/* * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers * Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved. * Copyright (c) 1996-1999 by Silicon Graphics. All rights reserved. * Copyright (c) 1999 by Hewlett-Packard Company. All rights reserved. * * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED * OR IMPLIED. ANY USE IS AT YOUR OWN RISK. * * Permission is hereby granted to use or copy this program * for any purpose, provided the above notices are retained on all copies. * Permission to modify the code and to distribute modified code is granted, * provided the above notices are retained, and a notice that the code was * modified is included with the above copyright notice. */ #include "config.h" # include "private/gc_priv.h" # ifdef THREADS # include "atomic_ops.h" # endif # if defined(LINUX) && !defined(POWERPC) # include # if (LINUX_VERSION_CODE <= 0x10400) /* Ugly hack to get struct sigcontext_struct definition. Required */ /* for some early 1.3.X releases. Will hopefully go away soon. */ /* in some later Linux releases, asm/sigcontext.h may have to */ /* be included instead. */ # define __KERNEL__ # include # undef __KERNEL__ # else /* Kernels prior to 2.1.1 defined struct sigcontext_struct instead of */ /* struct sigcontext. libc6 (glibc2) uses "struct sigcontext" in */ /* prototypes, so we have to include the top-level sigcontext.h to */ /* make sure the former gets defined to be the latter if appropriate. */ # include # if 2 <= __GLIBC__ # if 2 == __GLIBC__ && 0 == __GLIBC_MINOR__ /* glibc 2.1 no longer has sigcontext.h. But signal.h */ /* has the right declaration for glibc 2.1. */ # include # endif /* 0 == __GLIBC_MINOR__ */ # else /* not 2 <= __GLIBC__ */ /* libc5 doesn't have : go directly with the kernel */ /* one. Check LINUX_VERSION_CODE to see which we should reference. */ # include # endif /* 2 <= __GLIBC__ */ # endif # endif # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) && !defined(MACOS) \ && !defined(MSWINCE) # include # if !defined(MSWIN32) # include # endif # endif # include # if defined(MSWINCE) # define SIGSEGV 0 /* value is irrelevant */ # else # include # endif #ifdef UNIX_LIKE # include #endif #if defined(LINUX) || defined(LINUX_STACKBOTTOM) # include #endif /* Blatantly OS dependent routines, except for those that are related */ /* to dynamic loading. */ #ifdef AMIGA # define GC_AMIGA_DEF # include "AmigaOS.c" # undef GC_AMIGA_DEF #endif #if defined(MSWIN32) || defined(MSWINCE) || defined(CYGWIN32) # define WIN32_LEAN_AND_MEAN # define NOSERVICE # include /* It's not clear this is completely kosher under Cygwin. But it */ /* allows us to get a working GC_get_stack_base. */ #endif #ifdef MACOS # include #endif #ifdef IRIX5 # include # include /* for locking */ #endif #if defined(LINUX) || defined(FREEBSD) || defined(SOLARIS) || defined(IRIX5) \ || defined(USE_MMAP) || defined(USE_MUNMAP) # define MMAP_SUPPORTED #endif #if defined(MMAP_SUPPORTED) || defined(ADD_HEAP_GUARD_PAGES) # if defined(USE_MUNMAP) && !defined(USE_MMAP) --> USE_MUNMAP requires USE_MMAP # endif # include # include # include # include #endif #ifdef DARWIN /* for get_etext and friends */ #include #endif #ifdef DJGPP /* Apparently necessary for djgpp 2.01. May cause problems with */ /* other versions. */ typedef long unsigned int caddr_t; #endif #ifdef PCR # include "il/PCR_IL.h" # include "th/PCR_ThCtl.h" # include "mm/PCR_MM.h" #endif #if !defined(NO_EXECUTE_PERMISSION) # define OPT_PROT_EXEC PROT_EXEC #else # define OPT_PROT_EXEC 0 #endif #if defined(LINUX) && \ (defined(USE_PROC_FOR_LIBRARIES) || defined(IA64) || !defined(SMALL_CONFIG)) # define NEED_PROC_MAPS #endif #ifdef NEED_PROC_MAPS /* We need to parse /proc/self/maps, either to find dynamic libraries, */ /* and/or to find the register backing store base (IA64). Do it once */ /* here. */ #define READ read /* Repeatedly perform a read call until the buffer is filled or */ /* we encounter EOF. */ ssize_t GC_repeat_read(int fd, char *buf, size_t count) { ssize_t num_read = 0; ssize_t result; while (num_read < count) { result = READ(fd, buf + num_read, count - num_read); if (result < 0) return result; if (result == 0) break; num_read += result; } return num_read; } /* Determine the length of a file by incrementally reading it into a */ /* This would be sily to use on a file supporting lseek, but Linux */ /* /proc files usually do not. */ size_t GC_get_file_len(int f) { size_t total = 0; ssize_t result; # define GET_FILE_LEN_BUF_SZ 500 char buf[GET_FILE_LEN_BUF_SZ]; do { result = read(f, buf, GET_FILE_LEN_BUF_SZ); if (result == -1) return 0; total += result; } while (result > 0); return total; } size_t GC_get_maps_len(void) { int f = open("/proc/self/maps", O_RDONLY); size_t result = GC_get_file_len(f); close(f); return result; } /* * Copy the contents of /proc/self/maps to a buffer in our address space. * Return the address of the buffer, or zero on failure. * This code could be simplified if we could determine its size * ahead of time. */ char * GC_get_maps(void) { int f; int result; static char init_buf[1]; static char *maps_buf = init_buf; static size_t maps_buf_sz = 1; size_t maps_size, old_maps_size = 0; /* The buffer is essentially static, so there must be a single client. */ GC_ASSERT(I_HOLD_LOCK()); /* Note that in the presence of threads, the maps file can */ /* essentially shrink asynchronously and unexpectedly as */ /* threads that we already think of as dead release their */ /* stacks. And there is no easy way to read the entire */ /* file atomically. This is arguably a misfeature of the */ /* /proc/.../maps interface. */ /* Since we dont believe the file can grow */ /* asynchronously, it should suffice to first determine */ /* the size (using lseek or read), and then to reread the */ /* file. If the size is inconsistent we have to retry. */ /* This only matters with threads enabled, and if we use */ /* this to locate roots (not the default). */ /* Determine the initial size of /proc/self/maps. */ /* Note that lseek doesn't work, at least as of 2.6.15. */ # ifdef THREADS maps_size = GC_get_maps_len(); if (0 == maps_size) return 0; # else maps_size = 4000; /* Guess */ # endif /* Read /proc/self/maps, growing maps_buf as necessary. */ /* Note that we may not allocate conventionally, and */ /* thus can't use stdio. */ do { while (maps_size >= maps_buf_sz) { /* Grow only by powers of 2, since we leak "too small" buffers. */ while (maps_size >= maps_buf_sz) maps_buf_sz *= 2; maps_buf = GC_scratch_alloc(maps_buf_sz); # ifdef THREADS /* Recompute initial length, since we allocated. */ /* This can only happen a few times per program */ /* execution. */ maps_size = GC_get_maps_len(); if (0 == maps_size) return 0; # endif if (maps_buf == 0) return 0; } GC_ASSERT(maps_buf_sz >= maps_size + 1); f = open("/proc/self/maps", O_RDONLY); if (-1 == f) return 0; # ifdef THREADS old_maps_size = maps_size; # endif maps_size = 0; do { result = GC_repeat_read(f, maps_buf, maps_buf_sz-1); if (result <= 0) return 0; maps_size += result; } while (result == maps_buf_sz-1); close(f); # ifdef THREADS if (maps_size > old_maps_size) { GC_err_printf("Old maps size = %d, new maps size = %d\n", old_maps_size, maps_size); ABORT("Unexpected asynchronous /proc/self/maps growth: " "Unregistered thread?"); } # endif } while (maps_size >= maps_buf_sz || maps_size < old_maps_size); /* In the single-threaded case, the second clause is false. */ maps_buf[maps_size] = '\0'; /* Apply fn to result. */ return maps_buf; } /* // GC_parse_map_entry parses an entry from /proc/self/maps so we can // locate all writable data segments that belong to shared libraries. // The format of one of these entries and the fields we care about // is as follows: // XXXXXXXX-XXXXXXXX r-xp 00000000 30:05 260537 name of mapping...\n // ^^^^^^^^ ^^^^^^^^ ^^^^ ^^ // start end prot maj_dev // // Note that since about august 2003 kernels, the columns no longer have // fixed offsets on 64-bit kernels. Hence we no longer rely on fixed offsets // anywhere, which is safer anyway. */ /* * Assign various fields of the first line in buf_ptr to *start, *end, * *prot, *maj_dev and *mapping_name. Mapping_name may be NULL. * *prot and *mapping_name are assigned pointers into the original * buffer. */ char *GC_parse_map_entry(char *buf_ptr, ptr_t *start, ptr_t *end, char **prot, unsigned int *maj_dev, char **mapping_name) { char *start_start, *end_start, *maj_dev_start; char *p; char *endp; if (buf_ptr == NULL || *buf_ptr == '\0') { return NULL; } p = buf_ptr; while (isspace(*p)) ++p; start_start = p; GC_ASSERT(isxdigit(*start_start)); *start = (ptr_t)strtoul(start_start, &endp, 16); p = endp; GC_ASSERT(*p=='-'); ++p; end_start = p; GC_ASSERT(isxdigit(*end_start)); *end = (ptr_t)strtoul(end_start, &endp, 16); p = endp; GC_ASSERT(isspace(*p)); while (isspace(*p)) ++p; GC_ASSERT(*p == 'r' || *p == '-'); *prot = p; /* Skip past protection field to offset field */ while (!isspace(*p)) ++p; while (isspace(*p)) ++p; GC_ASSERT(isxdigit(*p)); /* Skip past offset field, which we ignore */ while (!isspace(*p)) ++p; while (isspace(*p)) ++p; maj_dev_start = p; GC_ASSERT(isxdigit(*maj_dev_start)); *maj_dev = strtoul(maj_dev_start, NULL, 16); if (mapping_name == 0) { while (*p && *p++ != '\n'); } else { while (*p && *p != '\n' && *p != '/' && *p != '[') p++; *mapping_name = p; while (*p && *p++ != '\n'); } return p; } /* Try to read the backing store base from /proc/self/maps. */ /* Return the bounds of the writable mapping with a 0 major device, */ /* which includes the address passed as data. */ /* Return FALSE if there is no such mapping. */ GC_bool GC_enclosing_mapping(ptr_t addr, ptr_t *startp, ptr_t *endp) { char *prot; ptr_t my_start, my_end; unsigned int maj_dev; char *maps = GC_get_maps(); char *buf_ptr = maps; if (0 == maps) return(FALSE); for (;;) { buf_ptr = GC_parse_map_entry(buf_ptr, &my_start, &my_end, &prot, &maj_dev, 0); if (buf_ptr == NULL) return FALSE; if (prot[1] == 'w' && maj_dev == 0) { if (my_end > addr && my_start <= addr) { *startp = my_start; *endp = my_end; return TRUE; } } } return FALSE; } /* Find the text(code) mapping for the library whose name starts with nm. */ GC_bool GC_text_mapping(char *nm, ptr_t *startp, ptr_t *endp) { size_t nm_len = strlen(nm); char *prot; char *map_path; ptr_t my_start, my_end; unsigned int maj_dev; char *maps = GC_get_maps(); char *buf_ptr = maps; if (0 == maps) return(FALSE); for (;;) { buf_ptr = GC_parse_map_entry(buf_ptr, &my_start, &my_end, &prot, &maj_dev, &map_path); if (buf_ptr == NULL) return FALSE; if (prot[0] == 'r' && prot[1] == '-' && prot[2] == 'x' && strncmp(nm, map_path, nm_len) == 0) { *startp = my_start; *endp = my_end; return TRUE; } } return FALSE; } #ifdef IA64 static ptr_t backing_store_base_from_proc(void) { ptr_t my_start, my_end; if (!GC_enclosing_mapping(GC_save_regs_in_stack(), &my_start, &my_end)) { if (GC_print_stats) { GC_log_printf("Failed to find backing store base from /proc\n"); } return 0; } return my_start; } #endif #endif /* NEED_PROC_MAPS */ #if defined(SEARCH_FOR_DATA_START) /* The I386 case can be handled without a search. The Alpha case */ /* used to be handled differently as well, but the rules changed */ /* for recent Linux versions. This seems to be the easiest way to */ /* cover all versions. */ # if defined(LINUX) || defined(HURD) /* Some Linux distributions arrange to define __data_start. Some */ /* define data_start as a weak symbol. The latter is technically */ /* broken, since the user program may define data_start, in which */ /* case we lose. Nonetheless, we try both, prefering __data_start. */ /* We assume gcc-compatible pragmas. */ # pragma weak __data_start extern int __data_start[]; # pragma weak data_start extern int data_start[]; # endif /* LINUX */ extern int _end[]; ptr_t GC_data_start; void GC_init_linux_data_start() { extern ptr_t GC_find_limit(ptr_t, GC_bool); # if defined(LINUX) || defined(HURD) /* Try the easy approaches first: */ if ((ptr_t)__data_start != 0) { GC_data_start = (ptr_t)(__data_start); return; } if ((ptr_t)data_start != 0) { GC_data_start = (ptr_t)(data_start); return; } # endif /* LINUX */ GC_data_start = GC_find_limit((ptr_t)(_end), FALSE); } #endif # ifdef ECOS # ifndef ECOS_GC_MEMORY_SIZE # define ECOS_GC_MEMORY_SIZE (448 * 1024) # endif /* ECOS_GC_MEMORY_SIZE */ // FIXME: This is a simple way of allocating memory which is // compatible with ECOS early releases. Later releases use a more // sophisticated means of allocating memory than this simple static // allocator, but this method is at least bound to work. static char memory[ECOS_GC_MEMORY_SIZE]; static char *brk = memory; static void *tiny_sbrk(ptrdiff_t increment) { void *p = brk; brk += increment; if (brk > memory + sizeof memory) { brk -= increment; return NULL; } return p; } #define sbrk tiny_sbrk # endif /* ECOS */ #if (defined(NETBSD) || defined(OPENBSD)) && defined(__ELF__) ptr_t GC_data_start; void GC_init_netbsd_elf(void) { extern ptr_t GC_find_limit(ptr_t, GC_bool); extern char **environ; /* This may need to be environ, without the underscore, for */ /* some versions. */ GC_data_start = GC_find_limit((ptr_t)&environ, FALSE); } #endif # ifdef OS2 # include # if !defined(__IBMC__) && !defined(__WATCOMC__) /* e.g. EMX */ struct exe_hdr { unsigned short magic_number; unsigned short padding[29]; long new_exe_offset; }; #define E_MAGIC(x) (x).magic_number #define EMAGIC 0x5A4D #define E_LFANEW(x) (x).new_exe_offset struct e32_exe { unsigned char magic_number[2]; unsigned char byte_order; unsigned char word_order; unsigned long exe_format_level; unsigned short cpu; unsigned short os; unsigned long padding1[13]; unsigned long object_table_offset; unsigned long object_count; unsigned long padding2[31]; }; #define E32_MAGIC1(x) (x).magic_number[0] #define E32MAGIC1 'L' #define E32_MAGIC2(x) (x).magic_number[1] #define E32MAGIC2 'X' #define E32_BORDER(x) (x).byte_order #define E32LEBO 0 #define E32_WORDER(x) (x).word_order #define E32LEWO 0 #define E32_CPU(x) (x).cpu #define E32CPU286 1 #define E32_OBJTAB(x) (x).object_table_offset #define E32_OBJCNT(x) (x).object_count struct o32_obj { unsigned long size; unsigned long base; unsigned long flags; unsigned long pagemap; unsigned long mapsize; unsigned long reserved; }; #define O32_FLAGS(x) (x).flags #define OBJREAD 0x0001L #define OBJWRITE 0x0002L #define OBJINVALID 0x0080L #define O32_SIZE(x) (x).size #define O32_BASE(x) (x).base # else /* IBM's compiler */ /* A kludge to get around what appears to be a header file bug */ # ifndef WORD # define WORD unsigned short # endif # ifndef DWORD # define DWORD unsigned long # endif # define EXE386 1 # include # include # endif /* __IBMC__ */ # define INCL_DOSEXCEPTIONS # define INCL_DOSPROCESS # define INCL_DOSERRORS # define INCL_DOSMODULEMGR # define INCL_DOSMEMMGR # include /* Disable and enable signals during nontrivial allocations */ void GC_disable_signals(void) { ULONG nest; DosEnterMustComplete(&nest); if (nest != 1) ABORT("nested GC_disable_signals"); } void GC_enable_signals(void) { ULONG nest; DosExitMustComplete(&nest); if (nest != 0) ABORT("GC_enable_signals"); } # else # if !defined(PCR) && !defined(AMIGA) && !defined(MSWIN32) \ && !defined(MSWINCE) \ && !defined(MACOS) && !defined(DJGPP) && !defined(DOS4GW) \ && !defined(NOSYS) && !defined(ECOS) # if 0 /* Use the traditional BSD interface */ # define SIGSET_T int # define SIG_DEL(set, signal) (set) &= ~(sigmask(signal)) # define SIG_FILL(set) (set) = 0x7fffffff /* Setting the leading bit appears to provoke a bug in some */ /* longjmp implementations. Most systems appear not to have */ /* a signal 32. */ # define SIGSETMASK(old, new) (old) = sigsetmask(new) # endif /* Use POSIX/SYSV interface */ # define SIGSET_T sigset_t # define SIG_DEL(set, signal) sigdelset(&(set), (signal)) # define SIG_FILL(set) sigfillset(&set) # define SIGSETMASK(old, new) sigprocmask(SIG_SETMASK, &(new), &(old)) static GC_bool mask_initialized = FALSE; static SIGSET_T new_mask; static SIGSET_T old_mask; static SIGSET_T dummy; #if defined(GC_ASSERTIONS) && !defined(THREADS) # define CHECK_SIGNALS int GC_sig_disabled = 0; #endif void GC_disable_signals(void) { if (!mask_initialized) { SIG_FILL(new_mask); SIG_DEL(new_mask, SIGSEGV); SIG_DEL(new_mask, SIGILL); SIG_DEL(new_mask, SIGQUIT); # ifdef SIGBUS SIG_DEL(new_mask, SIGBUS); # endif # ifdef SIGIOT SIG_DEL(new_mask, SIGIOT); # endif # ifdef SIGEMT SIG_DEL(new_mask, SIGEMT); # endif # ifdef SIGTRAP SIG_DEL(new_mask, SIGTRAP); # endif mask_initialized = TRUE; } # ifdef CHECK_SIGNALS if (GC_sig_disabled != 0) ABORT("Nested disables"); GC_sig_disabled++; # endif SIGSETMASK(old_mask,new_mask); } void GC_enable_signals(void) { # ifdef CHECK_SIGNALS if (GC_sig_disabled != 1) ABORT("Unmatched enable"); GC_sig_disabled--; # endif SIGSETMASK(dummy,old_mask); } # endif /* !PCR */ # endif /*!OS/2 */ /* Ivan Demakov: simplest way (to me) */ #if defined (DOS4GW) void GC_disable_signals() { } void GC_enable_signals() { } #endif /* Find the page size */ word GC_page_size; # if defined(MSWIN32) || defined(MSWINCE) void GC_setpagesize(void) { GetSystemInfo(&GC_sysinfo); GC_page_size = GC_sysinfo.dwPageSize; } # else # if defined(MPROTECT_VDB) || defined(PROC_VDB) || defined(USE_MMAP) void GC_setpagesize(void) { GC_page_size = GETPAGESIZE(); } # else /* It's acceptable to fake it. */ void GC_setpagesize(void) { GC_page_size = HBLKSIZE; } # endif # endif /* * Find the base of the stack. * Used only in single-threaded environment. * With threads, GC_mark_roots needs to know how to do this. * Called with allocator lock held. */ # if defined(MSWIN32) || defined(MSWINCE) || defined(CYGWIN32) # define is_writable(prot) ((prot) == PAGE_READWRITE \ || (prot) == PAGE_WRITECOPY \ || (prot) == PAGE_EXECUTE_READWRITE \ || (prot) == PAGE_EXECUTE_WRITECOPY) /* Return the number of bytes that are writable starting at p. */ /* The pointer p is assumed to be page aligned. */ /* If base is not 0, *base becomes the beginning of the */ /* allocation region containing p. */ word GC_get_writable_length(ptr_t p, ptr_t *base) { MEMORY_BASIC_INFORMATION buf; word result; word protect; result = VirtualQuery(p, &buf, sizeof(buf)); if (result != sizeof(buf)) ABORT("Weird VirtualQuery result"); if (base != 0) *base = (ptr_t)(buf.AllocationBase); protect = (buf.Protect & ~(PAGE_GUARD | PAGE_NOCACHE)); if (!is_writable(protect)) { return(0); } if (buf.State != MEM_COMMIT) return(0); return(buf.RegionSize); } int GC_get_stack_base(struct GC_stack_base *sb) { int dummy; ptr_t sp = (ptr_t)(&dummy); ptr_t trunc_sp = (ptr_t)((word)sp & ~(GC_page_size - 1)); word size = GC_get_writable_length(trunc_sp, 0); sb -> mem_base = trunc_sp + size; return GC_SUCCESS; } #define HAVE_GET_STACK_BASE /* This is always called from the main thread. */ ptr_t GC_get_main_stack_base(void) { struct GC_stack_base sb; GC_get_stack_base(&sb); return (ptr_t)sb.mem_base; } # endif /* MS Windows */ # ifdef BEOS # include ptr_t GC_get_main_stack_base(void){ thread_info th; get_thread_info(find_thread(NULL),&th); return th.stack_end; } # endif /* BEOS */ # ifdef OS2 ptr_t GC_get_main_stack_base(void) { PTIB ptib; PPIB ppib; if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) { GC_err_printf("DosGetInfoBlocks failed\n"); ABORT("DosGetInfoBlocks failed\n"); } return((ptr_t)(ptib -> tib_pstacklimit)); } # endif /* OS2 */ # ifdef AMIGA # define GC_AMIGA_SB # include "AmigaOS.c" # undef GC_AMIGA_SB # endif /* AMIGA */ # if defined(NEED_FIND_LIMIT) || defined(UNIX_LIKE) typedef void (*handler)(int); # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1) \ || defined(HURD) || defined(NETBSD) static struct sigaction old_segv_act; # if defined(_sigargs) /* !Irix6.x */ || defined(HPUX) \ || defined(HURD) || defined(NETBSD) static struct sigaction old_bus_act; # endif # else static handler old_segv_handler, old_bus_handler; # endif void GC_set_and_save_fault_handler(handler h) { # if defined(SUNOS5SIGS) || defined(IRIX5) \ || defined(OSF1) || defined(HURD) || defined(NETBSD) struct sigaction act; act.sa_handler = h; # if 0 /* Was necessary for Solaris 2.3 and very temporary */ /* NetBSD bugs. */ act.sa_flags = SA_RESTART | SA_NODEFER; # else act.sa_flags = SA_RESTART; # endif (void) sigemptyset(&act.sa_mask); # ifdef GC_IRIX_THREADS /* Older versions have a bug related to retrieving and */ /* and setting a handler at the same time. */ (void) sigaction(SIGSEGV, 0, &old_segv_act); (void) sigaction(SIGSEGV, &act, 0); # else (void) sigaction(SIGSEGV, &act, &old_segv_act); # if defined(IRIX5) && defined(_sigargs) /* Irix 5.x, not 6.x */ \ || defined(HPUX) || defined(HURD) || defined(NETBSD) /* Under Irix 5.x or HP/UX, we may get SIGBUS. */ /* Pthreads doesn't exist under Irix 5.x, so we */ /* don't have to worry in the threads case. */ (void) sigaction(SIGBUS, &act, &old_bus_act); # endif # endif /* GC_IRIX_THREADS */ # else old_segv_handler = signal(SIGSEGV, h); # ifdef SIGBUS old_bus_handler = signal(SIGBUS, h); # endif # endif } # endif /* NEED_FIND_LIMIT || UNIX_LIKE */ # if defined(NEED_FIND_LIMIT) || \ defined(USE_PROC_FOR_LIBRARIES) && defined(THREADS) /* Some tools to implement HEURISTIC2 */ # define MIN_PAGE_SIZE 256 /* Smallest conceivable page size, bytes */ /*ARGSUSED*/ void GC_fault_handler(int sig) { LONGJMP(GC_jmp_buf, 1); } void GC_setup_temporary_fault_handler(void) { /* Handler is process-wide, so this should only happen in */ /* one thread at a time. */ GC_ASSERT(I_HOLD_LOCK()); GC_set_and_save_fault_handler(GC_fault_handler); } void GC_reset_fault_handler(void) { # if defined(SUNOS5SIGS) || defined(IRIX5) \ || defined(OSF1) || defined(HURD) || defined(NETBSD) (void) sigaction(SIGSEGV, &old_segv_act, 0); # if defined(IRIX5) && defined(_sigargs) /* Irix 5.x, not 6.x */ \ || defined(HPUX) || defined(HURD) || defined(NETBSD) (void) sigaction(SIGBUS, &old_bus_act, 0); # endif # else (void) signal(SIGSEGV, old_segv_handler); # ifdef SIGBUS (void) signal(SIGBUS, old_bus_handler); # endif # endif } /* Return the first nonaddressible location > p (up) or */ /* the smallest location q s.t. [q,p) is addressable (!up). */ /* We assume that p (up) or p-1 (!up) is addressable. */ /* Requires allocation lock. */ ptr_t GC_find_limit_with_bound(ptr_t p, GC_bool up, ptr_t bound) { static volatile ptr_t result; /* Safer if static, since otherwise it may not be */ /* preserved across the longjmp. Can safely be */ /* static since it's only called with the */ /* allocation lock held. */ GC_ASSERT(I_HOLD_LOCK()); GC_setup_temporary_fault_handler(); if (SETJMP(GC_jmp_buf) == 0) { result = (ptr_t)(((word)(p)) & ~(MIN_PAGE_SIZE-1)); for (;;) { if (up) { result += MIN_PAGE_SIZE; if (result >= bound) return bound; } else { result -= MIN_PAGE_SIZE; if (result <= bound) return bound; } GC_noop1((word)(*result)); } } GC_reset_fault_handler(); if (!up) { result += MIN_PAGE_SIZE; } return(result); } ptr_t GC_find_limit(ptr_t p, GC_bool up) { if (up) { return GC_find_limit_with_bound(p, up, (ptr_t)(word)(-1)); } else { return GC_find_limit_with_bound(p, up, 0); } } # endif #if defined(ECOS) || defined(NOSYS) ptr_t GC_get_main_stack_base(void) { return STACKBOTTOM; } #endif #ifdef HPUX_STACKBOTTOM #include #include ptr_t GC_get_register_stack_base(void) { struct pst_vm_status vm_status; int i = 0; while (pstat_getprocvm(&vm_status, sizeof(vm_status), 0, i++) == 1) { if (vm_status.pst_type == PS_RSESTACK) { return (ptr_t) vm_status.pst_vaddr; } } /* old way to get the register stackbottom */ return (ptr_t)(((word)GC_stackbottom - BACKING_STORE_DISPLACEMENT - 1) & ~(BACKING_STORE_ALIGNMENT - 1)); } #endif /* HPUX_STACK_BOTTOM */ #ifdef LINUX_STACKBOTTOM #include #include # define STAT_SKIP 27 /* Number of fields preceding startstack */ /* field in /proc/self/stat */ #ifdef USE_LIBC_PRIVATES # pragma weak __libc_stack_end extern ptr_t __libc_stack_end; #endif # ifdef IA64 # ifdef USE_LIBC_PRIVATES # pragma weak __libc_ia64_register_backing_store_base extern ptr_t __libc_ia64_register_backing_store_base; # endif ptr_t GC_get_register_stack_base(void) { ptr_t result; # ifdef USE_LIBC_PRIVATES if (0 != &__libc_ia64_register_backing_store_base && 0 != __libc_ia64_register_backing_store_base) { /* Glibc 2.2.4 has a bug such that for dynamically linked */ /* executables __libc_ia64_register_backing_store_base is */ /* defined but uninitialized during constructor calls. */ /* Hence we check for both nonzero address and value. */ return __libc_ia64_register_backing_store_base; } # endif result = backing_store_base_from_proc(); if (0 == result) { result = GC_find_limit(GC_save_regs_in_stack(), FALSE); /* Now seems to work better than constant displacement */ /* heuristic used in 6.X versions. The latter seems to */ /* fail for 2.6 kernels. */ } return result; } # endif ptr_t GC_linux_stack_base(void) { /* We read the stack base value from /proc/self/stat. We do this */ /* using direct I/O system calls in order to avoid calling malloc */ /* in case REDIRECT_MALLOC is defined. */ # define STAT_BUF_SIZE 4096 # define STAT_READ read /* Should probably call the real read, if read is wrapped. */ char stat_buf[STAT_BUF_SIZE]; int f; char c; word result = 0; size_t i, buf_offset = 0; /* First try the easy way. This should work for glibc 2.2 */ /* This fails in a prelinked ("prelink" command) executable */ /* since the correct value of __libc_stack_end never */ /* becomes visible to us. The second test works around */ /* this. */ # ifdef USE_LIBC_PRIVATES if (0 != &__libc_stack_end && 0 != __libc_stack_end ) { # if defined(IA64) /* Some versions of glibc set the address 16 bytes too */ /* low while the initialization code is running. */ if (((word)__libc_stack_end & 0xfff) + 0x10 < 0x1000) { return __libc_stack_end + 0x10; } /* Otherwise it's not safe to add 16 bytes and we fall */ /* back to using /proc. */ # elif defined(SPARC) /* Older versions of glibc for 64-bit Sparc do not set * this variable correctly, it gets set to either zero * or one. */ if (__libc_stack_end != (ptr_t) (unsigned long)0x1) return __libc_stack_end; # else return __libc_stack_end; # endif } # endif f = open("/proc/self/stat", O_RDONLY); if (f < 0 || STAT_READ(f, stat_buf, STAT_BUF_SIZE) < 2 * STAT_SKIP) { ABORT("Couldn't read /proc/self/stat"); } c = stat_buf[buf_offset++]; /* Skip the required number of fields. This number is hopefully */ /* constant across all Linux implementations. */ for (i = 0; i < STAT_SKIP; ++i) { while (isspace(c)) c = stat_buf[buf_offset++]; while (!isspace(c)) c = stat_buf[buf_offset++]; } while (isspace(c)) c = stat_buf[buf_offset++]; while (isdigit(c)) { result *= 10; result += c - '0'; c = stat_buf[buf_offset++]; } close(f); if (result < 0x10000000) ABORT("Absurd stack bottom value"); return (ptr_t)result; } #endif /* LINUX_STACKBOTTOM */ #ifdef FREEBSD_STACKBOTTOM /* This uses an undocumented sysctl call, but at least one expert */ /* believes it will stay. */ #include #include #include ptr_t GC_freebsd_stack_base(void) { int nm[2] = {CTL_KERN, KERN_USRSTACK}; ptr_t base; size_t len = sizeof(ptr_t); int r = sysctl(nm, 2, &base, &len, NULL, 0); if (r) ABORT("Error getting stack base"); return base; } #endif /* FREEBSD_STACKBOTTOM */ #if !defined(BEOS) && !defined(AMIGA) && !defined(MSWIN32) \ && !defined(MSWINCE) && !defined(OS2) && !defined(NOSYS) && !defined(ECOS) \ && !defined(CYGWIN32) ptr_t GC_get_main_stack_base(void) { # if defined(HEURISTIC1) || defined(HEURISTIC2) word dummy; # endif ptr_t result; # define STACKBOTTOM_ALIGNMENT_M1 ((word)STACK_GRAN - 1) # ifdef STACKBOTTOM return(STACKBOTTOM); # else # ifdef HEURISTIC1 # ifdef STACK_GROWS_DOWN result = (ptr_t)((((word)(&dummy)) + STACKBOTTOM_ALIGNMENT_M1) & ~STACKBOTTOM_ALIGNMENT_M1); # else result = (ptr_t)(((word)(&dummy)) & ~STACKBOTTOM_ALIGNMENT_M1); # endif # endif /* HEURISTIC1 */ # ifdef LINUX_STACKBOTTOM result = GC_linux_stack_base(); # endif # ifdef FREEBSD_STACKBOTTOM result = GC_freebsd_stack_base(); # endif # ifdef HEURISTIC2 # ifdef STACK_GROWS_DOWN result = GC_find_limit((ptr_t)(&dummy), TRUE); # ifdef HEURISTIC2_LIMIT if (result > HEURISTIC2_LIMIT && (ptr_t)(&dummy) < HEURISTIC2_LIMIT) { result = HEURISTIC2_LIMIT; } # endif # else result = GC_find_limit((ptr_t)(&dummy), FALSE); # ifdef HEURISTIC2_LIMIT if (result < HEURISTIC2_LIMIT && (ptr_t)(&dummy) > HEURISTIC2_LIMIT) { result = HEURISTIC2_LIMIT; } # endif # endif # endif /* HEURISTIC2 */ # ifdef STACK_GROWS_DOWN if (result == 0) result = (ptr_t)(signed_word)(-sizeof(ptr_t)); # endif return(result); # endif /* STACKBOTTOM */ } # endif /* ! AMIGA, !OS 2, ! MS Windows, !BEOS, !NOSYS, !ECOS */ #if defined(GC_LINUX_THREADS) && !defined(HAVE_GET_STACK_BASE) #include #ifdef IA64 ptr_t GC_greatest_stack_base_below(ptr_t bound); /* From pthread_support.c */ #endif int GC_get_stack_base(struct GC_stack_base *b) { pthread_attr_t attr; size_t size; if (pthread_getattr_np(pthread_self(), &attr) != 0) { WARN("pthread_getattr_np failed\n", 0); return GC_UNIMPLEMENTED; } if (pthread_attr_getstack(&attr, &(b -> mem_base), &size) != 0) { ABORT("pthread_attr_getstack failed"); } # ifdef STACK_GROWS_DOWN b -> mem_base = (char *)(b -> mem_base) + size; # endif # ifdef IA64 /* We could try backing_store_base_from_proc, but that's safe */ /* only if no mappings are being asynchronously created. */ /* Subtracting the size from the stack base doesn't work