#include #include #include #include #include #include #include #include #include static device_t ht_scan_get_devs(device_t *old_devices) { device_t first, last; first = *old_devices; last = first; while(last && last->sibling && (last->sibling->path.type == DEVICE_PATH_PCI) && (last->sibling->path.u.pci.devfn > last->path.u.pci.devfn)) { last = last->sibling; } if (first) { *old_devices = last->sibling; last->sibling = 0; } return first; } struct prev_link { struct device *dev; unsigned pos; unsigned char config_off, freq_off, freq_cap_off; }; static int ht_setup_link(struct prev_link *prev, device_t dev, unsigned pos) { static const uint8_t link_width_to_pow2[]= { 3, 4, 0, 5, 1, 2, 0, 0 }; static const uint8_t pow2_to_link_width[] = { 0x7, 4, 5, 0, 1, 3 }; unsigned present_width_cap, upstream_width_cap; unsigned present_freq_cap, upstream_freq_cap; unsigned ln_present_width_in, ln_upstream_width_in; unsigned ln_present_width_out, ln_upstream_width_out; unsigned freq, old_freq; unsigned present_width, upstream_width, old_width; int reset_needed; /* Set the hypertransport link width and frequency */ reset_needed = 0; /* Read the capabilities */ present_freq_cap = pci_read_config16(dev, pos + PCI_HT_CAP_SLAVE_FREQ_CAP0); upstream_freq_cap = pci_read_config16(prev->dev, prev->pos + prev->freq_cap_off); present_width_cap = pci_read_config8(dev, pos + PCI_HT_CAP_SLAVE_WIDTH0); upstream_width_cap = pci_read_config8(prev->dev, prev->pos + prev->config_off); /* Calculate the highest useable frequency */ #if 0 freq = log2(present_freq_cap & upstream_freq_cap); #else /* Errata for 8131 - freq 5 has hardware problems don't support it */ freq = log2(present_freq_cap & upstream_freq_cap & 0x1f); #endif /* Calculate the highest width */ ln_upstream_width_in = link_width_to_pow2[upstream_width_cap & 7]; ln_present_width_out = link_width_to_pow2[(present_width_cap >> 4) & 7]; if (ln_upstream_width_in > ln_present_width_out) { ln_upstream_width_in = ln_present_width_out; } upstream_width = pow2_to_link_width[ln_upstream_width_in]; present_width = pow2_to_link_width[ln_upstream_width_in] << 4; ln_upstream_width_out = link_width_to_pow2[(upstream_width_cap >> 4) & 7]; ln_present_width_in = link_width_to_pow2[present_width_cap & 7]; if (ln_upstream_width_out > ln_present_width_in) { ln_upstream_width_out = ln_present_width_in; } upstream_width |= pow2_to_link_width[ln_upstream_width_out] << 4; present_width |= pow2_to_link_width[ln_upstream_width_out]; /* Set the current device */ old_freq = pci_read_config8(dev, pos + PCI_HT_CAP_SLAVE_FREQ0); if (freq != old_freq) { pci_write_config8(dev, pos + PCI_HT_CAP_SLAVE_FREQ0, freq); reset_needed = 1; printk_spew("HyperT FreqP old %x new %x\n",old_freq,freq); } old_width = pci_read_config8(dev, pos + PCI_HT_CAP_SLAVE_WIDTH0 + 1); if (present_width != old_width) { pci_write_config8(dev, pos + PCI_HT_CAP_SLAVE_WIDTH0 + 1, present_width); reset_needed = 1; printk_spew("HyperT widthP old %x new %x\n",old_width, present_width); } /* Set the upstream device */ old_freq = pci_read_config8(prev->dev, prev->pos + prev->freq_off); old_freq &= 0x0f; if (freq != old_freq) { pci_write_config8(prev->dev, prev->pos + prev->freq_off, freq); reset_needed = 1; printk_spew("HyperT freqU old %x new %x\n", old_freq, freq); } old_width = pci_read_config8(prev->dev, prev->pos + prev->config_off + 1); if (upstream_width != old_width) { pci_write_config8(prev->dev, prev->pos + prev->config_off + 1, upstream_width); reset_needed = 1; printk_spew("HyperT widthU old %x new %x\n", old_width, upstream_width); } /* Remember the current link as the previous link */ prev->dev = dev; prev->pos = pos; prev->config_off = PCI_HT_CAP_SLAVE_WIDTH1; prev->freq_off = PCI_HT_CAP_SLAVE_FREQ1; prev->freq_cap_off = PCI_HT_CAP_SLAVE_FREQ_CAP1; return reset_needed; } static unsigned ht_lookup_slave_capability(struct device *dev) { unsigned pos; pos = 0; switch(dev->hdr_type & 0x7f) { case PCI_HEADER_TYPE_NORMAL: case PCI_HEADER_TYPE_BRIDGE: pos = PCI_CAPABILITY_LIST; break; } if (pos > PCI_CAP_LIST_NEXT) { pos = pci_read_config8(dev, pos); } while(pos != 0) { /* loop through the linked list */ uint8_t cap; cap = pci_read_config8(dev, pos + PCI_CAP_LIST_ID); printk_spew("Capability: 0x%02x @ 0x%02x\n", cap, pos); if (cap == PCI_CAP_ID_HT) { unsigned flags; flags = pci_read_config16(dev, pos + PCI_CAP_FLAGS); printk_spew("flags: 0x%04x\n", (unsigned)flags); if ((flags >> 13) == 0) { /* Entry is a Slave secondary, success...