/* * This file is part of the coreboot project. * * Copyright (C) 2008 Advanced Micro Devices, Inc. * Copyright (C) 2010 Siemens AG, Inc. * (Written by Josef Kellermann for Siemens AG, Inc.) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "chip.h" #if CONFIG_PCI_OPTION_ROM_RUN_YABEL #include #endif #include "int15_func.h" // ****LCD panel ID support: ***** // Callback Sub-Function 00h - Get LCD Panel ID #define PANEL_TABLE_ID_NO 0 // no LCD #define PANEL_TABLE_ID1 1 // 1024x768_65MHz_Dual #define PANEL_TABLE_ID2 2 // 920x1200_162MHz #define PANEL_TABLE_ID3 3 // 600x1200_162MHz #define PANEL_TABLE_ID4 4 // 1024x768_65MHz #define PANEL_TABLE_ID5 5 // 1400x1050_108MHz #define PANEL_TABLE_ID6 6 // 1680x1050_119MHz #define PANEL_TABLE_ID7 7 // 2048x1536_164MHz #define PANEL_TABLE_ID8 8 // 1280x1024_108MHz #define PANEL_TABLE_ID9 9 // 1366x768_86MHz_chimei_V32B1L01 // Callback Sub-Function 05h – Select Boot-up TV Standard #define TV_MODE_00 0x00 /* NTSC */ #define TV_MODE_01 0x01 /* PAL */ #define TV_MODE_02 0x02 /* PALM */ #define TV_MODE_03 0x03 /* PAL60 */ #define TV_MODE_04 0x04 /* NTSCJ */ #define TV_MODE_05 0x05 /* PALCN */ #define TV_MODE_06 0x06 /* PALN */ #define TV_MODE_09 0x09 /* SCART-RGB */ #define TV_MODE_NO 0xff /* No TV Support */ #define PLX_VIDDID 0x861610b5 /* 7475 Common Registers */ #define REG_DEVREV2 0x12 /* ADT7490 only */ #define REG_VTT 0x1E /* ADT7490 only */ #define REG_EXTEND3 0x1F /* ADT7490 only */ #define REG_VOLTAGE_BASE 0x20 #define REG_TEMP_BASE 0x25 #define REG_TACH_BASE 0x28 #define REG_PWM_BASE 0x30 #define REG_PWM_MAX_BASE 0x38 #define REG_DEVID 0x3D #define REG_VENDID 0x3E #define REG_DEVID2 0x3F #define REG_STATUS1 0x41 #define REG_STATUS2 0x42 #define REG_VID 0x43 /* ADT7476 only */ #define REG_VOLTAGE_MIN_BASE 0x44 #define REG_VOLTAGE_MAX_BASE 0x45 #define REG_TEMP_MIN_BASE 0x4E #define REG_TEMP_MAX_BASE 0x4F #define REG_TACH_MIN_BASE 0x54 #define REG_PWM_CONFIG_BASE 0x5C #define REG_TEMP_TRANGE_BASE 0x5F #define REG_PWM_MIN_BASE 0x64 #define REG_TEMP_TMIN_BASE 0x67 #define REG_TEMP_THERM_BASE 0x6A #define REG_REMOTE1_HYSTERSIS 0x6D #define REG_REMOTE2_HYSTERSIS 0x6E #define REG_TEMP_OFFSET_BASE 0x70 #define REG_CONFIG2 0x73 #define REG_EXTEND1 0x76 #define REG_EXTEND2 0x77 #define REG_CONFIG1 0x40 // ADT7475 #define REG_CONFIG3 0x78 #define REG_CONFIG5 0x7C #define REG_CONFIG6 0x10 // ADT7475 #define REG_CONFIG7 0x11 // ADT7475 #define REG_CONFIG4 0x7D #define REG_STATUS4 0x81 /* ADT7490 only */ #define REG_VTT_MIN 0x84 /* ADT7490 only */ #define REG_VTT_MAX 0x86 /* ADT7490 only */ #define VID_VIDSEL 0x80 /* ADT7476 only */ #define CONFIG2_ATTN 0x20 #define CONFIG3_SMBALERT 0x01 #define CONFIG3_THERM 0x02 #define CONFIG4_PINFUNC 0x03 #define CONFIG4_MAXDUTY 0x08 #define CONFIG4_ATTN_IN10 0x30 #define CONFIG4_ATTN_IN43 0xC0 #define CONFIG5_TWOSCOMP 0x01 #define CONFIG5_TEMPOFFSET 0x02 #define CONFIG5_VIDGPIO 0x10 /* ADT7476 only */ #define REMOTE1 0 #define LOCAL 1 #define REMOTE2 2 /* ADT7475 Settings */ #define ADT7475_VOLTAGE_COUNT 5 /* Not counting Vtt */ #define ADT7475_TEMP_COUNT 3 #define ADT7475_TACH_COUNT 4 #define ADT7475_PWM_COUNT 3 /* Macros to easily index the registers */ #define TACH_REG(idx) (REG_TACH_BASE + ((idx) * 2)) #define TACH_MIN_REG(idx) (REG_TACH_MIN_BASE + ((idx) * 2)) #define PWM_REG(idx) (REG_PWM_BASE + (idx)) #define PWM_MAX_REG(idx) (REG_PWM_MAX_BASE + (idx)) #define PWM_MIN_REG(idx) (REG_PWM_MIN_BASE + (idx)) #define