
HW-Modeling IP Core Documentation

T. Polzer, J. Lechner

March 17, 2010

1

Contents

1 Text Mode Video Controller Core 3
1.1 Description . 3
1.2 Required VHDL files . 4
1.3 Component Declaration . 4
1.4 Instantiation Template . 7
1.5 Interface Protocol . 7

1.5.1 Command Description . 8

2 PS/2 Keyboard Controller Core 10
2.1 Required VHDL files . 10
2.2 Component Declaration . 10
2.3 Instantiation Template . 10
2.4 Interface Protocol . 12

2

1 Text Mode Video Controller Core

1.1 Description

The text mode video controller core establishes a simple character (ASCII) based
interface to an external monitor. As video mode the standard VGA mode is
used. On our target board 8-bit (=256) colors are supported.

The controller organizes the screen into 80 columns by 30 lines. All 256
ASCII characters are supported and decoded using the Western European Code-
page (CP850)[1]. Figure 1 contains an example output generated by the video
controller.

Figure 1: Example screen layout.

The controller implements a simple cursor interface. Characters are always
written to the current cursor position. The newline and carrige return characters
can be used for cursor control. Additionally the cursor can be freely positioned
on the screen using special commands. The cursor supports three states (on,
off or blinking) and can be displayed in any color.

Furthermore the background color is not fixed but can be freely chosen.
The integration of the controller into your design is simple, as the imple-

mented controller interface is straight forward. Furthermore the user interface
is independent of the target hardware (always 24-bit color and 8-bit ASCII
data). All necessary adjustments (e.g., color adjustment from 24 to 8 bits) is
done by the controller internally. In the following sections, the controller and
its interfaces will be described in more detail.

3

1.2 Required VHDL files

The text mode video controller interface requires the following sourcefiles:

• console sm.vhd

• console sm beh.vhd

• console sm sync.vhd

• console sm sync beh.vhd

• font pkg.vhd

• font rom.vhd

• font rom beh.vhd

• interval.vhd

• interval beh.vhd

• math pkg.vhd

• textmode vga.vhd

• textmode vga component pkg.vhd

• textmode vga h sm.vhd

• textmode vga h sm beh.vhd

• textmode vga pkg.vhd

• textmode vga platform dependent pkg.vhd

• textmode vga struct.vhd

• textmode vga v sm.vhd

• textmode vga v sm beh.vhd

• video memory.vhd

• video memory beh.vhd

1.3 Component Declaration

The declaration of the textmode video controller can be found in Listing 1,
while the functionality of each generic is described in Table 1 and of each signal
in Table 2. Multiple constants are used to specify the width of the signals.
These constants are declared in the package textmode vga pkg and the package
textmode vga platform dependent pkg, respectively.

4

1 component textmode_vga i s

generic

(
−− VGA c lock f requency [Hz]
VGA_CLK_FREQ : integer ;

6 −− Cursor b l i nk i n t e r v a l [ms]
BLINK_INTERVAL_MS : integer ;
−− Number o f s t ag e s used f o r i n t e r n a l s ynch ron i z e r s
SYNC_STAGES : integer

) ;
11 port

(
−− I n t e r f a c e to user l o g i c
sys_clk , sys_res_n : in std_logic ;
command : in std_logic_vector (COMMAND_SIZE − 1 downto 0) ;

16 command_data : in std_logic_vector (3 ∗ COLOR_SIZE +
CHAR_SIZE − 1 downto 0) ;

free : out std_logic ;

−− Externa l VGA i n t e r f a c e
vga_clk , vga_res_n : in std_logic ;

21 vsync_n : out std_logic ;
hsync_n : out std_logic ;
r : out std_logic_vector (RED_BITS − 1 downto 0) ;
g : out std_logic_vector (GREEN_BITS − 1 downto 0) ;
b : out std_logic_vector (BLUE_BITS − 1 downto 0)

26) ;
end component textmode_vga ;

Listing 1: Textmode video controller declaration

Generic name Functionality

V GA CLK FREQ Actual clock frequency of the vga clk sig-
nal given in Hz. Normally the frequency
should be 25.175 MHz. Unfortunately not
all target boards support this frequency.
Monitors are tolerant to variations in this
frequency, therefore values in the range
[25,25.175] MHz should work.

