/* * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers * Copyright (c) 1991-1994 by Xerox Corporation. All rights reserved. * Copyright (c) 1996 by Silicon Graphics. All rights reserved. * Copyright (c) 2000 by Hewlett-Packard Company. All rights reserved. * * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED * OR IMPLIED. ANY USE IS AT YOUR OWN RISK. * * Permission is hereby granted to use or copy this program * for any purpose, provided the above notices are retained on all copies. * Permission to modify the code and to distribute modified code is granted, * provided the above notices are retained, and a notice that the code was * modified is included with the above copyright notice. */ #include "private/gc_priv.h" /* * These are extra allocation routines which are likely to be less * frequently used than those in malloc.c. They are separate in the * hope that the .o file will be excluded from statically linked * executables. We should probably break this up further. */ #include #include #ifdef MSWINCE # ifndef WIN32_LEAN_AND_MEAN # define WIN32_LEAN_AND_MEAN 1 # endif # define NOSERVICE # include #else # include #endif /* Some externally visible but unadvertised variables to allow access to */ /* free lists from inlined allocators without including gc_priv.h */ /* or introducing dependencies on internal data structure layouts. */ void ** const GC_objfreelist_ptr = GC_objfreelist; void ** const GC_aobjfreelist_ptr = GC_aobjfreelist; void ** const GC_uobjfreelist_ptr = GC_uobjfreelist; # ifdef ATOMIC_UNCOLLECTABLE void ** const GC_auobjfreelist_ptr = GC_auobjfreelist; # endif STATIC void * GC_generic_or_special_malloc(size_t lb, int knd) { switch(knd) { # ifdef STUBBORN_ALLOC case STUBBORN: return(GC_malloc_stubborn((size_t)lb)); # endif case PTRFREE: return(GC_malloc_atomic((size_t)lb)); case NORMAL: return(GC_malloc((size_t)lb)); case UNCOLLECTABLE: return(GC_malloc_uncollectable((size_t)lb)); # ifdef ATOMIC_UNCOLLECTABLE case AUNCOLLECTABLE: return(GC_malloc_atomic_uncollectable((size_t)lb)); # endif /* ATOMIC_UNCOLLECTABLE */ default: return(GC_generic_malloc(lb,knd)); } } /* Change the size of the block pointed to by p to contain at least */ /* lb bytes. The object may be (and quite likely will be) moved. */ /* The kind (e.g. atomic) is the same as that of the old. */ /* Shrinking of large blocks is not implemented well. */ GC_API void * GC_CALL GC_realloc(void * p, size_t lb) { struct hblk * h; hdr * hhdr; size_t sz; /* Current size in bytes */ size_t orig_sz; /* Original sz in bytes */ int obj_kind; if (p == 0) return(GC_malloc(lb)); /* Required by ANSI */ h = HBLKPTR(p); hhdr = HDR(h); sz = hhdr -> hb_sz; obj_kind = hhdr -> hb_obj_kind; orig_sz = sz; if (sz > MAXOBJBYTES) { /* Round it up to the next whole heap block */ word descr; sz = (sz+HBLKSIZE-1) & (~HBLKMASK); hhdr -> hb_sz = sz; descr = GC_obj_kinds[obj_kind].ok_descriptor; if (GC_obj_kinds[obj_kind].ok_relocate_descr) descr += sz; hhdr -> hb_descr = descr; # ifdef MARK_BIT_PER_OBJ GC_ASSERT(hhdr -> hb_inv_sz == LARGE_INV_SZ); # else GC_ASSERT(hhdr -> hb_large_block && hhdr -> hb_map[ANY_INDEX] == 1); # endif if (IS_UNCOLLECTABLE(obj_kind)) GC_non_gc_bytes += (sz - orig_sz); /* Extra area is already cleared by GC_alloc_large_and_clear. */ } if (ADD_SLOP(lb) <= sz) { if (lb >= (sz >> 1)) { # ifdef STUBBORN_ALLOC if (obj_kind == STUBBORN) GC_change_stubborn(p); # endif if (orig_sz > lb) { /* Clear unneeded part of object to avoid bogus pointer */ /* tracing. */ /* Safe for stubborn objects. */ BZERO(((ptr_t)p) + lb, orig_sz - lb); } return(p); } else { /* shrink */ void * result = GC_generic_or_special_malloc((word)lb, obj_kind); if (result == 0) return(0); /* Could also return original object. But this */ /* gives the client warning of imminent disaster. */ BCOPY(p, result, lb); # ifndef IGNORE_FREE GC_free(p); # endif return(result); } } else { /* grow */ void * result = GC_generic_or_special_malloc((word)lb, obj_kind); if (result == 0) return(0); BCOPY(p, result, sz); # ifndef IGNORE_FREE GC_free(p); # endif return(result); } } # if defined(REDIRECT_MALLOC) && !defined(REDIRECT_REALLOC) # define REDIRECT_REALLOC GC_realloc # endif # ifdef REDIRECT_REALLOC /* As with malloc, avoid two levels of extra calls here. */ # define GC_debug_realloc_replacement(p, lb) \ GC_debug_realloc(p, lb, GC_DBG_RA "unknown", 0) void * realloc(void * p, size_t lb) { return(REDIRECT_REALLOC(p, lb)); } # undef GC_debug_realloc_replacement # endif /* REDIRECT_REALLOC */ /* Allocate memory such that only pointers to near the */ /* beginning of the object are considered. */ /* We avoid holding allocation lock while we clear memory. */ GC_INNER void * GC_generic_malloc_ignore_off_page(size_t lb, int k) { void *result; size_t lg; size_t lb_rounded; word n_blocks; GC_bool init; DCL_LOCK_STATE; if (SMALL_OBJ(lb)) return(GC_generic_malloc((word)lb, k)); lg = ROUNDED_UP_GRANULES(lb); lb_rounded = GRANULES_TO_BYTES(lg); if (lb_rounded < lb) return((*GC_get_oom_fn())(lb)); n_blocks = OBJ_SZ_TO_BLOCKS(lb_rounded); init = GC_obj_kinds[k].ok_init; if (GC_have_errors) GC_print_all_errors(); GC_INVOKE_FINALIZERS(); LOCK(); result = (ptr_t)GC_alloc_large(ADD_SLOP(lb), k, IGNORE_OFF_PAGE); if (0 != result) { if (GC_debugging_started) { BZERO(result, n_blocks * HBLKSIZE); } else { # ifdef THREADS /* Clear any memory that might be used for GC descriptors */ /* before we release the lock. */ ((word *)result)[0] = 0; ((word *)result)[1] = 0; ((word *)result)[GRANULES_TO_WORDS(lg)-1] = 0; ((word *)result)[GRANULES_TO_WORDS(lg)-2] = 0; # endif } } GC_bytes_allocd += lb_rounded; if (0 == result) { GC_oom_func oom_fn = GC_oom_fn; UNLOCK(); return((*oom_fn)(lb)); } else { UNLOCK(); if (init && !GC_debugging_started) { BZERO(result, n_blocks * HBLKSIZE); } return(result); } } GC_API void * GC_CALL GC_malloc_ignore_off_page(size_t lb) { return((void *)GC_generic_malloc_ignore_off_page(lb, NORMAL)); } GC_API void * GC_CALL GC_malloc_atomic_ignore_off_page(size_t lb) { return((void *)GC_generic_malloc_ignore_off_page(lb, PTRFREE)); } /* Increment GC_bytes_allocd from code that doesn't have direct access */ /* to GC_arrays. */ GC_API void GC_CALL GC_incr_bytes_allocd(size_t n) { GC_bytes_allocd += n; } /* The same for GC_bytes_freed. */ GC_API void GC_CALL GC_incr_bytes_freed(size_t