/* 2005.12 yhlu add coreboot_ram cross the vga font buffer handling 2005.12 yhlu add CONFIG_RAMBASE above 1M support for SMP 2008.05 stepan add support for going back to sipi wait state */ #include #include #include #include #include #include #include #include #include #include #if CONFIG_SMP == 1 /* This is a lot more paranoid now, since Linux can NOT handle * being told there is a CPU when none exists. So any errors * will return 0, meaning no CPU. * * We actually handling that case by noting which cpus startup * and not telling anyone about the ones that dont. */ static unsigned long get_valid_start_eip(unsigned long orig_start_eip) { return (unsigned long)orig_start_eip & 0xffff; // 16 bit to avoid 0xa0000 } #if CONFIG_HAVE_ACPI_RESUME == 1 char *lowmem_backup; char *lowmem_backup_ptr; int lowmem_backup_size; #endif extern char _secondary_start[]; static void copy_secondary_start_to_1m_below(void) { extern char _secondary_start_end[]; unsigned long code_size; unsigned long start_eip; /* _secondary_start need to be masked 20 above bit, because 16 bit code in secondary.S Also We need to copy the _secondary_start to the below 1M region */ start_eip = get_valid_start_eip((unsigned long)_secondary_start); code_size = (unsigned long)_secondary_start_end - (unsigned long)_secondary_start; #if CONFIG_HAVE_ACPI_RESUME == 1 /* need to save it for RAM resume */ lowmem_backup_size = code_size; lowmem_backup = malloc(code_size); lowmem_backup_ptr = (char *)start_eip; if (lowmem_backup == NULL) die("Out of backup memory\n"); memcpy(lowmem_backup, lowmem_backup_ptr, lowmem_backup_size); #endif /* copy the _secondary_start to the ram below 1M*/ memcpy((unsigned char *)start_eip, (unsigned char *)_secondary_start, code_size); printk(BIOS_DEBUG, "start_eip=0x%08lx, offset=0x%08lx, code_size=0x%08lx\n", start_eip, ((unsigned long)_secondary_start - start_eip), code_size); } static int lapic_start_cpu(unsigned long apicid) { int timeout; unsigned long send_status, accept_status, start_eip; int j, num_starts, maxlvt; /* * Starting actual IPI sequence... */ printk(BIOS_SPEW, "Asserting INIT.\n"); /* * Turn INIT on target chip */ lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(apicid)); /* * Send IPI */ lapic_write_around(LAPIC_ICR, LAPIC_INT_LEVELTRIG | LAPIC_INT_ASSERT | LAPIC_DM_INIT); printk(BIOS_SPEW, "Waiting for send to finish...\n"); timeout = 0; do { printk(BIOS_SPEW, "+"); udelay(100); send_status = lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY; } while (send_status && (timeout++ < 1000)); if (timeout >= 1000) { printk(BIOS_ERR, "CPU %ld: First apic write timed out. Disabling\n", apicid); // too bad. printk(BIOS_ERR, "ESR is 0x%lx\n", lapic_read(LAPIC_ESR)); if (lapic_read(LAPIC_ESR)) { printk(BIOS_ERR, "Try to reset ESR\n"); lapic_write_around(LAPIC_ESR, 0); printk(BIOS_ERR, "ESR is 0x%lx\n", lapic_read(LAPIC_ESR)); } return 0; } #if !defined (CONFIG_CPU_AMD_MODEL_10XXX) && !defined (CONFIG_CPU_AMD_MODEL_14XXX) mdelay(10); #endif printk(BIOS_SPEW, "Deasserting INIT.\n"); /* Target chip */ lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(apicid)); /* Send IPI */ lapic_write_around(LAPIC_ICR, LAPIC_INT_LEVELTRIG | LAPIC_DM_INIT); printk(BIOS_SPEW, "Waiting for send to finish...\n"); timeout = 0; do { printk(BIOS_SPEW, "+"); udelay(100); send_status = lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY; } while (send_status && (timeout++ < 1000)); if (timeout >= 1000) { printk(BIOS_ERR, "CPU %ld: Second apic write timed out. Disabling\n", apicid); // too bad. return 0; } start_eip = get_valid_start_eip((unsigned long)_secondary_start); #if !defined (CONFIG_CPU_AMD_MODEL_10XXX) && !defined (CONFIG_CPU_AMD_MODEL_14XXX) num_starts = 2; #else num_starts = 1; #endif /* * Run STARTUP IPI loop. */ printk(BIOS_SPEW, "#startup loops: %d.\n", num_starts); maxlvt = 4; for (j = 1; j <= num_starts; j++) { printk(BIOS_SPEW, "Sending STARTUP #%d to %lu.