/* Needed so the AMD K8 runs correctly. */ /* this should be done by Eric * 2004.11 yhlu add d0 e0 support * 2004.12 yhlu add dual core support * 2005.02 yhlu add e0 memory hole support * Copyright 2005 AMD * 2005.08 yhlu add microcode support */ #include #include #include #include #include #include #include #include #include #include #include "northbridge/amd/amdk8/amdk8.h" #include #include #include #include #include #include #include #if CONFIG_WAIT_BEFORE_CPUS_INIT void cpus_ready_for_init(void) { #if CONFIG_MEM_TRAIN_SEQ == 1 struct sys_info *sysinfox = (struct sys_info *)((CONFIG_RAMTOP) - CONFIG_DCACHE_RAM_GLOBAL_VAR_SIZE); // wait for ap memory to trained wait_all_core0_mem_trained(sysinfox); #endif } #endif #if CONFIG_K8_REV_F_SUPPORT == 0 int is_e0_later_in_bsp(int nodeid) { uint32_t val; uint32_t val_old; int e0_later; if (nodeid == 0) { // we don't need to do that for node 0 in core0/node0 return !is_cpu_pre_e0(); } // d0 will be treated as e0 with this methods, but the d0 nb_cfg_54 always 0 device_t dev; dev = dev_find_slot(0, PCI_DEVFN(0x18 + nodeid, 2)); if (!dev) return 0; val_old = pci_read_config32(dev, 0x80); val = val_old; val |= (1 << 3); pci_write_config32(dev, 0x80, val); val = pci_read_config32(dev, 0x80); e0_later = !!(val & (1 << 3)); if (e0_later) { // pre_e0 bit 3 always be 0 and can not be changed pci_write_config32(dev, 0x80, val_old); // restore it } return e0_later; } #endif #if CONFIG_K8_REV_F_SUPPORT == 1 int is_cpu_f0_in_bsp(int nodeid) { uint32_t dword; device_t dev; dev = dev_find_slot(0, PCI_DEVFN(0x18 + nodeid, 3)); dword = pci_read_config32(dev, 0xfc); return (dword & 0xfff00) == 0x40f00; } #endif #define MCI_STATUS 0x401 static inline msr_t rdmsr_amd(u32 index) { msr_t result; __asm__ __volatile__( "rdmsr" :"=a"(result.lo), "=d"(result.hi) :"c"(index), "D"(0x9c5a203a) ); return result; } static inline void wrmsr_amd(u32 index, msr_t msr) { __asm__ __volatile__( "wrmsr" : /* No outputs */ :"c"(index), "a"(msr.lo), "d"(msr.hi), "D"(0x9c5a203a) ); } #define MTRR_COUNT 8 #define ZERO_CHUNK_KB 0x800UL /* 2M */ #define TOLM_KB 0x400000UL struct mtrr { msr_t base; msr_t mask; }; struct mtrr_state { struct mtrr mtrrs[MTRR_COUNT]; msr_t top_mem, top_mem2; msr_t def_type; }; static void save_mtrr_state(struct mtrr_state *state) { int i; for (i = 0; i < MTRR_COUNT; i++) { state->mtrrs[i].base = rdmsr(MTRRphysBase_MSR(i)); state->mtrrs[i].mask = rdmsr(MTRRphysMask_MSR(i)); } state->top_mem = rdmsr(TOP_MEM); state->top_mem2 = rdmsr(TOP_MEM2); state->def_type = rdmsr(MTRRdefType_MSR); } static void restore_mtrr_state(struct mtrr_state *state) { int