/* * This file is part of the LinuxBIOS project. * * Copyright (C) 2007 Advanced Micro Devices, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #if FAM10_SET_FIDVID == 1 #define FAM10_SET_FIDVID_DEBUG 1 // if we are tight of CAR stack, disable it #define FAM10_SET_FIDVID_STORE_AP_APICID_AT_FIRST 1 static inline void print_debug_fv(const char *str, u32 val) { #if FAM10_SET_FIDVID_DEBUG == 1 printk_debug("%s%x\n", str, val); #endif } static inline void print_debug_fv_8(const char *str, u8 val) { #if FAM10_SET_FIDVID_DEBUG == 1 printk_debug("%s%02x\n", str, val); #endif } static inline void print_debug_fv_64(const char *str, u32 val, u32 val2) { #if FAM10_SET_FIDVID_DEBUG == 1 printk_debug("%s%x%x\n", str, val, val2); #endif } static void enable_fid_change(u8 fid) { u32 dword; u32 nodes; device_t dev; int i; nodes = ((pci_read_config32(PCI_DEV(CBB, CDB, 0), 0x60) >> 4) & 7) + 1; for(i = 0; i < nodes; i++) { dev = NODE_PCI(i,3); dword = pci_read_config32(dev, 0xd4); dword &= ~0x1F; dword |= (u32) fid & 0x1F; dword |= 1 << 5; // enable pci_write_config32(dev, 0xd4, dword); printk_debug("FID Change Node:%02x, F3xD4: %08x \n", i, dword); } } static void prep_fid_change(void) { u32 dword; u32 nodes; device_t dev; int i; /* This needs to be run before any Pstate changes are requested */ nodes = ((pci_read_config32(PCI_DEV(CBB, CDB, 0), 0x60) >> 4) & 7) + 1; for(i = 0; i < nodes; i++) { printk_debug("Node:%02x \n", i); dev = NODE_PCI(i,3); dword = pci_read_config32(dev, 0xa0); dword &= ~(1<<29); dword |= ((~dword >> 8) & 1) << 29; // SlamVidMode is the inverse to the PviMode dword |= PLLLOCK_DFT_L; /* Force per BKDG */ pci_write_config32(dev, 0xa0, dword); printk_debug(" F3xA0: %08x \n", dword); dword = pci_read_config32(dev, 0xd8); dword &= ~0x77; dword |= (1<<4) | 6; // VSRampTime, and VSSlamTime dword |= 3 << 24; // ReConDel set to 3 per BKDG pci_write_config32(dev, 0xd8, dword); printk_debug(" F3xD8: %08x \n", dword); dword = pci_read_config32(dev, 0xd4); dword &= 0x1F; dword |= 0xC331AF00; // per BKDG pci_write_config32(dev, 0xd4, dword); printk_debug(" F3xD4: %08x \n", dword); dword = pci_read_config32(dev, 0xdc); dword |= 0x5 << 12; // NbsynPtrAdj set to 0x5 per BKDG (needs reset) pci_write_config32(dev, 0xdc, dword); printk_debug(" F3xDC: %08x \n", dword); // Rev B settings - FIXME: support other revs. dword = 0xA0E641E6; pci_write_config32(dev, 0x84, dword); printk_debug(" F3x84: %08x \n", dword); dword = 0xE600A681; pci_write_config32(dev, 0x80, dword); printk_debug(" F3x80: %08x \n", dword); } } #include "fidvid_common.c" static void init_fidvid_ap(u32 bsp_apicid, u32 apicid, u32 nodeid, u32 coreid) { msr_t msr; device_t dev; u8 vid_max; u8 fid_max; u8 startup_pstate; u8 nb_cof_vid_update; u8 pvimode; u32 reg1fc; u32 dword; u32 send; printk_debug("FIDVID on AP: %02x\n", apicid); /* Only support single plane system at this time. */ /* Steps 1-6 of BIOS NB COF and VID Configuration * for Single-Plane PVI Systems */ dev = NODE_PCI(nodeid,3); reg1fc = pci_read_config32(dev, 0x1FC); nb_cof_vid_update = reg1fc & 1; if (nb_cof_vid_update) { /* Get fused settings */ dword = pci_read_config32(dev, 0xa0); pvimode = (dword >> 8) & 1; vid_max = (reg1fc >> 7) & 0x7F; // per node fid_max = (reg1fc >> 2) & 0x1F; // per system if (pvimode) { /* FIXME: support daul plane mode */ die("PVImode not supported\n"); /* fidmax = vidmax - (reg1fc >> 17) & 0x1F; fidmax = fidmax + (reg1fc >> 14) & 0x03; */ } } else { /* Use current values */ msr = rdmsr(0xc0010071); fid_max = ((msr.hi >> (59-32)) & 0x1f); //max nb fid vid_max = ((msr.hi >> (35-32)) & 0x7f); //max vid } /* Note this is the single plane setup. Need to add dual plane path */ msr = rdmsr(0xc0010071); startup_pstate = (msr.hi >> (32-32)) & 0x07; /* Copy startup pstate to P1 and P0 MSRs. Set the maxvid for this node in P0. Then transition to P1 for corex and P0 for core0. */ msr = rdmsr(0xC0010064 + startup_pstate); wrmsr(0xC0010065, msr); wrmsr(0xC0010064, msr); msr.lo &= ~0xFE000000; // clear nbvid msr.lo |= vid_max << 25; wrmsr(0xC0010064, msr); // Transition to P1 for all APs and P0 for core0. msr = rdmsr(0xC0010062); msr.lo = (msr.lo & ~0x07) | 1; wrmsr(0xC0010062, msr); // Wait for P1 to set. do { msr = rdmsr(0xC0010063); } while (msr.lo != 1); if (coreid == 0) { msr.lo = msr.lo & ~0x07; wrmsr(0xC0010062, msr); // Wait for P0 to set. do { msr = rdmsr(0xC0010063); } while (msr.lo != 0); } send = (nb_cof_vid_update << 16) | (fid_max << 8); send |= (apicid << 24); // ap apicid // Send signal to BSP about this AP max fid // This also indicates this AP is ready for warm reset (if required). lapic_write(LAPIC_MSG_REG, send | 1); } static u32 calc_common_fid(u32 fid_packed, u32 fid_packed_new) { u32 fidmax; u32 fidmax_new; fidmax = (fid_packed >> 8) & 0xFF; fidmax_new = (fid_packed_new >> 8) & 0xFF; if(fidmax > fidmax_new) { fidmax = fidmax_new; } fid_packed &= 0xFF << 16; fid_packed |= (fidmax << 8); fid_packed |= fid_packed_new & (0xFF << 16); // set nb_cof_vid_update return fid_packed; } struct fidvid_st { u32 common_fid; }; static void init_fidvid_bsp_stage1(u32 ap_apicid, void *gp ) { u32 readback = 0; u32 timeout = 1; struct fidvid_st *fvp = gp; int loop; print_debug_fv("Wait for AP stage 1: ap_apicid = ", ap_apicid); loop = 100000; while(--loop > 0) { if(lapic_remote_read(ap_apicid, LAPIC_MSG_REG, &readback) != 0) continue; if((readback & 0x3f) == 1) { timeout = 0; break; //target ap is in stage 1 } } if(timeout) { print_initcpu8("fidvid_bsp_stage1: time out while reading from ap ", ap_apicid); return; } print_debug_fv("\treadback = ", readback); fvp->common_fid = calc_common_fid(fvp->common_fid, readback); print_debug_fv("\tcommon_fid(packed) = ", fvp->common_fid); } static void init_fidvid_stage2(u32 apicid, u32 nodeid) { msr_t msr; device_t dev; u32 reg1fc; u8 StartupPstate; u8 nbvid; int i; /* After warm reset finish the fid/vid setup for all cores. */ dev = NODE_PCI(nodeid,3); reg1fc = pci_read_config32(dev, 0x1FC); nbvid = (reg1fc >> 7) & 0x7F; if (reg1fc & 0x02) { // NbVidUpdateAll ? for( i = 0; i < 5; i++) { msr = rdmsr(0xC0010064 + i); if ((msr.hi >> 31) & 1) { // PstateEn? msr.lo &= ~(0x7F << 25); msr.lo |= (nbvid & 0x7F) << 25; } } } else { for( i = 0; i < 5; i++) { msr = rdmsr(0xC0010064 + i); if (((msr.hi >> 31) & 1) && (((msr.lo >> 22) & 1) == 0)) { // PstateEn and PDid == 0? msr.lo &= ~(0x7F << 25); msr.lo |= (nbvid & 0x7F) << 25; } } } // For each processor in the system, transition all cores to StartupPstate msr = rdmsr(0xC0010071); StartupPstate = msr.hi >> (32-32) & 0x03; msr = rdmsr(0xC0010062); msr.lo = StartupPstate; wrmsr(0xC0010062, msr); } #if FAM10_SET_FIDVID_STORE_AP_APICID_AT_FIRST == 1 struct ap_apicid_st { u32 num; // it