X-Git-Url: http://wien.tomnetworks.com/gitweb/?a=blobdiff_plain;f=src%2Fclock.c;h=d88515c45c482153144365c90b099c465b5076e8;hb=b29200c51beb1e75e7f844a4093da05b8394ad5e;hp=caa94badeb58607c5f6aebe709ffc01e76ccfec7;hpb=a83ff550b4cbf0b1bc35f493c8715a69a9e28b7e;p=seabios.git diff --git a/src/clock.c b/src/clock.c index caa94ba..d88515c 100644 --- a/src/clock.c +++ b/src/clock.c @@ -1,9 +1,9 @@ // 16bit code to handle system clocks. // -// Copyright (C) 2008 Kevin O'Connor +// Copyright (C) 2008-2010 Kevin O'Connor // Copyright (C) 2002 MandrakeSoft S.A. // -// This file may be distributed under the terms of the GNU GPLv3 license. +// This file may be distributed under the terms of the GNU LGPLv3 license. #include "biosvar.h" // SET_BDA #include "util.h" // debug_enter @@ -12,13 +12,19 @@ #include "pic.h" // eoi_pic1 #include "bregs.h" // struct bregs #include "biosvar.h" // GET_GLOBAL +#include "usb-hid.h" // usb_check_event // RTC register flags #define RTC_A_UIP 0x80 -#define RTC_B_SET 0x80 -#define RTC_B_PIE 0x40 -#define RTC_B_AIE 0x20 -#define RTC_B_UIE 0x10 + +#define RTC_B_SET 0x80 +#define RTC_B_PIE 0x40 +#define RTC_B_AIE 0x20 +#define RTC_B_UIE 0x10 +#define RTC_B_BIN 0x04 +#define RTC_B_24HR 0x02 +#define RTC_B_DSE 0x01 + // Bits for PORT_PS2_CTRLB #define PPCB_T2GATE (1<<0) @@ -42,21 +48,40 @@ #define PM_MODE5 (5<<1) #define PM_CNT_BINARY (0<<0) #define PM_CNT_BCD (1<<0) +#define PM_READ_COUNTER0 (1<<1) +#define PM_READ_COUNTER1 (1<<2) +#define PM_READ_COUNTER2 (1<<3) +#define PM_READ_STATUSVALUE (0<<4) +#define PM_READ_VALUE (1<<4) +#define PM_READ_STATUS (2<<4) /**************************************************************** * TSC timer ****************************************************************/ -#define PIT_TICK_RATE 1193182 // Underlying HZ of PIT -#define CALIBRATE_COUNT 0x800 // Approx 1.7ms +#define CALIBRATE_COUNT 0x800 // Approx 1.7ms -u32 cpu_khz VAR16_32; +u32 cpu_khz VAR16VISIBLE; +u8 no_tsc VAR16VISIBLE; static void -calibrate_tsc() +calibrate_tsc(void) { + u32 eax, ebx, ecx, edx, cpuid_features = 0; + cpuid(0, &eax, &ebx, &ecx, &edx); + if (eax > 0) + cpuid(1, &eax, &ebx, &ecx, &cpuid_features); + + if (!(cpuid_features & CPUID_TSC)) { + SET_GLOBAL(no_tsc, 1); + SET_GLOBAL(cpu_khz, PIT_TICK_RATE / 1000); + dprintf(3, "386/486 class CPU. Using TSC emulation\n"); + return; + } + // Setup "timer2" +#if 0 u8 orig = inb(PORT_PS2_CTRLB); outb((orig & ~PPCB_SPKR) | PPCB_T2GATE, PORT_PS2_CTRLB); /* binary, mode 0, LSB/MSB, Ch 2 */ @@ -80,36 +105,83 @@ calibrate_tsc() , (u32)start, (u32)end, (u32)diff); u32 hz = diff * PIT_TICK_RATE / CALIBRATE_COUNT; SET_GLOBAL(cpu_khz, hz / 1000); +#else + u32 hz = 800 * 1000000; + SET_GLOBAL(cpu_khz, hz / 1000); +#endif dprintf(1, "CPU Mhz=%u\n", hz / 1000000); } +static u64 +emulate_tsc(void) +{ + int cnt, d; + u16 ebda_seg = get_ebda_seg(); + u64 ret; + /* read timer 0 current count */ + ret = GET_EBDA2(ebda_seg, tsc_8254); + /* readback mode has slightly shifted registers, works on all 8254, readback PIT0 latch */ + outb(PM_SEL_READBACK | PM_READ_VALUE | PM_READ_COUNTER0, PORT_PIT_MODE); + cnt = (inb(PORT_PIT_COUNTER0) | (inb(PORT_PIT_COUNTER0) << 8)); + d = GET_EBDA2(ebda_seg, last_tsc_8254) - cnt; + /* Determine