i; disable_cache(); for (i = 0; i < MTRR_COUNT; i++) { wrmsr(MTRRphysBase_MSR(i), state->mtrrs[i].base); wrmsr(MTRRphysMask_MSR(i), state->mtrrs[i].mask); } wrmsr(TOP_MEM, state->top_mem); wrmsr(TOP_MEM2, state->top_mem2); wrmsr(MTRRdefType_MSR, state->def_type); enable_cache(); } #if 0 static void print_mtrr_state(struct mtrr_state *state) { int i; for (i = 0; i < MTRR_COUNT; i++) { printk(BIOS_DEBUG, "var mtrr %d: %08x%08x mask: %08x%08x\n", i, state->mtrrs[i].base.hi, state->mtrrs[i].base.lo, state->mtrrs[i].mask.hi, state->mtrrs[i].mask.lo); } printk(BIOS_DEBUG, "top_mem: %08x%08x\n", state->top_mem.hi, state->top_mem.lo); printk(BIOS_DEBUG, "top_mem2: %08x%08x\n", state->top_mem2.hi, state->top_mem2.lo); printk(BIOS_DEBUG, "def_type: %08x%08x\n", state->def_type.hi, state->def_type.lo); } #endif static void set_init_ecc_mtrrs(void) { msr_t msr; int i; disable_cache(); /* First clear all of the msrs to be safe */ for (i = 0; i < MTRR_COUNT; i++) { msr_t zero; zero.lo = zero.hi = 0; wrmsr(MTRRphysBase_MSR(i), zero); wrmsr(MTRRphysMask_MSR(i), zero); } /* Write back cache the first 1MB */ msr.hi = 0x00000000; msr.lo = 0x00000000 | MTRR_TYPE_WRBACK; wrmsr(MTRRphysBase_MSR(0), msr); msr.hi = 0x000000ff; msr.lo = ~((CONFIG_RAMTOP) - 1) | 0x800; wrmsr(MTRRphysMask_MSR(0), msr); /* Set the default type to write combining */ msr.hi = 0x00000000; msr.lo = 0xc00 | MTRR_TYPE_WRCOMB; wrmsr(MTRRdefType_MSR, msr); /* Set TOP_MEM to 4G */ msr.hi = 0x00000001; msr.lo = 0x00000000; wrmsr(TOP_MEM, msr); enable_cache(); } static inline void clear_2M_ram(unsigned long basek, struct mtrr_state *mtrr_state) { unsigned long limitk; unsigned long size; void *addr; /* Report every 64M */ if ((basek % (64 * 1024)) == 0) { /* Restore the normal state */ map_2M_page(0); restore_mtrr_state(mtrr_state); enable_lapic(); /* Print a status message */ printk(BIOS_DEBUG, "%c", (basek >= TOLM_KB) ? '+' : '-'); /* Return to the initialization state */ set_init_ecc_mtrrs(); disable_lapic(); } limitk = (basek + ZERO_CHUNK_KB) & ~(ZERO_CHUNK_KB - 1); #if 0 /* couldn't happen, memory must on 2M boundary */ if (limitk > endk) { limitk = enk; } #endif size = (limitk - basek) << 10; addr = map_2M_page(basek >> 11); if (addr == MAPPING_ERROR) { printk(BIOS_ERR, "Cannot map page: %lx\n", basek >> 11); return; } /* clear memory 2M (limitk - basek) */ addr = (void *)(((uint32_t) addr) | ((basek & 0x7ff) << 10)); memset(addr, 0, size); } static void init_ecc_memory(unsigned node_id) { unsigned long startk, begink, endk; unsigned long basek; struct mtrr_state mtrr_state; device_t f1_dev, f2_dev, f3_dev; int enable_scrubbing; uint32_t