
Parsec, a fast combinator parser

DAAN LEIJEN
University of Utrecht

Dept. of Computer Science
PO.Box 80.089, 3508 TB Utrecht

The Netherlands
daan@ cs. uu. nl , http: // www. cs. uu. nl/ ~daan

4 Oct 2001

1 Introduction

Parsec is an industrial strength, monadic parser combinator library for Haskell.
It can parse context-sensitive, infinite look-ahead grammars but it performs best on
predictive (LL[1]) grammars. Combinator parsing is well known in the literature
and offers several advantages to YACC or event-based parsing.

• Combinator parsers are written and used within the same programming lan-
guage as the rest of the program. There is no gap between the grammar
formalism (Yacc) and the actual programming language used (C). Users learn
just one language! We can also enjoy all the benefits that exist in the host
language: type checking, module system, development environment, etc.

• Parsers are first-class values within the language. They can be put into lists,
passed as parameters and returned as values. It is easy extend the available
set of parsers with custom made parsers specific for a certain problem, see for
example many or buildExpressionParser.

Most ‘real’ parsers are built using bottom-up parser generators like happy. This is
mostly for reasons of speed but also because most parser libraries are written for
research and inadequate for practical applications. Parsec is designed as a ‘real
world’ library from scratch:

• Speed. Most combinator libraries lack the speed necessary to be competetive
with bottom-up parser generators. Parsec uses some novel techniques to
improve its performance. The library is fast, parsing thousands of lines a
second on today’s machines (see the benchmark for test results).

• Error reporting. Parsec has extensive error messages; giving position, un-
expected input, expected productions and general user messages. The error
messages are given in terms of high-level grammar productions and can be
localized for different (natural) languages.

• Libraries. Parsec provides a set of basic parsers and provides three extension
libraries, a lexical analysis library, a generalized expression parser and a library
for parsing permutation phrases.

• Documentation. Parsec is documented with a reference- and user-guide and
example grammar implementations.

daan@cs.uu.nl
http://www.cs.uu.nl/~daan
http://www.haskell.org/happy
http://www.cs.uu.nl/people/daan/pbench.html

2 Parsec, a fast combinator parser

• Simplicity. Parsec is designed to be as simple as possible, making it access-
able to both novice and expert users. Parsec is predictive by default, only
backtracking where an explicit try is inserted. This makes the operational be-
haviour easier to understand than the ‘normal’ approach where backtracking
is the default behaviour.

1.1 About this document

This document ships in the following formats:

• Postscript (PS). High quality output, best for printing.

• Acrobat (PDF). High quality output and hyperlinked. Preferred for online
browsing.

• HTML. Poor man’s PDF – hyperlinked but it lacks an index.

After the introduction, this document contains a simple user guide and a than a
full reference guide for the library.

1.2 Compatibility

The core library is written in Haskell98. The extension library ParsecToken uses
the forall keyword (to emulate a first-class module) but, to my best knowledge,
this extension is supported by every Haskell98 system. The library is successfully
compiled with GHC 4.x, GHC 5.x, Hugs98 and nhc98, but probably works with any
Haskell98 compliant compiler or interpreter.

1.2.1 Compiling with GHC

Parsec is distributed as a package with GHC. This means that you can simply use
the -package text switch to use the Parsec library. Unfortunately, Ghc versions
up to 5.02 include an old version of Parsec. In this case, you might want to
link with the newest Parsec library. Parsec ships with a makefile that creates a
Haskell library – just type make at the command prompt.

Suppose that the library is compiled in the directory c:\parsec. When you compile
a Haskell source that uses Parsec, you should tell GHC where it can find the
interface files (*.hi).

ghc -c myfile -ic:\parsec

When your linking the files together, you need to tell GHC where it can find libraries
(-L) and to link with the Parsec library too (-l):

ghc -o myprogram myfile1.o myfile2.o -Lc:\parsec -lparsec

1 Introduction 3

1.2.2 Compiling with Hugs

If you use the ParsecToken or ParsecPerm modules, you need to enable the forall
extension. Hugs should be started with the -98 option to enable Haskell98 exten-
sions.

1.3 Reporting bugs

Any bugs (or fixes!) can be reported to the author, Daan Leijen (daan@cs.uu.nl).
Any feedback on:

• Which parsers are lacking;

• Naming of the parsers;

• Performance, both time and space.

is greatly appreciated too. Besides that, I am also quite interested in any applica-
tions, especially in a commercial setting, that are created using this library.

The Parsec homepage can be found at: http://www.cs.uu.nl/~daan/parsec.
html. Any useful additions to the library or example grammars will be put on this
www-page. If you have written a parser for some language, don’t hesitate and send
it to author so it can be put on the www-page too.

The library has been tested using the Pbench benchmark. It can be found at
http://www.cs.uu.nl/people/daan/pbench.html.

1.4 History

• 4 Oct 2001: Parsec can now work on any input stream which allows one to
write a seperate lexer. There is also a user definable state – for example for
creating identifiers from strings. Non-compatible changes:

– brackets is now called angles, while squares is now called brackets.

– The type of many parsers is now more general, ie. GenParser tok st a
instead of Parser a.

– The types of Operator and OperatorTable have changed into a more
general type.

– The ParsecToken module is now parameterized with a record instead of
an imported module.

– The token parser now parses single tokens.

– Added new functionality, like sepEndBy.

– Added an experimental module for parsing permutations (ParsecPerm).

daan@cs.uu.nl
http://www.cs.uu.nl/~daan/parsec.html
http://www.cs.uu.nl/~daan/parsec.html
http://www.cs.uu.nl/people/daan/pbench.html

4 Parsec, a fast combinator parser

1.5 License

I would like to see this library as widely used as possible. It is therefore distributed
with an unrestrictive BSD style license. If there is any problem using this software
with this license, I would like to hear about it and see if we can work out a solution.

Copyright 1999-2000, Daan Leijen. All rights reserved.

Redistribution and use in source and binary forms, with or without mod-
ification, are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright no-
tice, this list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribu-
tion.

This software is provided by the copyright holders “as is” and any ex-
press or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are
disclaimed. In no event shall the copyright holders be liable for any di-
rect, indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or ser-
vices; loss of use, data, or profits; or business interruption) however
caused and on any theory of liability, whether in contract, strict liabil-
ity, or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.

2 Users guide 5

2 Users guide

All the examples given in this user guide can be found in the parsec/examples/userguide
directory of the parser library.

2.1 Running a parser

First of all, import the library into your Haskell module:

module Main where

import Parsec

Let’s start with a very simple parser. The parser that recognizes a single letter (a
character between ’a’ and ’z’) is written as:

simple :: Parser Char
simple = letter

The type of simple shows that simple is a parser that will return a Char (the parsed
letter) whenever it succeeds. A parser can be executed using the parse function.
This function takes three arguments: the parser (simple), the name of the input
("") and the input itself. The name of input is only used for error messages and can
be empty in our case. The result of parse is either an error (Left) or a succesful
result (Right). We define a simple run function that simply prints either the error
value or the result value for a specific parser:

run :: Show a => Parser a -> String -> IO ()
run p input

= case (parse p "" input) of
Left err -> do{ putStr "parse error at "

; print err
}

Right x -> print x

(The run function is actually defined in the Parsec module as parseTest). When
we load this module into hugs, we can directly and interactively test our parsers on
different inputs:

Reading file "d:\cvs\parsec\examples\userguide\main.hs":

Hugs session for:
d:\programs\hugs98\lib\Prelude.hs
d:\programs\hugs98\lib\Maybe.hs
d:\programs\hugs98\lib\List.hs
d:\cvs\parsec\ParsecError.hs
d:\programs\hugs98\lib\Monad.hs

6 Parsec, a fast combinator parser

d:\programs\hugs98\lib\Char.hs
d:\cvs\parsec\Parsec.hs
d:\cvs\parsec\examples\userguide\Main.hs
Main> run simple "a"
’a’

Main> run simple ""
parse error at (line 1, column 1):
unexpected end of input
expecting letter

Main> run simple "123"
parse error at (line 1, column 1):
unexpected "1"
expecting letter

2.2 Sequence and choice

Two important operations for specifying grammars (and parsers) are sequence and
choice. In our case, parsers can be sequenced using the monadic do-notation. For
example, the following parser parses an open parenthesis followed by a closing paren-
thesis ("()"):

openClose :: Parser Char
openClose = do{ char ’(’

; char ’)’
}

Two simple parenthesis are not too interesting but in combination with the choice
operator (<|>) we can specify a parser that recognizes matching pairs of parenthesis.
Matching parenthesis consist of either an open parenthesis followed by a matching
pair of parenthesis, a closing parenthesis and another matching pair of parenthesis,
or it is empty; The empty alternative is implemented using the (return x) parser
which always succeeds with value x without consuming any input.

parens :: Parser ()
parens = do{ char ’(’

; parens
; char ’)’
; parens
}

<|> return ()

Let’s run the parens parser on some input to test its behaviour:

Main> run parens "(())()"
()

Main> run parens "(()()"

2 Users guide 7

parse error at (line 1, column 6):
unexpected end of input
expecting "(" or ")"

2.3 Predictive parsers

For reasons of speed, the (<|>) combinator is predictive; it will only try its second
alternative if the first parser hasn’t consumed any input. Consider the following
example parser:

testOr = string "(a)"
<|> string "(b)"

The (string s) parser accepts input that equals the string s. Since both strings
in the example start with the same initial character, the behaviour is probably not
what the user expected:

Main> run testOr "(b)"
parse error at (line 1, column 2):
unexpected ’b’
expecting ’a’

Since the first parser has already consumed some input (the ’(’), the second al-
ternative is never tried allthough it would succeed! The preferred solution to this
problem is to left-factor the grammar by merging common prefixes. The following
parser works as expected:

testOr1 = do{ char ’(’
; char ’a’ <|> char ’b’
; char ’)’
}

Unfortunately, it is not always possible to left-factor the grammar and in many
other cases the grammar becomes more complex to understand. There is a primitive
combinator called try that handles these cases in an elegant manner. The parser
(try p) behaves just like p except that it pretends that it hasn’t consumed any
input whenever p fails. In combination with (<|>) this allows for infinite look-ahead
in the grammar. Here is the above parser written using try:

testOr2 = try (string "(a)")
<|> string "(b)"

or an even better version:

testOr3 = do{ try (string "(a"); char ’)’; return "(a)" }
<|> string "(b)"

8 Parsec, a fast combinator parser

Allthough the implementation of try is quite efficient there is a penalty when it
fails, ie. it shouldn’t be used as an alternative to careful grammar design!

