stupid ron! need to start names with a letter.
authorRonald G. Minnich <rminnich@gmail.com>
Tue, 24 Aug 2004 22:17:33 +0000 (22:17 +0000)
committerRonald G. Minnich <rminnich@gmail.com>
Tue, 24 Aug 2004 22:17:33 +0000 (22:17 +0000)
git-svn-id: svn://svn.coreboot.org/coreboot/trunk@1637 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1

src/northbridge/intel/855pm/raminit.c
src/northbridge/intel/855pm/raminit.h
src/northbridge/intel/i855pm/Config.lb [new file with mode: 0644]
src/northbridge/intel/i855pm/chip.h [new file with mode: 0644]
src/northbridge/intel/i855pm/debug.c [new file with mode: 0644]
src/northbridge/intel/i855pm/i855pm.h [new file with mode: 0644]
src/northbridge/intel/i855pm/northbridge.c [new file with mode: 0644]
src/northbridge/intel/i855pm/raminit.c [new file with mode: 0644]
src/northbridge/intel/i855pm/raminit.h [new file with mode: 0644]
src/northbridge/intel/i855pm/reset_test.c [new file with mode: 0644]

index a4845d8b58b16e38143250b29dc31fa53795ec3b..eb357f64682b522939bb69885b7ecffcba25b69c 100644 (file)
@@ -4,7 +4,7 @@
 
 /* converted to C 6/2004 yhlu */
 
-#define DEBUG_RAM_CONFIG 0
+#define DEBUG_RAM_CONFIG 1
 
 #define dumpnorth() dump_pci_device(PCI_DEV(0, 0, 0)) 
 
index c1dc4baeafd3f3e7dba8e08d626a6e89c3f3e359..6e40683066c64161f104805d3d9cd18d7d27cfc0 100644 (file)
@@ -3,9 +3,8 @@
 
 #define DIMM_SOCKETS 4
 struct mem_controller {
-       device_t d0, d0f1; 
-       uint16_t channel0[DIMM_SOCKETS];
-       uint16_t channel1[DIMM_SOCKETS];
+  device_t d0;
+  uint16_t channel0[DIMM_SOCKETS];
 };
 
 
diff --git a/src/northbridge/intel/i855pm/Config.lb b/src/northbridge/intel/i855pm/Config.lb
new file mode 100644 (file)
index 0000000..f101a92
--- /dev/null
@@ -0,0 +1,4 @@
+config chip.h
+object northbridge.o
+#driver misc_control.o
+
diff --git a/src/northbridge/intel/i855pm/chip.h b/src/northbridge/intel/i855pm/chip.h
new file mode 100644 (file)
index 0000000..46b4a68
--- /dev/null
@@ -0,0 +1,5 @@
+struct northbridge_intel_i855pm_config
+{
+};
+
+extern struct chip_control northbridge_intel_i855pm_control;
diff --git a/src/northbridge/intel/i855pm/debug.c b/src/northbridge/intel/i855pm/debug.c
new file mode 100644 (file)
index 0000000..67670f9
--- /dev/null
@@ -0,0 +1,164 @@
+/*
+ * generic K8 debug code, used by mainboard specific auto.c
+ *
+ */
+#if 1
+static void print_debug_pci_dev(unsigned dev)
+{
+       print_debug("PCI: ");
+       print_debug_hex8((dev >> 16) & 0xff);
+       print_debug_char(':');
+       print_debug_hex8((dev >> 11) & 0x1f);
+       print_debug_char('.');
+       print_debug_hex8((dev >> 8) & 7);
+}
+
+static void print_pci_devices(void)
+{
+       device_t dev;
+       for(dev = PCI_DEV(0, 0, 0); 
+               dev <= PCI_DEV(0, 0x1f, 0x7); 
+               dev += PCI_DEV(0,0,1)) {
+               uint32_t id;
+               id = pci_read_config32(dev, PCI_VENDOR_ID);
+               if (((id & 0xffff) == 0x0000) || ((id & 0xffff) == 0xffff) ||
+                       (((id >> 16) & 0xffff) == 0xffff) ||
+                       (((id >> 16) & 0xffff) == 0x0000)) {
+                       continue;
+               }
+               print_debug_pci_dev(dev);
+               print_debug("\r\n");
+       }
+}
+
+static void dump_pci_device(unsigned dev)
+{
+       int i;
+       print_debug_pci_dev(dev);
+       print_debug("\r\n");
+       
+       for(i = 0; i <= 255; i++) {
+               unsigned char val;
+               if ((i & 0x0f) == 0) {
+                       print_debug_hex8(i);
+                       print_debug_char(':');
+               }
+               val = pci_read_config8(dev, i);
+               print_debug_char(' ');
+               print_debug_hex8(val);
+               if ((i & 0x0f) == 0x0f) {
+                       print_debug("\r\n");
+               }
+       }
+}
+
+static void dump_pci_devices(void)
+{
+       device_t dev;
+       for(dev = PCI_DEV(0, 0, 0); 
+               dev <= PCI_DEV(0, 0x1f, 0x7); 
+               dev += PCI_DEV(0,0,1)) {
+               uint32_t id;
+               id = pci_read_config32(dev, PCI_VENDOR_ID);
+               if (((id & 0xffff) == 0x0000) || ((id & 0xffff) == 0xffff) ||
+                       (((id >> 16) & 0xffff) == 0xffff) ||
+                       (((id >> 16) & 0xffff) == 0x0000)) {
+                       continue;
+               }
+               dump_pci_device(dev);
+       }
+}
+
+static void dump_spd_registers(const struct mem_controller *ctrl)
+{
+       int i;
+       print_debug("\r\n");
+       for(i = 0; i < 4; i++) {
+               unsigned device;
+               device = ctrl->channel0[i];
+               if (device) {
+                       int j;
+                       print_debug("dimm: "); 
+                       print_debug_hex8(i); 
+                       print_debug(".0: ");
+                       print_debug_hex8(device);
+                       for(j = 0; j < 256; j++) {
+                               int status;
+                               unsigned char byte;
+                               if ((j & 0xf) == 0) {
+                                       print_debug("\r\n");
+                                       print_debug_hex8(j);
+                                       print_debug(": ");
+                               }
+                               status = smbus_read_byte(device, j);
+                               if (status < 0) {
+                                       print_debug("bad device\r\n");
+                                       break;
+                               }
+                               byte = status & 0xff;
+                               print_debug_hex8(byte);
+                               print_debug_char(' ');
+                       }
+                       print_debug("\r\n");
+               }
+#if 0
+               device = ctrl->channel1[i];
+               if (device) {
+                       int j;
+                       print_debug("dimm: "); 
+                       print_debug_hex8(i); 
+                       print_debug(".1: ");
+                       print_debug_hex8(device);
+                       for(j = 0; j < 256; j++) {
+                               int status;
+                               unsigned char byte;
+                               if ((j & 0xf) == 0) {
+                                       print_debug("\r\n");
+                                       print_debug_hex8(j);
+                                       print_debug(": ");
+                               }
+                               status = smbus_read_byte(device, j);
+                               if (status < 0) {
+                                       print_debug("bad device\r\n");
+                                       break;
+                               }
+                               byte = status & 0xff;
+                               print_debug_hex8(byte);
+                               print_debug_char(' ');
+                       }
+                       print_debug("\r\n");
+               }
+#endif
+       }
+}
+static void dump_smbus_registers(void)
+{
+        int i;
+        print_debug("\r\n");
+        for(i = 1; i < 0x80; i++) {
+                unsigned device;
+                device = i;
+                int j;
+                print_debug("smbus: ");
+                print_debug_hex8(device);
+                for(j = 0; j < 256; j++) {
+                       int status; 
+                        unsigned char byte;
+                        if ((j & 0xf) == 0) {
+                               print_debug("\r\n");
+                                print_debug_hex8(j);
+                                print_debug(": ");
+                        }
+                        status = smbus_read_byte(device, j);
+                        if (status < 0) {
+                                print_debug("bad device\r\n");
+                                break;
+                        }
+                        byte = status & 0xff;
+                        print_debug_hex8(byte);
+                        print_debug_char(' ');
+                }
+                print_debug("\r\n");
+       }       
+}
+#endif
diff --git a/src/northbridge/intel/i855pm/i855pm.h b/src/northbridge/intel/i855pm/i855pm.h
new file mode 100644 (file)
index 0000000..e69de29
diff --git a/src/northbridge/intel/i855pm/northbridge.c b/src/northbridge/intel/i855pm/northbridge.c
new file mode 100644 (file)
index 0000000..eb03266
--- /dev/null
@@ -0,0 +1,151 @@
+#include <console/console.h>
+#include <arch/io.h>
+#include <stdint.h>
+#include <mem.h>
+#include <part/sizeram.h>
+#include <device/device.h>
+#include <device/pci.h>
+#include <device/chip.h>
+#include <stdlib.h>
+#include <string.h>
+#include <bitops.h>
+#include "chip.h"
+
+struct mem_range *sizeram(void)
+{
+       static struct mem_range mem[4];
+       /* the units of tolm are 64 KB */
+       /* the units of drb16 are 64 MB */
+       uint16_t tolm, remapbase, remaplimit, drb16;
+       uint16_t tolm_r, remapbase_r, remaplimit_r;
+       uint8_t  drb;
+       int remap_high;
+        device_t dev;
+
+        dev = dev_find_slot(0, 0); // d0f0
+       if (!dev) {
+                printk_err("Cannot find PCI: 0:0\n");
+                return 0;
+        }
+       
+       /* Calculate and report the top of low memory and 
+        * any remapping.
+        */
+       /* Test if the remap memory high option is set */
+        remap_high = 0;
+//        if(get_option(&remap_high, "remap_memory_high")){
+//                remap_high = 0;
+//        }
+       printk_debug("remap_high is %d\n", remap_high);
+       /* get out the value of the highest DRB. This tells the end of 
+        * physical memory. The units are ticks of 64 MB i.e. 1 means
+        * 64 MB. 
+        */
+       drb = pci_read_config8(dev, 0x67);
+       drb16 = (uint16_t)drb;
+       if(remap_high && (drb16 > 0x08)) {
+               /* We only come here if we have at least 512MB of memory,
+                * so it is safe to hard code tolm.
+                * 0x2000 means 512MB 
+                */
+
+               tolm = 0x2000;
+               /* i.e 0x40 * 0x40 is 0x1000 which is 4 GB */
+               if(drb16 > 0x0040) {
+                       /* There is more than 4GB of memory put
+                        * the remap window at the end of ram.
+                        */
+                       remapbase = drb16;
+                       remaplimit = remapbase + 0x38;
+               }
+               else {
+                       remapbase = 0x0040;
+                       remaplimit = remapbase + (drb16-8);
+               }
+       }
+       else {
+               tolm = (uint16_t)((dev_root.resource[1].base >> 16)&0x0f800);
+               if((tolm>>8) >= (drb16<<2)) {
+                       tolm = (drb16<<10);
+                       remapbase = 0x3ff;
+                       remaplimit = 0;
+               }
+               else {
+                       remapbase = drb16;
+                       remaplimit = remapbase + ((0x0040-(tolm>>10))-1);
+               }
+       }
+       /* Write the ram configruation registers,
+        * preserving the reserved bits.
