/* * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers * Copyright (c) 1991-1994 by Xerox Corporation. All rights reserved. * Copyright (c) 1996 by Silicon Graphics. All rights reserved. * * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED * OR IMPLIED. ANY USE IS AT YOUR OWN RISK. * * Permission is hereby granted to use or copy this program * for any purpose, provided the above notices are retained on all copies. * Permission to modify the code and to distribute modified code is granted, * provided the above notices are retained, and a notice that the code was * modified is included with the above copyright notice. */ #include "private/gc_priv.h" /* * This implements: * 1. allocation of heap block headers * 2. A map from addresses to heap block addresses to heap block headers * * Access speed is crucial. We implement an index structure based on a 2 * level tree. */ STATIC bottom_index * GC_all_bottom_indices = 0; /* Pointer to first (lowest addr) */ /* bottom_index. */ STATIC bottom_index * GC_all_bottom_indices_end = 0; /* Pointer to last (highest addr) */ /* bottom_index. */ /* Non-macro version of header location routine */ GC_INNER hdr * GC_find_header(ptr_t h) { # ifdef HASH_TL hdr * result; GET_HDR(h, result); return(result); # else return(HDR_INNER(h)); # endif } /* Handle a header cache miss. Returns a pointer to the */ /* header corresponding to p, if p can possibly be a valid */ /* object pointer, and 0 otherwise. */ /* GUARANTEED to return 0 for a pointer past the first page */ /* of an object unless both GC_all_interior_pointers is set */ /* and p is in fact a valid object pointer. */ /* Never returns a pointer to a free hblk. */ GC_INNER hdr * #ifdef PRINT_BLACK_LIST GC_header_cache_miss(ptr_t p, hdr_cache_entry *hce, ptr_t source) #else GC_header_cache_miss(ptr_t p, hdr_cache_entry *hce) #endif { hdr *hhdr; HC_MISS(); GET_HDR(p, hhdr); if (IS_FORWARDING_ADDR_OR_NIL(hhdr)) { if (GC_all_interior_pointers) { if (hhdr != 0) { ptr_t current = p; current = (ptr_t)HBLKPTR(current); do { current = current - HBLKSIZE*(word)hhdr; hhdr = HDR(current); } while(IS_FORWARDING_ADDR_OR_NIL(hhdr)); /* current points to near the start of the large object */ if (hhdr -> hb_flags & IGNORE_OFF_PAGE) return 0; if (HBLK_IS_FREE(hhdr) || p - current >= (ptrdiff_t)(hhdr->hb_sz)) { GC_ADD_TO_BLACK_LIST_NORMAL(p, source); /* Pointer past the end of the block */ return 0; } } else { GC_ADD_TO_BLACK_LIST_NORMAL(p, source); /* And return zero: */ } GC_ASSERT(hhdr == 0 || !HBLK_IS_FREE(hhdr)); return hhdr; /* Pointers past the first page are probably too rare */ /* to add them to the cache. We don't. */ /* And correctness relies on the fact that we don't. */ } else { if (hhdr == 0) { GC_ADD_TO_BLACK_LIST_NORMAL(p, source); } return 0; } } else { if (HBLK_IS_FREE(hhdr)) { GC_ADD_TO_BLACK_LIST_NORMAL(p, source); return 0; } else { hce -> block_addr = (word)(p) >> LOG_HBLKSIZE; hce -> hce_hdr = hhdr; return hhdr; } } } /* Routines to dynamically allocate collector data structures that will */ /* never be freed. */ static ptr_t scratch_free_ptr = 0; /* GC_scratch_last_end_ptr is end point of last obtained scratch area. */ /* GC_scratch_end_ptr is end point of current scratch area. */ GC_INNER ptr_t GC_scratch_alloc(size_t bytes) { register ptr_t result = scratch_free_ptr; bytes += GRANULE_BYTES-1; bytes &= ~(GRANULE_BYTES-1); scratch_free_ptr += bytes; if (scratch_free_ptr <= GC_scratch_end_ptr) { return(result); } { word bytes_to_get = MINHINCR * HBLKSIZE; if (bytes_to_get <= bytes) { /* Undo the damage, and get memory directly */ bytes_to_get = bytes; # ifdef USE_MMAP bytes_to_get += GC_page_size - 1; bytes_to_get &= ~(GC_page_size - 1); # endif result = (ptr_t)GET_MEM(bytes_to_get); GC_add_to_our_memory(result, bytes_to_get); scratch_free_ptr -= bytes; GC_scratch_last_end_ptr = result + bytes; return(result); } result = (ptr_t)GET_MEM(bytes_to_get); GC_add_to_our_memory(result, bytes_to_get); if (result == 0) { if (GC_print_stats) GC_log_printf("Out of memory - trying to allocate less\n"); scratch_free_ptr -= bytes; bytes_to_get = bytes; # ifdef USE_MMAP bytes_to_get += GC_page_size - 1; bytes_to_get &= ~(GC_page_size - 1); # endif result = (ptr_t)GET_MEM(bytes_to_get); GC_add_to_our_memory(result, bytes_to_get); return result; } scratch_free_ptr = result; GC_scratch_end_ptr = scratch_free_ptr + bytes_to_get; GC_scratch_last_end_ptr = GC_scratch_end_ptr; return(GC_scratch_alloc(bytes)); } } static hdr * hdr_free_list = 0; /* Return an uninitialized header */ static hdr * alloc_hdr(void) { register hdr * result; if (hdr_free_list == 0) { result = (hdr *) GC_scratch_alloc((word)(sizeof(hdr))); } else { result = hdr_free_list; hdr_free_list = (hdr *) (result -> hb_next); } return(result); } GC_INLINE void free_hdr(hdr * hhdr) { hhdr -> hb_next = (struct hblk *) hdr_free_list; hdr_free_list = hhdr; } #ifdef COUNT_HDR_CACHE_HITS /* Used for debugging/profiling (the symbols are externally visible). */ word GC_hdr_cache_hits = 0; word GC_hdr_cache_misses = 0; #endif GC_INNER void GC_init_headers(void) { register unsigned i; GC_all_nils = (bottom_index *)GC_scratch_alloc((word)sizeof(bottom_index)); if (GC_all_nils == NULL) { GC_err_printf("Insufficient memory for GC_all_nils\n"); EXIT(); } BZERO(GC_all_nils, sizeof(bottom_index)); for (i = 0; i < TOP_SZ; i++) { GC_top_index[i] = GC_all_nils; } } /* Make sure that there is a bottom level index block for address addr */ /* Return FALSE on failure. */ static GC_bool get_index(word addr) { word hi = (word)(addr) >> (LOG_BOTTOM_SZ + LOG_HBLKSIZE); bottom_index * r; bottom_index * p; bottom_index ** prev; bottom_index *pi; # ifdef HASH_TL word i = TL_HASH(hi); bottom_index * old; old = p = GC_top_index[i]; while(p != GC_all_nils) { if (p -> key == hi) return(TRUE); p = p -> hash_link; } r = (bottom_index*)GC_scratch_alloc((word)(sizeof (bottom_index))); if (r == 0) return(FALSE); BZERO(r, sizeof (bottom_index)); r -> hash_link = old; GC_top_index[i] = r; # else if (GC_top_index[hi] != GC_all_nils) return(TRUE); r = (bottom_index*)GC_scratch_alloc((word)(sizeof (bottom_index))); if (r == 0) return(FALSE); GC_top_index[hi] = r; BZERO(r, sizeof (bottom_index)); # endif r -> key = hi; /* Add it to the list of bottom indices */ prev = &GC_all_bottom_indices; /* pointer to p */ pi = 0; /* bottom_index preceding p */ while ((p = *prev) != 0 && p -> key < hi) { pi = p; prev = &(p -> asc_link); } r -> desc_link = pi; if (0 == p) { GC_all_bottom_indices_end = r; } else { p -> desc_link = r; } r -> asc_link = p; *prev = r; return(TRUE); } /* Install a header for block h. */ /* The header is uninitialized. */ /* Returns the header or 0 on failure. */ GC_INNER struct hblkhdr * GC_install_header(struct hblk *h) { hdr * result; if (!get_index((word) h)) return(0); result = alloc_hdr(); if (result) { SET_HDR(h, result); # ifdef USE_MUNMAP result -> hb_last_reclaimed = (unsigned short)GC_gc_no; # endif } return(result); } /* Set up forwarding counts for block h of size sz */ GC_INNER GC_bool GC_install_counts(struct hblk *h, size_t sz/* bytes */) { struct hblk * hbp; word i; for (hbp = h; (char *)hbp < (char *)h + sz; hbp += BOTTOM_SZ) { if (!get_index((word) hbp)) return(FALSE); } if (!get_index((word)h + sz - 1)) return(FALSE); for (hbp = h + 1; (char *)hbp < (char *)h + sz; hbp += 1) { i = HBLK_PTR_DIFF(hbp, h); SET_HDR(hbp, (hdr *)(i > MAX_JUMP? MAX_JUMP : i)); } return(TRUE); } /* Remove the header for block h */ GC_INNER void GC_remove_header(struct hblk *h) { hdr **ha; GET_HDR_ADDR(h, ha); free_hdr(*ha); *ha = 0; } /* Remove forwarding counts for h */ GC_INNER void GC_remove_counts(struct hblk *h, size_t sz/* bytes */) { register struct hblk * hbp; for (hbp = h+1; (char *)hbp < (char *)h + sz; hbp += 1) { SET_HDR(hbp, 0); } } /* Apply fn to all allocated blocks */ /*VARARGS1*/ void GC_apply_to_all_blocks(void (*fn)(struct hblk *h, word client_data), word client_data) { signed_word j; bottom_index * index_p; for (index_p = GC_all_bottom_indices; index_p != 0; index_p = index_p -> asc_link) { for (j = BOTTOM_SZ-1; j >= 0;) { if (!IS_FORWARDING_ADDR_OR_NIL(index_p->index[j])) { if (!HBLK_IS_FREE(index_p->index[j])) { (*fn)(((struct hblk *) (((index_p->key << LOG_BOTTOM_SZ) + (word)j) << LOG_HBLKSIZE)), client_data); } j--; } else if (index_p->index[j] == 0) { j--; } else { j -= (signed_word)(index_p->index[j]); } } } } /* Get the next valid block whose address is at least h */ /* Return 0 if there is none. */ GC_INNER struct hblk * GC_next_used_block(struct hblk *h) { register bottom_index * bi; register word j = ((word)h >> LOG_HBLKSIZE) & (BOTTOM_SZ-1); GET_BI(h, bi); if (bi == GC_all_nils) { register word hi = (word)h >> (LOG_BOTTOM_SZ + LOG_HBLKSIZE); bi = GC_all_bottom_indices; while (bi != 0 && bi -> key < hi) bi = bi -> asc_link; j = 0; } while(bi != 0) { while (j < BOTTOM_SZ) { hdr * hhdr = bi -> index[j]; if (IS_FORWARDING_ADDR_OR_NIL(hhdr)) { j++; } else { if (!HBLK_IS_FREE(hhdr)) { return((struct hblk *) (((bi -> key << LOG_BOTTOM_SZ) + j) << LOG_HBLKSIZE)); } else { j += divHBLKSZ(hhdr -> hb_sz); } } } j = 0; bi = bi -> asc_link; } return(0); } /* Get the last (highest address) block whose address is */ /* at most h. Return 0 if there is none. */ /* Unlike the above, this may return a free block. */ GC_INNER struct hblk * GC_prev_block(struct hblk *h) { register bottom_index * bi; register signed_word j = ((word)h >> LOG_HBLKSIZE) & (BOTTOM_SZ-1); GET_BI(h, bi); if (bi == GC_all_nils) { register word hi = (word)h >> (LOG_BOTTOM_SZ + LOG_HBLKSIZE); bi = GC_all_bottom_indices_end; while (bi != 0 && bi -> key > hi) bi = bi -> desc_link; j = BOTTOM_SZ - 1; } while(bi != 0) { while (j >= 0) { hdr * hhdr = bi -> index[j]; if (0 == hhdr) { --j; } else if (IS_FORWARDING_ADDR_OR_NIL(hhdr)) { j -= (signed_word)hhdr; } else { return((struct hblk *) (((bi -> key << LOG_BOTTOM_SZ) + j) << LOG_HBLKSIZE)); } } j = BOTTOM_SZ - 1; bi = bi -> desc_link; } return(0); }