2.4 Adding semantics

Right now, the parens parser simply recognizes matching pairs of parenthesis but
doesn’t return a useful value. We will now extend the parens parser with ‘semantic’
actions which compute the maximal nesting level of the parenthesis. The (<-)
operator will be used to bind the intermediate values returned by the parsers.

The nesting parser returns the nesting level of the parenthesis. The empty alter-
native returns zero. The other alternative returns the maximal nesting level of both
other parsers:

nesting :: Parser Int
nesting = do{ char ’(’

; n <- nesting
; char ’)’
; m <- nesting
; return (max (n+1) m)
}

<|> return 0

Here is an example session with nesting:

Main> run nesting "(())()"
2

Main> run nesting "(()(()))"
3

Main> run nesting "(()(())"
parse error at (line 1, column 8):
unexpected end of input
expecting "(" or ")"

2.5 Sequences and seperators

Consider the word parser that parses words: a sequence of one or more letters:

word :: Parser String
word = do{ c <- letter

; do{ cs <- word
; return (c:cs)
}

<|> return [c]
}

2 Users guide 9

After parsing at a letter, it is either followed by a word itself or it returns the
single character as a string. Allthough it is not too hard to learn to recognize
these patterns, it is not immediately obvious that a sequence of one or more letters
is parsed by this grammar. Even widely used parser generators like YACC and
JavaCC do not provide any abstraction from these commonly occurring patterns.
Luckily, we have the full power of functional programming at our finger tips, it is
easy to provide a custom parser combinator that parses a sequence of one or more
parsers; it is called many1:

word :: Parser String
word = many1 letter

Now it is obvious from the code what word is supposed to do and it is much easier to
specifiy; no strange recursive patterns! Beside many1, the library provides the many
parser which parses zero or more occurrences of its argument. The combinators
skipMany and skipMany1 behave like many and many1 but do not return the values
of their argument parser.

Another useful pair of combinators are sepBy and sepBy1 which parse a sequence
of parsers separated by some separator. The combinators sepEndBy and sepEndBy1
parse a sequence of parsers that are either all seperated or terminated by some
seperator (ie. Haskell declarations).

For example, sentences are a sequence of one or more words separated by one or
more spaces or commas and ended by a dot, question mark or exclamation mark:

sentence :: Parser [String]
sentence = do{ words <- sepBy1 word separator

; oneOf ".?!"
; return words
}

separator :: Parser ()
separator = skipMany1 (space <|> char ’,’)

Let’s parse some example sentences:

Main> run sentence "hi,di,hi."
["hi","di","hi"]

Main> run sentence "hi,di hi!"
["hi","di","hi"]

Main> run sentence "hi,123"
parse error at (line 1, column 4):
unexpected "1"
expecting ",", space or letter

10 Parsec, a fast combinator parser

2.6 Improving error messages

Allthough the last error message of the previous hugs session is correct, it is not
very user friendly. A better message would simply be "expecting word". The
error combinator (<?>) attaches a high-level error description to parsers. Errors
can now be given in terms of high-level grammar productions instead of at the level
of characters. We will first attach a description to the word parser:

word :: Parser String
word = many1 letter <?> "word"

Whenever the word parser fails without consuming input, it will now issue an error
message "expecting word":

Main> run sentence "hi,123"
parse error at (line 1, column 4):
unexpected "1"
expecting ",", space or word

It is easy to get rid of the comma and space messages; just use an empty description:

separator :: Parser ()
separator = skipMany1 (space <|> char ’,’ <?> "")

Note that the (<|>) combinator binds stronger than the (<?>) operator. The error
message only reports the expected word now:

Main> run sentence "hi,123"
parse error at (line 1, column 4):
unexpected "1"
expecting word

Another improvement can be made to the ‘end of sentence’ parser:

sentence :: Parser [String]
sentence = do{ words <- sepBy1 word separator

; oneOf ".?!" <?> "end of sentence"
; return words
}

Let’s test the new parser on an uncompleted sentence:

Main> run sentence "hi,di"
parse error at (line 1, column 6):
unexpected end of input
expecting letter or end of sentence

2 Users guide 11

Allthough the message is again correct, one further improvement can be made. The
expected letter is a bit confusing; indeed a letter can be added to the last word but
it is probably not what the user intended. Note that the message reports that a
letter can be expected and not a word. This is because a message that is attached
to a parser using (<?>) will only be issued if the parser can not even be started, i.e.
when it hasn’t consumed any input. Since the word parser has already consumed
two letters (di) the expect message for letter is issued.

What we want to do is to attach an empty message to the letter parser in word
but maintain the "word" message on the parser as a whole.

word :: Parser String
word = many1 (letter <?> "") <?> "word"

Finally we have a highly customised error messages which behave quite nicely:

Main> run sentence "hi di"
parse error at (line 1, column 6):
unexpected end of input
expecting end of sentence

Main> run sentence "hi di,"
parse error at (line 1, column 7):
unexpected end of input
expecting word

After this section, it might seem that error handling is quite involved, but don’t be
discouraged; This example grammar was chosen to be tricky and experience shows
that for most grammars just a few error descriptions are necessary.

2.7 Expressions

Expressions are probably one of the most common constructs for which a parser is
needed. Consider the following standard EBNF grammar for expressions:

expr ::= expr ’+’ term | term
term ::= term ’*’ factor | factor
factor ::= ’(’ expr ’)’ | digit+

digit ::= ’0’ | ’1’ | ... | ’9’

The grammar uses different productions to specify priorities (’*’ has higher priority
than ’+’) and uses left-recursion to make both star and plus left-associative.

Unfortunately, left-recursive grammars can not be specified directly in a combinator
library. If you accidently write a left recursive program, the parser will go into an
infinite loop! However, every left-recursive grammar can be rewritten to a non-left-
recursive grammar. The library provides combinators which do this automatically
for you (chainl and chainl1).

12 Parsec, a fast combinator parser

Even when using these combinators to deal with the left-recursion, it is still a nui-
sance to code the associativity and priorities of the operators in such a primitive way.
The parser library provides a standard module ParsecExpr to deal more elegantly
with expression style grammars. Using this library, the above expression grammar,
extended with minus and divide, is specified using the buildExpressionParser
function:

import ParsecExpr

expr :: Parser Integer
expr = buildExpressionParser table factor

<?> "expression"

table = [[op "*" (*) AssocLeft, op "/" div AssocLeft]
,[op "+" (+) AssocLeft, op "-" (-) AssocLeft]
]

where
op s f assoc

= Infix (do{ string s; return f}) assoc

factor = do{ char ’(’
; x <- expr
; char ’)’
; return x
}

<|> number
<?> "simple expression"

number :: Parser Integer
number = do{ ds <- many1 digit

; return (read ds)
}

<?> "number"

The function buildExpressionParser takes two arguments. The second argument
is the basic expression term and the first a table of operators of decreasing priority
(the higher in the list, the higher the priority). Operators can be Infix, Prefix or
Postfix. Infix operators also have an associativity: AssocLeft, AssocRight or
AssocNone.

Here is an example session with the expr parser:

Main> run expr "1+2*3" -- ’*’ has higher priority
7

Main> run expr "(1+2)*3"
9

Main> run expr "8/4/2" -- ’/’ is left associative
1

Main> run expr "8/(4/2)"

2 Users guide 13

4

Main> run expr "1 + 2" -- wrong!
1

Main> run expr "1+ 2" -- wrong!
parse error at (line 1, column 3):
unexpected " "
expecting simple expression

2.8 Lexical analysis

The previous hugs session with expressions shows that the expression parser can
not yet deal with whitespace. Most parsers take their input from a lexical analyzer
or scanner which filters white space and comments and returns a list tokens for the
parser. How Parsec can work on such token streams is described in a later section.
Parsec can also merge both passes into one parser specification which allows us
to use all the normal parser combinators to deal with lexical analysis too. The
standard module ParsecToken deals with issues normally delegated to a seperate
scanner: white space, comments, identifiers, reserved words, numbers, strings and
other tokens.

Unfortunately, most languages disagree on the syntax of comments, the form of iden-
tifiers and for example case sensitivity. The ParsecToken module should be param-
eterized with those differences, but unfortunately, Haskell doesn’t support parame-
terized modules. The module therefore exports a single function makeTokenParser
that takes paremeterizable language features as an argument (LanguageDef) and
returns a (rather large) record that contains a set of lexical parsers. For your conve-
nience, the module ParsecLanguage contains a set of common language definitions.
For the expression parser, we will use haskell-style comments and identifiers

module Main where
import Parsec
import qualified ParsecToken as P
import ParsecLanguage(haskellStyle)

lexer :: TokenParser ()
lexer = makeTokenParser

(haskellDef
{ reservedOpNames = ["*","/","+","-"]
}

For efficiency, we will bind all the used lexical parsers at toplevel.

whiteSpace= P.whiteSpace lexer
lexeme = P.lexeme lexer
symbol = P.symbol lexer
natural = P.natural lexer
parens = P.parens lexer
semi = P.semi lexer

14 Parsec, a fast combinator parser

identifier= P.identifier lexer
reserved = P.reserved lexer
reservedOp= P.reservedOp lexer

Every lexical parser from the ParsecToken module will skip whitespace after each
symbol parsed; parsers which skip trailing whitespace are called lexeme parsers (the
lexeme combinator can be used to define them). By skipping trailing whitespace,
it is garanteed that every parser starts at valid input. For the expression parser,
the lexeme parser reservedOp is used instead of the char and string parsers:

import ParsecToken

...

expr :: Parser Integer
expr = buildExpressionParser table factor

<?> "expression"

table = [[op "*" (*) AssocLeft, op "/" div AssocLeft]
,[op "+" (+) AssocLeft, op "-" (-) AssocLeft]
]

where
op s f assoc

= Infix (do{ reservedOp s; return f} <?> "operator") assoc

The ParsecToken module also defines a set of high-level combinators like parens
to parse something enclosed in parenthesis and natural to parse natural numbers
in decimal, octal or hexadecimal notation:

factor = parens expr
<|> natural
<?> "simple expression"

Finally the run function will be adapted to deal with whitespace. The main parser
needs to skip any whitespace at the start of the input (since all other parsers only
skip trailing whitespace) and needs to end with the eof parser which only succeeds
at the end of the input. This parser garantees that all input will be parsed; if it is
left out, a parser is allowed to parse only part of the input.

runLex :: Show a => Parser a -> String -> IO ()
runLex p input

= run (do{ whiteSpace
; x <- p
; eof
; return x
}) input

And that’s it. In about 30 lines of code we have a fully functional, extensible ex-
pression parser with comments, priority and associativity rules and infinite precision
numbers in hexadecimal, octal and decimal representation.