the ticks count from last invocation of this function */ + ret += (d > 0) ? d : (PIT_TICK_INTERVAL + d); + SET_EBDA2(ebda_seg, last_tsc_8254, cnt); + SET_EBDA2(ebda_seg, tsc_8254, ret); + return ret; +} + +static u64 +get_tsc(void) +{ + if (unlikely(GET_GLOBAL(no_tsc))) + return emulate_tsc(); + return rdtscll(); +} + +int +check_tsc(u64 end) +{ + return (s64)(get_tsc() - end) > 0; +} + static void -tscsleep(u64 diff) +tscdelay(u64 diff) { - u64 start = rdtscll(); + u64 start = get_tsc(); u64 end = start + diff; - while (rdtscll() < end) + while (!check_tsc(end)) cpu_relax(); } -void -ndelay(u32 count) +static void +tscsleep(u64 diff) { - u32 khz = GET_GLOBAL(cpu_khz); - tscsleep(count * khz / 1000000); + u64 start = get_tsc(); + u64 end = start + diff; + while (!check_tsc(end)) + yield(); } -void -udelay(u32 count) -{ - u32 khz = GET_GLOBAL(cpu_khz); - tscsleep(count * khz / 1000); + +void ndelay(u32 count) { + tscdelay(count * GET_GLOBAL(cpu_khz) / 1000000); } -void -mdelay(u32 count) -{ - u32 khz = GET_GLOBAL(cpu_khz); - tscsleep(count * khz); +void udelay(u32 count) { + tscdelay(count * GET_GLOBAL(cpu_khz) / 1000); +} +void mdelay(u32 count) { + tscdelay(count * GET_GLOBAL(cpu_khz)); +} + +void nsleep(u32 count) { + tscsleep(count * GET_GLOBAL(cpu_khz) / 1000000); +} +void usleep(u32 count) { + tscsleep(count * GET_GLOBAL(cpu_khz) / 1000); +} +void msleep(u32 count) { + tscsleep(count * GET_GLOBAL(cpu_khz)); } // Return the TSC value that is 'msecs' time in the future. @@ -117,7 +189,13 @@ u64 calc_future_tsc(u32 msecs) { u32 khz = GET_GLOBAL(cpu_khz); - return rdtscll() + ((u64)khz * msecs); + return get_tsc() + ((u64)khz * msecs); +} +u64 +calc_future_tsc_usec(u32 usecs) +{ + u32 khz = GET_GLOBAL(cpu_khz); + return get_tsc() + ((u64)(khz/1000) * usecs); } @@ -126,30 +204,31 @@ calc_future_tsc(u32 msecs) ****************************************************************/ static int -rtc_updating() +rtc_updating(void) { // This function checks to see if the update-in-progress bit // is set in CMOS Status Register A. If not, it returns 0. // If it is set, it tries to wait until there is a transition // to 0, and will return 0 if such a transition occurs. A -1 // is returned only after timing out. The maximum period - // that this bit should be set is constrained to 244useconds, so - // we wait for 1 msec max. + // that this bit should be set is constrained to (1984+244) + // useconds, but we wait for longer just to be sure. - if ((inb_cmos(CMOS_STATUS_A) & 0x80) == 0) + if ((inb_cmos(CMOS_STATUS_A) & RTC_A_UIP) == 0) return 0; - u64 end = calc_future_tsc(1); - do { - if ((inb_cmos(CMOS_STATUS_A) & 0x80) == 0) + u64 end = calc_future_tsc(15); + for (;;) { + if ((inb_cmos(CMOS_STATUS_A) & RTC_A_UIP) == 0) return 0; - } while (rdtscll() <= end); - - // update-in-progress never transitioned to 0 - return -1; + if (check_tsc(end)) + // update-in-progress never transitioned to 0 + return -1; + yield(); + } } static void -pit_setup() +pit_setup(void) { // timer0: binary count, 16bit count, mode 2 outb(PM_SEL_TIMER0|PM_ACCESS_WORD|PM_MODE2|PM_CNT_BINARY, PORT_PIT_MODE); @@ -158,6 +237,16 @@ pit_setup() outb(0x0, PORT_PIT_COUNTER0); } +static