
Hardware Modeling

VHDL – Architectures

Vienna University of Technology
Department of Computer Engineering

ECS Group

2

Contents

Structural Modeling
 Instantiation of Components

Behavioral Modeling
 Processes
 Concurrent Signal Assignments

Mixed Modeling

architecture xyz of abc is
begin

end architecture xyz;

3

Ways of Modeling a Circuit

?

4

Ways of Modeling a Circuit

architecture xyz of abc is
begin

end architecture xyz;

Behavioral

if A = `1` then
B <= B+1

else
B <= B

end if

D <= NOT E

F <= D OR B

C <= F AND A

Structural

RAM Register

A
LU

Counter

>=1 &E

B
C

A

5

Structural Modeling
Instantiation of components
Either graphically (Schematic) or
textually (VHDL, Verilog, …)
Connections between components
created by wires (graphically) or
port maps

Attention: Possibility of getting
dependent on a certain technology or
vendor specific libraries!

Behavioral Structural

Geometry

6

Instantiation of Components
Component Declaration

Describes the component‘s interface
(best to be done within a package, but also
possible in the declaration part of an
architecture or block)

Component Instantiation
Assignment of signals to the component interface

Component Configuration
Functionality selection for each component

7

Declaration of a Component
Package

package my_pkg is
component one

generic
(

DEPTH : integer := 8
);
port
(

a, b : in bit;
c : out bit

);
end component one;

......
end package my_pkg;

architecture struct of abc is
component one

generic
(

DEPTH : integer := 8
);
port
(

a, b : in bit;
c : out bit

);
end component one;

begin
......

end architecture struct;

Architecture

8

Instantiation of a Component (1)

Three important terms:
 formals Ports and generics of the

instantiated entity
 locals Ports and generics of the component

declaration
 actuals Signals (parameters) within the

architecture

When instantiated: Locals get connected to
actuals (⇒ port map, generic map)

9

Instantiation of a Component (2)
use work.my_pkg.all;

architecture struct of xyz is
signal s1, s2, s3, s4: bit;

begin
--named association
one_inst1 : one

generic map(DEPTH => 10)
port map(a => s1, b => s2,

c => s3);
--positional association
one_inst2 : one

generic map(10)
port map(s3, s2, s4);

end architecture struct;

2 instances
of one

Default value is
replaced by 10

s3

s4

s2

s1
one_inst1

one_inst2

10

Conditional Instantiation

.....

if boolean expression generate
one_inst1 : one

generic map(DEPTH => 10)
port map(a => s1, b => s2,

c => s3);
end generate;

.....

if-generate statement

11

Parallel Instantiation (1)

for-generate statement
......

-- s1, s2 and s3 are declared as:

-- bit_vector(0 to 4)

for i in 0 to 4 generate
one_inst1 : one

generic map(DEPTH => 10)
port map(a => s1(i), b => s2(i),

c => s3(i));
end generate;

......

12

Parallel Instantiation (2)
......

-- s1, s2 and s3 are declared as:

-- bit_vector(0 to 4)

for i in 0 to 4 generate
signal tmp : bit;

begin
one_inst1 : one

generic map(DEPTH => 10)
port map(a => s1(i), b => s2(i),

c => tmp);

one_inst2 : one
generic map(DEPTH => 10)
port map(a => tmp, b => s2(i),

c => s3(i));
end generate;

......

13

Component Configuration
Implicit configuration, if only one
architecture for the component exists
Explicit configuration done in the design
unit‘s configuration:

or directly at instantiation:

configuration xyz_cfg of xyz is
for struct

for one_inst1 : one use work.one(struct);
for one_inst2 : one use work.one(beh);

end for;
end configuration xyz_cfg;

one_inst1 : entity work.one(struct)
generic map ...

14

Component Configuration
Implicit configuration, if only one
architecture for the component exists
Explicit configuration done in the design
unit‘s configuration:

or directly at instantiation:

configuration xyz_cfg of xyz is
for struct

for one_inst1 : one use work.one(struct);
for one_inst2 : one use work.one(beh);

end for;
end configuration xyz_cfg;

one_inst1 : entity work.one(struct)
generic map ...

