/* * This file is part of the coreboot project. * * Copyright (C) 2011 Advanced Micro Devices, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "agesawrapper.h" #include "amdlib.h" #include "BiosCallOuts.h" #include "heapManager.h" #include "SB800.h" AGESA_STATUS GetBiosCallout (UINT32 Func, UINT32 Data, VOID *ConfigPtr) { UINTN i; AGESA_STATUS CalloutStatus; CONST BIOS_CALLOUT_STRUCT BiosCallouts[REQUIRED_CALLOUTS] = { {AGESA_ALLOCATE_BUFFER, BiosAllocateBuffer }, {AGESA_DEALLOCATE_BUFFER, BiosDeallocateBuffer }, {AGESA_DO_RESET, BiosReset }, {AGESA_LOCATE_BUFFER, BiosLocateBuffer }, {AGESA_READ_SPD, BiosReadSpd }, {AGESA_READ_SPD_RECOVERY, BiosDefaultRet }, {AGESA_RUNFUNC_ONAP, BiosRunFuncOnAp }, {AGESA_HOOKBEFORE_DQS_TRAINING, BiosHookBeforeDQSTraining }, {AGESA_HOOKBEFORE_DRAM_INIT, BiosHookBeforeDramInit }, {AGESA_HOOKBEFORE_EXIT_SELF_REF, BiosHookBeforeExitSelfRefresh }, {AGESA_GNB_PCIE_SLOT_RESET, BiosGnbPcieSlotReset }, }; for (i = 0; i < REQUIRED_CALLOUTS; i++) { if (BiosCallouts[i].CalloutName == Func) { break; } } if(i >= REQUIRED_CALLOUTS) { return AGESA_UNSUPPORTED; } CalloutStatus = BiosCallouts[i].CalloutPtr (Func, Data, ConfigPtr); return CalloutStatus; } AGESA_STATUS BiosAllocateBuffer (UINT32 Func, UINT32 Data, VOID *ConfigPtr) { UINT32 AvailableHeapSize; UINT8 *BiosHeapBaseAddr; UINT32 CurrNodeOffset; UINT32 PrevNodeOffset; UINT32 FreedNodeOffset; UINT32 BestFitNodeOffset; UINT32 BestFitPrevNodeOffset; UINT32 NextFreeOffset; BIOS_BUFFER_NODE *CurrNodePtr; BIOS_BUFFER_NODE *FreedNodePtr; BIOS_BUFFER_NODE *BestFitNodePtr; BIOS_BUFFER_NODE *BestFitPrevNodePtr; BIOS_BUFFER_NODE *NextFreePtr; BIOS_HEAP_MANAGER *BiosHeapBasePtr; AGESA_BUFFER_PARAMS *AllocParams; AllocParams = ((AGESA_BUFFER_PARAMS *) ConfigPtr); AllocParams->BufferPointer = NULL; AvailableHeapSize = BIOS_HEAP_SIZE - sizeof (BIOS_HEAP_MANAGER); BiosHeapBaseAddr = (UINT8 *) BIOS_HEAP_START_ADDRESS; BiosHeapBasePtr = (BIOS_HEAP_MANAGER *) BIOS_HEAP_START_ADDRESS; if (BiosHeapBasePtr->StartOfAllocatedNodes == 0) { /* First allocation */ CurrNodeOffset = sizeof (BIOS_HEAP_MANAGER); CurrNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + CurrNodeOffset); CurrNodePtr->BufferHandle = AllocParams->BufferHandle; CurrNodePtr->BufferSize = AllocParams->BufferLength; CurrNodePtr->NextNodeOffset = 0; AllocParams->BufferPointer = (UINT8 *) CurrNodePtr + sizeof (BIOS_BUFFER_NODE); /* Update the remaining free space */ FreedNodeOffset = CurrNodeOffset + CurrNodePtr->BufferSize + sizeof (BIOS_BUFFER_NODE); FreedNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + FreedNodeOffset); FreedNodePtr->BufferSize = AvailableHeapSize - sizeof (BIOS_BUFFER_NODE) - CurrNodePtr->BufferSize; FreedNodePtr->NextNodeOffset = 0; /* Update the offsets for Allocated and Freed nodes */ BiosHeapBasePtr->StartOfAllocatedNodes = CurrNodeOffset; BiosHeapBasePtr->StartOfFreedNodes = FreedNodeOffset; } else { /* Find out whether BufferHandle has been allocated on the heap. */ /* If it has, return AGESA_BOUNDS_CHK */ CurrNodeOffset = BiosHeapBasePtr->StartOfAllocatedNodes; CurrNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + CurrNodeOffset); while (CurrNodeOffset != 0) { CurrNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + CurrNodeOffset); if (CurrNodePtr->BufferHandle == AllocParams->BufferHandle) { return AGESA_BOUNDS_CHK; } CurrNodeOffset = CurrNodePtr->NextNodeOffset; /* If BufferHandle has not been allocated on the heap, CurrNodePtr here points to the end of the allocated nodes list. */ } /* Find the node that best fits the requested buffer size */ FreedNodeOffset = BiosHeapBasePtr->StartOfFreedNodes; PrevNodeOffset = FreedNodeOffset; BestFitNodeOffset = 0; BestFitPrevNodeOffset = 0; while (FreedNodeOffset != 0) { FreedNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + FreedNodeOffset); if (FreedNodePtr->BufferSize >= (AllocParams->BufferLength + sizeof (BIOS_BUFFER_NODE))) { if (BestFitNodeOffset == 0) { /* First node that fits the requested buffer size */ BestFitNodeOffset = FreedNodeOffset; BestFitPrevNodeOffset = PrevNodeOffset; } else { /* Find out whether current node is a better fit than the previous nodes */ BestFitNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + BestFitNodeOffset); if (BestFitNodePtr->BufferSize > FreedNodePtr->BufferSize) { BestFitNodeOffset = FreedNodeOffset; BestFitPrevNodeOffset = PrevNodeOffset; } } } PrevNodeOffset = FreedNodeOffset; FreedNodeOffset = FreedNodePtr->NextNodeOffset; } /* end of while loop */ if (BestFitNodeOffset == 0) { /* If we could not find a node that fits the requested buffer */ /* size, return AGESA_BOUNDS_CHK */ return AGESA_BOUNDS_CHK; } else { BestFitNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + BestFitNodeOffset); BestFitPrevNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + BestFitPrevNodeOffset); /* If BestFitNode is larger than the requested buffer, fragment the node further */ if (BestFitNodePtr->BufferSize > (AllocParams->BufferLength + sizeof (BIOS_BUFFER_NODE))) { NextFreeOffset = BestFitNodeOffset + AllocParams->BufferLength + sizeof (BIOS_BUFFER_NODE); NextFreePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + NextFreeOffset); NextFreePtr->BufferSize = BestFitNodePtr->BufferSize - (AllocParams->BufferLength + sizeof (BIOS_BUFFER_NODE)); NextFreePtr->NextNodeOffset = BestFitNodePtr->NextNodeOffset; } else { /* Otherwise, next free node is NextNodeOffset of BestFitNode */ NextFreeOffset = BestFitNodePtr->NextNodeOffset; } /* If BestFitNode is the first buffer in the list, then update StartOfFreedNodes to reflect the new free node */ if (BestFitNodeOffset == BiosHeapBasePtr->StartOfFreedNodes) { BiosHeapBasePtr->StartOfFreedNodes = NextFreeOffset; } else { BestFitPrevNodePtr->NextNodeOffset = NextFreeOffset; } /* Add BestFitNode to the list of Allocated nodes */ CurrNodePtr->NextNodeOffset = BestFitNodeOffset; BestFitNodePtr->BufferSize = AllocParams->BufferLength; BestFitNodePtr->BufferHandle = AllocParams->BufferHandle; BestFitNodePtr->NextNodeOffset = 0; /* Remove BestFitNode from list of Freed nodes */ AllocParams->BufferPointer = (UINT8 *) BestFitNodePtr + sizeof (BIOS_BUFFER_NODE); } } return AGESA_SUCCESS; } AGESA_STATUS BiosDeallocateBuffer (UINT32 Func, UINT32 Data, VOID *ConfigPtr) { UINT8 *BiosHeapBaseAddr; UINT32 AllocNodeOffset; UINT32 PrevNodeOffset; UINT32 NextNodeOffset; UINT32 FreedNodeOffset; UINT32 EndNodeOffset; BIOS_BUFFER_NODE *AllocNodePtr; BIOS_BUFFER_NODE *PrevNodePtr; BIOS_BUFFER_NODE *FreedNodePtr; BIOS_BUFFER_NODE *NextNodePtr; BIOS_HEAP_MANAGER *BiosHeapBasePtr; AGESA_BUFFER_PARAMS *AllocParams; BiosHeapBaseAddr = (UINT8 *) BIOS_HEAP_START_ADDRESS; BiosHeapBasePtr = (BIOS_HEAP_MANAGER *) BIOS_HEAP_START_ADDRESS; AllocParams = (AGESA_BUFFER_PARAMS *) ConfigPtr; /* Find target node to deallocate in list of allocated nodes. Return AGESA_BOUNDS_CHK if the BufferHandle is not found */ AllocNodeOffset = BiosHeapBasePtr->StartOfAllocatedNodes; AllocNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + AllocNodeOffset); PrevNodeOffset = AllocNodeOffset; while (AllocNodePtr->BufferHandle != AllocParams->BufferHandle) { if (AllocNodePtr->NextNodeOffset == 0) { return AGESA_BOUNDS_CHK; } PrevNodeOffset = AllocNodeOffset; AllocNodeOffset = AllocNodePtr->NextNodeOffset; AllocNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + AllocNodeOffset); } /* Remove target node from list of allocated nodes */ PrevNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + PrevNodeOffset); PrevNodePtr->NextNodeOffset = AllocNodePtr->NextNodeOffset; /* Zero out the buffer, and clear the BufferHandle */ LibAmdMemFill ((UINT8 *)AllocNodePtr + sizeof (BIOS_BUFFER_NODE), 0, AllocNodePtr->BufferSize, &(AllocParams->StdHeader)); AllocNodePtr->BufferHandle = 0; AllocNodePtr->BufferSize += sizeof (BIOS_BUFFER_NODE); /* Add deallocated node in order to the list of freed nodes */ FreedNodeOffset = BiosHeapBasePtr->StartOfFreedNodes; FreedNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + FreedNodeOffset); EndNodeOffset = AllocNodeOffset + AllocNodePtr->BufferSize; if (AllocNodeOffset < FreedNodeOffset) { /* Add to the start of the freed list */ if (EndNodeOffset == FreedNodeOffset) { /* If the freed node is adjacent to the first node in the list, concatenate both nodes */ AllocNodePtr->BufferSize += FreedNodePtr->BufferSize; AllocNodePtr->NextNodeOffset = FreedNodePtr->NextNodeOffset; /* Clear the BufferSize and NextNodeOffset of the previous first node */ FreedNodePtr->BufferSize = 0; FreedNodePtr->NextNodeOffset = 0; } else { /* Otherwise, add freed node to the start of the list Update NextNodeOffset and BufferSize to include the size of BIOS_BUFFER_NODE */ AllocNodePtr->NextNodeOffset = FreedNodeOffset; } /* Update StartOfFreedNodes to the new first node */ BiosHeapBasePtr->StartOfFreedNodes = AllocNodeOffset; } else { /* Traverse list of freed nodes to find where the deallocated node should be place */ NextNodeOffset = FreedNodeOffset; NextNodePtr = FreedNodePtr; while (AllocNodeOffset > NextNodeOffset) { PrevNodeOffset = NextNodeOffset; if (NextNodePtr->NextNodeOffset == 0) { break; } NextNodeOffset = NextNodePtr->NextNodeOffset; NextNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + NextNodeOffset); } /* If deallocated node is adjacent to the next node, concatenate both nodes */ if (NextNodeOffset == EndNodeOffset) { NextNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + NextNodeOffset); AllocNodePtr->BufferSize += NextNodePtr->BufferSize; AllocNodePtr->NextNodeOffset = NextNodePtr->NextNodeOffset; NextNodePtr->BufferSize = 0; NextNodePtr->NextNodeOffset = 0; } else { /*AllocNodePtr->NextNodeOffset = FreedNodePtr->NextNodeOffset; */ AllocNodePtr->NextNodeOffset = NextNodeOffset; } /* If deallocated node is adjacent to the previous node, concatenate both nodes */ PrevNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + PrevNodeOffset); EndNodeOffset = PrevNodeOffset + PrevNodePtr->BufferSize; if (AllocNodeOffset == EndNodeOffset) { PrevNodePtr->NextNodeOffset = AllocNodePtr->NextNodeOffset; PrevNodePtr->BufferSize += AllocNodePtr->BufferSize; AllocNodePtr->BufferSize = 0; AllocNodePtr->NextNodeOffset = 0; } else { PrevNodePtr->NextNodeOffset = AllocNodeOffset; } } return AGESA_SUCCESS; } AGESA_STATUS BiosLocateBuffer (UINT32 Func, UINT32 Data, VOID *ConfigPtr) { UINT32 AllocNodeOffset; UINT8 *BiosHeapBaseAddr; BIOS_BUFFER_NODE *AllocNodePtr; BIOS_HEAP_MANAGER *BiosHeapBasePtr; AGESA_BUFFER_PARAMS *AllocParams; AllocParams = (AGESA_BUFFER_PARAMS *) ConfigPtr; BiosHeapBaseAddr = (UINT8 *) BIOS_HEAP_START_ADDRESS; BiosHeapBasePtr = (BIOS_HEAP_MANAGER *) BIOS_HEAP_START_ADDRESS; AllocNodeOffset = BiosHeapBasePtr->StartOfAllocatedNodes; AllocNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + AllocNodeOffset); while (AllocParams->BufferHandle != AllocNodePtr->BufferHandle) { if (AllocNodePtr->NextNodeOffset == 0) { AllocParams->BufferPointer = NULL; AllocParams->BufferLength = 0; return AGESA_BOUNDS_CHK; } else { AllocNodeOffset = AllocNodePtr->NextNodeOffset; AllocNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + AllocNodeOffset); } } AllocParams->BufferPointer = (UINT8 *) ((UINT8 *) AllocNodePtr + sizeof (BIOS_BUFFER_NODE)); AllocParams->BufferLength = AllocNodePtr->BufferSize; return AGESA_SUCCESS; } AGESA_STATUS BiosRunFuncOnAp (UINT32 Func, UINT32 Data, VOID *ConfigPtr) { AGESA_STATUS