for at */ /* least the main thread. */ LOCK(); { ptr_t bsp = GC_save_regs_in_stack(); ptr_t next_stack = GC_greatest_stack_base_below(bsp); if (0 == next_stack) { b -> reg_base = GC_find_limit(bsp, FALSE); } else { /* Avoid walking backwards into preceding memory stack and */ /* growing it. */ b -> reg_base = GC_find_limit_with_bound(bsp, FALSE, next_stack); } } UNLOCK(); # endif return GC_SUCCESS; } #define HAVE_GET_STACK_BASE #endif /* GC_LINUX_THREADS */ #ifndef HAVE_GET_STACK_BASE /* Retrieve stack base. */ /* Using the GC_find_limit version is risky. */ /* On IA64, for example, there is no guard page between the */ /* stack of one thread and the register backing store of the */ /* next. Thus this is likely to identify way too large a */ /* "stack" and thus at least result in disastrous performance. */ /* FIXME - Implement better strategies here. */ int GC_get_stack_base(struct GC_stack_base *b) { int dummy; # ifdef NEED_FIND_LIMIT # ifdef STACK_GROWS_DOWN b -> mem_base = GC_find_limit((ptr_t)(&dummy), TRUE); # ifdef IA64 b -> reg_base = GC_find_limit(GC_save_regs_in_stack(), FALSE); # endif # else b -> mem_base = GC_find_limit(&dummy, FALSE); # endif return GC_SUCCESS; # else return GC_UNIMPLEMENTED; # endif } #endif /* * Register static data segment(s) as roots. * If more data segments are added later then they need to be registered * add that point (as we do with SunOS dynamic loading), * or GC_mark_roots needs to check for them (as we do with PCR). * Called with allocator lock held. */ # ifdef OS2 void GC_register_data_segments(void) { PTIB ptib; PPIB ppib; HMODULE module_handle; # define PBUFSIZ 512 UCHAR path[PBUFSIZ]; FILE * myexefile; struct exe_hdr hdrdos; /* MSDOS header. */ struct e32_exe hdr386; /* Real header for my executable */ struct o32_obj seg; /* Currrent segment */ int nsegs; if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) { GC_err_printf("DosGetInfoBlocks failed\n"); ABORT("DosGetInfoBlocks failed\n"); } module_handle = ppib -> pib_hmte; if (DosQueryModuleName(module_handle, PBUFSIZ, path) != NO_ERROR) { GC_err_printf("DosQueryModuleName failed\n"); ABORT("DosGetInfoBlocks failed\n"); } myexefile = fopen(path, "rb"); if (myexefile == 0) { GC_err_puts("Couldn't open executable "); GC_err_puts(path); GC_err_puts("\n"); ABORT("Failed to open executable\n"); } if (fread((char *)(&hdrdos), 1, sizeof hdrdos, myexefile) < sizeof hdrdos) { GC_err_puts("Couldn't read MSDOS header from "); GC_err_puts(path); GC_err_puts("\n"); ABORT("Couldn't read MSDOS header"); } if (E_MAGIC(hdrdos) != EMAGIC) { GC_err_puts("Executable has wrong DOS magic number: "); GC_err_puts(path); GC_err_puts("\n"); ABORT("Bad DOS magic number"); } if (fseek(myexefile, E_LFANEW(hdrdos), SEEK_SET) != 0) { GC_err_puts("Seek to new header failed in "); GC_err_puts(path); GC_err_puts("\n"); ABORT("Bad DOS magic number"); } if (fread((char *)(&hdr386), 1, sizeof hdr386, myexefile) < sizeof hdr386) { GC_err_puts("Couldn't read MSDOS header from "); GC_err_puts(path); GC_err_puts("\n"); ABORT("Couldn't read OS/2 header"); } if (E32_MAGIC1(hdr386) != E32MAGIC1 || E32_MAGIC2(hdr386) != E32MAGIC2) { GC_err_puts("Executable has wrong OS/2 magic number:"); GC_err_puts(path); GC_err_puts("\n"); ABORT("Bad OS/2 magic number"); } if ( E32_BORDER(hdr386) != E32LEBO || E32_WORDER(hdr386) != E32LEWO) { GC_err_puts("Executable %s has wrong byte order: "); GC_err_puts(path); GC_err_puts("\n"); ABORT("Bad byte order"); } if ( E32_CPU(hdr386) == E32CPU286) { GC_err_puts("GC can't handle 80286 executables: "); GC_err_puts(path); GC_err_puts("\n"); EXIT(); } if (fseek(myexefile, E_LFANEW(hdrdos) + E32_OBJTAB(hdr386), SEEK_SET) != 0) { GC_err_puts("Seek to object table failed: "); GC_err_puts(path); GC_err_puts("\n"); ABORT("Seek to object table failed"); } for (nsegs = E32_OBJCNT(hdr386); nsegs > 0; nsegs--) { int flags; if (fread((char *)(&seg), 1, sizeof seg, myexefile) < sizeof seg) { GC_err_puts("Couldn't read obj table entry from "); GC_err_puts(path); GC_err_puts("\n"); ABORT("Couldn't read obj table entry"); } flags = O32_FLAGS(seg); if (!(flags & OBJWRITE)) continue; if (!(flags & OBJREAD)) continue; if (flags & OBJINVALID) { GC_err_printf("Object with invalid pages?\n"); continue; } GC_add_roots_inner(O32_BASE(seg), O32_BASE(seg)+O32_SIZE(seg), FALSE); } } # else /* !OS2 */ # if defined(MSWIN32) || defined(MSWINCE) # ifdef MSWIN32 /* Unfortunately, we have to handle win32s very differently from NT, */ /* Since VirtualQuery has very different semantics. In particular, */ /* under win32s a VirtualQuery call on an unmapped page returns an */ /* invalid result. Under NT, GC_register_data_segments is a noop and */ /* all real work is done by GC_register_dynamic_libraries. Under */ /* win32s, we cannot find the data segments associated with dll's. */ /* We register the main data segment here. */ GC_bool GC_no_win32_dlls = FALSE; /* This used to be set for gcc, to avoid dealing with */ /* the structured exception handling issues. But we now have */ /* assembly code to do that right. */ # if defined(GWW_VDB) # ifndef _BASETSD_H_ typedef ULONG * PULONG_PTR; # endif typedef UINT (WINAPI * GetWriteWatch_type)( DWORD, PVOID, SIZE_T, PVOID*, PULONG_PTR, PULONG); static GetWriteWatch_type GetWriteWatch_func; static DWORD GetWriteWatch_alloc_flag; # define GC_GWW_AVAILABLE() (GetWriteWatch_func != NULL) static void detect_GetWriteWatch(void) { static GC_bool done; if (done) return; GetWriteWatch_func = (GetWriteWatch_type) GetProcAddress(GetModuleHandle("kernel32.dll"), "GetWriteWatch"); if (GetWriteWatch_func != NULL) { /* Also check whether VirtualAlloc accepts MEM_WRITE_WATCH, */ /* as some versions of kernel32.dll have one but not the */ /* other, making the feature completely broken. */ void * page = VirtualAlloc(NULL, GC_page_size, MEM_WRITE_WATCH | MEM_RESERVE, PAGE_READWRITE); if (page != NULL) { PVOID pages[16]; ULONG_PTR count = 16; DWORD page_size; /* Check that it actually works. In spite of some */ /* documentation it actually seems to exist on W2K. */ /* This test may be unnecessary, but ... */ if (GetWriteWatch_func(WRITE_WATCH_FLAG_RESET, page, GC_page_size, pages, &count, &page_size) != 0) { /* GetWriteWatch always fails. */ GetWriteWatch_func = NULL; } else { GetWriteWatch_alloc_flag = MEM_WRITE_WATCH; } VirtualFree(page, GC_page_size, MEM_RELEASE); } else { /* GetWriteWatch will be useless. */ GetWriteWatch_func = NULL; } } if (GC_print_stats) { if (GetWriteWatch_func == NULL) { GC_log_printf("Did not find a usable GetWriteWatch()\n"); } else { GC_log_printf("Using GetWriteWatch()\n"); } } done = TRUE; } # endif /* GWW_VDB */ GC_bool GC_wnt = FALSE; /* This is a Windows NT derivative, i.e. NT, W2K, XP or later. */ void GC_init_win32(void) { /* Set GC_wnt. */ /* If we're running under win32s, assume that no DLLs will be loaded */ /* I doubt anyone still runs win32s, but ... */ DWORD v = GetVersion(); GC_wnt = !(v & 0x80000000); GC_no_win32_dlls |= ((!GC_wnt) && (v & 0xff) <= 3); } /* Return the smallest address a such that VirtualQuery */ /* returns correct results for all addresses between a and start. */ /* Assumes VirtualQuery returns correct information for start. */ ptr_t GC_least_described_address(ptr_t start) { MEMORY_BASIC_INFORMATION buf; size_t result; LPVOID limit; ptr_t p; LPVOID q; limit = GC_sysinfo.lpMinimumApplicationAddress; p = (ptr_t)((word)start & ~(GC_page_size - 1)); for (;;) { q = (LPVOID)(p - GC_page_size); if ((ptr_t)q > (ptr_t)p /* underflow */ || q < limit) break; result = VirtualQuery(q, &buf, sizeof(buf)); if (result != sizeof(buf) || buf.AllocationBase == 0) break; p = (ptr_t)(buf.AllocationBase); } return p; } # endif # ifndef REDIRECT_MALLOC /* We maintain a linked list of AllocationBase values that we know */ /* correspond to malloc heap sections. Currently this is only called */ /* during a GC. But there is some hope that for long running */ /* programs we will eventually see most heap sections. */ /* In the long run, it would be more reliable to occasionally walk */ /* the malloc heap with HeapWalk on the default heap. But that */ /* apparently works only for NT-based Windows. */ /* In the long run, a better data structure would also be nice ... */ struct GC_malloc_heap_list { void * allocation_base; struct GC_malloc_heap_list *next; } *GC_malloc_heap_l = 0; /* Is p the base of one of the malloc heap sections we already know */ /* about? */ GC_bool GC_is_malloc_heap_base(ptr_t p) { struct GC_malloc_heap_list *q = GC_malloc_heap_l; while (0 != q) { if (q -> allocation_base == p) return TRUE; q = q -> next; } return FALSE; } void *GC_get_allocation_base(void *p) { MEMORY_BASIC_INFORMATION buf; size_t result = VirtualQuery(p, &buf, sizeof(buf)); if (result != sizeof(buf)) { ABORT("Weird VirtualQuery result"); } return buf.AllocationBase; } size_t GC_max_root_size = 100000; /* Appr. largest root size. */ void GC_add_current_malloc_heap() { struct GC_malloc_heap_list *new_l = malloc(sizeof(struct GC_malloc_heap_list)); void * candidate = GC_get_allocation_base(new_l); if (new_l == 0) return; if (GC_is_malloc_heap_base(candidate)) { /* Try a little harder to find malloc heap. */ size_t req_size = 10000; do { void *p = malloc(req_size); if (0 == p) { free(new_l); return; } candidate = GC_get_allocation_base(p); free(p); req_size *= 2; } while (GC_is_malloc_heap_base(candidate) && req_size < GC_max_root_size/10 && req_size < 500000); if (GC_is_malloc_heap_base(candidate)) { free(new_l); return; } } if (GC_print_stats) GC_log_printf("Found new system malloc AllocationBase at %p\n", candidate); new_l -> allocation_base = candidate; new_l -> next = GC_malloc_heap_l; GC_malloc_heap_l = new_l; } # endif /* REDIRECT_MALLOC */ /* Is p the start of either the malloc heap, or of one of our */ /* heap sections? */ GC_bool GC_is_heap_base (ptr_t p) { unsigned i; # ifndef REDIRECT_MALLOC static word last_gc_no = (word)(-1); if (last_gc_no != GC_gc_no) { GC_add_current_malloc_heap(); last_gc_no = GC_gc_no; } if (GC_root_size > GC_max_root_size) GC_max_root_size = GC_root_size; if (GC_is_malloc_heap_base(p)) return TRUE; # endif for (i = 0; i < GC_n_heap_bases; i++) { if (GC_heap_bases[i] == p) return TRUE; } return FALSE ; } # ifdef MSWIN32 void GC_register_root_section(ptr_t static_root) { MEMORY_BASIC_INFORMATION buf; size_t result; DWORD protect; LPVOID p; char * base; char * limit, * new_limit; if (!GC_no_win32_dlls) return; p = base = limit = GC_least_described_address(static_root); while (p < GC_sysinfo.lpMaximumApplicationAddress) { result = VirtualQuery(p, &buf, sizeof(buf)); if (result != sizeof(buf) || buf.AllocationBase == 0 || GC_is_heap_base(buf.AllocationBase)) break; new_limit = (char *)p + buf.RegionSize; protect = buf.Protect; if (buf.State == MEM_COMMIT && is_writable(protect)) { if ((char *)p == limit) { limit = new_limit; } else { if (base != limit) GC_add_roots_inner(base, limit, FALSE); base = p; limit = new_limit; } } if (p > (LPVOID)new_limit /* overflow */) break; p = (LPVOID)new_limit; } if (base != limit) GC_add_roots_inner(base, limit, FALSE); } #endif void GC_register_data_segments() { # ifdef MSWIN32 static char dummy; GC_register_root_section((ptr_t)(&dummy)); # endif } # else /* !OS2 && !Windows */ # if (defined(SVR4) || defined(AUX) || defined(DGUX) \ || (defined(LINUX) && defined(SPARC))) && !defined(PCR) ptr_t GC_SysVGetDataStart(size_t max_page_size, ptr_t etext_addr) { word text_end = ((word)(etext_addr) + sizeof(word) - 1) & ~(sizeof(word) - 1); /* etext rounded to word boundary */ word next_page = ((text_end + (word)max_page_size - 1) & ~((word)max_page_size - 1)); word page_offset = (text_end & ((word)max_page_size - 1)); volatile char * result = (char *)(next_page + page_offset); /* Note that this isnt equivalent to just adding */ /* max_page_size to &etext if &etext is at a page boundary */ GC_setup_temporary_fault_handler(); if (SETJMP(GC_jmp_buf) == 0) { /* Try writing to the address. */ *result = *result; GC_reset_fault_handler(); } else { GC_reset_fault_handler(); /* We got here via a longjmp. The address is not readable. */ /* This is known to happen under Solaris 2.4 + gcc, which place */ /* string constants in the text segment, but after etext. */ /* Use plan B. Note that we now know there is a gap between */ /* text and data segments, so plan A bought us something. */ result = (char *)GC_find_limit((ptr_t)(DATAEND), FALSE); } return((ptr_t)result); } # endif # if defined(FREEBSD) && (defined(I386) || defined(X86_64) || defined(powerpc) || defined(__powerpc__)) && !defined(PCR) /* Its unclear whether this should be identical to the above, or */ /* whether it should apply to non-X86 architectures. */ /* For now we don't assume that there is always an empty page after */ /* etext. But in some cases there actually seems to be slightly more. */ /* This also deals with holes between read-only data and writable data. */ ptr_t GC_FreeBSDGetDataStart(size_t max_page_size, ptr_t etext_addr) { word text_end = ((word)(etext_addr) + sizeof(word) - 1) & ~(sizeof(word) - 1); /* etext rounded to word boundary */ volatile word next_page = (text_end + (word)max_page_size - 1) & ~((word)max_page_size - 1); volatile ptr_t result = (ptr_t)text_end; GC_setup_temporary_fault_handler(); if (SETJMP(GC_jmp_buf) == 0) { /* Try reading at the address. */ /* This should happen before there is another thread. */ for (; next_page < (word)(DATAEND); next_page += (word)max_page_size) *(volatile char *)next_page; GC_reset_fault_handler(); } else { GC_reset_fault_handler(); /* As above, we go to plan B */ result = GC_find_limit((ptr_t)(DATAEND), FALSE); } return(result); } # endif #ifdef AMIGA # define GC_AMIGA_DS # include "AmigaOS.c" # undef GC_AMIGA_DS #else /* !OS2 && !Windows && !AMIGA */ void GC_register_data_segments(void) { # if !defined(PCR) && !defined(MACOS) # if defined(REDIRECT_MALLOC) && defined(GC_SOLARIS_THREADS) /* As of Solaris 2.3, the Solaris threads implementation */ /* allocates the data structure for the initial thread with */ /* sbrk at process startup. It needs to be scanned, so that */ /* we don't lose some malloc allocated data structures */ /* hanging from it. We're on thin ice here ... */ extern caddr_t sbrk(); GC_add_roots_inner(DATASTART, (ptr_t)sbrk(0), FALSE); # else GC_add_roots_inner(DATASTART, (ptr_t)(DATAEND), FALSE); # if defined(DATASTART2) GC_add_roots_inner(DATASTART2, (ptr_t)(DATAEND2), FALSE); # endif # endif # endif # if defined(MACOS) { # if defined(THINK_C) extern void* GC_MacGetDataStart(void); /* globals begin above stack and end at a5. */ GC_add_roots_inner((ptr_t)GC_MacGetDataStart(), (ptr_t)LMGetCurrentA5(), FALSE); # else # if defined(__MWERKS__) # if !