PWM_CONFIG_REG(idx) (REG_PWM_CONFIG_BASE + (idx)) #define VOLTAGE_REG(idx) (REG_VOLTAGE_BASE + (idx)) #define VOLTAGE_MIN_REG(idx) (REG_VOLTAGE_MIN_BASE + ((idx) * 2)) #define VOLTAGE_MAX_REG(idx) (REG_VOLTAGE_MAX_BASE + ((idx) * 2)) #define TEMP_REG(idx) (REG_TEMP_BASE + (idx)) #define TEMP_MIN_REG(idx) (REG_TEMP_MIN_BASE + ((idx) * 2)) #define TEMP_MAX_REG(idx) (REG_TEMP_MAX_BASE + ((idx) * 2)) #define TEMP_TMIN_REG(idx) (REG_TEMP_TMIN_BASE + (idx)) #define TEMP_THERM_REG(idx) (REG_TEMP_THERM_BASE + (idx)) #define TEMP_OFFSET_REG(idx) (REG_TEMP_OFFSET_BASE + (idx)) #define TEMP_TRANGE_REG(idx) (REG_TEMP_TRANGE_BASE + (idx)) #define SMBUS_IO_BASE 0x1000 #define ADT7475_ADDRESS 0x2E #define D_OPEN (1 << 6) #define D_CLS (1 << 5) #define D_LCK (1 << 4) #define G_SMRAME (1 << 3) #define A_BASE_SEG ((0 << 2) | (1 << 1) | (0 << 0)) // 0x2: SMM space at 640KB-768KB extern int do_smbus_read_byte(u32 smbus_io_base, u32 device, u32 address); extern int do_smbus_write_byte(u32 smbus_io_base, u32 device, u32 address, u8 val); uint64_t uma_memory_base, uma_memory_size; static u32 smbus_io_base = SMBUS_IO_BASE; static u32 adt7475_address = ADT7475_ADDRESS; /* Macro to read the registers */ #define adt7475_read_byte(reg) \ do_smbus_read_byte(smbus_io_base, adt7475_address, reg) #define adt7475_write_byte(reg, val) \ do_smbus_write_byte(smbus_io_base, adt7475_address, reg, val) #define TWOS_COMPL 1 struct __table__{ const char *info; u8 val; }; struct __table__ dutycycles[] = { {"25%", 0x3f},{"30%", 0x4c},{"35%", 0x59},{"40%", 0x66},{"45%", 0x73}, {"50%", 0x80},{"55%", 0x8d},{"60%", 0x9a},{"65%", 0xa7},{"70%", 0xb4}, {"75%", 0xc1},{"80%", 0xce},{"85%", 0xdb},{"90%", 0xe8},{"95%", 0xf5}, {"100%", 0xff} }; #define SIZEOF_DUTYCYCLES sizeof(dutycycles)/sizeof(struct __table__) #define DUTYCYCLE(i,d) (i < SIZEOF_DUTYCYCLES) ? dutycycles[i].val : dutycycles[d].val // hopefully d is a correct value !!! fix #define DUTYCYCLE_INFO(i) (i < SIZEOF_DUTYCYCLES) ? dutycycles[i].info : "out_of_range" #if TWOS_COMPL == 0 struct __table__ temperatures[] = { {"30°C", 0x5e},{"35°C", 0x63},{"40°C", 0x68},{"45°C", 0x6d},{"50°C", 0x72}, {"55°C", 0x77},{"60°C", 0x7c},{"65°C", 0x81},{"70°C", 0x86},{"75°C", 0x8b}, {"80°C", 0x90} }; #else struct __table__ temperatures[] = { {"30°C", 30},{"35°C", 35},{"40°C", 40},{"45°C", 45},{"50°C", 50}, {"55°C", 55},{"60°C", 60},{"65°C", 65},{"70°C", 70},{"75°C", 75}, {"80°C", 80} }; #endif int trange[] = {2.0,2.5,3.33,4.0,5.0,6.67,8.0,10.0,13.33,16.0,20.0,26.67,32.0,40.0,53.33,80.0}; #define SIZEOF_TEMPERATURES sizeof(temperatures)/sizeof(struct __table__) #define TEMPERATURE(i,d) (i < SIZEOF_TEMPERATURES) ? temperatures[i].val : temperatures[d].val // hopefully d is a correct value !!! fix #define TEMPERATURE_INFO(i) (i < SIZEOF_TEMPERATURES) ? temperatures[i].info : "out of range" struct fan_control { unsigned int enable : 1; u8 polarity; u8 t_min; u8 t_max; u8 pwm_min; u8 pwm_max; u8 t_range; }; /* ############################################################################################# */ #if CONFIG_PCI_OPTION_ROM_RUN_YABEL static int int15_handler(void) { #define BOOT_DISPLAY_DEFAULT 0 #define BOOT_DISPLAY_CRT (1 << 0) #define BOOT_DISPLAY_TV (1 << 1) #define BOOT_DISPLAY_EFP (1 << 2) #define BOOT_DISPLAY_LCD (1 << 3) #define BOOT_DISPLAY_CRT2 (1 << 4) #define BOOT_DISPLAY_TV2 (1 << 5) #define BOOT_DISPLAY_EFP2 (1 << 6) #define BOOT_DISPLAY_LCD2 (1 << 7) printk(BIOS_DEBUG, "%s: AX=%04x BX=%04x CX=%04x DX=%04x\n", __func__, M.x86.R_AX, M.x86.R_BX, M.x86.R_CX, M.x86.R_DX); switch (M.x86.R_AX) { case 0x4e08: /* Boot Display */ switch (M.x86.R_BX) { case 0x80: M.x86.R_AX &= ~(0xff); // Success M.x86.R_BX &= ~(0xff); printk(BIOS_DEBUG, "Integrated System Information\n"); break; case 0x00: M.x86.R_AX &= ~(0xff); M.x86.R_BX = 0x00; printk(BIOS_DEBUG, "Panel ID = 0\n"); break; case 0x05: M.x86.R_AX &= ~(0xff); M.x86.R_BX = 0xff; printk(BIOS_DEBUG, "TV = off\n"); break; default: return 0; } break; case 0x5f35: /* Boot Display */ M.x86.R_AX = 0x005f; // Success M.x86.R_CL = BOOT_DISPLAY_DEFAULT; break; case 0x5f40: /* Boot Panel Type */ // M.x86.R_AX = 0x015f; // Supported but failed M.x86.R_AX = 0x005f; // Success M.x86.R_CL = 3; // Display ID break; default: /* Interrupt was not handled */ return 0; } /* Interrupt handled */ return 1; } static void int15_install(void) { typedef int (* yabel_handleIntFunc)(void); extern yabel_handleIntFunc yabel_intFuncArray[256]; yabel_intFuncArray[0x15] = int15_handler; } #endif /* ############################################################################################# */ /** * @brief * * @param */ static u8 calc_trange(u8 t_min, u8 t_max) { u8 prev; int i; int diff = t_max - t_min; // walk through the trange table for(i = 0, prev = 0; i < sizeof(trange)/sizeof(int); i++) { if( trange[i] < diff ) { prev = i; // save last val continue; } if( diff == trange[i] ) return i; if( (diff - trange[prev]) < (trange[i] - diff) ) break; // return with last val index return i; } return prev; } /******************************************************** * sina uses SB600 GPIO9 to detect IDE_DMA66. * IDE_DMA66 is routed to GPIO 9. So we read Gpio 9 to * get the cable type, 40 pin or 80 pin? ********************************************************/ static void cable_detect(void) { u8 byte; struct device *sm_dev; struct device *ide_dev; /* SMBus Module and ACPI Block (Device 20, Function 0) on SB600 */ printk(BIOS_DEBUG, "%s.\n", __func__); sm_dev = dev_find_slot(0, PCI_DEVFN(0x14, 0)); byte = pci_read_config8(sm_dev, 0xA9); byte |= (1 << 5); /* Set Gpio9 as input */ pci_write_config8(sm_dev, 0xA9, byte); /* IDE Controller (Device 20, Function 1) on SB600 */ ide_dev = dev_find_slot(0, PCI_DEVFN(0x14, 1)); byte = pci_read_config8(ide_dev, 9); printk(BIOS_INFO, "IDE controller in %s Mode\n", byte & (1 << 0) ? "Native" : "Compatibility"); byte = pci_read_config8(ide_dev, 0x56); byte &= ~(7 << 0); if( pci_read_config8(sm_dev, 0xAA) & (1 << 5) ) byte |= 2 << 0; /* mode 2 */ else byte |= 5 << 0; /* mode 5 */ printk(BIOS_INFO, "DMA mode %d selected\n", byte & (7 << 0)); pci_write_config8(ide_dev, 0x56, byte); } /** * @brief Detect the ADT7475 device * * @param */ static const char * adt7475_detect( void ) { int vendid, devid, devid2; const char *name = NULL; vendid = adt7475_read_byte(REG_VENDID); devid2 = adt7475_read_byte(REG_DEVID2); if (vendid != 0x41 || /* Analog Devices */ (devid2 & 0xf8) != 0x68) { return name; } devid = adt7475_read_byte(REG_DEVID); if (devid == 0x73) name = "adt7473"; else if (devid == 0x75 && adt7475_address == 0x2e) name = "adt7475"; else if (devid == 0x76) name = "adt7476"; else if ((devid2 & 0xfc) == 0x6c) name = "adt7490"; return name; } // thermal control defaults const struct fan_control cpu_fan_control_defaults = { .enable = 0, // disable by default .polarity = 0, // high by default .t_min = 3, // default = 45°C .t_max = 