2009-06-09 Zoltan Varga <vargaz@gmail.com>
[mono.git] / man / mono.1
index 7b031f2a0ba66993f986d72a8ebe39fe0dcc897f..563b73ac012f31b2ccd8e0e15afc495f5085be82 100644 (file)
@@ -1,15 +1,11 @@
 .\" 
 .\" mono manual page.
-.\" (C) 2003 Ximian, Inc. 
-.\" (C) 2004-2005 Novell, Inc. 
+.\" Copyright 2003 Ximian, Inc. 
+.\" Copyright 2004-2009 Novell, Inc. 
 .\" Author:
 .\"   Miguel de Icaza (miguel@gnu.org)
 .\"
-.de Sp \" Vertical space (when we can't use .PP)
-.if t .sp .5v
-.if n .sp
-..
-.TH Mono "Mono 1.0"
+.TH Mono "Mono 2.2"
 .SH NAME
 mono \- Mono's ECMA-CLI native code generator (Just-in-Time and Ahead-of-Time)
 .SH SYNOPSIS
@@ -112,12 +108,30 @@ precompiled with AOT.
 .TP
 .I write-symbols
 Instructs the AOT compiler to emit debug symbol information.
+.TP
+.I static
+Create an ELF object file (.o) which can be statically linked into an executable
+when embedding the mono runtime. When this option is used, the object file needs to
+be registered with the embedded runtime using the mono_aot_register_module function
+which takes as its argument the mono_aot_module_<ASSEMBLY NAME>_info global symbol 
+from the object file:
+
+.nf
+extern void *mono_aot_module_hello_info;
+
+mono_aot_register_module (mono_aot_module_hello_info);
+.fi
 .ne
-.RE
-.Sp
+
+.PP
 For more information about AOT, see: http://www.mono-project.com/AOT
+.RE
 .TP
-\fB--aot-only\fR
+\fB--attach=[options]\fR
+Currently the only option supported by this command line argument is
+\fBdisable\fR which disables the attach functionality.
+.TP
+\fB--full-aot\fR
 This is an experimental flag that instructs the Mono runtime to not
 generate any code at runtime and depend exclusively on the code
 generated from using mono --aot=full previously.   This is useful for
@@ -176,6 +190,7 @@ The following optimizations are implemented:
              abcrem     Array bound checks removal
              ssapre     SSA based Partial Redundancy Elimination
              sse2       SSE2 instructions on x86 [arch-dependency]
+             gshared    Enable generic code sharing.
 .fi
 .Sp
 For example, to enable all the optimization but dead code
@@ -235,6 +250,9 @@ Unsafe code is not allowed but P/Invoke is.  This mode should
 not allow managed code to crash mono.  The verification is not as
 strict as ECMA 335 standard in order to stay compatible with the MS
 runtime.
+.PP
+The security system acts on user code: code contained in mscorlib or
+the global assembly cache is always trusted.
 .ne
 .RE
 .TP
@@ -242,6 +260,15 @@ runtime.
 Configures the virtual machine to be better suited for server
 operations (currently, a no-op).
 .TP
+\fB--verify-all\fR 
+Verifies mscorlib and assemblies in the global
+assembly cache for valid IL, and all user code for IL
+verifiability. 
+
+This is different from \fB--security\fR's verifiable
+or validil in that these options only check user code and skip
+mscorlib and assemblies located on the global assembly cache.
+.TP
 \fB-V\fR, \fB--version\fR
 Prints JIT version information (system configuration, release number
 and branch names if available). 
@@ -264,7 +291,9 @@ much larger and slower code at runtime.
 The following options are supported:
 .TP
 .I casts
-Produces a detailed error when throwing a InvalidCastException.
+Produces a detailed error when throwing a InvalidCastException.   This
+option needs to be enabled as this generates more verbose code at
+execution time. 
 .TP
 .I mdb-optimizations
 Disable some JIT optimizations which are usually only disabled when
@@ -333,6 +362,13 @@ Finally, namespaces can be specified using the N: prefix:
        mono --trace=N:System.Xml
 
 .fi
+.TP
+\fB--no-x86-stack-align\fR
+Don't align stack frames on the x86 architecture.  By default, Mono
+aligns stack frames to 16 bytes on x86, so that local floating point
+and SIMD variables can be properly aligned.  This option turns off the
+alignment, which usually saves one intruction per call, but might
+result in significantly lower floating point and SIMD performance.