2 Users guide 15

Main> runLex expr "1 + 2"
3

Main> runLex expr "1 + {- comment -} 2 * 3 --multiply has higher priority"
7

Main> runLex expr " 0xAA / 0o37 / 2"
2

Main> runLex expr "0xAA / 0o37 2 "
parse error at (line 1, column 13):
unexpected "2"
expecting operator or end of input

2.9 Receipts: Lexeme parsers and Reserved words

Consider the following EBNF grammar for receipts:

receipt ::= product* total

produkt ::= "return" price ";"
| identifier price ";"

total ::= price "total"

price ::= digit+ "." digit digit

A receipt is a sequence of semicolon terminated produkts and ends with the total
price of all products. A produkt is either a name of a produkt with its price or a
return produkt in which case the client receives the specified price. We will construct
a parser for receipts which checks if the total amount is actually correct.

2.9.1 Lexeme parsers

The price parser is a nice exercise in specifying lexeme parsers. The price parser
doesn’t allow whitespace inside; For example, we can’t use the decimal parser to
parse the digits in front of the dot since the decimal parser would allow whitespace
between those digits and the dot. The appropiate solution is to create a lexeme
parser ourselves.

price :: Parser Int -- price in cents
price = lexeme (do{ ds1 <- many1 digit

; char ’.’
; ds2 <- count 2 digit
; return (convert 0 (ds1 ++ ds2))
})

<?> "price"
where

convert n [] = n
convert n (d:ds) = convert (10*n + digitToInt d) ds

16 Parsec, a fast combinator parser

The implementation of the other productions is almost a literal translation of the
grammar rules:

receipt :: Parser Bool
receipt = do{ ps <- many produkt

; p <- total
; return (sum ps == p)
}

produkt = do{ symbol "return"
; p <- price
; semi
; return (-p)
}

<|> do{ identifier
; p <- price
; semi
; return p
}

<?> "produkt"

total = do{ p <- price
; symbol "total"
; return p
}

Let’s try the parser on a few receipts:

Main> runLex receipt "book 12.00; plant 2.55; 14.55 total"
True

Main> runLex receipt "book 12.00; plant 2.55; 12.55 total"
False

Main> runLex receipt "book 12.00; plant 2; 12.55 total"
parse error at (line 1, column 20):
unexpected ";"
expecting digit or "."

Main> runLex receipt "book 12.00; return 2.00; plant 2.55; 12.55 total"
True

2.9.2 Reserved words

Unfortunately, the parser will incorrectly return an error on the following input:

Main> runLex receipt "book 12.00; reader 2.00; plant 1.00; 15.00 total"
parse error at (line 1, column 13):
unexpected "a"
expecting "return"

2 Users guide 17

What happens here? The produkt parser will try to recognize the keyword return
when it starts scanning "reader". When the "a" is encountered an error is returned.
The parser will not try the second alternative which starts with an identifier since
the it has already consumed input (i.e. "re").

This is a good example of a grammar which is hard to left-factor. The use of the
try combinator is the appropiate way of solving this problem:

produkt = do{ try (symbol "return")
; p <- price
; semi
; return (-p)
}

<|> do{ identifier
; p <- price
; semi
; return p
}

<?> "produkt"

The test run now gives the expected result:

Main> runLex receipt "book 12.00; reader 2.00; plant 1.00; 15.00 total"
True

However, we are still not done as the following example shows:

Main> runLex receipt "book 12.00; returns 2.00; plant 1.00; 15.00 total"
parse error at (line 1, column 19):
unexpected "s"
expecting price

The current parser recognises the keyword return now and it complains about the
letter ’s’ following it. A keyword however shouldn’t be recognised as a keyword
when it is only a prefix of an identifier. The parser notFollowedBy can be used to
make sure that a keyword is not followed by a legal identifier character. Just like
checking that a keyword is not a prefix of an identifier, we should also check that
an identifier doesn’t make up a keyword, in order to make the parser independent
of the order of choices.

Since adding the try combinator in the right places, using notFollowedBy and
checking for reserved words is quite subtle, the ParsecToken module implements
all of this complexity for you; simply add the reserved words to your token definition:

lexer :: TokenParser ()
lexer = makeTokenParser

(haskellDef
{ reservedNames = ["return","total"]
, reservedOpNames = ["*","/","+","-"]
}

18 Parsec, a fast combinator parser

Instead of symbol, the combinator reserved is used to scan reserved words. The
try combinator is not necessary anymore since the reserved combinator already
takes care of it.

receipt :: Parser Bool
receipt = do{ ps <- many produkt

; p <- total
; return (sum ps == p)
}

produkt = do{ reserved "return"
; p <- price
; semi
; return (-p)
}

<|> do{ identifier
; p <- price
; semi
; return p
}

<?> "produkt"

total = do{ p <- price
; reserved "total"
; return p
}

Finally, everything works as expected:

Main> runLex receipt "book 12.00; returns 2.00; plant 1.00; 15.00 total"
True

Main> runLex receipt "book 12.00; total 2.00; plant 1.00; 15.00 total"
parse error at (line 1, column 13):
unexpected reserved word "total"
expecting produkt or price

Main> runLex receipt "book 12.00; totals 2.00; return 1.00; 13.00 total"
True

2.10 Examples

The following example parsers are shipped with Parsec:

• Tiger and While. Both parsers are written by Jurriaan Hage, who used the
languages during CS cources at Utrecht University. The Tiger language is the
example language in the compiler book by Andrew Appel (1997). The While
language is the example language in the semantics book by Nielson, Nielson
and Hankin (1999).

http://www.cs.uu.nl/people/jur

2 Users guide 19

• Henk 2000, based on Pure Type Systems. Written by Jan-Willem Roorda
and Daan Leijen. A parser for the Henk language as descibed by Peyton
Jones and Meijer (1997). The master thesis of Jan-Willem is online available
together with a full interpreter for pure-type-systems.

• Mondrian, the internet programming language (Mondrian, 2000). An exam-
ple of a Java-style language.

2.11 Advanced: Seperate scanners

In the previous examples we used an integrated approach – the lexer was specified
using normal parser combinators. This is not always desirable, sometimes there
is already a scanner available or sometimes the input needs pre-processing. An-
other advantage of writing a scanner by hand is that the performance of the parser
generally improves about 30% (see the benchmark for test results).

Suppose that we have written a seperate scanner for receipts. The scanner function
returns a list of tokens and a list of error messages.

type Token = (SourcePos,Tok)
data Tok = Identifier String

| Reserved String
| Symbol String
| Price Int
deriving Show

scanner :: [Char] -> ([Token],[String])

The parsers should now work on these token streams instead of the normal chararac-
ter streams. This is reflected in the type. The type of general parsers is GenParser
tok st a, where tok is the type of the tokens, st the type of the local user state
and a is the type of the result. Indeed, Parser is just a type synonym for parsers
that work on characters and have no state:

type Parser a = GenParser Char () a

The token parser is used to define a parser that scans a single token. The function
takes three arguments: a function to show tokens, a function to extract the source
position of a token and finally a test function that determines if the token is accepted
or not. The first two arguments are the same for all our tokens so we define a little
abstraction:

type MyParser a = GenParser Token () a

mytoken :: (Tok -> Maybe a) -> MyParser a
mytoken test

= token showToken posToken testToken
where
showToken (pos,tok) = show tok

http://www.jwr.f2s.com
http://www.cs.uu.nl/~johanj/MSc/jwroorda
http://www.cs.uu.nl/people/daan/pbench.html

20 Parsec, a fast combinator parser

posToken (pos,tok) = pos
testToken (pos,tok) = test tok

Now, it is easy to define the basic parser that work on tokens.

identifier :: MyParser String
identifier
= mytoken (\tok -> case tok of

Identifier name -> Just name
other -> Nothing)

reserved :: String -> MyParser ()
reserved name
= mytoken (\tok -> case tok of

Reserved s | s == name -> Just ()
other -> Nothing)

...

For an extended example, you might want to look at the implementation of the
ParsecChar module.

2.12 Advanced: User state

Since Parsec is already a state monad, it is easy to include a user definable state.
This state is very useful when building a symbol table – strings can immediately be
converted to identifiers 1.

Parsec provides three combinators to handle state. The function getState gets
the state, setState st sets the state to st, and updateState f updates the state
by applying function f to it. As an example, we show how we can count the number
of identifiers in a parser.

run input
= case runParser parser 0 "" input of

Right n -> putStrLn ("counted " ++ show n ++ " identifiers!")
Left err -> do{ putStr "parse error at "

; print err
}

parser :: CharParser Int Int
parser
= do{ ...

; n <- getState
; return n
}

1I have to warn the reader though that experience with the HaskellLight compiler has shown that
it hardly pays off in practice to use special identifier representations instead of normal strings

2 Users guide 21

...

myIdentifier :: CharParser Int String
myIdentifier

= do{ x <- identifier
; updateState (+1)
; return x
}

2.13 Advanced: Permutation phrases

A permutation phrase is sequence of elements of possibly different types in which
each element occurs at most once and the order is irrelevant. Parsec provides
the module ParsecPerm to parse such free-order constructs. Possible applications
include parsers for XML attributes and Haskell style records.

Since each element can be of a different type, it is hard to find a typable approach
and we have to resort to judicious use of permutation parser combinators. Parsers
are combined into a permutation parser with the (<||>) operator. At the end, all
the elements are combined using a combination function f that is applied using the
(<$$>) combinator. The whole permutation parser is than converted into a normal
parser using the permute function. Suppose we want to parse a permutation of the
characters a, b, and c. We can write this as:

perm0 = permute (f (<$$>) char ’a’
(<||>) char ’b’
(<||>) char ’c’)

where
f a b c = [a,b,c]

Let’s try the parser against some real input!