n) { GC_bytes_freed += n; } # ifdef PARALLEL_MARK STATIC volatile signed_word GC_bytes_allocd_tmp = 0; /* Number of bytes of memory allocated since */ /* we released the GC lock. Instead of */ /* reacquiring the GC lock just to add this in, */ /* we add it in the next time we reacquire */ /* the lock. (Atomically adding it doesn't */ /* work, since we would have to atomically */ /* update it in GC_malloc, which is too */ /* expensive.) */ # endif /* PARALLEL_MARK */ /* Return a list of 1 or more objects of the indicated size, linked */ /* through the first word in the object. This has the advantage that */ /* it acquires the allocation lock only once, and may greatly reduce */ /* time wasted contending for the allocation lock. Typical usage would */ /* be in a thread that requires many items of the same size. It would */ /* keep its own free list in thread-local storage, and call */ /* GC_malloc_many or friends to replenish it. (We do not round up */ /* object sizes, since a call indicates the intention to consume many */ /* objects of exactly this size.) */ /* We assume that the size is a multiple of GRANULE_BYTES. */ /* We return the free-list by assigning it to *result, since it is */ /* not safe to return, e.g. a linked list of pointer-free objects, */ /* since the collector would not retain the entire list if it were */ /* invoked just as we were returning. */ /* Note that the client should usually clear the link field. */ GC_API void GC_CALL GC_generic_malloc_many(size_t lb, int k, void **result) { void *op; void *p; void **opp; size_t lw; /* Length in words. */ size_t lg; /* Length in granules. */ signed_word my_bytes_allocd = 0; struct obj_kind * ok = &(GC_obj_kinds[k]); DCL_LOCK_STATE; GC_ASSERT(lb != 0 && (lb & (GRANULE_BYTES-1)) == 0); if (!SMALL_OBJ(lb)) { op = GC_generic_malloc(lb, k); if(0 != op) obj_link(op) = 0; *result = op; return; } lw = BYTES_TO_WORDS(lb); lg = BYTES_TO_GRANULES(lb); if (GC_have_errors) GC_print_all_errors(); GC_INVOKE_FINALIZERS(); LOCK(); if (!GC_is_initialized) GC_init(); /* Do our share of marking work */ if (GC_incremental && !GC_dont_gc) { ENTER_GC(); GC_collect_a_little_inner(1); EXIT_GC(); } /* First see if we can reclaim a page of objects waiting to be */ /* reclaimed. */ { struct hblk ** rlh = ok -> ok_reclaim_list; struct hblk * hbp; hdr * hhdr; rlh += lg; while ((hbp = *rlh) != 0) { hhdr = HDR(hbp); *rlh = hhdr -> hb_next; GC_ASSERT(hhdr -> hb_sz == lb); hhdr -> hb_last_reclaimed = (unsigned short) GC_gc_no; # ifdef PARALLEL_MARK if (GC_parallel) { signed_word my_bytes_allocd_tmp = GC_bytes_allocd_tmp; GC_ASSERT(my_bytes_allocd_tmp >= 0); /* We only decrement it while holding the GC lock. */ /* Thus we can't accidentally adjust it down in more */ /* than one thread simultaneously. */ if (my_bytes_allocd_tmp != 0) { (void)AO_fetch_and_add( (volatile void *)(&GC_bytes_allocd_tmp), (AO_t)(-my_bytes_allocd_tmp)); GC_bytes_allocd += my_bytes_allocd_tmp; } GC_acquire_mark_lock(); ++ GC_fl_builder_count; UNLOCK(); GC_release_mark_lock(); } # endif op = GC_reclaim_generic(hbp, hhdr, lb, ok -> ok_init, 0, &my_bytes_allocd); if (op != 0) { /* We also reclaimed memory, so we need