void +init_rtc(void) +{ + outb_cmos(0x26, CMOS_STATUS_A); // 32,768Khz src, 976.5625us updates + u8 regB = inb_cmos(CMOS_STATUS_B); + outb_cmos((regB & RTC_B_DSE) | RTC_B_24HR, CMOS_STATUS_B); + inb_cmos(CMOS_STATUS_C); + inb_cmos(CMOS_STATUS_D); +} + static u32 bcd2bin(u8 val) { @@ -165,33 +254,37 @@ bcd2bin(u8 val) } void -timer_setup() +timer_setup(void) { dprintf(3, "init timer\n"); +#if 1 calibrate_tsc(); +#endif + dprintf(3, "init timer: 01\n"); pit_setup(); + dprintf(3, "init timer: 02\n"); + init_rtc(); + dprintf(3, "init timer: 03\n"); rtc_updating(); + dprintf(3, "init timer: 04\n"); u32 seconds = bcd2bin(inb_cmos(CMOS_RTC_SECONDS)); - u32 ticks = (seconds * 18206507) / 1000000; + dprintf(3, "init timer: 05\n"); u32 minutes = bcd2bin(inb_cmos(CMOS_RTC_MINUTES)); - ticks += (minutes * 10923904) / 10000; + dprintf(3, "init timer: 06\n"); u32 hours = bcd2bin(inb_cmos(CMOS_RTC_HOURS)); - ticks += (hours * 65543427) / 1000; + dprintf(3, "init timer: 07\n"); + u32 ticks = (hours * 60 + minutes) * 60 + seconds; + dprintf(3, "init timer: 08\n"); + ticks = ((u64)ticks * PIT_TICK_RATE) / PIT_TICK_INTERVAL; + dprintf(3, "init timer: 09\n"); SET_BDA(timer_counter, ticks); - SET_BDA(timer_rollover, 0); + dprintf(3, "init timer: 10\n"); - enable_hwirq(0, entry_08); - enable_hwirq(8, entry_70); -} - -static void -init_rtc() -{ - outb_cmos(0x26, CMOS_STATUS_A); - outb_cmos(0x02, CMOS_STATUS_B); - inb_cmos(CMOS_STATUS_C); - inb_cmos(CMOS_STATUS_D); + enable_hwirq(0, FUNC16(entry_08)); + dprintf(3, "init timer: 11\n"); + enable_hwirq(8, FUNC16(entry_70)); + dprintf(3, "init timer: 12\n"); } @@ -199,10 +292,40 @@ init_rtc() * Standard clock functions ****************************************************************/ +#define TICKS_PER_DAY (u32)((u64)60*60*24*PIT_TICK_RATE / PIT_TICK_INTERVAL) + +// Calculate the timer value at 'count' number of full timer ticks in +// the future. +u32 +calc_future_timer_ticks(u32 count) +{ + return (GET_BDA(timer_counter) + count + 1) % TICKS_PER_DAY; +} + +// Return the timer value that is 'msecs' time in the future. +u32 +calc_future_timer(u32 msecs) +{ + if (!msecs) + return GET_BDA(timer_counter); + u32 kticks = DIV_ROUND_UP((u64)msecs * PIT_TICK_RATE, PIT_TICK_INTERVAL); + u32 ticks = DIV_ROUND_UP(kticks, 1000); + return calc_future_timer_ticks(ticks); +} + +// Check if the given timer value has passed. +int +check_timer(u32 end) +{ + return (((GET_BDA(timer_counter) + TICKS_PER_DAY - end) % TICKS_PER_DAY) + < (TICKS_PER_DAY/2)); +} + // get current clock count static void handle_1a00(struct bregs *regs) { + yield(); u32 ticks = GET_BDA(timer_counter); regs->cx = ticks >> 16; regs->dx = ticks; @@ -228,14 +351,14 @@ static void handle_1a02(struct bregs *regs) { if (rtc_updating()) { - set_fail(regs); + set_invalid(regs); return; } regs->dh = inb_cmos(CMOS_RTC_SECONDS); regs->cl = inb_cmos(CMOS_RTC_MINUTES); regs->ch = inb_cmos(CMOS_RTC_HOURS); - regs->dl = inb_cmos(CMOS_STATUS_B) & 0x01; + regs->dl = inb_cmos(CMOS_STATUS_B) & RTC_B_DSE; regs->ah = 0; regs->al = regs->ch; set_success(regs); @@ -263,7 +386,8 @@ handle_1a03(struct bregs *regs) outb_cmos(regs->cl, CMOS_RTC_MINUTES); outb_cmos(regs->ch, CMOS_RTC_HOURS); // Set