+        */
+       tolm_r = pci_read_config16(dev, 0xc4);
+       tolm |= (tolm_r & 0x7ff); 
+       pci_write_config16(dev, 0xc4, tolm);
+       remapbase_r = pci_read_config16(dev, 0xc6);
+       remapbase |= (remapbase_r & 0xfc00);
+       pci_write_config16(dev, 0xc6, remapbase);
+       remaplimit_r = pci_read_config16(dev, 0xc8);
+       remaplimit |= (remaplimit_r & 0xfc00);
+       pci_write_config16(dev, 0xc8, remaplimit);
+
+#if 0
+    printk_debug("mem info tolm = %x, drb = %x, pci_memory_base = %x, remap = %x-%x\n",tolm,drb,pci_memory_base,remapbase,remaplimit);
+#endif
+       
+       mem[0].basek = 0;
+       mem[0].sizek = 640;
+       mem[1].basek = 768;
+       /* Convert size in 64K bytes to size in K bytes */
+       mem[1].sizek = (tolm << 6) - mem[1].basek;
+       mem[2].basek = 0;
+       mem[2].sizek = 0;
+       if ((drb << 16) > (tolm << 6)) {
+               /* We don't need to consider the remap window
+                * here because we put it immediately after the
+                * rest of ram.
+                * All we must do is calculate the amount
+                * of unused memory and report it at 4GB.
+                */
+               mem[2].basek = 4096*1024;
+               mem[2].sizek = (drb << 16) - (tolm << 6);
+       }
+       mem[3].basek = 0;
+       mem[3].sizek = 0;
+       
+       return mem;
+}
+static void enumerate(struct chip *chip)
+{
+        extern struct device_operations default_pci_ops_bus;
+        chip_enumerate(chip);
+        chip->dev->ops = &default_pci_ops_bus;
+}
+#if 0
+static void northbridge_init(struct chip *chip, enum chip_pass pass)
+{
+
+        struct northbridge_intel_i855pm_config *conf =
+                (struct northbridge_intel_i855pm_config *)chip->chip_info;
+
+        switch (pass) {
+        case CONF_PASS_PRE_PCI:
+                break;
+
+        case CONF_PASS_POST_PCI:
+                break;
+
+        case CONF_PASS_PRE_BOOT:
+                break;
+
+        default:
+                /* nothing yet */
+                break;
+        }
+}
+#endif
+
+struct chip_control northbridge_intel_i855pm_control = {
+        .enumerate = enumerate,
+//        .enable    = northbridge_init,
+        .name      = "intel i855pm Northbridge",
+};
diff --git a/src/northbridge/intel/i855pm/raminit.c b/src/northbridge/intel/i855pm/raminit.c
new file mode 100644 (file)
index 0000000..4f7ab23
--- /dev/null
@@ -0,0 +1,2091 @@
+
+/* This was originally for the e7500, modified for i855pm
+ */
+
+/* converted to C 6/2004 yhlu */
+
+#define DEBUG_RAM_CONFIG 1
+
+#define dumpnorth() dump_pci_device(PCI_DEV(0, 0, 0)) 
+
+/* DDR DIMM Mode register Definitions */
+
+#define BURST_2           (1<<0)
+#define BURST_4           (2<<0)
+#define BURST_8           (3<<0)
+
+#define BURST_SEQUENTIAL  (0<<3)
+#define BURST_INTERLEAVED (1<<3)
+
+#define CAS_2_0                  (0x2<<4)
+#define CAS_3_0           (0x3<<4)
+#define CAS_1_5           (0x5<<4)
+#define CAS_2_5           (0x6<<4)
+
+#define MODE_NORM         (0 << 7)
+#define MODE_DLL_RESET    (2 << 7)
+#define MODE_TEST         (1 << 7)
+
+#define BURST_LENGTH BURST_4
+#define BURST_TYPE   BURST_INTERLEAVED
+#define CAS_LATENCY  CAS_2_0
+//#define CAS_LATENCY  CAS_2_5
+//#define CAS_LATENCY  CAS_1_5
+
+#define MRS_VALUE (MODE_NORM | CAS_LATENCY | BURST_TYPE | BURST_LENGTH)
+#define EMRS_VALUE 0x000
+
+#define MD_SHIFT 4
+
+#define RAM_COMMAND_NONE       0x0
+#define RAM_COMMAND_NOP                0x1
+#define RAM_COMMAND_PRECHARGE  0x2
+#define RAM_COMMAND_MRS                0x3
+#define RAM_COMMAND_EMRS       0x4
+#define RAM_COMMAND_CBR                0x6
+#define RAM_COMMAND_NORMAL     0x7
+
+
+static inline void do_ram_command (const struct mem_controller *ctrl, uint32_t value) {
+        uint32_t dword;
+        uint8_t byte;
+        int i;
+        uint32_t result;
+#if DEBUG_RAM_CONFIG >= 2
+        print_debug("P:");
+        print_debug_hex8(value);
+        print_debug("\r\n");
+#endif
+        /* %ecx - initial address to read from */
+        /* Compute the offset */
+        dword = value >> 16;
+        for(i=0;i<8;i++) {
+                /* Set the ram command */
+                byte = pci_read_config8(ctrl->d0, 0x7c);
+                byte &= 0x8f;
+                byte |= (uint8_t)(value & 0xff);
+                pci_write_config8(ctrl->d0, 0x7c, byte);
+
+                /* Assert the command to the memory */
+#if DEBUG_RAM_CONFIG  >= 2
+                print_debug("R:");
+                print_debug_hex32(dword);
+                print_debug("\r\n");
+#endif
+
+                result = read32(dword);
+
+                /* Go to the next base address */
+                dword += 0x04000000;
+
+        } 
+
+        /* The command has been sent to all dimms so get out */
+}
+
+
+static inline void RAM_CMD(const struct mem_controller *ctrl, uint32_t command, uint32_t offset)  {
+       uint32_t value =        ((offset) << (MD_SHIFT + 16))|((command << 4) & 0x70) ; 
+       do_ram_command(ctrl, value);
+}
+       
+#define RAM_NOP(ctrl)          RAM_CMD(ctrl, RAM_COMMAND_NOP, 0)
+#define RAM_PRECHARGE(ctrl)            RAM_CMD(ctrl, RAM_COMMAND_PRECHARGE, 0)
+#define RAM_CBR(ctrl)          RAM_CMD(ctrl, RAM_COMMAND_CBR, 0)
+#define RAM_EMRS(ctrl)         RAM_CMD(ctrl, RAM_COMMAND_EMRS, EMRS_VALUE)
+
+static const uint8_t ram_cas_latency[] = {
+       CAS_2_5, CAS_2_0, CAS_1_5, CAS_2_5
+       };
+
+static inline void ram_mrs(const struct mem_controller *ctrl, uint32_t value){
+       /* Read the cas latency setting */
+       uint8_t byte;
+       uint32_t dword;
+       byte = pci_read_config8(ctrl->d0, 0x78); 
+       /* Transform it into the form expected by SDRAM */
+       dword = ram_cas_latency[(byte>>4) & 3];
+
+       value  |= (dword<<(16+MD_SHIFT));
+       
+       value |= (MODE_NORM | BURST_TYPE | BURST_LENGTH) << (16+MD_SHIFT);
+
+       do_ram_command(ctrl, value);
+}
+
+#define RAM_MRS(ctrl, dll_reset) ram_mrs( ctrl, (dll_reset << (8+MD_SHIFT+ 16)) | ((RAM_COMMAND_MRS <<4)& 0x70) )
+
+static void RAM_NORMAL(const struct mem_controller *ctrl) {
+       uint8_t byte;
+       byte = pci_read_config8(ctrl->d0, 0x7c);
+       byte &=  0x8f;
+       byte |= (RAM_COMMAND_NORMAL << 4);
+       pci_write_config8(ctrl->d0, 0x7c, byte);
+}
+
+static void  RAM_RESET_DDR_PTR(const struct mem_controller *ctrl) {
+       uint8_t byte;
+       byte = pci_read_config8(ctrl->d0, 0x88);
+       byte |= (1 << 4 );
+       pci_write_config8(ctrl->d0, 0x88, byte);
+       byte = pci_read_config8(ctrl->d0, 0x88);
+       byte &= ~(1 << 4);
+       pci_write_config8(ctrl->d0, 0x88, byte);
+}
+
+static void ENABLE_REFRESH(const struct mem_controller *ctrl) 
+{
+       uint32_t dword;
+       dword = pci_read_config32(ctrl->d0, 0x7c);
+       dword |= (1 << 29);
+       pci_write_config32(ctrl->d0, 0x7c, dword);
+}
+
+       /*
+        * Table:       constant_register_values
+        */
+static const long register_values[] = {
+       /* SVID - Subsystem Vendor Identification Register
+        * 0x2c - 0x2d
+        * [15:00] Subsytem Vendor ID (Indicates system board vendor)
+        */
+       /* SID - Subsystem Identification Register
+        * 0x2e - 0x2f
+        * [15:00] Subsystem ID
+        */
+        0x2c, 0, (0x15d9 << 0) | (0x3580 << 16),
+
+       /* Undocumented
+        * 0x80 - 0x80
+        * This register has something to do with CAS latencies,
+        * possibily this is the real chipset control.
+        * At 0x00 CAS latency 1.5 works.
+        * At 0x06 CAS latency 2.5 works.
+        * At 0x01 CAS latency 2.0 works.
+        */
+       /* This is still undocumented in e7501, but with different values
+        * CAS 2.0 values taken from Intel BIOS settings, others are a guess
+        * and may be terribly wrong. Old values preserved as comments until I
+        * figure this out for sure.
+        * e7501 docs claim that CAS1.5 is unsupported, so it may or may not 
+        * work at all.
+        * Steven James 02/06/2003
+        */
+#if CAS_LATENCY == CAS_2_5
+//     0x80, 0xfffffe00, 0x06 /* Intel E7500 recommended */
+       0x80, 0xfffff000, 0x0662, /* from Factory Bios */
+#elif CAS_LATENCY == CAS_2_0
+//     0x80, 0xfffffe00, 0x0d /* values for register 0x80 */
+       0x80, 0xfffff000, 0x0bb1, /* values for register 0x80 */
+#endif
+
+       /* Enable periodic memory recalibration */
+       0x88, 0xffffff00, 0x80,
+
+       /* FDHC - Fixed DRAM Hole Control
+        * 0x58
+        * [7:7] Hole_Enable
+        *       0 == No memory Hole
+        *       1 == Memory Hole from 15MB to 16MB
+        * [6:0] Reserved
+        *
+        * PAM - Programmable Attribute Map
+        * 0x59 [1:0] Reserved
+        * 0x59 [5:4] 0xF0000 - 0xFFFFF
+        * 0x5A [1:0] 0xC0000 - 0xC3FFF
+        * 0x5A [5:4] 0xC4000 - 0xC7FFF
+        * 0x5B [1:0] 0xC8000 - 0xCBFFF
+        * 0x5B [5:4] 0xCC000 - 0xCFFFF
+        * 0x5C [1:0] 0xD0000 - 0xD3FFF
+        * 0x5C [5:4] 0xD4000 - 0xD7FFF
+        * 0x5D [1:0] 0xD8000 - 0xDBFFF
+        * 0x5D [5:4] 0xDC000 - 0xDFFFF
+        * 0x5E [1:0] 0xE0000 - 0xE3FFF
+        * 0x5E [5:4] 0xE4000 - 0xE7FFF
+        * 0x5F [1:0] 0xE8000 - 0xEBFFF
+        * 0x5F [5:4] 0xEC000 - 0xEFFFF
+        *       00 == DRAM Disabled (All Access go to memory mapped I/O space)
+        *       01 == Read Only (Reads to DRAM, Writes to memory mapped I/O space)
+        *       10 == Write Only (Writes to DRAM, Reads to memory mapped I/O space)
+        *       11 == Normal (All Access go to DRAM)
+        */
+       0x58, 0xcccccf7f, (0x00 << 0) | (0x30 << 8) | (0x33 << 16) | (0x33 << 24),
+       0x5C, 0xcccccccc, (0x33 << 0) | (0x33 << 8) | (0x33 << 16) | (0x33 << 24),
+
+       /* DRB - DRAM Row Boundary Registers
+        * 0x60 - 0x6F
+        *     An array of 8 byte registers, which hold the ending
+        *     memory address assigned  to each pair of DIMMS, in 64MB 
+        *     granularity.   