 .SH JIT MAINTAINER OPTIONS
 The maintainer options are only used by those developing the runtime
 itself, and not typically of interest to runtime users or developers.
@@ -393,6 +429,22 @@ hps will list the currently used handles.
 Increases the verbosity level, each time it is listed, increases the
 verbosity level to include more information (including, for example, 
 a disassembly of the native code produced, code selector info etc.).
+.SH ATTACH SUPPORT
+The Mono runtime allows external processes to attach to a running
+process and load assemblies into the running program.   To attach to
+the process, a special protocol is implemented in the Mono.Management
+assembly. 
+.PP
+With this support it is possible to load assemblies that have an entry
+point (they are created with -target:exe or -target:winexe) to be
+loaded and executed in the Mono process.
+.PP
+The code is loaded into the root domain, and it starts execution on
+the special runtime attach thread.    The attached program should
+create its own threads and return after invocation.
+.PP
+This support allows for example debugging applications by having the
+csharp shell attach to running processes.
 .SH PROFILING
 The mono runtime includes a profiler that can be used to explore
 various performance related problems in your application.  The
@@ -451,70 +503,293 @@ addr2line utility that comes from the binutils package).
 .PP
 The
 .I logging profiler
-will eventually replace the default profiler as it is more complete
-and encompasses the functionality of all the other profiler for Mono.
-It is able to track method execution times, allocations, jit times and
-collect statistical data.  Instead of reporting the collected
-information at the end of the execution of the program, it logs these
-events periodically into a file during program execution.  The output
-file contains compressed events, to process the data you should use
-tools like the "Mono.Profiler" tool provided on the Mono SVN
-repository.  
+is a general purpose profiler that can track many different kinds of
+events and logs those into a file as the program executes.   This is
+different than previous profilers in Mono that kept the information in
+memory and rendered a summary of the results when the program shut
+down.
+.PP
+Using the logging profiler means that useful information can be
+gathered for long-running applications, applications that terminate
+abormally (crashes, segfaults, complicated tear down processes) or
+when no data about the shutdown is required.
+.PP
+The data collected by the running threads is kept independent of each
+other to minimize the runtime overhead and the information dumped into
+the log at regular intervals. 
+.PP
+A sample use is very simple:
+.nf
+       $ mono --profile=logging program.exe
+
+       $ mprof-decoder program.mprof
+.fi
+.PP
+In the above example the logging profiler is used in its default mode
+that merely records GC statistics for the execution of program.exe.
+The profiling data collected is stored in the file program.mprof.  The
+mprof-decoder tool is then used to analyze the data.
+.PP
+You can instruct the logging profiler to record different one or more
+sets of events.   These are the modes supported:
+.IP
+.I Statistical Profiling (stat)
+the program instruction pointer is periodically sampled to determine
+where the program is spending most of its time.   Statistical
+profiling has a very low impact on a running application and it is
+very useful to get a general picture of where time is being spent on a
+program.   
+.IP 
+If call chains are requested, for each sample the profiler gets a
+partial stack trace (limited by the specified depth) so that
+caller-callee information is available.
+.IP
+.I Instrumenting:
+each method enter and exit is logged with a timestamp; further processing of
+the data can show the methods that took the longer to execute, with complete
+accounting for callers and callees. However, this way of profiling is rather
+intrusive and slows down the application significantly.
+.IP
+.I Allocation:
+each allocation is logged.
+.IP
+.I Allocation summary:
+shows, for each collection, a summary of the heap contents broken down by
+class (for each class the number of allocated and released objects is
+given, together with their aggregated size in bytes).
+.IP
+.I Heap snapshot mode:
+dumps the whole heap contents at every collection (or at user specified
+collections). It is also possible to request a collection and snapshot dump
+with a signal.
+.PP
+Moreover, other events can be logged and analyzed, like jit time for each
+method, load and unload for assemblies, modules and and individual classes,
+and appdomain and thread creation and destruction.
+.PP
+This profiler is activated passing the \fB--profile=logging\fR option to
+the mono runtime, and is controlled attaching further options, like
+\fB--profile=logging:statistical\fR for doing statistical profiling (multiple
+options are separated by commas).