Daylight Savings time enabled bit to requested value - u8 val8 = (inb_cmos(CMOS_STATUS_B) & 0x60) | 0x02 | (regs->dl & 0x01); + u8 val8 = ((inb_cmos(CMOS_STATUS_B) & (RTC_B_PIE|RTC_B_AIE)) + | RTC_B_24HR | (regs->dl & RTC_B_DSE)); outb_cmos(val8, CMOS_STATUS_B); regs->ah = 0; regs->al = val8; // val last written to Reg B @@ -276,13 +400,20 @@ handle_1a04(struct bregs *regs) { regs->ah = 0; if (rtc_updating()) { - set_fail(regs); + set_invalid(regs); return; } regs->cl = inb_cmos(CMOS_RTC_YEAR); regs->dh = inb_cmos(CMOS_RTC_MONTH); regs->dl = inb_cmos(CMOS_RTC_DAY_MONTH); - regs->ch = inb_cmos(CMOS_CENTURY); + if (CONFIG_COREBOOT) { + if (regs->cl > 0x80) + regs->ch = 0x19; + else + regs->ch = 0x20; + } else { + regs->ch = inb_cmos(CMOS_CENTURY); + } regs->al = regs->ch; set_success(regs); } @@ -303,13 +434,14 @@ handle_1a05(struct bregs *regs) // My assumption: RegB = (RegB & 01111111b) if (rtc_updating()) { init_rtc(); - set_fail(regs); + set_invalid(regs); return; } outb_cmos(regs->cl, CMOS_RTC_YEAR); outb_cmos(regs->dh, CMOS_RTC_MONTH); outb_cmos(regs->dl, CMOS_RTC_DAY_MONTH); - outb_cmos(regs->ch, CMOS_CENTURY); + if (!CONFIG_COREBOOT) + outb_cmos(regs->ch, CMOS_CENTURY); // clear halt-clock bit u8 val8 = inb_cmos(CMOS_STATUS_B) & ~RTC_B_SET; outb_cmos(val8, CMOS_STATUS_B); @@ -334,9 +466,9 @@ handle_1a06(struct bregs *regs) // My assumption: RegB = ((RegB & 01111111b) | 00100000b) u8 val8 = inb_cmos(CMOS_STATUS_B); // Get Status Reg B regs->ax = 0; - if (val8 & 0x20) { + if (val8 & RTC_B_AIE) { // Alarm interrupt enabled already - set_fail(regs); + set_invalid(regs); return; } if (rtc_updating()) { @@ -377,7 +509,7 @@ handle_1a07(struct bregs *regs) static void handle_1aXX(struct bregs *regs) { - set_fail(regs); + set_unimplemented(regs); } // INT 1Ah Time-of-day Service Entry Point @@ -399,16 +531,9 @@ handle_1a(struct bregs *regs) } } -// User Timer Tick -void VISIBLE16 -handle_1c() -{ - debug_isr(DEBUG_ISR_1c); -} - // INT 08h System Timer ISR Entry Point void VISIBLE16 -handle_08() +handle_08(void) { debug_isr(DEBUG_ISR_08); @@ -417,7 +542,7 @@ handle_08() u32 counter = GET_BDA(timer_counter); counter++; // compare to one days worth of timer ticks at 18.2 hz - if (counter >= 0x001800B0) { + if (counter >= TICKS_PER_DAY) { // there has been a midnight rollover at this point counter = 0; SET_BDA(timer_rollover, GET_BDA(timer_rollover) + 1); @@ -425,6 +550,8 @@ handle_08() SET_BDA(timer_counter, counter); + usb_check_event(); + // chain to user timer tick INT #0x1c u32 eax=0, flags; call16_simpint(0x1c, &eax, &flags); @@ -437,6 +564,32 @@ handle_08() * Periodic timer ****************************************************************/ +void +useRTC(void) +{ + u16 ebda_seg = get_ebda_seg(); + int count = GET_EBDA2(ebda_seg, RTCusers); + SET_EBDA2(ebda_seg, RTCusers, count+1); + if (count) + return; + // Turn on the Periodic Interrupt timer + u8 bRegister = inb_cmos(CMOS_STATUS_B); + outb_cmos(bRegister | RTC_B_PIE, CMOS_STATUS_B); +} + +void +releaseRTC(void) +{ + u16 ebda_seg = get_ebda_seg(); + int count = GET_EBDA2(ebda_seg, RTCusers); + SET_EBDA2(ebda_seg, RTCusers, count-1); + if (count != 1) + return; + // Clear the Periodic Interrupt. + u8 