+        */
+       /* Conservatively say each row has 64MB of ram, we will fix this up later */
+       0x60, 0x00000000, (0x01 << 0) | (0x02 << 8) | (0x03 << 16) | (0x04 << 24),
+       0x64, 0x00000000, (0x05 << 0) | (0x06 << 8) | (0x07 << 16) | (0x08 << 24),
+       0x68, 0xffffffff, 0,
+       0x6C, 0xffffffff, 0,
+
+       /* DRA - DRAM Row Attribute Register 
+        * 0x70 Row 0,1
+        * 0x71 Row 2,3
+        * 0x72 Row 4,5
+        * 0x73 Row 6,7
+        * [7:7] Device width for Odd numbered rows
+        *       0 == 8 bits wide x8
+        *       1 == 4 bits wide x4
+        * [6:4] Row Attributes for Odd numbered rows
+        *       010 == 8KB
+        *       011 == 16KB
+        *       100 == 32KB
+        *       101 == 64KB
+        *       Others == Reserved
+        * [3:3] Device width for Even numbered rows
+        *       0 == 8 bits wide x8
+        *       1 == 4 bits wide x4
+        * [2:0] Row Attributes for Even numbered rows
+        *       010 == 8KB
+        *       011 == 16KB
+        *       100 == 32KB
+        *       101 == 64KB (This page size appears broken)
+        *       Others == Reserved
+        */
+       0x70, 0x00000000, 
+               (((0<<3)|(0<<0))<< 0) | 
+               (((0<<3)|(0<<0))<< 4) | 
+               (((0<<3)|(0<<0))<< 8) | 
+               (((0<<3)|(0<<0))<<12) | 
+               (((0<<3)|(0<<0))<<16) | 
+               (((0<<3)|(0<<0))<<20) | 
+               (((0<<3)|(0<<0))<<24) | 
+               (((0<<3)|(0<<0))<<28),
+       0x74, 0xffffffff, 0,
+
+       /* DRT - DRAM Time Register
+        * 0x78
+        * [31:30] Reserved
+        * [29:29] Back to Back Write-Read Turn Around
+        *         0 == 3 clocks between WR-RD commands
+        *         1 == 2 clocks between WR-RD commands
+        * [28:28] Back to Back Read-Write Turn Around
+        *         0 == 5 clocks between RD-WR commands
+        *         1 == 4 clocks between RD-WR commands
+        * [27:27] Back to Back Read Turn Around
+        *         0 == 4 clocks between RD commands
+        *         1 == 3 clocks between RD commands
+        * [26:24] Read Delay (tRD)
+        *         000 == 7 clocks
+        *         001 == 6 clocks
+        *         010 == 5 clocks
+        *         Others == Reserved
+        * [23:19] Reserved
+        * [18:16] DRAM idle timer
+        *      000 == infinite
+        *      011 == 16 dram clocks
+        *      001 == Datasheet says reserved, but Intel BIOS sets it
+        * [15:11] Reserved
+        * [10:09] Active to Precharge (tRAS)
+        *         00 == 7 clocks
+        *         01 == 6 clocks
+        *         10 == 5 clocks
+        *         11 == Reserved
+        * [08:06] Reserved
+        * [05:04] Cas Latency (tCL)
+        *         00 == 2.5 Clocks
+        *         01 == 2.0 Clocks
+        *         10 == 1.5 Clocks
+        *         11 == Reserved
+        * [03:03] Write Ras# to Cas# Delay (tRCD)
+        *         0 == 3 DRAM Clocks
+        *         1 == 2 DRAM Clocks
+        * [02:01] Read RAS# to CAS# Delay (tRCD)
+        *         00 == reserved
+        *         01 == reserved
+        *         10 == 3 DRAM Clocks
+        *         11 == 2 DRAM Clocks
+        * [00:00] DRAM RAS# to Precharge (tRP)
+        *         0 == 3 DRAM Clocks
+        *         1 == 2 DRAM Clocks
+        */
+#define DRT_CAS_2_5 (0<<4)
+#define DRT_CAS_2_0 (1<<4)   
+#define DRT_CAS_1_5 (2<<4)
+#define DRT_CAS_MASK (3<<4)
+
+#if CAS_LATENCY == CAS_2_5
+#define DRT_CL DRT_CAS_2_5
+#elif CAS_LATENCY == CAS_2_0
+#define DRT_CL DRT_CAS_2_0
+#elif CAS_LATENCY == CAS_1_5
+#define DRT_CL DRT_CAS_1_5
+#endif
+
+       /* Most aggressive settings possible */
+//     0x78, 0xc0fff8c4, (1<<29)|(1<<28)|(1<<27)|(2<<24)|(2<<9)|DRT_CL|(1<<3)|(1<<1)|(1<<0),
+//     0x78, 0xc0f8f8c0, (1<<29)|(1<<28)|(1<<27)|(1<<24)|(1<<16)|(2<<9)|DRT_CL|(1<<3)|(3<<1)|(1<<0),
+       0x78, 0xc0f8f9c0, (1<<29)|(1<<28)|(1<<27)|(1<<24)|(1<<16)|(2<<9)|DRT_CL|(1<<3)|(3<<1)|(1<<0),
+
+       /* FIXME why was I attempting to set a reserved bit? */
+       /* 0x0100040f */
+
+       /* DRC - DRAM Contoller Mode Register
+        * 0x7c
+        * [31:30] Reserved
+        * [29:29] Initialization Complete
+        *         0 == Not Complete
+        *         1 == Complete
+        * [28:23] Reserved
+        * [22:22]         Channels
+        *              0 == Single channel
+        *              1 == Dual Channel
+        * [21:20] DRAM Data Integrity Mode
+        *         00 == Disabled, no ECC
+        *         01 == Reserved
+        *         10 == Error checking, using chip-kill, with correction
+        *         11 == Reserved
+        * [19:18] Reserved
+        *         Must equal 01
+        * [17:17] (Intel Undocumented) should always be set to 1
+        * [16:16] Command Per Clock - Address/Control Assertion Rule (CPC)
+        *         0 == 2n Rule
+        *         1 == 1n rule
+        * [15:11] Reserved
+        * [10:08] Refresh mode select
+        *         000 == Refresh disabled
+        *         001 == Refresh interval 15.6 usec
+        *         010 == Refresh interval 7.8 usec
+        *         011 == Refresh interval 64 usec
+        *         111 == Refresh every 64 clocks (fast refresh)
+        * [07:07] Reserved
+        * [06:04] Mode Select (SMS)
+        *         000 == Self Refresh Mode
+        *         001 == NOP Command
+        *         010 == All Banks Precharge
+        *         011 == Mode Register Set
+        *         100 == Extended Mode Register Set
+        *         101 == Reserved
+        *         110 == CBR Refresh
+        *         111 == Normal Operation
+        * [03:00] Reserved
+        */
+//     .long 0x7c, 0xffcefcff, (1<<22)|(2 << 20)|(1 << 16)| (0 << 8),
+//     .long 0x7c, 0xff8cfcff, (1<<22)|(2 << 20)|(1 << 17)|(1 << 16)| (0 << 8),
+//     .long 0x7c, 0xff80fcff, (1<<22)|(2 << 20)|(1 << 18)|(1 << 17)|(1 << 16)| (0 << 8),
+       0x7c, 0xff82fcff, (1<<22)|(2 << 20)|(1 << 18)|(1 << 16)| (0 << 8),
+
+
+       /* Another Intel undocumented register */
+       0x88, 0x080007ff, (1<<31)|(1 << 30)|(1<<28)|(0 << 26)|(0x10 << 21)|(10 << 16)|(0x13 << 11),
+
+       /* CLOCK_DIS - CK/CK# Disable Register
+        * 0x8C
+        * [7:4] Reserved
+        * [3:3] CK3
+        *       0 == Enable
+        *       1 == Disable
+        * [2:2] CK2
+        *       0 == Enable
+        *       1 == Disable
+        * [1:1] CK1
+        *       0 == Enable
+        *       1 == Disable
+        * [0:0] CK0
+        *       0 == Enable
+        *       1 == Disable
+        */
+       0x8C, 0xfffffff0, 0xf,
+
+       /* TOLM - Top of Low Memory Register
+        * 0xC4 - 0xC5
+        * [15:11] Top of low memory (TOLM)
+        *         The address below 4GB that should be treated as RAM,
+        *         on a 128MB granularity.
+        * [10:00] Reserved
+        */
+       /* REMAPBASE - Remap Base Address Regsiter
+        * 0xC6 - 0xC7
+        * [15:10] Reserved
+        * [09:00] Remap Base Address [35:26] 64M aligned
+        *         Bits [25:0] are assumed to be 0.
+        */
+       0xc4, 0xfc0007ff, (0x2000 << 0) | (0x3ff << 16),
+       /* REMAPLIMIT - Remap Limit Address Register
+        * 0xC8 - 0xC9
+        * [15:10] Reserved
+        * [09:00] Remap Limit Address [35:26] 64M aligned
+        * When remaplimit < remapbase this register is disabled.
+        */
+       0xc8, 0xfffffc00, 0,
+
+       /* DVNP - Device Not Present Register
+        * 0xE0 - 0xE1
+        * [15:05] Reserved
+        * [04:04] Device 4 Function 1 Present
+        *         0 == Present
+        *         1 == Absent
+        * [03:03] Device 3 Function 1 Present
+        *         0 == Present
+        *         1 == Absent
+        * [02:02] Device 2 Function 1 Present
+        *         0 == Present
+        *         1 == Absent
+        * [01:01] Reserved
+        * [00:00] Device 0 Function 1 Present
+        *         0 == Present
+        *         1 == Absent
+        */
+       0xe0, 0xffffffe2, (1<<4)|(1<<3)|(1<<2)|(0<<0),
+       0xd8, 0xffff9fff, 0x00000000,
+       0xf4, 0x3f8ffffd, 0x40300002,
+       0x1050, 0xffffffcf, 0x00000030,
+};
+
+
+       /*
+        * Routine:     ram_set_registers
+        * Arguments:   none
+        * Results:     none
+        * Trashed:     %eax, %ebx, %ecx, %edx, %esi, %eflags
+        * Effects:     Do basic ram setup that does not depend on serial
+        *              presence detect information.
+        *              This sets PCI configuration registers to known good
+        *              values based on the table: 
+        *                      constant_register_values
+        *              Which are a triple of configuration regiser, mask, and value.