BLINK INTERV AL MS Blink interval of the cursor given in mil-
liseconds.

SY NC STAGES Number of synchronizer stages used for
crossing the clock domain between sys clk

and vga clk.

Table 1: Textmode video controller generics description

5

Signal name Direction Signal width Functionality

sys clk in 1 System clock signal.
sys res n in 1 System reset signal (low active, not synchronized).
command in COMMAND SIZE

(8)
Command which should be executed by the controller.

command data in 3 * COLOR SIZE + CHAR SIZE
(32)

The data field of the command.

free out 1 Status signal, if 0 the controller is busy, if 1 the controller is ready
to receive a new command.

vga clk in 1 Clock signal used for establishing the VGA timing. The clock
frequency should be in the range of [25,25.175] MHz.

vga res n in 1 Reset signal of the VGA timing generator (low active, not syn-
chronized).

vsync n out 1 Low active vertical synchronization signal (VGA interface).
hsync n out 1 Low active horizontal synchronization signal (VGA interface).
r out RED BITS

(platform dependent)
Red color output (VGA interface).

g out GREEN BITS
(platform dependent)

Green color output (VGA interface).

b out BLUE BITS
(platform dependent)

Blue color output (VGA interface).

Table 2: Textmode video controller signal description

6

textmode_vga_inst : textmode_vga

generic map

3 (
VGA_CLK_FREQ => 25000000 ,
BLINK_INTERVAL_MS => 1000 ,
SYNC_STAGES => 2

)
8 port map

(
sys_clk => sys_clk ,
sys_res_n => sys_res_n ,
command => command ,

13 command_data => command_data ,
free => free ,
vga_clk => vga_clk ,
vga_res_n => vga_res_n ,
vsync_n => vsync_n ,

18 hsync_n => hsync_n ,
r => r ,
g => g ,
b => b

) ;

Listing 2: Textmode video controller instantiation

1.4 Instantiation Template

To be able to instantiate the textmode video controller, the packages textmode vga pkg,
textmode vga component declaration pkg and textmode vga platform dependent pkg

must be included within your VHDL source. An instantiation template can be
found in Listing 2.

For details on the type and size of the used signals, see Section 1.3.

1.5 Interface Protocol

The video controller is operated by a simple command interface. To execute a
command, it must be assigned to the command port for exactly one cycle. At the
same time, the corresponding data field must be applied to the command data

input (see Figure 2). The controller buffers the request internally and acknowl-
edges its reception by setting the free signal to low. As long as it remains low (it
could stay low for multiple sys clk cycles), no new command will be accepted
by the controller and therefore the command COMMAND NOP should be
applied during this time frame. When the execution of the command is fin-
ished, the free signal is set to high again. At this point a new command may
be asserted.

7

NOP NOPCMD

XX XXDATA

sys_clk

cmd

cmd_data

free

1 cyc.

Figure 2: Textmode video controller timing

1.5.1 Command Description

In the previous section we have described how to execute a command on the
textmode video controller. Table 3 summarizes the available commands.

8

Command Data Description

COMMAND NOP 31-0: don’t care No operation. This command is assigned, if the video
controller should not execute any operations.

COMMAND SET CHAR 7-0: ASCII code
15-8: Blue color component
23-16: Green color component
31-24: Red color component

Displays the given character in the given color at the
current cursor position and afterwards advances the
cursor position by one column. If the end of a line is
reached, the cursor is positioned at the start of the
next line. If the cursor was already at the last line,
the whole screen is scrolled up by one line and the
cursor is set to the beginning of the last line.
If the newline character is set (0Ah), additional to
the normal operation, the cursor is advanced to the
next line (incl. scrolling, if necessary). If the carrige
return character (0Dh) is set, the cursor is set to the
beginning of the current line.

COMMAND SET BACKGROUND 7-0: Blue color component
15-8: Green color component
23-16: Red color component
31-24: don’t care

Sets the background color.

COMMAND SET CURSOR STATE 1-0: 00 - Off
1-0: 01 - On
1-0: 1x - Blink
31-2: don’t care

Sets the state of the cursor (either on, off or blink-
ing).

COMMAND SET CURSOR COLOR 7-0: Blue color component
15-8: Green color component
23-16: Red color component
31-24: don’t care

Sets the color of the cursor.