+.PP
+As a quick primer, here are a few examples of the most common usage modes:
+.PP
+To perform statistical profiling:
+.nf
+
+       mono --profile=logging:stat program.exe
+.fi
+.PP
+To perform statistical profiling, inspecting call chains up to depth 8:
+.nf
+
+       mono --profile=logging:stat=8 program.exe
+.fi
+.PP
+To profile allocations (by default the call stack will be analized for
+each allocation, producing detailed caller method attribution infornation):
+.nf
+
+       mono --profile=logging:allocations program.exe
+.fi
+.PP
+To profile garbage collection activity at a high level (collection time and objects freed
+at each collection for each class are reported, but heap snapshots are not saved to disk):
 .nf
 
-       mono --profile=logging[:OPTIONS] program.exe
+       mono --profile=logging:allocations-summary program.exe
+.fi
+.PP
+To perform heap profiling taking heap snapshots:
+.nf
+
+       mono --profile=logging:heap=all program.exe
+.fi
+.PP
+To write the resulting data to a different file:
+.nf
 
+       mono --profile=logging:output=mydata.mprof program.exe
 .fi
 .PP
-To minimize the performance impact with multi-threaded applications,
-the logging profiler keeps a per-thread buffer that is routinely saved
-to disk.   
+Then you would need to invoke the decoder \fImprof-decoder(1)\fR
+on the output file to see the profiling results, or to examine heap
+snapshots and allocations in detail \fImprof-heap-viewer(1)\fR.
+.PP
+The operating modes described above are the default ones, and are sufficient
+to use the profiler.
 .PP
-If specified, the options are separated by commas:
+To further customize the profiler behavior there are more options, described
+below.
+.PP
+These options can be individually enabled and disabled prefixing them
+with an (optional) '+' character or a '-' character.  For instance,
+the "allocations" option by default records also the full call stack
+at each allocation.  If only the caller is wanted, one should use
+"allocations,-save-allocation-stack", or to disable call tracking
+completely (making the profiler less intrusive)
+"allocations,-save-allocation-caller,-save-allocation-stack".  In
+practice the "allocation" option by default behaves like
+"allocations,save-allocation-caller,save-allocation-stack", but the
+user can tune this to his needs.
+.PP
+These are all the available options, organized by category:
+.PP
+\fBExecution profiling modes\fR
 .RS
 .ne 8
 .TP
-\fIoutput=FILE\fR, \fIout=FILE\fR or \fIo=FILE\fR
-Use this option to provide the output file name for the profile log.
-If this option is not specified, it will default to profiler-log.prof.
-.TP
-\fIjit\fR, \fIj\fR
-Collect information about time spent by the JIT engine compiling
-methods. 
-.TP
-\fIallocations\fR, \fIalloc\fR or \fIa\fR Collect 
-information about each allocation (object class and size).
+\fIstatistical\fR, \fIstat\fR or \fIs\fR
+Performs statistical profiling.   This is a lightweight profiling
+mechanism and it has a much lower overhead than the \fIenter-leave\fR
+profiling as it works by sampling where the program is spending its
+time by using a timer.
+If specified with \fIs=<number>\fR, also inspect call chains up to level
+<number>.
 .TP
 \fIenter-leave\fR, \fIcalls\fR or \fIc\fR
 Measure the time spent inside each method call, this is done by
 logging the time when a method enters and when the method leaves.
 This can be a time consuming operation. 
 .TP
-\fIstatistical\fR, \fIstat\fR or \fIs\fR
-Performs statistical profiling.   This is a lightweight profiling
-mechanism as it has a much lower overhead than the \fIenter-leave\fR
-profiling as it works by sampling where the program is spending its
-time by using a timer. 
+\fIjit\fR, \fIj\fR
+Collect information about time spent by the JIT engine compiling
+methods. 
+.ne
+.RE
+.PP
+\fBAllocation profiling modes\fR
+.RS
+.ne 8
+.TP
+\fIallocations\fR, \fIalloc\fR or \fIa\fR
+Collect information about each allocation (object class and size).
+By default this also implies "+save-allocation-caller" and
+"+save-allocation-stack".
+.TP
+\fIsave-allocation-caller\fR, \fIsac\fR
+Save the direct caller of each allocation. The profiler filters out wrapper
+methods, and also recognizes if the allocation has been performed by the
+runtime while jitting a method.