Main> run perm0 "abc"
"abc"

Main> run perm0 "cba"
"abc"

Main> run perm0 "b"
parse error at (line 1, column 2):
unexpected end of input
expecting "c" or "a"

There is an implicit restriction that the parsers in a permutation should never
succeed on empty input – ie. you can’t use (many (char ’a’)) to parse an optional
string of ’a’ characters. If there are optional elements in the permutation, you need
to use the special (<|?>) operator that takes both a parser and a default value.
If the first parser can be optional, you can use the (<$?>) operator. For example,

22 Parsec, a fast combinator parser

suppose we parse a permutation of: an optional string of a’s, the character b and
an optional c. This can be described by:

perm1 :: Parser (String,Char,Char)
perm1 = permute (tuple <$?> ("",many1 (char ’a’))

<||> char ’b’
<|?> (’ ’,char ’c’))

where
tuple a b c = (a,b,c)

At the command prompt we can see how error correction works with permutations.

Main> run perm1 "caaaaab"
("aaaaa",’b’,’c’)

Main> run perm1 "cb"
("",’b’,’c’)

Main> run perm1 "b"
("",’b’,’ ’)

Main> run perm1 ""
parse error at (line 1, column 1):
unexpected end of input
expecting "c", "b" or "a"

Main> run perm1 "c"
parse error at (line 1, column 2):
unexpected end of input
expecting "b" or "a"

Main> run perm1 "ca"
parse error at (line 1, column 3):
unexpected end of input
expecting "a" or "b"

3 Reference guide 23

3 Reference guide

Parsec consists of the following main modules:

• Parsec implements the core parser library.

• ParsecExpr is an extension library for parsing expression grammars.

• ParsecToken and ParsecLanguage are extension libraries for parsing lexical
tokens.

• ParsecPerm is an extension library for parsing permutation phrases.

3.1 Module Parsec

This module is the core parser library. It exports functions from following primitive
modules:

• ParsecPos. Source positions.

• ParsecError. Error messages.

• ParsecPrim. The main parser type and primitive parser combinators, for
example parse.

• ParsecCombinator. General polymorphic parser combinators, for example
many.

• ParsecChar. A range of parsers for characters, for example digit.

3.2 Module ParsecPrim

Parser a

A type synonym for GenParser Char () a, i.e. a parser for character streams
without a user state.

GenParser tok st a

The General Parser GenParser tok st a data type represents a parser that
parses tokens of type tok with a user supplied state st and returns a value
of type a on success. GenParser is an instance of the Functor, Monad and
MonadPlus classes.

runParser :: GenParser tok st a -> st -> FilePath -> [tok] -> Either ParseError
a

The most general way to run a parser. (runParser p state filePath input)
runs parser p on the input list of tokens input, obtained from source filePath
with the initial user state st. The filePath is only used in error messages
and may be the empty string. Returns either a ParseError (Left) or a value
of type a (Right).

24 Parsec, a fast combinator parser

parseFromFile p fname
= do{ input <- readFile fname

; return (runParser p () fname input)
}

parse :: Parser a -> FilePath -> String -> Either ParseError a

(parse p filePath input) runs a character parser p without user state.
The filePath is only used in error messages and may be the empty string.
Returns either a ParseError (Left) or a value of type a (Right).

main = case (parse numbers "" "11, 2, 43") of
Left err -> print err
Right xs -> print (sum xs)

numbers = commaSep integer

parseFromFile :: Parser a -> FilePath -> IO (Either ParseError a)

(parseFromFile p filePath) runs a character parser p on the input read
from filePath. Returns either a ParseError (Left) or a value of type a
(Right).

main = do{ result <- parseFromFile numbers "digits.txt"
; case (result) of

Left err -> print err
Right xs -> print (sum xs)

}

parseTest :: Show a => GenParser tok () a -> [tok] -> IO ()

The expression parseTest p input applies a parser p against input input
and prints the result to stdout. Used for testing parsers.

parseTest p input
= case (runParser p () "" input) of

Left err -> do{ putStr "parse error at "
; print err
}

Right x -> print x

return :: a -> GenParser tok st a

The parser (return x) always succeeds with value x without consuming any
input.

(>>=) :: GenParser tok st a -> (a -> GenParser tok st b) -> GenParser
tok st b
infixl 1

This parser is called bind and implements sequencing. The parser (p >>= f)
first applies parser p. It than applies f to the returned value of p and applies
the resulting parser.

The do-notation of Haskell is syntactic sugar that automatically uses this
combinator. Using this notation, we can write do{ x <- p; q } instead of

3 Reference guide 25

the more cumbersome (p >>= (\x -> q)). The do-notation has a natural
operational reading: first apply parser p, binding its result to value x, and
than apply the parser q.

Since the second parser can depend on the result of the first parser, we are
able to parse context sensitive grammars.

Examples of context sensitive parsing are XML tags, variable definition before
use and environments in TEX. A simple example of parsing TEX environments
is:

environment = do{ name <- envBegin
; environment
; envEnd name
}

<|> return ()

envBegin :: Parser String
envBegin = do{ reserved "\\begin"

; braces (many1 letter)
}

envEnd :: String -> Parser ()
envEnd name = do{ reserved "\\end"

; braces (string name)
}

(<|>) :: GenParser tok st a -> GenParser tok st a -> GenParser tok st
a
infixr 1

This combinator implements choice. The parser (p <|> q) first applies p. If
it succeeds, the value of p is returned. If p fails without consuming any input,
parser q is tried. This combinator is defined equal to the mplus member of
the MonadPlus class.

The parser is called predictive since q is only tried when parser p didn’t con-
sume any input (i.e.. the look ahead is 1). This non-backtracking behaviour
allows for both an efficient implementation of the parser combinators and the
generation of good error messages.

fail :: String -> GenParser tok st a

The parser (fail msg) always fails with message-error msg without consum-
ing any input.

The return, (>>=) and fail combinators are the members of the Monad class.
The Parser is called monadic since it both provides an implementation for
these three combinators, making it an instance of the Monad class, and it
satisfies the monad-laws.

pzero :: GenParser tok st a

pzero always fails without consuming any input. pzero is defined equal to
the mzero member of the MonadPlus class.

try :: GenParser tok st a -> GenParser tok st a

26 Parsec, a fast combinator parser

The parser (try p) behaves like parser p, except that it pretends that it
hasn’t consumed any input when an error occurs.

This combinator is used whenever arbitrary look ahead is needed. Since it
pretends that it hasn’t consumed any input when p fails, the (<|>) combinator
will try its second alternative even when the first parser failed while consuming
input.

The try combinator can for example be used to distinguish identifiers and
reserved words. Both reserved words and identifiers are a sequence of letters.
Whenever we expect a certain reserved word where we can also expect an
identifier we have to use the try combinator. Suppose we write:

expr = letExpr <|> identifier <?> "expression"

letExpr = do{ string "let"; ... }
identifier = many1 letter

If the user writes "lexical", the parser fails with: unexpected ’x’, expecting
’t’ in "let". Indeed, since the (<|>) combinator only tries alternatives
when the first alternative hasn’t consumed input, the identifier parser is
never tried (because the prefix "le" of the (string "let") parser is already
consumed). The right behaviour can be obtained by adding the try combi-
nator:

expr = letExpr <|> identifier <?> "expression"

letExpr = do{ try (string "let"); ... }
identifier = many1 letter

Since the use of the try combinator with lexical tokens is quite tricky, the
ParsecToken module can be used to parse lexical tokens. This module auto-
matically uses the try combinator in the appropiate places.

token :: (tok -> String) -> (tok -> SourcePos) -> (tok -> Maybe a) ->
GenParser tok st a

The parser token showTok posFromTok testTok accepts a token t with re-
sult x when the function testTok t returns Just x. The source position of
the t should be returned by posFromTok t and the token can be shown using
showTok t.

This combinator is expressed in terms of tokenPrim. It is used to accept user
defined token streams. For example, suppose that we have a stream of basic
tokens tupled with source positions. We can than define a parser that accepts
single tokens as:

mytoken :: Show t => t -> GenParser ((Int,Int),t) () t
mytoken x

= token showTok posFromTok testTok
where

showTok (pos,t) = show t
posFromTok (pos,t) = pos
testTok (pos,t) = if (x == t) then Just t else Nothing

tokenPrim :: (tok -> String) -> (SourcePos -> tok -> [tok] -> SourcePos)
-> (tok -> Maybe a) -> GenParser tok st a

3 Reference guide 27

The parser (token showTok nextPos testTok) accepts a token t with result
x when the function testTok t returns Just x. The token can be shown using
showTok t. The position of the next token should be returned when nextPos
is called with the current source position pos, the current token t and the rest
of the tokens toks, (nextPos pos t toks).

This is the most primitive combinator for accepting tokens. For example, the
char parser could be implemented as:

char :: Char -> GenParser Char st Char
char c

= tokenPrim showChar nextPos testChar
where
showChar x = "’" ++ x ++ "’"
testChar x = if (x == c) then Just x else Nothing
nextPos pos x xs = updatePosChar pos x

(<?>) :: GenParser tok st a -> String -> GenParser tok st a
infix 0

The parser p <?> msg behaves as parser p, but whenever the parser p fails
without consuming any input, it replaces expect error messages with the expect
error message msg.

This is normally used at the end of a set alternatives where we want to return
an error message in terms of a higher level construct rather than returning
all possible characters. For example, if the expr parser from the try example
would fail, the error message is: ...: expecting expression. Without
the (<?>) combinator, the message would be like ...: expecting "let"
or letter, which is less friendly.

unexpected :: String -> GenParser tok st a

The parser (unexpected msg) always fails with an unexpected error message
msg without consuming any input.

The parsers fail, (<?>) and unexpected are the three parsers used to gener-
ate error messages. Of these, only (<?>) is commonly used. For an example
of the use of unexpected, see the definition of notFollowedBy.

getState :: GenParser tok st st

Returns the current user state.

setState :: st -> GenParser tok st ()

(setState st) set the user state to st.

updateState :: (st -> st) -> GenParser tok st ()

(updateState f) applies function f to the user state. Suppose that we want
to count identifiers in a source, we could use the user state as:

expr :: GenParser Char Int Expr
expr = do{ x <- identifier

; updateState (+1)
; return (Id x)
}

28 Parsec, a fast combinator parser

getPosition :: GenParser tok st SourcePos

Returns the current source position. See also SourcePos

setPosition :: SourcePos -> GenParser tok st ()

setPosition pos sets the current source position to pos.

getInput :: GenParser tok st [tok]

Returns the current input

setInput :: [tok] -> GenParser tok st ()

setInput input continues parsing with input. The getInput and setInput
functions can for example be used to deal with #include files.