could use 256 bytes for 64 node quad core system u8 apicid[NODE_NUMS * 4]; }; static void store_ap_apicid(unsigned ap_apicid, void *gp) { struct ap_apicid_st *p = gp; p->apicid[p->num++] = ap_apicid; } #endif static int init_fidvid_bsp(u32 bsp_apicid, u32 nodes) { #if FAM10_SET_FIDVID_STORE_AP_APICID_AT_FIRST == 1 struct ap_apicid_st ap_apicidx; u32 i; #endif struct fidvid_st fv; msr_t msr; device_t dev; u8 vid_max; u8 fid_max; u8 startup_pstate; u8 nb_cof_vid_update; u32 reg1fc; u32 dword; u8 pvimode; printk_debug("FIDVID on BSP, APIC_id: %02x\n", bsp_apicid); /* FIXME: Only support single plane system at this time. */ /* Steps 1-6 of BIOS NB COF and VID Configuration * for Single-Plane PVI Systems */ dev = NODE_PCI(0,3); // nodeid for the BSP is 0 reg1fc = pci_read_config32(dev, 0x1FC); nb_cof_vid_update = reg1fc & 1; if (nb_cof_vid_update) { /* Get fused settings */ dword = pci_read_config32(dev, 0xa0); pvimode = (dword >> 8) & 1; vid_max = (reg1fc >> 7) & 0x7F; // per node fid_max = (reg1fc >> 2) & 0x1F; // per system if (pvimode) { /* FIXME: support daul plane mode */ die("PVImode not supported\n"); /* fidmax = vidmax - (reg1fc >> 17) & 0x1F; fidmax = fidmax + (reg1fc >> 14) & 0x03; */ } } else { /* Use current values */ msr = rdmsr(0xc0010071); fid_max = ((msr.hi >> (59-32)) & 0x1f); //max nb fid vid_max = ((msr.hi >> (35-32)) & 0x7f); //max vid } /* Note this is the single plane setup. Need to add dual plane path */ msr = rdmsr(0xc0010071); startup_pstate = (msr.hi >> (32-32)) & 0x07; /* Copy startup pstate to P1 and P0 MSRs. Set the maxvid for this node in P0. Then transition to P1 for corex and P0 for core0. */ msr = rdmsr(0xC0010064 + startup_pstate); wrmsr(0xC0010065, msr); wrmsr(0xC0010064, msr); msr.lo &= ~0xFE000000; // clear nbvid msr.lo |= vid_max << 25; wrmsr(0xC0010064, msr); // Transition to P1 and then P0 for core0. msr = rdmsr(0xC0010062); msr.lo = (msr.lo & ~0x07) | 1; wrmsr(0xC0010062, msr); // Wait for P1 to set. do { msr = rdmsr(0xC0010063); } while (msr.lo != 1); msr.lo = msr.lo & ~0x07; wrmsr(0xC0010062, msr); // Wait for P0 to set. do { msr = rdmsr(0xC0010063); } while (msr.lo != 0); fv.common_fid = (nb_cof_vid_update << 16) | (fid_max << 8) ; print_debug_fv("BSP fid = ", fv.common_fid); #if FAM10_SET_FIDVID_STORE_AP_APICID_AT_FIRST == 1 && FAM10_SET_FIDVID_CORE0_ONLY == 0 /* For all APs (We know the APIC ID of all APs even when the APIC ID is lifted) remote read from AP LAPIC_MSG_REG about max fid. Then calculate the common max fid that can be used for all APs and BSP */ ap_apicidx.num = 0; for_each_ap(bsp_apicid, FAM10_SET_FIDVID_CORE_RANGE, store_ap_apicid, &ap_apicidx); for(i = 0; i < ap_apicidx.num; i++) { init_fidvid_bsp_stage1(ap_apicidx.apicid[i], &fv); } #else for_each_ap(bsp_apicid, FAM10_SET_FIDVID_CORE0_ONLY, init_fidvid_bsp_stage1, &fv); #endif print_debug_fv("common_fid = ", fv.common_fid); if (fv.common_fid & ~(0xFF << 16)) { // check nb_cof_vid_update // Enable the common fid and other settings. enable_fid_change((fv.common_fid >> 8) & 0x1F); // nbfid change need warm reset, so reset at first return 1; } return 0; // No FID/VID changes. Don't reset } static void set_p0(void) { msr_t msr; // Transition P0 for calling core. msr = rdmsr(0xC0010062); msr.lo = (msr.lo & ~0x07); wrmsr(0xC0010062, msr); // Don't bother to wait around for the P state to change. } #endif