7, // 65°C .pwm_min = 1, // default dutycycle = 30% .pwm_max = 13, // 90% }; const struct fan_control case_fan_control_defaults = { .enable = 0, // disable by default .polarity = 0, // high by default .t_min = 2, // default = 40°C .t_max = 8, // 70°C .pwm_min = 0, // default dutycycle = 25% .pwm_max = 13, // 90% }; static void pm_init( void ) { u16 word; u8 byte; device_t sm_dev = dev_find_slot(0, PCI_DEVFN(0x14, 0)); /* set SB600 GPIO 64 to GPIO with pull-up */ byte = pm2_ioread(0x42); byte &= 0x3f; pm2_iowrite(0x42, byte); /* set GPIO 64 to tristate */ word = pci_read_config16(sm_dev, 0x56); word |= 1 << 7; pci_write_config16(sm_dev, 0x56, word); /* set GPIO 64 internal pull-up */ byte = pm2_ioread(0xf0); byte &= 0xee; pm2_iowrite(0xf0, byte); /* set Talert to be active low */ byte = pm_ioread(0x67); byte &= ~(1 << 5); pm_iowrite(0x67, byte); /* set Talert to generate ACPI event */ byte = pm_ioread(0x3c); byte &= 0xf3; pm_iowrite(0x3c, byte); /* set GPM5 to not wake from s5 */ byte = pm_ioread(0x77); byte &= ~(1 << 5); pm_iowrite(0x77, byte); } /** * @brief Setup thermal config on SINA Mainboard * * @param */ static void set_thermal_config(void) { u8 byte, byte2; u8 cpu_pwm_conf, case_pwm_conf; device_t sm_dev; struct fan_control cpu_fan_control, case_fan_control; const char *name = NULL; sm_dev = dev_find_slot(0, PCI_DEVFN(0x14, 0)); smbus_io_base = pci_read_config32(sm_dev, 0x10) & ~(0xf); // get BAR0-Address which holds the SMBUS_IO_BASE if( (name = adt7475_detect()) == NULL ) { printk(BIOS_NOTICE, "Couldn't detect an ADT7473/75/76/90 part at %x:%x\n", smbus_io_base, adt7475_address); return; } printk(BIOS_DEBUG, "Found %s part at %x:%x\n", name, smbus_io_base, adt7475_address); cpu_fan_control = cpu_fan_control_defaults; case_fan_control = case_fan_control_defaults; if( get_option(&byte, "cpu_fan_control") == -4 ) { printk(BIOS_WARNING, "%s: CMOS checksum invalid, keeping default values\n",__func__); } else { // get all the options needed if( get_option(&byte, "cpu_fan_control") == 0 ) cpu_fan_control.enable = byte ? 1 : 0; get_option(&cpu_fan_control.polarity, "cpu_fan_polarity"); get_option(&cpu_fan_control.t_min, "cpu_t_min"); get_option(&cpu_fan_control.t_max, "cpu_t_max"); get_option(&cpu_fan_control.pwm_min, "cpu_dutycycle_min"); get_option(&cpu_fan_control.pwm_max, "cpu_dutycycle_max"); if( get_option(&byte, "chassis_fan_control") == 0) case_fan_control.enable = byte ? 1 : 0; get_option(&case_fan_control.polarity, "chassis_fan_polarity"); get_option(&case_fan_control.t_min, "chassis_t_min"); get_option(&case_fan_control.t_max, "chassis_t_max"); get_option(&case_fan_control.pwm_min, "chassis_dutycycle_min"); get_option(&case_fan_control.pwm_max, "chassis_dutycycle_max"); } printk(BIOS_DEBUG, "cpu_fan_control:%s", cpu_fan_control.enable ? "enable" : "disable"); printk(BIOS_DEBUG, " cpu_fan_polarity:%s", cpu_fan_control.polarity ? "low" : "high"); printk(BIOS_DEBUG, " cpu_t_min:%s", TEMPERATURE_INFO(cpu_fan_control.t_min)); cpu_fan_control.t_min = TEMPERATURE(cpu_fan_control.t_min, cpu_fan_control_defaults.t_min); printk(BIOS_DEBUG, " cpu_t_max:%s", TEMPERATURE_INFO(cpu_fan_control.t_max)); cpu_fan_control.t_max = TEMPERATURE(cpu_fan_control.t_max, cpu_fan_control_defaults.t_max); printk(BIOS_DEBUG, " cpu_pwm_min:%s", DUTYCYCLE_INFO(cpu_fan_control.pwm_min)); cpu_fan_control.pwm_min = DUTYCYCLE(cpu_fan_control.pwm_min, cpu_fan_control_defaults.pwm_min); printk(BIOS_DEBUG, " cpu_pwm_max:%s", DUTYCYCLE_INFO(cpu_fan_control.pwm_max)); cpu_fan_control.pwm_max = DUTYCYCLE(cpu_fan_control.pwm_max, cpu_fan_control_defaults.pwm_max); cpu_fan_control.t_range = calc_trange(cpu_fan_control.t_min, cpu_fan_control.t_max); printk(BIOS_DEBUG, " cpu_t_range:0x%02x\n", cpu_fan_control.t_range); cpu_fan_control.t_range <<= 4; cpu_fan_control.t_range |= (4 << 0); // 35.3Hz printk(BIOS_DEBUG, "chassis_fan_control:%s", case_fan_control.enable ? "enable" : "disable"); printk(BIOS_DEBUG, " chassis_fan_polarity:%s", case_fan_control.polarity ? "low" : "high"); printk(BIOS_DEBUG, " chassis_t_min:%s", TEMPERATURE_INFO(case_fan_control.t_min)); case_fan_control.t_min = TEMPERATURE(case_fan_control.t_min, case_fan_control_defaults.t_min); printk(BIOS_DEBUG, " chassis_t_max:%s", TEMPERATURE_INFO(case_fan_control.t_max)); case_fan_control.t_max = TEMPERATURE(case_fan_control.t_max, case_fan_control_defaults.t_max); printk(BIOS_DEBUG, " chassis_pwm_min:%s", DUTYCYCLE_INFO(case_fan_control.pwm_min)); case_fan_control.pwm_min = DUTYCYCLE(case_fan_control.pwm_min, case_fan_control_defaults.pwm_min); printk(BIOS_DEBUG, " chassis_pwm_max:%s", DUTYCYCLE_INFO(case_fan_control.pwm_max)); case_fan_control.pwm_max = DUTYCYCLE(case_fan_control.pwm_max, case_fan_control_defaults.pwm_max); case_fan_control.t_range = calc_trange(case_fan_control.t_min, case_fan_control.t_max); printk(BIOS_DEBUG, " case_t_range:0x%02x\n", case_fan_control.t_range); case_fan_control.t_range <<= 4; case_fan_control.t_range |= (4 << 0); // 35.3Hz cpu_pwm_conf = (((cpu_fan_control.polarity & 0x1) << 4) | 0x2); // bit 4 control polarity of PWMx output case_pwm_conf = (((case_fan_control.polarity & 0x1) << 4) | 0x2); // bit 4 control polarity of PWMx output cpu_pwm_conf |= cpu_fan_control.enable ? (0 << 5) : (7 << 5); // manual control case_pwm_conf |= case_fan_control.enable ? (1 << 5) : (7 << 5); // local temp /* set adt7475 */ adt7475_write_byte(REG_CONFIG1, 0x04); // clear register, bit 2 is read only /* Config Register 6: */ adt7475_write_byte(REG_CONFIG6, 0x00); /* Config Register 7 */ adt7475_write_byte(REG_CONFIG7, 0x00); /* Config Register 5: */ /* set Offset 64 format, enable THERM on Remote 1& Local */ adt7475_write_byte(REG_CONFIG5, TWOS_COMPL ? 0x61 : 0x60); /* No offset for remote 1 */ adt7475_write_byte(TEMP_OFFSET_REG(0), 0x00); /* No offset for local */ adt7475_write_byte(TEMP_OFFSET_REG(1), 0x00); /* No offset for remote 2 */ adt7475_write_byte(TEMP_OFFSET_REG(2), 0x00); /* remote 1 low temp limit */ adt7475_write_byte(TEMP_MIN_REG(0), 0x00); /* remote 1 High temp limit (90C) */ adt7475_write_byte(TEMP_MAX_REG(0), 0x9a); /* local Low Temp Limit */ adt7475_write_byte(TEMP_MIN_REG(1), 0x00); /* local High Limit (90C) */ adt7475_write_byte(TEMP_MAX_REG(1), 0x9a); /* remote 1 therm temp limit (95C) */ adt7475_write_byte(TEMP_THERM_REG(0), 0x9f); /* local therm temp limit (95C) */ adt7475_write_byte(TEMP_THERM_REG(1), 0x9f); /* PWM 1 configuration register CPU fan controlled by CPU Thermal Diode */ adt7475_write_byte(PWM_CONFIG_REG(0), cpu_pwm_conf); /* PWM 3 configuration register Case fan controlled by ADTxxxx temp */ adt7475_write_byte(PWM_CONFIG_REG(2), case_pwm_conf); if( cpu_fan_control.enable ) { /* PWM 1 minimum duty cycle (37%) */ adt7475_write_byte(PWM_MIN_REG(0), cpu_fan_control.pwm_min); /* PWM 1 Maximum duty cycle (100%) */ adt7475_write_byte(PWM_MAX_REG(0), cpu_fan_control.pwm_max); /* Remote 1 temperature