dcl; f1_dev = dev_find_slot(0, PCI_DEVFN(0x18 + node_id, 1)); if (!f1_dev) { die("Cannot find cpu function 1\n"); } f2_dev = dev_find_slot(0, PCI_DEVFN(0x18 + node_id, 2)); if (!f2_dev) { die("Cannot find cpu function 2\n"); } f3_dev = dev_find_slot(0, PCI_DEVFN(0x18 + node_id, 3)); if (!f3_dev) { die("Cannot find cpu function 3\n"); } /* See if we scrubbing should be enabled */ enable_scrubbing = 1; get_option(&enable_scrubbing, "hw_scrubber"); /* Enable cache scrubbing at the lowest possible rate */ if (enable_scrubbing) { pci_write_config32(f3_dev, SCRUB_CONTROL, (SCRUB_84ms << 16) | (SCRUB_84ms << 8) | (SCRUB_NONE << 0)); } else { pci_write_config32(f3_dev, SCRUB_CONTROL, (SCRUB_NONE << 16) | (SCRUB_NONE << 8) | (SCRUB_NONE << 0)); printk(BIOS_DEBUG, "Scrubbing Disabled\n"); } /* If ecc support is not enabled don't touch memory */ dcl = pci_read_config32(f2_dev, DRAM_CONFIG_LOW); if (!(dcl & DCL_DimmEccEn)) { printk(BIOS_DEBUG, "ECC Disabled\n"); return; } startk = (pci_read_config32(f1_dev, 0x40 + (node_id * 8)) & 0xffff0000) >> 2; endk = ((pci_read_config32(f1_dev, 0x44 + (node_id * 8)) & 0xffff0000) >> 2) + 0x4000; #if CONFIG_HW_MEM_HOLE_SIZEK != 0 unsigned long hole_startk = 0; #if CONFIG_K8_REV_F_SUPPORT == 0 if (!is_cpu_pre_e0()) { #endif uint32_t val; val = pci_read_config32(f1_dev, 0xf0); if (val & 1) { hole_startk = ((val & (0xff << 24)) >> 10); } #if CONFIG_K8_REV_F_SUPPORT == 0 } #endif #endif /* Don't start too early */ begink = startk; if (begink < (CONFIG_RAMTOP >> 10)) { begink = (CONFIG_RAMTOP >> 10); } printk(BIOS_DEBUG, "Clearing memory %luK - %luK: ", begink, endk); /* Save the normal state */ save_mtrr_state(&mtrr_state); /* Switch to the init ecc state */ set_init_ecc_mtrrs(); disable_lapic(); /* Walk through 2M chunks and zero them */ #if CONFIG_HW_MEM_HOLE_SIZEK != 0 /* here hole_startk can not be equal to begink, never. Also hole_startk is in 2M boundary, 64M? */ if ((hole_startk != 0) && ((begink < hole_startk) && (endk > (4 * 1024 * 1024)))) { for (basek = begink; basek < hole_startk; basek = ((basek + ZERO_CHUNK_KB) & ~(ZERO_CHUNK_KB - 1))) { clear_2M_ram(basek, &mtrr_state); } for (basek = 4 * 1024 * 1024; basek < endk; basek = ((basek + ZERO_CHUNK_KB) & ~(ZERO_CHUNK_KB - 1))) { clear_2M_ram(basek, &mtrr_state); } } else #endif for (basek = begink; basek < endk; basek = ((basek + ZERO_CHUNK_KB) & ~(ZERO_CHUNK_KB - 1))) { clear_2M_ram(basek, &mtrr_state); } /* Restore the normal state */ map_2M_page(0); restore_mtrr_state(&mtrr_state); enable_lapic(); /* Set the scrub base address registers */ pci_write_config32(f3_dev, SCRUB_ADDR_LOW, startk << 10); pci_write_config32(f3_dev, SCRUB_ADDR_HIGH, startk >> 22); /* Enable the scrubber? */ if (enable_scrubbing) { /* Enable scrubbing at the lowest possible rate */ pci_write_config32(f3_dev, SCRUB_CONTROL, (SCRUB_84ms << 16) | (SCRUB_84ms << 8) | (SCRUB_84ms << 0)); } printk(BIOS_DEBUG, " done\n"); } static inline void k8_errata(void) { msr_t msr; #if CONFIG_K8_REV_F_SUPPORT == 0 if (is_cpu_pre_c0()) { /* Erratum 63... */ msr = rdmsr(HWCR_MSR); msr.lo |= (1 << 6); wrmsr(HWCR_MSR, msr); /* Erratum 69... */ msr = rdmsr_amd(BU_CFG_MSR); msr.hi |= (1 << (45 - 32)); wrmsr_amd(BU_CFG_MSR, msr); /* Erratum 81... */ msr = rdmsr_amd(DC_CFG_MSR); msr.lo |= (1 << 10); wrmsr_amd(DC_CFG_MSR, msr); } /* I can't touch this msr on early buggy cpus */ if (!is_cpu_pre_b3()) { /* Erratum 89 ... */ msr = rdmsr(NB_CFG_MSR); msr.lo |= 1 << 3; if (!is_cpu_pre_c0() && is_cpu_pre_d0()) { /* D0 later don't need it */ /* Erratum 86 Disable data masking on C0 and * later processor revs. * FIXME this is only needed if ECC is enabled. */ msr.hi |= 1 << (36 - 32); } wrmsr(NB_CFG_MSR, msr); } /* Erratum 97 ... */ if (!is_cpu_pre_c0() && is_cpu_pre_d0()) { msr = rdmsr_amd(DC_CFG_MSR); msr.lo |= 1 << 3; wrmsr_amd(DC_CFG_MSR, msr); } /* Erratum 94 ... */ if (is_cpu_pre_d0()) { msr = rdmsr_amd(IC_CFG_MSR); msr.lo |= 1 << 11; wrmsr_amd(IC_CFG_MSR, msr); } /* Erratum 91 prefetch miss is handled in the kernel */ /* Erratum 106 ... */ msr = rdmsr_amd(LS_CFG_MSR); msr.lo |= 1 << 25; wrmsr_amd(LS_CFG_MSR, msr); /* Erratum 107 ... */ msr = rdmsr_amd(BU_CFG_MSR); msr.hi |= 1 << (43 - 32); wrmsr_amd(BU_CFG_MSR, msr); if (is_cpu_d0()) { /* Erratum 110 ... */ msr = rdmsr_amd(CPU_ID_HYPER_EXT_FEATURES); msr.hi |= 1; wrmsr_amd(CPU_ID_HYPER_EXT_FEATURES, msr); } #endif #if CONFIG_K8_REV_F_SUPPORT == 0 if (!is_cpu_pre_e0()) #endif { /* Erratum 110 ... */ msr = rdmsr_amd(CPU_ID_EXT_FEATURES_MSR); msr.hi |= 1; wrmsr_amd(CPU_ID_EXT_FEATURES_MSR, msr); } /* Erratum 122 */ msr = rdmsr(HWCR_MSR); msr.lo |= 1 << 6; wrmsr(HWCR_MSR, msr); #if CONFIG_K8_REV_F_SUPPORT == 1 /* Erratum 131... */ msr = rdmsr(NB_CFG_MSR); msr.lo |= 1 << 20; wrmsr(NB_CFG_MSR, msr); #endif } #if CONFIG_USBDEBUG static unsigned ehci_debug_addr; #endif static void model_fxx_init(device_t dev) { unsigned long i; msr_t msr; struct node_core_id id; #if CONFIG_LOGICAL_CPUS == 1 u32 siblings; #endif #if CONFIG_K8_REV_F_SUPPORT == 1 struct cpuinfo_x86 c; get_fms(&c, dev->device); #endif #if CONFIG_USBDEBUG if (!ehci_debug_addr) ehci_debug_addr = get_ehci_debug(); set_ehci_debug(0); #endif /* Turn on caching if we haven't already */ x86_enable_cache(); amd_setup_mtrrs(); x86_mtrr_check(); #if