3.3 Module ParsecCombinator

many :: GenParser tok st a -> GenParser tok st [a]

(many p) applies the parser p zero or more times. Returns a list of the
returned values of p.

identifier = do{ c <- letter
; cs <- many (alphaNum <|> char ’ ’)
; return (c:cs)
}

many1 :: GenParser tok st a -> GenParser tok st [a]

(many p) applies the parser p one or more times. Returns a list of the returned
values of p.

word = many1 (letter)

skipMany :: GenParser tok st a -> GenParser tok st ()

(skipMany p) applies the parser p zero or more times, skipping its result.

spaces = skipMany space

skipMany1 :: GenParser tok st a -> GenParser tok st ()

(skipMany1 p) applies the parser p one or more times, skipping its result.

sepBy :: GenParser tok st a -> GenParser tok st sep -> GenParser tok
st [a]

(sepBy p sep) parses zero or more occurrences of p, separated by sep. Re-
turns a list of values returned by p.

commaSep p = p ‘sepBy‘ (symbol ",")

sepBy1 :: GenParser tok st a -> GenParser tok st sep -> GenParser tok
st [a]

3 Reference guide 29

(sepBy1 p sep) parses one or more occurrences of p, separated by sep. Re-
turns a list of values returned by p.

endBy :: GenParser tok st a -> GenParser tok st end -> GenParser tok
st [a]

(endBy p sep) parses zero or more occurrences of p, seperated and ended by
sep. Returns a list of values returned by p.

cStatements = cStatement ‘endBy‘ semi

endBy1 :: GenParser tok st a -> GenParser tok st end -> GenParser tok
st [a]

(endBy1 p sep) parses one or more occurrences of p, seperated and ended
by sep. Returns a list of values returned by p.

sepEndBy :: GenParser tok st a -> GenParser tok st sep -> GenParser
tok st [a]

(sepEndBy p sep) parses zero or more occurrences of p, separated and op-
tionally ended by sep, ie. haskell style statements. Returns a list of values
returned by p.

haskellStatements = haskellStatement ‘sepEndBy‘ semi

sepEndBy1 :: GenParser tok st a -> GenParser tok st sep -> GenParser
tok st [a]

(sepEndBy1 p sep) parses one or more occurrences of p, separated and op-
tionally ended by sep. Returns a list of values returned by p.

count :: Int -> GenParser tok st a -> GenParser tok st [a]

(count n p) parses n occurrences of p. If n is smaller or equal to zero, the
parser equals to (return []). Returns a list of n values returned by p.

between :: GenParser tok st open -> GenParser tok st close -> GenParser
tok st a -> GenParser tok st a

(between open close p) parses open, followed by p and close. Returns the
value returned by p.

braces = between (symbol "{") (symbol "}")

option :: a -> GenParser tok st a -> GenParser tok st a

(option x p) tries to apply parser p. If p fails without consuming input, it
returns the value x, otherwise the value returned by p.

priority :: Parser Int
priority = option 0 (do{ d <- digit

; return (digitToInt d)
})

choice :: [GenParser tok st a] -> GenParser tok st a

30 Parsec, a fast combinator parser

(choice ps) tries to apply the parsers in the list ps in order, until one of
them succeeds. Returns the value of the succeeding parser. choice can be
defined as:

choice ps = foldl (<|>) pzero ps

manyTill :: GenParser tok st a -> GenParser tok st end -> GenParser tok
st [a]

(manyTill p end) applies parser p zero or more times until parser end suc-
ceeds. Returns the list of values returned by p . This parser can be used to
scan comments:

simpleComment = do{ string "<!--"
; manyTill anyChar (try (string "-->"))
}

Note the overlapping parsers anyChar and string "<!--", and therefore the
use of the try combinator.

chainl :: GenParser tok st a -> GenParser tok st (a->a->a) -> a -> GenParser
tok st a

(chainl p op x) parser zero or more occurrences of p, separated by op.
Returns a value obtained by a left associative application of all functions
returned by op to the values returned by p. If there are zero occurrences of
p, the value x is returned. .

chainl1 :: GenParser tok st a -> GenParser tok st (a->a->a) -> GenParser
tok st a

(chainl1 p op x) parser one or more occurrences of p, separated by op
Returns a value obtained by a left associative application of all functions
returned by op to the values returned by p. . This parser can for example be
used to eliminate left recursion which typically occurs in expression grammars.

expr = term ‘chainl1‘ mulop
term = factor ‘chainl1‘ addop
factor = parens expr <|> integer

mulop = do{ symbol "*"; return (*) }
<|> do{ symbol "/"; return (div) }

addop = do{ symbol "+"; return (+) }
<|> do{ symbol "-"; return (-) }

chainr :: GenParser tok st a -> GenParser tok st (a->a->a) -> a -> GenParser
tok st a

(chainr p op x) parser zero or more occurrences of p, separated by op Re-
turns a value obtained by a right associative application of all functions re-
turned by op to the values returned by p. If there are no occurrences of p,
the value x is returned. .

chainr1 :: GenParser tok st a -> GenParser tok st (a->a->a) -> GenParser
tok st a

3 Reference guide 31

(chainr1 p op x) parser one or more occurrences of p, separated by op
Returns a value obtained by a right associative application of all functions
returned by op to the values returned by p. .

eof :: Show tok => GenParser tok st ()

This parser only succeeds at the end of the input. This is not a primitive
parser but it is defined using notFollowedBy.

eof = notFollowedBy anyToken <?> "end of input"

Wow, I really like this definition!

notFollowedBy :: Show tok => GenParser tok st tok -> GenParser tok st
()

(notFollowedBy p) only succeeds when parser p fails. This parser does not
consume any input. This parser can be used to implement the ’longest match’
rule. For example, when recognizing keywords (for example let), we want to
make sure that a keyword is not followed by a legal identifier character, in
which case the keyword is actually an identifier (for example lets). We can
program this behaviour as follows:

keywordLet = try (do{ string "let"
; notFollowedBy alphaNum
}

)

Surprisingly, this parser is not primitive and can be defined as:

notFollowedBy p = try (do{ c <- p; unexpected (show [c]) }
<|> return ()
)

anyToken :: Show tok => GenParser tok st tok

The parser anyToken accepts any kind of token. It is for example used to
implement eof. Returns the accepted token.

3.4 Module ParsecChar

CharParser st a

A type synonym for GenParser Char st a, i.e. a parser for character streams
with user state st.

oneOf :: [Char] -> CharParser st Char

(oneOf cs) succeeds if the current character is in the supplied list of charac-
ters cs. Returns the parsed character. See also satisfy.

vowel = oneOf "aeiou"

noneOf :: [Char] -> CharParser st Char

32 Parsec, a fast combinator parser

As the dual of oneOf, (noneOf cs) succeeds if the current character not in
the supplied list of characters cs. Returns the parsed character.

consonant = noneOf "aeiou"

char :: Char -> CharParser st Char

(char c) parses a single character c. Returns the parsed character (i.e. c).

semiColon = char ’;’

string :: String -> CharParser st String

(string s) parses a sequence of characters given by s. Returns the parsed
string (i.e. s).

divOrMod = string "div"
<|> string "mod"

anyChar :: CharParser st Char

This parser succeeds for any character. Returns the parsed character.

upper :: CharParser st Char

Parses an upper case letter (a character between ’A’ and ’Z’). Returns the
parsed character.

lower :: CharParser st Char

Parses a lower case character (a character between ’a’ and ’z’). Returns the
parsed character.

letter :: CharParser st Char

Parses a letter (an upper case or lower case character). Returns the parsed
character.

alphaNum :: CharParser st Char

Parses a letter or digit (a character between ’0’ and ’9’). Returns the parsed
character.

digit :: CharParser st Char

Parses a digit. Returns the parsed character.

hexDigit :: CharParser st Char

Parses a hexadecimal digit (a digit or a letter between ’a’ and ’f’ or ’A’
and ’F’). Returns the parsed character.

octDigit :: CharParser st Char

Parses an octal digit (a character between ’0’ and ’7’). Returns the parsed
character.

newline :: CharParser st Char

3 Reference guide 33

Parses a newline character (’\n’). Returns a newline character.

tab :: CharParser st Char

Parses a tab character (’\t’). Returns a tab character.

space :: CharParser st Char

Parses a white space character (any character in " \v\f\t\r\n"). Returns
the parsed character.

spaces :: CharParser st ()

Skips zero or more white space characters. See also skipMany.

satisfy :: (Char -> Bool) -> CharParser st Char

The parser (satisfy f) succeeds for any character for which the supplied
function f returns True. Returns the character that is actually parsed.

digit = satisfy isDigit
oneOf cs = satisfy (\c -> c ‘elem‘ cs)

3.5 Module ParsecPos

SourcePos

The abstract data type SourcePos represents source positions. It contains
the name of the source (i.e. file name), a line number and a column number.
SourcePos is an instance of the Show, Eq and Ord class.

Line

A type synonym for Int

Column

A type synonym for Int

sourceName :: SourcePos -> FilePath

Extracts the name of the source from a source position.

sourceLine :: SourcePos -> Line

Extracts the line number from a source position.

sourceColumn :: SourceColumn -> Column

Extracts the column number from a source position.

incSourceLine :: SourcePos -> Int -> SourcePos

Increments the line number of a source position.

incSourceColumn :: SourcePos -> Int -> SourcePos

34 Parsec, a fast combinator parser

Increments the column number of a source position.

setSourceLine :: SourcePos -> SourceLine -> SourcePos

Set the line number of a source position.

setSourceColumn :: SourcePos -> SourceColumn -> SourcePos

Set the column number of a source position.

setSourceName :: SourcePos -> SourceName -> SourcePos

Increments the line number of a source position.

updatePosChar :: SourcePos -> Char -> SourcePos

Update a source position given a character. If the character is a newline
(’\n’) or carriage return (’\r’) the line number is incremented by 1. If the
character is a tab (’\t’) the column number is incremented to the nearest
8’th column, ie. (column + 8 - ((column-1) ‘mod‘ 8)). In all other cases,
the column is incremented by 1.

updatePosString :: SourcePos -> String -> SourcePos

The expression (updatePosString pos s) updates the source position pos
by calling updatePosChar on every character in s, ie. (foldl updatePosChar
pos string).