Tmin (32C) */ adt7475_write_byte(TEMP_TMIN_REG(0), cpu_fan_control.t_min); /* remote 1 Trange (53C ramp range) */ adt7475_write_byte(TEMP_TRANGE_REG(0), cpu_fan_control.t_range); } else { adt7475_write_byte(PWM_REG(0), cpu_fan_control.pwm_max); } if( case_fan_control.enable ) { /* PWM 2 minimum duty cycle (37%) */ adt7475_write_byte(PWM_MIN_REG(2), case_fan_control.pwm_min); /* PWM 2 Maximum Duty Cycle (100%) */ adt7475_write_byte(PWM_MAX_REG(2), case_fan_control.pwm_max); /* local temperature Tmin (32C) */ adt7475_write_byte(TEMP_TMIN_REG(1), case_fan_control.t_min); /* local Trange (53C ramp range) */ adt7475_write_byte(TEMP_TRANGE_REG(1), case_fan_control.t_range); // Local TRange adt7475_write_byte(TEMP_TRANGE_REG(2), case_fan_control.t_range); // PWM2 Freq } else { adt7475_write_byte(PWM_REG(2), case_fan_control.pwm_max); } /* Config Register 3 - enable smbalert & therm */ adt7475_write_byte(0x78, 0x03); /* Config Register 4 - enable therm output */ adt7475_write_byte(0x7d, 0x09); /* Interrupt Mask Register 2 - Mask SMB alert for Therm Conditions, Fan 3 fault, SmbAlert Fan for Therm Timer event */ adt7475_write_byte(0x75, 0x2e); /* Config Register 1 Set Start bit */ adt7475_write_byte(0x40, 0x05); /* Read status register to clear any old errors */ byte2 = adt7475_read_byte(0x42); byte = adt7475_read_byte(0x41); printk(BIOS_DEBUG, "Init 'Thermal Monitor' end , status 0x42 = 0x%02x, status 0x41 = 0x%02x\n", byte2, byte); } /** * @brief * * @param */ static void patch_mmio_nonposted( void ) { unsigned reg, index; resource_t rbase, rend; u32 base, limit; struct resource *resource; device_t dev; device_t k8_f1 = dev_find_slot(0, PCI_DEVFN(0x18,1)); printk(BIOS_DEBUG,"%s ...\n", __func__); dev = dev_find_slot(1, PCI_DEVFN(5,0)); // the uma frame buffer index = 0x10; resource = probe_resource(dev, index); if( resource ) { // fixup resource nonposted in k8 mmio /* Get the base address */ rbase = (resource->base >> 8) & ~(0xff); /* Get the limit (rounded up) */ rend = (resource_end(resource) >> 8) & ~(0xff); printk(BIOS_DEBUG,"%s %x base = %0llx limit = %0llx\n", dev_path(dev), index, rbase, rend); for( reg = 0xb8; reg >= 0x80; reg -= 8 ) { base = pci_read_config32(k8_f1,reg); limit = pci_read_config32(k8_f1,reg+4); printk(BIOS_DEBUG," %02x[%08x] %02x[%08x]", reg, base, reg+4, limit); if( ((base & ~(0xff)) == rbase) && ((limit & ~(0xff)) == rend) ) { limit |= (1 << 7); printk(BIOS_DEBUG, "\nPatching %s %x <- %08x", dev_path(k8_f1), reg, limit); pci_write_config32(k8_f1, reg+4, limit); break; } } printk(BIOS_DEBUG, "\n"); } } /** * @brief * * @param */ static void wait_pepp( void ) { int boot_delay = 0; if( get_option(&boot_delay, "boot_delay") < 0) boot_delay = 5; printk(BIOS_DEBUG, "boot_delay = %d sec\n", boot_delay); if ( boot_delay > 0 ) { init_timer(); // wait for PEPP-Board printk(BIOS_INFO, "Give PEPP-Board %d sec(s) time to coming up ", boot_delay); while ( boot_delay ) { lapic_write(LAPIC_TMICT, 0xffffffff); udelay(1000000); // delay time approx. 