bRegister = inb_cmos(CMOS_STATUS_B); + outb_cmos(bRegister & ~RTC_B_PIE, CMOS_STATUS_B); +} + static int set_usertimer(u32 usecs, u16 seg, u16 offset) { @@ -445,24 +598,20 @@ set_usertimer(u32 usecs, u16 seg, u16 offset) // Interval not already set. SET_BDA(rtc_wait_flag, RWS_WAIT_PENDING); // Set status byte. - SET_BDA(ptr_user_wait_complete_flag, (seg << 16) | offset); + SET_BDA(user_wait_complete_flag, SEGOFF(seg, offset)); SET_BDA(user_wait_timeout, usecs); - - // Turn on the Periodic Interrupt timer - u8 bRegister = inb_cmos(CMOS_STATUS_B); - outb_cmos(bRegister | RTC_B_PIE, CMOS_STATUS_B); - + useRTC(); return 0; } static void -clear_usertimer() +clear_usertimer(void) { + if (!(GET_BDA(rtc_wait_flag) & RWS_WAIT_PENDING)) + return; // Turn off status byte. SET_BDA(rtc_wait_flag, 0); - // Clear the Periodic Interrupt. - u8 bRegister = inb_cmos(CMOS_STATUS_B); - outb_cmos(bRegister & ~RTC_B_PIE, CMOS_STATUS_B); + releaseRTC(); } #define RET_ECLOCKINUSE 0x83 @@ -476,13 +625,11 @@ handle_1586(struct bregs *regs) u32 count = (regs->cx << 16) | regs->dx; int ret = set_usertimer(count, GET_SEG(SS), (u32)&statusflag); if (ret) { - set_code_fail(regs, RET_ECLOCKINUSE); + set_code_invalid(regs, RET_ECLOCKINUSE); return; } - irq_enable(); while (!statusflag) - cpu_relax(); - irq_disable(); + wait_irq(); set_success(regs); } @@ -493,7 +640,7 @@ handle_158300(struct bregs *regs) int ret = set_usertimer((regs->cx << 16) | regs->dx, regs->es, regs->bx); if (ret) // Interval already set. - set_code_fail(regs, RET_EUNSUPPORTED); + set_code_invalid(regs, RET_EUNSUPPORTED); else set_success(regs); } @@ -509,7 +656,7 @@ handle_158301(struct bregs *regs) static void handle_1583XX(struct bregs *regs) { - set_code_fail(regs, RET_EUNSUPPORTED); + set_code_unimplemented(regs, RET_EUNSUPPORTED); regs->al--; } @@ -523,9 +670,11 @@ handle_1583(struct bregs *regs) } } +#define USEC_PER_RTC DIV_ROUND_CLOSEST(1000000, 1024) + // int70h: IRQ8 - CMOS RTC void VISIBLE16 -handle_70() +handle_70(void) { debug_isr(DEBUG_ISR_70); @@ -535,33 +684,35 @@ handle_70() if (!(registerB & (RTC_B_PIE|RTC_B_AIE))) goto done; - if (registerC & 0x20) { + if (registerC & RTC_B_AIE) { // Handle Alarm Interrupt. u32 eax=0, flags; call16_simpint(0x4a, &eax, &flags); } - if (!(registerC & 0x40)) + if (!(registerC & RTC_B_PIE)) goto done; // Handle Periodic Interrupt. + check_preempt(); + if (!GET_BDA(rtc_wait_flag)) goto done; // Wait Interval (Int 15, AH=83) active. u32 time = GET_BDA(user_wait_timeout); // Time left in microseconds. - if (time < 0x3D1) { + if (time < USEC_PER_RTC) { // Done waiting - write to specified flag byte. - u32 segoff = GET_BDA(ptr_user_wait_complete_flag); - u16 segment = segoff >> 16; - u16 offset = segoff & 0xffff; - u8 oldval = GET_FARVAR(segment, *(u8*)(offset+0)); - SET_FARVAR(segment, *(u8*)(offset+0), oldval | 0x80); + struct segoff_s segoff = GET_BDA(user_wait_complete_flag); + u16 ptr_seg = segoff.seg; + u8 *ptr_far = (u8*)(segoff.offset+0); + u8 oldval = GET_FARVAR(ptr_seg, *ptr_far); + SET_FARVAR(ptr_seg, *ptr_far, oldval | 0x80); clear_usertimer(); } else { // Continue waiting. - time -= 0x3D1; + time -= USEC_PER_RTC; SET_BDA(user_wait_timeout, time); }