+        *              
+        */
+/* from 1M or 512K */
+#define RCOMP_MMIO 0x100000
+
+       /* DDR RECOMP table */
+
+static const long ddr_rcomp_1[] = {
+       0x44332211, 0xc9776655, 0xffffffff, 0xffffffff,
+       0x22111111, 0x55444332, 0xfffca876, 0xffffffff,
+};
+static const long ddr_rcomp_2[] = {
+       0x00000000, 0x76543210, 0xffffeca8, 0xffffffff,
+       0x21000000, 0xa8765432, 0xffffffec, 0xffffffff,
+};
+static const long ddr_rcomp_3[] = {
+       0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
+       0x88888888, 0x88888888, 0x88888888, 0x88888888,
+};
+
+#define rcomp_init_str "Setting RCOMP registers.\r\n"
+
+static void write_8dwords(uint32_t src_addr, uint32_t dst_addr) {
+       int i;
+       uint32_t dword;
+       for(i=0;i<8;i++) {
+               dword = read32(src_addr);
+               write32(dst_addr, dword);
+               src_addr+=4;
+               dst_addr+=4;
+               
+       }
+}
+
+//#define SLOW_DOWN_IO inb(0x80);
+#define SLOW_DOWN_IO udelay(40);
+
+static void ram_set_rcomp_regs(const struct mem_controller *ctrl) {
+       uint32_t dword;
+#if DEBUG_RAM_CONFIG
+       print_debug(rcomp_init_str);
+#endif
+
+       /*enable access to the rcomp bar */
+       dword = pci_read_config32(ctrl->d0, 0x0f4);
+        dword &= ~(1<<31);
+        dword |=((1<<30)|1<<22);
+        pci_write_config32(ctrl->d0, 0x0f4, dword);
+        
+
+       /* Set the MMIO address to 512K */
+        pci_write_config32(ctrl->d0, 0x14, RCOMP_MMIO);
+
+       dword = read32(RCOMP_MMIO + 0x20);
+       dword |= (1<<9);
+       write32(RCOMP_MMIO + 0x20, dword);
+       
+
+       /* Begin to write the RCOMP registers */
+       
+       write8(RCOMP_MMIO + 0x2c, 0xff);
+       write32(RCOMP_MMIO + 0x30, 0x01040444);
+       write8(RCOMP_MMIO + 0x34, 0x04);
+       write32(RCOMP_MMIO + 0x40, 0);
+       write16(RCOMP_MMIO + 0x44, 0);
+       write16(RCOMP_MMIO + 0x48, 0);
+       write16(RCOMP_MMIO + 0x50, 0);
+       write_8dwords((uint32_t)ddr_rcomp_1, RCOMP_MMIO + 0x60);
+       write_8dwords((uint32_t)ddr_rcomp_2, RCOMP_MMIO + 0x80);
+       write_8dwords((uint32_t)ddr_rcomp_2, RCOMP_MMIO + 0xa0);
+       write_8dwords((uint32_t)ddr_rcomp_2, RCOMP_MMIO + 0x140);
+       write_8dwords((uint32_t)ddr_rcomp_2, RCOMP_MMIO + 0x1c0);
+       write_8dwords((uint32_t)ddr_rcomp_3, RCOMP_MMIO + 0x180);
+
+#if 0  /* Print the RCOMP registers */
+       movl    $RCOMP_MMIO, %ecx
+1:     movl    %ecx, %eax
+       andb    $0x0f, %al
+       jnz     2f
+       CONSOLE_INFO_TX_CHAR($'\r')
+        CONSOLE_INFO_TX_CHAR($'\n')
+       CONSOLE_INFO_TX_HEX32(%ecx)
+       CONSOLE_INFO_TX_CHAR($' ')
+       CONSOLE_INFO_TX_CHAR($'-')
+       CONSOLE_INFO_TX_CHAR($' ')
+2:     movl    (%ecx), %eax
+       CONSOLE_INFO_TX_HEX32(%eax)
+       CONSOLE_INFO_TX_CHAR($' ')
+       addl    $4, %ecx
+       cmpl    $(RCOMP_MMIO + 0x1e0), %ecx
+       jnz     1b
+        CONSOLE_INFO_TX_CHAR($'\r')
+        CONSOLE_INFO_TX_CHAR($'\n')
+#endif
+
+       dword = read32(RCOMP_MMIO + 0x20);
+       dword &= ~(3);
+       dword |= 1;
+       write32(RCOMP_MMIO + 0x20, dword);
+
+       /* Wait 40 usec */
+       SLOW_DOWN_IO;
+       
+       /* unblock updates */
+       dword = read32(RCOMP_MMIO + 0x20);
+       dword &= ~(1<<9);
+       write32(RCOMP_MMIO+0x20, dword);
+       dword |= (1<<8);
+       write32(RCOMP_MMIO+0x20, dword);
+       dword &= ~(1<<8);
+       write32(RCOMP_MMIO+0x20, dword);
+       
+       /* Wait 40 usec */
+       SLOW_DOWN_IO;
+
+       /*disable access to the rcomp bar */
+       dword = pci_read_config32(ctrl->d0, 0x0f4);
+       dword &= ~(1<<22);
+       pci_write_config32(ctrl->d0, 0x0f4, dword);     
+
+}
+
+static void ram_set_d0f0_regs(const struct mem_controller *ctrl) {
+#if DEBUG_RAM_CONFIG
+       dumpnorth();
+#endif
+       int i;
+       int max;
+        max = sizeof(register_values)/sizeof(register_values[0]);
+        for(i = 0; i < max; i += 3) {
+                uint32_t reg;
+#if DEBUG_RAM_CONFIG
+                print_debug_hex32(register_values[i]);
+                print_debug(" <-");
+                print_debug_hex32(register_values[i+2]);
+                print_debug("\r\n");
+#endif
+                reg = pci_read_config32(ctrl->d0,register_values[i]);
+                reg &= register_values[i+1];
+                reg |= register_values[i+2] & ~(register_values[i+1]);
+                pci_write_config32(ctrl->d0,register_values[i], reg);
+
+
+        }
+#if DEBUG_RAM_CONFIG
+       dumpnorth();
+#endif
+}
+static void sdram_set_registers(const struct mem_controller *ctrl){
+        ram_set_rcomp_regs(ctrl);
+        ram_set_d0f0_regs(ctrl);
+}
+
+
+       /*
+        * Routine:     sdram_spd_get_page_size
+        * Arguments:   %bl SMBUS_MEM_DEVICE
+        * Results:     
+        *              %edi log base 2 page size of DIMM side 1 in bits
+        *              %esi log base 2 page size of DIMM side 2 in bits
+        *
+        * Preserved:   %ebx (except %bh), %ebp
+        *
+        * Trashed:     %eax, %bh, %ecx, %edx, %esp, %eflags
+        * Used:        %eax, %ebx, %ecx, %edx, %esi, %edi, %esp, %eflags
+        *
+        * Effects:     Uses serial presence detect to set %edi & %esi
+        *              to the page size of a dimm.
+        * Notes:
+        *              %bl SMBUS_MEM_DEVICE
+        *              %edi holds the page size for the first side of the DIMM.
+        *              %esi holds the page size for the second side of the DIMM.
+        *                   memory size is represent as a power of 2.
+        *
+        *              This routine may be worth moving into generic code somewhere.
+        */
+struct dimm_page_size { 
+        unsigned long side1;
+        unsigned long side2;
+};      
+  
+static struct dimm_page_size sdram_spd_get_page_size(unsigned device) {
+
+       uint32_t ecx;
+       int value;
+       struct dimm_page_size pgsz;
+
+       pgsz.side1 = 0;
+       pgsz.side2 = 0; 
+               
+       value  = spd_read_byte(device, 4); /* columns */
+       if(value < 0) goto hw_err;
+       pgsz.side1 = value & 0xf;
+       
+       /* Get the module data width and convert it to a power of two */
+       value = spd_read_byte(device,7);                /* (high byte) */
+       if(value < 0) goto hw_err;
+       ecx = value & 0xff;
+       ecx <<= 8;
+
+       value = spd_read_byte(device, 6);        /* (low byte) */
+       if(value < 0) goto hw_err;
+       ecx |= (value & 0xff);
+
+       pgsz.side1 += log2(ecx);         /* compute cheap log base 2 */ 
+
+       /* side two */
+       value = spd_read_byte(device, 5);       /* number of physical banks */
+       if(value < 0) goto hw_err;
+       if(value==1) goto out;
+       if(value!=2) goto val_err;
+
+       /* Start with the symmetrical case */
+       pgsz.side2 = pgsz.side1;
+       value = spd_read_byte(device,4);   /* columns */
+       if(value < 0) goto hw_err;
+       if((value & 0xf0)==0 ) goto out;
+       pgsz.side2 -=value & 0xf; /* Subtract out columns on side 1 */
+       pgsz.side2 +=(value>>4)& 0xf; /* Add in columns on side 2 */
+        goto out;
+
+ val_err:
+        die("Bad SPD value\r\n");
+        /* If an hw_error occurs report that I have no memory */
+hw_err:
+       pgsz.side1 = 0;
+       pgsz.side2 = 0;
+out:
+       return pgsz;    
+}
+
+
+       /*
+        * Routine:     sdram_spd_get_width
+        * Arguments:   %bl SMBUS_MEM_DEVICE
+        * Results:     
+        *              %edi width of SDRAM chips on DIMM side 1 in bits
+        *              %esi width of SDRAM chips on DIMM side 2 in bits
+        *
+        * Preserved:   %ebx (except %bh), %ebp
+        *
+        * Trashed:     %eax, %bh, %ecx, %edx, %esp, %eflags
+        * Used:        %eax, %ebx, %ecx, %edx, %esi, %edi, %esp, %eflags
+        *
+        * Effects:     Uses serial presence detect to set %edi & %esi
+        *              to the width of a dimm.
+        * Notes:
+        *              %bl SMBUS_MEM_DEVICE
+        *              %edi holds the width for the first side of the DIMM.
+        *              %esi holds the width for the second side of the DIMM.
+        *                   memory size is represent as a power of 2.
+        *
+        *              This routine may be worth moving into generic code somewhere.
+        */
+struct dimm_width {
+        unsigned side1;
+        unsigned side2;
+};      
+  
+static struct dimm_width sdram_spd_get_width(unsigned device) {
+       int value;
+       struct dimm_width wd;
+       uint32_t ecx;
+       
+       wd.side1 = 0;
+       wd.side2 = 0;
+
+       value = spd_read_byte(device, 13); /* sdram width */
+       if(value < 0 )  goto hw_err;
+       ecx = value;
+       
+       wd.side1 = value & 0x7f;        
+       
+       /* side two */
+       value = spd_read_byte(device, 5); /* number of physical banks */
+       if(value < 0 ) goto hw_err;     
+       if(value <=1 ) goto out;
+
+       /* Start with the symmetrical case */
+       wd.side2 = wd.side1;
+
+       if((ecx & 0x80)==0) goto out;
+       
+       wd.side2 <<=1;
+hw_err:
+       wd.side1 = 0;
+       wd.side2 = 0;
+
+ out:
+        return wd;
+}
+       
+       /*
+        * Routine:     sdram_spd_get_dimm_size
+        * Arguments:   %bl SMBUS_MEM_DEVICE
+        * Results:     
+        *              %edi log base 2 size of DIMM side 1 in bits
+        *              %esi log base 2 size of DIMM side 2 in bits
+        *
+        * Preserved:   %ebx (except %bh), %ebp
+        *
+        * Trashed:     %eax, %bh, %ecx, %edx, %esp, %eflags
+        * Used:        %eax, %ebx, %ecx, %edx, %esi, %edi, %esp, %eflags
+        *
+        * Effects:     Uses serial presence detect to set %edi & %esi
+        *              the size of a dimm.
+        * Notes:
+        *              %bl SMBUS_MEM_DEVICE
+        *              %edi holds the memory size for the first side of the DIMM.
+        *              %esi holds the memory size for the second side of the DIMM.
+        *                   memory size is represent as a power of 2.
+        *
+        *              This routine may be worth moving into generic code somewhere.
+        */
+
+struct dimm_size {
+        unsigned long side1;
+        unsigned long side2;
+};
+
+static struct dimm_size spd_get_dimm_size(unsigned device)
+{
+        /* Calculate the log base 2 size of a DIMM in bits */
+        struct dimm_size sz;
+        int value, low;
+        sz.side1 = 0;
+        sz.side2 = 0;
+
+        /* Note it might be easier to use byte 31 here, it has the DIMM size as
+         * a multiple of 4MB.  The way we do it now we can size both
+         * sides of an assymetric dimm.