+.TP
+\fIsave-allocation-stack\fR, \fIsas\fR
+Save the full managed execution stack at each allocation.
+While the "sac" option saves the direct caller, this one records the whole
+stack trace.
+Note that in the call stack the wrapper methods are not filtered out.
+Anyway the "sac" and "sas" options can be combined, and the decoder will
+attribute the allocation to the correct method even if the wrapper is at the
+top of the stack trace.
+.TP
+\fIallocations-summary\fR or \fIas\fR
+At each collection dump a summary
+of the heap contents (for each class, the number and collective size of all
+live and freed heap objects). This very lightweight compared to full heap
+snapshots.
 .TP
 \fIunreachable\fR, \fIfree\fR or \fIf\fR
-Performs a lighweight profile of the garbage collector.  On each
+Performs a lightweight profile of the garbage collector.  On each
 collection performed by the GC, the list of unreachable objects is
 recorded, and for each object the class and size is provided.  This
-information is useful to compute the heap size broken down by class.
+information can be used to compute the heap size broken down by class
+(combined with "a" can give the same information of "as", but the log
+file contains info about each individual object, while in "as" the
+processing is done directly at runtime and the log file contains only
+the summarized data broken down by class).
+.TP
+\fIgc\fR or \fIg\fR
+Measure the time spent in each collection, and also trace heap resizes.
 .TP
-\fIheap-shot\fR, \fIheap\fR or \fIh\fR
-Performsn full heap profiling.   In this case on each
+\fIheap-shot[=ARG]\fR, \fIheap[=ARG]\fR or \fIh[=ARH]\fR
+Performs full heap profiling.   In this case on each
 collection a full heap snapshot is recorded to disk.
+Inside the snapshots, each object reference is still represented so
+that it's possible to investigate who is responsible for keeping objects
+alive.
+.PP
+If the value of ARG is 
+.B all, 
+a heap snapshot is taken at each collection.  
+.PP
+If the value is signal name or a number (one of SIGUSR1, SIGUSR2 and
+SIGPROF, remembering that SIGPROF is not compatible with the
+statistical profiler), every time the application receives this signal
+a garbage collection is forced and a snapshot is taken. The natural way
+to take a heap snapshot is then using the kill command to deliver the
+appropriate signal to the application.
+.PP
+Heap profiling also enables full allocation profiling (with call
+stacks), and each allocation can be related to its corresponding
+object in the snapshots, enabling investigations like "find all
+objects of a given class allocated by a given method and still live at
+a given collection, and then find all objects referencing them".
+.PP
+This kind of heap snapshot analysis is performed using the mprof-heap-viewer(1)
+application.
+.PP
+The number of heap snapshots taken (and the moment in which they are taken)
+can be further customized with the following options: 
+.TP
+\fIgc-dumps=N\fR, \fIgc-d=N\fR, \fIgcd=N\fR
+states the number of snapshots that must be dumped (since the application
+starts).  Zero means no dumps at all, -1 means dump at all collections.
 .TP
 \fIgc-commands=FILE\fR, \fIgc-c=FILE\fR or \fIgcc=FILE\fR 
-Used to specify the file that controls the heap snapshot dumps.
+specify a "command file". The file must contain an integer value in ASCII
+form, and the profiler will stat it at every collection.
+If it has been modified it will interpret its contents as a \fIgcd=N\fR
+option value, and dump the required number of snapshots from that moment
+onwards.
+If the file is present at application startup it takes precedence over an
+eventual \fIgcd=N\fR option.
+.TP
+These options exist because it can happen that the user wants to investigate
+what happens during collections but without forcing a collection using a
+signal, because forcing a collection alters the program behavior.
+Of course it is possible to simply take a snapshot at every collection, but
+in some workloads this is could not be feasible (too much data).
+So we have this "garbage collection dumps" counter to control how many
+snapshots to take.
+.ne
+.RE
+.PP
+\fBProfiler activity control\fR
+.RS
+.ne 8
 .TP
-\fIgc-dumps=N\fR, \fIgc-d=N\fR, \fIgcd=N\fR
-Used to specify the initial number of heap snapshots to dump (if the control file is not used). 
+\fIoutput=FILE\fR, \fIout=FILE\fR or \fIo=FILE\fR
+Use this option to provide the output file name for the profile log.
