dreg, sregs [0], NULL, ip, bank); insert_before_ins (bb, ins, copy); if (sreg2_copy) insert_before_ins (bb, copy, sreg2_copy); /* * Need to prevent sreg2 to be allocated to sreg1, since that * would screw up the previous copy. */ sreg_masks [1] &= ~ (regmask (sregs [0])); /* we set sreg1 to dest as well */ prev_sregs [0] = sregs [0] = ins->dreg; sreg_masks [1] &= ~ (regmask (ins->dreg)); } mono_inst_set_src_registers (ins, sregs); /* * TRACK SREG2, 3, ... */ for (j = 1; j < num_sregs; ++j) { int k; bank = sreg_bank (j, spec); if (MONO_ARCH_INST_IS_REGPAIR (spec [MONO_INST_SRC1 + j])) g_assert_not_reached (); if (dest_sregs [j] != -1 && is_global_ireg (sregs [j])) { /* * Argument already in a global hard reg, copy it to the fixed reg, without * allocating it to the fixed reg. */ MonoInst *copy = create_copy_ins (cfg, bb, tmp, dest_sregs [j], sregs [j], NULL, ip, 0); insert_before_ins (bb, ins, copy); sregs [j] = dest_sregs [j]; } else if (is_soft_reg (sregs [j], bank)) { val = rs->vassign [sregs [j]]; if (dest_sregs [j] != -1 && val >= 0 && dest_sregs [j] != val) { /* * The sreg is already allocated to a hreg, but not to the fixed * reg required by the instruction. Spill the sreg, so it can be * allocated to the fixed reg by the code below. */ /* Currently, this code should only be hit for CAS */ spill_vreg (cfg, bb, tmp, ins, sregs [j], 0); val = rs->vassign [sregs [j]]; } if (val < 0) { int spill = 0; if (val < -1) { /* the register gets spilled after this inst */ spill = -val -1; } val = alloc_reg (cfg, bb, tmp, ins, sreg_masks [j], sregs [j], ®info [sregs [j]], bank); assign_reg (cfg, rs, sregs [j], val, bank); DEBUG (printf ("\tassigned sreg%d %s to R%d\n", j + 1, mono_regname_full (val, bank), sregs [j])); if (spill) { /* * Need to insert before the instruction since it can * overwrite sreg2. */ create_spilled_store (cfg, bb, spill, val, sregs [j], tmp, NULL, ins, bank); } } sregs [j] = val; for (k = j + 1; k < num_sregs; ++k) sreg_masks [k] &= ~ (regmask (sregs [j])); } else { prev_sregs [j] = -1; } } mono_inst_set_src_registers (ins, sregs); /* Sanity check */ /* Do this only for CAS for now */ for (j = 1; j < num_sregs; ++j) { int sreg = sregs [j]; int dest_sreg = dest_sregs [j]; if (j == 2 && dest_sreg != -1) { int k; g_assert (sreg == dest_sreg); for (k = 0; k < num_sregs; ++k) { if (k != j) g_assert (sregs [k] != dest_sreg); } } } /*if (reg_is_freeable (ins->sreg1) && prev_sreg1 >= 0 && reginfo [prev_sreg1].born_in >= i) { DEBUG (printf ("freeable %s\n", mono_arch_regname (ins->sreg1))); mono_regstate_free_int (rs, ins->sreg1); } if (reg_is_freeable (ins->sreg2) && prev_sreg2 >= 0 && reginfo [prev_sreg2].born_in >= i) { DEBUG (printf ("freeable %s\n", mono_arch_regname (ins->sreg2))); mono_regstate_free_int (rs, ins->sreg2); }*/ DEBUG (mono_print_ins_index (i, ins)); } // FIXME: Set MAX_FREGS to 8 // FIXME: Optimize generated code #if MONO_ARCH_USE_FPSTACK /* * Make a forward pass over the code, simulating the fp stack, making sure the * arguments required by the fp opcodes are at the top of the stack. */ if (has_fp) { MonoInst *prev = NULL; MonoInst *fxch; int tmp; g_assert (num_sregs <= 2); for (ins = bb->code; ins; ins = ins->next) { spec = ins_get_spec (ins->opcode); DEBUG (printf ("processing:")); DEBUG (mono_print_ins_index (0, ins)); if (ins->opcode == OP_FMOVE) { /* Do it by renaming the source to the destination on the stack */ // FIXME: Is this correct ? for (i = 0; i < sp; ++i) if (fpstack [i] == ins->sreg1) fpstack [i] = ins->dreg; prev = ins; continue; } if (sreg1_is_fp (spec) && sreg2_is_fp (spec) && (fpstack [sp - 2] != ins->sreg1)) { /* Arg1 must be in %st(1) */ g_assert (prev); i = 0; while ((i < sp) && (fpstack [i] != ins->sreg1)) i ++; g_assert (i < sp); if (sp - 1 - i > 0) { /* First move it to %st(0) */ DEBUG (printf ("\tswap %%st(0) and %%st(%d)\n", sp - 1 - i)); MONO_INST_NEW (cfg, fxch, OP_X86_FXCH); fxch->inst_imm = sp - 1 - i; mono_bblock_insert_after_ins (bb, prev, fxch); prev = fxch; tmp = fpstack [sp - 1]; fpstack [sp - 1] = fpstack [i]; fpstack [i] = tmp; } /* Then move it to %st(1) */ DEBUG (printf ("\tswap %%st(0) and %%st(1)\n")); MONO_INST_NEW (cfg, fxch, OP_X86_FXCH); fxch->inst_imm = 1; mono_bblock_insert_after_ins (bb, prev, fxch); prev = fxch; tmp = fpstack [sp - 1]; fpstack [sp - 1] = fpstack [sp - 2]; fpstack [sp - 2] = tmp; } if (sreg2_is_fp (spec)) { g_assert (sp > 0); if (fpstack [sp - 1] != ins->sreg2) { g_assert (prev); i = 0; while ((i < sp) && (fpstack [i] != ins->sreg2)) i ++; g_assert (i < sp); DEBUG (printf ("\tswap %%st(0) and %%st(%d)\n", sp - 1 - i)); MONO_INST_NEW (cfg, fxch, OP_X86_FXCH); fxch->inst_imm = sp - 1 - i; mono_bblock_insert_after_ins (bb, prev, fxch); prev = fxch; tmp = fpstack [sp - 1]; fpstack [sp - 1] = fpstack [i]; fpstack [i] = tmp; } sp --; } if (sreg1_is_fp (spec)) { g_assert (sp > 0); if (fpstack [sp - 1] != ins->sreg1) { g_assert (prev); i = 0; while ((i < sp) && (fpstack [i] != ins->sreg1)) i ++; g_assert (i < sp); DEBUG (printf ("\tswap %%st(0) and %%st(%d)\n", sp - 1 - i)); MONO_INST_NEW (cfg, fxch, OP_X86_FXCH); fxch->inst_imm = sp - 1 - i; mono_bblock_insert_after_ins (bb, prev, fxch); prev = fxch; tmp = fpstack [sp - 1]; fpstack [sp - 1] = fpstack [i]; fpstack [i] = tmp; } sp --; } if (dreg_is_fp (spec)) { g_assert (sp < 8); fpstack [sp ++] = ins->dreg; } if (G_UNLIKELY (cfg->verbose_level >= 2)) { printf ("\t["); for (i = 0; i < sp; ++i) printf ("%s%%fr%d", (i > 0) ? ", " : "", fpstack [i]); printf ("]\n"); } prev = ins; } if (sp && bb != cfg->bb_exit && !