Status; Status = agesawrapper_amdlaterunaptask (Data, ConfigPtr); return Status; } AGESA_STATUS BiosReset (UINT32 Func, UINT32 Data, VOID *ConfigPtr) { AGESA_STATUS Status; UINT8 Value; UINTN ResetType; AMD_CONFIG_PARAMS *StdHeader; ResetType = Data; StdHeader = ConfigPtr; // // Perform the RESET based upon the ResetType. In case of // WARM_RESET_WHENVER and COLD_RESET_WHENEVER, the request will go to // AmdResetManager. During the critical condition, where reset is required // immediately, the reset will be invoked directly by writing 0x04 to port // 0xCF9 (Reset Port). // switch (ResetType) { case WARM_RESET_WHENEVER: case COLD_RESET_WHENEVER: break; case WARM_RESET_IMMEDIATELY: case COLD_RESET_IMMEDIATELY: Value = 0x06; LibAmdIoWrite (AccessWidth8, 0xCf9, &Value, StdHeader); break; default: break; } Status = 0; return Status; } AGESA_STATUS BiosReadSpd (UINT32 Func, UINT32 Data, VOID *ConfigPtr) { AGESA_STATUS Status; Status = AmdMemoryReadSPD (Func, Data, ConfigPtr); return Status; } AGESA_STATUS BiosDefaultRet (UINT32 Func, UINT32 Data, VOID *ConfigPtr) { return AGESA_UNSUPPORTED; } /* Call the host environment interface to provide a user hook opportunity. */ AGESA_STATUS BiosHookBeforeDQSTraining (UINT32 Func, UINT32 Data, VOID *ConfigPtr) { return AGESA_SUCCESS; } /* Call the host environment interface to provide a user hook opportunity. */ AGESA_STATUS BiosHookBeforeDramInit (UINT32 Func, UINT32 Data, VOID *ConfigPtr) { AGESA_STATUS Status; UINTN FcnData; MEM_DATA_STRUCT *MemData; UINT32 AcpiMmioAddr; UINT32 GpioMmioAddr; UINT8 Data8; UINT16 Data16; UINT8 TempData8; FcnData = Data; MemData = ConfigPtr; Status = AGESA_SUCCESS; /* Get SB800 MMIO Base (AcpiMmioAddr) */ WriteIo8 (0xCD6, 0x27); Data8 = ReadIo8(0xCD7); Data16 = Data8<<8; WriteIo8 (0xCD6, 0x26); Data8 = ReadIo8(0xCD7); Data16 |= Data8; AcpiMmioAddr = (UINT32)Data16 << 16; GpioMmioAddr = AcpiMmioAddr + GPIO_BASE; Data8 = Read64Mem8(GpioMmioAddr+SB_GPIO_REG178); Data8 &= ~BIT5; TempData8 = Read64Mem8 (GpioMmioAddr+SB_GPIO_REG178); TempData8 &= 0x03; TempData8 |= Data8; Write64Mem8(GpioMmioAddr+SB_GPIO_REG178, TempData8); Data8 |= BIT2+BIT3; Data8 &= ~BIT4; TempData8 = Read64Mem8 (GpioMmioAddr+SB_GPIO_REG178); TempData8 &= 0x23; TempData8 |= Data8; Write64Mem8(GpioMmioAddr+SB_GPIO_REG178, TempData8); Data8 = Read64Mem8(GpioMmioAddr+SB_GPIO_REG179); Data8 &= ~BIT5; TempData8 = Read64Mem8 (GpioMmioAddr+SB_GPIO_REG179); TempData8 &= 0x03; TempData8 |= Data8; Write64Mem8(GpioMmioAddr+SB_GPIO_REG179, TempData8); Data8 |= BIT2+BIT3; Data8 &= ~BIT4; TempData8 = Read64Mem8 (GpioMmioAddr+SB_GPIO_REG179); TempData8 &= 0x23; TempData8 |= Data8; Write64Mem8(GpioMmioAddr+SB_GPIO_REG179, TempData8); switch(MemData->ParameterListPtr->DDR3Voltage){ case VOLT1_35: Data8 = Read64Mem8 (GpioMmioAddr+SB_GPIO_REG178); Data8 &= ~(UINT8)BIT6; Write64Mem8(GpioMmioAddr+SB_GPIO_REG178, Data8); Data8 = Read64Mem8 (GpioMmioAddr+SB_GPIO_REG179); Data8 |= (UINT8)BIT6; Write64Mem8(GpioMmioAddr+SB_GPIO_REG179, Data8); break; case VOLT1_25: Data8 = Read64Mem8 (GpioMmioAddr+SB_GPIO_REG178); Data8 &= ~(UINT8)BIT6; Write64Mem8(GpioMmioAddr+SB_GPIO_REG178, Data8); Data8 = Read64Mem8 (GpioMmioAddr+SB_GPIO_REG179); Data8 &= ~(UINT8)BIT6; Write64Mem8(GpioMmioAddr+SB_GPIO_REG179, Data8); break; case VOLT1_5: default: Data8 = Read64Mem8 (GpioMmioAddr+SB_GPIO_REG178); Data8 |= (UINT8)BIT6; Write64Mem8(GpioMmioAddr+SB_GPIO_REG178, Data8); Data8 = Read64Mem8 (GpioMmioAddr+SB_GPIO_REG179); Data8 &= ~(UINT8)BIT6; Write64Mem8(GpioMmioAddr+SB_GPIO_REG179, Data8); } return Status; } /* Call the host environment interface to provide a user hook opportunity. */ AGESA_STATUS BiosHookBeforeExitSelfRefresh (UINT32 Func, UINT32 Data, VOID *ConfigPtr) { return AGESA_SUCCESS; } /* PCIE slot reset control */ AGESA_STATUS BiosGnbPcieSlotReset (UINT32 Func, UINT32 Data, VOID *ConfigPtr) { AGESA_STATUS Status; UINTN FcnData; PCIe_SLOT_RESET_INFO *ResetInfo; UINT32 GpioMmioAddr; UINT32 AcpiMmioAddr; UINT8 Data8; UINT16 Data16; FcnData = Data; ResetInfo = ConfigPtr; // Get SB800 MMIO Base (AcpiMmioAddr) WriteIo8(0xCD6, 0x27); Data8 = ReadIo8(0xCD7); Data16=Data8<<8; WriteIo8(0xCD6, 0x26); Data8 = ReadIo8(0xCD7); Data16|=Data8; AcpiMmioAddr = (UINT32)Data16 << 16; Status = AGESA_UNSUPPORTED; GpioMmioAddr = AcpiMmioAddr + GPIO_BASE; switch (ResetInfo->ResetId) { case 4: switch (ResetInfo->ResetControl) { case AssertSlotReset: Data8 = Read64Mem8(GpioMmioAddr+SB_GPIO_REG21); Data8 &= ~(UINT8)BIT6 ; Write64Mem8(GpioMmioAddr+SB_GPIO_REG21, Data8); // MXM_GPIO0. GPIO21 Status = AGESA_SUCCESS; break; case DeassertSlotReset: Data8 = Read64Mem8(GpioMmioAddr+SB_GPIO_REG21); Data8 |= BIT6 ; Write64Mem8 (GpioMmioAddr+SB_GPIO_REG21, Data8); // MXM_GPIO0. GPIO21 Status = AGESA_SUCCESS; break; } break; case 6: switch (ResetInfo->ResetControl) { case AssertSlotReset: Data8 = Read64Mem8(GpioMmioAddr+SB_GPIO_REG25); Data8 &= ~(UINT8)BIT6 ; Write64Mem8(GpioMmioAddr+SB_GPIO_REG25, Data8); // PCIE_RST#_LAN, GPIO25 Status = AGESA_SUCCESS; break; case DeassertSlotReset: Data8 = Read64Mem8(GpioMmioAddr+SB_GPIO_REG25); Data8 |= BIT6 ; Write64Mem8 (GpioMmioAddr+SB_GPIO_REG25, Data8); // PCIE_RST#_LAN, GPIO25 Status = AGESA_SUCCESS; break; } break; case 7: switch (ResetInfo->ResetControl) { case AssertSlotReset: Data8 = Read64Mem8(GpioMmioAddr+SB_GPIO_REG02); Data8 &= ~(UINT8)BIT6 ; Write64Mem8(GpioMmioAddr+SB_GPIO_REG02, Data8); // MPCIE_RST0, GPIO02 Status = AGESA_SUCCESS; break; case DeassertSlotReset: Data8 = Read64Mem8(GpioMmioAddr+SB_GPIO_REG25); Data8 |= BIT6 ; Write64Mem8 (GpioMmioAddr+SB_GPIO_REG02, Data8); // MPCIE_RST0, GPIO02 Status = AGESA_SUCCESS; break; } break; } return Status; }