+         */
+        value = spd_read_byte(device, 3);       /* rows */
+        if (value < 0) goto hw_err;
+//        if ((value & 0xf) == 0) goto val_err;
+        sz.side1 += value & 0xf;
+
+        value = spd_read_byte(device, 4);       /* columns */
+        if (value < 0) goto hw_err;
+//        if ((value & 0xf) == 0) goto val_err;
+        sz.side1 += value & 0xf;
+
+        value = spd_read_byte(device, 17);      /* banks */
+        if (value < 0) goto hw_err;
+//        if ((value & 0xff) == 0) goto val_err;
+       value &=0xff;
+        sz.side1 += log2(value);
+
+        /* Get the module data width and convert it to a power of two */
+        value = spd_read_byte(device, 7);       /* (high byte) */
+        if (value < 0) goto hw_err;
+        value &= 0xff;
+        value <<= 8;
+        
+        low = spd_read_byte(device, 6); /* (low byte) */
+        if (low < 0) goto hw_err;
+        value |= (low & 0xff);
+//        if ((value != 72) && (value != 64)) goto val_err;
+        sz.side1 += log2(value);
+        
+        /* side 2 */
+        value = spd_read_byte(device, 5);       /* number of physical banks */
+        if (value < 0) goto hw_err;
+        if (value == 1) goto out;
+//        if (value != 2) goto val_err;
+
+        /* Start with the symmetrical case */
+        sz.side2 = sz.side1;
+
+        value = spd_read_byte(device, 3);       /* rows */
+        if (value < 0) goto hw_err;
+        if ((value & 0xf0) == 0) goto out;      /* If symmetrical we are done */
+        sz.side2 -= (value & 0x0f);             /* Subtract out rows on side 1 */
+        sz.side2 += ((value >> 4) & 0x0f);      /* Add in rows on side 2 */
+
+        value = spd_read_byte(device, 4);       /* columns */
+        if (value < 0) goto hw_err;
+//        if ((value & 0xff) == 0) goto val_err;
+        sz.side2 -= (value & 0x0f);             /* Subtract out columns on side 1 */
+        sz.side2 += ((value >> 4) & 0x0f);      /* Add in columsn on side 2 */
+        goto out;
+
+ val_err:
+        die("Bad SPD value\r\n");
+        /* If an hw_error occurs report that I have no memory */
+hw_err:
+        sz.side1 = 0;
+        sz.side2 = 0;
+ out:
+        return sz;
+}
+
+
+
+       /*
+        * This is a place holder fill this out
+        * Routine:     spd_set_row_attributes 
+        * Arguments:   %bl SMBUS_MEM_DEVICE
+        * Results:     
+        *              %edi log base 2 size of DIMM side 1 in bits
+        *              %esi log base 2 size of DIMM side 2 in bits
+        *
+        * Preserved:   %ebx (except %bh), %ebp
+        *
+        * Trashed:     %eax, %bh, %ecx, %edx, %esp, %eflags
+        * Used:        %eax, %ebx, %ecx, %edx, %esi, %edi, %esp, %eflags
+        *
+        * Effects:     Uses serial presence detect to set %edi & %esi
+        *              the size of a dimm.
+        * Notes:
+        *              %bl SMBUS_MEM_DEVICE
+        *              %edi holds the memory size for the first side of the DIMM.
+        *              %esi holds the memory size for the second side of the DIMM.
+        *                   memory size is represent as a power of 2.
+        *
+        *              This routine may be worth moving into generic code somewhere.
+        */
+static long spd_set_row_attributes(const struct mem_controller *ctrl, long dimm_mask) {
+       int i;  
+        uint32_t dword=0;
+        int value;
+        
+
+        /* Walk through all dimms and find the interesection of the support
+         * for ecc sdram and refresh rates
+         */        
+        
+        for(i = 0; i < DIMM_SOCKETS; i++) {
+               if (!(dimm_mask & (1 << i))) {
+                        continue;
+                }
+                 /* Test to see if I have ecc sdram */
+               struct dimm_page_size sz;
+                sz = sdram_spd_get_page_size(ctrl->channel0[i]);  /* SDRAM type */
+#if DEBUG_RAM_CONFIG
+               print_debug("page size =");
+               print_debug_hex32(sz.side1);
+               print_debug(" ");
+               print_debug_hex32(sz.side2);
+               print_debug("\r\n");
+#endif
+       
+               /* Test to see if the dimm is present */
+               if( sz.side1 !=0) {
+
+                       /* Test for a valid dimm width */
+                       if((sz.side1 <15) || (sz.side1>18) ) {
+                               print_err("unsupported page size\r\n");
+                       }
+
+                       /* double because I have 2 channels */
+                       sz.side1++;
+
+                       /* Convert to the format needed for the DRA register */
+                       sz.side1-=14;   
+
+                       /* Place in the %ebp the dra place holder */ //i
+                       dword |= sz.side1<<(i<<3);
+                       
+                       /* Test to see if the second side is present */
+
+                       if( sz.side2 !=0) {
+        
+                               /* Test for a valid dimm width */
+                               if((sz.side2 <15) || (sz.side2>18) ) {
+                                       print_err("unsupported page size\r\n");
+                               }
+
+                               /* double because I have 2 channels */
+                               sz.side2++;
+
+                               /* Convert to the format needed for the DRA register */
+                               sz.side2-=14;
+
+                               /* Place in the %ebp the dra place holder */ //i
+                               dword |= sz.side2<<((i<<3) + 4 );
+
+                       }
+               }
+
+               /* Now add the SDRAM chip width to the DRA */
+               struct dimm_width wd;
+               wd = sdram_spd_get_width(ctrl->channel0[i]);
+
+#if DEBUG_RAM_CONFIG
+                print_debug("width =");
+                print_debug_hex32(wd.side1);
+                print_debug(" ");
+                print_debug_hex32(wd.side2);
+                print_debug("\r\n");
+#endif
+               
+               if(wd.side1 == 0) continue;
+               if(wd.side1 == 4) {
+                       /* Enable an x4 device */
+                       dword |= 0x08 << (i<<3);
+               }
+
+               if(wd.side2 == 0) continue;
+                if(wd.side2 == 4) {
+                        /* Enable an x4 device */
+                        dword |= 0x08 << ((i<<3 ) + 4);
+                }
+               
+       /* go to the next DIMM */
+       }
+
+       /* Write the new row attributes register */
+       pci_write_config32(ctrl->d0, 0x70, dword);
+
+       return dimm_mask;
+
+}
+#if 0
+       /*
+        * Routine:     sdram_read_paired_byte
+        * Arguments:   %esp return address
+        *              %bl device on the smbus to read from
+        *              %bh address on the smbus to read
+        * Results:     
+        *              zf clear
+        *              byte read in %al
+        *      On Error:
+        *              zf set
+        *              %eax trashed
+        *
+        * Preserved:   %ebx, %esi, %edi
+        *
+        * Trashed:     %eax, %ecx, %edx, %ebp, %esp, %eflags
+        * Used:        %eax, %ebx, %ecx, %edx, %esp, %eflags
+        *
+        * Effects:     Reads two spd bytes from both ram channesl
+        *              and errors if they are not equal.
+        *              It then returns the equal result.
+        */
+static spd_read_paired_byte () {
+       movl    %esp, %ebp
+       CALLSP(smbus_read_byte)
+       setnz   %cl
+       movb    %al, %ch
+       addb    $(SMBUS_MEM_CHANNEL_OFF), %bl
+       CALLSP(smbus_read_byte)
+       movb    %ch, %ah
+       setnz   %ch
+       subb    $(SMBUS_MEM_CHANNEL_OFF), %bl
+
+       /* See if dimms on both sides are equally present */    
+       cmp     %cl, %ch
+       jne     sdram_presence_mismatch
+
+       /* Leave if I have no data */
+       testb   %cl, %cl
+       jz      spd_verify_byte_out
+
+       /* Verify the data is identical */
+       cmp     %ah, %al
+       jne     sdram_value_mismatch
+
+       /* Clear the zero flag */
+       testb   %cl, %cl
+spd_verify_byte_out:
+       movl    %ebp, %esp
+       RETSP
+}
+
+       /*
+        * Routine:     spd_verify_dimms
+        * Arguments:   none
+        * Results:     none
+        * Preserved:   none
+        * Trashed:     %eax, %ebx, %ecx, %edx, %ebp, %esi, %edi, %esp, %eflags
+        * Used:        %eax, %ebx, %ecx, %edx, %ebp, %esi, %edi, %esp, %eflags
+        *
+        * Effects:     
+        *              - Verify all interesting spd information
+        *                matches for both dimm channels.
+        *              - Additional error checks that can be easily done
+        *                here are computed as well, so I don't need to
+        *                worry about them later.
+        */
+static spd_verify_dimms() {
+       movl    $(SMBUS_MEM_DEVICE_START), %ebx
+spd_verify_dimm:
+       /* Verify this is DDR SDRAM */
+       movb    $2, %bh
+       CALLSP(spd_read_paired_byte)
+       jz      spd_verify_next_dimm
+       cmpb    $7, %al
+       jne     invalid_dimm_type
+
+       /* Verify the row addresses */
+       movb    $3, %bh
+       CALLSP(spd_read_paired_byte)
+       jz      spd_missing_data
+       testb   $0x0f, %al
+       jz      spd_invalid_data
+       
+       /* Column addresses */
+       movb    $4, %bh
+       CALLSP(spd_read_paired_byte)
+       jz      spd_missing_data
+       testb   $0xf, %al
+       jz      spd_invalid_data
+
+       /* Physical Banks */
+       movb    $5, %bh
+       CALLSP(spd_read_paired_byte)
+       jz      spd_missing_data
+       cmp     $1, %al
+       jb      spd_invalid_data
+       cmp     $2, %al
+       ja      spd_invalid_data
+
+       /* Module Data Width */
+       movb    $7, %bh
+       CALLSP(spd_read_paired_byte)    
+       jz      spd_missing_data
+       cmpb    $0, %al
+       jne     spd_invalid_data
+
+       movb    $6, %bh
+       CALLSP(spd_read_paired_byte)
+       jz      spd_missing_data
+       cmpb    $64, %al
+       je      1f
+       cmpb    $72, %al
+       je      1f
+       jmp     spd_unsupported_data
+1:
+
+       /* Cycle time at highest CAS latency CL=X */
+       movb    $9, %bh
+       CALLSP(spd_read_paired_byte)
+       jz      spd_missing_data
+
+       /* SDRAM type */
+       movb    $11, %bh
+       CALLSP(spd_read_paired_byte)
+       jz      spd_missing_data
+
+       /* Refresh Interval */
+       movb    $12, %bh
+       CALLSP(spd_read_paired_byte)
+       jz      spd_missing_data
+       
+       /* SDRAM Width */
+       movb    $13, %bh
+       CALLSP(spd_read_paired_byte)
+       jz      spd_missing_data
+       andb    $0x7f, %al
+       cmpb    $4, %al
+       je      1f
+       cmpb    $8, %al
+       je      1f
+       jmp     spd_unsupported_data
+1:
+
+       /* Back-to-Back Random Column Accesses */
+       movb    $15, %bh
+       CALLSP(spd_read_paired_byte)
+       jz      spd_missing_data
+       testb   %al, %al
+       jz      spd_invalid_data
+       cmpb    $4, %al
+       ja      spd_unsupported_data
+
+       /* Burst Lengths */
+       movb    $16, %bh
+       CALLSP(spd_read_paired_byte)
+       jz      spd_missing_data
+       testb   $(1<<2), %al
+       jz      spd_unsupported_data
+
+       /* Logical Banks */
+       movb    $17, %bh
+       CALLSP(spd_read_paired_byte)
+       jz      spd_missing_data
+       testb   %al, %al
+       jz      spd_invalid_data
+       
+       /* Supported CAS Latencies */
+       movb    $18, %bh
+       CALLSP(spd_read_paired_byte)
+       jz      spd_missing_data
+       testb   $(1 << 1), %al /* CL 1.5 */
+       jnz     1f
+       testb   $(1 << 2), %al /* CL 2.0 */