+If this option is not specified, it will default to "<program-name>.mprof".
+.TP
+\fIoutput-suffix=SUFFIX\fR, \fIsuffix=SUFFIX\fR or \fIos=SUFFIX\fR: makes
+the output file name equals to "<program-name>-SUFFIX.mprof".
+.TP
+\fIstart-enabled\fR or \fIse\fR: start with the profiler active
+(which is the default).
+.TP
+\fIstart-disabled\fR or \fIsd\fR: start with the profiler inactive.
+.TP
+\fItoggle-signal=<SIGNAL>\fR or \fIts=<SIGNAL>\fR (where <SIGNAL>
+is one of SIGUSR1, SIGUSR2 or SIGPROF): Choose a signal that will be used to
+toggle the profiler activity on and off. This way you can decide to profile
+only portions of the applicatopn lifetime (for instance, you can decide to
+avoid profiling an initial setup phase using \fIsd\fR, and enable the
+profiler later delivering the signal to the application).
+.TP
+\fIforce-accurate-timer\fR (or \fIfac\fR): the profiler by default uses
+rtdsc to acquire timestamps for frequent events, but this can be imprecise;
+using this option you force the use of "gettimeofday" at every event, which
+is more accurate but much slower.
+.ne
+.RE
+.PP
+\fBInternal buffer sizes\fR
+.RS
+.ne 8
 .TP
 \fIper-thread-buffer-size=N\fR, \fItbs=N\fR
 Use to specify the number of events that a thread buffer
-can hold.   When the thread buffer is full, the log block it is
+can hold.   When the thread buffer is full, a log block is
 written to disk.
 .Sp
 This defaults to tbs=10000.
@@ -523,7 +798,8 @@ This defaults to tbs=10000.
 The number of statistical samples that
 are held in memory before they are dumped to disk (the system does
 double-buffering and the statistical samples are written by a helper
-thread).  
+thread, so the statistical profiler never stops and is able to profile
+the profiler itself).  
 .Sp
 This defaults to sbs=10000.
 .TP
@@ -534,33 +810,21 @@ This defaults to wbs=1024.
 .ne
 .RE
 .PP
-A few invocation samples follow.
+In its current state, this profiler can also perform heap analysis
+like the HeapShot profiler, but there is no UI to process this
+information. 
 .PP
-To collect statistical data:
-.nf
-
-       mono --profile=logging:s program.exe
-.fi
+Another known issue is that if the timer is not strictly monotonic (like
+rtdsc), differences between times can underflow (they are handled as
+unsigned integers) and weird numbers can show up in the logs.
 .PP
-To profile method enter-exit and allocations:
-.nf
-
-       mono --profile=logging:c,a program.exe
-.fi
-.PP
-To profile method enter-exit and jit time, and write the data to "mydata.mprof":
-.nf
-
-       mono --profile=logging:c,j,o=mydata.mprof program.exe
-.fi
-.PP
-Then you would need to invoke the decoder on "mydata.mprof" to see the
-profiling results.
+Finally, it can happen that when exceptions are thrown the profiler temporarily
+loses track of the execution stack and misattributes the caller for a few
+allocations (and method execution time).
 .PP
-In its current state, this profiler can also perform heap analysis (like
-heap-shot), and the decoder is already able to read the data, however
-the user interface for this feature has not yet been written (which means
-that the data is not printed by the decoder).
+The output file contains compressed events, to process the data you should
+use tools like the "Mono.Profiler" tool provided on the Mono SVN
+repository.  
 .PP
 More explanations are provided here: "http://www.mono-project.com/LoggingProfiler".
 .SH EXTERNAL PROFILERS
@@ -573,7 +837,7 @@ profiler.
 To install you must download the profiler
 from Mono's SVN:
 .nf
-       svn co svn://svn.myrealbox.com/source/trunk/heap-shot
+       svn co svn://anonsvn.mono-project.com/source/trunk/heap-shot
        cd heap-shot
        ./autogen
        make
@@ -586,7 +850,7 @@ The Live Type profiler shows at every GC iteration all of the live
 objects of a given type.   To install you must download the profiler
 from Mono's SVN:
 .nf
-       svn co svn://svn.myrealbox.com/source/trunk/heap-prof
+       svn co svn://anonsvn.mono-project.com/source/trunk/heap-prof
        cd heap-prof
        ./autogen
        make
@@ -703,7 +967,11 @@ The offsets displayed are IL offsets.