(bb->out_count == 1 && bb->out_bb [0] == cfg->bb_exit)) { /* Remove remaining items from the fp stack */ /* * These can remain for example as a result of a dead fmove like in * System.Collections.Generic.EqualityComparer.Equals (). */ while (sp) { MONO_INST_NEW (cfg, ins, OP_X86_FPOP); mono_add_ins_to_end (bb, ins); sp --; } } } #endif } CompRelation mono_opcode_to_cond (int opcode) { switch (opcode) { case OP_CEQ: case OP_IBEQ: case OP_ICEQ: case OP_LBEQ: case OP_LCEQ: case OP_FBEQ: case OP_FCEQ: case OP_RBEQ: case OP_RCEQ: case OP_COND_EXC_EQ: case OP_COND_EXC_IEQ: case OP_CMOV_IEQ: case OP_CMOV_LEQ: return CMP_EQ; case OP_FCNEQ: case OP_ICNEQ: case OP_IBNE_UN: case OP_LBNE_UN: case OP_FBNE_UN: case OP_COND_EXC_NE_UN: case OP_COND_EXC_INE_UN: case OP_CMOV_INE_UN: case OP_CMOV_LNE_UN: return CMP_NE; case OP_FCLE: case OP_ICLE: case OP_IBLE: case OP_LBLE: case OP_FBLE: case OP_CMOV_ILE: case OP_CMOV_LLE: return CMP_LE; case OP_FCGE: case OP_ICGE: case OP_IBGE: case OP_LBGE: case OP_FBGE: case OP_CMOV_IGE: case OP_CMOV_LGE: return CMP_GE; case OP_CLT: case OP_IBLT: case OP_ICLT: case OP_LBLT: case OP_LCLT: case OP_FBLT: case OP_FCLT: case OP_RBLT: case OP_RCLT: case OP_COND_EXC_LT: case OP_COND_EXC_ILT: case OP_CMOV_ILT: case OP_CMOV_LLT: return CMP_LT; case OP_CGT: case OP_IBGT: case OP_ICGT: case OP_LBGT: case OP_LCGT: case OP_FBGT: case OP_FCGT: case OP_RBGT: case OP_RCGT: case OP_COND_EXC_GT: case OP_COND_EXC_IGT: case OP_CMOV_IGT: case OP_CMOV_LGT: return CMP_GT; case OP_ICLE_UN: case OP_IBLE_UN: case OP_LBLE_UN: case OP_FBLE_UN: case OP_COND_EXC_LE_UN: case OP_COND_EXC_ILE_UN: case OP_CMOV_ILE_UN: case OP_CMOV_LLE_UN: return CMP_LE_UN; case OP_ICGE_UN: case OP_IBGE_UN: case OP_LBGE_UN: case OP_FBGE_UN: case OP_CMOV_IGE_UN: case OP_CMOV_LGE_UN: return CMP_GE_UN; case OP_CLT_UN: case OP_IBLT_UN: case OP_ICLT_UN: case OP_LBLT_UN: case OP_LCLT_UN: case OP_FBLT_UN: case OP_FCLT_UN: case OP_RBLT_UN: case OP_RCLT_UN: case OP_COND_EXC_LT_UN: case OP_COND_EXC_ILT_UN: case OP_CMOV_ILT_UN: case OP_CMOV_LLT_UN: return CMP_LT_UN; case OP_CGT_UN: case OP_IBGT_UN: case OP_ICGT_UN: case OP_LBGT_UN: case OP_LCGT_UN: case OP_FCGT_UN: case OP_FBGT_UN: case OP_RCGT_UN: case OP_RBGT_UN: case OP_COND_EXC_GT_UN: case OP_COND_EXC_IGT_UN: case OP_CMOV_IGT_UN: case OP_CMOV_LGT_UN: return CMP_GT_UN; default: printf ("%s\n", mono_inst_name (opcode)); g_assert_not_reached (); return (CompRelation)0; } } CompRelation mono_negate_cond (CompRelation cond) { switch (cond) { case CMP_EQ: return CMP_NE; case CMP_NE: return CMP_EQ; case CMP_LE: return CMP_GT; case CMP_GE: return CMP_LT; case CMP_LT: return CMP_GE; case CMP_GT: return CMP_LE; case CMP_LE_UN: return CMP_GT_UN; case CMP_GE_UN: return CMP_LT_UN; case CMP_LT_UN: return