__POWERPC__ extern void* GC_MacGetDataStart(void); /* MATTHEW: Function to handle Far Globals (CW Pro 3) */ # if __option(far_data) extern void* GC_MacGetDataEnd(void); # endif /* globals begin above stack and end at a5. */ GC_add_roots_inner((ptr_t)GC_MacGetDataStart(), (ptr_t)LMGetCurrentA5(), FALSE); /* MATTHEW: Handle Far Globals */ # if __option(far_data) /* Far globals follow he QD globals: */ GC_add_roots_inner((ptr_t)LMGetCurrentA5(), (ptr_t)GC_MacGetDataEnd(), FALSE); # endif # else extern char __data_start__[], __data_end__[]; GC_add_roots_inner((ptr_t)&__data_start__, (ptr_t)&__data_end__, FALSE); # endif /* __POWERPC__ */ # endif /* __MWERKS__ */ # endif /* !THINK_C */ } # endif /* MACOS */ /* Dynamic libraries are added at every collection, since they may */ /* change. */ } # endif /* ! AMIGA */ # endif /* ! MSWIN32 && ! MSWINCE*/ # endif /* ! OS2 */ /* * Auxiliary routines for obtaining memory from OS. */ # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) \ && !defined(MSWIN32) && !defined(MSWINCE) \ && !defined(MACOS) && !defined(DOS4GW) && !defined(NONSTOP) # define SBRK_ARG_T ptrdiff_t #if defined(MMAP_SUPPORTED) #ifdef USE_MMAP_FIXED # define GC_MMAP_FLAGS MAP_FIXED | MAP_PRIVATE /* Seems to yield better performance on Solaris 2, but can */ /* be unreliable if something is already mapped at the address. */ #else # define GC_MMAP_FLAGS MAP_PRIVATE #endif #ifdef USE_MMAP_ANON # define zero_fd -1 # if defined(MAP_ANONYMOUS) # define OPT_MAP_ANON MAP_ANONYMOUS # else # define OPT_MAP_ANON MAP_ANON # endif #else static int zero_fd; # define OPT_MAP_ANON 0 #endif #ifndef HEAP_START # define HEAP_START 0 #endif ptr_t GC_unix_mmap_get_mem(word bytes) { void *result; static ptr_t last_addr = HEAP_START; # ifndef USE_MMAP_ANON static GC_bool initialized = FALSE; if (!initialized) { zero_fd = open("/dev/zero", O_RDONLY); fcntl(zero_fd, F_SETFD, FD_CLOEXEC); initialized = TRUE; } # endif if (bytes & (GC_page_size -1)) ABORT("Bad GET_MEM arg"); result = mmap(last_addr, bytes, PROT_READ | PROT_WRITE | OPT_PROT_EXEC, GC_MMAP_FLAGS | OPT_MAP_ANON, zero_fd, 0/* offset */); if (result == MAP_FAILED) return(0); last_addr = (ptr_t)result + bytes + GC_page_size - 1; last_addr = (ptr_t)((word)last_addr & ~(GC_page_size - 1)); # if !defined(LINUX) if (last_addr == 0) { /* Oops. We got the end of the address space. This isn't */ /* usable by arbitrary C code, since one-past-end pointers */ /* don't work, so we discard it and try again. */ munmap(result, (size_t)(-GC_page_size) - (size_t)result); /* Leave last page mapped, so we can't repeat. */ return GC_unix_mmap_get_mem(bytes); } # else GC_ASSERT(last_addr != 0); # endif return((ptr_t)result); } # endif /* MMAP_SUPPORTED */ #if defined(USE_MMAP) ptr_t GC_unix_get_mem(word bytes) { return GC_unix_mmap_get_mem(bytes); } #else /* Not USE_MMAP */ ptr_t GC_unix_sbrk_get_mem(word bytes) { ptr_t result; # ifdef IRIX5 /* Bare sbrk isn't thread safe. Play by malloc rules. */ /* The equivalent may be needed on other systems as well. */ __LOCK_MALLOC(); # endif { ptr_t cur_brk = (ptr_t)sbrk(0); SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1); if ((SBRK_ARG_T)bytes < 0) { result = 0; /* too big */ goto out; } if (lsbs != 0) { if((ptr_t)sbrk(GC_page_size - lsbs) == (ptr_t)(-1)) { result = 0; goto out; } } # ifdef ADD_HEAP_GUARD_PAGES /* This is useful for catching severe memory overwrite problems that */ /* span heap sections. It shouldn't otherwise be turned on. */ { ptr_t guard = (ptr_t)sbrk((SBRK_ARG_T)GC_page_size); if (mprotect(guard, GC_page_size, PROT_NONE) != 0) ABORT("ADD_HEAP_GUARD_PAGES: mprotect failed"); } # endif /* ADD_HEAP_GUARD_PAGES */ result = (ptr_t)sbrk((SBRK_ARG_T)bytes); if (result == (ptr_t)(-1)) result = 0; } out: # ifdef IRIX5 __UNLOCK_MALLOC(); # endif return(result); } #if defined(MMAP_SUPPORTED) /* By default, we try both sbrk and mmap, in that order. */ ptr_t GC_unix_get_mem(word bytes) { static GC_bool sbrk_failed = FALSE; ptr_t result = 0; if (!sbrk_failed) result = GC_unix_sbrk_get_mem(bytes); if (0 == result) { sbrk_failed = TRUE; result = GC_unix_mmap_get_mem(bytes); } if (0 == result) { /* Try sbrk again, in case sbrk memory became available. */ result = GC_unix_sbrk_get_mem(bytes); } return result; } #else /* !MMAP_SUPPORTED */ ptr_t GC_unix_get_mem(word bytes) { return GC_unix_sbrk_get_mem(bytes); } #endif #endif /* Not USE_MMAP */ # endif /* UN*X */ # ifdef OS2 void * os2_alloc(size_t bytes) { void * result; if (DosAllocMem(&result, bytes, PAG_EXECUTE | PAG_READ | PAG_WRITE | PAG_COMMIT) != NO_ERROR) { return(0); } if (result == 0) return(os2_alloc(bytes)); return(result); } # endif /* OS2 */ # if defined(MSWIN32) || defined(MSWINCE) SYSTEM_INFO GC_sysinfo; # endif # ifdef MSWIN32 # ifdef USE_GLOBAL_ALLOC # define GLOBAL_ALLOC_TEST 1 # else # define GLOBAL_ALLOC_TEST GC_no_win32_dlls # endif word GC_n_heap_bases = 0; word GC_mem_top_down = 0; /* Change to MEM_TOP_DOWN for better 64-bit */ /* testing. Otherwise all addresses tend to */ /* end up in first 4GB, hiding bugs. */ ptr_t GC_win32_get_mem(word bytes) { ptr_t result; if (GLOBAL_ALLOC_TEST) { /* VirtualAlloc doesn't like PAGE_EXECUTE_READWRITE. */ /* There are also unconfirmed rumors of other */ /* problems, so we dodge the issue. */ result = (ptr_t) GlobalAlloc(0, bytes + HBLKSIZE); result = (ptr_t)(((word)result + HBLKSIZE - 1) & ~(HBLKSIZE-1)); } else { /* VirtualProtect only works on regions returned by a */ /* single VirtualAlloc call. Thus we allocate one */ /* extra page, which will prevent merging of blocks */ /* in separate regions, and eliminate any temptation */ /* to call VirtualProtect on a range spanning regions. */ /* This wastes a small amount of memory, and risks */ /* increased fragmentation. But better alternatives */ /* would require effort. */ /* Pass the MEM_WRITE_WATCH only if GetWriteWatch-based */ /* VDBs are enabled and the GetWriteWatch function is */ /* available. Otherwise we waste resources or possibly */ /* cause VirtualAlloc to fail (observed in Windows 2000 */ /* SP2). */ result = (ptr_t) VirtualAlloc(NULL, bytes + 1, # ifdef GWW_VDB GetWriteWatch_alloc_flag | # endif MEM_COMMIT | MEM_RESERVE | GC_mem_top_down, PAGE_EXECUTE_READWRITE); } if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result"); /* If I read the documentation correctly, this can */ /* only happen if HBLKSIZE > 64k or not a power of 2. */ if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections"); GC_heap_bases[GC_n_heap_bases++] = result; return(result); } void GC_win32_free_heap(void) { if (GC_no_win32_dlls) { while (GC_n_heap_bases > 0) { GlobalFree (GC_heap_bases[--GC_n_heap_bases]); GC_heap_bases[GC_n_heap_bases] = 0; } } } # endif #ifdef AMIGA # define GC_AMIGA_AM # include "AmigaOS.c" # undef GC_AMIGA_AM #endif # ifdef MSWINCE word GC_n_heap_bases = 0; ptr_t GC_wince_get_mem(word bytes) { ptr_t result; word i; /* Round up allocation size to multiple of page size */ bytes = (bytes + GC_page_size-1) & ~(GC_page_size-1); /* Try to find reserved, uncommitted pages */ for (i = 0; i < GC_n_heap_bases; i++) { if (((word)(-(signed_word)GC_heap_lengths[i]) & (GC_sysinfo.dwAllocationGranularity-1)) >= bytes) { result = GC_heap_bases[i] + GC_heap_lengths[i]; break; } } if (i == GC_n_heap_bases) { /* Reserve more pages */ word res_bytes = (bytes + GC_sysinfo.dwAllocationGranularity-1) & ~(GC_sysinfo.dwAllocationGranularity-1); /* If we ever support MPROTECT_VDB here, we will probably need to */ /* ensure that res_bytes is strictly > bytes, so that VirtualProtect */ /* never spans regions. It seems to be OK for a VirtualFree */ /* argument to span regions, so we should be OK for now. */ result = (ptr_t) VirtualAlloc(NULL, res_bytes, MEM_RESERVE | MEM_TOP_DOWN, PAGE_EXECUTE_READWRITE); if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result"); /* If I read the documentation correctly, this can */ /* only happen if HBLKSIZE > 64k or not a power of 2. */ if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections"); GC_heap_bases[GC_n_heap_bases] = result; GC_heap_lengths[GC_n_heap_bases] = 0; GC_n_heap_bases++; } /* Commit pages */ result = (ptr_t) VirtualAlloc(result, bytes, MEM_COMMIT, PAGE_EXECUTE_READWRITE); if (result != NULL) { if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result"); GC_heap_lengths[i] += bytes; } return(result); } # endif #ifdef USE_MUNMAP /* For now, this only works on Win32/WinCE and some Unix-like */ /* systems. If you have something else, don't define */ /* USE_MUNMAP. */ /* We assume ANSI C to support this feature. */ #if !defined(MSWIN32) && !defined(MSWINCE) #include #include #include #include #endif /* Compute a page aligned starting address for the unmap */ /* operation on a block of size bytes starting at start. */ /* Return 0 if the block is too small to make this feasible. */ ptr_t GC_unmap_start(ptr_t start, size_t bytes) { ptr_t result = start; /* Round start to next page boundary. */ result += GC_page_size - 1; result = (ptr_t)((word)result & ~(GC_page_size - 1)); if (result + GC_page_size > start + bytes) return 0; return result; } /* Compute end address for an unmap operation on the indicated */ /* block. */ ptr_t GC_unmap_end(ptr_t start, size_t bytes) { ptr_t end_addr = start + bytes; end_addr = (ptr_t)((word)end_addr & ~(GC_page_size - 1)); return end_addr; } /* Under Win32/WinCE we commit (map) and decommit (unmap) */ /* memory using VirtualAlloc and VirtualFree. These functions */ /* work on individual allocations of virtual memory, made */ /* previously using VirtualAlloc with the MEM_RESERVE flag. */ /* The ranges we need to (de)commit may span several of these */ /* allocations; therefore we use VirtualQuery to check */ /* allocation lengths, and split up the range as necessary. */ /* We assume that GC_remap is called on exactly the same range */ /* as a previous call to GC_unmap. It is safe to consistently */ /* round the endpoints in both places. */ void GC_unmap(ptr_t start, size_t bytes) { ptr_t start_addr = GC_unmap_start(start, bytes); ptr_t end_addr = GC_unmap_end(start, bytes); word len = end_addr - start_addr; if (0 == start_addr) return; # if defined(MSWIN32) || defined(MSWINCE) while (len != 0) { MEMORY_BASIC_INFORMATION mem_info; GC_word free_len; if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info)) != sizeof(mem_info)) ABORT("Weird VirtualQuery result"); free_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize; if (!VirtualFree(start_addr, free_len, MEM_DECOMMIT)) ABORT("VirtualFree failed"); GC_unmapped_bytes += free_len; start_addr += free_len; len -= free_len; } # else /* We immediately remap it to prevent an intervening mmap from */ /* accidentally grabbing the same address space. */ { void * result; result = mmap(start_addr, len, PROT_NONE, MAP_PRIVATE | MAP_FIXED | OPT_MAP_ANON, zero_fd, 0/* offset */); if (result != (void *)start_addr) ABORT("mmap(...PROT_NONE...) failed"); } GC_unmapped_bytes += len; # endif } void GC_remap(ptr_t start, size_t bytes) { ptr_t start_addr = GC_unmap_start(start, bytes); ptr_t end_addr = GC_unmap_end(start, bytes); word len = end_addr - start_addr; # if defined(MSWIN32) || defined(MSWINCE) ptr_t result; if (0 == start_addr) return; while (len != 0) { MEMORY_BASIC_INFORMATION mem_info; GC_word alloc_len; if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info)) != sizeof(mem_info)) ABORT("Weird VirtualQuery result"); alloc_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize; result = VirtualAlloc(start_addr, alloc_len, MEM_COMMIT, PAGE_EXECUTE_READWRITE); if (result != start_addr) { ABORT("VirtualAlloc remapping failed"); } GC_unmapped_bytes -= alloc_len; start_addr += alloc_len; len -= alloc_len; } # else /* It was already remapped with PROT_NONE. */ int result; if (0 == start_addr) return; result = mprotect(start_addr, len, PROT_READ | PROT_WRITE | OPT_PROT_EXEC); if (result != 0) { GC_err_printf( "Mprotect failed at %p (length %ld) with errno %d\n", start_addr, (unsigned long)len, errno); ABORT("Mprotect remapping failed"); } GC_unmapped_bytes -= len; # endif } /* Two adjacent blocks have already been unmapped and are about to */ /* be merged. Unmap the whole block. This typically requires */ /* that we unmap a small section in the middle that was not previously */ /* unmapped due to alignment constraints. */ void GC_unmap_gap(ptr_t start1, size_t bytes1, ptr_t start2, size_t bytes2) { ptr_t start1_addr = GC_unmap_start(start1, bytes1); ptr_t end1_addr = GC_unmap_end(start1, bytes1); ptr_t start2_addr = GC_unmap_start(start2, bytes2); ptr_t end2_addr = GC_unmap_end(start2, bytes2); ptr_t start_addr = end1_addr; ptr_t end_addr = start2_addr; size_t len; GC_ASSERT(start1 + bytes1 == start2); if (0 == start1_addr) start_addr = GC_unmap_start(start1, bytes1 + bytes2); if (0 == start2_addr) end_addr = GC_unmap_end(start1, bytes1 + bytes2); if (0 == start_addr) return; len = end_addr - start_addr; # if defined(MSWIN32) || defined(MSWINCE) while (len != 0) { MEMORY_BASIC_INFORMATION mem_info; GC_word free_len; if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info)) != sizeof(mem_info)) ABORT("Weird VirtualQuery result"); free_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize; if (!VirtualFree(start_addr, free_len, MEM_DECOMMIT)) ABORT("VirtualFree failed"); GC_unmapped_bytes += free_len; start_addr += free_len; len -= free_len; } # else if (len != 0 && munmap(start_addr, len) != 0) ABORT("munmap failed"); GC_unmapped_bytes += len; # endif } #endif /* USE_MUNMAP */ /* Routine for pushing any additional roots. In THREADS */ /* environment, this is also responsible for marking from */ /* thread stacks. */ #ifndef THREADS void (*GC_push_other_roots)(void) = 0; #else /* THREADS */ # ifdef PCR PCR_ERes GC_push_thread_stack(PCR_Th_T *t, PCR_Any dummy) { struct PCR_ThCtl_TInfoRep info; PCR_ERes result; info.ti_stkLow = info.ti_stkHi = 0; result = PCR_ThCtl_GetInfo(t, &info); GC_push_all_stack((ptr_t)(info.ti_stkLow), (ptr_t)(info.ti_stkHi)); return(result); } /* Push the contents of an old object. We treat this as stack */ /* data only becasue that makes it robust against mark stack */ /* overflow. */ PCR_ERes GC_push_old_obj(void *p, size_t size, PCR_Any data) { GC_push_all_stack((ptr_t)p, (ptr_t)p + size); return(PCR_ERes_okay); } void GC_default_push_other_roots(void) { /* Traverse data allocated by previous memory managers. */ { extern struct PCR_MM_ProcsRep * GC_old_allocator; if ((*(GC_old_allocator->mmp_enumerate))(PCR_Bool_false, GC_push_old_obj, 0) != PCR_ERes_okay) { ABORT("Old object enumeration failed"); } } /* Traverse all thread stacks. */ if (PCR_ERes_IsErr( PCR_ThCtl_ApplyToAllOtherThreads(GC_push_thread_stack,0)) || PCR_ERes_IsErr(GC_push_thread_stack(PCR_Th_CurrThread(), 0))) { ABORT("Thread stack marking failed\n"); } } # endif /* PCR */ # if defined(GC_PTHREADS) || defined(GC_WIN32_THREADS) extern void GC_push_all_stacks(void); void GC_default_push_other_roots(void) { GC_push_all_stacks(); } # endif /* GC_WIN32_THREADS || GC_PTHREADS */ void (*GC_push_other_roots)(void) = GC_default_push_other_roots; #endif /* THREADS */ /* * Routines for accessing dirty bits on virtual pages. * There are six ways to maintain this information: * DEFAULT_VDB: A simple dummy implementation that treats every page * as possibly dirty. This makes incremental collection * useless, but the implementation is still correct. * MANUAL_VDB: Stacks and static data are always considered dirty. * Heap pages are considered dirty if GC_dirty(p) has been * called on some pointer p pointing to somewhere inside * an object on that page. A GC_dirty() call on a large * object directly dirties only a single page, but for * MANUAL_VDB we are careful to treat an object with a dirty * page as completely dirty. * In order to avoid races, an object must be marked dirty * after it is written, and a reference to the object * must be kept on a stack or in a register in the interim. * With threads enabled, an object directly reachable from the * stack at the time of a collection is treated as dirty. * In single-threaded mode, it suffices to ensure that no * collection can take place between the pointer assignment * and the GC_dirty() call. * PCR_VDB: Use PPCRs virtual dirty bit facility. * PROC_VDB: Use the /proc facility for reading dirty bits. Only * works under some SVR4 variants. Even then, it may be * too slow to be entirely satisfactory. Requires reading * dirty bits for entire address space. Implementations tend * to assume that the client is a (slow) debugger. * MPROTECT_VDB:Protect pages and then catch the faults to keep track of * dirtied pages. The implementation (and implementability) * is highly system dependent. This usually fails when system * calls write to a protected page. We prevent the read system * call from doing so. It is the clients responsibility to * make sure that other system calls are similarly protected * or write only to the stack. * GWW_VDB: Use the Win32 GetWriteWatch functions, if available, to * read dirty bits. In case it is not available (because we * are running on Windows 95, Windows 2000 or earlier), * MPROTECT_VDB may be defined as a fallback strategy. */ GC_bool GC_dirty_maintained = FALSE; #if defined(PROC_VDB) || defined(GWW_VDB) /* Add all pages in pht2 to pht1 */ void GC_or_pages(page_hash_table pht1, page_hash_table pht2) { register int i; for (i = 0; i < PHT_SIZE; i++) pht1[i] |= pht2[i]; } #endif #ifdef GWW_VDB # define GC_GWW_BUF_LEN 1024 static PVOID gww_buf[GC_GWW_BUF_LEN]; # ifdef MPROTECT_VDB GC_bool GC_gww_dirty_init(void) { detect_GetWriteWatch(); return GC_GWW_AVAILABLE(); } # else void GC_dirty_init(void) { detect_GetWriteWatch(); GC_dirty_maintained = GC_GWW_AVAILABLE(); } # endif # ifdef MPROTECT_VDB static void GC_gww_read_dirty(void) # else void GC_read_dirty(void) # endif { word i; BZERO(GC_grungy_pages, sizeof(GC_grungy_pages)); for (i = 0; i != GC_n_heap_sects; ++i) { ULONG_PTR count; do { PVOID * pages, * pages_end; DWORD page_size; pages = gww_buf; count = GC_GWW_BUF_LEN; /* * GetWriteWatch is documented as returning non-zero when it fails, * but the documentation doesn't explicitly say why it would fail or * what its behaviour will be if it fails. * It does appear to fail, at least on recent W2K instances, if * the underlying memory was not allocated with the appropriate * flag. This is common if GC_enable_incremental is called * shortly after GC initialization. To avoid modifying the * interface, we silently work around such a failure, it it only * affects the initial (small) heap allocation. * If there are more dirty * pages than will fit in the buffer, this is not treated as a * failure; we must check the page count in the loop condition. * Since each partial call will reset the status of some * pages, this should eventually terminate even in the overflow * case. */ if (GetWriteWatch_func(WRITE_WATCH_FLAG_RESET, GC_heap_sects[i].hs_start, GC_heap_sects[i].hs_bytes, pages, &count, &page_size) != 0) { static int warn_count = 0; unsigned j; struct hblk * start = (struct hblk *)GC_heap_sects[i].hs_start; static struct hblk *last_warned = 0; size_t nblocks = divHBLKSZ(GC_heap_sects[i].hs_bytes); if ( i != 0 && last_warned != start && warn_count++ < 5) { last_warned = start; WARN( "GC_gww_read_dirty unexpectedly failed at %ld: " "Falling back to marking all pages dirty\n", start); } for (j = 0; j < nblocks; ++j) { word hash = PHT_HASH(start + j); set_pht_entry_from_index(GC_grungy_pages, hash); } count = 1; /* Done with this section. */ } else /* succeeded */{ pages_end = pages + count; while (pages != pages_end) { struct hblk * h = (struct hblk *) *pages++; struct hblk * h_end = (struct hblk *) ((char *) h + page_size); do set_pht_entry_from_index(GC_grungy_pages, PHT_HASH(h)); while (++h < h_end); } } } while (count == GC_GWW_BUF_LEN); } GC_or_pages(GC_written_pages, GC_grungy_pages); } # ifdef MPROTECT_VDB static GC_bool GC_gww_page_was_dirty(struct hblk * h) # else GC_bool GC_page_was_dirty(struct hblk * h) # endif { return HDR(h) == 0 || get_pht_entry_from_index(GC_grungy_pages, PHT_HASH(h)); } # ifdef MPROTECT_VDB static GC_bool GC_gww_page_was_ever_dirty(struct hblk * h) # else GC_bool GC_page_was_ever_dirty(struct hblk * h) # endif { return HDR(h) == 0 || get_pht_entry_from_index(GC_written_pages, PHT_HASH(h)); } # ifndef MPROTECT_VDB void GC_remove_protection(struct hblk *h, word nblocks, GC_bool is_ptrfree) {} # endif # endif /* GWW_VDB */ # ifdef DEFAULT_VDB /* All of the following assume the allocation lock is held, and */ /* signals are disabled. */ /* The client asserts that unallocated pages in the heap are never */ /* written. */ /* Initialize virtual dirty bit implementation. */ void GC_dirty_init(void) { if (GC_print_stats == VERBOSE) GC_log_printf("Initializing DEFAULT_VDB...\n"); GC_dirty_maintained = TRUE; } /* Retrieve system dirty bits for heap to a local buffer. */ /* Restore the systems notion of which pages are dirty. */ void GC_read_dirty(void) {} /* Is the HBLKSIZE sized page at h marked dirty in the local buffer? */ /* If the actual page size is different, this returns TRUE if any */ /* of the pages overlapping h are dirty. This routine may err on the */ /* side of labelling pages as dirty (and this implementation does). */ /*ARGSUSED*/ GC_bool GC_page_was_dirty(struct hblk *h) { return(TRUE); } /* * The following two routines are typically less crucial. They matter * most with large dynamic libraries, or if we can't accurately identify * stacks, e.g. under Solaris 2.X. Otherwise the following default * versions are adequate. */ /* Could any valid GC heap pointer ever have been written to this page? */ /*ARGSUSED*/ GC_bool GC_page_was_ever_dirty(struct hblk *h) { return(TRUE); } /* A call that: */ /* I) hints that [h, h+nblocks) is about to be written. */ /* II) guarantees that protection is removed. */ /* (I) may speed up some dirty bit implementations. */ /* (II) may be essential if we need to ensure that */ /* pointer-free system call buffers in the heap are */ /* not protected. */ /*ARGSUSED*/ void GC_remove_protection(struct hblk *h, word nblocks, GC_bool is_ptrfree) { } # endif /* DEFAULT_VDB */ # ifdef MANUAL_VDB /* Initialize virtual dirty bit implementation. */ void GC_dirty_init(void) { if (GC_print_stats == VERBOSE) GC_log_printf("Initializing MANUAL_VDB...\n"); /* GC_dirty_pages and GC_grungy_pages are already cleared. */ GC_dirty_maintained = TRUE; } /* Retrieve system dirty bits for heap to a local buffer. */ /* Restore the systems notion of which pages are dirty. */ void GC_read_dirty(void) { BCOPY((word *)GC_dirty_pages, GC_grungy_pages, (sizeof GC_dirty_pages)); BZERO((word *)GC_dirty_pages, (sizeof GC_dirty_pages)); } /* Is the HBLKSIZE sized page at h marked dirty in the local buffer? */ /* If the actual page size is different, this returns TRUE if any */ /* of the pages overlapping h are dirty. This routine may err on the */ /* side of labelling pages as dirty (and this implementation does). */ /*ARGSUSED*/ GC_bool GC_page_was_dirty(struct hblk *h) { register word index; index = PHT_HASH(h); return(HDR(h) == 0 || get_pht_entry_from_index(GC_grungy_pages, index)); } /* Could any valid GC heap pointer ever have been written to this page? */ /*ARGSUSED*/ GC_bool GC_page_was_ever_dirty(struct hblk *h) { /* FIXME - implement me. */ return(TRUE); } /* Mark the page containing p as dirty. Logically, this dirties the */ /* entire object. */ void GC_dirty(ptr_t p) { word index = PHT_HASH(p); async_set_pht_entry_from_index(GC_dirty_pages, index); } /*ARGSUSED*/ void GC_remove_protection(struct hblk *h, word nblocks, GC_bool is_ptrfree) { } # endif /* MANUAL_VDB */ # ifdef MPROTECT_VDB /* * See DEFAULT_VDB for interface descriptions. */ /* * This implementation maintains dirty bits itself by catching write * faults and keeping track of them. We assume nobody else catches * SIGBUS or SIGSEGV. We assume no write faults occur in system calls. * This means that clients must ensure that system calls don't write * to the write-protected heap. Probably the best way to do this is to * ensure that system calls write at most to POINTERFREE objects in the * heap, and do even that only if we are on a platform on which those * are not protected. Another alternative is to wrap system calls * (see example for read below), but the current implementation holds * applications. * We assume the page size is a multiple of HBLKSIZE. * We prefer them to be the same. We avoid protecting POINTERFREE * objects only if they are the same. */ # if !defined(MSWIN32) && !defined(MSWINCE) && !defined(DARWIN) # include # include # include # define PROTECT(addr, len) \ if (mprotect((caddr_t)(addr), (size_t)(len), \ PROT_READ | OPT_PROT_EXEC) < 0) { \ ABORT("mprotect failed"); \ } # define UNPROTECT(addr, len) \ if (mprotect((caddr_t)(addr), (size_t)(len), \ PROT_WRITE | PROT_READ | OPT_PROT_EXEC ) < 0) { \ ABORT("un-mprotect failed"); \ } # else # ifdef DARWIN /* Using vm_protect (mach syscall) over mprotect (BSD syscall) seems to decrease the likelihood of some of the problems described below. */ #include static mach_port_t GC_task_self; #define PROTECT(addr,len) \ if(vm_protect(GC_task_self,(vm_address_t)(addr),(vm_size_t)(len), \ FALSE,VM_PROT_READ) != KERN_SUCCESS) { \ ABORT("vm_portect failed"); \ } #define UNPROTECT(addr,len) \ if(vm_protect(GC_task_self,(vm_address_t)(addr),(vm_size_t)(len), \ FALSE,VM_PROT_READ|VM_PROT_WRITE) != KERN_SUCCESS) { \ ABORT("vm_portect failed"); \ } # else # ifndef MSWINCE # include # endif static DWORD protect_junk; # define PROTECT(addr, len) \ if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READ, \ &protect_junk)) { \ DWORD last_error = GetLastError(); \ GC_printf("Last error code: %lx\n", last_error); \ ABORT("VirtualProtect failed"); \ } # define UNPROTECT(addr, len) \ if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READWRITE, \ &protect_junk)) { \ ABORT("un-VirtualProtect failed"); \ } # endif /* !DARWIN */ # endif /* MSWIN32 || MSWINCE || DARWIN */ #if defined(MSWIN32) typedef LPTOP_LEVEL_EXCEPTION_FILTER SIG_HNDLR_PTR; # undef SIG_DFL # define SIG_DFL (LPTOP_LEVEL_EXCEPTION_FILTER) (-1) #elif defined(MSWINCE) typedef LONG (WINAPI *SIG_HNDLR_PTR)(struct _EXCEPTION_POINTERS *); # undef SIG_DFL # define SIG_DFL (SIG_HNDLR_PTR) (-1) #elif defined(DARWIN) typedef void (* SIG_HNDLR_PTR)(); #else typedef void (* SIG_HNDLR_PTR)(int, siginfo_t *, void *); typedef void (* PLAIN_HNDLR_PTR)(int); #endif #if defined(__GLIBC__) # if __GLIBC__ < 2 || __GLIBC__ == 2 && __GLIBC_MINOR__ < 2 # error glibc too old? # endif #endif #ifndef DARWIN SIG_HNDLR_PTR GC_old_bus_handler; GC_bool GC_old_bus_handler_used_si; SIG_HNDLR_PTR GC_old_segv_handler; /* Also old MSWIN32 ACCESS_VIOLATION filter */ GC_bool GC_old_segv_handler_used_si; #endif /* !DARWIN */ #if defined(THREADS) /* We need to lock around the bitmap update in the write fault handler */ /* in order to avoid the risk of losing a bit. We do this with a */ /* test-and-set spin lock if we know how to do that. Otherwise we */ /* check whether we are already in the handler and use the dumb but */ /* safe fallback algorithm of setting all bits in the word. */ /* Contention should be very rare, so we do the minimum to handle it */ /* correctly. */ #ifdef AO_HAVE_test_and_set_acquire static volatile AO_TS_t fault_handler_lock = 0; void async_set_pht_entry_from_index(volatile page_hash_table db, size_t index) { while (AO_test_and_set_acquire(&fault_handler_lock) == AO_TS_SET) {} /* Could also revert to set_pht_entry_from_index_safe if initial */ /* GC_test_and_set fails. */ set_pht_entry_from_index(db, index); AO_CLEAR(&fault_handler_lock); } #else /* !AO_have_test_and_set_acquire */ # error No test_and_set operation: Introduces a race. /* THIS WOULD BE INCORRECT! */ /* The dirty bit vector may be temporarily wrong, */ /* just before we notice the conflict and correct it. We may end up */ /* looking at it while it's wrong. But this requires contention */ /* exactly when a GC is triggered, which seems far less likely to */ /* fail than the old code, which had no reported failures. Thus we */ /* leave it this way while we think of something better, or support */ /* GC_test_and_set on the remaining platforms. */ static volatile word currently_updating = 0; void async_set_pht_entry_from_index(volatile page_hash_table db, size_t index) { unsigned int update_dummy; currently_updating = (word)(&update_dummy); set_pht_entry_from_index(db, index); /* If we get contention in the 10 or so instruction window here, */ /* and we get stopped by a GC between the two updates, we lose! */ if (currently_updating != (word)(&update_dummy)) { set_pht_entry_from_index_safe(db, index); /* We claim that if two threads concurrently try to update the */ /* dirty bit vector, the first one to execute UPDATE_START */ /* will see it changed when UPDATE_END is executed. (Note that */ /* &update_dummy must differ in two distinct threads.) It */ /* will then execute set_pht_entry_from_index_safe, thus */ /* returning us to a safe state, though not soon enough. */ } } #endif /* !AO_HAVE_test_and_set_acquire */ #else /* !THREADS */ # define async_set_pht_entry_from_index(db, index) \ set_pht_entry_from_index(db, index) #endif /* !THREADS */ #if !defined(DARWIN) # include # if defined(FREEBSD) # define SIG_OK TRUE # define