 .PP
 A more powerful coverage tool is available in the module `monocov'.
 See the monocov(1) man page for details.
-.SH DEBUGGING
+.SH DEBUGGING AIDS
+To debug managed applications, you can use the 
+.B mdb
+command, a command line debugger.  
+.PP
 It is possible to obtain a stack trace of all the active threads in
 Mono by sending the QUIT signal to Mono, you can do this from the
 command line, like this:
@@ -723,6 +991,10 @@ integrity of the runtime after sending this signal is not guaranteed
 and the application might crash or terminate at any given point
 afterwards.   
 .PP
+The \fB--debug=casts\fR option can be used to get more detailed
+information for Invalid Cast operations, it will provide information
+about the types involved.   
+.PP
 You can use the MONO_LOG_LEVEL and MONO_LOG_MASK environment variables
 to get verbose debugging output about the execution of your
 application within Mono.
@@ -852,6 +1124,12 @@ to track down the source of the problems.
 \fBno-gdb-backtrace\fR
 This option will disable the GDB backtrace emitted by the runtime
 after a SIGSEGV or SIGABRT in unmanaged code.
+.TP
+\fBsuspend-on-sigsegv\fR
+
+This option will suspend the program when a native SIGSEGV is received.
+This is useful for debugging crashes which do not happen under gdb,
+since a live process contains more information than a core file.
 .ne
 .RE
 .TP
@@ -1058,7 +1336,7 @@ The default is 180 seconds.
 \fBMONO_THREADS_PER_CPU\fR
 The maximum number of threads in the general threadpool will be
 20 + (MONO_THREADS_PER_CPU * number of CPUs). The default value for this
-variable is 5.
+variable is 10.
 .TP
 \fBMONO_XMLSERIALIZER_THS\fR
 Controls the threshold for the XmlSerializer to produce a custom
@@ -1082,6 +1360,16 @@ Both files are read by System.Web on application startup, if they are found at t
 above locations. If you don't want the mapping to be performed you can set this
 variable in your environment before starting the application and no action will
 be taken.
+.TP
+\fBMONO_MESSAGING_PROVIDER\fR
+Mono supports a plugin model for its implementation of System.Messaging making
+it possible to support a variety of messaging implementations (e.g. AMQP, ActiveMQ).
+To specify which messaging implementation is to be used the evironement variable
+needs to be set to the full class name for the provider.  E.g. to use the RabbitMQ based
+AMQP implementation the variable should be set to:
+
+.nf
+Mono.Messaging.RabbitMQ.RabbitMQMessagingProvider,Mono.Messaging.RabbitMQ
 .SH ENVIRONMENT VARIABLES FOR DEBUGGING
 .TP
 \fBMONO_ASPNET_NODELETE\fR
@@ -1165,9 +1453,18 @@ Only code in corlib will have its code shared.
 No generic code sharing will be performed.
 .RE
 .Sp
-The
-Note that to enable generation of shared code the "gshared"
-compiler option has to be set as well.
+Generic code sharing by default only applies to collections.   The
+Mono JIT by default turns this on.
+.TP
+\fBMONO_XDEBUG\fR
+When the the MONO_XDEBUG env var is set, debugging info for JITted
+code is emitted into a shared library, loadable into gdb. This enables,
+for example, to see managed frame names on gdb backtraces.
+.TP
+\fBMONO_VERBOSE_METHOD\fR
+Enables the maximum JIT verbosity for the specified method. This is
+very helpfull to diagnose a miscompilation problems of a specific
+method.
 .SH VALGRIND
 If you want to use Valgrind, you will find the file `mono.supp'
 useful, it contains the suppressions for the GC which trigger
@@ -1259,7 +1556,8 @@ http://www.mono-project.com/Mailing_Lists
 http://www.mono-project.com
 .SH SEE ALSO
 .PP
-certmgr(1), mcs(1), monocov(1), monodis(1), mono-config(5), mozroots(1), xsp(1).
+certmgr(1), csharp(1), mcs(1), mdb(1), monocov(1), monodis(1),
+mono-config(5), mozroots(1), pdb2mdb(1), xsp(1).
 .PP
 For more information on AOT:
 http://www.mono-project.com/AOT