15

Structural Modeling - Summary
Three steps
 Component declaration
 Component instantiation
 Component configuration

Connections between components are
modeled using port mapping
Parameters are set through generic
mapping
Possibility for conditional and parallel
instantiation

16

Contents

Structural Modeling
 Instantiation of Components

Behavioral Modeling
 Processes
 Concurrent Signal Assignments

Mixed Modeling

17

Behavioral Modeling
How to model the behavior of
hardware?

 Hardware may work parallel or
sequential

 Input changes may trigger output
changes at arbitrary times

 How to model time and delay?

Behavioral Structural

Geometry

?
architecture beh of abc is
begin

end architecture beh;

18

Behavioral Architecture

19

Processes (1)

name : process(s1, s2)
begin

Sequential statements

end process name;

Sensitivity list
(optional)Label

(optional)

Loop

• Statements within a
process are executed
sequentially

• Execution „comparable“ to
an infinite loop

• Execution controlled by
the sensitivity list or wait
statements

• A single architecture may
have multiple, concurrent
processes

20

Processes (2)

Processes interchange information using
signals.

Assignments on signals are not done
immediately, but at the next wait statement

⇒ Required for modeling parallel executions

Signal assignments may trigger additional
process executions

21

Wait Statements
A single process may have multiple wait
statements (simulation)
or must have exactly a single wait statement
(synthesis)

architecture beh of abc is
signal s1, s2, s3 : bit;

begin
p1: process
begin

s2 <= s1;
s3 <= s2;
wait on s1, s2;

end process;
end architecture beh;

22

Simulation of Processes

Execute all statements until a wait statement
or the end of the process is reached
If the end is reached, continue at the start
of the process
If a wait statement is reached suspend the
execution of the process
 If there is an active process

 Resume that process
 Otherwise

 Increment simulation time

23

Sensitivity List

Special form of the wait on statement (at the
end of the process)!

architecture beh of abc is
signal s1, s2, s3 : bit;

begin
p1: process (s1, s2)
begin

s2 <= s1;
s3 <= s2;
wait on s1, s2;

end process;
end architecture beh;

24

Sensitivity List

Wait on at the end of a process is very
common for synthesizable VHDL code!
Therefore when writing synthesizable VHDL
code, only sensitivity lists and no wait
statements are normally used.
For simulation of synthesizable VHDL code,
the sensitivity list must contain all signals
which are read by the process.
Synthesis tools ignore the sensitivity list
(only warning, if not complete).

25

Example Execution of a Process
Assumptions:
Before starting the simulation all
signals have the value 0.

⇒ s2 and s3 have different values after the execution of the process!

s1 changes from 0 to 1 → Process is started

s2 is marked to become 1 (s1’s value)
s3 is marked to become 0 (s2‘s old value!)
Implicit wait on statement (sensitivity list)
The new values are assigned to s2 and s3
=> s2 becomes 1, s3 stays 0!

W H Y ? ? ?

architecture beh of abc is
signal s1, s2, s3 : bit;

begin
p1 : process(s1)
begin

s2 <= s1;
s3 <= s2;

end process;
end architecture beh;

26

Example Execution of a Process

architecture beh of abc is
signal s1, s2, s3 : bit;

begin
p1 : process(s1, s2)
begin

s2 <= s1;
s3 <= s2;

end process;
end architecture beh;

Assumptions:
Before starting the simulation all
signals have the value 0.

⇒ s2 and s3 have different values after the execution of the process!

s1 changes from 0 to 1 → Process is started

s2 is marked to become 1 (s1’s value)
s3 is marked to become 0 (s2‘s old value!)
Implicit wait on statement (sensitivity list)
The new values are assigned to s2 and s3
=> s2 becomes 1, s3 stays 0!