CODE_OK (code == BUS_PAGE_FAULT) # elif defined(OSF1) # define SIG_OK (sig == SIGSEGV) # define CODE_OK (code == 2 /* experimentally determined */) # elif defined(IRIX5) # define SIG_OK (sig == SIGSEGV) # define CODE_OK (code == EACCES) # elif defined(HURD) # define SIG_OK (sig == SIGBUS || sig == SIGSEGV) # define CODE_OK TRUE # elif defined(LINUX) # define SIG_OK (sig == SIGSEGV) # define CODE_OK TRUE /* Empirically c.trapno == 14, on IA32, but is that useful? */ /* Should probably consider alignment issues on other */ /* architectures. */ # elif defined(HPUX) # define SIG_OK (sig == SIGSEGV || sig == SIGBUS) # define CODE_OK (si -> si_code == SEGV_ACCERR) \ || (si -> si_code == BUS_ADRERR) \ || (si -> si_code == BUS_UNKNOWN) \ || (si -> si_code == SEGV_UNKNOWN) \ || (si -> si_code == BUS_OBJERR) # elif defined(FREEBSD) # define SIG_OK (sig == SIGBUS) # define CODE_OK (si -> si_code == BUS_PAGE_FAULT) # elif defined(SUNOS5SIGS) # define SIG_OK (sig == SIGSEGV) # define CODE_OK (si -> si_code == SEGV_ACCERR) # elif defined(MSWIN32) || defined(MSWINCE) # define SIG_OK (exc_info -> ExceptionRecord -> ExceptionCode \ == STATUS_ACCESS_VIOLATION) # define CODE_OK (exc_info -> ExceptionRecord -> ExceptionInformation[0] \ == 1) /* Write fault */ # endif # if defined(MSWIN32) || defined(MSWINCE) LONG WINAPI GC_write_fault_handler(struct _EXCEPTION_POINTERS *exc_info) # else # include /*ARGSUSED*/ void GC_write_fault_handler(int sig, siginfo_t *si, void *raw_sc) # endif /* MSWIN32 || MSWINCE */ { # if !defined(MSWIN32) && !defined(MSWINCE) int code = si -> si_code; /* Ignore gcc unused var. warning. */ ucontext_t * scp = (ucontext_t *)raw_sc; /* Ignore gcc unused var. warning. */ char *addr = si -> si_addr; # endif # if defined(MSWIN32) || defined(MSWINCE) char * addr = (char *) (exc_info -> ExceptionRecord -> ExceptionInformation[1]); # define sig SIGSEGV # endif unsigned i; if (SIG_OK && CODE_OK) { register struct hblk * h = (struct hblk *)((word)addr & ~(GC_page_size-1)); GC_bool in_allocd_block; # ifdef SUNOS5SIGS /* Address is only within the correct physical page. */ in_allocd_block = FALSE; for (i = 0; i < divHBLKSZ(GC_page_size); i++) { if (HDR(h+i) != 0) { in_allocd_block = TRUE; } } # else in_allocd_block = (HDR(addr) != 0); # endif if (!in_allocd_block) { /* FIXME - We should make sure that we invoke the */ /* old handler with the appropriate calling */ /* sequence, which often depends on SA_SIGINFO. */ /* Heap blocks now begin and end on page boundaries */ SIG_HNDLR_PTR old_handler; GC_bool used_si; if (sig == SIGSEGV) { old_handler = GC_old_segv_handler; used_si = GC_old_segv_handler_used_si; } else { old_handler = GC_old_bus_handler; used_si = GC_old_bus_handler_used_si; } if (old_handler == (SIG_HNDLR_PTR)SIG_DFL) { # if !defined(MSWIN32) && !defined(MSWINCE) GC_err_printf("Segfault at %p\n", addr); ABORT("Unexpected bus error or segmentation fault"); # else return(EXCEPTION_CONTINUE_SEARCH); # endif } else { /* * FIXME: This code should probably check if the * old signal handler used the traditional style and * if so call it using that style. */ # ifdef MSWIN32 return((*old_handler)(exc_info)); # else if (used_si) ((SIG_HNDLR_PTR)old_handler) (sig, si, raw_sc); else /* FIXME: should pass nonstandard args as well. */ ((PLAIN_HNDLR_PTR)old_handler) (sig); return; # endif } } UNPROTECT(h, GC_page_size); /* We need to make sure that no collection occurs between */ /* the UNPROTECT and the setting of the dirty bit. Otherwise */ /* a write by a third thread might go unnoticed. Reversing */ /* the order is just as bad, since we would end up unprotecting */ /* a page in a GC cycle during which it's not marked. */ /* Currently we do this by disabling the thread stopping */ /* signals while this handler is running. An alternative might */ /* be to record the fact that we're about to unprotect, or */ /* have just unprotected a page in the GC's thread structure, */ /* and then to have the thread stopping code set the dirty */ /* flag, if necessary. */ for (i = 0; i < divHBLKSZ(GC_page_size); i++) { size_t index = PHT_HASH(h+i); async_set_pht_entry_from_index(GC_dirty_pages, index); } /* The write may not take place before dirty bits are read. */ /* But then we'll fault again ... */ # if defined(MSWIN32) || defined(MSWINCE) return(EXCEPTION_CONTINUE_EXECUTION); # else return; # endif } #if defined(MSWIN32) || defined(MSWINCE) return EXCEPTION_CONTINUE_SEARCH; #else GC_err_printf("Segfault at %p\n", addr); ABORT("Unexpected bus error or segmentation fault"); #endif } #endif /* !DARWIN */ /* * We hold the allocation lock. We expect block h to be written * shortly. Ensure that all pages containing any part of the n hblks * starting at h are no longer protected. If is_ptrfree is false, * also ensure that they will subsequently appear to be dirty. */ void GC_remove_protection(struct hblk *h, word nblocks, GC_bool is_ptrfree) { struct hblk * h_trunc; /* Truncated to page boundary */ struct hblk * h_end; /* Page boundary following block end */ struct hblk * current; GC_bool found_clean; # if defined(GWW_VDB) if (GC_GWW_AVAILABLE()) return; # endif if (!GC_dirty_maintained) return; h_trunc = (struct hblk *)((word)h & ~(GC_page_size-1)); h_end = (struct hblk *)(((word)(h + nblocks) + GC_page_size-1) & ~(GC_page_size-1)); found_clean = FALSE; for (current = h_trunc; current < h_end; ++current) { size_t index = PHT_HASH(current); if (!is_ptrfree || current < h || current >= h + nblocks) { async_set_pht_entry_from_index(GC_dirty_pages, index); } } UNPROTECT(h_trunc, (ptr_t)h_end - (ptr_t)h_trunc); } #if !defined(DARWIN) void GC_dirty_init(void) { # if !defined(MSWIN32) && !defined(MSWINCE) struct sigaction act, oldact; act.sa_flags = SA_RESTART | SA_SIGINFO; act.sa_sigaction = GC_write_fault_handler; (void)sigemptyset(&act.sa_mask); # ifdef SIG_SUSPEND /* Arrange to postpone SIG_SUSPEND while we're in a write fault */ /* handler. This effectively makes the handler atomic w.r.t. */ /* stopping the world for GC. */ (void)sigaddset(&act.sa_mask, SIG_SUSPEND); # endif /* SIG_SUSPEND */ # endif if (GC_print_stats == VERBOSE) GC_log_printf( "Initializing mprotect virtual dirty bit implementation\n"); GC_dirty_maintained = TRUE; if (GC_page_size % HBLKSIZE != 0) { GC_err_printf("Page size not multiple of HBLKSIZE\n"); ABORT("Page size not multiple of HBLKSIZE"); } # if !defined(MSWIN32) && !defined(MSWINCE) # if defined(GC_IRIX_THREADS) sigaction(SIGSEGV, 0, &oldact); sigaction(SIGSEGV, &act, 0); # else { int res = sigaction(SIGSEGV, &act, &oldact); if (res != 0) ABORT("Sigaction failed"); } # endif if (oldact.sa_flags & SA_SIGINFO) { GC_old_segv_handler = oldact.sa_sigaction; GC_old_segv_handler_used_si = TRUE; } else { GC_old_segv_handler = (SIG_HNDLR_PTR)oldact.sa_handler; GC_old_segv_handler_used_si = FALSE; } if (GC_old_segv_handler == (SIG_HNDLR_PTR)SIG_IGN) { GC_err_printf("Previously ignored segmentation violation!?"); GC_old_segv_handler = (SIG_HNDLR_PTR)SIG_DFL; } if (GC_old_segv_handler != (SIG_HNDLR_PTR)SIG_DFL) { if (GC_print_stats == VERBOSE) GC_log_printf("Replaced other SIGSEGV handler\n"); } # endif /* ! MS windows */ # if defined(HPUX) || defined(LINUX) || defined(HURD) \ || (defined(FREEBSD) && defined(SUNOS5SIGS)) sigaction(SIGBUS, &act, &oldact); if (oldact.sa_flags & SA_SIGINFO) { GC_old_bus_handler = oldact.sa_sigaction; GC_old_bus_handler_used_si = TRUE; } else { GC_old_bus_handler = (SIG_HNDLR_PTR)oldact.sa_handler; GC_old_bus_handler_used_si = FALSE; } if (GC_old_bus_handler == (SIG_HNDLR_PTR)SIG_IGN) { GC_err_printf("Previously ignored bus error!?"); GC_old_bus_handler = (SIG_HNDLR_PTR)SIG_DFL; } if (GC_old_bus_handler != (SIG_HNDLR_PTR)SIG_DFL) { if (GC_print_stats == VERBOSE) GC_log_printf("Replaced other SIGBUS handler\n"); } # endif /* HPUX || LINUX || HURD || (FREEBSD && SUNOS5SIGS) */ # if defined(MSWIN32) # if defined(GWW_VDB) if (GC_gww_dirty_init()) return; # endif GC_old_segv_handler = SetUnhandledExceptionFilter(GC_write_fault_handler); if (GC_old_segv_handler != NULL) { if (GC_print_stats) GC_log_printf("Replaced other UnhandledExceptionFilter\n"); } else { GC_old_segv_handler = SIG_DFL; } # endif } #endif /* !DARWIN */ int GC_incremental_protection_needs(void) { if (GC_page_size == HBLKSIZE) { return GC_PROTECTS_POINTER_HEAP; } else { return GC_PROTECTS_POINTER_HEAP | GC_PROTECTS_PTRFREE_HEAP; } } #define HAVE_INCREMENTAL_PROTECTION_NEEDS #define IS_PTRFREE(hhdr) ((hhdr)->hb_descr == 0) #define PAGE_ALIGNED(x) !((word)(x) & (GC_page_size - 1)) void GC_protect_heap(void) { ptr_t start; size_t len; struct hblk * current; struct hblk * current_start; /* Start of block to be protected. */ struct hblk * limit; unsigned i; GC_bool protect_all = (0 != (GC_incremental_protection_needs() & GC_PROTECTS_PTRFREE_HEAP)); for (i = 0; i < GC_n_heap_sects; i++) { start = GC_heap_sects[i].hs_start; len = GC_heap_sects[i].hs_bytes; if (protect_all) { PROTECT(start, len); } else { GC_ASSERT(PAGE_ALIGNED(len)) GC_ASSERT(PAGE_ALIGNED(start)) current_start = current = (struct hblk *)start; limit = (struct hblk *)(start + len); while (current < limit) { hdr * hhdr; word nhblks; GC_bool is_ptrfree; GC_ASSERT(PAGE_ALIGNED(current)); GET_HDR(current, hhdr); if (IS_FORWARDING_ADDR_OR_NIL(hhdr)) { /* This can happen only if we're at the beginning of a */ /* heap segment, and a block spans heap segments. */ /* We will handle that block as part of the preceding */ /* segment. */ GC_ASSERT(current_start == current); current_start = ++current; continue; } if (HBLK_IS_FREE(hhdr)) { GC_ASSERT(PAGE_ALIGNED(hhdr -> hb_sz)); nhblks = divHBLKSZ(hhdr -> hb_sz); is_ptrfree = TRUE; /* dirty on alloc */ } else { nhblks = OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz); is_ptrfree = IS_PTRFREE(hhdr); } if (is_ptrfree) { if (current_start < current) { PROTECT(current_start, (ptr_t)current - (ptr_t)current_start); } current_start = (current += nhblks); } else { current += nhblks; } } if (current_start < current) { PROTECT(current_start, (ptr_t)current - (ptr_t)current_start); } } } } /* We assume that either the world is stopped or its OK to lose dirty */ /* bits while this is happenning (as in GC_enable_incremental). */ void GC_read_dirty(void) { # if defined(GWW_VDB) if (GC_GWW_AVAILABLE()) { GC_gww_read_dirty(); return; } # endif BCOPY((word *)GC_dirty_pages, GC_grungy_pages, (sizeof GC_dirty_pages)); BZERO((word *)GC_dirty_pages, (sizeof GC_dirty_pages)); GC_protect_heap(); } GC_bool GC_page_was_dirty(struct hblk *h) { register word index; # if defined(GWW_VDB) if (GC_GWW_AVAILABLE()) return GC_gww_page_was_dirty(h); # endif index = PHT_HASH(h); return(HDR(h) == 0 || get_pht_entry_from_index(GC_grungy_pages, index)); } /* * Acquiring the allocation lock here is dangerous, since this * can be called from within GC_call_with_alloc_lock, and the cord * package does so. On systems that allow nested lock acquisition, this * happens to work. * On other systems, SET_LOCK_HOLDER and friends must be suitably defined. */ static GC_bool syscall_acquired_lock = FALSE; /* Protected by GC lock. */ #if 0 void GC_begin_syscall(void) { /* FIXME: Resurrecting this code would require fixing the */ /* test, which can spuriously return TRUE. */ if (!I_HOLD_LOCK()) { LOCK(); syscall_acquired_lock = TRUE; } } void GC_end_syscall(void) { if (syscall_acquired_lock) { syscall_acquired_lock = FALSE; UNLOCK(); } } void GC_unprotect_range(ptr_t addr, word len) { struct hblk * start_block; struct hblk * end_block; register struct hblk *h; ptr_t obj_start; if (!GC_dirty_maintained) return; obj_start = GC_base(addr); if (obj_start == 0) return; if (GC_base(addr + len - 1) != obj_start) { ABORT("GC_unprotect_range(range bigger than object)"); } start_block = (struct hblk *)((word)addr & ~(GC_page_size - 1)); end_block = (struct hblk *)((word)(addr + len - 1) & ~(GC_page_size - 1)); end_block += GC_page_size/HBLKSIZE - 1; for (h = start_block; h <= end_block; h++) { register word index = PHT_HASH(h); async_set_pht_entry_from_index(GC_dirty_pages, index); } UNPROTECT(start_block, ((ptr_t)end_block - (ptr_t)start_block) + HBLKSIZE); } /* We no longer wrap read by default, since that was causing too many */ /* problems. It is preferred that the client instead avoids writing */ /* to the write-protected heap with a system call. */ /* This still serves as sample code if you do want to wrap system calls.*/ #if !defined(MSWIN32) && !defined(MSWINCE) && !defined(GC_USE_LD_WRAP) /* Replacement for UNIX system call. */ /* Other calls that write to the heap should be handled similarly. */ /* Note that this doesn't work well for blocking reads: It will hold */ /* the allocation lock for the entire duration of the call. Multithreaded */ /* clients should really ensure that it won't block, either by setting */ /* the descriptor nonblocking, or by calling select or poll first, to */ /* make sure that input is available. */ /* Another, preferred alternative is to ensure that system calls never */ /* write to the protected heap (see above). */ # include # include ssize_t read(int fd, void *buf, size_t nbyte) { int result; GC_begin_syscall(); GC_unprotect_range(buf, (word)nbyte); # if defined(IRIX5) || defined(GC_LINUX_THREADS) /* Indirect system call may not always be easily available. */ /* We could call _read, but that would interfere with the */ /* libpthread interception of read. */ /* On Linux, we have to be careful with the linuxthreads */ /* read interception. */ { struct iovec iov; iov.iov_base = buf; iov.iov_len = nbyte; result = readv(fd, &iov, 1); } # else # if defined(HURD) result = __read(fd, buf, nbyte); # else /* The two zero args at the end of this list are because one IA-64 syscall() implementation actually requires six args to be passed, even though they aren't always used. */ result = syscall(SYS_read, fd, buf, nbyte, 0, 0); # endif /* !HURD */ # endif GC_end_syscall(); return(result); } #endif /* !MSWIN32 && !MSWINCE && !GC_LINUX_THREADS */ #if defined(GC_USE_LD_WRAP) && !defined(THREADS) /* We use the GNU ld call wrapping facility. */ /* This requires that the linker be invoked with "--wrap read". */ /* This can be done by passing -Wl,"--wrap read" to gcc. */ /* I'm not sure that this actually wraps whatever version of read */ /* is called by stdio. That code also mentions __read. */ # include ssize_t __wrap_read(int fd, void *buf, size_t nbyte) { int result; GC_begin_syscall(); GC_unprotect_range(buf, (word)nbyte); result = __real_read(fd, buf, nbyte); GC_end_syscall(); return(result); } /* We should probably also do this for __read, or whatever stdio */ /* actually calls. */ #endif #endif /* 0 */ /*ARGSUSED*/ GC_bool GC_page_was_ever_dirty(struct