+       jnz     1f
+       testb   $(1 << 3), %al /* CL 2.5 */
+       jnz     1f
+       jmp     spd_unsupported_data
+1:
+       
+       /* Cycle time at Cas Latency (CLX - 0.5) */
+       movb    $23, %bh
+       CALLSP(spd_read_paired_byte)
+       jz      spd_missing_data
+       
+       /* Cycle time at Cas Latency (CLX - 1.0) */
+       movb    $26, %bh
+       CALLSP(spd_read_paired_byte)
+       jz      spd_missing_data
+       
+       /* tRP Row precharge time */
+       movb    $27, %bh
+       CALLSP(spd_read_paired_byte)
+       jz      spd_missing_data
+       testb   $0xfc, %al
+       jz      spd_invalid_data
+       
+
+       /* tRCD RAS to CAS */
+       movb    $29, %bh
+       CALLSP(spd_read_paired_byte)
+       jz      spd_missing_data
+       testb   $0xfc, %al
+       jz      spd_invalid_data
+       
+       /* tRAS Activate to Precharge */
+       movb    $30, %bh
+       CALLSP(spd_read_paired_byte)
+       jz      spd_missing_data
+       testb   %al, %al
+       jz      spd_invalid_data
+
+       /* Module Bank Density */
+       movb    $31, %bh
+       CALLSP(spd_read_paired_byte)
+       jz      spd_missing_data
+       testb   $(1<<2), %al            /* 16MB */
+       jnz     spd_unsupported_data
+       testb   $(1<<3), %al
+       jnz     spd_unsupported_data    /* 32MB */
+       
+       /* Address and Command Hold Time After Clock */
+       movb    $33, %bh
+       CALLSP(spd_read_paired_byte)
+       jz      spd_missing_data
+
+spd_verify_next_dimm:
+       /* go to the next DIMM */
+       addb    $(SMBUS_MEM_DEVICE_INC), %bl /* increment the smbus device */
+       cmpb    $SMBUS_MEM_DEVICE_END, %bl
+       jbe     spd_verify_dimm
+spd_verify_dimms_out:
+       RET_LABEL(spd_verify_dimms)
+}
+#endif
+#define spd_pre_init  "Reading SPD data...\r\n"
+#define spd_pre_set "setting based on SPD data...\r\n"
+#define spd_post_init "done\r\n"
+
+
+static const uint32_t refresh_rate_rank[]= {
+       /* Refresh rates ordered from most conservative (lowest)
+        * to most agressive (highest)
+        * disabled 0 -> rank 3 
+        * 15.6usec 1 -> rank 1
+        * 7.8 usec 2 -> rank 0
+        * 64usec   3 -> rank 2
+        */
+       3, 1, 0, 2 };
+static const uint32_t refresh_rate_index[] = {
+       /* Map the spd refresh rates to memory controller settings 
+        * 15.625us -> 15.6us
+        * 3.9us    -> err
+        * 7.8us    -> 7.8us
+        * 31.3s    -> 15.6us
+        * 62.5us   -> 15.6us
+        * 125us    -> 64us
+        */
+       1, 0xff, 2, 1, 1, 3
+};
+#define MAX_SPD_REFRESH_RATE 5
+
+static long spd_set_dram_controller_mode (const struct mem_controller *ctrl, long dimm_mask) {
+
+        int i;  
+        uint32_t dword;
+        int value;
+       uint32_t ecx;
+       uint32_t edx;
+        
+        /* Read the inititial state */
+        dword = pci_read_config32(ctrl->d0, 0x7c);
+
+#if 0
+        /* Test if ECC cmos option is enabled */
+        movb    $RTC_BOOT_BYTE, %al
+        outb    %al, $0x70
+        inb     $0x71, %al
+        testb   $(1<<2), %al
+        jnz     1f
+        /* Clear the ecc enable */
+        andl    $~(3 << 20), %esi
+1:
+#endif
+
+
+        /* Walk through all dimms and find the interesection of the support
+         * for ecc sdram and refresh rates
+         */        
+
+        for(i = 0; i < DIMM_SOCKETS; i++) {
+               if (!(dimm_mask & (1 << i))) {
+                        continue;
+                }
+                /* Test to see if I have ecc sdram */
+                value = spd_read_byte(ctrl->channel0[i], 11);  /* SDRAM type */
+                if(value < 0) continue;
+               if(value !=2 ) {
+                       /* Clear the ecc enable */
+                       dword &= ~(3 << 20);
+               }
+               value = spd_read_byte(ctrl->channel0[i], 12);  /* SDRAM refresh rate */
+               if(value < 0 ) continue;
+               value &= 0x7f;
+               if(value > MAX_SPD_REFRESH_RATE) { print_err("unsupported refresh rate\r\n");}
+//             if(value == 0xff) { print_err("unsupported refresh rate\r\n");}
+               
+               ecx = refresh_rate_index[value];
+
+               /* Isolate the old refresh rate setting */
+               /* Load the refresh rate ranks */
+               edx = refresh_rate_rank[(dword >> 8) & 3]<<8;
+               edx |= refresh_rate_rank[ecx] & 0xff; 
+       
+               /* See if the new refresh rate is more conservative than the old
+               * refresh rate setting. (Lower ranks are more conservative)
+               */
+               if((edx & 0xff)< ((edx >> 8) & 0xff) ) {
+                       /* Clear the old refresh rate */
+                       dword &= ~(3<<8);
+                       /* Move in the new refresh rate */
+                       dword |= (ecx<<8);
+               }
+               
+               value = spd_read_byte(ctrl->channel0[i], 33); /* Address and command hold time after clock */
+               if(value < 0) continue;
+               if(value >= 0xa0) {             /* At 133Mhz this constant should be 0x75 */
+                       dword &= ~(1<<16);      /* Use two clock cyles instead of one */
+               }
+       
+       /* go to the next DIMM */
+       }
+
+       /* Now write the controller mode */
+       pci_write_config32(ctrl->d0, 0x7c, dword);
+       
+       return dimm_mask;
+
+}
+static long spd_enable_clocks(const struct mem_controller *ctrl, long dimm_mask)
+{
+        int i;
+       uint32_t dword;
+       int value;
+
+        /* Read the inititial state */
+        dword = pci_read_config32(ctrl->d0, 0x8c);
+#if 0
+# Intel clears top bit here, should we?
+# No the default is on and for normal timming it should be on.  Tom Z
+        andl    $0x7f, %esi
+#endif
+
+        for(i = 0; i < DIMM_SOCKETS; i++) {
+               if (!(dimm_mask & (1 << i))) {
+                        continue;
+                }
+               /* Read any spd byte to see if the dimm is present */
+               value = spd_read_byte(ctrl->channel0[i], 5); /* Physical Banks */
+                       if(value < 0) continue;
+        
+               dword &= ~(1<<i);
+        }
+       
+       pci_write_config32(ctrl->d0, 0x8c, dword);
+       
+       return dimm_mask;
+}
+
+static const uint16_t cas_latency_80[] = {
+       /* For cas latency 2.0 0x01 works and until I see a large test sample
+        * I am not prepared to change this value, to the intel recommended value
+        * of 0x0d.  Eric Biederman
+        */
+       /* The E7501 requires b1 rather than 01 for CAS2 or memory will be hosed
+        * CAS 1.5 is claimed to be unsupported, will try to test that
+        * will need to determine correct values for other CAS values
+        * (perhaps b5, b1, b6?)
+        * Steven James 02/06/2003
+        */
+        
+//#    .byte 0x05, 0x01, 0x06 
+//#    .byte 0xb5, 0xb1, 0xb6 
+       0x0, 0x0bb1, 0x0662   /* RCVEN */ 
+};
+static const uint16_t cas_latency_80_4dimms[] = {
+        0x0, 0x0bb1, 0x0882
+};
+
+
+static const uint8_t cas_latency_78[] = {
+       DRT_CAS_1_5, DRT_CAS_2_0, DRT_CAS_2_5
+};
+
+static long spd_set_cas_latency(const struct mem_controller *ctrl, long dimm_mask) {
+       /* Walk through all dimms and find the interesection of the
+        * supported cas latencies.
+        */
+        int i;
+        /* Initially allow cas latencies 2.5, 2.0
+         * which the chipset supports.
+         */
+       uint32_t dword = (1<<3)| (1<<2);// esi
+       uint32_t edi;
+       uint32_t ecx;
+       unsigned device;
+       int value;
+       uint8_t byte;
+       uint16_t word;
+
+       
+        for(i = 0; i < DIMM_SOCKETS; i++) {
+               if (!(dimm_mask & (1 << i))) {
+                        continue;
+                }
+               value = spd_read_byte(ctrl->channel0[i], 18);
+               if(value < 0) continue;
+               /* Find the highest supported cas latency */
+               ecx = log2(value & 0xff); 
+               edi = (1<< ecx);
+
+                /* Remember the supported cas latencies */
+               ecx = (value & 0xff);
+
+               /* Verify each cas latency at 133Mhz */
+               /* Verify slowest/highest CAS latency */
+               value = spd_read_byte(ctrl->channel0[i], 9);
+               if(value < 0 ) continue;
+               if(value > 0x75 ) {     
+                       /* The bus is too fast so we cannot support this case latency */
+                       ecx &= ~edi;
+               }
+
+               /* Verify the highest CAS latency - 0.5 clocks */
+               edi >>= 1;
+               if(edi != 0) {
+                       value = spd_read_byte(ctrl->channel0[i], 23);
+                       if(value < 0 ) continue;
+                       if(value > 0x75) {
+                               /* The bus is too fast so we cannot support this cas latency */
+                               ecx &= ~edi;
+                       }
+               }
+
+               /* Verify the highest CAS latency - 1.0 clocks */
+               edi >>=1;
+               if(edi !=0) {
+                        value = spd_read_byte(ctrl->channel0[i], 25);
+                        if(value < 0 ) continue;
+                        if(value > 0x75) {
+                                /* The bus is too fast so we cannot support this cas latency */
+                                ecx &= ~edi;
+                        }
+               }
+
+               /* Now find which cas latencies are supported for the bus */
+               dword &= ecx;
+       /* go to the next DIMM */
+       }
+
+       /* After all of the arduous calculation setup with the fastest
+        * cas latency I can use.
+        */
+       value = __builtin_bsf(dword);  // bsrl = log2 how about bsfl?
+       if(value ==0 ) return -1;
+       ecx = value -1;
+
+       byte = pci_read_config8(ctrl->d0, 0x78);
+       byte &= ~(DRT_CAS_MASK);
+       byte |= cas_latency_78[ecx];
+       pci_write_config8(ctrl->d0,0x78, byte);
+
+       /* set master DLL reset */
+       dword = pci_read_config32(ctrl->d0, 0x88);
+       dword |= (1<<26);
+       
+       /* the rest of the references are words */
+//     ecx<<=1;  // don't need shift left, because we already define that in u16 array
+       pci_write_config32(ctrl->d0, 0x88, dword);
+       
+       
+       dword &= 0x0c0000ff;    /* patch try register 88 is undocumented tnz */
+       dword |= 0xd2109800;
+
+       pci_write_config32(ctrl->d0, 0x88, dword);
+       
+       word = pci_read_config16(ctrl->d0, 0x80);
+       word &= ~(0x0fff);
+       word |= cas_latency_80[ecx];
+
+       dword = pci_read_config32(ctrl->d0, 0x70);
+
+       if((dword & 0xff) !=0 ) {
+               dword >>=8;
+               if((dword & 0xff)!=0) {
+                       dword >>=8;
+                       if((dword & 0xff)!=0) {
+                               dword >>= 8;
+                               if( (dword & 0xff)!=0) {
+                                       word &=~(0x0fff);  /* we have dimms in all 4 slots */ 
+                                       word |=cas_latency_80_4dimms[ecx];
+                               }
+                       }
+               }
+       }
+       
+       pci_write_config16(ctrl->d0, 0x80, word);
+       
+       dword = pci_read_config32(ctrl->d0, 0x88);      /* reset master DLL reset */
+       dword &= ~(1<<26);
+       pci_write_config32(ctrl->d0, 0x88, dword);
+       
+       RAM_RESET_DDR_PTR(ctrl);
+
+       return dimm_mask;
+
+}
+
+static long spd_set_dram_timing(const struct mem_controller *ctrl, long dimm_mask) {
+       /* Walk through all dimms and find the interesection of the
+        * supported dram timings.