to adjust */ /* that count. */ /* This should be atomic, so the results may be */ /* inaccurate. */ GC_bytes_found += my_bytes_allocd; # ifdef PARALLEL_MARK if (GC_parallel) { *result = op; (void)AO_fetch_and_add( (volatile AO_t *)(&GC_bytes_allocd_tmp), (AO_t)(my_bytes_allocd)); GC_acquire_mark_lock(); -- GC_fl_builder_count; if (GC_fl_builder_count == 0) GC_notify_all_builder(); GC_release_mark_lock(); (void) GC_clear_stack(0); return; } # endif GC_bytes_allocd += my_bytes_allocd; goto out; } # ifdef PARALLEL_MARK if (GC_parallel) { GC_acquire_mark_lock(); -- GC_fl_builder_count; if (GC_fl_builder_count == 0) GC_notify_all_builder(); GC_release_mark_lock(); LOCK(); /* GC lock is needed for reclaim list access. We */ /* must decrement fl_builder_count before reaquiring GC */ /* lock. Hopefully this path is rare. */ } # endif } } /* Next try to use prefix of global free list if there is one. */ /* We don't refill it, but we need to use it up before allocating */ /* a new block ourselves. */ opp = &(GC_obj_kinds[k].ok_freelist[lg]); if ( (op = *opp) != 0 ) { *opp = 0; my_bytes_allocd = 0; for (p = op; p != 0; p = obj_link(p)) { my_bytes_allocd += lb; if ((word)my_bytes_allocd >= HBLKSIZE) { *opp = obj_link(p); obj_link(p) = 0; break; } } GC_bytes_allocd += my_bytes_allocd; goto out; } /* Next try to allocate a new block worth of objects of this size. */ { struct hblk *h = GC_allochblk(lb, k, 0); if (h != 0) { if (IS_UNCOLLECTABLE(k)) GC_set_hdr_marks(HDR(h)); GC_bytes_allocd += HBLKSIZE - HBLKSIZE % lb; # ifdef PARALLEL_MARK if (GC_parallel) { GC_acquire_mark_lock(); ++ GC_fl_builder_count; UNLOCK(); GC_release_mark_lock(); op = GC_build_fl(h, lw, (ok -> ok_init || GC_debugging_started), 0); *result = op; GC_acquire_mark_lock(); -- GC_fl_builder_count; if (GC_fl_builder_count == 0) GC_notify_all_builder(); GC_release_mark_lock(); (void) GC_clear_stack(0); return; } # endif op = GC_build_fl(h, lw, (ok -> ok_init || GC_debugging_started), 0); goto out; } } /* As a last attempt, try allocating a single object. Note that */ /* this may trigger a collection or expand the heap. */ op = GC_generic_malloc_inner(lb, k); if (0 != op) obj_link(op) = 0; out: *result = op; UNLOCK(); (void) GC_clear_stack(0); } /* Note that the "atomic" version of this would be unsafe, since the */ /* links would not be seen by the collector. */ GC_API void * GC_CALL GC_malloc_many(size_t lb) { void *result; GC_generic_malloc_many((lb + EXTRA_BYTES + GRANULE_BYTES-1) & ~(GRANULE_BYTES-1), NORMAL, &result); return result; } /* Not well tested nor integrated. */ /* Debug version is tricky and currently missing. */ #include GC_API void * GC_CALL GC_memalign(size_t align, size_t lb) { size_t new_lb; size_t offset; ptr_t result; if (align <= GRANULE_BYTES) return GC_malloc(lb); if (align >= HBLKSIZE/2 || lb >= HBLKSIZE/2) { if (align > HBLKSIZE) { return (*GC_get_oom_fn())(LONG_MAX-1024); /* Fail */ } return GC_malloc(lb <= HBLKSIZE? HBLKSIZE : lb); /* Will be HBLKSIZE aligned. */ } /* We could also try to make sure that the real rounded-up object size */ /* is a multiple of align. That would be correct up to HBLKSIZE. */ new_lb = lb + align - 