*/ break; } } if(pos) { pos = pci_read_config8(dev, pos + PCI_CAP_LIST_NEXT); } } return pos; } static void ht_collapse_early_enumeration(struct bus *bus) { unsigned int devfn; /* Spin through the devices and collapse any early * hypertransport enumeration. */ for(devfn = 0; devfn <= 0xff; devfn += 8) { struct device dummy; uint32_t id; unsigned pos, flags; dummy.bus = bus; dummy.path.type = DEVICE_PATH_PCI; dummy.path.u.pci.devfn = devfn; id = pci_read_config32(&dummy, PCI_VENDOR_ID); if (id == 0xffffffff || id == 0x00000000 || id == 0x0000ffff || id == 0xffff0000) { continue; } dummy.vendor = id & 0xffff; dummy.device = (id >> 16) & 0xffff; dummy.hdr_type = pci_read_config8(&dummy, PCI_HEADER_TYPE); pos = ht_lookup_slave_capability(&dummy); if (!pos){ continue; } /* Clear the unitid */ flags = pci_read_config16(&dummy, pos + PCI_CAP_FLAGS); flags &= ~0x1f; pci_write_config16(&dummy, pos + PCI_CAP_FLAGS, flags); printk_spew("Collapsing %s [%04x/%04x]\n", dev_path(&dummy), dummy.vendor, dummy.device); } } unsigned int hypertransport_scan_chain(struct bus *bus, unsigned int max) { unsigned next_unitid, last_unitid, previous_unitid; uint8_t previous_pos; device_t old_devices, dev, func, *chain_last; unsigned min_unitid = 1; int reset_needed; struct prev_link prev; /* Restore the hypertransport chain to it's unitialized state */ ht_collapse_early_enumeration(bus); /* See which static device nodes I have */ old_devices = bus->children; bus->children = 0; chain_last = &bus->children; /* Initialize the hypertransport enumeration state */ reset_needed = 0; prev.dev = bus->dev; prev.pos = bus->cap; prev.config_off = PCI_HT_CAP_HOST_WIDTH; prev.freq_off = PCI_HT_CAP_HOST_FREQ; prev.freq_cap_off = PCI_HT_CAP_HOST_FREQ_CAP; /* If present assign unitid to a hypertransport chain */ last_unitid = min_unitid -1; next_unitid = min_unitid; previous_pos = 0; do { uint32_t id, class; uint8_t hdr_type, pos; uint16_t flags; unsigned count, static_count; previous_unitid = last_unitid; last_unitid = next_unitid; /* Get setup the device_structure */ dev = ht_scan_get_devs(&old_devices); if (!dev) { struct device dummy; dummy.bus = bus; dummy.path.type = DEVICE_PATH_PCI; dummy.path.u.pci.devfn = 0; id = pci_read_config32(&dummy, PCI_VENDOR_ID); /* If the chain is fully enumerated quit */ if (id == 0xffffffff || id == 0x00000000 || id == 0x0000ffff || id == 0xffff0000) { break; } dev = alloc_dev(bus, &dummy.path); } else { /* Add this device to the pci bus chain */ *chain_last = dev; /* Run the magice enable/disable sequence for the device */ if (dev->chip && dev->chip->control && dev->chip->control->enable_dev) { dev->chip->control->enable_dev(dev); } /* Now read the vendor and device id */ id = pci_read_config32(dev, PCI_VENDOR_ID); /* If the chain is fully enumerated quit */ if (id == 0xffffffff || id == 0x00000000 || id == 0x0000ffff || id == 0xffff0000) { printk_err("Missing static device: %s\n", dev_path(dev)); break; } } /* Update the device chain tail */ for(func = dev; func; func = func->sibling) { chain_last = &func->sibling; } /* Read the rest of the pci configuration information */ hdr_type = pci_read_config8(dev, PCI_HEADER_TYPE); class = pci_read_config32(dev, PCI_CLASS_REVISION); /* Store the interesting information in the device structure */ dev->vendor = id & 0xffff; dev->device = (id >> 16) & 0xffff; dev->hdr_type = hdr_type; /* class code, the upper 3 bytes of PCI_CLASS_REVISION */ dev->class = class >> 8; /* Find the hypertransport link capability */ pos = ht_lookup_slave_capability(dev); if (pos == 0) { printk_err("%s Hypertransport link capability not found", dev_path(dev)); break; } /* Update the Unitid of the current device */ flags = pci_read_config16(dev, pos + PCI_CAP_FLAGS); flags &= ~0x1f; /* mask out base Unit ID */ flags |= next_unitid & 0x1f; pci_write_config16(dev, pos + PCI_CAP_FLAGS, flags); /* Update the Unitd id in the device structure */ static_count = 1; for(func = dev; func; func = func->sibling) { func->path.u.pci.devfn += (next_unitid << 3); static_count = (func->path.u.pci.devfn >> 3) - (dev->path.u.pci.devfn >> 3) + 1; } /* Compute the number of unitids consumed */ count = (flags >> 5) & 0x1f; /* get unit count */ printk_spew("%s count: %04x static_count: %04x\n", dev_path(dev), count, static_count); if (count < static_count) { count = static_count; } /* Update the Unitid of the next device */ next_unitid += count; /* Setup the hypetransport link */ reset_needed |= ht_setup_link(&prev, dev, pos); printk_debug("%s [%04x/%04x] %s next_unitid: %04x\n", dev_path(dev), dev->vendor, dev->device, (dev->enable? "enabled": "disabled"), next_unitid); } while((last_unitid != next_unitid) && (next_unitid <= 0x1f)); #if HAVE_HARD_RESET == 1 if(reset_needed) { printk_info("HyperT reset needed\n"); // By LYH hard_reset(); } else printk_debug("HyperT reset not needed\n"); #endif if (next_unitid > 0x1f) { next_unitid = 0x1f; } return pci_scan_bus(bus, 0x00, (next_unitid << 3)|7, max); }