+        */
+
+        int i;
+        uint32_t dword;
+        int value;
+
+        /* Read the inititial state */
+        dword = pci_read_config32(ctrl->d0, 0x78);
+#if 0
+# Intel clears top bit here, should we?
+# No the default is on and for normal timming it should be on.  Tom Z
+        andl    $0x7f, %esi
+#endif
+        
+        
+        for(i = 0; i < DIMM_SOCKETS; i++) {
+               if (!(dimm_mask & (1 << i))) {
+                        continue;
+                }
+               /* Trp */
+                value = spd_read_byte(ctrl->channel0[i], 27);
+                if(value < 0) continue;
+               if(value > (15<<2)) {
+                       /* At 133Mhz if row precharge time is above than 15ns than we
+                        * need 3 clocks not 2 clocks.
+                       */
+                       dword &= ~(1<<0); 
+               }
+               /*  Trcd */
+               value = spd_read_byte(ctrl->channel0[i],29);
+               if(value < 0 ) continue;
+               if(value > (15<<2)) {
+                       /* At 133Mhz if the Minimum ras to cas delay is about 15ns we
+                        * need 3 clocks not 2 clocks.
+                       */
+                       dword &= ~((1<<3)|(1<<1));
+               }
+               /* Tras */
+               value = spd_read_byte(ctrl->channel0[i],30);
+               if(value < 0 ) continue;
+                       /* Convert tRAS from ns to 133Mhz clock cycles */
+               value <<=1;      /* mult by 2 to make 7.5 15 */
+               value  += 15;   /* Make certain we round up */
+               value --;
+               value &= 0xff;  /* Clear the upper bits of eax */
+               value /= 15;
+               
+               /* Don't even process small timings */
+               if(value >5) {
+                       uint32_t tmp;
+                       /* Die if the value is to large */
+                       if(value>7) {
+                               die ("unsupported_rcd\r\n");
+                       }
+                       /* Convert to clocks - 5 */
+                       value -=5;
+                       /* Convert the existing value into clocks - 5 */
+                       tmp = (~((dword>>9) & 3) - 1) & 3;
+                       /* See if we need a slower timing */
+                       if(value > tmp ) {
+                               /* O.k. put in our slower timing */
+                               dword &= ~(3<<9);
+                               dword |= ((~(value + 1)) & 3)<<9 ;
+                       }
+               }
+       
+               /* Trd */ 
+               /* Set to a 7 clock read delay. This is for 133Mhz
+               *  with a CAS latency of 2.5  if 2.0 a 6 clock
+               *  delay is good  */
+               if( (pci_read_config8(ctrl->d0, 0x78) & 0x30) ==0 ){
+                       dword &= ~(7<<24); /* CAS latency is 2.5, make 7 clks */
+               }
+
+               /*
+               * Back to Back Read Turn Around
+               */
+               /* Set to a 3 clock back to back read turn around.  This
+                *  is good for CAS latencys 2.5 and 2.0 */
+               dword |= (1<<27);
+               /*
+               * Back to Back Read-Write Turn Around
+               */
+               /* Set to a 5 clock back to back read to write turn around.
+               *  4 is a good delay if the CAS latency is 2.0 */
+               if( ( pci_read_config8(ctrl->d0, 0x78) & (1<<4)) == 0) {
+                       dword &= ~(1<<28);
+               }
+               /*
+               * Back to Back Write-Read Turn Around
+               */
+               /* Set to a 2 clock back to back write to read turn around.
+               *  This is good for 2.5 and 2.0 CAS Latencies. */
+               dword |= (1<<29);
+       }
+       
+       pci_write_config32(ctrl->d0, 0x78, dword);
+       
+       return dimm_mask;
+
+}
+static unsigned int spd_detect_dimms(const struct mem_controller *ctrl)
+{               
+        unsigned dimm_mask;
+        int i;  
+        dimm_mask = 0;  
+#if DEBUG_RAM_CONFIG
+       print_debug("spd_detect_dimms:\r\n");
+#endif
+        for(i = 0; i < DIMM_SOCKETS; i++) {
+                int byte;
+                unsigned device;
+#if DEBUG_RAM_CONFIG
+               print_debug_hex32(i);
+               print_debug("\r\n");
+#endif
+                device = ctrl->channel0[i];
+                if (device) {
+                        byte = spd_read_byte(ctrl->channel0[i], 2);  /* Type */
+                        if (byte == 7) {
+                                dimm_mask |= (1 << i);
+                        }
+                }
+#if 1
+                device = ctrl->channel1[i];
+                if (device) {
+                        byte = spd_read_byte(ctrl->channel1[i], 2);
+                        if (byte == 7) {
+                                dimm_mask |= (1 << (i + DIMM_SOCKETS));
+                        }
+                }
+#endif
+        }       
+#if 1
+       i = (dimm_mask>>DIMM_SOCKETS);
+       if(i != (dimm_mask & ( (1<<DIMM_SOCKETS) - 1) ) ) {
+               die("now we only support dual channel\r\n");
+       }
+
+#endif
+
+        return dimm_mask;
+}               
+
+static uint32_t set_dimm_size(const struct mem_controller *ctrl, struct dimm_size sz, uint32_t memsz, unsigned index)
+{
+        int i;
+        uint32_t base0, base1;
+        uint32_t dch;
+       uint8_t byte;
+
+        /* Double the size if we are using dual channel memory */
+//        if (is_dual_channel(ctrl)) {
+                /* Since I have 2 identical channels double the sizes */
+                sz.side1++ ;
+                sz.side2++;
+//        }
+              
+       if (sz.side1 != sz.side2) {
+                sz.side2 = 0;
+        } 
+        /* Make certain side1 of the dimm is at least 64MB */
+        if (sz.side1 >= (25 + 4)) {
+                memsz += (1 << (sz.side1 - (25 + 4)) ) ;
+        }
+        /* Write the size of side 1 of the dimm */
+       byte = memsz;
+        pci_write_config8(ctrl->d0, 0x60+(index<<1), byte);
+
+        /* Make certain side2 of the dimm is at least 64MB */
+        if (sz.side2 >= (25 + 4)) {
+                memsz += (1 << (sz.side2 - (25 + 4)) ) ;
+        }
+        
+         /* Write the size of side 2 of the dimm */
+       byte = memsz;
+        pci_write_config8(ctrl->d0, 0x61+(index<<1), byte);
+        
+        /* now, fill in DRBs where no physical slot exists */
+        
+        for(i=index+1;i<4;i++) {
+                pci_write_config8(ctrl->d0, 0x60+(i<<1),byte);
+                pci_write_config8(ctrl->d0, 0x61+(i<<1),byte);
+        
+        }
+        
+        return memsz;
+
+}
+/* LAST_DRB_SLOT is a constant for any E7500 board */
+#define LAST_DRB_SLOT 0x67
+
+static long spd_set_ram_size(const struct mem_controller *ctrl, long dimm_mask)
+{
+        int i;
+        uint32_t memsz=0;
+       uint16_t word;
+
+        for(i = 0; i < DIMM_SOCKETS; i++) {
+                struct dimm_size sz;
+                if (!(dimm_mask & (1 << i))) {
+                        continue;
+                }
+                sz = spd_get_dimm_size(ctrl->channel0[i]);
+#if DEBUG_RAM_CONFIG
+                print_debug("dimm size =");
+                print_debug_hex32(sz.side1);
+                print_debug(" ");
+                print_debug_hex32(sz.side2);
+                print_debug("\r\n");
+#endif
+
+                if (sz.side1 == 0) {
+                       return -1; /* Report SPD error */
+                }
+                memsz = set_dimm_size(ctrl, sz, memsz, i);
+        }
+        /* For now hardset everything at 128MB boundaries */
+        /* %ebp has the ram size in multiples of 64MB */
+//        cmpl    $0, %ebp        /* test if there is no mem - smbus went bad */
+//        jz      no_memory_bad_smbus
+        if(memsz < 0x30)  {
+               /* I should really adjust all of this in C after I have resources
+               * to all of the pcie devices.
+               */
+
+               /* Round up to 128M granularity */
+               memsz++;
+               memsz &= 0xfe;
+               memsz<<= 10;
+               word = memsz;
+               pci_write_config16(ctrl->d0, 0xc4, word);
+        } else {
+
+               /* FIXME will this work with 3.5G of ram? */
+               /* Put TOLM at 3G */
+               pci_write_config16(ctrl->d0, 0xc4, 0xc000);
+               /* Hard code a 1G remap window, right after the ram */
+               if(memsz< 0x40){
+                       word = 0x40;  /* Ensure we are over 4G */
+               } else {
+                       word = memsz;
+               }
+               pci_write_config16(ctrl->d0, 0xc6, word);
+               word += 0x10;
+               pci_write_config16(ctrl->d0, 0xc8, word);
+
+        }
+
+        return dimm_mask;
+}
+                                                
+static void sdram_set_spd_registers(const struct mem_controller *ctrl) {
+       long dimm_mask;
+#if DEBUG_RAM_CONFIG
+       print_debug(spd_pre_init);
+#endif
+        //activate_spd_rom(ctrl);
+        dimm_mask = spd_detect_dimms(ctrl);
+       if (!(dimm_mask & ((1 << DIMM_SOCKETS) - 1))) {
+                print_debug("No memory for this controller\n");
+                return;
+        }
+       dimm_mask = spd_enable_clocks(ctrl, dimm_mask);
+        if (dimm_mask < 0)
+                goto hw_spd_err;
+       //spd_verify_dimms(ctrl);
+#if DEBUG_RAM_CONFIG
+       print_debug(spd_pre_set);
+#endif
+       dimm_mask = spd_set_row_attributes(ctrl,dimm_mask);
+        if (dimm_mask < 0)
+                goto hw_spd_err;
+       dimm_mask = spd_set_dram_controller_mode(ctrl,dimm_mask);
+        if (dimm_mask < 0)
+                goto hw_spd_err;       
+       dimm_mask = spd_set_cas_latency(ctrl,dimm_mask);
+        if (dimm_mask < 0)
+                goto hw_spd_err;
+       dimm_mask = spd_set_dram_timing(ctrl,dimm_mask);
+        if (dimm_mask < 0)
+                goto hw_spd_err;
+#if DEBUG_RAM_CONFIG
+       print_debug(spd_post_init);
+#endif
+       //moved from dram_post_init
+       spd_set_ram_size(ctrl, dimm_mask);
+               return;
+ hw_spd_err:
+        /* Unrecoverable error reading SPD data */
+        print_err("SPD error - reset\r\n");
+        hard_reset();
+        return;
+}
+
+
+       /* I have finally seen ram bad enough to cause LinuxBIOS
+        * to die in mysterious ways, before booting up far
+        * enough to run a memory tester.  This code attempts
+        * to catch this blatantly bad ram, with a spot check.
+        * For most cases you should boot all of the way up 
+        * and run a memory tester.  
+        */
+       /* Ensure I read/write each stick of bank of memory &&
+        * that I do more than 1000 bytes to avoid the northbridge cache.
+        * Only 64M of each side of each DIMM is currently mapped,
+        * so we can handle > 4GB of ram here.
+        */
+#if 0
+#define bank_msg  "Bank "
+#define side_msg " Side "
+static void verify_ram() {
+       xorl    %ecx, %ecx
+       /* Check to see if the RAM is present,
+        * in the specified bank and side.
+        */
+1:     movl    %ecx, %ebx
+       shrl    $1, %ebx
+       addl    $((5<<8) | SMBUS_MEM_DEVICE_START), %ebx
+       CALLSP(smbus_read_byte)
+       jz      5f
+       testl   $1, %ecx
+       jz      2f
+       cmpb    $2, %al
+       jne     5f
+
+       /* Display the bank and side we are spot checking.