1 sec printk(BIOS_INFO, "."); boot_delay--; } printk(BIOS_INFO, "\n"); } } /** * @brief * * @param */ struct { unsigned int bus; unsigned int devfn; } slot[] = { {0, PCI_DEVFN(0,0)}, {0, PCI_DEVFN(18,0)}, {0, PCI_DEVFN(19,0)},{0, PCI_DEVFN(19,1)},{0, PCI_DEVFN(19,2)},{0, PCI_DEVFN(19,3)},{0, PCI_DEVFN(19,4)},{0, PCI_DEVFN(19,5)}, {0, PCI_DEVFN(20,0)},{0, PCI_DEVFN(20,1)},{0, PCI_DEVFN(20,2)},{0, PCI_DEVFN(20,3)},{0, PCI_DEVFN(20,5)},{0, PCI_DEVFN(20,6)}, {0, PCI_DEVFN(5,0)},{0, PCI_DEVFN(5,2)}, {255,0}, }; static void update_subsystemid( device_t dev ) { int i; struct mainboard_config *mb = dev->chip_info; dev->subsystem_vendor = 0x110a; if( mb->plx_present ){ dev->subsystem_device = 0x4076; // U1P1 = 0x4076, U1P0 = 0x4077 } else { dev->subsystem_device = 0x4077; // U1P0 = 0x4077 } printk(BIOS_INFO, "%s [%x/%x]\n", dev->chip_ops->name, dev->subsystem_vendor, dev->subsystem_device ); for( i=0; slot[i].bus < 255; i++) { device_t d; d = dev_find_slot(slot[i].bus,slot[i].devfn); if( d ) { printk(BIOS_DEBUG,"%s subsystem <- %x/%x\n", dev_path(d), dev->subsystem_vendor, dev->subsystem_device); d->subsystem_device = dev->subsystem_device; } } } /** * @brief * * @param */ static void detect_hw_variant( device_t dev ) { device_t nb_dev =0, dev2 = 0; struct southbridge_amd_rs690_config *cfg; u32 lc_state, id = 0; struct mainboard_config *mb = dev->chip_info; printk(BIOS_INFO, "Scan for PLX device ...\n"); nb_dev = dev_find_slot(0, PCI_DEVFN(0, 0)); if (!nb_dev) { die("CAN NOT FIND RS690 DEVICE, HALT!\n"); /* NOT REACHED */ } dev2 = dev_find_slot(0, PCI_DEVFN(2, 0)); if (!dev2) { die("CAN NOT FIND GFX DEVICE 2, HALT!\n"); /* NOT REACHED */ } PcieReleasePortTraining(nb_dev, dev2, 2); // we assume PLX is connected to port 2 mdelay(40); lc_state = nbpcie_p_read_index(dev2, 0xa5); /* lc_state */ printk(BIOS_DEBUG, "lc current state=%x\n", lc_state); /* LC_CURRENT_STATE = bit0-5 */ switch( lc_state & 0x3f ){ case 0x00: case 0x01: case 0x02: case 0x03: case 0x04: printk(BIOS_NOTICE, "No device present, skipping PLX scan ..\n"); break; case 0x07: case 0x10: { struct device dummy; u32 pci_primary_bus, buses; u16 secondary, subordinate; printk(BIOS_DEBUG, "Scan for PLX bridge behind %s[%x]\n", dev_path(dev2), pci_read_config32(dev2, PCI_VENDOR_ID)); // save the existing primary/secondary/subordinate bus number configuration. secondary = dev2->bus->secondary; subordinate = dev2->bus->subordinate; buses = pci_primary_bus = pci_read_config32(dev2, PCI_PRIMARY_BUS); // Configure the bus numbers for this bridge // bus number 1 is for internal gfx device, so we start with busnumber 2 buses &= 0xff000000; buses |= ((2 << 8) | (0xff << 16)); // setup the buses in device 2 pci_write_config32(dev2,PCI_PRIMARY_BUS, buses); // fake a device descriptor for a device behind device 2 dummy.bus = dev2->bus; dummy.bus->secondary = (buses >> 8) & 0xff; dummy.bus->subordinate = (buses >> 16) & 0xff; dummy.path.type = DEVICE_PATH_PCI; dummy.path.pci.devfn = PCI_DEVFN(0,0); // PLX: device number 0, function 0 id = pci_read_config32(&dummy, PCI_VENDOR_ID); /* Have we found something? * Some broken boards return 0 if a slot is empty, but * the expected answer is 0xffffffff */ if ((id == 0xffffffff) || (id == 0x00000000) || (id == 0x0000ffff) || (id == 0xffff0000)) { printk(BIOS_DEBUG, "%s, bad id 0x%x\n", dev_path(&dummy), id); } else { printk(BIOS_DEBUG, "found device [%x]\n", id); } // restore changes made for device 2 dev2->bus->secondary = secondary; dev2->bus->secondary = subordinate; pci_write_config32(dev2, PCI_PRIMARY_BUS, pci_primary_bus); } break; default: break; } mb->plx_present = 0; if( id == PLX_VIDDID ){ printk(BIOS_INFO, "found PLX device\n"); mb->plx_present = 1; cfg = (struct southbridge_amd_rs690_config *)dev2->chip_info; if( cfg->gfx_tmds ) { printk(BIOS_INFO, "Disable 'gfx_tmds' support\n"); cfg->gfx_tmds = 0; cfg->gfx_link_width = 4; } return; } } static void smm_lock( void ) { /* LOCK the SMM memory window and enable normal SMM. * After running this function, only a full reset can * make the SMM registers writable again. */ printk(BIOS_DEBUG, "Locking SMM.