CONFIG_USBDEBUG set_ehci_debug(ehci_debug_addr); #endif /* Update the microcode */ model_fxx_update_microcode(dev->device); disable_cache(); /* zero the machine check error status registers */ msr.lo = 0; msr.hi = 0; for (i = 0; i < 5; i++) { wrmsr(MCI_STATUS + (i * 4), msr); } k8_errata(); /* Set SMMLOCK to avoid exploits messing with SMM */ msr = rdmsr(HWCR_MSR); msr.lo |= (1 << 0); wrmsr(HWCR_MSR, msr); enable_cache(); /* Set the processor name string */ init_processor_name(); /* Enable the local cpu apics */ setup_lapic(); #if CONFIG_LOGICAL_CPUS == 1 siblings = cpuid_ecx(0x80000008) & 0xff; if (siblings > 0) { msr = rdmsr_amd(CPU_ID_FEATURES_MSR); msr.lo |= 1 << 28; wrmsr_amd(CPU_ID_FEATURES_MSR, msr); msr = rdmsr_amd(LOGICAL_CPUS_NUM_MSR); msr.lo = (siblings + 1) << 16; wrmsr_amd(LOGICAL_CPUS_NUM_MSR, msr); msr = rdmsr_amd(CPU_ID_EXT_FEATURES_MSR); msr.hi |= 1 << (33 - 32); wrmsr_amd(CPU_ID_EXT_FEATURES_MSR, msr); } #endif id = get_node_core_id(read_nb_cfg_54()); // pre e0 nb_cfg_54 can not be set /* Is this a bad location? In particular can another node prefecth * data from this node before we have initialized it? */ if (id.coreid == 0) init_ecc_memory(id.nodeid); // only do it for core 0 #if CONFIG_LOGICAL_CPUS==1 /* Start up my cpu siblings */ // if(id.coreid==0) amd_sibling_init(dev); // Don't need core1 is already be put in the CPU BUS in bus_cpu_scan #endif } static struct device_operations cpu_dev_ops = { .init = model_fxx_init, }; static struct cpu_device_id cpu_table[] = { #if CONFIG_K8_REV_F_SUPPORT == 0 { X86_VENDOR_AMD, 0xf40 }, /* SH-B0 (socket 754) */ { X86_VENDOR_AMD, 0xf50 }, /* SH-B0 (socket 940) */ { X86_VENDOR_AMD, 0xf51 }, /* SH-B3 (socket 940) */ { X86_VENDOR_AMD, 0xf58 }, /* SH-C0 (socket 940) */ { X86_VENDOR_AMD, 0xf48 }, /* SH-C0 (socket 754) */ { X86_VENDOR_AMD, 0xf5a }, /* SH-CG (socket 940) */ { X86_VENDOR_AMD, 0xf4a }, /* SH-CG (socket 754) */ { X86_VENDOR_AMD, 0xf7a }, /* SH-CG (socket 939) */ { X86_VENDOR_AMD, 0xfc0 }, /* DH-CG (socket 754) */ { X86_VENDOR_AMD, 0xfe0 }, /* DH-CG (socket 754) */ { X86_VENDOR_AMD, 0xff0 }, /* DH-CG (socket 939) */ { X86_VENDOR_AMD, 0xf82 }, /* CH-CG (socket 754) */ { X86_VENDOR_AMD, 0xfb2 }, /* CH-CG (socket 939) */ /* AMD D0 support */ { X86_VENDOR_AMD, 0x10f50 }, /* SH-D0 (socket 940) */ { X86_VENDOR_AMD, 0x10f40 }, /* SH-D0 (socket 754) */ { X86_VENDOR_AMD, 0x10f70 }, /* SH-D0 (socket 939) */ { X86_VENDOR_AMD, 0x10fc0 }, /* DH-D0 (socket 754) */ { X86_VENDOR_AMD, 0x10ff0 }, /* DH-D0 (socket 939) */ { X86_VENDOR_AMD, 0x10f80 }, /* CH-D0 (socket 754) */ { X86_VENDOR_AMD, 0x10fb0 }, /* CH-D0 (socket 939) */ /* AMD E0 support */ { X86_VENDOR_AMD, 0x20f50 }, /* SH-E0 */ { X86_VENDOR_AMD, 0x20f40 }, { X86_VENDOR_AMD, 0x20f70 }, { X86_VENDOR_AMD, 0x20fc0 }, /* DH-E3 (socket 754) */ { X86_VENDOR_AMD, 0x20ff0 }, /* DH-E3 (socket 939) */ { X86_VENDOR_AMD, 0x20f10 }, /* JH-E1 (socket 940) */ { X86_VENDOR_AMD, 0x20f51 }, /* SH-E4 (socket 940) */ { X86_VENDOR_AMD, 0x20f71 }, /* SH-E4 (socket 939) */ { X86_VENDOR_AMD, 0x20fb1 }, /* BH-E4 (socket 939) */ { X86_VENDOR_AMD, 0x20f42 }, /* SH-E5 (socket 754) */ { X86_VENDOR_AMD, 0x20ff2 }, /* DH-E6 (socket 939) */ { X86_VENDOR_AMD, 0x20fc2 }, /* DH-E6 (socket 754) */ { X86_VENDOR_AMD, 0x20f12 }, /* JH-E6 (socket 940) */ { X86_VENDOR_AMD, 0x20f32 }, /* JH-E6 (socket 939) */ { X86_VENDOR_AMD, 0x30ff2 }, /* E4 ? */ #endif #if CONFIG_K8_REV_F_SUPPORT == 1 /* * AMD F0 support. * * See Revision Guide for AMD NPT Family 0Fh Processors, * Publication #33610, Revision: 3.30, February 2008. * * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/33610.pdf */ { X86_VENDOR_AMD, 0x40f50 }, /* SH-F0 (socket F/1207) */ { X86_VENDOR_AMD, 0x40f70 }, /* SH-F0 (socket AM2) */ { X86_VENDOR_AMD, 0x40f40 }, /* SH-F0 (socket S1g1) */ { X86_VENDOR_AMD, 0x40f11 }, /* JH-F1 (socket F/1207) */ { X86_VENDOR_AMD, 0x40f31 }, /* JH-F1 (socket AM2) */ { X86_VENDOR_AMD, 0x40f01 }, /* JH-F1 (socket S1g1) */ { X86_VENDOR_AMD, 0x40f12 }, /* JH-F2 (socket F/1207) */ { X86_VENDOR_AMD, 0x40f32 }, /* JH-F2 (socket AM2) */ { X86_VENDOR_AMD, 0x40fb2 }, /* BH-F2 (socket AM2) */ { X86_VENDOR_AMD, 0x40f82 }, /* BH-F2 (socket S1g1) */ { X86_VENDOR_AMD, 0x40ff2 }, /* DH-F2 (socket AM2) */ { X86_VENDOR_AMD, 0x50ff2 }, /* DH-F2 (socket AM2) */ { X86_VENDOR_AMD, 0x40fc2 }, /* DH-F2 (socket S1g1) */ { X86_VENDOR_AMD, 0x40f13 }, /* JH-F3 (socket F/1207) */ { X86_VENDOR_AMD, 0x40f33 }, /* JH-F3 (socket AM2) */ { X86_VENDOR_AMD, 0x50fd3 }, /* JH-F3 (socket F/1207) */ { X86_VENDOR_AMD, 0xc0f13 }, /* JH-F3 (socket F/1207) */ { X86_VENDOR_AMD, 0x50ff3 }, /* DH-F3 (socket AM2) */ { X86_VENDOR_AMD, 0x60fb1 }, /* BH-G1 (socket AM2) */ { X86_VENDOR_AMD, 0x60f81 }, /* BH-G1 (socket S1g1) */ { X86_VENDOR_AMD, 0x60fb2 }, /* BH-G2 (socket AM2) */ { X86_VENDOR_AMD, 0x60f82 }, /* BH-G2 (socket S1g1) */ { X86_VENDOR_AMD, 0x70ff1 }, /* DH-G1 (socket AM2) */ { X86_VENDOR_AMD, 0x60ff2 }, /* DH-G2 (socket AM2) */ { X86_VENDOR_AMD, 0x70ff2 }, /* DH-G2 (socket AM2) */ { X86_VENDOR_AMD, 0x60fc2 }, /* DH-G2 (socket S1g1) */ { X86_VENDOR_AMD, 0x70fc2 }, /* DH-G2 (socket S1g1) */ #endif { 0, 0 }, }; static const struct cpu_driver model_fxx __cpu_driver = { .ops = &cpu_dev_ops, .id_table = cpu_table, };