\n", j, apicid); lapic_read_around(LAPIC_SPIV); lapic_write(LAPIC_ESR, 0); lapic_read(LAPIC_ESR); printk(BIOS_SPEW, "After apic_write.\n"); /* * STARTUP IPI */ /* Target chip */ lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(apicid)); /* Boot on the stack */ /* Kick the second */ lapic_write_around(LAPIC_ICR, LAPIC_DM_STARTUP | (start_eip >> 12)); /* * Give the other CPU some time to accept the IPI. */ udelay(300); printk(BIOS_SPEW, "Startup point 1.\n"); printk(BIOS_SPEW, "Waiting for send to finish...\n"); timeout = 0; do { printk(BIOS_SPEW, "+"); udelay(100); send_status = lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY; } while (send_status && (timeout++ < 1000)); /* * Give the other CPU some time to accept the IPI. */ udelay(200); /* * Due to the Pentium erratum 3AP. */ if (maxlvt > 3) { lapic_read_around(LAPIC_SPIV); lapic_write(LAPIC_ESR, 0); } accept_status = (lapic_read(LAPIC_ESR) & 0xEF); if (send_status || accept_status) break; } printk(BIOS_SPEW, "After Startup.\n"); if (send_status) printk(BIOS_WARNING, "APIC never delivered???\n"); if (accept_status) printk(BIOS_WARNING, "APIC delivery error (%lx).\n", accept_status); if (send_status || accept_status) return 0; return 1; } /* Number of cpus that are currently running in coreboot */ static atomic_t active_cpus = ATOMIC_INIT(1); /* start_cpu_lock covers last_cpu_index and secondary_stack. * Only starting one cpu at a time let's me remove the logic * for select the stack from assembly language. * * In addition communicating by variables to the cpu I * am starting allows me to veryify it has started before * start_cpu returns. */ static spinlock_t start_cpu_lock = SPIN_LOCK_UNLOCKED; static unsigned last_cpu_index = 0; volatile unsigned long secondary_stack; int start_cpu(device_t cpu) { extern unsigned char _estack[]; struct cpu_info *info; unsigned long stack_end; unsigned long apicid; unsigned long index; unsigned long count; int result; spin_lock(&start_cpu_lock); /* Get the cpu's apicid */ apicid = cpu->path.apic.apic_id; /* Get an index for the new processor */ index = ++last_cpu_index; /* Find end of the new processors stack */ stack_end = ((unsigned long)_estack) - (CONFIG_STACK_SIZE*index) - sizeof(struct cpu_info); /* Record the index and which cpu structure we are using */ info = (struct cpu_info *)stack_end; info->index = index; info->cpu = cpu; /* Advertise the new stack to start_cpu */ secondary_stack = stack_end; /* Until the cpu starts up report the cpu is not enabled */ cpu->enabled = 0; cpu->initialized = 0; /* Start the cpu */ result = lapic_start_cpu(apicid); if (result) { result = 0; /* Wait 1s or until the new cpu calls in */ for(count = 0; count < 100000 ; count++) { if (secondary_stack == 0) { result = 1; break; } udelay(10); } } secondary_stack = 0; spin_unlock(&start_cpu_lock); return result; } #if CONFIG_AP_IN_SIPI_WAIT == 1 /** * Normally this function is defined in lapic.h as an always inline function * that just keeps the CPU in a hlt() loop. This does not work on all CPUs. * I think all hyperthreading CPUs might need this version, but I could only * verify this on the Intel Core Duo */ void stop_this_cpu(void) { int timeout; unsigned long send_status; unsigned long id; id = lapic_read(LAPIC_ID) >> 24; printk(BIOS_DEBUG, "CPU %ld going down...\n", id); /* send an LAPIC INIT to myself */ lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(id)); lapic_write_around(LAPIC_ICR, LAPIC_INT_LEVELTRIG | LAPIC_INT_ASSERT | LAPIC_DM_INIT); /* wait for the ipi send to finish */ #if 0 // When these two printk(BIOS_SPEW, ...) calls are not removed, the // machine will hang when log level is SPEW. Why? printk(BIOS_SPEW, "Waiting for send to finish...\n"); #endif timeout = 0; do { #if 0 printk(BIOS_SPEW, "+"); #endif udelay(100); send_status = lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY; } while (send_status && (timeout++ < 1000)); if (timeout >= 1000) { printk(BIOS_ERR, "timed out\n"); } mdelay(10); printk(BIOS_SPEW, "Deasserting INIT.