1; result = GC_malloc(new_lb); offset = (word)result % align; if (offset != 0) { offset = align - offset; if (!GC_all_interior_pointers) { if (offset >= VALID_OFFSET_SZ) return GC_malloc(HBLKSIZE); GC_register_displacement(offset); } } result = (void *) ((ptr_t)result + offset); GC_ASSERT((word)result % align == 0); return result; } /* This one exists largerly to redirect posix_memalign for leaks finding. */ GC_API int GC_CALL GC_posix_memalign(void **memptr, size_t align, size_t lb) { /* Check alignment properly. */ if (((align - 1) & align) != 0 || align < sizeof(void *)) { # ifdef MSWINCE return ERROR_INVALID_PARAMETER; # else return EINVAL; # endif } if ((*memptr = GC_memalign(align, lb)) == NULL) { # ifdef MSWINCE return ERROR_NOT_ENOUGH_MEMORY; # else return ENOMEM; # endif } return 0; } #ifdef ATOMIC_UNCOLLECTABLE /* Allocate lb bytes of pointerfree, untraced, uncollectable data */ /* This is normally roughly equivalent to the system malloc. */ /* But it may be useful if malloc is redefined. */ GC_API void * GC_CALL GC_malloc_atomic_uncollectable(size_t lb) { void *op; void **opp; size_t lg; DCL_LOCK_STATE; if( SMALL_OBJ(lb) ) { if (EXTRA_BYTES != 0 && lb != 0) lb--; /* We don't need the extra byte, since this won't be */ /* collected anyway. */ lg = GC_size_map[lb]; opp = &(GC_auobjfreelist[lg]); LOCK(); if( (op = *opp) != 0 ) { *opp = obj_link(op); obj_link(op) = 0; GC_bytes_allocd += GRANULES_TO_BYTES(lg); /* Mark bit was already set while object was on free list. */ GC_non_gc_bytes += GRANULES_TO_BYTES(lg); UNLOCK(); } else { UNLOCK(); op = (ptr_t)GC_generic_malloc(lb, AUNCOLLECTABLE); } GC_ASSERT(0 == op || GC_is_marked(op)); return((void *) op); } else { hdr * hhdr; op = (ptr_t)GC_generic_malloc(lb, AUNCOLLECTABLE); if (0 == op) return(0); GC_ASSERT(((word)op & (HBLKSIZE - 1)) == 0); hhdr = HDR(op); LOCK(); set_mark_bit_from_hdr(hhdr, 0); /* Only object. */ # ifndef THREADS GC_ASSERT(hhdr -> hb_n_marks == 0); # endif hhdr -> hb_n_marks = 1; UNLOCK(); return((void *) op); } } #endif /* ATOMIC_UNCOLLECTABLE */ /* provide a version of strdup() that uses the collector to allocate the copy of the string */ GC_API char * GC_CALL GC_strdup(const char *s) { char *copy; size_t lb; if (s == NULL) return NULL; lb = strlen(s) + 1; if ((copy = GC_malloc_atomic(lb)) == NULL) { # ifndef MSWINCE errno = ENOMEM; # endif return NULL; } # ifndef MSWINCE strcpy(copy, s); # else /* strcpy() is deprecated in WinCE */ memcpy(copy, s, lb); # endif return copy; } GC_API char * GC_CALL GC_strndup(const char *str, size_t size) { char *copy; size_t len = strlen(str); /* str is expected to be non-NULL */ if (len > size) len = size; copy = GC_malloc_atomic(len + 1); if (copy == NULL) { # ifndef MSWINCE errno = ENOMEM; # endif return NULL; } BCOPY(str, copy, len); copy[len] = '\0'; return copy; } #ifdef GC_REQUIRE_WCSDUP # include /* for wcslen() */ GC_API wchar_t * GC_CALL GC_wcsdup(const wchar_t *str) { size_t lb = (wcslen(str) + 1) * sizeof(wchar_t); wchar_t *copy = GC_malloc_atomic(lb); if (copy == NULL) { # ifndef MSWINCE errno = ENOMEM; # endif return NULL; } BCOPY(str, copy, lb); return copy; } #endif /* GC_REQUIRE_WCSDUP */