\n"); pci_write_config8(dev_find_slot(0, PCI_DEVFN(0, 0)), 0x69, D_LCK | G_SMRAME | A_BASE_SEG); } /** * @brief Init * * @param the root device */ static void init(device_t dev) { #if CONFIG_PCI_OPTION_ROM_RUN_YABEL == 0 INT15_function_extensions int15_func; #endif printk(BIOS_DEBUG, "%s %s[%x/%x] %s\n", dev->chip_ops->name, dev_path(dev), dev->subsystem_vendor, dev->subsystem_device, __func__); #if CONFIG_PCI_OPTION_ROM_RUN_YABEL == 0 if( get_option(&int15_func.regs.func00_LCD_panel_id, "lcd_panel_id") < 0 ) int15_func.regs.func00_LCD_panel_id = PANEL_TABLE_ID_NO; int15_func.regs.func05_TV_standard = TV_MODE_NO; install_INT15_function_extensions(&int15_func); #endif set_thermal_config(); pm_init(); cable_detect(); patch_mmio_nonposted(); smm_lock(); } /************************************************* * enable the dedicated function in sina board. * This function called early than rs690_enable. *************************************************/ static void enable_dev(device_t dev) { printk(BIOS_INFO, "%s %s[%x/%x] %s\n", dev->chip_ops->name, dev_path(dev), dev->subsystem_vendor, dev->subsystem_device, __func__); #if CONFIG_PCI_OPTION_ROM_RUN_YABEL /* Install custom int15 handler for VGA OPROM */ int15_install(); #endif detect_hw_variant(dev); update_subsystemid(dev); #if (CONFIG_GFXUMA == 1) { msr_t msr, msr2; /* TOP_MEM: the top of DRAM below 4G */ msr = rdmsr(TOP_MEM); printk(BIOS_DEBUG, "%s, TOP MEM: msr.lo = 0x%08x, msr.hi = 0x%08x\n", __func__, msr.lo, msr.hi); /* TOP_MEM2: the top of DRAM above 4G */ msr2 = rdmsr(TOP_MEM2); printk(BIOS_DEBUG, "%s, TOP MEM2: msr.lo = 0x%08x, msr.hi = 0x%08x\n", __func__, msr2.lo, msr2.hi); switch (msr.lo) { case 0x10000000: /* 256M system memory */ uma_memory_size = 0x2000000; /* 32M recommended UMA */ break; case 0x18000000: /* 384M system memory */ uma_memory_size = 0x4000000; /* 64M recommended UMA */ break; case 0x20000000: /* 512M system memory */ uma_memory_size = 0x4000000; /* 64M recommended UMA */ break; default: /* 1GB and above system memory */ uma_memory_size = 0x8000000; /* 128M recommended UMA */ break; } uma_memory_base = msr.lo - uma_memory_size; /* TOP_MEM1 */ printk(BIOS_INFO, "%s: uma size 0x%08llx, memory start 0x%08llx\n", __func__, uma_memory_size, uma_memory_base); /* TODO: TOP_MEM2 */ } #else uma_memory_size = 0; uma_memory_base = 0; #endif wait_pepp(); dev->ops->init = init; // rest of mainboard init later } /** * @brief * * @param */ int add_mainboard_resources(struct lb_memory *mem) { device_t dev; struct resource *res; dev = dev_find_slot(0, PCI_DEVFN(0,0)); res = probe_resource(dev, 0x1C); if( res ) { printk(BIOS_INFO, "mmconf: base=%0llx size=%0llx\n", res->base, res->size); lb_add_memory_range(mem, LB_MEM_RESERVED, res->base, res->size); } /* UMA is removed from system memory in the northbridge code, but * in some circumstances we want the memory mentioned as reserved. */ #if (CONFIG_GFXUMA == 1) printk(BIOS_INFO, "uma_memory_base=0x%llx, uma_memory_size=0x%llx \n", uma_memory_base, uma_memory_size); lb_add_memory_range(mem, LB_MEM_RESERVED, uma_memory_base, uma_memory_size); #endif return 0; } struct chip_operations mainboard_ops = { CHIP_NAME(CONFIG_MAINBOARD_PART_NUMBER) .enable_dev = enable_dev, };