+        */
+2:     CONSOLE_INFO_TX_STRING($bank_msg)
+       movl    %ecx, %ebx
+       shrl    $1, %ebx
+       incl    %ebx
+       CONSOLE_INFO_TX_HEX8(%bl)
+       CONSOLE_INFO_TX_STRING($side_msg)
+       movl    %ecx, %ebx
+       andl    $1, %ebx
+       CONSOLE_INFO_TX_HEX8(%bl)
+
+       /* Compute the memory address to spot check. */
+       movl    %ecx, %ebx
+       xorl    %eax, %eax
+3:     testl   %ebx, %ebx
+       jz      4f
+       addl    $0x04000000, %eax
+       decl    %ebx
+       jmp     3b
+4:
+       /* Spot check 512K of RAM */
+       movl    %eax, %ebx
+       addl    $0x0007ffff, %ebx
+       CALLSP(spot_check)
+5:     
+       /* Now find the next bank and side to spot check */
+       incl    %ecx
+       cmpl    $((SMBUS_MEM_DEVICE_END - SMBUS_MEM_DEVICE_START)<<1), %ecx
+       jb      1b
+       RET_LABEL(verify_ram)
+
+}
+#endif 
+
+#if 0
+static void ram_postinit(const struct mem_controller *ctrl) {
+#if DEBUG_RAM_CONFIG 
+       dumpnorth();
+#endif
+       /* Include a test to verify that memory is more or less working o.k. 
+        * This test is to catch programming errors and hardware that is out of
+        * spec, not a test to see if the memory dimms are working 100%
+        */
+//#    CALL_LABEL(verify_ram)
+       spd_set_ram_size(ctrl);
+}
+#define FIRST_NORMAL_REFERENCE() CALL_LABEL(ram_postinit)
+
+#define SPECIAL_FINISHUP()   CALL_LABEL(dram_finish)
+
+#endif
+
+#define ecc_pre_init   "Initializing ECC state...\r\n"
+#define ecc_post_init  "ECC state initialized.\r\n"
+static void dram_finish(const struct mem_controller *ctrl)
+{
+       uint32_t dword;
+       uint8_t byte;
+       /* Test to see if ECC support is enabled */
+       dword = pci_read_config32(ctrl->d0, 0x7c);
+       dword >>=20;
+       dword &=3;
+       if(dword == 2)  {
+               
+#if DEBUG_RAM_CONFIG   
+               print_debug(ecc_pre_init);
+#endif
+               /* Initialize ECC bits , use ECC zero mode (new to 7501)*/
+               pci_write_config8(ctrl->d0, 0x52, 0x06);
+               pci_write_config8(ctrl->d0, 0x52, 0x07);
+               do {
+                       byte = pci_read_config8(ctrl->d0, 0x52);
+
+               } while ( (byte & 0x08 ) == 0);
+
+               pci_write_config8(ctrl->d0, 0x52, byte & 0xfc);
+#if DEBUG_RAM_CONFIG           
+               print_debug(ecc_post_init);     
+#endif
+
+               /* Clear the ECC error bits */
+               pci_write_config8(ctrl->d0f1, 0x80, 0x03); /* dev 0, function 1, offset 80 */
+               pci_write_config8(ctrl->d0f1, 0x82, 0x03); /* dev 0, function 1, offset 82 */
+
+               pci_write_config32(ctrl->d0f1, 0x40, 1<<18); /* clear dev 0, function 1, offset 40; bit 18 by writing a 1 to it */
+               pci_write_config32(ctrl->d0f1, 0x44, 1<<18); /* clear dev 0, function 1, offset 44; bit 18 by writing a 1 to it */
+
+               pci_write_config8(ctrl->d0, 0x52, 0x0d);
+       }
+       
+       dword = pci_read_config32(ctrl->d0, 0x7c); /* FCS_EN */
+       dword |= (1<<17);
+       pci_write_config32(ctrl->d0, 0x7c, dword);
+
+
+#if DEBUG_RAM_CONFIG 
+       dumpnorth();
+#endif
+
+//     verify_ram();
+}
+#if 0
+#define ERRFUNC(x, str) mem_err(x, str)
+
+
+ERRFUNC(invalid_dimm_type,          "Invalid dimm type")
+ERRFUNC(spd_missing_data,           "Missing sdram spd data")
+ERRFUNC(spd_invalid_data,           "Invalid sdram spd data")
+ERRFUNC(spd_unsupported_data,       "Unsupported sdram spd value")
+ERRFUNC(unsupported_page_size,      "Unsupported page size")
+ERRFUNC(sdram_presence_mismatch,    "DIMM presence mismatch")
+ERRFUNC(sdram_value_mismatch,       "spd data does not match")
+ERRFUNC(unsupported_refresh_rate,   "Unsuported spd refresh rate")
+ERRFUNC(inconsistent_cas_latencies, "No cas latency supported by all dimms")
+ERRFUNC(unsupported_rcd,            "Unsupported ras to cas delay")
+#undef ERRFUNC
+
+#define mem_err_err "ERROR: "
+#define mem_err_pair " on dimm pair "
+#define mem_err_byte " spd byte "
+static void mem_err {
+       movl    %ebx, %edi
+       CONSOLE_ERR_TX_STRING($mem_err_err)
+       CONSOLE_ERR_TX_STRING(%esi)
+       CONSOLE_ERR_TX_STRING($mem_err_pair)
+       movl    %edi, %ebx
+       subb    $(SMBUS_MEM_DEVICE_START), %bl
+       CONSOLE_ERR_TX_HEX8(%bl)
+       CONSOLE_ERR_TX_STRING($mem_err_byte)
+       movl    %edi, %ebx
+       CONSOLE_ERR_TX_HEX8(%bh)
+       jmp     mem_stop
+
+}
+
+#endif
+
+
+#if ASM_CONSOLE_LOGLEVEL > BIOS_DEBUG
+#define ram_enable_1    "Ram Enable 1\r\n"
+#define ram_enable_2   "Ram Enable 2\r\n"
+#define ram_enable_3   "Ram Enable 3\r\n"
+#define ram_enable_4   "Ram Enable 4\r\n"
+#define ram_enable_5   "Ram Enable 5\r\n"
+#define ram_enable_6   "Ram Enable 6\r\n"
+#define ram_enable_7   "Ram Enable 7\r\n"
+#define ram_enable_8   "Ram Enable 8\r\n"
+#define ram_enable_9   "Ram Enable 9\r\n"
+#define ram_enable_10  "Ram Enable 10\r\n"
+#define ram_enable_11  "Ram Enable 11\r\n"
+#endif
+
+       /* Estimate that SLOW_DOWN_IO takes about 50&76us*/
+       /* delay for 200us */
+
+#define DO_DELAY \
+       udelay(200);
+//     for(i=0; i<16;i++)  {   SLOW_DOWN_IO    }
+               
+
+#define EXTRA_DELAY DO_DELAY
+
+static void sdram_enable(int controllers, const struct mem_controller *ctrl)
+{
+       int i;
+       /* 1 & 2 Power up and start clocks */
+#if DEBUG_RAM_CONFIG 
+       print_debug(ram_enable_1);
+       print_debug(ram_enable_2);
+#endif
+
+       /* A 200us delay is needed */
+
+       DO_DELAY
+       EXTRA_DELAY
+
+       /* 3. Apply NOP */
+#if DEBUG_RAM_CONFIG 
+       print_debug(ram_enable_3);
+#endif
+       RAM_NOP(ctrl);
+       EXTRA_DELAY
+
+       /* 4 Precharge all */
+#if DEBUG_RAM_CONFIG 
+       print_debug(ram_enable_4);
+#endif
+       RAM_PRECHARGE(ctrl);
+       EXTRA_DELAY
+       
+       /* wait until the all banks idle state... */
+       /* 5. Issue EMRS to enable DLL */
+#if DEBUG_RAM_CONFIG 
+       print_debug(ram_enable_5);
+#endif
+       RAM_EMRS(ctrl);
+       EXTRA_DELAY
+       
+       /* 6. Reset DLL */
+#if DEBUG_RAM_CONFIG 
+       print_debug(ram_enable_6);
+#endif
+       RAM_MRS(ctrl,1);
+       EXTRA_DELAY
+
+       /* Ensure a 200us delay between the DLL reset in step 6 and the final
+        * mode register set in step 9.
+        * Infineon needs this before any other command is sent to the ram.
+        */
+       DO_DELAY
+       EXTRA_DELAY
+       
+       /* 7 Precharge all */
+#if DEBUG_RAM_CONFIG 
+       print_debug(ram_enable_7);
+#endif
+       RAM_PRECHARGE(ctrl);
+       EXTRA_DELAY
+       
+       /* 8 Now we need 2 AUTO REFRESH / CBR cycles to be performed */
+#if DEBUG_RAM_CONFIG 
+       print_debug(ram_enable_8);
+#endif
+       RAM_CBR(ctrl);
+       EXTRA_DELAY
+       RAM_CBR(ctrl);
+       EXTRA_DELAY
+       /* And for good luck 6 more CBRs */
+       RAM_CBR(ctrl);
+       EXTRA_DELAY
+       RAM_CBR(ctrl);
+       EXTRA_DELAY
+       RAM_CBR(ctrl);
+       EXTRA_DELAY
+       RAM_CBR(ctrl);
+       EXTRA_DELAY
+       RAM_CBR(ctrl);
+       EXTRA_DELAY
+       RAM_CBR(ctrl);
+       EXTRA_DELAY
+
+       /* 9 mode register set */
+#if DEBUG_RAM_CONFIG 
+       print_debug(ram_enable_9);
+#endif
+       RAM_MRS(ctrl,0);
+       EXTRA_DELAY
+       
+       /* 10 DDR Receive FIFO RE-Sync */
+#if DEBUG_RAM_CONFIG 
+       print_debug(ram_enable_10);
+#endif
+       RAM_RESET_DDR_PTR(ctrl);
+       EXTRA_DELAY
+       
+       /* 11 normal operation */
+#if DEBUG_RAM_CONFIG 
+       print_debug(ram_enable_11);
+#endif
+       RAM_NORMAL(ctrl);
+
+
+       // special from v1
+        //FIRST_NORMAL_REFERENCE();
+       //spd_set_ram_size(ctrl, 0x03);
+
+        /* Finally enable refresh */
+        ENABLE_REFRESH(ctrl);
+
+       //SPECIAL_FINISHUP();
+       dram_finish(ctrl);
+
+}
+
diff --git a/src/northbridge/intel/i855pm/raminit.h b/src/northbridge/intel/i855pm/raminit.h
new file mode 100644 (file)
index 0000000..6e40683
--- /dev/null
@@ -0,0 +1,11 @@
+#ifndef RAMINIT_H
+#define RAMINIT_H
+
+#define DIMM_SOCKETS 4
+struct mem_controller {
+  device_t d0;
+  uint16_t channel0[DIMM_SOCKETS];
+};
+
+
+#endif /* RAMINIT_H */
diff --git a/src/northbridge/intel/i855pm/reset_test.c b/src/northbridge/intel/i855pm/reset_test.c
new file mode 100644 (file)
index 0000000..79a5cda
--- /dev/null
@@ -0,0 +1,18 @@
+/* Convert to C by yhlu */
+#define MCH_DRC 0x7c
+#define DRC_DONE (1 << 29)
+       /* If I have already booted once skip a bunch of initialization */
+       /* To see if I have already booted I check to see if memory
+        * has been enabled.
+        */
+static int bios_reset_detected(void) {
+       uint32_t dword;
+       
+       dword = pci_read_config32(PCI_DEV(0, 0, 0), MCH_DRC);
+       
+       if( (dword & DRC_DONE) != 0 ) {
+               return 1;
+       } 
+       
+       return 0;
+}