Incomplete sensitivity list! s2 is missing

27

Architecture with 2 Processes

and1

and2

s3

s4

s2

s1

se
qu

en
tia

l
se

qu
en

tia
l

Parallel

architecture beh of abc is
signal s1, s2, s3, s4: bit;

begin
and1 : process(s1, s2)

if s1 = `1` and s2 = `1` then
s3 <= `1`;

else
s3 <= `0` ;

end if;
end process and1;

and2 : process(s2, s3)
if s2 = `1` and s3 = `1` then

s4 <= `1`;
else

s4 <= `0`;
end if;

end process and2;
end architecture beh;

28

Manual Simulation
architecture beh of abc is

signal s1, s2, s3, s4: bit;
begin

and1 : process(s1, s2)
if s1 = `1` and s2 = `1` then

s3 <= `1`;
else

s3 <= `0` ;
end if;

end process and1;

and2 : process(s2, s3)
if s2 = `1` and s3 = `1` then

s4 <= `1`;
else

s4 <= `0`;
end if;

end process and2;
end architecture beh;

Assumptions:
s1 = 0
s2 = 1
⇒ s3 = 0
⇒ s4 = 0

architecture beh of abc is
signal s1, s2, s3, s4: bit;

begin
and1 : process(s1, s2)

if s1 = `1` and s2 = `1` then
s3 <= `1`;

else
s3 <= `0` ;

end if;
end process and1;

and2 : process(s2, s3)
if s2 = `1` and s3 = `1` then

s4 <= `1`;
else

s4 <= `0`;
end if;

end process and2;
end architecture beh;29

Manual Simulation

s1: 0 → 1

Assumptions:
s1 = 0
s2 = 1
⇒ s3 = 0
⇒ s4 = 0

architecture beh of abc is
signal s1, s2, s3, s4: bit;

begin
and1 : process(s1, s2)

if s1 = `1` and s2 = `1` then
s3 <= `1`;

else
s3 <= `0` ;

end if;
end process and1;

and2 : process(s2, s3)
if s2 = `1` and s3 = `1` then

s4 <= `1`;
else

s4 <= `0`;
end if;

end process and2;
end architecture beh;30

Manual Simulation

s1: 0 → 1

⇒ s3: 0 → 1

Assumptions:
s1 = 0
s2 = 1
⇒ s3 = 0
⇒ s4 = 0

architecture beh of abc is
signal s1, s2, s3, s4: bit;

begin
and1 : process(s1, s2)

if s1 = `1` and s2 = `1` then
s3 <= `1`;

else
s3 <= `0` ;

end if;
end process and1;

and2 : process(s2, s3)
if s2 = `1` and s3 = `1` then

s4 <= `1`;
else

s4 <= `0`;
end if;

end process and2;
end architecture beh;31

Manual Simulation
Assumptions:

s1 = 0
s2 = 1
⇒ s3 = 0
⇒ s4 = 0

s1: 0 → 1

⇒ s3: 0 → 1

⇒ s4: 0 → 1

32

Another Example
Which values are assigned to Z
and R?

architecture beh of abc is
signal X, Y : bit;

begin
process(A, B, C)
begin

X <= A;
Y <= B;
Z <= X and Y;
Y <= C;
R <= X and Y;

end process;
end architecture beh;

entity abc is
port
(

A, B, C : in bit;
Z, R : out bit

);
end entity abc;

33

Another Example

architecture beh of abc is
signal X, Y : bit;

begin
process(A, B, C)
begin

X <= A;
Y <= B;
Z <= X and Y;
Y <= C;
R <= X and Y;

end process;
end architecture beh;

entity abc is
port
(

A, B, C : in bit;
Z, R : out bit

);
end entity abc;

Which values are assigned to Z
and R?
After a single process execution
Z and R are set to X_old and Y_old.

After completing the sensitivity list
(adding X and Y), a second execution of
the process is triggered.

R and Z are set to A and C after the
second iteration.

Attention:
Z is NEVER set to A and B

Simple signal assignment is much too
complicated:

Is there an easier way?
Yes:

Short form for signal assignment (named
concurrent signal assignment):

34

Simple Signal Assignment Example

assign : process(s1, s2)
s3 <= s1 and s2;

end process assign;

s3 <= s1 and s2;

35

Concurrent Signal Assignments

Outside of a process
Possibility for specifying a delay
Possibility for conditional assignments
Possibility for selective assignments
Parallel execution (short form of a process
declaration)

36

Concurrent Signal Assignments

architecture beh of abc is
signal s1, s2, s3, s4, s5: bit;

begin
and1 : s3 <= s1 and s2;
and2 : s4 <= `1` when s3=`1` and s2 =`1`

else `0`;
inverter : with s4 select

output <= `1` when `0`,
`0` when `1`;

end architecture beh;

and1

and2

s3

s5

s2

s1

s4

Selective Assignment
Conditional Assignment
Unconditional assignment

37

Signal Delay
Delays are modeled as follows:

⇒Applicable only in Behavioral Simulation!