hblk *h) { # if defined(GWW_VDB) if (GC_GWW_AVAILABLE()) return GC_gww_page_was_ever_dirty(h); # endif return(TRUE); } # endif /* MPROTECT_VDB */ # ifdef PROC_VDB /* * See DEFAULT_VDB for interface descriptions. */ /* * This implementaion assumes a Solaris 2.X like /proc pseudo-file-system * from which we can read page modified bits. This facility is far from * optimal (e.g. we would like to get the info for only some of the * address space), but it avoids intercepting system calls. */ #include #include #include #include #include #include #include #define INITIAL_BUF_SZ 16384 word GC_proc_buf_size = INITIAL_BUF_SZ; char *GC_proc_buf; int GC_proc_fd; void GC_dirty_init(void) { int fd; char buf[30]; GC_dirty_maintained = TRUE; if (GC_bytes_allocd != 0 || GC_bytes_allocd_before_gc != 0) { register int i; for (i = 0; i < PHT_SIZE; i++) GC_written_pages[i] = (word)(-1); if (GC_print_stats == VERBOSE) GC_log_printf( "Allocated bytes:%lu:all pages may have been written\n", (unsigned long) (GC_bytes_allocd + GC_bytes_allocd_before_gc)); } sprintf(buf, "/proc/%d", getpid()); fd = open(buf, O_RDONLY); if (fd < 0) { ABORT("/proc open failed"); } GC_proc_fd = syscall(SYS_ioctl, fd, PIOCOPENPD, 0); close(fd); syscall(SYS_fcntl, GC_proc_fd, F_SETFD, FD_CLOEXEC); if (GC_proc_fd < 0) { ABORT("/proc ioctl failed"); } GC_proc_buf = GC_scratch_alloc(GC_proc_buf_size); } /* Ignore write hints. They don't help us here. */ /*ARGSUSED*/ void GC_remove_protection(h, nblocks, is_ptrfree) struct hblk *h; word nblocks; GC_bool is_ptrfree; { } # define READ(fd,buf,nbytes) read(fd, buf, nbytes) void GC_read_dirty(void) { unsigned long ps, np; int nmaps; ptr_t vaddr; struct prasmap * map; char * bufp; ptr_t current_addr, limit; int i; BZERO(GC_grungy_pages, (sizeof GC_grungy_pages)); bufp = GC_proc_buf; if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) { if (GC_print_stats) GC_log_printf("/proc read failed: GC_proc_buf_size = %lu\n", (unsigned long)GC_proc_buf_size); { /* Retry with larger buffer. */ word new_size = 2 * GC_proc_buf_size; char * new_buf = GC_scratch_alloc(new_size); if (new_buf != 0) { GC_proc_buf = bufp = new_buf; GC_proc_buf_size = new_size; } if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) { WARN("Insufficient space for /proc read\n", 0); /* Punt: */ memset(GC_grungy_pages, 0xff, sizeof (page_hash_table)); memset(GC_written_pages, 0xff, sizeof(page_hash_table)); return; } } } /* Copy dirty bits into GC_grungy_pages */ nmaps = ((struct prpageheader *)bufp) -> pr_nmap; /* printf( "nmaps = %d, PG_REFERENCED = %d, PG_MODIFIED = %d\n", nmaps, PG_REFERENCED, PG_MODIFIED); */ bufp = bufp + sizeof(struct prpageheader); for (i = 0; i < nmaps; i++) { map = (struct prasmap *)bufp; vaddr = (ptr_t)(map -> pr_vaddr); ps = map -> pr_pagesize; np = map -> pr_npage; /* printf("vaddr = 0x%X, ps = 0x%X, np = 0x%X\n", vaddr, ps, np); */ limit = vaddr + ps * np; bufp += sizeof (struct prasmap); for (current_addr = vaddr; current_addr < limit; current_addr += ps){ if ((*bufp++) & PG_MODIFIED) { register struct hblk * h = (struct hblk *) current_addr; while ((ptr_t)h < current_addr + ps) { register word index = PHT_HASH(h); set_pht_entry_from_index(GC_grungy_pages, index); h++; } } } bufp += sizeof(long) - 1; bufp = (char *)((unsigned long)bufp & ~(sizeof(long)-1)); } /* Update GC_written_pages. */ GC_or_pages(GC_written_pages, GC_grungy_pages); } #undef READ GC_bool GC_page_was_dirty(struct hblk *h) { register word index = PHT_HASH(h); register GC_bool result; result = get_pht_entry_from_index(GC_grungy_pages, index); return(result); } GC_bool GC_page_was_ever_dirty(struct hblk *h) { register word index = PHT_HASH(h); register GC_bool result; result = get_pht_entry_from_index(GC_written_pages, index); return(result); } # endif /* PROC_VDB */ # ifdef PCR_VDB # include "vd/PCR_VD.h" # define NPAGES (32*1024) /* 128 MB */ PCR_VD_DB GC_grungy_bits[NPAGES]; ptr_t GC_vd_base; /* Address corresponding to GC_grungy_bits[0] */ /* HBLKSIZE aligned. */ void GC_dirty_init(void) { GC_dirty_maintained = TRUE; /* For the time being, we assume the heap generally grows up */ GC_vd_base = GC_heap_sects[0].hs_start; if (GC_vd_base == 0) { ABORT("Bad initial heap segment"); } if (PCR_VD_Start(HBLKSIZE, GC_vd_base, NPAGES*HBLKSIZE) != PCR_ERes_okay) { ABORT("dirty bit initialization failed"); } } void GC_read_dirty(void) { /* lazily enable dirty bits on newly added heap sects */ { static int onhs = 0; int nhs = GC_n_heap_sects; for( ; onhs < nhs; onhs++ ) { PCR_VD_WriteProtectEnable( GC_heap_sects[onhs].hs_start, GC_heap_sects[onhs].hs_bytes ); } } if (PCR_VD_Clear(GC_vd_base, NPAGES*HBLKSIZE, GC_grungy_bits) != PCR_ERes_okay) { ABORT("dirty bit read failed"); } } GC_bool GC_page_was_dirty(struct hblk *h) { if((ptr_t)h < GC_vd_base || (ptr_t)h >= GC_vd_base + NPAGES*HBLKSIZE) { return(TRUE); } return(GC_grungy_bits[h - (struct hblk *)GC_vd_base] & PCR_VD_DB_dirtyBit); } /*ARGSUSED*/ void GC_remove_protection(struct hblk *h, word nblocks, GC_bool is_ptrfree) { PCR_VD_WriteProtectDisable(h, nblocks*HBLKSIZE); PCR_VD_WriteProtectEnable(h, nblocks*HBLKSIZE); } # endif /* PCR_VDB */ #if defined(MPROTECT_VDB) && defined(DARWIN) /* The following sources were used as a *reference* for this exception handling code: 1. Apple's mach/xnu documentation 2. Timothy J. Wood's "Mach Exception Handlers 101" post to the omnigroup's macosx-dev list. www.omnigroup.com/mailman/archive/macosx-dev/2000-June/014178.html 3. macosx-nat.c from Apple's GDB source code. */ /* The bug that caused all this trouble should now be fixed. This should eventually be removed if all goes well. */ /* #define BROKEN_EXCEPTION_HANDLING */ #include #include #include #include #include #include extern void GC_darwin_register_mach_handler_thread(mach_port_t); /* These are not defined in any header, although they are documented */ extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *); extern kern_return_t exception_raise(mach_port_t, mach_port_t, mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t); extern kern_return_t exception_raise_state(mach_port_t, mach_port_t, mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t*, thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t*); extern kern_return_t exception_raise_state_identity(mach_port_t, mach_port_t, mach_port_t, exception_type_t, exception_data_t, mach_msg_type_number_t, thread_state_flavor_t*, thread_state_t, mach_msg_type_number_t, thread_state_t, mach_msg_type_number_t*); #define MAX_EXCEPTION_PORTS 16 static struct { mach_msg_type_number_t count; exception_mask_t masks[MAX_EXCEPTION_PORTS]; exception_handler_t ports[MAX_EXCEPTION_PORTS]; exception_behavior_t behaviors[MAX_EXCEPTION_PORTS]; thread_state_flavor_t flavors[MAX_EXCEPTION_PORTS]; } GC_old_exc_ports; static struct { mach_port_t exception; #if defined(THREADS) mach_port_t reply; #endif } GC_ports; typedef struct { mach_msg_header_t head; } GC_msg_t; typedef enum { GC_MP_NORMAL, GC_MP_DISCARDING, GC_MP_STOPPED } GC_mprotect_state_t; /* FIXME: 1 and 2 seem to be safe to use in the msgh_id field, but it isn't documented. Use the source and see if they should be ok. */ #define ID_STOP 1 #define ID_RESUME 2 /* These values are only used on the reply port */ #define ID_ACK 3 #if defined(THREADS) GC_mprotect_state_t GC_mprotect_state; /* The following should ONLY be called when the world is stopped */ static void GC_mprotect_thread_notify(mach_msg_id_t id) { struct { GC_msg_t msg; mach_msg_trailer_t trailer; } buf; mach_msg_return_t r; /* remote, local */ buf.msg.head.msgh_bits = MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND, 0); buf.msg.head.msgh_size = sizeof(buf.msg); buf.msg.head.msgh_remote_port = GC_ports.exception; buf.msg.head.msgh_local_port = MACH_PORT_NULL; buf.msg.head.msgh_id = id; r = mach_msg(&buf.msg.head, MACH_SEND_MSG | MACH_RCV_MSG | MACH_RCV_LARGE, sizeof(buf.msg), sizeof(buf), GC_ports.reply, MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL); if(r != MACH_MSG_SUCCESS) ABORT("mach_msg failed in GC_mprotect_thread_notify"); if(buf.msg.head.msgh_id != ID_ACK) ABORT("invalid ack in GC_mprotect_thread_notify"); } /* Should only be called by the mprotect thread */ static void GC_mprotect_thread_reply(void) { GC_msg_t msg; mach_msg_return_t r; /* remote, local */ msg.head.msgh_bits = MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND, 0); msg.head.msgh_size = sizeof(msg); msg.head.msgh_remote_port = GC_ports.reply; msg.head.msgh_local_port = MACH_PORT_NULL; msg.head.msgh_id = ID_ACK; r = mach_msg(&msg.head, MACH_SEND_MSG, sizeof(msg), 0, MACH_PORT_NULL, MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL); if(r != MACH_MSG_SUCCESS) ABORT("mach_msg failed in GC_mprotect_thread_reply"); } void GC_mprotect_stop(void) { GC_mprotect_thread_notify(ID_STOP); } void GC_mprotect_resume(void) { GC_mprotect_thread_notify(ID_RESUME); } #else /* !THREADS */ /* The compiler should optimize away any GC_mprotect_state computations */ #define GC_mprotect_state GC_MP_NORMAL #endif static void *GC_mprotect_thread(void *arg) { mach_msg_return_t r; /* These two structures contain some private kernel data. We don't need to access any of it so we don't bother defining a proper struct. The correct definitions are in the xnu source code. */ struct { mach_msg_header_t head; char data[256]; } reply; struct { mach_msg_header_t head; mach_msg_body_t msgh_body; char data[1024]; } msg; mach_msg_id_t id; GC_darwin_register_mach_handler_thread(mach_thread_self()); for(;;) { r = mach_msg(&msg.head, MACH_RCV_MSG | MACH_RCV_LARGE | (GC_mprotect_state == GC_MP_DISCARDING ? MACH_RCV_TIMEOUT : 0), 0, sizeof(msg), GC_ports.exception, GC_mprotect_state == GC_MP_DISCARDING ? 0 : MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL); id = r == MACH_MSG_SUCCESS ? msg.head.msgh_id : -1; # if defined(THREADS) if(GC_mprotect_state == GC_MP_DISCARDING) { if(r == MACH_RCV_TIMED_OUT) { GC_mprotect_state = GC_MP_STOPPED; GC_mprotect_thread_reply(); continue; } if(r == MACH_MSG_SUCCESS && (id == ID_STOP || id == ID_RESUME)) ABORT("out of order mprotect thread request"); } # endif /* THREADS */ if(r != MACH_MSG_SUCCESS) { GC_err_printf("mach_msg failed with %d %s\n", (int)r, mach_error_string(r)); ABORT("mach_msg failed"); } switch(id) { # if defined(THREADS) case ID_STOP: if(GC_mprotect_state != GC_MP_NORMAL) ABORT("Called mprotect_stop when state wasn't normal"); GC_mprotect_state = GC_MP_DISCARDING; break; case ID_RESUME: if(GC_mprotect_state != GC_MP_STOPPED) ABORT("Called mprotect_resume when state wasn't stopped"); GC_mprotect_state = GC_MP_NORMAL; GC_mprotect_thread_reply(); break; # endif /* THREADS */ default: /* Handle the message (calls catch_exception_raise) */ if(!exc_server(&msg.head, &reply.head)) ABORT("exc_server failed"); /* Send the reply */ r = mach_msg(&reply.head, MACH_SEND_MSG, reply.head.msgh_size, 0, MACH_PORT_NULL, MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL); if(r != MACH_MSG_SUCCESS) { /* This will fail if the thread dies, but the thread */ /* shouldn't die... */ # ifdef BROKEN_EXCEPTION_HANDLING GC_err_printf("mach_msg failed with %d %s while sending" "exc reply\n", (int)r,mach_error_string(r)); # else ABORT("mach_msg failed while sending exception reply"); # endif } } /* switch */ } /* for(;;) */ /* NOT REACHED */ return NULL; } /* All this SIGBUS code shouldn't be necessary. All protection faults should be going throught the mach exception handler. However, it seems a SIGBUS is occasionally sent for some unknown reason. Even more odd, it seems to be meaningless and safe to ignore. */ #ifdef BROKEN_EXCEPTION_HANDLING static SIG_HNDLR_PTR GC_old_bus_handler; /* Updates to this aren't atomic, but the SIGBUSs seem pretty rare. Even if this doesn't get updated property, it isn't really a problem */ static int GC_sigbus_count; static void GC_darwin_sigbus(int num, siginfo_t *sip, void *context) { if(num != SIGBUS) ABORT("Got a non-sigbus signal in the sigbus handler"); /* Ugh... some seem safe to ignore, but too many in a row probably means trouble. GC_sigbus_count is reset for each mach exception that is handled */ if(GC_sigbus_count >= 8) { ABORT("Got more than 8 SIGBUSs in a row!"); } else { GC_sigbus_count++; WARN("Ignoring SIGBUS.\n", 0); } } #endif /* BROKEN_EXCEPTION_HANDLING */ void GC_dirty_init(void) { kern_return_t r; mach_port_t me; pthread_t thread; pthread_attr_t attr; exception_mask_t mask; if (GC_print_stats == VERBOSE) GC_log_printf("Inititalizing mach/darwin mprotect virtual dirty bit " "implementation\n"); # ifdef BROKEN_EXCEPTION_HANDLING WARN("Enabling workarounds for various darwin " "exception handling bugs.