3.6 Module ParsecError

ParseError

The abstract data type ParseError represents parse errors. It provides
the source position (SourcePos) of the error and a list of error messages
(Message). A ParseError can be returned by the function parse. ParseError
is an instance of the Show class.

errorPos :: ParseError -> SourcePos

Extracts the source position from the parse error

errorMessages :: ParseError -> [Message]

Extracts the list of error messages from the parse error

Message

This abstract data type represents parse error messages. There are four kinds
of messages:

data Message = SysUnExpect String
| UnExpect String
| Expect String
| Message String

3 Reference guide 35

The fine distinction between different kinds of parse errors allows the system to
generate quite good error messages for the user. It also allows error messages
that are formatted in different languages. Each kind of message is generated
by different combinators:

A SysUnExpect message is automatically generated by the satisfy com-
binator. The argument is the unexpected input.

•• A UnExpect message is generated by the unexpected combinator. The
argument describes the unexpected item.

• A Expect message is generated by the <?> combinator. The argument
describes the expected item.

• A Message message is generated by the fail combinator. The argument
is some general parser message.

messageString :: Message -> String

Extract the message string from an error message

messageCompare :: Message -> Message -> Ordering

Compares two error messages without looking at their content. Only the
constructors are compared where:

SysUnExpect < UnExpect < Expect < Message

messageEq :: Message -> Message -> Bool

(messageEq m1 m2) equals True if (messageCompare m1 m2) equals EQ, in
all other cases it equals False

showErrorMessages :: [Message] -> String

The standard function for showing error messages. Formats a list of error
messages in English. This function is used in the Show instance of ParseError.
The resulting string will be formatted like:

unexpected {The first UnExpect or a SysUnExpect message};
expecting {comma separated list of Expect messages};
{comma separated list of Message messages}

3.7 Module ParsecToken

The extension module ParsecToken is used to parse lexical tokens (for example:
identifiers, comments and numbers). Since programming languages all have slightly
different grammar rules for lexical tokens, the module should be parameterized
with the most common differences between languages (for example: valid identifier
characters, reserved words etc). Since Haskell doesn’t have parametrized modules,
we resort to a trick. The module exports a single function (makeTokenParser) that
returns a rather large record that contains all the lexical parse functions.

Unfortunately, some of those functions (like parens) are polymorphic which implies
that we need to use the forall keyword to give their type signature inside the
record. This keyword is not part of the Haskell98 standard but almost all Haskell

36 Parsec, a fast combinator parser

systems support it nowadays. You might need to add some flags to your compiler
options to make this work, for example, GHC needs -fglasgow-exts and Hugs the
-98 option.

All lexical features that are not parameterizable are implemented according to the
Haskell lexical rules (for example: escape codes and floating point numbers). Luckily
most language grammars match the Haskell grammar on these tokens quite closely
(if not completely).

TokenParser st

The type of the record that holds lexical parsers that work on character
streams with state st. Each function of this record is seperately described as
if it was a toplevel function in a later section.

data TokenParser st
= TokenParser{

identifier :: CharParser st String
, reserved :: String -> CharParser st ()
, operator :: CharParser st String
, reservedOp :: String -> CharParser st ()

, charLiteral :: CharParser st Char
, stringLiteral :: CharParser st String
, natural :: CharParser st Integer
, integer :: CharParser st Integer
, float :: CharParser st Double
, naturalOrFloat:: CharParser st (Either Integer Double)
, decimal :: CharParser st Integer
, hexadecimal :: CharParser st Integer
, octal :: CharParser st Integer

, symbol :: String -> CharParser st String
, lexeme :: forall a. CharParser st a -> CharParser st a
, whiteSpace :: CharParser st ()

, parens :: forall a. CharParser st a -> CharParser st a
, braces :: forall a. CharParser st a -> CharParser st a
, brackets :: forall a. CharParser st a -> CharParser st a
, squares :: forall a. CharParser st a -> CharParser st a

, semi :: CharParser st String
, comma :: CharParser st String
, colon :: CharParser st String
, dot :: CharParser st String
, semiSep :: forall a . CharParser st a -> CharParser st [a]
, semiSep1 :: forall a . CharParser st a -> CharParser st [a]
, commaSep :: forall a . CharParser st a -> CharParser st [a]
, commaSep1 :: forall a . CharParser st a -> CharParser st [a]
}

LanguageDef st

The LanguageDef type is a record that contains all parameterizable features
of the ParsecToken module. The module ParsecLanguage contains some

3 Reference guide 37

default definitions. The members of LanguageDef are described in a later
section.

data LanguageDef st
= LanguageDef
{ commentStart :: String
, commentEnd :: String
, commentLine :: String
, nestedComments :: Bool
, identStart :: CharParser st Char
, identLetter :: CharParser st Char
, opStart :: CharParser st Char
, opLetter :: CharParser st Char
, reservedNames :: [String]
, reservedOpNames:: [String]
, caseSensitive :: Bool
}

makeTokenParser :: LanguageDef st -> TokenParser st

The expression (makeTokenParser language) creates a TokenParser record
that contains lexical parsers that are defined using the definitions in the
language record.

The use of this function is quite stylized – one imports the appropiate language
definition and selects the lexical parsers that are needed from the resulting
TokenParser.

module Main where

import Parsec
import qualified ParsecToken as P
import ParsecLanguage (haskellDef)

-- The parser
...

expr = parens expr
<|> identifier
<|> ...

-- The lexer
lexer = P.makeTokenParser haskellDef

parens = P.parens lexer
braces = P.braces lexer
identifier = P.identifier lexer
reserved = P.reserved lexer
...

38 Parsec, a fast combinator parser

3.8 The members of TokenParser

The following functions are all members of the TokenParser record but they are
described as if they are top-level functions since this how they are normally used
(as shown in the example of makeTokenParser).

whiteSpace :: CharParser st ()

Parses any white space. White space consists of zero or more occurrences of a
space, a line comment or a block (multi line) comment. Block comments may
be nested. How comments are started and ended is defined in the LanguageDef
that is passed to makeTokenParser.

lexeme :: CharParser st a -> CharParser st p

(lexeme p) first applies parser p and than the whiteSpace parser, returning
the value of p. Every lexical token (lexeme) is defined using lexeme, this way
every parse starts at a point without white space. Parsers that use lexeme
are called lexeme parsers in this document.

The only point where the whiteSpace parser should be called explicitly is the
start of the main parser in order to skip any leading white space.

mainParser = do{ whiteSpace
; ds <- many (lexeme digit)
; eof
; return (sum ds)
}

symbol :: String -> CharParser st String

Lexeme parser (symbol s) parses string s and skips trailing white space.

parens :: CharParser st a -> CharParser st a

Lexeme parser (parens p) parses p enclosed in parenthesis, returning the
value of p. It can be defined as:

parens p = between (symbol "(") (symbol ")") p

braces :: CharParser st a -> CharParser st a

Lexeme parser (braces p) parses p enclosed in braces (’{’ and ’}’), return-
ing the value of p.

brackets :: CharParser st a -> CharParser st a

Lexeme parser (brackets p) parses p enclosed in brackets (’<’ and ’>’),
returning the value of p.

squares :: CharParser st a -> CharParser st a

Lexeme parser (squares p) parses p enclosed in square brackets (’[’ and
’]’), returning the value of p.

semi :: CharParser st String

3 Reference guide 39

Lexeme parser semi parses the character ’;’ and skips any trailing white
space. Returns the string ";".

comma :: CharParser st String

Lexeme parser comma parses the character ’,’ and skips any trailing white
space. Returns the string ",".

colon :: CharParser st String

Lexeme parser colon parses the character ’:’ and skips any trailing white
space. Returns the string ":".

dot :: CharParser st String

Lexeme parser dot parses the character ’.’ and skips any trailing white
space. Returns the string ".".

semiSep :: CharParser st a -> CharParser st [a]

Lexeme parser (semiSep p) parses zero or more occurrences of p separated
by semi. Returns a list of values returned by p. This combinator can be
defined as:

semiSep p = sepBy p semi

semiSep1 :: CharParser st a -> CharParser st [a]

Lexeme parser (semiSep1 p) parses one or more occurrences of p separated
by semi. Returns a list of values returned by p.

commaSep :: CharParser st a -> CharParser st [a]

Lexeme parser (commaSep p) parses zero or more occurrences of p separated
by comma. Returns a list of values returned by p.

commaSep1 :: CharParser st a -> CharParser st [a]

Lexeme parser (commaSep1 p) parses one or more occurrences of p separated
by comma. Returns a list of values returned by p.

charLiteral :: CharParser st Char

This lexeme parser parses a single literal character. Returns the literal char-
acter value. This parsers deals correctly with escape sequences. The literal
character is parsed according to the grammar rules defined in the Haskell
report (which matches most programming languages quite closely).

stringLiteral :: CharParser st String

This lexeme parser parses a literal string. Returns the literal string value. This
parsers deals correctly with escape sequences and gaps. The literal string is
parsed according to the grammar rules defined in the Haskell report (which
matches most programming languages quite closely).

decimal :: CharParser st Integer

40 Parsec, a fast combinator parser

Parses a positive whole number in the decimal system. Returns the value of
the number.

hexadecimal :: CharParser st Integer

Parses a positive whole number in the hexadecimal system. The number
should be prefixed with "0x" or "0X". Returns the value of the number.

octal :: CharParser st Integer

Parses a positive whole number in the octal system. The number should be
prefixed with "0o" or "0O". Returns the value of the number.

natural :: CharParser st Integer

This lexeme parser parses a natural number (a positive whole number). Re-
turns the value of the number. The number can be specified in decimal,
hexadecimal or octal. The number is parsed according to the grammar
rules in the Haskell report.

integer :: CharParser st Integer

This lexeme parser parses an integer (a whole number). This parser is like
natural except that it can be prefixed with sign (i.e. ’-’ or ’+’). Returns the
value of the number. The number can be specified in decimal, hexadecimal
or octal. The number is parsed according to the grammar rules in the Haskell
report.

float :: CharParser st Double

This lexeme parser parses a floating point value. Returns the value of the
number. The number is parsed according to the grammar rules defined in the
Haskell report.

naturalOrFloat :: CharParser st (Either Integer Double)

This lexeme parser parses either natural or a float. Returns the value of
the number. This parsers deals with any overlap in the grammar rules for
naturals and floats. The number is parsed according to the grammar rules
defined in the Haskell report.

identifier :: CharParser st String

This lexeme parser parses a legal identifier. Returns the identifier string. This
parser will fail on identifiers that are reserved words. Legal identifier (start)
characters and reserved words are defined in the LanguageDef that is passed
to makeTokenParser. An identifier is treated as a single token using try.

reserved :: String -> CharParser st String

The lexeme parser (reserved name) parses (symbol name), but it also checks
that the name is not a prefix of a valid identifier. A reserved word is treated
as a single token using try.

operator :: CharParser st String

3 Reference guide 41

This lexeme parser parses a legal operator. Returns the name of the operator.
This parser will fail on any operators that are reserved operators. Legal oper-
ator (start) characters and reserved operators are defined in the LanguageDef
that is passed to makeTokenParser. An operator is treated as a single token
using try.

reservedOp :: String -> CharParser st String

The lexeme parser (reservedOp name) parses (symbol name), but it also
checks that the name is not a prefix of a valid operator. A reservedOp is
treated as a single token using try.