CMP_GE_UN; case CMP_GT_UN: return CMP_LE_UN; default: g_assert_not_reached (); } } CompType mono_opcode_to_type (int opcode, int cmp_opcode) { if ((opcode >= OP_CEQ) && (opcode <= OP_CLT_UN)) return CMP_TYPE_L; else if ((opcode >= OP_IBEQ) && (opcode <= OP_IBLT_UN)) return CMP_TYPE_I; else if ((opcode >= OP_ICEQ) && (opcode <= OP_ICLT_UN)) return CMP_TYPE_I; else if ((opcode >= OP_LBEQ) && (opcode <= OP_LBLT_UN)) return CMP_TYPE_L; else if ((opcode >= OP_LCEQ) && (opcode <= OP_LCLT_UN)) return CMP_TYPE_L; else if ((opcode >= OP_FBEQ) && (opcode <= OP_FBLT_UN)) return CMP_TYPE_F; else if ((opcode >= OP_FCEQ) && (opcode <= OP_FCLT_UN)) return CMP_TYPE_F; else if ((opcode >= OP_COND_EXC_IEQ) && (opcode <= OP_COND_EXC_ILT_UN)) return CMP_TYPE_I; else if ((opcode >= OP_COND_EXC_EQ) && (opcode <= OP_COND_EXC_LT_UN)) { switch (cmp_opcode) { case OP_ICOMPARE: case OP_ICOMPARE_IMM: return CMP_TYPE_I; default: return CMP_TYPE_L; } } else { g_error ("Unknown opcode '%s' in opcode_to_type", mono_inst_name (opcode)); return (CompType)0; } } /* * mono_peephole_ins: * * Perform some architecture independent peephole optimizations. */ void mono_peephole_ins (MonoBasicBlock *bb, MonoInst *ins) { int filter = FILTER_IL_SEQ_POINT; MonoInst *last_ins = mono_inst_prev (ins, filter); switch (ins->opcode) { case OP_MUL_IMM: /* remove unnecessary multiplication with 1 */ if (ins->inst_imm == 1) { if (ins->dreg != ins->sreg1) ins->opcode = OP_MOVE; else MONO_DELETE_INS (bb, ins); } break; case OP_LOAD_MEMBASE: case OP_LOADI4_MEMBASE: /* * Note: if reg1 = reg2 the load op is removed * * OP_STORE_MEMBASE_REG reg1, offset(basereg) * OP_LOAD_MEMBASE offset(basereg), reg2 * --> * OP_STORE_MEMBASE_REG reg1, offset(basereg) * OP_MOVE reg1, reg2 */ if (last_ins && last_ins->opcode == OP_GC_LIVENESS_DEF) last_ins = mono_inst_prev (ins, filter); if (last_ins && (((ins->opcode == OP_LOADI4_MEMBASE) && (last_ins->opcode == OP_STOREI4_MEMBASE_REG)) || ((ins->opcode == OP_LOAD_MEMBASE) && (last_ins->opcode == OP_STORE_MEMBASE_REG))) && ins->inst_basereg == last_ins->inst_destbasereg && ins->inst_offset == last_ins->inst_offset) { if (ins->dreg == last_ins->sreg1) { MONO_DELETE_INS (bb, ins); break; } else { ins->opcode = OP_MOVE; ins->sreg1 = last_ins->sreg1; } /* * Note: reg1 must be different from the basereg in the second load * Note: if reg1 = reg2 is equal then second load is removed * * OP_LOAD_MEMBASE offset(basereg), reg1 * OP_LOAD_MEMBASE offset(basereg), reg2 * --> * OP_LOAD_MEMBASE offset(basereg), reg1 * OP_MOVE reg1, reg2 */ } if (last_ins && (last_ins->opcode == OP_LOADI4_MEMBASE || last_ins->opcode == OP_LOAD_MEMBASE) && ins->inst_basereg != last_ins->dreg && ins->inst_basereg == last_ins->inst_basereg && ins->inst_offset == last_ins->inst_offset) { if (ins->dreg == last_ins->dreg) { MONO_DELETE_INS (bb, ins); } else { ins->opcode = OP_MOVE; ins->sreg1 = last_ins->dreg; } //g_assert_not_reached (); #if 0 /* * OP_STORE_MEMBASE_IMM imm, offset(basereg) * OP_LOAD_MEMBASE offset(basereg), reg * --> * OP_STORE_MEMBASE_IMM imm, offset(basereg) * OP_ICONST reg, imm */ } else if (last_ins && (last_ins->opcode == OP_STOREI4_MEMBASE_IMM || last_ins->opcode == OP_STORE_MEMBASE_IMM) && ins->inst_basereg == last_ins->inst_destbasereg && ins->inst_offset == last_ins->inst_offset) { ins->opcode = OP_ICONST; ins->inst_c0 = last_ins->inst_imm; g_assert_not_reached (); // check this rule #endif } break; case OP_LOADI1_MEMBASE: case OP_LOADU1_MEMBASE: /* * Note: if reg1 = reg2 the load op is removed * * OP_STORE_MEMBASE_REG reg1, offset(basereg) * OP_LOAD_MEMBASE offset(basereg), reg2 * --> * OP_STORE_MEMBASE_REG reg1, offset(basereg) * OP_MOVE reg1, reg2 */ if (last_ins && (last_ins->opcode == OP_STOREI1_MEMBASE_REG) && ins->inst_basereg == last_ins->inst_destbasereg && ins->inst_offset == last_ins->inst_offset) { ins->opcode = (ins->opcode == OP_LOADI1_MEMBASE) ? OP_PCONV_TO_I1 : OP_PCONV_TO_U1; ins->sreg1 = last_ins->sreg1; } break; case OP_LOADI2_MEMBASE: case OP_LOADU2_MEMBASE: /* * Note: if reg1 = reg2 the load op is removed * * OP_STORE_MEMBASE_REG reg1, offset(basereg) * OP_LOAD_MEMBASE offset(basereg), reg2 * --> * OP_STORE_MEMBASE_REG reg1, offset(basereg) * OP_MOVE reg1, reg2 */ if (last_ins && (last_ins->opcode == OP_STOREI2_MEMBASE_REG) && ins->inst_basereg == last_ins->inst_destbasereg && ins->inst_offset == last_ins->inst_offset) { #if SIZEOF_REGISTER == 8 ins->opcode = (ins->opcode == OP_LOADI2_MEMBASE) ? OP_PCONV_TO_I2 : OP_PCONV_TO_U2; #else /* The definition of OP_PCONV_TO_U2 is wrong */ ins->opcode = (ins->opcode == OP_LOADI2_MEMBASE) ? OP_PCONV_TO_I2 : OP_ICONV_TO_U2; #endif ins->sreg1 = last_ins->sreg1; } break; case OP_LOADX_MEMBASE: if (last_ins && last_ins->opcode == OP_STOREX_MEMBASE && ins->inst_basereg == last_ins->inst_destbasereg && ins->inst_offset == last_ins->inst_offset) { if (ins->dreg == last_ins->sreg1) { MONO_DELETE_INS (bb, ins); break; } else { ins->opcode = OP_XMOVE; ins->sreg1 = last_ins->sreg1; } } break; case OP_MOVE: case OP_FMOVE: /* * Removes: * * OP_MOVE reg, reg */ if (ins->dreg == ins->sreg1) { MONO_DELETE_INS (bb, ins); break; } /* * Removes: * * OP_MOVE sreg, dreg * OP_MOVE dreg, sreg */ if (last_ins && last_ins->opcode == ins->opcode && ins->sreg1 == last_ins->dreg && ins->dreg == last_ins->sreg1) { MONO_DELETE_INS (bb, ins); } break; case OP_NOP: MONO_DELETE_INS (bb, ins); break; } } int mini_exception_id_by_name (const char *name) { if (strcmp (name, "IndexOutOfRangeException") == 0) return MONO_EXC_INDEX_OUT_OF_RANGE; if (strcmp (name, "OverflowException") == 0) return MONO_EXC_OVERFLOW; if (strcmp (name, "ArithmeticException") == 0) return MONO_EXC_ARITHMETIC; if (strcmp (name, "DivideByZeroException") == 0) return MONO_EXC_DIVIDE_BY_ZERO; if (strcmp (name, "InvalidCastException") == 0) return MONO_EXC_INVALID_CAST; if (strcmp (name, "NullReferenceException") == 0) return MONO_EXC_NULL_REF; if (strcmp (name, "ArrayTypeMismatchException") == 0) return MONO_EXC_ARRAY_TYPE_MISMATCH; if (strcmp (name, "ArgumentException") == 0) return MONO_EXC_ARGUMENT; g_error ("Unknown intrinsic exception %s\n", name); return -1; } gboolean mini_type_is_hfa (MonoType *t, int *out_nfields, int *out_esize) { MonoClass *klass; gpointer iter; MonoClassField *field; MonoType *ftype, *prev_ftype = NULL; int nfields = 0; klass = mono_class_from_mono_type (t); iter = NULL; while ((field = mono_class_get_fields (klass, &iter))) { if (field->type->attrs & FIELD_ATTRIBUTE_STATIC) continue; ftype = mono_field_get_type (field); ftype = mini_native_type_replace_type (ftype); if (MONO_TYPE_ISSTRUCT (ftype)) { int nested_nfields, nested_esize; if (!mini_type_is_hfa (ftype, &nested_nfields, &nested_esize)) return FALSE; if (nested_esize == 4) ftype = &mono_defaults.single_class->byval_arg; else ftype = &mono_defaults.double_class->byval_arg; if (prev_ftype && prev_ftype->type != ftype->type) return FALSE; prev_ftype = ftype; nfields += nested_nfields; } else { if (!(!ftype->byref && (ftype->type == MONO_TYPE_R4 || ftype->type == MONO_TYPE_R8))) return FALSE; if (prev_ftype && prev_ftype->type != ftype->type) return FALSE; prev_ftype = ftype; nfields ++; } } if (nfields == 0) return FALSE; *out_nfields = nfields; *out_esize = prev_ftype->type == MONO_TYPE_R4 ? 4 : 8; return TRUE; } MonoRegState* mono_regstate_new (void) { MonoRegState* rs = g_new0 (MonoRegState, 1); rs->next_vreg = MAX (MONO_MAX_IREGS, MONO_MAX_FREGS); #ifdef MONO_ARCH_NEED_SIMD_BANK rs->next_vreg = MAX (rs->next_vreg, MONO_MAX_XREGS); #endif return rs; } void mono_regstate_free (MonoRegState *rs) { g_free (rs->vassign); g_free (rs); } #endif /* DISABLE_JIT */ gboolean mono_is_regsize_var (MonoType *t) { t = mini_get_underlying_type (t); switch (t->type) { case MONO_TYPE_I1: case MONO_TYPE_U1: case MONO_TYPE_I2: case MONO_TYPE_U2: case MONO_TYPE_I4: case MONO_TYPE_U4: case MONO_TYPE_I: case MONO_TYPE_U: case MONO_TYPE_PTR: case MONO_TYPE_FNPTR: #if SIZEOF_REGISTER == 8 case MONO_TYPE_I8: case MONO_TYPE_U8: #endif return TRUE; case MONO_TYPE_OBJECT: case MONO_TYPE_STRING: case MONO_TYPE_CLASS: case MONO_TYPE_SZARRAY: case MONO_TYPE_ARRAY: return TRUE; case MONO_TYPE_GENERICINST: if (!mono_type_generic_inst_is_valuetype (t)) return TRUE; return FALSE; case MONO_TYPE_VALUETYPE: return FALSE; default: return FALSE; } }