/* * Copyright (c) 2000-2005 by Hewlett-Packard Company. All rights reserved. * * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED * OR IMPLIED. ANY USE IS AT YOUR OWN RISK. * * Permission is hereby granted to use or copy this program * for any purpose, provided the above notices are retained on all copies. * Permission to modify the code and to distribute modified code is granted, * provided the above notices are retained, and a notice that the code was * modified is included with the above copyright notice. */ #include "private/gc_priv.h" #if defined(THREAD_LOCAL_ALLOC) #ifndef THREADS # error "invalid config - THREAD_LOCAL_ALLOC requires GC_THREADS" #endif #include "private/thread_local_alloc.h" #include #if defined(USE_COMPILER_TLS) __thread #elif defined(USE_WIN32_COMPILER_TLS) __declspec(thread) #endif GC_key_t GC_thread_key; static GC_bool keys_initialized; /* Return a single nonempty freelist fl to the global one pointed to */ /* by gfl. */ static void return_single_freelist(void *fl, void **gfl) { void *q, **qptr; if (*gfl == 0) { *gfl = fl; } else { GC_ASSERT(GC_size(fl) == GC_size(*gfl)); /* Concatenate: */ qptr = &(obj_link(fl)); while ((word)(q = *qptr) >= HBLKSIZE) qptr = &(obj_link(q)); GC_ASSERT(0 == q); *qptr = *gfl; *gfl = fl; } } /* Recover the contents of the freelist array fl into the global one gfl.*/ /* We hold the allocator lock. */ static void return_freelists(void **fl, void **gfl) { int i; for (i = 1; i < TINY_FREELISTS; ++i) { if ((word)(fl[i]) >= HBLKSIZE) { return_single_freelist(fl[i], gfl+i); } /* Clear fl[i], since the thread structure may hang around. */ /* Do it in a way that is likely to trap if we access it. */ fl[i] = (ptr_t)HBLKSIZE; } /* The 0 granule freelist really contains 1 granule objects. */ # ifdef GC_GCJ_SUPPORT if (fl[0] == ERROR_FL) return; # endif if ((word)(fl[0]) >= HBLKSIZE) { return_single_freelist(fl[0], gfl+1); } } /* Each thread structure must be initialized. */ /* This call must be made from the new thread. */ GC_INNER void GC_init_thread_local(GC_tlfs p) { int i; GC_ASSERT(I_HOLD_LOCK()); if (!keys_initialized) { if (0 != GC_key_create(&GC_thread_key, 0)) { ABORT("Failed to create key for local allocator"); } keys_initialized = TRUE; } if (0 != GC_setspecific(GC_thread_key, p)) { ABORT("Failed to set thread specific allocation pointers"); } for (i = 1; i < TINY_FREELISTS; ++i) { p -> ptrfree_freelists[i] = (void *)(word)1; p -> normal_freelists[i] = (void *)(word)1; # ifdef GC_GCJ_SUPPORT p -> gcj_freelists[i] = (void *)(word)1; # endif } /* Set up the size 0 free lists. */ /* We now handle most of them like regular free lists, to ensure */ /* That explicit deallocation works. However, allocation of a */ /* size 0 "gcj" object is always an error. */ p -> ptrfree_freelists[0] = (void *)(word)1; p -> normal_freelists[0] = (void *)(word)1; # ifdef GC_GCJ_SUPPORT p -> gcj_freelists[0] = ERROR_FL; # endif } /* We hold the allocator lock. */ GC_INNER void GC_destroy_thread_local(GC_tlfs p) { /* We currently only do this from the thread itself or from */ /* the fork handler for a child process. */ # ifndef HANDLE_FORK GC_ASSERT(GC_getspecific(GC_thread_key) == (void *)p); # endif return_freelists(p -> ptrfree_freelists, GC_aobjfreelist); return_freelists(p -> normal_freelists, GC_objfreelist); # ifdef GC_GCJ_SUPPORT return_freelists(p -> gcj_freelists, (void **)GC_gcjobjfreelist); # endif } #ifdef GC_ASSERTIONS /* Defined in pthread_support.c or win32_threads.c. */ GC_bool GC_is_thread_tsd_valid(void *tsd); #endif GC_API void * GC_CALL GC_malloc(size_t bytes) { size_t granules = ROUNDED_UP_GRANULES(bytes); void *tsd; void *result; void **tiny_fl; # if !defined(USE_PTHREAD_SPECIFIC) && !defined(USE_WIN32_SPECIFIC) GC_key_t k = GC_thread_key; if (EXPECT(0 == k, FALSE)) { /* We haven't yet run GC_init_parallel. That means */ /* we also aren't locking, so this is fairly cheap. */ return GC_core_malloc(bytes); } tsd = GC_getspecific(k); # else tsd = GC_getspecific(GC_thread_key); # endif # if !defined(USE_COMPILER_TLS) && !defined(USE_WIN32_COMPILER_TLS) if (EXPECT(0 == tsd, FALSE)) { return GC_core_malloc(bytes); } # endif GC_ASSERT(GC_is_initialized); GC_ASSERT(GC_is_thread_tsd_valid(tsd)); tiny_fl = ((GC_tlfs)tsd) -> normal_freelists; GC_FAST_MALLOC_GRANS(result, granules, tiny_fl, DIRECT_GRANULES, NORMAL, GC_core_malloc(bytes), obj_link(result)=0); # ifdef LOG_ALLOCS GC_err_printf("GC_malloc(%u) = %p : %u\n", (unsigned)bytes, result, (unsigned)GC_gc_no); # endif return result; } GC_API void * GC_CALL GC_malloc_atomic(size_t bytes) { size_t granules = ROUNDED_UP_GRANULES(bytes); void *tsd; void *result; void **tiny_fl; # if !defined(USE_PTHREAD_SPECIFIC) && !defined(USE_WIN32_SPECIFIC) GC_key_t k = GC_thread_key; if (EXPECT(0 == k, FALSE)) { /* We haven't yet run GC_init_parallel. That means */ /* we also aren't locking, so this is fairly cheap. */ return GC_core_malloc_atomic(bytes); } tsd = GC_getspecific(k); # else tsd = GC_getspecific(GC_thread_key); # endif # if !defined(USE_COMPILER_TLS) && !defined(USE_WIN32_COMPILER_TLS) if (EXPECT(0 == tsd, FALSE)) { return GC_core_malloc_atomic(bytes); } # endif GC_ASSERT(GC_is_initialized); tiny_fl = ((GC_tlfs)tsd) -> ptrfree_freelists; GC_FAST_MALLOC_GRANS(result, granules, tiny_fl, DIRECT_GRANULES, PTRFREE, GC_core_malloc_atomic(bytes), (void)0 /* no init */); return result; } #ifdef GC_GCJ_SUPPORT # include "atomic_ops.h" /* for AO_compiler_barrier() */ # include "include/gc_gcj.h" /* Gcj-style allocation without locks is extremely tricky. The */ /* fundamental issue is that we may end up marking a free list, which */ /* has freelist links instead of "vtable" pointers. That is usually */ /* OK, since the next object on the free list will be cleared, and */ /* will thus be interpreted as containing a zero descriptor. That's */ /* fine if the object has not yet been initialized. But there are */ /* interesting potential races. */ /* In the case of incremental collection, this seems hopeless, since */ /* the marker may run asynchronously, and may pick up the pointer to */ /* the next freelist entry (which it thinks is a vtable pointer), get */ /* suspended for a while, and then see an allocated object instead */ /* of the vtable. This may be avoidable with either a handshake with */ /* the collector or, probably more easily, by moving the free list */ /* links to the second word of each object. The latter isn't a */ /* universal win, since on architecture like Itanium, nonzero offsets */ /* are not necessarily free. And there may be cache fill order issues. */ /* For now, we punt with incremental GC. This probably means that */ /* incremental GC should be enabled before we fork a second thread. */ /* Unlike the other thread local allocation calls, we assume that the */ /* collector has been explicitly initialized. */ GC_API void * GC_CALL GC_gcj_malloc(size_t bytes, void * ptr_to_struct_containing_descr) { if (GC_EXPECT(GC_incremental, 0)) { return GC_core_gcj_malloc(bytes, ptr_to_struct_containing_descr); } else { size_t granules = ROUNDED_UP_GRANULES(bytes); void *result; void **tiny_fl = ((GC_tlfs)GC_getspecific(GC_thread_key)) -> gcj_freelists; GC_ASSERT(GC_gcj_malloc_initialized); GC_FAST_MALLOC_GRANS(result, granules, tiny_fl, DIRECT_GRANULES, GC_gcj_kind, GC_core_gcj_malloc(bytes, ptr_to_struct_containing_descr), {AO_compiler_barrier(); *(void **)result = ptr_to_struct_containing_descr;}); /* This forces the initialization of the "method ptr". */ /* This is necessary to ensure some very subtle properties */ /* required if a GC is run in the middle of such an allocation. */ /* Here we implicitly also assume atomicity for the free list. */ /* and method pointer assignments. */ /* We must update the freelist before we store the pointer. */ /* Otherwise a GC at this point would see a corrupted */ /* free list. */ /* A real memory barrier is not needed, since the */ /* action of stopping this thread will cause prior writes */ /* to complete. */ /* We assert that any concurrent marker will stop us. */ /* Thus it is impossible for a mark procedure to see the */ /* allocation of the next object, but to see this object */ /* still containing a free list pointer. Otherwise the */ /* marker, by misinterpreting the freelist link as a vtable */ /* pointer, might find a random "mark descriptor" in the next */ /* object. */ return result; } } #endif /* GC_GCJ_SUPPORT */ /* The thread support layer must arrange to mark thread-local */ /* free lists explicitly, since the link field is often */ /* invisible to the marker. It knows how to find all threads; */ /* we take care of an individual thread freelist structure. */ GC_INNER void GC_mark_thread_local_fls_for(GC_tlfs p) { ptr_t q; int j; for (j = 0; j < TINY_FREELISTS; ++j) { q = p -> ptrfree_freelists[j]; if ((word)q > HBLKSIZE) GC_set_fl_marks(q); q = p -> normal_freelists[j]; if ((word)q > HBLKSIZE) GC_set_fl_marks(q); # ifdef GC_GCJ_SUPPORT if (j > 0) { q = p -> gcj_freelists[j]; if ((word)q > HBLKSIZE) GC_set_fl_marks(q); } # endif /* GC_GCJ_SUPPORT */ } } #if defined(GC_ASSERTIONS) /* Check that all thread-local free-lists in p are completely marked. */ void GC_check_tls_for(GC_tlfs p) { int j; for (j = 1; j < TINY_FREELISTS; ++j) { GC_check_fl_marks(&p->ptrfree_freelists[j]); GC_check_fl_marks(&p->normal_freelists[j]); # ifdef GC_GCJ_SUPPORT GC_check_fl_marks(&p->gcj_freelists[j]); # endif } } #endif /* GC_ASSERTIONS */ #endif /* THREAD_LOCAL_ALLOC */