3.9 The members of LanguageDef

The following functions are all members of the LanguageDef record but they are
described as if they are top-level values. These values determine how lexers that
are constructed using makeTokenParser will behave.

commentStart :: String

Describes the start of a block comment. Use the empty string if the language
doesn’t support block comments. For example "/*".

commentEnd :: String

Describes the end of a block comment. Use the empty string if the language
doesn’t support block comments. For example "*/".

commentLine :: String

Describes the start of a line comment. Use the empty string if the language
doesn’t support line comments. For example "//".

nestedComments :: Bool

Set to True if the language supports nested block comments.

identStart :: CharParser st Char

This parser should accept any start characters of identifiers. For example
(letter <|> char " ").

identLetter :: CharParser st Char

This parser should accept any legal tail characters of identifiers. For example
(alphaNum <|> char " ").

opStart :: CharParser st Char

This parser should accept any start characters of operators. For example
(oneOf ":!#$%&*+./<=>?@\\^|- ")

opLetter :: CharParser st Char

42 Parsec, a fast combinator parser

This parser should accept any legal tail characters of operators. Note that
this parser should even be defined if the language doesn’t support user-defined
operators, or otherwise the reservedOp parser won’t work correctly.

reservedNames :: [String]

The list of reserved identifiers.

reservedOpNames :: [String]

The list of reserved operators.

caseSensitive :: Bool

Set to True if the language is case sensitive.

3.10 Module ParsecLanguage

This module defines some default LanguageDef definitions. These definitions pro-
vide easy starting points for defining your own LanguageDef definitions.

emptyDef :: LanguageDef st

This is the most minimal token definition. It is recommended to use this
definition as the basis for other definitions. emptyDef has no reserved names
or operators, is case sensitive and doesn’t accept comments, identifiers or
operators.

emptyDef
= LanguageDef

{ commentStart = ""
, commentEnd = ""
, commentLine = ""
, nestedComments = True
, identStart = letter <|> char ’ ’
, identLetter = alphaNum <|> oneOf " ’"
, opStart = opLetter emptyDef
, opLetter = oneOf ":!#$%&*+./<=>?@\\^|-~"
, reservedOpNames= []
, reservedNames = []
, caseSensitive = True
}

javaStyle :: LanguageDef st

This is a minimal token definition for Java style languages. It defines the
style of comments, valid identifiers and case sensitivity. It does not define any
reserved words or operators.

javaStyle
= emptyDef
{ commentStart = "/*"
, commentEnd = "*/"
, commentLine = "//"

3 Reference guide 43

, nestedComments = True
, identStart = letter
, identLetter = alphaNum <|> oneOf " ’"
, reservedNames = []
, reservedOpNames= []
, caseSensitive = False
}

haskellStyle :: LanguageDef st

This is a minimal token definition for Haskell style languages. It defines the
style of comments, valid identifiers and case sensitivity. It does not define any
reserved words or operators.

haskellStyle
= emptyDef
{ commentStart = "{-"
, commentEnd = "-}"
, commentLine = "--"
, nestedComments = True
, identStart = letter
, identLetter = alphaNum <|> oneOf " ’"
, opStart = opLetter haskell
, opLetter = oneOf ":!#$%&*+./<=>?@\\^|-~"
, reservedOpNames= []
, reservedNames = []
, caseSensitive = True
}

mondrianDef :: LanguageDef st

The language definition for the language Mondrian.

mondrian
= javaStyle
{ reservedNames = ["case", "class", "default"

, "extends"
, "import", "in", "let"
, "new", "of", "package"
]

, caseSensitive = True
}

haskell98Def :: LanguageDef st

The language definition for the language Haskell98.

haskell98Def
= haskellStyle
{ reservedOpNames= ["::","..","=","\\","|"

,"<-","->","@","~","=>"
]

, reservedNames = ["let","in","case","of"
,"if","then","else"
,"data","type",

44 Parsec, a fast combinator parser

,"class","default","deriving"
,"do","import",
,"infix","infixl","infixr"
,"instance","module"
,"newtype","where"
,"primitive"
-- "as","qualified","hiding"

]
}

haskellDef :: LanguageDef st

The language definition for the Haskell language.

haskellDef
= haskell98Def

{ identLetter = identLetter haskell98Def <|> char ’#’
, reservedNames = reservedNames haskell98Def ++

["foreign","import","export","primitive"
," ccall "," casm "
,"forall"
]

}

mondrian :: TokenParser st

A lexer for the mondrian language.

mondrian = makeTokenParser mondrianDef

haskell :: TokenParser st

A lexer for the haskell language.

mondrian = makeTokenParser haskellDef

3.11 Module ParsecExpr

ParsecExpr is a small extension module for parsing expression grammars. It im-
ports the Parsec module.

Assoc

This data type specifies the associativity of operators: left, right or none.

data Assoc = AssocNone
| AssocLeft
| AssocRight

Operator tok st a

This data type specifies operators that work on values of type a. An operator
is either binary infix or unary prefix or postfix. A binary operator has also an
associated associativity.

3 Reference guide 45

data Operator tok st a
= Infix (GenParser tok st (a -> a -> a)) Assoc
| Prefix (GenParser tok st (a -> a))
| Postfix (GenParser tok st (a -> a))

OperatorTable tok st a

An (OperatorTable tok st a) is a list of (Operator tok st a) lists. The
list is ordered in descending precedence. All operators in one list have the
same precedence (but may have a different associativity).

type OperatorTable tok st a = [[Operator tok st a]]

buildExpressionParser :: OperatorTable tok st a -> GenParser tok st a
-> GenParser tok st a

(buildExpressionParser table term) builds an expression parser for terms
term with operators from table, taking the associativity and precedence spec-
ified in table into account. Prefix and postfix operators of the same prece-
dence can only occur once (i.e. --2 is not allowed if - is prefix negate). Prefix
and postfix operators of the same precedence associate to the left (i.e. if ++
is postfix increment, than -2++ equals -1, not -3).

The buildExpressionParser takes care of all the complexity involved in
building expression parser. Here is an example of an expression parser that
handles prefix signs, postfix increment and basic arithmetic.

expr = buildExpressionParser table term
<?> "expression"

term = parens expr
<|> natural
<?> "simple expression"

table :: OperatorTable Char () Integer
table = [[prefix "-" negate, prefix "+" id]

, [postfix "++" (+1)]
, [binary "*" (*) AssocLeft, binary "/" (div) AssocLeft]
, [binary "+" (+) AssocLeft, binary "-" (-) AssocLeft]
]

binary name fun assoc = Infix (do{ reservedOp name; return fun }) assoc
prefix name fun = Prefix (do{ reservedOp name; return fun })
postfix name fun = Postfix (do{ reservedOp name; return fun })

3.12 Module ParsecPerm

This module contains combinators for building parsers that parse permutation
phrases. It uses a typed approach that is descibed in (Baars et al., 2001). This
library is still experimental and might change.

PermParser tok st a

46 Parsec, a fast combinator parser

The type (PermParser tok st a) denotes a permutation parser that, when
converted by the permute function, parses token streams of type tok with
user state st and returns a value of type a on success.

Normally, a permutation parser is first build with special operators like (<||>)
and than transformed into a normal parser using permute.

permute :: PermParser tok st a -> GenParser tok st a

The parser (permute perm) parses a permutation of parser described by perm.
For example, suppose we want to parse a permutation of: an optional string
of a’s, the character b and an optional c. This can be described by:

test :: Parser (String,Char,Char)
test = permute (tuple <$?> ("",many1 (char ’a’))

<||> char ’b’
<|?> (’ ’,char ’c’))

where
tuple a b c = (a,b,c)

(<$$>) :: (a -> b) -> GenParser tok st a -> PermParser tok st b
infixl 2

The expression (f <$$> p) creates a fresh permutation parser consisting of
parser p. The the final result of the permutation parser is the function f
applied to the return value of p. The parser p is not allowed to accept empty
input – use the optional combinator (<$?>) instead.

If the function f takes more than one parameter, the type variable b is instan-
tiated to a functional type which combines nicely with the adds parser p to the
(<||>) combinator. This results in stylized code where a permutation parser
starts with a combining function f followed by the parsers. The function f
gets its parameters in the order in which the parsers are specified, but actual
input can be in any order.

permute $
f <$$> parse field x

<||> parse field y

where
f x y = ...

(<||>) :: PermParser tok st (a -> b) -> GenParser tok st a -> PermParser
tok st b
infixl 1

The expression (perm <||> p) adds parser p to the permutation parser perm.
The parser p is not allowed to accept empty input – use the optional combi-
nator (<|?>) instead. Returns a new permutation parser that includes p.

(<$?>) :: PermParser tok st (a -> b) -> (a,GenParser tok st a) -> PermParser
tok st b
infixl 1

The expression (f <$?> (x,p)) creates a fresh permutation parser consisting
of parser p. The the final result of the permutation parser is the function f

3 Reference guide 47

applied to the return value of p. The parser p is optional – if it can not be
applied, the default value x will be used instead.

(<|?>) :: PermParser tok st (a -> b) -> (a,GenParser tok st a) -> PermParser
tok st b
infixl 1

The expression (perm <||> (x,p)) adds parser p to the permutation parser
perm. The parser p is optional – if it can not be applied, the default value
x will be used instead. Returns a new permutation parser that includes the
optional parser p.