COMMAND SET CURSOR COLUMN 6-0: X-Coordinate
31-7: don’t care

Sets the cursor to column X. The line coordinate (Y)
of the cursor is not changed.

COMMAND SET CURSOR LINE 4-0: Y-Coordinate
31-5: don’t care

Sets the cursor to line Y. The column coordinate (X)
of the cursor is not changed.

Table 3: Textmode video controller commands

9

2 PS/2 Keyboard Controller Core

The PS/2 keyboard controller core can be used to easily interface with a stan-
dard PS/2 keyboard. The core is initialized automatically. On the reception of
a new scancode (corresponding to set 2, see [3, 2]) the controller transmits it to
the user logic without any further processing.

Therefore the handling of special keys (like Ctrl or Shift) as well as the key
pressed and key release handling are not performed by the controller. Instead
the corresponding scancodes are directly sent to the user logic.

2.1 Required VHDL files

The PS/2 keyboard controller interface requires the following sourcefiles:

• ps2 keyboard controller.vhd

• ps2 keyboard controller beh.vhd

• ps2 keyboard controller pkg.vhd

• ps2 transceiver.vhd

• ps2 transceiver beh.vhd

• ps2 transceiver pkg.vhd

2.2 Component Declaration

The declaration of the PS/2 keyboard controller can be found in Listing 3, while
the functionality of each generic is described in Table 4 and of each signal in
Table 5.

2.3 Instantiation Template

To be able to instantiate the keyboard controller, the package ps2 keyboard controller pkg

must be included within your VHDL source. An instantiation template can be
found in Listing 4.

For details on the type and size of the used signals, see Section 2.2.

Generic name Functionality

CLK FREQ Frequency of the system clock given in Hz.
SY NC STAGES Number of synchronizer stages used for

synchronizing external signals.

Table 4: PS/2 keyboard controller generics description

10

component ps2_keyboard_controller i s

generic

3 (
−− System c lo ck f requency [Hz]
CLK_FREQ : integer ;
−− Number o f s t ag e s used f o r synch ron i z e r s
SYNC_STAGES : integer

8) ;
port

(
−− I n t e r f a c e to user l o g i c
sys_clk , sys_res_n : in std_logic ;

13 new_data : out std_logic ;
data : out std_logic_vector (7 downto 0) ;

−− Externa l PS/2 i n t e r f a c e
ps2_clk , ps2_data : inout std_logic

18) ;
end component ps2_keyboard_controller ;

Listing 3: PS/2 keyboard controller declaration

Signal name Direction Width Functionality

sys clk in 1 System clock signal
sys res n in 1 System reset signal (low active,

not synchronized)
new data out 1 Signalizes the availability of a

new scancode.
data out 8 Scancode output

ps2 clk bidirectional 1 Keyboard clock line
ps2 data bidirectional 1 Keyboard data line

Table 5: PS/2 keyboard controller signal description

11

1 ps2_keyboard_controller_inst : ps2_keyboard_controller

generic map

(
CLK_FREQ => 33330000 ,
SYNC_STAGES => 2

6)
port map

(
sys_clk => sys_clk ,
sys_res_n => sys_res_n ,

11 new_data => keyboard_new_data ,
data => keyboard_data ,
ps2_clk => ps2_keyboard_clk ,
ps2_data => ps2_keyboard_data

) ;

Listing 4: PS/2 keyboard controller instantiation

Scancode Scancode Scancode

1 cyc.

sys_clk

new_data

data

Figure 3: PS/2 keyboard controller timing

2.4 Interface Protocol

The keyboard controller utilizes a simple, straight forward interface. If a new
scancode is available, it is assigned to the data port and the signal new data is
set high for exactly one clock cycle. The data port stays unchanged until the
next scancode is received from the keyboard. For details on the protocol see
Figure 3.

References

[1] Codepage 850. (e.g. Wikipedia: http://de.wikipedia.org/wiki/CP850).

12

[2] Description of scancodes including a list of scancodes for US keyboards.
http://www.win.tue.nl/~aeb/linux/kbd/scancodes-10.html.

[3] Scancode description. http://en.wikipedia.org/wiki/Scancode.

13