\n", 0); # endif GC_dirty_maintained = TRUE; if (GC_page_size % HBLKSIZE != 0) { GC_err_printf("Page size not multiple of HBLKSIZE\n"); ABORT("Page size not multiple of HBLKSIZE"); } GC_task_self = me = mach_task_self(); r = mach_port_allocate(me, MACH_PORT_RIGHT_RECEIVE, &GC_ports.exception); if(r != KERN_SUCCESS) ABORT("mach_port_allocate failed (exception port)"); r = mach_port_insert_right(me, GC_ports.exception, GC_ports.exception, MACH_MSG_TYPE_MAKE_SEND); if(r != KERN_SUCCESS) ABORT("mach_port_insert_right failed (exception port)"); # if defined(THREADS) r = mach_port_allocate(me, MACH_PORT_RIGHT_RECEIVE, &GC_ports.reply); if(r != KERN_SUCCESS) ABORT("mach_port_allocate failed (reply port)"); # endif /* The exceptions we want to catch */ mask = EXC_MASK_BAD_ACCESS; r = task_get_exception_ports(me, mask, GC_old_exc_ports.masks, &GC_old_exc_ports.count, GC_old_exc_ports.ports, GC_old_exc_ports.behaviors, GC_old_exc_ports.flavors); if(r != KERN_SUCCESS) ABORT("task_get_exception_ports failed"); r = task_set_exception_ports(me, mask, GC_ports.exception, EXCEPTION_DEFAULT, GC_MACH_THREAD_STATE); if(r != KERN_SUCCESS) ABORT("task_set_exception_ports failed"); if(pthread_attr_init(&attr) != 0) ABORT("pthread_attr_init failed"); if(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) != 0) ABORT("pthread_attr_setdetachedstate failed"); # undef pthread_create /* This will call the real pthread function, not our wrapper */ if(pthread_create(&thread, &attr, GC_mprotect_thread, NULL) != 0) ABORT("pthread_create failed"); pthread_attr_destroy(&attr); /* Setup the sigbus handler for ignoring the meaningless SIGBUSs */ # ifdef BROKEN_EXCEPTION_HANDLING { struct sigaction sa, oldsa; sa.sa_handler = (SIG_HNDLR_PTR)GC_darwin_sigbus; sigemptyset(&sa.sa_mask); sa.sa_flags = SA_RESTART|SA_SIGINFO; if(sigaction(SIGBUS, &sa, &oldsa) < 0) ABORT("sigaction"); GC_old_bus_handler = (SIG_HNDLR_PTR)oldsa.sa_handler; if (GC_old_bus_handler != SIG_DFL) { if (GC_print_stats == VERBOSE) GC_err_printf("Replaced other SIGBUS handler\n"); } } # endif /* BROKEN_EXCEPTION_HANDLING */ } /* The source code for Apple's GDB was used as a reference for the exception forwarding code. This code is similar to be GDB code only because there is only one way to do it. */ static kern_return_t GC_forward_exception(mach_port_t thread, mach_port_t task, exception_type_t exception, exception_data_t data, mach_msg_type_number_t data_count) { unsigned int i; kern_return_t r; mach_port_t port; exception_behavior_t behavior; thread_state_flavor_t flavor; thread_state_t thread_state = NULL; mach_msg_type_number_t thread_state_count = THREAD_STATE_MAX; for(i=0; i < GC_old_exc_ports.count; i++) if(GC_old_exc_ports.masks[i] & (1 << exception)) break; if(i==GC_old_exc_ports.count) ABORT("No handler for exception!"); port = GC_old_exc_ports.ports[i]; behavior = GC_old_exc_ports.behaviors[i]; flavor = GC_old_exc_ports.flavors[i]; if(behavior != EXCEPTION_DEFAULT) { r = thread_get_state(thread, flavor, thread_state, &thread_state_count); if(r != KERN_SUCCESS) ABORT("thread_get_state failed in forward_exception"); } switch(behavior) { case EXCEPTION_DEFAULT: r = exception_raise(port, thread, task, exception, data, data_count); break; case EXCEPTION_STATE: r = exception_raise_state(port, thread, task, exception, data, data_count, &flavor, thread_state, thread_state_count, thread_state, &thread_state_count); break; case EXCEPTION_STATE_IDENTITY: r = exception_raise_state_identity(port, thread, task, exception, data, data_count, &flavor, thread_state, thread_state_count, thread_state, &thread_state_count); break; default: r = KERN_FAILURE; /* make gcc happy */ ABORT("forward_exception: unknown behavior"); break; } if(behavior != EXCEPTION_DEFAULT) { r = thread_set_state(thread, flavor, thread_state, thread_state_count); if(r != KERN_SUCCESS) ABORT("thread_set_state failed in forward_exception"); } return r; } #define FWD() GC_forward_exception(thread, task, exception, code, code_count) /* This violates the namespace rules but there isn't anything that can be done about it. The exception handling stuff is hard coded to call this */ kern_return_t catch_exception_raise(mach_port_t exception_port, mach_port_t thread, mach_port_t task, exception_type_t exception, exception_data_t code, mach_msg_type_number_t code_count) { kern_return_t r; char *addr; struct hblk *h; unsigned int i; # if defined(POWERPC) # if CPP_WORDSZ == 32 thread_state_flavor_t flavor = PPC_EXCEPTION_STATE; mach_msg_type_number_t exc_state_count = PPC_EXCEPTION_STATE_COUNT; ppc_exception_state_t exc_state; # else thread_state_flavor_t flavor = PPC_EXCEPTION_STATE64; mach_msg_type_number_t exc_state_count = PPC_EXCEPTION_STATE64_COUNT; ppc_exception_state64_t exc_state; # endif # elif defined(I386) || defined(X86_64) # if CPP_WORDSZ == 32 thread_state_flavor_t flavor = x86_EXCEPTION_STATE32; mach_msg_type_number_t exc_state_count = x86_EXCEPTION_STATE32_COUNT; x86_exception_state32_t exc_state; # else thread_state_flavor_t flavor = x86_EXCEPTION_STATE64; mach_msg_type_number_t exc_state_count = x86_EXCEPTION_STATE64_COUNT; x86_exception_state64_t exc_state; # endif # else # error FIXME for non-ppc/x86 darwin # endif if(exception != EXC_BAD_ACCESS || code[0] != KERN_PROTECTION_FAILURE) { # ifdef DEBUG_EXCEPTION_HANDLING /* We aren't interested, pass it on to the old handler */ GC_printf("Exception: 0x%x Code: 0x%x 0x%x in catch....\n", exception, code_count > 0 ? code[0] : -1, code_count > 1 ? code[1] : -1); # endif return FWD(); } r = thread_get_state(thread, flavor, (natural_t*)&exc_state, &exc_state_count); if(r != KERN_SUCCESS) { /* The thread is supposed to be suspended while the exception handler is called. This shouldn't fail. */ # ifdef BROKEN_EXCEPTION_HANDLING GC_err_printf("thread_get_state failed in catch_exception_raise\n"); return KERN_SUCCESS; # else ABORT("thread_get_state failed in catch_exception_raise"); # endif } /* This is the address that caused the fault */ # if defined(POWERPC) addr = (char*) exc_state. THREAD_FLD(dar); # elif defined (I386) || defined (X86_64) addr = (char*) exc_state. THREAD_FLD(faultvaddr); # else # error FIXME for non POWERPC/I386 # endif if((HDR(addr)) == 0) { /* Ugh... just like the SIGBUS problem above, it seems we get a bogus KERN_PROTECTION_FAILURE every once and a while. We wait till we get a bunch in a row before doing anything about it. If a "real" fault ever occurres it'll just keep faulting over and over and we'll hit the limit pretty quickly. */ # ifdef BROKEN_EXCEPTION_HANDLING static char *last_fault; static int last_fault_count; if(addr != last_fault) { last_fault = addr; last_fault_count = 0; } if(++last_fault_count < 32) { if(last_fault_count == 1) WARN("Ignoring KERN_PROTECTION_FAILURE at %lx\n", (GC_word)addr); return KERN_SUCCESS; } GC_err_printf("Unexpected KERN_PROTECTION_FAILURE at %p\n",addr); /* Can't pass it along to the signal handler because that is ignoring SIGBUS signals. We also shouldn't call ABORT here as signals don't always work too well from the exception handler. */ GC_err_printf("Aborting\n"); exit(EXIT_FAILURE); # else /* BROKEN_EXCEPTION_HANDLING */ /* Pass it along to the next exception handler (which should call SIGBUS/SIGSEGV) */ return FWD(); # endif /* !BROKEN_EXCEPTION_HANDLING */ } # ifdef BROKEN_EXCEPTION_HANDLING /* Reset the number of consecutive SIGBUSs */ GC_sigbus_count = 0; # endif if(GC_mprotect_state == GC_MP_NORMAL) { /* common case */ h = (struct hblk*)((word)addr & ~(GC_page_size-1)); UNPROTECT(h, GC_page_size); for (i = 0; i < divHBLKSZ(GC_page_size); i++) { register int index = PHT_HASH(h+i); async_set_pht_entry_from_index(GC_dirty_pages, index); } } else if(GC_mprotect_state == GC_MP_DISCARDING) { /* Lie to the thread for now. No sense UNPROTECT()ing the memory when we're just going to PROTECT() it again later. The thread will just fault again once it resumes */ } else { /* Shouldn't happen, i don't think */ GC_printf("KERN_PROTECTION_FAILURE while world is stopped\n"); return FWD(); } return KERN_SUCCESS; } #undef FWD /* These should never be called, but just in case... */ kern_return_t catch_exception_raise_state(mach_port_name_t exception_port, int exception, exception_data_t code, mach_msg_type_number_t codeCnt, int flavor, thread_state_t old_state, int old_stateCnt, thread_state_t new_state, int new_stateCnt) { ABORT("catch_exception_raise_state"); return(KERN_INVALID_ARGUMENT); } kern_return_t catch_exception_raise_state_identity(mach_port_name_t exception_port, mach_port_t thread, mach_port_t task, int exception, exception_data_t code, mach_msg_type_number_t codeCnt, int flavor, thread_state_t old_state, int old_stateCnt, thread_state_t new_state, int new_stateCnt) { ABORT("catch_exception_raise_state_identity"); return(KERN_INVALID_ARGUMENT); } #endif /* DARWIN && MPROTECT_VDB */ # ifndef HAVE_INCREMENTAL_PROTECTION_NEEDS int GC_incremental_protection_needs() { return GC_PROTECTS_NONE; } # endif /* !HAVE_INCREMENTAL_PROTECTION_NEEDS */ /* * Call stack save code for debugging. * Should probably be in mach_dep.c, but that requires reorganization. */ /* I suspect the following works for most X86 *nix variants, so */ /* long as the frame pointer is explicitly stored. In the case of gcc, */ /* compiler flags (e.g. -fomit-frame-pointer) determine whether it is. */ #if defined(I386) && defined(LINUX) && defined(SAVE_CALL_CHAIN) # include struct frame { struct frame *fr_savfp; long fr_savpc; long fr_arg[NARGS]; /* All the arguments go here. */ }; #endif #if defined(SPARC) # if defined(LINUX) # include struct frame { long fr_local[8]; long fr_arg[6]; struct frame *fr_savfp; long fr_savpc; # ifndef __arch64__ char *fr_stret; # endif long fr_argd[6]; long fr_argx[0]; }; # elif defined (DRSNX) # include # elif defined(OPENBSD) # include # elif defined(FREEBSD) || defined(NETBSD) # include # else # include # endif # if NARGS > 6 # error We only know how to to get the first 6 arguments # endif #endif /* SPARC */ #ifdef NEED_CALLINFO /* Fill in the pc and argument information for up to NFRAMES of my */ /* callers. Ignore my frame and my callers frame. */ #ifdef LINUX # include #endif #endif /* NEED_CALLINFO */ #if defined(GC_HAVE_BUILTIN_BACKTRACE) # ifdef _MSC_VER # include "private/msvc_dbg.h" # else # include # endif #endif #ifdef SAVE_CALL_CHAIN #if NARGS == 0 && NFRAMES % 2 == 0 /* No padding */ \ && defined(GC_HAVE_BUILTIN_BACKTRACE) #ifdef REDIRECT_MALLOC /* Deal with possible malloc calls in backtrace by omitting */ /* the infinitely recursing backtrace. */ # ifdef THREADS __thread /* If your compiler doesn't understand this */ /* you could use something like pthread_getspecific. */ # endif GC_in_save_callers = FALSE; #endif void GC_save_callers (struct callinfo info[NFRAMES]) { void * tmp_info[NFRAMES + 1]; int npcs, i; # define IGNORE_FRAMES 1 /* We retrieve NFRAMES+1 pc values, but discard the first, since it */ /* points to our own frame. */ # ifdef REDIRECT_MALLOC if (GC_in_save_callers) { info[0].ci_pc = (word)(&GC_save_callers); for (i = 1; i < NFRAMES; ++i) info[i].ci_pc = 0; return; } GC_in_save_callers = TRUE; # endif GC_ASSERT(sizeof(struct callinfo) == sizeof(void *)); npcs = backtrace((void **)tmp_info, NFRAMES + IGNORE_FRAMES); BCOPY(tmp_info+IGNORE_FRAMES, info, (npcs - IGNORE_FRAMES) * sizeof(void *)); for (i = npcs - IGNORE_FRAMES; i < NFRAMES; ++i) info[i].ci_pc = 0; # ifdef REDIRECT_MALLOC GC_in_save_callers = FALSE; # endif } #else /* No builtin backtrace; do it ourselves */ #if (defined(OPENBSD) || defined(NETBSD) || defined(FREEBSD)) && defined(SPARC) # define FR_SAVFP fr_fp # define FR_SAVPC fr_pc #else # define FR_SAVFP fr_savfp # define FR_SAVPC fr_savpc #endif #if defined(SPARC) && (defined(__arch64__) || defined(__sparcv9)) # define BIAS 2047 #else # define BIAS 0 #endif void GC_save_callers (struct callinfo info[NFRAMES]) { struct frame *frame; struct frame *fp; int nframes = 0; # ifdef I386 /* We assume this is turned on only with gcc as the compiler. */ asm("movl %%ebp,%0" : "=r"(frame)); fp = frame; # else frame = (struct frame *) GC_save_regs_in_stack (); fp = (struct frame *)((long) frame -> FR_SAVFP + BIAS); #endif for (; (!(fp HOTTER_THAN frame) && !(GC_stackbottom HOTTER_THAN (ptr_t)fp) && (nframes < NFRAMES)); fp = (struct frame *)((long) fp -> FR_SAVFP + BIAS), nframes++) { register int i; info[nframes].ci_pc = fp->FR_SAVPC; # if NARGS > 0 for (i = 0; i < NARGS; i++) { info[nframes].ci_arg[i] = ~(fp->fr_arg[i]); } # endif /* NARGS > 0 */ } if (nframes < NFRAMES) info[nframes].ci_pc = 0; } #endif /* No builtin backtrace */ #endif /* SAVE_CALL_CHAIN */ #ifdef NEED_CALLINFO /* Print info to stderr. We do NOT hold the allocation lock */ void GC_print_callers (struct callinfo info[NFRAMES]) { register int i; static int reentry_count = 0; GC_bool stop = FALSE; /* FIXME: This should probably use a different lock, so that we */ /* become callable with or without the allocation lock. */ LOCK(); ++reentry_count; UNLOCK(); # if NFRAMES == 1 GC_err_printf("\tCaller at allocation:\n"); # else GC_err_printf("\tCall chain at allocation:\n"); # endif for (i = 0; i < NFRAMES && !stop ; i++) { if (info[i].ci_pc == 0) break; # if NARGS > 0 { int j; GC_err_printf("\t\targs: "); for (j = 0; j < NARGS; j++) { if (j != 0) GC_err_printf(", "); GC_err_printf("%d (0x%X)", ~(info[i].ci_arg[j]), ~(info[i].ci_arg[j])); } GC_err_printf("\n"); } # endif if (reentry_count > 1) { /* We were called during an allocation during */ /* a previous GC_print_callers call; punt. */ GC_err_printf("\t\t##PC##= 0x%lx\n", info[i].ci_pc); continue; } { # ifdef LINUX FILE *pipe; # endif # if defined(GC_HAVE_BUILTIN_BACKTRACE) \ && !defined(GC_BACKTRACE_SYMBOLS_BROKEN) char **sym_name = backtrace_symbols((void **)(&(info[i].ci_pc)), 1); char *name = sym_name[0]; # else char buf[40]; char *name = buf; sprintf(buf, "##PC##= 0x%lx", info[i].ci_pc); # endif # if defined(LINUX) && !defined(SMALL_CONFIG) /* Try for a line number. */ { # define EXE_SZ 100 static char exe_name[EXE_SZ]; # define CMD_SZ 200 char cmd_buf[CMD_SZ]; # define RESULT_SZ 200 static char result_buf[RESULT_SZ]; size_t result_len; char *old_preload; # define PRELOAD_SZ 200 char preload_buf[PRELOAD_SZ]; static GC_bool found_exe_name = FALSE; static GC_bool will_fail = FALSE; int ret_code; /* Try to get it via a hairy and expensive scheme. */ /* First we get the name of the executable: */ if (will_fail) goto out; if (!found_exe_name) { ret_code = readlink("/proc/self/exe", exe_name, EXE_SZ); if (ret_code < 0 || ret_code >= EXE_SZ || exe_name[0] != '/') { will_fail = TRUE; /* Dont try again. */ goto out; } exe_name[ret_code] = '\0'; found_exe_name = TRUE; } /* Then we use popen to start addr2line -e */ /* There are faster ways to do this, but hopefully this */ /* isn't time critical. */ sprintf(cmd_buf, "/usr/bin/addr2line -f -e %s 0x%lx", exe_name, (unsigned long)info[i].ci_pc); old_preload = getenv ("LD_PRELOAD"); if (0 != old_preload) { if (strlen (old_preload) >= PRELOAD_SZ) { will_fail = TRUE; goto out; } strcpy (preload_buf, old_preload); unsetenv ("LD_PRELOAD"); } pipe = popen(cmd_buf, "r"); if (0 != old_preload && 0 != setenv ("LD_PRELOAD", preload_buf, 0)) { WARN("Failed to reset LD_PRELOAD\n", 0); } if (pipe == NULL || (result_len = fread(result_buf, 1, RESULT_SZ - 1, pipe)) == 0) { if (pipe != NULL) pclose(pipe); will_fail = TRUE; goto out; } if (result_buf[result_len - 1] == '\n') --result_len; result_buf[result_len] = 0; if (result_buf[0] == '?' || (result_buf[result_len-2] == ':' && result_buf[result_len-1] == '0')) { pclose(pipe); goto out; } /* Get rid of embedded newline, if any. Test for "main" */ { char * nl = strchr(result_buf, '\n'); if (nl != NULL && nl < result_buf + result_len) { *nl = ':'; } if (strncmp(result_buf, "main", nl - result_buf) == 0) { stop = TRUE; } } if (result_len < RESULT_SZ - 25) { /* Add in hex address */ sprintf(result_buf + result_len, " [0x%lx]", (unsigned long)info[i].ci_pc); } name = result_buf; pclose(pipe); out:; } # endif /* LINUX */ GC_err_printf("\t\t%s\n", name); # if defined(GC_HAVE_BUILTIN_BACKTRACE) \ && !defined(GC_BACKTRACE_SYMBOLS_BROKEN) free(sym_name); /* May call GC_free; that's OK */ # endif } } LOCK(); --reentry_count; UNLOCK(); } #endif /* NEED_CALLINFO */ #if defined(LINUX) && defined(__ELF__) && !defined(SMALL_CONFIG) /* Dump /proc/self/maps to GC_stderr, to enable looking up names for addresses in FIND_LEAK output. */ static word dump_maps(char *maps) { GC_err_write(maps, strlen(maps)); return 1; } void GC_print_address_map(void) { GC_err_printf("---------- Begin address map ----------\n"); dump_maps(GC_get_maps()); GC_err_printf("---------- End address map ----------\n"); } #endif