/* * Copyright (c) 1991-1994 by Xerox Corporation. All rights reserved. * Copyright (c) 1996-1999 by Silicon Graphics. All rights reserved. * Copyright (c) 1999-2003 by Hewlett-Packard Company. All rights reserved. * * * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED * OR IMPLIED. ANY USE IS AT YOUR OWN RISK. * * Permission is hereby granted to use or copy this program * for any purpose, provided the above notices are retained on all copies. * Permission to modify the code and to distribute modified code is granted, * provided the above notices are retained, and a notice that the code was * modified is included with the above copyright notice. * * Some of the machine specific code was borrowed from our GC distribution. */ /* The following really assume we have a 486 or better. Unfortunately */ /* gcc doesn't define a suitable feature test macro based on command */ /* line options. */ /* We should perhaps test dynamically. */ #include "../all_aligned_atomic_load_store.h" /* Real X86 implementations, except for some old WinChips, appear */ /* to enforce ordering between memory operations, EXCEPT that a later */ /* read can pass earlier writes, presumably due to the visible */ /* presence of store buffers. */ /* We ignore both the WinChips, and the fact that the official specs */ /* seem to be much weaker (and arguably too weak to be usable). */ #include "../ordered_except_wr.h" #include "../test_and_set_t_is_char.h" #if defined(AO_USE_PENTIUM4_INSTRS) AO_INLINE void AO_nop_full() { __asm__ __volatile__("mfence" : : : "memory"); } #define AO_HAVE_nop_full #else /* We could use the cpuid instruction. But that seems to be slower */ /* than the default implementation based on test_and_set_full. Thus */ /* we omit that bit of misinformation here. */ #endif /* As far as we can tell, the lfence and sfence instructions are not */ /* currently needed or useful for cached memory accesses. */ /* Really only works for 486 and later */ AO_INLINE AO_t AO_fetch_and_add_full (volatile AO_t *p, AO_t incr) { AO_t result; __asm__ __volatile__ ("lock; xaddq %0, %1" : "=r" (result), "=m" (*p) : "0" (incr), "m" (*p) : "memory"); return result; } #define AO_HAVE_fetch_and_add_full AO_INLINE unsigned char AO_char_fetch_and_add_full (volatile unsigned char *p, unsigned char incr) { unsigned char result; __asm__ __volatile__ ("lock; xaddb %0, %1" : "=q" (result), "=m" (*p) : "0" (incr), "m" (*p) : "memory"); return result; } #define AO_HAVE_char_fetch_and_add_full AO_INLINE unsigned short AO_short_fetch_and_add_full (volatile unsigned short *p, unsigned short incr) { unsigned short result; __asm__ __volatile__ ("lock; xaddw %0, %1" : "=r" (result), "=m" (*p) : "0" (incr), "m" (*p) : "memory"); return result; } #define AO_HAVE_short_fetch_and_add_full AO_INLINE unsigned short AO_int_fetch_and_add_full (volatile unsigned int *p, unsigned int incr) { unsigned int result; __asm__ __volatile__ ("lock; xaddl %0, %1" : "=r" (result), "=m" (*p) : "0" (incr), "m" (*p) : "memory"); return result; } #define AO_HAVE_int_fetch_and_add_full /* Really only works for 486 and later */ AO_INLINE void AO_or_full (volatile AO_t *p, AO_t incr) { __asm__ __volatile__ ("lock; orq %1, %0" : "=m" (*p) : "r" (incr), "m" (*p) : "memory"); } #define AO_HAVE_or_full AO_INLINE AO_TS_VAL_t AO_test_and_set_full(volatile AO_TS_t *addr) { unsigned char oldval; /* Note: the "xchg" instruction does not need a "lock" prefix */ __asm__ __volatile__("xchgb %0, %1" : "=q"(oldval), "=m"(*addr) : "0"(0xff), "m"(*addr) : "memory"); return (AO_TS_VAL_t)oldval; } #define AO_HAVE_test_and_set_full /* Returns nonzero if the comparison succeeded. */ AO_INLINE int AO_compare_and_swap_full(volatile AO_t *addr, AO_t old, AO_t new_val) { char result; __asm__ __volatile__("lock; cmpxchgq %3, %0; setz %1" : "=m"(*addr), "=q"(result) : "m"(*addr), "r" (new_val), "a"(old) : "memory"); return (int) result; } #define AO_HAVE_compare_and_swap_full /* FIXME: The Intel version has a 16byte CAS instruction. */