References

A. Aho, R. Sethi, J. Ullman. (1986) Compilers: principles, techniques and tools.
Addison-Wesley.

Andrew Appel. (1997) Mondern compiler implementation in Java/ML/C. Cam-
bridge University Press, ISDN 0-521-58654-2.

Atsushi Igarishi, Benjamin Pierce, and Philip Wadler. (November 1999) Feath-
erweight Java: A minimal core calculus for Java and GJ. OOPSLA, Den-
ver. http://cm.bell-labs.com/cm/cs/who/wadler/papers/featherweight/
featherweight.ps.

Arthur Baars, Andres Loh, and Doaitse Swierstra. (2001) Parsing Permutation
Phrases. Proceedings of the ACM SIGPLAN Haskell Workshop, 171–183.

W.H. Burge. (1975) Recursive programming techniques. Addison-Wesley.

Jeroen Fokker. (May 1995) Functional Parsers. Lecture Notes of the Baastad
Spring school on Functional Programming.
http://www.cs.uu.nl/~jeroen/article/parsers/parsers.ps.

Andy Gill and Simon Marlow. (1995) Happy: the parser generator for Haskell.
University of Glasgow. http://www.haskell.org/happy.

Steve Hill. (May 1996) Combinators for parsing expressions. Journal of Functional
Programming 6(3): 445-463.

Graham Hutton. (1992) Higher-order functions for parsing. Journal of Functional
Programming 2: 232-343.
http://www.cs.nott.ac.uk/Department/Staff/gmh/parsing.ps.

Graham Hutton and Erik Meijer. (1996) Monadic Parser Combinators. Technical
report NOTTCS-TR-96-4. Department of Computer Science, University of Notting-
ham. http://www.cs.nott.ac.uk/Department/Staff/gmh/monparsing.ps.

Pieter Koopman and Rinus Plasmeijer. (1999) Efficient Combinator Parsers. Im-
plementation of Functional Languages. Springer Verlag, LNCS 1595: 122-138.
ftp://ftp.cs.kun.nl/pub/CSI/SoftwEng.FunctLang/papers.

Torben Mogensen. (1993) Ratatosk: a parser generator and scanner generator for
Gofer. University of Copenhagen (DIKU).

http://cm.bell-labs.com/cm/cs/who/wadler/papers/featherweight/featherweight.ps
http://cm.bell-labs.com/cm/cs/who/wadler/papers/featherweight/featherweight.ps
http://www.cs.uu.nl/~jeroen/article/parsers/parsers.ps
http://www.haskell.org/happy
http://www.cs.nott.ac.uk/Department/Staff/gmh/parsing.ps
http://www.cs.nott.ac.uk/Department/Staff/gmh/monparsing.ps
ftp:// ftp.cs.kun.nl/pub/CSI/SoftwEng.FunctLang/papers

48 Parsec, a fast combinator parser

Nigel Perry, Arjan van IJzendoor, and Erik Meijer. (2000) Mondrian, the internet
scripting language. http://www.mondrian-script.org/.

Flemming Nielson, Hanne Riis Nielson and Chris Hankin. (1999) Principles of
program analysis. Springer Verlag, ISBN 3-540-65410-0.

Andrew Partridge and David Wright. (1996) Predictive parser combinators need
four values to report errors. Journal of Functional Programming 6(2): 355-364.

Simon Peyton Jones and Erik Meijer. (June 1997) Henk: a typed intermediate
language. Proceedings of the Types in Compilation Workshop, Amsterdam.
http://www.research.microsoft.com/~simonpj/Papers/henk.ps.gz.

Niklas Röjemo. (1995) Garbage collection and memory efficiency in lazy functional
languages. Ph.D. thesis, Chalmers University of Technology.
http://www.cs.chalmers.se/~rojemo/thesis.html.

Doaitse Swierstra and Pablo Azero. (November 1999) Fast, Error Correcting Parser
Combinators: A Short Tutorial. SOFSEM’99 Theory and Practice of Informatics.
LNCS 1725: 111-129. http://www.cs.uu.nl/groups/ST/Software.

Doaitse Swierstra and Luc Duponcheel. (1996) Deterministic, Error-Correcting
Combinator Parsers. Advanced Functional Programming. LNCS 1129: 185-207.
http://www.cs.uu.nl/groups/ST/Software.

Philip Wadler. (1985) How to replace failure with a list of successes. Functional
Programming Languages and Computer Architecture, LNCS 201: 113-128.

Philip Wadler. (1990) Comprehending Monads. ACM Conference on Lisp and
Functional Programming, pages 61-77.
http://cm.bell-labs.com/cm/cs/who/wadler/topics/monads.html.

Philip Wadler. (1992) The essence of functional programming. Symposium on
principles of programming languages, pages 1-14.
http://cm.bell-labs.com/cm/cs/who/wadler/topics/monads.html.

http://www.mondrian-script.org/
http://www.research.microsoft.com/~simonpj/Papers/henk.ps.gz
http://www.cs.chalmers.se/~rojemo/thesis.html
http://www.cs.uu.nl/groups/ST/Software
http://www.cs.uu.nl/groups/ST/Software
http://cm.bell-labs.com/cm/cs/who/wadler/topics/monads.html
http://cm.bell-labs.com/cm/cs/who/wadler/topics/monads.html

Index

(<$$>), 46
(<$?>), 46
(<?>), 27
(<|>), 25
(<|?>), 47
(>>=), 24

alphaNum, 32
anyChar, 32
anyToken, 31
Assoc, 44
associativity, 12

between, 29
braces, 38
brackets, 38
buildExpressionParser, 12, 45

caseSensitive, 42
chainl, 30
chainl1, 30
chainr, 30
chainr1, 30
char, 32
charLiteral, 39
CharParser st a, 31
choice, 6
choice, 29
colon, 39
Column, 33
comma, 39
commaSep, 39
commaSep1, 39
commentEnd, 41
commentLine, 41
Comments, 13, 35
commentStart, 41
Compatibility, 2
context sensitive, 25
count, 29

decimal, 39
digit, 32
do-notation, 6
dot, 39

emptyDef, 42
endBy, 29
endBy1, 29
eof, 14, 31
Error messages, 10
errorMessages, 34

errorPos, 34
Examples, 18
Expressions, 11, 44

fail, 25
float, 40
forall, 35

GenParser tok st a, 23
getInput, 28
getPosition, 28
getState, 27
GHC, 2

haskell, 44
haskell98Def, 43
haskellDef, 44
haskellStyle, 43
Henk, 19
hexadecimal, 40
hexDigit, 32
Hugs, 3

identifier, 40
identLetter, 41
identStart, 41
incSourceColumn, 33
incSourceLine, 33
integer, 40

javaStyle, 42

LanguageDef st, 36
LanguageDef, 13
left-associative, 11
left-factor, 7
left-recursion, 11
letter, 32
lexeme, 38
Lexer, 19
Lexical analysis, 13, 19, 35
License, 4
Line, 33
lower, 32

makeTokenParser, 13, 37
many, 9, 28
many1, 9, 28
manyTill, 30
Message, 34
messageCompare, 35
messageEq, 35

49

50 Parsec, a fast combinator parser

messageString, 35
Module

Parsec, 23
ParsecChar, 31
ParsecCombinator, 28
ParsecError, 34
ParsecExpr, 44
ParsecLanguage, 42
ParsecPerm, 45
ParsecPos, 33
ParsecPrim, 23
ParsecToken, 35

Mondrian, 19
mondrian, 44
mondrianDef, 43

natural, 14, 40
naturalOrFloat, 40
nestedComments, 41
newline, 32
noneOf, 31
notFollowedBy, 17, 31

octal, 40
octDigit, 32
oneOf, 31
operator, 40
OperatorTable tok st a, 45
opLetter, 41
opStart, 41
option, 29
options

-98, 36
-fglasgow-exts, 36

parens, 14, 38
parse, 5, 24
ParsecToken, 13
ParseError, 34
parseFromFile, 24
Parser a, 23
parseTest, 24
PermParser tok st a, 45
permutations, 21, 45
permute, 46
Predictive, 7
priority, 11
pzero, 25

records, 21
reserved, 18, 40
Reserved words, 16
reservedNames, 42
reservedOp, 14, 41

reservedOpNames, 42
return, 24
runParser, 23

satisfy, 33
Scanner, 19
semi, 38
semiSep, 39
semiSep1, 39
sepBy, 9, 28
sepBy1, 9, 28
sepEndBy, 9, 29
sepEndBy1, 9, 29
Seperate lexer, 19
Seperate scanner, 19
Seperators, 8
Sequence, 6
Sequences, 8
setInput, 28
setPosition, 28
setSourceColumn, 34
setSourceLine, 34
setSourceName, 34
setState, 27
showErrorMessages, 35
skipMany, 9, 28
skipMany1, 9, 28
sourceColumn, 33
sourceLine, 33
sourceName, 33
SourcePos, 33
space, 33
spaces, 33
squares, 38
state, 20
string, 32
stringLiteral, 39
symbol, 38
symbol table, 20

tab, 33
Tiger, 18
token, 26
TokenParser st, 36
tokenPrim, 26
try, 7, 17, 25
Operator tok st a, 44

unexpected, 27
updatePosChar, 34
updatePosString, 34
updateState, 27
upper, 32

While, 18

INDEX 51

White space, 13, 35
whiteSpace, 38
Wow, 31
www-page, 3

	Introduction
	About this document
	Compatibility
	Compiling with GHC
	Compiling with Hugs

	Reporting bugs
	History
	License

	Users guide
	Running a parser
	Sequence and choice
	Predictive parsers
	Adding semantics
	Sequences and seperators
	Improving error messages
	Expressions
	Lexical analysis
	Receipts: Lexeme parsers and Reserved words
	Lexeme parsers
	Reserved words

	Examples
	Advanced: Seperate scanners
	Advanced: User state
	Advanced: Permutation phrases

	Reference guide
	Module Parsec
	Module ParsecPrim
	Module ParsecCombinator
	Module ParsecChar
	Module ParsecPos
	Module ParsecError
	Module ParsecToken
	The members of TokenParser
	The members of LanguageDef
	Module ParsecLanguage
	Module ParsecExpr
	Module ParsecPerm

	References