Not synthesizable, ignored by the
synthesis tool.
After technology mapping, real hardware
delays added to simulation netlist.

s3 <= s1 and s2 after 1 ns;

38

Behavioral Modeling - Summary

Based on processes
Multiple processes per architecture
Multiple processes executed concurrently
Processes executed sequentially
Controlled by wait statements (simulation)
Simplifications:
 Sensitivity list instead of wait on
 Concurrent signal assignments

39

Contents

Structural Modeling
 Instantiation of Components

Behavioral Modeling
 Processes
 Concurrent Signal Assignments

Mixed Modeling

40

Mixed Modeling (1)
Behavioral- and structural Descriptions may
be mixed in the same architecture
Descriptions on different layers of
abstraction may be mixed

B

B/S S

B B

B

S

S ... Structural Description
B ... Behavioral Description
S/B Mixed Behavioral/

Structural Description

41

Mixed Modeling (1)

IP

Pipe1 Pipe2

ROM Decod

Pipe3

CPU

Example of a CPU

Break down into subsystems
⇒ Integration of subsystems as
components

Behavioral- and structural Descriptions may
be mixed in the same architecture
Descriptions on different layers of
abstraction may be mixed

42

Mixed Modell (2)
architecture beh of abc is

signal s1, s2, s3, s4, s5 : bit;
begin

and1 : one
generic map(DEPTH => 10)
port map(a => s1, b => s2,

c => s3);
process(s3)
begin

if s3=`1` then
s4 <= `0`;

else
s4 <= `1` ;

end if;
end process;
s5 <= s1 xor s4;

end architecture beh;

and1

xor

s2
s4s3

s5

s1
Structural

Behavioral
RTL level

Behavioral
Logic level

43

Summary

architecture xyz of abc is
begin

end architecture xyz;

Behavioral

if A = `1` then
B <= B+1

else
B <= B

end if

D <= NOT E

F <= D OR B

C <= F AND A

Structural

RAM Register

A
LU

Counter

>=1 &E

B
C

A

architecture xyz of abc is
begin

end architecture xyz;
44

Summary

Structural

Components
• Declaration

•Package or architecture
• Instantiation

•Port mapping, generic mapping
• Configuration

•Configuration file

Behavioral
Processes
• Processes are running in parallel
• Statements of a process are executed

sequentially
•Controlled by wait statements

Simplifications
• Concurrent signal assignments

•Unconditional, conditional, selective
•Outside of Processes

•Sensitivity lists

	�� Hardware Modeling ��VHDL – Architectures
	Contents
	Ways of Modeling a Circuit
	Ways of Modeling a Circuit
	Structural Modeling
	Instantiation of Components
	Declaration of a Component
	Instantiation of a Component (1)
	Instantiation of a Component (2)
	Conditional Instantiation
	Parallel Instantiation (1)
	Parallel Instantiation (2)
	Component Configuration
	Component Configuration
	Structural Modeling - Summary
	Contents
	Behavioral Modeling
	Behavioral Architecture
	Processes (1)
	Processes (2)
	Wait Statements
	Simulation of Processes
	Sensitivity List
	Sensitivity List
	Example Execution of a Process
	Example Execution of a Process
	Architecture with 2 Processes
	Manual Simulation
	Manual Simulation
	Manual Simulation
	Manual Simulation
	Another Example
	Another Example
	Simple Signal Assignment Example
	Concurrent Signal Assignments
	Concurrent Signal Assignments
	Signal Delay
	Behavioral Modeling - Summary
	Contents
	Mixed Modeling (1)
	Mixed Modeling (1)
	Mixed Modell (2)
	Summary
	Summary