\n"); /* Deassert the LAPIC INIT */ lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(id)); lapic_write_around(LAPIC_ICR, LAPIC_INT_LEVELTRIG | LAPIC_DM_INIT); printk(BIOS_SPEW, "Waiting for send to finish...\n"); timeout = 0; do { printk(BIOS_SPEW, "+"); udelay(100); send_status = lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY; } while (send_status && (timeout++ < 1000)); if (timeout >= 1000) { printk(BIOS_ERR, "timed out\n"); } while(1) { hlt(); } } #endif #ifdef __SSE3__ static __inline__ __attribute__((always_inline)) unsigned long readcr4(void) { unsigned long value; __asm__ __volatile__ ( "mov %%cr4, %[value]" : [value] "=a" (value)); return value; } static __inline__ __attribute__((always_inline)) void writecr4(unsigned long Data) { __asm__ __volatile__ ( "mov %%eax, %%cr4" : : "a" (Data) ); } #endif /* C entry point of secondary cpus */ void secondary_cpu_init(void) { atomic_inc(&active_cpus); #if CONFIG_SERIAL_CPU_INIT == 1 #if CONFIG_MAX_CPUS>2 spin_lock(&start_cpu_lock); #endif #endif #ifdef __SSE3__ /* * Seems that CR4 was cleared when AP start via lapic_start_cpu() * Turn on CR4.OSFXSR and CR4.OSXMMEXCPT when SSE options enabled */ u32 cr4_val; cr4_val = readcr4(); cr4_val |= (1 << 9 | 1 << 10); writecr4(cr4_val); #endif cpu_initialize(); #if CONFIG_SERIAL_CPU_INIT == 1 #if CONFIG_MAX_CPUS>2 spin_unlock(&start_cpu_lock); #endif #endif atomic_dec(&active_cpus); stop_this_cpu(); } static void start_other_cpus(struct bus *cpu_bus, device_t bsp_cpu) { device_t cpu; /* Loop through the cpus once getting them started */ for(cpu = cpu_bus->children; cpu ; cpu = cpu->sibling) { if (cpu->path.type != DEVICE_PATH_APIC) { continue; } #if CONFIG_SERIAL_CPU_INIT == 0 if(cpu==bsp_cpu) { continue; } #endif if (!cpu->enabled) { continue; } if (cpu->initialized) { continue; } if (!start_cpu(cpu)) { /* Record the error in cpu? */ printk(BIOS_ERR, "CPU 0x%02x would not start!\n", cpu->path.apic.apic_id); } #if CONFIG_SERIAL_CPU_INIT == 1 #if CONFIG_MAX_CPUS>2 udelay(10); #endif #endif } } static void wait_other_cpus_stop(struct bus *cpu_bus) { device_t cpu; int old_active_count, active_count; /* Now loop until the other cpus have finished initializing */ old_active_count = 1; active_count = atomic_read(&active_cpus); while(active_count > 1) { if (active_count != old_active_count) { printk(BIOS_INFO, "Waiting for %d CPUS to stop\n", active_count - 1); old_active_count = active_count; } udelay(10); active_count = atomic_read(&active_cpus); } for(cpu = cpu_bus->children; cpu; cpu = cpu->sibling) { if (cpu->path.type != DEVICE_PATH_APIC) { continue; } if (!cpu->initialized) { printk(BIOS_ERR, "CPU 0x%02x did not initialize!\n", cpu->path.apic.apic_id); } } printk(BIOS_DEBUG, "All AP CPUs stopped\n"); } #else /* CONFIG_SMP */ #define initialize_other_cpus(root) do {} while(0) #endif /* CONFIG_SMP */ void initialize_cpus(struct bus *cpu_bus) { struct device_path cpu_path; struct cpu_info *info; /* Find the info struct for this cpu */ info = cpu_info(); #if NEED_LAPIC == 1 /* Ensure the local apic is enabled */ enable_lapic(); /* Get the device path of the boot cpu */ cpu_path.type = DEVICE_PATH_APIC; cpu_path.apic.apic_id = lapicid(); #else /* Get the device path of the boot cpu */ cpu_path.type = DEVICE_PATH_CPU; cpu_path.cpu.id = 0; #endif /* Find the device structure for the boot cpu */ info->cpu = alloc_find_dev(cpu_bus, &cpu_path); #if CONFIG_SMP == 1 copy_secondary_start_to_1m_below(); // why here? In case some day we can start core1 in amd_sibling_init #endif #if CONFIG_HAVE_SMI_HANDLER smm_init(); #endif cpus_ready_for_init(); #if CONFIG_SMP == 1 #if CONFIG_SERIAL_CPU_INIT == 0 /* start all aps at first, so we can init ECC all together */ start_other_cpus(cpu_bus, info->cpu); #endif #endif /* Initialize the bootstrap processor */ cpu_initialize(); #if CONFIG_SMP == 1 #if CONFIG_SERIAL_CPU_INIT == 1 start_other_cpus(cpu_bus, info->cpu); #endif /* Now wait the rest of the cpus stop*/ wait_other_cpus_stop(cpu_bus); #endif }